
13th International Workshop on
Worst-Case Execution Time
Analysis

WCET’13, July 9, 2013, Paris, France

Edited by

Claire Maiza

OASIcs – Vo l . 30 – WCET 2013 www.dagstuh l .de/oas i c s

Editor
Claire Maiza
Grenoble INP, Verimag
Grenoble, France
claire.maiza@imag.fr

ACM Classification 1998
B.8.2 Performance Analysis and Design Aids, C.3 Real-time and embedded systems, D.2.4 Software/Pro-
gram Verification

ISBN 978-3-939897-54-5

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-54-5.

Publication date
July, 2013

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.WCET.2013.i

ISBN /978-3-939897-54-5 ISSN 2190-6807 http://www.dagstuhl.de/oasics

http://www.dagstuhl.de/dagpub/978-3-939897-54-5
http://www.dagstuhl.de/dagpub/978-3-939897-54-5
http://dnb.d-nb.de
http://dx.doi.org/10.4230/OASIcs.WCET.2013.i
http://www.dagstuhl.de/dagpub//978-3-939897-54-5
http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

iii

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 2190-6807

www.dagstuhl.de/oasics

WCET 2013

http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

Contents

Evaluation of resource arbitration methods for multi-core real-time systems
Timon Kelter, Tim Harde, Peter Marwedel and Heiko Falk . 1

Automatic WCET Analysis of Real-Time Parallel Applications
Haluk Ozaktas, Christine Rochange, and Pascal Sainrat . 11

Integrated Worst-Case Execution Time Estimation of Multicore Applications
Dumitru Potop-Butucaru and Isabelle Puaut . 21

Program Semantics in Model-Based WCET Analysis: A State of the Art Perspective
Mihail Asavoae, Claire Maiza, and Pascal Raymond . 32

Multi-architecture Value Analysis for Machine Code
Hugues Cassé, Florian Birée, and Pascal Sainrat . 42

The Auspicious Couple: Symbolic Execution and WCET Analysis
Armin Biere, Jens Knoop, Laura Kovács, and Jakob Zwirchmayr 53

Upper-bounding Program Execution Time with Extreme Value Theory
Francisco J. Cazorla, Tullio Vardanega, Eduardo Quiñones, and Jaume Abella . . . 64

PRADA: Predictable Allocations by Deferred Actions
Florian Haupenthal and Jörg Herter . 77

Static analysis of WCET in a satellite software subsystem
Jorge Garrido, Juan Zamorano, and Juan A. de la Puente . 87

Applying Measurement-Based Probabilistic Timing Analysis to Buffer Resources
Leonidas Kosmidis, Tullio Vardanega, Jaume Abella, Eduardo Quiñones, and
Francisco J. Cazorla . 97

13th International Workshop on Worst-Case Execution Time Analysis (WCET 2013).
Editor: Claire Maiza

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Message from the workshop chair

On July 9, 2013, the 13th International workshop on Worst-Case Execution Time Analysis
(WCET 2013, http://wcet2013.imag.fr) will be held in Paris, France. The workshop is being
organised as a satellite workshop of the 25th Euromicro conference on Real-Time Systems
(ECRTS’13, http://ecrts13.ecrts.org). I am therefore grateful to the ECRTS’13 general chair,
Laurent Georges, his local team, and the Real-Time Technical Committee Chair of the
Euromicro, Gerhard Föhler, for their work.

The papers that will be presented at the workshop have been selected based on peer
reviews by program committee members and external reviewers, all experts in the field. 10
submissions out of 17 were finally selected for presentation. This document contains the
presented papers.

I am happy to thank the authors, the program committee including external reviewers,
the WCET workshop steering committee for assembling the components of a very successful
workshop. The workshop organizers are also deeply grateful to the EU COST Action IC1202:
Timing Analysis On Code-Level (TACLe) for financial support. Special thanks to Heiko Falk
and Mihail Asavoae for their help.

Claire Maiza
————

13th International Workshop on Worst-Case Execution Time Analysis (WCET 2013).
Editor: Claire Maiza

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://wcet2013.imag.fr
http://ecrts13.ecrts.org
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Committees

Program Committee

Guillem Bernat
Rapita Systems, UK

Hugues Cassé
IRIT – Université de Toulouse, France

Francisco J Cazorla
Barcelona Supercomputing Center, Spain

Heiko Falk
Ulm University, Germany

Kevin Hammond
University of St Andrews, UK

Damien Hardy
IRISA, France

Chris Healy
Furman University, USA

Niklas Holsti
Tidorum Lltd, Finland

Björn Lisper
Mälardalen University, Sweden

Tulika Mitra
National University of Singapore, Singapore

Stefan Petters
CISTER/IPP Hurray, Porto, Portugal

Peter Puschner
Technische Universität Wien, Austria

Jan Reineke
Saarland University, Germany

Christine Rochange
IRIT – Université de Toulouse, France

Tullio Vardanega
University of Padua, Italia

Steering Committee

Guillem Bernat
Rapita Systems Ltd., UK

Jan Gustafsson
Mälardalen University, Sweden

Isabelle Puaut
University of Rennes 1 / IRISA, France

Peter Puschner
Vienna University of Technology, Austria

External Reviewers

Mihail Asavoae
Grenoble University / Verimag, France

Marc Boyer
Onera, France

Bekim Cilku
Vienna University of Technology, Austria

Andreas Gustavsson
Mälardalen University, Sweden

Benedikt Huber
Vienna University of Technology, Austria

Daniel Prokesch
Vienna University of Technology, Austria

13th International Workshop on Worst-Case Execution Time Analysis (WCET 2013).
Editor: Claire Maiza

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Evaluation of resource arbitration methods for
multi-core real-time systems∗

Timon Kelter, Tim Harde, Peter Marwedel1 and Heiko Falk2

1 Department of Computer Science, TU Dortmund
Otto-Hahn-Straße 16, D-44227 Dortmund
{timon.kelter,tim.harde,peter.marwedel}@tu-dortmund.de

2 Institute of Embedded Systems/Real-Time Systems, Ulm University
James-Franck-Ring, D–89081 Ulm
heiko.falk@uni-ulm.de

Abstract
Multi-core systems have become prevalent in the last years, because of their favorable properties
in terms of energy consumption, computing power and design complexity. First attempts have
been made to devise WCET analyses for multi-core processors, which have to deal with the
problem that the cores may experience interferences during accesses to shared resources. To limit
these interferences, the vast amount of previous work is proposing a strict TDMA (time division
multiple access) schedule for arbitrating shared resources. Though this type of arbitration yields
a high predictability, this advantage is paid for with a poor resource utilization. In this work,
we compare different arbitration methods with respect to their predictability and average case
performance. We show how known WCET analysis techniques can be extended to work with the
presented arbitration strategies and perform an evaluation of the resulting ACETs and WCETs
on an extensive set of realworld benchmarks. Results show that there are cases when TDMA is
not the best strategy, especially when predictability and performance are equally important.

1998 ACM Subject Classification B.8.2 Performance Analysis and Design Aids, D.2.4 Soft-
ware/Program Verification

Keywords and phrases WCET analysis, multi-core, arbitration, shared resources

Digital Object Identifier 10.4230/OASIcs.WCET.2013.1

1 Introduction

In the last years, many proposals on how to compute safe WCET values for programs running
on multi-core systems have been made, but analyses that scale well and are precise at the
same time are much harder in the multi-core case than in the single-core one. The central
property, that must be accounted for, is that cores may access shared resources and these
accesses will have to be arbitrated at some point. Among most of the analysis techniques
that have been introduced, it is a common denominator that TDMA should be used for
arbitrating the shared resources, since it allows an easy derivation of worst-case bounds for
the duration of accesses. In this paper, we compare previously published arbitration methods
experimentally both in terms of average and worst-case performance. For the experiments
we use a static analyzer and a cycle-true system simulator on a multi-core ARM-platform
with a configurable shared bus, which is arbitrated among the cores. We also examine a

∗ This work was partially supported by Deutsche Forschungsgesellschaft (DFG) under grant FA 1017/1-1
and EU COST Action IC1202: Timing Analysis On Code-Level (TACLe).

© Timon Kelter, Tim Harde, Peter Marwedel, and Heiko Falk;
licensed under Creative Commons License CC-BY

13th International Workshop on Worst-Case Execution Time Analysis (WCET 2013).
Editor: Claire Maiza; pp. 1–10

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2013.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

2 Evaluation of resource arbitration methods for multi-core real-time systems

more flexible variant of TDMA, called Priority Division, and show its effects on ACET and
WCET. In summary, the contributions are:

Generalization of previously published WCET analysis techniques to the mentioned
arbitration methods
Experimental evaluation of average-case and worst-case properties of different arbitration
methods on a realistic multi-core platform

The rest of the paper is organized as follows: In Section 2 we will present related work, and
Section 3 introduces our system model used in the analyses. In Section 4 the overall analysis
framework as well as the changes that are needed to incorporate the different arbitration
methods are presented. Section 5 provides the experimental evaluation of the approaches.
Finally, we provide a summary of our results and give directions for future work in Section 6.

2 Related Work

The initial scenario covered by WCET analyses was the case of a single program being run
uninterruptedly on a single core. This is a well-understood problem for which structured
analyses were devised [16]. For the WCET estimation to be safe the analyzer must usually
operate on a binary of the analyzed program, since only then locations of code and data
are fixed, which affects e.g. cache performance. The problem is separated into control-flow
reconstruction, value analysis, microarchitectural analysis and path analysis. Control-flow
reconstruction can be tackled by a combination of heuristics and data-flow analysis, whereas
value and microarchitectural analysis are usually done as a pure data-flow analysis with
the domain of register / memory values or abstract machine states, respectively. In these
analyses it may be possible to throw away abstract states that are not inducing a local worst-
case, but this is only possible if the architecture under examination is timing-anomaly-free
[13]. For the last step in this WCET analysis pipeline, the path analysis, an integer linear
program is formulated and solved, which models all paths through the program together
with user-defined flow restrictions, which are needed to bound loops and recursions in the
program.

In this work, we also conduct the WCET analysis in the presented way, where the
modeling of accesses to shared resources is integrated into the microarchitectural analysis
stage with the help of an existing approach for analyzing TDMA offsets [5, 1].

The Priority Division (PD) arbitration policy was first introduced in [14]. The authors
provide experimental results of an FPGA-based system which uses PD to arbitrate the
shared memory bus, and they state that PD is well-suited for WCET analysis, but this is
not investigated further. In this paper we show how to integrate PD into existing WCET
analysis frameworks.

The second major category of timing-analysis tools models the multicore system as a set
of timed automata and performs model-checking of timing predicates to find the WCET [3].
The drawback of this approach, as discussed in [15], is the possible lack of scalability since
the generated models quickly become intractably big. To overcome this, mixtures of abstract
interpretation and model-checking have been proposed [8].

Finally, the last approach to deriving multicore WCET values it to derive arrival curves
which bound events on the shared resources and compute worst-case access delays from those
curves [11]. This has the advantage that the timing behavior of sequences of accesses can be
analyzed more easily, therefore these approaches are also called “cumulative” in [2]. On the
other hand, the abstraction towards access curves alone already loses some precision.

T. Kelter, T. Harde, P. Marwedel, and H. Falk 3

There have been numerous discussions of arbitration policies for real-time systems.
The PROMPT principles for predictable multicore architectures [2] advocate “deterministic”
arbitration with TDMA as one example. The comparison in [12] examined different arbitration
methods for the shared bus of a Java real-time processor and TDMA arbitration resulted as
the most predictable method. This tendency can be further supported by the long-standing
work on the Time-Triggered Architecture (TTA) [6], where timing-predictable communication
is implemented by customized TDMA schedules. The TTA and other works also define
Networks-on-Chip (NoCs) which use TDMA to provide guaranteed delays. With minor
adaptions, the analysis techniques presented in this paper are also applicable to such NoCs.

The adaptation of multicore hardware to exhibit better timing properties is related to
our work, since we also propose a configurable arbiter for the shared resource, but we assume
standard components for the rest of the system. In other works, architectures which can
explicitly produce a measurable WCET [10] or which are at least highly predictable [7]
are proposed. Compared to our architecture these approaches require more changes to the
hardware.

3 System Model

The system architecture that we assume is sketched in Figure 1. It is built according to the
PROMPT guidelines [2], and thus is composed from n fully timing-composable ARM7TDMI
cores. Each core has local scratchpads for instructions and data and is connected to the
shared memory via a shared bus with configurable arbitration logic. The shared memory
finally holds RAM memories for instructions and data and a boot ROM from which the cores
read their packed binaries during system startup. We have deliberately not included caches
in the architecture to be able to focus on the effects of the employed arbitration methods.
Otherwise, imprecisions in the cache analysis might be able to affect the results for the shared
bus. Nevertheless, caches can be easily integrated into the analysis framework, since we
follow the standard approach from [16]. The whole system was modeled in the cycle-accurate
virtual prototyping IDE CoMET [4] to be able to perform detailed measurements. A custom
implementation of the bus arbitration logic has been designed, to be able to track the bus
utilization and the imposed access delays in detail.

All implemented arbitration methods share the assumptions that bus transactions are
uninterruptible and that a maximum duration mmax of an access to any device behind the

ARM 7 TDMI

I-SPM D-SPM

Internal Bus

ARM 7 TDMI

I-SPM D-SPM

Internal Bus

I-RAM D-RAM

Memory Bus

.....

Boot-ROM

Shared bus with configurable arbitration logic

Figure 1 The employed system architecture (simplified).

WCET 2013

4 Evaluation of resource arbitration methods for multi-core real-time systems

bus is known. For simplicity of presentation we also assume that the bus runs at the same
clock as the cores, but the offset analysis sketched in Section 4 can easily be extended to
include a bus clock which is slower than the core clock, since it is tracking the schedule
position in (higher precision) core ticks.

Fair arbitration (FAIR), also called Round-Robin, rotates the bus access among all cores.
It maintains an active core ca ∈ {0, . . . , n− 1}. When an access finishes ca is advanced to
the next core which requests the bus. Thus, each core can acquire the bus after at most
n− 1 other cores have performed their accesses.

Static priority-based arbitration (PRIO) assigns a unique priority pi ∈ {1, . . . , n} to each
core ci and when there are multiple requests only the request from the core with the highest
priority is granted. Nevertheless, since accesses are uninterruptible even the highest-priority
core may have to wait until an ongoing transaction is completed.

TDMA creates a schedule consisting of n slots of size l and assigns an owner core
oi ∈ {0, . . . , n− 1} to each slot. The current position in the schedule is determined by taking
the current clock tick modulo nl. In each slot i only the owner is granted access to the bus
and only in the interval [il, . . . , (i+ 1)l −mmax]. The subtraction of mmax is necessary to
make sure that accesses complete before the next slot begins.

Priority division (PD) is a generalization of TDMA. Instead of assigning an owner oi

it assigns unique priorities pij ∈ {0, 1, . . . , n} for each slot i and each core j. The bus is
granted to the requesting core with the highest positive priority, only those with priority 0
are excluded from arbitration (this can be used to emulate TDMA behavior).

4 Analysis Framework

The general analysis framework is depicted in Figure 2. The analysis begins with a CFG
reconstruction, which is based on pattern matching, and then does a simple register value
analysis to identify memory access targets of load/store instructions. The main component,
which is influenced by the choice of the arbitration policy, is the microarchitectural analysis.
This stage computes bounds on the execution time of basic blocks. We sketch its architecture
for the case with caches to show how caches can be integrated, even though our target
architecture currently does not contain caches (see Section 3). The microarchitectural
analysis associates an abstract pipeline state with each node in the CFG. Each abstract
pipeline state is complemented by an abstract cache and bus state. The pipeline analysis is
the driver of this stage: It simulates the possible processor actions on the abstract states and
sends a request to the cache and bus stages whenever a memory access is performed (solid
gray arrows in Figure 2). This request contains information about the target of the access
and the timing of the access relative to the begin of the block’s execution. If caches are
present then the cache analysis may forward the request to the bus analysis, depending on
whether the access is guaranteed to hit the cache or not. Similarly, the bus analysis receives
the request together with its associated timing information and must decide how long it
may take for this request to be granted the bus. We base this analysis on local abstract
state information only, i.e. the bus analysis may not assume information about concurrently
occurring accesses performed by other cores 1. This means that for the worst-case we have to
assume that concurrent accesses are occurring all the time. The bus and cache analyses must

1 If concurrently occurring accesses are to be considered, a Parallel Control Flow Graph is needed together
with analysis techniques which guarantee to cover all possible instruction and pipeline stage interleavings.
These techniques, though principally possible, are prohibitively expensive since the enumeration of all
possible interleavings leads to a state explosion [9].

T. Kelter, T. Harde, P. Marwedel, and H. Falk 5

Value Analysis

CFG Reconstruction

Microarchitectural

Analysis
Path Analysis

Pipeline

Analysis

Private

Cache

Analysis

Shared

Bus

Analysis

Shared

Cache

Analysis

Figure 2 Analysis stages and their interaction.

then update the cache and bus state which is associated to the current abstract pipeline
state and return an approximation of the timing behavior of the memory access to the
pipeline analysis (dashed gray arrows in Figure 2). The updates of the basic block states
(transfer functions) are integrated into a data-flow fixpoint iteration which converges in a safe
approximation of the WCET for single executions of basic blocks (see [16]). This information
is then used in the path analysis to compute the longest (shortest) path through the program
whose length is the WCET (BCET). In the following we examine the abstract state and
transfer functions for the shared bus analysis in more detail.

The abstract bus state for a basic block b as introduced in [5] is the set of TDMA offsets
Oin

b ⊆ {0, . . . , nl − 1}, i.e. positions in the TDMA schedule with which the block execution
may start. The bus analysis then computes multiple intermediate bus states Oi

b and finally
a result state Oout

b that denotes the offsets after the block execution is finished. Initially,
O0

b is set to Oin
b . The pipeline analysis then repeatedly hands accesses ai ∈ b, i ∈ N to

the bus analysis, together with an execution time set Tai ∈ 2N that bounds the time that
passed since access ai−1 (or the block start for i = 1). The bus analysis must then determine
the set of possible memory access times Dai that the shared memory may need to serve
this access. With these values the bus analysis computes Oi

b = µc(Oi−1
b , Tai

, Dai
), where c

is the core which issued request ai. Also it must return a set of possible execution times
δc(Oi−1

b , Tai
, Dai

) to the pipeline analysis to describe the resulting timing for ai.

By considering each input offset in separation we can define µc(O, T,D) =
⋃

o∈O,t∈T {Φc(o
+ t mod nl,D)}. Φ(o,D) determines the resulting offsets for an access at the offset o whose
runtime is bounded by D.

Φ : N× 2N → 2N must be defined for each arbitration method, to reflect the timing of
the specific method. For TDMA and PD we define so as the slot containing offset o and sc

as the first slot after offset o where core c has maximum priority or which is owned by c.
sc = so is explicitly allowed. With these definitions we have

ΦT DMA
c (o,D) =

{
{o} ⊕D if o ∈ ω(sc)
{scl} ⊕D if else

(1)

The first case in Equation 1 models an access inside slot sc and the second case handles
accesses outside of it. The operator ⊕ is defined by ⊕(X,Y) = {x+ y|x ∈ X, y ∈ Y } and
ω(sc) = {scl, . . . , (sc + 1)l −mmax} is a shorthand for the “grant window” of offsets inside

WCET 2013

6 Evaluation of resource arbitration methods for multi-core real-time systems

sc where an access from core c will be immediately granted.

ΦP D
c (o,D) =

{o} ⊕ {0, . . . ,mmax} ⊕D if o ∈ ω(sc)(⋃

si∈{so,...,sc−1}
φc(si, D)

)
∪ ΦT DMA

c (o,D) if o /∈ ω(sc)

∅ if @sc

(2)

φc(s,D) =
{
{sl, . . . , (s+ 1)l −mmax} if psc > 0
∅ else

(3)

The case structure for ΦP D
c in Equation 2 is similar to the one for ΦT DMA

c , but with the
additional case that c is not the top-priority core in any slot (case three). Also it has to
account for possibly ongoing transactions, even in slots in which c has the highest priority
(case one). For accesses outside of sc (case two) φc(s,D) as given in Equation 3 contributes
all offsets which may result from the access being granted in a successive slot where c has
positive but not the highest priority.

For fair and priority-based arbitration we can only supply conservative bounds, since
these methods require knowledge about all possibly concurrently occurring transactions,
which is hard to obtain in general, as noted above.

ΦF AIR
c (o,D) = {o} ⊕ {0, . . . , nmmax} ⊕D (4)

ΦP RIO
c (o,D) =

{
{o} ⊕ {0, . . . ,mmax} ⊕D if ∀i ∈ {1, . . . , n} : pi ≤ pc

∅ else
(5)

Therefore, Equations 4 and 5 are only stating that FAIR accesses may experience 0 to nmmax

cycles delay. For PRIO accesses the two listed cases are symmetric to case 1 and case 3 in
Equation 2 since PRIO is just a specialization of PD.

It is easy to extend the definition of Φ such that it does not only return the resulting
offset but also the time that it took to perform the arbitration and the access. With this
extension we can define δc similar to µc. In cases in which the original Φ returned an empty
set, the runtime is defined to be {∞}, which happens for accesses which have no bounded
duration (e.g. PRIO).

As mentioned before, the µc and δc functions are then used in the transfer function of
the microarchitectural analysis stage. The join function, which is used when control flow
from at least two different predecessors joins at a basic block, is simply the set union of the
incoming offset sets.

5 Evaluation

Due to the lack of standard multicore real-time benchmarks, we chose to execute independent
tasks from the MRTC, UTDSP, MiBench, MediaBench and DSPstone benchmark suites
on the single cores, amounting to 110 flow-fact-annotated, independent benchmark tasks
in total. In the experiments, we grouped together benchmarks with similar runtime and
executed packages with one benchmark per core. The packages were formed by sorting the
benchmarks in the order of their single-core ACET and then having a window of size 1/2/4/8
slide over this list, collecting all 110/109/107/103 possible combinations. All cores start
their assigned task synchronously and execution finishes when all tasks have been completed.
Thus, since the benchmarks have different runtimes there will be some amount of inevitable
completion time jitter, but apart from that this scenario models a system with high load. All

T. Kelter, T. Harde, P. Marwedel, and H. Falk 7

x1 x2 x4 x8

20%

40%

60%

Number of cores

Av
er
ag
e
To

ta
lU

til
iz
at
io
n FAIR PD (half TDMA)

PD (linear) PRIO
TDMA

Figure 3 Average total bus utilization for different platforms.

the benchmarks read their inputs and store their outputs in the shared memory, whereas all
program code as well as the stack was allocated in the scratchpad memory of the individual
cores. This emulates the (reasonable) scenario that I/O is done via a shared device, whereas
code and local data are kept in local memories for performance reasons. Also, all benchmarks
were compiled with moderate optimization (optimization level O1). The memory access
durations were set to 1 cycle for the scratchpads and mmax = 3 cycles for the shared memory.
For most data-processing instructions the ARM7TDMI needs only 1 cycle, branches need 3
cycles and multiply instructions may need up to 5 cycles.

Concerning the parametrization of the arbitration methods we have selected simple
heuristics to demonstrate some key impacts. For PRIO the priorities were assigned such that
ti > tj ⇔ pi > pj where ti is the single-core runtime of the task mapped to core i. We use
this strategy, also known as “largest job first”, here to speed up long-running tasks and thus
to decrease the completion time jitter. For TDMA (and also for PD) we set the slot size
l = mmax to keep delay times as small as possible. Our experiments have shown that higher
slot lengths impose both higher WCET and ACET values. Also, for TDMA we set oi = i

such that each core owns a single slot. For PD (linear) each slot i is “owned” by core i by
setting pii = n. Priorities for all other cores are distributed in the same way as for PRIO
i.e. in the order of single-core task runtime. The variation PD (half TDMA) for all slots
i ∈ {0, . . . , bn/2c} assigns pii = 1 and ∀j 6= i : pij = 0, thus effectively making these slots
pure TDMA slots. All slots i ∈ {bn/2c+ 1, . . . , n} are configured in the same way as for PD
(linear).

Figure 3 shows the average2 utilization resulting for different values of n. As expected,
FAIR and PRIO show superior utilization that scales linearly with the number of cores, since
these are work-conserving arbitration methods, i.e. as long as there are active requests they
do not insert wait cycles. TDMA shows some increase in utilization with rising n, but it is
stagnating at around 20% due to slots which remain unused by their owners. For n = 8 the
utilization is actually decreasing again below 20%. PD is also not work-conserving, since
it must delay requests when they cannot be served in the current slot, which may happen
frequently for our setting of l = mmax. Still both PD configurations show a linear increase
in utilization, with PD (half TDMA) being slightly behind PD (linear). For PD (linear) the
utilization is twice as high as for TDMA, which is also reflected in the average ACETs of the

2 Since we only report relative values here, we use average as a synonym for the geometric mean.

WCET 2013

8 Evaluation of resource arbitration methods for multi-core real-time systems

x2 x4 x8
0%

100%

200%

300%

Number of cores

Av
er
ag
e
R
el
at
iv
e
A
C
ET

FAIR PD (half TDMA)
PD (linear) PRIO
TDMA

Figure 4 Average relative measured execution time (ACET) for different platforms (Baseline =
execution time on single-core platform).

x2 x4 x8
0%

20%

40%

60%

80%

Number of cores

Av
er
ag
e
To

ta
lJ

itt
er

FAIR PD (half TDMA)
PD (linear) PRIO
TDMA

Figure 5 Average benchmark execution time jitter for different platforms.

benchmarks as shown in Figure 4.
In general, the ACET per task is inversely proportional to the achieved utilization values.

The dotted areas in Figure 4 show the portion of the ACET which is used for computation
and local memory accesses (stack and program code, see Section 3), the crosshatched areas
show the portion in which the task is using the shared bus and the areas with vertical bars
show the percentage of the ACET in which the task is waiting for the shared bus. For TDMA
it becomes visible that e.g. for the configuration with 8 cores, the tasks are on average using
more cycles for waiting than for performing computation and actual memory accesses.

The ACET and utilization values are influenced by the completion time jitter of the
benchmark packages, that is the length of the time interval between the first termination of
a benchmark on any core and the termination of the last benchmark. Especially for TDMA
the jitter is problematic since it leaves slots of already terminated cores unused. Figure 5
shows the jitter as a percentage of the total runtime of the benchmark package (i.e. the
runtime of the longest benchmark). It is visible that the low utilization values for TDMA
are to some extent related to the rising jitter, but since this increase is itself triggered by the
usage of TDMA this is an inherent drawback of the policy.

Finally, Figure 6 shows the average of the quotient of single-task WCET and single-task
ACET, which is a bound on the maximum possible WCET overestimation. The highest

T. Kelter, T. Harde, P. Marwedel, and H. Falk 9

x1 x2 x4 x8

200%

300%

400%

Number of cores

Av
g.

M
ax

.
W
C
ET

O
ve
re
st
.

FAIR PD (half TDMA)
PD (linear) PRIO
TDMA

Figure 6 Average maximum task WCET overestimation for different platforms. Since the baseline
corresponds to the measured ACET on the respective platform, the values represent maximum
overestimation ratios.

WCET increases are attained by FAIR since it must always assume a worst-case delay of
(n− 1)mmax cycles, but up to 2 cores FAIR is still competitive. Concerning the PRIO results
in Figure 6, they are almost constant between the different configurations since here only the
tasks for which a WCET can be determined at all are considered. This in all cases is only
the highest-priority task whose WCET is increased by 40% to 81% on average, due to the
presence of uninterruptible lower-priority accesses. TDMA shows the smallest overestimation
ratio, but it is notable that both PD approaches are following very closely after TDMA
in the WCET ranking. The small increase in WCET for e.g. PD (linear) is compensated
by far better ACET and utilization values which makes PD a very appealing method for
mixed-criticality systems.

6 Summary & Future Work

Current multi-core processors are mainly not timing-predictable due to a number of reasons,
with one of them being accesses to shared resources. Since some amount of sharing is
inevitable in multi-core systems we have demonstrated advantages and disadvantages of
arbitration schemes for shared resources. Therefore, this work can serve as a basis for
selecting a suitable arbitration policy, depending on the needs of the platform. For the
first time, the drawbacks of TDMA in terms of average-case performance were quantified
in comparison to other arbitration methods and it was shown, that priority division is a
promising alternative for systems running mixed-criticality workloads, since it allows the
fine-grained trading of ACET and bus utilization vs. WCET.

In the future, we would like to examine the effects of software optimizations to the
achievable prediction accuracy, e.g. by grouping bus accesses or by restructuring tasks into
read, execute and write phases. Another interesting perspective is the optimization of bus
schedule parameters and the refinement of the presented multi-core WCET analysis.

7 Acknowledgments

We would like to thank Synopsys for the provision of the virtual prototyping IDE CoMET.

WCET 2013

10 Evaluation of resource arbitration methods for multi-core real-time systems

References
1 Sudipta Chattopadhyay, Abhik Roychoudhury, and Tulika Mitra. Modeling Shared Cache

and Bus in Multi-cores for Timing Analysis. In Proc. of SCOPES, 2010.
2 Christoph Cullmann, Christian Ferdinand, Gernot Gebhard, Daniel Grund, Claire Maiza,

Jan Reineke, Benoît Triquet, Simon Wegener, and Reinhard Wilhelm. Predictability Con-
siderations in the Design of Multi-Core Embedded Systems. Ingénieurs de l’Automobile,
807:36–42, September 2010.

3 Andreas Gustavsson, Andreas Ermedahl, Björn Lisper, and Paul Pettersson. Towards
WCET Analysis of Multicore Architectures using UPPAAL. In Proc. of WCET, July 2010.

4 Synopsys Inc. CoMET system engineering IDE. http://www.synopsys.com/Systems/
VirtualPrototyping/Pages/CoMET-METeor.aspx.

5 Timon Kelter, Heiko Falk, Peter Marwedel, Sudipta Chattopadhyay, and Abhik Roy-
choudhury. Bus-Aware Multicore WCET Analysis through TDMA Offset Bounds. In
ECRTS, pages 3–12, 2011.

6 Hermann Kopetz and Günther Bauer. The time-triggered architecture. Proceedings of the
IEEE, 91(1):112–126, 2003.

7 Isaac Liu, Jan Reineke, David Broman, Michael Zimmer, and Edward A. Lee. A PRET
Microarchitecture Implementation with Repeatable Timing and Competitive Performance.
In Proceedings of the International Conference on Computer Design, ICCD 2012, October
2012.

8 Mingsong Lv, Wang Yi, Nan Guan, and Ge Yu. Combining Abstract Interpretation with
Model Checking for Timing Analysis of Multicore Software. In Proceedings of the Real-
Time Systems Symposium, RTSS ’10, pages 339–349, Washington, DC, USA, 2010. IEEE
Computer Society.

9 Robert Mittermayr and Johann Blieberger. Timing Analysis of Concurrent Programs.
In Tullio Vardanega, editor, 12th International Workshop on Worst-Case Execution Time
Analysis, volume 23, pages 59–68, Dagstuhl, Germany, 2012. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

10 Marco Paolieri, Eduardo Quinones, Francisco J. Cazorla, Guillem Bernat, and Mateo
Valero. Hardware support for WCET analysis of hard real-time multicore systems. SIG-
ARCH Computer Architecture News, 37(3):57–68, 2009.

11 R. Pellizzoni, A. Schranzhofer, Jian-Jia Chen, M. Caccamo, and L. Thiele. Worst case
delay analysis for memory interference in multicore systems. In Design, Automation Test
in Europe Conference Exhibition (DATE), 2010, pages 741–746, 2010.

12 Christof Pitter and Martin Schoeberl. A real-time Java chip-multiprocessor. ACM Trans-
actions on Embedded Computing Systems, 2009.

13 Jan Reineke, Björn Wachter, Stephan Thesing, Reinhard Wilhelm, Ilia Polian, Jochen
Eisinger, and Bernd Becker. A definition and classification of timing anomalies. In Proc.
of WCET, 2006.

14 H. Shah, A. Raabe, and A. Knoll. Priority division: A high-speed shared-memory bus
arbitration with bounded latency. In Proc. of DATE, pages 1–4, 2011.

15 Reinhard Wilhelm. Why AI + ILP is good for WCET, but MC is not, nor ILP alone. In
Verification, Model Checking and Abstract Interpretation (VMCAI), LNCS 2937, 2004.

16 Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David B. Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra,
Frank Mueller, Isabelle Puaut, Peter P. Puschner, Jan Staschulat, and Per Stenström.
The worst-case execution-time problem - overview of methods and survey of tools. ACM
Transactions on Embedded Computing Systems, 7(3), 2008.

http://www.synopsys.com/Systems/VirtualPrototyping/Pages/CoMET-METeor.aspx
http://www.synopsys.com/Systems/VirtualPrototyping/Pages/CoMET-METeor.aspx

Automatic WCET Analysis of Real-Time Parallel
Applications∗

Haluk Ozaktas, Christine Rochange, and Pascal Sainrat

IRIT – Université de Toulouse
France
firstname.lastname@irit.fr

Abstract
Tomorrow’s real-time embedded systems will be built upon multicore architectures. This raises
two challenges. First, shared resources should be arbitrated in such a way that the WCET of
independent threads running concurrently can be computed: in this paper, we assume that time-
predictable multicore architectures are available. The second challenge is to develop software
that achieves a high level of performance without impairing timing predictability. We investigate
parallel software based on the POSIX threads standard and we show how the WCET of a parallel
program can be analysed. We report experimental results obtained for typical parallel programs
with an extended version of the OTAWA toolset.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases WCET analysis, parallel programming, thread synchronisation

Digital Object Identifier 10.4230/OASIcs.WCET.2013.11

1 Introduction

Future real-time embedded systems will have to follow the global trend towards multicore
computing units, which is mainly guided by power efficiency considerations. Designing
time-predictable multicore architectures is at the heart of several research projects, e.g.
T-CREST1 and parMERASA2. Now, when hardware solutions are available, software will
have to be carefully designed to optimise the usage of resources. In some cases, the target
is a high task throughput: it can be achieved by co-scheduling independent tasks on the
cores. Other applications, e.g. command-control functions in cyber-physical systems, instead
require shortened response times. For some of them, that exhibit intrinsic data or control
parallelism, the execution time of individual tasks can be reduced by applying parallel
programming techniques: a task is decomposed into threads that are run in parallel, each of
them processing one part of the workload. In this paper, we focus on this class of programs.

Several parallel programming paradigms can be considered depending on the problem
decomposition (task- or data-parallelism) and on the way threads can communicate, which
is highly related to the target hardware architecture. Various programming languages and
APIs can be used to develop parallel programs. We focus on the POSIX threads standard
which is widely used in the industry.

In real-time systems, special attention must be paid to task scheduling: it must be
guaranteed that critical tasks will meet their hard deadlines in any situation. Real-time

∗ The research leading to these results has received funding from the European Union Seventh Framework
Programme under grant agreement no. 287519 (parMERASA).

1 www.t-crest.org
2 www.parmerasa.eu

© Haluk Ozaktas, Christine Rochange, and Pascal Sainrat;
licensed under Creative Commons License CC-BY

13th International Workshop on Worst-Case Execution Time Analysis (WCET 2013).
Editor: Claire Maiza; pp. 11–20

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2013.11
http://www.t-crest.org
http://www.parmerasa.eu
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

12 WCET Analysis of Parallel Applications

task scheduling is a hot research topic. All the proposed strategies rely on estimations of
the worst-case execution times (WCET) of critical tasks. Several approaches have been
proposed in the past to determine WCET upper-bounds considering sequential tasks running
on uni-processors. If these techniques are still to be used when independent tasks run on
time-predictable multicores, specific solutions have to be developed for parallel applications,
composed of synchronising threads. This is the purpose of this paper.

The paper is organised as follows. In Section 2, we discuss the scope of our work and we
give an overview of related work. Section 3 introduces our approach to the automatic WCET
analysis of POSIX-based parallel tasks. Experimental results are reported in Section 4 and
Section 5 concludes the paper.

2 Scope of the paper and related work

2.1 Time-predictable multicores

Various classes of parallel architectures exist, from chip multicores to clusters and grids of
computers, or from general-purpose processing units to specialised accelerators like GPUs.
However, to be considered as candidates to build hard real-time systems, these architectures
should enforce timing analysability: it should be possible to compute the WCET of a critical
task running in parallel with other tasks. The main difficulty comes from inter-task conflicts:
they make the latencies of accesses to shared resources hard to predict. This mainly concerns
shared caches, memory controllers and interconnection networks.

Two kinds of approaches have been proposed. A first group of solutions consist in
considering all together the tasks that might be running at the same time in order to estimate
their possible interactions and their impact on the worst-case execution times. This strategy
has been considered for the analysis of shared caches [9, 11, 14] and shared busses [2, 20].
A second class of approaches aim at designing hardware that enforces spatial and timing
isolation for critical tasks. Cache locking and partitioning schemes [21, 16] belong to this
category. Timing isolation can also be supported by appropriate arbitration mechanisms,
e.g. for a shared bus [19, 10] or a memory controller [1, 15]. More globally, several European
projects have been launched to design time-predictable multicores, e.g. MERASA [22],
PREDATOR [4], T-CREST and parMERASA.

In the following, we assume we have a time-predictable shared-memory multicore archi-
tecture and the related WCET analysis tool capable of analysing sequential applications:
modelling hardware-level thread interactions is out of the scope of our work.

2.2 Real-time and WCET-aware parallel applications

Various parallel programming models exist and are supported by a large number of pro-
gramming languages and APIs. In this work, we focus on applications developed on the
widely-used POSIX threads standard.

Programs written with POSIX threads are characterised by explicit thread control
(creation and join) and explicit thread synchronisation through mutexes, condition variables
and barriers. Figure 1 shows a sample program that we will use as a running example in
the paper. Determining the WCET of such a parallel program comes up to computing the
WCET of the main thread, taking into account the costs for thread control and thread
synchronisations. The predictability of these costs highly depend on the implementation of
the system software. This is discussed in Section 2.3.

H. Ozaktas, C. Rochange, and P. Sainrat 13

int main () {
for (int i=0; i <2; i++)

CREATE_THREAD (& work);
...
BARRIER (&bar ,3); // ID=bar
...
for (int i=0; i <2; i++)

JOIN(i+1); // ID=join
}

void work () {
...
BARRIER (&bar ,3); // ID=bar
...
MUTEX_LOCK (& lock); // ID=cs
... // critical section
MUTEX_UNLOCK (& lock); // ID=cs
...

}

Figure 1 Example code.

Real-time parallel applications should be designed with time predictability in mind.
As we will see later, stall times at synchronisations impact the WCET. Then the main
recommendations come from the way these stall times can be estimated: synchronisation
operations as well as the involved threads should be easy to identify. As a consequence, the
number of threads should be statically fixed and synchronisation patterns should make it
possible to determine how long one thread may be stalled by another one. The latter can be
achieved by using standard synchronisation patterns, like critical sections and barriers.

In the following we also consider that the number of threads is lower than or equal to the
number of cores so that all the threads can execute in parallel, each on a different core. In
practice, it could be accepted that the number of threads exceed the number of cores. In
such a case, however, the scheduling of threads and their mapping to cores must be decided
statically [17]. This way, the timing analysis can determine how to compose their individual
WCETs. This option is not considered in the paper.

2.3 Time-predictable system software
The analysis of stall times requires the synchronisation to be implemented with time-
predictable primitives. Mainly, these primitives should allow upper bounding the stall time of
a thread at a synchronisation. Ticket locks should, for example, ensure that threads reaching
a critical section will be granted access in a First-Come First-Served fashion. The design
of such predictable primitives is discussed in [23, 5]. We assume that the applications are
developed using such routines. In addition, timing analysis either needs an upper-bound in
the latency of a thread creation or a hardware mechanism that enforces a synchronous start
of created child threads.

2.4 Related work
As mentioned earlier, using multicores to build hard real-time systems is not common yet.
Research on WCET analysis on multicores has essentially focused on the predictability
of accesses to shared resources, as overviewed in Section 2.1. There have been very few
contributions to the analysis of parallel programs. The timing analysis of a parallelised
control-loop style application was reported in [6]. In [18], a first attempt to manually compute
the WCET of an industrial parallel program with static analysis techniques was reported.
Individual code segments were analysed using the OTAWA toolset, then their WCETs were
combined outside the toolset by hand to determine the WCET of the whole application.

In [7], the authors propose a method based on timed automata to model the behaviour of
a parallel program. Model checking techniques are used to determine the WCET of the whole
program by verification. In [8], they consider a simplified parallel programming language

WCET 2013

14 WCET Analysis of Parallel Applications

and introduce an approach based on abstract interpretation to perform simultaneous timing
analysis of the different threads. The predictability of various parallel programming models,
e.g. GPU and data parallel programming, is investigated in [13].

3 Approach to the WCET analysis of parallel applications

The execution time of a parallel program is the execution time of its longest thread. In our
model, the main thread creates child threads and later joins them. Then determining the
WCET of a parallel program comes to computing the WCET of its main thread. This time
is impacted by the child threads:

The latency of the thread creation operation must be accounted for;
The main thread may have to wait for other threads when it reaches a barrier or the
lock acquisition operation before a critical section. The worst-case stall time must be
estimated.
When joining the child threads, the main thread has to wait for their termination

3.1 Timing analysis of synchronisations
We distinguish two kinds of synchronisations: critical sections, guarded by locks, and progress
synchronisations, implemented by barriers or conditions (wait and signal). In both cases, a
thread that reaches a synchronisation primitive may be forced to wait before proceeding. Its
worst-case stall time (WCST) must be estimated.

3.1.1 Worst-case stall times
Critical section

Entering a critical section is typically achieved by acquiring a lock. If no other thread requests
the lock at the same time, then the synchronisation does not generate any stall. But in the
worst case, all possible contenders try to acquire the lock simultaneously, and the thread has
to wait for all other threads to release the lock (provided locks are granted in a First-Come
First-Served fashion). This is illustrated in the left-side part of Figure 2.

The WCST at the critical section for the leftmost thread, denoted by S, is computed
assuming the two other threads already have requested the lock. Then S is the sum of the
times during which each of them holds the lock, i.e. the WCETs of their critical sections:

S = w1 + w2

Progress synchronisation (barrier)

The right-side part of Figure 2 illustrates the stall time of a thread at a barrier. The WCST
is determined by considering the previous collective synchronisation point, i.e. the previous
point where all the involved threads did synchronise before the barrier.

The (actual) stall time of one thread (thread i) at a barrier to be reached by a single
other thread (thread j) would be given by max(0, tj − ti), where ti and tj are the actual
execution times of threads i and j to reach the barrier from the previous synchronisation
point: either ti ≥ tj and thread i does not have to wait, or the stall time is the difference
between their execution times.

Now, threads generally exhibit variable execution times: ti ∈ [bi, wi] where bi and wi are
the best- and worst-case execution times for thread i (similarly, tj ∈ [bj , wj]). Then attention
should be paid to how the difference between their execution times is computed.

H. Ozaktas, C. Rochange, and P. Sainrat 15

c.s	

c.s	
lock

c.s	
unlock

w0

w1

w2
S

barrier

previous collective synchronisation

w0 w1 w2

S

Figure 2 Stalls due to synchronisations.

Theoretically, the longest stall time by thread i when ti < tj is given by wj−bi (difference
between the worst-case execution time of thread j and the best-case execution time of
thread i). However, computing the WCST for thread i is done in the context of determining
its WCET. As a result, the worst-case value for tj − ti is computed as wj − wi.

Generalising to several threads, as in the example shown in Figure 2 (right side), we get:

S = max(0, (w1 − w0), (w2 − w0))

3.1.2 Abstract view of synchronisation primitives
While a synchronisation operation is simply seen as a call to a system-software primitive,
things are a bit more complex from the point of view of WCET analysis which is done
at cycle-/instruction-level. The main issue is to identify key locations in the code of the
primitives: the point where a thread may be stalled and the point where a thread may signal
other threads (allowing them to resume their execution). Finding out these locations is a
hard task and having it done automatically is still challenging. This is the reason why we
need the parallel application to use known primitives, that have been previously analysed
manually (as described in [18]). We plan to release this constraint by designing a specific
format to describe synchronisation routines, so that the user could use his own primitives
and provide a description for them.

3.1.3 Computation of the global WCET
The WCET of the whole application is computed as the WCET of the main thread to which
WCSTs at synchronisations are added. In our example (see Figure 3), two WCSTs must be
estimated for the main thread. The first one, S1, is related to a barrier. As explained in
Section 3.1.1, it is determined considering the threads’ WCETs from the previous collective
synchronisation, which is the creation of the child threads, to the barrier (we assume that the
cost of thread creation is known). The second stall time, S2, at the join with child threads,
can be analysed similarly. The previous collective synchronisation is the barrier. However,
the code executed by the child threads from the barrier to the exit includes a critical section.
Then S2 depends on S3, which can be determined as shown earlier.

Figure 5 depicts the global procedure to perform the timing analysis of a parallel program.
First, synchronisation patterns must be identified. This may be a complex task. To make
it simpler, we rely on user-provided annotations that we will describe in Section 3.2. The
second step determines the dependencies among the stall times and builds a WCST tree,
as the one shown in Figure 4. This is done from the root down to the leaves: a branch
ends when a WCST can be computed from partial execution paths that do not include any
synchronisation. WCSTs can then be estimated by climbing up the tree from the leaves to the

WCET 2013

16 WCET Analysis of Parallel Applications

main

create

barrier
barrier

barrier

child threads

lock
c.s	

unlock lock
c.s	

unlock join

S1	

S2	

S3	

Figure 3 Example program.

root

S1 S2

S3

Figure 4 WCST tree.

Iden%fica%on	 of	 synchronisa%ons	

Building	 of	 WCSTs’	 tree	

Computa%on	 of	 WCSTs	

Integra%on	 of	 WCSTs	 to	 the	 CFG	 of	 main	 thread	
Computa%on	 of	 global	 WCET	

Figure 5 Global procedure.

<barrier id="bar">
<thread id="0-2">

<last_sync ref="BEGIN"/>
</ thread >

</ barrier >
<csection id="cs">

<thread id="1-2"/>
</ csection >
<sync id="join">

<thread id="0">
<wait id="1-2">

<sync ref="END"/>
<last_sync ref="bar"/>

</wait >
</ thread >

</sync >

Figure 6 Annotations for the example
code.

root. They are added to the WCETs of the corresponding basic blocks in the program CFG.
The final stage integrates the WCSTs into the ILP formulation of the WCET computation
(IPET method [12]).

3.2 Annotations of parallel programs
To help the analysis of parallel programs, and in particular of their synchronisations, we have
designed an annotation format. It can be used to provide information on synchronisation
patterns. The annotation format includes two parts:

A set of identifiers annotated in the source code, to allow further reference to specific
points in the program, i.e. calls to synchronisation primitives. Identifiers are specified as
C comments (// ID=...), as can be seen in the example code (see Figure 1).
Additional information, e.g. the threads involved in a synchronisation, are provided in a
separate XML-based file. Some elements of this file are described below3.

3 Due to space limitations, only a subset of our annotation language is described in this paper. The full
language supports more complex synchronisation patterns.

H. Ozaktas, C. Rochange, and P. Sainrat 17

Figure 6 shows the annotation file that describes our example code. It specifies three
synchronisations that are likely to generate stall times: a barrier, a lock-based protection for
a critical section, and joining the child threads for the main thread.

The barrier element refers to a barrier identifier put in the source code. The inner
thread element indicates which threads should meet at the barrier (0 is the main thread). For
these threads, the previous collective synchronisation is specified in the last_sync element,
with the BEGIN built-in value that refers to the start of each thread. The csection element
provides details on the synchronisation at the entry of the critical section. The inner thread
element shows that the two child threads may compete for the lock. Finally, the sync element
refers to the join operation executed by the main thread as specified by the nested thread
element. The innermost wait element indicates that it should wait for threads 1 and 2 to
reach the end of their execution (as specified with the built-in value END).

4 Experiments

4.1 Methodology

Our solution to automatically analyse the WCET of parallel programs helped with user-
provided annotations has been implemented on top of the OTAWA toolset [3]. OTAWA
provides an API to build WCET computation tools based on static analysis techniques. We
have extended the library with utilities to parse annotation files, to retrieve synchronisations
in the binary code, to build the WCST tree, to analyse the WCSTs and then to integrate
them in the linear program used to determine the global WCET.

Since we focus on software interactions, we have considered a simple architecture in which
each instruction executes in a single cycle with a configurable additional latency for memory
accesses. We have found that the results presented below do not depend on the value of the
latency (raw values do, but not the shape of curves).

4.2 Benchmarks

We have analysed two different parallel implementations of a kernel solving a partial differential
equation on a 2D-grid. The first version uses the iterative Gauss-Seidel method where each
point is computed based on its immediate north and west neighbours. There is no dependency
between the points belonging to the same anti-diagonal: they can be computed in parallel.
However, dependencies among anti-diagonals should be respected. The algorithm iterates
until convergence. Our parallel implementation first divides the grid into compartments
such that the main anti-diagonal has the same number of compartments as the number of
threads. It exploits the independence of the compartments within a same anti-diagonal. This
implementation includes three barriers and one critical section. The main thread participates
in the computation and execute the same function as the child threads.

The second version implements the Jacobi method where each point can be computed
independently of other points: this improves the intrinsic parallelism but generally requires
a larger number of iterations to converge. Our parallel implementation of this algorithm
assigns a block of lines to each thread. Threads execute in parallel within an iteration. The
code contains two barriers and one critical section. For both methods, we have defined a
maximum number of iterations in order to be able to compute a WCET value.

WCET 2013

18 WCET Analysis of Parallel Applications

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

2	 4	 8	 16	 32	 64	

N
or
m
al
is
ed

	 W
CE

T	

#threads	

Jacobi	 Gauss-‐Seidel	

Figure 7 Normalised WCET.

0%	

1%	

2%	

3%	

4%	

5%	

6%	

7%	

8%	

9%	

2	 4	 8	 16	 32	 64	

St
al
l	 &

m
e	
/	
W
CE

T	

#threads	

Gauss-‐Seidel	 Jacobi	

Figure 8 Impact of stall times.

Gauss-Seidel Jacobi
2 0.559 0.379
4 1.046 0.705
8 2.177 1.446
16 3.718 2.679
32 8.796 5.782
64 17.999 11.855

Figure 9 Computation times in seconds.

0	

100	

200	

300	

400	

500	

600	

2	 4	 8	 16	 32	 64	

N
or
m
al
is
ed

	 c
om

p.
	 /
m
e	

#threads	

Jacobi	 Gauss-‐Seidel	

Figure 10 Normalised computation times.

4.3 Results

We report experiments carried out for the two algorithms described above, considering both
sequential and parallel (from 2 up to 64 threads) versions.

Figure 7 shows the WCETs of parallel implementations normalised to the WCET of the
sequential code. For the same number of threads, the Jacobi algorithm gets higher speed-ups
than the Gauss-Seidel method: this was expected since there is no dependence between
points in Jacobi method which yields to higher parallelism.

Figure 8 plots the contribution of stall times to the WCET of the application. For up
to 32 threads, the impact of worst-case stall times is negligible. For 64 threads, stall times
contribute from 4% (Gauss-Seidel) to 8% (Jacobi) of the WCET. These low contributions
are mainly due to the fact that all the threads run the same code. Then their worst-case
arrival times at barriers are equal. Thus the stall times are only due to the critical section.
They rapidly increase with the number of threads because, in the worst case, a thread is
stalled until all the possible contenders execute the critical section and release the lock. This
shows the importance of limiting the number of contending threads to optimise the WCET.

Figure 9 provides the raw values of the computation time (in seconds) of the automatic
WCET analysis of the parallel codes. In Figure 10 these times are normalised to the
WCET computation time of the sequential version (which is 0.031 seconds). Analysing
a parallel application is noticeably longer than analysing its sequential version. This was
somewhat expected since the WCET estimation of a parallel program requires many small
WCET analyses on partial paths. Now, in these experiments, the WCET was analysed
as if the threads did execute different functions, to reflect a pessimistic situation. In our

H. Ozaktas, C. Rochange, and P. Sainrat 19

two benchmark codes, all the threads instead share the same function. As a result, the
real computation cost would be that of the parallel program with two threads (the main
and one child), i.e. about 18 times the computation cost for the sequential version for the
Gauss-Seidel algorithm (about 12 times for the Jacobi method).

5 Conclusion

With the emergence of multicore architectures in the embedded systems market, one strategy
to get high computing power will be to parallelise software. Now, for hard real-time systems,
timing predictability is a key issue. It requires specific solutions at the hardware level, since
interactions among concurrent threads must be controlled in some way to make their timing
analysis possible. This point is at the core of several terminated and ongoing research projects
and was considered as solved in this paper. Parallel programming introduces software-level
interactions between threads through synchronisation operations. These synchronisations
engender stall times that must be accounted for when analysing the worst-case execution
times of tasks. This is the problem we have tackled in this work.

We have introduced an approach for an automatic timing analysis of parallel applications.
It consists in estimating the synchronisation-related stall times of each individual thread and
in considering them as extra-costs for the associated basic blocks in the CFG. This way, the
stall times are accounted for within the WCET computation process.

Determining the worst-case stall times due to synchronisations requires a detailed analysis
of the synchronisation patterns and of the binary code of synchronisation primitives. To
perform this task we rely on annotations that must be generated by the user. Once
synchronisation operations are identified, WCSTs are recursively computed.

We have implemented our algorithm on top of the OTAWA library and experimented it
on parallelised versions of the Gauss-Seidel and Jacobi algorithms. Experimental results show
that the worst-case impact of synchronisation stalls on WCET estimates remains limited (8%
for 64 threads). The cost of analysing a parallel code remains reasonable when all the threads
execute the same function (around 12 to 18 times the computation cost of the sequential
version) but rapidly increases with the number of threads when they run different codes.

As future work, we plan to apply our approach to larger applications and to analyse the
impact of parallel programming patterns to the worst-case performance of programs. We
will also investigate automatic extraction of synchronisation patterns from the binary code.

References
1 B. Akesson, K. Goossens, and M. Ringhofer. Predator: a predictable SDRAM memory

controller. In 5th Int’l Conf. on Hardware/Software Codesign and System Synthesis, 2007.
2 B. Andersson, A. Easwaran, and J. Lee. Finding an upper bound on the increase in

execution time due to contention on the memory bus in COTS-based multicore systems.
In WiP of Real-Time Systems Symposium (RTSS), 2009.

3 C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat. OTAWA: an open toolbox for adapt-
ive WCET analysis. In Workshop on Software technologies for Embedded and Ubiquitous
Systems (SEUS), 2011.

4 C. Cullmann, C. Ferdinand, G. Gebhard, D. Grund, C. Maiza, J. Reineke, B. Triquet, and
R. Wilhelm. Predictability considerations in the design of multi-core embedded systems.
In Int’l Conf. on Embedded Real Time Software and Systems, 2010.

5 M. Gerdes, F. Kluge, T. Ungerer, and C. Rochange. The split-phase synchronisation
technique: Reducing the pessimism in the WCET analysis of parallelised hard real-time

WCET 2013

20 WCET Analysis of Parallel Applications

programs. In Int’l Conf. on Embedded and Real-Time Computing Systems and Applications
(RTCSA), 2012.

6 M. Gerdes, J. Wolf, I. Guliashvili, T. Ungerer, M. Houston, G. Bernat, S. Schnitzler, and
H. Regler. Large drilling machine control code—parallelisation and WCET speedup. In
Int’l Symp. on Industrial Embedded Systems (SIES), 2011.

7 A. Gustavsson, A. Ermedahl, B. Lisper, and P. Pettersson. Towards WCET analysis of
multicore architectures using uppaal. In Workshop on WCET Analysis, 2010.

8 A. Gustavsson, J. Gustafsson, and B. Lisper. Toward static timing analysis of parallel
software. In Workshop on WCET Analysis, 2012.

9 D. Hardy, T. Piquet, and I. Puaut. Using bypass to tighten WCET estimates for multi-core
processors with shared instruction caches. In Real-Time Systems Symposium (RTSS), 2009.

10 T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay, and A. Roychoudhury. Bus-aware
multicore WCET analysis through TDMA offset bounds. In Euromicro Conf. on Real-
Time Systems (ECRTS), 2011.

11 Y. Li, V. Suhendra, Y. Liang, T. Mitra, and A. Roychoudhury. Timing analysis of con-
current programs running on shared cache multi-cores. In Real-Time Systems Symposium
(RTSS), 2009.

12 Y.-T. S. Li and S. Malik. Performance analysis of embedded software using implicit path
enumeration. In ACM SIGPLAN Notices, volume 30, 1995.

13 B. Lisper. Towards parallel programming models for predictability. In Workshop on WCET
Analysis, 2012.

14 M. Lv, W. Yi, N. Guan, and G. Yu. Combining abstract interpretation with model checking
for timing analysis of multicore software. In Real-Time Systems Symposium (RTSS), 2010.

15 M. Paolieri, E. Quiñones, F. J Cazorla, and M. Valero. An analyzable memory controller
for hard real-time CMPs. Embedded Systems Letters, IEEE, 1(4), 2009.

16 P. Paolieri, E. Quiñones, F. Cazorla, G. Bernat, and M. Valero. Hardware support for
WCET analysis of hard real-time multicore systems. In Int’l Symp. on Computer Architec-
ture (ISCA), 2009.

17 M. Pelcat, P. Menuet, S. Aridhi, and J.-F. Nezan. Scalable compile-time scheduler for
multi-core architectures. In Design, Automation and Test in Europe (DATE), 2009.

18 C. Rochange, A. Bonenfant, P. Sainrat, M. Gerdes, J. Wolf, T. Ungerer, Z. Petrov, and
F.šek Mikulu. WCET analysis of a parallel 3D multigrid solver executed on the MERASA
multi-core. In Workshop on WCET Analysis, 2010.

19 J. Rosen, A. Andrei, P. Eles, and Z. Peng. Bus access optimization for predictable im-
plementation of real-time applications on multiprocessor systems-on-chip. In Real-Time
Systems Symposium (RTSS), 2007.

20 S. Schliecker, M. Negrean, and R. Ernst. Bounding the shared resource load for the per-
formance analysis of multiprocessor systems. In Design, Automation and Test in Europe
(DATE), 2010.

21 V. Suhendra and T. Mitra. Exploring locking & partitioning for predictable shared caches
on multi-cores. In Design Automation Conference (DAC), 2008.

22 T. Ungerer, F. Cazorla, P. Sainrat, G. Bernat, Z. Petrov, C. Rochange, E. Quiñones,
M. Gerdes, M. Paolieri, J. Wolf, H. Cassé, S. Uhrig, I. Guliashvili, M. Houston, F. Kluge,
S. Metzlaff, and J. Mische. MERASA: Multicore execution of hard real-time applications
supporting analyzability. IEEE Micro, 30(5), 2010.

23 J. Wolf, M. Gerdes, F. Kluge, S. Uhrig, J. Mische, S. Metzlaff, C. Rochange, H. Cassé,
P. Sainrat, and T. Ungerer. RTOS support for parallel execution of hard real-time applica-
tions on the MERASA multi-core processor. In Int’l Conf. on Object/Component/Service-
Oriented Real-Time Distributed Computing (ISORC), 2010.

Integrated Worst-Case Execution Time
Estimation of Multicore Applications∗

Dumitru Potop-Butucaru1 and Isabelle Puaut2

1 INRIA, Paris-Rocquencourt, dumitru.potop@inria.fr
2 University of Rennes 1/IRISA, Rennes, isabelle.puaut@irisa.fr

Abstract
Worst-case execution time (WCET) analysis has reached a high level of precision in the analysis of
sequential programs executing on single-cores. In this paper we extend a state-of-the-art WCET
analysis technique to compute tight WCETs estimates of parallel applications running on multi-
cores. The proposed technique is termed integrated because it considers jointly the sequential
code regions running on the cores and the communications between them. This allows to capture
the hardware effects across code regions assigned to the same core, which significantly improves
analysis precision. We demonstrate that our analysis produces tighter execution time bounds
than classical techniques which first determine the WCET of sequential code regions and then
compute the global response time by integrating communication costs. Comparison is done on
two embedded control applications, where the gain is of 21% on average.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases WCET estimation, multicore architectures, parallel programming

Digital Object Identifier 10.4230/OASIcs.WCET.2013.21

1 Introduction

Multi-core systems are becoming prevalent in both general purpose and embedded systems.
Their adoption is driven by scalable performance arguments, but this scalability comes at
the price of increased software complexity. Indeed, multi-core systems run parallel software
involving potentially complex synchronizations between the sequential programs executed
on the various cores. In the current state of the art of validation of real-time multi-task
software, temporal validation is achieved by computing the worst-case response time (WCRT)
of every task, defined as an upper bound for the duration between the task arrival and
its termination. Two main classes of techniques, usually applied sequentially, are used:
(i) Worst-case execution time (WCET) estimation, which works on sequential programs, and
(ii) WCRT estimation, that computes response times thanks to WCET values as inputs.

WCET analysis emphasizes the importance of hardware micro-architecture. Indeed,
in its double quest for execution speed and programming simplicity, modern hardware
architectures include user-transparent performance enhancing features (e.g., pipelining,
caching). The presence of these elements complicates WCET estimation. Limiting generality
to sequential code running on single-cores and selecting moderately complex hardware allows
the preservation of computational tractability, while the hardware micro-architecture is
precisely modeled. This allows the computation of tight execution time bounds.

∗ This work was partially supported by EU COST Action IC1202 Timing Analysis at Code-Level (TACLe)

© Dumitru Potop-Butucaru and Isabelle Puaut;
licensed under Creative Commons License CC-BY

13th International Workshop on Worst-Case Execution Time Analysis (WCET 2013).
Editor: Claire Maiza; pp. 21–31

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2013.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

22 Integrated Worst-Case Execution Time Estimation of Multicore Applications

WCRT analysis emphasizes the system-level complexity, by taking into account aspects
such as inter-task task communication/synchronization, and interaction with the environment.
The objective here is usually to provide execution time bounds for execution flows involving
several tasks, possibly running on multiple processors, and their communications and syn-
chronizations. To limit computational complexity of WCRT analysis, hardware and software
are usually represented in much less detail than in WCET estimation techniques. Typical
objects at this level are sequential tasks characterized by functional and non-functional
properties, such as: inputs and outputs, WCET, period, execution conditions, etc.

When dealing with parallel applications running on multicore architectures, the classical
separation between WCET and WCRT analysis has to be revisited, since an application, even
when considered in isolation from the others, includes parallelism. In this paper, we address
the issue of determining the WCET of an isolated parallel application where each core is
statically allocated one sequential thread. Since the threads synchronize with each other, our
integrated WCET estimation technique must address issues that are usually dealt with by
WCRT estimation techniques (integration of synchronization and communication costs). On
the other hand, as a WCET estimation technique, our proposal calculates execution times of
a parallel application considered in isolation from the other activities that run concurrently
on the multi-core architecture.

Contribution. Classical WCRT-based timing analysis techniques for parallel code isolate
micro-architecture analysis from the analysis of synchronizations between cores by performing
them in two separate analysis phases (WCET and WCRT analysis). This isolation has its
advantages, such as a reduction of the complexity of each analysis phase, and a separation
of concerns that facilitates the development of analysis tools. But isolation also has a
major drawback: a loss in precision which can be significant. To consider only one aspect,
to be safe the WCET analysis of each synchronization-free sequential code region has to
consider an undetermined micro-architecture state. This may result in overestimated WCETs,
and consequently on pessimistic execution time bounds for the whole parallel application.
The contribution of this paper is an integrated WCET analysis approach that considers
at the same time micro-architectural information and the synchronizations between cores.
This is achieved by extending a state-of-the-art WCET estimation technique and tool to
manage synchronizations and communications between the sequential threads running on
the different cores. The benefits of the proposed method are twofold. On the one hand, the
micro-architectural state is not lost between synchronization-free code regions running on
the same core, which results in tighter execution time estimates. On the other hand, only
one tool is required for the temporal validation of the parallel application, which reduces the
complexity of the timing validation toolchain.

Such a holistic approach is made possible by the use of deterministic and composable
software and hardware architectures (homogeneous multi-cores without cache sharing, static
assignment of the code regions on the cores) as detailed later in this paper. We demonstrate
the interest of the approach using an adaptive differential pulse-code modulation (adpcm)
encoder where the integrated WCET approach provides significantly tighter response time
estimations than the more classical WCRT approaches.

Outline. The rest of this paper is organized as follows. Section 2 presents the application
model and defines more formally what is meant by worst-case execution time of a parallel
application. Section 3 details and motivates the class of multi-core architectures considered
in this study. Section 4 defines our WCET estimation method. Experimental results are
given in Section 5. Our proposal is briefly compared to related work in Section 6. Finally,
we conclude and discuss future work in Section 7.

D. Potop-Butucaru and I. Puaut 23

void core1 () {
int tqmf [2 4] ; long xa , xb , e l ;
int xin1 , xin2 , d e c i s_ l e v l ;
for (; ;) { // I n f i n i t e loop

// Computation phase 1
xa = 0 ; xb = 0 ;
for (i =0; i <12; i++) { // 12 i t e r a t i o n s

xa += (long) tqmf [2∗ i]∗h [2∗ i] ;
xb += (long) tqmf [2∗ i +1]∗h [2∗ i +1] ;

}
// Send the r e s u l t s to core 2
send (channel1 , (int) ((xa+xb)>>15)) ; −−−−−
// Read inputs
xin1=read_input () ; xin2=read_input () ;
// Computation phase 2
for (i =23; i >=2; i−−) { // 22 i t e r a t i o n s

tqmf [i]=tqmf [i −2] ;
}
tqmf [1] = xin1 ; tqmf [0] = xin2 ;
// Receive data from core2 and output i t
de c i s_ l e v l = r e c e i v e (channel2) ; <−−−−−−
write_output (d e c i s_ l ev l) ;

}
}

const int de c i s_ l e v l [3 0] ;
int core2 () {

int q , e l ;

for (; ;) {// I n f i n i t e loop

// Receive data from core1
−−> e l = r e c e i v e (channel1) ;

// Computation phase 1
e l = (e l >=0)? e l :(− e l) ;
for (q = 0 ; q < 30 ; q++) {

// 30 i t e r a t i o n s
i f (e l <= dec i s_ l e v l [q])

break ;
}
// Send r e s u l t to core1

−−− send (channel2 , d e c i s_ l e v l) ;

}
}

Figure 1 Toy example: parallel version of adpcm, from the Mälardalen WCET benchmark
suite [8].

2 Application model and problem formulation

The simplest embedded control systems running on mono-processor architectures follow
a so-called simple control loop paradigm. In such systems, the software is simply a loop
whose body is the sequence of calls to the various input sampling, processing, and actuation
functions. The sequence of calls is fixed off-line. In this paper, we consider the multi-core
equivalent of simple control loops, where each core executes a simple control loop (the
practical importance of such a code structure mainly derives from the use of automatic
mapping techniques [7], which often generate such code). We shall denote with task τi the
program that forms the body of the loop executed by core CPUi, 1 ≤ i ≤ n. Each task τi

satisfies the classical requirements allowing WCET analysis (all loops it contains except the
main loop have statically bounded numbers of iterations).

Tasks τi, 1 ≤ i ≤ n can communicate with each other through a set of logical message-
passing channels C = {c1, . . . , cm} which are bounded FIFO buffers that do not lose, duplicate,
or corrupt messages. Communication is done using send and receive primitives that can
be invoked at any statically known position in task τi. The two primitives are blocking
(send on full channel, receive on empty channel), which means that channels can be used for
synchronization. For the scope of this paper, we make the following assumptions concerning
the channels: (i) each channel connects exactly two processors (one sender and one receiver);
(ii) Each channel allows the storage of only one message. No assumption is made on how
the logical message passing channels are implemented on the execution platform. We also
assume that inter-task communications are free of deadlocks by construction.

An illustrating application, that will be used all along the paper, is given in Figure 1.
The application is a portion of a bi-processor parallel version of adpcm (adaptive pulse code
modulation) from the Mälardalen WCET benchmark suite [8]. We emphasized with arrows
the two send/receive pairs associated with channel1 and channel2 respectively.

Assuming the previously-defined application model, the worst-case execution time analysis
problem we solve in this paper is to compute the worst-case duration of a fixed number
of iterations of the application, considered in isolation from the other activities running
concurrently on the multi-core architecture.

WCET 2013

24 Integrated Worst-Case Execution Time Estimation of Multicore Applications

3 Execution platform

As noted by Puschner et al. [14], obtaining precise and composable timing information in a
multiprocessor system is only possible if we can ensure spatial or temporal separation between
concurrent accesses to shared resources. The shared resources we consider in our work are
the memory subsystem, the on-chip buses and networks (including I/O), DMA controllers,
and the synchronization subsystem. We shall make on all of them hypotheses that allow both
a precise timing characterization of complying architectures, and the modeling of complex,
real-life architectures. Multi-processor systems with shared caches, although amenable to
WCET estimation, may yield pessimistic WCET estimates, because the state of these caches
becomes difficult to approximate in the presence of concurrent requests. Our choice is to
consider architectures where each processor has its private cache subsystem, independent
from the ones of other processors. It is also assumed that each core has separate instruction
and data caches. We consider such architectures because separate caches are analyzable
more precisely than unified caches by WCET estimation techniques. All caches have a Least
Recently Used (LRU) replacement policy. LRU is selected because it was shown to be the
most predictable cache replacement policy [15]. Finally, cores are homogeneous (all cores
have the same micro-architecture).

Another significant source of WCET estimation imprecision is the presence of shared
memory banks and shared communication busses. Our choice here is to consider architectures
where the duration of all memory accesses and data transmissions can be precisely determined.
The timing precision can be ensured: (i) fully by hardware mechanisms, for instance through
the use of time division (TDM) memory controllers or on-chip buses [5], (ii) or through a mix of
software and hardware mechanisms. In these cases, software and/or hardware synchronization
mechanisms (semaphores, locks) are used to guarantee the absence of contentions due to
access to RAM banks or communication buses. In this paper we consider architectures of
the second type, as this case covers classical distributed bus-based architectures, shared
memory architectures featuring multiple RAM banks, but also mixes of the two, such as
the Network-on-Chip (NoC) based architectures proposed by various vendors [17, 12]. Our
NoC-based experimentation platform that will be detailed in Section 5 falls in this last
case. An upper bound of the communication latency for every send/receive pair is assumed
known, which is realistic on all the previously-mentioned architectures. The determination
of communications latencies is considered outside the scope of the paper.

4 WCET computation

Our approach to WCET computation for parallel applications (§ 4.2) consists in extending a
state-of-the-art WCET estimation method (§ 4.1) to compute WCETs of parallel applications.

4.1 Existing state-of-the-art WCET estimation technique
Static WCET estimation techniques are commonly organized in three phases performing
different analyses [4]: Control-flow analysis, Hardware-level analysis and WCET calculation.

Control-flow analysis. This phase extracts information about possible execution paths from
the program source or binary. The output of this phase is a data structure representing
the possible flows. For the scope of this paper, this phase produces Control Flow Graphs
(CFG), extracted from the program binary. The CFGs are annotated with additional flow

D. Potop-Butucaru and I. Puaut 25

information such as maximum number of loop iterations. The CFG of the loop body of the
task running on core1 (from our sample application) is given in Fig. 2(a).

Hardware-level analysis. This step, also called low-level analysis, estimates the worst-case
execution times of basic blocks. The difficulty during this phase is to take into account
micro-architectural components of the target processor (caches, pipelines, branch predictors).
In the presence of such components, the execution time of a statement is dependent on the
context it is called in. The overall typical outcome of hardware-level analysis is a maximum
execution time per basic block in two different contexts to cope with cache effects: the first
execution of the basic block in a loop, denoted tf and its subsequent executions, denoted tn,
as more formally defined in [9]; (negative) execution times may also be associated to edges
to account for pipeline effects between basic blocks.

WCET calculation. The purpose of this final phase is to determine an estimate for the
WCET, based on the flow and timing information derived in the previous phases. The most
widespread calculation method, that will be adopted in this paper, is called implicit-path
enumeration (IPET). In IPET, program flow and basic-block execution time bounds are
combined into sets of arithmetic constraints. Each entity (basic block or program flow edge) in
the code is assigned two values: a time coefficient, denoted tentity, which expresses the upper
bound of the contribution of that entity to the total execution time every time it is executed,
and count variable (xentity), corresponding to the number of times the entity is executed.

core1_body

N1

N3

N2

N4

N5

N6

N7

N8

N9

loop[12]

loop[22]

(a) CFG of
the loop body

of core1

// Start constraint
x1 = 1
// Structural constraints
x1 = x1,2

x2 = x1,2 + x2,3 = x2,3 + x2,4

x3 = x2,3 = x3,2

x4 = x2,4 = x4,5, ...
// Loop bound constraints
x3 ≤ 12
x7 ≤ 22
// Cache-induced constraints
x1 = xf

1 + xn
1

xf
1 ≤ 1, ...

// WCET expression
maximize(xf

1 ∗ 10 + xn
1 ∗ 10

+xf
2 ∗ 120 + xn

2 ∗ 14 + ...

+x1,2 ∗ −1 + ...);
(b) Constraints for WCET
calculation of core1_body

Figure 2 State-of-the-art WCET calculation on
the loop body of core1 in our illustrating example.

The program’s WCET of the program
is determined by maximizing the sum of
products of the execution counts and times
(
∑

i∈entities xi ∗ ti), where the execution
count variables are subject to constraints
reflecting the structure of the code and pos-
sible flows. The result of an IPET calcula-
tion is an upper timing bound and a worst-
case count for each execution count variable.

Fig. 2(b) illustrates the constraints and
formulas generated by an IPET-based bound
calculation method on the loop body of
core1, assuming it is the program entry
point. The start constraint states that the
code is executed once. The structural con-
straints reflect the possible program flows,
meaning that each basic block must be
entered the same number of times as it is
exited. The loop bounds constrain the num-
ber of executions of basic blocks inside loops.
Cache induced constraints express that basic
blocks have different execution times, one
for their first execution, another for the next

ones. In the WCET expression to be maximized, there are two execution durations per basic
block to model cache effects. For instance, in the formula, tf2 = 120 (first execution, cold
cache), whereas tn2 = 14 (subsequent executions, warmed-up cache).

WCET 2013

26 Integrated Worst-Case Execution Time Estimation of Multicore Applications

4.2 WCET computation of parallel applications
Starting from the WCET estimation method sketched above, we build our WCET estimation
technique for parallel applications by performing a per-core hardware-level analysis and
then adding new edges in the CFG to model synchronization/communications between code
regions. The modified analyzer runs as follows, with the analysis phases presented in their
invocation order:
1. The original control flow analysis extracts the CFG of the tasks to be run on the cores,

from the application binary.
2. The hardware-level analysis runs unmodified on each task (control loop running on

each core). During this step, each task is analyzed as if it was not communicating with
the other tasks executed concurrently on the other cores.

3. A new step dubbed modeling of communications, is invoked. This step adds new
edges between the control flow graphs of these tasks, the result being a single CFG. A
new edge is added for each communication between code regions; it is associated with a
duration to model its execution time (message transmission time for communications).

4. The WCET computation step is executed unmodified, even though the CFG corres-
ponds to a parallel application and has slightly different topological properties. This is
due to the fact that the analysis works by finding the critical path in a directed acyclic
graph. The fact that the graph represents purely sequential behaviors, or parallel ones
(including the new edges that model communications) is not important.

The method was integrated into the Heptane static WCET estimation tool [1] through
the addition of a new pass, corresponding to phase 3, interposed between hardware-level
analysis and WCET calculation. Communications between code regions are detected through
annotations in the source code of the analyzed application, specifying at each communication
point the recipient of the message and the communication latency. The code of the new pass
represents around 200 lines of C++ code.

N13

N14

N15

N16

N17

N18

N19

N20

N2

N3 N4

N6

N7 N8

N5

N9

N1 N21

loop[30]

loop[12]

loop[22]

core1 core2

N22

core1_body core2_body

r1

main

r2

r3

r4

r5

r6

N10

N11

N12

Figure 3 WCET computation of parallel
application.

The method is illustrated step by step in
Fig. 3 on our toy application of Fig. 1. The
shaded areas labeled r1–r6 correspond to the
code regions, which are by definition the por-
tions of the two tasks that are separated by
communications. For instance, node N4 of the
core1_body CFG is the basic block containing
the send call on channel1. After the hardware-
level analysis phase runs unmodified on the
tasks of the parallel program, the modeling
of communications adds new edges in the ap-
plication CFG to model communications (bold
arrows in the figure). These new edges corres-
pond to: message passing between code regions
(edges N4 → N11 and N19 → N9) and par-
allel launching of code regions on the different
cores (edges to and from nodes N21 and N22
in the application entry point main).

D. Potop-Butucaru and I. Puaut 27

During the hardware-level analysis phase, our WCET analysis method applies instruction
cache, data cache, and pipeline analysis on the two CFGs core1_body and core2_body. This
allows to benefit from the tightness of hardware-level analysis on each task. For instance, in
task core1_body, it allows to detect that array tqmf is still in the data cache after calling
primitive send. This would not have been possible if a decoupled approach was used (WCET
estimation of regions followed by an aggregation of individual WCETs to compute the global
WCET). If a decoupled method was used, conservative assumptions would have been taken
for the analysis safety (assuming the worst-case hardware state, i.e. empty cache at WCET
analysis start). Using an integrated approach, the hardware-level analysis is able to capture
hardware effects between regions (instruction caches, data caches, pipeline) naturally.

Finally, the WCET computation step is applied unmodified. Thanks to the introduction of
the new edges, new constraints are automatically added in the WCET calculation equations,
and communication delays are automatically taken into account. The new or modified
formulas of the WCET calculation equations are illustrated below for our running example,
with the modified parts in bold face. Communication/synchronization edges are taken into
account in the new structural constraints (e.g. number of executions of communication/syn-
chronization edges, x4,11). Data transmission latencies are considered as well (e.g. 250 time
units to communicate data from node N4 to node N11 according to the amount of data to
be transmitted between the two nodes).

// New or modified structural constraints (non exhaustive)
x4 = x2,4 = x4,5 + x4,11

x11 = x10,11 + x4,11 = x11,12 + x11,13

// New WCET expression
maximize(xf

1 ∗ 10 + xn
1 ∗ 10 + xf

2 ∗ 120 + xn
2 ∗ 14 + x4,11 ∗ 250 + x1,2 ∗ −1 + ...);

5 Experimental evaluation

5.1 Experimental setup

Multi-core architecture. Given that our claims mainly concern the precision of the timing
analysis, we considered an evaluation platform allowing us to perform cycle-accurate estima-
tions and measurements of execution time, in both single-processor and multi-processor cases.
We achieved this by using the SoCLib library [16] for virtual prototyping of multi-processor
systems-on-chips (MPSoC). The hardware components we use are of cycle-accurate, bit
accurate type, written in SystemC.

The precise architecture we worked on using SoCLib is a scaled-down version of that
of [2]. While the original platform scales up to 4096 cores, we have only used for the
presented experiments single-, double-, and quad-core configurations. Each core has separate
L1 instruction and data caches, both implementing a Least Recently Used (LRU) cache
replacement policy. Both caches feature 32 sets, 4 ways, and 32 bytes per cache line. All
CPU cores are of the same type, using the MIPS32 instruction set. Each core is part of a
computing tile containing a multi-bank RAM (to accommodate non-interferent concurrent
accesses to program text and data by the CPU cores), a DMA unit, and a hardware lock unit.
The local interconnect of each tile is a full crossbar. The tiles are inter-connected through a
2D mesh network-on-chip. The overall structure of our architecture is very similar to that of
commercial many-core architectures [12].

WCET 2013

28 Integrated Worst-Case Execution Time Estimation of Multicore Applications

Studied applications. The proposed WCET estimation method was experimented on two
small signal processing applications. The first one is a parallel version of the adaptive differ-
ential pulse-code modulation (adpcm) from the Mälardalen WCET benchmark suite [8]. The
global dataflow of the code executed at each iteration of the modulation application is depicted
in Fig. 4, where boxes represent code regions and arrows communications between them.

audio

CPU0

CPU1

QMF
(quadrature

mirror
filter)

High−band

encoder

Low−band

encoder
Multiplexer

audio

compressed

Figure 4 adpcm application: dataflow and
mapping on a 2-core architecture.

Fig. 4 also depicts mapping of regions to cores
when the application is parallelized for a 2-core ar-
chitecture. Only the arrows crossing CPU bound-
aries are coded as communications; the sequen-
cing of QMF, low-band encoder and multiplexer
is implemented simply by calling successively the
three codes in the main loop of CPU0. When
parallelized for a 4-core architecture, every re-
gion is assigned to a different core, and software
pipelining is used to allow more parallelism. The
communication latency of every inter-core com-

munication was determined by an analysis of the hardware platform as a formula dependent
on the volume of data to be transferred.

The second application, named filter, is a simple load balancing example, where two
processors are needed to improve the throughput of a simple image filter. In this bi-processor
application, processor 0 successively receives image lines in a buffer. The buffer content must
be stored elsewhere to allow a new line to arrive, and this new line will be sent to processor 1,
cyclically.

Application code was compiled using a standard GNU MIPS compilation toolchain with no
optimization. For the scope of this performance evaluation, application code was parallelized
manually. Automatic code parallelization software like [6] or offline real-time scheduling tools
like [7] that generate efficient parallel code could have been used instead.

5.2 Experimental results
Experimental results are given: (i) to evaluate the accuracy of the hardware model used in
the base timing analysis tool; (ii) to compare WCETs obtained using our integrated approach
against those obtained using a decoupled estimation method; (iii) to evaluate the pessimism
of our integrated method. We do not give numbers on the run-time of the analysis, simply
because modifying the application’s CFG turned out to take negligible time compared to
hardware-level analysis and WCET calculation.

Accuracy of hardware model. To show the accuracy of the hardware model used in the
analysis, we have validated Heptane’s hardware model against the SoCLib simulator on
single-path code. Experiments were conducted on randomly generated single-path code,
starting with known contents of the instruction and data caches. After a careful and extensive
comparison of the analyzer and simulator cycle counts, both tools returned exactly the same
number of cycles for all considered code.

Comparison with baseline decoupled WCET estimation method. To evaluate the tight-
ness of WCET estimates, we have compared them with a baseline decoupled approach that
first estimates WCETs of code regions and then computes the overall WCET through a com-
position of the regions WCETs. The baseline method operates as follows. It first computes
computes WCETs of all regions; to be safe, the worst-case hardware state is assumed by the

D. Potop-Butucaru and I. Puaut 29

Table 1 Experimental results: computed WCET bounds using our integrated approach and
a base-line decoupled approach, and measured execution time. Improvement over the baseline is
defined as Decoupled−Integrated

Integrated ∗ 100. Analysis pessimism is defined as Integrated−Measured
Measured ∗ 100.

Name Integrated Decoupled Gain (%) Measured Pessimism (%)
adpcm – 2 cores 73563 101431 36.5% 64944 13.3%
adpcm – 4 cores 44568 55919 25.5% 41468 7.5%
filter – 2 cores 110825 112543 1.55% 108296 2.3%

static analyzer at the start of every region. Then, the application overall WCET is computed
in an ad hoc manner according to the synchronization pattern between code regions. This
turned out to be very easy for the considered applications, that have simple and regular
communications, never more complex that the ones illustrated in Figure 1.

The estimated WCETs are given in Table 1, for 10 iterations of the main control loop on
each core. The WCETs produced by our integrated approach are always tighter than using
the decoupled method (21% in average on the three case studies). The gain varies depending
on the amount of reuse between successive regions assigned to the same core. When the
amount of reuse is high, like in application adpcm, that features intensive code and data
reuse between code regions, the gain is significant. When the amount of reuse is smaller like
in filter (no reuse of data, modest reuse of code between regions), the gain is much smaller.

Comparison with observed execution times. The pessimism of our WCET evaluation
method is evaluated by comparing estimated WCETs with observed execution times, obtained
using the SoCLib simulation software. Regarding simulation results, due to time constraints,
we made no attempt to identify the worst-case input data and execute the code with
typical input data, not necessarily representative of the worst-case situation. The estimated
pessimism is thus an upper bound of the method pessimism. Results are reported in Table 1.
The numbers show that even without executing the code using its worst-case input data,
the results are encouraging: estimated and measured execution times are close to each
other (of 7.7% in average). Further experiments need to be conducted to identify the actual
overestimation and not only an upper bound of the overestimation.

6 Related work

Much research effort has been spent in the past in estimating WCETs of sequential code
and WCRTs of multi-task applications. Research on WCET estimation has mainly targeted
software running on single-core architectures (see [4] for a survey). A lot of effort has been
put on hardware-level analysis, allowing architectures with caches and in-order pipelines to
be analyzed precisely. The research presented in this paper is not a new WCET estimation
technique, but rather takes benefit of state-of-the-art low level analysis to produce tight
WCET estimates of parallel applications.

Many WCRT estimation methods compute end-to-end response times of distributed
applications communicating using message passing, or multiprocessor systems (e.g. [11]). To
our best knowledge, all these methods can be qualified as decoupled, in the sense that they
use as input WCET estimations of code regions computed before the WCRT analysis. By
comparison, we have shown that an integrated analysis allows to produce tighter WCRTs
than a decoupled approach, because it allows hardware effects between code regions to be
captured accurately.

WCET 2013

30 Integrated Worst-Case Execution Time Estimation of Multicore Applications

The research we found to be closer to our approach is described in [3, 13, 10]. Paper [3]
is devoted to WCET estimation of a parallel application running on a predictable multi-core
architecture. Similarly to our work, emphasis is put on predictability of the hardware
and software architectures. However, in contrast to [3] that provides formulas to combine
WCETs of code snippets to obtain the WCET of the parallel application, in our work the
application running on each core is analyzed as a whole. As a consequence, we are able to
exploit knowledge of the hardware state between code snippets and thus can provide tighter
estimates, especially for fine-grain parallelism.

In [13], a method to determine residual cache states after the execution of sequential code
on a mono-core platform is provided. The method allows to obtain tighter WCETs in case of
repetitive executions of the analyzed code. Using our method, we obtain the same benefits,
but without needing a specific analysis and tool. This benefit comes as a side product of
our method because the WCET computation of the parallel application is integrated into a
WCET estimation tool that originally was analyzing sequential code.

Paper [10] proposes an ILP formulation for WCRT computation of task graphs running
on multi-core systems. The method computes the application WCRT given a task-to-
core mapping, architecture and scheduling policy, with contentions when accessing shared
resources. Unlike [10], we currently rule out resource contentions, that is left for future work.
However, contrary to [10], our analysis of the hardware is expected to be tighter because of
our integrated approach.

7 Conclusion

We have presented in this paper a method to compute the WCETs of parallel applications
running on multicore platforms. Thanks to small modifications of a WCET computation
method, the parallel application can be analyzed as a whole, such that hardware effects
across code regions of the application are dealt with naturally. We have demonstrated that
our approach produces WCETs that are tighter than using a classical method by 21% in
average. Preliminary experiments show that the WCET over-approximation is below 7.7% in
average. We believe that our method can be integrated easily in other WCET estimation tools
using the implicit path enumeration techniques to the extent that the analysis framework is
sufficiently modular (hardware-level analysis and WCET computation are clearly separated).
The proximity of our test architecture to existing commercial many-core architectures also
suggests that our results are easily transposable to them.

In this paper, assumptions have been made regarding the software structure in order to
demonstrate the validity of our approach on simple but yet realistic setting. In future work,
our first objective will be to relax as much as possible these assumptions to broaden the
scope of application of the approach. Another area for future research will be to use obtained
WCETs to refine the structure of the parallel application (mapping of code regions on the
cores, execution order). Finally, scalability to a larger number of cores is another area for
future work.

References
1 A. Colin and I. Puaut. A modular and retargetable framework for tree-based wcet analysis.

In ECRTS, pages 37 –44, July 2001.
2 M. Djemal, F. Pêcheux, D. Potop-Butucaru, R. de Simone, F. Wajsbürt, and Z. Zhang.

Programmable routers for efficient mapping of applications onto NoC-based MPSoCs. In
DASIP, 2012.

D. Potop-Butucaru and I. Puaut 31

3 C. Rochange et al. WCET analysis of a parallel 3D multigrid solver executed on the
MERASA multi-core. In WCET workshop, 2010.

4 R. Wilhelm et al. The worst-case execution-time problem overview of methods and survey
of tools. ACM TECS, 7(3):36:1–36:53, May 2008.

5 K. Goossens, J. Dielissen, and A. Radulescu. Æthereal network on chip: Concepts, archi-
tectures, and implementations. IEEE Design & Test of Computers, 22(5):414–421, 2005.

6 M.I. Gordon, W. Thies, M. Karczmarek, J. Lin, A.S. Meli, A.A. Lamb, C. Leger, J. Wong,
H. Hoffmann, D. Maze, and S.P. Amarasinghe. A stream compiler for communication-
exposed architectures. In ASPLOS-X, 2002.

7 T. Grandpierre and Y. Sorel. From algorithm and architecture specification to automatic
generation of distributed real-time executives. In MEMOCODE, 2003.

8 J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The Mälardalen WCET benchmarks
– past, present and future. In WCET workshop, 2010.

9 D. Hardy and I. Puaut. Wcet analysis of multi-level non-inclusive set-associative instruction
caches. In RTSS, 2008.

10 J. Kim, H. Oh, H. Ha, S. Kang, J. Choi, and S. Ha. An ILP-based worst-case performance
analysis technique for distributed real-time embedded systems. In RTSS, 2012.

11 M. Kuo, R. Sinha, and P. Roop. Efficient WCRT analysis of synchronous programs using
reachability. In Proceedings DAC’11, San Diego, CA, USA, 2011.

12 The MPPA256 many-core architecture. Online http://www.kalray.eu/products/
mppa-manycore/mppa-256/, 2012.

13 F. Nemer, H. Cassé, P. Sainrat, and J.P. Bahsoun. Inter-task WCET computation for
a-way instruction caches. In SIES, 2008.

14 P. Puschner, R. Kirner, and R. Pettit. Towards composable timing for real-time programs.
In STFSSD’09, 2009.

15 J. Reineke, D. Grund, C. Berg, and R. Wilhelm. Timing predictability of cache replacement
policies. RTSJ, 37(2), 2007.

16 SoCLib: an open platform for virtual prototyping of multi-processors system on chip, 2011.
Online at: http://www.soclib.fr.

17 The TilePro64 many-core architecture. Online http://www.tilera.com/sites/default/
files/productbriefs/TILEPro64_Processor_PB019_v4.pdf, 2008.

WCET 2013

http://www.kalray.eu/products/mppa-manycore/mppa-256/
http://www.kalray.eu/products/mppa-manycore/mppa-256/
http://www.tilera.com/sites/default/files/productbriefs/TILEPro64_Processor_PB019_v4.pdf
http://www.tilera.com/sites/default/files/productbriefs/TILEPro64_Processor_PB019_v4.pdf

Program Semantics in Model-Based WCET
Analysis: A State of the Art Perspective∗

Mihail Asavoae, Claire Maiza, and Pascal Raymond

Laboratoire Verimag
Centre Equation, 2 Avenue de Vignate, Gieres, France
{Mihail.Asavoae,Claire.Maiza,Pascal.Raymond}@imag.fr

Abstract
Advanced design techniques of safety-critical applications use specialized development model-
based methods. Under this setting, the application exists at several levels of description, as the
result of a sequence of transformations. On the positive side, the application is developed in a
systematic way, while on the negative side, its high-level semantics may be obfuscated when rep-
resented at the lower levels. The application should provide certain functional and non-functional
guarantees. When the application is a hard real-time program, such guarantees could be dead-
lines, thus making the computation of worst-case execution time (WCET) bounds mandatory.
This paper overviews, in the context of WCET analysis, what are the existing techniques to ex-
tract, express and exploit the program semantics along the model-based development workflow.

1998 ACM Subject Classification B.8.2 Performance Analysis and Design Aids

Keywords and phrases Survey, WCET analysis, Program semantics, Model-based design,
Infeasible paths

Digital Object Identifier 10.4230/OASIcs.WCET.2013.32

1 Introduction

Programming embedded and hard real-time systems requires careful considerations not only
with respect to correctness criteria of the software product, but also to resource utilization
(i.e. memory usage, power consumption or timing behavior). This implies to build the
embedded and real-time applications in a systematic way and thus, to set the grounds for
subsequent development of analysis tools. The worst-case execution time (WCET) analysis
provides safe guarantees w.r.t. the timing behavior of hard real-time applications.

A popular solution in the direction of software systematization is called model-based
design (MBD) and presents, in general, three components: a high-level specification language
to develop the application (which is also called model); compilation support to further process
the model; tool support for simulation (and in some cases analysis) purposes. We restrict
our discussion on a particular MBD workflow which is currently used in both avionics and
automotive domains and where the compilation support generates classical imperative code
and then binary code as shown in Figure 1(C). In this setting, the application semantics is
present in the high-level model, in the intermediate program and in the binary code. Apart
from the semantics representation, the model-based workflow also has two semantics transfer
levels: from model to imperative code and from imperative code to binary code. We discuss

∗ This work was partially supported by ANR under grant ANR-12-INSE-0001 and by EU COST Action
IC1202:Timing Analysis On Code-Level (TACLe).

© Mihail Asavoae, Claire Maiza, and Pascal Raymond;
licensed under Creative Commons License CC-BY

13th International Workshop on Worst-Case Execution Time Analysis (WCET 2013).
Editor: Claire Maiza; pp. 32–41

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2013.32
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

M. Asavoae, C. Maiza, and P. Raymond 33

Analyses

CFG Recon-
struction

Loop Bound

Value

Control-flow

Micro-
architectural
Analysis

WCET
Calculation

Sec. 2 – MBD
integration: [21, 22, 33, 35, 51]
semantics: [32, 51]

Sec. 3.1 – Loop Bounds
pattern: [14, 16, 23, 29]
counting: [20, 25, 30, 38, 40]

Sec. 3.2 – Infeasible Paths
pairwise: [7, 18, 25, 29, 49, 50]
disjunctive: [24, 30, 48]

Sec. 4 – Transfer
infrastructure: [21, 33, 35, 51]
optimization: [19, 36, 55]

Sec. 5 – IPET
enhancements: [2, 4, 9, 43, 46, 53]
alternatives: [1, 5, 13, 15, 30, 44, 45, 48]

High-Level Model

HLtoC

C Code Level

CtoBin

Binary Code Level

(C)(B)(A)

Figure 1 Static WCET analysis workflow (A), paper organization (B) and MBD workflow (C).

how the program semantics is expressed, extracted and exploited in such a workflow, when
the analysis of interest computes WCET bounds.

The WCET analysis of a particular program is performed at the binary level and with
knowledge about the underlying architecture. As it is summarized in [56] and shown in
Figure 1(A), a typical workflow for a WCET analysis proceeds with the CFG extraction, a
number of program flow- and processor-behavior analyses, and finally, the bound computation.
The WCET analysis should provide safe and tight estimations of the actual WCET of a
program. To address these, the WCET analysis workflow relies on a number of specific
analyses, spawn from both the flow analysis (i.e. detection of loop bounds and infeasible
paths) and the architecture analysis (i.e. cache and pipeline behavior prediction).

In this paper we present a survey study on how the WCET analysis workflow is projected
on the MBD workflow, from a particular point of view – the separation of concerns at the level
of program semantics manipulation. Due to the generality of the MBD framework and the
multitude of contributions in the WCET analysis, as well as the current space limit, we restrict
our presentation under a setting defined by the following constraints. First, we consider
MBDs where the model is compiled into C code. Second, we consider the architecture-related
analyses to be orthogonal to our investigation on the program semantics and thus are left out,
as shown in Figure 1(A). This second restriction activates other intended omissions, from our
survey: analyses for CFG extraction and for classification of load/store instructions. Third,
we discuss the path-analysis problem from the popular implicit path-enumeration technique
(IPET) point of view, classifying the approaches as enhancements or alternatives to it.

The works in [37, 56] survey, from certain angles, the state-of-the-art approaches in the
WCET analysis field of research. The authors of [37] rely on the notion of the flow fact and
classify then-existing WCET analysis approaches w.r.t. this notion. As a consequence, this
allows comparisons between various approaches at the confluence of axis for the representation
levels and the execution-time modeling. The survey in [56] is ampler and newer than [37],

WCET 2013

34 Program Semantics in Model-Based WCET Analysis

covering both the methods and the existing tools in the WCET analysis field of research.
The methods are classified into static and measurement-based ones, with the information
presented at the level of WCET analysis subtasks. What we propose here is a specialized
view, in the form of a separation of concerns from the program semantics perspective.
In comparison, this paper is different because it covers (1) an up-to-date specialization
of the representation levels axis from [37] (i.e. only the semantics levels in the model-
based development frameworks with generation of C code capabilities) (2) an up-to-date
specialization to the static-based methods from [56], in particular to the flow analyses,
specialization which is presented on (3) a projection of the workflow of the model-based
development frameworks. To summarize, our survey follows the organization of a modern
software development framework for embedded and real-time applications and presents
up-to-date works, exclusively from a program semantics perspective.

The organization of this paper follows the projection of WCET analysis workflow over the
levels of the model-based development frameworks – Figure 1(B). We present in Section 2
the model-based frameworks as well as the current approaches towards WCET analysis on
the general setting. In Section 3, we project the flow analysis of interest (i.e. loop-bound and
infeasible path detection) at each programming language level in the development frameworks,
while in Section 4 we discuss how to transfer information. We dedicate Section 5 to the path
analysis problem, then we draw conclusions and discuss open problems, in Section 6.

2 Model-Based Development Framework

The development of embedded real-time applications using MBDs [11] gained popularity
in the last decade. The key element lays in the design environment – using a high-level
specification language with mathematical background and graphical support, which enables
rapid prototyping and a high level of design reusability. Moreover, a MBD tool provides
controller analysis and synthesis, as well as deployment support. Application development
in the automotive [10, 47], avionics [54] and aerospace [31] domains rely on popular tools
like Scade Suite and Matlab Simulink/Stateflow. More precisely, Scade belongs to the
synchronous languages family, which means it was designed to generate code, while Matlab
served initally as a simulation tool, but it is now equipped with code generation facilities.

The synchronous paradigm is a deterministic parallel programming style, which compiles
synchronous programs into classical sequential C code with bounded loops and memory
usage – and for which it is mandatory to find a WCET bound. Synchronous programming
languages can be classified into data-flow oriented (e.g. Lustre), control-flow oriented (e.g.
Esterel) and mixed approaches (e.g. Scade Suite). The Lustre programming language and
its formal semantics are presented in [26]. Semantically, a Lustre program transforms input
streams of values into output streams of values and structurally, it represents a system of
equations defining the variables (these are functions from time domain to value domain). The
Esterel programming language and its formal semantics are presented in [6]. Semantically,
an Esterel program reacts to input events (i.e. signals) by producing output signals, and
structurally, it consists of specialized imperative statements to specify control operations
(i.e. delay, signal emission, abortion etc). Both the Lustre and Esterel compilers [27, 17]
generate sequential C code from the intrinsically-parallel synchronous program. The mixed
approaches, represented by Scade Suite and Matlab Simulink/Stateflow provide powerful
modeling languages to integrate data and control-related aspects. For data- and control-flow
parts of the application, Scade uses Lustre and respectively Safe State Machines (graphical
equivalent to Esterel), while Matlab uses the languages Simulink and respectively Stateflow.

M. Asavoae, C. Maiza, and P. Raymond 35

The safety-critical applications, which are developed through MBDs, often require guar-
antees about their timing behavior. Particularly, the idealized "instantaneous" synchronous
tick is implemented as a guarantee of an upper bound on the execution time. Therefore, it is
required to integrate the WCET analysis techniques into the MBD workflow. There, we state
the following two types of contributions: integration methods (w.r.t. the timing analyzer)
and semantics-specific methods (w.r.t. the model or other program representation-level).

Integration methods. The integration methods simply embed the timing analyzer in the
MBD workflow as tool support in the application development process. Timing analyzers are
integrated in Scade Suite workflow [21] (using the existing traceability properties of the MBD),
in Matlab Simulink [35, 51], in an Esterel-driven MBD [33] and in an automotive-specific
model-based development framework, called Ascet [22].

Semantics-specific methods. The semantics-specific methods focus on the precision of the
WCET analysis, transporting program semantics properties from the model level to the binary
level. Existing approaches investigate the timing behavior of Matlab Simulink/Stateflow
models [51] as well as of Esterel applications (during one tick and along multiple ticks) [32].
The program semantics information materializes into various path pattern types [32] or
entailment relations and flow constraints [51]. The works in [8, 3] propose standalone timing
analyses of synchronous programs, without a complete integration into the WCET analysis
workflow. Both perform timing analyses of Esterel code which is executed during one tick,
and also called worst case reaction time (WCRT) analyses.

3 Representation Level – Language

The model-based design presents several levels of program representation. In this paper,
we consider those design platforms with C code as their representation language between
the model and the binary level. For the WCET analysis techniques, it is (1) convenient to
work on the low-level representation because of the architecture-related information, and
(2) inconvenient because of the obfuscated program structure (and possibly the semantics),
due to compilation influence. The MBD frameworks open the possibility to manipulate the
program semantics at a convenient level. There are two complementary methods to obtain
the program semantics properties of interest: add manual annotations or extract them using
dedicated analyses. We briefly cover the former and then, elaborate on the latter.

Manual methods. In general, the MBD workflow provides annotation support through
intermediate generated files (e.g. for Scade Suite models [51]) and it handles information
about code locality. Nevertheless, it is possible to extend the given MBD workflow to
accommodate specific WCET analysis annotations (e.g. for Matlab Simulink/Stateflow
models [35]). For a more general view on existing annotation languages and tool support in
the WCET analysis domain, we recommend the comprehensive survey in [34].

Automated methods. We focus on the following two subtasks performed on the CFG
representation of the program, the loop bound analysis and the control-flow analysis (with
the infeasible path detection). Most of the existing solutions work at the binary level.

3.1 Loop Bounds Detection
The model-based design framework should generate certified C code, which implies it to be
deterministic and traceable, without dynamic allocation, with checked dynamic accesses etc.

WCET 2013

36 Program Semantics in Model-Based WCET Analysis

As a result, such C code contains only bounded loops, usually in the form of for-statements.
However, complex models could produce preemptive conditions to break out of the loops,
making the initial loop bound a grossly overestimation of the actual number of iterations.
The WCET analysis requires knowledge of both loop and recursion bounds. Therefore, a loop
bound analysis attempts to automatically infer such bounds, or in other words to discover
inductive invariants over loop counters. The general procedure consists of three steps: express
how loop variables change across iterations, solve the resulting expressions (i.e. obtain their
closed form) and finally, project the results over the loop counters [41]. Because this general
procedure is undecidable, the state-of-the-art approaches rely on pattern-based heuristics
at the level of loop structure and/or loop data. We classify the loop bound analyses w.r.t.
whether they employ pattern-matching or counting, and further projected on how the loop
bound is expressed.

Pattern-based methods. We consider the loop bound analyses which use patterns at the
level of code constructs [29, 16, 23] and/or encode the closed forms expressions of interest [16].
The code-centered analyses considers specific patterns of loop tests (e.g. comparisons of
variables to constant values) and captures how loop variables change across iterations through
data-flow analysis [29, 23, 14] or abstract interpretation [16]. The property-centered analyses
uses pattern matching in a different way: the results of an abstract interpretation-based
analysis match user-defined patterns representing closed forms expressions [16]. The results
of these loop bound analyses are expressed as summations [29], intervals [23, 14] or both [16].

Counting-based methods. We consider loop bound analyses which symbolically accumu-
lates knowledge about (i.e. count) the number of loop iterations. The key element of such
an analysis is the loop counter – a program or an analysis-specific variable. More specifically,
the loop counter can be: a symbolic variable with an interval domain [25, 40], a number
of program states (modulo equivalence classes) [20], a Presburger set-representation of a
symbolic variable [30], a parameter of a recurrence equation [38] or a formula [12]. The
counting methods are: derivations from abstract interpretation (i.e. abstract execution) [25],
combinations of abstract interpretation with other methods (i.e. program slicing) [40, 20] or
SMT-based invariant generators [38]. The results of these loop bound analyses are expressed
as summations [38], intervals [25, 40, 20] and those of [30] could be disjoint sets of values
(i.e. specific bounds or intervals).

3.2 Infeasible Paths Detection
The ability to detect infeasible execution paths greatly influences the precision of a WCET
analysis. The sequence of instructions which define a program execution may be characterized
by the sequence of decisions taken at conditional statements. A program execution is infeasible
when it cannot be exercised, regardless of the input data. A common way to identify the
infeasibility is to detect conflicting pairs of conditional statements. Note that, in the
context of WCET analysis, the infeasibility expressed as conflicting pairs hides a more
practical aspect – it could be easily encoded in the popular IPET formulation of the path
analysis. Nevertheless, there exists a conceptually orthogonal approach which is capable to
detect more expressive transition (e.g. disjunctive) invariants. The application development
through MBDs produces code with infeasible paths, coming from multiple sources: the model
semantics, the specificities of the high-level language or the code generation techniques. For
example, the control-flow aspects (e.g. specialized instructions or finite state machines) of
the high-level language are translated into conflicting tests (to isolate impossible behaviors).
Also, the underlying scheduling mechanism to generate deterministic C code could produce

M. Asavoae, C. Maiza, and P. Raymond 37

repeating tests. Next, we classify the infeasible path detection analyses w.r.t. the result type:
conflict-pairs invariants and transition (e.g. disjunctive) invariants.

Conflict-pair invariants methods. The methods to detect conflicting conditional statements
are, in general, based on abstract interpretation methods [29, 18, 25, 7, 49], but search-based
techniques are possible [50]. The general workflow has a value analysis phase, which defines
possible values for program variables, and an extraction phase to produce relations between
program statements (i.e. test-test or assignment-test). A number of specialized techniques
aims at increasing the precision of the analyses: program slicing techniques [25, 49] or
symbolic propagation [7]. The techniques in [25, 29, 50] discover infeasible paths in the
context of the IPET technique. Moreover, these analyses are performed at the binary level,
in the MBD hierarchy.

Disjunctive invariants methods. The methods to discover more infeasible paths use, either
an expressive flow facts encoding (i.e. Presburger sets) [30], or techniques to expose the
infeasibility [48, 24], via unfolding the set of program paths. This set is represented as a
graph [48] (and explored with path pruning and graph refining techniques) or as a regular
expression [24] (and explored with static analysis techniques). All these approaches [48, 24, 30]
discover disjunctive invariants, which w.r.t. the dominant IPET technique (in the WCET
analysis community), are difficult to express/exploit.

4 Representation Level – Transfer

We investigate how a particular MBD workflow with two levels of information transfer
integrates the WCET analysis workflow. In general, transferring timing specific information
(i.e. annotated or computed flow facts) from the high-level language to the imperative code
level is well studied. The MBDs are supported by compilers which generate C code in a
systematic way [27, 17, 52] and therefore offer good traceability information (e.g. the KCG
compiler of Scade [52]). However, the second transfer level, from C to the binary level is more
tricky because the general-purpose compilers such as gcc, feature code and data optimizations
which affect the traceability. There are several classifications of traceability: depending
on the direction of semantics transfer (i.e. forward and backward), modifications of the
underlying tool support (i.e. deep and surface) or the presence of compiler optimizations [55].
We elaborate next on the classification based on the required infrastructure modification,
then we overview existing approaches for traceability through compiler optimizations.

Infrastructure-based classification. Several approaches, e.g for Scade Suite [21, 51] rely on
the available traceability information to integrate a timing analyzer into the MBD workflow.
From an implementation point of view, traceability through annotations does not require
modifications of the underlying structures. The Scade workflow uses XML files to transfer
program location-based annotations. MBDs like Matlab Simulink [35] or Esterel [33] use
modified infrastructure to improve the existing traceability. This type of traceability is
achieved through the code structure and addresses the needs to transfer scope-based flow
facts (e.g. loop bounds). Another application is to reconstruct the longest path returned by
the timing analyzer, building a forward traceability chain as annotated ASTs [33].

Optimization-based classification. A more difficult problem is to transfer the flow facts
for the WCET analysis, through compiler optimizations. The general strategy is to identify
classes of optimizations and to model, case by case, the code transformations implied by the
optimizations. The existing approaches [19, 36] require specialized languages to express flow

WCET 2013

38 Program Semantics in Model-Based WCET Analysis

facts and their transformation. To integrate these languages, the compiler is either directly
modified [19] or wrapped and manipulated by additional software infrastructure [36].

5 Path Analysis

The WCET analysis produces the timing bound (i.e. the longest execution path) after a
path analysis phase. The longest path search implies that all the execution paths should be
considered and it requires an underlying semantics model of them. We enumerate: control
flow graph [39], abstract syntax tree [13], Kripke structure [42], timed automaton [15].
Nevertheless, an implicit path enumeration technique (IPET) formulation of the path
analysis is the most popular approach for WCET analysis. We classify the path analyses into
IPET-based algorithms (including enhancements of the original technique) and alternative
approaches (syntax-directed schema, model checking or graph transformation).

IPET. The control flow graph (CFG) captures, in a compact way, the flow of the particular
program, abstracting away data aspects. While there are several ways to represent the CFG,
the WCET analysis considers the nodes as basic blocks (single-entry single-exit sequences of
statements). The basic block representation of the CFG is used to encode the program paths
as an ILP problem, and perform path analysis as ILP solving. The approach is called the
implicit path enumeration technique (IPET) [39]. The ILP problem consists of two kinds of
constraints: structural (or flow) constraints, to express input-output flow relations for basic
blocks, and functional constraints, to handle loops (i.e. given as loop bounds) and to improve
the precision (i.e. encode infeasible path). Specialized techniques extract ILP constraints
from the CFG [18] or from other graph-based representations of the program [46, 53].

IPET enhancements. The overall method for path analysis through ILP solving suffers from
two drawbacks: the timing bounds are as precise as the quality of the functional constraints
and the size of the ILP problem directly affects the computation time of the results. Solutions
for the former are presented in Section 3; next we focus on existing techniques to solve the
ILP problem more efficiently. There are three complementary techniques: modular solving [4],
problem size reducing [43] and parametric analysis [2, 9]. A modular solution identifies ILP
sub-problems as CFG regions with single-entry single-exit properties, for which the locally
computed results replaces the region. The size-reducing solution uses CFG transformations
to combine conditionals and to reduce the number of program paths. The parametric solution
produces, after specific analyses (for parametric dependencies between program variables
and parametric expressions for loop bounds etc), a symbolic ILP problem.

IPET alternatives. Different path analysis methods project the representation of all program
paths on syntactic and semantics artifacts. We enumerate the following solutions: syntax-
directed [13, 44, 45], path-based [48], state-based [42, 15], graph-based [1] and special
annotations [5, 30]. A syntax-directed approach uses timing schema for programming
constructs and the path exploration is the AST traversal. A path-based WCET computation
searches for the longest path among the previously computed bounds for different program
paths. A model-based approach uses representations for the program states and the path
exploration is performed with model checking techniques. A graph-based approach applies
graph algorithmics to transform and/or traverse the CFG of the program. The annotation-
based technique, which bridge the gap between the program semantics and the timing
model [5, 30], transforms the path analysis into (one or more) constraint solving problems.
With respect to the MBD, the path analysis is represented outside the MBD workflow, as an
external procedure.

M. Asavoae, C. Maiza, and P. Raymond 39

6 Concluding Discussions

This paper offers a broad view on a series of techniques for WCET analysis, with an
emphasis on how the program semantics is manipulated. Moreover, this paper advocates for
a separation of concerns at the level of program semantics – i.e. the separation into extract,
express and exploit phases. We distinguish the following two directions of interest. First, in
the context of the MBD workflow, it is necessary to manipulate the program semantics at
various levels in the design chain. As such, the WCET analyzers would not only be integrated
into MBDs [21, 35], but produce tighter results [51, 33], based on the model semantics.
Second, the IPET technique dominates many approaches for WCET analysis, and, as such,
many specializations of WCET analysis subtasks exist. The detection of loop bounds [16, 28]
or infeasible paths [18, 29, 50] generate flow facts which are directly expressible into integer
linear programming. As such, WCET analysis benefits from alternative approaches on flow
facts generation [48, 24] or path analysis [30, 1].

Design and implement applications for embedded and hard real-time systems have several
benefits when using a model-based design environment. First, the high-level language permits
modular development, has formal semantics and capability for imperative code generation.
From a WCET analysis perspective, (1) it allows annotations at the design level as opposed to
cumbersome instrumentation at the low-level and (2) the resulting imperative code features
good traceability because it adheres to certain certification criteria. Second, because the
imperative code is systematically constructed, it opens new possibilities to apply specific
discovery, express and transfer the flow properties to the WCET analysis level – the binary
code. Third, the gap between the high-level driven MBD workflow and the low-level driven
WCET analysis workflow requires a bi-directional transfer of the program semantics.

References
1 E. Althaus, S. Altmeyer, and R. Naujoks. Precise and efficient parametric path analysis.

In LCTES, 2011.
2 S. Altmeyer, C. Humbert, B. Lisper, and R. Wilhelm. Parametric timing analysis for

complex architectures. In RTCSA, pages 367–376, 2008.
3 S. Andalam, P. Roop, and A. Girault. Pruning Infeasible Paths for Tight WCRT Analysis

of Synchronous Programs. In DATE, 2011.
4 C. Ballabriga and H. Cassé. Improving the wcet computation time by ipet using control

flow graph partitioning. In WCET, 2008.
5 G. Bernat and A. Burns. An approach to symbolic worst-case execution time analysis. In

RTP, 2000.
6 G. Berry and G. Gonthier. The esterel synchronous programming language: Design, se-

mantics, implementation. Sci. Comput. Program. (SCP), 19(2):87–152, 1992.
7 R. Bodík, R. Gupta, and M. L. Soffa. Interprocedural conditional branch elimination. In

PLDI, pages 146–158, 1997.
8 M. Boldt, C. Traulsen, and R. von Hanxleden. Worst case reaction time analysis of con-

current reactive programs. ENTCS, 203(4):65–79, June 2008.
9 S. Bygde, A. Ermedahl, and B. Lisper. An efficient algorithm for parametric wcet calcula-

tion. Journal of Systems Architecture, pages 614–624, 2011.
10 S. Byhlin, A. Ermedahl, J. Gustafsson, and B. Lisper. Applying static wcet analysis to

automotive communication software. In ECRTS, pages 249–258, 2005.
11 P. Caspi, P. Raymond, and S. Tripakis. Synchronous languages. In Handbook of Real-Time

And Embedded Systems. Chapman and Hall, 2007.

WCET 2013

40 Program Semantics in Model-Based WCET Analysis

12 J. Coffman, C. Healy, F. Mueller, and D. Whalley. Generalizing parametric timing analysis.
In LCTES, pages 152–154, 2007.

13 A. Colin and I. Puaut. A modular & retargetable framework for tree-based wcet analysis.
In ECRTS, pages 37–44, 2001.

14 C. Cullmann and F. Martin. Data-flow based detection of loop bounds. In WCET, 2007.
15 A. E. Dalsgaard, M. C. Olesen, M. Toft, R. R. Hansen, and K. G. Larsen. METAMOC:

Modular Execution Time Analysis using Model Checking. In WCET, pages 113–123, 2010.
16 M. de Michiel, A. Bonenfant, H. Cassé, and P. Sainrat. Static loop bound analysis of C

programs based on flow analysis and abstract interpretation. In RTCSA, 2008.
17 S. A. Edwards. Compiling esterel into sequential code. In DAC, pages 322–327, 2000.
18 J. Engblom and A. Ermedahl. Modeling complex flows for worst-case execution time ana-

lysis. In RTSS, pages 163–174, 2000.
19 J. Engblom, A. Ermedahl, and P. Altenbernd. Facilitating worst-case execution times

analysis for optimized code. In ECRTS, 1998.
20 A. Ermedahl, C. Sandberg, J. Gustafsson, S. Bygde, and B. Lisper. Loop bound analysis

based on a combination of program slicing, abstract interpretation, and invariant analysis.
In WCET, 2007.

21 C. Ferdinand, R. Heckmann, T.L. Sergent, D. Lopes, B. Martin, X. Fornari, and F. Martin.
Combining a high-level design tool for safety-critical systems with a tool for WCET analysis
on executables. In ERTS2, 2008.

22 C. Ferdinand, R. Heckmann, H.-J. Wolff, C. Renz, O. Parshin, and R. Wilhelm. Towards
model-driven development of hard real-time systems. In AASSD, 2006.

23 C. Ferdinand, F. Martin, C. Cullmann, M. Schlickling, I. Stein, S. Thesing, and R. Heck-
mann. New developments in wcet analysis. In Program Analysis and Compilation, pages
12–52, 2006.

24 S. Gulwani, S. Jain, and E. Koskinen. Control-flow refinement and progress invariants for
bound analysis. In PLDI, pages 375–385, 2009.

25 J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper. Automatic derivation of loop
bounds and infeasible paths for WCET analysis using abstract execution. In RTSS, 2006.

26 N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow program-
ming language lustre. In Proceedings of the IEEE, pages 1305–1320, 1991.

27 N. Halbwachs, P. Raymond, and C. Ratel. Generating efficient code from data-flow pro-
grams. In PLILP, pages 207–218, 1991.

28 C. Healy, M. Sjödin, V. Rustagi, D. Whalley, and R. van Engelen. Supporting timing
analysis by automatic bounding of loops iterations. RTS, 18(2-3), May 2000.

29 C. A. Healy and D. B. Whalley. Automatic detection and exploitation of branch constraints
for timing analysis. IEEE Trans. on Software Engineering, 28(8), August 2002.

30 N. Holsti. Computing time as a program variable: a way around infeasible paths. InWCET,
2008.

31 N. Holsti, T. Långbacka, and A. Saarinen. Using a worst-case execution time tool for
real-time verification of the DEBIE software. In DASIA, 2000.

32 L. Ju, B. K. Huynh, S. Chakraborty, and A. Roychoudhury. Context-sensitive timing
analysis of esterel programs. In DAC, pages 870–873, 2009.

33 L. Ju, B. K. Huynh, A. Roychoudhury, and S. Chakraborty. Performance debugging of
esterel specifications. In CODES-ISSS, 2008.

34 R. Kirner, J. Knoop, A. Prantl, M. Schordan, and A. Kadlec. Beyond loop bounds: com-
paring annotation languages for worst-case execution time analysis. Journal on Software
and System Modeling, 10(3), 2011.

35 R. Kirner, R. Lang, G. Freiberger, and P. Puschner. Fully automatic worst-case execution
time analysis for Matlab/Simulink models. In ECRTS, 2002.

M. Asavoae, C. Maiza, and P. Raymond 41

36 R. Kirner, P. Puschner, and A. Prantl. Transforming flow information during code optim-
ization for timing analysis. Journal on Real-Time Systems, 45(1-2), 2010.

37 R. Kirner and P. P. Puschner. Classification of wcet analysis techniques. In ISORC, pages
190–199, 2005.

38 J. Knoop, L. Kovács, and J. Zwirchmayr. Symbolic loop bound computation for wcet
analysis. In PSI, pages 227–242, 2012.

39 Y.-T.S. Li and S. Malik. Performance analysis of embedded software using implicit path
enumeration. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
16(12), 1997.

40 P. Lokuciejewski, D. Cordes, H. Falk, and P. Marwedel. A fast and precise static loop
analysis based on abstract interpretation, program slicing and polytope models. In CGO,
2009.

41 F. Martin, M. Alt, R. Wilhelm, and C. Ferdinand. Analysis of loops. In CC, 1998.
42 A. Metzner. Why model checking can improve wcet analysis. In CAV, pages 334–347, 2004.
43 H. S. Negi, A. Roychoudhury, and T. Mitra. Simplifying wcet analysis by code transform-

ations. In WCET, 2004.
44 C. Y. Park and A. Shaw. Experiments with a program timing tool based on a source-level

timing schema. IEEE Computer, 24:48–57, 1991.
45 P. Puschner and Ch. Koza. Calculating the maximum, execution time of real-time programs.

Real-Time Syst. (RTS), 1(2):159–176, September 1989.
46 P. Puschner and A. Schedl. Computing maximum task execution times - a graph-based

approach. Real-Time Systems, 13(1), 1997.
47 D. Sehlberg, A. Ermedahl, J. Gustafsson, B. Lisper, and S. Wiegratz. Static wcet analysis

of real-time task-oriented code in vehicle control systems. In ISoLA, pages 212–219, 2006.
48 F. Stappert, A. Ermedahl, and J. Engblom. Efficient longest executable path search for

programs with complex flows and pipeline effects. In CASES, 2001.
49 I. Stein and F. Martin. Analysis of path exclusion at the machine code level. In WCET,

2007.
50 V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen. Efficient detection and exploitation

of infeasible paths for software timing analysis. In DAC, pages 358–363, 2006.
51 L. Tan, B. Wachter, P. Lucas, and R. Wilhelm. Improving timing analysis for Matlab

Simulink/Stateflow. In ACES-MB, 2009.
52 Esterel Technologies. Scade Language Reference Manual, 2011.
53 H. Theiling. Ilp-based interprocedural path analysis. In EMSOFT, pages 349–363, 2002.
54 S. Thesing, J. Souyris, R. Heckmann, F. Randimbivololona, M. Langenbach, R. Wilhelm,

and C. Ferdinand. An abstract interpretation-based timing validation of hard real-time
avionics software. In DSN, pages 625–632, 2003.

55 A. Vrchoticky. Compilation support for fine-grained execution time analysis. In LCTES,
1994.

56 R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. B. Whalley, G. Bernat,
C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. P. Puschner, J. Staschulat,
and P. Stenström. The worst-case execution-time problem - overview of methods and survey
of tools. ACM Trans. Embedded Comput. Syst. (TECS), 7(3), 2008.

WCET 2013

Multi-architecture Value Analysis for Machine
Code∗

Hugues Cassé, Florian Birée, and Pascal Sainrat

surname@irit.fr
Université de Toulouse
Institut de Recherche en Informatique de Toulouse (IRIT)
118 Route de Narbonne, F–31062 TOULOUSE CEDEX 9, France

Abstract
Safety verification of critical real-time embedded systems requires Worst Case Execution Time
information (WCET). Among the existing approaches to estimate the WCET, static analysis at
the machine code level has proven to get safe results. A lot of different architectures are used in
real-time systems but no generic solution provides the ability to perform static analysis of values
handled by machine instructions. Nonetheless, results of such analyses are worth to improve the
precision of other analyzes like data cache, indirect branches, etc.

This paper proposes a semantic language aimed at expressing semantics of machine instruc-
tions whatever the underlying instruction set is. This ensures abstraction and portability of the
value analysis or any analysis based on the semantic expression of the instructions.

As a proof of concept, we adapted and refined an existing analysis representing values as
Circular-Linear Progression (CLP), that is, as a sparse integer interval effective to model pointers.
In addition, we show how our semantic instructions allow to build back conditions of loop in order
to refine the CLP values and improve the precision of the analysis.

Both contributions have been implemented in our framework, OTAWA, and experimented on
the Malärdalen benchmark to demonstrate the effectiveness of the approach.

1998 ACM Subject Classification F.3.2 Program analysis

Keywords and phrases machine code, static analysis, value analysis, semantics

Digital Object Identifier 10.4230/OASIcs.WCET.2013.42

1 Introduction

Safety of critical embedded real-time applications needs to be verified in order to avoid
catastrophic issues. This verification concerns not only functional features but also non-
functional ones like temporal properties. The Worst Case Execution Time (WCET) is an
important element of time properties. Its computation by static analysis is required at the
machine level to get confident results.

Some tools, like OTAWA [3], provide a generic framework to perform these kinds of ana-
lyses whatever the underlying architecture is, including programming and execution models.
In this article, we show how to adapt static analysis of data flow analysis to the machine
code. More precisely, we have adapted and improved the circular-linear representation of
integer values of [9][8] to any machine code using an architecture-independent language while
maintaining fast convergence for the fixpoint computation.

∗ The research leading to these results has received funding from ANR under grant ANR-12-INSE-0001.

© Hugues Cassé, Florian Birée, and Pascal Sainrat;
licensed under Creative Commons License CC-BY

13th International Workshop on Worst-Case Execution Time Analysis (WCET 2013).
Editor: Claire Maiza; pp. 42–52

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2013.42
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

H. Cassé, F. Birée, and P. Sainrat 43

Such an analysis is utterly important as its results can be used in the implementation
of a lot of other analyses concerning control or data flow. For example, it can be used to
compute the targets of indirect branches (pointer call or optimized switch implementations
using indirection tables) or to identify statically code that is dynamically dead (typically in
library functions where some conditions are always false because of the call context). Data
flow uses include the analysis of data caches, of array accesses (bounding of the array range
in memory), of the stack size (very important in embedded applications with small memory
sizes) and infeasible paths by providing information on the program conditions.

This article is divided in 5 sections. In the first one, we present the abstraction of the
machine language and its application to Abstract Interpretation (AI). The second section
presents the clp representation of values and a proposed refinement based on the decoding of
branch conditions. Then, Section 3 gives the results of the experimentations and we provide
in Section 4 a comparison with existing value analyses. The last section concludes the paper.

2 Value Analysis at Machine Code Level

In this section, we first present the abstraction of the machine instructions and how to use it
to build an AI.

2.1 Independent Machine Language

As critical embedded real-time systems are running on very different architectures, OTAWA
provides an abstraction of the machine instruction semantics. This avoids (a) to tie the
analysis to a particular instruction set and (b) to focus only on the more useful part of the
instruction behaviour to analyze the computation of integer values and addresses.

Table 1 Semantic Instructions.

Instruction (I) Semantics (updateI)
add d, a, b d← a+ b

sub d, a, b d← a− b
shl d, a, b d← a� b

shr d, a, b d← a� b

asr d, a, b d← a�+ b

set d, a d← a

seti d, i d← i

scratch d d← >
cmp d, a, b d← a ∼ b
store d, a, t Mt[a]← d

load d, a, t d←Mt[a]
if c, a, i if a 6= c then ic← ic+ i

branch d pc← d

cont stop interpretation

d, a, b ∈ Registers ∪ Temporaries
i, s ∈ Z
�, �: logicial shift left, right
�+: arithmetical shift right,
∼: comparison,
c ∈ {=, 6=, <,≤, >,≥, <+,≤+, >+,≥+}
that is, signed and unsigned comparators
pc: processor program counter,
ic: counter of semantic instrucions,
Ms[a]: memory cell of address a of type t
t ∈ {Z8,Z16,Z32,Z64,N8,N16,N32,N64}
where k in Zk, Nk is the number of bits
>: undefined value

Unlikely to an RTL (Register Transfer Language) language, it is designed to make the
static analyses easier and faster. Especially, it avoids actions internal to the microprocessor
that are neither relevant, nor supported by the value analysis. This language, presented
in Table 1, is composed of very simple a-la RISC instructions working either on machine

WCET 2013

44 Multi-architecture Value Analysis for Machine Code

registers, or on temporaries. As some instructions may be very complex, one machine
instruction may match a block of semantic instructions.

The semantic instructions set have been designed to be minimal and canonical and,
therefore, to make their support in analysis easier: there is only one instruction performing
a semantic function. Consequently, there are only addition, subtraction, shift and move
operations. As our goal is only to support arithmetics on integer and particularly on address
computation, we have included neither multiplication, nor division. These operations, often
on powers of 2, are implemented more efficiently as shifts. In the same way, we have no
equivalent of bit-to-bit operations like NOT, AND or OR as they do not produce precise
results on interval analysis. The special instruction scratch(r) is needed to cope with these
limitations: it means that the variable r is modified in a way that cannot be described by the
semantic language. Indeed, there are always machine operations too atypical to be supported
but a sound static analysis requires to mark r as modified even if the exact value cannot be
expressed.

As a machine instruction is usually translated into a semantic instruction block, temporary
variables are needed to pass computation intermediate results all along the block. They may
take place of machine register in the semantic instructions but their life is bounded to the
machine instruction block.

Another important concept to support is the conditional execution of some semantic
instructions. In a machine instruction set, this is performed by using a comparison instruction
followed by a branch instruction to modify the control flow accordingly. This scheme is
currently supported by the semantic instructions but with some limitations.

First, there is a comparison instruction cmp that compares two values and stores the
result in a target register (usually the status register of the underlying architecture). Then
the comparison result is used by an if instruction. If the comparison from register a is equal
to the c condition argument, the semantic instruction execution continues. Otherwise, the i
following instructions are skipped and the execution continues just after them. An important
outcome of such a structure is that the instruction block can exhibit several execution paths
but no loop. This is an important property because the fixpoint computation induced by
loops needs expensive computation time: several analyses are performed on the loop body.

cont is the second and last instruction handling the semantics control flow: it stops the
execution of the current path. It must be noticed that a cont is implicitely assumed at
the end of a block. The if and cont handle the control flow of the semantic instructions
but there are also an instruction to represent control at the machine instruction level. The
branch instruction informs that the machine control will change according to the address
found in its arguments An important point to keep in mind is that this instruction does not
modify the execution flow of the semantic instructions in the block: this one continues until
the end of the block. It just denotes control flow changes in the machine instructions, i.e.
modification of the PC.

Finally, load and store allow to load from, or store to, the memory. The first argument
is the handled value while the second contains the address. The last one is the size of handled
data in bytes.

This language makes easy and straight-forward the translation of most machine instruc-
tions but it may require more work when processing instructions as complex as multiple
load-store to memory. An intermediate special computation phase is required but benefits
from the instruction arguments, constant in the instruction code at the generation time. For
example, a particular multiple-load instruction in memory gives the precise list of loaded
registers and we can generate as many load semantic instructions as required. This genera-

H. Cassé, F. Birée, and P. Sainrat 45

Algorithm 1 lmw rd, k(ra)
b← [seti(t1, k); add(t1, ta, t1);

seti(t2, 4)]
for i← d to 31 do
b← b :: [load(ri, t1, 4); add(t1, t1, t2)]

end for

seti(t1 , 0)
add(t1 , r1 , t1)
seti(t2 , 4)
load(r29 , t1 , 4); add(t1 , t1 , t2)
load(r30 , t1 , 4); add(t1 , t1 , t2)
load(r31 , t1 , 4); add(t1 , t1 , t2)

Listing 1 lmw r29, 0(r1).

tion is performed only once per instruction and makes the static analysis faster: semantic
instruction blocks are simpler than the full translation inducing loops. This is illustrated by
Algorithm 1 that shows the generation of semantics instructions list (between ’[’ and ’]’) for
the PowerPC lmw instructions: starting from address ra + k, it loads registers from rd to r31.
As d, a and k are constant at the translation time, a particular instantiation, as shown at
the right, just gives a sequence of loads.

2.2 AI with Semantic Instructions
The semantic instructions have been designed to promote static analyses and more particularly
AI. AI [5] analyzes a program by abstracting the state S along the different execution paths.
With machine code, AI is often performed on the Control Flow Graph (CFG), G = V × E,
where the vertices V represent Basic Blocks (BB), a block of consecutive instructions executed
together, and edges, E = V × V , the control flow between BB.

Algorithm 2 CFG Interpretation
wl← {v0}
while wl 6= [] do
vi, wl← wl

s← update(vi,
join({sj/(vj , vi) ∈ E}))

if s 6= si then
si ← s

wl = wl ∪ {vj/(vi, vj) ∈ E}
end if

end while

Algorithm 3 update([I0, I1, ..., In−1], s0)
sr ← ⊥; wl← {(0, s0)}
while wl 6= [] do

(i, s), wl← wl

if i ≥ n then
sr ← sr ∪ s

else if Ii = Jif(c, a, d)K then
wl← wl ∪ {(i+ 1, s), (i+ d, s)}

else
wl← wl ∪ {(i+ 1, updateI(Ii))}

end if
end while

Algorithm 2 is a common implementation of the AI on the CFG. v0 ∈ V is the entry
vertex of the CFG and the si ∈ S# are the abstractions of the real state at the different
program points. S# is often a lattice with a smallest element, ⊥, and greatest element, >.
⊥ is the initial value of si except for v0 whose initial value is >, that is, the more inaccurate
value taking into account any possible state before the program execution. Algorithm 2 just
ensures that the computation converges to a fixpoint, that is, the maximum of all possible
values. This property is ensured by the existence of the lattice and the monotonicity property
of any function handling the state.

This computation requires two analysis-specific functions. update(v, s) emulates the
effect of a basic block v on a state s while join(s1, s2, ...) allows to combine different states
coming from different paths. The semantic instructions are only used in the update(v, s0)

WCET 2013

46 Multi-architecture Value Analysis for Machine Code

function. For each machine instruction, the block of semantic instructions B is interpreted
according to Algorithm 3. The different execution paths are supported with a working
list wl containing pairs composed of the index of the current instruction and the current
state. updateI implements the computation effect on a state as shown in Table 1. Different
execution paths are created when a if instruction is found: two pairs are pushed in wl for
each possibility. When all execution paths have been computed, the resulting states are
joined in sr. As one may observe from Algorithm 3, the semantic instruction analysis is
simple and straight-forward and re-uses directly the operators defined by the AI.

3 Proof of Concept: CLP analysis

For experimentation purpose, the semantic language has been used to implement a Circular-
Linear Progression (clp) analysis [9]. To push our semantics model even further, an analysis
of conditions has been 0developed and applied to the clp to tighten the precision.

3.1 Circular-Linear Progression Analysis
The clp is an abstraction of integer values represented by a tuple (l, δ,m) denoting the set
{n ∈ Z s.t. n = l + δi ∧ 0 ≤ i ≤ m}, where l ∈ Z(n), (δ,m) ∈ N(n)2. l is the base of the
set, δ the increment, and m the count of increments on l to get the last point l +n δ ×m.
The addition is performed on n bits (modulo 2n), inducing a circularity on clp and mimics
the integer behaviour on the real hardware. The abstraction of a value k is easily obtained
by the singleton (k, 0, 0). while the top element > (a clp that contains all possible values) is
(l, 1, 2n − 1).

Performing clp analysis on the machine code requires to abstract the semantics instruc-
tions on the clp domain. For sake of brievity, only the add is given below but details on
other operations can be found in [9]:
{l1}+ {l2} = (l1 +n l2, 0, 0)
(l1, δ1,m1) + (l2, δ2,m2) = (l1 +n l2, g,m1

δ1
g +m2

δ2
g) where g = gcd(δ1, δ2).

The clp allows to define the abstract states of the machine as a map from registers R
and memory addresses A to clp values, that is, S : (R ∪ A) → clp. AI operators are now
defined by US : V × S → S (update) and JS : S × S → S (join). JS is naturally derived
from the join function on the clp , applied on the values assigned to registers and addresses.

The update function, US , is implemented as presented in the previous section. The
abstract state S is applied to each machine instruction and, therefore, to each execution
path of the semantics instructions. clp values of the registers and of the memory are read or
written by getting or setting them in the machine abstract state S.

3.2 Widening Function
To converge faster to a fixpoint, a widening function, ∇ : S × S → S, is useful. The example
in Listing 2, a simple loop computing the sum of the elements of an array, allows to illustrate
this. Listing 3 shows the translation of machine code of the loop header into semantic
instructions.

At the first iteration of the loop, p0 = @t, @t being the actual address of array t in
memory. At the second iteration of the loop, p1 = p0 +4 = @t+4. The widening ∇ is applied
to these two clp: (@t, 0, 0)∇(@t+ 4, 0, 0) = (@t, 4, 2n/4− 1). The resulting clp is sound (it
contains all possible values) and fast to obtain, but not very precise: next paragraph help to
fix this.

H. Cassé, F. Birée, and P. Sainrat 47

int t[10];
int *p,int *q;
int s = 0;
q = t;
p = q;
while (p - 10 <= q)
{

s += *p;
p++;

}

Listing 2 Example of a simple C loop.

; r0 = 0x7fc4 (variable q)
seti t2 ,0 x10
add t1 ,r31 ,t2 ; t1 = 0x7fc0
load r9 ,t1 ,0x4 ; r9 is p
seti t1 ,-0 x28
add r9 ,r9 ,t1 ; r9 <- r9 - 40
cmp r71 ,r9 ,r0
if gt ,r71 ,0x1
cont
seti t1 ,0 x9c
branch t1

Listing 3 Translated Loop header.

3.3 Condition Filtering

In the example of Listing 2, we get the state p = (@t, 4, 2n/4− 1), and a condition equivalent
to p − 40 > q (10 × sizeof(int) for a 32-bit machine). The edge remaining in the loop,
taken if the condition is false, should provide as input state p = (@t, 4, 2n−2 − 1) filtered by
p− 40 ≤ q (inversed condition), i.e. p = (@t, 4, 10). This would give an accurate state for the
values inside the loop if we are able to build such a filter.

Unlike a condition written in a high-level programming language, the machine code
does not provide a well-identified single expression for the loop condition. Instead, we must
rebuild the link between variables (either registers or values in the memory) involved in
the condition. In addition, one may remark that the same variable can be stored in many
places, as registers or memory locations at the same time during the execution. Therefore,
building the condition only on the register used in the comparison would make our approach
very ineffective because it would ignore the aliasing existing between registers and memory.
This is illustrated in Listing 3: the variable p is stored at the memory address 0x7fc0, then
loaded in r9. r9 is used again to carry out the result of p− 40. So the condition analysis
must return two filters: @0x7fc0 > q + 40 and r9 > q.

The algorithm proposed here tries to cope with both issues: the backward traversal of
the semantics execution paths allows to collect the conditions of the if semantic instruction
and to build back the aliases existing between registers and memories. Applied to the branch
instruction of the loop header, the execution paths are sorted in two categories: the branching
paths ending with a branch instruction and the continuing paths. The execution paths are
then extended with other instructions of the loop header to completely form the computed
condition. Each category applies a filter to the output state s of the loop header edge it
matches (taken for the branch set, untaken for continuing set). As a category may contain
several paths, the filters are applied on s separately and the result is joined by JS .

Taking a path p (either branching or not), the filters are built by recording the condition
induced by the if instructions and by rewritting the conditions when a computation instruc-
tion is found. To represent a condition, we use a simple parenthesed tree-based language
where nodes are either constants c, registers r, memory places @a or binary operators ω(e1, e2)
where ω ∈ {add, sub, ..., eq, ne, lt, ...}. As shown in Algorithm 4, the rewritting is performed
backward (denoted by p−1) from an empty set of conditions. set and load instructions are
considered as creating an alias with their destination register and the filter is duplicated
to generate condition for both places. The expression f [x/y] means that the register x is
replaced all over the filter f by y. Notice that, if a register computation is not involved in
the condition building, the replacement have no effect on the filter f .

WCET 2013

48 Multi-architecture Value Analysis for Machine Code

Algorithm 4 Building symbolic expressions

f ← {}
for all sj ∈ p−1 do
f ← filter[sj]f

end for

With filter defined by:

filter[if(r, c,_)]f = f ∧ c(r, r)
filter[cmp(c, a, b)]f = f [a/r][b/r]
filter[set(c, a)]f = f ∧ f [a/c]

filter[load(c, a,_)]f = f ∧ f [@a/c]
filter[ω(c, a, b)]f = f [ω(a, b)/c] (1)

The application of the obtained filter f to an abstract state S is quite forward on a state
s. For each clp value stored in s whose reference, register or memory, is i, each reference
i′ ∈ f , i′ 6= i, is replaced by its values in s, f [s[i′]/i′] that allows, after simplification, to get
a condition of the form ω(i, c) where ω ∈ {ne, eq, lt, le, gt, ge} and c ∈ clp. According to the
actual operator ω, a clp cω is obtained and intersected with the value of i: s[i] ∩ cω. For
example, in Listing 3, the continuing path gives the filter le(sub(r9, 0x28), r0). Replacing
the values of r31 and r0 by the matching clp in s and simplifying gets le(r9, 0x7FC4 + 0x28
and refines the value of r9 by s[r9] ∩ (−231, 1, 231 + 0x7FC4 + 0x28) = (0x7FC4, 4, 10).

The application of the clp to our semantic instructions has shown that (1) it is feasible
to support such type of static analysis, and (2) there are different ways to use the semantic
instructions as in condition filtering. We can hope that the semantic instruction is a valuable
abstraction of the machine code instructions. In the next section, we try to evaluate the
performances of this representation.

4 Experimentation

The value analysis presented in this paper has been implemented in the OTAWA framework [3]
using its own internal AI engine. The evaluation has been performed with a 3-GHz, 2GB
memory Linux machine on the classic Mälardalen benchmark [1] that contains a collection of
programs covering different embedded real-time domains .

4.1 Analysis Precision
This first evaluation criterium concerns the precision of the performed analysis. We are not
able to estimate the actual precision of the obtained measurements in terms of difference
between the real values and the analyzed ones: (a) we have no other analysis that can be
taken as a reference and (b) it is impossible to have precise values as soon as a program is
using external inputs. The more visible trace of imprecision is the apparition of > values in
the computation. Yet, it is hard to qualify the actual source of this imprecision as being
naturally produced by the AI or an outcome of the intrinsic inefficiency of our analysis. In
turn, the last issue may be decomposed in two causes: the lack of expressivity of semantics
instructions or the limits of the abstraction of the clp analysis.

Whatever, the last three columns of Figure 2 show the number of non-> values obtained
for different items: each column represents the ratio of non-> values on the total of values of
the measured items, the bigger is the better. The values column displays the number of set
values generated by set and store semantic instructions with an average of 42.30% of non->
values. In the absolute, the result is a bit disappointing but (1) to our knowledge, no such
statistics have been published to compare with and (2) the large variation between benches
(from 2.47% to 99.98%) shows that the effectiveness has a big dependency on the type of

H. Cassé, F. Birée, and P. Sainrat 49

Table 2 Analysis Execution Time.

Dynamic Static Value Precision
Program Time mach sem mach sem values addrs filters

(µs) (i/s) (i/s) (i/s) (i/s) (%) (%) (%)
adpcm 31530 219600 495908 39861 204598 2.47 15.39 72.34
bs 1190 103361 228571 97560 141176 53.85 89.09 33.33
bsort100 2680 117537 269029 63492 110074 20.75 17.31 33.33
cnt 2590 214285 462548 50450 188030 36.17 46.51 100.00
compress 25610 85591 196134 48813 88481 8.68 27.42 49.30
cover 50040 59492 159852 156533 81434 8.66 52.94 100.00
crc 5160 230232 446511 47979 207751 10.04 79.25 86.52
duff 1100 97272 233636 271028 441818 38.46 58.70 60.87
expint 3290 115805 272644 70866 132218 47.37 71.43 80.00
fac 30 1400000 3233333 1000000 4533333 77.78 95.00 100.00
fdct 1330 958646 2051127 8627 1057142 20.98 99.42 100.00
fft1 42220 247418 485243 17231 87162 24.77 61.90 16.03
fibcall 910 98901 252747 100000 142857 74.19 100.00 100.00
fir 3330 104504 268168 45977 97897 34.48 90.50 16.00
insertsort 1070 241121 481308 34883 202803 47.37 72.22 33.33
janne_c 2360 72457 188559 93567 74576 59.52 87.21 77.78
jfdctint 1940 718556 1690721 10043 598453 6.72 91.57 100.00
lcdnum 4040 73267 177970 162162 92574 30.99 50.45 100.00
lms 14590 202604 385263 33491 125222 49.47 91.25 81.94
ludcmp 12660 138151 280489 29731 77725 33.16 82.85 29.65
matmult 4140 238647 503864 38461 145893 23.33 29.44 100.00
minver 16320 145220 306250 32911 87438 13.49 67.93 29.00
ndes 27550 167622 369546 33347 111724 52.28 74.46 74.39
nsichneu 205180 98450 209182 37425 104664 11.98 89.68 29.80
ns 8060 99503 206203 24937 29528 83.58 89.40 61.29
prime 2500 162800 362000 100737 237200 70.75 100.00 50.00
qsort-exam 5860 139761 289419 41514 150170 13.46 63.50 16.85
qurt 6320 154113 305537 61601 233386 44.81 100.00 100.00
recursion 30 800000 2033333 1714285 4066666 69.23 100.00 100.00
select 5150 136893 283300 51063 149708 19.75 66.42 36.17
sqrt 1610 91304 182608 74829 88198 50.00 100.00 100.00
statemate 48770 157227 307709 40688 109883 3.81 90.85 89.02
st 7680 213411 430989 58572 245833 10.12 19.33 100.00
ud 7630 144429 300262 37205 114285 33.59 81.25 26.72
average 242593 539705 139114 428232 34.88 72.14 67.17

the program. Some benchmarks like crc or adpcm give particularly bad results because they
are performing a lot of operations unsupported by our semantics instructions, respectively,
bit-to-bit and floating-point operations.

However, our analysis works better with address computation (74% on a mean, column
addrs) and condition filtering (68% on a mean, column filters). The Addresses column
evaluates the non-> addresses used in load and store instructions while the filters column

WCET 2013

50 Multi-architecture Value Analysis for Machine Code

evaluates the number of non-> filtered conditions. The obtained results are not perfect but
they meet the needs of accuracy required by subsequent analyses like data cache, control flow
analysis, infeasible path, etc. As for set values, the worst results are obtained on benchmarks
using unsupported operations of the semantic language.

4.2 Computation Time
The six first columns of Table 2 show runtime performances of the analysis. We call static
estimation the performance evaluation based on the count of instructions found as-is in the
program once loaded in memory. On the opposite, dynamic instructions are counted during
the AI. Both estimations are different because a single instruction may be interpreted several
times before reaching a fixpoint: this is particularly the case of instructions contained in
loops. The left column displays the experimented program, the next one the analysis time
in µs (user time mean after 1000 iterations). The following two columns show the rate in
machine and in semantic instructions, for dynamic estimation and the last two columns are
the same for static.

The static estimation gives an insight of the capacity of the analysis to face to a raw
program. For example, the average of about 139000 instructions / s states that we can
process quickly (in less than 1 second) a program of nearly 512KB of code for a PowerPC
architecture or any pure 32-bit RISC architecture.

On the other hand, the dynamic performances give a more straight-forward estimation of
the real rate of the analysis, 242,594 machine instructions/s and 539,705 semantic instruc-
tions/s, taking into account the structure of the program. Hopefully, both measures are quite
good although there is a lot of variability according to the benchmarks. Such performances
let place for improving analysis without being blocked by intractable computation time.

5 Comparison with Existing Work

A lot of work on value analysis has been done for different purposes. The foundation of
abstract AI was motivated by the interval analysis [l, u] of each variable on Pascal-like
languages [5]. In addition to the domain, the performed analysis is also different because of
the widening operation. To speed up the convergence to the fixpoint, widening and narrowing
operators are applied, that requires several passes of analysis and increases the computation
time. To our knowledge, although there is very few documentation on this [4], the tool ait [2]
is also using such an analysis to exhibit register values at program points but is applied to
machine language.

Yet, the interval of values [l, u] does not fit well with address representation. They include
too many false values while the addresses are usually aligned to a multiple of data sizes
and cause the union of too many false data and reduce the precision. Ermedhal et al in [6]
improve this using a modulo analysis to identify more precisely values inside an interval.
Yet, their domain is more complex than ours, ([l, u], (i, c)) that identifies the set of values
matching [l, u]∩ {i+ n× c, n ∈ Z}. Moreover, this domain makes the analysis more costly in
computation time.

S. Rathijit [8][9] simplifies a lot this representation using only three integers, (l, u, δ). i,
the argument of Ermedhal’s representation is easily replaced by finding the lowest value of
the set to get a more precise l. Then, we have improved Rathijit’s work to have canonical
representation of these values. Indeed several representations for a same set exist because
u− l is not required to be a multiple of δ. Our triplet (a, δ, n) ensures the uniqueness of the
representation as it forces u = a + n × δ. This property makes easier some operations of

H. Cassé, F. Birée, and P. Sainrat 51

the value arithmetics like equality tests. In addition, unlike Rathijit that seems to support
only ARM, our machine code abstraction, avoids to tie our analysis to a specific machine
instruction set and we are using the conditions to accelerate convergence of fixpoint of the
analysis and improve the precision in presence of selections.

In the domain of semantics languages, ALF [7] is supported by several compilation and
WCET tools. It allows to represent completely a program while our language is just an overlay
on the CFG. More comprehensive and more expressive than our semantics instructions, it
seems to be more memory- and time-consuming for analyses. Architecture Description
Languages like SimNML, Lisa, etc are also good candidate to express semantics of machine
code. But we think that their granularity would make the analyses too costly and that some
concepts are too hard to extract: for example, in a microprocessor, the comparison result
is represented as a set of bits obtained by a combination of operand bits whose usage in
analysis is not straight-forward.

6 Conclusion

The contribution of our paper is twofold. First, we propose a language to abstract usual
machine code semantic and show how it may be involved in abstract AI. The overall outcome
is that the analyses based on this language becomes portable on any microprocessor supported
by our semantic language. For example, in the OTAWA framework, it has been already
successfully used to describe several RISC instruction sets like PowerPC. We plan to quickly
apply the semantics instructions to Sparc, TriCore and possibly to the x86 instruction set.

Second, we have improved existing value analysis, based on clp domain, for speed of
computation. The changes include a reformulation of the domain leading to canonical values
and therefore simplification of operation abstraction. The second improvement concerns the
use of conditions to speed up the convergence of fixpoint computation.

The resulting analysis rate is quite fast, which will be valuable in the future in order to
fix medium precision results. We think that the precision problem is not inherent to the
value analysis algorithm but, instead, to the limitation of the semantic language. So, we
plan to extend it with bit-to-bit operations, integer multiplication and division as well as
floating-point operations. The latter extension cannot be done in the frame of clp because
the notion of modulo does not fit well with float value: we have to fall back to usual interval
analysis. This means a state abstraction with heterogenous content.

Finally, we would like to exploit the results of this value analysis to extend the OTAWA
framework. The semantic language has already been used in OTAWA to implement data cache
analysis and stack analysis but we can exploit the value analysis results to improve control
flow analyses like detection of infeasible paths, dynamically dead code, switch decoding,
indirect pointer call analyzes. As the latter analysis does not fit well with clp, we have also
to introduce set of addresses in our domain and it remains to identify which values should
be clp and which ones should be sets. In a more generic way, we have to replace our naive
implementation of state to improve our value representation to support heterogeneous data,
to maintain fast computation and to waste as less memory as possible.

References

1 Mälardalen benchmarks. http://www.mrtc.mdh.se/~projects/~wcet/~benchmarks.
html.

2 ait tool, 2005. http://www.absint.com/ait/.

WCET 2013

http://www.mrtc.mdh.se/~projects/~wcet/~benchmarks.html
http://www.mrtc.mdh.se/~projects/~wcet/~benchmarks.html
http://www.absint.com/ait/

52 Multi-architecture Value Analysis for Machine Code

3 C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat. OTAWA: an Open Toolbox for Ad-
aptive WCET Analysis. In IFIP Workshop on Software Technologies for Future Embedded
and Ubiquitous Systems (SEUS), 2010.

4 C. Ferdinand, R. Heckmann, and D. Kästner. Static Memory and Timing Analysis of
Embedded Systems Code. In Proceedings of the IET Conference on Embedded Systems at
Embedded Systems Show, 2006.

5 P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static ana-
lysis of programs by construction or approximation of fixpoints. In Conference Record of
the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 1977.

6 A. Ermedahl, C. Sandberg, J. Gustafsson, S. Bygde, and B. Lisper. Loop Bound Analysis
based on a Combination of Program Slicing, Abstract Interpretation and Invariant Analysis.
In 7th International Workshop on Worst-Case Execution Time Analysis, 2007.

7 J. Gustafsson, A. Ermedahl, B. Lisper, C. Sandberg, and L. Källberg. ALF – A Language
for WCET Flow Analysis. WCET’09, 30 June 2009.

8 S. Rathijit and Y. N. Srikant. Executable analysis using abstract interpretation with cir-
cular linear progressions. In 5th IEEE/ACM International Conference on Formal Methods
and Models for Codesign (MEMOCODE 2007). 2007.

9 S. Rathijit and Y. N. Srikant. Wcet estimation for executables in the presence of data
caches. In Proceedings of the 7th ACM & IEEE international conference on Embedded
software (EMSOFT’07), 2007.

The Auspicious Couple: Symbolic Execution and
WCET Analysis∗

Armin Biere1, Jens Knoop2, Laura Kovács3, and
Jakob Zwirchmayr2

1 Johannes Kepler University Linz, Austria biere@jku.at
2 Vienna University of Technology, Austria

[knoop|jakob]@complang.tuwien.ac.at
3 Chalmers University of Technology, Sweden laura.kovacs@chalmers.se

Abstract
We have recently shown that symbolic execution together with the implicit path enumeration
technique can successfully be applied in the Worst-Case Execution Time (WCET) analysis of
programs. Symbolic execution offers a precise framework for program analysis and tracks com-
plex program properties by analyzing single program paths in isolation. This path-wise program
exploration of symbolic execution is, however, computationally expensive, which often prevents
full symbolic analysis of larger applications: the number of paths in a program increases expo-
nentially with the number of conditionals, a situation denoted as the path explosion problem.
Therefore, for applying symbolic execution in the timing analysis of programs, we propose to use
WCET analysis as a guidance for symbolic execution in order to avoid full symbolic coverage
of the program. By focusing only on paths or program fragments that are relevant for WCET
analysis, we keep the computational costs of symbolic execution low. Our WCET analysis also
profits from the precise results derived via symbolic execution.
In this article we describe how use-cases of symbolic execution are materialized in the r-TuBound
toolchain and present new applications of WCET-guided symbolic execution for WCET analysis.
The new applications of selective symbolic execution are based on reducing the effort of symbolic
analysis by focusing only on relevant program fragments. By using partial symbolic program
coverage obtained by selective symbolic execution, we improve the WCET analysis and keep the
effort for symbolic execution low.

1998 ACM Subject Classification C.3 Special-Purpose and Application-Based Systems

Keywords and phrases WCET analysis, Symbolic execution, WCET refinement, Flow Facts

Digital Object Identifier 10.4230/OASIcs.WCET.2013.53

1 Introduction

Symbolic execution can analyze a program with high precision, by using symbolic instead of
concrete input values of the program. Programs are symbolically executed path-wise, and
each program path is analyzed in isolation. This, however, comes at the price that every
program path needs to be symbolically executed in order to infer results that are valid for
the entire program. In other words, a full symbolic coverage of the program is needed for
verifying program properties using symbolic execution. As the number of paths increases

∗ This research is supported by the FP7-ICT Project 288008 T-CREST, the FWF RiSE projects S11408-
N23 and S11410-N23, the WWTF PROSEED grant ICT C-050, the FWF grant T425-N23, and the
CeTAT project of the TU Vienna.

© Armin Biere, Jens Knoop, Laura Kovács, and Jakob Zwirchmayr;
licensed under Creative Commons License CC-BY

13th International Workshop on Worst-Case Execution Time Analysis (WCET 2013).
Editor: Claire Maiza; pp. 53–63

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2013.53
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

54 The Auspicious Couple: Symbolic Execution and WCET Analysis

exponentially with the number of conditionals in the program, computing full symbolic
coverage for larger applications is in practice not realistic. Applications of symbolic execution
therefore only explore relevant parts of the program behavior and compute a partial symbolic
coverage of the program.

Such a compromise between precision and computability is also present in the Worst-
Case Execution Time (WCET) analysis of programs. Namely, a successful WCET analysis
requires a balance between the speed and the precision of the deployed analysis. Precision of
the analysis is gained by applying powerful program analysis techniques that gather infor-
mation about the program and pass it to further analysis- and computation-steps. Precision
of the analysis yields tight WCET estimates, however, at the cost of high computational
effort; this sometimes prevents the analysis to terminate within a given time-limit. Precision
of the WCET analysis is therefore often traded for its speed: faster analysis with likely im-
precise WCET estimates is preferred to a precise but slow one. Following this compromise,
automated methods for refining imprecise WCET results into tighter ones are needed in the
WCET analysis of programs.

In this article we argue that combining symbolic execution with traditional WCET anal-
ysis yields an efficient and precise method for computing WCET estimates. We show that,
for using symbolic execution in WCET analysis, a partial symbolic coverage of the program
is sufficient to tighten and, eventually, prove the computed WCET bound of the program to
be precise. We do so by applying selective symbolic execution over program parts and avoid
the path explosion problem of traditional symbolic execution. To this end, we use costly
symbolic execution only for those parts of the program that influence the WCET estimate.
Our WCET-guided symbolic execution is a precise selective symbolic execution for relevant
parts of the program, and avoids the computational overhead of full symbolic execution.
Our workhorse in this article is the r-TuBound toolchain [16].

We extend r-TuBound with symbolic execution (Section 3) and present three existing
applications of symbolic execution in r-TuBound for WCET analysis (Section 4):

We use symbolic execution in r-TuBound on selected program fragments to analyze pro-
grams which could not be analyzed by r-TuBound due to a too restrictive programming
model of [15];
We deploy symbolic execution in r-TuBound to compute loop bounds. This extension
allows r-TuBound to calculate loop bounds in cases where it has previously failed;
Based on the implicit path enumeration technique (IPET) [19], we use the result of
an initial WCET analysis and apply symbolic execution in r-TuBound to tighten initial
WCET estimates and eventually prove these bounds precise, by applying the work of [17].

Based on our current use of symbolic execution in r-TuBound, we also discuss further appli-
cations of symbolic execution for the WCET analysis of programs (Section 5). These new
directions rely on partial symbolic coverage of the program and include:

inferring precise execution frequencies for loops with conditionals;
generating WCET path test-cases used in measurement-based WCET analysis tools;
automated support for mode-sensitive analysis of programs after an initial (IPET-based)
WCET analysis.

We believe that the WCET applications proposed and discussed in this article encourage the
further use of symbolic execution in WCET analysis. The symbolic execution extensions that
are already implemented in r-TuBound were successfully applied to examples coming from
the WCET tool challenge [10]: WCET estimates were tightened and the cost of symbolic
execution was low. We are confident that the overhead for the proposed applications of
symbolic execution in WCET analysis can be kept low, while providing valuable information
about the program.

A. Biere, J. Knoop, L. Kovács, and J. Zwirchmayr 55

2 Preliminaries

In this section we give an overview of the main ingredients of symbolic execution and WCET
analysis. For more details, we refer to [3, 6] and [15, 18], respectively.

Symbolic Execution. Symbolic execution uses symbolic instead of concrete input data to
symbolically execute a program. To do so, input variables of the program are assumed to be
“symbolic,” which means that they can have an arbitrary value (conforming to the specified
data-type). If a conditional statement splits the control-flow of the program, symbolic exe-
cution follows both successor edges of the conditional, restricting possible values of symbolic
variables according to the condition. For example, if a conditional executes the true-edge
of the condition only if a variable has a certain constant value, then symbolic execution as-
sumes the constant value for the variable when following this edge. Thus, symbolic variable
values are restricted by path conditions or assumptions involving the respective variable.
This allows to track complex constraints for each variable and use solvers, such as [5], to
reason about the derived constraints.
Symbolic execution of programs with conditionals and loops often leads to the path explosion
problem, as the number of paths needed to be symbolically executed increases exponentially
with the number of conditionals in the program. Hence, full symbolic coverage of larger
applications is infeasible in practice. The problem of path explosion can be addressed in
different ways, e.g., by using heuristics for computing only partial symbolic coverage of the
program, for instance in the context of test-case generation and bug-hunting.

WCET Analysis. A static WCET analysis toolchain typically includes several high-level
analyses that gather so-called flow fact information about the program. Essential flow facts
include loop bounds and execution frequencies of conditional edges in the program. When
computing WCET estimates, the underlying hardware architecture needs to be analyzed for
inferring execution times of program blocks. Additional hardware features, such as cache-
configuration and pipeline layout, also need to be taken into account. Precision of WCET
bounds denotes, in this article, that any over-estimation of the WCET is due to an imprecise
hardware modelling and not due to infeasible paths.

With the block execution times computed for the program, various techniques can be
applied to find the path that exhibits the WCET of the program. One of the most common
approaches is the implicit path enumeration technique (IPET) [19]. It is applied to the
control flow graph (CFG) of a program and relies on the fact that each program execution
satisfies the following flow properties: (i) a program execution executes the entry point of the
program once and (ii) other program blocks are executed as often as their predecessor blocks.
Therefore, any program block following the entry point is executed once, unless it appears
in a conditional or loop statement. For a conditional (iii) the total sum of the execution
frequencies of its conditional blocks (denoted the true- and false-block of the conditional)
coincides with the execution frequency of the predecessor block of the conditional, which is
the condition-block. For blocks inside loops, (iv) the execution frequencies are multiplied
by the loop bound. Hence, when applying IPET, loop bounds are assumed to be supplied
as flow-facts.

To apply IPET, the program is represented as an integer linear program (ILP) where each
program block is modeled by an ILP variable that has the block execution time associated
with it. An ILP-solver [2] is then used to solve the flow problem (i)–(iv) specified above.
By using an ILP encoding on execution frequencies, the solution of the corresponding ILP

WCET 2013

56 The Auspicious Couple: Symbolic Execution and WCET Analysis

problem assigns values to the ILP variables, that is, execution counts of program blocks. The
WCET estimate for the program is then obtained by maximizing the sum of the products
of execution frequencies and block execution times for each block.

As flow facts about programs are not always precise (e.g. loop bounds are not exact
but are over-approximated), the ILP encoding of the program usually encodes numerous
spurious program paths. Some of these spurious program paths might yield high execution
times. Therefore, the WCET estimate computed from the ILP solution is usually an over-
estimation of the actual WCET: its precision crucially depends on the quality of additional
flow facts supplied to IPET. For example, supplying additional flow facts that specify valid
execution frequencies for conditional blocks can result in a tighter WCET estimate.

3 Selective Symbolic Execution in r-TuBound

In this section we describe our extensions to the r-TuBound toolchain [16], by integrating
symbolic execution into r-TuBound. The common theme of all these extensions relies on a
selective use of symbolic execution for timing analysis, instead of symbolically executing the
whole program.

r-TuBound applies high-level analyses on the source level and calculates WCET estimates
using a low-level analyzer. In a nutshell, the main steps of r-TuBound are as follows. Given
a program with loops written in a restricted class of C, r-TuBound deploys interval and
points-to analysis to derive bounds, called loop bounds, on the number of loop iterations.
The source code, annotated with the results of these analyses, is then compiled by a WCET
aware compiler. The resulting assembly is analyzed by the WCET analyzer CalcWCET167
of the Infineon C167 microprocessor [14]. It applies the IPET approach, solves the resulting
ILP problems and derives WCET estimates as outputs.

Relying on the infrastructure of [16], we extended r-TuBound by symbolic execution.

Figure 1 Architecture of the WCET
toolchain. Colored parts rely on symbolic
execution.

Figure 1 shows the current workflow of r-TuBound,
where the colored components correspond to the
new extensions. We refined the loop bound com-
putation step of r-TuBound by exhaustive sym-
bolic execution for loops, implemented in the
r-Loopbounds step of Figure 1. We also added a
selective symbolic engine to r-TuBound for deriv-
ing tight WCET bounds, listed as the Selective
SE step of Figure 1. In the rest of this section we
describe the integration of symbolic execution in
r-TuBound.

Symbolic Execution and r-TuBound. We use the symbolic execution engine of [3] in r-
TuBound to construct a precise memory-model of a program. Given an input program
(written in C), the program is first parsed and stored as an abstract syntax tree in the
code-list. The code-list is then further processed: program paths are extracted and are
symbolically executed by writing and reading the symbolic representation of the program
memory. As a result, a representation of the symbolic program execution is obtained as a
set of satisfiability modulo theory (SMT) formulas, where the SMT formulas are expressed
in theory of bit-vectors and arrays. Verification conditions, expressing runtime and memory-
access properties, are generated to guarantee runtime- and memory-safety of the program
(e.g. does not dereference NULL). Properties that hold in the symbolic representation of

A. Biere, J. Knoop, L. Kovács, and J. Zwirchmayr 57

a program are also guaranteed to hold in the actual program. Instead of symbolically
executing all paths in the program, selective symbolic execution allows to execute paths
selectively by supplying a sequence of branching decisions that encode executions of the
program. The branching decisions are extracted from the IPET solution. These decisions
allow to iteratively select and symbolically execute WCET paths. Precise constraints are
only inferred about the WCET path, reducing the costs for symbolic execution.

4 Precise WCET Analysis without Path Explosion in r-TuBound

Symbolic execution infers precise program properties that can further be used in an IPET-
based WCET analysis. Nevertheless, symbolic execution comes with the cost of analyzing
each program path, a practically infeasible task for large programs with loops and condition-
als. To avoid this problem, when using symbolic execution for WCET analysis in r-TuBound,
we identify relevant program parts, that is program fragments for which symbolic execution
is necessary to be applied. More precisely, we apply symbolic computation in the following
three scenarios: (i) analyzing reduced program fragments in isolation of the entire program,
by reasoning about single statements in loop bodies, as well as about loops and nested loop
structures, (ii) deriving loop bounds on the number of loop iterations, and (iii) analyzing
a small number of paths for refining and proving precise WCET bounds. For doing so, (i)
relies on the programming model of [15], (ii) makes uses of [3] and is restricted only to the
programming model of the underlying symbolic execution engine, and (iii) is based on the
theoretical framework presented in [17].

1: int main (int flag) {
2: int i;
3: for(i = 0; i < 5; i++)
4: if(i == 4 && flag) {
5: i = 0;
6: flag = 0;
7: }
8: }

Figure 2 Our running ex-
ample. All data is assumed
uninitialized.

In what follows, we overview the relevant parts of symbolic
execution in each of the above scenarios of r-TuBound, and illus-
trate our work on the example of Figure 2. Based on the current
applications of symbolic execution in r-TuBound, in Section 5
we will outline new and ongoing applications of symbolic exe-
cution for WCET analysis.

(i) Analyzing reduced program fragments. We use the sym-
bolic execution framework of [3] to verify arithmetic properties
about one or more conditional updates of the loop counter in a
loop. Symbolic execution is appropriate in this setup as inter-

val analysis often lacks sufficiently precise analysis results. By using symbolic execution, in
the current version of r-TuBound we can verify arithmetic properties about loop counters
without the need of deriving tight intervals for the values of loop counters. Even more, we
are able to handle a more general programming model than the one used in [15]. Namely,
we can analyze loops whose conditional updates are arbitrary expressions in the combined
theory of linear arithmetic, bit-vectors and arrays, whereas [15] was restricted to the theory
of linear arithmetic. If the such derived arithmetic properties are proved to be correct by
using [3], the loop bound computation step of r-TuBound can safely be applied. Our use
of symbolic execution also allows to merge conditional updates of the loop counter into a
so-called combined minimal update, which then yields a tighter loop bound, and hence a
tighter WCET estimate.

I Example 1. The loop analysis step of [15, 16] fails to compute a bound for the loop in
Figure 2. This is so because the conditional update to the loop counter i (in line 5) violates
the computed loop bound in cases when the loop counter is reset, i.e. when flag is true. In
Figure 2, i increases in the loop header. Therefore, the r-Loopbounds step of r-TuBound

WCET 2013

58 The Auspicious Couple: Symbolic Execution and WCET Analysis

symbolically executes the conditional update for an arbitrary (i.e. symbolic) loop iteration
and verifies that the conditional update can only increase the value of i. If this property is
violated, it is not safe to compute a loop bound using the techniques of [15, 16] implemented
in the Loopbounds step of Figure 1. In the example in Figure 2, the property is false, the
conditional update can decrease the loop counter, and therefore no loop bound is computed.

(ii) Loop bound computation. If the loop bound computation step of [15] in r-TuBound
fails, we apply exhaustive symbolic execution of the reduced program in r-TuBound. As a
reduced program we consider the program that only contains the loop under study together
with relevant variable declarations, i.e. the variables used in the loop. Variable values are
treated as symbolic, with the exception of the loop counter. Additional information, such as
intervals for variable values or program slices, can also be supplied in this step to improve the
precision of the loop bounds. A supplied time-limit guarantees termination of the approach.
The reduced program is symbolically executed in r-TuBound, where r-TuBound initially
sets the loop bound to 0. If symbolic execution reports that the negation of the loop
condition is unsatisfiable on the (unwound loop) path, the loop bound is increased by one.
Upon termination within the time-limit, no execution of the program exhibits a higher loop
bound. Such a use of symbolic execution in r-TuBound is especially useful when bit-precise
reasoning is required.

I Example 2. The approach of [15] cannot derive a loop bound for Figure 2. Therefore,
(bounded) exhaustive symbolic execution is applied to only analyze the program loop. By
using symbolic execution in r-TuBound, we derive 9 as the exact loop bound of Figure 2.

(iii) Deriving precise WCET bounds. The WCET analysis approach presented in [17] re-
lies on the tight combination of a symbolic execution engine and a WCET analyzer. It
first applies an IPET-based WCET analysis that yields an ILP problem that encodes con-
straints on the program flow and a WCET estimate. Next, symbolic execution on single
program paths is applied in order to infer constraints that allow tightening and ultimately
proving the WCET bound precise. For doing so, the ILP solution describing the execution
frequencies of program blocks and the ILP problem is analyzed, and one or more spurious
program execution traces exhibiting the WCET are identified. These execution traces are
then excluded from the set of possible program executions, by adding a new ILP constraint
to the ILP problem. The resulting new ILP problem is then used in the next iteration of
the approach, by again applying IPET in combination with symbolic execution. In each
iteration either a new and lower WCET estimate is derived or a program trace exhibiting
the old WCET is obtained. In the latter case, the computed WCET is the actual WCET
of the program, and the algorithm terminates. The computed WCET is precise wrt the
underlying hardware-model.

Note that in [17] only paths extracted from the ILP solution are symbolically executed,
avoiding thus the full path explosion problem. problem of symbolic execution. The WCET
estimates serve here as a measure for the relevance of paths: they allow to select relevant
paths that need to be symbolically executed in order to tighten the WCET.

We implemented the approach of [17] in r-TuBound and describe it here. The pro-
gram is parsed and the IPET approach is applied. An ILP problem is next obtained and
solved, by using the ILP solver lp_solve of [2]. The obtained ILP solution encodes a WCET
estimate of the program. Further, the execution trace specified by the ILP solution is
(re)-constructed. We encode execution traces as sequences of branching decisions, where
branching decisions are obtained as follows. For each conditional block, i.e. a program block

A. Biere, J. Knoop, L. Kovács, and J. Zwirchmayr 59

with jump-instructions to other blocks, the execution frequency of the jump-targets specifies
which block is assumed to be executed on the path exhibiting the WCET estimate. If the
condition evaluates to false, the else-block of the conditional is executed. Thus, the ILP
solution specifies an execution frequency of 0 for the then-block and an execution frequency
of 1 for the jump-target, the else-block. The inferred branching decision is f.

If both edges of a conditional have an execution frequency ≥ 0 in the ILP solution,
both program blocks of the conditional are executed. In this case, the WCET candidate
encodes multiple actual program executions. Hence, from the ILP solution, one or more
program paths exhibiting the WCET estimate can be constructed. We therefore refer to
program paths exhibiting the WCET as WCET trace candidates. If one of these is feasible,
the computed WCET bound is proven precise and yields the actual WCET of the program
in the underlying hardware model. If all of them are infeasible, the ILP problem of IPET
can be refined and a tighter WCET estimate can be computed. WCET trace candidates in
r-TuBound are expressed as SMT formulas in the combined theory of bit-vectors and arrays,
and the SMT solver Boolector [5] is used to check their feasibility. In our current r-TuBound
implementation we rely on a manually constructed mapping between the assembly analyzed
with CalcWcet167 and the source of the application. In other words, we manually verify
that the source and assembly exhibit a compatible branching behaviour. Construction of
this mapping can be omitted when symbolic execution is performed on the binary level.

I Example 3. The initial ILP solution derived from the ILP problem of IPET (using the
loop bound 9) specifies the execution of the conditional block in each iteration of the loop
in Figure 2. The WCET trace candidate extracted from the ILP solution encodes exactly
one program path; this path executes the conditional block 9 times. This WCET trace
candidate is specified by the following sequence of branching decisions t. . . t (9 times t),
where t denotes the true-edge of the conditional statement. By symbolically executing
this WCET trace candidate, we derive the infeasibility of t. . . t. Thus, an additional ILP
constraint is constructed to exclude this WCET trace candidate from the ILP problem. The
new ILP problem is solved again, yielding a tighter WCET estimate and new WCET trace
candidates. This process is iterated until a feasible WCET trace candidate is found. In
Figure 2, a feasible WCET trace candidate is derived after 8 iterations. As a result, the
exact execution frequency of the true-block of the conditional is inferred and constrained
to 1. In a simplified scenario where execution of each program instruction takes 1 time unit
(t), the actual WCET of the program is then derived to be 40t. The WCET is derived by
summing up the execution times (a)-(c): (a) the initialization in the loop header (i=0) takes
1t; (b) Among the execution frequencies of loop iterations, based on the derived execution
frequency of the conditional statement, the following case distinction is made: for 8 loop
iterations, an iteration takes 4t, 1t is the evaluation of the loop condition i<5, 2t are needed
to execute the condition i==4 && flag of the conditional (two instructions) and 1t is taken
for the loop counter increment i++. All together, these eight loop iterations take 32t . One
loop iteration, namely the one in which the conditional statement is executed, requires 6t

to be executed. When compared to the previous cases, the additional 2t result from the
execution of the true-block of the conditional. (c) The last evaluation of loop condition i < 5
after 9 loop iterations takes 1t.

Summarizing, the applications (i)–(iii) discussed above share a common approach: in-
stead of symbolically executing the entire program, selective symbolic execution is performed
only on fragments or single paths of the program in order to prevent symbolic execution
from running into the path explosion problem.

WCET 2013

60 The Auspicious Couple: Symbolic Execution and WCET Analysis

5 Further Applications of Symbolic Execution for WCET

In this section, we discuss three additional applications of symbolic execution in WCET
analysis, by using the symbolic execution framework presented in Section 3. Similarly to
Section 4, these applications apply only partial symbolic coverage of the program. The
material presented in this section is work-in-progress and requires further experimentation.

Precise execution frequencies for loops . When the loop bound computation techniques
of [15] fail, exhaustive symbolic execution of the loop is applied as described in Section 4(ii).
The application scenario of Section 4(ii) can be further extended to compute execution
frequencies for conditional blocks inside the loop: by applying exhaustive symbolic execution,
a loop bound and feasible WCET traces are derived. The execution frequencies of program
blocks in the feasible traces is also obtained. In case of multiple feasible traces, a set of
execution frequencies is inferred for each block. We then set the execution frequency of a
block to be less or equal to the highest and greater or equal to the lowest value among its
set of possible execution frequencies, and use this value in the ILP encoding of the program.
To ensure that the such chosen execution frequency is precise, we use the approach of
Section 4(iii) and iteratively refine the execution frequency of each edge inside the loop.

I Example 4. Consider Figure 2 again. An initial IPET-based WCET analysis (without
additional flow facts) sets the execution frequency of the true-block of the conditional to 9.
By applying our approach, we use exhaustive symbolic execution on the loop of Figure 2.
As a result, we derive the maximum execution frequency of 1 for the true-block of the
conditional. Using this additional flow fact in the initial IPET-based WCET analysis, the
precise WCET of the program is also derived.

(ii) WCET path test-cases. Our implementation of Section 4(iii) in r-TuBound can also
be used to generate WCET path tests-cases. The approach of Section 4(iii) already extracts
and symbolically executes WCET trace candidates. A symbolic execution engine can be
used to generate concrete program inputs from the trace that is symbolically executed,
forcing actual executions of the program to follow the same trace. The program inputs for
feasible WCET trace candidates thus represent program inputs which lead to the execution
of the actual WCET path, that is, a concrete program path exhibiting the WCET. The
program inputs generated by symbolic execution can be used by hardware-aware dynamic
WCET analyzers, see e.g. [20], to take additional, hardware-dependent, time measurements.
We refer to such analyzers as measurement-based WCET analyzers. The generated test-
cases can help measurement-based WCET analyzers to derive relevant timing behavior of
the application on the WCET path. At the same time, the measurements can be used
as feedback about the precision of static analyzers: little variation between the statically
computed WCET estimate and the measurements on the WCET path are an indication of
precision of the static analyzer. Even more, the statically calculated WCET estimate must
never be below the WCET value reported by the measurement-based analyzer.

I Example 5. Consider Figure 2. The WCET analysis of Section 4(iii) infers the WCET
path to execute the true-block of the conditional once, when i is 4 and when the value
of the symbolic variable flag is assumed to be true. Based on the symbolic execution of
this WCET trace, the symbolic execution engine in r-TuBound generates a test case which
initially assumes flag to evaluate to true. Supplying this input to a measurement-based
WCET analyzer that runs the actual program allows to take measurements on the WCET
path.

A. Biere, J. Knoop, L. Kovács, and J. Zwirchmayr 61

(iii) Mode-sensitive analysis. The symbolic execution engine of r-TuBound used in Sec-
tion 4(iii) can further be used to support automated mode-sensitive WCET analysis. Modes
characterize a certain state that the program is executed in. For example, the program
could be in a “normal operation,” an “initializing” or an “error” mode. Given a program, its
precise WCET is derived using the method of Section 4(iii). Assume now that the program
is modified, e.g. , by setting a program flag resulting in a different mode of execution. The
approach of Section 4(iii) will then automatically recompute the WCET for the modified
program. This mode-sensitive behaviour can be observed in functions from the Mälardalen
benchmark suite of [10], where the flags (init, found) control the execution mode and thus
the WCET path. These control variables are not yet found automatically in r-TuBound.
However, simple methods could be used to identify these flags, for example by checking
whether two conditions are mutually exclusive. We leave the integration of r-TuBound with
such techniques for further work.

I Example 6. Consider again Figure 2 and assume that flag == true indicates an error-
mode. Changing the initial value of the variable flag from uninitialized to false changes the
feasible WCET path of the program, and hence the WCET. In the such modified program
the approach of Section 4(iii) infers that the loop is executed 5 times instead of 9 times as
computed in Section 4. Applying the technique of Section 4(iii) to the modified program
incrementally changes the ILP to reflect the change in the program behavior, resulting in a
WCET for the new WCET path, that is a WCET when the program is not executed in the
error mode.

Summarizing, similarly to Section 4 the three applications discussed in this section selec-
tively apply symbolic execution to the program. In (i), we argue that bookkeeping the exact
frequencies of program blocks can be done in a cheap way and exhaustive symbolic execution
can be applied to derive loop bounds. In (ii) and (iii) we rely on the implemented symbolic
execution infrastructure and use it in conjunction with the approach of Section 4(iii). This
way, we only apply symbolic execution on a (reduced) number of WCET trace candidates,
and avoid the burden of exploring all program paths.

6 Related Work

Symbolic execution was originally used for test-case generation and has recently found more
and more applications in program verification, for example, in bug-hunting [6]. Applications
of symbolic execution in program verification use various heuristics to speed up symbolic ex-
ecution, identify and track relevant program information and use constraint solvers to prove
caching queries. Our symbolic execution engine in r-TuBound offers only few heuristics and
derives as much program information as needed for the WCET analysis. In general, infer-
ring precise program information comes with high computational costs, a problem which
we avoid by using selective symbolic execution: r-TuBound applies symbolic execution only
when information about the program is too coarse or when other analysis methods fail.

A similar idea is presented in [4] where symbolic execution is used to refine spurious
def-use results via a path feasibility analysis. In [4] branching decisions are determined at
compile time and used to identify and remove infeasible paths. This method can be seen as
a light-weight on-demand symbolic execution of conditional nodes, whereas symbolic execu-
tion in r-TuBound always executes single paths.

Symbolic execution for WCET analysis is also used in [13] and avoids some typical pitfalls
of symbolic execution. For example, loops are not unfolded and hence multiple executions

WCET 2013

62 The Auspicious Couple: Symbolic Execution and WCET Analysis

of the same block are omitted. We note that [13] analyses each program block whereas our
selective symbolic execution approach in r-TuBound only analyses relevant program blocks
and paths.

A related approach is the abstract execution framework of [11], where context-sensitive
abstract interpretation is applied to analyse loop iterations and function calls in separation.
Instead of applying a fix-point analysis, abstract operations on abstract values are applied
in [11], where an abstract value can, e.g. , be represented as an interval. When abstract
values prevent the evaluation of a conditional, both branches need to be followed. Abstract
states can be merged at join points to prevent the path explosion problem. As a result, a
single abstract execution can represent execution of multiple concrete paths. This is not the
case in the traditional use of symbolic execution. Compared to r-TuBound, abstract execu-
tion in [11] analyses the entire program, whereas in r-TuBound we apply symbolic execution
only to relevant parts of the program. An integration of abstract execution in r-TuBound
is an interesting research direction for future work.

In the traditional use of static WCET analyzers, high-level tools gather flow fact infor-
mation about the program under analysis. This information is subsequently used in further
(low-level) WCET analysis. Static WCET analyzers, see e.g. [16, 1, 9], often use the IPET
technique [19] to calculate WCET estimates. This leads to an over-estimation of the WCET
since the IPET modeling of a program usually encodes spurious execution traces that are
infeasible in the concrete program. The approach of [17] addresses the problem of refining
imprecise WCET estimates, by using symbolic execution in conjunction with IPET. We
implemented this combination in r-TuBound. The results and applications of our imple-
mentation offer an automated technique to reduce, and possibly avoid over-estimation in
WCET computation. A similar method is presented in [12], where an ILP encoding of the
program is used to check whether partial solutions of a specific size to the ILP problem
yield infeasible program paths. Feasibility of solutions is checked using model checking, by
encoding block execution frequencies as program assertions. Unlike [12], we apply path-wise
symbolic execution to avoid model checking the entire program and use SMT solving for
checking feasibility of program paths.

Measurement-based timing analysis techniques, such as [20], can be seen complementary
to static WCET analysis tools. Measurement-based tools require test inputs that cover
a sufficient portion of the program executions to infer a tight WCET bound with a high
confidence. The method of [20] systematically generates test-cases for arbitrary program
executions, based on model checking and various heuristics. In the proposed application of
symbolic execution in r-TuBound we generate test-cases only for program executions along
the WCET trace candidate path(s).

A different approach to WCET analysis is given in [7], that relies on segment- and state-
based abstract interpretation [8]. This state-based approach has similarities with the ILP
problem refinement of r-TuBound. Integrating this approach in r-TuBound is an interesting
task to be investigated.

7 Conclusion

We outlined applications of symbolic execution in WCET analysis, as implemented in r-
TuBound: reasoning about single statements in loops, computing loop bounds, and refining
the results of an a-priori used WCET analyzer. The approaches have successfully been tested
on a number of WCET benchmarks. Additional applications of symbolic execution can be
implemented in r-TuBound by only minor changes of the underlying symbolic execution

A. Biere, J. Knoop, L. Kovács, and J. Zwirchmayr 63

engine. With such changes at hand, we are confident that symbolic execution can also
be used in hardware-aware dynamic WCET analyzers. We believe that, an efficient use
of symbolic execution, called selective symbolic execution in this article, gives a valuable
extension to the program analysis toolbox applied in WCET analysis.

References
1 C. Ballabriga, H. C. Hugues, C. Rochange, and P. Sainrat. OTAWA: an Open Toolbox for

Adaptive WCET Analysis. In Proc. of IFIP Workshop (SEUS), pages 35–46, 2010.
2 M. Berkelaar, K. Eikland, and P. Notebaert. lp_solve 5.5, Open source (Mixed-Integer)

Linear Programming system. Software, 2004. http://lpsolve.sourceforge.net/5.5/.
3 A. Biere, J. Knoop, L. Kovács, and J. Zwirchmayr. SmacC: A Retargetable Symbolic

Execution Engine. In Proc. of ATVA, 2013. To appear.
4 R. Bodík, R. Gupta, and M. L. Soffa. Refining Data Flow Information Using Infeasible

Paths. SIGSOFT Softw. Eng. Notes, 22(6):361–377, Nov. 1997.
5 R. Brummayer and A. Biere. Boolector: An Efficient SMT Solver for Bit-Vectors and

Arrays. In Proc. of TACAS, pages 174–177, 2009.
6 C. Cadar and K. Sen. Symbolic Execution for Software Testing: Three Decades Later.

Commun. ACM, 56(2):82–90, 2013.
7 P. Cerny, T. Henzinger, and A. Radhakrishna. Quantitative Abstraction Refinement. In

Proc. of POPL, pages 115–128, 2013.
8 P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static

Analysis of Programs by Construction or Approximation of Fixpoints. In Proc. of POPL,
pages 238–252, 1977.

9 J. Gustafsson. SWEET: SWEdish Execution Time tool. Software, 2001. http://www.
mrtc.mdh.se/projects/wcet/sweet/index.html.

10 J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The Mälardalen WCET Benchmarks:
Past, Present and Future. In Proc. of WCET, pages 136–146, 2010.

11 J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper. Automatic Derivation of Loop
Bounds and Infeasible Paths for WCET Analysis Using Abstract Execution. In RTSS,
pages 57–66, 2006.

12 Ho Jung Bang and Tai Hyo Kim and Sung Deok Cha. An Iterative Refinement Framework
for Tighter Worst-Case Execution Time Calculation. In Proc. of ISORC, pages 365–372,
2007.

13 D. Kebbal and P. Sainrat. Combining Symbolic Execution and Path Enumeration in Worst-
Case Execution Time Analysis. In Proc. of WCET, 2006.

14 R. Kirner. The WCET Analysis Tool CalcWcet167. In Proc. of ISoLA (2), pages 158–172,
2012.

15 J. Knoop, L. Kovács, and J. Zwirchmayr. Symbolic Loop Bound Computation for WCET
Analysis. In Proc. of PSI, pages 116 – 126, 2011.

16 J. Knoop, L. Kovács, and J. Zwirchmayr. r-TuBound: Loop Bounds for WCET Analysis.
In Proc. of LPAR, pages 435 – 444, 2012.

17 J. Knoop, L. Kovács, and J. Zwirchmayr. WCET Squeezing: On-demand Feasibility Re-
finement. Technical Report 2013-V-1, TU Vienna, Institute of Computer Languages, May
2013.

18 A. Prantl, M. Schordan, and J. Knoop. TuBound - A Conceptually New Tool for Worst-
Case Execution Time Analysis. In Proc. of WCET, 2008.

19 P. P. Puschner and A. V. Schedl. Computing Maximum Task Execution Times – A Graph-
Based Approach. Real-Time Systems, 13(1):67–91, 1997.

20 M. Zolda and R. Kirner. Compiler Support for Measurement-based Timing Analysis. In
Proc. of WCET, pages 62–71, 2011.

WCET 2013

http://lpsolve.sourceforge.net/5.5/
http://www.mrtc.mdh.se/projects/wcet/sweet/index.html
http://www.mrtc.mdh.se/projects/wcet/sweet/index.html

Upper-bounding Program Execution Time with
Extreme Value Theory
Francisco J. Cazorla1,2, Tullio Vardanega3, Eduardo Quiñones1, and
Jaume Abella1

1 Barcelona Supercomputing Center
2 Spanish National Research Council (IIIA-CSIC)
3 University of Padova

Abstract
In this paper we discuss the limitations of and the precautions to account for when using Extreme
Value Theory (EVT) to compute upper bounds to the execution time of programs. We analyse
the requirements placed by EVT on the observations to be made of the events of interest, and
the conditions that render safe the computations of execution time upper bounds. We also
study the requirements that a recent EVT-based timing analysis technique, Measurement-Based
Probabilistic Timing Analysis (MBPTA), introduces, besides those imposed by EVT, on the
computing system under analysis to increase the trustworthiness of the upper bounds that it
computes.

1998 ACM Subject Classification D.2.4 Software Engineering: Software/Program Verification

Keywords and phrases WCET, Extreme Value Theory, Probabilistic, Deterministic

Digital Object Identifier 10.4230/OASIcs.WCET.2013.64

1 Introduction

Extreme Value Theory (EVT) can be regarded as the counterpart of Central Limit Theory [7]:
where the latter studies the bulk of the population of a given distribution, EVT studies the
tail of it, in other words the extreme deviations from the median of probability distributions.
By analysing a sample of observations of a given random variable, EVT determines the
probability of extreme events to occur, where “extreme” refers to either end of the range
of the value domain of those events. EVT is widely used in many disciplines, ranging from
structural engineering to Earth sciences.

EVT has also been used to provide estimates of average-case execution time [17][16] and
Worst-Case Execution Time (WCET) of software programs [8][5], which is the focus of this
paper. In contrast to classic static WCET analysis, EVT computes a cumulative distribution
function, or probabilistic WCET (pWCET) function, that upper-bounds the execution time
of the program, guaranteeing that it only exceeds the given bound with a probability lower
than some threshold (e.g., 10−15 per run).

EVT is applied in for measurement based timing analysis (MBTA). In MBTA, execution
time measurements of the timing behaviour of the program of interest are processed by
specialised EVT-based analysis to generate pWCET bounds for the program that should
hold at deployment time.

In order for sound results to be obtained from the application of EVT it must hold
that the observations of the events of interest can be regarded as random variables that
are independent and identically distributed (i.i.d.). When this property cannot be asserted
a-priori, it can be verified a-posteriori by suitable statistical tests [7]. However, EVT has

© Francisco J. Cazorla, Tullio Vardanega, Eduardo Quiñones, and Jaume Abella;
licensed under Creative Commons License CC-BY

13th International Workshop on Worst-Case Execution Time Analysis (WCET 2013).
Editor: Claire Maiza; pp. 64–76

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2013.64
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

F.J. Cazorla, T. Vardanega, E. Quiñones, and J. Abella 65

nothing to say on the representativeness of those data, that is, on the safeness of the pWCET
estimate that is computed from them. Representativeness is determined by the quality of
the data passed to EVT, or analogously, by relevant properties of the environment that
generated those data. The pWCET estimates obtained with EVT are therefore valid only for
the data population sampled for the analysis or, by extension, for the operating conditions
subsumed by those data.

If representativeness is low, the pWCET bounds obtained with EVT do not provide
any trustworthy prediction on the timing behaviour of the program on the target platform,
but rather a description of the extreme timing behaviour that the program might have
in the execution conditions exercised during the observation runs. If representativeness is
high instead, more general conclusions can be drawn on the computed pWCET when the
program is run on the target platform under execution conditions beyond those exercised
during the analysis. The primary goal of MBTA techniques is to provide pWCET estimates
that hold under execution conditions that may occur during the operation of the system:
whereas those conditions may not be exactly identical to those captured by the observation
runs made at analysis time, they should still represent them probabilistically. How this
critical property can be asserted is the subject of this paper. This ability solves one of
the key problems that real-time system designers have in trying to determine the timing
behaviour of a real-time system. In this regard we show the benefits that can be achieved in
terms of representativeness when using a time-randomised execution platform like the one
proposed in the PROARTIS project [3][10][13], in contrast to conventional time-deterministic
architectures1.

In this paper we discuss the requirements on the use of EVT in computing pWCET
bounds and the representativeness of the pWCET estimates. We show that increasing
representativeness requires: (1) controlling the execution conditions at analysis time; and (2)
understanding the representativeness of the analysis-time execution conditions with respect
to those that may occur during operation. We discuss how measurement-based probabilistic
timing analysis (MBPTA) based on EVT [5] reduces the burden placed on the user of the
method for controlling the execution conditions. To that end, MBPTA requires that the
effects that can be exercised by the execution conditions on the observation runs made during
analysis are: either (1) bounded from above so that they represent worst-case effects; or (2)
time-randomised; or else (3) ensured to have exactly the same probabilistic distribution at
analysis and at deployment.

Contribution: This paper establishes the principles on which EVT can be used to derive
WCET estimates in time-deterministic and time-randomised architectures. In particular,
it helps WCET analysis community better understand the requirements, limitations and
benefits that EVT carries on the determination of pWCET bounds, also understanding the
requirements that MBPTA adds on top of EVT. This will set the baseline for future works
in this promising area of research.

2 An executive introduction to EVT

EVT provides a canonical theory for the (limit) distribution of normalised maxima of
independent, identically distributed random variables. EVT involves non-parametric statistics,

1 A system is time-deterministic when we can determine its state at any time t on the basis of the initial
state, inputs and the time cost of the state transition triggered by those inputs (read more on this in
Section 4).

WCET 2013

66 Upper-bounding Program Execution Time with EVT

that is, EVT does not rely on data (i.e. the population under study) belonging to any
particular distribution. EVT describes the behaviour of extremal events for stochastic
processes that evolve dynamically in time and space. It gives the user a methodology for
predicting the occurrence of rare events. Estimating distribution tails beyond the limit of
available data is a complex process that requires making mathematical assumptions on the
tail model. These assumptions are very difficult if at all possible to verify in practice. There
is thus intrinsic risk in choosing the tail model to fit the problem at hand, which is necessary
to correctly apply EVT.

We are interested in the high values that bound the pWCET, so we consider the EVT
prediction for maximal values of a set of observations. There are two main approaches
to EVT. The first, known as Peak over Threshold method [2], models a distribution of
excess over a given threshold: EVT shows that the limiting distribution of exceedance is
a Generalised Pareto Distribution or GPD. The second approach, which we use, known
as Block Maxima model (BMM) [7] considers the largest (smallest) observations obtained
from successive periods (blocks), where the selection of the block size is a critical parameter.
Under BMM the asymptotic distribution of the maxima (minima) is modelled and the
distribution of the standardised maxima is shown to follow one of the Gumbel, Frechet or
Weibull distributions [7]. The generalised extreme value distribution (GEV) is a standard
form of these three distributions.

3 Requirements on the use of EVT for WCET estimation

When used to predict the extreme (hence worst-case) timing behaviour of applications running
on a computing system (platform), EVT is given in input a number of observations taken
from real execution of the system of interest. In our case, these observations are execution
time measurements from runs of the program of interest, taken, under controlled execution
conditions (hence, during analysis) on the target platform. From these observations EVT
infers an approximation of the tail of the timing behaviour of the program that hold during
actual operation.

EVT requires observations coming from the system under study to be described math-
ematically as random variables that are i.i.d. [7]: Two random variables are said to be
independent if they describe two events such that the occurrence of one event does not
have any impact on the occurrence of the other event. Two random variables are said to
be identically distributed if they have the same probability distribution function. In our
application of EVT, identical distribution holds when those two random variables describe
the same system using the same set of parameters in the same way (whether deterministically
or probabilistically), for all inputs with influence on the timing behaviour of the program,
including input vectors and initial hardware and software state.

EVT does not describe how the input observations are made: it regards the system as a
black box of which it is only interested in considering the external manifestations (observation
of runs here) which have to be i.i.d. for theory to apply, see Figure 1(a). Observations
evidently describe some behaviour of the system: however, as argued in this paper, it must also
be ensured that the execution conditions under which those observations are taken at analysis
time, do represent the execution conditions that will occur at deployment time, for which the
computed pWCET estimates are required to provide a safe upper bound. This requirement
imposes significant overhead on the user in: (1) understanding the execution conditions
that the programs of interest may experience at deployment time; and (2) controlling the
execution conditions during analysis time so that they are significantly representative. If not

F.J. Cazorla, T. Vardanega, E. Quiñones, and J. Abella 67

(a) (b)

Figure 1 (a) system under analysis as assumed by EVT; (b) a computing system for analysis
with EVT.

fulfilled properly, these two obligations can make the whole approach of deriving estimates
based on EVT utterly misleading.

3.1 Defining the population under analysis
One of the most critical steps in applying EVT is understanding and capturing the population
(universe) to be analysed, including the features of that population that are relevant for the
analysis. In our case, the population is given by all the runs that the program of interest will
perform at deployment time, and the feature of interest is the execution time of those runs.
For instance, considering a program to be deployed on an aircraft, each run of that program
in it during its whole operational lifetime is an individual of the population of interest. If the
aircraft had a lifetime of 25 years, flying 80% of that time, and the program under analysis
had an execution period of 100 ms (i.e., 10 times per second), the total population would be
comprised of nearly 63× 108 elements.

In general, the total population of events in a real-world system is inordinately large and
hard to determine, so it cannot be fully enumerated at analysis time. User intervention is
therefore needed to cap the population of interest to a treatable dimension, in a trustworthy,
timely and cost-effective manner. This step requires understanding the sources of influence
on the feature of interest of the population, which means understanding what factors in the
system affect the execution time of any given run of the programs under study. We call those
factors: sources of execution time variability.

3.1.1 Sources of execution time variability

Figure 2 Main input components.

The execution time of a program is affected by
several main factors, namely, the input condi-
tions and the internal logic (state-dependent
behaviour) of the platform (i.e. its hardware
and software resources underneath the applic-
ation layer), see Figure 1(b). Those factors
represent what we call the Sources of Execu-
tion Time Variability (SETV) of the program.
Each combination of values in the SETV

defines one particular execution condition un-
der which a given run of the program may occur.

In our discussion here “input conditions” are understood to refer to 3 main components,
see Figure 2: the input vector; the initial state of the software (for the program and the
operating system, OS, underneath it); and the initial state of the hardware. Let us look at
each of them in isolation.

WCET 2013

68 Upper-bounding Program Execution Time with EVT

int64 main () int64 main ()
{ {

... int v[];
a=atoi(argv[i]); init(&v);
if(a > 2){... a=atoi(argv[i]);
}else {...} x = v[a];
... ...

} }

(a) Path (b) Cache accesses (c) Initial software state (i.e. code alignment).
The instruction cache is 2-way.

Figure 3 Examples of sources of execution time variability: programs for which the input vector
affects: (a) the execution path; (b) the cache access pattern; (c) the cache jitter caused by the initial
program state.

Input vector is the complete description of all the input data passed to the program
which may affect the program execution behaviour. Input vectors may affect the hardware
and the software state in all resources that are sensitive to history of execution. At software
level, the most evident manifestation of the influence of input vectors is the execution path
taken by the program during a given run. This is shown in Figure 3(a) where a is an element
of the input vector. At hardware level, we find a variety of cases in which input vectors affect
the timing behaviour of some components: Figure 3(b) shows the case where the memory
address of a cache access (whose outcome may thus be a hit or a miss) depends on an input
value.

Software initial state includes the initial state of all the read-write (state-sensitive)
data structures used by the program directly or indirectly, the latter being those used by
the operating system underneath it. It also includes all external aspects of the program
that may have an influence on its execution-time behaviour: with processor resources such
as the cache, the location in memory of the program determines the cache placement and
the consequent cache conflicts of each memory access. Figure 3(c) shows a program using
some external software components such as libraries or OS structures. Those components
are allocated independently in memory and therefore, their relative alignment in cache can
vary. As shown, different memory allocations (left) may lead to different cache placements
(right). We show two particular cache placements: in the first one (top right) no cache set
requires more than two lines to store all code, whereas in the second one (bottom right) two
cache sets require up to 3 cache lines. Hence, if the instruction cache is 2-way set-associative,
the former allocation is likely to produce better performance than the latter.

Hardware initial state includes the initial state of all the hardware resources (e.g.,
cache state) used by the program or any other software invoked by the program. Those
states are important as the operation logic of many hardware and software components is
state-dependent. The authors of [12] show that the initial state of the cache can be exploited
to decrease WCET bounds by considering how cache contents may survive across subsequent
disjoint executions of the program of interest.

F.J. Cazorla, T. Vardanega, E. Quiñones, and J. Abella 69

3.1.2 Max population
We mentioned earlier that the execution time of a program is affected by several sources of
execution time variability: {SETV1, SETV2, ..., SETVj , ...SETVn}, where source j ∈ {1, ..n}
can take up to k distinct values, that is: SETVj = {vj}k = {vj

1, vj
2, ...vj

k}. Consider for
instance a multiplication unit whose response latency depends on its operands: the SETV

for this resource can take 2m values, where m is the number of multiplications that occur in
the program.

The sources of variability include all system inputs (input vectors, and SW and HW
initial conditions)2. Controlling all the SETV for each individual (i.e. measurement run) in
the population is unfeasible as the target population is given by all the runs of all calls of
the program under study that occur during operation.

The user has to derive a population of maxima (max population) that provides a safe
upper bound of the target population, see the top part of Figure 4(a). If that is granted,
then the execution times (i.e. individuals in the max population) safely upper bound the
execution times in the actual population. In principle this requires analysing in detail each
SETVj ,∀j ∈ {1, ..n}. For each SETVj = {vj}k the user has to derive a subset of values
max(SETVj) = max({vj

1, vj
2, ...vj

k}) = {mvj
1, mvj

2, ...mvj
mk}) = {mvj}mk. Eventually, based

on the simplifying assumption of independence, we would need max(SETVj) to contain only
its worst-case values. Identifying them may be so complex, however, that the user may have
to resort to safe upper bounds. Moreover, to make the problem tractable, mk < k should
also hold as using max(SETVj) in place of SETVj serves the purpose of decreasing the size
of the population of interest.

The actual cardinality of the max population is defined by the number of combinations of
the max values that each SETV can take during operation. If all SETV are independent of
one another, there is an individual in the max population for each element in the Cartesian
product of all max values of all SETV : {mv1}mk × {mv2}ml,×...× {mvn}mm. Therefore,
there is one execution time individual in the max population for a run under the execution
environment defined by each of the combinations of all SETV . Otherwise, if some SETV

are not independent, then unfeasible combinations should be removed from the Cartesian
product of all max values of all SETV . How to identify those combinations may be very
hard.

3.2 Achieving i.i.d. behaviour
Ensuring that the observations submitted to EVT fulfil the required i.i.d. properties is
only possible if the whole system behaves as a random process such that the observations
drawn from it exhibit those properties. Given that the execution times of the programs
under study are affected either by the input vectors passed to them or the internal logic
(state-dependent behaviour) of the platform, the required i.i.d. properties on the observations
drawn from the computing system must be obtained by: either (1) applying a random process
on the way inputs are selected; or (2) applying random processes in the internal behaviour
of the hardware/software (the platform). In both cases, WCET estimates are based on
measurements (observations) taken from the execution of the program under study on the
target platform. Hence, both approaches can be regarded as measurement-based rather than
static as it is the case with other timing analysis techniques [18].

2 For the purposes of this paper we assume SET V to operate independently of one another. Later in this
section we show how this simplifying assumption can be removed.

WCET 2013

70 Upper-bounding Program Execution Time with EVT

Next we discuss each of the two approaches in more detail, paying special attention to
the requirements they place on the user as well as on the execution platform itself.

4 Deriving WCET estimates on time-deterministic systems with EVT

(a)

(b)

Figure 4 Application of EVT (top) and MBPTA on a
time-randomised platform (down).

Current computing systems can
be regarded as time-deterministic.
Time-determinism is achieved when
we can determine the state of the
system at any time t on the basis
of the initial state, the inputs and
the time cost of the state transitions
triggered by those inputs. The prop-
erty of time determinism is disjoint
from that of functional determin-
ism in that a functional determin-
istic system can also be non time-
deterministic: consider for example
a system whose functionality can
be fully described by a finite state
machine. Further assume that the
transition time from any two states
S0 to S1 is a random value in the
range [t1:t2]. This system is func-
tionally deterministic in that it will
always finish in state S1 from state
S0, but it is not time-deterministic because we cannot determine the exact time at which the
transition from S0 to S1 will complete.

More specifically to our discussion, the execution time of a program on a time-deterministic
system is constant across different runs that occur under the same execution conditions, i.e.
the initial state in the hardware and software is fixed and the same input data are used
across runs.

The behaviour of the system (the program running on the computing system) should
behave like a random process, Xn, such that the i.i.d. statistical properties required for EVT
can be had. If EVT is applied to a COTS (commercial off-the-shelf) deterministic computing
system, the system cannot be changed for it to behave as Xn. In that case EVT conformance
can only be sought by operating on the inputs submitted to it, as captured in Figure 2, in
particular by randomising the selection of inputs using random sampling.

4.1 Random sampling

A sample is a set of individuals chosen from the population under study. A random sample
is a sample chosen by random sampling from the population.

Several unbiased sampling methods exist, e.g, simple random sampling (SRS) [4]. An
unbiased random selection of individuals is important so that, in the long run, the sample has
the same statistical properties as the population under study. With SRS, each individual is
chosen randomly and entirely by chance, hence providing independence between each picking
of an individual. Further, each individual has the same probability of being chosen and each

F.J. Cazorla, T. Vardanega, E. Quiñones, and J. Abella 71

subset of k individuals has the same probability of being chosen as any other subset of k

individuals. Hence, by construction, SRS constructs i.i.d. random samples.
However, as shown earlier, the target population under study cannot be fully constructed

in the general case, and therefore it cannot be sampled. The max population is sampled
instead. In our scenario this has an important corollary in the dimension of representativeness
of the WCET estimates computed with EVT. If and only if the max population is a safe
upper bound of the (deployment-time) target population, the WCET estimates that can be
obtained with EVT actually upper bound the timing behaviour of the program of interest
during operation. Hence, a critical step to achieve the required representativeness is to
understand the deployment-phase target population, correctly defining the max population.
Failing to do so would cause the WCET estimates obtained with EVT to lack any statistical
representativeness with respect to the deployment-phase population. Under that scenario,
the testing-time behaviour observed cannot be used by EVT to derive WCET estimates of
the deployment-time behaviour of the program on the target system.

4.2 Deriving a safe max population
This step is one of the most complex passages in the procedure of applying EVT to derive
pWCET estimates that hold at deployment time for the timing behaviour of the programs
of interest. This step requires analysing in detail each of the SETVj , ensuring that all
the components of max(SETVj) take their respective maximum value(s), or value(s) that
upper-bound their maximum. Indeed, it must be the case that the individuals leading to the
pWCET must be part of the combination of max(SETVj) values or the upper bounds thereof.
This condition holds if no timing anomalies occur across SETV , so that the combination
of local worst cases in max(SETVj) leads to the global worst case. Some SETV are well
understood by the user who can then control and bound them, either quantitatively or
qualitatively, as we discuss below. Others are harder to enumerate and consequently difficult
to bound from above.

Qualitatively-boundable SETV. The input vectors are the most challenging case of SETV,
for the effect they have on the execution paths taken by the program. A poor path coverage
may cause the results computed by EVT to miss the safeness quality required for worst-case
timing analysis. To use EVT the user should understand what the worst-case paths in the
program are and providing input vectors that exercise them. And the pWCET estimates
derived with EVT would only be valid for the paths observed during analysis.

Tool support may be available to compute the coverage obtained during observation runs
and report it back to the user. If a path that the tool deems possible is not yet covered in
the observation runs, the tool may request that the user either acknowledges the exclusion of
that path (which may be asserted as irrelevant for WCET estimation) or provides further
test cases to exercise that path. This is technically possible because full path coverage at
source level (possibly reduced to MC/DC [9]) is one of the prerequisites to be satisfied by
functional testing in certified systems. This type of timing analysis should thus be performed
in conjunction with the functional verification campaign.

Quantitatively-boundable SETV. The input vectors do not only affect the execution path
followed in a program, but may also influence other resources with jitter, hence creating
another SETV , causing an inordinate increase in their quantity. Returning to the multiplier
whose response latency depends on its input values, the user should provide input vectors
for each program path in which the distribution of multiplier input values upper-bounds

WCET 2013

72 Upper-bounding Program Execution Time with EVT

the one that can occur during operation. If for example the multiplier takes 1 cycle when
one operand is zero and 4 cycles otherwise, then the user is required to ensure that the
distribution of non-zero values in the analysis input vectors upper bounds the distribution
that may occur upon deployment.

Uncontrollable SETV. Controlling all SETV to a level in which all their values can be
known and a subset of them (max values) can be forced to occur in the computing system is
generally out of reach for the user. Assume for example that the only SETV is the location in
memory where objects are placed (e.g., the program data and instructions, libraries, OS data
and instructions, etc.) since this determines cache behaviour. In this scenario, enumerating
all combinations of object placements in memory is simply unfeasible. As shown in [11], the
number of memory alignments leading to different cache placements is snobj−1, where s is
the number of cache sets and nobj the number of memory objects. Moreover, the user has
limited control to force a given alignment. It therefore follows that some SETV are hard to
define, understand and control by the user.

4.3 Summary
EVT requires that the observations taken during analysis warrant independence and identical
distribution. For a population of maximum values on which SRS is applied, independence
can be preserved by controlling how experiments are made. This requires ensuring that: (1)
no source of dependence can exist between end-to-end runs; and (2) no state-dependent effect
occurs in the processor and no logical software-level state is allowed to pass between any
two runs. Whether that dependence may exist across events or instructions within a run is
irrelevant so long as observations are collected at the granularity of end-to-end runs.

The fact that each element (an individual in the max population) has the same probability
of being chosen and each subset of k individuals has the same probability of being chosen
for the sample as any other subset of k individuals, ensures identical distribution. However,
EVT by itself does not ensure the representativeness of the max population with respect to
the actual population, which may not be fully known by the user and hence not be sampled.
EVT makes no claim on how safe the selected “maximum population” is for the purposes of
upper-bounding the actual population of system events of interest.

Ensuring that the computed pWCET estimates are safe upper bounds of the target
population requires controlling all SETV . Our view here is that attempting to provide WCET
estimates on COTS deterministic systems is fatally limited by the intricate dependences of
the SETV and the hardware/software support to control SETV to a level in which all their
values can be known, the maximum can be identified and forced in the computing system
to carry out pertinent runs to feed EVT. There is therefore a risk of taking as valid for the
program EVT projections whose representativeness cannot be assessed beyond the particular
set of inputs used during the analysis. To apply EVT in MBTA, therefore, the user must be
provided with means to derive max population safely, timely and cost-effectively.

5 Deriving WCET estimates on time-randomised systems with EVT

In order to ensure that the computed pWCET estimates are safe upper bounds to the
execution time of the program at deployment time, MBPTA adds further constraints to
those imposed by EVT [5], see Figure 4(b). While the EVT requirements only concern the
nature of the observations, MBPTA requires controlling the inputs submitted to the program

F.J. Cazorla, T. Vardanega, E. Quiñones, and J. Abella 73

and the platform on which the runs occur, as shown in Figure 1(b). In particular, MBPTA
requires that all the SETV are “controlled” in one of the following ways.

1. Safe upper-bounding of SETV with no HW change. The user provides values
for each and every SETV to upper-bound the effect that those SETV can have on
the execution time of the program during operation. For instance, for “reasonable”
replacement policies, an empty initial cache state represents the worst-case state that
a program may find at start up. Similarly, for path-dependent effects, the user needs
to ensure that the paths of interest to pWCET estimation are traversed during the
observation runs.

2. Removal of SETV with HW change. Some SETV are hard, if at all possible, to be
effectively controlled by the user. For those SETV , the processor hardware, and to a
lesser extent, the software, should be redesigned such that the response time jitter of
the corresponding execution resources does not depend anymore on the relevant SETV .
This approach is tantamount to removing the SETV for those resources. We consider
two ways in which this can be had3:
a. Worst case timing behaviour. At software level this approach consists in forcing

relevant software components (e.g., methods, procedures) to always take the same time
to execute regardless of when they are called. This approach has been followed for
OS calls [1], where the jittery part of the required activity is deferred until after the
return from the call, in the interstices between the execution of application programs,
taking care to not incur disturbing perturbations to hardware state left on return.
At hardware level, the worst-case mode [15] is a feature forcing a hardware block to
take its worst delay even if a particular request finishes earlier. Both features make
the observations obtained at analysis time be a safe upper bound of the deploy-time
behaviour of the program.

b. Time randomisation. Forcing the worst-case response of some hardware/software
components to occur at all times may degrade performance significantly (e.g., consider-
ing all cache accesses as misses). Instead, randomising the timing behaviour of a given
resource, significantly improves performance of that resource and makes observations
taken at analysis time to be representative of the deployment time behaviour. If
enough observations of the execution of that resource are taken, the observed frequen-
cies converge to the actual probabilities. Further, randomisation may help removing
some of the SETV as shown in coming section.

5.1 How to achieve time randomisation
One of the main challenges in the context of MBPTA is understanding whether timing may
be randomised for some hardware resources, while of course leaving functional behaviour
unaffected. Time randomisation removes some of the SETV that affect the execution time
of programs, thereby reducing the burden on the user in applying EVT. For the sake of
illustration we focus on the case of the cache, though the principles we present apply to any
other resource.

We have seen earlier that the memory layout of program data and code is a SETV that
affects the program execution time. It is well known that the location in which program

3 A third way exists if the user can provide inputs that have the same distribution of values, with respect
to a given characteristic under analysis, as those that can appear during operation. This is possible but
exceedingly difficult.

WCET 2013

74 Upper-bounding Program Execution Time with EVT

data and code are placed in memory may vary across runs (or upon composition with other
software). This in turn means that the particular sets in which the different data/instructions
are located vary across runs. An important consequence of that phenomenon is that the
conflicts in cache that a program suffers and their effect on execution time may vary across
runs. This is illustrated in the example in Figure 3(c), which shows the case of the code
placement in memory and its effect on the instruction cache.

In a real-world scenario, expecting the user to control the way in which program data and
code are placed in memory is not practical: tools and methods exist to do so [14], but they
place some burden on the user. MBPTA can be facilitated by randomising the placement
policy, and optionally the replacement policy (which is not covered in this discussion), to
cause the effect of placement and replacement policies to become probabilistically analysable.
The basic idea is to break the causal dependence between the particular address in memory
in which a piece of data is, and the particular cache set in which it is allocated. This
dependence is broken by randomising the placement such that the index set of individual
data items is randomised and made vary across runs. In this way, making enough runs, hence
taking enough observations, is sufficient for the user to provide probabilistic evidence of the
effect of placement on execution time. And more importantly, in each run the user needs
not control the particular location in memory in which individual data items are located.
Random placement can be done at hardware level by changing the design of the cache [10]
or at software level by controlling the way data and code are loaded in memory [11].

Overall, in a MBPTA-compliant platform (i.e. one that conforms to the principles we
illustrated) all SETV are under control, whereby: (1) their effect on the execution time
observations taken from the program is known; (2) the representativeness of the observed
execution times of the program as affected by those SETV at analysis time is guaranteed
with respect to the execution times of the program at deployment time; and (3) the observed
execution times can be regarded as independent and identically distributed random variables
so that EVT can be meaningfully applied.

6 Related work

Extreme-value statistics are used in [6] to model the WCET. To select highest execution
times the cited authors use Block Maxima [7], for which instead the authors of [8] use the
Peak Over Threshold method. In [19] the authors apply EVT to the problem of computing
Worst-Case Response-Time (WCRT) of programs. Older papers focus on the application of
EVT on time-deterministic platforms but do not cover the representativeness of the result
obtained from EVT, that is the safeness of the pWCET estimate. The authors of those works
assume that the observations collected are representative of the target population. In this
paper we have shown the difficulties of achieving representativeness in time-deterministic
platforms.

The authors of [5] present MBPTA as well as the requirements that it imposes on the
hardware and software components of the system to increase the trustworthiness of the
upper bounds computed by MBPTA, primarily the time randomisation of certain processor
resources.

7 Conclusions

While EVT has been regarded as a powerful method to derive upper (lower) bounds on
arbitrary distributions, its utilisation for deriving WCET estimates has not been well

F.J. Cazorla, T. Vardanega, E. Quiñones, and J. Abella 75

described yet. In this paper we review those characteristics of WCET estimation relevant
for the use of EVT. In particular, we present how the initial population for EVT should be
generated, including all sources of execution time variability (SETV), and how this process
can be hopeless on time-deterministic platforms. Conversely, we show that time-randomised
platforms enable an effective use of EVT by means of MBPTA by randomising and upper-
bounding the timing behaviour of some hardware and software resources so that some SETV
do not need to be described by the user while WCET estimates obtained are still sound.

Acknowledgements

The research leading to these results has received funding from the European Community’s Sev-
enth Framework Programme [FP7/2007-2013] under the PROARTIS Project (www.proartis-
project.eu), grant agreement no 249100. This work was partially supported by EU COST
Action IC1202 “Timing Analysis On Code-Level (TACLe)”, and by the Spanish Ministry
of Science and Innovation under grant TIN2012-34557. Eduardo Quiñones is partially fun-
ded by the Spanish Ministry of Science and Innovation under the Juan de la Cierva grant
JCI2009-05455.

References
1 A. Baldovin, E. Mezzetti, and T. Vardanega. A time-composable operating system. WCET

Workshop, 2012.
2 J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels. Statistics of Extremes: Theory and

Applications. 2004.
3 F.J. Cazorla, E. Qui nones, T. Vardanega, L. Cucu, B. Triquet, G. Bernat, E. Berger,

J. Abella, F. Wartel, M. Houston, L. Santinelli, L. Kosmidis, C. Lo, and D. Maxim. Proartis:
Probabilistically analysable real-time systems. ACM TECS, 2012.

4 W.C. Cochran. Sampling Techniques. 1977.
5 L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega, L. Kosmidis, J. Abella,

E. Mezzeti, E. Quinones, and F.J. Cazorla. Measurement-based probabilistic timing ana-
lysis for multi-path programs. In ECRTS, 2012.

6 Edgar S and Burns A. Statistical analysis of WCET for scheduling. In the 22nd IEEE
Real-Time Systems Symposium (RTSS01), pages 215–225, 2001.

7 W. Feller. An introduction to Probability Theory and Its Applications. 1996.
8 J. Hansen, S Hissam, and G. A. Moreno. Statistical-based wcet estimation and validation.

In the 9th International Workshop on Worst-Case Execution Time (WCET) Analysis, 2009.
9 Hayhurst K.J., Veerhusen D.S., Chilenski J.J., and Rierson L.K. A practical tutorial on

modified condition/decision coverage. Technical report, 2001.
10 L. Kosmidis, J. Abella, E. Quinones, and F.J. Cazorla. A cache design for probabilistically

analysable real-time systems. In DATE, 2013.
11 L. Kosmidis, C. Curtsinger, E. Quinones, J. Abella, E. Berger, and F.J. Cazorla. Probab-

ilistic timing analysis on conventional cache designs. In DATE, 2013.
12 L. Kosmidis, E. Quinones, J. Abella, T. Vardanega, and F.J. Cazorla. Achieving timing

composability with measurement-based probabilistic timing analysis. In ISORC, 2013.
13 E. Mezzetti and T. Vardanega. On the industrial fitness of wcet analysis. WCET Workshop,

2011.
14 E. Mezzetti and T. Vardanega. A rapid cache-aware procedure positioning optimization to

favor incremental development. In RTAS, 2013.
15 M. Paolieri, E. Quinones, F.J. Cazorla, G. Bernat, and M. Valero. Hardware support for

WCET analysis of hard real-time multicore systems. In ISCA, 2009.

WCET 2013

76 Upper-bounding Program Execution Time with EVT

16 P. Radojković, P.M. Carpenter, M. Moretó, A. Ramirez, and F.J. Cazorla. Kernel Parti-
tioning of Streaming Applications: A Statistical Approach to an NP-complete Problem. In
MICRO, 2012.

17 P. Radojković, V. Čakarević, M. Moretó, J. Verdú, A. Pajuelo, F.J. Cazorla, M. Nemirovsky,
and M. Valero. Optimal Task Assignment in Multithreaded Processors: A Statistical
Approach. In ASPLOS, 2012.

18 Wilhelm R. et al. The worst-case execution-time problem overview of methods and survey
of tools. ACM Transactions on Embedded Computing Systems, 7:1–53, May 2008.

19 L. Yue, T. Nolte, I. Bate, and L. Cucu-Grosjean. A statistical response-time analysis of real-
time embedded systems. In the 33rd IEEE Real-time Systems Symposium. IEEE, December
2012.

PRADA: Predictable Allocations by Deferred
Actions∗

Florian Haupenthal and Jörg Herter

Saarland University – Computer Science
Saarland, Germany
{s9flhaup@stud, jherter@cs}.uni-saarland.de

Abstract
Modern hard real-time systems still employ static memory management. However, dynamic stor-
age allocation (DSA) can improve the flexibility and readability of programs as well as drastically
shorten their development times. But allocators introduce unpredictability that makes deriving
tight bounds on an application’s worst-case execution time even more challenging. Especially
their statically unpredictable influence on the cache, paired with zero knowledge about the cache
set mapping of dynamically allocated objects leads to prohibitively large overestimations of ex-
ecution times when dynamic memory allocation is employed. Recently, a cache-aware memory
allocator, called CAMA, was proposed that gives strong guarantees about its cache influence and
the cache set mapping of allocated objects. CAMA itself is rather complex due to its cache-aware
implementations of split and merge operations.

This paper proposes PRADA, a lighter but less general dynamic memory allocator with equally
strong guarantees about its influence on the cache. We compare the memory consumption of
PRADA and CAMA for a small set of real-time applications as well as synthetical (de-) allocation
sequences to investigate whether a simpler approach to cache awareness is still sufficient for the
current generation of real-time applications.

1998 ACM Subject Classification B.3.3 Performance Analysis and Design Aids

Keywords and phrases Dynamic Memory Allocation, Worst-Case Execution-Time, Cache Pre-
dictability

Digital Object Identifier 10.4230/OASIcs.WCET.2013.77

1 Introduction

(Hard) real-time applications raise the requirements on dynamic memory allocators. Constant
(de-) allocation times and a bounded, predictable cache behaviour become equally important
as good response times and low memory consumption. Short, constant response times can be
guaranteed by a large set of dynamic memory allocators, ranging from conventional buddy
systems [9, 13] to specialized real-time allocators like Half-Fit [12] and TLSF [11]. However,
none of these allocators provide guarantees about their effects on the cache that a cache
analysis may exploit to provide a subsequent timing analysis with a tight approximation of
the program’s cache behaviour.

With CAMA [8, 6], the first cache-aware constant-time dynamic memory allocator was
proposed. This allocator guarantees constant execution times as well as a bounded cache
influence on just a statically known set of cache sets for allocations and deallocations.

∗ This work was supported by the DFG as part of the Transregional Collaborative Research Centre
SFB/TR 14 (AVACS) and by the Saarbrücken Graduate School of Computer Science which receives
funding from the DFG as part of the Excellence Initiative of the German Federal and State Governments.

© Florian Haupenthal and Jörg Herter ;
licensed under Creative Commons License CC-BY

13th International Workshop on Worst-Case Execution Time Analysis (WCET 2013).
Editor: Claire Maiza; pp. 77–86

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2013.77
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

78 PRADA: Predictable Allocations by Deferred Actions

Furthermore, CAMA can be guided to which cache sets newly allocated objects shall be
mapped. Common techniques to counteract memory fragmentation like splitting1 and
merging2 are used. To implement these operations without introducing unpredictable cache
effects, CAMA relies internally on an indirect management of free blocks. Internal free lists and
split/merge operations work on so-called descriptors instead of the free blocks themselves.
Strict memory placement policies exist for descriptors to ensure a statically predefined cache
mapping of descriptors as well as the absence of accesses to unknown cache sets.

PRADA is a lighter implementation without the need for descriptors, providing the same
predictability guarantees: constant execution times and a statically known effect on the
cache. PRADA tackles the challenge of not introducing cache unpredictabilities by performing
(partial) splits/merges only when no other cache set than the one already touched during
the (de-) allocation procedure is accessed. To enable PRADA to choose when to perform
(partial) split/merge operations, all these operations are initially deferred and executed
when the prerequisites for the operation are met. However, the allocator does not provide
any guarantee that these deferred actions will be executed at all. It only stores a fixed,
but configurable amount of deferred actions. Surplus ones are simply dropped, i.e., never
executed.

For general purpose dynamic memory allocators, deferred split and merge actions have
been shown to be inferior to immediate splits and merges [14]. But does this still hold true
when restricting the class of programs in which an allocator may be used to (hard) real-time
applications? In this paper, we investigate on whether an implementation as complex as
CAMA is actually necessary to fulfil the raised demands of hard real-time systems; or whether
we can do with a simpler approach like PRADA.

In Section 2, we describe PRADA, an alternative cache-aware constant time dynamic
memory allocator that uses deferred actions in order to implement split and merge operations
in a (cache- and time-) predictable manner. Section 3 studies the memory consumption of
several dynamic memory allocators when presented (de-) allocation sequences representative
for real-time applications. Related work is summarized in Section 4.

2 PRADA

PRADA is a dynamic memory allocator which manages free memory blocks in segregated free
lists to allow for constant time allocation and deallocation routines. It defers actions which
would introduce unpredictable behaviour when always immediately executed by remembering
them in form of requests. These actions are executed during subsequent (de-) allocations
to the cache set they need to access. This section briefly summarizes how PRADA works and
achieves its predictability goals. A more detailed description of PRADA can be found in [3].

The memory managed by PRADA is divided into memory blocks. Every memory block
consists of a size field storing its current size and the actual payload area itself. PRADA uses
the payload area of currently free blocks to build-up its free lists. Therefore, the payload area
of deallocated memory blocks contains three fields. Two list pointers linking to the previous
block and the next block within the free list, respectively. The third field is a pointer to a
potentially pending request.

PRADA and CAMA use their respective free lists in the same way. They use an adapted

1 Splitting denotes the use of (split parts of) larger blocks in order to satisfy a request for a smaller block.
2 Merging denotes the joining of two physically consecutive free blocks in order to have a larger block
with higher probability to be useful in satisfying an allocation request.

F. Haupenthal and J. Herter 79

0 1k n−1 n 1st level (cache set mapping)

imin . . . i . . . imax 2nd level (base class)

jmin . . . j . . . jmax 3rd level (subclass)

...

︸
︷︷

︸
free list containing all memory blocks mapped to cache set k

whose sizes are in
[
2i + 2i−jmax , sj+1,i

)
where sj+1,i =

{
2i+1 − 1 if j = jmax
2i + 2i−jmax · (j + 1) otherwise

0

0

constant-time
computations

read size field

free(ptr)

malloc(k, size)

Figure 1 Logical view on the partitioning of the memory in PRADA and CAMA and how to connect
(de-) allocation requests to free lists.

version of TLSF’s two-level approach of building size classes (which in turn correspond to its
free lists). During an allocation, the first block of a suitable free list, i.e. size class, is used to
satisfy the request. How does the two-level approach to set-up size classes of TLSF, PRADA,
and CAMA work? The (logically) first level sorts blocks in exponentially growing size classes,
i.e., for class i all associated memory blocks are of size ∈ [2i, 2i+1). A higher granularity
for sorting blocks is achieved by a second level which is a linear subdivision of these classes.
For an allocation of size s, two computations are needed. First, the base class needs to be
determined, then the correct subclass. Both classes can be computed in two constant-time
computations:

class = blog2(s)c and subclass =
⌊

(s− 2class) · jmax

2class

⌋
where jmax is the number of linear subclasses. CAMA and PRADA add an additional level to
setting up free lists by firstly sorting free blocks according to the cache set they start in. In
contrast to non-cache-aware allocators, they use an additional argument which allows to
guide their allocations to a certain cache set. This additional argument selects which free
list structure is searched. Figure 1 illustrates how (de-) allocation requests are mapped to a
suitable free list.

PRADA defers split and merge actions to avoid unpredictable effects on the cache during
allocations and deallocations. Therefore, actions need to be remembered. Remembering
actions has to be done in a way which preserves the predictable behaviour of the allocator.
Therefore, we use an array of fixed size which contains requests for actions. These requests
are used for the deferred performing of splits and merges. For each cache set, there is the
same, fixed amount of entries reserved. Since this array is statically allocated, the impact on
the cache state of accesses to this array is known. Due to this static setting, requests are

WCET 2013

80 PRADA: Predictable Allocations by Deferred Actions

3 4 8 16

7

9
10

12

14

log2 of requested block size
prada with 0 slots for requests

(Note the different scale)

W
CE

T
in

10
3

pr
oc

es
so

r
cy

cl
es

3 4 8 16

70

90
100

120

140

log2 of requested block size
prada with 7 requests and 7 top level requests

(Note the different scale)

W
CE

T
in

10
3

pr
oc

es
so

r
cy

cl
es

3 4 8 16

140

180
200

240

280

log2 of requested block size
prada with 32 requests and 32 top level requests

(Note the different scale)

W
CE

T
in

10
3

pr
oc

es
so

r
cy

cl
es

Figure 2 WCET bounds of PRADA0, PRADA7, and PRADA32.

never created or deleted, but get filled and cleared. These requests differ from the descriptors
used by CAMA in two ways. The number of descriptors managed by CAMA depends on the
number of managed memory blocks. For PRADA, the reserved space for requests is fixed.
Furthermore, a request itself is smaller than a descriptor (8 bytes and 24 bytes, respectively).

PRADA executes one pending request, if there exists one for the current cache set during
each allocation and deallocation. The following two paragraphs describe the procedures for
allocations and deallocations and highlight when deferred requests are executed.

PRADA allocates memory blocks aligned to cache sets. Hence, all allocations (including
the added space for the block header) are rounded up to the next multiple of a cache line.
With the provided cache set mapping and the computed class and subclass, the free list
containing the smallest blocks suitable to satisfy the allocation request is fully determined.
If there exists a suitable block, i.e., the free list is not empty, there may also exist a pending,
now obsolete merge request for this block. This request needs to be cleared first. Then, one
pending request for the current cache set can be executed. If the selected block is exactly of
the requested size, the block is simply returned. Otherwise, i.e. the found block is larger than
requested, its size is set to the requested size and a split request is created. If no suitable
block is found, new memory is requested from the operating system to create a suitable
block, possibly requiring a deferred split operation. Even in case that no block was found, a
requested action for the current cache set can be executed.

At deallocation, PRADA first checks whether there is still a pending split request for the
deallocated block. If there is one, this split request is dropped and the blocks original size
is restored. Then, one pending request for the current cache set is executed if one exists.
Finally, the current block is inserted into the appropriate free list and marked as available
for merges, i.e., a merge request is created.

Figure 2 depicts the WCET bounds for allocations of different sizes and mapped to different
cache sets derived by aiT[4] for our prototype implementation of PRADA. For comparison,
Figure 3 shows the respective WCET bounds derived for TLSF and CAMA. Deallocations
take only a single pointer as an argument. For PRADA, the WCET bound for deallocations
still depends on the number of requests. WCET bounds of 2,437 cycles, 59,947 cycles, and
182,783 cycles where derived for 0, 7, and 32 requests, respectively. For TLSF and CAMA, the
bounds are 6,018 cycles and 98,156 cycles, respectively.

3 Evaluation

For the evaluation of PRADA and the comparison with CAMA, we used the relevant programs
from the MiBench benchmark suite [2], i.e., those using dynamic memory allocation. The

F. Haupenthal and J. Herter 81

3 4 8 16

7

9
10

12

14

log2 of requested block size
tlsf

W
CE

T
in

10
3

pr
oc

es
so

r
cy

cl
es

3 4 8 16

7

9
10

12

14

log2 of requested block size
cama

W
CE

T
in

10
3

pr
oc

es
so

r
cy

cl
es

Figure 3 WCET bounds of TLSF and CAMA.

MiBench suite itself consists of a set of embedded programs, considered to be representative
for commercial applications. However, most embedded systems avoid dynamic memory
management. Therefore, we have only six relevant test cases from this suite. These six test
cases run the programs Susan, Patricia, and Dijkstra, each on a set of small and large
input data, respectively. Susan was developed for recognizing corners and edges in magnetic
resonance images of the brain. The software is, however, also used as image recognition
in unmanned vehicles. The small input data run processes a black and white image of a
rectangle, while the large input data run processes a complex picture. A patricia trie is
a data structure used in place of full trees with very sparse leaf nodes. Patricia tries are
often used to represent routing tables in network applications. Patricia uses patricia tries
to construct a routing table. Dijkstra constructs a large graph (as an adjacency matrix)
and then computes the shortest paths between pairs of nodes using repeated applications of
Dijkstra’s algorithm.

To get a better impression on their respective memory performances, we compare the
total memory consumption of CAMA and PRADA against several other allocators:

TLSF: a constant time, but cache-unaware real-time allocator.
aobf (address ordered best fit), aoff (first fit), and aowf (worst fit): simple sequential fits
with different allocation policies (best, first, and worst fit) that are able to allocate blocks
according to a predefined cache set mapping. However, no useful WCET for allocation
and deallocation requests can be given.
DLMalloc: Doug Lea’s allocator [10] which is considered to be the best general purpose
dynamic memory allocator. However, this allocator is neither cache-aware nor does it
provide useful WCET bounds for allocation requests.

We also measure the maximum amount of memory live, i.e. allocated, contemporaneously for
the different benchmarks. Comparing Doug Lea’s allocator and TLSF gives a good impression
of the (isolated) costs in terms of memory consumption for constant response times. I.e.,
the spatial costs for switching from a best fit strategy to a good fit strategy in order to
achieve constant allocation times. Our sequential fit allocators isolate the spatial costs of
enforcing a certain, statically fixed cache set mapping on allocations. The difference between
the maximum amount of live memory and DLMalloc’s memory consumption illustrates the
spatial costs inherent to dynamic memory allocation; even without further demands for
constant response times and cache guarantees.

For an unbiased comparison, we want to compare just the (de-) allocation routines
without the actual program computations for the different allocators. Therefore, we record
a trace of allocations and deallocations during one run of the benchmark application. In a
subsequent step, we use this trace to synthesize a one-path program which only consists of

WCET 2013

82 PRADA: Predictable Allocations by Deferred Actions

these allocations and deallocations. This program is then compiled once for each allocator.
Since the used subset of the MiBench benchmark suite may not be as representative as

the suite as a whole, we added three additional, synthetic benchmarks. These benchmarks
are artificial traces which describe different types of typical behaviours of hard real-time
systems. Due to their artificial character, these traces only cover some basic characteristics
of real programs. The three characteristics we used for our evaluation are suggested by [14],
which also points out the weaknesses of generating synthetic, randomized (de-) allocation
sequences. Namely that real programs simply do not behave randomly, but exhibit regularities
that a dynamic memory allocator may exploit. Hence, results from randomly generated
(de-) allocation sequences generally tend to be overly pessimistic. One typical behavioural
pattern is having all allocations in a set-up phase. After this phase, the application works
on these allocated objects without allocating more objects. This behaviour is covered in
the trace called ramp. Another typical behaviour pattern consists of round-wise allocations.
This pattern is widely found in reactive systems. These programs often run in a loop and
everything which gets allocated during one iteration gets deallocated in the same iteration.
This behaviour is modelled in the trace called peak. The third behavioural pattern that
we consider is a combination of the two patterns discussed so far. I.e., there is a base of
allocated objects on which the program works, but there are also additional allocations and
subsequent deallocations per iteration as in the peak pattern. This pattern is implemented
in the trace called plateau.

Life spans and requested block sizes are randomly selected according to an exponential
distribution with rate parameter λ = 0.25. However, we shifted this distribution such that
we have 1 as the smallest possible life span. The random values were furthermore multiplied
by 4 to obtain reasonable, aligned block sizes. The programs ramp and peak run until 10,000
allocations are performed. The plateau in the third program consists of 1,500 allocations
on top of which 10,000 allocations and deallocations are performed. The additional cache
set arguments of PRADA and CAMA are selected according to the same heuristics used in [6].
Those heuristics are intentionally very simple, with the intention that any programmer would
use a heuristics at least as good. We use two simple heuristics A and B depending on the
benchmark application. Heuristics A assumes that memory is never deallocated and just put
consecutively in memory. It then simulates this behaviour and sets cache set arguments to
the cache set that the start addresses of allocated blocks are mapped to in its simulation.
Heuristics B simply returns cache set a n-times, then n-times cache set (a+ 1) and so on.
This heuristics assumes that n successively allocated memory blocks fit into one cache line.
We used heuristics A for the Susan test cases as well as for all synthetical benchmarks. For
Dijkstra and Patricia test cases, heuristics B was used.

The number of deferred actions in PRADA can be configured. We used two configurations
for our benchmarks. One with splitting and merging completely disabled, i.e. allowing for 0
actions to be stored, and one with space for 32 actions, denoted PRADA0 and PRADA32. PRADA
and CAMA are configured for an architecture with 128 cache sets, with imin = 0, imax = 18,
jmin = 0, and jmax = 3. TLSF used 24 base classes with 32 subclasses, each. Figure 4 shows
the memory consumption for all allocators on the MiBench programs.

We observe a measurable impact of disabling splitting and merging on the MiBench test
cases. On these real-life benchmarks, forcing the allocator to adhere to a given cache set
mapping for allocated blocks (aobf, aoff, and aowf) also causes a measurable increase in
memory consumption. While this is to be expected, this increase is surprisingly lower than the
increased memory consumption due to constant response times, i.e., when compared to TLSF.
Comparing our sequential fits with the (also) cache-set guided allocations to PRADA and CAMA,

F. Haupenthal and J. Herter 83

susan small susan large dijkstra small dijkstra large patricia small patricia large102

103

104

105

106

107

Benchmark Program

M
em

or
y

Co
ns

um
pt

io
n

(b
yt

es
)

CAMA
PRADA0
PRADA32
aoff
aobf
aowf
TLSF
DLMalloc
max. live mem.

Figure 4 Memory consumption on (de-) allocation traces generated from the MiBench bench-
marks.

we observe a significant jump in memory consumption. While we expect a small increase
due to internal fragmentation from the employed segregated-list approach as well as the
additional memory needed for CAMA’s descriptors, those allocators also introduce yet another
kind of fragmentation. What kinds of fragmentation do exist and why do our constant-time
cache-aware allocators exhibit those? General purpose dynamic memory allocators suffer
from two kinds of fragmentation: internal fragmentation and external fragmentation. Internal
fragmentation denotes the memory overhead when the allocator returns blocks larger than
requested. This may be due to round-up block sizes, memory alignment, the allocator’s
inability to manage the remaining part of the block, etc. External fragmentation occurs when
there is enough free memory to satisfy a request, but there is not a single block large enough.
I.e. the free memory is interspersed with allocated memory. PRADA and CAMA additionally
suffer from an incomplete memory use. This denotes the inability to find a suitable, large
enough block that could be split in order to serve an allocation request simply because this
block is assigned to another cache set’s free lists. The term incomplete memory use was
coined by Ogasawara to describe a similar problem of Half-Fit [12]. In Half-Fit, free blocks
larger than the base size of their respective free list will not be used to serve requests for
blocks of sizes larger than this base size; even if they are just one byte larger. Analytically,
this leads to a worst-case memory consumption of roughly twice the maximal live memory
just due to Half-Fit’s incomplete memory use. While TLSF, CAMA, and PRADA use a similar
segregated-list approach as Half-Fit, they do not inherit this problem. TLSF introduced finer
grained segregated lists and always rounds up block sizes to the next segregated list base.
While this simply transforms incomplete memory use into internal fragmentation, much lower
analytical worst-case bounds can be given, depending on the number of second level size
classes. Unfortunately, simply rounding up block sizes does not help counteracting the type
of incomplete memory use occurring in PRADA nor CAMA. Still, the incomplete memory use of
the cache-aware allocators can be counteracted by increasing their WCET for allocations.
Currently, both allocators maintain a bit sequence indicating whether the segregated lists
corresponding to the bits contain free blocks or are empty. This sequence is sorted in

WCET 2013

84 PRADA: Predictable Allocations by Deferred Actions

ramp plateau peak104

105

106

107

Benchmark Program

M
em

or
y

Co
ns

um
pt

io
n

(b
yt

es
)

CAMA
PRADA0
PRADA32
aoff
aobf
aowf
TLSF
DLMalloc
max. live mem.

Figure 5 Memory consumption on our synthetic (de-) allocation traces.

ascending cache set numbers and (per cache set) ascending size classes. The allocator handles
an allocation request for size bytes mapped to cache set k by computing which segregated list
L would contain the smallest blocks large enough to satisfy this request. The bit sequence
is then read and the first bit set to 1 is searched within the sub-string starting at the bit
associated with L and ending with the bit associated with the list containing the largest
free blocks whose starting addresses are mapped to cache set k. If no such bit is found, we
would like to also consider other cache sets and search for larger block to split to prevent
incomplete memory use. We can do this in constant time by having a second sequence of
bits with the same semantics but different order. This sequence is sorted by descending size
classes and (per size class) descending cache sets. On this sequence, we again search for the
first bit set and take the first block from the free list corresponding to this bit and check
whether it can be split to yield a block suitable to serve the original request. In other words,
if the allocator’s constant time good fit approach finds no suitable block, it reverts to a slower
(in the worst-case the whole bit sequence is read), but still constant time bad fit approach.
This fall-back mechanism is, however, not implemented yet.

Figure 5 shows the actual memory use for our randomly generated traces. On these
synthetical traces, an even larger impact on the memory consumption is observable when
splitting and merging is disabled. We also observe that enforcing a statically predefined
cache set mapping raises memory consumption more than ensuring constant response times
on these traces. Also, incomplete memory use turns out to be again the greatest source of
memory waste.

4 Related Work

Dynamic memory allocators with bounded worst-case execution times have been investigated
for many years. The binary buddy system is a long-known allocation algorithm whose
WCET can be bounded by a constant. However, it may suffer from a relatively high internal
fragmentation. The first dynamic memory allocation algorithm especially aiming at satisfying
the requirements of real-time applications, Half-Fit, was proposed by Takeshi Ogasawara in
1995 [12]. His segregated lists approach was further refined in TLSF [11]. The first real-time

F. Haupenthal and J. Herter 85

allocator also considering its cache effects was CAMA [8, 6].
Chilimbi et al. proposed a so-called cache-conscious memory allocator (ccmalloc), however,

they aimed to improve program execution times [1]. Chilimbi’s ccmalloc also takes an
additional argument like CAMA and PRADA. However, instead of a fixed cache set, ccmalloc
takes a pointer to an existing object that is likely to be accessed contemporaneously with the
object to be allocated. ccmalloc achieves its goal by trying to allocate the newly requested
storage next to the one pointed to by its second argument. As a result, newly allocated
storage is often located in the same cache set as the referenced one.

Besides efforts to make memory allocators more predictable, automatically transforming
dynamic memory allocation into static memory allocation was proposed as a means to allow
programmers to employ dynamic memory allocation in real-time applications. Approaches
to algorithmically find suitable static allocations schemes for a given program with dynamic
allocation are proposed in [7] and [5].

5 Conclusions

The contributions of this paper are twofold. We propose PRADA, an alternative approach to
cache-aware dynamic memory allocation. We also present a small case study investigating
the sources of fragmentation and general spatial costs of dynamic memory allocation in
real-time applications.
PRADA overcomes the disadvantages of general purpose dynamic memory allocators in hard
real-time systems. Its implementation is simpler than that of CAMA. For the proposed allocator,
a tight bound on the WCET for allocations and deallocations can be derived. The effect
of allocations and deallocations on the cache state is bounded to a single cache set. This
introduces predictable cache behaviour that does not hinder a static cache analysis to derive
precise information about an application’s cache performance. Which, again, can be used
by a timing analysis to derive tight WCET bounds for the application. PRADA achieves
this predictability by deferring a fixed amount of actions (splits/merges) which would cause
unpredictable behaviour if always directly executed. This bound can be configured. Lower
bounds may yield higher fragmentation, but lower WCET estimates. Resources on embedded
hardware are restricted. And the possibility of configuration may widen the space of possible
applications of our allocator.
With respect to memory consumption, we make several observations:

Enforcing a cache set mapping on dynamically allocated objects does not necessarily
significantly increase the application’s memory consumption.
CAMA’s most general approach to immediately execute splits and merge (and never drop
such an action) may not be needed in current real-time applications to keep memory
consumption low. However, generally, deferred splits and merges cause higher memory
usage[14], so once real-time applications become more and more complex, this may change.
Completely disabling splitting and merging does significantly increase the memory con-
sumption, even for (generally simpler) current real-time applications.
Current approaches pay for strong guarantees about their cache influence with potentially
drastic increases in memory consumption due to incomplete memory use. However, there
is a potential trade-off to reduce this type of fragmentation at the price of increased
WCET bounds and increased, although predictable cache usage.

WCET 2013

86 PRADA: Predictable Allocations by Deferred Actions

References
1 Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Making Pointer-Based Data

Structures Cache Conscious. IEEE Computer, 33(12):67–74, 2000.
2 Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M. Austin, Trevor Mudge,

and Richard B. Brown. MiBench: A free, commercially representative embedded bench-
mark suite. In Workload Characterization, 2001. WWC-4. 2001 IEEE International Work-
shop on, pages 3–14. Ieee, 2001.

3 Florian Haupenthal. PRADA: Predictable Allocations by Deferred Actions. Bachelor’s
thesis, Saarland University, 2012.

4 Reinhold Heckmann, Christian Ferdinand, Absint Angewandte, and Informatik Gmbh.
Worst-Case Execution Time Prediction by Static Program Analysis. In In 18th Inter-
national Parallel and Distributed Processing Symposium (IPDPS 2004, pages 26–30. IEEE
Computer Society, 2004.

5 Jörg Herter and Sebastian Altmeyer. Precomputing Memory Locations for Parametric
Allocations. In Björn Lisper, editor, Proceedings of 10th International Workshop on Worst-
Case Execution Time (WCET) Analysis, pages 125–136. Austrian Computer Society, July
2010.

6 Jörg Herter, Peter Backes, Florian Haupenthal, and Jan Reineke. CAMA: A Predictable
Cache-Aware Memory Allocator. In Proceedings of the 23rd Euromicro Conference on Real-
Time Systems (ECRTS ’11). IEEE Computer Society, July 2011.

7 Jörg Herter and Jan Reineke. Making Dynamic Memory Allocation Static To Support
WCET Analyses. In Proceedings of 9th International Workshop on Worst-Case Execution
Time (WCET) Analysis, June 2009.

8 Jörg Herter, Jan Reineke, and ReinhardWilhelm. CAMA: Cache-Aware Memory Allocation
for WCET Analysis. In Marco Caccamo, editor, Proceedings Work-In-Progress Session of
the 20th Euromicro Conference on Real-Time Systems, pages 24–27, July 2008.

9 Daniel S. Hirschberg. A Class of Dynamic Memory Allocation Algorithms. Commun. ACM,
16(10):615–618, October 1973.

10 Doug Lea. A Memory Allocator. unix/mail, 1996.
11 Miguel Masmano, Ismael Ripoll, Jorge Real, Alfons Crespo, and Andy J. Wellings. Im-

plementation of a Constant-Time Dynamic Storage Allocator. Software: Practice and
Experience, 38(10):995–1026, 2008.

12 Takeshi Ogasawara. An Algorithm with Constant Execution Time for Dynamic Storage
Allocation. Real-Time Computing Systems and Applications, International Workshop on,
0:21, 1995.

13 James L. Peterson and Theodore A. Norman. Buddy Systems. Commun. ACM, 20:421–431,
June 1977.

14 Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Dynamic Storage
Allocation: A Survey and Critical Review. In Henry G. Baker, editor, IWMM, volume 986
of Lecture Notes in Computer Science, pages 1–116. Springer, 1995.

Static analysis of WCET in a satellite software
subsystem∗

Jorge Garrido, Juan Zamorano, and Juan A. de la Puente

Real-Time Systems group (STRAST)
Universidad Politécnica de Madrid (UPM), Spain
str@dit.upm.es

Abstract
This paper describes the authors’ experience with static analysis of both WCET and stack usage
of a satellite on-board software subsystem. The work is a continuation of a previous case study
that used a dynamic WCET analysis tool on an earlier version of the same software system. In
particular, the AbsInt aiT tool has been evaluated by analysing both C and Ada code generated
by Simulink within the UPMSat-2 project. Some aspects of the aiT tool, specifically those dealing
with SPARC register windows, are compared to another static analysis tool, Bound-T. The results
of the analysis are discussed, and some conclusions on the use of static WCET analysis tools on
the SPARC architecture are commented in the paper.

1998 ACM Subject Classification C.3 Real-time and embedded systems

Keywords and phrases Real-time systems, embedded systems, timing analysis, WCET calcula-
tion, static analysis

Digital Object Identifier 10.4230/OASIcs.WCET.2013.87

1 Introduction

UPMSat-2 is a project aimed at developing an experimental micro-satellite that can be used
as a technology demonstrator for several research groups at UPM, the Technical University
of Madrid.1

The software for the mission is being developed by the Real-Time Systems Group at UPM
(STRAST)2, using a model-driven approach [1] that enables auto-generated functional code
from different modelling tools, including Simulink,3 to be included as source code modules.
The software structure supporting the concurrency and real-time aspects of the system is also
automatically generated from high-level models using a pattern-based approach [3, 12, 11].
The resulting source code is written in Ada 2005 [9] with the Ravenscar profile restrictions [4].
Functional C code is integrated with the Ada code using the standard Ada support for C
interfacing.

The hardware platform is based on a LEON computer board [7]. The executable code is
generated by means of the GNATforLEON compilation chain [13], which includes the ORK
real-time kernel [5].

European software standards for space systems require schedulability analysis to be
carried out on on-board real-time systems [6]. The Ravenscar profile enables such analysis

∗ This work has been partly funded by the Spanish Ministry of Economy and Competitiveness (MINECO),
project TIN2011-28567-C03-01 (HI-PARTES).

1 http://www.idr.upm.es/tec_espacial/upmsat2-eng/01_UPMSAT2.html
2 www.dit.upm.es/str
3 http://www.mathworks.com/products/simulink.

© Jorge Garrido, Juan Zamorano, and Juan A. de la Puente;
licensed under Creative Commons License CC-BY

13th International Workshop on Worst-Case Execution Time Analysis (WCET 2013).
Editor: Claire Maiza; pp. 87–96

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2013.87
http://www.idr.upm.es/tec_espacial/upmsat2-eng/01_UPMSAT2.html
www.dit.upm.es/str
http://www.mathworks.com/products/simulink
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

88 Static analysis of WCET in a satellite software subsystem

to be statically performed using well-known response-time analysis methods [10, 2], which
require the worst case execution time (WCET) of each task to be known. Since WCET
analysis may be complex and the choice of the best approach is not straightforward [15], a case
study was chosen in order to assess the suitability of some available tools. The worst-case
execution time of one of the UPMSat2 subsystems, ADCS (Attitude Determination and
Control Subsystem) was first analysed with RapiTime,4 a dynamic analysis tool, and the
results were presented in a previous paper [8].

This paper describes further work in analysing the ADCS subsystem using a static WCET
analysis tool, the aiT tool by AbsInt, which is part of the a3 analysis toolchain.5 The results
of the analysis are discussed and compared with those obtained with RapiTime.

The paper is organised as follows: Section 2 describes the UPMSat-2 platform, and
the relevant architectural characteristics for the rest of the paper. Section 3 describes the
SPARC register windows and the way the AbsInt tools deal with them. The approach is
compared to that of Bound-T, another static analysis tool. The a3 tools are described in
some detail in section 4. Section 4.2 presents the results obtained from the static analysis,
which are compared with those obtained from the dynamic analysis tool. Section 5 presents
an alternative approach to modelling the SPARC register window, and its application to
three different scenarios. Finally, section 6 presents the conclusions of the analysis.

2 UPMSAT-2 platform

2.1 Computer board
The engineering model used for this study is the same as in [8]. It is based on a GR-XC3S1500
Spartan3 development board6 with a LEON2 processor7 at 40 MHz with a 5-stage pipeline
and 64 MB of SDRAM.

2.2 SPARC architecture
SPARC (Scalable Processor ARChitecture) is a reduced instruction set architecture (RISC)
originally developed by Sun Microsystems [14]. The LEON family of processors is a 32-bit
synthesizable VHDL processor core that implements the SPARC V8 architecture. The first
LEON processors were originally developed by the European Space Agency in order to
provide a stable architecture for European space projects. The aim of the architecture is to
provide a platform for which compiler optimization can be easily performed, so that short
time-to-market development schedules can be achieved. To this end, the architecture has
been simplified with some special characteristics, such as a reduced set of instruction formats,
all 32 bits wide and with only two addressing modes, and a separated and configurable
floating-point register file. Other relevant aspects of the architecture include a big endian
byte ordering, a vectored trap table, as well as separated coprocessor, multiprocessor and
floating-point instruction sets.

One of the most distinctive features of the architecture is the use of register windows for
handling local storage areas and parameter passing. This feature has a strong influence on
the WCET, as discussed in the next section.

4 http://www.rapitasystems.com/rapitime
5 http://www.absint.com/a3/
6 http://www.pender.ch/products_xc3s.shtml
7 http://www.gaisler.com/leonmain.html

http://www.rapitasystems.com/rapitime
http://www.absint.com/a3/
http://www.pender.ch/products_xc3s.shtml
http://www.gaisler.com/leonmain.html

J. Garrido, J. Zamorano, and J.A. de la Puente 89

3 SPARC register windows

3.1 Overview
The SPARC architecture defines two types of registers: general-purpose registers and con-
trol/status registers. At any given time, 32 registers of 32 bits are provided for the programmer
use. They are logically divided into four sets of 8 registers each: global, in, local, and out
registers. Physically, they are divided into a set of 8 global registers and an implementation-
dependent number of 16-register sets. Each 16-register set is in turn logically divided into
8 in registers and 8 local registers. The remaining 8 registers, the out registers, overlap with
the in registers of the adjacent register set, thus making them accessible from the current
set. Each set of 32-bit registers that can be identified in the processor is called a register
window (see [14] for a detailed description).

The four register sets in a register window are used as follows:
Global registers are shared by all routines.
In registers are used to receive the arguments from the calling routine and return the
result at the end of the current routine execution.
Local registers are used to store partial results during the current routine execution.
Out registers used to pass arguments to called functions and receive return values from
them.

The aim of this division is to provide a higher number of registers and provide isolation
for the local registers in each function. A register window mimics the top of the stack for the
currently running routine, thus saving stack access time.

The number of register windows or register sets is implementation-dependent and ranges
from 2 to 32. If the nesting level is deep enough, after a sequence of calls, the callee may
not have a free register window to use. In that case, a register overflow trap occurs, and the
run-time kernel is responsible for providing a new register window to the routine. To this
end, a circular buffer of the register windows is commonly used, as shown in figure 1. In
order to make space, an implementation-dependent number of register windows are saved
in the stack by the overflow trap routine. After that, the call instruction can be resumed
and executed successfully. In the same way, it may happen that the previous window is not
available when it has to be restored after a chain of routine returns. This situation results in
a register window underflow trap, which is handled by the kernel in a similar way.

The SPARC register windows mechanism is useful for reducing the average execution
time of a program, but it introduces additional difficulties for computing the WCET of code
sections. The reason for it is that register windows introduce a performance dependence on
the execution history, in a similar way as cache memories do. The next paragraphs discuss
the modelling approach that some static analysis tools currently take in order to deal with
this mechanism. An enhanced approach is proposed in section 5.

3.2 Register windows in aiT
The aiT approach to modelling the SPARC register windows is overly simplistic. It assumes
that the processor can create an unlimited number of register windows. Consequently, a new
window can never overlap the first one, and the tool does not make use of information on
window overflows or underflows. Therefore, aiT results are only correct if the code being
analysed does not create more windows than available, i.e. if there are no window overflows.

On the other hand, the number of register windows created by the code can be calculated
by carrying out a stack analysis with an appropriate tool, e.g. the AbsInt StackAnalizer.

WCET 2013

90 Static analysis of WCET in a satellite software subsystem
Chapter 4 — Registers 27

w7 ins

w7 locals

w7 outs

w6 ins

w6 locals

w6 outs
w5 ins

w5 locals

w5 outs

w4 ins

w4 localsw4 outs

w3 ins

w3 locals

w3 outs

w2 ins

w2 locals

w2 outsw1 ins

w1 locals

w1 outs

w0 ins

w0 locals w0 outs
CWP+1

CWP
(current window)

CWP−1

WIM

RESTORE,
RETT

SAVE,
trap

Figure 4-2 The Windowed r Registers

In Figure 4-1, NWINDOWS = 8. The 8 globals are not illustrated. The register
sets are indicated in bold face. CWP = 0 and WIM[7] = 1. If the procedure using
window w0 executes a RESTORE, window w1 will become the current window.
If the procedure using window w0 executes a SAVE, a window_overflow trap
will occur. The overflow trap handler uses the w7 locals.

SPARC International, Inc.

Figure 1 SPARC register window schema. In this example 8 windows are shown, but this is an
implementation-dependent value that ranges between 2 and 32. Reproduced from [14].

The tool calculates a range of minimum and maximum register windows used by the code,
and this information can be useful to get a better estimation of execution time. However,
this is not enough to compute accurate WCET values, since more detail on the total number
of windows used, and the times when they are opened or closed, is required for this purpose.

3.3 Comparison with the Bound-T approach
Bound-T8 is another tool for static analysis of WCET. It provides an upper bound on
execution time and stack usage, as well as control flow graphs and call trees, for a variety
of processor architectures, including ERC32.9 Although it does not fully supports LEON
processors, it still can be used in a limited way to provide some useful information for this
architecture. In particular, Bound-T uses an approach to modelling window registers that is
of great interest. It is not only aware of the possibility of an overflow or underflow on each
call or restore instruction, but it also offers the possibility to make assertions on the number
of register windows that are in use at the entry point of each routine. This feature allows for
a better analysis and understanding of the behaviour of the code with respect to register
windows. A proposal on how to use Bound-T register window support to complement aiT
results is described in section 5.

4 Methodological approach

4.1 Overview of the a3 toolchain
The aiT tool is integrated in the AbsInt Advanced Analyzer (a3) toolchain,10 which also
includes tools for stack analysis, value analysis, and other kinds of static analysis. The tools

8 See http://www.bound-t.com and http://www.tidorum.fi/
9 ERC32 is a predecessor of the LEON processor series, based on the SPARC V7 architecture.
10 http://www.absint.com/a3

http://www.bound-t.com
http://www.tidorum.fi/
http://www.absint.com/a3

J. Garrido, J. Zamorano, and J.A. de la Puente 91

work on binary executable files, and the results are thus in principle independent of the
compiler and source code language. In practice, a wide range of compilers is supported by a3
for each target.

Static analysis tools are strongly dependent on hardware models, and thus have to be
carefully configured in order to get accurate results. Apart from some processor specific
features, such as pipeline behaviour, that are already included in the tool, there are other
such as FPU, cache and main memory characteristics, which have to be defined by the user.

The a3 WCET tool (aiT) generates a call graph where the nodes are labelled with their
relative execution times, as shown in figure 2. In order to provide a better human interface,
the labels are drawn in different colours, depending on whether they lie in the worst-case
path or not. Additionally, it outputs a table with detailed information, including self and
global WCET, infeasible sections of code, and different context values. An XML output is
also provided in order to facilitate further processing of the results by third party tools or
scripts.

4.2 ADCS case study
The controller module of the UPMSat2 Attitude Determination and Control System (ADCS)
has been used as a case study for static WCET analysis with the a3 tools. The code is
the same that was previously used in an experiment on dynamic analysis carried out with
RapiTime [8].

The ADCS controller code has a linear structure, and it mostly consists of arithmetic
operations on vectors. In spite of its simplicity, however, the execution times of the floating-
point operations is highly variable, and depends on the input values that are read by attitude
sensors and processed by the control algorithm.

Figure 2 UPMSat-2 ADCS controller worst case execution path graph. As the controller code is
linear, all the blocks are in the worst case path.

The results obtained by the a3 tools for the controller module are shown in figure 2. The
estimated WCET value is 72366 cycles, equivalent to 1.809 ms on the target platform. This
result is compared with that obtained with RapiTime in table 1. It can be seen that the

WCET 2013

92 Static analysis of WCET in a satellite software subsystem

Table 1 Comparison between Rapitime and a3 results.

Tool WCET (cycles)
Rapitime 8400

a3 72366
a3 with real inputs 45000

estimated WCET value is an order of magnitude higher when the static tool, a3, is used.
This could be expected to some extent, taking into account that a3 computes its results
from a model of the computer, whereas RapiTime relays on measurements. However, even
considering the different approaches of both tools, the difference between the WCET values
seems to be too large.

One of the main reasons for this difference are the different ways that the values of input
variables are obtained. In the Rapitime experiment, values of the Earth magnetic field coming
from an accurate simulation model are used (see [8] for a description of the testbench). On
the contrary, in the a3 experiment input values are automatically generated within the whole
double float range. The actual range of possible values is much more restrictive, but a3 does
not provide a mechanism for imposing such restriction on this data type (although it can be
done for other data types). It should be taken into account that the target LEON computer
does not have an FPU, and thus the floating-point operations are implemented in software,
thus making their execution time highly dependent on the operand values.

In order to compensate for this deviation from the real behaviour, the static analysis
experiment has been repeated using a subset of the magnetic field input data values obtained
from the simulation model. The values have been included in the model by calling the
controller from a wrapper function with the simulation values declared locally. Asserting this
function as an entry point, different WCET values are computed for each call. This technique
provided a tighter WCET estimation, down to 45000 cycles as shown in the third row of
table 1. Notice that this value has been obtained only for comparison purposes, and can
not be taken as a real measure of WCET in any case. Moreover, overheads due to register
window overflows and underflows have not been taken into account, which surely results in
further inaccuracies. An enhanced approach including overflow and underflow overheads is
developed in the next section.

5 Modelling register windows

5.1 Register windows and execution time
The fact that a3 tools do not take into account the register windows overflows and underflows
makes the WCET analysis optimistic with respect to this aspect of the SPARC architecture.
In order to obtain more accurate WCET estimations, the effect of the overhead incurred by
these operations on the execution time has to be appropriately modelled and accounted for
in the analysis.

The first step is to get a value for the WCET of the routine that handles register window
overflows and underflows, WCETT . This value can be measured directly on the platform
using a hardware monitor such as GRMON.11 The CPU cycles gap between the first and

11 http://www.gaisler.com/index.php/products/debug-tools/grmon

http://www.gaisler.com/index.php/products/debug-tools/grmon

J. Garrido, J. Zamorano, and J.A. de la Puente 93

second call or restore instruction provides such a measurement, including memory accesses.
Since the handling routines are linear, there is no cache, and further traps are disabled during
their execution, we can safely assume that their execution times are constant.

The run-time kernel can deal with overflows and underflows in different ways. In particular,
the number of registers that are saved and restored when a overflow or underflows occurs
depends on the implementation, although it has been shown that saving and restoring one
window on each overflow/underflow trap is the best approach.

Another important topic is context switches between threads. For instance, some kernels
only restore the last window after a context switch. In this way, the context switch time is
minimized, but in a concurrent environment each restore can potentially lead to an underflow.
Moreover, each save can potentially lead to an overflow if the kernel only provides one valid
window to the scheduled thread and keeps the content belonging to the preempted thread in
the rest of windows. Therefore, in order to minimize the wort-case number of overflows and
underflows, the full content of the register windows should be restored.

In general, the execution time of the overflow/underflow handling routine has to be
multiplied by the worst-case number of overflows and underflows in the code, and the result
has to be added to the WCET computed by the analysis tool in order to obtain a better
estimate of the overall WCET of the code being analysed. The total overhead that can be
computed in different situations is discussed in the next paragraphs. Sections 5.2 and 5.3
analyse the cases when only one window is restored or saved by the trap routines, whereas
section 5.4 analyses the situation when more windows are restored or saved.

5.2 One window, no full context restore
The stack analysis tool provides the minimum and maximum number of register windows
that can be used and the number of overflow/underflow traps that can occur in a single
execute of a function f . Let this number be Tf , and let nf be the number of times f is called
in the worst-case path. The total worst-case number of traps occurring in f is thus

Nf = nf × Tf

The total number of traps in the worst-case path is

N =
∑
f∈F

Nf

where F is the set of functions.
Finally, the total worst-case overhead is

WCOH = N × WCETT

where WCETT is the worst-case execution time of the trap handler routines.
Applying this technique to the case study, Bound-T reports a total of six functions causing

overflows, with a total number of overflow traps NO = 25 and a similar number of underflow
traps, NU = 25. The WCET is not the same for overflow and underflow traps, and the
respective values are WCETO = 156 and WCETU = 188 cycles. Hence the total overhead
caused by the overflow and underflow traps is

WCOH = 25 × 156 + 25 × 188 = 8600 cycles

This value is significant, as it amounts to an 11.56 % of the WCET computed by a3 and
a 102.38 % of that computed by Rapitime.

WCET 2013

94 Static analysis of WCET in a satellite software subsystem

5.3 One window, full context restore
The ORK kernel used in the UPMSat-2 software saves and restores only one window per
trap, as previously considered, but in this case the full state of the registers is restored on
each context switch. Therefore, the worst-case number of overflows in a code section equals
the maximum depth of register windows it can create. This number is usually much lower
than that obtained in the previous situation. Underflows can only occur if the depth of
windows saved in the stack is greater than the number of physical windows.

For the ADCS case study, both a3 and Bound-T reported a maximum register window
depth DW = 3. This means that the maximum number of overflows is NO = 3. Since the
LEON processor has 8 real register windows, no underflow can occur. The overhead is now

WCOH = 3 × 156 + 0 × 188 = 468 cycles

This value is much lower than the previous one. It amounts only to a 0.63 % of the a3
WCET value and a 5.57 % of the Rapitime value.

5.4 More than one window
The SPARC architecture enables from 2 to 32 register windows, and implementations can
restore between 1 and the total number of sets. This greatly increases the complexity of the
analysis, as the number of possible behaviour may become very high. A full study of all the
implementation possibilities is out of the scope of this paper, but previous versions of the
ORK kernel are discussed as an example.

In ORK 1.0 only the last window was restored after a context switch. This case is the
“one window with no restore” case, as any save and restore may cause a trap.
In later ORK versions, the full register set is left as it was before the context switch.
In order to achieve this result, the trap handling routines for register window overflow
and underflow save or restore the full set of windows. For example, on a processor with
8 register windows, there are 7 windows available to user software. Therefore, after 7
consecutive saves a window overflow occurs. In the worst case, user code may save and
restore windows in the edge of the window invalid mask,12 generating a trap on each save
or restore.

In the case study the worst case happens when the user function is called using the last
valid window, and thus every procedure call causes a window overflow. This includes all calls
to floating-point arithmetic routines, which are frequent. Similarly, every return from the
routines causes an underflow. Therefore the overhead is just one overflow and underflow less
than the “one window, no restore” case. i.e.

WCOH = 24 × 156 + 24 × 188 = 8256 cycles

Since more than one window is saved or restored on each overflow or underflow trap,
the execution time of the trap handling routines may increase. Therefore, the above values
should be taken as a lower bound.

In all cases, the computed overhead must be added to the WCET computed with the the
basic analysis of section 4.2. Table 2 summarizes the results compared to the basic analysis.

12 The window invalid mask is a bit map of valid windows [14].

J. Garrido, J. Zamorano, and J.A. de la Puente 95

Table 2 Rapitime and a3 results with register windows overhead (times in cycles).

Tool Basic analysis 1 w. full restore 1 w. no restore 7 w. full restore
Rapitime 8400 8868 (+5.57%) 17000 (+102.38%) 16656 (+98.28%)

a3 72366 72834 (+0.63%) 80966 (+11.56%) 80622 (+11.28%)

6 Conclusions

Modelling modern processors is a complex task, due to the wide range of hardware acceleration
features they include, such as cache memories, memory management units, coprocessors,
or multicore architectures. Although the SPARC v8 is far from new, modelling its set of
register windows is not trivial and indeed complicates the task of estimating execution times
on this kind of processors. In general, it can be said that the SPARC registers architecture
improves efficiency and reduces the overall execution time of the application code. However,
if not properly analysed, it can lead to imprecise, unsafe results.

Some software elements can also have an influence on the execution time of code running
on register window architecture. In particular, run-time kernels may deal with window
overflows and underflows in different ways. Such differences may result in different levels
of overheads on the WCET values, as shown in section 5. Other sources of inaccuracy may
arise that make it difficult for analysis tools to predict the execution behaviour of code. For
example, loop bounds may depend on input values that are unknown at the time of analysis.
A way to cope with this issue is to use assertions to restrict the number of possible execution
paths. However, assertions are often hard to establish and prone to errors, and thus unsafe.

The scenarios analysed in section 5 and summarized in table 2 show that different hardware
and software implementations of the SPARC register windows produce different levels of
overhead in the case execution time that must be taken into account for the estimation of
WCET.

Acknowledgements

The authors would like to thank AbsInt and Tidorum for their active collaboration and the
support provided. We would especially like to express our gratitude to Christian Hümbert
from AbsInt, Enrico Mezzetti from Università degli Studi di Padova, and Niklas Holsti from
Tidorum, for their support and personal implication.

References

1 Alejandro Alonso, Emilio Salazar, and Juan A. de la Puente. Design of on-board software
for an experimental satellite. In Jornadas de Tiempo Real — JTR-2013, 2103.

2 Neil Audsley, Alan Burns, Rob Davis, Ken Tindell, and Andy J. Wellings. Fixed priority
preemptive scheduling: An historical perspective. Real-Time Systems, 8(3):173–198, 1995.

3 Matteo Bordin and Tullio Vardanega. Automated model-based generation of Ravenscar-
compliant source code. In Proc. 17th Euromicro Conference on Real-Time System,
ECRTS’05, pages 59–67, Washington, DC, USA, 2005. IEEE Computer Society.

4 Alan Burns, Brian Dobbing, and Tullio Vardanega. Guide for the use of the Ada Ravenscar
profile in high integrity systems. Ada Letters, XXIV:1–74, June 2004.

5 Juan A. de la Puente, José F. Ruiz, and Juan Zamorano. An open Ravenscar real-time
kernel for GNAT. In Hubert B. Keller and Erhard Plödereder, editors, Reliable Software

WCET 2013

96 Static analysis of WCET in a satellite software subsystem

Technologies — Ada-Europe 2000, number 1845 in LNCS, pages 5–15. Springer-Verlag,
2000.

6 European Cooperation for Space Standardization. ECSS-E-ST-40C Space engineering —
Software, March 2009. Available from ESA.

7 Gaisler Research. LEON3 – High-performance SPARC V8 32-bit Processor. GRLIB IP
Core User’s Manual, 2012.

8 Jorge Garrido, Daniel Brosnan, Juan A. de la Puente, Alejandro Alonso, and Juan Zamor-
ano. Analysis of WCET in an experimental satellite software development. In Tullio
Vardanega, editor, 12th International Workshop on Worst-Case Execution Time Analysis,
volume 23 of OpenAccess Series in Informatics (OASIcs), pages 81–90. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2012.

9 ISO. Ada Reference Manual ISO/IEC 8652:1995(E)/TC1(2000)/AMD1(2007), 2007. Avail-
able at http://www.adaic.com/standards/ada05.html.

10 Mathai Joseph and Paritosh K. Pandya. Finding response times in real-time systems. BCS
Computer Journal, 29(5):390–395, 1986.

11 Enrico Mezzetti, Marco M.Panunzio, and TullioVardanega. Preservation of timing proper-
ties with the Ada Ravenscar profile. In Jorge Real and Tullio Vardanega, editors, Reliable
Software Technologies – Ada-Europe 2010, number 6106 in LNCS, pages 153–166. Springer-
Verlag, 2010.

12 José Pulido, Juan A. de la Puente, Matteo Bordin, Tullio Vardanega, and Jérôme Hugues.
Ada 2005 code patterns for metamodel-based code generation. Ada Letters, XXVII(2):53–
58, August 2007. Proceedings of the 13th International Ada Real-Time Workshop (IR-
TAW13).

13 José F. Ruiz. GNAT Pro for on-board mission-critical space applications. In Tullio Vard-
anega and Andy Wellings, editors, Reliable Software Technologies – Ada-Europe 2005,
volume 3555 of LNCS. Springer-Verlag, 2005.

14 SPARC International, Upper Saddle River, NJ, USA. The SPARC architecture manual:
Version 8, 1992.

15 Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra,
Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. The
worst-case execution-time problem—overview of methods and survey of tools. ACM Trans.
Embed. Comput. Syst., 7(3):1–53, 2008.

http://www.adaic.com/standards/ada05.html

Applying Measurement-Based Probabilistic
Timing Analysis to Buffer Resources
Leonidas Kosmidis1,2, Tullio Vardanega3, Jaume Abella2,
Eduardo Quiñones2, and Francisco J. Cazorla2,4

1 Universitat Politècnica de Catalunya
2 Barcelona Supercomputing Center
3 University of Padova
4 Spanish National Research Council (IIIA-CSIC)

Abstract
The use of complex hardware makes it difficult for current timing analysis techniques to compute
trustworthy and tight worst-case execution time (WCET) bounds. Those techniques require
detailed knowledge of the internal operation and state of the platform, at both the software
and hardware level. Obtaining that information for modern hardware platforms is increasingly
difficult.

Measurement-Based Probabilistic Timing Analysis (MBPTA) reduces the cost of acquiring
the knowledge needed for computing trustworthy and tight WCET bounds. MBPTA based on
Extreme Value Theory requires the execution time of processor instructions to be independent
and identically distributed (i.i.d.), which can be achieved with some hardware support. Previous
proposals show how those properties can be achieved for caches. This paper considers, for the
first time, the implications on MBPTA of using buffer resources. Buffers in general, and first-
come first-served (FCFS) buffers in particular, are of paramount importance as the complexity
of hardware increases, since they allow managing contention in those resources where multiple
requests may be pending. We show how buffers can be used in the context of MBPTA and
provide illustrative examples.

1998 ACM Subject Classification D.2.4 Software Engineering: Software/Program Verification

Keywords and phrases WCET, Buffer, Probabilistic Timing Analysis

Digital Object Identifier 10.4230/OASIcs.WCET.2013.97

1 Introduction

There is an increasing need for high guaranteed performance in Critical Real-Time Embedded
Systems (CRTES) industry such as automotive, space, and aerospace. To respond to this
demand, more complex hardware is used, which allows increasing performance per chip unit,
which in turn enables running more functionalities per chip, thus reducing size, weight and
power consumption costs at system level.

Probabilistic Timing Analysis (PTA) [4][3] has recently emerged as an alternative to
conventional static (STA) and measurement-based timing analysis (MBTA) techniques [11].
Although PTA is not as mature as STA and MBTA yet, it promises to reduce dependence
on execution history. This is done by randomising the timing behaviour of some processor
resources, which reduces the amount of information needed to obtain tight WCET bounds in
comparison to other timing analysis approaches.

PTA provides WCET estimates with an associated probability of exceedance (pWCET). In
analogy to the practice that expresses reliability for embedded safety-critical systems in terms

© Leonidas Kosmidis, Tullio Vardanega, Jaume Abella, Eduardo Quiñones, and Francisco J. Cazorla;
licensed under Creative Commons License CC-BY

13th International Workshop on Worst-Case Execution Time Analysis (WCET 2013).
Editor: Claire Maiza; pp. 97–108

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2013.97
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

98 MBPTA and Buffer Resources

of allowable probabilities of hardware failures, PTA extends this notion to timing correctness
by determining the probability with which a given WCET bound can be exceeded during
system operation. PTA aims to obtain pWCET estimates for arbitrarily low probabilities,
so that even if the chosen pWCET estimate can be exceeded, it would be with low enough
probability (e.g., in the region of 10−12 per hour of operation, largely below the required
probability of hardware failures). PTA can be applied either in a static (SPTA) [3] or
measurement-based (MBPTA) [4] manner. This paper focuses on the latter, which is more
easily amenable to industrial practice.

Contribution. PTA can be applied to hardware/software platforms where the ETP
per instruction can be derived. PTA-compliance has been achieved so far for processors
equipped with cache memories [5, 6]. In this paper we extend this to buffer resources.
Buffers allow managing contention in those resources where multiple requests may be
pending, decoupling the speed at which requests are sent and processed. Our contribution is
threefold: (1) We prove that buffers can be used while preserving compliance with MBPTA
requirements. Unlike other resources like caches that need to be time-randomised in order to
work properly with MBPTA, buffers require no changes to be used with MBPTA. (2) We
provide a new classification of hardware resources and describe how they can be adopted
with MBPTA. (3) We show that, although buffers and any other complex resource in general
can create dependences across instructions, they can be analysed by MBPTA as long as those
dependences, regardless of their nature, whether deterministic or probabilistic, stay the same
at analysis and during operation. For buffers in particular, we show how the dependences
they create across instructions are purely probabilistic in a MBPTA-compliant processor and
do not change between analysis and deployment.

2 Background

Figure 1 Example of the pWCET curve.

Unlike previous analysis techniques that
provide a single WCET value per program,
PTA provides a distribution function that up-
per bounds the execution time of the program
under analysis, guaranteeing its execution
time only exceeds the corresponding execu-
tion time bound with a probability lower than
a given target threshold (e.g., 10−16 per activ-
ation). In this way the pWCET is defined as
the execution time bound with its associated
exceedance probability.

The timing behaviour of a program (and
equivalently that of individual processor in-
structions) is represented with an Execution
Time Profile (ETP). An ETP is the prob-
ability distribution function describing the
different execution times that the program can take (the latencies, for processor instructions)
and their associated probabilities. That is, the timing behaviour of a unit of execution (pro-
gram, instruction) can be defined by the pair of vectors (

→
l ,
→
p) = {l1, l2, ..., lk}{p1, p2, ..., pk},

where pi is the probability the program/instruction having latency li with
∑k

i=1 pi = 1.
The ETP for a program (resp. instruction) may vary with the program input sets

that lead to different execution paths. Furthermore, the ETP for an instruction may vary

L. Kosmidis, T. Vardanega, J. Abella, E. Quiñones, and F.J. Cazorla 99

across multiple uses as execution events (e.g. previous accesses to memory) affect the state-
dependent timing behaviour of that instruction. In Annex I we analyse those aspects showing
that (1) the effect of past random events affect the ETP of an instruction in a probabilistic
manner, whereby PTA continue to be applicable; and (2) each PTA technique has its own
mechanisms to address the multiple execution path problem.

MBPTA requires the hardware to guarantee that each operation (at the granularity of
processor instructions or below) has its own ETP. However, unlike SPTA, which needs all
ETPs to be known, MBPTA only requires those ETPs to exist. In other words, if execution
times were collected by rolling a die, SPTA would need to know the number of faces of that
die, the value on those faces, and their individual probabilities of occurrence. Conversely,
MBPTA would derive pWCET estimates by simply rolling the die, that is to say, by executing
the program a given number of times, observing the resulting execution times and treating
them with Extreme Value Theory (EVT) [4, 8] to a trustworthy and tight upper bound to
the tail of the observed execution time distribution. By doing so, MBPTA provides pWCET
estimates for arbitrarily low target probabilities. Figure 1 shows a hypothetical result of
applying EVT to a collection of 1,000 observed execution times. The dotted line represents
the inverse cumulative distribution function (ICDF) derived from the observed execution
times. The continuous line represents the projection obtained with EVT.

2.1 Probabilistic Behaviour of Simple Processor Resources
Processor resources can be regarded as abstract components that process requests. Each
such request has a distinct service time or latency, which can either be fixed or variable.

Jitter-centric resource classification. We term jitter the difference between the best and
worst possible latency of any resource. Resources can be then classified depending upon
whether they exhibit jitter or not. Jitterless resources have a fixed latency, independent of
the input request or of the past history of service of the resource. Many hardware resources
in current processor architectures can be classified as jitterless. Other resources, for instance
cache memories, have a variable latency and hence are jittery resources; their latency depends
on their history of service, i.e., the execution history of the program, the input request, or a
combination of both. Jittery resources have an intrinsically variable impact on the WCET
estimate for a given program. The significance of this impact depends on the magnitude of the
jitter, the program under study, and the analysis method. A way to deal with jittery resources
in the absence of timing anomalies is to assume that all requests to those resources incur
the worst-case latency [9]. This is acceptable if the cumulative impact on the WCET from
assuming the worst-case jitter for the resource is deemed low enough by the system designer.
If taking the worst latency is not acceptable, then the timing behaviour of the resource must
be randomised. This is the case of the cache, since taking its worst latency would greatly
amplify the pWCET estimate. Several works propose time-randomising caches to reach both,
probabilistically analysable behaviour and high guaranteed and average performance [5, 6].

ETP and jitter. Jitterless resources are easy to model for all types of static timing analysis.
Building the ETP of a simple instruction that uses a single resource, requires knowing only
whether the resource in question is jitterless (information implicit in the instruction) or
whether the instruction is part of a sequence of instructions that must incur a delay when
using a jitterless resource (information implicit in the architecture). With proper path and
pipeline analysis, the types of the resources can be determined. Of course, measurements
obtained from program runs that only use jitterless resources will perfectly capture their

WCET 2013

100 MBPTA and Buffer Resources

Table 1 Code example with hit/miss probabilities for the instruction and data caches.

instruction instruction IL1 DL1
id type hit prob. miss prob. hit prob. miss prob.
i1 LD 1.0 0.0 0.9 0.1
i2 ADD 0.7 0.3 - -
i3 ADD 0.6 0.4 - -
i4 ADD 1.0 0.0 - -

constant impact on execution time. If the instruction accesses a jittery resource whose
worst-case latency is acceptable for the designer, forcing that resource to always take the
longest latency would be a simple yet effictive way to make the resource PTA-conformant:
the ETP of that resource would have a single latency value (its worst case) with probability
1, i.e. 100% probability of maximum latency, leading to a upper-bounded deterministic jitter.

Instructions may access multiple resources during their execution, and those resources can
be arranged in different manners, e.g. sequentially or in parallel. Under each arrangement,
the ETP of those resources can be properly combined to derive the ETP of the instruction.
To that end, several forms of convolution, ⊗ [3], can be used either adding latencies (se-
quential arrangements) or picking the maximum latency of the elements convolved (parallel
arrangements).

3 Complex Processor Resources

However, the taxonomy presented in previous section does not cover buffers, which in fact
are in widespread use in modern processor architectures. Buffers are used to temporarily
hold some information decoupling the timing of the sender and the receiving elements. If a
buffer is full it may create stalls that propagate backwards in the pipeline of the processor,
thus potentially increasing the execution time and affecting WCET.

3.1 Timing Behaviour of a Buffer in a Time-Randomised Architecture
For the sake of illustration, let us assume an architecture with two stages (fetch and execute)
that respectively access instruction and data caches (IL1 and DL1 for short). Caches deploy
random placement and random replacement [5], which enable computing a probability of
hit/miss for every access. In between both stages there is a 2-entry buffer (see Figure 2). In
case of hit in both caches and if the buffer is available, an instruction takes 3 cycles: Fetch
(F), buffer (b) and Execute (E).

Figure 2 Processor setup considered in Sec-
tion 3.1.

Further assume that we execute the pro-
gram with four instructions shown in Table 1,
whose hit and miss probabilities for each
cache are shown next to each instruction.
For this example, i1 always hits in IL1 and
has a 0.9 hit probability in DL1. The re-
maining instructions do not access DL1.

In the program fragment shown in
Table 1, i1 may introduce some delay in
the execution of the program when access-
ing DL1. In particular, if it misses in the
data cache it will cause a longer delay than if it hits. Note that the IL1 hit probability of i1
is 100%, hence always hitting in IL1. i2 and i3 may introduce some delay when accessing
IL1 only since they are not memory operations.

L. Kosmidis, T. Vardanega, J. Abella, E. Quiñones, and F.J. Cazorla 101

Figure 3 Potential chronograms based on the outcome of the different cache accesses. (<DL1-i1
IL1-i2 IL1-i3>) Grey rectangles show the cycles in which the processor is stalled due to the buffer.

In Figure 3 we depict the 8 different chronograms for each one of the combinations of hits
and misses in IL1 and DL1 of all 4 instructions. The x-axis shows the cycles of execution
while the y-axis shows each instruction. Each rectangle represents the stage in which each
instruction is in each cycle: ‘F’ fetch, ‘b’ buffer and ‘E’ execute. We use the vector <DL1-i1,
IL1-i2, IL1-i3> to describe the outcome of each DL1 and IL1 access, being H a hit and M
a miss. For instance <HHH> is the event ‘i1 hits in DL1’ and both ‘i2 and i3 hit in IL1’.
Similarly P(HHH) is the probability of that event to happen. Note that i1 and i4 have IL1
hit probability of 100% so for this reason IL1i1 and IL1i4 do not appear in the vector.

The key appreciation we do in the behaviour of the buffer is the following: given a set
of fixed initial conditions (e.g. empty state of the pipeline) each different combination of
probabilistic events (e.g. DL1 and IL1 accesses) leads to exactly one fully-deterministic
behaviour of the buffer. If we compare different outcomes of probabilistic events, we observe
that the buffer introduces a different number of stall cycles (0, 2, 4 or 6 cycles) for each
combination of probabilistic events. The number of stalls and the particular cycles in which
the stalls occur may repeat in different sequences of outcomes of the probabilistic events
occurring (for instance cases <M,H,M> and <M,M,H>). However, for a particular sequence
of random events the behaviour of the buffer is fully deterministic: all data dependences,
which are given by the sequence of instructions that are executed and their order. Given
that MBPTA works or a per-path basis, in each path the sequence of instructions executed
is known and fixed across runs of the same path.

The initial conditions can be caused to a fixed state by flushing the state of the resource
prior to its use. Alternatively, it might be possible to probabilistically determine the state

WCET 2013

102 MBPTA and Buffer Resources

left by previously executing code. We refer the reader to [7]. for more details.
In order to better understand this phenomenon, Figure 4 depicts, for the same example

shown before, the probability tree for the states of the processor in each cycle. In cycle 1 i1 is
fetched. In cycle 2 i1 is stored in the buffer while i2 is fetched. Accessing DL1 is a random
event that has two outcomes hit/and miss, and hence spawns into two possible probabilistic
states, which generates a new branch in the probability tree as shown in cycle 2.

In the left branch, during cycle 3, i1 accesses DL1 while i3 accesses IL1. Both are
probabilistic events that generate 4 new branches in the probability tree. Similarly, in the
right branch in cycle 3, i1 accesses DL1 generating two branches in the probability tree.

As shown, the variability in the execution time increases the number of potential probab-
ilistic states that we can reach. It is interesting noting that all the execution time variability
can only be introduced by probabilistic events.

In this diagram, the stalls due to the buffer are shown with grey boxes. Unlike caches that
introduce probabilistic variability, and hence generate new branches in the probability tree,
buffer stalls cannot produce probabilistic variability, instead buffer variability has no effect on
the probability of each execution time to occur. Therefore buffers cannot create probabilistic
jitter but simply propagate jitter or, in other words, given a sequence of outcomes for all
probabilistic events the delay of the buffer resources is fully deterministic.

Under MBPTA, the fact that buffer resources can affect the duration of the program
under each combination of probabilistic events but cannot affect the probability of each
combination, simplifies their analysis. As long as the execution time observations obtained
sufficiently cover, in probabilistic terms, the outcome of random events, it is also enough to
safely cover the effect of buffers.

3.2 Classification of Sources of Jitter
So far we regarded jitter as deterministic or probabilistic (the latter for time-randomised
resources). Yet, as shown above, the jitter caused by buffers does not fit into either category;
instead, it simply propagates the inbound jitter regardless of its nature.

With this insight, we classify the potential sources of jitter into 6 groups depending on
the combination of two factors: (i) whether the jitter is produced solely by the event under
consideration (no history dependence) or by the combination of previous events and the
current one (history dependence); and (ii) whether the jitter is deterministic, probabilistic or
simply propagated regardless of its source. We omit two groups for which we did not find
any existing resource to fit in.

This new classification of hardware resources will help analysing whether a given resource
or processor architecture is MBPTA-compliant. To that end, for each group we identify how
resources in that group can be used in the context of MBPTA.

No history dependence + deterministic jitter. This could be the case of a resource whose
latency does not depend on the sequence of requests it has received, but on the data of
each request. For instance, the floating-point unit in some processors is affected by the
particular operands (data) being operated. For this type of resources we typically enforce
the unit to experience always its maximum latency as explained before, which can be
done deploying a simple hardware mechanism called the worst-case mode [9].
History dependence + probabilistic jitter. This is the case of a time randomised cache [5].
The sequence of events between two consecutive accesses to the same data together with
the initial cache state, determine the hit/miss probability of that access. Time randomised
caches have been shown to be analysable with MBPTA [5].

L. Kosmidis, T. Vardanega, J. Abella, E. Quiñones, and F.J. Cazorla 103

Figure 4 Processor Stage Graph.

History dependence + deterministic jitter. This is the case of a deterministic cache
implementing modulo placement and LRU replacement. Events may experience different
latencies depending on previous history: for a given initial state and a sequence of events
their latency is always the same. This type of resources is not analysable by MBPTA in
general unless the factors that influence the jitter are fully under control, so that it can
be known whether the observations taken to feed MBPTA cover the worst behaviour of
those factors of influence. In general, the only easy way to enable the use of this type of
resources in the context of MBPTA is using the worst-case mode.

History dependence + jitter propagation. This is the case of a hardware buffer. A
particular instruction may spend a different number of cycles in a buffer depending
on previous events. However, as explained before, buffers do not create new jitter by
themselves. Instead, they only propagate deterministically the effect of the jitter induced
by other resources. If such jitter is probabilistic, then the stalls induced by buffers occur
also with a given probability and so they are analysable with MBPTA.

WCET 2013

104 MBPTA and Buffer Resources

3.3 Empirical Verification

Figure 5 Processor setup considered in Section 3.3.

Although we have described how
buffers meet the MBPTA require-
ments if they are already fulfilled
by the processor in use without buf-
fers, in this section we verify em-
pirically that this claim holds by
testing that execution times in such
a processor are independent and
identically distributed, as required
by MBPTA. To that end we ap-
ply the experimental methodology
shown in [4].

We consider a pipelined pro-
cessor with in-order fetch, dispatch
and retirement of instructions (see
Figure 5). Fetch and execution
stages are equipped with first level
instruction and data cache memories respectively (IL1 and DL1 caches for short). Instruction
and data translation look-aside buffers (ITLB and DTLB) are also in place. Buffers across
pipeline stages are deployed to mitigate stalls. Similarly, a store buffer is provided to allow
store instructions to retire quickly without stalling the pipeline1. Both IL1 and DL1 size are
4KB 8-way 16-byte line caches. Both caches implement random placement and replacement
policies [5]. DTLB and ITLB are 16-way fully associative, and page size is 1KB. The latency
of the fetch stage depends on whether the access hits or misses in the IL1 and ITLB: only
if the access hits in both its latency is 1-cycle, and 100 cycles otherwise. After the decode
stage, memory operations access the DL1 and DTLB and their behaviour is analogous to
that of IL1 and ITLB. The remaining operations have a fixed execution latency (e.g. integer
additions take 1 cycle).

For our experiments we use the EEMBC Autobench benchmark suite [10] that reflects the
current real-world demand of automotive systems. The fact that, unlike EEMBC, real-world
programs normally have multiple paths does not invalidate the conclusions of our analysis:
this is so because MBPTA considers individual paths.

In order to test independence we use the Wald-Wolfowitz independence test [2]. We use
a 5% significance level (a typical value for this type of tests), which means that absolute
values obtained after running this test are below 1.96 if there is independence, otherwise
are higher. For identical distribution, we use the two-sample Kolmogorov-Smirnov identical
distribution test [1] as described in [4]. For a 5% significance level, the outcome provided by
the test should be above the threshold (0.05) to indicate identical distribution, otherwise
non-identical distribution.

Table 2 shows the results of both tests for all EEMBC benchmarks, when running each
benchmark as many times as needed by MBPTA (up to 1,000 times per benchmark in our
evaluation). As shown, both tests are passed in all cases.

1 A store buffer is a particular incarnation of buffer resources.

L. Kosmidis, T. Vardanega, J. Abella, E. Quiñones, and F.J. Cazorla 105

Table 2 Independence and identical distribution tests results.

Benchmark a2time aifftr aifirf aiifft cacheb canrdr
Indep. test 0.90 0.10 0.27 0.11 0.51 0.21

Ident. distr. test 0.64 0.93 0.84 0.70 0.40 0.39
Benchmark iirflt puwmod rspeed tblook ttsprk
Indep. test 0.11 0.37 0.33 0.47 0.63

Ident. distr. test 0.80 0.89 0.27 0.93 0.73

4 Conclusions

In this paper we show that buffer resources do not create any jitter on their own but, instead,
they simply propagate inbound jitter regardless of the nature of it. With this, we prove that
buffers do not break PTA requirements, hence can be used in PTA-conforming processors
with no change. We also provide a comprehensive classification of hardware resources and
how they can be considered in the context of PTA.

Acknowledgements

The research leading to these results has received funding from the European Community’s Sev-
enth Framework Programme [FP7/2007-2013] under the PROARTIS Project (www.proartis-
project.eu), grant agreement no 249100. This work was partially supported by EU COST
Action IC1202: Timing Analysis On Code-Level (TACLe). This work has also been partially
supported by the Spanish Ministry of Science and Innovation under grant TIN2012-34557 and
the HiPEAC Network of Excellence. Leonidas Kosmidis is funded by the Spanish Ministry of
Education under the FPU grant AP2010-4208. Eduardo Quiñones is partially funded by the
Spanish Ministry of Science and Innovation under the Juan de la Cierva grant JCI2009-05455.

WCET 2013

106 MBPTA and Buffer Resources

A Annex I. Meeting MBPTA requirements

Next, we show how the existence of an ETP for each instruction in a program is a necessary
and sufficient condition to make a program and a target platform analysable with MBPTA.
To that end and without loss of generality we assume a processor architecture in which core
operations (e.g., MUL and ADD) take a fixed latency and memory operations (e.g., LD and
ST) access a fully-associative random-replacement cache [5].

Let us assume a fully-associative cache withW ways and random replacement2. An approx-
imation to the probability of hit of a given access Aj in the sequence < Ai B1 B2, ..., Bk Aj >,
where Ai and Aj access the same cache line and all Bl access other cache lines, is given by
[5]:

PhitAj
(S) =

(
W − 1

W

)l=k∑
l=1

PmissBl

(1)

In the equation, W−1
W is the probability of one access to evict Aj, while the exponent

gives a measure of the number of evictions Aj can suffer depending on the probability of
each {Bl}l∈(1..k) to miss in cache. We observe that Aj depends on execution history, i.e.,
{Bl}l∈(1..k). In particular, the probability of miss of {Bl}l∈(1..k) affects the probability of
hit/miss of Aj. In a given run, the fact that a given Bl hits/misses in cache affects the
probability of hit of Aj in that run. For instance the probability of hit of Aj in a run in
which B1 misses is different from another run in which B1 hits. Hence, under each history
of outcomes for {Bl}l∈(1..k), Aj may have a different hit probability.

We focus on two scenarios as depicted in Figure 6. In the first one, Figure 6(a), the whole
sequence of accesses is in the same basic block, while in the second one, Figure 6(b), the
sequence of accesses is spread across several basic blocks.

(a) single basic (b) branch structure
block (bb) (several bb)

Figure 6 Cache access sequences
and distribution over different basic
blocks.

1) Single path. When all accesses in a sequence affecting
a given access Aj are in the same basic block, they affect
Aj in each run systematically, since all {Bl}l∈(1..k) are
present in each run. Under each history of outcomes
Aj may have a different probability of hit, and hence
a different ETP.

Interestingly, hit/misses affecting Aj’s probability
of hit are random events by construction for a cache
using random replacement and random placement. This
introduces a probabilistic variation in the probabilities
of each execution time of Aj. Hence, if enough runs are
made the observed frequencies of hit/miss for each Bi

and Aj will converge to their actual hit/miss probability.
As a consequence, Aj can be regarded as having an
ETP, where the probability of hit of Aj is that resulting
from executing the program an infinite number of times.
In the example in Figure 6(a), for a cache with W=8 ways the ETP of Aj is as follows:
{lh, lm}{0.745, 0.255}.

Note that, if the variability that {Bl}l∈(1..k) causes on Aj is not probabilistic, which
happens for instance if cache is not randomised (e.g., if modulo placement is used), the hit

2 A similar analysis can be done for set-associative caches [5].

L. Kosmidis, T. Vardanega, J. Abella, E. Quiñones, and F.J. Cazorla 107

Table 3 ETPs of Aj under each history of outcomes.

B1-3 out- No. of Prob. of that ETP of (Aj) under
come hist. Evicts. outcome that outcome history

000 3 0.35 {lh, lm}{0.670, 0.330}
001 2 0.35 {lh, lm}{0.766, 0.234}
010 2 0 -
011 1 0 -
100 2 0.15 {lh, lm}{0.766, 0.234}
101 1 0.15 {lh, lm}{0.875, 0.125}
110 1 0 -
111 0 0 -

event for {Bl}l∈(1..k) is not random, so we could not derive an ETP for Aj disallowing the
use of MBPTA.

Results. In the example in Figure 6(a) there is a dependence between Aj and the history
of outcomes of B1, B2 and B3. In particular, for a given run the number of misses incurred
by B1-B3 determines the number of random evictions carried out between Ai and Aj. The
second column in Table 3 shows the number of evictions carried out under each outcome
history for B1-B3. The third column shows the probability of that outcome based on the
probability of miss of B1-B3. Finally, the fourth column shows the ETP of Aj assuming a
fully-associative cache of 8 ways. With enough runs, the final miss probability for Aj can be
computed as the addition of the probability of each possible history of outcome of B1-B3
times the probability of Aj to miss under that outcome:

P m
Aj =

No.Outcomes∑
k=1

ProbOutcomek
× P m

AjOutcomek
(2)

that in our example results in: P m
Aj = (0.330 × 0.35) + (0.234 × 0.35) + (0.234 × 0.15) +

(0.125× 0.15)=0.251, that accurately matches the value computed with Equation 63, where
P h

Aj = (7/8)(0,7+1+0,5). Hence the ETP for Aj is: {lh, lm}{0.749, 0.251}.
Therefore, although the probability of each latency of an instruction depends on its

execution history – the set of outcomes of previous accesses in our case – the fact that
factors of influence on its execution history are random, and hence they occur with a given
probability, makes it possible to derive an ETP for the instruction. If enough samples are
taken from the timing behaviour of Aj during analysis time, the observed behaviour is
representative of its behaviour during deploy time. This is so because the factors of influence
on Aj execution time have a random nature, so for a higher number of runs the observed
frequencies of each event converge to the actual probability of the event.

2) Multiple paths. In the situation depicted in Figure 6(b) we observe that the hit probability
of Aj depends on the particular path followed. Hence, the ETP of Aj is affected by: the path
followed and the history of hit/misses. If Aj is reached through the left path, hence under

3 Note that minor discrepancies are expected given that hit/miss events are not independent among them,
so the hit probability computed in Equation 1 is an approximation. In fact, there are only two ways to
derive the actual hit/miss probabilities: (i) Performing an infinite number of runs and measure actual
probabilities, or (ii) Computing the probability of each particular cache state left by the sequence of
hits and misses for previous accesses, and accumulating the probabilities for those cache states where
the current cache access would result in a hit/miss.

WCET 2013

108 MBPTA and Buffer Resources

the sequence < Ai B1 Aj > it has higher probability of hit than if it is reached through
the right path under the sequence < Ai B2 B3 Aj >: ETPleft = {lh, lm}{0.911, 0.089}
and ETPright = {lh, lm}{0.818, 0.182}. Differently to the single-path case, now there is
one ETP per path leading to Aj. MBPTA provides pWCET estimates for the set of paths
exercised with the input data used during the testing phase. It is also the case that MBPTA is
insensitive to the frequency each path is exercised as long as each path is exercised a minimum
number of times [4]. Overall, having for each instruction and path-leading-to-that-instruction
one ETP preserves the i.i.d. property in the execution time of each path. MBPTA [4] samples
the execution time observations obtained from each path to obtain an i.i.d. sample that
covers the execution time observed for all paths.

Results. In [4] it is shown how MBPTA works for multipath analysis: If enough execution
time observations are obtained under each path, the effect that Aj can suffer from any of the
Bl in each path is captured in probabilistic terms. This is a sufficient condition for MBPTA
to provide safe upper-bounds.

References
1 Sarah Boslaugh and Paul Andrew Watters. Statistics in a nutshell. O’Reilly Media, Inc.,

2008.
2 J.V. Bradley. Distribution-Free Statistical Tests. Prentice-Hall, 1968.
3 F.J. Cazorla, E. Qui nones, T. Vardanega, L. Cucu, B. Triquet, G. Bernat, E. Berger,

J. Abella, F. Wartel, M. Houston, L. Santinelli, L. Kosmidis, C. Lo, and D. Maxim. Proartis:
Probabilistically analysable real-time systems. ACM TECS, 2012.

4 L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega, L. Kosmidis, J. Abella,
E. Mezzeti, E. Quinones, and F.J. Cazorla. Measurement-based probabilistic timing ana-
lysis for multi-path programs. In ECRTS, 2012.

5 L. Kosmidis, J. Abella, E. Quinones, and F.J. Cazorla. A cache design for probabilistically
analysable real-time systems. In DATE, 2013.

6 L. Kosmidis, C. Curtsinger, E. Quinones, J. Abella, E. Berger, and F.J. Cazorla. Probab-
ilistic timing analysis on conventional cache designs. In DATE, 2013.

7 L. Kosmidis, E. Quinones, J. Abella, T. Vardanega, and F.J. Cazorla. Achieving timing
composability with measurement-based probabilistic timing analysis. In In IEEE Interna-
tional Symposium on Object/component/service-oriented Real-time distributed computing
(ISORC), 2013.

8 Samuel Kotz and Saralees Nadarajah. Extreme value distributions: theory and applications.
World Scientific, 2000.

9 M. Paolieri, E. Quinones, F.J. Cazorla, G. Bernat, and M. Valero. Hardware support for
WCET analysis of hard real-time multicore systems. In ISCA, 2009.

10 Jason Poovey. Characterization of the EEMBC Benchmark Suite. North Carolina State
University, 2007.

11 Wilhelm R. et al. The worst-case execution-time problem overview of methods and survey
of tools. ACM Transactions on Embedded Computing Systems, 7:1–53, May 2008.

	p000-frontmatter
	Message from the workshop chair

	p001-kelter
	Introduction
	Related Work
	System Model
	Analysis Framework
	Evaluation
	Summary & Future Work
	Acknowledgments

	p011-ozaktas
	Introduction
	Scope of the paper and related work
	Time-predictable multicores
	Real-time and WCET-aware parallel applications
	Time-predictable system software
	Related work

	Approach to the WCET analysis of parallel applications
	Timing analysis of synchronisations
	Worst-case stall times
	Abstract view of synchronisation primitives
	Computation of the global WCET

	Annotations of parallel programs

	Experiments
	Methodology
	Benchmarks
	Results

	Conclusion

	p021-potop-butucaru
	Introduction
	Application model and problem formulation
	Execution platform
	WCET computation
	Existing state-of-the-art WCET estimation technique
	WCET computation of parallel applications

	Experimental evaluation
	Experimental setup
	Experimental results

	Related work
	Conclusion

	p032-asavoae
	Introduction
	Model-Based Development Framework
	Representation Level – Language
	Loop Bounds Detection
	Infeasible Paths Detection

	Representation Level – Transfer
	Path Analysis
	Concluding Discussions

	p042-casse
	Introduction
	Value Analysis at Machine Code Level
	Independent Machine Language
	AI with Semantic Instructions

	Proof of Concept: CLP analysis
	Circular-Linear Progression Analysis
	Widening Function
	Condition Filtering

	Experimentation
	Analysis Precision
	Computation Time

	Comparison with Existing Work
	Conclusion

	p053-biere
	Introduction
	Preliminaries
	Selective Symbolic Execution in r-TuBound
	Precise WCET Analysis without Path Explosion in r-TuBound
	Further Applications of Symbolic Execution for WCET
	Related Work
	Conclusion

	p064-cazorla
	Introduction
	An executive introduction to EVT
	Requirements on the use of EVT for WCET estimation
	Defining the population under analysis
	Sources of execution time variability
	Max population

	Achieving i.i.d. behaviour

	Deriving WCET estimates on time-deterministic systems with EVT
	Random sampling
	Deriving a safe max population
	Summary

	Deriving WCET estimates on time-randomised systems with EVT
	How to achieve time randomisation

	Related work
	Conclusions

	p077-haupenthal
	Introduction
	PRADA
	Evaluation
	Related Work
	Conclusions

	p087-garrido
	Introduction
	UPMSAT-2 platform
	Computer board
	SPARC architecture

	SPARC register windows
	Overview
	Register windows in aiT
	Comparison with the Bound-T approach

	Methodological approach
	Overview of the a3 toolchain
	ADCS case study

	Modelling register windows
	Register windows and execution time
	One window, no full context restore
	One window, full context restore
	More than one window

	Conclusions

	p097-kosmidis
	Introduction
	Background
	Probabilistic Behaviour of Simple Processor Resources

	Complex Processor Resources
	Timing Behaviour of a Buffer in a Time-Randomised Architecture
	Classification of Sources of Jitter
	Empirical Verification

	Conclusions
	Annex I. Meeting MBPTA requirements

