
1st French Singaporean
Workshop on Formal Methods
and Applications

FSFMA’13, July 15–16, 2013, Singapore

Edited by

Christine Choppy
Jun Sun

OASIcs – Vo l . 31 – FSFMA’13 www.dagstuh l .de/oas i c s

Editors
Christine Choppy Jun Sun
Université Paris 13, Sorbonne Paris Cité, Singapore University of Technology and Design
LIPN, CNRS UMR 7030, France Singapore
christine.choppy@lipn.univ-paris13.fr sunjun@sutd.edu.sg

ACM Classification 1998
D.2.4 Formal methods

ISBN 978-3-939897-56-9

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-56-9.

Publication date
July, 2013

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.FSFMA.2013.i

ISBN 978-3-939897-56-9 ISSN 2190-6807 http://www.dagstuhl.de/oasics

http://www.dagstuhl.de/dagpub/978-3-939897-56-9
http://www.dagstuhl.de/dagpub/978-3-939897-56-9
http://dnb.d-nb.de
http://dx.doi.org/10.4230/OASIcs.FSFMA.2013.i
http://www.dagstuhl.de/dagpub//978-3-939897-56-9
http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

iii

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 2190-6807

www.dagstuhl.de/oasics

FSFMA’13

http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

Contents

Preface
Christine Choppy and Jun Sun . vii

Invited Talks

Control of Switching Systems by Invariance Analysis
Laurent Fribourg . 1

Specification, Verification and Inference
Wei-Ngan Chin . 2

Regular Papers

Analysis of Two-Layer Protocols: DCCP Simultaneous-Open and
Hole Punching Procedures

Somsak Vanit-Anunchai . 3

Dynamic Clock Elimination in Parametric Timed Automata
Étienne André . 18

On the Determinism of Multi-core Processors
Vladimir-Alexandru Paun, Bruno Monsuez, and Philippe Baufreton 32

PhD Papers

An Improved Construction of Petri Net Unfoldings
César Rodríguez and Stefan Schwoon . 47

Constructing Attractors of Nonlinear Dynamical Systems by
State Space Decomposition

Laurent Fribourg, Ulrich Kühne, and Romain Soulat . 53

Formal Modelling and Verification of Pervasive Computing Systems
Yan Liu . 61

Illustrating the Mezzo Programming Language
Jonathan Protzenko . 68

Improving System-Level Verification of SystemC Models with SPIN
Martin Elshuber, Susanne Kandl, and Peter Puschner . 74

Modelling and Reasoning about Dynamic Networks as Concurrent Systems
Yanti Rusmawati and David Rydeheard . 80

Safety of Unmanned Aircraft Systems Facing Multiple Breakdowns
Patrice Carle, Christine Choppy, Romain Kervarc, and Ariane Piel 86

1st French Singaporean Workshop on Formal Methods and Applications (FSFMA’13).
Editors: C. Choppy, J. Sun

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Preface

We are pleased to present the proceedings of the 1st French Singaporean Workshop in
Formal Methods and Applications (FSFMA) which will take place on July 15–16th, 2013 in
Singapore, as a satellite event before the Eighteenth International Conference on Engineering
of Complex Computer Systems (ICECCS 2013).

FSFMA 2013 aims at sharing research interests and launching collaborations in the area
of formal methods and their applications. The scientific subject of the workshop covers areas
such as formal specification, model checking, verification, program analysis/transformation,
software engineering, and applications in major areas of computer science, including aero-
nautics and aerospace. It is hoped that this workshop will help to establish links between
academic and industry scientists interested in methods and techniques for constructing
reliable systems using formal methods.

The workshop consists in two keynote talks, the presentation of peer-reviewed papers
(there are regular papers and PhD papers), and two panel discussions.

The keynote speakers are Laurent Fribourg (LSV, France), and Wei-Ngan Chin (NUS,
Singapore). Laurent Fribourg is head of the Laboratoire de Spécification et Vérification (ENS
de Cachan & CNRS, France), and his talk is about the use of formal techniques to analyse
properties of dynamic systems. Wei-Ngan Chin is Associate Professor in the Department of
Computer Science, National University of Singapore, and his talk is about improving the
specification and verification processes.

The panel discussions will be on applications of formal methods, and on collaborations
between academic and industry, in different countries.

We received 22 submissions (3 were removed, 10 regular papers and 9 PhD session papers),
and selected 10 papers (3 regular papers, and 7 PhD session papers).

FSFMA 2013 is funded by the Merlion programme of the French Institute in Singapore of
the French embassy in Singapore. The workshop is partially funded by the French Institute
and the Singapore University of Technology and Design, with the additional support of the
Laboratoire d’Informatique de Paris Nord (Sorbonne Paris Cité, Université Paris 13 & CNRS
UMR 7030, France), the Nanyang Technology University (Singapore), the National University
of Singapore (Singapore), and the kind participation of the Laboratoire de Spécification et
Vérification (ENS de Cachan & CNRS, France).

We would like to thank all program committee members, subreviewers, authors and
participants for their involvement to the success of the workshop. We would also like to
warmly thank Aurélie Martin, Florent Beau and Pascal Loubière, from the French Institute
in Singapore, for their helpful support.

Christine Choppy and Jun Sun
Chairs of FSFMA 2013

1st French Singaporean Workshop on Formal Methods and Applications (FSFMA’13).
Editors: C. Choppy, J. Sun

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

List of Authors

Étienne André
Université Paris 13, Sorbonne Paris Cité,
LIPN, CNRS UMR 7030
93430 Villetaneuse, France
Etienne.Andre@univ-paris13.fr

Philippe Baufreton
Sagem - SAFRAN Electronics
91344 MASSY Cedex France

Patrice Carle
ONERA — The French Aerospace Lab
91123 Palaiseau, France
patrice.carle@onera.fr

Wei-Ngan Chin
School of Computing
National University of Singapore
chinwn@comp.nus.edu.sg

Christine Choppy
Université Paris 13, Sorbonne Paris Cité,
LIPN, CNRS UMR 7030
93430 Villetaneuse, France
Christine.Choppy@lipn.univ-paris13.fr

Martin Elshuber
Institute of Computer Engineering
Vienna University of Technology
1040 Wien, Austria
martine@vmars.tuwien.ac.at

Laurent Fribourg
LSV, CNRS & ENS de Cachan
94235 Cachan, France
Laurent.Fribourg@lsv.ens-cachan.fr

Susanne Kandl
Institute of Computer Engineering
Vienna University of Technology
1040 Wien, Austria
susanne@vmars.tuwien.ac.at

Romain Kervarc
ONERA — The French Aerospace Lab
91123 Palaiseau, France
romain.kervarc@onera.fr

Ulrich Kühne
University of Bremen
Bremen, Germany

Yan Liu
National University of Singapore
yanliu@comp.nus.edu.sg

Bruno Monsuez
UIIS, ENSTA ParisTech
91762 Palaiseau Cedex, France
surname@ensta-paristech.fr

Vladimir-Alexandru Paun
UIIS, ENSTA ParisTech
91762 Palaiseau Cedex, France
surname@ensta-paristech.fr

Ariane Piel
ONERA — The French Aerospace Lab
91123 Palaiseau, France
ariane.piel@onera.fr

Jonathan Protzenko
INRIA
Rocquencourt, France
jonathan.protzenko@ens-lyon.org

Peter Puschner
Institute of Computer Engineering
Vienna University of Technology
1040 Wien, Austria
peter@vmars.tuwien.ac.at

César Rodríguez
LSV, ENS Cachan & CNRS, INRIA Saclay
94235 Cachan Cedex, France
cesar.rodriguez@lsv.ens-cachan.fr

Yanti Rusmawati
School of Computer Science, The University
of Manchester
Oxford Road, Manchester M13 9PL, UK
rusmaway@cs.man.ac.uk

David Rydeheard
School of Computer Science, The University
of Manchester
Oxford Road, Manchester M13 9PL, UK
david@cs.man.ac.uk

1st French Singaporean Workshop on Formal Methods and Applications (FSFMA’13).
Editors: C. Choppy, J. Sun

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

x Authors

Stefan Schwoon
LSV, ENS Cachan & CNRS, INRIA Saclay
94235 Cachan Cedex, France
stefan.schwoon@lsv.ens-cachan.fr

Romain Soulat
LSV, CNRS & ENS de Cachan
94235 Cachan, France
Romain.Soulat@lsv.ens-cachan.fr

Somsak Vanit-Anunchai
School of Telecommunication Engineering
Institute of Engineering
Suranaree University of Technology
Muang, Nakhon Ratchasima, Thailand
somsav@sut.ac.th

Program Committee

Chairs

Christine Choppy
Université Paris 13, Sorbonne Paris Cité,
CNRS UMR 7030, France

Jun Sun
Singapore University of Technology and
Design, Singapore

PhD Session Chairs

Étienne André
Université Paris 13, Sorbonne Paris Cité,
CNRS UMR 7030, France

Yang Liu
Nanyang Technological University, Singapore

Program Committee

Étienne André
Université Paris 13, Sorbonne Paris Cité,
CNRS UMR 7030, France

Christine Choppy
Université Paris 13, Sorbonne Paris Cité,
CNRS UMR 7030, France

Jörg Desel
Fernuniversität in Hagen, Germany

Jin-Song Dong
National University of Singapore, Singapore

Maritta Heisel
University of Duisburg-Essen, Germany

Romain Kervarc
ONERA, France

Kaïs Klaï
Université Paris 13, Sorbonne Paris Cité,
CNRS UMR 7030, France

Lars M. Kristensen
Bergen University College, Norway

Ulrich Kühne
University of Bremen, Germany

Charles Lakos
University of Adelaide, Australia

Yang Liu
Nanyang Technological University, Singapore

Hadj-Alouane Nejib
ENIT Tunis, Tunisia

Geguang Pu
East China Normal University, China

Shengchao Qin
University of Teesside, Middlesbrouq, U.K

Gianna Reggio
DIBRIS, Genova, Italy

Jun Sun
Singapore University of Technology and
Design, Singapore

Naijun Zhang
Chinese Academy of Sciences, China

1st French Singaporean Workshop on Formal Methods and Applications (FSFMA’13).
Editors: C. Choppy, J. Sun

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

List of Subreviewers

Florin Craciun
Babes-Bolyai University, Romania

Melanie Diepenbeck
University of Bremen, Germany

Hoang Le
University of Bremen, Germany

Jianwen Li
East China Normal University, China

Rene Meis
University of Duisburg-Essen, Germany

Truong Khanh Nguyen
National University of Singapore, Singapore

Yidong Sheng
Chinese Academy of Sciences, China

Tian Huat Tan
National University of Singapore, Singapore

Hengjun Zhao
Chinese Academy of Sciences, China

1st French Singaporean Workshop on Formal Methods and Applications (FSFMA’13).
Editors: C. Choppy, J. Sun

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Control of Switching Systems by Invariance
Analysis (Invited Talk)
Laurent Fribourg

LSV, CNRS & ENS de Cachan
94235 Cachan, France
Laurent.Fribourg@lsv.ens-cachan.fr

Abstract
Switched systems are embedded devices widespread in industrial applications such as power
electronics and automotive control. They consist of continuous-time dynamical subsystems and
a rule that controls the switching between them. Under a suitable control rule, the system can
improve its steady-state performance and meet essential properties such as safety and stability in
desirable operating zones. We explain that such controller synthesis problems are related to the
construction of appropriate invariants of the state space, which approximate the limit sets of the
system trajectories. We present a new approach of invariant construction based on a technique
of state space decomposition interleaved with forward fixed point computation. The method is
illustrated in a case study taken from the field of power electronics.

This work is a joint work with Romain Soulat.

1998 ACM Subject Classification D.2.4 Formal methods

Keywords and phrases Control theory, Hybrid systems, Safety, Stability

Digital Object Identifier 10.4230/OASIcs.FSFMA.2013.1

Short Biography
Laurent Fribourg is a CNRS Senior Researcher working at École Normale Supérieure de
Cachan (ENSC), France. Since 2007, he has been Scientific Coordinator of Institut Farman,
which federates interdisciplinary projects between 5 Laboratories of ENSC. He has been
Director of LSV, the Computer Science Lab. of ENSC since 2011. He has written more than
70 international publications in the field of Logic Programming, Program Testing, and Model
Checking.

© Laurent Fribourg;
licensed under Creative Commons License CC-BY

1st French Singaporean Workshop on Formal Methods and Applications 2013 (FSFMA’13).
Editors: Christine Choppy and Jun Sun; pp. 1–1

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.FSFMA.2013.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Specification, Verification and Inference
(Invited Talk)
Wei-Ngan Chin

School of Computing
National University of Singapore
chinwn@comp.nus.edu.sg

Abstract
Traditionally, the focus of specification mechanism has been on improving its ability to cover
a wider range of problems more accurately, while the effectiveness of verification is left to the
underlying theorem provers. Our work attempts a novel approach, where the focus is on de-
signing good specification mechanisms that can achieve both better expressiveness and better
verifiability. Moreover, we shall also highlight a unified specification mechanism that can be used
for both verification and inference. Our framework allows preconditions and postconditions to be
selectively inferred via a set of uninterpreted relations which are computed using bi-abduction,
and modularly synthesized to support concise specification for program codes.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Expressive Specification, Automated Verification, Specification Inference

Digital Object Identifier 10.4230/OASIcs.FSFMA.2013.2

Short Biography
Wei-Ngan Chin is presently an Associate Professor in the Department of Computer Science,
National University of Singapore. His research interests are in programming languages and
software engineering. He has worked on various program analyses and verification techniques
that are aimed at improving clarity, reliability and reusability of software.

© Wei-Ngan Chin;
licensed under Creative Commons License CC-BY

1st French Singaporean Workshop on Formal Methods and Applications 2013 (FSFMA’13).
Editors: Christine Choppy and Jun Sun; pp. 2–2

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.FSFMA.2013.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Analysis of Two-Layer Protocols: DCCP
Simultaneous-Open and Hole Punching
Procedures∗

Somsak Vanit-Anunchai

School of Telecommunication Engineering
Institute of Engineering
Suranaree University of Technology
Muang, Nakhon Ratchasima, Thailand
email:somsav@sut.ac.th

Abstract
The simultaneous-open procedure of the Datagram Congestion Control Protocol (DCCP), RFC
5596, was published in September 2009. Its design aims to overcome DCCP weaknesses when the
Server is behind a middle box, such as Network Address Translators or firewalls. The original
DCCP specification, RFC 4340, only allows the Client to initiate the call. The call request cannot
reach the Server behind the middle box. A widely used solution to address this problem is called
the “hole punching” technique. This technique requires the Server to initiate sending packets.
Using Coloured Petri Nets (CPN) this paper models and analyses the DCCP procedure specified
in RFC 5596. However, the difficulty is that detailed modelling of the address translation is also
required. This causes state space explosion. We alleviate the state explosion using prioritized
transitions and the sweep-line technique. Modelling and analysis approaches are discussed in the
hope that it is helpful for others who wish to analyse similar protocols. Analysis results are also
obtained for the simultaneous-open procedure specified in RFC 5596.

1998 ACM Subject Classification C.2.2 Network Protocols, D.2.2 Design Tools and Techniques,
D.2.4 Software/Program Verification

Keywords and phrases Network Address Translators, Coloured Petri Nets, Sweep-line Method,
Prioritized Transitions.

Digital Object Identifier 10.4230/OASIcs.FSFMA.2013.3

1 Introduction

The Datagram Congestion Control Protocol (DCCP) [18] is a transport protocol that
provides bidirectional flow of data for applications that prefer timeliness to reliability. It is
a connection-oriented protocol operating over the Internet between two entities, the Client
and the Server. Originally specified in RFC 4340, only the Client can initiate the connec-
tion while the Server passively listens to the incoming request. When the Server is located
in a private network or behind a Network Address Translator (NAT1), the first incoming
packet cannot reach the Server because address mapping in the NAT does not exist yet. To
overcome this problem, a simple solution widely used with other transport protocols (UDP,
TCP and SCTP) is known as the “hole punching” technique.

∗ This work is supported by Research Grant from the Thai Network Information Center Foundation and
the Thailand Research Fund.

1 NAT is a middlebox that maps private (IP addresses - port number) to public (IP addresses - port
number) and allows many hosts behind NAT to share the same public IPv4 address.

© Somsak Vanit-Anunchai;
licensed under Creative Commons License CC-BY

1st French Singaporean Workshop on Formal Methods and Applications 2013 (FSFMA’13).
Editors: Christine Choppy and Jun Sun; pp. 3–17

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.FSFMA.2013.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

4 Analysis of DCCP Simultaneous-Open Procedures

Internet

Server

(DCCP-B)
Client

(DCCP-A)

NAT-A

64.10.75.34

NAT-B

67.14.35.20

10.10.10.20

Rendezvous server

100.1.2.3

192.168.1.122
1

1

2

Fig. 1. Peer-to-peer communication with rendezvous server.

Internet

Server

(DCCP-B2)
Client

(DCCP-A2)

Src. Add. : 10.10.10.10::50

Dest. Add.: 67.14.35.20::81

64.10.75.34 67.14.35.20
Src. Add. : 10.10.10.20::50

Dest. Add.: 67.14.35.20::82

Host Private Public

 Source Address Source Address

A1 10.10.10.10::50 64.10.75.34::50

A2 10.10.10.20::50 64.10.75.34::51

Src. Add. : 64.10.75.34::50

Dest. Add.: 67.14.35.20::81

Src. Add. : 64.10.75.34::51

Dest. Add.: 67.14.35.20::82

NAT-A

Binding Table

Public Private Host

 Source Address Source Address

--.--.--.--::-- --.--.--.--::-- B1

67.14.35.20::82 192.168.1.123::80 B2

Client

(DCCP-A1)

Server

(DCCP-B1)

NAT-B

Binding Table

Src. Add. : 64.10.75.34::51

Dest. Add.: 192.168.1.123::80

192.168.1.122::80

Fig. 2. Binding tables in NAT-A and NAT-B.

The basic idea of hole punching consists of two phases, labeled 1 and 2,
as shown in Fig. 1. Firstly, DCCP-A and DCCP-B, which are located behind
NAT-A and NAT-B respectively, establish connections with a rendezvous server
at a well-known public IP address (100.1.2.3). Because DCCP entities initiate
the session via their NAT to the rendezvous server, the server can observe the
public IP addresses and port numbers assigned for both sessions. The server
then informs each entity of the public IP address and port number of its peer.
After receiving this information, the connection between DCCP-A and DCCP-
B can start. Illustrated in Fig. 2, when DCCP-A1 sends a packet to DCCP-B1, a
“binding table” (or a hole) in NAT-A is created. However the packet is blocked
by NAT-B because NAT-B has no binding for DCCP-B1 yet. Thus DCCP-B1
needs to send its packet to DCCP-A1 in order to create a binding table in
NAT-B. After a hole is punched in NAT-B, the public address (67.14.35.20::81)
associated with DCCP-B1 in the incoming packet will be translated to the
private address of DCCP-B (192.168.1.122::80) so that the packet can be locally
forwarded to DCCP-B1. In the hole-punching scenarios, the Client and the
Server initiate sending a packet at about the same time. This requires a new
simultaneous open procedure as described in RFC 5596 [8].

Previous work Since 2003 we have constructed, refined and analysed Coloured
Petri Net (CPN) [11] models of DCCP’s connection management procedure ac-
cording to RFC 4340, using Design/CPN [7]. In [17], we reported our experience

2

Figure 1 Peer-to-peer communication with rendezvous server.

Internet

Server
(DCCP-B)

Client
(DCCP-A)

NAT-A

64.10.75.34

NAT-B

67.14.35.20
10.10.10.20

Rendezvous server

100.1.2.3

192.168.1.1221
1

2

Fig. 1. Peer-to-peer communication with rendezvous server.

Internet

Server
(DCCP-B2)Client

(DCCP-A2)

Src. Add. : 10.10.10.10::50
Dest. Add.: 67.14.35.20::81

64.10.75.34 67.14.35.20
Src. Add. : 10.10.10.20::50
Dest. Add.: 67.14.35.20::82

Host Private Public
 Source Address Source Address

A1 10.10.10.10::50 64.10.75.34::50
A2 10.10.10.20::50 64.10.75.34::51

Src. Add. : 64.10.75.34::50
Dest. Add.: 67.14.35.20::81

Src. Add. : 64.10.75.34::51
Dest. Add.: 67.14.35.20::82

NAT-A
Binding Table

Public Private Host
 Source Address Source Address

--.--.--.--::-- --.--.--.--::-- B1
67.14.35.20::82 192.168.1.123::80 B2

Client
(DCCP-A1)

Server
(DCCP-B1)

NAT-B
Binding Table

Src. Add. : 64.10.75.34::51
Dest. Add.: 192.168.1.123::80

192.168.1.122::80

Fig. 2. Binding tables in NAT-A and NAT-B.

The basic idea of hole punching consists of two phases, labeled 1 and 2,
as shown in Fig. 1. Firstly, DCCP-A and DCCP-B, which are located behind
NAT-A and NAT-B respectively, establish connections with a rendezvous server
at a well-known public IP address (100.1.2.3). Because DCCP entities initiate
the session via their NAT to the rendezvous server, the server can observe the
public IP addresses and port numbers assigned for both sessions. The server
then informs each entity of the public IP address and port number of its peer.
After receiving this information, the connection between DCCP-A and DCCP-
B can start. Illustrated in Fig. 2, when DCCP-A1 sends a packet to DCCP-B1, a
“binding table” (or a hole) in NAT-A is created. However the packet is blocked
by NAT-B because NAT-B has no binding for DCCP-B1 yet. Thus DCCP-B1
needs to send its packet to DCCP-A1 in order to create a binding table in
NAT-B. After a hole is punched in NAT-B, the public address (67.14.35.20::81)
associated with DCCP-B1 in the incoming packet will be translated to the
private address of DCCP-B (192.168.1.122::80) so that the packet can be locally
forwarded to DCCP-B1. In the hole-punching scenarios, the Client and the
Server initiate sending a packet at about the same time. This requires a new
simultaneous open procedure as described in RFC 5596 [10].

2

Figure 2 Binding tables in NAT-A and NAT-B.

The basic idea of hole punching consists of two phases, labeled 1 and 2, as shown in Fig. 1.
Firstly, DCCP-A and DCCP-B, which are located behind NAT-A and NAT-B respectively,
establish connections with a rendezvous server at a well-known public IP address (100.1.2.3).
Because DCCP entities initiate the session via their NAT to the rendezvous server, the
server can observe the public IP addresses and port numbers assigned for both sessions.
The server then informs each entity of the public IP address and port number of its peer.
After receiving this information, the connection between DCCP-A and DCCP-B can start.
Illustrated in Fig. 2, when DCCP-A1 sends a packet to DCCP-B1, a “binding table” (or a
hole) in NAT-A is created. However the packet is blocked by NAT-B because NAT-B has no
binding for DCCP-B1 yet. Thus DCCP-B1 needs to send its packet to DCCP-A1 in order
to create a binding table in NAT-B. After a hole is punched in NAT-B, the public address
(67.14.35.20::81) associated with DCCP-B1 in the incoming packet will be translated to the
private address of DCCP-B (192.168.1.122::80) so that the packet can be locally forwarded
to DCCP-B1. In the hole punching scenarios, the Client and the Server initiate sending
a packet at about the same time. This requires a new simultaneous open procedure as
described in RFC 5596 [9].

1.1 Previous Work

Since 2003 we have constructed, refined and analysed Coloured Petri Net (CPN) [16] models
of DCCP’s connection management procedure according to RFC 4340, using Design/CPN [8].

S. Vanit-Anunchai 5

In [24], we reported our experience with the incremental enhancement and iterative mod-
elling of the connection management procedures as the DCCP specification was developed.
Insight into the decisions behind the modelling choices can also be found in [24]. The full
CPN specification of the connection management procedures can be found in Section 2
of [25]. Section 4 of [25] also explains the development of progress mappings for sweep-line
state space analysis [21] of DCCP. We have published an enhanced version of [24] which
also discusses a procedure-based model of DCCP’s connection management procedures [5].
In [6], we discuss how to embed a parameterised channel into CPN models of protocols,
using DCCP as an example.

1.2 Contributions
The contribution of this paper is two-fold. Firstly, we extend the Coloured Petri Net model
and analysis of the DCCP connection management procedure (RFC 4340) in [5,23] to include
the simultaneous open procedure (RFC 5596). Secondly, since embedding NAT with the
hole punching procedure as a channel module [6] leads to significant state explosion, we
demonstrate methods to circumvent the problem using prioritized transitions and the sweep-
line technique [7].

1.3 Organisation
This paper is organised as follows. Section 2 provides an overview of the DCCP simultaneous
open procedure. Modelling approach is discussed in Section 3. A description of the CPN
model of DCCP’s simultaneous open procedure is given in Section 4. Section 5 discusses
analysis approach. Section 6 presents the experimental results, with Section 7 providing
conclusions and future work.

2 DCCP Overview

2.1 Connection Management Procedures
The Datagram Congestion Control Protocol [17, 18] is a point-to-point transport protocol
operating over the Internet between two DCCP entities, the Client and Server. It provides
a bidirectional flow of data for applications, such as voice and video, that prefer timeliness
to reliability. DCCP is designed to provide congestion control for these applications [11]. Its
congestion control algorithms require statistics on packet loss because loss is related to the
level of congestion in the network. DCCP uses sequence and acknowledgement numbers in
packets to detect and report loss, and includes state variables in each protocol entity to keep
track of these numbers. State variables on both sides must be synchronised, otherwise DCCP
may misinterpret loss information. Thus DCCP needs mechanisms to set up, synchronise
and clear state variables in both the Client and Server. We refer to these mechanisms in
general as connection management (CM) procedures.

The CM procedures require packets to be exchanged between the Client and Server. RFC
4340 defines 10 different packet types for this purpose: Request, Response, Data, DataAck,
Ack, CloseReq, Close, Reset, Sync and SyncAck. Figure 3 is a state diagram illustrating
DCCP’s connection establishment and release procedures for both the Client and Server. It
is derived by combining the state diagrams in RFCs 4340 and 5596, with the dashed parts
of the diagram being added by RFC 5596. Ellipses in Fig. 3 represent states while arrows
represent state transitions. CLOSED is both an initial and a final state. The inscription
on each arrow describes the input and output actions, if any. For instance, the inscription

FSFMA’13

6 Analysis of DCCP Simultaneous-Open Procedures

CLOSED

OPEN

REQUEST

CLOSEREQ

LISTEN

PARTOPEN

CLOSING

RESPOND

TIMEWAIT

INVITED

1st Timer Expiry/
retransmit Listen

rcv Request/
snd Response

rcv Response/
snd Ack or
DataAck

rcv Ack or DataAck/

active open/
snd Request

2 MPL
timer expires

rcv packet/

rcv Reset
server active close/
snd CloseReq

active close or
rcv CloseReq/
snd Close

passive open(ur)
passive open(fsr)/
snd Listen

rcv Close/
snd Reset

rcv Request/
snd Response

2nd Timer Expiry/
retransmit Listen

3rd Timer Expiry/

indicate transitions related to a normal connection according to RFC 4340
indicate transitions related to simultaneous opening for the DCCP Server
according to RFC 5596

rcv Close/
snd Reset

Figure 3 DCCP state diagram.

on the arc from REQUEST to PARTOPEN is “rcv Response snd Ack or DataAck”. This
means that when the Client receives a DCCP-Response while in the REQUEST state, it
returns a DCCP-Ack or DataAck (if it has data to send) and moves to the PARTOPEN
state. The Client is identified by an “active open” from its application and passing through
the REQUEST state. On the other hand, the Server always receives a “passive open” and
passes through the LISTEN state. Applications on both sides can issue an “active close”
command but only the Server’s application can issue the “server active close” command.

RFC 5596 defines a new packet type called DCCP-Listen and two new states called
INVITED and LISTEN1. RFC 5596 differentiates between the cases when the Server con-
nection end point is partially specified (the remote address and port number are unknown)
and when it is fully specified. This corresponds to the commands “passive open(ur)” and
“passive open(fsr)” respectively, where ur is for ‘unspecified remote’ and fsr stands for ‘fully
specified remote’. After receiving a passive open(fsr), a DCCP-Listen packet is sent, a timer
is set and the Server transitions from CLOSED to INVITED. If a DCCP-request is not re-
ceived in time, the DCCP-Listen packet can be retransmitted up to two times before moving
to the LISTEN1 state. If the Server receives a DCCP-Request (in INVITED or LISTEN1),
it sends a DCCP-Response and transitions to RESPOND. Because the behaviour of DCCPs
in the LISTEN and LISTEN1 states are the same, to simplify the state diagram (Fig. 3),
we suggest2 to merge these two states. For more details of these procedures, see [9, 18].

2.2 Hole Punching Procedures
The message sequence chart in Fig. 4 provides an example of the hole punching procedure.
Prior to connection establishment, we assume that both the Client and Server know each
other’s public address via a well-known rendezvous server (Fig. 1) using another signalling
protocol such as the Session Description Protocol (SDP) [14]. As shown in Fig. 4, when the
Client sends the first DCCP-Request packet via NAT-A, NAT-A creates a binding table (a

2 This was suggested by Professor Jonathan Billington.

S. Vanit-Anunchai 7

src=A,dst=B,Request, seq = y

src=b,dst=A,Listen,
seq =0

DCCP-A
(Client)

 CLOSED
 active open
 REQUEST

src=B,dst=A,Listen, seq = 0

src=a,dst=B,Request,
seq = y

src=B,dst=a,Listen,
seq = 0

CLOSED
simultaneous open
INVITED

src=a,dst=B,Request,
seq = y + 1

src=A,dst=B,Request ,
seq = y + 1

src=A,dst=b,Request,
seq = y + 1

src=b,dst=A,Response,
seq =z, ack = y+1 INVITED

RESPOND

DCCP-B
(Server)NAT-BNAT-A

X

Figure 4 The hole punching procedure.

hole) and replaces the private source address “a” in the DCCP-Request with public source
address “A”. In this paper, a lower-case letter represents a private address and an upper-case
letter represents a public address. The private source address,“a”, in every outgoing packet
from NAT-A is replaced by the public source address, “A”. Similarly, the public destination
address “A” in every incoming packet is replaced by the private address “a”. However, since
no binding for DCCP-B exists in NAT-B, the DCCP-Request packet is blocked by NAT-B,
and discarded. In order to allow incoming packets to pass NAT-B and be delivered to DCCP-
B, another hole (binding table) is required at NAT-B. As a consequence of prior signalling
sessions via the Rendezvous server, DCCP-B sends a DCCP-Listen packet to indicate its
willingness to set up a connection with public destination address “A”. On receipt of the
Listen packet, NAT-B creates a binding table so that the private source address,“b”, in
every outgoing packet from NAT-B will be replaced by the public source address, “B”,
for every packet destined for “A”. Similarly, the public destination address “B” in every
incoming packet from public source address, “A”, will be replaced by the private address
“b”. Because the hole at NAT-A is already punched by the previous DCCP-Request packet,
the DCCP-Listen packet can get through NAT-A and arrives at DCCP-A. When DCCP-A,
in REQUEST, receives a DCCP-Listen packet, it retransmits the previous DCCP-Request
with its sequence number incremented by one. The DCCP-Request is now accepted by
NAT-B because “A” has the required entry in its binding table. NAT-B provides the address
translation to the private address. The DCCP-request arrives at DCCP-B which sends a
DCCP-Response packet and enters the RESPOND state. After that, the connection is
established according to the normal connection set up procedure described in RFC 4340.
Other scenarios are possible. For example, if the Listen packet is lost, DCCP-A will resend
its Request packet after a timeout. Thus it is not essential for Listen packet to be received
by DCCP-A, it just provides a speed-up if it gets through before the timeout occurs. It is
possible for the DCCP-Listen packet to be sent before the DCCP-Request packet. In this
case, the Listen packet will be blocked by NAT-A until it receives the Request packet from
DCCP-A.

FSFMA’13

8 Analysis of DCCP Simultaneous-Open Procedures

3 Modelling Approach

3.1 Layer Architecture
Protocols are often organized into a layered structure. Each layer represents a protocol
which provides a standard interface to the lower and higher layers. From it own point of
view, a specific layer may only observe the interaction at its interface so that the details of
the underlying network infrastructure are hidden. Despite the fact that data flows vertically
between layers at each end, we can consider that a specific layer horizontally conveys the
data between the peer entities at the same layer. Thus each protocol specification at each
layer needs to defines only its peer-to-peer behaviour. This peer-to-peer or end-to-end
principle3 abstracts away all lower layers and merges them into an underlying channel.
We observe that almost all CPN models of the Internet protocol e.g. [1, 3–5, 12, 13, 19,
20, 22], implicitly use the end-to-end principle and hide all other underlying layers into
two channel places. However, there are a few researchers who have investigated multi-
layer protocols. For example, [10] modelled and validated connection establishment in the
Generic Access Network which involves multiple layers of the protocol stacks. [10] suggested
that studying multi-layer protocols provide us insights and understanding how protocol
components interact to each other.

As the Internet technology has advanced considerably over recent years, we discover
that the end-to-end principle is often violated. For example, the cross-layer design modifies
interfaces to higher layers in order to provide performance optimization across layers. NAT
is another example that violates the end-to-end principle. Thus NAT can not be abstracted
away and its detailed model is required.

3.2 Embedding the NAT Functions in the CPN Models
Two approaches for embedding the underlying channel into a CPN protocol model have been
discussed in [6]. The first approach integrates the channel model with the protocol entities.
Applying this to our work, the channel model is the NAT functions that are implemented on
the output arc inscriptions of the protocol entities. Although this approach helps to reduce
the state space size, the model is subtle and tedious. The second approach embeds the
channel model or the NAT functions as a module implemented by a substitution transition
[15]. This is an elegant way of including NAT devices in the model. This modular approach
requires two more substitution transition instances (NAT) and four more buffer places than
the integrate approach does. As discussed in [6], from the analysis perspective, this modular
approach significantly suffers from state explosion. However for sake of modelling clarity we
have selected the modular approach.

4 DCCP Simultaneous Open CPN Model

DCCP simultaneous open CPN models have been developed using both CPN Tools and
Design/CPN. Prioritized transitions play an important role in this paper so this section
only examines the CPN Tools model. Since our model is extended from [5], this section
emphasises on the extension part of the model. For more details of the declarations and the
explanation of the previous work, see [5, 25]

3 “End-to-end principle is an assumption of the Internet property that all nodes can send packets to
other nodes of the network, without requiring intermediate network elements to further interpret them."

S. Vanit-Anunchai 9

NAT_B

NAT

NAT_A

NAT

DCCP_B

DCCP_functions

DCCP_A

DCCP_functions

Header_IP_S2C

header_S2C

SRC_DST

Ch_C2S

IP_PKT

Ch_S2C
IP_PKT

Header_IP_C2S

header_C2S

SRC_DST

NAT_A_TABLE

table_A

NAT_TABLE

NAT_B_TABLE

table_B

NAT_TABLE

Ch_L2U_B

PACKETS

Ch_U2L_B

PACKETS

App_Server

S_cmd

COMMAND

Server_State

init_S

CB

Client_State

init_C

CB

App_Client

C_cmd

COMMAND

Ch_U2L_A

PACKETS

Ch_L2U_A

PACKETS

DCCP_functions DCCP_functions

NAT NAT

Figure 5 DCCP Top level.

4.1 Model Overview
Our procedure based DCCP-CPN model from Section 4 of [5] has been extended to incorpor-
ate the network layer comprising two Network Address Translators (NATs). In spite of the
existence of many types of NAT, this paper investigates only “Address and Port-Dependent
Mapping4". Because the NATs are embedded as a module (substitution transition), another
type or combination of different types can be easily integrated in our model. Our proced-
ure based CPN model comprises five hierarchical levels. The complete model comprises 14
places, 68 executable transitions and 25 ML functions.

Figure 5 shows the top level of our CPN model. Two places, App_Client and App_Server,
typed by COMMAND (line 15 of Fig. 6), store tokens representing user commands. Substitu-
tion transitions, DCCP_A and DCCP_B, represent the DCCP procedures in the Client and
the Server, respectively. Substitution transitions, NAT_A and NAT_B, which link to the
second level CPN subpage, NAT, models the IP-Port address mapping procedure. Strictly
speaking, we do not actually model the hole punching procedure because the hole punching
behaviour automatically emerges from interactions among four component in the network:
DCCP-A, NAT-A, NAT-B and DCCP-B.

4.2 Declaration of State Variables
DCCP states and variables are stored in Places Client_State and Server_State typed by CB
(Control Block). Two new states: LISTEN1 and INVITED are specified by RFC 5596. Fig-
ure 6 defines CB (line 10) as the union of four colour sets: IDLE (for CLOSED, LISTEN,
LISTEN1 and TIMEWAIT states), RCNT (for INVITED state), RCNTxGSSxISSxlisten_flag

4 “ The NAT reuses the port mapping for subsequent packets sent from the same internal IP address
and port to the same external IP address and port" [2]

FSFMA’13

10 Analysis of DCCP Simultaneous-Open Procedures

1: (* Retransmit Counter *)
2: colset RCNT = int;
3: colset ACTIVE_STATE = with RESPOND | PARTOPEN | S_OPEN | C_OPEN
4: | CLOSEREQ | C_CLOSING |S_CLOSING;
5: colset IDLE = with CLOSED_I | LISTEN | TIMEWAIT | CLOSED_F | LISTEN1;
6: colset RCNTxGSSxISSxlisten_flag = product RCNT*SN48*SN48*BOOL;
7: colset GS = record GSS:SN48*GSR:SN48*GAR:SN48;
8: colset ISN = record ISS:SN48*ISR:SN48;
9: colset ActiveStatexRCNTxGSxISN = product ACTIVE_STATE*RCNT*GS*ISN;

10: colset CB = union IdleState:IDLE
11: + INVITED:RCNT
12: + ReqState:RCNTxGSSxISSxlisten_flag
13: + ActiveState:ActiveStatexRCNTxGSxISN;
14: (* User Command *)
15: colset COMMAND = with simu_Open | p_Open | a_Open | server_a_Close | a_Close;

Figure 6 The definition of CB (Control Block) and COMMAND.

(for REQUEST state), and ActiveStatexRCNTxGSxISN (for RESPOND, PARTOPEN, OPEN,
CLOSEREQ and CLOSING states). INVITED in the union coloured set CB (line 10) is dis-
tinguished from others because this state stores only a retransmission counter. LISTEN1
is declared in the colour set IDLE (line 5). The Client’s action, in the REQUEST state,
depends whether it has ever received a DCCP-Listen or not. Thus a boolean flag is added
in the state variables (line 6).

4.3 Declaration of DCCP and IP Packets
DCCP entities communicate with NATs via buffer places, Ch_L2U_A, Ch_U2L_A,
Ch_L2U_B and Ch_U2L_B typed by PACKETS. Two substitution transitions, NAT_A
and NAT_B, exchange IP packets via two buffer places, Ch_S2C and Ch_C2S, typed by
IP_PKT. Figure 7 declares PACKETS (line 22) as the union of four colour sets: SN48 (for
DCCP-Request), SN48 (for DCCP-Listen), SN (for DCCP-Data), Ack_DataAckPacket and
OtherPackets. The new packet type defined by RFC 5596 is DCCP-Listen which always has
the sequence number equal to zero. The Request, Listen and Data packets are distinguished
from the others by ML selectors of the same name as defined in line 22. Figure 7 declares
IP_PKT (line 28) as a record of three colour sets: IP (for source address), IP (for designation
address) and PACKETS (for DCCP packets). IP are defined as a product of five integers
instead of four integers because the port address is also included.

4.4 CPN Subpage NAT
Apart from input and output buffer places, subpage NAT comprises two places and two
transitions. Place src_dst typed by SRC_DST stores a record of private source address and
public designation address. Transition NAT_TX views the token {src=a, dst=B} together
with the token packet forming an incoming IP packet from the private network. Transitions
NAT_TX and NAT_RX the priority value, P_HIGH = 100, while P_NORMAL is equal to
1000. Place TABLE typed by NAT_TABLE stores binding tables used for address transla-
tions. NAT_TABLE is defined in Fig. 7 (line 26) as a record of three tuples: private source
address, public source address and public designation address. When creating a binding
table, function put(a) is used to set up the public source address.

4.5 Connection Establishment Pages
This section illustrates two CPN subpages which model connection establishment, the Server
and Client pages. Initially, both entities are CLOSED with a simultaneous open command

S. Vanit-Anunchai 11

1: (* Sequence and Acknowledgement Numbers *)
2: colset SN48 = int with 0..MaxSeqNo48;
3: colset SN24 = int with 0..max_seq_no24;
4: colset SN48_AN48 = record SEQ:SN48*ACK:SN48;
5: colset SN24_AN24 = record SEQ:SN24*ACK:SN24;
6: colset SN = union longSN:SN48 + shortSN:SN24
7: colset SN_AN = union longSA:SN48_AN48 + shortSA:SN24_AN24
8:
9: (* Sequence and Acknowledgement Variables *)
10: var sn:SN; var sn48:SN48; var sn24:SN24;
11: var sn_an:SN_AN; var sn48_an48:SN48_AN48; var sn24_an24:SN24_AN24;
12:
13: (* Define the DCCP Packet Structure *)
14: colset Ack_DataAckPktTypes = with Ack | DataAck;
15: var ack_dataack:Ack_DataAckPktTypes;
16:
17: colset OtherPktTypes = with Sync | SyncAck | Response | CloseReq | Close | Rst;
18: var p_type:OtherPktTypes;
19:
20: colset Ack_DataAckPacket = product Ack_DataAckPktTypes*SN_AN;
21: colset OtherPackets = product OtherPktTypes*SN48_AN48;
22: colset PACKETS = union Request:SN48 + Listen:SN48 + Data:SN
23: + Ack_DataAck:Ack_DataAckPacket + PKT:OtherPacket
24: (* Define the IP Packet Structure *)
25: colset IP = product INT*INT*INT*INT*INT;
26: colset NAT_TABLE = record local_src:IP*global_src:IP*global_dst:IP;
27: colset SRC_DST = record src:IP*dst:IP;
28: colset IP_PKT = record src_add:IP*dst_add:IP*dccp:PACKETS;
29: var packet:PACKETS;
30: var a, A, B, gb_src:IP;

Figure 7 The definition of DCCP PACKETS and IP_PKT.

{src = a ,dst =B}packet packet{src = a, dst = B}

1`{local_src = a,
global_src = A,
global_dst= B}

1`{local_src = a,
global_src =
(if gb_src = (0,0,0,0,0)
 then put(a)
 else gb_src),
global_dst=B}

1`{local_src = a,
global_src = gb_src,
global_dst= gb_dst}

1`{src_add = B,
dst_add = A,
dccp=packet}

1`{src_add =
(if gb_src = (0,0,0,0,0)
 then put(a)
 else gb_src),
dst_add = B,
dccp=packet}

NAT_RX NAT_TXTABLE

I/O
NAT_TABLE

Input
In IP_PKT

Output
Out IP_PKT

src_dst
I/O

SRC_DST

Ch_L2U
Out PACKETS

Ch_U2L
In

PACKETS
InOut

I/O

OutIn

I/O

P_HIGH P_HIGH

Figure 8 CPN Subpage NAT.

(1‘simu_Open) in Place App_Server and an active open command (1‘a_Open) in Place
App_Client.

4.5.1 Server Page
The part of Fig. 9 below App_Server, is the normal connection establishment specified in RFC
4340. The upper part is the standard simultaneous open procedure specified in RFC 5596.
With reference to Fig. 3, the occurrence of transition simuOpen (Fig. 9) transmits DCCP-
Listen and puts the Server in the INVITED state, waiting for DCCP-Request from the Client.

FSFMA’13

12 Analysis of DCCP Simultaneous-Open Procedures

PKT(Response,{SEQ=S_iss,
ACK=sn48})

PKT(Response,{SEQ=S_iss,ACK=sn48})

1`simu_Open

Request sn48ActiveState(RESPOND,0,{GSS=S_iss,
GSR=sn48,GAR=S_iss},
{ISS=S_iss,ISR=sn48})

IdleState LISTEN1

Request sn48ActiveState(RESPOND,0,{GSS=S_iss,
GSR=sn48,GAR=S_iss},
{ISS=S_iss,ISR=sn48})

INVITED rcnt

Listen 0

INVITED 0

IdleState CLOSED_I

Request sn48

Ack_DataAck(ack_dataack,sn_an)

Ack_DataAck(ack_dataack,
sn_an)

Ack_DataAck(ack_dataack,
SeqAckLS (LS, gGS g, sn_an))

Data(SeqLS(LS,g))

PKT(Response,{SEQ=S_iss,
ACK=sn48})

ActiveState(S_OPEN,0,
UpdateGS(g,SA sn_an),isn)

ActiveState(S_OPEN,0,
UpdateGS(g,SA sn_an),isn)

ActiveState(RESPOND,0,{GSS=S_iss,
GSR=sn48,GAR=S_iss},
{ISS=S_iss,ISR=sn48})

IdleState LISTEN

ActiveState(RESPOND,rcnt,g,isn)

ActiveState(RESPOND,rcnt,g,isn)

IdleState LISTEN

IdleState CLOSED_I

1`p_Open

LISTEN1rcvRequest

INVITEDrcvRequest

SimuOpen

RcvAckSndAck

[DataAckValid(sn_an,g,isn)]

RcvAckSndData

[DataAckValid(sn_an,g,isn)]

ListenrcvRequest

PassiveOpen

State
I/OCB

Input
In PACKETS

Output
Out PACKETS

App_Server
In COMMANDIn Out

In

I/O

Figure 9 DCCP Server.

After retransmitting twice , the Server enters the LISTEN1 state. These actions are modelled
in other CPN subpages: Retransmission and BackOffFails pages. When the Server, in either
INVITED, LISTEN1 or LISTEN, receives a DCCP-Request (transition INVITEDrcvRequest,
LISTEN1rcvRequest, LISTENrcvRequest) it replies with a DCCP-Response containing the
Server’s initial sequence number and an acknowledgement for the DCCP-Request. It enters
the RESPOND state and appropriately initialises its state variables. These upper three
transitions are directly related to the state diagram in Fig. 3.

4.5.2 Client Page
The transition RcvListen in Fig. 10 models actions specified by RFC 5596. On receipt of
the DCCP-Listen(seq=0), if the Client has never received DCCP-Listen, it replies with
DCCP-Request. If the Client has received DCCP-Listen before, it silently discards the
DCCP-Listen.

5 Analysis Approach

A typical approach to alleviate the state explosion problem is to make the number of gen-
erated states more compact. We observe that after writing the address translation table,
NAT in our specification model performs only two functions, reordering and forwarding the
packets. Intuitively the CPN model of the underlying layer and NAT can be combined and

S. Vanit-Anunchai 13

reduced into two channel places. Thus, the outgoing packet from a DCCP entity is imme-
diately the incoming packet to the other. However the NAT cannot be abstracted away
because its behaviour before writing the address translation table is different.

By separating the actions before and after writing the address translation table, we
suggest that transitions NAT_RX and NAT_TX in the NAT page should get the highest
priority. When NAT reorders packets, many sequences of these actions (reorder) lead to the
same markings. Analysis using prioritized transitions will keep one sequence but discard
the rest. Thus, the number of total states is significantly reduced and the safety properties
(terminal markings) are preserved.

5.1 CPN Tools versus Design/CPN
Previously, our model [25] was created and maintained using Design/CPN. Because
Design/CPN does not support prioritized transitions, we switch to CPN Tools instead.
Although using prioritized transitions can reduce the state space significantly, the CPN
Tools can generate full state spaces of our model for only a few scenarios. To gain more
confidence in the specification RFC 5596, analysis of more scenarios is required. A technique
that was successfully used to analyse the DCCP connection management CPN models in [25]
is the sweep-line technique. We also wish to apply the sweep-line technique to analyse the
DCCP simultaneous open properties. Unfortunately CPN Tools, which support prioritized
transitions, do not support sweep-line library. On the other hand, Design/CPN has the
sweep-line library but does not support prioritized transitions.

5.2 Prioritized Transitions versus Timed Models
To circumvent the problem in Design/CPN, prioritized transitions are imitated using a timed
token enabling all transitions in the DCCP layer. Enabling transitions in NAT layer does
not require a timed token. When any transition in the DCCP layer is fired, the time stamp

if lis_rcv = false then
ReqState(rcnt+1,incr(gss),iss, true)
else ReqState(rcnt, gss, iss, true)

Listen(0)

if lis_rcv = false
then 1`Request(incr(gss))
else empty

ReqState(rcnt,gss,iss,lis_rcv)

ActiveState(PARTOPEN,rcnt,g,isn)

ActiveState(PARTOPEN,rcnt,g,isn)

ReqState(rcnt,gss,iss, lis_rcv)

IdleState CLOSED_I

ReqState(0,C_iss,C_iss, false)

ActiveState(PARTOPEN,0,{GSS=incr(gss),
GSR= #SEQ(sn48_an48),
GAR= #ACK(sn48_an48)},
{ISS=iss, ISR= #SEQ(sn48_an48)})

ActiveState(C_OPEN,0,{GSS= #GSS(g),
GSR=UpdateGSR(g,S sn),
GAR= #GAR(g)},isn)

ActiveState(C_OPEN,0,{GSS= #GSS(g),
GSR=UpdateGSR(g,SA sn_an),
GAR=UpdateGAR(g,sn_an)},isn)

a_Open

Ack_DataAck(ack_dataack,
SeqAckLS(LS, gssGS gss,
longSA sn48_an48))

Request(C_iss)

Data sn

PKT(Response,sn48_an48)

Ack_DataAck
(ack_dataack, sn_an)

RcvListen

RcvAckDataAckLong

[DataAckValid(sn_an,g,isn)]

RcvData

[DataValid(sn ,g,isn)]

RcvResponse

[AckValid(Response,sn48_an48,
gssGS gss,iss)]

ActiveOpen

StateI/O

CB

App_Client
In

COMMAND

Output
Out

PACKETS

Input
In

PACKETS

In

Out

In

I/O

Figure 10 DCCP Client.

FSFMA’13

14 Analysis of DCCP Simultaneous-Open Procedures

1: (* The Initial State of NAT_A and NAT_B *)
2: val header_C2S = 1‘{src=(10,0,0,1,4321), dst=(138,76,29,7,31000)};
3: val header_S2C = 1‘{src=(10,1,1,3,4321), dst=(155,99,25,11,62000)};
4: val table_A=
5: 1‘{global_src=(0,0,0,0,0), global_dst=(0,0,0,0,0), local_src=(10,1,2,3,4322)}
6: ++1‘{global_src=(0,0,0,0,0), global_dst=(0,0,0,0,0), local_src=(10,0,9,1,4361)}
7: ++1‘{global_src=(0,0,0,0,0), global_dst=(0,0,0,0,0), local_src=(10,0,0,1,4321)};
8: val table_B=
9: 1‘{global_src=(0,0,0,0,0), global_dst=(0,0,0,0,0), local_src=(10,1,1,3,4321)}

10: ++1‘{global_src=(0,0,0,0,0), global_dst=(0,0,0,0,0), local_src=(10,2,9,1,5321)}
11: ++1‘{global_src=(0,0,0,0,0), global_dst=(0,0,0,0,0), local_src=(10,0,6,1,4341)};

Figure 11 The Initial State of NAT_A and NAT_B.

in the token advances one step. Because the global clock is less than the time stamp by
one step, all transitions in NAT layer (if any) have to finish firing before the global clock
advances and the transitions in the DCCP layer can be enable. Thus the transitions in
the NAT layer have higher firing priority than every transition in the DCCP layer. This
imitated method has a drawback that the timed state space is always larger because the
global clock and time stamps contribute to the presence of new states. Increasing state
space sizes seems to be the wrong path because it encourages state explosion. However [25]
demonstrated that if a new additional variable, such as time stamp, is used as progress
measure for the sweep-line analysis, in spite of a larger state space size, the peak memory
used and exploration time can be significantly reduced. Finally we analyse the augmented
model similar to the Sweep-line analysis in [25]. The experimental results are discussed in
section 6.2.

6 Experimental Results

This section contains analysis results for the DCCP simultaneous open procedures when op-
erating over reordering channels without loss. In contrast to the previous work that considers
various cases according the combination of user commands. This paper investigates only
the simultaneous open scenario when the Client user issues an “active open” and the Server
user issues a “simultaneous open” command. The initial markings of all buffer and channel
places are empty. The initial state of both side are CLOSED and the initial send sequence
number (ISS) on both sides is set to 10. The initial markings in Places Header_IP_C2S,
Header_IP_S2C, NAT_A_TABLE and NAT_B_TABLE are specified in Fig. 11. Without
loss of generality, only long sequence numbers are used. All experiments are conducted
on a AMD 9650 2.31GHz PC with 4 GByte RAM. CPN Tools runs on Window XP while
Design/CPN runs on Fedora Core version 6.

6.1 The Prioritized Transition Model
Table 1 illustrates the experimental results when we use prioritized transitions and analyse
the model by CPN Tools. The first column (Config.) in this table defines the configuration
being analysed, where the 3-tuple represents the maximum number of retransmissions al-
lowed for Request, Listen and Ack packets respectively. Columns total nodes and total arcs
record the total number of markings and arcs in the state space, respectively. The time
(hours:minutes:seconds) to generate the full state space is given in Column time. The next
two columns (DMs) records the number of dead markings. Dead markings are classified
into type I and type II. Type I dead markings are desirable and correspond to successful
connection establishment where both the Client and Server are in the OPEN state. In Type
II dead markings both the Client and Server are in still CLOSED state. Both types are

S. Vanit-Anunchai 15

Table 1 DCCP simultaneous open using Prioritized Transitions.
DMs Bounds

Config. total total Ch Ch
nodes arcs time I II L2U_B L2U_A

(0,0,0) 16,441 28,308 00:00:43 13 1 3 5
(0,0,1) 78,360 141,749 00:10:36 33 1 4 5
(0,1,0) 24,579 43,612 00:01:23 13 1 3 6
(0,1,1) 117,264 217,964 00:22:00 33 1 4 6
(0,2,0) 32,736 58,952 00:01:58 13 1 3 7
(0,2,1) 156,187 294,215 00:37:47 33 1 4 7

Table 2 DCCP simultaneous open using the sweep-line method with the augmented model.
Sweep-line with the augmented model DMs Bounds

Config. total total peak Ch Ch %
nodes arcs nodes time I II L2U L2U space

_B _A
(0,0,0) 40,984 65,463 288 00:00:29 26 14 3 5 1.75
(0,0,1) 279,581 469,298 1,080 00:02:33 66 19 4 5 1.38
(0,1,0) 81,531 135,246 496 00:00:50 39 16 3 6 2.02
(0,1,1) 557,615 967,911 2,059 00:07:34 99 21 4 6 1.76
(1,0,0) 2,896,471 4,921,848 3,142 00:38:27 148 24 4 6 -
(1,0,1) 34,412,454 60,468,592 17,908 09:29:13 360 30 5 6 -
(1,1,0) 5,770,971 10,105,648 5,810 01:22:53 222 26 4 7 -
(1,1,1) 68,581,787 123,703,372 34,892 20:57:25 540 32 5 7 -
(0,2,0) 135,454 229,717 794 00:01:14 52 18 3 7 2.43
(0,2,1) 927,819 1,642,398 3,347 00:09:04 132 23 4 7 2.14
(0,2,2) 6,719,017 12,943,167 16,034 00:01:51 236 29 5 8 -
(1,2,0) 9,596,365 17,103,716 9,486 01:42:07 296 28 4 8 -
(1,2,1) 114,060,085 208,918,444 57,427 36:58:00 720 34 5 8 -

expected dead markings. All dead markings have no packets left in all buffers and channels.
The last two columns, Bounds, record the maximum number of packets that can occur in
the channel places Ch_L2U_B and Ch_L2U_A.

6.2 Analyses the Timed Model using the Sweep-line Method
Using prioritized transitions reduces the state space sizes significantly but we can analyse
only six scenarios. When we attempt to analyse the scenarios (1,0,0) , (0,2,2) and (0,1,2), the
available memory is exhausted. As discuss in Section 5, we turn to the sweep-line technique
(with the augmented model). Table 2 illustrates the experimental results when the sweep-
line is applied to the timed CPN model. We use the progress vector suggested in Section
4.5 of [25] together with the time stamp. Conducting search experiments, we discover that
the best position of the time stamp in the progress vector is at the end of the list.

Column peak nodes in Table 2 lists the peak number of nodes stored in main memory
at any one time. Column time records the time used to explore the state space. The last
column (% space) of Table 2 shows the ratio of the number of peak states compared to the
total number of states in Table 1. The smaller the number, the more efficient the sweep-line
algorithm is. The number of peak states is reduced to only 1–2% of the full untimed state
space. This analysis method has potential to explore more scenarios.

7 Conclusions and Future Work

This paper has presented a Coloured Petri Nets model and analysis of DCCP simultaneous
open procedure. Our CPN model is developed based on both RFC 4340 and RFC 5596.

FSFMA’13

16 Analysis of DCCP Simultaneous-Open Procedures

Because NATs with the hole punching procedure affect DCCP behaviour, they cannot be
simply abstracted away using the layered architecture. We suggest to separate NAT opera-
tions into before and after writing the address translation table and remove some transition
occurrences using prioritized transitions. It is possible to use the timed model to imitate pri-
oritized transitions. Analysing the timed models using Sweep-line method is more efficient
than generating full state space of the prioritized transitions models

In future, we are interested in modelling different types of NATs, and increasing the
number of protocol entities. Instead of studying functional behaviour, we wish to investigate
performance behaviour of each protocol entity as well.

Acknowledgments. This work is supported by Research Grant from the Thai Network
Information Center Foundation and the Thailand Research Fund. The author is thankful to
Professor Jonathan Billington, Professor Lar M. Kristensen and the anonymous reviewers.
Their constructive comments have helped to improve the quality of this paper.

References

1 Application of Petri Nets to Communication Networks, volume 1605 of Lecture Notes in
Computer Science. Springer, Heidelberg, 1999.

2 F. Audet and C. Jennings. Network Address Translation (NAT) Behavioral Requirements
for UNicast UDP RTP: A Transport Protocol for Real-Time Applications, RFC 4787.
Available via http://www.rfc-editor.org/rfc/rfc4787.txt, January 2007.

3 J. Billington, G. E. Gallasch, and B. Han. A Coloured Petri Net Approach to Protocol
Verification. In Lectures on Concurrency and Petri Nets, Advances in Petri Nets, volume
3098 of Lecture Notes in Computer Science, pages 210–290. Springer, Heidelberg, 2004.

4 J. Billington and B. Han. Modelling and Analysing the Functional Behaviour of TCP’s Con-
nection Management Procedures. International Journal on Software Tools for Technology
Transfer, 9(3-4):269–304, June 2007. Available via http://dx.doi.org/10.1007/s10009-007-
0034-1.

5 J. Billington and S. Vanit-Anunchai. Coloured Petri Net Modelling of an Evolving In-
ternet Standard: the Datagram Congestion Control Protocol. Fundamenta Informaticae,
88(3):357–385, 2008.

6 J. Billington, S. Vanit-Anunchai, and G. E. Gallasch. Parameterised Coloured Petri Nets
Channel Models. In Transactions on Petri Nets and Other Models of Concurrency, volume
5800 of Lecture Notes in Computer Science, pages 71–97. Springer, Heidelberg, 2009.

7 S. Christensen, L.M. Kristensen, and T. Mailund. A Sweep-Line Method for State Space
Exploration. In Proceedings of the 7th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 2001), volume 2031 of Lecture Notes
in Computer Science, pages 450–464, Genova, Italy, 2-6 April 2001. Springer, Heidelberg.

8 Design/CPN Online. http://www.daimi.au.dk/designCPN/.
9 G. Fairhurst. Datagram Congestion Control Protocol (DCCP) Simultaneous-Open Tech-

nique to FacilitateNAT/Middlebox Traversal, RFC 5596. Available via http://www.rfc-
editor.org/rfc/rfc5596.txt, September 2009.

10 P. Fleischer and L. M. Kristensen. Formal Specification and Validation of Secure Connnec-
tion Establishment in a Generic Access Network Scenario. In Proceedings of ICATPN’08,
volume 5062 of Lecture Notes in Computer Science, pages 153–171. Springer, Heidelberg,
2008.

S. Vanit-Anunchai 17

11 S. Floyd, M. Handley, and E. Kohler. Problem Statement for the Datagram
Congestion Control Protocol (DCCP), RFC 4336. Available via http://www.rfc-
editor.org/rfc/rfc4336.txt, March 2006.

12 S. Gordon. Verification of the WAP Transaction Layer uisng Coloured Petri Nets. PhD
thesis, Institute for Telecommunications Research and Computer Systems Engineering
Centre, School of Electrical and Information Engineering, University of South Australia,
Adelaide, Australia, November 2001.

13 B. Han. Formal Specification of the TCP Service and Verification of TCP Connection
Management. PhD thesis, Computer Systems Engineering Centre, School of Electrical and
Information Engineering, University of South Australia, Adelaide, Australia, December
2004.

14 M. Handley, V. Jacobson, and C. Perkins. SDP: Session Description Protocol, RFC 4566.
Available via http://www.rfc-editor.org/rfc/rfc4566.txt, July 2006.

15 K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use.
Vol. 1, Basic Concepts. Monographs in Theoretical Computer Science. Springer, Heidel-
berg, 2nd edition, 1997.

16 K. Jensen and L.M. Kristensen. Coloured Petri Nets: Modelling and Validation of Con-
current Systems. Springer, Heidelberg, 2009.

17 E. Kohler, M. Handley, and S. Floyd. Designing DCCP: Congestion Control Without
Reliability. In Proceedings of the 2006 ACM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications (SIGCOMM’06), pages 27–38,
Pisa, Italy, 11-15 September 2006.

18 E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control Protocol, RFC 4340.
Available via http://www.rfc-editor.org/rfc/rfc4340.txt, March 2006.

19 L. M. Kristensen and K. Jensen. Specification and Validation of an Edge Router Discovery
Protocol for Mobile Ad Hoc Networks. In Integration of Software Specification Techniques
for Applications in Engineering, volume 3147 of Lecture Notes in Computer Science, pages
248–269. Springer, Heidelberg, 2004.

20 L. Liu. Towards Parametric Verification of the Capability Exchange Signalling Protocol.
PhD thesis, Computer Systems Engineering Centre, School of Electrical and Information
Engineering, University of South Australia, Adelaide, Australia, May 2006.

21 T. Mailund. Sweeping the State Space - A Sweep-Line State Space Exploration Method.
PhD thesis, Department of Computer Science, University of Aarhus, February 2003.

22 C. Ouyang. Formal Specification and Verification of the Internet Open Trading Protocol
using Coloured Petri Nets. PhD thesis, Computer Systems Engineering Centre, School of
Electrical and Information Engineering, University of South Australia, Adelaide, Australia,
June 2004.

23 S. Vanit-Anunchai. An Investigation of the Datagram Congestion Control Protocol’s Con-
nection Management and Synchronisation Procedures. PhD thesis, Computer Systems En-
gineering Centre, School of Electrical and Information Engineering, University of South
Australia, Adelaide, Australia, November 2007.

24 S. Vanit-Anunchai and J. Billington. Modelling the Datagram Congestion Control Pro-
tocol’s Connection Management and Synchronisation Procedures. In Proceedings of the
28th International Conference on Application and Theory of Petri Nets and other models
of concurrency (ICATPN’07), volume 4546 of Lecture Notes in Computer Science, pages
423–444, Siedlce, Poland, 25-29 June 2007. Springer, Heidelberg.

25 S. Vanit-Anunchai, J. Billington, and G.E. Gallasch. Analysis of the Datagram Congestion
Control Protocol’s Connection Management Procedures using the Sweep-line Method. In-
ternational Journal on Software Tools for Technology Transfer, 10(1):29–56, 2008. Available
via http://dx.doi.org/10.1007/s10009-007-0050-1.

FSFMA’13

Dynamic Clock Elimination in Parametric Timed
Automata
Étienne André

Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, UMR 7030
93430 Villetaneuse, France
Etienne.Andre@univ-paris13.fr

Abstract
The formalism of parametric timed automata provides designers with a formal way to specify
and verify real-time concurrent systems where timing requirements are unknown (or parameters).
Such models are usually subject to the state space explosion. A popular way to partially reduce
the size of the state space is to reduce the number of clock variables. In this work, we present a
technique for dynamically eliminating clocks. Experiments using Imitator show a diminution
of the number of states and of the computation time, and in some cases allow termination of
the analysis of models that could not terminate otherwise. More surprisingly, even when the
number of clocks remains constant, there is little noticeable overhead in applying the proposed
clock elimination.

1998 ACM Subject Classification D.4.7 Real-time systems and embedded systems

Keywords and phrases Verification, Real-time systems, Parameter synthesis, State space reduc-
tion, Inverse Method

Digital Object Identifier 10.4230/OASIcs.FSFMA.2013.18

1 Introduction

Ensuring the correctness of critical real-time systems, involving concurrent behaviors and
timing requirements, is crucial. Formal verification methods may not always be able to verify
full size systems, but they provide designers with an important help during the design phase,
in order to detect otherwise costly errors. Timed automata (TA) are an extension of finite
state automata with clocks, i.e., real-valued variables that are compared with constants in
guards and invariants, and may be reset along transitions. TA have been extensively used in
the past decades, and led to useful and efficient implementations.

Parameter synthesis for real-time systems is a set of techniques aiming at synthesizing
dense sets of valuations for the timing requirements of a system. It consists in considering the
delays as unknown constants, or parameters, and synthesizing constraints on these parameters
guaranteeing the system correctness. Parameterizing TA gives parametric timed automata
(PTA) [4].

A fundamental problem in the exploration of the reachability space in PTA is to compact
as much as possible the generated space of symbolic states. We propose here a state space
reduction based on clock elimination.

Related Work

It is well known that the fewer clocks, the more efficient real-time model checking is [11].
Furthermore, a smaller number of clocks may imply a more compact state space: when
constraints are represented using arrays and matrices, the fewer clocks, the smaller the

© Étienne André;
licensed under Creative Commons License CC-BY

1st French Singaporean Workshop on Formal Methods and Applications 2013 (FSFMA’13).
Editors: Christine Choppy and Jun Sun; pp. 18–31

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.FSFMA.2013.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

É. André 19

constraints are, the more compact the state space is. Formalisms such as (parametric) timed
Petri nets [24] or stateful timed CSP [22] have the advantage to dynamically create and
discard clocks (or firing times in Petri nets). Hence, clocks only appear in symbolic states
when they are actually useful. In contrast, in (parametric) timed automata, according to
their standard semantics, clocks must be present in all states.

Still, several works have been proposed to reduce the state space based on the clocks. A
well known approach in timed automata is to abstract the value of the clocks as soon as
they become larger than the system’s largest constant. This technique is implemented in
most tools for TA such as UPPAAL [19]; unfortunately, this approach does not apply to
PTA, where the constants are replaced with parameters. In [15], two methods are proposed
to reduce the number of clocks: (1) the detection of active clocks (the other clocks can
be safely eliminated) and (2) the detection of clocks equal to each others (in which case
only one such clock can be kept). It is shown that the resulting automaton is bisimilar to
the original one, and experiments show large state space reductions. Our work is close to
the first method, but extended to the parametric case. Furthermore, the constraints are
implemented in [15] in the form of difference bound matrices, where adding and removing
clocks is straightforward. In contrast, we use polyhedra where such operations are much
more costly; however, experiments show that the overhead in the worst case is still very
limited in our setting. Finally, our original motivation was to ensure termination of some
systems, which is not necessary in the non-parametric setting since most algorithms rely on
symbolic state space partitions guaranteeing termination.

More recently, an approach has been proposed in [10] to avoid the use of global clocks in
networks of timed automata, to be analyzed in a distributed setting. Although that approach
does not reduce the number of clocks (in contrast to ours), it simplifies the model since less
synchronization is needed between the different TA in parallel.

Finally, our work is partially inspired by the parametric extension of stateful timed CSP
(PSTCSP) [7]. In PSTCSP, clocks are dynamically created, and discarded when no longer
used. Whereas this clock elimination natively belongs to the semantics of PSTCSP, and
hence does not require any additional computation, we have to propose algorithms to be
able to dynamically eliminate clocks in PTA.

Contribution

We introduce here a technique to eliminate clocks on-the-fly, when it is guaranteed that they
will not be read in guards and invariants until their next reset. Our approach is based on
a static computation of the location where clocks can be safely eliminated, as well as on a
dynamic elimination of these clocks during the analysis.

We implemented our approach in Imitator [5], a tool for the synthesis of timing
parameters in which operations on constraints rely on the Parma Polyhedra Library [9].
Experiments show a diminution of the number of states and of the computation time, and in
some cases allow termination of the analysis of models that could not terminate otherwise.
Surprisingly, even when the number of clocks (and hence of states) remains constant, the
computation time does not increase, i.e., there is little noticeable overhead in applying the
proposed clock elimination.

Outline

We recall preliminaries in Section 2. We define and characterize our dynamic clock elimination
technique in Section 3. We present experiments using Imitator in Section 4 and conclude
in Section 5.

FSFMA’13

20 Dynamic Clock Elimination in Parametric Timed Automata

2 Preliminaries

We denote by N, Q+ and R+ the sets of non-negative integers, non-negative rational and
non-negative real numbers, respectively.

2.1 Clocks, Parameters and Constraints
Throughout this paper, we assume a fixed set X = {x1, . . . , xH} of clocks. A clock is a
variable xi with value in R+. All clocks evolve linearly at the same rate. A clock valuation is
a function w : X → RH

+ assigning a non-negative real value to each clock variable. We will
often identify a valuation w with the point (w(x1), . . . , w(xH)). Given a constant d ∈ R+,
we use X + d to denote the set {x1 + d, . . . , xH + d}. Similarly, we write w+ d to denote the
valuation such that (w + d)(x) = w(x) + d for all x ∈ X.

Throughout this paper, we assume a fixed set P = {p1, . . . , pM} of parameters, i.e.,
unknown constants. A parameter valuation π is a function π : P → RM

+ assigning a
nonnegative real value to each parameter. There is a one-to-one correspondence between
valuations and points in (R+)M . We will often identify a valuation π with the point
(π(p1), . . . , π(pM)).

We define here constraints as a set of linear inequalities. An inequality over X and P is
e ≺ e′, where ≺∈ {<,≤}, and e, e′ are two linear terms of the form∑

1≤i≤N

αizi + d

where zi ∈ X ∪ P , αi ∈ Q+, for 1 ≤ i ≤ N , and d ∈ Q+. We define in a similar manner
inequalities over X (resp. P). A constraint is a conjunction of inequalities.

We denote by L(X), L(P) and L(X ∪ P) the set of all constraints over X, over P ,
and over X and P respectively. In the sequel, the letter D ∈ L(X) denotes a constraint
over the clocks, the letter K ∈ L(P) denotes a constraint over the parameters, and the
letter C ∈ L(X ∪ P) denotes a constraint over the clocks and the parameters.

Given a clock valuation w, D[w] denotes the expression obtained by replacing each clock x
in D with w(x). A clock valuation w satisfies constraint D (denoted by w |= D) if D[w]
evaluates to true.

Given a parameter valuation π, C[π] denotes the constraint over the clocks obtained by
replacing each parameter p in C with π(p). Likewise, given a clock valuation w, C[π][w]
denotes the expression obtained by replacing each clock x in C[π] with w(x). We say that
a parameter valuation π satisfies a constraint C, denoted by π |= C, if the set of clock
valuations that satisfy C[π] is nonempty. We use the notation <w, π> |= C to indicate that
C[π][w] evaluates to true. Given a constraint C and a clock x, we write x ∈ C to denote
that x is not a free variable in C.

Given two constraints C1 and C2 over the clocks and the parameters, C1 is said to be
included in C2, denoted by C1 ⊆ C2, if ∀w, π : <w, π> |= C1 =⇒ <w, π> |= C2.

We denote by C\X the constraint over the parameters obtained by eliminating its clock
variables (e.g., using Fourier-Motzkin [21]). Similarly, we denote by C↓P the constraint over
the parameters obtained by projecting C onto the set of parameters, that is after elimination
of the clock variables. Formally, C↓P = {π | ∃w : <w, π>}. Note that C\X = C↓P .

Sometimes we will refer to a variable domain X ′, which is obtained by renaming the
variables in X. Explicit renaming of variables is denoted by the substitution operation. Given
a constraint C over the clocks and the parameters, we denote by C[X←X′] the constraint

É. André 21

obtained by replacing in C the variables of X with the variables of X ′. We sometime write
C(X) or C(X ′) to denote the set of clocks used within C.

We define the time elapsing of C, denoted by C↑, as the constraint over X and P obtained
from C by delaying an arbitrary amount of time. Formally:

C↑ =
(

(C ∧X ′ = X + d)\X∪{d}

)
[X′←X]

where d is a new parameter with values in R+, and X ′ is a renamed set of clocks. The inner
part of the expression adds the same delay d to all clocks; then the original set of clocks X
and d are eliminated; the outer part of the expression renames clocks X ′ with X.

2.2 Labeled Transition Systems
We introduce below labeled transition systems, which will be used later in this section to
represent the semantics of parametric timed automata.

I Definition 1. A labeled transition system is a quadruple LT S = (Σ, S, S0,⇒), with Σ
a set of symbols, S a set of states, S0 ⊂ S a set of initial states, and ⇒ ∈ S × Σ × S a
transition relation. We write s a⇒ s′ for (s, a, s′) ∈ ⇒. A run (of length m) of LT S is a finite
alternating sequence of states si ∈ S and symbols ai ∈ Σ of the form s0

a0⇒ s1
a1⇒ · · · am−1⇒ sm,

where s0 ∈ S0. A state si is reachable if it belongs to some run r.

2.3 Parametric Timed Automata
Parametric timed automata are an extension of the class of timed automata [3] to the
parametric case, where parameters can be used within guards and invariants in place of
constants [4].

Syntax

I Definition 2 (Parametric Timed Automaton). A parametric timed automaton (PTA) A is a
8-tuple of the form A = (Σ, L, l0, X, P,K, I,→), where

Σ is a finite set of actions,
L is a finite set of locations, l0 ∈ L is the initial location,
X is a set of clocks, P is a set of parameters, K ∈ L(P) is the initial constraint,
I is the invariant, assigning to every l ∈ L a constraint I(l) ∈ L(X ∪ P), and
→ is a step relation consisting of elements of the form (l, g, a, ρ, l′), where l, l′ ∈ L are
the source and destination locations, a ∈ Σ, ρ ⊆ X is a set of clocks to be reset by the
step, and g ∈ L(X ∪ P) is the step guard.

The constraint K corresponds to the initial constraint over the parameters, i.e., a
constraint that will be true in all the states of A (see semantics in Definition 4). For example,
in a PTA with two parameters min and max, one may want to constrain min to be always
smaller or equal to max, in which case K is defined to be min ≤ max.

Semantics

The (symbolic) semantics of PTA relies on the following notion of state.

I Definition 3 (State). Let A = (Σ, L, l0, X, P,K, I,→) be a PTA. A state s of A is a pair
(l, C) where l ∈ L is a location, and C ∈ L(X ∪ P) its associated constraint.

FSFMA’13

22 Dynamic Clock Elimination in Parametric Timed Automata

C

g

I(l′)
C ′

ρ

Figure 1 Forward reachability for timed automata.

For each valuation π of P , we may view a state s as the set of pairs (l, w) where w is a clock
valuation such that <w, π> |= C.

The initial state of A is s0 = (l0, C0), where C0 = K ∧ I(l0) ∧
∧H−1

i=1 xi = xi+1. In this
expression, K is the initial constraint over the parameters, I(l0) is the invariant of the initial
location, and the rest of the expression lets clocks evolve from the same initial value.

The semantics of PTA is given in the following in the form of an LTS.

IDefinition 4 (Semantics of PTA). LetA = (Σ, L, l0, X, P,K, I,→) be a PTA. The semantics
of A is LT S(A) = (Σ, S, S0,⇒) where

S = {(l, C) ∈ L× L(X ∪ P) | C ⊆ I(l)},
S0 = {(l0,K ∧ I(l0) ∧

∧H−1
i=1 xi = xi+1)}

and a transition (l, C) a⇒ (l′, C ′) belongs to ⇒ if ∃C ′′ : (l, C) a→ (l′, C ′′) d→ (l′, C ′), with
discrete transitions (l, C) a→ (l′, C ′) if there exists (l, g, a, ρ, l′) ∈ → and

C ′ =
((
C(X) ∧ g(X) ∧X ′ = ρ(X)

)
\X ∧ I(l′)(X ′)

)
[X′←X]

and

delay transitions (l, C) d→ (l, C ′) with C ′ = C↑ ∧ I(l)(X).

In Figure 1, we present in a graphical way the computation of the successor constraint of
a state (l, C). First, C is intersected with the guard g of the transition. Then, the clocks
that must be reset by the transition (as in ρ) are projected onto zero. Then, the constraint is
intersected with the invariant of the destination location I(l′). Time elapsing is then applied.
The resulting constraint C ′ is finally obtained by intersecting again with the invariant of the
destination location I(l′).

Let LT S(A) = (Σ, S, S0,⇒). When clear from the context, given (s1, a, s2) ∈ ⇒, we
write (s1

a⇒ s2) ∈ ⇒(A); and we write s0 for the (only) state in S0.
A path of A is a finite alternating sequence of states and actions.

I Definition 5 (Path). Let A be a PTA. Let s0
a0⇒ . . .

an−1⇒ sn, such that si
ai⇒ si+1 ∈ ⇒(A),

for all 0 ≤ i ≤ n− 1.
Then s0

a0⇒ . . .
an−1⇒ sn is said to be a path of A. The set of all paths of A is denoted

by Paths(A).

We define traces as time-abstract paths.

I Definition 6 (Trace). Given a path (l0, C0) a0⇒ (l1, C1) a1⇒ · · · am−1⇒ (lm, Cm), the corre-
sponding trace is l0

a0⇒ l1
a1⇒ · · · am−1⇒ lm.

É. André 23

Finally, we recall the parallel composition of PTA: N PTA can be composed into a single
parametric timed automaton, by performing a product of the N PTA.

I Definition 7. Let N ∈ N. For all 1 ≤ i ≤ N , let Ai = (Σi, Li, (l0)i, Xi, Pi,Ki, Ii,→i) be
a PTA. The sets Li are mutually disjoint. A network of PTA is A = A1‖ . . . ‖AN , where ‖
is the operator for parallel composition defined in the following way. This network of PTA
corresponds to the PTA A = (Σ, L, l0, X, P,K, I,→) where

Σ =
⋃N

i=1 Σi, L = ΠN
i=1Li, l0 = 〈(l0)1, . . . , (l0)N 〉,

X =
⋃N

i=1 Xi, P =
⋃N

i=1 Pi, K =
∧N

i=1 Ki,
I(〈l1, . . . , lN 〉) =

∧N
i=1 Ii(li) for all 〈l1, . . . , lN 〉 ∈ L,

and → is defined as follows. For all a ∈ Σ, let Ta be the subset of indices i ∈ 1, . . . , N such
that a ∈ Σi. For all a ∈ Σ, for all 〈l1, . . . , lN 〉 ∈ L, for all 〈l′1, . . . , l′N 〉 ∈ L, we have that
(〈l1, . . . , lN 〉, g, a, ρ, 〈l′1, . . . , l′N 〉) ∈ → if:

for all i ∈ Ta, there exist gi, ρi such that (li, gi, a, ρi, l
′
i) ∈ →i, g =

∧
i∈Ta

gi, ρ =
⋃

i∈Ta
ρi,

and,
for all i 6∈ Ta, l′i = li.

3 On-the-fly Clock Elimination

3.1 Motivation
Consider the PTA depicted in Figure 2. This PTA contains 2 locations, 2 clocks x1 and x2,
as well as 2 parameters p1 and p2. Although the clock x2 is not used in l2, its existence
will generate an infinite set of states. More precisely, an infinite number of states with a
constraint of the form x2 = x1 + i× p1 (with i infinitely growing) will be generated.

l1 l2
x2 = p2
x1 := 0

x1 = p1
x1 := 0

Figure 2 A looping automaton.

This situation is not met in the non-parametric setting. Indeed, it is well known that,
once the value of a clock gets larger than the system’s largest constant c, this clock value can
be safely abstracted to an abstract value “greater than c”. Unfortunately, this is not possible
in the parametric setting, due to the fact that constants are unknown.

Here, we propose a simple technique based on dynamic clock elimination. We can note
that x2 is “useless” in l2: indeed, it is not read in any guard, nor reset, and, since l2 has no
successor location except itself, x2 will not be read in the future. As a consequence, x2 can
be safely discarded or eliminated in l2, so as to ensure termination of the analysis.

Recall that this situation is not met in formalisms such as the parametric extension
of stateful timed CSP [7]. Indeed, in this formalism, clocks are dynamically created, and
discarded when no longer used.

3.2 General Approach
We propose here to eliminate useless clocks on-the-fly, i.e., during the analysis. By useless,
we mean clocks that will not be useful in the future (i.e., not read in guards and invariants),
until their next reset. Technically, detecting useless clocks would require to explore the

FSFMA’13

24 Dynamic Clock Elimination in Parametric Timed Automata

system, and check whether a given clock will be used (i.e., read in a guard or in an invariant)
in the future. Unfortunately, this would not be interesting to do in practice since this would
require to analyze the whole system, which we want to avoid. Hence, one must accept
to possibly exhibit an under-approximation of the set of useless clocks, in order to find a
trade-off between efficiency and accuracy.

In this work, we propose the following technique. First, we detect the useless clocks in a
static manner; hence, we construct prior to the analysis a table associating each location
with the list of the clocks useless in this location. During the analysis, it is sufficient to check
this table in order to know which clocks are useless.

Second, we consider only local clocks, i.e., used in a single PTA. (Recall that the PTA
analyzed can be made of a network of N PTA in parallel.) This requirement is motivated by
obvious efficiency reasons: exploring each PTA in an independent manner is by far more
efficient than exploring the composition of several PTA, required to detect the locations in
which global clocks (used by several PTA) can be safely discarded. Note that, in all case
studies we considered, all clocks were always local. Extending our work to the case of global
clocks is discussed in Section 5.

3.3 Static Computation of the Useless Clocks per Location
We introduce in Algorithm 1 an algorithm useless(A, x), that computes in a static manner
the set of locations where a clock x is useless. This algorithm takes as input a PTA A and a
clock x, and outputs the list of locations in A where x is useless.

Algorithm 1: useless(A, x)
input : PTA A, clock x
output : List of locations where x is unnecessary

1 Marked← {l|∃l′, a, g, ρ : (l, a, g, ρ, l′) ∈ →∧ x ∈ g} ∪ {l|x ∈ I(l)}
2 Waiting← Marked
3 while Waiting 6= ∅ do
4 pick l′ from Waiting
5 foreach (l, a, g, ρ, l′) ∈ → do
6 if x /∈ ρ then
7 if l /∈ Marked then
8 Marked← Marked ∪ {l}
9 Waiting←Waiting ∪ {l}

10 return L \Marked

The algorithm makes use of a set of waiting locations (“Waiting”) and a set of marked
locations (“Marked”); this latter set corresponds to the locations where x is actually useful.
Lines 1– 2 initialize the value of Waiting and Marked to the set of locations that are either
predecessors of a guard involving x or have an invariant involving x. Then, it proceeds by
coloring locations in a backward manner, starting from Marked. As long as the set of waiting
locations is not empty, the algorithm picks a location l′ from this set (line 4); then, for each
transition whose destination location is l′, the algorithm checks whether the clock x is reset
along the transition (line 6). If not, and if the transition source l is not marked yet, then l is
added both to the set of marked locations and to the waiting set (lines 8–9). The algorithm
finally returns the set of locations in A that are not marked (line 10).

É. André 25

l1

l2

l3 l4

x2 ≤ p2

x1 ≤ p2

x1 = p1
x1 := 0

x2 := 0

x2 = p1
x2 := 0

(a) A toy PTA A

l1

l2

l3 l4

x2 ≤ p2

x1 ≤ p2

x1 = p1
x1 := 0

x2 := 0

x2 = p1
x2 := 0

(b) Locations marked in useless(A, x1)

l1

l2

l3 l4

x2 ≤ p2

x1 ≤ p2

x1 = p1
x1 := 0

x2 := 0

x2 = p1
x2 := 0

(c) Locations marked in useless(A, x2)

Figure 3 Static computation of the useless clocks: an example.

Let us apply Algorithm 1 to the simple PTA in Figure 3a and to clock x1. Initially,
Marked = Waiting = {l1, l2}. Let us pick l1 from Waiting. Since l1 has no predecessor,
no action is performed. Let us pick l2 from Waiting; l2 has two predecessors l1 and l3.
For l1, x1 /∈ ρ, but l1 ∈ Marked, hence again no action is performed. For l3, x1 /∈ ρ, and
l3 /∈ Marked, hence we add l3 to both Marked and Waiting. We now pick l3 from Waiting; l3
has one predecessor l1, already in Marked. The Waiting set is now empty, and the algorithm
has marked l1, l2 and l3, as showed in Figure 3b; the non-marked locations are returned,
viz., {l4}.

The result of the application of Algorithm 1 to A and x2 is given in Figure 3c. The
locations for which x2 is useless are l2 and l3.

In the case of a network of PTA (see Definition 7), the list of useless clocks in a global
location is the union, for each of the PTA in parallel, of the clocks useless in the local location
for this PTA.
I Remark. An alternative and equivalent way to present Algorithm 1 is to use the following
recursively defined function (given in a functional programming-like syntax), that decides
whether a clock is useless in a given location.

FSFMA’13

26 Dynamic Clock Elimination in Parametric Timed Automata

let uselessInLoc (x, l) =
x notin I(l)
and
foreach (l, a, g, rho , l’) in steps then

x notin g
and (x in rho or uselessInLoc (x, l’))

3.4 Dynamic Elimination of the Clocks in Practice

Following the static computation of the locations in which each clock is useless, we can
now eliminate the clocks on-the-fly during a reachability analysis. More precisely, this is
performed after computing the constraint associated with a new state; once this constraint
has been computed, useless clocks are eliminated. This elimination is a variable elimination
à la Fourier-Motzkin [21], so as not to modify the relationship between the other clocks and
parameters.

Algorithm 2: Computation of a new state in Imitator.
input : PTA A, state (l, C), transition (l, a, g, ρ, l′)
output : New state (l′, C ′)

1 C ′ ← C ∧ g
2 C ′ ← ρ(C ′)
3 C ′ ← C ′ ∧ I(l′)
4 C ′ ← C ′↑

5 C ′ ← Eliminate(C ′)
6 return (l′, C ′)

We give in Algorithm 2 a simplified1 version of the computation of the successor state
(l′, C ′), generated from a source state (l, C) via transition (l, a, g, ρ, l′), as implemented in
Imitator [5]. The addition of the clock elimination is highlighted (line 5); in this expression,
Eliminate(C ′) denotes the elimination of the clocks useless in the destination location l′, as
computed by Algorithm 1 for each clock. In Imitator, the variable elimination is performed
using the dedicated function of the Parma Polyhedra Library [9].

3.5 Characterization

In this section, we show that applying the dynamic clock elimination during a reachability
analysis preserves parametric analyses, as well as the satisfiability of linear-time properties.

Let us denote by U(l) the list of clocks useless in a given location l; the result of this
function can be computed by applying Algorithm 1 for each clock.

We define below the semantics of PTA under dynamic clock elimination.

1 Imitator also features discrete variables, as well as stopwatches; these features are beyond the scope
of this paper, and are discarded here. Furthermore, after each modification of C′, a satisfiability test
is performed to check whether (l′, C′) is valid new state; if not, it is discarded (using an exception
mechanism).

É. André 27

I Definition 8. Let A = (Σ, L, l0, X, P,K, I,→) be a PTA. The semantics of A under
dynamic clock elimination is LT Sdyn(A) = (Σ, S, S0,⇒dyn) where

S = {(l, C) ∈ L× L(X ∪ P) | C ⊆ I(l)},
S0 =

{
(l0,
(
K ∧ I(l0) ∧

∧H−1
i=1 xi = xi+1

)
\U(l0)

}
and a transition (l, C) a⇒dyn (l′, C ′) belongs to ⇒dyn if ∃C ′′ : (l, C) a⇒ (l′, C ′′), and C ′ =
C ′′\U(l′).

Hence, a transition in the semantics under dynamic clock elimination corresponds to a
transition conform to the standard semantics of PTA (i.e., (l, C) a⇒ (l′, C ′′)), followed by the
elimination of the clocks useless in l′ (i.e., C ′ = C ′′\U(l′)).

We denote by Pathsdyn(A) the set of paths of A computed using the semantics of A
under dynamic clock elimination.

We characterize below the effect of dynamically eliminating clocks while performing a
reachability analysis.

I Theorem 9. Let A be a PTA. Then:

⇒ Let (l0, C0) a0⇒ · · · am−1⇒ (lm, Cm) be a path in Paths(A). Then there exist C ′i, 0 ≤ i ≤ m
such that (l0, C ′0) a0⇒ · · · am−1⇒ (lm, C ′m) is a path in Pathsdyn(A), with C ′i = Ci\U(li) for
0 ≤ i ≤ m.

⇐ Conversely, let (l0, C ′0) a0⇒ · · · am−1⇒ (lm, C ′m) be a path in Pathsdyn(A). Then there exist
Ci, 0 ≤ i ≤ m such that (l0, C0) a0⇒ · · · am−1⇒ (lm, Cm) is a path in Paths(A), with
C ′i = Ci\U(li) for 0 ≤ i ≤ m.

Proof (sketch). The first part (⇒) is obtained by induction on the length of the paths.
Suppose the result holds for i, and let us prove it for i+ 1. Consider (li, Ci)

ai⇒ (li+1, Ci+1).
From the induction hypothesis, there exists (li, C ′i) with C ′i = Ci\U(li). Since Ci ⊆ C ′i, then
there exists C ′′i+1 such that (li, C ′i)

ai⇒ (li+1, C
′′
i+1). The fact that C ′i+1 = Ci+1\U(li+1) can

be proved by showing that the operations in the two items of Definition 4 preserve this
equality. Note that this holds only because the clocks in U(li) and U(li+1) are not used in
the invariants, guards and resets in the definition.

The second part (⇐) is obtained using a similar reasoning.
J

Basically, Theorem 9 states that each path in Paths(A) has an equivalent in Pathsdyn(A),
and conversely. Furthermore, in each state, the relationship between all parameters and all
clocks (except the clocks useless in this state) is the same in both semantics; this comes from
the fact that C ′i = Ci\U(li).

We exhibit below two corollaries of Theorem 9. The first corollary states that the
projection of the constraints associated to the states of a path in both the standard semantics
and the semantics under dynamic clock elimination are the same. Hence, the clock elimination
is suitable to perform parametric model checking based on paths.

I Corollary 10. Let A be a PTA. Let (l0, C ′0) a0⇒ · · · am−1⇒ (lm, C ′m) be a path in Pathsdyn(A),
and let (l0, C0) a0⇒ · · · am−1⇒ (lm, Cm) be its equivalent path in Paths(A).

Then Ci↓P = C ′i↓P , for all 0 ≤ i ≤ m.

Proof. Since C ′i = Ci\U(li) then C ′i\X = Ci\X , hence C ′i↓P = Ci↓P . J

FSFMA’13

28 Dynamic Clock Elimination in Parametric Timed Automata

The second corollary states that the dynamic clock elimination preserves linear time
properties. Given a linear-time property, we denote by ϕ |= Paths(A) the fact that all paths
of A satisfy ϕ (and similarly for Pathsdyn).

I Corollary 11. Let A be a PTA. Let ϕ be a linear-time property.
Then ϕ |= Paths(A) if and only if ϕ |= Pathsdyn(A).

Proof. Since each path in Paths(A) has an equivalent path in Pathsdyn(A) and vice-versa,
the sets of traces are equal. Hence the linear-time properties satisfied are equal. J

4 Experimental Validation

This clock elimination technique has been implemented in Imitator [5] (since version 2.6.1)
as an optional feature (option -dynamic-elimination). We compare the efficiency of our
dynamic clock elimination technique on the inverse method IM [8]. This algorithm takes
advantage of a known reference parameter valuation, and synthesizes a constraint around
the reference valuation guaranteeing the same traces as for the reference valuation, i.e.,
guaranteeing that the same linear-time properties are satisfied. The two algorithms compared
are (1) IM and (2) IM dyn, i.e., IM where useless clocks are eliminated on-the-fly using the
algorithms of Section 3. Note that, since IM relies on the exploration of the parametric state
space (after eliminating all clocks), from Corollary 10, the result of both algorithms will be
the same.

Table 1 compares the performances and results of IM and IM dyn. Columns |X| and |P |
denote the number of clocks and parameters of the PTA, respectively. For each algorithm,
columns |S|, |T | and t denote the number of states, of transitions and the computation time
in seconds, respectively. In the last 2 columns, we compare the results: first, we divide
the number of states in IM by the number of states in IM dyn and multiply by 100 (hence,
a number smaller than 100 denotes an improvement of the clock elimination); second, we
perform the same comparison for the computation time. Experiments were performed on
a KUbuntu 13.04 64 bits system running on an Intel Core i7 CPU 2.67GHz with 4GiB of
RAM.

Table 1 Experiments.

IM IM dyn Comparison
Example |X| |P | |S| |T | t |S| |T | t |S| t

Figure 2 2 2 - - loop 2 2 0.007 0 0
Figure 3 2 2 - - loop 6 8 0.006 0 0
AndOr 4 12 11 11 0.047 11 11 0.050 100 106

SPSMALL 10 26 31 30 0.580 31 30 0.584 100 101
Train 3 6 78 94 0.100 61 76 0.072 78 72
BRP 7 6 429 474 3.50 429 474 3.21 100 92

CSMA/CD6 3 3 13,365 14,271 19.6 13,365 14,271 19.5 100 99
RCP 5 6 327 518 0.68 181 282 0.41 55 60

AAM06 3 8 1,497 1,844 8.28 768 997 2.92 51 35
AM02 3 4 182 215 0.392 182 215 0.386 100 98
BB04 6 7 806 827 25.4 806 827 27.2 100 107
CTC 15 21 1,364 1,363 83.4 201 291 2.52 15 3.0
LA02 3 5 6,290 8,023 710 4,932 7,154 473 78 67

LPPRC10 4 7 78 102 0.375 78 102 0.395 100 105

É. André 29

Description of the Models

The first 2 models are the looping PTA in Figure 2 and Figure 3a. The next 2 models are
asynchronous circuits [13, 8]. The next case study is a classical train–gate–controller from [4].
The next 3 models are common protocols [14, 18, 17]. The other models are scheduling
problems [1, 2, 12, 23, 20]. All models are described and available (with sources and binaries
of Imitator) on Imitator’s Web page2.

Interpretation of the Experiments

Let us comment the experiments in Table 1. Although only the 2 toy models are such that
only IM dyn can analyze them whereas IM loops, the optimization of IM dyn also leads to
state space reductions in many other models. These state space reductions come from the
fact that useless clocks may in general lead to the creation of many similar states, only
different with respect to the (generally increasing) value of these clocks; when the useless
clocks are eliminated, all these similar states are replaced with only one state.

The use of the optimized version IM dyn has the following advantages. First, the state
space is often reduced compared to the classical IM (without clock elimination). Although
the dynamic elimination of clocks does not seem to bring anything in the case of hardware
verification, it seems much more interesting for protocols and scheduling problems. This is
particularly interesting for the scheduling problems, with a division of the number of states
by a factor of up to 6 (CTC). Second, the computation time is always reduced when the
dynamic clock elimination indeed reduces the state space, by a factor of up to 33 (CTC).
Third, and more surprisingly, the overhead brought by the dynamic elimination does not
yield a significant augmentation of the computation time, even when the clock elimination
does not reduce the state space at all; the worst case is +7% (BB04), which remains very
reasonable. These experiments encourage us to consider to set this optimization as default
in Imitator.

Finally, in some cases (BRP, CSMA/CD, AM02), the computation time is smaller in the
case of dynamic clock elimination, despite the absence of state space reduction – which is
surprising. This may be due to little variations of the processor. This might also be explained
by the fact that, even when states are not merged, the computation of the successor states
may be more efficient when the constraints are smaller (i.e., have fewer clocks).

5 Conclusion

We introduced here a state space reduction technique based on an on-the-fly elimination
of unnecessary clocks in parametric timed automata. This technique has the following
advantages: (1) some models that include loops preventing termination may terminate; (2)
the relationship between the remaining clocks and parameters is preserved, which makes
it suitable for many (parametric) model checking algorithms; (3) the application of this
technique to the inverse method (implemented in Imitator) shows interesting state space
reductions without adding any significant overhead in terms of computation time.

2 http://www.lsv.ens-cachan.fr/Software/imitator/dynamic/

FSFMA’13

http://www.lsv.ens-cachan.fr/Software/imitator/dynamic/

30 Dynamic Clock Elimination in Parametric Timed Automata

Future Work

So far, we considered only local clocks, i.e., clocks used in only one of the different PTA in
parallel. Considering global clocks (i.e., used in most of the PTA describing the model) would
be interesting. In order to avoid the static composition of all PTA prior to the analysis, this
would require more complex algorithms than our current detection of the locations where a
clock can be discarded. An alternative is to combine our technique with the technique of
global clock elimination introduced in [10], if this latter technique can be extended to the
parametric setting.

A future extension consists in extending the second algorithm of [15], i.e., to dynamically
eliminate clocks that are equal to another clock. Although simple in theory, this optimization
would require some operations on the constraints that may turn more complex and time-
consuming in the parametric setting (using polyhedra) than in the non-parametric setting
(using difference bound matrices).

We aim at extending this work to the case of hybrid systems, where clocks are generalized
to variables with (in general) arbitrary rates. This could then be applied to the inverse
method generalized to hybrid systems [16].

We are also interested in studying the optimization presented here with the (more
restrictive) state space reduction based on convex merging recently proposed in [6].

Acknowledgement

I am grateful to an anonymous reviewer for his/her useful comments.

References
1 Yasmina Adbeddaïm, Eugene Asarin, and Oded Maler. Scheduling with timed automata.

Theoretical Computer Science, 354(2):272–300, 2006.
2 Yasmina Adbeddaïm and Oded Maler. Preemptive job-shop scheduling using stopwatch

automata. In TACAS, volume 2280 of Lecture Notes in Computer Science, pages 113–126.
Springer, 2002.

3 Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

4 Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric real-time reasoning.
In STOC, pages 592–601. ACM, 1993.

5 Étienne André, Laurent Fribourg, Ulrich Kühne, and Romain Soulat. IMITATOR 2.5:
A tool for analyzing robustness in scheduling problems. In FM, volume 7436 of Lecture
Notes in Computer Science, pages 33–36. Springer, 2012.

6 Étienne André, Laurent Fribourg, and Romain Soulat. Merge and conquer: State merging
in parametric timed automata. In ATVA, Lecture Notes in Computer Science. Springer,
2013. To appear.

7 Étienne André, Yang Liu, Jun Sun, and Jin Song Dong. Parameter synthesis for hierarchical
concurrent real-time systems. In ICECCS, pages 253–262. IEEE Computer Society, 2012.

8 Étienne André and Romain Soulat. The Inverse Method. FOCUS Series in Computer
Engineering and Information Technology. ISTE Ltd and John Wiley & Sons Inc., 2013.

9 Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The Parma Polyhedra Library:
Toward a complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming, 72(1–2):3–21, 2008.

10 Sandie Balaguer and Thomas Chatain. Avoiding shared clocks in networks of timed au-
tomata. In CONCUR, volume 7454 of Lecture Notes in Computer Science, pages 100–114.
Springer, 2012.

É. André 31

11 Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools. In Lec-
tures on Concurrency and Petri Nets, volume 3098 of Lecture Notes in Computer Science,
pages 87–124. Springer, 2003.

12 Enrico Bini and Giorgio C. Buttazzo. Schedulability analysis of periodic fixed priority
systems. IEEE Transactions on Computers, 53(11):1462–1473, 2004.

13 Robert Clarisó and Jordi Cortadella. The octahedron abstract domain. Science of Computer
Programming, 64(1):115–139, 2007.

14 Pedro R. D’Argenio, Joost-Pieter Katoen, Theo C. Ruys, and Jan Tretmans. The bounded
retransmission protocol must be on time! In TACAS, volume 1217 of Lecture Notes in
Computer Science, pages 416–431. Springer, 1997.

15 Conrado Daws and Sergio Yovine. Reducing the number of clock variables of timed au-
tomata. In RTSS, pages 73–81. IEEE Computer Society, 1996.

16 Laurent Fribourg and Ulrich Kühne. Parametric verification and test coverage for hybrid
automata using the inverse method. International Journal of Foundations of Computer
Science, 24(2):233–249, 2013.

17 Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager. Linear para-
metric model checking of timed automata. Journal of Logic and Algebraic Programming,
52-53:183–220, 2002.

18 Marta Z. Kwiatkowska, Gethin Norman, Jeremy Sproston, and Fuzhi Wang. Sym-
bolic model checking for probabilistic timed automata. Information and Computation,
205(7):1027–1077, 2007.

19 Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. Interna-
tional Journal on Software Tools for Technology Transfer, 1(1-2):134–152, 1997.

20 Thi Thieu Hoa Le, Luigi Palopoli, Roberto Passerone, Yusi Ramadian, and Alessandro
Cimatti. Parametric analysis of distributed firm real-time systems: A case study. In ETFA,
pages 1–8. IEEE, 2010.

21 Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, Inc.,
1986.

22 Jun Sun, Yang Liu, Jin Song Dong, Yan Liu, Ling Shi, and Étienne André. Modeling and
verifying hierarchical real-time systems using Stateful Timed CSP. ACM Transactions on
Software Engineering and Methodology, 22(1):3.1–3.29, 2013.

23 Naoyuki Tamura. CSP2SAT: JSS benchmark results. http://bach.istc.kobe-u.ac.jp/
csp2sat/jss/, 2007.

24 Louis-Marie Traonouez, Didier Lime, and Olivier H. Roux. Parametric model-checking of
stopwatch Petri nets. Journal of Universal Computer Science, 15(17):3273–3304, 2009.

FSFMA’13

http://bach.istc.kobe-u.ac.jp/csp2sat/jss/
http://bach.istc.kobe-u.ac.jp/csp2sat/jss/

On the Determinism of Multi-core Processors∗

Vladimir-Alexandru Paun1, Bruno Monsuez1, and
Philippe Baufreton2

1 UIIS
ENSTA ParisTech
828, Boulevard des Maréchaux, 91762 Palaiseau Cedex, France
surname@ensta-paristech.fr

2 Sagem – SAFRAN Electronics
Etablissement F. Hussenot – R&T
100 avenue de Paris – 91344 MASSY Cedex France

Abstract
Hard real time systems are evolving in order to respond to the increasing demand in complex
functionalities while taking advantage of newer hardware. Software development for safety crit-
ical systems has to comply with strict requirements that will facilitate the certification process.
During this process, each part of the system is evaluated, requiring a certain level of assurance
in order to provide confidence in the product. In particular there must be a level of confid-
ence that the system behaves deterministically that may be based on functionality, resources
and time. The success of system verification depends greatly on the capacity to determine its
exact behavior. Nonetheless, hardware evolved in order to maximize the average computation
power throughput with little to no regard to the deterministic aspect. Therefore modern archi-
tectural features of processors, like pipelines, cache memories and co-processors, make it hard
to verify that all the needed properties are respected. The multi-core is furthermore difficult to
analyze as the architecture employs mechanisms that compromise strong spatial and temporal
partitioning when using shared resources without rigorous access control like shared caches or
shared input/outputs. In this paper we identify and analyze the main sources of nondetermin-
ism of the multi-cores with regard to the timing estimation. Precise determination of the worst
case execution time is a challenging task even in single-core architectures. The problems are
accentuated in the multi-core context mainly due to the resource sharing that can lead to highly
complex interactions or to nondeterminism. Most of the units that generate behaviors that are
hard to take into account can be deactivated, but it is not always easy to predict the impact
on the performance. Nevertheless some of the features cannot be disabled (such as the out of
order execution or some nondeterministic crossbar access policies) which leads to the invalida-
tion of the respective platform for applications with high criticality level. We will address the
problematic units, propose configuration or architecture guidelines and estimate their impact on
the performance and determinism of the system.

1998 ACM Subject Classification C.3 Special-Purpose and Application-Based Systems

Keywords and phrases multi-core, determinism, hard-real time systems

Digital Object Identifier 10.4230/OASIcs.FSFMA.2013.32

1 Introduction

The use of complex computers in safety-critical systems creates the need to ensure that
the embedded systems act in the way they are supposed to and that consequences of a

∗ This work was supported by SAFRAN Sagem.

© Vladimir-Alexandru Paun, Bruno Monsuez, and Philippe Baufreton;
licensed under Creative Commons License CC-BY

1st French Singaporean Workshop on Formal Methods and Applications 2013 (FSFMA’13).
Editors: Christine Choppy and Jun Sun; pp. 32–46

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.FSFMA.2013.32
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

V.A. Paun, B. Monsuez, and P. Baufreton 33

malfunction are completely handled in a safe manner. Different standards apply according
to the danger level of the system failure. These standards are presented in a collection of
guidelines to follow in order to empower the system with a necessary confidence level. The
respect of these recommendations determine the success of the certification process necessary
for the software approval.

In this paper we focus on the determinism issues related to the worst-case execution time
(WCET) with regards to the avionics standards of software certification that will guide the
study of potential difficulties of embedding multi-cores. For the assurance of commercial
avionics systems a document called "Software Considerations in Airborne Systems and
Equipment Certification" is used. Bearing the name DO-178B [21] in the US and ED-12B in
Europe, it describes the objectives of software life-cycle processes, process activities and the
evidence of compliance required at different software levels. Safety standards like DO-178B
and IEC-61508 [13] explicitly call for the identification of functional and non-functional
hazards and for software compliance with the relevant safety goals. In these standards three
important non-functional software characteristics related to safety are mentioned: absence
of run-time errors, execution time and memory consumption. The IEC-61508 has a great
impact on the hardware selection as it requires the absence of unpredictable timing-related
interferences which might affect real-time functions. This impacts directly the multi-cores as it
must be ensured that no inherent timing interferences between cores take place. Nevertheless,
this type of interferences are quite common and must be dealt with. Existing multi-core
architectures employ mechanisms that compromise strong spatial and temporal partitioning
when using shared resources without rigorous access control. Therefore we do not always
dispose of precise information regarding the timing of some instructions in all circumstances
due to their complex interactions with the memory and other dependencies.

The WCET estimation consists of two main steps, namely the control-flow analysis
that determines the feasible paths in a program, and the processor-behavior analysis based
on low-level analysis, hence the need to throughly determine the hardware behavior. The
choice of a hardware platform is therefore greatly influenced by the visibility on the device
internal structure as precise architectural implementation details are proprietary data often
undisclosed.

The WCET estimation in multi-cores has different levels of difficulties. The first one is
inherited from the single core world. Certain modern features in processors cannot be safely
analyzed, nor disabled, making the certification of the processor impossible. Other features
generate imprecision that will increase the safe margins needed to take in order to comply
with the safety constraints, which impacts the feasibility. The second one is introduced
by the multi-core architecture and can lead to the impossibility to determine the WCET.
Problems from a core are not only translated, when integrated into the multi-cores, but
amplified by the context of resource sharing.

State of the art works deal with this issue either by constraining some platforms, or by
handling only a part of the issues and giving some new architectural workarounds that are
custom tailored for some applications [30, 6, 5, 15, 31, 17, 11, 10, 9, 29]. Another approach
is to gather best practices for future multi-core architectures [4] after acknowledging that
analysing current multicore architectures is impossible in general. Nevertheless a unified and
detailed approach is yet to be available.

Identifying which parts are impossible to analyze, or at what cost in precision, is key
to even considering the choice of a certain multi-core processor. Our work is intended as
a guideline in such choices, exposing the inherent problems of multi-cores and straitening
the path towards a solution in the matter. The article is structured as follows: First we

FSFMA’13

34 On the Determinism of Multi-core Processors

explain inherent problems to the use of microprocessors in hard real-time systems. In Sec. 3
we describe the major units of the processor, identify problematic execution scenarios and
estimate the impact on the predictability and we conclude in Sec. 4.

2 Inherent problems to the use of microprocessors in hard real-time
systems

The hardware platform is a central point when analyzing a system. Therefore it is essential
to dispose of a precise model of the processor in order to determine its effective behavior.
The available information comes mainly in reference manuals and application notes that
present the processor’s architecture, how to interface it with the environment and how to
configure its different function modes. Nevertheless, information present in the user manual
is not intended for testing or verification purposes. Furthermore information relevant to the
design method and the verification methodology are only briefly discussed, if not at all in
these documents, mainly from the integrator point of view. Another issue is the questionable
validity of the information presented in the reference document altogether as contradictory
information is sometimes provided in different document.

The behavior of a microprocessor is challenging or even impossible to characterize. This
is either due to the uncertainty of the effectively calculated result or the uncertainty on
the actual time of the effective calculation. De facto, these two aspects are directly related
to the notion of data availability. The main consequence of the difficulty in architectural
optimization is an interdependence between the data and the instructions of a same task.
In the context of multitask applications, an interdependence between various tasks coming
from the commutation of the environments during the passing from one task to another, is
introduced. In the case of multi-cores additional difficulties appear in the estimation of the
WCET, like the issue of two competing processes if they share common architecture elements,
notably, memory access controllers. Futhermore challenges are given by the exchange of
data between the two applications being executed in both processors. Let us consider two
tasks, one critical task being executed in one core, and a second critical task monitoring the
calculations of the first task on the second core, it is necessary to ensure the data handled by
the two tasks is coherent. Without adding at the application level advanced synchronization
operation, it is impossible for the majority of current multi-core microprocessors to guarantee
that both applications handle the same data. In fact, due to induced latencies, nothing
prevents one of the two applications from handling data dt−1 present at t − 1 instant while
the other application handles the data d modified at t instant. In fact, one of the rare means
to remove these uncertainties would be to strongly pair the monitoring application with
the command application, by implanting communications between the two applications via
semaphores.

3 Hardware considerations

Most of the available processors were not especially designed for the hard real-time systems.
The multi-cores are no exception as their goal is to maximize the shared resource average
utilization. Data communication and synchronization between the different units are optim-
ized for maximum throughput of executed instructions. Therefore multiple execution paths
can be taken depending on the execution history, the current state of units or even local
choices based on random decisions. A natural way of analyzing the hardware components
that influence the determinism would be to first look at those who give a local impact and

V.A. Paun, B. Monsuez, and P. Baufreton 35

proceed to components that have a global impact. One can also start by looking into units
already present in single-cores, and proceed with units unique to the multi-cores. However, as
shaped by this section, there is a thin frontier between the two as even classical, predictable
units have a different impact when integrated in the multi-cores. Therefore the analysis
of this components can not be solely based on the analysis of the same component in the
single-core context.

3.1 Pipeline
Present in all modern processors, the pipeline was introduced in order to increase the average
performance by ensuring that, whenever possible, an available hardware resource will be
occupied. Nevertheless, different events can introduce pipeline stalls such as structural
hazards, data hazards and control hazards.

Out of order execution (OoOE), a feature introduced in order to avoid pipeline stalls by
decoupling the issue/dispatch and the execution/completion stages, allows execution not
following the instructions program order. A fetched instruction will be executed when the
input operands and needed resources are available with no regard to whether it is the next
in order instruction. The interaction between the cache memory and instruction scheduling
influences the precision of the timing estimation.

Pipeline impact on the predictability

The impact of the pipeline varies from local influence with local monotonic optimizations to
global influences with timing anomalies that cancel the monotonicity and compositionality.
The size of the pipeline has an influence on the predictability of the WCET. A wrong branch
prediction causes n cycles penalty, where n is the pipeline depth. The pipeline depth can
further influence the predictability potentially generating more hazards as more instructions
are being treated at the same time. Besides intrinsic impacts on the predictability, the
pipeline, in conjunction with other units, can lead to precision loss or nondeterminism. For
example, in case of a L2 cache miss, the number of pipeline stages influences the memory
access time [8]. Furthermore, in the shared resources context of multi-core sharing a common
bus, the pipeline can lead to nondeterminism.

3.2 Branch Prediction Unit (BPU)
Through the BPU, processor attempts an early resolve of a branching instruction, before
its time, by applying a strategy in order to anticipate the result. The BPU strategy can be
either static or based on complex algorithms, un-deterministic in some cases. Based on this
estimation, a speculative execution is initiated that will lead eventually to a significant time
gain in the case the result is correct. The influence on the cache memory content is non
negligible as a miss-prediction is not generally followed by a cache reorganization, therefore
the cache configuration is polluted with information from the untaken path.

BPU impact on the predictability

The BPU can make incorrect branch predictions or incorrect branch target address lookup.
It is systematically active and directly impacts the temporality of the instruction change.
Furthermore, this unit relies on a set of data protection tables stored in tables. The impact is
high because of the general unpredictable success rate of the early branching target resolution.
It can be largely avoided in the case of statically resolved loops or branches that are not data

FSFMA’13

36 On the Determinism of Multi-core Processors

dependent. Tailoring the condition of the jump taking into account the branching strategy
in order to help it succeed in the majority of cases is also a solution as long as the WCET
analyzer can take it into account. In this case, most techniques of adding watermarks in the
code with information that help or enable the prediction can be useful.

3.3 Floating Point Unit (FPU)
Floating point computation timing can also be hard to accurately estimate because of their
implementation. A micro-pipelined unit takes advantage of consecutive instructions that can
be pipelined. Units can have either a part of the FPU instructions pipelined or all of them.
Therefore consecutive pipelined and non-pipelined instructions can cause stalls, making the
timing difficult to compute especially in the case of the out of order execution.

Floating-point data formats and instruction set generally conform to the IEEE Standard
for Binary Floating-point Arithmetic, ANSI/IEEE Standard 754-1985. However, the SPARC
V8 architecture, for example, does not require that all aspects of the standard, such as gradual
underflow, be implemented in hardware [25]. This can be a problem if precise information
about the implementation is not given. One of its implementations, the GR712RC/LEON3
does not provide sufficient information on this matter and precise timings in case of this
exception could prove difficult to estimate. Similarly the ARM Cortex A9 architecture
manual, does not provide precise timing of all instructions. This is mainly due to the
unpredictable timing behavior at the instruction level generated by the unit’s structure itself
and memory system interactions [32].

FPU impact on the predictability

The impact of the FPU depends on its implementation. Instructions can take either a single
cycle to execute or several cycles but they can also be pipelined. A combination of either
way in parallel is also possible. In conjunction with the instruction rescheduling and thus
with the change of data, cascade effects can occur and lead to pathological effects like it can
be seen in some PowerPC architectures.

3.4 Level 1 Cache
Memories for instructions and data are implemented in order to make the most common case
fast, benefiting from a program’s spatial locality and temporal locality. Not taking this fact
into account in the WCET estimation gives highly pessimistic timing estimations. Cache
memory is usually organized in different levels, some local to the core and others situated
outside the core. Different cache replacement strategies must be implemented in order to
optimize the performance because a strategy that can fit all the possible cases is impossible
to find. Therefore the average case performance is optimized. Commonly used strategies are
LRU, pseudo LRU, FIFO or round robin and MRU each having a different impact on the
predictability of the system. The analysis of the Level 1 cache must be made in conjunction
with the other units and is discussed within the timing anomalies in the following.

Impact on the predictability

Worst-case analysis on cache memories is a challenging problem, mainly because they are
conceived in order to maximize the average performance. Achieving good results for data
cache analysis, for example, is still an open problem, as they are difficult to statically analyze.
An approach that enables time-predictable caching, is to lock cache blocks. Combining

V.A. Paun, B. Monsuez, and P. Baufreton 37

cache locking with cache partitioning for multiple tasks in the case of task preemption can
improve the predictability in some cases [26]. Unknown abstract cache states during the
analysis generate loose WCET bounds. For example, unified cache for instruction and data
can break down all the information on abstract cache states. After accessing n unknown
addresses in an n-way set-associative cache all the cache lines will be unclassified in the
analysis. Therefore, separation between the instruction and data cache memories should be
chosen whenever possible (the problem still holds for shared caches and is discussed in the
Level 2 cache section). For this reason Harvard architectures, with physically separate signal
pathways for instructions and data, should be privileged in despite of the von Neumann
architecture. Context switch or cache misses it can lead to a relatively high global impact due
to timing anomalies or Translation Lookaside Buffer (TLB) strategies. In order to improve
the performances of the cache memory, instruction and data locality could be increased using
compiler techniques for example (code reposition, loop permutation, tiling [28] etc.). When
performing the WCET analysis, the most problematic features to analyze are the replacement
policies for set-associative caches [12]. Pseudo-round-robin and the 4-way associative cache
is also a difficult combination in the Motorola ColdFire 5307 [23]. In order to ensure the
time-predictability of processors, locally deterministic update strategies for caches should be
used. According to [22] the LRU strategy performs best in terms of predictability, far ahead
pseudo-LRU and FIFO.

3.5 Scratchpad
Scratchpad memories (SPMs) are used to guarantee a unit can work without main memory
contention in a system employing multiple processors. As the memory access latencies are
predictable, scratchpad memories have become popular for real-time embedded systems.
However, the difficulty of allocating code/data to scratchpad memory lies now with the
compiler. Scratchpad memory works like a local store and act like "software caches" therefore
the strategy is implemented in software and the interactions in the global hardware must be
analysed. Timing anomalies with regard to the replacement strategy should be integrated
into the hardware model. The most convenient approach to manage the SPM is using
static allocation [18] but dynamic SPM allocation is more efficient (it can use profile-based
optimization but multiple strategies exist). Analyzing dynamic strategies is challenging,
especially the software implemented ones that give optimal allocation for the average execution
time. Some WCET-centric techniques exist but they do not handle all architectures.

3.6 Memory Management Unit (MMU) and Translation Lookaside
Buffer

The TLB is a cache that MMU use to improve virtual addresses translation speeds. The time
needed to determine the physical address depends on the number of performed operations.
TLB time access is variable. In order to enforce the predictability, the MMU can be
deactivated (however the performance loss is significant) or by reducing the size and thus
complexity of the TLB (the TLB main entries can be blocked in order to ensure their
persistence). A solution is to increase the TLB size so that we only have hits but we still
have the problem of an error in the translation that is detected late and takes an undefined
(even if still reasonable) time to be corrected. Typical user manuals [1] give upper bounds
in the TLB miss case. Timing anomalies invalidate the monotonicity assumption in the
general case [27], which means that we cannot directly use the upper-bound information as
the worst-case scenario. Therefore, without precise information on the exact behavior all

FSFMA’13

38 On the Determinism of Multi-core Processors

possible cases must analyzed, leading to a potential state space explosion. In order to reduce
the potential temporal variability, the MMU should be disabled. Nevertheless due to the
consequences on the global performances it is not recommendable.

In general, virtual memory raises predictability issues at two levels. First at the level
of address translation that provides mapping between virtual to physical pages requires a
TLB lookup. If the mapping is absent from the TLB a page table lookup is performed. The
duration of address translation is hard-to-predict, because not all mappings can be stored in
the limited capacity of the TLB or because the TLB might be shared between concurrent
processes. Second at the level of paging activity as knowing whether or not a reference to a
virtual page will result in a page fault. This is hard to predict because physical memory is
shared between concurrent processes.

Impact on the predictability

The virtual addressing and tasks using the shared cache the MMU has a global impact. In
the case of multi-cores it is problematic to ensure the micro-TLB coherency. Choosing to
handle the TLBs separately introduces new problems of guaranty.

3.7 BUS
As competition for resources grows, the natural solution was to use techniques that enable
the access from master to slave, and utilization of shared resources in general. Through
the use of switching mechanism, permission is granted to one master or the other, which
introduces the need of a bus arbiter. Therefore a controller is usually implemented following
different strategies that are more or less straightforward. The first difficulty comes from the
implementation of the aforementioned strategies. In the case of multi-cores, the resolve of
access conflicts is not always deterministic. Therefore at a given processor execution step, a
strongly dataflow dependent transition can be made with no way of determine which of the
competing units will have gain access to the shared resources. This behavior, otherwise seen
as random, at possibly every program point makes it impossible for the analysis to converge
to a useful result.

In the following, we will refer to the AMBA AHB bus protocol, an open standard widely
used that give a good case study enabling us to pin-point more general advantages and
disadvantages of interconnection protocols. Some of the features it provides, are the following:
split transactions, several bus masters, burst transfers, pipelined operations and single-cycle
bus master handover. The bus arbiter ensures that only one bus master at a time is allowed
to initiate data transfers. The arbiter also receives requests from the slaves that wish to
complete SPLIT transfers [3].

Preventing starvation

The arbitration algorithm between the channels can ensure that if the current owner requests
the interface again it will always acquire it. The starvation problems are avoided in the
LEON 3FT implementation of the AMBA AHB since the DMA engines always deassert their
requests between accesses [2].

Preventing deadlocks

The SPLIT and RETRY transfer responses can both produce deadlocks. The deadlock can
occur when different masters try to access a slave that issues SPLIT and RETRY responses

V.A. Paun, B. Monsuez, and P. Baufreton 39

in a way that the slave is unable to deal with. If a slave issues a RETRY response only one
master must access it at a time. More importantly, this constraint is not enforced by the
AMBA AHB protocol and should be ensured by the system architecture. According to the
GR712RC manual, cache snooping should always be enabled in SMP systems to maintain
data cache coherency between the processors [2].

On master data concurrency

The bus arbiter of the AMBA AHA can manage up to 16 bus masters. It grants bus
access according to the master’s priority. The signals used are: HBUSREQx, HLOCKx,
HGRANTx, HMASTER[3:0], HMASTLOCK and HSPLIT[15:0] as described in [3]. When a
master is granted access, the HGRANTx signal is generated by the arbiter that indicates the
appropriate master is currently the highest priority master requesting the bus. After the
current transfer completes, the HREADY signal is HIGH and the arbiter will change the
HMASTER[0:3] signal to indicate the bus master number. The ownership of the data bus is
delayed from the ownership of the address bus. When the HREADY signal is HIGH, the
master that owns the address bus will continue to own the address bus until its transfer will
be completed. Several problems can occur from this behavior.

(a) When the master is in burst mode, performing bursts of undefined length, it should
continue to assert the request until it has started the last transfer. A problem occurs if
the arbiter cannot predict when to change the arbitration at the end of an undefined
length burst, leading to the impossibility to accurately determine the timing of the
transfer. This is what happens in our case study also.

(b) A different behavior can lead to a data inconsistency. Using a central multiplexer, each
potential master present on the bus can drive out the address of the transfer immediately
without having to wait to be granted the bus.
Let HADDRM1 = addr1 at clk1 and HADDRM1 = addr2 at clk2 and the first master,
M1 be granted master at clk1. If HADDRM2 = addr1 at clk2, the data at addr1 is
still unmodified but it will be as M1 still owns the data bus which leads to data access
consistency conflict at addr1. The time needed to resolving such a conflict is hard to
estimate. A typical example is the case of sharing un-partitioned memory. In order to
avoid this case, a strong coupling is recommended between the monitoring application
and the command application, by implementing the communication though semaphores.

(c) A case where the timing is difficult to compute is when both M1 and M2 drive out the
same addr1 on the same slave, M1 is granted ownership of the bus and then it is stalled
by the arbiter that grants the bus ownership to M2. If M2 needs to access addr1 we
cannot precisely determine the time when M2 will finish its action.
For example, this can occur in shared un-partitioned or partitioned memory.

Impact on the predictability

The bus and its arbitration strategy are at the core of the predictability and determinism
issues. Because the main role is to grant access to different participants to the shared
resources, certain properties must be ensured (fairness, deadlocks prevention) while still
being able to ensure good average performances and timing predictability. Therefore when
choosing a particular architecture for the hard real-time systems, certain bus architectures and
arbitration algorithms should be privileged. Most of the multi-core architectures implement
round-robin-like arbiters which allows considering an upper bound on the latency of the
access to the shared resources. In [19] a round-robin-like bus arbiter to the shared memory

FSFMA’13

40 On the Determinism of Multi-core Processors

hierarchy in a multi-core architecture is proposed that facilitates the systems predictability.
The round robin arbiter can avoid the bus starvation. Nevertheless, the maximum length of a
burst for each peripheral connected to the bus influences the maximum delay induced by bus
contention. This may lead to high maximum delay bounds and may not be enough to provide
firm real time guarantees for heavily loaded systems. Furthermore, having variable burst
lengths, combined with the ability to pause them (split transfers), influences the predictability
of the WCET. Bus contention can be avoided by using the TDMA bus arbitration with the
cost of wasting bus band when the bus load is low. By manipulating the TDMA time slots,
the maximum delay bound on transactions is controllable by the designer.

3.8 Direct Memory Access (DMA)
DMA allows access to the system memory independently from the CPU. Therefore the
processor can proceed with its computations while waiting for relatively slow input/output
data transfer. In the multi-core case, DMA is also used for intra-chip data transfer.

Error handling

The DMA controller does not generally detect deadlocks in its communication channels, so it
is up to the system to manually abort the DMA transfer. The DMA unit can be disabled
not without a strong impact on the performances of certain class of applications.

3.9 Level 2 cache
Level 2 cache memory can be either private to each core or shared among cores. Data hazard
is one of the factors that become even more prominent in the case of multi-cores because
of memory sharing, even though already present in the non-shared L1 memory. Moreover,
timing anomalies render the result hard to predict like in the case when a cache miss from a
core can reconfigure the memory in a state that is, timing wise, beneficial to the other. This
also applies in other cache related scenarios. The problems that can occur in the analysis of
the interactions with the pipeline are detailed in the timing anomalies part.

Level 2 cache impact on the predictability

The impact of the shared cache is high and global and gets amplified in the context switch case.
Modeling the behavior of shared caches between cores is practically impossible because of the
possible interactions between concurrent threads running on different cores [23]. When using
a shared cache with parallel programs running on the multi-core processor, a cache-coherency
mechanism must be implemented. The WCET analysis of such systems must calculate
the worst-case delay caused by maintaining the cache coherence between different cores.
Furthermore, resource contention and inter-thread conflicts among the program threads
should be considered. Under the assumption that the bus strategy can be statically analyzed,
the second level of cache can be made predictable by partitioning the L2 cache for each core
[24].

3.10 Timing Anomalies
Timing anomalies inside a given core influence the WCET estimation of integrating multi-
cores in the case of shard memory because of the tight coupling of its internal units and the

V.A. Paun, B. Monsuez, and P. Baufreton 41

shared resources. Therefore we cannot ignore the WCET estimation problems of single cores
as they are translated into the multi-core case also.

Example of timing anomalies in multi-cores A timing anomaly occurs when a local worst
case contributes to the global favorable case. In the case of multi-core, such an example is a
cache miss on one core that generates a series of cache hits on the other and vice versa. An
example of each of these timing anomalies is given. The architectural setup is configured of
two cores with private L1 cache memory but shared L2 cache memory (instruction and data).

a A cache miss on one core can generate an overall improvement of the global WCET.
Let l be the cache line that will replace the obsolete line in the cache according to the
implemented strategy. If l contains information that will benefit the second core then it
can generate several cache hits that were not predicted. Furthermore, this line will be
promoted in the priority hierarchy and could furthermore avoid future misses of the first
core.

b A cache hit on the first core generates the persistence of a cache line in the disadvantage
of another that will be replaced after a future cache miss. If the replaced cache line would
have generated several cache hits on the second core, the overall timing performance is
affected. A first core’s cache hit followed by a cache miss is worse than a first core’s cache
miss followed by a cache miss.

c Timing amplification example as a generalization of b) A series of cache hits on the first
core with a higher frequency, then the cache accesses of the second core make that every
cache miss of the first core lead to the elimination of the second core’s cached lines and a
great amount of cache misses.

Timing anomalies remarks

As previously stated, several types of timing anomalies exist. Some are inherent to instruction
execution order and are generally caused by greedy scheduler that will change the instruction
execution order causing inversion or amplification of the execution time difference. Others
are caused by parallel decomposition and divide et impera approaches to WCET estimations.
As the first ones cannot be avoided, the others may prove essential for the possibility to
construct an efficient processor behaviour analysis that does not need to search the whole
state space for the whole program at once. The timing anomalies determine three infeasibility
criterions in the following.
Criterion a) Let p be the processor architecture model, we say that the estimation of the

WCET or more generally the processor behaviour analysis cannot be completed on behalf
of the parallel decomposition (PD(p)) if there is no other scalable method that can do
the analysis of p without the PD(p). In other words, not applying parallel decomposition
can affect the scalability and applicability of the estimation method. We proceed by
questioning the safeness and efficiency on dealing with parallel timing anomalies. [16]
formalizes the different types of timing anomalies and presents cases when the parallel
timing anomalies can lead to the underestimation of the WCET with parallel composition.

Criterion b) The use of parallel decomposition in the processor behaviour analysis leads
to the underestimation of the WCET in the case of coupled parallel timing anomalies.
This point can be referred to in order to decide the use of parallel decomposition. In [14]
a solution to take into account timing anomalies in general is described. The method
uses compilation techniques and modifies the binary by instruction injection in order to
avoid timing anomalies. The main idea is to interfere with the prefetch stage and ensure
that we start with an empty or flushed prefetch window hence there is never an excess

FSFMA’13

42 On the Determinism of Multi-core Processors

instruction waiting to be executed. It can be seen as a compile time method to disable
the instruction prefetch in the case where all the slots of the instruction prefetch queue
are filled with NOPs. The reference also provides estimation of the overhead when using
this method as ranging between 33% and 300%. This leads us to another infeasibility
criterion that is related to the maximum overhead allowed for the target platform.

Criterion c) Let Ot(p) be the upper-bound of the overhead on a target platform and Op(p)
be the overhead of filling prefetch slots with NOPs. If Op(p) > Ot(p) then the analysis
does not pass the feasibility test.

Table 1 Architectural impact on the determinism.

Unit Problems /
Failure mode

Problem
fre-
quency

Solutions Impact
Level

TLB TLB misses
times are hard
to predict

M/ L Increase the TLB size M

TLB TLB error L None => disable M/H
MMU The time to ac-

cess the tables
can take several
cycles

M Depends on the availability of the be-
havioural model and corresponding tim-
ings. Disabling the MMU will only af-
fect performances if we use its features.
This means, flat address mapping, no
memory protection in the case a pro-
cess reads/writes the address space of
another process and not least, when
performing a context switch there is no
longer possible to identify the cached
lines of a certain process.

H

Scratch-
pad

Application con-
trolled -> hard
to estimate the
timings

Analysing dynamic strategies is not an
easy task, especially when being soft-
ware implemented that give optimal al-
location for the average execution time.
Some WCET-centric techniques exist
but they do not handle all architectures.

M

L1 cache Timing anom-
alies

H Construct complex, accurate processor
model

H

L2 cache Timing anom-
alies

H Deactivate H

V.A. Paun, B. Monsuez, and P. Baufreton 43

Table 1 – continued from previous page
Unit Problems /

Failure mode
Problem
fre-
quency

Solutions Impact
Level

L2 cache Data conflicts M Partition (core access separation) Par-
tial solution by considering inter-thread
instruction conflicts [30] Only solutions
for instruction caches in some configura-
tions are presented in [11]. [6] Addresses
only instruction caches with no code
sharing, LRU strategy, no data –instruc-
tion memory interference, without tim-
ing anomalies, so a very restricted en-
vironment. [7] Deals with inter-thread
interferences but in a restricted archi-
tecture. No details are given concerning
the shared resources granting policy or
about the BUS context.

H

L2 cache Unknown beha-
viour induced by
the arbiter

L Deactivate H

L3 cache Timing anom-
alies

H Partition M/H

L3 cache Data conflicts M/L Deactivate M/H
BUS Arbitration,

timing anom-
alies, memory
interference

H None for the general case In [6] a very
restricted “BUS” is analysed with fully
separated code and data accesses and no
inter-process communication through
shared memory and TDMA based static
scheduling where a fixed length bus slot
is allocated to each core in a round-
robin fashion.

H

Arbiter Nondeterministic None H
Arbiter Starvation Software supervision, but the risk of

using it is even higher. DMA engines
should always deassert their requests
between accesses in order to prevent
starvation.

H

Arbiter Deadlocks Prevent by careful hardware integration
of the bus arbiter protocol. Can rarely
be disregarded by construction.

H

Pipeline Timing anom-
alies

H Construct complex, accurate processor
model. A solution to take into account
all the timing anomalies (that might
prove efficient in the multi-core case) is
presented in [20].

H

FPU High complexity Construct complex, accurate processor
model

M/L

FSFMA’13

44 On the Determinism of Multi-core Processors

Table 1 – continued from previous page
Unit Problems /

Failure mode
Problem
fre-
quency

Solutions Impact
Level

FPU Mixes multi-
cycle instruc-
tions (for which
timing estim-
ation is not
always possible)
and single cycle
instructions

None M/H

FPU Can generate
computational
errors. Timing
of exception
catching is hard
to precisely
determine

Must analyse the fault tolerant mech-
anism. If the behaviour is taken into
account at each step, might prove very
costly.

M/H

ALU Can generate
computational
errors.

L Construct complex, accurate processor
model taking into account the fault tol-
erance.

M/L

BPU In the strategy
is fixed and the
prediction is
wrong, the time
penalty is very
important.

M Construct complex, accurate processor
model

H

BPU If the prediction
strategy is not
fixed, it can be
very difficult to
model or even
impossible if ran-
domness is used.

L None H

4 Conclusion

Software verification and quality assurance process of hard real-time systems in general
are of great importance. Non-functional properties, such as timing, are highly dependent
on the underlying hardware platform. Nevertheless, there is a rising demand to integrate
more complex processors, such as the multi-cores, even though many problems are yet to be
solved in single-cores. Powerful industrial WCET estimation tools available today can do
nothing against the lack of information regarding the exact behavior of the platform or the
nondeterministic behavior of certain units. Therefore the choice of the processor is crucial in
ensuring the success of the system verification.

We have presented the behavior of several units that pose problems concerning the WCET
estimation, found either in multi-cores or single-cores. Each unit description is followed by
the problematic behavior and the remarks regarding its impact on the predictability. The
results can be used to invalidate certain units or architectures and also as a guideline for
further analysis.

V.A. Paun, B. Monsuez, and P. Baufreton 45

References

1 Aeroflex. UT699 LEON 3FT/SPARCTM V8 MicroProcessor, Functional Manual, 2012.
2 Aeroflex Gaisler AB. GR712RC - Dual-Core LEON3FT SPARC V8 Processor, User’s

Manual, 2011.
3 ARM. AMBA Specification (Rev 2), 1999.
4 Christoph C., Christian F., Gernot G., Grund D., Maiza C., Reineke J., Triquet B., and

Wilhelm R. Predictability considerations in the design of multi-core embedded systems. In
Proceedings of Embedded Real Time Software and Systems, pages 36–42, May 2010.

5 S. Chattopadhyay and A. Roychoudhury. Scalable and precise refinement of cache timing
analysis via model checking. In Proceedings of the 2011 IEEE 32nd RTSS, RTSS’11, 2011.

6 S. Chattopadhyay, A. Roychoudhury, and T. Mitra. Modeling shared cache and bus in multi-
cores for timing analysis. In Proceedings of the 13th International Workshop on Software
38; Compilers for Embedded Systems, SCOPES’10, pages 6:1–6:10, New York, NY, USA,
2010. ACM.

7 F. Chen, D. Zhang, and Z. Wang. Characterizing the inter-thread interference of multi-
core architectures for accurate wcet estimations of real-time applications. In Przeglad
Elektrotechniczny, 2012.

8 N. Drach, A. Seznec, and D. Windheiser. Direct-mapped versus set-associative pipelined
caches. In Proceedings of the IFIP WG10.3 working conference on Parallel architectures
and compilation techniques, PACT 95, 1995.

9 D. Hardy, T. Piquet, and I. Puaut. Using bypass to tighten WCET estimates for multi-core
processors with shared instruction caches. In Proceedings of the 2009 30th IEEE Real-Time
Systems Symposium, RTSS’09, pages 68–77, Washington, DC, USA, 2009. IEEE Computer
Society.

10 D. Hardy and I. Puaut. WCET analysis of multi-level non-inclusive set-associative instruc-
tion caches. In Proceedings of the 2008 Real-Time Systems Symposium, RTSS’08, pages
456–466, Washington, DC, USA, 2008. IEEE Computer Society.

11 D. Hardy and I. Puaut. Estimation of cache related migration delays for multi-core pro-
cessors with shared instruction caches. In Laurent George and Maryline Chetto andMikael
Sjodin, editors, 17th International Conference on RTNS, pages 45–54, Paris, France, 2009.

12 R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm. The influence of processor ar-
chitecture on the design and the results of WCET tools. Proceedings of the IEEE, 91(7):1038
– 1054, july 2003.

13 International Electrotechnical Commission. IEC 61508 Functional safety of electrical/elec-
tronic/programmable electronic safety-related systems, 2010.

14 A. Kadlec, R. Kirner, and P. Puschner. Avoiding timing anomalies using code trans-
formations. In Proc. 13th IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing, pages 123–132, May. 2010.

15 T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay, and A. Roychoudhury. Bus-aware
multicore WCET analysis through TDMA offset bounds. In Proceedings of the 2011 23rd
Euromicro Conference on Real-Time Systems, ECRTS’11, pages 3–12, Washington, DC,
USA, 2011. IEEE Computer Society.

16 R. Kirner, A. Kadlec, and P. Puschner. Precise worst-case execution time analysis for
processors with timing anomalies. In Real-Time Systems, 2009. ECRTS’09. 21st Euromicro
Conference on, pages 119–128, July.

17 Y. Liang, H. Ding, T. Mitra, A. Roychoudhury, Y. Li, and V. Suhendra. Timing analysis of
concurrent programs running on shared cache multi-cores. Real-Time Syst., 48(6):638–680,
November 2012.

FSFMA’13

46 On the Determinism of Multi-core Processors

18 P. Panda, N. Dutt, and A. Nicolau. Efficient utilization of scratch-pad memory in embedded
processor applications. In Proceedings of the 1997 European conference on Design and Test,
EDTC’97, pages 7–, Washington, DC, USA, 1997. IEEE Computer Society.

19 M. Paolieri, E. Quiñones, F. Cazorla, G. Bernat, and M. Valero. Hardware support for
WCET analysis of hard real-time multicore systems. SIGARCH Comput. Archit. News,
37(3):57–68, June 2009.

20 V. A. Paun and B. Monsuez. Adaptable and precise worst case execution time estimation
tool. In LCTES 2012 Work-in-Progress Proceedings, LCTES’12, 2012.

21 Radio Technical Commission for Aeronautics. DO-178B Software Considerations in Air-
borne Systems and Equipment Certification.

22 J. Reineke, D. Grund, C. Berg, and R. Wilhelm. Timing predictability of cache replacement
policies. Real-Time Syst., 37(2):99–122, November 2007.

23 M. Schoeberl. Time-predictable cache organization. In Proceedings of the First Inter-
national Workshop on Software Technologies for Future Dependable Distributed Systems
(STFSSD 2009), pages 11–16. IEEE Computer Society, 2009.

24 M. Schoeberl, B. Huber, and W. Puffitsch. Data cache organization for accurate timing
analysis. Real-Time Systems, DOI: 10.1007/s11241-012-9159-8:1–28, 2012.

25 SPARC International Inc. SPARC V8 architecture manual, Revision SAV080SI9308, 1992.
26 Xavier Vera, Björn Lisper, and Jingling Xue. Data caches in multitasking hard real-time

systems. In Proceedings of the 24th IEEE International Real-Time Systems Symposium,
RTSS’03, pages 154–, Washington, DC, USA, 2003. IEEE Computer Society.

27 I. Wenzel, R. Kirner, P. Puschner, and B. Rieder. Principles of timing anomalies in super-
scalar processors. In Quality Software, 2005. (QSIC 2005). Fifth International Conference
on, pages 295 – 303, sept. 2005.

28 M. Wolf and M. Lam. A data locality optimizing algorithm. In Proceedings of the ACM
SIGPLAN 1991 conference on Programming language design and implementation, PLDI’91,
pages 30–44, New York, NY, USA, 1991. ACM.

29 J. Yan and W. Zhang. Hybrid multi-core architecture for boosting single-threaded perform-
ance. SIGARCH Comput. Archit. News, 35(1):141–148, March 2007.

30 J. Yan and W. Zhang. WCET analysis for multi-core processors with shared L2 instruc-
tion caches. In Real-Time and Embedded Technology and Applications Symposium, 2008.
RTAS’08. IEEE, pages 80 –89, april 2008.

31 J. Yan and W. Zhang. Accurately estimating worst-case execution time for multi-core
processors with shared direct-mapped instruction caches. In 15th IEEE International Con-
ference RTCSA’09, 2009.

An Improved Construction of Petri Net Unfoldings
César Rodríguez and Stefan Schwoon

LSV, ENS Cachan & CNRS, INRIA Saclay
61, Av. du Président Wilson
94235 Cachan Cedex, France
cesar.rodriguez@lsv.ens-cachan.fr, stefan.schwoon@lsv.ens-cachan.fr

Abstract
Petri nets are a well-known model language for concurrent systems. The unfolding of a Petri net
is an acyclic net bisimilar to the original one. Because it is acyclic, it admits simpler decision
problems though it is in general larger than the net. In this paper, we revisit the problem
of efficiently constructing an unfolding. We propose a new method that avoids computing the
concurrency relation and therefore uses less memory than some other methods but still represents
a good time-space tradeoff. We implemented the approach and report on experiments.

1998 ACM Subject Classification D.2.2 Design Tools and Techniques, F.1.1 Models of Compu-
tation, F.3.1 Specifying and Verifying and Reasoning about Program

Keywords and phrases Concurrency, Petri nets, partial orders, unfoldings

Digital Object Identifier 10.4230/OASIcs.FSFMA.2013.47

1 Introduction

Model checking is a practical way of ensuring the correctness of concurrent systems, but
suffers from the problem of state-space explosion (SSE). One source of SSE is the explicit
representation of concurrent actions by their interleavings. Petri nets are a model of concurrent
systems, and their unfoldings are an established approach for coping with this source of SSE.

An unfolding can be thought as a partial order that compactly represents the state space
of a Petri net. Roughly speaking, the unfolding of a net N is another acyclic net UN that
behaves like N . Actually, one is usually interested in a prefix PN of UN that represents
all reachable markings of a bounded net N . An unfolding can be seen as a time/space
tradeoff: problems such as coverability or deadlock checking are PSPACE-complete in N ,
but only NP-complete in PN . On the other hand, PN is usually rather larger than N but
often exponentially smaller than its reachability graph, and the aforementioned problems
can easily be encoded into SAT. Also, the same prefix can answer multiple queries once
constructed. See [2] for a survey on unfoldings. Tools like Mole [11] or Punf [6] efficiently
construct unfoldings of safe nets.

Unfoldings are built iteratively. The central challenge of their construction is to identify
the events of UN , which requires to find sets of concurrent conditions of UN . This is a
computationally difficult problem (NP-complete), and several approaches to it have been
proposed in the literature. In [3], the authors propose using a concurrency relation, i.e.,
determine for all pairs of conditions of UN whether they are part of some reachable marking.
This tends to be fast but memory-intensive. An orthogonal technique are prefix trees [7],
which try to reduce the combinatorial overhead associated to the search. These techniques
can be combined, for instance Punf implements them both.

In this paper, we propose an alternative to using concurrency relations for the case of safe
nets. Our contribution is an efficient traversal of the unfolding that detects concurrent pairs

© César Rodríguez and Stefan Schwoon;
licensed under Creative Commons License CC-BY

1st French Singaporean Workshop on Formal Methods and Applications 2013 (FSFMA’13).
Editors: Christine Choppy and Jun Sun; pp. 47–52

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cesar.rodriguez@lsv.ens-cachan.fr
mailto:stefan.schwoon@lsv.ens-cachan.fr
http://dx.doi.org/10.4230/OASIcs.FSFMA.2013.47
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

48 An Improved Construction of Petri Net Unfoldings

p5

p1 p2 p3

t1

t3
p4

t2

p5 t4 p6

p7

(a)

t4t4t4t4

p3p2p1

t1

p4

p7p7p7p7 p7

p4p4

p5

t4

p6p4 p4

p6

t3

t3t2

(b)

t2

Figure 1 A Petri net N (a) and its unfolding UN (b) and associated labelling.

of conditions ‘on demand’, without computing or storing the entire concurrency relation.
In Sec. 2, we formally introduce Petri nets and unfoldings. The algorithm that constitutes

the main contribution of the paper is presented in Sec. 3. We implemented and tested the
approach and report on benchmarks in Sec. 4 and conclude in Sec. 5.

2 Unfoldings of Petri Nets

A Petri net, or just net, is a tuple N := 〈P, T, F,m0〉, where P and T are the places and
transitions, F is the flow relation, and m0 : P → N is the initial marking. Places and
transitions together are called nodes. Fig. 1 (a) shows the usual graphical representation of a
net with seven places and four transitions. The arrows depict the flow relation.

For any node x, let •x := { y ∈ P ∪ T : (y, x) ∈ F } be the preset, and x• := { y ∈
P ∪ T : (x, y) ∈ F } the postset of x. We lift these notions to sets of nodes in the expected
way. A marking is a function m : P → N that assigns tokens to every place. A transition
t is enabled at m if m(p) ≥ 1 for all p ∈ •t. Such t can fire, producing marking m′, where
m′(p) = m(p) − |{p} ∩ •t| + |{p} ∩ t•|. A sequence σ = t1 . . . tn ∈ T ∗ is a run leading to
marking m if t1 is enabled at m0, all ti, i ≥ 2, are enabled at the marking produced by ti−1,
and m is produced by tn. A marking m is reachable if some run σ leads to it. N is safe
if m(p) ≤ 1 for all reachable m and p ∈ P . In this paper we only consider safe nets, and
identify their markings with subsets of P . A set X ⊆ P of places is coverable if X ⊆ m for
some reachable marking m.

The unfolding of N is a net UN := 〈B,E,G, m̃0〉 equipped with a labelling h : (B ∪E)→
(P ∪ T) that maps places and transitions of UN , called conditions and events, to places and
transitions of N , respectively. When h(x) = y, we say that x is a “copy” of y or that x is
y-labelled, and naturally extend h to sets and sequences. UN and h are defined inductively:

p ∈ m0

c := 〈⊥, p〉 ∈ B h(c) := p c ∈ m̃0
Ini

t ∈ T X ⊆ B h(X) = •t X is coverable
e := 〈X, t〉 ∈ E •e := X h(e) := t

Ev

e ∈ E h(e) = t t• = { p1, . . . , pn }
ci := 〈e, pi〉 ∈ B e• := { c1, . . . , cn } h(ci) := pi

Cond

Intuitively, UN is an acyclic version of N : One starts with a “copy” of marking m0, i.e. one
condition 〈⊥, p〉 ∈ m̃0 for each p ∈ m0 (see Ini). Then, whenever UN can reach a marking m̃
such that h(m̃) enables t, we attach a copy of t to UN (Ev). This copy, called e = 〈X, t〉
satisfies X = •e, h(X) = •t, and has ‘fresh’ copies of t• in its postset (Cond). Thus, UN

C. Rodríguez and S. Schwoon 49

is ‘acyclic’, and all conditions have at most one event in their preset. Fig. 1 (b) shows the
unfolding, and associated labelling, of the net shown in Fig. 1 (a).
UN has the same reachable markings and firing sequences as N , modulo h. In general,

UN is infinite, and applications usually compute a finite prefix PN of it that is complete
w.r.t. some application-dependent criterion, e.g., PN is called marking-complete when for all
reachable marking m in N there exists a reachable marking m̃ in PN with h(m̃) = m. The
details of such completeness criteria are beyond the scope of this exposition, see e.g. [4, 8].

For every pair of nodes x, y in UN exactly one of three cases holds [4]:
x and y are causally related, denoted x < y (or y < x), if there is a path of flow arcs from
x to y (resp. from y to x) in G. By construction, < is an irreflexive partial order; if x < y,
then x needs to occur before y in a finite firing sequence. We denote ≤ as reflexive closure
of <. The cone of node x contains the causal predecessors of x, i.e., [x] := { y : y ≤ x }.
x and y are in conflict, written x # y, if they compete for a token, i.e., # is the least
symmetric relation on nodes satisfying (1) e # e′ if e, e′ ∈ E with e 6= e′ and •e ∩ •e′ 6= ∅;
and (2) x # z if there is y ∈ B ∪E such that x # y and y < z. Intuitively, if x # y, then
no run fires or marks both x and y.
x and y are called concurrent, written x ‖ y, if they are neither causally related nor in
conflict. Thus, if x and y are conditions, then {x, y } is coverable.

The principal algorithmic challenge to construct a prefix of UN is to identify coverable
sets of conditions X in applying the rule Ev. Given a prefix PN of UN , it is NP-complete to
decide whether PN can be extended with another event [9]. The following approaches were
proposed and implemented in tools:

Since X is coverable iff c ‖ c′ for all c, c′ ∈ X, it is promising to construct the concurrency
relation ‖ restricted to conditions. In [3], it is shown how ‖ can be computed “on the fly”
while constructing PN . This approach is implemented in the tool Mole.
Eschewing the computation and storage of ‖, [7] proposes several techniques to optimize
the computations of relevant coverable sets using only memory linear in the size of PN ;
these techniques are implemented in Punf.

Experimentation over realistic benchmarks suggest that the first approach is usually faster
but also more memory-intensive, in the worst-case quadratic in |B|; the second approach
therefore succeeds to solve some big instances where the first runs out of memory. Punf
actually allows to switch from the first to the second after the unfolding exceeds a given size.

3 The Algorithm

In this section, we describe the contribution of this paper: a new way of computing the events
of UN . Like [7], this method does not employ the concurrency relation between conditions
and uses only a constant amount of memory per condition and event, yet it is orthogonal to
the tricks proposed in [7].

Before presenting the new contribution, we first describe a generic abstract algorithm
for building UN , used for instance in [3,7]. The algorithm maintains a set PE of so-called
possible extensions, i.e., events that may be added by applying rule Ev to the prefix PN

generated so far. Its steps are:
1. Start with m̃0, generated by the rule Ini, and fill PE with events 〈X, t〉 where X ⊆ m̃0.
2. As long as PE is non-empty, remove an event e from PE. Let P ′N be the prefix obtained

by adding e and its postset to PN , by means of rules Ev and Cond.
3. Identify and add to PE the set of possible extensions of P ′N that were not possible in
PN . For any such extension 〈X, t〉, X necessarily intersects e•.

4. Set PN := P ′N and continue at step 2.

FSFMA’13

50 An Improved Construction of Petri Net Unfoldings

As mentioned in Sec. 2, this procedure may not terminate, and practical applications
usually truncate PN at certain cutoff points. This aspect is irrelevant to our contribution
and we do not discuss it, focusing instead on step 3, the only difficult one. For the rest of
this section, let e := 〈X, t〉 be the event in step 3. We proceed in two substeps:
3a. For each place p ∈ •(t••) \ t•, determine the set C(p, e) of p-labelled conditions 〈x, p〉

that are concurrent with e. For p ∈ t•, we set C(p, e) := {〈e, p〉}
3b. For all t′ ∈ t••, use the sets C(p, e) to discover new possible extensions, i.e., find coverable

subsets X ′ with h(X ′) = t′ and add these to PE.

While step 3a can be implemented in time linear in |PN |, it is known that step 3b is NP-
complete, even when the concurrency relation is given [5]. On the other hand, profiling on
many benchmarks (for instance, using Mole) suggests that step 3a is more expensive in
practice than step 3b.

On the one hand, [3] proposes to compute sets C(p, e) using the concurrency relation
and discusses the on-the-fly computation and maintenance of the latter, giving little detail
on step 3b. On the other hand, [7] presents heuristics for speeding up step 3b without
discussing step 3a in detail. We shall discuss a method for implementing step 3a efficiently
but without storing the concurrency relation and using only O(|PN |) memory. This method
can be combined with the optimizations of step 3b from [7].

We start with a series of simple observations, which are valid for unfoldings of safe Petri
nets. Let p be a place of N and h−1(p) the set of conditions labelled by p in UN . Since N is
safe, no two elements of h−1(p) can be concurrent. Thus, the causality relation <, restricted
to h−1(p), forms a forest where any pair of conditions c, c′ that are not causally related are
in conflict. Let us call this the p-forest. Now, let c, c′ ∈ h−1(p) and e an event. We observe
that (i) if c # e and c < c′ then c′ # e; (ii) if c < e and c′ < c then c′ < e; and in particular
in both cases c′ ‖ e does not hold. Moreover, let C ′ = h−1(p)∩ [e] for some event e. Then no
two elements of C ′ can be in conflict, and therefore (iii) C ′ must be totally ordered w.r.t. <.

Based on these observations, our algorithm for step 3a consists of the following steps:
I. We traverse the causal predecessors of e, i.e. the cone [e]. This serves two purposes:

Mark all elements of [e] with a special bit that allows to determine, in constant time,
whether any given node of PN belongs to [e];
Update the p-forest for all p ∈ t•: if C ′ := h−1(p) ∩ [e] is empty, then the condition
〈e, p〉 ∈ e• is a root of the p-forest, otherwise it is a child of the maximal element of
C ′, due to (iii).

The traversal takes linear time in |[e]|.1
II. Now, let p ∈ •(t••) \ t•. We determine C(p, e) ⊆ h−1(p) by traversing the p-forest in an

order that respects <, starting at the roots of the forest. Let c ∈ h−1(p).
if c < e (constant-time check due to I.), then c /∈ C(p, e); however, some of its children
in the p-forest may be, so we continue to explore those;
if c # e, then c /∈ C(p, e), and neither are any of its children in the p-forest, cf. (i).

To determine c # e, we traverse the cone [c] in reverse <-order. If we encounter an
event e′ < e, then no conflict can be detected by exploring e′ or its causal precedessors,
so we skip [e′]. But if we encounter a condition c′ < e in the traversal, then we can
conclude that c # e holds (because if e′ ∈ ([c] ∩ c′•) \ [e] is the event that led us to c′ in
the traversal, then c′ ∈ •e′ ∩ •e′′ for some e′′ ≤ e). If we find no such c′ in [c], then c ‖ e
holds.

1 Such a traversal is anyway necessary in most unfolding-based implementations to collect information
relevant for determining which events are cutoff points [3, 8], so this step comes at almost no extra cost.

C. Rodríguez and S. Schwoon 51

Table 1 Experimental results. Time and memory for Punf and Mole are ratios, see text.

Net Unfolding New Alg. Punf Mole
Name Events Cond. Time Mem Time (r) Time (r) Mem (r)
Dpd(7) 10457 30248 0.34 9 6.59 1.76 2.18
Ftp(1) 89046 178085 16.06 36 6.40 0.07 1.18
Byz 14724 42276 0.73 21 11.48 2.66 3.15
Q(1) 7469 20969 0.21 9 6.81 2.14 2.04
Elev(4) 16935 32354 0.50 9 5.06 0.24 1.08
Bds(1) 6330 12310 0.04 4 5.75 1.00 1.19
Dme(6) 1830 6451 0.04 6 4.50 3.50 2.66
Dme(7) 2737 9542 0.08 8 4.88 3.88 3.11
Dme(8) 3896 13465 0.13 12 5.92 4.54 3.37
Dme(9) 5337 18316 0.22 17 6.64 4.95 3.62
Dme(10) 7090 24191 0.34 24 7.50 5.47 3.93
Dme(11) 9185 31186 0.53 33 8.13 5.92 4.05
RW(1,2) 49179 147607 1.58 24 0.52 0.39 1.11
Rw(3,1) 15401 28138 1.04 9 3.85 0.16 1.18
Key(3) 6968 13941 0.23 5 2.52 0.30 1.03
Key(4) 67954 135914 15.94 33 2.34 0.06 1.08
Furn(3) 25394 58897 0.69 13 3.48 1.01 1.61
Furn(4) 146606 342140 25.75 75 3.02 0.67 1.76
Mmgt(3) 5841 11575 0.15 4 1.93 0.20 1.08
Mmgt(4) 46902 92940 9.95 18 1.68 0.06 1.18

Notice that step II is repeated for different places p and conditions c. We make some further
optimizations to avoid unnecessary repeated work during the computation for the same e:

If we conclude that c ‖ e holds for some c, we remember this information in the elements
of [c] (as a single bit), and any further conflict checks can safely skip [c].
If we conclude that c # e holds due to some condition c′ < e like above, then we propagate
this information along the trail of nodes that led us from c to c′. Any further conflict
checks that encounter one of those nodes can immediately stop and deduce a conflict, too.

4 Experiments

We experimentally compared our approach with other unfolding algorithms. Mole computes
a concurrency relation [3] and therefore uses quadratic memory in the worst-case. Punf,
when used with option -n=0, employs a linear-time exploration of PN for step 3a [7]. Our
implementation is based on Mole, but we replaced Mole’s concurrency relation by our
approach.

Tab. 1 summarizes our comparison on 20 classical benchmarks from the unfolding
literature. For every net, we present the unfolding size together with the time (in seconds)
and memory (in megabytes) of our approach, listed under ‘New Alg.’. For Punf and Mole,
the data is a ratio relative to our approach. Memory usage for Punf could not readily be
determined, but should be asymptotically the same as for our approach. The computed
unfolding is obviously the same for the three approaches.

Quite positively, our approach runs faster than Punf on all examples except one, with an
overall running time 3.6 times smaller than that of Punf. We interpret this as an encouraging
result for our approach. Remark that Punf implements an optimization called prefix trees in
step 3b, which is still missing in our implementation. This technique is actually orthogonal
to our contributions and seems to be particularly effective for Rw(1,2). We therefore expect
that our running times could be further improved in some cases by implementing prefix trees.

FSFMA’13

52 An Improved Construction of Petri Net Unfoldings

Also positively, our implementation consumes in average 48% of the memory that Mole
uses and still runs faster than it on roughly one half of the cases. These cases notably include
all the instances of the Dme series, where we obtain improved running times of up to 6 times.
Here, the cost of computing the concurrency relation is actually larger than its benefit.

However, our approach is still overall slower than Mole. Our accumulated running
time is 2.3 times larger. The worst case seems to be Mmgt(4), where Mole runs 17 times
faster using roughly the same memory. The concurrency relation proves to be very effective
for this net, in average a condition is concurrent to only 0.2%� of the other conditions.
Compare this ratio with that of Dme(11), where our approach performs 6 times faster.
There, the aforementioned average is 38%�, making Mole’s approach inefficient. The same
analysis holds for Key(4), where Mole is 16 times faster than our approach, and where the
concurrency relation is even comparatively smaller than in Mmgt(4).

Overall, the new approach seems to present a practical tradeoff in terms of time. For
better comparison, we show only examples in which all tools terminated. However, it was
already pointed out in [7] that there exist cases where the concurrency relation becomes too
big to fit into memory, and approaches like Punf and ours succeed where Mole does not.

5 Conclusions

We presented an algorithmic improvement for the construction of Petri net unfoldings. While
our implementation is still preliminary, the experimental results are promising; its running
time beats the one of [7] (which also uses a linear amount of memory), and it represents an
acceptable time/memory trade-off compared with [3], which uses more memory; in some
instances it even performs faster.

For future work, it would be interesting to improve the implementation to incorporate the
tricks from [7], which should further improve the running time. Moreover, we are interested
in generalizing the approach to nets with read arcs, where it could be used as an alternative
to [1] within the tool Cunf [10].

References
1 Paolo Baldan, Alessandro Bruni, Andrea Corradini, Barbara König, César Rodríguez, and

Stefan Schwoon. Efficient unfolding of contextual Petri nets. TCS, 449:2–22, 2012.
2 Javier Esparza and Keijo Heljanko. Unfoldings - A Partial-Order Approach to Model Check-

ing. EATCS Monographs in Theoretical Computer Science. Springer, 2008.
3 Javier Esparza and Stefan Römer. An unfolding algorithm for synchronous products of

transition systems. In Proc. CONCUR, LNCS 1664, pages 2–20, 1999.
4 Javier Esparza, Stefan Römer, and Walter Vogler. An improvement of McMillan’s unfolding

algorithm. Formal Methods in System Design, 20:285–310, 2002.
5 Keijo Heljanko. Deadlock and reachability checking with finite complete prefixes. Licentiate’s

thesis, Helsinki University of Technology, 1999.
6 Victor Khomenko. Punf. homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf/.
7 Victor Khomenko and Maciej Koutny. Towards an efficient algorithm for unfolding Petri

nets. In Proc. CONCUR, LNCS 2154, pages 366–380, 2001.
8 Victor Khomenko, Maciej Koutny, and Walter Vogler. Canonical prefixes of Petri net

unfoldings. Acta Informatica, 40(2):95–118, 2003.
9 Kenneth L. McMillan. Using unfoldings to avoid the state explosion problem in the verifi-

cation of asynchronous circuits. In Proc. CAV, LNCS 663, pages 164–177, 1992.
10 César Rodríguez. Cunf. http://www.lsv.ens-cachan.fr/~rodriguez/tools/cunf/.
11 Stefan Schwoon. Mole. http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/.

http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf/
http://www.lsv.ens-cachan.fr/~rodriguez/tools/cunf/
http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/

Constructing Attractors of Nonlinear Dynamical
Systems by State Space Decomposition
Laurent Fribourg1, Ulrich Kühne2, and Romain Soulat1

1 LSV, ENS Cachan & CNRS
Cachan, France

2 University of Bremen
Bremen, Germany

Abstract
In a previous work, we have shown how to generate attractor sets of affine hybrid systems using
a method of state space decomposition. We show here how to adapt the method to polynomial
dynamics systems by approximating them as switched affine systems. We show the practical
interest of the method on standard examples of the literature.

1998 ACM Subject Classification I.2.8, Control theory

Keywords and phrases Control theory, Hybrid Systems, Nonlinear dynamical systems

Digital Object Identifier 10.4230/OASIcs.FSFMA.2013.53

1 Introduction

The symbolic analysis of nonlinear dynamical systems has recently attracted considerable
attention: the problem of computing the set of reachable states (reachability analysis) has
thus been studied in [1, 3, 4, 5, 2], and the problem of computing polytopic invariants
(invariant synthesis) has been studied in [10, 11, 12]. Here, we study a problem close to
the problem of invariant synthesis: we want not only to generate a polytopic invariant P
included in a given rectangle R, but we also want that all the trajectories starting from R

converge to P . In other words, we want to construct an attractor set P of R, ideally as
small as possible. We show that the state decomposition method given in [7] for computing
attractors of linear systems can be extended to the case of polynomial dynamics, using the
idea of local linearization developed in [1].

The plan of the paper is as follows. In Section 2, we recall the principles of the state
space decomposition method for linear dynamical systems. In Section 3, we explain how to
extend the method to polynomial dynamical systems. In Section 4, we apply the method to
two standard examples of the literature. We conclude in Section 5.

2 Attractors for Linear Dynamics

We suppose that we are given a finite set U = {1, . . . , N} of elements called modes. We
are also given a family of functions {fu}u∈U with fu : Rn → Rn. Given a time step τ ,
a sampled switched system Σ is a dynamical system governed by an equation of the form
x(t + τ) = fσ(x(t)), where σ is a control signal, which selects a mode u ∈ U at each time
step τ , 2τ ,

A k-pattern is a sequence of at most k modes of U . Given a set X ⊂ Rn and a mode
u ∈ U , we define the set of successors of X via u, and denote by Postfu(X), the set
{x′ ∈ Rn | fu(x) = x′ for some x ∈ X}. Given a pattern π of the form (u1 · u2 · · · · ·

© Laurent Fribourg, Ulrich Kühne, and Romain Soulat;
licensed under Creative Commons License CC-BY

1st French Singaporean Workshop on Formal Methods and Applications 2013 (FSFMA’13).
Editors: Christine Choppy and Jun Sun; pp. 53–60

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.FSFMA.2013.53
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

54 Constructing Attractors of Nonlinear Dynamical Systems

um), the set of successors of X via π, denoted by Postfπ(X), is given by: Postfπ(X) =
Postfum (· · · (Postfu2

(Postfu1
(X))) · · ·).

Suppose that we are given a box R ⊆ Rn (i.e., a cartesian product of closed intervals).
We have given in [7] a general method in order to show the controlled invariance of Σ
in R. By controlled invariance in R, we mean that if the system state is in R at some
time, it will stay forever in R under the control of an appropriate signal σ. The method
constructs a k-decomposition of R, that is, a set ∆ of the form {(Vi, πi)}i∈I , where I is a
finite set of indices, the Vis are sub-boxes of R, and the πis are k-patterns. Furthermore,
this decomposition ∆ is k-invariant in the sense:
1.
⋃
i∈I Vi = R

2. Postfπi (Vi) ⊂ R, for all i ∈ I.
An algorithm of decomposition is given in [7], and is recalled in Appendix A: given a
dynamical system {fu}u∈U and a box R, it returns a k-invariant decomposition ∆ of R.

I Lemma 1. If ∆ = {(Vi, πi)}i∈I is a k-invariant decomposition of R, then:

Post∆(R) ⊂ R,

where the operator Post∆ is defined, for all X ⊂ Rn, by:

Post∆(X) =
⋃
i∈I

Postfπi (X ∩ Vi)

I Lemma 2. Consider a k-invariant decomposition ∆ = {(Vi, πi)}i∈I of R. The sequence
{Rj∆}j≥0 defined by:

R0
∆ = R,

Rj+1
∆ = Post∆(Rj∆)

is a decreasing nested sequence and the set R∗∆ =
⋂
j≥0R

j
∆ is well-defined. Furthermore, R∗∆

is an attractor set of R, i.e.:
1. Post∆(R∗∆) = R∗∆ (invariance)
2. ∀x ∈ R, d(Postj∆(x), R∗∆)→ 0 as j tends to ∞1 (attractivity).
Attractors and limit cycles have been studied in the context of affine dynamics in [6].

3 Nonlinear Dynamics

The decomposition procedure, explained in Section 2, is quite general, and does not suppose
that the functions fu are linear or affine. However, in the case where fu is an affine function,
the computation of the successor sets (via Post operator) can be done in an exact manner.

We now explain how to apply the state space decomposition procedure in the case of
non-affine dynamics. This is done at the price of an over-approximation of the successor
sets. Following [1], we compute (an overapproximation of) the successor sets using local
linearizations of the system, and enlargement of the linear images by addition of error intervals.
We will consider a system governed by a unique equation of the form x(t+τ) = f(x(t)) where
f is a polynomial. The set U is thus reduced to a single element (U = {1}). A pattern πi
associated to a subregion Vi, is now just an integer indicating the number of times the (local
linearization of) f should be applied when the state is in Vi.

1 d is the distance between a point and a subset of Rn

L. Fribourg, Ulrich Kühne, and R. Soulat 55

3.1 Affine systems with uncertainty
As in [1], reachable sets are represented here by zonotopes. They are chosen because linear
transformations and Minkowski sums2 can be computed efficiently, allowing to compute
reachable sets for large scale linear systems in continuous space. A zonotope is defined by a
center c to which linear segments li = β(i) · g(i), −1 ≤ β(i) ≤ 1 are added via Minkowski sum.

I Definition 3. A zonotope is a set

Z = {x ∈ Rn : x = c+ Σpi=1β
(i) · g(i), −1 ≤ β(i) ≤ 1}

with c, g(1), . . . , g(p) ∈ Rn. The vectors g(1), . . . , g(p) are referred to as the generators and c
as the center of the zonotope. It is convenient to represent the set of generator as a matrix G.
The notation is < c,G >, where the first element refers to the center of the zonotope and
the second to the generators.

Zonotopes allow to extend easily the decomposition procedure in order to take into
account small perturbations of the system dynamics (see [8]). Suppose that we the system is
described by an equation of the form

x(t+ τ) = flin(x(t)) + ε

where:
flin is an affine function defined by flin(x) = Ax+ b with A ∈ Rn×b, b ∈ Rn

ε is a disturbance vector belonging to a rectangle region Λ = [−ε1,+ε1]× · · · [−εn,+εn]
of Rn, with εi ≥ 0 for all i.

Since Λ is a product of intervals centered in 0, it can be written as a zonotope

ZΛ =< 0, GΛ > with GΛ =


ε1 0 . . . 0
0 ε2 . . . 0
...

...
. . .

...
0 0 . . . εn


I Lemma 4. Consider a zonotope Z =< c,G > with G a square matrix, a box Λ =
[−ε1,+ε1]× · · · [−εn,+εn] of Rn, and a function f defined by:

f(x) = Ax+ b+ ε, with ε ∈ Λ.
We have: Postf (Z) ⊂ < Ac+ b, AG+GΛ >.

3.2 Linearization of nonlinear dynamics
Consider now a system governed by equation x(t + τ) = f(x(t)) where f is a polynomial.
We can write:

f(x) = flin(x) + P (x),

where flin(x) corresponds to the polynomial subpart of order 1, and P to the polynomial of
order greater than or equal to 2. We can then apply the method explained in Section 3.1, by
computing a local over-approximation Λ of P (x).

2 The Minkowski of two sets A, B is defined by A + B = {a + b | a ∈ A, b ∈ B}

FSFMA’13

56 Constructing Attractors of Nonlinear Dynamical Systems

I Lemma 5. Consider a function f defined by: f(x) = flin(x) + P (x), where flin(x) is a
1st-order polynomial of the form b+Ax, and P (x) a 2nd-order polynomial. Given a zonotope
Z :< c,G >, we have:

Postf (Z) ⊂ Postflin(Z) + ZΛ

with:
– Postflin(Z) =< f(c), AG >

– ZΛ =< 0,


ε1(Z) 0 . . . 0

0 ε2(Z) . . . 0
...

...
. . .

...
0 0 . . . εn(Z)

 >

with (1 ≤ i ≤ n): εi(Z) = maxx∈Z(|Pi(x)− Pi(c)|).

Now, in order to apply the decomposition procedure (extended with error), we just have
to find an upper bound for |P (x)−P (c)| componentwise. In the following, we explain on two
standard examples how to compute such upper bounds. Then we apply the decomposition
procedure in order to find a decomposition ∆, and construct an attractor related to R∗∆.

4 Case studies

These examples are taken from [2]. Given a zonotope Z =< c,G >, we explain how to
compute Postflin(Z) and ZΛ appearing in Lemma 5. Experiments have been performed with
the tool MINIMATOR [9] on a machine equipped with an Intel Core2 at 2.93GHz and 2 GB
of RAM memory.

4.1 Van der Pol oscillator
4.1.1 Dynamics
The dynamics of the Van der Pol oscillator are the following:

x(τ) =
(

1 τ

−τ 1 + τ

)
x(0) +

(
0

−x1(0)2x2(0)τ

)
.

When linearized to a point c ∈ R2, this gives:

x(τ) =
(

1 τ

−τ 1 + τ

)
x(0) +

(
0

−c21c2τ

)
.

Thus, we have Postflin(Z) =
(

1 τ

−τ 1 + τ

)
Z +

(
0

−c21c2τ

)
=
(

1 τ

−τ 1 + τ(1− c21)

)
x(0). It

is easy to see that for a box V ⊂ R2 we are making an error of at most 0 on the x axis and |(c21−

(c1 +G1,2 +G2,2)2|τ on the y axis, when Z =< c,G > with c =
(
c1
c2

)
and G =

(
G1,1 G1,2
G2,1 G2,2

)
Thus we need to enlarge any image of a zonotope Z =< c,G > by 0 on the x-axis and τ |(C2

1−

(C1 +G1,2 +G2,2)2| on the y-axis (i.e., ZΛ =< 0,
(

0 0
0 |(C2

1 − (C1 +G1,2 +G2,2)2|τ

)
>).

4.1.2 Attractor Construction
The Decomposition procedure is applied to R = [−3, 3]×[−3, 3] and τ = 0.01 (with parameters
k = 30, d = 7). At boxes located around the center of R, the length of patterns is 1 while in

L. Fribourg, Ulrich Kühne, and R. Soulat 57

Figure 1 Decomposition for the Van der Pol oscillator (left) ; Rj
∆ for j = 30 (right).

the lower left and upper right edges, the length is up to 30. The result of the Decomposition
is depicted in the left part of Figure 1 and the attractor set R∗∆ in the right part. Experiments
took 8 minutes to complete.

4.2 FitzHugh-Nagumo Neuron
4.2.1 Dynamics
The dynamics of the FitzHugh-Nagumo neuron are the following:

x(τ) =
(

1 + τ −τ
0.08τ −0.0064τ + 1

)
x(0) +

(
−x1(0)3τ/3 + 0.875τ

0.056τ

)
When linearized to a point c ∈ R2, this gives:

x(τ) =
(

1 + τ −τ
0.08τ −0.0064τ + 1

)
x(0) +

(
−c31τ/3 + 0.875τ

0.056τ

)
It is easy to see that for a box V ⊂ R2 we are making an error of at most maxx∈V (|x

3
1−c

3
1|

3)τ
on the x axis and 0 on the y axis. Thus we need to enlarge any image of a zonotope Z by

maxx∈Z(|x
3
1−c

3
1|

3)τ on the x-axis and 0 on the y-axis (ZΛ =< 0,
(
maxx∈Z(|x

3
1−c

3
1|

3)τ 0
0 0

)
>).

4.2.2 Attractor construction
The Decomposition procedure is applied to R = [−2.5, 2.5]× [−0.5, 2.5] and τ = 0.1 (with
parameters k = 30, d = 7). For boxes located around the center of R, the length of patterns
is 1 while in the lower left and upper right corners, the length is up to 22. The result of the
Decomposition is depicted in the left part of Figure 2 and the attractor set R∗∆ in the right
part. Experiments took 5 minutes to complete.

5 Future work

We have explained how to construct attractors of polynomial dynamical systems by extending
a method designed for linear dynamical systems. The method consists in considering the
subpolynomial subpart of order greater than 1 as a perturbation that is over-approximated.

FSFMA’13

58 Constructing Attractors of Nonlinear Dynamical Systems

Figure 2 Decomposition for the FitzHugh-Nagumo Neuron (left) ; Rj
∆ for j = 30 (right).

So far, the over-approximation is done in an ad hoc fashion for each specific example. For
future work, we plan to consolidate the method by using the formal technique of linearization
of [1], based on the notion of Lagrange remainder.

A Appendix: Decomposition Algorithm

The Decomposition procedure generates a k-invariant decomposition of R, as follows:
It first calls sub-procedure Find_Pattern in order to get a k-pattern such that R is

R-invariant. If it succeeds, then it is done. Otherwise, it divides R into 2n sub-boxes
V1, . . . , V2n of equal size. If for each Vi, Find_Pattern gets a k-pattern making it R-invariant,
it is done. If, for some Vj , no such pattern exists, the procedure is recursively applied to Vj .
It ends with success when a k-invariant decomposition of R is found, or failure when the
maximal degree d of decomposition is reached.

The algorithmic form of the procedure is given in Algorithms 1 and 2. (For the sake of
simplicity, we consider the case of dimension n = 2, but the extension to n > 2 is straightfor-
ward.) The main procedure Decomposition(W ,R,D,K) is called with R as input value for
W , d for input value for D, and k as input value for K; it returns either 〈{(Vi, πi)}i, T rue〉
with

⋃
i Vi = W and

⋃
i Postπi(Vi) ⊆ R, or 〈_, False〉. Procedure Find_Pattern(W ,R,K)

looks for a K-pattern for which W is R-invariant: it selects all the K-patterns (which are in
finite number) by non-decreasing length order until either it finds such a pattern π (output:
〈π, True〉), or no one exists (output: 〈_, False〉).

The correctness of the procedure is stated as follows.

I Theorem 6. If Decomposition(R,R,d,k) returns 〈∆, T rue〉, then ∆ is a k-invariant de-
composition of R.

L. Fribourg, Ulrich Kühne, and R. Soulat 59

Algorithm 1: Decomposition(W ,R,D,K)
Input: A box W , a box R, a degree D of decomposition, a length K of pattern
Output: 〈{(Vi, πi)}i, T rue〉 with

⋃
i Vi = W and

⋃
i Postπi(Vi) ⊆ R, or 〈_, False〉

1 (π, b) := Find_Pattern(W,R,K)
2 if b = True then
3 return 〈{(W,π)}, T rue〉
4 else
5 if D = 0 then
6 return 〈_, False〉
7 else
8 Divide equally W into (W1,W2,W3,W4) /* (case n = 2) */
9 (∆1, b1) := Decomposition(W1,R,D − 1,K)

10 (∆2, b2) := Decomposition(W2,R,D − 1,K)
11 (∆3, b3) := Decomposition(W3,R,D − 1,K)
12 (∆4, b4) := Decomposition(W4,R,D − 1,K)
13 return (∆1 ∩∆2 ∩∆3 ∩∆4, b1 ∧ b2 ∧ b3 ∧ b4)

Algorithm 2: Find_Pattern(W ,R,K)
Input: A box W , a box R, a length K of pattern
Output: 〈π, True〉 with Postπ(W) ⊆ R, or 〈_, False〉 when no pattern maps W into

R

1 for i = 1 . . .K do
2 Π := set of patterns of length i
3 while Π is non empty do
4 Select π in Π
5 Π := Π \ {π}
6 if Postπ(W) ⊆ R then
7 return 〈π, True〉

8 return 〈_, False〉

FSFMA’13

60 Constructing Attractors of Nonlinear Dynamical Systems

References
1 M. Althoff, O. Stursberg, and M. Buss. Reachability analysis of nonlinear systems with

uncertain parameters using conservative linearization. In CDC, pages 4042–4048. IEEE,
2008.

2 M. Amin Ben Sassi, R. Testylier, T. Dang, and A. Girard. Reachability analysis of polyno-
mial systems using linear programming relaxations. In ATVA, pages 137–151, 2012.

3 Eugene Asarin, Thao Dang, and Antoine Girard. Reachability analysis of nonlinear systems
using conservative approximation. In Oded Maler and Amir Pnueli, editors, HSCC, volume
2623 of Lecture Notes in Computer Science, pages 20–35. Springer, 2003.

4 Thao Dang, Colas Le Guernic, and Oded Maler. Computing reachable states for nonlinear
biological models. In CMSB, pages 126–141, 2009.

5 G. Frehse. PHAVer: algorithmic verification of hybrid systems past HyTech. STTT,
10(3):263–279, 2008.

6 L. Fribourg and R. Soulat. Limit cycles of controlled switched systems: Existence, stability,
sensitivity. In Proc. 3rd NCMIP 2013 IOP Publishing “Journal of Physics: Conference
Series”, May 2013. To appear.

7 Laurent Fribourg and Romain Soulat. Finite controlled invariants for sampled switched sys-
tems. Research Report LSV-13-09, Laboratoire Spécification et Vérification, ENS Cachan,
France, April 2013. 27 pages.

8 W. Kühn. Zonotope dynamics in numerical quality control. Mathematical Visualization,
pages 125–134, 1998.

9 Minimator Team. Minimator Web page. http://www.lsv.ens-cachan.fr/ soulat/minimator/,
2013.

10 Mohamed Amin Ben Sassi and Antoine Girard. Controller synthesis for robust invariance
of polynomial dynamical systems using linear programming. CoRR, abs/1107.1580, 2011.

11 Mohamed Amin Ben Sassi and Antoine Girard. Computation of polytopic invariants for
polynomial dynamical systems using linear programming. Automatica, 48(12):3114–3121,
2012.

12 Mohamed Amin Ben Sassi and Antoine Girard. Control of polynomial dynamical systems
on rectangles. In European Control Conference, 2013.

Formal Modelling and Verification of Pervasive
Computing Systems
Yan Liu

National University of Singapore
yanliu@comp.nus.edu.sg

Abstract
Pervasive computing (PvC) systems are emerging as promising solutions to many practical prob-
lems, e.g., elderly care in home. However, such systems have long been developed without
sufficient verification. Formal methods, eps. model checking are sound techniques for complex
system analysis regarding correctness and reliability requirements. In this work, a formal model-
ling framework is proposed to model the general the system design (e.g., concurrent communic-
ations) and the critical environment inputs (e.g., human behaviours). Correctness requirements
are specified in formal logics which are automatically verifiable against a system model. Further-
more, Markov Decision Processes (MDPs) are adopted for modelling probabilistic behaviours
of PvC systems. Three problems are analysed which are overall reliability prediction based on
component reliabilities, reliability distribution w.r.t., how reliable should the component be to
reach an overall reliability requirement and sensitivity analysis w.r.t., how does a component re-
liability affect the overall reliability. Finally, the usefulness of our approaches are demonstrated
on a smart healthcare system with unexpected bugs and system flaws exposed.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases System Analysis, Formal Modelling and Verification, Reliability Analysis

Digital Object Identifier 10.4230/OASIcs.FSFMA.2013.61

1 Introduction

Many problems arise with the proliferation of ageing population in all industrialised societies,
e.g., creating enormous costs for elders’ intensive care. The context-aware and self-adaptive
PvC [11] system enables their independent living with little supervision [7]. Therefore PvC
systems are safety critical and should be verified before deployment. However, traditional
techniques such as simulation and testing are expensive and not complete. Formal methods
instead, especially model checking [4] techniques are promising solutions for their expressive
system modelling and exhaustive verification. Thus, we propose to apply these techniques
to formally analyse PvC systems.

Motivation. PvC systems are inherently complex making it a challenging task to perform
system analysis. They are usually composed of a physical layer with sensors to monitor the
environment changes; a middleware layer to manage and reason about the sensed contexts
with predefined rules; an application layer to make adaptations, as shown in Fig. 1a. Failures
happen with various reasons like a wrong reminder could be caused by a sensor failure or
an incorrect rule [5]. In practice, such faults could only be exposed during deployment as
it is impossible to capture all scenarios at development phase. Thus, there is a need of a
systematic and complete analysis approach. Furthermore, a PvC system is probabilistic due
to limited reliability of its components [8]. It is essential to manage the system reliability at

© Yan Liu;
licensed under Creative Commons License CC-BY

1st French Singaporean Workshop on Formal Methods and Applications 2013 (FSFMA’13).
Editors: Christine Choppy and Jun Sun; pp. 61–67

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.FSFMA.2013.61
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

62 Formal Modelling and Verification of Pervasive Computing Systems

an acceptable rate. Besides, the system behaviours are nondeterministic for unpredictable
user activities. Thus, we choose MDPs-based verification technique for reliability analysis.

Our contributions are two-fold. Firstly, a formal modelling framework is proposed with
modelling patterns for common features of PvC systems, e.g., compositional architecture
and concurrent interactions. Critical requirements of stakeholders are specified as desirable
properties (safety and liveness) and testing purposes (conflict cases). Case study on a smart
healthcare system revealed multiple bugs such as conflict reminders. Secondly, reliability
models of PvC systems are constructed using MDPs upon which three general problems are
investigated: 1) “What is the overall system reliability given the component reliabilities?”’
refers to reliability prediction. 2) “What is the reliability required on components for an
expected reliability on overall system?” refers to reliability distribution. 3) “What is the most
critical part contributes to the system reliability?” refers to sensitivity analysis. Experiments
on AMUPADH system shows that the overall system reliability is below 50%.

2 A running example – AMUPADH

AMUPADH [2] is a smart healthcare system providing assistance to elderly people who
have difficulties in remembering activities of daily living (ADLs). It is deployed in a nursing
home, PeaceHeaven1 for a six-month real life trial. The workflow in Fig. 1b consists of:

Step 1: Data Acquisition. Multiple sensors are deployed to monitor the environment
such as when someone turns on the shower tap, the shake sensor is triggered and a
Unstationary signal is sent to the system.
Step 2: Context Processing and Reasoning. Sensor signals are interpreted to
low-level contexts like “Tap turned on” in the inference engine, Drools2. By evaluat-
ing predefined reasoning rules (written in first order logic), high-level contexts such as
“Showering too long” are generated.
Step 3: Reminder Service Rendering. If an abnormal activity is recognised, the
system will render a reminder service to help the elder. For example, a bluetooth speaker
will play a voice reminder upon a error message. A number of devices like a TV or iPad
are used to prompt reminders.

3 Correctness Analysis of PvC Systems

A Formal Modelling Framework. According to the general structure shown in Fig. 1a,
we propose to model the system design and environment input separately. Modeling En-
vironments: PvC systems are user centric, thus modelling the user behaviours is essential.
However it is difficult because user behaviours are unpredictable. As suggested by domain
experts, such systems usually target at a determined group of activities whose sequences
remain unpredictable. In concurrent modelling languages, nondeterministic choices can be
used to enumerate the sequences, an example is illustrated in Fig. 2a. At a location, each
possible move of the user is modelled as a choice. An unrealistic scenario may arise that
the model allows an activity to be performed repeatedly e.g., the user sits on the bed again
and again without standing up. To eliminate such cases, we need a constraint model e.g., a
bed model (Fig. 2b, no more sitting is allowed once the bed is occupied). Modelling System

1 Located at 9 Upper Changi Road North, Singapore, 507706. Tel: +65-65465678.
2 Drools Expert: http://www.jboss.org/drools/drools-expert.html

Y. Liu 63

Pervasive Computing System Environment

Sensors
Pressure Sensor
RFID Reader
Vibration Sensor
Accelerometer

Middleware
Context Manager
Reasoning Engine
Adaptation Manager

Applications
Reminder Services
Actuators
Meeting Services
Alarm Services

User Behaviors
Start Projector
Cook
Sleep on Bed
Make a Phone Call
Have Lunch
Play a Game

Facilities
Projector
Microwave Oven
Bed
Mobile Phone
Chair
Tablet PC

BUS

BUS

(a) Common Architectures (b) An example PvC System, AMUPADH

Figure 1 Introduction of Pervasive Computing (PvC) Systems.

OSstart

BR

Bed

enterBedroomexitBedroom

sitOnBed

sitUp,
lay-
Down

leaveBed

(a) User Behaviours

Empstart

Sit

Ly

sitOnBedleaveBed

layDownsitUp

leaveBed

(b) Bed Behavior

Empty

Occupied

Reasoning
Engine

sitOnBed.ileaveBed

layDown

sitUp

port!Empty

port!Lying

port!Sitting

(c) Bed Pressure Sensor

Inv Stop

res?cmd.rid.pid

[cmd==Act] [cmd==Deact]

(d) Service Rendering

Figure 2 Modelling a PvC System.

Design: In PvC systems, communication and cooperation of components are most critical.
The sensing behaviour of sensors is a concurrent happening with the detectable event in
the environment. Thus, sensor models need to be paralleled with environment model such
that they are synchronised on common events. As shown in Fig. 2a, 2b and 2c, a sitOnBed
event will trigger three models to progress simultaneously. Additionally, the synchronised
channel models the message sending from sensors to reasoning engine in negligible time [6].
In the middleware, context managing and reasoning are performed. They are modelled
as data operations on global context variables and conditional statements respectively. At
the application layer, services are rendered upon decoding of the messages. As shown in
Fig. 2d, the reminding system is modelled using channel communications, shared variables
and guarded processes. Compose A Complete Model: Finally, component models should be
composed using sequential, interleave or parallel patterns according to their relations.

Formal Specification of Critical Requirements. Critical requirements from the stakehold-
ers are identified as desirable properties and testing purposes. Deadlock freeness (DF)
and Guaranteed reminder services (GR) properties are desirable which respectively re-
quires the system has no dead state where no more actions can be performed and ser-
vices should be provided at the right moment for the right user. For instance, a re-
minder should be sent to a patient whenever he is wandering somewhere is formalised as
“�(Wandering → ♦RemindLeave)”. It is also helpful to test the common problems i.e.,

FSFMA’13

64 Formal Modelling and Verification of Pervasive Computing Systems

Table 1 Results of Correctness Analysis Experiment.

Property Result # States # Transitions Time(s) Bug?
DFComplete – – – OOM No
DFBedroom True 1.43M 2.04M 815 No
DFWashroom True 10.8M 15.8M 7045 No
GRUsingWrongBed(UWB) True 1.60M 2.43M 1945 No
GRTapNotOff (TNO) False 0.07M 0.131M 39 Yes
GRWanderInWashroom(WiW) False 2.19M 4.53M 12414 Yes
GRShowerNoSoap(SNS) False 0.832M 1.66M 729 Yes
GRShowerTooLong(STL) False 4314 5150 1.6 Yes
GRSitBedTooLong(SBTL) True 1.58M 2.38M 1913 Yes
Inconsistency True 572 745 0.3 Yes
Conflict Reminder True 2446 3036 1.11 Yes
False Alarm True 0.01M 0.02M 6.1 Yes

system inconsistency and conflicting/ false services. Both of them can be specified as reach-
ability properties that are verified by checking if there is a state where system knowledge
contradicts with actual environment and a state where two conflict services are invoked/
where a service is rendered for a wrong user respectively.

Case Study on AMUPADH System. In the experiment, we implement the modelling
framework in CSP# language [9] and run verification by PATmodel checker [10]. In Table 13,
violation of guaranteed reminder(GR) properties reveals a design flaw i.e., inefficient update
of the patient’s location. An inconsistent state is found i.e., the patient’s location context
variable remains to be inside washroom even after he has left. The case study shows the
usefulness of our approach in analysing PvC system with the counterexamples help in ef-
ficient system debugging. It is also observed that the state space reaches the limits of the
model checker. Thus, a future direction is to explore state space reduction techniques.

4 Reliability Analysis using MDPs

System Modelling in MDPs. MDPs allow us to model both probabilistic and nondetermin-
istic behaviours. In general, nondeterministic choice is adopted when no definitive inform-
ation is given for resolving the choice. In Fig. 3a, it is used to model transitions between
sensors because of the randomness of user behaviours. States are abstract nodes of sensors,
software components and network devices associated with a target scenario while double
circled nodes are goals. In PvC systems, there are two types of transitions which are the
happen-before relation among sensors and message passing directions among the others.
Labels denote the reliability values of a node or a transition which are usually provided by
system engineers estimated from exemplar system runs.

Reliability Analysis Approaches. It consists of three parts, Fig. 4 (a) shows reliability pre-
diction which calculates the reachable probability, Pr(M, s) from an initial state to a goal
state s on an MDP model M . A reliability range i.e., max. and min. reachability is pro-
duced since multiple reachable paths (aka. schedulers) are created due to nondeterminism.
Reliability distribution calculation (Fig. 4 (b)) takes two inputs: (1) a reliability requirement
R on the overall system; (2) a parameterised MDP model M with weights wix (denotes the

3 The test bed is a PC with Intel Xeon CPU at 2.13GHz and 32GB RAM. OOM stands for out of
memory.

Y. Liu 65

start

rfid, 0.75 pir, 0.98 shakeT, 0.99

shakeS, 0.99

shakeS, 0.99

shakeT, 0.99

Zigbee 0.9

mini
server

1

rule
engine 1router

0.95

BlueTooth, 1

wifi

1

bridge

0.98

3G

1 SmartPhone, 1

PC, 1

iPad, 1

0.8

1 1

1

1

1

1

1
1 1

1

1

0.7

1

0.6

0.8

1 1

0.75

0.95

(a) Tap-Not-Off (TNO) Model

start

pressure, 0.98rfid, 0.75

rfid, 0.75pressure, 0.98

Zigbee

0.9
mini
server

1

rule
engine 1

BlueTooth, 1

router

0.95

TV, 1

3G

1

SmartPhone, 1

iPad, 1

wifi

1

bridge

0.98PC, 1

1

0.8

0.8

1

1 1 1

1

1
0.7

1
0.6

1

0.8

1

1

0.75

0.95

(b) Using-Wrong-Bed (UWB) Model

Figure 3 MDP models for Scenario TNO and UWB.

Step 2
Reachability

Checking

Step 1
Obtain an MDP

Components
Reliability

System Reliability

(b)

Step 1
Obtain a

Parameterized MDP
System

Reliability
Requirements

Step 2
Parameterized

 Reachability Checking

Distributed
Reliability on Each

Component

Step 3
Synthesize Reliability

Requirement for Components

A System
Architecture

 Legend
 Input/output of steps

 Input/output data

(a)

(c)

Step 1
Obtain a

Parameterized MDP

Step 2
Parameterized

 Reachability Checking

Reliability
Sensitivity of
Component i

Step 3
Obtain Differentiation Δi

A Component i
For Sensitivity

Analysis, And All
Components

Reliability

Figure 4 Workflow: (a) reliability prediction; (b) reliability distribution; (c) sensitivity analysis.

reliability of component x has a weight wi). Given a scheduler δ, we can obtain the system
reliability (i.e., Pr(M, s)) as a polynomial function of x only. Then the Newton’s method
is used to calculate the lower bounds on x for finitely many schedulers [1] among which the
maximum value gives us the minimum requirement on component reliability. Sensitivity
analysis is shown in Fig. 4 (c). The sensitivity si of the ith component’s reliability Ri is
defined as a partial derivation (denoted by f w.r.t. Ri) of system reliability R, denoted as
∆i = δf(R1,R2,...Ri,...Rn)

δRi
. In this work, we investigate one component each time that the

formula is then reduced to ∆i = δV (init)
δRi

(V (init) is obtained via reliability distribution).

Case Study on AMUPADH system. Six scenarios that need reminders are modelled sim-
ilarly with Fig. 3. These MDPs models are then analysed using the model checker RaPid [3].
Reliability of these reminders ranges from 0.25 to 0.4 (Table 2a) which is quite low. It is
because the RFID readers depend on the wearable tags that the patients throw away from
time to time. Furthermore, Table 2b shows the network nodes need a reliability 0.913 for all
the scenarios to achieve a system reliability of 0.4. For the requirement of 0.5, it is impossible
to distribute. It’s because the system cannot differentiate who is sitting on the bed that the
SBTL reminder is sent to the wrong person half of the time. As for sensitivity analysis, we
demonstrate one scheduler in UWB scenario (highlighted path in Fig. 3b). Fig. 5a suggests
improvement on RFID and Wi-Fi nodes gains higher system reliability than Zigbee node.
Furthermore, when their reliability reaches 0.7, improving Wi-Fi nodes is more efficient
than others (Fig. 5b). These experiments give a good estimation and useful guidance on
improving the system reliability, especially in budget concerned systems.

FSFMA’13

66 Formal Modelling and Verification of Pervasive Computing Systems

Table 2 Experiments of Reliability Prediction and Distribution Analysis.

(a) Reliability Prediction
Rel. UWB SBTL SNS STL TNO WiW

Scedulers 32 24 32 16 64 16
Max 0.374 0.419 0.367 0.371 0.371 0.371
Min 0.296 0.246 0.290 0.292 0.290 0.292
Time <1 ms

(b) Reliability Distribution
Req. Nodes UWB SBTL SNS STL TNO WiW
0.4 Network 0.854 0.904 0.913 0.911 0.911 0.911

Sensor 0.886 0.938 0.941 0.923 0.923 0.923
0.5 Network 0.914 - 0.965 0.963 0.963 0.963

Sensor 0.996 - 0.995 0.994 0.994 0.994
Time(s) 3.45 2.68 3.86 1.87 11.00 2.35

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Component Reliability Ri

S
ys

te
m

 R
el

ia
bi

lit
y

rfid
wifi
zigbee

(a) Distribution

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Component Reliability Ri

∆i
 =

 δ
R

/δ
R

i

rfid

wifi

zigbee

(b) Sensitivity

Figure 5 Using Wrong Bed (UWB)- Sensitivity Analysis on Nodes.

5 Conclusion

In this paper, we demonstrate the approaches of formally analysing PvC systems using model
checking techniques, i.e., a formal modelling framework is proposed for correctness analysis;
an MDPs-based approach for reliability analysis w.r.t., reliability prediction, distribution
and sensitivity analysis. In future, we intend to develop algorithms to alleviate the state
space explosion problem.

Acknowledgements. Supervisor: Dr. Jin Song Dong.

References
1 C. Baier and J. Katoen. Principles of Model Checking. The MIT Press, 2008.
2 J. Biswas, M. Mokhtari, J. S. Dong, and P. Yap. Mild dementia care at home - integrating

activity monitoring, user interface plasticity and scenario verification. In ICOST, pages
160–170, 2010.

3 L. Gui, J. Sun, Y. Liu, Y. Si, J. S. Dong, and X. Wang. Combining model checking and
testing with an application to reliability prediction and distribution. In ISSTA, Accepted
2013.

4 E. M. Clarke Jr., O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, 1999.
5 V. Lee, Y. Liu, X. Zhang, C. Phua, K. Sim, J. Zhu, J. Biswas, J. S. Dong, and M. Mokhtari.

Acarp: Auto correct activity recognition rules using process analysis toolkit (pat). In
ICOST, pages 182–189. 2012.

Y. Liu 67

6 Y. Liu, X. Zhang, J. S. Dong, Y. Liu, J. Sun, J. Biswas, and M. Mokhtari. Formal analysis
of pervasive computing systems. In ICECCS, pages 169 –178, 2012.

7 J. Nehmer, M. Becker, A. Karshmer, and R. Lamm. Living assistance systems: an ambient
intelligence approach. In ICSE, pages 43–50, 2006.

8 M. Satyanarayanan. Pervasive computing: Vision and challenges. IEEE Pers. Commun.,
8:10–17, 2001.

9 J. Sun, Y. Liu, J. S. Dong, and C. Q. Chen. Integrating specification and programs for
system modeling and verification. TASE, pages 127–135, 2009.

10 J. Sun, Y. Liu, J. S. Dong, and J. Pang. Pat: Towards flexible verification under fairness.
In CAV, pages 709–714, 2009.

11 M. Weiser. The computer for the 21st century. Scientific American, 265(3):66–75, 1991.

FSFMA’13

Illustrating the Mezzo Programming Language
Jonathan Protzenko

INRIA
Rocquencourt, France
jonathan.protzenko@ens-lyon.org

Abstract
When programmers want to prove strong program invariants, they are usually faced with a
choice between using theorem provers and using traditional programming languages. The former
requires them to provide program proofs, which, for many applications, is considered a heavy
burden. The latter provides less guarantees and the programmer usually has to write run-time
assertions to compensate for the lack of suitable invariants expressible in the type system.

We introduce Mezzo, a programming language in the tradition of ML, in which the usual
concept of a type is replaced by a more precise notion of a permission. Programs written in
Mezzo usually enjoy stronger guarantees than programs written in pure ML. However, because
Mezzo is based on a type system, the reasoning requires no user input. In this paper, we illustrate
the key concepts of Mezzo, highlighting the static guarantees our language provides.

1998 ACM Subject Classification D.3.2 Applicative (functional) languages

Keywords and phrases Type system, Language design, ML, Permissions

Digital Object Identifier 10.4230/OASIcs.FSFMA.2013.68

1 Introduction

Type systems help programmers reason about the types of the manipulated objects, which
embed information about their memory structure. Programs which obey a strong static
discipline, such as that of ML, therefore have the powerful property that that they cannot
go wrong. In other words, a well-typed program will not lead to a segmentation fault.

In practice, programmers want to reason beyond the memory layout of objects. Real-
world objects often follow a protocol, going through different states, that only permit certain
operations. A file descriptor starts uninitialized, then it may move to ready, before being
closed. The “open” operation may only be performed on an uninitialized file descriptor, while
the “close” operation only works when the file descriptor is ready. Thus, the file descriptor
changes states, while preserving its type. However, traditional type systems fail to help
programmers statically check state invariants.

Mezzo [6] is a programming language that reads and feels like ML, but that is equipped
with a more powerful type system, which attempts to answer the above concerns. Since Mezzo
has a more rigid typing discipline than ML, some programs that previously type-checked in
ML will be deemed too unsafe. Conversely, as Mezzo allows more precise reasoning, some
programs that previously could not be type-checked in ML will be understood.

In Mezzo, the notion of state and that of a type are conflated. An object which moves from
a state to another is an object whose type changes. For instance, the “open” operation will
change the type of its argument from uninitialized to ready. This design choice requires careful
reasoning about ownership. Indeed, it is crucial that no other part of the system sees the
object with its previous type, as this would naturally lead to an inconsistency, and protocol
violations. Therefore, the type system should track ownership and avoid undesired aliases,
as having two distinct names for the same object makes it difficult to ensure consistency.

© Jonathan Protzenko;
licensed under Creative Commons License CC-BY

1st French Singaporean Workshop on Formal Methods and Applications 2013 (FSFMA’13).
Editors: Christine Choppy and Jun Sun; pp. 68–73

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.FSFMA.2013.68
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

J. Protzenko 69

Literature offers a wealth of related work, and Mezzo draws inspiration from several areas.
The biggest source of inspiration is Separation Logic [8, 4], a program logic that describes
the state of the heap. In separation logic, asserting that an object has a given type amounts
to owning that object. We reuse that principle, but turn it into a type system through our
notion of permission, while also extending the reasoning to non-mutable portions of the
heap. The Plaid Project [2] annotates references to objects with permission. This asserts
both what one is allowed to do with the object, as well as what others may do with it.
Our permission mechanism supports similar reasoning, but unifies both the state and the
mutation invariants of an object, using permissions. In Mezzo, pointers can be copied, while
the original permission on the object remains. We keep track of aliasing through the use of
singleton types, inspired by Alias Types [9]. Our notion of affinity, expressing that items may
be used at most once, while others may be used freely, is reminiscent of Linear Types [1].

We begin with an introduction to permissions, a core concept in Mezzo. Next, we discuss
a case study, emphasizing several possible mistakes ruled out by our typing discipline. Finally,
we give an overview of other Mezzo features and conclude with pointers to reference material.

2 An introduction to permissions

The central concept in Mezzo is that of a permission. While in the λ-calculus we say that “x
has type t”, in Mezzo we say we have permission x@ t, which we read “x at type t”. We can
think of a permission as a token that grants access to variable x with type t.

Unlike traditional typing judgements, permissions are transient. The user may possess
x@ t at some point of the program, and have instead x@ u later on, which accounts for the
fact that the type of x changed from t to u, i.e. that the state of x changed.

A permission may be obtained by creating a new value. Writing “let x = (1, “hello”)”
yields x@ (int, string), granting its owner the right to use x as a tuple of an int and a string.

2.1 Permissions control effects
Permissions appear in the signature of functions. Let us consider the type of the length
function, which, as the name implies, computes the length of a list. The square brackets
stand for universal quantification.

val length: [a] (x: list a) -> int

The introduction of the name x, along with its type list a, is syntactic sugar: the function
expects an argument named x, along with a permission x@ list a. Conceptually, the function
demands a token of ownership from its caller, so as to iterate over the list and compute
its length. Hence, whenever one wishes to call the function on argument x, a permission
x@ list a will be removed from the caller’s current set of permissions.

Unless otherwise specified, and as a syntactic convention, we understand the permission
x@ list a to be returned to the caller. Therefore, after the function call, the caller will regain
x@ list a, along with a permission r@ int, where r is the name of the return value.

Another, more sophisticated function type, is that of the annotate function. It takes a
mutable binary search tree of strings and modifies each node to store a pair, consisting of its
original value and the size of the corresponding subtree, which the function returns.

val annotate: (consumes t: mtree string)->(int|t@ mtree (string ,int))

Thanks to the consumes keyword, this function now takes a permission t@ mtree string from
the caller and returns a different permission for t, namely t@ mtree (string, int). Therefore,

FSFMA’13

70 Illustrating the Mezzo Programming Language

the type of t changes through a call to annotate. This is a type-changing update, which the
permissions mechanism accurately describes.

2.2 Permission denote ownership
In order for the above function to be sound, no one else must own a copy of t@ mtree string,
since that copy would be invalidated after calling annotate. Therefore, permissions that
denote mutable portions of the heap must be uniquely owned. We say that the permission
t@ mtree string is exclusive. The type system enforces this policy, by preventing exclusive
permissions from being duplicated.

Conversely, x@ (int, string) denotes read-only knowledge, as our tuples, integers and
strings are immutable. This knowledge is permanent, as the type of x will never change.
Hence, it is sound to share that information. We say that the permission is duplicable, and
the type-checker will allow the user to obtain as many copies of the permission as desired.

A permission x@ t therefore states not only that “x has type t”, but also that “we own x
at type t”. The user (and the type-checker) can, by looking at t, infer whether t is exclusive
or duplicable, i.e. whether they have an exclusive, read-write access, or a shared, read-only
access to the object. The details for this procedure, called mode inference, are available [7].

Some permissions are neither exclusive nor duplicable; they are said to be affine. Such a
permission is x@ a, where a is an abstract type variable, which may occur in the body of a
function polymorphic in a. We have to be conservative and make no assumptions on a.

2.3 Permissions track aliasing
At any given program point, a current permission is available, granting us ownership of a part
of the heap. Combining atomic permissions of the form x@ t into a composite permission
is achieved using the ∗ connective; we say that the conjunction of p and q is p ∗ q. This
conjunction is reminiscent of separation logic. Indeed, if t and t′ are both exclusive, the
conjunction x@ t ∗ y@ t′ implies that, because one cannot hold two exclusive permissions
for the same variable, x and y must be distinct. This is a must-not-alias constraint and we
state that our ∗ conjunction is separating on exclusive portions of the heap.

Moreover, ∗ extends the conjunction of separation logic to non-exclusive portions of the
heap. If t′ is duplicable, then x@ t ∗ y@ t′ yields no information: x and y may or may not
be aliases, and the conjunction just has to be consistent. The same situation holds if both t
and t′ are duplicable. Normally, conjunctions are consistent: if Nil denotes the empty list
cell, x@ list int ∗ x@ Nil is a conjunction that is always consistent. However, inconsistent
conjunctions exist, such as x@ mtree int ∗ x@ mtree int. Our system has been proved sound,
meaning that a program cannot reach a configuration where this conjunction holds. This
point in the program is unreachable: it is statically ruled out as “dead code”.

These must-not-alias constraints, expressed implicitly in a conjunction, are completed
by must-alias constraints, which are expressed using singleton types. A singleton type is of
the form =y, where y is a program variable. This type has exactly one inhabitant: y itself.
Therefore, having x@ =y means that x and y are actually equal; in particular, if they are
pointers, they point to the same value. We write this using syntactic sugar as x = y.

A singleton type appears whenever one creates an alias. If x@ t holds, then writing
let y = x in ... yields a new permission x = y, without duplicating the original permission
on x, which greatly simplifies reasoning. Singleton types are pervasive in Mezzo; they are
particularly useful when combined with structural types.

Listing 1 Definition of mutable, binary trees

J. Protzenko 71

data mutable mtree a =
| Null
| Node { left: mtree a; value: a; right: mtree a }

Listing 1 above shows how to define an algebraic data type in Mezzo. Defining such a type
allows one to obtain permissions of the form x@ mtree a. However, the type of x may be
refined using a match expression; one may trade this permission for a more precise one, of the
form x@ Node {left : mtree a; value : a; right : mtree a}. To understand what it means to own
a value with such a type, let us rewrite this compact permission, introducing names for the
three fields of x, as: x@ Node {left : =l; value : =v; right : =r}∗l@ mtree a∗v@ a∗r@ mtree a.

The ownership semantics of the compact permission can now be understood as stating
that we own a memory block at address x of size four, containing a tag Node and three fields.
We also own two mutable trees located at addresses l and r, along with a value of type a
named v. The points-to relationships are represented by the singleton types. Similarly, the
meaning of a nominal permission, such as x@ mtree a, is the disjunction of the meaning of
its unfoldings x@ Null and x@ Node {left : mtree a; value : a; right : mtree a}.

3 A Mezzo case study

We now discuss a motivating example that, by using all the mechanisms described above,
avoids several pitfalls. This example, as shown in listing 2, consists of splitting a mutable
binary search tree. The function split “steals” the ownership of its argument t from its
caller, and returns two binary search trees: the first one containing all values v ≤ k and the
second one containing all values v > k. The split function abstracts over the comparison
function cmp. We omit the re-balancing of the tree and focus on a self-contained example.

There are several pitfalls that await the programmer when writing such code. The user
may inadvertently copy a key: this would violate the invariant that the two sub-trees form a
partition. The user may return, as the right sub-tree, a pointer into the left sub-tree: this
would create undesired sharing, leading to subtle bugs when two concurrent threads will want
to access the two sub-trees, assuming that they are distinct. The permissions mechanism, by
ensuring that exclusive knowledge cannot be duplicated, enforces these invariants statically.

Listing 2 In-place splitting of a mutable binary search tree
1 val rec split_right [a] (
2 consumes parent: Node { left: mtree a; value: a; right = child},
3 consumes child: mtree a,
4 k: a,
5 cmp: (a, a) -> int
6): (mtree a | parent @ mtree a) =
7 match child with
8 | Null -> Null
9 | Node ->

10 if cmp (child.value , k) <= 0 then
11 split_right (child , child.right , k, cmp)
12 else begin
13 let left_leq , left_gt = split (child.left , k, cmp) in
14 parent.right <- left_leq;
15 child.left <- left_gt;
16 child
17 end end
18

FSFMA’13

72 Illustrating the Mezzo Programming Language

19 and split [a] (consumes t: mtree a, k: a, cmp: (a, a) -> int)
20 : (mtree a, mtree a) =
21 match t with
22 | Null -> Null , Null
23 | Node ->
24 if cmp (t.value , k) <= 0 then begin
25 let right_gt = split_right (t, t.right , k, cmp) in
26 t, right_gt
27 end else begin
28 let left_leq , left_gt = split (t.left , k, cmp) in
29 t.left <- left_gt;
30 left_leq , t
31 end end

3.1 The split function
The split function is the entry point. At the start of the function body, the permission is:

t@ mtree a ∗ k@ a ∗ cmp @ (a, a)→ int

The function begins by matching on its argument t. If t is Null, two empty trees are returned.
In the converse case, the permission on t is refined to:

t@ Node {left : =l; value : =v; right : =r} ∗ l@ mtree a ∗ v@ a ∗ r@ mtree a

In the case that t.value ≤ k holds, a call to split_right, whose meaning we will explain in the
next section, is made. In the case that k < t.value (line 29), values greater than k may be found
in the left sub-tree. The recursive call yields a partition of left sub-tree, consuming l@ mtree a,
while producing left_leq @ mtree a∗ left_gt @ mtree a. We re-attach values greater than k into
t.left, thus changing the permission of t into t@ Node {left : =left_gt; value : =v; right : =r}
Values lesser or equal to k are returned, along with t, which now contains the set of all
possible values greater than k.

Which mistakes could an absent-minded programmer do? A first one would be forgetting
to perform the assignment “t.left <- left_gt”, at line 30. The permission for t would still
be t@ Node {left : =l; value : =v; right : =r}. However, the call to split, at line 29, consumed
the permission for l: it is no longer available, thus preventing this type from being folded
back to mtree a, when exiting the function. Mezzo would reject this program.

Another beginner’s mistake would be to return the value (left_gt, t). Following
the return type (mtree a, mtree a), Mezzo would consume left_gt @ mtree a to prove that
left_gt is a tree. Next, Mezzo would have to prove that t is a tree, using permission
t@ Node {left : =left_gt; value : =v; right : =r}. Specifically, this implies proving that t.left,
also known as left_gt, is also a tree. Unfortunately, that exclusive permission was already
consumed. This situation is therefore rejected.

3.2 The split_right function
The split_right function is written in a different style, as it takes a non-null parent tree,
along with its right child. After the function call, the parent is still a tree, holding all values
lesser or equal to k, while the returned tree contains all values greater than k.

The call to split_right at line 11 is legal, as we know that child is a Node, which justifies
using it as the first argument. Mezzo statically checks that the second argument is indeed

J. Protzenko 73

the right child of the first: this information is known statically, due to the use of singleton
types. This contrasts with the usage in traditional imperative languages, where typical code
would rely on a loop and two mutable variables, with the implicit invariant that one is the
right child of the other. Here, the invariant is made explicit and Mezzo can rule out misuses.

The type-checker applies recursive reasoning. After the call to split_right at line 11, if
ret denotes the return value of the recursive call, the remaining permission is:

parent @ Node {left : mtree a; value : a; right : =child} ∗ child @ mtree a ∗ ret @ mtree a

The type-checker then performs one last folding, to obtain the desired return type for the
function. Note that the function call is tail-recursive, while the reasoning is not. Indeed, the
use of recursive functions with distinct pre- and post-conditions yields more expressiveness
than the use of traditional loops. This allows for stronger invariants.

4 Conclusion

Due to its permissions formalism, the Mezzo language manages to state precise invariants for
programs that rely on mutable state, thus preventing several programming mistakes. The
key mechanisms enforcing this rely on ownership, linearity and singleton types.

Permissions, as presented here, cannot account for non tree-shaped aliasing patterns.
However, Mezzo offers several mechanisms for evading this restriction, e.g. locks, Boyland’s
nesting [3] and our own adoption/abandon mechanism. A more thorough discussion can be
found [7], which details the language with typing rules and a formal definition of permissions.
A gallery of programs along with extended material are available on the website [6].

The soundness of Mezzo has been machine-checked [5]. In the future, we wish to extend
the language and its soundness proof with concurrency, to guarantee data-race freeness.

References
1 Amal Ahmed, Matthew Fluet, and Greg Morrisett. L3: A linear language with locations.

Fundamenta Informaticæ, 77(4):397–449, 2007.
2 Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of aliased objects. In

Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages
301–320, 2007.

3 John Tang Boyland. Semantics of fractional permissions with nesting. ACM Transactions
on Programming Languages and Systems, 32(6), 2010.

4 Peter W. O’Hearn. Resources, concurrency and local reasoning. Theoretical Computer
Science, 375(1–3):271–307, 2007.

5 François Pottier. Type soundness for Core Mezzo. Unpublished, January 2013.
6 François Pottier and Jonathan Protzenko. Mezzo. http://gallium.inria.fr/~protzenk/

mezzo-lang/, January 2013.
7 François Pottier and Jonathan Protzenko. Programming with permissions in Mezzo (long

version). Unpublished, March 2013.
8 John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Logic

in Computer Science (LICS), pages 55–74, 2002.
9 Frederick Smith, David Walker, and Greg Morrisett. Alias types. In European Symposium

on Programming (ESOP), volume 1782 of Lecture Notes in Computer Science, pages 366–
381. Springer, 2000.

FSFMA’13

http://gallium.inria.fr/~protzenk/mezzo-lang/
http://gallium.inria.fr/~protzenk/mezzo-lang/

Improving System-Level Verification of SystemC
Models with SPIN∗

Martin Elshuber, Susanne Kandl, and Peter Puschner

Institute of Computer Engineering
Vienna University of Technology
Treitlstr. 3, 1040 Wien, Austria
{martine,susanne,peter}@vmars.tuwien.ac.at

Abstract
SystemC is a de-facto industry standard for developing, modelling, and simulating embedded
systems. As embedded systems become more and more integrated into many aspects of human
lives (e.g., transportation, surveillance systems, . . .), failures of embedded systems might cause
dangerous hazards to individuals or groups. Guaranteeing safety of such systems makes formal
verification crucial. In this paper we present a novel approach for verifying SystemC models
with SPIN. Focusing on system-level verification we reuse compiled and executable code from
the original model and embed it into the verifier generated by SPIN. In contrast to most other
approaches, which require a complete model transformation, in our approach the transformation
focuses only on the relevant parts of the model while leaving functional blocks untransformed.
Our technique aims at reducing the state vector size managed by the verifier of SPIN, at improv-
ing state exploration performance by avoiding unnecessary model transformation steps, and at
concentrating on verifying properties that emerge from the composition of multiple functional
units.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases SystemC, SPIN, Promela, System-Level Verification

Digital Object Identifier 10.4230/OASIcs.FSFMA.2013.74

1 Introduction

Nowadays computer systems are more and more introduced into many aspects of human
lives. Especially when they contain safety-relevant features, failing may cause dangerous
hazards. Consequently, formally verifying that certain properties of the system hold under
all circumstances becomes a central task in system design.

With the growing complexity of state-of-the-art computer systems, manual proofs often
turn out to be infeasible and error prone. To circumvent this problem, tools have been
developed that analyse models at different abstraction levels (e.g., system specification,
system implementation, ...) in order to formally prove that system properties match the
desired behaviour of the developed product.

SystemC: SystemC is a de-facto industry standard for modelling systems at system level,
and can be used to model software and hardware aspects in a single language. SystemC
is an add-on library to C++. SystemC extends C++ by constructs similar to Hardware

∗ This work has been partially funded by the ARTEMIS Joint Undertaking and the National Funding
Agency of Austria for the project VeTeSS under the funding ID ARTEMIS-2011-1-295311.

© Martin Elshuber, Susanne Kandl, and Peter Puschner;
licensed under Creative Commons License CC-BY

1st French Singaporean Workshop on Formal Methods and Applications 2013 (FSFMA’13).
Editors: Christine Choppy and Jun Sun; pp. 74–79

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.FSFMA.2013.74
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

M. Elshuber, S. Kandl, and P. Puschner 75

Description Language (HDL) languages and a scheduler. Such models can be compiled to
native machine code for most of the existing hardware architectures, thus allowing fast and
accurate simulation of the system.

State-of-the-art verification: Although simulation is a proper method for detecting many
bugs in a system, it cannot be used to verify whether a property of a system holds for every
possible system state or not. Formal verification, on the other hand, guarantees the validity
of a property for all possible system states.

Amongst others, we emphasise two reasons that make it difficult to formally verify
SystemC models: (1) the constructs introduced by SystemC use a scheduler to execute
and schedule processes activated on specific events. (2) SystemC allows to freely use C++

constructs like class inheritance, library functions, or Standard Template Library (STL), ...
State-of-the-art techniques address these problems by transforming the model to another

language and use existing tools. This transformation requires (ad 1) to model the scheduler
explicitly, thus increasing the overall state space, and (ad 2) to restrict the SystemC model
to a specific subset of SystemC (e.g., prohibiting class inheritance).

This paragraph gives a short summary of existing verification tools. The SystemC
category in the 2nd International Competition on Software Verification (SV-COMP) 2013 [2]
provided the SystemC benchmarks already transformed to C. Cimatti et al. [6] describe the
transformation of SystemC to C, thus reducing SystemC verification to software verification.
The implementation presented in this work uses the tool Pinapa [11]. Pinapa is a predecessor
of PinaVM [10], the tool we are referring to in this work. The SystemC category of
SV-COMP 2013 was won by UFO [1], a framework for software verification working on
LLVM Bitcode (LLVM BC). Second and third place were assigned to two CPAchecker-based
verifiers [3]. Also worth to mention are Bounded Model Checking (BMC) [4] approaches
used for example by CBMC [7]. Scoot [5] is an extension to CBMC allowing SystemC
verification. SPIN [8] is a popular tool for proving properties of asynchronous distributed
systems specified in the language Promela. PAT (Process Analysis Toolkit) [12] is a modular
toolkit for verification and simulation of concurrent systems.

A glance at our approach: In system-level verification we concentrate on the composability
aspects of systems consisting of several functional blocks. Assuming that each functional
block works as specified, we are interested in verifying properties that emerge from the
composition of those blocks. The approaches mentioned above aim to exhaustively verify the
system with all implementation aspects included.

Our approach solely transforms the interaction of functional blocks into the formal
language Promela and executes code within a functional block as a single transition. Based
on a model analysis done by PinaVM at LLVM BC level, we split the model into several
functions which are embedded into the SPIN verifier and executed atomically. With this
technique we can use the model checking capability of SPIN on a model that represents the
relevant aspects of the system, whereas details within single blocks of the system are hidden.
Thus it is possible to focus on the verification of system properties without considering
functional details which may easily cause a state space explosion during the verification. In
[13] a similar approach for multi-threaded C programs, where SPIN orchestrates the search,
is proposed.

The remainder of this paper is structured in four further sections. Section 2 gives a more
detailed overview on existing technology reused during this work. Section 3 describes the
verification process of our approach. In the following sections we discuss the advantages and
disadvantages of the concept and conclude with a summary of the paper.

FSFMA’13

76 Improving System-Level Verification of SystemC Models with SPIN

2 Prerequisites

This section gives a brief introduction to existing technology (namely SystemC , SPIN, and
PinaVM) we build our approach on top.

SystemC: SystemC is a library on top of C++. For hardware aspects SystemC modules
are defined. They contain input-, output-, bidirectional ports for communication, and
processes acting on these ports. Software aspects can be implemented using classic C++.
The important fact is that SystemC processes are executed non-preemptively. The effect is
that all modifications to the system state semantically take place at the instant when the
process preempts itself. As already mentioned above, state-of-the-art verification of SystemC
models often requires a transformation from SystemC to another language, and to model the
scheduler separately.

SPIN: SPIN is an on-the-fly model checker, which can be used to run and verify models
described in the language Promela. The interesting part is the way SPIN verifies a model.
It first translates the Promela model into a C verifier which has to be compiled and run to
execute the verification. In the verifier the Promela model is translated into a transition
system represented as a switch/case statement. The verifier then searches the transition
system for errors and reports paths if a problem was found. To allow backtracking the state
vector is stored and compared against states which have already been investigated. SPIN
also implements various performance features, like partial order reduction, and techniques
reducing the memory requirements for storing the state vector. Promela provides constructs
for in-lining C-Code into the verifiers transition system.

PinaVM: PinaVM is a tool, developed by Verimag [10], able to analyse the structure
SystemC models. It detects which SystemC modules are created and how they interact with
each other. Thus simplifying the translation into arbitrary languages. PinaVM roughly
works in several phases:
Phase 1: Use LLVM to create an LLVM BC of the model.
Phase 2: Analyse the created functions in Phase 1 and find out where each SystemC construct

is used.
Phase 3: Execute the models initialisation code generated in Phase 1 detecting the instanti-

ated SystemC classes.
Phase 4: In this instant it is known what the SystemC model looks like (instantiated modules;

Phase 2), how the interact (instantiated ports; Phase 2) and which code parts
manipulate the structures (Phase 1). This information is passed to a back-end,
which transforms the model to the desired format usable by existing model checker
infrastructure.

PinaVM also provides a back-end for Promela including efficient encodings [9] for SystemC
constructs like wait, notify, ... The Promela back-end translates every instruction of the
LLVM BC into a corresponding Promela construct. We, on the other hand, only transform
the SystemC constructs to Promela, and in-line the rest of the code directly into the SPIN
verifier.

3 Our Approach

Our verification process is based on the given infrastructure described in Section 2. We plan
to use PinaVM for analysing SystemC code, to add our own transformation technique, and
to use SPIN for verifying the resulting Promela model. The difference to PinaVM using the

M. Elshuber, S. Kandl, and P. Puschner 77

Promela back-end, is that we do not translate the whole model to Promela. We only model
the SystemC constructs in Promela and include calls to the compiled SystemC model. These
calls also modify the verifier’s state vector.

SystemC Model (Represented in LLVM BC)

PinaVM

Analyse
Architecture

Identify
SystemC Constructs

Create
Transition Functions

Identify
Global- & Local States

Compile
Transition Functions

Create
Promela Companion

Create
Verifier C-Code

Compile & Link Verifier

Figure 1 From SystemC to the SPIN verifier executable.

Figure 1 depicts the steps ex-
ecuted to create a verifier bin-
ary with our approach. The gray
blocks denote the steps that can
be done by existing tools. These
are SPIN, PinaVM or LLVM. Im-
plementations for the white boxes
are currently missing and are sub-
ject for the work to be done during
the thesis. Most steps (except Cre-
ate Verifier C-Code and Compile &
Link Verifier) are done by PinaVM
or an extension of it. PinaVM itself
is based LLVM BC and uses LLVM libraries to handle the code.

The output of PinaVM to the back-end is the LLVM BC, enriched with information on
SystemC constructs, as well as the system architecture instantiated during model initialisation.
The text below describes the actions taken within each block:

During Analyse Architecture the initialisation code of the model is analysed by
PinaVM in order to detect the kind, number, and interaction channels and the SystemC
modules.
During Identify SystemC Constructs all functions are analysed by PinaVM to detect
and mark SystemC constructs such as wait and notify, but also write and read.
Create Transition Function: The SystemC model is split into transition functions
callable by the verifier. These functions are compiled separately and finally linked to the
verifiers binary.
The original functions are divided into code regions, such that each code region either
contains no SystemC construct at all, or it consists solely of a single SystemC construct.
Each code region that contains no SystemC construct is converted into a separate function.
This function returns a reference to the next code region to be executed, and it receives
parameters according to the values read or modified during execution.
The resulting functions have the same semantics as the original functions when called in
a proper order. Furthermore each function returns at each point the SystemC scheduler
might preempt the execution of the original thread.
Identify Global- & Local States: Depending on the model the states of the system
have to be identified. Promela distinguishes three kinds of state variables. Global state
variables are instantiated only once, Local state variables are instantiated per process
and thus can be stored multiple times in the state vector, and finally hidden states are
never stored in the state vector, thus they cannot be restored on backtracking.
In our approach variables that are read and written solely within a code region, can be
totally hidden from the verifier and are stored on the function’s stack or optimised into
a processor register. Variables that are written in a code region, but possibly read by
another code region have to be instantiated somewhere in the verifier. To decide which
type of variable has to be used, control flow analysis has to be done.
A variable can be declared hidden, if and only if all statements between (and including)
writing and reading are executable in an atomic manner. Because SystemC processes

FSFMA’13

78 Improving System-Level Verification of SystemC Models with SPIN

are non-preemptive, this is the case if no blocking SystemC construct can be executed
between writing and reading.
The rest of the variables have to be stored in the state vector, and are global or local.
Variables are declared local if they are declared locally in the SystemC process parenting
the code region. They are declared globally otherwise. Member variables of SystemC
classes can also be declared globally, because from the architecture analysis phase it is
known how many objects are instantiated.
Create Promela Companion: The Promela Companion is the actual input file to
SPIN. It encodes

SystemC constructs similar to [10, 9],
definitions of all hidden, local and global state variables accessible by other Promela
constructs like LTL formulas, and
calls to the transition functions as well as the control flow among them (goto statements,
and C in-lining).

Finally the verifier executable can be generated by using SPIN to create the verifier
C-Code and LLVM to compile the transition functions, the verifier, and link all together.

4 Discussion

The main aim is to create a source-code driven verification system, allowing us to verify
properties on system level while disregarding details within functional blocks. A requirement
of the implementation of each functional block is that it is free of memory bugs such as buffer
under- and overflow, access violations, and so on.

Furthermore, the structure of the model architecture has to be static. This means that
no dynamic SystemC constructs must be created, except during the initialisation code. This
requirement stems from they way PinaVM works.

SystemC verification is often driven by translating the model into plain C or similar
languages and by adding a scheduler to the translated model. This has the disadvantage of
introducing additional states and thus adding complexity to the verification process. With
our approach we reuse at least parts of the process scheduler of SPIN, thus aiming at an
improvement of the verification process.

We also expect improvements in the memory requirements, by reducing the size of the
state vector. The expected effect is mainly caused by hiding states from the verifier, thus
disallowing it to backtrack to system states that are irrelevant for system-level verification.
Assume a model does some computation inside a loop, whereas the result is passed to other
functional blocks solely after the loop. The intermediate results (e.g., temporary variables)
do not have to be included in the system states. Thus we expect an improvement in both
the state vector size and the number of states that have to be investigated. The effect of the
latter one is expected to be smaller as partial order reduction also can be done by SPIN.

By avoiding the complete transformation of the model from C++ to Promela and then
back to C again, we think that we can improve the search speed of the verifier, and thus
increase the number of states investigated per second. This is because each transition in a
Promela model is selected by a switch statement. The size of the switch statement and the
number of entries within it is expected to be reduced.

So far we implemented a prototype that automatically extracts the transition functions
of simple SystemC models. First experiments showed that the size of the state vector is
reduced and the number of explored states is kept at a similar amount compared to the
Promela backend of PinaVM.

M. Elshuber, S. Kandl, and P. Puschner 79

5 Conclusion

In this paper we presented an idea for a novel approach to improve the formal verification
process on system-level of a SystemC model. The SystemC model is transformed into
a formal automaton model by interpreting the SystemC constructs and assigning precise
semantics to them. By a straight-forward transformation the whole functionality of the
SystemC model is represented in the resulting formal model with the consequence that all the
complexity of the system description is part of the verification process. In our approach the
model transformation is realized in such a way that functional details within a block of the
system model are hidden and only the aspects of the model that are relevant for system-level
verification are considered for the verification process. This principle should enhance the
verification process by saving time and memory within the model checking process by SPIN.

References
1 Aws Albarghouthi, Yi Li, Arie Gurfinkel, and Marsha Chechik. Ufo: A Framework for

Abstraction- and Interpolation-Based Software Verification. In CAV, pages 672–678, 2012.
2 Dirk Beyer. Second Competition on Software Verification - (Summary of SV-COMP 2013).

In TACAS, pages 594–609, 2013.
3 Dirk Beyer and M.Erkan Keremoglu. CPAchecker: A Tool for Configurable Software Verific-

ation. In Computer Aided Verification, volume 6806 of Lecture Notes in Computer Science,
pages 184–190. Springer Berlin Heidelberg, 2011.

4 Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu.
Bounded Model Checking, 2003.

5 Nicolas Blanc, Daniel Kroening, and Natasha Sharygina. Scoot: A Tool for the Analysis
of SystemC Models. In Tools and Algorithms for the Construction and Analysis of Sys-
tems, volume 4963 of Lecture Notes in Computer Science, pages 467–470. Springer Berlin
Heidelberg, 2008.

6 A. Cimatti, A. Micheli, I. Narasamdya, and M. Roveri. Verifying SystemC: A software
model checking approach. In Formal Methods in Computer-Aided Design (FMCAD), 2010,
pages 51–59, 2010.

7 Edmund Clarke, Daniel Kroening, and Flavio Lerda. A Tool for Checking ANSI-C Pro-
grams. In Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2004), volume 2988 of Lecture Notes in Computer Science, pages 168–176. Springer, 2004.

8 Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineer-
ing, 23:279–295, 1997.

9 Kevin Marquet, Jeannet Bertrand, and Matthieu Moy. Efficient Encoding of System-
C/TLM in Promela. In Proceedings of the International MultiConference of Engineers
and Computer Scientists 2011, pages 1039–1044, 2011.

10 Kevin Marquet and Matthieu Moy. PinaVM: A SystemC front-end based on an executable
intermediate representation. In Proceedings of the tenth ACM international conference on
Embedded software, EMSOFT ’10, pages 79–88. ACM, 2010.

11 Matthieu Moy, Florence Maraninchi, and Laurent Maillet-Contoz. Pinapa: an extraction
tool for SystemC descriptions of systems-on-a-chip. In Proceedings of the 5th ACM inter-
national conference on Embedded software, EMSOFT ’05, pages 317–324. ACM, 2005.

12 Jun Sun, Yang Liu, JinSong Dong, and Jun Pang. PAT: Towards Flexible Verification
under Fairness. In Computer Aided Verification, volume 5643 of Lecture Notes in Computer
Science, pages 709–714. Springer Berlin Heidelberg, 2009.

13 Anna Zaks and Rajeev Joshi. Verifying Multi-threaded C Programs with SPIN. In Pro-
ceedings of the 15th international workshop on Model Checking Software, SPIN ’08, pages
325–342. Springer-Verlag, 2008.

FSFMA’13

Modelling and Reasoning about Dynamic
Networks as Concurrent Systems
Yanti Rusmawati1 and David Rydeheard2

1 PhD student, School of Computer Science, The University of Manchester
Oxford Road, Manchester M13 9PL, UK
rusmaway@cs.man.ac.uk

2 School of Computer Science, The University of Manchester
Oxford Road, Manchester M13 9PL, UK
david@cs.man.ac.uk

Abstract
We propose a new approach to modelling and reasoning about dynamic networks. Dynamic
networks consist of nodes and edges whose operating status may change over time (for example,
the edges may be unreliable and operate intermittently). Message-passing in such networks
is inherently difficult and reasoning about the behaviour of message-passing algorithms is also
difficult. We develop a series of abstract models which allow us to focus on the correctness of
routing methods. We model the dynamic network as a “demonic” process which runs concurrently
with routing updates and message-passing. This allows us to use temporal logic and fairness
constraints to reason about dynamic networks. The models are implemented as multi-threaded
programs and, to validate them, we use an experimental run-time verification tool called RuleR.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases dynamic networks, temporal logic, concurrent systems

Digital Object Identifier 10.4230/OASIcs.FSFMA.2013.80

1 Introduction

We are increasingly reliant on highly dynamic and complex computing systems. In communic-
ation, dynamic networks are widespread these include the: Internet, peer-to-peer networks,
mobile networks and wireless networks. Networks may have edges down, nodes may move,
or there may be routing instability due to the changing of networks. These systems are very
difficult to analyse, and their behaviour and correctness are hard to formulate and establish.
To undertake formal reasoning about such systems, abstract models are essential in order to
separate the general reasoning about message routing and updating of routing tables from
the details of how these are implemented in particular networks. We show we can establish
correctness of dynamic networks at suitable levels of abstraction.

At its simplest level, a network consists of a collection of nodes connecting to each other
through edges. In a message-passing network, each node communicates by exchanging mes-
sages in an attempt to deliver messages to their destinations. In a dynamic network, nodes
and/or edges may become inoperative or operative. This representation of the dynamics of a
network clearly models unreliable networks. It also models mobile and wireless networks by
considering edges as possible communication links and operative edges as the links established
at a particular time.

The two problems of message-passing in high-level models [2, 3, 4] and self-stabilising sys-
tems [5] in dynamic networks have been widely studied [1]. Numerous models and algorithms

© Yanti Rusmawati and David Rydeheard;
licensed under Creative Commons License CC-BY

1st French Singaporean Workshop on Formal Methods and Applications 2013 (FSFMA’13).
Editors: Christine Choppy and Jun Sun; pp. 80–85

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.FSFMA.2013.80
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Y. Rusmawati and D. Rydeheard 81

have been proposed but proofs of correctness (especially liveness) have tended to need the
assumption that changes in networks eventually cease, i.e., they are no longer dynamic.

Here, the correctness of dynamic networks can be established without the termination
requirement. We develop the correctness of dynamic networks in terms of ensuring that: even
when routing tables do not reflect the actual network connections, the routing information
is correct sufficiently often; messages eventually get delivered; the network is sufficiently
connected for sufficiently often; and there is no persistent livelock. The main contributions
of this paper are: modelling dynamic networks using concurrent systems; factorisation of
proof; and run-time verification of the implementation of dynamic network models.

We introduce a new approach to proof techniques for dynamic networks in which using
ideas from concurrent systems [11] to analyse message-passing. To do so, we use Linear
Temporal Logic and formulate concepts of fairness which capture network properties. In order
to express dynamic networks as concurrent systems [6], we consider the dynamic changes
to be the result of a “demonic” process which runs concurrently with routing updates and
message-passing. By the correctness of dynamic networks, we mean that, under certain
conditions, all messages will eventually be delivered. By formulating networks as concurrent
systems, we can establish correctness for networks that never cease to change. By modelling
at this level of abstraction, we are able to prove the properties of networks independently
of the mechanisms in actual networks and therefore provide “a factorisation” of proofs of
correctness for actual dynamic networks. We have implemented two abstract models as
concurrent systems and then adapted a run-time verification systems RuleR [8], to analyse
execution traces to test whether model instances satisfy the modal correctness for message
delivery.

2 Abstract models

Consider a graph G = (N, E) where N is a set of nodes and E is a set of edges. This provides
the basic connectivity of a network. To introduce dynamics (for edges) we consider the edges
to be in an on or off state. Therefore we introduce edge status L, which changes value
whenever a disruption occurs for an edge. Routing update information is determined by L.
There is a set of messages M, where each message is at a node defining a function M → N.

We develop dynamic network models as concurrent systems. We introduce two models.
Firstly, Model 1, as shown in Figure 1, is a two-process model with instantaneous updates,
in which the routing tables are always correct. The two processes are a “demonic” Disrupter
(which disrupts the connectivity of dynamic networks) and an Organizer (which attempts to
deliver messages). In Model 2, we introduce a more realistic routing table update, adding a
third process called Updater, as shown in Figure 2. Here, the routing tables may not be correct
at any time but routing is still possible. The Disrupter process can disrupt the connection
of an edge (so it becomes ‘on’ or ‘off’). The Updater runs concurrently recalculating the

Figure 1 Two processes
dynamic network model.

Figure 2 Three processes
dynamic network model.

FSFMA’13

82 Modelling and Reasoning about Dynamic Networks as Concurrent Systems

routing update information to obtain actual available paths. If there is an available path,
the Organizer process runs concurrently can send a message to the next node along a path.

3 Proving correctness of message-passing in dynamic networks

We use discrete-time Linear Temporal Logic (LTL) [10] to describe the properties of execution
traces of this multi process systems. Some of the key properties which enable us to reason
about network correctness are expressed as fairness constraints [9] in concurrent process
models. We use strong fairness at the process level to express, for example, the relative
frequency of network change to message motion and of routing table updates to network
change.

Our aim is to formulate and prove the correctness of message-passing using the two
abstract models above. We need to prove that, under certain conditions, all messages
eventually reach their destination. We introduce a colouring of message according to their
states. This is inspired by Gries [13] and Dijkstra [12]’s reasoning about on-the-fly garbage
collection. Here Black means a message is at its destination; green means a message is
progressing along the route; and red means no route is allocated at present. Notation (with
φ being any formula): � φ means φ always holds in every state; ♦ φ means φ eventually
holds in some state; © φ means φ holds in the next state; pathX(n1, n2) means that there is
an available path between node n1 and node n2; P(n1, n2) being a set of paths between node
n1 and node n2; path(m, p) means that message m is allocated path p; rt(n1, n2, p) being
the routing table entry saying p is a path from n1 to n2; and moved(m, z) means that the
location of message m is changed to position z.

For Model 1, the modal properties we need are:
1. Paths exist infinitely often:

P1: ∀ n1, n2 ∈ N. �♦ pathX(n1, n2)

2. Red messages eventually become green (messages are looked at sufficiently often):

P2: ∀m ∈ M. � ((�♦ pathX(at(m), dest(m))) ∧ red(m)
⇒ ♦ (green(m) ∧ (∃p ∈ P(at(m), dest(m)). path(m, p))))

I Lemma 1.

∀m ∈ M. � ((P1 ∧ P2 ∧ red(m)) ⇒ ♦ green(m))

Proof. Trivial: by modus ponens using P1 and P2. J

Notice the formulation expressing the properties of dynamic networks as trace properties,
some in terms of fairness of process interaction, others as connectivity properties of graphs.

Now we prove that all messages reach their destination under suitable conditions. We
need to establish the following:
(A.) messages eventually move, which means that the Organizer should access each

message sufficiently often, and when it is accessed, it can be moved. Therefore, we modify
P2 to P2′′ as follows to include a fairness requirement.

P2′′: ∀m ∈ M. � ((�♦ pathX(at(m), dest(m)))⇒ ♦ (black(m) ∧
(red(m) ⇒ ©(green(m) ∧ (∃p ∈ P(at(m), dest(m)). path(m, p)))) ∧
(∃p ∈ P(at(m), dest(m)). (green(m) ∧ path(m, p) ∧ at(m) 6= dest(m) ⇒
(up(1st_elmt(p)) ∧ ©(green(m) ∧ path(m, tail_of_path(p)) ∧
at(m) = next_node(p))))) ∧ ((green(m) ∧ at(m) = dest(m)) ⇒ © black(m))))

Y. Rusmawati and D. Rydeheard 83

We also need:
(a) Finiteness of paths, which we define as:

FP: ∀m ∈ M. ((green(m) ∧ ¬♦ red(m)) ⇒ (♦ black(m)))

which means that if a message m is green and there is no potential to become
red eventually then message m will eventually become black. This can only hold if the
Organizer checks message m infinitely often (P2′′).

(b) No livelock. Here we define Livelock-free as:

LF: ∀m ∈ M. ¬ �♦ (green(m) ⇒ ©red(m)),

i.e a green message becomes red (without an assigned route) only finitely often.
(B.) each message eventually reaches its destination.

We show that for each m there is a point in the trace at which � (green(m) ∨ black(m))
hence ♦black(m).

I Lemma 2.

∀m ∈ M. � (∃p ∈ P(at(m), dest(m)). ((P1 ∧ P2′′ ∧ Lemma 1 ∧ green(m)
∧ path(m, p)) ⇒ ♦ moved(m, z)))

Proof. Suppose message m has not reached the destination. We then follow from the proof
of Lemma 1, and by modus ponens on P1 and P2′′, hence we have Lemma 2. J

I Lemma 3.

∀m ∈ M. � ((FP ∧ LF ∧ Lemma 1 ∧ Lemma 2
∧ P1 ∧ P2′′ ∧ green(m) ∧ ∃p ∈ P(at(m), dest(m)). path(m, p)) ⇒ ♦black(m))

Proof. By Lemma 1 and the definition of Livelock-free, and by modus ponens on P1 and
P2′′, as well as on Lemma 2 and finiteness of path definition, the message is ♦black(m).
Hence we have Lemma 3. J

By Lemma 1, 2, and 3, we have

I Theorem 1. ∀m ∈ M. � ((P1 ∧ P2 ∧ P2′′ ∧ FP ∧ LF ∧ red(m)) ⇒ ♦black(m)).

For Model 2, we need an additional property which expresses that the routing table is
populated sufficiently often. This is formulated as follows.

P3: ∀ n1, n2 ∈ N. � ((�♦ pathX(n1, n2)) ⇒ ♦ (∃p ∈ P(n1, n2). rt(n1, n2, p)))

We also need to modify P2 to P2′ since paths for messages are obtained from the routing table,
replacing pathX(n1, n2) with rt(n1, n2, p). We modify P2′ to P2′′′ to extend the fairness
requirement which includes the routing tables when the message m is at its position. The
model also needs routing tables which are correct sufficiently often. In Model 2, the condition
P2′′ is replaced by P2′′′, then finally we have a similar theorem. The proofs proceeds as for
Model 1.

FSFMA’13

84 Modelling and Reasoning about Dynamic Networks as Concurrent Systems

Figure 3 Run-time verification on the implementation of dynamic network models.

Figure 4 Dynamic network model,
property P2.

Figure 5 Dynamic network model
with possible livelock.

4 Experimental validation: Using run-time verification

We now consider the following question. Suppose a dynamic network is implemented as a
concurrent system using multiple Java threads. When do the network properties (expressed
as properties of execution traces of concurrent systems as above) hold and therefore, by the
proofs above, all messages are eventually delivered?

There are several approaches. We could prove the implementation manually or we could
use a verification technique such as model checking. Here we introduce a new approach
based on run-time verification (RV) [7], as pictured in Figure 3. Whether or not a system
satisfies the properties required for message delivery depends on interprocess interaction
and the parameters involved in this. Run-time verification is particularly suitable here
as it is the relationship of these parameters with the execution traces that determine the
correctness of the dynamically allocated interprocess interaction. We have implemented
Model 1 and Model 2, and use an experimental run-time verification tool RuleR, which
has been developed by Barringer et al. [8]. RuleR is a rule-based run-time verification
with dynamic rules. This is an experimental use of RV on concurrent models. Some trace
properties required are properties properly of infinite traces. We show how to use RV to
examine finite traces and relate this to the overall network behaviour.

Consider a result of Model 1, as Figure 4 shows, in which Disrupter process and Organizer
process running concurrently (denoted as “Disrupter ‖ Organizer”, for example, “4 ‖ 1” means
that the Disrupter process sleep four times longer than the Organizer process) for 60 msecs.
Property P2 (i.e messages are looked at sufficiently often) is depicted as a percentage of
Organizer actions within the traces (called “%AllOrg”), which is recorded by RuleR. The
percentage of messages reach their destination is depicted as “%Msg”. “%PathX” is the
percentage of path that exist. The result shows that: if path existence occurs infinitely often

Y. Rusmawati and D. Rydeheard 85

and the messages are looked at sufficiently often, then the number of messages eventually
reach their destinations are increased. This result supports the proof of Lemma 1, 2 and 3,
hence the Theorem 1. As Figure 5 shows, when the traces are longer (time = 180 msecs),
the relation between all conditions (fairness and properties) engenders more confidence and
the messages eventually get delivered.

5 Conclusion

We have shown that, by introducing models of message-passing dynamic networks as concur-
rent systems, we can use standard proof techniques for concurrent systems based on temporal
logic and properties such as fairness to establish correctness (i.e the eventual delivery of all
messages) of dynamic networks at an appropriate level of abstraction. Moreover, we have
employed techniques recently developed in run-time verification in order to check whether
implemented models of dynamic networks satisfy the required temporal properties for correct
message delivery.

References
1 Kuhn, F. and Oshman, R. Dynamic networks: models and algorithms. SIGACT News,

ACM, Vol. 42, pp. 82-96, 2011
2 Kuhn, F., Lynch, N. and Oshman, R. Distributed computation in dynamic networks. Pro-

ceedings of the 42nd ACM symposium on theory of computing ACM, 2010, pp. 513-522
3 O’Dell, R. and Wattenhofer, R. Information dissemination in highly dynamic graphs. Pro-

ceedings of the 2005 joint workshop on foundations of mobile computing. ACM, 2005, pp.
104-110

4 Clementi, A. and Pasquale, F. Information Spreading in Dynamic Networks: An Analyt-
ical Approach. Nikoletseas, S. and Rolim, J. D. (eds.) Theoretical Aspects of Distributed
Computing in Sensor Networks. Springer Berlin Heidelberg, 2010, pp. 591-619

5 Chen, Y. and Welch, J.L. Self-stabilizing mutual exclusion using tokens in mobile ad hoc
networks. Proceedings of the 6th international workshop on Discrete algorithms and meth-
ods for mobile computing and communications. ACM, 2002, pp. 34-42

6 Magee, J. and Kramer, J. Concurrency: State Models and Java Programs. Wiley, 2006
7 Leucker, M. and Schallhart, C. A brief account of runtime verification. The Journal of Logic

and Algebraic Programming, 2009, Vol. 78(5), pp. 293 - 303
8 Barringer, H., Havelund, K., Rydeheard, D. and Groce, A. Rule Systems for Runtime

Verification: A Short Tutorial. Bensalem, S. and Peled, D. (eds.), Runtime Verification.
Springer Berlin Heidelberg, Vol. 5779, pp. 1-24, 2009

9 Kwiatkowska, M. Survey of fairness notions. Information and Software Technology, 1989,
Vol. 31(7), pp. 371-386

10 Emerson, E.A. Temporal and Modal Logic. J. van Leeuwen, ed. Handbook of Theoretical
Computer Science. Elsevier, 1990, Volume B: Formal Models and Semantics, pp. 995-1072.

11 Owicki, S. and Gries, D. An axiomatic proof technique for parallel programs I. Acta Inform-
atica, Vol. 6(4). Springer-Verlag, 1976, pp. 319-340.

12 E.W. Dijkstra, Leslie Lamport, A.J. Martin, and E.F.M. Steffens. On-the-Fly Garbage Col-
lection: An Exercise in Cooperation. Communications of the ACM, Vol. 21(11), November
1978. pp. 966-975.

13 Gries, D. An exercise in proving parallel programs correct. Commun. ACM, 1977, Vol. 20,
pp. 921-930

FSFMA’13

Safety of Unmanned Aircraft Systems Facing
Multiple Breakdowns
Patrice Carle1, Christine Choppy2, Romain Kervarc1, and
Ariane Piel1,2

1 ONERA – The French Aerospace Lab, 91123 Palaiseau, France
{patrice.carle,romain.kervarc,ariane.piel}@onera.fr

2 Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS UMR 7030, 93430
Villetaneuse, France
Christine.Choppy@lipn.univ-paris13.fr

Abstract
This work deals with data analysis issues in an aeronautics context by using a formal framework
relying on activity recognition techniques which are applied to the certification and safety analysis
processes of Unmanned Aircraft Systems in breakdown situations. In this paper, the behaviour
of these systems is modelled, simulated and studied in case of multiple failures using a complex
event processing language called chronicles to describe which combinations of events in time may
lead to safety breaches, and a c++ chronicle recognition library is used to implement this method.

1998 ACM Subject Classification I.2.4 Knowledge Representation Formalisms and Methods

Keywords and phrases complex event processing, safety, aeronautics, multiple breakdowns, be-
haviour recognition tool

Digital Object Identifier 10.4230/OASIcs.FSFMA.2013.86

1 Introduction

The wide range of the possible civil applications to the insertion of aircrafts without pilots
on board in controlled or uncontrolled airspace motivates a pronounced general will for its
achievement in a near future. One of the main security issues to be solved is the global
consistency of the system required to operate safely an Unmanned Aircraft (UA). In the
framework of operation safety analysis, we provide the possibility to detect incoherent states
between the different entities making up the system. These incoherent states are formalised
so as to be able to automatically recognise them through complex event processing, and hence
offer the opportunity of both a self-acting surveillance and an assistance to the improvement of
the system. This work relies on a fragment of the IDEAS project in charge of the Insertion of
Unmanned Aircrafts in Airspace and Security, and tackles consistency problems in breakdown
handling policies for UA.

The system required to safely operate an unmanned aircraft can follow several types of
architecture. Our model is based on the one presented in Fig. 1. It is composed of three
entities, the UA and the Remote Pilot Station (RPS), which both make up the Unmanned
Aircraft System (UAS), to which is added the Air Traffic Control (ATC). All three interact
via several communication links. The RPS pilots the UA via Telecommand (TC), and the
UA sends information to the pilot through Telemetry (TM). In addition, the ATC and the
pilot can communicate via radio (Voice) relayed by the UA.

Hence, the dynamic data flows between the agents of the system and between different
systems if several UAS are considered are very elaborate. Moreover, each agent deduces

© Patrice Carle, Christine Choppy, Romain Kervarc, and Ariane Piel;
licensed under Creative Commons License CC-BY

1st French Singaporean Workshop on Formal Methods and Applications 2013 (FSFMA’13).
Editors: Christine Choppy and Jun Sun; pp. 86–91

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.FSFMA.2013.86
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

P. Carle, C. Choppy, R. Kervarc, and A. Piel 87

Voice

Voice

Telecommand
& Voice

Telemetry
& Voice

ATC Pilot

UA

Figure 1 Architecture of the system required to operate safely an UA.

from its own observations the state of the other agents. The situation in case of a fault can
therefore be very complex, and all the more so if several faults are considered. Hence, these
highly automated systems are very critical, which requires the strong risk-free guarantees
provided by formal methods such as our behaviour recognition technique.

In the framework of the IDEAS project, the behaviour of each entity in case of a failure
has been specified [5]. In a previous paper [3], we put forward ongoing work overseeing the
consistency between the three entities during the rundown urgency procedure linked to a
single Telecommand (TC) failure (the pilot receives information from the UA via telemetry
but cannot send out orders to it). In the present paper, we will consider the additional
failure of the Voice link (the pilot and the ATC cannot communicate directly anymore), both
on its own and coupled with the TC breakdown, providing a framework for an automatic
monitoring of consistency in UAS. This yields an opportunity to put to use new features of
the monitoring tool employed for the online analysis of the simulation.

The problem is formalised by standardising the rundown procedures from the IDEAS
project into the UML language [6]. A class diagram exposed in [3] precisely describes the
structure of the system. The three entities are made up of several components modelling
their complex interactions precisely enough to be able to consider separately the smooth
functioning of the communication links, and hence check for the consistency between the
active states of the diagram. The several urgency procedures corresponding to the codified
behaviours related to failures and specified in the IDEAS project are united and translated
into one single state-transition diagram presented in Fig. 2. This allows to consider multiple
concurrent failures which was not possible before.

This paper will start by going into some details of the preliminary semi-formal repres-
entation of the system, exposing the stakes at hand. In a second part, the system will be
supervised using a behaviour recognition library, and the results will be displayed.

2 A Modelling framework

Through the class diagram and the state-transition diagram, the system has been entirely
modelled. Indeed, its life cycle is mirrored by the changes in the active states of the diagram
(Fig. 2). The aim is to analyse the simulation while it is running in order to draw forth
certain desired or undesired behaviours.

The simulation which has been established strictly follows the behavioural guidelines
specified and required by the IDEAS project. However, UA are not currently allowed to fly in
controlled or uncontrolled airspace, and the regulations such as the ones studied in this paper
have not yet been finalised. Our aim is to study whether certain incoherent states emerge
from the simulation. Not only does behaviour recognition on running simulation allow to
confirm or reject certain requirement choices, but it also provides a means to enlighten the
experts in their elaboration of the regulations that should be followed, and this by bringing
out and highlighting possible security breaches. In this application, the first use of our

FSFMA’13

88 Safety of Unmanned Aircraft Systems Facing Multiple Breakdowns























































































 





[in UA
Nominal
TC]

[in TC
unreco-
vered]
/ATC
change
code to
ZZ00

[in TC
unrecovered]

ATC
change
code to
ZZ00

TC back for RPS

XX minutes
/TM confirms
rerouting

YY minutes

RPS
decides
end
rerouting
[in UA
Nominal
TC & in
RPS
Nominal
TC]

TC failure for RPS

ATC
back to
nominal
code

ATC to RPS:
confirm
ZZ00 code ?
[in RPS
Nominal
Voice]

[in RPS Nominal TC & in Code ZZ00]
/Code to 7600

TT
minutes

UU
minutes
[in RPS
TC lost]

UU
minutes
[in RPS
Nomina l
TC]

RPS to ATC:
nominal mode
[in RPS
Nominal Voice] XX minutes

RPS to ATC: select
rerouting mode [in ATC
Nominal Voice]

RPS to ATC:
urgency
mode [in
ATC
Nominal
Voice]

RPS to ATC:
select rerouting
mode [in ATC
Nominal Voice]

TC failure
for UA

TC back
for UA

RPS to
ATC:
nominal
mode [in
ATC
Nominal
Voice]

[in RPS
TC lost]

Code to 7600 [in UA Nominal TC]
/ATC change code to 7600

Voice back for
ATC

Code to
7600 [in
UA TC
Nominal]
/ATC
change
code to
7600

Code to
nomina l
[in UA
TC
Nominal]
/ATC
back to
nomina l
code

NN minutes

ATC
change
code to
7600

TM confirms rerouting [in RPS
Nominal Voice]
/RPS to ATC: select rerouting mode

[in UA
Nominal
TC & in
RPS
Nominal
Voice]
/ATC back
to nominal
code

ATC change code to 7600
ATC change code to ZZ00

[in RPS
Nominal TC]

[in
ATC
lost
voice]

[in ATC
Nominal Voice]
/ATC to RPS:
confirm ZZ00
code

[in ATC
ZZ00 code]

ATC
back to
nominal
code

RPS to
ATC:
nominal
mode [in
ATC
Nominal
code & in
ATC
Nominal
Voice]

ZZ minutes

[in RPS
Nomina l
TC]

[in TC unrecovered]
/ATC change code to ZZ00

[in RPS
long TC
recovery
procedure]

RPS to ATC:
urgency mode [in
RPS Nomina l
Voice]

RPS to ATC:
nominal mode
[in RPS
Nominal Voice]

Voice failure for
ATC

RPS to
ATC:
urgency
mode [in
ATC
Nominal
Voice]

[in RPS TC
Nominal]
/Code to nominal

Voice back for RPS

[in RPS
TC lost]

[in RPS TC
Nominal]
/Code to 7600

Voice failure
for RPS

Figure 2 State-transition diagram describing the behaviour of the system.

behaviour recognition technique is to offer an assistance during the development stage of the
regulations. Since multiple breakdowns are considered, the situation becomes highly complex
to embrace, and such assistance is necessary.

Eventually, the remaining causes of safety breaches should only be human (i.e. due to
the pilot or the air traffic controller). These have to stay in the model since they represent a
reality which cannot be avoided, but they can be detected using our behaviour recognition
technique. Hence, the second use of our method is the detection of the last safety breaches
which cannot be prevented, in order to generate alarms and reduce the potential risks.

P. Carle, C. Choppy, R. Kervarc, and A. Piel 89

The first step is to specify the inconsistent states of the system which have to be averted.
For example, the two following behaviours are undesired:

Incoherent ATC Voice: the transponder code emitted by the UA starts indicating code
7600 at the air traffic control, which means that there is a voice failure, but the controller
does not realise so, and this is expressed by the fact that the diagram does not switch to
ATC Lost Voice.
Incoherent flight mode UA/ATC : after a fault which has been solved, the UA has switched
back to a nominal flight but the ATC stays in an urgency service.

Once one of these behaviours is detected, its origins have to be determined. If the cause is
due to faulty behavioural guidelines, then the model has to be corrected, and, otherwise, if
the source is human, it should be planned to trigger alarms warning the pilot and/or the air
traffic controller of the situation.

In order to exploit these examples and to allow direct simulation, the UML diagram
has been implemented in C++ using the Meta State Machine (MSM) library [4] of boost
(Version 1.53.0) which provides a straightforward way to define state machines. So as to
simulate the life cycle of the system, scenarios activate the red transitions of the diagram of
Fig. 2 (the other transitions are triggered by events automatically generated by the diagram),
thus providing a complete modelling framework. We thus obtain a direct simulation of the
system that we want to supervise using failure detection.

3 Behaviour recognition with CRL (Chronicle Recognition Library)

To perform this supervision, it is necessary to be able to formally express failures as behaviours
which are to be recognised. Monitoring is then needed to allow an online recognition of all
the occurrences of the described behaviours during the running simulation, which are central
issues linked to complex event processing. These two requirements are fulfilled by a temporal
language — the chronicle language, which syntax and semantics are partly defined in [2] —
and its associated recognition tool.

This language allows to formally depict system behaviours. Arrangements of events are
described: a chronicle can be a single event, the conjunction of two chronicles, the disjunction
of two chronicles, the sequence of two chronicles or the absence of a chronicle during another
chronicle. In addition, temporal constraints between chronicles or on the length of time of
the recognition of a chronicle may be specified. For instance, let E and F be single events
and δ a real number, chronicle (E then δ) − [F] corresponds to event E followed by δ units of
time during which no event F occurs.

The first step is therefore to write down chronicles which will oversee the system. It
is necessary to take into account isolated events since we want to be able to recognise the
chronicles online, so the set of events considered to build these chronicles are the entrances
in and exits from the different possibly active states of the diagram of Fig. 2.

The two unwanted behaviours briefly described in Sec. 2 may be formally expressed by
the following chronicles:

Incoherent ATC Voice
(to_ATC_Nominal_Code to_ATC_7600_Code then 5) − [to_ATC_Lost_Voice]

Incoherent flight mode UA/ATC
(from_UA_Nominal_Flight

((to_UA_Nominal_Flight then 10) − [from_UA_Nominal_Flight]))
−[to_ATC_Nominal_Service]

FSFMA’13

90 Safety of Unmanned Aircraft Systems Facing Multiple Breakdowns

Once the behaviours to be recognised have been formalised in the chronicle language, the
simulation is run along different scenarios which are supervised by a behaviour recognition
tool in charge of bringing to light any incoherent state described by the written chronicles.
Such a tool, designed on the basis of duplicating automata and called Chronicle Recognition
System (CRS/ONERA), has been developed by the ONERA in the late 1990s [1]. A new
recognition tool which algorithms directly result from the set semantics of the chronicle
language is developed during this Ph.D. thesis. This tool, called Chronicle Recognition
Library (CRL), implemented in C++, is described in greater detail in [3]. Chronicles are
plugged into the program, and then, gradually as events flow in, the program gives the set of
all the recognitions of each chronicle, specifying for each recognition which events lead to it.

Let us now run this tool on two scenarios, looking for recognitions of the two previously
specified chronicles.

Consider, to start with, an overly simple story line as an instructive example: there is a
voice failure, which is only acknowledged by the pilot (event Voice failure for RPS). The
simulation is run with this single event. The evolution of the entrances in and exits from the
active states of the diagram are then plugged into CRL which generates the following result:
t = 0 Engine created
t = 0 Added chronicle :

([(to_ATC_Nominal_Code to_ATC_7600_Code) + 5]− to_ATC_Lost_Voice)
t = 0 Added Event : Voice_failure_for_RPS
t = 0 Added Event : from_RPS_Nominal_Voice
t = 0 Added Event : to_RPS_Voice_Recovery_Procedure
t = 4 Added Event : from_RPS_Voice_Recovery_Procedure
t = 4 Added Event : to_RPS_Voice_Unrecovered
t = 4 Added Event : from_Nominal_Code
t = 4 Added Event : to_Code_7600
t = 4 Added Event : from_ATC_Nominal_Code
t = 4 Added Event : to_ATC_7600_Code
t = 9 Chronicle recognition :

([(to_ATC_Nominal_Code to_ATC_7600_Code) + 5]− to_ATC_Lost_Voice)
Reco Set = {〈〈(to_ATC_Nominal_Code, 0), (to_ATC_7600_Code, 4)〉, (t, 9)〉}

Chronicle Incoherent ATC Voice has been recognised: to_ATC_Nominal_Code at time 0
has been followed by to_ATC_7600_Code at time 4, and, until time 9, the forbidden events
have not occurred. Thanks to event historisation, it can be diagnosed that the source of
the inconsistency is a lack of attention from the air traffic controller. An alarm should be
triggered by the chronicle to warn the ATC of the situation and attempt to restore a correct
situation.

Let us now consider a second scenario involving multiple breakdowns: a voice fail-
ure acknowledged both by the pilot and the ATC (events Voice failure for RPS and
Voice failure for ATC) is shortly followed by a TC failure recognised both by the UA and
the pilot (events TC failure for UA and TC failure for RPS). However, the TC is restored
15 minutes later (events TC back for UA and TC back for RPS), at which point the pilot
decides that the situation is not too alarming (a voice failure can indeed be considered as such)
and therefore orders the UA back to a nominal flight (event RPS decides end rerouting).
When the simulation is run with these events, the following result is identified by CRL:

...
t = 65 Chronicle recognition :

([from_UA_Nominal_Flight ([to_UA_Nominal_Flight + 10]
− from_UA_Nominal_Flight)]− to_ATC_Nominal_Service)
Reco Set = {〈(from_UA_Nominal_Flight, 35), 〈(to_UA_Nominal_Flight, 55), (t, 65)〉〉}

P. Carle, C. Choppy, R. Kervarc, and A. Piel 91

Chronicle Incoherent flight mode UA/ATC is recognised. This time, the inconsistency is
not due to human error, which means that the model has to be corrected: it is brought to
light that a transition is missing in the modelling of the ATC between Urgency service and
ATC_Nominal_Service. Indeed, the ATC should be able to switch back to a nominal service
even though no radio communication with the pilot is available. A transition triggered by
the exit of ATC_ZZ00_Code (indicating the end of the TC failure) has therefore to be added.
Once this improvement has been completed and the system and/or the procedure have been
modified, running the simulation using the new model on the same scenario does not produce
any recognition anymore, ascertaining that the behaviour has been rightfully corrected.

4 Conclusion and perspectives

In conclusion, we provide in this paper a complex event processing framework applied to
monitor safety for Unmanned Aircraft Systems in case of one or multiple breakdowns. The
behaviour of the UAS is completely modelled in a UML diagram which is implemented in
C++. A temporal language, the chronicle language, is used to specify the inconsistent states
which would lead to safety breaches and which therefore have to be avoided. CRL, a C++
library, allows direct analysis of simulation data. The achievement is twofold: an assistance
to regulation development is provided, and the remaining safety breaches which cannot be
totally prevented can be made to trigger alarms.

Among the numerous possible future directions for this work, we plan to continue the
extension of the chronicle language in order to increase its expressivity and hence be able to
deal with a wider spectrum of applications. For instance, we intend to formalise a notion of
actions triggered by successful recognitions which would allow, for example, the formalisation
of the alarm generation in the application presented in this paper. In addition, the choice
and writing of the chronicles to be recognised is currently completed by an expert by hand.
It would be desirable to develop an assistance tool for the generation of chronicles, so as to
get closer to an exhaustive covering of the situations to be recognised.

Acknowledgements. The authors thank J. Bourrely for his help and support for this
application, and T. Lang and C. Le Tallec for their useful insights on Unmanned Aircrafts.

References
1 P. Carle, P. Benhamou, F.-X. Dolbeau, and M. Ornato. La reconnaissance d’intentions

comme dynamique des organisations. In 6èmes Journées Francophones pour l’Intelligence
Artificielle Distribuée et les Systèmes Multi-Agents (JFIADSMA’98), 1998.

2 Patrice Carle, Christine Choppy, and Romain Kervarc. Behaviour recognition using chron-
icles. In Proc. 5th IEEE International Symposium on Theoretical Aspects of Software En-
gineering, pages 100–107, 2011.

3 Patrice Carle, Christine Choppy, Romain Kervarc, and Ariane Piel. Handling Breakdowns
in Unmanned Aircraft Systems. In 18th International Symposium on Formal Methods -
Doctoral Symposium, 2012.

4 Christophe Henry. “MSM library of boost”. www.boost.org/doc/libs/1_48_0/libs/msm/
doc/HTML/index.html, 2011.

5 Thibault Lang. IDEAS–T1.1: Architecture de système de drone et scénarios de missions.
Technical report, 2009.

6 “OMG Unified Modeling Language™(OMG UML), Superstructure, Version 2.4.1”, 2011.

FSFMA’13

www.boost.org/doc/libs/1_48_0/libs/msm/doc/HTML/index.html
www.boost.org/doc/libs/1_48_0/libs/msm/doc/HTML/index.html

	p000-frontmatter
	Preface

	p001-fribourg
	p002-chin
	p003-vanit-anunchai
	Introduction
	Previous Work
	Contributions
	Organisation

	DCCP Overview
	Connection Management Procedures
	Hole Punching Procedures

	Modelling Approach
	Layer Architecture
	Embedding the NAT Functions in the CPN Models

	DCCP Simultaneous Open CPN Model
	Model Overview
	Declaration of State Variables
	Declaration of DCCP and IP Packets
	CPN Subpage NAT
	Connection Establishment Pages
	Server Page
	Client Page

	Analysis Approach
	CPN Tools versus Design/CPN
	Prioritized Transitions versus Timed Models

	Experimental Results
	The Prioritized Transition Model
	Analyses the Timed Model using the Sweep-line Method

	Conclusions and Future Work

	p018-andre
	Introduction
	Preliminaries
	Clocks, Parameters and Constraints
	Labeled Transition Systems
	Parametric Timed Automata

	On-the-fly Clock Elimination
	Motivation
	General Approach
	Static Computation of the Useless Clocks per Location
	Dynamic Elimination of the Clocks in Practice
	Characterization

	Experimental Validation
	Conclusion

	p032-paun
	Introduction
	Inherent problems to the use of microprocessors in hard real-time systems
	Hardware considerations
	Pipeline
	Branch Prediction Unit (BPU)
	Floating Point Unit (FPU)
	Level 1 Cache
	Scratchpad
	Memory Management Unit (MMU) and Translation Lookaside Buffer
	BUS
	Direct Memory Access (DMA)
	Level 2 cache
	Timing Anomalies

	Conclusion

	p047-rodriguez
	1 Introduction
	2 Unfoldings of Petri Nets
	3 The Algorithm
	4 Experiments
	5 Conclusions

	p053-fribourg
	Introduction
	Attractors for Linear Dynamics
	Nonlinear Dynamics
	Affine systems with uncertainty
	Linearization of nonlinear dynamics

	Case studies
	Van der Pol oscillator
	Dynamics
	Attractor Construction

	FitzHugh-Nagumo Neuron
	Dynamics
	Attractor construction

	Future work
	Appendix: Decomposition Algorithm

	p061-liu
	Introduction
	A running example – AMUPADH
	Correctness Analysis of PvC Systems
	Reliability Analysis using MDPs
	Conclusion

	p068-protzenko
	Introduction
	An introduction to permissions
	Permissions control effects
	Permission denote ownership
	Permissions track aliasing

	A Mezzo case study
	The |split| function
	The |splitright| function

	Conclusion

	p074-elshuber
	Introduction
	Prerequisites
	Our Approach
	Discussion
	Conclusion

	p080-rusmawati
	Introduction
	Abstract models
	Proving correctness of message-passing in dynamic networks
	Experimental validation: Using run-time verification
	Conclusion

	p086-carle
	Introduction
	A Modelling framework
	Behaviour recognition with CRL (Chronicle Recognition Library)
	Conclusion and perspectives

