
13th Workshop on Algorithmic
Approaches for Transportation
Modelling, Optimization, and
Systems

ATMOS’13, September 5, 2013, Sophia Antipolis, France

Edited by

Daniele Frigioni
Sebastian Stiller

OASIcs – Vo l . 33 – ATMOS’13 www.dagstuh l .de/oas i c s

Editors
Daniele Frigioni Sebastian Stiller
University of L’Aquila Technische Universität Berlin
L’Aquila, Italy Berlin, Germany
daniele.frigioni@univaq.it sebastian.stiller@tu-berlin.de

ACM Classification 1998
F.2 Analysis of Algorithms and Problem Complexity, G.1.6 Optimization, G.2.2 Graph Theory, G.2.3
Applications

ISBN 978-3-939897-58-3

Published online and open access by
Schloss Dagstuhl –Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-58-3.

Publication date
September, 2013

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.ATMOS.2013.i

ISBN 978-3-939897-58-3 ISSN 2190-6807 http://www.dagstuhl.de/oasics

http://www.dagstuhl.de/dagpub/978-3-939897-58-3
http://www.dagstuhl.de/dagpub/978-3-939897-58-3
http://dnb.d-nb.de
http://dx.doi.org/10.4230/OASIcs.ATMOS.2013.i
http://www.dagstuhl.de/dagpub/978-3-939897-58-3
http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

iii

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 2190-6807

www.dagstuhl.de/oasics

ATMOS’13

http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

Contents

Preface
Daniele Frigioni and Sebastian Stiller . vii

Recoverable Robust Timetable Information
Marc Goerigk, Sascha Heße, Matthias Müller-Hannemann, Marie Schmidt, and
Anita Schöbel . 1

Is Timetabling Routing Always Reliable for Public Transport?
Donatella Firmani, Giuseppe F. Italiano, Luigi Laura, and Federico Santaroni . . . 15

Robust Routing in Urban Public Transportation: How to Find Reliable Journeys
Based on Past Observations

Katerina Böhmová, Matus Mihalák, Tobias Pröger, Rastislav Šrámek, and
Peter Widmayer . 27

Delay-Robustness of Transfer Patterns in Public Transportation Route Planning
Hannah Bast, Jonas Sternisko, and Sabine Storandt . 42

Solving a Freight Railcar Flow Problem Arising in Russia
Ruslan Sadykov, Alexander Lazarev, Vitaliy Shyryaev, and Alexey Stratonnikov . . 55

A Configuration Model for the Line Planning Problem
Ralf Borndörfer, Heide Hoppmann, and Marika Karbstein . 68

The Stop Location Problem with Realistic Traveling Time
Emilio Carrizosa, Jonas Harbering, and Anita Schöbel . 80

Evolution and Evaluation of the Penalty Method for Alternative Routes
Moritz Kobitzsch, Dennis Schieferdecker, and Marcel Radermacher 94

Improved Alternative Route Planning
Andreas Paraskevopoulos and Christos Zaroliagis . 108

Result Diversity for Multi-Modal Route Planning
Hannah Bast, Mirko Brodesser, and Sabine Storandt . 123

Column Generation for Bi-Objective Vehicle Routing Problems with a
Min-Max Objective

Boadu Mensah Sarpong, Christian Artigues, and Nicolas Jozefowiez 137

Carpooling : the 2 Synchronization Points Shortest Paths Problem
Arthur Bit-Monnot, Christian Artigues, Marie-José Huguet, and
Marc-Olivier Killijian . 150

13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’13).
Editors: Daniele Frigioni, Sebastian Stiller

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Preface

Transportation networks give rise to very complex and large-scale network optimization
problems requiring innovative solution techniques and ideas from mathematical optimization,
theoretical computer science, and operations research. Since 2000, the series of Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems (ATMOS) workshops
brings together researchers and practitioners who are interested in all aspects of algorithmic
methods and models for transportation optimization and provides a forum for the exchange
and dissemination of new ideas and techniques. The scope of ATMOS comprises all modes
of transportation.

The 13th ATMOS workshop (ATMOS’13) was held in connection with ALGO’13, by
INRIA and Campus SophiaTech, in Sophia Antipolis, France, on September 5, 2013. Topics
of interest for ATMOS’13 were all optimization problems for passenger and freight transport,
including, but not limited to, Demand Forecasting, Models for User Behavior, Design of
Pricing Systems, Infrastructure Planning, Multi-modal Transport Optimization, Mobile
Applications for Transport, Congestion Modeling and Reduction, Line Planning, Timetable
Generation, Routing and Platform Assignment, Vehicle Scheduling, Route Planning, Crew
and Duty Scheduling, Rostering, Delay Management, Routing in Road Networks, Traffic
Guidance. Of particular interest were papers applying and advancing the following techniques:
graph and network algorithms, combinatorial optimization, mathematical programming,
approximation algorithms, methods for the integration of planning stages, stochastic and
robust optimization, online and real-time algorithms, algorithmic game theory, heuristics for
real-world instances, simulation tools.

In response to the call for papers we received 26 submissions, all of which were reviewed
by at least three referees. The submissions were judged on originality, technical quality,
and relevance to the topics of the workshop. Based on the reviews, the program committee
selected the 12 papers which appear in this volume. Together, they quite impressively
demonstrate the range of applicability of algorithmic optimization to transportation problems
in a wide sense. In addition, Tobias Harks kindly agreed to complement the program with
an invited talk entitled Modeling and Optimizing Traffic Networks.

We would like to thank the members of the Steering Committee of ATMOS for giving us
the opportunity to serve as Program Chairs of ATMOS’13, all the authors who submitted
papers, Tobias Harks for accepting our invitation to present an invited talk, the members of
the Program Committee and all the additional reviewers for their valuable work in selecting
the papers appearing in this volume, and the local organizers for hosting the workshop as
part of ALGO’13. We also acknowledge the use of the EasyChair system for the great help
in managing the submission and review processes, and Schloss Dagstuhl for publishing the
proceedings of ATMOS’13 in its OASIcs series.

Finally, we are pleased to announce that this year, for the first time, ATMOS PC awards
a Best Paper Award. The Best Paper of ATMOS 2013 is A Configuration Model for the Line
Planning Problem by Ralf Borndörfer, Heide Hoppmann, and Marika Karbstein.

September, 2013

Daniele Frigioni

Sebastian Stiller

13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’13).
Editors: Daniele Frigioni, Sebastian Stiller

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Organization

Program Committee

Ralf Borndörfer Zuse-Institut and FU Berlin, Germany
Daniel Delling Microsoft Research Silicon Valley, USA
Daniele Frigioni (co-chair) University of L’Aquila, Italy
Laura Galli University of Pisa, Italy
Spyros Kontogiannis University of Ioannina, Greece
Christian Liebchen Deutsche Bahn, Germany
Gabor Maroti VU Amsterdam and Netherlands Railways, The Netherlands
Frédéric Meunier Ecole des Ponts ParisTech, France
Dario Pacciarelli Roma Tre University, Italy
Marc Pfetsch TU Darmstadt, Germany
Robert Shorten IBM Research and The Hamilton Institute, Ireland
Sebastian Stiller (co-chair) TU Berlin, Germany

Steering Committee

Alberto Marchetti-Spaccamela Sapienza University of Rome, Italy
Rolf Möhring TU Berlin, Germany
Dorothea Wagner Karlsruhe Institute of Technology, Germany
Christos Zaroliagis University of Patras, Greece

List of Additional Reviewers
Gianlorenzo D’Angelo, Andrea D’Ariano, Mattia D’Emidio, Julian Dibbelt, Pavlos Efraimidis, Dimitris
Fotakis, Loukas Georgiadis, Jan Marecek, Martin Mevissen, Alfredo Navarra, Alexander Richter,
Arieh Schlote, Karsten Weihe, Jia Wuan Yu, Christos Zaroliagis.

Local Organizing Committee

Frédéric Cazals, Agnès Cortell (event manager), David Coudert, Olivier Devillers, Joanna Moulierac,
Monique Teillaud (chair).

13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’13).
Editors: Daniele Frigioni, Sebastian Stiller

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

List of Authors

Christian Artigues

Hannah Bast

Arthur Bit-Monnot

Katerina Böhmová

Ralf Borndörfer

Mirko Brodesser

Emilio Carrizosa

Donatella Firmani

Daniele Frigioni

Marc Goerigk

Jonas Harbering

Sascha Heße

Heide Hoppmann

Marie-José Huguet

Giuseppe F. Italiano

Nicolas Jozefowiez

Marika Karbstein

Marc-Olivier Killijian

Moritz Kobitzsch

Luigi Laura

Alexander Lazarev

Matus Mihalák

Matthias Müller-Hannemann

Andreas Paraskevopoulos

Tobias Pröger

Marcel Radermacher

Ruslan Sadykov

Federico Santaroni

Boadu Mensah Sarpong

Dennis Schieferdecker

Marie Schmidt

Anita Schöbel

Vitaliy Shiryaev

Rastislav Šrámek

Jonas Sternisko

Sebastian Stiller

Sabine Storandt

Alexey Stratonnikov

Peter Widmayer

Christos Zaroliagis

13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’13).
Editors: Daniele Frigioni, Sebastian Stiller

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Recoverable Robust Timetable Information ∗

Marc Goerigk†1, Sascha Heße2, Matthias Müller-Hannemann2,
Marie Schmidt3, and Anita Schöbel3

1 Fachbereich Mathematik
Technische Universität Kaiserslautern, Germany
goerigk@mathematik.uni-kl.de

2 Institut für Informatik
Martin-Luther-Universität Halle-Wittenberg, Germany
sascha.hesse@student.uni-halle.de, muellerh@informatik.uni-halle.de

3 Institut für Numerische und Angewandte Mathematik
Georg-August Universität Göttingen, Germany
{m.schmidt,schoebel}@math.uni-goettingen.de

Abstract
Timetable information is the process of determining a suitable travel route for a passenger. Due
to delays in the original timetable, in practice it often happens that the travel route cannot be
used as originally planned. For a passenger being already en route, it would hence be useful to
know about alternatives that ensure that his/her destination can be reached.

In this work we propose a recoverable robust approach to timetable information; i.e., we aim
at finding travel routes that can easily be updated when delays occur during the journey. We
present polynomial-time algorithms for this problem and evaluate the performance of the routes
obtained this way on schedule data of the German train network of 2013 and simulated delay
scenarios.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory (Graph algorithms, Network problems)

Keywords and phrases timetable information, recoverable robustness, delay scenarios

Digital Object Identifier 10.4230/OASIcs.ATMOS.2013.1

1 Introduction

In timetable information, the following problem is typically considered: Given a timetable,
an origin and destination, and an earliest departure time, find the “best” route leading from
origin to destination; see [21] for a survey. An obvious criterion to evaluate the quality of
a route is its duration (or travel time); however, many other criteria have been suggested,
as, e.g., the number of changes or the ticket costs [22, 14, 4]. Also the reliability of a
path has been considered as a means to account for delays [14, 20, 22]. In [13], decision
trees for passengers’ travels under uncertainty are constructed. In a recent work [17, 18],
approaches from the field of robust optimization were considered. Robust optimization is
an approach to handle uncertainty in optimization problems that dates back to the 70s [24].

∗ partially supported by grants SCHO 1140/3-1 and MU 1482/4-3 within the DFG programme SPP 1307
Algorithm Engineering and by the European Union Seventh Framework Programme (FP7-PEOPLE-
2009-IRSES) under grant number 246647 and the New Zealand Government (project OptALI).
† Effort sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF,
under grant number FA8655-13-1-3066. The U.S Government is authorized to reproduce and distribute
reprints for Governmental purpose notwithstanding any copyright notation thereon.

© Marc Goerigk, Sascha Heße, Matthias Müller-Hannemann, Marie Schmidt, and Anita Schöbel;
licensed under Creative Commons License CC-BY

13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’13).
Editors: Daniele Frigioni, Sebastian Stiller; pp. 1–14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2013.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

2 Recoverable Robust Timetable Information

During the late 90s, it received new attention through the work of Ben-Tal, Nemirovski
and co-authors [2, 3], that sparked a manifold of concepts and algorithms; among them the
Γ-approach of [5], adjustable robustness [1], light robustness [16], or recoverable robustness
[19, 25]. In our work we focus on recoverable robustness. This is a two-stage concept: Given
a set of recovery algorithms, a solution is considered as being robust when for every scenario
it can be “repaired” using an recovery algorithm to become feasible. An application to
the uncertain shortest path problem has been considered in [6], where the set of recovery
algorithms is given by exchanging up to a constant K arcs of the path. Related work can be
found in [23], where a given path is updated to a new solution by either using or removing
k arcs. Further applications of recoverable robustness include shunting [10], timetabling
[11, 25, 19], platforming [9, 25, 19], the empty repositioning problem [15], railway rolling
stock planning [8] and the knapsack problem [7]. In some previous work [17, 18], robust
passenger information has been considered. It was shown that finding a strictly robust
travel route which hedges against any possible delay scenario is an NP-hard problem and for
practical application much too conservative. As an alternative, a robustness concept based
on light robustness has been proposed. However, it is assumed that a passengers stays on
the planned route whatever happens. In contrast to this, we allow that a passengers changes
his/her route even if he/she already started the journey.

Contributions. In timetable information, as in many other problems, the passenger does
not know the scenarios from the beginning of his/her trip, but learns the current scenario
en route. This aspect has been neglected in previous work. In this paper, we describe
a recoverable robustness approach to the timetable information problem which takes into
account that the actual scenario is learned at some time point en route, and that the travel
route may be updated from this point on. For such a recovery, all possible alternative routes
may be chosen. The goal is to include this recovery step in the planning phase, i.e. to find
a travel route which may be recovered for every delay scenario from a given uncertainty set.

Furthermore, our approach can deal with complicated delay scenarios, as they occur in
public transportation where source delays cause the dropping of transfers and changes in
the durations of driving and waiting activities. We develop polynomial-time algorithms that
can handle any finite set of scenarios and test them on delay scenarios that are generated
by propagating delay in transportation systems.

Using large-scale data modeling the train network of Germany, we show the effectiveness
of our approach.

Overview. The remainder of this work is structured as follows: We shortly recapture the
nominal timetable information problem, and introduce our recoverable robust model in Sec-
tion 2. We present a polynomial-time label-setting algorithm in Section 3, and demonstrate
its applicability to German railway data provided by Deutsche Bahn AG in Section 4. We
conclude the paper and discuss further research directions in Section 5.

2 Model and Notation

2.1 Timetable information
In the following we refer to train timetables for the sake of simplicity; however, all results can
be transferred to any other type of public transport. The starting point for our considerations
is a directed acyclic graph, the so-called event-activity network (EAN) N = (E ,A) which is
regarded over a finite time horizon. Nodes E represent events in the train schedule: They
can either be

M. Goerigk, S. Heße, M. Müller-Hannemann, M. Schmidt, and A. Schöbel 3

arrival events Earr (modeling the arrival of a certain train at a certain station), or
departure events Edep (modeling the departure of a certain train from a certain station).

Events are connected by directed arcs, the activities, which can be either
driving activities Adrive (modeling the trip of a train from a departure event to an arrival
event),
waiting activities Await (modeling the time a train spends between an arrival and a
departure event for passengers to embark and disembark),
or transfer activities Atrans (modeling passenger movements from one arrival event to
another departure event within the same station).

Each event i ∈ E has a schedule time πi ∈ IN; furthermore, to compute how delays spread
within this network (see Section 4.2), we may assume that for each activity (i, j) ∈ A a
minimal duration lij is known, and thus a buffer time bij := πj−πi−lij . We assume that the
initial timetable π is feasible, i.e., πj − πi ≥ lij , hence all buffer times are nonnegative. The
timetable information problem consists of finding a path within the event-activity network
from one station to another, given an earliest departure time s. More precisely, we introduce
two virtual events, namely one origin event u and one destination event v, corresponding to a
given origin station su and a destination station sv. The origin event u is connected by origin
activities Aorg with all departure events at station su taking place not earlier than s, while
all arrival events at station sv are connected with v by destination activities Adest. We need
to find a path P from u to v in N such that the nominal travel time tnom(P) := πlast(P)− s
on P is minimal, where last(P) denotes the last arrival event on P .

2.2 Delays
Paths with minimal travel time in the EANmay be vulnerable to delays, i.e., in case of delays,
the originally planned path may take much longer than planned, or planned transfers may
even become infeasible if the connecting train does not wait for a delayed feeder train.

The aim of this paper is to give robust timetable information, i.e., to find paths in the
EAN which are less vulnerable to delays. The delays observed in a public transportation
system originate from source delays da which can occur on the driving and waiting activities
a of the train. These delays are partially absorbed by buffer times on the activities, however,
they propagate through the network to subsequent events along driving and waiting activities
and – if a transfer is maintained – along the corresponding transfer activity. We assume
that each transfer is assigned a waiting time which specifies how long the connecting train
will wait for the feeder train. If the delay of the feeder train exceeds the waiting time, the
connecting train will depart on time. See Section 4.2 for details on our delay propagation
method. We denote by Atransfer(d) the set of maintained transfer activities in scenario d and
denote the delay network N (d) := (E ,A(d)) with A(d) := Adrive ∪Await ∪Atransfer(d). The
updated timetable is denoted by π(d). In this paper, we make the (simplifying) assumption
that at some point in time, the passenger learns about all delays and can adapt (’recover’)
his/her travel route accordingly. We partition the events of the networks in a set Uξ of
events where no delay has occurred so far and the passenger has not learned about future
delays and a set V ξ where he/she knows all delays. We require the following properties of an
information scenario ξ = (N ξ, πξ, Uξ, V ξ) consisting of a delay network N ξ, a disposition
timetable πξ on this network, and a partition (Uξ, V ξ) of the events E :

u ∈ Uξ, v ∈ V ξ,
if πξj > πj , j is in V ξ,
all i with (i, v) ∈ Adest are contained in V ξ,
if i is in V ξ, all successors of i are in V ξ.

ATMOS’13

4 Recoverable Robust Timetable Information

A way to define the partition (Uξ, V ξ) between nodes Uξ where no delay information is
available and nodes V ξ with full delay information is to set Uξ := {j : πj < tξ}, V ξ :=
{j : πj ≥ tξ}, where tξ denotes a revealing time tξ ≤ minj∈E:πξ

j
−πj>0 πj for every scenario

ξ. For our computational experiments, we obtain N (ξ) := N (dξ) and πξ := π(dξ) by
delay propagation, see Section 4.2. However, our methods work for any set of scenarios
ξ = (N ξ, πξ, Uξ, V ξ) as described above; it is not necessary to know the source delays to
apply them. We define the set of activities where scenario ξ is revealed as Aξ := {(i, j) ∈
A : i ∈ Uξ, j ∈ V ξ}. A set of information scenarios will be called an uncertainty set and
denoted by U . In this paper, we consider only finite uncertainty sets.

2.3 Recoverable Robust Timetable Information
Intuitively, we will call a path P recoverable robust if, when an information scenario ξ occurs
while a passenger is traveling on P , this passenger can take a recovery path P ξ, to his/her
destination. To formally define recoverable robust paths, we make use of the following
observation: Let U be an uncertainty set and let P be a path from u to v in N .

I Lemma 1. For every ξ ∈ U , P contains exactly one arc from Aξ.

We denote this arc by (iξ(P), jξ(P)). We denote by Qξ(j) the set of recovery paths, i.e., all
paths from a node j to v in N ξ, and set Qξ(P) := Qξ(jξ(P)).

I Definition 2. A path P is called recoverable robust (with respect to uncertainty set U) if
for any ξ ∈ U the set of recovery paths Qξ(P) is not empty.

We assume that the passenger travels on the chosen path P until he/she learns about
the information scenario he/she is in, i.e., until node jξ(P). Since at this node, the full
information of ξ, i.e., N ξ, πξ, Uξ and V ξ is revealed to the passenger, he/she can take the
best path for this scenario. Thus, we assume that he/she reroutes from his/her current
position according to scenario ξ.

The goal of this paper is to find “good” recoverable robust paths. However, there are
different ideas on how to measure the quality of a recoverable robust path. We can evaluate

the nominal quality: which recoverable robust path has shortest travel time if no delays
occur?
the worst-case quality: which recoverable robust path has the earliest guaranteed arrival
time?

Hence, we consider the following bicriteria problem:

I Problem 1. Bicriteria recoverable robust paths
Input: EAN N = (E ,A) with timetable π, origin u and destination v, starting time s, and
uncertainty set U .
Task: Find a path P from u to v in N which is recoverable robust and minimizes
1. the nominal travel time tnom(P) = πlast(P) − s where last(P) is the last arrival node on

P (the nominal objective function)
2. the worst-case travel time twc(P) = maxξ∈U minQ∈Qξ(P) π

ξ
last(Q)− s where last(Q) is the

last arrival event on Q (the worst-case objective function).

Note that for simplicity, we call twc(P) the worst-case travel time of P , although the path
P is only taken in the nominal case and an alternative path P ξ := argminQ∈Qξ(P)π

ξ
last(Q)−s

is taken in case of delay scenario ξ.
In other words, the bicriteria recoverable robust shortest path problem aims at finding

paths which, on the one hand, are good in the nominal case, i. e., if no delays occur, and

M. Goerigk, S. Heße, M. Müller-Hannemann, M. Schmidt, and A. Schöbel 5

on the other hand hedge against the scenarios from the uncertainty set U by minimizing
worst-case travel time on the corresponding recovery paths.

3 Algorithms for Recoverable Robust Paths

3.1 A Recovery-Label Setting Algorithm
In this section we show that in case of finite uncertainty sets solutions to the bicriteria
recoverable robust path problem can be found as solutions to a bicriteria minimax bottleneck
shortest path problem in the EAN with recovery labels L(a) := (Lnom(a), Lwc(a))T at all arcs
a ∈

⋃
ξ∈U A

ξ. The minimax bottleneck shortest path problem is the problem of finding a path
between two nodes in a network which minimizes maxa∈P c(a) in a graph with edge labels
c(a). In the bicriteria version of this problem, every arc a is assigned two different labels c1(a)
and c2(a). We now state the preprocessing Algorithm 1 which calculates the recovery labels
L(a) := (Lnom(a), Lwc(a))T needed to apply solution methods for the bicriteria minimax
bottleneck shortest path problem. In Algorithm 1, for every a = (i, j) ∈ Aξ, Lξ(a) denotes
the minimal travel time on a path which uses node j in scenario ξ. If no such path exists
in scenario ξ, Lξ(a) is set to ∞. The algorithm returns the labels L = (Lnom, Lwc)T which
are 0 for all a /∈

⋃
ξ∈U A

ξ. For a ∈
⋃
ξ∈U A

ξ, Lnom(a) denotes the minimum nominal travel
time when using a path containing node j, (and is ∞, if no such path exists) while Lwc(a)
represents the worst-case travel time for scenarios revealed at node j.

After initialization of all required labels to the value 0 (lines 1-6), we compute the shortest
path distance from every event to the destination in the nominal scenario (line 7). This can
be done by a single invocation of a standard shortest path tree computation in the reversed
digraph from the destination v. Then, in the for-loop of lines 8-15, we iterate over all delay
scenarios. With respect to the revealing time of scenario ξ, we now determine the set V ξ.
Using again a backward shortest path tree computation with respect to N ξ, we determine
for every event j ∈ E the length of a shortest path towards the destination v. Using these
values, we can set the nominal and worst-case labels for paths which go through arcs in Aξ
(lines 11-13). For ease of notation, we use ∞+ k =∞ for all values k. Note that the label
Lnom(a) is only set if the corresponding edge a can be used in some scenario ξ ∈ U . We
finally obtain the worst-case labels by taking the maximum over all scenarios. Note that
lines 16-19 could be easily integrated into the main loop, but in the way presented here, the
main loop can be run in parallel.

Given the recovery labels, the worst-case minimal travel time twc(P) on a path P can
be calculated as the maximum over the labels Lwc on P , as stated in the following lemma.

I Lemma 3. Let P be a path from u to v in N . Then for the labels calculated in Algorithm 1
it holds that

if maxa∈P Lwc(a) <∞, P is recoverable robust, and
twc(P) = maxa∈P Lwc(a).

Proof. Consider an arbitrary scenario ξ := (N ξ, πξ, Uξ, V ξ). The passenger travels on path
P until node jξ(P). Then, he/she can take the path calculated in step 10 of the algorithm
until node v with total length Lξ(iξ(P), jξ(P)) and this path has minimal length in N ξ

among all paths containing node j. We conclude that (1) P is recoverable robust, and (2)
twc(P) = maxa∈P Lwc(a). J

For any path P , the labels Lnom constitute lower bounds on the nominal travel time on P .
However, for an arbitrary path P , the nominal traveling time can exceed maxa∈P Lnom(a).
This can be avoided for paths which do not make detours after the scenarios are revealed.

ATMOS’13

6 Recoverable Robust Timetable Information

Algorithm 1 Construction of recovery labels
Require: EAN N = (E ,A) with timetable π, origin node u, destination node v, starting

time s, and finite uncertainty set U .
Ensure: Label L(a) ∈ R2

+ for every a ∈ A.
1: for (i, j) ∈ A do . Initialization
2: Set Lnom(i, j) := 0.
3: for ξ ∈ U do
4: Set Lξ(i, j) := 0.
5: end for
6: end for
7: Find length Knom(j) of shortest path from every j ∈ E to v in N . Set Knom(j) :=∞ if

no such path exists.
8: for ξ ∈ U do
9: Determine Aξ.

10: Find length Kξ
wc(j) of shortest path from every j ∈ E to v in N ξ. Set Kξ

wc(j) :=∞
if no such path exists.

11: for (i, j) ∈ Aξ do
12: Set Lnom(i, j) := πj − s+Knom(j). . Setting nominal labels.
13: Set Lξ(i, j) := πξj − s+Kξ

wc(j). . Setting worst-case labels.
14: end for
15: end for
16: for (i, j) ∈ A do
17: Set Lwc(i, j) := maxξ∈U Lξ(i, j)
18: Set L(i, j) := (Lnom(i, j), Lwc(i, j))T .
19: end for
20: return L

I Lemma 4. Let P be a path from u to v in N such that the path P 2 defined as the subpath
of path P starting in the last arc (i, j) in P ∩

(⋃
ξ∈U Aξ

)
is a shortest path from j to v.

Then for the labels calculated in Algorithm 1 it holds that
if maxa∈P Lwc(a) <∞, P is recoverable robust,
tnom(P) = maxa∈P Lnom(a), and
twc(P) = maxa∈P Lwc(a).

Proof. This follows from Lemma 3 and from the construction of the labels Lnom in Algo-
rithm 1 as the sum of the travel time πj − s until node j and the shortest path travel time
Knom(j) from j to v. J

As a conclusion, we obtain the following theorem.

I Theorem 5. The bicriteria recoverable robust path problem corresponds to a bicriteria
bottleneck shortest path problem in the EAN with labels L.

It is folklore that the single-criteria bottleneck shortest path problem can be solved in
linear time on directed acyclic graphs. The Pareto front of bicriteria bottleneck shortest
path problems can be found in O(|A|2) by a simple ε-constraint method which enumerates
all possible values of the first objective function, deletes edges whose labels exceed the
given value, and finds a bottleneck shortest path with respect to the second criterion in the
remaining graph (compare [12]).

M. Goerigk, S. Heße, M. Müller-Hannemann, M. Schmidt, and A. Schöbel 7

I Lemma 6. Algorithm 1 determines the labels L in time O(|A| · |U|).

Proof. The initialization takes time O(|A|·|U|). Since we can assume that N is topologically
sorted, shortest paths from a node to all other nodes can be found in time O(|A|). Hence,
step 7 takes time O(|A|). For every ξ ∈ U , determining Aξ is in O(|A|). Since step 10
again is a shortest path calculation in a topologically sorted network and the operations in
the loop over all (i, j) ∈

⋃
ξ∈U A

ξ take constant time, steps 8-15 can be executed in time
O(|A| · |U|). J

3.2 Single-Criteria Versions of Recoverable Robustness
To calculate the Pareto front of the bicriteria recoverable robust path problem with finite
uncertainty set, we can use the approach as sketched in the previous section. However, we
are also interested in two single-criteria versions of the problem. In particular, results of
versions with single objective values can be much easier compared for sets of instances.

I Problem 2. Worst-case optimal recoverable robust paths
Find a recoverable robust path P from u to v in N such that

the nominal quality of P is smaller or equal than a given nominal quality bound Tnom,
P minimizes twc(P).

I Problem 3. Nominally optimal recoverable robust paths
Find a recoverable robust path P from u to v in N such that

the worst-case quality of P is smaller or equal than a given worst-case quality bound Twc
P minimizes tnom(P).

Algorithm 2 describes how to compute worst-case optimal recoverable robust paths. The
pseudo-code for an analogous algorithm to compute nominally optimal recoverable robust
path, Algorithm 3, is provided in the Appendix.

Algorithm 2 Worst-case optimal recoverable robust path
Require: Network N = (E ,A), labels L, nominal quality bound Tnom, origin event u,

destination event v.
Ensure: Path P which is optimal for Problem 2 (if existing).
1: for a ∈ A do
2: if Lnom(a) > Tnom then
3: Remove a from A.
4: end if
5: end for
6: Find a bottleneck shortest path Pwc in N according to labels Lwc.
7: if there is no such path with length <∞ then
8: return There is no recoverable robust path.
9: else
10: Let (i, j) be the last arc on Pwc ∩

⋃
ξ∈U Aξ.

11: Denote by P 1(j) the path Pwc until node j.
12: Find a shortest path P 2(j) in N from j to v.
13: return P := P 1(j)∪P 2(j), tnom(P) := maxa∈P Lnom(a), twc(P) := maxa∈P Lwc(a)

14: end if

ATMOS’13

8 Recoverable Robust Timetable Information

Table 1 Characteristics of the used event activity network and test queries.

characteristic event activity network
trains 38,495
events 2,015,664
stations 8,857
transfer activities 19,869,867
aver. nominal travel time 398 min
aver. # transfers per query 3.3

I Lemma 7. Algorithm 2 and Algorithm 3 are correct.

Proof. Let P be the path returned by Algorithm 2 or Algorithm 3. Then, due to the
construction of P in step 13 of each algorithm, the assumptions of Lemma 4 are fulfilled,
i.e.,

since maxa∈P Lwc(a) <∞, P is recoverable robust,
tnom(P) = maxa∈P Lnom(a), and
twc(P) = maxa∈P Lwc(a).

Since there is no arc a with Lnom > Tnom (or Lwc > Twc, respectively) we have that
tnom(P) ≤ Tnom (or (twc(P) ≤ Twc, respectively). Furthermore, for any other path P ′ we
have that

twc(P ′) = max
a∈P ′

Lwc(a) ≥ max
a∈P

Lwc(a) = twc(P)

(or tnom(P ′) = maxa∈P ′ Lnom(a) ≥ maxa∈P Lnom(a) = tnom(P), respectively). J

4 Experimental Results

4.1 Test Instances

The basis for our computational study is the German train schedule of February 1, 2013
from which we created an event-activity network. We generated transfer activities between
pairs of trains at the same station provided that the departing train is scheduled to depart
not later than 60 minutes after the planned arrival time of the feeding train. In addition,
since some train lines operate only every two hours or irregularly, we add further transfer
arcs. Namely, for each arrival event at some station s, we also create a transfer arc to
those departure events which exceed the time bound of 60 minutes but provide the very
next opportunity to get to a neighboring station. The main characteristics of the resulting
network are shown in Table 1. To study the robustness of passenger paths, queries should
not be too easy. For example, we are not interested in paths which do not require any
transfer. Therefore, we decided to generate 1000 relatively difficult queries as follows. For
each query, origin and destination are chosen uniformly at random from a set of the 3549
most important stations in Germany (this choice of stations has been provided by Deutsche
Bahn AG). Such a pair of origin and destination stations is only accepted if the air distance
between them is at least 200km and if the shortest travel route between them requires at
least one transfer. The desired start time is uniquely set to 8:00am. The resulting set of
queries has an average nominal travel time of 398 minutes and 3.3 transfers per query.

M. Goerigk, S. Heße, M. Müller-Hannemann, M. Schmidt, and A. Schöbel 9

4.2 Generating Information Scenarios

A delay scenario d ∈ INAdrive∪Await0 specifies a delay on each driving and waiting activity.
To generate a delay scenario, we first choose the revealing time of the scenario. Afterwards,
we decide for each driving and waiting activity whether it shall receive a source delay or
not. We use a parameter p ∈ (0, 1) specifying the probability that a train receives a source
delay. This parameter p can be chosen depending on the level of robustness one wants to
achieve.

If a train shall be source-delayed, we select one of its driving or waiting activities uni-
formly at random from those which are scheduled after the revealing time of the scenario
and choose the source delay for this activity uniformly at random among 10, 15, 20, 25, and
30 minutes. The source delays on all other activities are set to 0. For simplicity, we assume
that trains receive source delays independently from each other.

We use the following basic delay propagation rule in order to compute how delays spread
along driving, waiting and maintained transfer activities: π(d) denotes the timetable adapted
to delay scenario d. If the start event of an activity a = (i, j) is delayed, also its end event
j will be delayed, where the delay can be reduced by the slack time ba. I.e. we require
π(d) ≥ π and

πj(d) ≥ πi(d) + la + da (1)

for all activities a = (i, j) ∈ Await ∪ Adrive. For transfer activities equation (1) does not
necessarily hold. Motivated by real-world decision systems of rail operators, we assume
that the decision whether a transfer is actively maintained or not is specified by a fixed
waiting time rule: Given a number wta ∈ IN for every transfer activity, the transfer is
actively maintained if the departing train has to wait at most wta minutes compared to
its original schedule. If transfer a is actively maintained, we require that (1) holds for it.
However, if for a transfer activity a = (i, j) (1) holds due to some earlier delay on the train
corresponding to j, a is maintained, even if πj(d)− πj > wta. Hence, every delay d induces
a new set of transfer activities which is denoted as Atransfer(d). Given these waiting time
rules for a given delay scenario d we can propagate the delay through the network along
the activities in Adrive ∪ Await ∪ Atrans(d) and, thus, calculate the corresponding adapted
timetable according to the following propagation rule:

πj(d) = max
{
πj , max

i:(i,j)∈A; πi(d)+lij≤πj+wtij
{πi(d) + lij + dij}

}
(2)

where we set wta = ∞ ∀a ∈ Await ∪ Adrive and da = 0 ∀a ∈ Atrans. The concrete waiting
time rule used in our experiments is that high speed trains (like Intercity Express ICE,
Intercity IC, and Eurocity EC) wait for each other at most three minutes, whereas trains of
other train categories do not wait. Note that delay propagation can be done in time O(|A|).
The uncertainty sets used in our experiments contain a number k of independent scenarios
generated as described above.

4.3 Environment

All experiments were run on a PC (Intel(R) Xeon(R), 2.93GHz, 4MB cache, 47GB main
memory under Ubuntu Linux version 12.04 LTS). Only one core has been used by our
program. Our code is written in C++ and has been compiled with g++ 4.6.3 and compile
option -O3.

ATMOS’13

10 Recoverable Robust Timetable Information

4.4 Experiments

The purpose of this study is to evaluate the potential of recoverable robust paths as an
alternative timetable information method in pretrip planning. A standard way of doing
timetable information is to search for a path with minimum travel time as primary objective
and with minimum transfers as a secondary one. We take this kind of standard search as
the baseline of our comparisons.

Experiment 1: What is the effect of delays on the paths of the standard search?
We perform the following evaluation. Suppose that P is a given path. For each delay
scenario, we determine the first event after the scenario’s revealing time. We assume that
the passenger can adjust his/her path to the delay scenario at this point and therefore
compute the earliest arrival time at the destination under these conditions. The worst-case
arrival time over all scenarios is the value we are interested in. To each of our 1000 test
queries we applied the same set of 100 delay scenarios with parameter p = 0.20. We observe
that on average the worst-case travel time is 450 minutes, i.e., 13% larger than the planned
one. The absolute difference is 52 minutes on average.

Experiment 2: What is the price of a worst-case optimal recoverable robust
path in comparison with a standard path? Using the same 100 delay scenarios as
for Experiment 1, we are interested in two quantities, namely the nominal travel time and
the worst-case travel time of a worst-case recoverable robust path. We upper bounded the
nominal arrival time of a recoverable robust path by 150% of the fastest nominal path.
Among all paths satisfying this bound we minimized the worst-case arrival time over all
scenarios. Our computational results show that for all 1000 queries but two cases there
exists a recoverable robust path. An interesting observation is that 34.2% of all standard
paths are already the worst-case optimal recoverable robust paths. However, in 27% of the
queries the worst-case arrival time is improved in comparison with the standard path. If
there is an improvement, the reduction is 29 minutes on average, but the maximum observed
difference is 220 minutes. The histogram in Figure 1 gives a more detailed picture. It shows
how often a saving of x minutes in the worst-case scenario can be achieved by choosing a
recoverable robust path. The price a passenger has to pay if he/she chooses a recoverable
robust path is a slight average increase in nominal travel time to 407 minutes, i.e., about
just 9 minutes more than for the standard search.

In Figure 2, we show box-and-whisker plots for the distributions of travel times for five
algorithmic variants. The data is based on our test set of 1000 queries, each evaluated for
100 delay scenarios generated with parameter p = 0.2 for the probability that a train will
be delayed by a source delay.

Recall that StNom and StWC stand for the nominal and worst-case travel time in minutes
of the standard search, while RRNom and RRWC denote the nominal and worst-case travel
time for worst-case optimal recoverable robust paths, respectively. Finally, SRNom gives
the nominal travel time for strictly robust paths.

Experiment 3: What is the influence of parameter p, initially chosen as p = 0.2?
Recall that parameter p specifies the probability that a train will be delayed by a source
delay. To quantify the sensitivity of the different solution methods on the chosen uncertainty
set, we redo the previous two experiments with p = 0.1 and p = 0.15. Figure 3 (left) and
Table 2 summarize our findings and show the average nominal (StNom) and worst case travel
time (StWC) in minutes for the standard search and the nominal (RRNom) and worst-case
time (RRWC) for the optimal recoverable robust paths, respectively. If the probability
parameter p increases, we observe a slight increase of average worst case travel times (what

M. Goerigk, S. Heße, M. Müller-Hannemann, M. Schmidt, and A. Schöbel 11

minutes

nu
m

be
r

of
 c

as
es

0 50 100 150 200 250

0
20

40
60

80

Figure 1 This histogram shows the num-
ber of cases where with respect to the worst-
case scenario we can save x minutes by choos-
ing a worst-case optimal recoverable robust
path instead of the standard path.

●

● ●

●

●

●●

●●
●

●

●●
●

●

●

●●

●

●
●

●

●

StNom StWC RRNom RRWC SRNom

20
0

40
0

60
0

80
0

m
in

ut
es

Figure 2
Box-and-whisker plots for the travel time
distributions of several algorithmic vari-
ants.

 0

 10

 20

 30

 40

 50

 60

 70

 0.1 0.15 0.2

a
d

d
it
io

n
a

l
ti
m

e
 i
n

 m
in

u
te

s

probabiblity p

RRNom
RRWC
StWC

SRNom

 0

 10

 20

 30

 40

 50

 60

 70

75 100 125

a
d

d
it
io

n
a

l
ti
m

e
 i
n

 m
in

u
te

s

size of uncertainty set

RRNom
RRWC
StWC

Figure 3 Additional travel time over the baseline of the standard path in minutes for different
values of probability paramter p (left) and different number of scenarios (right). The average
nominal travel time for standard paths is 498 minutes.

should be expected), whereas the nominal travel time of recoverable robust paths is almost
unchanged. We conclude that p = 0.2 might be preferable since it provides recoverability
for the more severe scenarios at no price with respect to nominal travel time.

Table 2 shows the raw data from which Figure 3 (left) has been derived.
Experiment 4: Comparison with strictly robust paths. Using the same uncertainty
set as in the previous experiments, we computed the set of transfer activities which break
at least once. We marked these arcs as forbidden, and rerun shortest path queries on the
resulting even-activity network. Paths in this network are considered as strictly robust since
no transfer will ever break. The average nominal travel time if we look for the fastest strictly
robust path (SRNom) is 451 minutes for the uncertainty set with p = 0.2 (see also Figure 3
(left) and the last row of Table 2. Hence, the average nominal travel time of these paths
is not better than the average worst-case time for standard paths. In full agreement with
previous studies [17, 18], strictly robust paths turn out to be too conservative.

ATMOS’13

12 Recoverable Robust Timetable Information

Table 2 Comparison of standard and ro-
bust solutions: Average travel time in min-
utes for k = |U | = 100 scenarios.

p = 0.10 p = 0.15 p = 0.20
StNom 398 398 398
StWC 441 447 450

RRNom 407 406 407
RRWC 433 438 442
SRNom 440 446 451

Table 3 Comparison of standard and ro-
bust solutions for different sizes k of the un-
certainty set: Average travel time in minutes
for p = 0.20.

k = 75 k = 100 k = 125
StNom 398 398 398
StWC 447 450 451

RRNom 410 407 407
RRWC 438 442 443

Experiment 5: To which extent do our observations depend on the size of the
scenario set? All previous experiments have been run with 100 different delay scenarios.
The parameter k = |U| has been chosen as a pragmatic compromise between efficiency (the
computational effort scales linearly with k) and the degree of robustness we want to guar-
antee. Obviously, the more different scenarios we use, the higher the level of robustness
we can achieve. Therefore, we fixed the parameter p = 0.20 but varied k ∈ {75, 100, 125}.
Table 3 shows the average travel times in minutes for these variants, and Figure 3 (right)
displays the additional travel time over the baseline of the standard path in minutes. It is
interesting to observe that the average worst-case travel times depend only marginally on
the parameter k in the chosen range. As expected, there is a slight increase of a few minutes
on worst-case travel time when we increase k. At the same time, the average nominal travel
time for recoverable robust paths does not increase. Further experiments will be needed to
see whether this trend will be confirmed if k is chosen in an even wider range.

Practicality of our approach. For the purpose of this study, we have merely imple-
mented a first prototype without much emphasis on performance issues. Our running times
are several minutes per query which is clearly impractical. The main bottleneck is the com-
putation of labels which grows linearly with the number of used scenarios. However, the
most expensive part, namely the loop of lines 8-15, could be run in parallel. Thus, using
massive parallelization and further speed-up techniques, we see a clear perspective that the
computation time for a recoverable robust path can be brought down to a few seconds.

5 Conclusion and Further Research

In this work we introduced the concept of time-dependent recoverable-robust paths within
the framework of timetable information. We showed that the resulting bicriteria problem can
be solved in polynomial time using a label-setting algorithm, and a subsequent bottleneck
shortest path calculation. The proposed concept and algorithm was experimentally evalu-
ated on timetable information instances covering the whole German train network (schedule
of 2013). While computation times are still too high for practical applications in the current
implementation, we may assume that a parallelized algorithm will be sufficiently fast; more-
over, as our experiments show that the proposed model has a valuable trade-off between
nominal and worst-case travel times, such an algorithm will provide a customer-friendly al-
ternative in practice. Further research includes the comparison of recoverable robust paths
to lightly robust paths (see [17, 18]), and the extension of the proposed model to multi-stage
robustness where only partial information on the scenario is given at discrete points in time.
Also, the evaluation of the computed paths with respect to a set of real delay scenarios is
currently being analyzed.

M. Goerigk, S. Heße, M. Müller-Hannemann, M. Schmidt, and A. Schöbel 13

References

1 A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski. Adjustable robust solutions
of uncertain linear programs. Math. Programming A, 99:351–376, 2003.

2 A. Ben-Tal and A. Nemirovski. Robust convex optimization. Mathematics of Operations
Research, 23(4):769–805, 1998.

3 A. Ben-Tal and A. Nemirovski. Robust solutions of linear programming problems contam-
inated with uncertain data. Math. Programming A, 88:411–424, 2000.

4 A. Berger, M. Grimmer, and M. Müller-Hannemann. Fully dynamic speed-up techniques
for multi-criteria shortest paths searches in time-dependent networks. In P. Festa, editor,
Proceedings of SEA 2010, volume 6049 of LNCS, pages 35–46. Springer, Heidelberg, 2010.

5 D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52(1):35–53, 2004.
6 C. Büsing. Recoverable robust shortest path problems. Networks, 59(1):181–189, 2012.
7 C. Büsing, A. M. C. A. Koster, and M. Kutschka. Recoverable robust knapsacks: the

discrete scenario case. Optimization Letters, 5(3):379–392, 2011.
8 V. Cacchiani, A. Caprara, L. Galli, L. Kroon, G. Maroti, and P. Toth. Railway rolling

stock planning: Robustness against large disruptions. Transportation Science, 46(2):217–
232, May 2012.

9 A. Caprara, L. Galli, S. Stiller, and P. Toth. Recoverable-robust platforming by network
buffering. Technical Report ARRIVAL-TR-0157, ARRIVAL Project, 2008.

10 S. Cicerone, G. D’Angelo, G. Di Stefano, D. Frigioni, and A. Navarra. Robust Algorithms
and Price of Robustness in Shunting Problems. In ATMOS 2007, 2007.

11 S. Cicerone, G. D’Angelo, G. Di Stefano, D. Frigioni, A. Navarra, M. Schachtebeck, and
A. Schöbel. Recoverable robustness in shunting and timetabling. In Robust and Online
Large-Scale Optimization, volume 5868 of LNCS, pages 28–60. Springer, Heidelberg, 2009.

12 L. de Lima Pinto, C. T. Bornstein, and N. Maculan. The tricriterion shortest path problem
with at least two bottleneck objective functions. European Journal of Operational Research,
198:387–391, 2009.

13 J. Dibbelt, Th. Pajor, B. Strasser, and D. Wagner. Intriguingly simple and fast transit rout-
ing. In V. Bonifaci, C. Demetrescu, and A. Marchetti-Spaccamela, editors, Experimental
Algorithms, volume 7933 of LNCS, pages 43–54. Springer, Heidelberg, 2013.

14 Y. Disser, M. Müller-Hannemann, and M. Schnee. Multi-criteria shortest paths in time-
dependent train networks. In C. C. McGeoch, editor, WEA 2008, volume 5038 of LNCS,
pages 347–361. Springer, Heidelberg, 2008.

15 A.L. Erera, J.C. Morales, and M. Savelsbergh. Robust optimization for empty repositioning
problems. Operations Research, 57(2):468–483, 2009.

16 M. Fischetti and M. Monaci. Light robustness. In R. K. Ahuja, R.H. Möhring, and C.D.
Zaroliagis, editors, Robust and online large-scale optimization, volume 5868 of LNCS, pages
61–84. Springer, Heidelberg, 2009.

17 M. Goerigk, M. Knoth, M. Müller-Hannemann, M. Schmidt, and A. Schöbel. The price of
robustness in timetable information. In ATMOS 2011, volume 20 of OASICS, pages 76–87.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany, 2011.

18 M. Goerigk, M. Knoth, M. Schmidt, A. Schöbel, and M. Müller-Hannemann. The price
of strict and light robustness in timetable information. Transportation Science, 2013. To
appear.

19 C. Liebchen, M. Lübbecke, R. H. Möhring, and S. Stiller. The concept of recoverable
robustness, linear programming recovery, and railway applications. In R. K. Ahuja, R.H.
Möhring, and C.D. Zaroliagis, editors, Robust and online large-scale optimization, volume
5868 of LNCS, pages 1–27. Springer, Heidelberg, 2009.

ATMOS’13

14 Recoverable Robust Timetable Information

20 M. Müller-Hannemann and M. Schnee. Efficient timetable information in the presence of
delays. In R. Ahuja, R.-H. Möhring, and C. Zaroliagis, editors, Robust and Online Large-
Scale Optimization, volume 5868 of LNCS, pages 249–272. Springer, Heidelberg, 2009.

21 M. Müller-Hannemann, F. Schulz, D. Wagner, and C. Zaroliagis. Timetable information:
Models and algorithms. In Algorithmic Methods for Railway Optimization, volume 4395 of
LNCS, pages 67–89. Springer, Heidelberg, 2007.

22 M. Schnee. Fully realistic multi-criteria timetable information systems. PhD thesis, Fach-
bereich Informatik, Technische Universität Darmstadt, 2009. Published in 2010 by Süd-
westdeutscher Verlag für Hochschulschriften.

23 O. Seref, A. Ravindra, and J. B. Orlin. Incremental network optimization: Theory and
algorithms. Operations Research, 57(3):586–594, 2009.

24 A.L. Soyster. Convex programming with set-inclusive constraints and applications to inex-
act linear programming. Operations Research, 21:1154–1157, 1973.

25 S. Stiller. Extending concepts of reliability. Network creation games, real-time scheduling,
and robust optimization. PhD thesis, TU Berlin, 2008.

A Algorithmic Approach

Algorithm 3 describes how to find nominally optimal recoverable robust paths subject to an
upper worst-case quality bound.

Algorithm 3 Nominally optimal recoverable robust path
Require: Network N = (E ,A), labels L, worst-case quality bound Twc, origin event u,

destination event v.
Ensure: Path P which is optimal for Problem 3 (if existing).
1: for a ∈ A do
2: if Lwc(a) > Twc then
3: Remove a from A.
4: end if
5: end for
6: Find a bottleneck shortest path Pnom in N according to labels Lnom.
7: if there is no such path with length <∞ then
8: return There is no recoverable robust path.
9: else

10: Let (i, j) be the last arc on Pnom ∩
⋃
ξ∈U Aξ.

11: Denote by P 1(j) the path Pnom until node j.
12: Find a shortest path P 2(j) in N from j to v.
13: return P := P 1(j)∪P 2(j), tnom(P) := maxa∈P Lnom(a), twc(P) := maxa∈P Lwc(a)
14: end if

Is Timetabling Routing Always Reliable for Public
Transport?
Donatella Firmani1, Giuseppe F. Italiano1, Luigi Laura2, and
Federico Santaroni1

1 Department of Civil Engineering and Computer Science Engineering
University of Rome “Tor Vergata”, Rome, Italy
firmani@ing.uniroma2.it, italiano@disp.uniroma2.it, santaroni@ing.uniroma2.it

2 Department of Computer, Control, and Management Engineering and
Research Centre for Transport and Logistics – Sapienza University of Rome,
Italy
laura@dis.uniroma1.it

Abstract
Current route planning algorithms for public transport networks are mostly based on timetable in-
formation only, i.e., they compute shortest routes under the assumption that all transit vehicles
(e.g., buses, subway trains) will incur in no delays throughout their trips. Unfortunately, un-
avoidable and unexpected delays often prevent transit vehicles to respect their originally planned
schedule. In this paper, we try to measure empirically the quality of the solutions offered by
timetabling routing in a real public transport network, where unpredictable delays may happen
with a certain frequency, such as the public transport network of the metropolitan area of Rome.
To accomplish this task, we take the time estimates required for trips provided by a timetabling-
based route planner (such as Google Transit) and compare them against the times taken by
the trips according to the actual tracking of transit vehicles in the transport network, measured
through the GPS data made available by the transit agency. In our experiments, the movement
of transit vehicles was only mildly correlated to the timetable, giving strong evidence that in
such a case timetabled routing may fail to deliver optimal or even high-quality solutions.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity, F.2.2
Nonnumerical Algorithms and Problems

Keywords and phrases Shortest Path Problems, Route Planning, Timetable-based Routing, Pub-
lic Transport Networks

Digital Object Identifier 10.4230/OASIcs.ATMOS.2013.15

1 Introduction

In the last years we have witnessed an explosion of exciting research on point-to-point shortest
path algorithms for road networks, motivated by the widespread use of navigation software.
Many new algorithmic techniques have been introduced, including hierarchical approaches
(e.g., contraction hierarchies) [15, 26], reach-based approaches [18, 19], transit node routing [6],
and hub-based labeling algorithms [1]. (Delling et al. [11] gives a more detailed overview
of the literature.) The algorithms proposed in the literature are of great practical value,
as on average they are several orders of magnitude faster than Dijkstra’s algorithm, which
is too slow for large-scale road networks: on very large road networks, such as the entire
Western Europe or North America, the fastest algorithms are able to compute point-to-point
distances in few microseconds on high-performance computing platforms and in hundred

© Donatella Firmani, Giuseppe F. Italiano, Luigi Laura, and Federico Santaroni;
licensed under Creative Commons License CC-BY

13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’13).
Editors: Daniele Frigioni, Sebastian Stiller; pp. 15–26

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2013.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

16 Is Timetabling Routing Always Reliable for Public Transport?

milliseconds on mobile devices (see e.g., [17]). Computing the actual shortest paths (not
only distances) requires slightly more time (i.e., few order of magnitudes), but it is still very
fast in practice. We remark that this algorithmic work had truly a big practical impact on
navigation systems: some of the ideas introduced in the scientific literature are currently used
by Apple, Bing and Google Maps. Furthermore, this research on point-to-point shortest path
algorithms generated not only results of practical value, but also deep theoretical questions
that gave rise to several exciting results: Abraham et al. [2] gave theoretical justifications of
the practical efficiency of some of those approaches under the assumption of low highway
dimension (HD) of the input graph, which is believed to be true for road networks, and even
showed some amazing relationships to VC dimension [1].

Although most algorithmic techniques designed for road networks can be immediately
transferred to public transport networks, unfortunately their adaptation to this case is harder
than expected, and they fail to yield comparable speed-ups [5, 14]. One of the reasons, as
explained in the excellent work of Bast [4], is that most public transportation networks,
like bus-only networks in big metropolitan areas, are far more complex than other types
of transportation networks, such as road networks: indeed, public transport networks are
known to be less hierarchically structured and are inherently event-based. Thus, it seems
that, in order to achieve significant speed-ups on public transport networks, one needs to
take into account more sophisticated and larger scale time-dependent models [9, 14, 24, 25]
or to develop completely different algorithmic techniques, such as either the transfer patterns
introduced by Bast et al. [5], the approach based on dynamic programming by Delling et
al. [10] or the connection scan by Dibbelt et al. [12].

Current route planning algorithms for public transport networks are mostly based on
timetable information, i.e., they compute shortest routes under the assumption that all
transit vehicles (e.g., buses, subway trains) will start their trip exactly at the planned time
and that they will incur in no delays throughout their journey. However, in our daily
experience buses often run behind schedule: unavoidable delays occur frequently and for
many unplanned reasons, including traffic jams, accidents, road closures, inclement weather,
increased ridership, vehicle breakdowns and sometimes even unrealistic scheduling. As a
consequence, widely used timetable routing algorithms may suffer from several inaccuracies:
the more buses run behind schedule, the more is likely that routing methods based on
timetabling will not be able to estimate correctly the waiting times at bus stops, thus failing
to deliver optimal solutions, i.e., the actual shortest routes. Indeed, in the recent past, a lot
of effort has been put in developing either robust models able to efficiently cope with delays
and cancellation events [8, 13, 16, 7], or dynamic delay propagation models for the design of
robust timetables and the evaluation of dispatching proposals [23]. These approaches yield
interesting insights into the robustness of the solutions offered against small fluctuations.

In this framework, it seems quite natural to ask how much timetabling-based routing
methods are effectively able to deliver optimal solutions on actual public transport networks.
To address this complex issue, in this paper we try to measure the quality of the solutions
offered by timetabling routing in the public transport network of the metropolitan area of a
big city, where unpredictable delays, unplanned disruptions or unexpected events seem to
happen with a certain frequency. As a first step, we consider the public transport network
of Rome: we believe that fluctuations on the transit schedule are not limited to this case,
but they happen often in many other urban areas worldwide. In more detail, we performed
the following experiment. On a given day, we submitted to Google Transit, the well known
public transport route planning tool integrated in Google Maps, many queries having origin
and destination in the metropolitan area of Rome: in this case, the journeys computed by

D. Firmani, G.F. Italiano, L. Laura, and F. Santaroni 17

Google Transit are based on the timetabling data provided by the transit agency of Rome1.
Besides its origin and destination, each query qi is characterized by the starting time τi
from the origin. For each query qi, on the same day we followed precisely the journeys
suggested by Google Transit, starting at time τi, by tracking in real time the movement
of transit vehicles in the transport network through the GPS data made available by the
very same transit agency. In order to do that efficiently, we collected the GPS data on the
geo-location of all vehicles on the very same day, by submitting queries every minute to the
transit agency of Rome [28]. With all the data obtained, we built a simulator capable of
following precisely each journey on that given day, according to the GPS tracking of transit
vehicles in the transport network. Finally, we computed the actual total time required by
each journey in our simulator and compared it against its original estimate given by Google
Transit. We believe that the simulator built for this experiment was not only instrumental
for its success, but it can also be of independent interest for other investigations in a public
transport network.

Our experimental analysis shows that in the public transport network considered the
movement of transit vehicles was only mildly correlated to the original timetable. In such a
scenario, timetabled-based routing methods suffer from many inaccuracies, as they are based
on incorrect estimations of the waiting/transfer times at transit stops, and thus they might
fail to deliver an optimal or even high-quality solution. In this case, in order to compute
the truly best possible routes (for instance, shortest time routes), it seems that we have to
overcome the inherent oversights of timetable routing: toward this end, we advocate the
need to design new route planning algorithms which are capable of exploiting the real-time
information about the geo-location of buses made available by many transit authorities.

2 Preliminaries

In the following we introduce some basic terminology which will be useful throughout the
paper. Our public transport networks consist of a set of stops, a set of hops and a set of
footpaths:

A stop corresponds to a location in the network where passengers may either enter or
exit a transit vehicle (such as a bus stop or a subway station).

A hop is a connection between two adjacent stops and models a vehicle departing from
stop u and arriving at stop v without intermediate stops in between.

A trip consists of a sequence of consecutive hops operated by the same transit vehicle.
Trips can be grouped into lines, serving the exact same sequence of consecutive hops.

A footpath enables walking transfers between nearby stops. Each footpath consists of two
stops and an associated (constant) walking time between the two stops.

A journey connects a source stop s and a target stop t, and consists of a sequence of
trips and footpaths in the order of travel. Each trip in the journey is associated with two
stops, corresponding to the pick-up and drop-off points.

1 Roma Servizi per la Mobilità [28].

ATMOS’13

18 Is Timetabling Routing Always Reliable for Public Transport?

3 Experimental Setup

3.1 Experiments

In our experiments, we considered the public transport network of Rome, which consists of
309 bus lines and 3 subway lines, with a total of 7,092 stops (7,037 bus stops and 55 subway
stops). We generated random queries, where each query qi consisted of a triple 〈si, ti, τi〉:

si is the start stop;
ti is the target stop;
τi is the time of the departure from the start stop.

Our experiments were carried out as follows. Each start and target stop si and ti was
generated uniformly at random in the metropolitan area of Rome, while the departure time τi
was chosen uniformly at random between 7:00am and 9:00pm. We selected Thursday June 6,
2013 as a day for our experiments, and in this day we did not observe any particular deviation
form the typical delays in the trips. We submitted each query qi to Google Transit on the
very same day (June 6, 2013), and collected all the journeys suggested in return to the query
and their predicted traveling times. In the vast majority of cases, Google Transit returns 4
journeys, but there were queries that returned less than 4 public transit journeys; this might
happen, for instance, when one of the journeys returned is a footpath. This produced a total
of 4, 018 journeys. Note that, since Google Transit is based on the timetabled data provided
by the transit agency of Rome, the predicted traveling time of each journey is computed
according to the timetable.

We next tried to measure empirically the actual time required by each such journey in the
real public transport network. We performed this as follows. On June 6, 2013 we submitted
queries every minute to the transit agency of Rome [28], in order to obtain (from GPS data)
the instantaneous geo-location of all vehicles in the network. Given that stream of GPS
data, we built a simulation system capable of following precisely each journey from a given
starting time, according to the GPS tracking of transit vehicles in the transport network.
We describe this process in more detail in Section 3.2. Finally, we computed the actual total
time required by each route in our simulator and compared it against its original estimate
given by Google Transit.

3.2 Simulation system

Our system makes it possible to simulate closely the experience of a user traveling according
to each input journey, after leaving the origin at the corresponding time. For each trip in
the journey, the pick-up and drop-off times are computed according to the position of transit
vehicles in the public transport network. A user can be picked-up or dropped-off either
earlier or later than originally scheduled, and if a delayed transit vehicle misses a connection
then the next trip of the same line is chosen. To obtain the real-time position of ground
vehicles (such as buses, trains or trams) we used streamed GPS data, while for trips which
do not provide vehicle live positions (such as saubway train trips) we employed their original
estimate given by Google Transit. This allows us to follow input journey containing both
ground and underground trips as well. We remark that all of the journeys produced in our
experiments contained at least one trip operated by ground vehicles. Finally, we used Google
Maps to compute the times needed by footpaths.

D. Firmani, G.F. Italiano, L. Laura, and F. Santaroni 19

4 Experimental Results

In this section we report the results of our experiments. We compare the estimated time te(j)
required by each journey j according to the timetable (as reported by Google Transit), and
its actual time ta(j) computed from the vehicle real-time positions given by the stream of
GPS data (as contained in our simulation system). More specifically, we define the error
coefficient of journey j to be ta(j)/te(j). Note that the error coefficient measures the distance
between the time predicted by timetabling routing and the actual time that journey j will
incur in reality. It will be equal to 1 whenever the actual journey will be in perfect agreement
with the times predicted by timetabling routing. It will be larger than 1 whenever the actual
journey will be slower than what was predicted by timetabling routing (increased waiting
times at a bus stop for a delayed connection). It will be smaller than 1 whenever the actual
journey will be faster than what was predicted by timetabling routing (smaller waiting times
at a bus stop, which can happen in the case a previous connection, which was infeasible by
timetabling, was delayed and can become a viable option in the actual journey). Obviously,
the more the error coefficient will deviate substantially from 1 (especially in the case where
it is larger than 1), the less accurate will be the time estimations of timetabling routing and
the more likely is that timetabling routing will fail to compute the shortest journeys.

4.1 Measured error coefficients
To report the distribution of the error coefficients as a function of the journey time, we
proceed as follows. For each journey j, the journey time is taken as the estimated time te(j)
according to the timetable. Since there can be multiple journeys sharing the same value of
te(j), we group those journeys into time slots within a 3-minute resolution. More formally,
we measure te(j) in minutes and the k-th time slot σk contains all journeys j such that
te(j) ∈ [3k, 3(k + 1)]. For each time slot, we look at the proximity of the obtained error
coefficient distribution to the constant 1, which represents the ideal scenario where the times
of actual journeys are in perfect agreement with the times predicted by timetabling routing.
To this end, we compute the metrics below:

Average. We measure the average of the error coefficient in each time slot.
Percentiles. Analogously, for each time slot σ, we measure the 10th percentile and the
90th percentile of the error coefficients.
Minimum-Maximum. Finally, we measure minj∈σ{ ta(j)

te(j)} and maxj∈σ{ ta(j)
te(j)}

We define te(σk) = 3k + 1.5 and plot both the evolution of these statistics and the error
coefficient, as functions of te. This also enable us to distinguish between short distance
journeys, i.e., journeys j with te(j) smaller than 30 minutes, medium distance journeys,
i.e., journeys j with te(j) between and 30 and 60 minutes, and long distance journeys, i.e.,
journeys taking more than 60 minutes.

Figure 1 plots the error coefficient for each journey and illustrates the average of the error
coefficients for each time slot obtained in our experiments. Note that the error coefficients
fluctuate wildly, ranging from 0.15 to 4.44, and the reader may ask how actual trips with
extremely small or extremely high error coefficients look like. To this end, we provide more
details on two extreme cases, which are a short journey with minimum error coefficient and
a long journey with maximum error coefficient, denoted by jm and jM respectively:

jm consists of a single short distance trip, ta(jm) = 2 minutes, te(jm) = 13 minutes and
error coefficient ≈ 0.15;
jM consists of 3 short distance trips and 1 medium distance trip, ta(jM) = 3 hours and
49 minutes, te(jM) = 1 hour and 24 minutes and error coefficient ≈ 2.72.

ATMOS’13

20 Is Timetabling Routing Always Reliable for Public Transport?

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

00:00 00:15 00:30 00:45 01:00 01:15 01:30

R
ea

l T
im

e
/ T

im
et

ab
lin

g

Journey Time

average

Figure 1 Distribution of the error coefficients as a function of the journey times (better viewed
in color).

The short journey connects two stops which are rather close to each other, and only require
a 1-minute bus trip: in this case, the discrepancy between the estimated and the actual
travel time is induced by the waiting time at the bus stop. The long journey connects two
stops which are rather far away: the journey itself consists of four trips (three short distance
and one long distance trip), operated by ground vehicles through intense traffic areas. This
results in moderate delays on the short distance trips and a much higher delay on the medium
distance trip due to intense traffic.

While high fluctuations are possible, the average error coefficient lies in the interval
[1.13, 1.73], which implies that on the average the actual journey times are between 13% and
73% slower than the times used by timetabling routing! In detail, the average error coefficient
falls between 1.27 and 1.73 for short journeys, and between 1.13 and 1.26 for long journeys.
The fact that the error coefficients appear to be substantially larger for short journeys is not
surprising, as short journeys are likely to be more affected (in relative terms) by fluctuations
on the schedule. On the other side, larger errors might be less tolerable on short journeys
from the users’ perspective.

Figure 2 shows the 10th and the 90th percentiles of the distribution of the error coefficients.
For the sake of comparison, for each time slot we report also the minimum and the maximum
error coefficient. This gives us an interesting insight on a typical user experience: in 80% of
the short journeys computed by a timetable-based method, the actual time required ranges
from 0.72 to 3.14 of the time estimated with timetabling. Analogously, the same percentage
of long journeys takes up to 2 times more than the estimated time. As for the first and last
deciles, we observe higher variability in the short journeys rather than in the long journeys.
Finally, we observe that 10% of the journeys taking from 15 to 45 minutes are distributed
over a long tail in the range [1.6, 3.8]. Roughly speaking, 1 such journey out of 10 will take
more than twice the scheduled time!

D. Firmani, G.F. Italiano, L. Laura, and F. Santaroni 21

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

00:00 00:15 00:30 00:45 01:00 01:15 01:30

R
ea

l T
im

e
/ T

im
et

ab
lin

g

Journey Time

max
90th perc
average

10th perc
min

Figure 2 The 10th and the 90th percentiles of the distribution of the error coefficients (better
viewed in color).

It is natural to ask in this scenario whether different discrepancies between the estimated
and the actual travel times could be observed under different traffic conditions. As illustrated
in Figures 3–5, the distribution of the error coefficients is slightly affected by the different
times of the day, which mainly differ for the traffic conditions. This is not surprising, as our
queries are generated at random and do not follow the traffic patterns. Since in the morning
rush hours there is more traffic towards the city center, while in the evening rush hours the
traffic flows out of the city center, only a small percentage of random queries are likely to
be affected by those traffic patterns. In the full paper, we will report the result of other
experiments that will highlight this phenomenon.

4.2 Correlations in ranking

In order to get deeper insights on the differences between the time estimates provided by
timetabling and the actual times obtained by tracking transit vehicles in the network, we
next investigate the relative rankings of journeys. Namely, for each query we take the four
journeys provided by Google Transit and compare their relative rankings in the lists produced
by two methods, according to the travel times. If the ranking of the four journeys agree
(say, the shortest journey for timetabled routing is also the shortest journey in our real-time
simulation with GPS data, the second shortest journey for timetabled routing is also the
shortest journey in our real-time simulation, etc...) then there is a strong correlation between
the two rankings, independently of the values of the journey times.

To assess the degree of similarity between the two rankings, we use the Kendall Tau
coefficient [22]. This is a rank distance metric that counts the number of pairwise disagree-
ments between two ranking lists: the larger the distance, the more dissimilar the two lists

ATMOS’13

22 Is Timetabling Routing Always Reliable for Public Transport?

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

00:00 00:15 00:30 00:45 01:00 01:15 01:30

R
ea

l T
im

e
/ T

im
et

ab
lin

g

Journey Time

average

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

00:00 00:15 00:30 00:45 01:00 01:15 01:30

R
ea

l T
im

e
/ T

im
et

ab
lin

g

Journey Time

max
90th perc
average

10th perc
min

Figure 3 Distribution of the error coefficients in journeys with time of the departure from 7:30am
to 9:30am (better viewed in color).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

00:00 00:15 00:30 00:45 01:00 01:15 01:30

R
ea

l T
im

e
/ T

im
et

ab
lin

g

Journey Time

average

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

00:00 00:15 00:30 00:45 01:00 01:15 01:30

R
ea

l T
im

e
/ T

im
et

ab
lin

g

Journey Time

max
90th perc
average

10th perc
min

Figure 4 Distribution of the error coefficients in journeys with time of the departure from 11:30am
to 1:30pm (better viewed in color).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

00:00 00:15 00:30 00:45 01:00 01:15 01:30

R
ea

l T
im

e
/ T

im
et

ab
lin

g

Journey Time

average

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

00:00 00:15 00:30 00:45 01:00 01:15 01:30

R
ea

l T
im

e
/ T

im
et

ab
lin

g

Journey Time

max
90th perc
average

10th perc
min

Figure 5 Distribution of the error coefficients in journeys with time of the departure from 5:00pm
to 7:00pm (better viewed in color).

D. Firmani, G.F. Italiano, L. Laura, and F. Santaroni 23

-1

-0.75

-0.5

-0.25

 0

 0.25

 0.5

 0.75

 1

00:00 00:15 00:30 00:45 01:00 01:15 01:30

K
e
n
d
a
ll

T
a
u
-b

 R
a
n
k
 C

o
rr

.
C

o
e
ff
.

Journey Times

average

Figure 6 Kendall Tau-b coefficients for the queries in our experiment (better viewed in color).

are. In particular, we use the Tau-b statistic, which is used when ties exist [3]. The Tau-b
coefficient ranges from −1 (100% negative association, or perfect inversion) to +1 (100%
positive association, or perfect agreement): a value of 0 indicates the absence of association
(i.e., independence of the two rankings).

Figure 6 shows values of the Kendall Tau-b coefficient for the queries considered in our
experiment, plotted against the journey times. As one could expect, in many cases there is a
positive correlation between the time estimates provided by timetabling and the actual times
obtained by tracking transit vehicles. However, there are also values close to 0, and even
worse, there are many negative Tau-b coefficients. The average Tau-b coefficient for each
time slot is close to 0.25, which implies only a mildly positive correlation between the two
rankings considered. In particular, the average Tau-b coefficient has smaller values for very
short journeys and for long journeys: those cases appear to be more vulnerable to fluctuations
in the schedule, and thus there seems to be a larger error on the time estimates provided
by timetabled routing. In general, the rank correlation analysis given by the Kendall Tau-b
statistics shows even more convincing arguments that, according to our experiments in the
public transport network considered, timetabled routing fails to deliver optimal or even
high-quality solutions.

5 Final Remarks

In this paper we measured empirically the quality of the solutions computed by timetabling
routing in a real public transport network: for many queries, we compared the time estimate
provided by Google Transit with the actual times, computed using the real-time GPS data of
the transit vehicles. Our analysis shows that widely used timetable routing algorithms suffer
from many inaccuracies, as they are based on incorrect estimations of the waiting/transfer
times at transit stops, and thus they might fail to deliver an optimal solution.

ATMOS’13

24 Is Timetabling Routing Always Reliable for Public Transport?

The main question that arises naturally in this scenario is how to exploit the real-time
information about the geo-location of buses to overcome the inherent oversights of timetable
routing and to compute the truly best possible (under several optimization criteria) point-
to-point routes, such as shortest routes, routes with minimum number of transfers, etc. As
shown recently [20, 21, 27], geo-location data could in fact provide a more accurate and
realistic modeling of public transport networks, as they are able to provide better estimates
on many variables, such as bus arrival times, the times needed to make a transfer, or the
times needed to travel arcs in the transport network. In particular, we expect that this more
accurate modeling will make it possible to compute solutions of better quality overall.

Another important issue to investigate is how to compute robust routes, e.g., routes
with more backup options (again, based on the current geo-location of buses) and thus less
vulnerable to unexpected events. We remark that, whichever is the optimization criterion,
route planning with real-time updates on the location of buses appears to be a challenging
problem. This is because one has to deal with the sheer size of the input network, augmented
with the actual location of buses and combined with a huge bulk of real-time updates, and
the fact that such updates provide accurate information only about the past and the current
state of the network, while, in order to answer effectively routing queries, one still needs to
infer some realistic information about the future. Perhaps, this explains why a solution to
these problems has been elusive, despite the fact that geo-location data have been already
available for many years.

Acknowledgements We wish to thank the transit agency of Rome, Roma Servizi per la
Mobilità, and in particular Luca Allulli, Carlo Gentile, Damiano Morosi, and Fabio Schiavo,
for their kind assistance with the GPS data used to track the transit vehicles in the transport
network of Rome.

References
1 Ittai Abraham, Daniel Delling, Amos Fiat, Andrew V. Goldberg, and Renato Fonseca F.

Werneck. VC-dimension and shortest path algorithms. In Luca Aceto, Monika Henzinger,
and Jiri Sgall, editors, Proc. of the 38th International Colloquium on Automata, Languages
and Programming (ICALP), pages 690–699. Springer Berlin Heidelberg, 2011.

2 Ittai Abraham, Amos Fiat, Andrew V. Goldberg, and Renato Fonseca F. Werneck. Highway
dimension, shortest paths, and provably efficient algorithms. In Moses Charikar, editor,
Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 782–793. SIAM, 2010.

3 A. Agresti. Analysis of Ordinal Categorical Data. Probability and Statistics. Wiley, 2010.
4 Hannah Bast. Car or public transport—two worlds. In Susanne Albers, Helmut Alt,

and Stefan Näher, editors, Proceedings of the 8th Symposium on Experimental Algorithms
(SEA), volume 5760 of Lecture Notes in Computer Science, pages 355–367. Springer Berlin
Heidelberg, 2009.

5 Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Harrelson, Veselin
Raychev, and Fabien Viger. Fast routing in very large public transportation networks using
transfer patterns. In Mark de Berg and Ulrich Meyer, editors, Proceedings of the 18th
annual European conference on Algorithms (ESA): Part I, pages 290–301. Springer Berlin
Heidelberg, 2010.

6 Holger Bast, Stefan Funke, Domagoj Matijevic, Peter Sanders, and Dominik Schultes. In
transit to constant time shortest-path queries in road networks. In Proceedings of the 9th
Workshop on Algorithm Engineering and Experiments (ALENEX). SIAM, 2007.

D. Firmani, G.F. Italiano, L. Laura, and F. Santaroni 25

7 Annabell Berger, Daniel Delling, Andreas Gebhardt, and Matthias Müller-Hannemann. Ac-
celerating time-dependent multi-criteria timetable information is harder than expected. In
Jens Clausen and Gabriele Di Stefano, editors, Proceedings of the 9th Workshop on Al-
gorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS).
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Germany, 2009.

8 Annabell Berger, Andreas Gebhardt, Matthias Müller-Hannemann, and Martin Ostrowski.
Stochastic delay prediction in large train network. In Alberto Caprara and Spyros C.
Kontogiannis, editors, Proceedings of the 9th Workshop on Algorithmic Approaches for
Transportation Modeling, Optimization, and Systems (ATMOS), pages 100 – 111. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Germany, 2011.

9 Daniel Delling, Bastian Katz, and Thomas Pajor. Parallel computation of best connections
in public transportation networks. ACM Journal on Experimental Algorithmics, 17:(4.4),
October 2012.

10 Daniel Delling, Thomas Pajor, and Renato Fonseca Werneck. Round-based public transit
routing. In David A. Bader and Petra Mutzel, editors, Proceedings of the 14th Workshop
on Algorithm Engineering and Experiments (ALENEX), pages 130–140. SIAM, 2012.

11 Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner. Engineering route
planning algorithms. In Jürgen Lerner, Dorothea Wagner, and Katharina A. Zweig, editors,
Algorithmics of Large and Complex Networks, pages 117–139. Springer Berlin Heidelberg,
2009.

12 Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Intriguingly simple
and fast transit routing. In Vincenzo Bonifaci, Camil Demetrescu, and Alberto Marchetti-
Spaccamela, editors, Proceedings of the 12th Symposium on Experimental Algorithms
(SEA), volume 7933 of Lecture Notes in Computer Science, pages 43–54. Springer Berlin
Heidelberg, 2013.

13 Yann Disser, Matthias Müller–Hannemann, and Mathias Schnee. Multi-criteria shortest
paths in time-dependent train networks. In Catherine C. McGeoch, editor, Proceedings
of the 7th Workshop on Experimental Algorithms (WEA), pages 347–361. Springer Berlin
Heidelberg, 2008.

14 Robert Geisberger. Contraction of timetable networks with realistic transfers. In Paola
Festa, editor, Proceedings of the 9th Symposium on Experimental Algorithms (SEA), volume
6049 of Lecture Notes in Computer Science, pages 71–82. Springer Berlin Heidelberg, 2010.

15 Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Contraction
hierarchies: Faster and simpler hierarchical routing in road networks. In Catherine C.
McGeoch, editor, Proceedings of the 7th Workshop on Experimental Algorithms (WEA),
pages 319–333. Springer Berlin Heidelberg, 2008.

16 M. Goerigk, M. Knoth, M. Müller–Hannemann, M. Schmidt, and A. Schöbel. The price
of robustness in timetable information. In Alberto Caprara and Spyros C. Kontogiannis,
editors, Proceedings of the 9th Workshop on Algorithmic Approaches for Transportation
Modeling, Optimization, and Systems (ATMOS), pages 76 – 87. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Germany, 2011.

17 Andrew V. Goldberg. The hub labeling algorithm. In Vincenzo Bonifaci, Camil Demetrescu,
and Alberto Marchetti-Spaccamela, editors, Proceedings of the 12th Symposium on Exper-
imental Algorithms (SEA), page 4. Springer Berlin Heidelberg, 2013.

18 Andrew V. Goldberg, Haim Kaplan, and Renato F. Werneck. Reach for A*: Efficient point-
to-point shortest path algorithms. In Rajeev Raman and Matthias F. Stallmann, editors,
Proceedings of the 8th Workshop on Algorithm Engineering and Experiments (ALENEX),
pages 129–143. SIAM, 2006.

19 Ronald J. Gutman. Reach-based routing: A new approach to shortest path algorithms
optimized for road networks. In Lars Arge, Giuseppe F. Italiano, and Robert Sedgewick,

ATMOS’13

26 Is Timetabling Routing Always Reliable for Public Transport?

editors, Proceedings of the Sixth Workshop on Algorithm Engineering and Experiments and
the First Workshop on Analytic Algorithmics and Combinatorics, pages 100–111. SIAM,
2004.

20 Timothy Hunter, Ryan Herring, Pieter Abbeel, and Alexandre Bayen. Path and travel time
inference from GPS probe vehicle data. In Daphne Koller, Yoshua Bengio, Léon Bottou,
and Aron Culotta, editors, Advances in Neural Information Processing Systems 21. Nips
Foundation, 2009.

21 Erik Jenelius and Haris N. Koutsopoulos. Travel time estimation for urban road networks
using low frequency probe vehicle data. Transportation Research Part B: Methodological,
53(0):64 – 81, 2013.

22 M. Kendall. A new measure of rank correlation. Biometrika, 30(1–2):81–89, 1938.
23 Matthias Müller-Hannemann and Mathias Schnee. Efficient timetable information in the

presence of delays. In Christos D. Zaroliagis Ravindra K. Ahuja, Rolf H. Möhring, editor,
Robust and Online Large-Scale Optimization, pages 249–272. Springer Berlin Heidelberg,
2009.

24 Matthias Müller-Hannemann, Frank Schulz, Dorothea Wagner, and Christos D. Zarolia-
gis. Timetable information: Models and algorithms. In Frank Geraets, Leo Kroon, Anita
Schoebel, Dorothea Wagner, and Christos D. Zaroliagis, editors, Algorithmic Methods for
Railway Optimization, pages 67–90. Springer Berlin Heidelberg, 2007.

25 Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos D. Zaroliagis. Efficient
models for timetable information in public transportation systems. ACM Journal on Ex-
perimental Algorithmics, 12:(2.4), 2008.

26 Peter Sanders and Dominik Schultes. Highway hierarchies hasten exact shortest path quer-
ies. In Gerth Stølting Brodal and Stefano Leonardi, editors, Proceedings of the 13th an-
nual European conference on Algorithms (ESA), pages 568–579. Springer Berlin Heidelberg,
2005.

27 Jing Yuan, Yu Zheng, Xing Xie, and Guangzhong Sun. Driving with knowledge from
the physical world. In Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’11, pages 316–324, New York, NY, USA, 2011.
ACM.

28 Agenzia Roma servizi per la Mobilità. Muoversi a Roma. http://muovi.roma.it/, 2013.
[Online; accessed June-2013].

http://muovi.roma.it/

Robust Routing in Urban Public Transportation:
How to find reliable journeys based on past
observations ∗

Kateřina Böhmová, Matúš Mihalák, Tobias Pröger,
Rastislav Šrámek, and Peter Widmayer

Institute of Theoretical Computer Science, ETH Zurich, Switzerland
{kboehmov,mmihalak,tproeger,rsramek,widmayer}@inf.ethz.ch

Abstract
We study the problem of robust routing in urban public transportation networks. In order to
propose solutions that are robust for typical delays, we assume that we have past observations of
real traffic situations available. In particular, we assume that we have “daily records” containing
the observed travel times in the whole network for a few past days. We introduce a new concept to
express a solution that is feasible in any record of a given public transportation network. We adapt
the method of Buhmann et al. [4] for optimization under uncertainty, and develop algorithms
that allow its application for finding a robust journey from a given source to a given destination.
The performance of the algorithms and the quality of the predicted journey are evaluated in a
preliminary experimental study. We furthermore introduce a measure of reliability of a given
journey, and develop algorithms for its computation. The robust routing concepts presented in
this work are suited specially for public transportation networks of large cities that lack clear
hierarchical structure and contain services that run with high frequencies.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory (Graph algorithms, Network problems), I.2.6 Learning

Keywords and phrases Algorithms, Optimization, Robustness, Route planning, Public trans-
portation

Digital Object Identifier 10.4230/OASIcs.ATMOS.2013.27

1 Introduction

We study the problem of routing in urban public transportation networks, such as tram and
bus networks in large cities, focusing on the omnipresent uncertain situations when (typical)
delays occur. In particular, we search for robust routes that allow reliable yet quick passenger
transportation. We think of a “dense” tram network in a large city containing many tram
lines, where each tram line is a sequence of stops that is served repeatedly during the day,
and where there are several options to get from one location to another. Such a network
usually does not contain clear hierarchical structure (as opposed to train networks), and
each line is served with high frequency. Given two tram stops a and b together with a latest
arrival time tA, our goal is to provide a simple yet robust description of how to travel in the

∗ This work has been partially supported by the Swiss National Science Foundation (SNF) under the
grant number 200021 138117/1, and by the EU FP7/2007-2013 (DG CONNECT.H5-Smart Cities
and Sustainability), under grant agreement no. 288094 (project eCOMPASS). Kateřina Böhmová is a
recipient of the Google Europe Fellowship in Optimization Algorithms, and this research is supported
in part by this Google Fellowship.

© K. Böhmová, M. Mihalák, T. Pröger, R. Šrámek, and P. Widmayer;
licensed under Creative Commons License CC-BY

13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’13).
Editors: Daniele Frigioni, Sebastian Stiller; pp. 27–41

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2013.27
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

28 Robust Routing in Urban Public Transportation

given network from a to b in order to arrive on time tA even in the presence of typical delays.
We base our robustness concepts on past traffic data in a form of recorded timetables – the
actually observed travel times of all lines in the course of several past days. If no delays
occur, such a recorded timetable corresponds to the scheduled timetable for that day.

The standard approach to describe a travel plan from a to b in a given tram network is to
specify, according to a scheduled timetable, the concrete sequence of vehicles together with
transfer stops and departure/arrival times for each transfer stop. Such a travel plan may
look like this: Take the tram 6 at 12:33 from stop a and leave it at 12:47 at transfer stop s;
then take the tram 10 at 12:51 from s and leave it at 12:58 at b. However, such a travel plan
may become infeasible on a concrete day due to delays: Imagine a situation where the tram
6 left a at 12:33, but arrived to s only at 12:53, and the tram 10 leaving s at 12:51 was on
time. Then, the described travel plan would bring the passenger to stop s but it does not
specify how to proceed further in order to arrive to b.

We observe that the standard solution concepts (such as paths in a time-expanded graph)
are not suitable for our setting. We introduce a new concept to express a solution, which we
call a journey, that is feasible in any recorded timetable of a given transportation network
assuming the timetable to be periodic. A journey specifies an initial time tD and then only a
sequence of transportation lines 〈l1(tram), l2(bus), . . . , lk(tram)〉 together with transfer stops
〈s1, . . . , sk−1〉. This travel plan suggests to start waiting at a at time tD, take the first tram
of line l1 that comes and travel to stop s1, then change to the first coming bus of line l2, etc.
Since we assume that the frequency of vehicles serving each line is high, such a travel plan is
not only feasible in our setting but also reasonable, and provides the passenger with all the
necessary information. We provide algorithms to efficiently compute these journeys.

Equipped with the introduced solution concept of a journey, we can easily adapt the
method of Buhmann et al. [4] for optimization under uncertainty, and apply it to identify
robust travel plans. A key ingredient of the method is the ability to count the number of
(possibly exponentially many) “good” solutions. Our solution concept allows us to develop
efficient algorithms to compute the number of all journeys from a to b that depart after the
time tD and arrive before the time tA.

Finally, we suggest an alternative simple measure for reliability of a given journey,
expressed simply as the fraction of recorded timetables where the journey was successful and
allowed to arrive at the destination on time. We provide efficient algorithms for computation
of this measure.

2 Related Work

The problem of finding a fastest journey (according to the planned timetable) using public
transportation has been extensively studied in the literature. Common approaches model
the transportation network as a graph and compute a shortest path in this graph (see [12]
for a survey). Various improvements have been developed, and experimental studies suggest
that these can also be used in practice (see, e.g., [2, 5, 14]). Recent approaches avoid the
construction of a graph and process the timetable directly [6, 7]. For example, Delling et
al. [6] describe an approach which is centered around transportation lines (such as train or
bus lines) and which can be used to find all pareto-optimal journeys when the arrival time
and the number of stops are considered as criteria. Bast et al. [1] observe that for two given
stops, we can find and encode each sequence of intermediate transfer stations (i.e., stations
where we change from one line to another) that can lead to an optimal route. The set of
these sequences of transfers is called transfer pattern. These patterns can be precomputed,

K. Böhmová, M. Mihalák, T. Pröger, R. Šrámek, and P. Widmayer 29

s0

s1

s2

s3 ba

c
d

l1
l2

l3

l4

Figure 1 The line l1 is a sequence of stops 〈. . . , s0, a, s1, c, d, s2, . . . 〉. The line l4 =
〈. . . , s2, d, c, s1, b, s0, . . . 〉 that goes in the opposite direction to l1 is considered to be a differ-
ent line. In this example, both a / l1 and a / l4 hold, but a / l2 does not. Similarly, s1 / s2 / l1 holds,
but s1 / s2 / l4 does not. The set l1 ∩ l2 of all stops common to l1 and l2 is {s0, s1, s2}. Moreover,
when travelling from a to b using a route 〈l1, l2, l3〉, this network is an example where not every
stop in l1 ∩ l2 is suitable for changing from l1 to l2: We cannot choose s0 as transfer stop since it is
served before a. If s2 was chosen, then l3 can never be reached without travelling back. Thus, the
only valid stop to change the line is s1.

leading to very fast query times. These approaches are similar to our approach in the sense
that they try to explicitly exploit the problem structure (e.g., by considering lines) instead
of implicitly modelling all properties into a graph.

For computing robust journeys in public transportation, stochastic networks have been
studied [3, 9, 13], where the delays between successive edges are random variables. Dibbelt
et al. [7] study the case when stochastic delays on the vehicles are given. In a situation
when timetables are fixed, Disser et al. [8] used a generalization of Dijkstra’s algorithm to
compute pareto-optimal multi-criteria journeys. They define the reliability of a journey as a
function depending on the minimal time to change between two subsequent trains, and use
it as an additional criterion. Müller-Hannemann and Schnee [11] introduced the concept of a
dependency graph for a prediction of secondary delays caused by some current primary delays,
which are given as input. They also show how to compute a journey that is optimal with
respect to the predicted delays. Goerigk et al. [10] consider a given set of delay scenarios
for every event, and adapt strict robustness to it, i.e. they aim to compute a journey that
arrives on time for every scenario. Furthermore, the concept of light robustness is introduced,
which aims to compute a journey that maximizes the number of scenarios in which the travel
time of this journey lies at most a fixed time above the optimum. Strict robustness requires
a feasible solution for every realization of delays for every event. This is quite conservative,
as in reality not every combination of event delays appears. Our approach tries to avoid this
by learning from the typical delay scenarios as recorded for each individual day.

3 Modeling issues

3.1 Model

Stops and lines Let S be a set of stops, and L ⊂
⋃|S|
i=2 Si be a set of lines (e.g., bus lines,

tram lines or lines of other means of transportation). The following basic definitions are
illustrated in Figure 1. Every line l ∈ L is a sequence of S(l) stops 〈s(l)

1 , . . . , s
(l)
S(l)〉, where,

for every i ∈ {1, . . . , S(l)− 1}, the stop s(l)
i is served directly before s(l)

i+1 by the line l. We
explicitly distinguish two lines that serve the same stops but have opposite directions (these
may be operated under the same identifier in reality). For a stop s ∈ S and a line l ∈ L,
we write s / l if s is a stop on the line l, i.e. if there exists an index i ∈ {1, . . . , S(l)} such

ATMOS’13

30 Robust Routing in Urban Public Transportation

that s = s
(l)
i . Furthermore, for two stops s1, s2 ∈ S and a line l ∈ L we write s1 / s2 / l if

both s1 and s2 are stops on l and s1 is served before s2, i.e. if there exist indices i, j ∈ N,
1 ≤ i ≤ S(l)− 1, i+ 1 ≤ j ≤ S(l) such that s1 = s

(l)
i and s2 = s

(l)
j . For two lines l1, l2 ∈ L,

we define l1 ∩ l2 to be the set of all stops s ∈ S that are served both by l1 and l2.

Trips and timetables While the only information associated with a line itself are its
consecutive stops, it usually is operated multiple times per day. Each of these concrete
realizations that departs at a given time of the day is called a trip. With every trip τ we
associate a line L(τ) ∈ L. By L−1(l) we denote the set of all trips associated with a line
l ∈ L. For a trip τ and a stop s ∈ S, let A(τ, s) be the arrival time of τ at stop s, if s / L(τ).
Analogously, let D(τ, s) be the departure time of τ at s. In the following, we assume time
to be modelled by integers. For a given trip τ , we require A(τ, s) ≤ D(τ, s) for every stop
s ∈ L(τ). Furthermore we require D(τ, s1) ≤ A(τ, s2) for every two stops s1, s2 ∈ S with
s1 / s2 / L(τ). A set of trips is called a timetable. We distinguish between

1. the planned timetable T . We assume it to be periodic, i.e., every line realized by some
trip τ will be realized by a later trip τ ′ again (probably not on the same day).

2. recorded timetables Ti that describe how various lines were operated during a given time
period (i.e., on a concrete day or during a concrete week). These recorded timetables are
concrete executions of the planned timetable.

In the following, timetable refers both to the planned as well as to a recorded timetable.

Goal In the following, let a, b ∈ S be two stops, m ∈ N0 be the maximal allowed number of
line changes, and tA ∈ N be the latest arrival time. A journey consists of a departure time tD,
a sequence of lines 〈l1, . . . , lk〉, k ≤ m+ 1 and a sequence of transfer stops 〈s(1)

CH, . . . , s
(k−1)
CH 〉.

The intuitive interpretation of such a journey is to start at stop a at time tD, take the first
line l1 (more precisely, the first available trip of the line l1), and for every i ∈ {1, . . . , k − 1},
leave li at stop s(i)

CH and take the next arriving line li+1 immediately. Our goal is to compute
a recommendation to the user in form of one or more (robust) journeys from a to b that will
likely arrive on time (i.e., before time tA) on a day for which the concrete travel times are not
known yet. We formalize the notion of robustness later. We note that for the convenience of
the user, one should handle two different lines l1 and l2 operating between two stops s1 and
s2 as one (virtual) line, and provide recommendations of the form “in s1, take the first line
l1 or l2 to s2, etc.”. For the sake of simplicity we do not pursue this generalization further,
but will consider this in the future.

Routes Let k ∈ {1, . . . ,m + 1} be an integer. A sequence of lines r = 〈l1, . . . , lk〉 ∈ Lk is
called a feasible route from a to b if there exist k + 1 stops s0 := a, s1, . . . , sk−1, sk := b such
that si−1 / si / li for every i ∈ {1, . . . , k}, i.e., if both si−1 and si are stops on line li, and
si−1 is served before si on line li. Notice that on a feasible route r ∈ Lk we need to change
the line at k − 1 transfer stops. Let

Rmab = {r ∈ L ∪ L2 ∪ · · · ∪ Lm+1 | r is a feasible route from a to b} (1)

be the set of all feasible routes from a to b using at most m transfer stops. If a, b and m
are clear from the context, for simplicity we just write R instead of Rmab. Notice that by
definition, a line l may occur multiple times in a route. This is reasonable because there might
be two transfer stops s, s′ on l and one or more intermediate lines that travel faster from s

to s′ than l does. Additionally, notice that a route does not contain any time information.

K. Böhmová, M. Mihalák, T. Pröger, R. Šrámek, and P. Widmayer 31

3.2 Computation of Feasible Routes

Input data In this section we describe an algorithm that, given a set of stops S and a set
of lines L, finds the set R of all feasible routes that allow to travel from a given initial stop a
to a given destination stop b using at most m transfer stops (also called transfers). Notice
that to compute R we only need the network structure, no particular timetable is necessary.
Preprocessing the input We preprocess the input data and construct data structures to
allow efficient queries of the following types:
1. Q(l, s): Compute the position of s on l. Given a line l = 〈s1, . . . , s|S(l)|〉, Q(l, s) returns j

if s is the j-th stop on l, i.e., if s = sj , or 0 if s is not served by l.
2. Q(l, si, sj): Determine whether si is served before sj on l. Given a line l and two stops

si, sj , Q(l, si, sj) returns TRUE iff si, sj / l and si / sj / l.
3. Q(li, lj): Determine li ∩ lj (i.e., the stops shared by li and lj) in a compact, ordered

format. Given two lines li, and lj , Q(li, lj) returns the set li ∩ lj of stops shared by these
lines. We encode li ∩ lj into an ordered set Iij of pairs of stops with respect to li in such
a way that (sq, sr) ∈ Iij indicates that li and lj share the stops sq, sr, and all the stops
in between on the line li (independent of their order on lj). Thus, Q(li, lj) outputs the
described sorted set Iij of pairs of stops. The motivation to compress li ∩ lj into Iij is
that, in practice, there may be many stops shared by li and lj , but only a small number
of contiguous intervals of such stops. Notice that Q(li, lj) doesn’t need to be equal to
Q(lj , li), nor the sequence in reverse order; an example is given in Figure 2.

Notice that these queries can be answered in expected constant time if implemented using
suitable arrays or hashing tables.
Graph of line incidences The function Q(li, lj) induces the following directed graph G. The
set V of vertices of G corresponds to the set of lines L. There is an edge from a vertex (line)
li to a vertex lj if and only if Q(li, lj) 6= ∅. Then, Q(li, lj) is represented as a tag of the edge
(li, lj). We construct and represent the graph G as adjacency lists.
Preliminary observations Given two stops a and b, and a number m, we want to find all
routes R that allow to travel from a to b using at most m transfers in the given public
transportation network described by a set of stops S and a set of lines L. Notice that each
such route r = 〈l1, . . . , lk〉 ∈ Lk with 0 < k ≤ m+ 1 has the following properties.
1. Both Q(l1, a) and Q(lk, b) are nonzero (i.e., a / l1, and b / lk).
2. The vertices l1, . . . , lk form a path in G (i.e., li ∩ li+1 6= ∅ for every i = 1, . . . , k − 1).
3. There exists a sequence of stops a = s0, s1, . . . , sk−1, sk = b such that Q(li, si−1, si) is

TRUE (i.e., si−1 / si / li) for every i = 1, . . . , k.
These observations lead to the following algorithm to find the set of routes R.
All routes algorithm For the stop a, determine the set La of all lines passing through a.
Then explore the graph G from the set La of vertices in the following fashion. For each
vertex l1 ∈ La, perform a depth-first search in G up to the depth m, but do not stop when
finding a vertex that has already been found earlier. In each step, try to extend a partial
path 〈l1, . . . , lj〉 to a neighbor l′j of lj in G. Keep track of the current transfer stop sq. This
is a stop on the currently considered line lj such that sq is the stop with the smallest position
on lj at which it is possible to transfer from lj−1 to lj , considering the partial path from l1 to
lj−1. In other words, sq is the stop on the considered route where the line lj can be boarded.
Each step of the algorithm is characterized by a search state: a partial path P = 〈l1, . . . , lj〉,
and a current transfer stop sq that allowed the transfer to line lj . The initial search state
consists of the partial path P = 〈l1〉 and the current transfer stop a. More specifically, to

ATMOS’13

32 Robust Routing in Urban Public Transportation

s1

s2

s3 s4

s5

s6

s7

s8

s9

s10
s11

s12

s13

s14

s15
s16

l′j

lj

Figure 2 Lines lj and l′j have common stops s3, s6, s11, s14, and s15. The ordered set Ijj′ =
Q(lj , l′j) consists of the pairs {(s3, s3), (s15, s11), (s6, s6)}. Thus, the last stop in the last interval
of Ijj′ is the stop s6. On the other hand, the ordered set Ij′j = Q(l′j , lj) consists of the pairs
{(s3, s3), (s6, s6), (s11, s15)}. Now, imagine that the current transfer stop sq for a partial path P =
〈l1, . . . , lj〉 is s2, then the stop s3 is the current transfer stop s′

q for a partial path P ′ = 〈l1, . . . , lj , l′j〉.
However, observe that if sq is s12, then s′

q needs to be s6.

process a search state with the partial path P = 〈l1, . . . , lj〉, and the current transfer stop sq,
perform the following tasks:
1. Check whether the line corresponding to the vertex lj contains the stop b and whether

sq is before b on lj . If this is the case (i.e., the query Q(lj , sq, b) returns TRUE), then the
partial path P corresponds to a feasible route and is output as one of the solutions in R.

2. If the partial path P contains at most m− 1 edges (thus the corresponding route has at
most m− 1 transfers, and can be extended), then for each neighbor l′j of lj check whether
extending P by l′j is possible (and if so, update the current transfer stop) as follows. Let
Ijj′ = Q(lj , l′j) be the set of pairs of stops sorted as described in the previous section.
Recall that each pair (su, sv) ∈ Ijj′ encodes an interval of one or several consecutive stops
on lj that are also stops on the line l′j . Let sz be the last stop in the last interval of Ijj′ .
Similarly, let Ij′j = Q(l′j , lj). If Q(lj , sq, sz) is TRUE, then sq / sz / lj , and the path P can
be extended to l′j .
a. We determine the current transfer stop s′q for l′j by considering the pairs/intervals of
Ij′j in ascending order and deciding whether the position of sq on the line lj is before
one of the endpoints of the currently considered interval. We refer to Figure 2 for a
nontrivial case of computing of the current transfer stop.

b. Perform the depth search with the search state consisting of the partial path P ′ =
〈l1, . . . , lj , l′j〉 and the current transfer stop s′q.

Otherwise, if Q(lj , sq, sz) is FALSE, it is not possible to extend P to l′j .
The theoretical running time of the algorithm is O(∆m), where ∆ is the maximum degree
of G. However, we believe that in practice the actual running time will rather linearly
correspond to the size of the output O(m|R|). On real-world data, the algorithm performs
reasonably fast (see section 6 for details).

3.3 Computing the earliest arriving journey

Recursive computation As previously stated, let a ∈ S be the initial stop, b ∈ S be the
destination stop, ε(s, l, l′) be the minimum time to change from line l to line l′ at station
s, and tA ∈ N be the latest arrival time. In the previous section we showed how the set R
of all feasible routes from a to b can be computed. However, instead of presenting just a
route r ∈ R to the user, our final goal is to compute a departure time t0 and a journey
that arrives at b before time tA. For the following considerations, we assume the underlying
timetable (either the planned or a recorded timetable) to be fixed. Given a, b ∈ S, an initial

K. Böhmová, M. Mihalák, T. Pröger, R. Šrámek, and P. Widmayer 33

departure time t0 ∈ N, and a route r = 〈l1, . . . , lk〉 ∈ R, a journey along r that arrives as
early as possible can be computed as follows. We start at a at time t0 and take the first line
l1 that arrives. Then we compute an appropriate transfer stop s ∈ l1 ∩ l2 (that is served both
by l1 as well as by l2) and the arrival time t1 at s, leave l1 there and compute recursively
the earliest arrival time when departing from s at time at least t1 + ε(s, l1, l2), following
the route 〈l2, . . . , lk〉. Notice that the selection of an appropriate transfer stop s is the only
non-trivial part due to mainly two reasons:
1. The lines l1 and l2 may operate with different speeds (e.g., because l1 is a fast tram while

l2 is a slow bus), or l1 and l2 separate at a stop s1 and join later again at a stop s2 but
the overall travel times of l1 and l2 differ between s1 and s2. Depending on the situation,
it may be better to leave l1 as soon or as late as possible, or anywhere inbetween.

2. The lines l1 and l2 may separate at a stop s1 and join later again at a stop s2. If all
transfer stops in l2 ∩ l3 are served by l2 before s2, then leaving l1 at s2 is not an option
since l3 is not reachable anymore. See Figure 1 for a visualization.

The idea now is to find the earliest trip of line l1 that departs from a at time t0 or later,
iterate over all stops s ∈ l1 ∩ l2, and compute recursively the earliest arrival time when
continuing the journey from s having a changing time of at least ε(s, l1, l2). Finally, we
return the smallest arrival time that was found in one of the recursive calls.
Issues and improvement of the recursive algorithm An issue with this naïve implementa-
tion is the running time, which might be exponential in k in the worst-case (if |li ∩ li+1| > 1
for Ω(k) many i ∈ {1, . . . , k − 1}). Let τ and τ ′ be two trips with L(τ) = L(τ ′). If τ leaves
before τ ′ at some stop s, we assume that it will never arrive later than τ ′ at any subsequent
stop s′, s / s′ / L(τ), i.e. consecutive trips of the same line do not overtake. For a line l ∈ L
and a set of trips Tl ⊆ L−1(l), it follows that taking the earliest trip in Tl never results in a
later arrival at b than taking any other trip from Tl. Furthermore, a trip τ ∈ Tl is operated
earlier than a trip τ ′ ∈ Tl iff A(τ, s) < A(τ ′, s) for any stop s / l.

Thus, we can iterate over some appropriate stops in l1 ∩ l2 to find the earliest reachable
trip associated with l2. We just need to ignore those stops where changing to l3 is no longer
possible (see Figure 1 for an example).
Computing appropriate transfer stops The problem to find these appropriate stops can be
solved by first sorting l1∩ l2 = {s1, . . . , sn} such that sj /sj+1 / l1 for every j ∈ {1, . . . , n−1}.
Obviously, all stops that appear before a on line l1 cannot be used for changing to l2. This
problem can easily be solved by considering only those stops sj where a/sj /l1. Unfortunately,
the last m ≥ 0 stops sn−m+1, . . . , sn might also not be suitable for changing to l2 because
they may prevent us later to change to some line lj (e.g., if all stops of l2 ∩ l3 are served
before sn−g+1, . . . , sn on l2, then changing to l3 is no longer possible). We solve this problem
by precomputing (the index of) the last stop sj where all later lines are still reachable. This
can be done backwards: we start at b, order the elements of lk ∩ lk−1 as they appear on
line lk, and find the last stop that is served before b on lk. We recursively continue with
l1, . . . , lk−1 and use the stop previously computed as the stop that still needs to be reachable.
Iterative algorithm The improved algorithm first iterates over i ∈ {1, . . . , k − 1}, and uses
the aforementioned algorithm to precompute the index last[i] of the last stop where changing
from li to li+1 is still possible (with respect to the route 〈l1, . . . , lk〉). After that, for every
i ∈ {1, . . . , k − 1}, we iterate over the appropriate transfer stops s ∈ li ∩ li+1 where changing
to li+1 is possible, and find among those the stop s(i)

CH where the earliest trip τi+1 associated
with line li+1 departs. Finally we obtain a sequence of trips τ1, . . . , τk along with transfer
stops s(0)

CH := a, s
(1)
CH, . . . , s

(k)
CH to change lines. Since we gradually compute the earliest trips

τi for each of the lines li, the earliest time to arrive at b is simply A(τk, b).

ATMOS’13

34 Robust Routing in Urban Public Transportation

EarliestArrival(a, b, t0, 〈l1, . . . , lk〉)

1 last[k]← b

2 for i← k, . . . , 2 do
3 Order the elements of li ∩ li−1 = {s1, . . . , sn} s.t. sj / sj+1 / li−1 ∀j ∈ {1, . . . , n− 1}.
4 last[i− 1]← max{j ∈ {1, . . . , n} | sj / last[i] / li}
5 τ1 ← arg minτ∈L−1(l1){D(τ, a) | D(τ, a) ≥ t0}; s

(0)
CH ← a

6 for i← 1, . . . , k − 1 do
7 Order the elements of li ∩ li+1 = {s1, . . . , sn} s.t. sj / sj+1 / li ∀j ∈ {1, . . . , n− 1}.
8 τi+1 ← null; s

(i)
CH ← null; A

(i+1)
sn ←∞

9 for j ← 1, . . . , last[i] do
10 if s(i−1)

CH / sj / li and sj / last[i+ 1] / li+1 then
11 τ ′ ← arg minτ∈L−1(li+1){D(τ, sj) | D(τ, sj) ≥ A(τi, sj) + ε(sj , li, li+1)}
12 if A(τ ′, sn) < A

(i+1)
sn then τi+1 ← τ ′; s

(i)
CH ← sj ; A

(i+1)
sn ← A(τ ′, sn)

13 return A(τk, b)

Let n = max{|li ∩ li+1|}. Given a line l ∈ L, a station s ∈ S and a time t0 ∈ N, let f be
the time to find the earliest trip τ with L(τ) = l und D(τ, s) ≥ t0 (this time depends on the
concrete implementation of the timetable). It is easy to see that the running time of the
above algorithm is bounded by O(kn(logn+ f)).

4 Maximizing the Unexpected Similarity

Computing the optimum journey for a fixed timetable Given two stops a, b ∈ S and a
departure time t0 ∈ N, we can already compute the earliest arrival of a journey from a to b
starting at time t0. From now on, we aim to compute the latest departure time at a when
the latest arrival time tA at b is given. For this purpose we present an algorithm that sweeps
backwards in time and uses the previous algorithm Earliest-Arrival. This sweepline
algorithm will later be extended to count journeys (instead of computing a single one) and
can be used for finding robust journeys, i.e. journeys that are likely to arrive on time.

The sweepline algorithm works as follows. We consider the trips departing at stop a

before time tA, sorted in reverse chronological order. Everytime we find a trip τ of any line
departing at some time t0, we check whether there exists a route r = 〈L(τ), l2, . . . , lk〉 ∈ R
that starts with the line L(τ). If yes, then we use the previous algorithm to compute the
earliest arrival time at b when we depart at a at time t0 and follow the route r. If the
time computed is not later than tA, we found the optimal solution and stop the algorithm.
Otherwise we continue with the previous trip departing from a.
Finding robust journeys We will now describe how to compute robust journeys using the
approach of Buhmann et al. [4]. We stress up front that this is “learning”-style algorithm
and that it, in particular, does not specifically aims at optimizing some “robustness” criterion
(such as the fraction of successes in the recorded timetables). Let a, b ∈ S be the departure
and the target stop of the journey, tA be the latest arrival time at b, and T be a set of
recorded timetables for comparable time periods (e.g., daily recordings for the past Mondays).
For a timetable T ∈ T and a value γ, the approximation set Aγ(T) contains a route r ∈ R
iff there exists a journey along the route r that starts at a at time tA − γ or later and arrives
at b at time tA or earlier (both times refer to timetable T). The major advantage of this
definition over classical approximation definitions (such as multiplicative approximation) is

K. Böhmová, M. Mihalák, T. Pröger, R. Šrámek, and P. Widmayer 35

Figure 3 An example with five lines {1, . . . , 5} and two routes r1 = 〈1, 2, 3〉 (solid) and r2 = 〈4, 5〉
(dotted). The x-axis illustrates the stops {a, s1, s2, s3, b}, whereas the y-axis the time. If a trip
leaves a stop sd at time td and arrives at a stop sa at time ta, it is indicated by a line segment from
(sd, td) to (sa, ta). We have µTγ (r1) = 3 and µTγ (r2) = 1.

that we can consider multiple recorded timetables at the same time, and that the parameter
γ still has a direct interpretation as the time that we depart before tA. Especially, if we
consider approximation sets Aγ(T1), . . . , Aγ(Tk) for T1, . . . , Tk ∈ T , every set contains only
routes that appear in the same time period and are therefore comparable among different
approximation sets.

To identify robust routes when only two timetables T1, T2 ∈ T are given, we consider
Aγ(T1) ∩Aγ(T2): the only chance to find a route that is likely to be good in the future is a
route that was good in the past for both recorded timetables. The parameter γ determines
the size of the intersection: if γ is too small, the intersection will be empty. If γ is too large,
the intersection contains many (and maybe all) routes from a to b, and not all of them will
be a good choice. Assuming that we knew the optimal parameter γOPT, we could pick a
route from AγOPT(T1) ∩ AγOPT(T2) at random. Buhmann et al. [4] suggest to set γOPT to
the value γ that maximizes the so-called similarity

Sγ = |Aγ(T1) ∩Aγ(T2)|
|Aγ(T1)||Aγ(T2)| . (2)

Notice that up to now we did not consider how often a route is realized by a journey in a
recorded timetable. This is undesirable from a practical point of view: when we pick a route
from AγOPT(T1) ∩ AγOPT(T2) at random, the probability to obtain a route should depend
on how frequently it is realized. Therefore we change the definition of Aγ(T) to a multiset
of routes, and Aγ(T) contains a route r as often as it is realized by a journey starting at
time tA − γ or later, and arriving at time tA or earlier. Figure 3 shows an example with five
lines {1, . . . , 5} and two routes r1 = 〈1, 2, 3〉 and r2 = 〈4, 5〉. We have µTγ (r1) = 3: taking
the second 1 and the second 2 (from above) as well as taking the third 1 and the second 2
are counted as different journeys since the departure times at a differ. On the other hand,
by our definition of journey we have to take the first occurence of a line that arrives, thus
taking the first 1 and waiting for the second 2 is not counted.

Now the approximation set Aγ(T) can be represented by a function µTγ : R → N0, where
for a route r ∈ R, µTγ (r) is the number of journeys starting at time tA − γ or later, arriving
at time tA or earlier and following the route r. Thus, we have |Aγ(T)| =

∑
r∈R µ

T
γ (r), and

for two recorded timetables T1, T2, we need to compute

γOPT = arg max
γ

∑
r∈Rmin(µT1

γ (r), µT2
γ (r))(∑

r∈R µ
T1
γ (r)

)
·
(∑

r∈R µ
T2
γ (r)

) . (3)

ATMOS’13

36 Robust Routing in Urban Public Transportation

After computing the value γOPT, we pick a route r from AγOPT(T1) ∩AγOPT(T2) at random
according to the probability distribution defined by

pr :=
min(µT1

γOPT
(r), µT2

γOPT
(r))∑

r∈Rmin(µT1
γOPT(r), µT2

γOPT(r))
, (4)

and search in the planned timetable for a journey from a to b that departs at time tA− γOPT
or earlier, and that arrives at time tA or earlier.
Computing the similarity For i ∈ {1, 2}, we represent the function µTiγ by an |R|-dimensional
vector µi such that µi[r] = µTiγ (r) for every r ∈ R. We can compute the value γOPT by a
simple extension of the aforementioned sweepline algorithm. The modified algorithm again
starts at time tA, and considers all trips in T1 and T2 in reverse chronological order. The
sweepline stops at every time when one or more trips in T1 or in T2 depart. Assume that
the sweepline stops at time tA − γ, and assume that it stopped at time tA − γ′ > tA − γ in
the previous step. Of course, we have µTiγ (r) ≥ µTiγ′ (r) for every r ∈ R and i ∈ {1, 2}. Let
τ1, . . . , τk be the trips that depart in T1 or T2 at time tA − γ. The idea is to compute the
values of µi (representing µTiγ) from the values computed in the previous step (representing
µTiγ′). This can be done as follows: for every trip τj occuring in Ti and departing at time
tA−γ, we check whether there exists a route r ∈ R starting with L(τj). If yes, we distinguish
two cases:
1. If µi[r] = 0, then µTiγ′ (r) = 0, thus r 6∈ Aγ′(Ti). If there exists a journey from a to b along

r departing at time tA−γ or later, and arriving at time tA or earlier, then Aγ(Ti) contains
r exactly once. Thus, if Earliest-Arrival(a, b, tA − γ, r) ≤ tA, we set µi[r]← 1.

2. If µi[r] > 0, then µTiγ′ (r) > 0, thus Aγ′(Ti) contains r at least once. Thus, there exists a
journey from a to b along r departing at time tA − γ′ or later, and arriving at time tA or
earlier. Since τi is the only possibility to depart at a between time tA − γ and tA − γ′, τi
is the first trip on a journey we never found before. Therefore it is sufficient to simply
increase µi[r] by 1.

Up to now, we did not define when the algorithm terminates. In fact we stop if γ exceeds a
value γMAX. Let tA − γi be the starting time of an optimal journey in Ti. Of course, γMAX
has to be larger than max{γ1, γ2}. In our experimental evaluation, we set γMAX to be one
hour before tA; good choices for γMAX will be investigated in further experiments.

5 Journey Reliability

Success rate as reliability Having several recorded timetables at our disposal, and a journey
from a to b, a natural approach to assess its reliability with respect to the given latest arrival
time tA is to check how many times in the past the journey finished before tA. Normalized
by the total number of recorded timetables, we call this success rate the coupled reliability.
This is the least information about robustness one would wish to obtain from online routing
services when being presented, upon a query to the system, with a set of routes from a to b.
Few recorded timetables The generalizing expressiveness of coupled reliability is limited
(and biased towards outliers in the samples) if the number of recorded timetables is small.
If lines in the considered transportation network suffer from delays (mostly) independently,
we can heuristically extract from each of the m given recorded timetables T1, . . . , Tm an
individual timetable T (i, l) for every line l (storing just the travelled times of the specific line
l in timetable Ti), and then evaluate the considered journey on every relevant combination
of these individual decoupled timetables. This enlarges the number of evaluations of the

K. Böhmová, M. Mihalák, T. Pröger, R. Šrámek, and P. Widmayer 37

journey and thus has a chance to better generalize/express the observed travel times as
typical situation.
Decoupling the timetables We can formally describe this process as follows. We consider m
recorded timetables T1, . . . , Tm, and we consider a journey J from stop a to stop b, specified
by a departure time tD, by a sequence of lines 〈l1, . . . , lk〉, and by a sequence of transfer
stops 〈s(1)

CH, . . . , s
(k−1)
CH 〉.

We say that journey J is realizable in 〈T (i1, l1), T (i2, l2), . . . , T (ik, lk)〉, i1, . . . , ik ∈
{1, . . . ,m}, with respect to a given latest arrival time tA, if for every line lj there exists a
trip tj (of the line lj) in T (ij , lj) such that
1. The departure time of trip t1 from stop a is after tD,
2. the arrival time of trip tk at stop b is before tA, and
3. for every j = 1, . . . , k − 1, the arrival time of trip tj at stop s(j)

CH is before the departure
time of trip tj+1 at the same stop.

Decoupled reliability Clearly, there are mk ways to create a k-tuple 〈T (i1, l1), . . . , T (ik, lk)〉.
Let M denote the number of those k-tuples in which journey J is realizable with respect to
a given tA. We call the ratio M

mk
the decoupled reliability of journey J with respect to the

latest arrival time tA.
Computational issues Computing the coupled reliability is very easy: For every timetable
Ti ∈ {T1, . . . , Tm} we need to check whether the journey in question finished before time tA or
not. This can be done by a simple linear time algorithm that simply “simulates” the journey
in the timetable Ti, and checks whether the arrival time of the journey lies before or after tA.
The computation of decoupled reliability is not so trivial anymore, as the straightforward
approach would require to enumerate all mk k-tuples 〈T (i1, l1), . . . , T (ik, lk)〉, and thus an
exponential time. In the following section, we present an algorithm that avoids such an
exponential enumeration.
Computing decoupled reliability We can reduce the enumeration of all k-tuples 〈T (i1, l1),
T (i2, l2), . . . , T (ik, lk)〉 by observing that the linear order of the lines in journey J allows to
use dynamic-programming. Let us denote for simplicity the boarding, transfer, and arrival
stops of journey J as s0, s1, . . . , sk, where s0 = a, sk = b, and sj = s

(j)
CH for j = 1, . . . , k − 1.

For every stop sj−1, j = 1, . . . , k, we store for every time event t of a departing trip τ of
line lj (in any of the timetables T1, . . . , Tm) a “success rate” of the journey J : the fraction
SR[sj−1, t] of all tuples 〈T (ij , lj), . . . , T (ik, lk)〉 in which the sub-journey of J from sj−1 to
sk starting at time t is realizable. For time t not being a departure event, we extend the
definition and set SR[sj−1, t] := SR[sj−1, t

′], where t′ is the nearest time in the future for
which a departing event exists. Having this information for every j, the decoupled reliability
of J is then simply SR[s0, tD].

We can compute SR[sj−1, t] in the order of decreasing values of j. We initially set
SR[sk, tA] = 1 (denoting that the fraction of successful sub-journeys arriving in sk is 1, if
the sub-journey starts in sk and before tA). The dynamic-programming like fashion for
computing SR[sj−1, t] at any time t then follows from the following recurrence:

SR[sj−1, t] = 1
m

m∑
i=1

SR[sj , ti], (5)

where ti is the earliest arrival time of line lj at stop sj if the line uses timetable Ti and does
not depart before time t from sj−1.

When implementing the algorithm, we can save the (otherwise linear) time computation
of the values of ti from the recurrence by simply storing this value and updating if needed.

ATMOS’13

38 Robust Routing in Urban Public Transportation

tA

tD

l1 l2

1/1

1/3

2/3

3/3

0/9

1/9

3/9

6/9

ti
m
e

Figure 4 A journey with two lines l1 and l2 and three timetables (solid black, dotted red, dashed
blue). The fractions denote the stored values of SR[sj , t].

Figure 4 illustrates the algorithm, and the resulting decoupled reliability of 6/9. The running
time of a naive implementation is O(k · (m+ e log e)), where e is the maximum number of
considered tram departing events at any station sj .

6 Small Experimental Evaluation

In this section we describe and comment on a small experimental evaluation of the proposed
approach to robust routing in public transportation networks. We first describe few observa-
tions/properties of our approach that serve as a kind of “mental” experiment. We have also
implemented the proposed algorithms, and we report on our preliminary experiments with
real public networks and artificially generated delays.

Properties of the approach Let T1 and T2 be two recorded timetables (from which we
want to learn how to travel from stop a to stop b and arrive there before tA). Consider
the situation where the best journey J to travel from a to b in timetable T1 is the same as
the best journey to travel from a to b in timetable T2. Assuming that T1 and T2 represent
typical delays, common sense dictates to use the very same journey J also in the future.
This is exactly what our approach does as well. Recall that Sγ ≤ 1. Let r be the route that
corresponds to the journey J . In our case, setting γ so that Aγ(T1) = Aγ(T2) = {r}, we get
that Sγ = |Aγ(T1)∩Aγ(T2)|

|Aγ(T1)||Aγ(T2)| = 1, and thus our approach computes the very same γ and returns
the journey J as the recommendation to the user. These considerations can be generalized to
the cases such as the one where Aγ(T1) = {r}, r ∈ Aγ(T2), in which again J will be returned
as the recommendation to the user.

If only a reliable journey is required, and the travel time is not an issue, then suggesting to
depart few days before tA is certainly sufficient. We now demonstrate that our approach does
not work along these lines, and that it in fact reasonably balances the two goals robustness
and travel time. We consider the symmetric situation where both |Aγ(T1)| and |Aγ(T2)| grow
with γ in the same way, i.e., for every γ, |Aγ(T1)| = |Aγ(T2)|. Let us only consider discrete
values of γ, and let γ1 be the largest γ for which Aγ1(T1) ∩Aγ1(T2) = ∅. Let x = |Aγ1(T1)|.
Then, for every γ > γ1, Sγ = ∆γ

(x+∆γ)2 for some values of ∆γ . Simple calculation shows that
Sγ is maximized for ∆γ = x. We can interpret x as the number of failed routes (that would
otherwise make it if no delays appear). Then, Sγ is maximized at the point that allows for
another ∆γ = x routes to joint the approximation sets Aγ(Ti). Thus, the more disturbed
the timetables are, the more “backward” in time we need to search for a robust route.

Experimental evaluation We implemented the algorithms presented in the sections 2, 3
and 4 in Java 7. The experiments were performed on one core of an Intel Core i5-3470 CPU

K. Böhmová, M. Mihalák, T. Pröger, R. Šrámek, and P. Widmayer 39

Table 1 Comparison of the described methods over 100 test cases.

on time less than less than avg arrival avg earlier depart.
5 min late 10 min late time than Opt in T3

Unexpected Similarity, pick u.a.r. 88% 95% 97% 7:54 3.14
Unexp. Sim., pick max. # occurences 89% 94% 97% 7:54 3.22
Optimum in T 31% 48% 60% 8:07 -7.9
2nd Optimum in T 49% 64% 76% 7:57 2.14
Opt. in T + end buffer time 41% 57% 70% 8:03 -3.26
Buffer time 3 min 55% 71% 83% 7:59 0.02
Buffer time 5 min 66% 81% 88% 7:56 4.43

clocked at 3.2 GHz with 4 GB of RAM running Debian Linux 7.0. We used the combined
tram and bus network of Zurich as input. It has 611 stops and 90 different line IDs. In
our experiments, the actual number of lines itself is much higher (471), since multiple lines
may operate under the same ID (e.g., lines in opposite directions, or lines coming from or
returning to the depot). The planned timetable T that we used is the official one for the
Zurich network. However, trips departing before 6 a.m. or after 10 p.m. were ignored (since
the timetable is only valid for 24 hours, trips starting before and ending after midnight are
virtually interrupted at midnight, leading to a large number of lines).

We set the latest arrival time tA to 8 a.m., and carefully chose a small set of problematic
stops S′ where delays usually occur. Then we generated 100 pairs of stops (a, b) uniformly
at random. For each pair, we generated three timetables T1, T2 and T3 from T by delaying
every trip τ in T between 0 and 3 minutes at every station s ∈ S′ (if s occurs on τ). These
delays are 0 or 3 minutes with probability 1/8, and 1 or 2 minutes with probability 3/8. T1
and T2 are used as input to the algorithm, and the arrival time of the computed journey is
measured in T3. We use the following methods for computing the journey.

1. Maximizing the Unexpected Similarity Compute a route using the approach described
in section 4. We consider two ways to pick a route from the intersection: 1) choose
uniformly at random; 2) Choose the one with the maximum number of occurrences.

2. Optimum in T Find the best or the second best journey according to the planned
timetable T . Compute also the latest journey arriving in T five minutes before tA.

3. Buffer time for transfers Consider the latest journey from a to b that arrives on time
in T such that at each transfer stop it have to wait for an additional “buffer time”. We
experiment with buffer times of 1 – 5 minutes.

For each of these statistics, we computed the following numbers (see Table 1): Percentage of
the experiments where the proposed journey arrives on time, how often it arrives at most
5 minutes late, and how often it arrives at most 10 minutes late. We also computed the
average arrival time of the journeys proposed by each method as well as the average difference
between the departure time of the proposed journey to the optimal journey in T3.

The average time for computing the optimum solution is 127ms, the time to compute a
robust journey by using Unexpected Similarity is 262ms. We observed that our algorithm
produces journeys that are on time in high percentage of cases, and on average we propose to
depart only around 3 minutes earlier than the optimum in T3, thus the cost we pay for this
robustness is quite low. In comparison, the other considered approaches achieve much lower
success rates. Even the generous buffer time of 5 minutes turns out not to be enough to beat
our approach, which is rather surprising given the small delays in the considered timetables.

ATMOS’13

40 Robust Routing in Urban Public Transportation

7 Discussion

We presented a novel framework for robust routing in frequent and dense urban public
transportation networks based on observations of past traffic data. We introduced a new
concept to describe a travel plan, a journey, that is not only well suited for our robustness
issues, but also represents a natural and convenient description for the traveler. We also
provided a bag of algorithmic tools to handle this concept, tailored towards the proposed
robustness measures. We described a simple way to assess the reliability of a given journey.
We also used a different approach to robustness and described how to find a robust journey
according to it. We are preparing further experiments to confirm efficiency of the presented
algorithms and to evaluate the quality of the computed robust journeys.

Future work is to examine how the described methods can be extended to support a fully
multi-modal scenario, e.g., how to integrate walking. We believe that the modelling itself is
easy, while the performance of the algorithms will decrease significantly unless we develop
special techniques. Also considering and exploring different robustness concepts for journeys
may be worthwhile.

References

1 Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Harrelson, Veselin
Raychev, and Fabien Viger. Fast routing in very large public transportation networks using
transfer patterns. In Mark Berg and Ulrich Meyer, editors, Algorithms – ESA 2010, volume
6346 of LNCS, pages 290–301. Springer Berlin Heidelberg, 2010.

2 Reinhard Bauer, Daniel Delling, and Dorothea Wagner. Experimental study of speed up
techniques for timetable information systems. Networks, 57(1):38–52, 2011.

3 Justin Boyan and Michael Mitzenmacher. Improved results for route planning in stochastic
transportation. In Proceedings of the twelfth annual ACM-SIAM symposium on Discrete
algorithms, pages 895–902. Society for Industrial and Applied Mathematics, 2001.

4 Joachim M. Buhmann, Matúš Mihalák, Rastislav Šrámek, and Peter Widmayer. Robust
optimization in the presence of uncertainty. In Robert D. Kleinberg, editor, ITCS, pages
505–514. ACM, 2013.

5 Daniel Delling, Thomas Pajor, and Dorothea Wagner. Engineering time-expanded graphs
for faster timetable information. In Ravindra K. Ahuja, Rolf H. Möhring, and Christos D.
Zaroliagis, editors, Robust and Online Large-Scale Optimization, volume 5868 of LNCS,
pages 182–206. Springer Berlin Heidelberg, 2009.

6 Daniel Delling, Thomas Pajor, and Renato F Werneck. Round-based public transit routing.
Algorithm Engineering and Experiments (ALENEX), pages 130–140, 2012.

7 Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Intriguingly simple
and fast transit routing. In Vincenzo Bonifaci, Camil Demetrescu, and Alberto Marchetti-
Spaccamela, editors, SEA, volume 7933 of LNCS, pages 43–54. Springer, 2013.

8 Yann Disser, Matthias Müller-Hannemann, and Mathias Schnee. Multi-criteria shortest
paths in time-dependent train networks. In Experimental Algorithms, pages 347–361.
Springer, 2008.

9 H Frank. Shortest paths in probabilistic graphs. Operations Research, 17(4):583–599, 1969.
10 Marc Goerigk, Martin Knoth, Matthias Müller-Hannemann, Marie Schmidt, and Anita

Schöbel. The price of robustness in timetable information. In 11th Workshop on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems, pages 76–87, 2011.

11 Matthias Müller-Hannemann and Mathias Schnee. Efficient timetable information in the
presence of delays. In Ravindra K. Ahuja, Rolf H. Möhring, and Christos D. Zaroliagis,

K. Böhmová, M. Mihalák, T. Pröger, R. Šrámek, and P. Widmayer 41

editors, Robust and Online Large-Scale Optimization, volume 5868 of LNCS, pages 249–272.
Springer, 2009.

12 Matthias Müller-Hannemann, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis.
Timetable information: Models and algorithms. In Algorithmic Methods for Railway Op-
timization, pages 67–90. Springer, 2007.

13 Evdokia Nikolova, Jonathan A Kelner, Matthew Brand, and Michael Mitzenmacher.
Stochastic shortest paths via quasi-convex maximization. In Algorithms–ESA 2006, pages
552–563. Springer, 2006.

14 Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Efficient mod-
els for timetable information in public transportation systems. Journal of Experimental
Algorithmics (JEA), 12:2–4, 2008.

ATMOS’13

Robust Routing in Urban Public Transportation:
How to Find Reliable Journeys Based on Past
Observations ∗

Kateřina Böhmová, Matúš Mihalák, Tobias Pröger,
Rastislav Šrámek, and Peter Widmayer

Institute of Theoretical Computer Science, ETH Zurich, Switzerland
{kboehmov,mmihalak,tproeger,rsramek,widmayer}@inf.ethz.ch

Abstract
We study the problem of robust routing in urban public transportation networks. In order to
propose solutions that are robust for typical delays, we assume that we have past observations of
real traffic situations available. In particular, we assume that we have “daily records” containing
the observed travel times in the whole network for a few past days. We introduce a new concept to
express a solution that is feasible in any record of a given public transportation network. We adapt
the method of Buhmann et al. [4] for optimization under uncertainty, and develop algorithms
that allow its application for finding a robust journey from a given source to a given destination.
The performance of the algorithms and the quality of the predicted journey are evaluated in a
preliminary experimental study. We furthermore introduce a measure of reliability of a given
journey, and develop algorithms for its computation. The robust routing concepts presented in
this work are suited specially for public transportation networks of large cities that lack clear
hierarchical structure and contain services that run with high frequencies.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory (Graph algorithms, Network problems), I.2.6 Learning

Keywords and phrases Algorithms, Optimization, Robustness, Route planning, Public trans-
portation

Digital Object Identifier 10.4230/OASIcs.ATMOS.2013.27

1 Introduction

We study the problem of routing in urban public transportation networks, such as tram and
bus networks in large cities, focusing on the omnipresent uncertain situations when (typical)
delays occur. In particular, we search for robust routes that allow reliable yet quick passenger
transportation. We think of a “dense” tram network in a large city containing many tram
lines, where each tram line is a sequence of stops that is served repeatedly during the day,
and where there are several options to get from one location to another. Such a network
usually does not contain clear hierarchical structure (as opposed to train networks), and
each line is served with high frequency. Given two tram stops a and b together with a latest
arrival time tA, our goal is to provide a simple yet robust description of how to travel in the

∗ This work has been partially supported by the Swiss National Science Foundation (SNF) under the
grant number 200021 138117/1, and by the EU FP7/2007-2013 (DG CONNECT.H5-Smart Cities
and Sustainability), under grant agreement no. 288094 (project eCOMPASS). Kateřina Böhmová is a
recipient of the Google Europe Fellowship in Optimization Algorithms, and this research is supported
in part by this Google Fellowship.

© K. Böhmová, M. Mihalák, T. Pröger, R. Šrámek, and P. Widmayer;
licensed under Creative Commons License CC-BY

13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’13).
Editors: Daniele Frigioni, Sebastian Stiller; pp. 27–41

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2013.27
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

28 Robust Routing in Urban Public Transportation

given network from a to b in order to arrive on time tA even in the presence of typical delays.
We base our robustness concepts on past traffic data in a form of recorded timetables – the
actually observed travel times of all lines in the course of several past days. If no delays
occur, such a recorded timetable corresponds to the scheduled timetable for that day.

The standard approach to describe a travel plan from a to b in a given tram network is to
specify, according to a scheduled timetable, the concrete sequence of vehicles together with
transfer stops and departure/arrival times for each transfer stop. Such a travel plan may
look like this: Take the tram 6 at 12:33 from stop a and leave it at 12:47 at transfer stop s;
then take the tram 10 at 12:51 from s and leave it at 12:58 at b. However, such a travel plan
may become infeasible on a concrete day due to delays: Imagine a situation where the tram
6 left a at 12:33, but arrived to s only at 12:53, and the tram 10 leaving s at 12:51 was on
time. Then, the described travel plan would bring the passenger to stop s but it does not
specify how to proceed further in order to arrive to b.

We observe that the standard solution concepts (such as paths in a time-expanded graph)
are not suitable for our setting. We introduce a new concept to express a solution, which we
call a journey, that is feasible in any recorded timetable of a given transportation network
assuming the timetable to be periodic. A journey specifies an initial time tD and then only a
sequence of transportation lines 〈l1(tram), l2(bus), . . . , lk(tram)〉 together with transfer stops
〈s1, . . . , sk−1〉. This travel plan suggests to start waiting at a at time tD, take the first tram
of line l1 that comes and travel to stop s1, then change to the first coming bus of line l2, etc.
Since we assume that the frequency of vehicles serving each line is high, such a travel plan is
not only feasible in our setting but also reasonable, and provides the passenger with all the
necessary information. We provide algorithms to efficiently compute these journeys.

Equipped with the introduced solution concept of a journey, we can easily adapt the
method of Buhmann et al. [4] for optimization under uncertainty, and apply it to identify
robust travel plans. A key ingredient of the method is the ability to count the number of
(possibly exponentially many) “good” solutions. Our solution concept allows us to develop
efficient algorithms to compute the number of all journeys from a to b that depart after the
time tD and arrive before the time tA.

Finally, we suggest an alternative simple measure for reliability of a given journey,
expressed simply as the fraction of recorded timetables where the journey was successful and
allowed to arrive at the destination on time. We provide efficient algorithms for computation
of this measure.

2 Related Work

The problem of finding a fastest journey (according to the planned timetable) using public
transportation has been extensively studied in the literature. Common approaches model
the transportation network as a graph and compute a shortest path in this graph (see [12]
for a survey). Various improvements have been developed, and experimental studies suggest
that these can also be used in practice (see, e.g., [2, 5, 14]). Recent approaches avoid the
construction of a graph and process the timetable directly [6, 7]. For example, Delling et
al. [6] describe an approach which is centered around transportation lines (such as train or
bus lines) and which can be used to find all pareto-optimal journeys when the arrival time
and the number of stops are considered as criteria. Bast et al. [1] observe that for two given
stops, we can find and encode each sequence of intermediate transfer stations (i.e., stations
where we change from one line to another) that can lead to an optimal route. The set of
these sequences of transfers is called transfer pattern. These patterns can be precomputed,

K. Böhmová, M. Mihalák, T. Pröger, R. Šrámek, and P. Widmayer 29

s0

s1

s2

s3 ba

c
d

l1
l2

l3

l4

Figure 1 The line l1 is a sequence of stops 〈. . . , s0, a, s1, c, d, s2, . . . 〉. The line l4 =
〈. . . , s2, d, c, s1, b, s0, . . . 〉 that goes in the opposite direction to l1 is considered to be a differ-
ent line. In this example, both a / l1 and a / l4 hold, but a / l2 does not. Similarly, s1 / s2 / l1 holds,
but s1 / s2 / l4 does not. The set l1 ∩ l2 of all stops common to l1 and l2 is {s0, s1, s2}. Moreover,
when travelling from a to b using a route 〈l1, l2, l3〉, this network is an example where not every
stop in l1 ∩ l2 is suitable for changing from l1 to l2: We cannot choose s0 as transfer stop since it is
served before a. If s2 was chosen, then l3 can never be reached without travelling back. Thus, the
only valid stop to change the line is s1.

leading to very fast query times. These approaches are similar to our approach in the sense
that they try to explicitly exploit the problem structure (e.g., by considering lines) instead
of implicitly modelling all properties into a graph.

For computing robust journeys in public transportation, stochastic networks have been
studied [3, 9, 13], where the delays between successive edges are random variables. Dibbelt
et al. [7] study the case when stochastic delays on the vehicles are given. In a situation
when timetables are fixed, Disser et al. [8] used a generalization of Dijkstra’s algorithm to
compute pareto-optimal multi-criteria journeys. They define the reliability of a journey as a
function depending on the minimal time to change between two subsequent trains, and use
it as an additional criterion. Müller-Hannemann and Schnee [11] introduced the concept of a
dependency graph for a prediction of secondary delays caused by some current primary delays,
which are given as input. They also show how to compute a journey that is optimal with
respect to the predicted delays. Goerigk et al. [10] consider a given set of delay scenarios
for every event, and adapt strict robustness to it, i.e. they aim to compute a journey that
arrives on time for every scenario. Furthermore, the concept of light robustness is introduced,
which aims to compute a journey that maximizes the number of scenarios in which the travel
time of this journey lies at most a fixed time above the optimum. Strict robustness requires
a feasible solution for every realization of delays for every event. This is quite conservative,
as in reality not every combination of event delays appears. Our approach tries to avoid this
by learning from the typical delay scenarios as recorded for each individual day.

3 Modeling issues

3.1 Model

Stops and lines Let S be a set of stops, and L ⊂
⋃|S|
i=2 Si be a set of lines (e.g., bus lines,

tram lines or lines of other means of transportation). The following basic definitions are
illustrated in Figure 1. Every line l ∈ L is a sequence of S(l) stops 〈s(l)

1 , . . . , s
(l)
S(l)〉, where,

for every i ∈ {1, . . . , S(l)− 1}, the stop s(l)
i is served directly before s(l)

i+1 by the line l. We
explicitly distinguish two lines that serve the same stops but have opposite directions (these
may be operated under the same identifier in reality). For a stop s ∈ S and a line l ∈ L,
we write s / l if s is a stop on the line l, i.e. if there exists an index i ∈ {1, . . . , S(l)} such

ATMOS’13

30 Robust Routing in Urban Public Transportation

that s = s
(l)
i . Furthermore, for two stops s1, s2 ∈ S and a line l ∈ L we write s1 / s2 / l if

both s1 and s2 are stops on l and s1 is served before s2, i.e. if there exist indices i, j ∈ N,
1 ≤ i ≤ S(l)− 1, i+ 1 ≤ j ≤ S(l) such that s1 = s

(l)
i and s2 = s

(l)
j . For two lines l1, l2 ∈ L,

we define l1 ∩ l2 to be the set of all stops s ∈ S that are served both by l1 and l2.

Trips and timetables While the only information associated with a line itself are its
consecutive stops, it usually is operated multiple times per day. Each of these concrete
realizations that departs at a given time of the day is called a trip. With every trip τ we
associate a line L(τ) ∈ L. By L−1(l) we denote the set of all trips associated with a line
l ∈ L. For a trip τ and a stop s ∈ S, let A(τ, s) be the arrival time of τ at stop s, if s / L(τ).
Analogously, let D(τ, s) be the departure time of τ at s. In the following, we assume time
to be modelled by integers. For a given trip τ , we require A(τ, s) ≤ D(τ, s) for every stop
s ∈ L(τ). Furthermore we require D(τ, s1) ≤ A(τ, s2) for every two stops s1, s2 ∈ S with
s1 / s2 / L(τ). A set of trips is called a timetable. We distinguish between

1. the planned timetable T . We assume it to be periodic, i.e., every line realized by some
trip τ will be realized by a later trip τ ′ again (probably not on the same day).

2. recorded timetables Ti that describe how various lines were operated during a given time
period (i.e., on a concrete day or during a concrete week). These recorded timetables are
concrete executions of the planned timetable.

In the following, timetable refers both to the planned as well as to a recorded timetable.

Goal In the following, let a, b ∈ S be two stops, m ∈ N0 be the maximal allowed number of
line changes, and tA ∈ N be the latest arrival time. A journey consists of a departure time tD,
a sequence of lines 〈l1, . . . , lk〉, k ≤ m+ 1 and a sequence of transfer stops 〈s(1)

CH, . . . , s
(k−1)
CH 〉.

The intuitive interpretation of such a journey is to start at stop a at time tD, take the first
line l1 (more precisely, the first available trip of the line l1), and for every i ∈ {1, . . . , k − 1},
leave li at stop s(i)

CH and take the next arriving line li+1 immediately. Our goal is to compute
a recommendation to the user in form of one or more (robust) journeys from a to b that will
likely arrive on time (i.e., before time tA) on a day for which the concrete travel times are not
known yet. We formalize the notion of robustness later. We note that for the convenience of
the user, one should handle two different lines l1 and l2 operating between two stops s1 and
s2 as one (virtual) line, and provide recommendations of the form “in s1, take the first line
l1 or l2 to s2, etc.”. For the sake of simplicity we do not pursue this generalization further,
but will consider this in the future.

Routes Let k ∈ {1, . . . ,m + 1} be an integer. A sequence of lines r = 〈l1, . . . , lk〉 ∈ Lk is
called a feasible route from a to b if there exist k + 1 stops s0 := a, s1, . . . , sk−1, sk := b such
that si−1 / si / li for every i ∈ {1, . . . , k}, i.e., if both si−1 and si are stops on line li, and
si−1 is served before si on line li. Notice that on a feasible route r ∈ Lk we need to change
the line at k − 1 transfer stops. Let

Rmab = {r ∈ L ∪ L2 ∪ · · · ∪ Lm+1 | r is a feasible route from a to b} (1)

be the set of all feasible routes from a to b using at most m transfer stops. If a, b and m
are clear from the context, for simplicity we just write R instead of Rmab. Notice that by
definition, a line l may occur multiple times in a route. This is reasonable because there might
be two transfer stops s, s′ on l and one or more intermediate lines that travel faster from s

to s′ than l does. Additionally, notice that a route does not contain any time information.

K. Böhmová, M. Mihalák, T. Pröger, R. Šrámek, and P. Widmayer 31

3.2 Computation of Feasible Routes

Input data In this section we describe an algorithm that, given a set of stops S and a set
of lines L, finds the set R of all feasible routes that allow to travel from a given initial stop a
to a given destination stop b using at most m transfer stops (also called transfers). Notice
that to compute R we only need the network structure, no particular timetable is necessary.
Preprocessing the input We preprocess the input data and construct data structures to
allow efficient queries of the following types:
1. Q(l, s): Compute the position of s on l. Given a line l = 〈s1, . . . , s|S(l)|〉, Q(l, s) returns j

if s is the j-th stop on l, i.e., if s = sj , or 0 if s is not served by l.
2. Q(l, si, sj): Determine whether si is served before sj on l. Given a line l and two stops

si, sj , Q(l, si, sj) returns TRUE iff si, sj / l and si / sj / l.
3. Q(li, lj): Determine li ∩ lj (i.e., the stops shared by li and lj) in a compact, ordered

format. Given two lines li, and lj , Q(li, lj) returns the set li ∩ lj of stops shared by these
lines. We encode li ∩ lj into an ordered set Iij of pairs of stops with respect to li in such
a way that (sq, sr) ∈ Iij indicates that li and lj share the stops sq, sr, and all the stops
in between on the line li (independent of their order on lj). Thus, Q(li, lj) outputs the
described sorted set Iij of pairs of stops. The motivation to compress li ∩ lj into Iij is
that, in practice, there may be many stops shared by li and lj , but only a small number
of contiguous intervals of such stops. Notice that Q(li, lj) doesn’t need to be equal to
Q(lj , li), nor the sequence in reverse order; an example is given in Figure 2.

Notice that these queries can be answered in expected constant time if implemented using
suitable arrays or hashing tables.
Graph of line incidences The function Q(li, lj) induces the following directed graph G. The
set V of vertices of G corresponds to the set of lines L. There is an edge from a vertex (line)
li to a vertex lj if and only if Q(li, lj) 6= ∅. Then, Q(li, lj) is represented as a tag of the edge
(li, lj). We construct and represent the graph G as adjacency lists.
Preliminary observations Given two stops a and b, and a number m, we want to find all
routes R that allow to travel from a to b using at most m transfers in the given public
transportation network described by a set of stops S and a set of lines L. Notice that each
such route r = 〈l1, . . . , lk〉 ∈ Lk with 0 < k ≤ m+ 1 has the following properties.
1. Both Q(l1, a) and Q(lk, b) are nonzero (i.e., a / l1, and b / lk).
2. The vertices l1, . . . , lk form a path in G (i.e., li ∩ li+1 6= ∅ for every i = 1, . . . , k − 1).
3. There exists a sequence of stops a = s0, s1, . . . , sk−1, sk = b such that Q(li, si−1, si) is

TRUE (i.e., si−1 / si / li) for every i = 1, . . . , k.
These observations lead to the following algorithm to find the set of routes R.
All routes algorithm For the stop a, determine the set La of all lines passing through a.
Then explore the graph G from the set La of vertices in the following fashion. For each
vertex l1 ∈ La, perform a depth-first search in G up to the depth m, but do not stop when
finding a vertex that has already been found earlier. In each step, try to extend a partial
path 〈l1, . . . , lj〉 to a neighbor l′j of lj in G. Keep track of the current transfer stop sq. This
is a stop on the currently considered line lj such that sq is the stop with the smallest position
on lj at which it is possible to transfer from lj−1 to lj , considering the partial path from l1 to
lj−1. In other words, sq is the stop on the considered route where the line lj can be boarded.
Each step of the algorithm is characterized by a search state: a partial path P = 〈l1, . . . , lj〉,
and a current transfer stop sq that allowed the transfer to line lj . The initial search state
consists of the partial path P = 〈l1〉 and the current transfer stop a. More specifically, to

ATMOS’13

32 Robust Routing in Urban Public Transportation

s1

s2

s3 s4

s5

s6

s7

s8

s9

s10
s11

s12

s13

s14

s15
s16

l′j

lj

Figure 2 Lines lj and l′j have common stops s3, s6, s11, s14, and s15. The ordered set Ijj′ =
Q(lj , l′j) consists of the pairs {(s3, s3), (s15, s11), (s6, s6)}. Thus, the last stop in the last interval
of Ijj′ is the stop s6. On the other hand, the ordered set Ij′j = Q(l′j , lj) consists of the pairs
{(s3, s3), (s6, s6), (s11, s15)}. Now, imagine that the current transfer stop sq for a partial path P =
〈l1, . . . , lj〉 is s2, then the stop s3 is the current transfer stop s′

q for a partial path P ′ = 〈l1, . . . , lj , l′j〉.
However, observe that if sq is s12, then s′

q needs to be s6.

process a search state with the partial path P = 〈l1, . . . , lj〉, and the current transfer stop sq,
perform the following tasks:
1. Check whether the line corresponding to the vertex lj contains the stop b and whether

sq is before b on lj . If this is the case (i.e., the query Q(lj , sq, b) returns TRUE), then the
partial path P corresponds to a feasible route and is output as one of the solutions in R.

2. If the partial path P contains at most m− 1 edges (thus the corresponding route has at
most m− 1 transfers, and can be extended), then for each neighbor l′j of lj check whether
extending P by l′j is possible (and if so, update the current transfer stop) as follows. Let
Ijj′ = Q(lj , l′j) be the set of pairs of stops sorted as described in the previous section.
Recall that each pair (su, sv) ∈ Ijj′ encodes an interval of one or several consecutive stops
on lj that are also stops on the line l′j . Let sz be the last stop in the last interval of Ijj′ .
Similarly, let Ij′j = Q(l′j , lj). If Q(lj , sq, sz) is TRUE, then sq / sz / lj , and the path P can
be extended to l′j .
a. We determine the current transfer stop s′q for l′j by considering the pairs/intervals of
Ij′j in ascending order and deciding whether the position of sq on the line lj is before
one of the endpoints of the currently considered interval. We refer to Figure 2 for a
nontrivial case of computing of the current transfer stop.

b. Perform the depth search with the search state consisting of the partial path P ′ =
〈l1, . . . , lj , l′j〉 and the current transfer stop s′q.

Otherwise, if Q(lj , sq, sz) is FALSE, it is not possible to extend P to l′j .
The theoretical running time of the algorithm is O(∆m), where ∆ is the maximum degree
of G. However, we believe that in practice the actual running time will rather linearly
correspond to the size of the output O(m|R|). On real-world data, the algorithm performs
reasonably fast (see section 6 for details).

3.3 Computing the earliest arriving journey

Recursive computation As previously stated, let a ∈ S be the initial stop, b ∈ S be the
destination stop, ε(s, l, l′) be the minimum time to change from line l to line l′ at station
s, and tA ∈ N be the latest arrival time. In the previous section we showed how the set R
of all feasible routes from a to b can be computed. However, instead of presenting just a
route r ∈ R to the user, our final goal is to compute a departure time t0 and a journey
that arrives at b before time tA. For the following considerations, we assume the underlying
timetable (either the planned or a recorded timetable) to be fixed. Given a, b ∈ S, an initial

K. Böhmová, M. Mihalák, T. Pröger, R. Šrámek, and P. Widmayer 33

departure time t0 ∈ N, and a route r = 〈l1, . . . , lk〉 ∈ R, a journey along r that arrives as
early as possible can be computed as follows. We start at a at time t0 and take the first line
l1 that arrives. Then we compute an appropriate transfer stop s ∈ l1 ∩ l2 (that is served both
by l1 as well as by l2) and the arrival time t1 at s, leave l1 there and compute recursively
the earliest arrival time when departing from s at time at least t1 + ε(s, l1, l2), following
the route 〈l2, . . . , lk〉. Notice that the selection of an appropriate transfer stop s is the only
non-trivial part due to mainly two reasons:
1. The lines l1 and l2 may operate with different speeds (e.g., because l1 is a fast tram while

l2 is a slow bus), or l1 and l2 separate at a stop s1 and join later again at a stop s2 but
the overall travel times of l1 and l2 differ between s1 and s2. Depending on the situation,
it may be better to leave l1 as soon or as late as possible, or anywhere inbetween.

2. The lines l1 and l2 may separate at a stop s1 and join later again at a stop s2. If all
transfer stops in l2 ∩ l3 are served by l2 before s2, then leaving l1 at s2 is not an option
since l3 is not reachable anymore. See Figure 1 for a visualization.

The idea now is to find the earliest trip of line l1 that departs from a at time t0 or later,
iterate over all stops s ∈ l1 ∩ l2, and compute recursively the earliest arrival time when
continuing the journey from s having a changing time of at least ε(s, l1, l2). Finally, we
return the smallest arrival time that was found in one of the recursive calls.
Issues and improvement of the recursive algorithm An issue with this naïve implementa-
tion is the running time, which might be exponential in k in the worst-case (if |li ∩ li+1| > 1
for Ω(k) many i ∈ {1, . . . , k − 1}). Let τ and τ ′ be two trips with L(τ) = L(τ ′). If τ leaves
before τ ′ at some stop s, we assume that it will never arrive later than τ ′ at any subsequent
stop s′, s / s′ / L(τ), i.e. consecutive trips of the same line do not overtake. For a line l ∈ L
and a set of trips Tl ⊆ L−1(l), it follows that taking the earliest trip in Tl never results in a
later arrival at b than taking any other trip from Tl. Furthermore, a trip τ ∈ Tl is operated
earlier than a trip τ ′ ∈ Tl iff A(τ, s) < A(τ ′, s) for any stop s / l.

Thus, we can iterate over some appropriate stops in l1 ∩ l2 to find the earliest reachable
trip associated with l2. We just need to ignore those stops where changing to l3 is no longer
possible (see Figure 1 for an example).
Computing appropriate transfer stops The problem to find these appropriate stops can be
solved by first sorting l1∩ l2 = {s1, . . . , sn} such that sj /sj+1 / l1 for every j ∈ {1, . . . , n−1}.
Obviously, all stops that appear before a on line l1 cannot be used for changing to l2. This
problem can easily be solved by considering only those stops sj where a/sj /l1. Unfortunately,
the last m ≥ 0 stops sn−m+1, . . . , sn might also not be suitable for changing to l2 because
they may prevent us later to change to some line lj (e.g., if all stops of l2 ∩ l3 are served
before sn−g+1, . . . , sn on l2, then changing to l3 is no longer possible). We solve this problem
by precomputing (the index of) the last stop sj where all later lines are still reachable. This
can be done backwards: we start at b, order the elements of lk ∩ lk−1 as they appear on
line lk, and find the last stop that is served before b on lk. We recursively continue with
l1, . . . , lk−1 and use the stop previously computed as the stop that still needs to be reachable.
Iterative algorithm The improved algorithm first iterates over i ∈ {1, . . . , k − 1}, and uses
the aforementioned algorithm to precompute the index last[i] of the last stop where changing
from li to li+1 is still possible (with respect to the route 〈l1, . . . , lk〉). After that, for every
i ∈ {1, . . . , k − 1}, we iterate over the appropriate transfer stops s ∈ li ∩ li+1 where changing
to li+1 is possible, and find among those the stop s(i)

CH where the earliest trip τi+1 associated
with line li+1 departs. Finally we obtain a sequence of trips τ1, . . . , τk along with transfer
stops s(0)

CH := a, s
(1)
CH, . . . , s

(k)
CH to change lines. Since we gradually compute the earliest trips

τi for each of the lines li, the earliest time to arrive at b is simply A(τk, b).

ATMOS’13

34 Robust Routing in Urban Public Transportation

EarliestArrival(a, b, t0, 〈l1, . . . , lk〉)

1 last[k]← b

2 for i← k, . . . , 2 do
3 Order the elements of li ∩ li−1 = {s1, . . . , sn} s.t. sj / sj+1 / li−1 ∀j ∈ {1, . . . , n− 1}.
4 last[i− 1]← max{j ∈ {1, . . . , n} | sj / last[i] / li}
5 τ1 ← arg minτ∈L−1(l1){D(τ, a) | D(τ, a) ≥ t0}; s

(0)
CH ← a

6 for i← 1, . . . , k − 1 do
7 Order the elements of li ∩ li+1 = {s1, . . . , sn} s.t. sj / sj+1 / li ∀j ∈ {1, . . . , n− 1}.
8 τi+1 ← null; s

(i)
CH ← null; A

(i+1)
sn ←∞

9 for j ← 1, . . . , last[i] do
10 if s(i−1)

CH / sj / li and sj / last[i+ 1] / li+1 then
11 τ ′ ← arg minτ∈L−1(li+1){D(τ, sj) | D(τ, sj) ≥ A(τi, sj) + ε(sj , li, li+1)}
12 if A(τ ′, sn) < A

(i+1)
sn then τi+1 ← τ ′; s

(i)
CH ← sj ; A

(i+1)
sn ← A(τ ′, sn)

13 return A(τk, b)

Let n = max{|li ∩ li+1|}. Given a line l ∈ L, a station s ∈ S and a time t0 ∈ N, let f be
the time to find the earliest trip τ with L(τ) = l und D(τ, s) ≥ t0 (this time depends on the
concrete implementation of the timetable). It is easy to see that the running time of the
above algorithm is bounded by O(kn(logn+ f)).

4 Maximizing the Unexpected Similarity

Computing the optimum journey for a fixed timetable Given two stops a, b ∈ S and a
departure time t0 ∈ N, we can already compute the earliest arrival of a journey from a to b
starting at time t0. From now on, we aim to compute the latest departure time at a when
the latest arrival time tA at b is given. For this purpose we present an algorithm that sweeps
backwards in time and uses the previous algorithm Earliest-Arrival. This sweepline
algorithm will later be extended to count journeys (instead of computing a single one) and
can be used for finding robust journeys, i.e. journeys that are likely to arrive on time.

The sweepline algorithm works as follows. We consider the trips departing at stop a

before time tA, sorted in reverse chronological order. Everytime we find a trip τ of any line
departing at some time t0, we check whether there exists a route r = 〈L(τ), l2, . . . , lk〉 ∈ R
that starts with the line L(τ). If yes, then we use the previous algorithm to compute the
earliest arrival time at b when we depart at a at time t0 and follow the route r. If the
time computed is not later than tA, we found the optimal solution and stop the algorithm.
Otherwise we continue with the previous trip departing from a.
Finding robust journeys We will now describe how to compute robust journeys using the
approach of Buhmann et al. [4]. We stress up front that this is “learning”-style algorithm
and that it, in particular, does not specifically aims at optimizing some “robustness” criterion
(such as the fraction of successes in the recorded timetables). Let a, b ∈ S be the departure
and the target stop of the journey, tA be the latest arrival time at b, and T be a set of
recorded timetables for comparable time periods (e.g., daily recordings for the past Mondays).
For a timetable T ∈ T and a value γ, the approximation set Aγ(T) contains a route r ∈ R
iff there exists a journey along the route r that starts at a at time tA − γ or later and arrives
at b at time tA or earlier (both times refer to timetable T). The major advantage of this
definition over classical approximation definitions (such as multiplicative approximation) is

K. Böhmová, M. Mihalák, T. Pröger, R. Šrámek, and P. Widmayer 35

Figure 3 An example with five lines {1, . . . , 5} and two routes r1 = 〈1, 2, 3〉 (solid) and r2 = 〈4, 5〉
(dotted). The x-axis illustrates the stops {a, s1, s2, s3, b}, whereas the y-axis the time. If a trip
leaves a stop sd at time td and arrives at a stop sa at time ta, it is indicated by a line segment from
(sd, td) to (sa, ta). We have µTγ (r1) = 3 and µTγ (r2) = 1.

that we can consider multiple recorded timetables at the same time, and that the parameter
γ still has a direct interpretation as the time that we depart before tA. Especially, if we
consider approximation sets Aγ(T1), . . . , Aγ(Tk) for T1, . . . , Tk ∈ T , every set contains only
routes that appear in the same time period and are therefore comparable among different
approximation sets.

To identify robust routes when only two timetables T1, T2 ∈ T are given, we consider
Aγ(T1) ∩Aγ(T2): the only chance to find a route that is likely to be good in the future is a
route that was good in the past for both recorded timetables. The parameter γ determines
the size of the intersection: if γ is too small, the intersection will be empty. If γ is too large,
the intersection contains many (and maybe all) routes from a to b, and not all of them will
be a good choice. Assuming that we knew the optimal parameter γOPT, we could pick a
route from AγOPT(T1) ∩ AγOPT(T2) at random. Buhmann et al. [4] suggest to set γOPT to
the value γ that maximizes the so-called similarity

Sγ = |Aγ(T1) ∩Aγ(T2)|
|Aγ(T1)||Aγ(T2)| . (2)

Notice that up to now we did not consider how often a route is realized by a journey in a
recorded timetable. This is undesirable from a practical point of view: when we pick a route
from AγOPT(T1) ∩ AγOPT(T2) at random, the probability to obtain a route should depend
on how frequently it is realized. Therefore we change the definition of Aγ(T) to a multiset
of routes, and Aγ(T) contains a route r as often as it is realized by a journey starting at
time tA − γ or later, and arriving at time tA or earlier. Figure 3 shows an example with five
lines {1, . . . , 5} and two routes r1 = 〈1, 2, 3〉 and r2 = 〈4, 5〉. We have µTγ (r1) = 3: taking
the second 1 and the second 2 (from above) as well as taking the third 1 and the second 2
are counted as different journeys since the departure times at a differ. On the other hand,
by our definition of journey we have to take the first occurence of a line that arrives, thus
taking the first 1 and waiting for the second 2 is not counted.

Now the approximation set Aγ(T) can be represented by a function µTγ : R → N0, where
for a route r ∈ R, µTγ (r) is the number of journeys starting at time tA − γ or later, arriving
at time tA or earlier and following the route r. Thus, we have |Aγ(T)| =

∑
r∈R µ

T
γ (r), and

for two recorded timetables T1, T2, we need to compute

γOPT = arg max
γ

∑
r∈Rmin(µT1

γ (r), µT2
γ (r))(∑

r∈R µ
T1
γ (r)

)
·
(∑

r∈R µ
T2
γ (r)

) . (3)

ATMOS’13

36 Robust Routing in Urban Public Transportation

After computing the value γOPT, we pick a route r from AγOPT(T1) ∩AγOPT(T2) at random
according to the probability distribution defined by

pr :=
min(µT1

γOPT
(r), µT2

γOPT
(r))∑

r∈Rmin(µT1
γOPT(r), µT2

γOPT(r))
, (4)

and search in the planned timetable for a journey from a to b that departs at time tA− γOPT
or earlier, and that arrives at time tA or earlier.
Computing the similarity For i ∈ {1, 2}, we represent the function µTiγ by an |R|-dimensional
vector µi such that µi[r] = µTiγ (r) for every r ∈ R. We can compute the value γOPT by a
simple extension of the aforementioned sweepline algorithm. The modified algorithm again
starts at time tA, and considers all trips in T1 and T2 in reverse chronological order. The
sweepline stops at every time when one or more trips in T1 or in T2 depart. Assume that
the sweepline stops at time tA − γ, and assume that it stopped at time tA − γ′ > tA − γ in
the previous step. Of course, we have µTiγ (r) ≥ µTiγ′ (r) for every r ∈ R and i ∈ {1, 2}. Let
τ1, . . . , τk be the trips that depart in T1 or T2 at time tA − γ. The idea is to compute the
values of µi (representing µTiγ) from the values computed in the previous step (representing
µTiγ′). This can be done as follows: for every trip τj occuring in Ti and departing at time
tA−γ, we check whether there exists a route r ∈ R starting with L(τj). If yes, we distinguish
two cases:
1. If µi[r] = 0, then µTiγ′ (r) = 0, thus r 6∈ Aγ′(Ti). If there exists a journey from a to b along

r departing at time tA−γ or later, and arriving at time tA or earlier, then Aγ(Ti) contains
r exactly once. Thus, if Earliest-Arrival(a, b, tA − γ, r) ≤ tA, we set µi[r]← 1.

2. If µi[r] > 0, then µTiγ′ (r) > 0, thus Aγ′(Ti) contains r at least once. Thus, there exists a
journey from a to b along r departing at time tA − γ′ or later, and arriving at time tA or
earlier. Since τi is the only possibility to depart at a between time tA − γ and tA − γ′, τi
is the first trip on a journey we never found before. Therefore it is sufficient to simply
increase µi[r] by 1.

Up to now, we did not define when the algorithm terminates. In fact we stop if γ exceeds a
value γMAX. Let tA − γi be the starting time of an optimal journey in Ti. Of course, γMAX
has to be larger than max{γ1, γ2}. In our experimental evaluation, we set γMAX to be one
hour before tA; good choices for γMAX will be investigated in further experiments.

5 Journey Reliability

Success rate as reliability Having several recorded timetables at our disposal, and a journey
from a to b, a natural approach to assess its reliability with respect to the given latest arrival
time tA is to check how many times in the past the journey finished before tA. Normalized
by the total number of recorded timetables, we call this success rate the coupled reliability.
This is the least information about robustness one would wish to obtain from online routing
services when being presented, upon a query to the system, with a set of routes from a to b.
Few recorded timetables The generalizing expressiveness of coupled reliability is limited
(and biased towards outliers in the samples) if the number of recorded timetables is small.
If lines in the considered transportation network suffer from delays (mostly) independently,
we can heuristically extract from each of the m given recorded timetables T1, . . . , Tm an
individual timetable T (i, l) for every line l (storing just the travelled times of the specific line
l in timetable Ti), and then evaluate the considered journey on every relevant combination
of these individual decoupled timetables. This enlarges the number of evaluations of the

K. Böhmová, M. Mihalák, T. Pröger, R. Šrámek, and P. Widmayer 37

journey and thus has a chance to better generalize/express the observed travel times as
typical situation.
Decoupling the timetables We can formally describe this process as follows. We consider m
recorded timetables T1, . . . , Tm, and we consider a journey J from stop a to stop b, specified
by a departure time tD, by a sequence of lines 〈l1, . . . , lk〉, and by a sequence of transfer
stops 〈s(1)

CH, . . . , s
(k−1)
CH 〉.

We say that journey J is realizable in 〈T (i1, l1), T (i2, l2), . . . , T (ik, lk)〉, i1, . . . , ik ∈
{1, . . . ,m}, with respect to a given latest arrival time tA, if for every line lj there exists a
trip tj (of the line lj) in T (ij , lj) such that
1. The departure time of trip t1 from stop a is after tD,
2. the arrival time of trip tk at stop b is before tA, and
3. for every j = 1, . . . , k − 1, the arrival time of trip tj at stop s(j)

CH is before the departure
time of trip tj+1 at the same stop.

Decoupled reliability Clearly, there are mk ways to create a k-tuple 〈T (i1, l1), . . . , T (ik, lk)〉.
Let M denote the number of those k-tuples in which journey J is realizable with respect to
a given tA. We call the ratio M

mk
the decoupled reliability of journey J with respect to the

latest arrival time tA.
Computational issues Computing the coupled reliability is very easy: For every timetable
Ti ∈ {T1, . . . , Tm} we need to check whether the journey in question finished before time tA or
not. This can be done by a simple linear time algorithm that simply “simulates” the journey
in the timetable Ti, and checks whether the arrival time of the journey lies before or after tA.
The computation of decoupled reliability is not so trivial anymore, as the straightforward
approach would require to enumerate all mk k-tuples 〈T (i1, l1), . . . , T (ik, lk)〉, and thus an
exponential time. In the following section, we present an algorithm that avoids such an
exponential enumeration.
Computing decoupled reliability We can reduce the enumeration of all k-tuples 〈T (i1, l1),
T (i2, l2), . . . , T (ik, lk)〉 by observing that the linear order of the lines in journey J allows to
use dynamic-programming. Let us denote for simplicity the boarding, transfer, and arrival
stops of journey J as s0, s1, . . . , sk, where s0 = a, sk = b, and sj = s

(j)
CH for j = 1, . . . , k − 1.

For every stop sj−1, j = 1, . . . , k, we store for every time event t of a departing trip τ of
line lj (in any of the timetables T1, . . . , Tm) a “success rate” of the journey J : the fraction
SR[sj−1, t] of all tuples 〈T (ij , lj), . . . , T (ik, lk)〉 in which the sub-journey of J from sj−1 to
sk starting at time t is realizable. For time t not being a departure event, we extend the
definition and set SR[sj−1, t] := SR[sj−1, t

′], where t′ is the nearest time in the future for
which a departing event exists. Having this information for every j, the decoupled reliability
of J is then simply SR[s0, tD].

We can compute SR[sj−1, t] in the order of decreasing values of j. We initially set
SR[sk, tA] = 1 (denoting that the fraction of successful sub-journeys arriving in sk is 1, if
the sub-journey starts in sk and before tA). The dynamic-programming like fashion for
computing SR[sj−1, t] at any time t then follows from the following recurrence:

SR[sj−1, t] = 1
m

m∑
i=1

SR[sj , ti], (5)

where ti is the earliest arrival time of line lj at stop sj if the line uses timetable Ti and does
not depart before time t from sj−1.

When implementing the algorithm, we can save the (otherwise linear) time computation
of the values of ti from the recurrence by simply storing this value and updating if needed.

ATMOS’13

38 Robust Routing in Urban Public Transportation

tA

tD

l1 l2

1/1

1/3

2/3

3/3

0/9

1/9

3/9

6/9

ti
m
e

Figure 4 A journey with two lines l1 and l2 and three timetables (solid black, dotted red, dashed
blue). The fractions denote the stored values of SR[sj , t].

Figure 4 illustrates the algorithm, and the resulting decoupled reliability of 6/9. The running
time of a naive implementation is O(k · (m+ e log e)), where e is the maximum number of
considered tram departing events at any station sj .

6 Small Experimental Evaluation

In this section we describe and comment on a small experimental evaluation of the proposed
approach to robust routing in public transportation networks. We first describe few observa-
tions/properties of our approach that serve as a kind of “mental” experiment. We have also
implemented the proposed algorithms, and we report on our preliminary experiments with
real public networks and artificially generated delays.

Properties of the approach Let T1 and T2 be two recorded timetables (from which we
want to learn how to travel from stop a to stop b and arrive there before tA). Consider
the situation where the best journey J to travel from a to b in timetable T1 is the same as
the best journey to travel from a to b in timetable T2. Assuming that T1 and T2 represent
typical delays, common sense dictates to use the very same journey J also in the future.
This is exactly what our approach does as well. Recall that Sγ ≤ 1. Let r be the route that
corresponds to the journey J . In our case, setting γ so that Aγ(T1) = Aγ(T2) = {r}, we get
that Sγ = |Aγ(T1)∩Aγ(T2)|

|Aγ(T1)||Aγ(T2)| = 1, and thus our approach computes the very same γ and returns
the journey J as the recommendation to the user. These considerations can be generalized to
the cases such as the one where Aγ(T1) = {r}, r ∈ Aγ(T2), in which again J will be returned
as the recommendation to the user.

If only a reliable journey is required, and the travel time is not an issue, then suggesting to
depart few days before tA is certainly sufficient. We now demonstrate that our approach does
not work along these lines, and that it in fact reasonably balances the two goals robustness
and travel time. We consider the symmetric situation where both |Aγ(T1)| and |Aγ(T2)| grow
with γ in the same way, i.e., for every γ, |Aγ(T1)| = |Aγ(T2)|. Let us only consider discrete
values of γ, and let γ1 be the largest γ for which Aγ1(T1) ∩Aγ1(T2) = ∅. Let x = |Aγ1(T1)|.
Then, for every γ > γ1, Sγ = ∆γ

(x+∆γ)2 for some values of ∆γ . Simple calculation shows that
Sγ is maximized for ∆γ = x. We can interpret x as the number of failed routes (that would
otherwise make it if no delays appear). Then, Sγ is maximized at the point that allows for
another ∆γ = x routes to joint the approximation sets Aγ(Ti). Thus, the more disturbed
the timetables are, the more “backward” in time we need to search for a robust route.

Experimental evaluation We implemented the algorithms presented in the sections 2, 3
and 4 in Java 7. The experiments were performed on one core of an Intel Core i5-3470 CPU

K. Böhmová, M. Mihalák, T. Pröger, R. Šrámek, and P. Widmayer 39

Table 1 Comparison of the described methods over 100 test cases.

on time less than less than avg arrival avg earlier depart.
5 min late 10 min late time than Opt in T3

Unexpected Similarity, pick u.a.r. 88% 95% 97% 7:54 3.14
Unexp. Sim., pick max. # occurences 89% 94% 97% 7:54 3.22
Optimum in T 31% 48% 60% 8:07 -7.9
2nd Optimum in T 49% 64% 76% 7:57 2.14
Opt. in T + end buffer time 41% 57% 70% 8:03 -3.26
Buffer time 3 min 55% 71% 83% 7:59 0.02
Buffer time 5 min 66% 81% 88% 7:56 4.43

clocked at 3.2 GHz with 4 GB of RAM running Debian Linux 7.0. We used the combined
tram and bus network of Zurich as input. It has 611 stops and 90 different line IDs. In
our experiments, the actual number of lines itself is much higher (471), since multiple lines
may operate under the same ID (e.g., lines in opposite directions, or lines coming from or
returning to the depot). The planned timetable T that we used is the official one for the
Zurich network. However, trips departing before 6 a.m. or after 10 p.m. were ignored (since
the timetable is only valid for 24 hours, trips starting before and ending after midnight are
virtually interrupted at midnight, leading to a large number of lines).

We set the latest arrival time tA to 8 a.m., and carefully chose a small set of problematic
stops S′ where delays usually occur. Then we generated 100 pairs of stops (a, b) uniformly
at random. For each pair, we generated three timetables T1, T2 and T3 from T by delaying
every trip τ in T between 0 and 3 minutes at every station s ∈ S′ (if s occurs on τ). These
delays are 0 or 3 minutes with probability 1/8, and 1 or 2 minutes with probability 3/8. T1
and T2 are used as input to the algorithm, and the arrival time of the computed journey is
measured in T3. We use the following methods for computing the journey.

1. Maximizing the Unexpected Similarity Compute a route using the approach described
in section 4. We consider two ways to pick a route from the intersection: 1) choose
uniformly at random; 2) Choose the one with the maximum number of occurrences.

2. Optimum in T Find the best or the second best journey according to the planned
timetable T . Compute also the latest journey arriving in T five minutes before tA.

3. Buffer time for transfers Consider the latest journey from a to b that arrives on time
in T such that at each transfer stop it have to wait for an additional “buffer time”. We
experiment with buffer times of 1 – 5 minutes.

For each of these statistics, we computed the following numbers (see Table 1): Percentage of
the experiments where the proposed journey arrives on time, how often it arrives at most
5 minutes late, and how often it arrives at most 10 minutes late. We also computed the
average arrival time of the journeys proposed by each method as well as the average difference
between the departure time of the proposed journey to the optimal journey in T3.

The average time for computing the optimum solution is 127ms, the time to compute a
robust journey by using Unexpected Similarity is 262ms. We observed that our algorithm
produces journeys that are on time in high percentage of cases, and on average we propose to
depart only around 3 minutes earlier than the optimum in T3, thus the cost we pay for this
robustness is quite low. In comparison, the other considered approaches achieve much lower
success rates. Even the generous buffer time of 5 minutes turns out not to be enough to beat
our approach, which is rather surprising given the small delays in the considered timetables.

ATMOS’13

40 Robust Routing in Urban Public Transportation

7 Discussion

We presented a novel framework for robust routing in frequent and dense urban public
transportation networks based on observations of past traffic data. We introduced a new
concept to describe a travel plan, a journey, that is not only well suited for our robustness
issues, but also represents a natural and convenient description for the traveler. We also
provided a bag of algorithmic tools to handle this concept, tailored towards the proposed
robustness measures. We described a simple way to assess the reliability of a given journey.
We also used a different approach to robustness and described how to find a robust journey
according to it. We are preparing further experiments to confirm efficiency of the presented
algorithms and to evaluate the quality of the computed robust journeys.

Future work is to examine how the described methods can be extended to support a fully
multi-modal scenario, e.g., how to integrate walking. We believe that the modelling itself is
easy, while the performance of the algorithms will decrease significantly unless we develop
special techniques. Also considering and exploring different robustness concepts for journeys
may be worthwhile.

References

1 Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Harrelson, Veselin
Raychev, and Fabien Viger. Fast routing in very large public transportation networks using
transfer patterns. In Mark Berg and Ulrich Meyer, editors, Algorithms – ESA 2010, volume
6346 of LNCS, pages 290–301. Springer Berlin Heidelberg, 2010.

2 Reinhard Bauer, Daniel Delling, and Dorothea Wagner. Experimental study of speed up
techniques for timetable information systems. Networks, 57(1):38–52, 2011.

3 Justin Boyan and Michael Mitzenmacher. Improved results for route planning in stochastic
transportation. In Proceedings of the twelfth annual ACM-SIAM symposium on Discrete
algorithms, pages 895–902. Society for Industrial and Applied Mathematics, 2001.

4 Joachim M. Buhmann, Matúš Mihalák, Rastislav Šrámek, and Peter Widmayer. Robust
optimization in the presence of uncertainty. In Robert D. Kleinberg, editor, ITCS, pages
505–514. ACM, 2013.

5 Daniel Delling, Thomas Pajor, and Dorothea Wagner. Engineering time-expanded graphs
for faster timetable information. In Ravindra K. Ahuja, Rolf H. Möhring, and Christos D.
Zaroliagis, editors, Robust and Online Large-Scale Optimization, volume 5868 of LNCS,
pages 182–206. Springer Berlin Heidelberg, 2009.

6 Daniel Delling, Thomas Pajor, and Renato F Werneck. Round-based public transit routing.
Algorithm Engineering and Experiments (ALENEX), pages 130–140, 2012.

7 Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Intriguingly simple
and fast transit routing. In Vincenzo Bonifaci, Camil Demetrescu, and Alberto Marchetti-
Spaccamela, editors, SEA, volume 7933 of LNCS, pages 43–54. Springer, 2013.

8 Yann Disser, Matthias Müller-Hannemann, and Mathias Schnee. Multi-criteria shortest
paths in time-dependent train networks. In Experimental Algorithms, pages 347–361.
Springer, 2008.

9 H Frank. Shortest paths in probabilistic graphs. Operations Research, 17(4):583–599, 1969.
10 Marc Goerigk, Martin Knoth, Matthias Müller-Hannemann, Marie Schmidt, and Anita

Schöbel. The price of robustness in timetable information. In 11th Workshop on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems, pages 76–87, 2011.

11 Matthias Müller-Hannemann and Mathias Schnee. Efficient timetable information in the
presence of delays. In Ravindra K. Ahuja, Rolf H. Möhring, and Christos D. Zaroliagis,

K. Böhmová, M. Mihalák, T. Pröger, R. Šrámek, and P. Widmayer 41

editors, Robust and Online Large-Scale Optimization, volume 5868 of LNCS, pages 249–272.
Springer, 2009.

12 Matthias Müller-Hannemann, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis.
Timetable information: Models and algorithms. In Algorithmic Methods for Railway Op-
timization, pages 67–90. Springer, 2007.

13 Evdokia Nikolova, Jonathan A Kelner, Matthew Brand, and Michael Mitzenmacher.
Stochastic shortest paths via quasi-convex maximization. In Algorithms–ESA 2006, pages
552–563. Springer, 2006.

14 Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Efficient mod-
els for timetable information in public transportation systems. Journal of Experimental
Algorithmics (JEA), 12:2–4, 2008.

ATMOS’13

Delay-Robustness of Transfer Patterns in Public
Transportation Route Planning ∗

Hannah Bast, Jonas Sternisko, and Sabine Storandt

Albert-Ludwigs-Universität Freiburg
Freiburg, Germany
{bast,sternis,storandt}@informatik.uni-freiburg.de

Abstract
Transfer pattern routing is a state-of-the-art speed-up technique for finding optimal paths which
minimize multiple cost criteria in public transportation networks. It precomputes sequences of
transfer stations along optimal paths. At query time, the optimal paths are searched among the
stored transfer patterns, which allows for very fast response times even on very large networks.
On the other hand, even a minor change to the timetables may affect many optimal paths, so
that, in principle, a new computation of all optimal transfer patterns becomes necessary. In this
paper, we examine the robustness of transfer pattern routing towards delay, which is the most
common source of such updates. The intuition is that the deviating paths caused by typical
updates are already covered by original transfer patterns. We perform experiments which show
that the transfer patterns are remarkably robust even to large and many delays, which underlines
the applicability and reliability of transfer pattern routing in realistic routing applications.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Route planning, public transportation, transfer patterns, delay, robust-
ness

Digital Object Identifier 10.4230/OASIcs.ATMOS.2013.42

1 Introduction

When traveling with public transportation, not only the absolute time of travel matters:
Also the number of transfers and the total fare are important or, for instance, the reliability
of connections along the journey. The goal of public transportation route planning is to find
paths that minimize a multi-criteria cost function. Public transportation data is typically
available as a set of timetables and can be modeled as a directed graph. Classical route
planning algorithms perform a multi-criteria variant of Dijkstra’s algorithm on the graph. To
our knowledge, transfer pattern routing [1] is the fastest speed-up technique for this problem.
After precomputing sequences of transfers along all optimal paths which uses quadratic
time in the number of stations, it allows to find the Pareto-optimal paths in huge networks
within a few milliseconds. Because of its excellent scalability, the idea of transfer pattern
routing is employed by Google Maps. If the underlying network (read: the information of the
timetables) changes, the precomputed transfer patterns become outdated and optimal results
cannot be guaranteed anymore. Incorporating an update into the transfer patterns is hard,
because the dependency between a changed connection and the affected transfer patterns is
unclear. In principle, the whole expensive precomputation has to be done again. But this is
impossible as in realistic settings there are often updates. Our idea is, that provided there

∗ Partially supported by a Google Focused Research Award.

© Hannah Bast, Jonas Sternisko, and Sabine Storandt;
licensed under Creative Commons License CC-BY

13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’13).
Editors: Daniele Frigioni, Sebastian Stiller; pp. 42–54

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2013.42
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

H. Bast, J. Sternisko, and S. Storandt 43

are only minor changes to the network, the original transfer patterns are sufficient to find
optimal routes in most cases.

Criticism of transfer pattern routing often refers to its theoretical suboptimality and
lacking support for dynamic scenarios. At the time of writing, there are no publications
about if and how real-time updates can be handled by transfer pattern routing. But this is
an important aspect for the practicability of the algorithm, because route planning service
providers wish to recompute the transfer patterns only occasionally, when long-term changes
to the timetables are made. The main contribution of this work resides in empirically proving
the reliability of transfer pattern routing for location-to-location queries in the context of
real-time updates. We evaluate the quality of transfer patterns in different global delay
scenarios and study the immediate effect of delaying connections involved in optimal paths.
Moreover, we investigate on which parameters the robustness depends and how it can be
increased.

2 Related Work

Transfer pattern routing has been introduced by Bast et al. [1]. The authors outline the key
components of the algorithm and present a set of techniques and heuristics to render the
computation of transfer patterns feasible. Most notably is the concept of computing only
parts of transfer patterns up to important stations and combining these parts at query time.
Geisberger [6] elaborates how to compute transfer patterns in fully realistic settings with
walking between stations and for answering location-to-location queries.

The requirements for a route planning algorithm in a dynamic network are analyzed
in [10]. There have not been any publications on transfer patterns in such a setting yet.
Speed-up techniques without a time-consuming precomputation and thus suitable for dynamic
scenarios are for example SUBITO [3] and RAPTOR [4]. These approaches allow to find
Pareto-optimal paths between stations in short time (SUBITO about 100ms on German
railway network, RAPTOR about 100ms for London transit). However, the query times of
these approaches cannot compete with transfer pattern routing on large networks (43ms for
North America).

A related field of research focuses on robustness to delay in the sense that the probability
of missing a connection along a route is minimized. Most recently, a framework of algorithms
based on a technique called Connection Scan has been introduced [5]. The authors report
convincing average query times for finding the route with earliest arrival time (1.8ms) and for
multi-criteria profile queries (255ms) on the London data set. However, it remains unclear
how fast the algorithm answers one-to-one queries when more than one cost-criterion is
minimized. Besides the solution of classical route planning problems, the authors apply
Connection Scan to find alternative routes by minimizing the expected arrival time. Goerigk
et al. [7] compute routes which are robust to delays in the sense that all transfers along
a route are guaranteed, given a specific delay scenario. They observe that strictly robust
routes last longer than the fastest routes, whereas light robust routes have a relatively small
overhead. Keyhani et al. [9] introduce a stochastic model which rates the reliability of
transfers along routes. Other than in those articles, robustness does not refer to routes with
reliable transfers in this paper, but to sustaining optimality. Section 4.1 refers to the delay
models of the aforementioned works in more detail.

ATMOS’13

44 Delay-Robustness of Transfer Pattern Routing

3 Preliminaries

This section defines preliminary concepts and models. It explains the idea and components
of transfer pattern routing.

3.1 Modeling timetables
A transit network is described by a set of timetables. It comprises information about
stations S (e.g. train stations or bus stops) and trips of transport vehicles. A trip T

serves a sequence of stations stops(T) = (s1, s2, . . . , sn), si ∈ S at arrival and departure
times (tarr

1 , tdep
1), (tarr

2 , tdep
2), . . . (tarr

n , tdep
n). Let stop(T, s) denote the index of s in the station

sequence of T . We say a trip connects two stations sa and sb, if sa, sb ∈ stops(T) and
stop(T, sa) < stop(T, sb), and call sa and sb the start- and endpoint of the connection,
respectively. Multiple trips which share the same sequence of stations and do not overtake
each other form a line.

A route between two stations is a sequence of alternating rides on board of a vehicle
and transfers between connections. The start- and endpoints of the n connections along
a route form a sequence of 2n stations, which is called transfer pattern of the route. For
queries between two locations (not stations) X and Y , there is an additional walking part
at the beginning and the end. A routing algorithm answers a query with a set of routes
that minimize multiple cost criteria. The costs of a route are the sum of the costs of all its
connections and transfers. When comparing cost tuples, we say that a dominates b (a < b),
if it is as good as b in every component and better in at least one. a and b are incomparable,
if neither a < b nor b < a. The costs of optimal paths to a query are pairwise incomparable,
they form a Pareto-set.

Time-expanded Graph We use publicly available timetable data following the General
Transit Feed Specification (GTFS) format and model it as time-expanded graph according
to Pyrga et al. [11]. Each departure and arrival event along a trip is explicitly modeled as a
node with a timestamp. The successive nodes are connected with arcs of costs corresponding
to the time difference between the two events. Beside arrival and departure nodes, there
are nodes modeling transfers and waiting at a station. For each departure node, there is a
transfer node with the same timestamp and an arc connecting it to the departure node. At
each station, every transfer node is connected to the next transfer node in time. To model
transfers between vehicles, an arc connects each arrival node to a subsequent transfer node.
Usually, a traveler cannot instantly change from one vehicle to another. We model this with
the difference between the arrival and the connected transfer node not being less than a fixed
transfer buffer of 120 seconds. We want to find routes which minimize the time of travel
and the number of transfers. Therefore, the arcs have a tuple weight consisting of the time
difference between the connected nodes and the penalty, which is 1 for arcs from arrival to
transfer nodes and 0 for all other arcs. In order to decrease the size of the graph, we remove
departure nodes by redirecting incoming arcs to the respective successors.

Walking Between Stations In a model for realistic route planning, transfers involving
walking between two stations must be possible. Therefore, we maintain an additional walking
graph with arcs between neighboring stations and the duration of walking as costs. For the
sake of simplicity, we take the straight-line distance between the connected stations and
assume a fixed speed of 5 km/h to compute the costs. During search, when expanding a
label at an arrival node at station S and time tarr, the walking graph is used to determine

H. Bast, J. Sternisko, and S. Storandt 45

the first transfer node after tarr + walk(S, T) + transfer buffer for every neighbor station T .
The time difference between the two nodes and a penalty of 1 are used as weight for the
relaxed virtual arc. By restricting walking to happen between arrival and transfer nodes,
this model implicitly forbids via-walking over multiple stations in a row.

3.2 Routing with Transfer Patterns

The transfer pattern of a route is the sequence of stations where a change of the transportation
vehicle occurs, including the departure and arrival station. When considering all possible
departure times at a station A, the optimal paths for journeys A→ B form a set of transfer
patterns. In public transportation, this set has typically only a few elements. For example,
when traveling from Paris to Nice there is a direct TGV which leaves every other hour. In
between its departure times, the journey with the earliest arrival time at Nice is one of two
connections with transfers at Lyon or Marseilles. We say that Paris – Nice, Paris – Lyon –
Nice and Paris – Marseilles – Nice are the optimal transfer patterns for this station pair.

The key idea of the algorithm is that the set of optimal transfer patterns between two
stations A and B at all times form a search space, which is orders of magnitude smaller than
the original graph. Given they are known, the Pareto-optimal paths at a specific time can
be found among them. In short, the algorithm determines the optimal transfer patterns for
all pairs of stations and searches on the graph described by the patterns.

Computation of Optimal Transfer Patterns Conceptually, the optimal transfer patterns
for a station pair A,B can be determined by running a multi-criteria variant of Dijkstra’s
algorithm from A. On the time-expanded graph1, we compute the transfer patterns as
described in [1]: From every station, a profile query determines the optimal paths to all
reachable destinations. For every destination and its arrival nodes at times t1 < t2 < . . .

the arrival-chain algorithm selects a dominating subset among the set of labels consisting
of (i) labels settled at ti, and (2) labels settled at ti−1 with duration increased by ti − ti−1.
Every selected label corresponds to an optimal path, which is backtracked to its origin while
recording stations where transfers happened. The resulting optimal transfer patterns are
stored as a directed acyclic graph (DAG). In extension to [1], we exploit the fact that the
departure and destination station of a transfer pattern is always known from context [12].
This allows to store all patterns in one joint DAG, which automatically resolves redundancies
and reduces the size of the data.

The precomputation has quadratic time effort in the number of stations. When computing
transfer patterns for location-to-location queries (which we do), the arrival-chain algorithm
has to consider all arrival events in the walking neighborhood N (s) of each destination s.
With an unbound neighborhood radius the running time would become cubic. Therefore
we limit walking to stations within 1 000 meters. Nevertheless, the precomputation is very
expensive. This is the price for the very fast query times. In order to reduce its duration, we
employ the concept of important stations (hubs) and compute only parts of transfer patterns
[1]. Global (unlimited) transfer patterns are computed only from important stations. From
all other stations, we compute the transfer patterns up to the first transfer at a hub and a
maximum of three trips. Although this heuristic leads to a loss of optimality (the search
cannot find optimal paths with more than two transfers, none of which is at a hub), in

1 Note that our results are independent of the used graph model.

ATMOS’13

46 Delay-Robustness of Transfer Pattern Routing

practice, only very few optimal paths are affected [1]. In Section 5 we will see its marginal
effect on the optimality of the algorithm’s results.

Routing with Transfer Patterns Once computed, the patterns between stations A and B
describe a compact graph. A location-to-location queryX@t→ Y is answered by constructing
a query graph and performing a search on it. The query graph is created from the transfer
patterns between departure stations s ∈ N (X), the important stations and the destination
stations s′ ∈ N (Y) as demonstrated in [1, 6]. We follow the refinements of Geisberger [6]
and distinguish between two nodes representing alternating arrival and departure events for
each station. The arcs in this graph correspond to (walking-) transfers or direct connections
between stations. During the search, the travel time along these arcs can be determined
using an efficient data structure. We proceed in analogy to [1] and store trips grouped by
lines like this:

line17 s14 s9 s56 ...
trip1 8:05 9:00 9:15 10:00 10:05 ...
trip2 8:35 9:30 9:45 10:30 10:35 ...

...

For each station, we compute a list of incident lines with the respective position of the station
along the line. For instance: s14 : {(line17, 0), (line26, 8), . . .}, s56 : {(line12, 6), (line17, 2), . . .}
and so on. To determine the next direct connection between two stations, their incidence-lists
are intersected and the next trip of a line connecting both stations is determined. With the
query graph consisting of only several hundred arcs and the direct connection queries taking
2-10µs each, the total search time is only a few milliseconds.

4 Delay and Robustness

This section presents our delay model, points out the problem of frequent updates for a
preprocessing-based algorithm and introduces our approach to handle delay with transfer
pattern routing.

4.1 Delay Scenarios
Among different sources of real-time updates to timetables (trip cancellation, redirection,
auxiliary connections, ...) we focus on the most common one, which is delay of trips. The
literature distinguishes between primary delay (e.g. a train is late due to engine issues) and
secondary delay (other trains waiting for the former) [10]. Delay models in related projects
range from simplistic independence assumptions [5] over models which allow for delay to
accrue [7] to sophisticated models respecting primary delay of trains, knock-on delay to other
trips and delay due to waiting for late connections [8]. In a survey of stochastic models
for delay, Yuan [13] successfully anneals distributions of non-negative primary delay with
exponential functions. Once a trip is delayed, the propagation over successive connections
follows complex rules. Refer to Berger et al. [2] for an overview and a stochastic model for
delay propagation in timetables.

For the sake of simplicity and because data about real-time updates is hardly available,
we focus on primary delay, ignore knock-on effects as well as scheduled security headways
between trains and model delay independently between trips. In six different scenarios (Table
1), the set of trips is partitioned into groups of common average delay Eδ. For each group, a
random subset of all trips is selected. Every selected trip is delayed with time δ drawn from

H. Bast, J. Sternisko, and S. Storandt 47

Table 1 How many trips are delayed by
how much in our six delay scenarios.

Scenario Average delay Eδ
5min 15min 50min

Low 25% - -
Medium - 25% -
High - - 25%
Mix Low 10% 3% 1%
Mix Normal 20% 10% 5%
Mix Chaos 40% 40% 20%

0 5 10 15 20
delay (min)

0.00

0.05

0.10

0.15

0.20

pr
ob

ab
ili

ty

Eδ = 5 min
Eδ = 15 min
Eδ = 50 min

Figure 1 Probability density functions for
exponential distributions with mean Eδ.

an exponential distribution with probability density function pdf (δ) = 1/Eδ · exp(−1/Eδ · δ)
(Figure 1). The delay is inserted starting at a uniformly random stop i, i.e. the trip’s times
(tarr

j , tdep
j) are replaced with (tarr

j + δ, tdep
j + δ) for j ≥ i. We choose three different scenarios

where one quarter of the connections are delayed with 5 (Low), 15 (Medium) an 50 minutes
(High) in average. In addition, we generate three combined scenarios with an increasing
mixture of average delay (Mix Low, Mix Normal and Mix Chaos). In the last scenario,
every trip is delayed.

One might argue that this model is too far from reality. However, by modeling delay
independently between trips, the scenarios become harder to deal with than in reality. If
delay occurs frequently along a specific line or in a street prone to congestion, alternative
routes are more obvious and could be retrieved during the precomputation. Furthermore, in
typical metropolitan networks with high service frequencies, connections typically do not
wait for delayed trips. Waiting policies in hierarchical train networks are designed such that
the important transfers between trips are maintained and the resulting delay for waiting
trips can be compensated during the remainder of their trip and knock-on delay to further
connections is minimized. Therefore, we believe that in a refined model with realistic waiting
rules transfer patterns will perform more robust than in our simplified model. We are working
on another set of experiments with such a model, but by the time of writing there are no
results yet.

4.2 Delay and Transfer Patterns
The routing algorithm finds optimal routes only if the precomputed transfer patterns are
optimal. If a trip is delayed, it is possible that an optimal route previously taking this
trip will resort to another connection, thereby changing its transfer pattern. Unfortunately,
not only routes along the delayed trip are affected and it is hard to decide which transfer
patterns have to be updated. To make this clear, think of a train which is delayed and stops
at some station at 10:15 instead of 9:45. Another train arrives at the same station at 10:00.
Passengers of this train may benefit from the delayed train and arrive at their destination
earlier than with a regular connection.

Thus, the optimal transfer patterns have to be computed from scratch. But this is time-
consuming: for example, the transfer pattern computation for New York requires around 800
core hours ([1], Table 3). Given a steady flow of updates to the timetables, it is impossible
to keep the transfer patterns up to date. On the other hand, the data structure for direct
connection lookup can be computed within a few minutes ([1], Table 2). Updating a single
trip is fast, as we will prove. It is thus adaptable to frequent changes of the timetables. Our

ATMOS’13

48 Delay-Robustness of Transfer Pattern Routing

approach to deal with real-time updates is to update only the direct connection data, and
search on query graphs generated from the original transfer patterns.

4.3 Updating the Direct Connection Data
Now we explain how a single trip in the direct connection data structure can be updated
in real-time. When constructing the data from a collection of trips, we create a mapping
from sequences of station ids to all lines that serve these stations in the given order. When
updating a specific trip, the trip’s stop times are changed within its line. If the line still has
the FIFO-property (the trip does not overtake another trip and is not overtaken), we are
done. Otherwise, the trip is removed from the line. If it does not fit into another line serving
the same sequence of stations, a new line is created. The line id and the respective stop
position along the line is added to the incidence list of every served station (see Section 3.2).

I Lemma 1. Let L denote the set of lines and let trips(l) denote the trips of l ∈ L. Further,
C ⊆ L is the set of lines which share the same station sequence as l. Then updating a trip
T ∈ trips(l) in the direct connection data structure has running time

O (log |L| · |stops(T)|+ |C| · (|stops(T)|+ log |trips(l)|))

Proof. (1) Finding the trip in the line can be done in O(log |trips(l)|), because the trips of l
are sorted by time (Section 3.2). (2) Updating the trip’s stop times is in O(|stops(T)|). (3)
Checking the FIFO-property takes O(|stops(T)|). In case it is violated, candidate lines C with
the same same sequence of stations have to be found in L. This takes time O(log |L|·|stops(T)|)
using the mapping described above. Steps (1) and (3) have to be repeated for every c ∈ C in
the worst case. J

For example in New York City, there are 16 454 lines and C has a maximum size of 66. For
the most frequent lines, |trips(l)| is 299 and for the longest trips |stops(T)| is 117. Updating a
trip takes 40–80µs. Typical update rates are about 70 updates per second (German railway;
primary delay, secondary delay and forecast) [10], so our approach clearly allows for real-time
updates.

5 Experiments

In the previous section, we proposed to deal with delays by searching routes using the original
transfer patterns (computed for the graph without delays) and updated direct connection
data. This potentially leads to non-optimal responses. In this section, we present several
experiments which show that this is rarely the case, even for many and large delays.

5.1 Global Delay Scenarios
Method We present experiments conducted on the data sets of Toronto (10 883 stations,
1.5M departures) and New York City (16 765 stations, 2.3M departures). The data can be
accessed at http://ad.informatik.uni-freiburg.de/publications. The time-expanded
graph is generated for a random weekday (from 1:00 am until 6:30 am the next day) and
the transfer patterns are computed on this graph according to Section 3.2. This forms the
baseline Null. We apply different delay scenarios from Section 4.1 to the data sets and
compute the direct connection data and the updated time-expanded graph from it. At search
time, the query graphs are constructed from the transfer patterns computed on the original
graph.

http://ad.informatik.uni-freiburg.de/publications

H. Bast, J. Sternisko, and S. Storandt 49

Table 2 Classification of paths under different scenarios. Abbreviates almost optimal σ as σ.

(a) Toronto

optimal a b bad

Null 99.97% 0.02% 0.01% 0.00%
Low 99.71% 0.15% 0.04% 0.10%
Medium 99.55% 0.22% 0.06% 0.17%
High 99.42% 0.29% 0.08% 0.21%
Mix Low 99.81% 0.10% 0.03% 0.06%
Mix Normal 99.52% 0.26% 0.06% 0.16%
Mix Chaos 97.46% 1.40% 0.34% 0.80%

(b) New York City

optimal a b bad

Null 99.99% 0.01% 0.00% 0.00%
Low 99.87% 0.01% 0.00% 0.04%
Medium 99.68% 0.19% 0.03% 0.10%
High 99.72% 0.17% 0.02% 0.09%
Mix Low 99.93% 0.05% 0.00% 0.02%
Mix Normal 99.89% 0.07% 0.01% 0.03%
Mix Chaos 99.19% 0.57% 0.07% 0.17%

We generate random queries X@t → Y in the following manner: The departure and
destination locations X and Y are drawn from the set of locations of the stations S, taking
into account the number of departing connections ns at each station s ∈ S: The probability
of selecting s is ps = √ns/

∑
s′∈S

√
ns′ . To avoid trivial connections, the two locations must

be more than 2 000 meters away from each other. The departure time t is drawn from an
interval of 24 hours starting at 4:00 am. To account for varying traffic density during the
day, departure times during the rush hours are selected twice as often.

The random queries are answered by transfer pattern routing. The resulting paths are
compared to reference routes. In order to compute the latter, the delayed time-expanded
graph is extended with two nodes x, y representing the source and target location X and
Y . For each station s ∈ N (X), x is connected to the first transfer node of s after time
t + walk(X, s) and every arrival node at s′ ∈ N (Y) is connected to y by an arc of costs
walk(s′, Y). On this extended graph, a multi-criteria Dijkstra is used to determine the
optimal paths.

In this setting, we evaluate the robustness in each scenario. For each response to a
query, the paths found by transfer pattern routing are classified independently as follows:
If a path of equal costs is among the reference paths, the response is optimal. For every
Dijkstra-generated path which has no correspondent of equal costs, the most similar path in
terms of penalty is selected. If there is a path with the same penalty, the duration difference
is inspected. If the path found by transfer pattern routing is less than 5% of the total travel
time and less than five minutes slower than the reference path, it is almost optimal a. If
it is not classified as almost optimal a but less than 10% and less than ten minutes late,
it is almost optimal b. Otherwise, the path is classified as bad.

Results Tables 2a and 2b show the results of our experiments with 50 000 random queries
with at least one feasible route found by the reference algorithm. For each delay scenario,
the found paths were classified (about 82 000 paths in Toronto, 67 000 in New York City).
The classification results show the influence of the scenarios: With increasing average delay,
the share of optimal paths decreases. Although we are using the important station heuristic,
almost all paths found by transfer pattern routing are optimal for the baseline Null. The
few suboptimal paths are dominated by paths with more than two transfers without an
important station, which cannot be found because of the restriction of local profile queries to
three trips (see Section 3.2).

Among the results for the different scenarios there are just very few suboptimal paths.
Even for the worst scenario the share of suboptimal paths is below 2.6% for Toronto, and

ATMOS’13

50 Delay-Robustness of Transfer Pattern Routing

Table 3 Suboptimal paths: Relative offset to optimal travel time. Summary statistics of
distributions for different delay scenarios. For example, in Toronto under the scenario Low, 25% of
the suboptimal paths are at most 0.02 times slower than the optimal path.

(a) Toronto

N Q0.25 Q0.5 Q0.75 max

Low 276 0.02 0.04 0.08 4.95
Medium 441 0.01 0.04 0.08 3.96
High 552 0.01 0.04 0.08 3.17
Mix Low 184 0.01 0.04 0.08 0.74
Mix Normal 451 0.02 0.04 0.10 0.69
Mix Chaos 2300 0.02 0.05 0.09 4.42

(b) New York City

N Q0.25 Q0.5 Q0.75 max

Low 46 0.00 0.03 0.05 0.20
Medium 149 0.01 0.03 0.06 0.19
High 144 0.01 0.04 0.06 0.23
Mix Low 24 0.00 0.01 0.02 0.29
Mix Normal 41 0.02 0.03 0.06 0.21
Mix Chaos 332 0.02 0.05 0.09 0.40

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Relative offset to optimal travel time

Mix Chaos

Mix Normal

Mix Low

High

Medium

Low

(a) Toronto

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Relative offset to optimal travel time

Mix Chaos

Mix Normal

Mix Low

High

Medium

Low

(b) New York City

Figure 2 Suboptimal paths: Boxplot for relative time of travel compared to the optimal path with
equal number of transfers. The red line marks the median, the box contains the interval between the
upper and lower quartile of the data. The whiskers have a length of 1.5 times the distance between
the quartiles. The crosses mark outliers. Outliers above 0.6 are not shown.

below 1% for New York City. Beside this, most of the suboptimal paths are quite close to the
optimum: The major part is classified as almost optimal a and the share of bad paths is
never larger than 0.8%. For suboptimal paths, Tables 3a, 3b and Figures 2a, 2b show the
distribution of the relative differences to the corresponding optimal path. The influence of
the scenarios’ average delay reflects similarly in the distributions as for the classification
results above. We observe that the median of the distributions is below 0.05 for both data
sets in all scenarios. There are a few outliers, some of which are much worse than the optimal
path (at most factor 4.95 for Toronto, factor 0.37 for New York City). Manual inspection of
these critical outliers showed that they typically stem from queries between remote locations
with bad connectivity. For example, the worst route in Toronto misses the last connection
before midnight and has to wait for six hours. Note that only paths which are dominated by
a reference path of equal number of transfers are reported here. Therefore, the number of
paths in the Tables 3a, 3b is slightly smaller than the number of suboptimal paths in the
classification tables.

In summary, the results indicate that transfer patterns are very robust to delay. Even in
the worst scenario the share of suboptimal responses is very small, and most of these paths
are almost optimal. Furthermore, the results show that the limit of three trips for local
transfer patterns leads only to very few suboptimal results.

H. Bast, J. Sternisko, and S. Storandt 51

0 1 2 3 4 5 6 7 8 9
number of iterations

0

1000

2000

3000

4000

5000

nu
m

be
r

of
op

ti
m

al
qu

er
ie

s

Figure 3 Number of queries which are still answered optimally after iteratively adding systematic
delay of 30 minutes to the optimal paths and repeating the query. Results for 5 000 queries with a
limit of nine iterations on New York City.

5.2 Controlled Delay

In our opinion, the global scenarios discussed beforehand model real transportation networks
quite sufficiently. On the other hand, delaying random trips in a memoryless fashion does
not clearly show why transfer patterns are robust. It is still possible that the optimal paths
remain rather unchanged, for example when the delay is so small that a trip reaches the
same connections as without delay. To examine the robustness of transfer patterns in more
detail, we conduct another series of experiments and directly delay the optimal routes.

In a first setup, random queries are issued on the New York City data set. For every
resulting optimal route one of its conducting trips is delayed with 30 minutes, such that the
delay definitely affects the optimal routes. Then the query is repeated on the delayed data
and the response is classified as in Section 5.1. Repeating this experiment for more than
32 000 queries showed that only 1.34% of the queries become suboptimal if we influence the
connections of the optimal routes in this way.

In order to get a better understanding of the robustness, we extend this experiment to
multiple rounds: A random query is drawn as before. In each round, the response of transfer
pattern routing is compared to the reference response. Then, one trip of each optimal route
is delayed by 30 minutes. This is repeated until the response becomes suboptimal, at most
for nine times. Figure 3 summarizes the number of executed iterations until the response
became suboptimal. The majority of queries was still optimal after nine successive delays.
Also in this setting the transfer patterns computed on the original network proved to be very
robust.

5.3 Dependencies of the Robustness

Consider an arbitrary query X@t→ Y . Let r0 = {p0
1, p

0
2, . . .} denote the set of paths found

by transfer pattern routing in the baseline null. In the delayed scenario, the response is
r = {p1, p2, . . .} and r∗ = {p∗1, p∗2, . . .} is the (guaranteed optimal) response of the reference
algorithm. The transfer patterns are robust if r = r∗ in terms of path costs. An alternative

ATMOS’13

52 Delay-Robustness of Transfer Pattern Routing

path is a path pi ∈ r with costs equal to the costs of a reference path p∗i ∈ r∗ and pi 6= p0
i

in terms of the transfer stations. How come such alternative paths are contained in the
query graph? This is because in the precomputation, during the course of time paths of
different transfer pattern are optimal for a station pair A,B. Besides, the query graph is a
digraph with one node (-pair) for each station and can therefore contain further alternatives.
For illustration, consider the digraph build from the patterns A → B → C → D and
A→ C → B → D. In addition to the patterns it is created from, it also contains the paths
ABD and ACD. This effect increases with growing number of patterns between a station pair,
and thus also by building the query graph from patterns to and from important stations.

The number of alternatives depends also on the number of neighboring stations of X and
Y , as the query graph is built from all patterns between these stations. The observations
for both data sets in Section 5.1 differ. For Toronto, there are more suboptimal responses
and they deviate more from the optimum. Here, the average number of neighbor stations
|S|−1 ·

∑
s∈S |N (s)| is 50, whereas for New York City it is 92. To investigate this further,

we select the ten percent of stations with the most and with the fewest neighbor stations of
New York City and answer queries as in Section 5.1, but with locations X, Y drawn from
one of the groups. The results clearly express a difference. Queries in the group with 152 to
306 neighbor stations are less often answered suboptimally than in the group with 1 to 36
neighbors (for Mix Chaos: 0,61% vs. 3.11%). As the maximum walking distance influences
the size of the neighborhood, increasing this parameter will probably further improve the
robustness.

In summary, transfer patterns allow for alternative routes. When the optimal path is
iteratively delayed, at some point the optimum switches to a path with another pattern.
Figure 4 shows some examples how the transfer pattern of the optimal path evolves, if the
trips along the optimal path are subsequently delayed.

5.4 Improving the Robustness
The routing algorithm yields suboptimal responses whenever the optimal path is not contained
in the query graph or the overlaid transfer patterns respectively. We studied reasons why
the optimal paths in case of delay cannot be found in the overlaid patterns. When there is
no delay, these paths are typically just slightly dominated by other paths.

The arrival-chain algorithm described in Section 3.2 selects a dominant subset among the
paths between two stations. In a first approach to improve the robustness of the transfer
patterns, we relaxed the domination relation for travel times in the arrival-chain algorithm:
A cost-tuple a dominates another tuple b, if its travel time increased by 5%/10%/20% or
at least 2/2/5 minutes is less than that of b. Other than expected, the resulting patterns
are only slightly more robust, whereas even in the first setting the number of patterns has
doubled. This would slow down the search time. Provided that the suboptimal responses are
only a few, this minor improvement does not seem worth the additional effort.

To motivate our next approach, consider an optimal path with the transfer pattern
U → V →W → X and imagine the trip serving V →W is delayed. We observed that some
of the not-found optimal paths take redirections over some station R, but otherwise use parts
of the original pattern, for example UVRX or URWX. As described in Section 5.3, overlaying
transfer patterns generates a graph which contains additional paths. We tried to exploit
this by enhancing the query graph with additional patterns. In the example, we would add
transfer patterns for the station pairs U,W and V,X hoping that this adds subpaths VRX or
URW to the query graph. While this works in theory, in practice the trigger of this extension
remains unclear. Extending the query graph for every delayed arc is impractical, as this

H. Bast, J. Sternisko, and S. Storandt 53

0 20 40 60 80 100 120
cummulative delay (min)

100

110

120

130

140

150

tr
av

el
ti

m
e

(m
in

)

Pattern 1
Pattern 2
Pattern 3
Pattern 4
Pattern 5

0 20 40 60 80 100 120
cummulative delay (min)

45

50

55

60

65

70

75

80

85

tr
av

el
ti

m
e

(m
in

)

Pattern 1
Pattern 2

0 20 40 60 80 100 120
cummulative delay (min)

45

50

55

60

65

70

tr
av

el
ti

m
e

(m
in

)

Pattern 1
Pattern 2
Pattern 3
Pattern 4
Pattern 5
Pattern 6

0 20 40 60 80 100 120
cummulative delay (min)

90

95

100

105

110

115

120

tr
av

el
ti

m
e

(m
in

)

1
2
3
4
5
6
7

8
9
10
11
12
13
14

15
16
17
18
19
20

Figure 4 Evolution of the pattern of an optimal path. From the response to a fixed query, the
path with the highest number of transfers is selected and one of its connections is iteratively delayed
with two minutes. The plots show how the travel time increases and the pattern is occasionally
changed for four exemplary queries.

would blow up its size and the construction time. Triggering the extension only for arcs
with delay above a fixed threshold does not reflect the fact that occurrence and severity
of suboptimal paths are only weakly related to the amount of delay. Another idea is to
repeat the search on the query graph whenever the first search yields a path over a delayed
connection. Alternative routes for this connection would be added to the graph. However,
the suboptimal paths often do not go via delayed connections, so this is unreliable, too.

6 Conclusion & Future Work

We described how delays can be handled by transfer pattern routing without repeating its
expensive precomputation. We showed how the data structure for efficient direct connection
queries can be updated fast, allowing to adapt to updates in real-time. It transpired that
our approach sustains the high quality of results even under extreme delay scenarios. Just a
few paths are suboptimal, most of which do not deviate too much from the optimum. For
example, when delaying every trip on the New York City data set with 5–50 minutes in
average and answering 50 000 queries, only 450 of the resulting paths are not optimal. More
than 75% of these are less than 10% and less than ten minutes off the optimum. Furthermore,
we provided insight why the transfer patterns contain alternative routes and we analyzed on
which factors the robustness depends.

The inherent disadvantage of the scenarios is that they model delay independently. On
the one hand, in realistic public transportation delay is often systemic. For example, a traffic
jam will delay a series of trips. On the other hand, there are mechanisms to compensate

ATMOS’13

54 Delay-Robustness of Transfer Pattern Routing

delay: a bus can drive faster to catch up with its schedule. Another example are traffic
agencies in the EU, which are bound by law to reimburse passengers for excessive delay.
Because of this, the agencies employ decision algorithms which can make connections wait for
delayed trains. As delay occurs not independently as assumed in this paper, the acquisition
of realistic delay data and repetition of the experiments on top of that is a topic for future
research.

Although the quality of responses are almost always optimal, there are some critically
suboptimal paths. Future work should focus on eliminating these or making them less severe,
for example by adding alternative transfer patterns for frequently delayed trips. We proposed
three improvement approaches and discussed why they fail. If a detection mechanism for
such bad responses can be found, a fall-back algorithm [3, 4, 5] could be used to find optimal
responses on the updated transportation network. In order to be practicable, such a detection
must not increase the running-time for the majority of queries, which are already answered
optimally. This seems to be a hard problem.

References
1 Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Harrelson, Veselin

Raychev, and Fabien Viger. Fast Routing in Very Large Public Transportation Networks
Using Transfer Patterns. In ESA (1), volume 6346 of LNCS, pages 290–301. Springer, 2010.

2 Annabell Berger, Andreas Gebhardt, Matthias Müller-Hannemann, and Martin Ostrowski.
Stochastic Delay Prediction in Large Train Networks. In ATMOS, pages 100–111, 2011.

3 Annabell Berger, Martin Grimmer, and Matthias Müller-Hannemann. Fully Dynamic
Speed-Up Techniques for Multi-criteria Shortest Path Searches in Time-Dependent Net-
works. In SEA, volume 6049 of LNCS, pages 35–46. Springer, 2010.

4 Daniel Delling, Thomas Pajor, and Renato F. Werneck. Round-Based Public Transit Rout-
ing. In ALENEX, pages 130–140. SIAM / Omnipress, 2012.

5 Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Intriguingly Simple
and Fast Transit Routing. In SEA, volume 7933 of LNCS, pages 43–54. Springer, 2013.

6 Robert Geisberger. Advanced Route Planning in Transportation Networks. PhD thesis,
Karlsruhe Institute of Technology, 2011.

7 Marc Goerigk, Martin Knoth, Matthias Müller-Hannemann, Marie Schmidt, and Anita
Schöbel. The Price of Robustness in Timetable Information. In ATMOS, pages 76–87,
2011.

8 Andrew J. Higgins and Erhan Kozan. Modeling Train Delays in Urban Networks. Trans-
portation Science, 32(4):346–357, 1998.

9 Mohammad H. Keyhani, Mathias Schnee, Karsten Weihe, and Hans-Peter Zorn. Reliability
and Delay Distributions of Train Connections. In ATMOS, pages 35–46, 2012.

10 Matthias Müller-Hannemann and Mathias Schnee. Efficient Timetable Information in the
Presence of Delays. In Robust and Online Large-Scale Optimization, volume 5868 of LNCS,
pages 249–272. Springer, 2009.

11 Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos D. Zaroliagis. Efficient
Models for Timetable Information in Public Transportation Systems. ACM Journal of
Experimental Algorithmics, 12, 2007.

12 Jonas Sternisko. On Compact Representation and Robustness of Transfer Patterns in
Public Transportation Routing. Master’s thesis, Universität Freiburg, April 2013.

13 Jianxin Yuan. Stochastic Modelling of Train Delays and Delay Propagation in Stations.
PhD thesis, Technische Universiteit Delft, The Netherlands, 2006.

Solving a Freight Railcar Flow Problem Arising in
Russia
Ruslan Sadykov∗1, Alexander A. Lazarev2,3, Vitaliy Shiryaev4, and
Alexey Stratonnikov4

1 INRIA Bordeaux – Sud-Ouest,
351, cours de la Liberation, 33405 Talence, France
Ruslan.Sadykov@inria.fr

2 Institute of Control Sciences,
65 Profsoyuznaya street, 117997 Moscow, Russia
lazarev@ipu.ru

3 National Research University Higher School of Economics,
20 Myasnitskaya street, 101000 Moscow, Russia

4 JSC Freight One
Staraya Basmannaya st., 12 bld. 1, 105064 Moscow, Russia
{ShiryaevVV,StratonnikovAA}@pgkweb.ru

Abstract
We consider a variant of the freight railcar flow problem. In this problem, we need 1) to choose
a set of transportation demands between stations in a railroad network, and 2) to fulfill these
demands by appropriately routing the set of available railcars, while maximizing the total profit.
We formulate this problem as a multi-commodity flow problem in a large space-time graph. Three
approaches are proposed to solve the Linear Programming relaxation of this formulation: direct
solution by an LP solver, a column generation approach based on the path reformulation, and a
“column generation for extended formulations” approach. In the latter, the multi-commodity flow
formulation is solved iteratively by dynamic generation of arc flow variables. Three approaches
have been tested on a set of real-life instances provided by one of the largest freight rail trans-
portation companies in Russia. Instances with up to 10 millions of arc flow variables were solved
within minutes of computational time.

1998 ACM Subject Classification G.1.6 Optimization

Keywords and phrases Freight routing, multi-commodity flow, column generation

Digital Object Identifier 10.4230/OASIcs.ATMOS.2013.55

1 Introduction

In Russia, the activity of forming and scheduling freight trains is separated by a regulation
from the activity of managing the fleet of freight railcars. A state company is in charge of
the first activity. Freight railcars are owned by several independent companies. Every such
company is quite limited in transportation decisions due to the separation of activities. A
company which owns a fleet of railcars can only accept or refuse a transportation demand.
Then it must assign railcars to accepted demands. In some cases, the company has a
possibility to slightly modify the execution date of a demand, which gives more flexibility to
the decision process but makes it more complicated.

∗ Corresponding author

© R. Sadykov, A. A. Lazarev, V. Shiryaev, and A. Stratonnikov;
licensed under Creative Commons License CC-BY

13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’13).
Editors: Daniele Frigioni, Sebastian Stiller; pp. 55–67

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2013.55
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

56 Solving a Freight Railcar Flow Problem Arising in Russia

Thus, an operational plan of such a company is determined by 1) a set of accepted
transportation demands, 2) for each demand, its execution date and the set of cars assigned
to it, and 3) empty cars movements to supply each demand. As the company is commercial,
a reasonable criterion for the quality of an operational plan is the profit generated by it. The
profit is determined by the difference between the price collected for fulfilling transportation
demands and the costs paid to the state company for exploiting the railroad network.

In this paper, we study the problem of finding a most profitable operational plan for a
company which owns and manages a fleet of railcars. This problem was formulated by the
mathematical modeling department of one of the largest such companies in Russia.

For this problem, we are given a railroad network, a set of transportation demands, an
initial location of cars of different types. The network data consists of a set of stations,
travel times and costs between them. As it was mentioned above, the company does not
schedule trains. Thus, actual transportation of loaded and empty railcars is performed by
the state company, who charges predetermined costs per trip. Estimated travel times are
also determined and applied by the state company. Note that the transfer cost for an empty
car depends on the type of product type loaded previously to this car. This way, the state
increases attractiveness of the transportation of “socially important” products (for example,
coil). This custom is being vanished now, but it is still practiced for some car types.

The objective is, for a given period of time, to choose a set of demands to be met, totally
or partially, and, for each car, find a route which includes both loaded and empty transfers.

To solve the problem, we start from an integer multi-commodity flow model, which
has been proposed by Stratonnikov and Shiryaev [10]. The time horizon in this model is
discretized in periods of one day. This discretization choice is reasonable for Russia, as
distances are measured in thousands of kilometers, and the average speed of freight trains is
relatively low: about 300 kilometers per day (it tends to decrease further with a saturation
of the network).

This model has a very large size, and even solving its Linear Programming (LP) relaxation
using modern commercial solvers can take hours of computation time for real-life instances.
However, a solution of this LP relaxation allows one to obtain a very tight dual bound for
the objective function value. This fact has been also noticed for similar models considered
in [4, 7]. Therefore, we concentrate on solving the LP relaxation of this formulation, leaving
the problem of obtaining an integer solution out of the scope of the paper. In practice,
rounding a fractional solution in a straightforward way allows one to obtain an integer
solution with very small gap.

To solve the LP relaxation faster, we devise two variants of the column generation
procedure, where columns represent railcar routes or flows of the railcars of the same type.
The first variant we tried is the classic Dantzig-Wolfe approach. In the second variant,
called “column generation for extended formulations” in [9], columns are disaggregated
into individual arc flow variables when added to the master. Thus, the master problem
is equivalent to the original multi-commodity flow model, but its variables are generated
dynamically. On almost all real-life instances provided by the company, either the first or
the second variant of the column generation approach significantly outperformed the solution
by a solver of the LP relaxation of the original multi-commodity model, preprocessed by a
problem-specific procedure.

To our knowledge, the closest model considered in the literature is the freight car flow
problem faced by a Brazilian logistics operator and described by Fukasawa et al. [4]. In
this paper, authors proposed a similar integer multi-commodity flow model and solved it
using a simple preprocessing and an Mixed Integer Programming (MIP) solver. The main

R. Sadykov, A. A. Lazarev, V. Shiryaev, and A. Stratonnikov 57

difference with our model is the availability of a fixed train schedule. In their model cars
must be assigned to trains to be transported. In our model, we cannot rely on the train
schedule information, as it is very approximative and rarely respected in practice. Instead,
we use the normative travel times given by the state company which is in charge of forming
and scheduling trains. Additionally, Fukasawa et al. considered loading and unloading times,
which we neglect here because they are much smaller than the length of time periods.

Another similar car flow model has been considered by Holmberg et al. [5]. In this model,
one searches only for a flow of empty cars, the flow of loaded cars being fixed. Thus, a
heuristic iterative procedure is applied to optimize the total flow of cars.

A paper which is related to our research in terms of the solution approach applied is
due to Löbel [7], who considered a vehicle scheduling problem arising in public mass transit.
This problem is modeled by a multi-commodity flow model formulation, the LP relaxation
of which is solved by dynamically generating arc variables, as we do. With this approach,
Löbel was able to solve LP relaxations with millions of variables as we do for the freight car
flow problem.

2 Problem description

We give a detailed description of the variant of the freight car flow model considered here.
The problem is to find a feasible flow of railcars (i.e. a feasible route for each car) that
maximizes the profit by meeting a subset of the transportation demands.

The railroad network consists of a set of stations. Travel times and costs are known
for each “origin-destination” pair of stations. Times are measured in days and rounded up.
The cost for an empty car transfer depend on the type of the latest product this car has
transported, as explained in the introduction.

Number of cars, their initial locations and availability dates are known. Cars are divided
into types. The type of a car determines types of products which can be loaded on this car.
The route of a car consists of a sequence of alternating loaded and empty movements between
stations. Cars can wait at stations before and after fulfilling transportation demands. In this
case, a charge is applied. Daily rate of this charge depends on the demand before (or after)
the waiting period.

Each transportation demand is defined by a (maximum) number of cars compatible with
the product that should be taken from an origin station to a destination station. Some
demands can be fulfilled partially. In this case, the client communicates the minimum number
of cars which should be delivered. Thus, the total number of transported cars for every
accepted demand should be between the minimum and maximum number.

The client specifies the availability date of the product and the delivery due date which
cannot be exceeded. The demand transportation time is known. This allows us to determine
the latest date at which the transportation must start. The profit we gain for meeting the
demand depends on the date the transportation of a loaded car starts. In practice, the
contract is concluded for transportation of each car separately. Thus the profit we gain for
delivering cars with the product of a same demand at a certain date depends linearly on the
number of cars. Note that the profit function already takes into account the charges paid for
using the railroad network.

We now specify notations for the data of the problem. Following sets are given.
I — set of stations.
C — set of car types.
K — set of product types

ATMOS’13

58 Solving a Freight Railcar Flow Problem Arising in Russia

Q — set of demands
S — set of “sources” which specify initial state of cars.
T — set of periods (planning horizon).

For each station, i ∈ I we know sets W 1
i and W 2

i of standing daily rates for cars waiting
to be loaded and waiting after unloading.

For each demand q ∈ Q we know:
iq ∈ I — origin station
jq ∈ I — destination station
kq ∈ K — type of product to be transported
Cq ⊆ C — set of car types, which can be used for this demand
nmax
q — number of cars needed to fullfil the demand
nmin
q — minimum number of car needed to partially fullfil the demand
rq ∈ T — demand availability, i.e. the period starting from which the transportation of
the product can start
∆q — maximum delay for starting the transportation
ρqt — profit from delivery of one car with the product, transportation of which started
at period t, t ∈ [rq, rq + ∆q]
dq ∈ Z+ — transportation time of the demand
w1
q ∈W 1

i1q
— daily standing rate charged for one car waiting before loading the product

at origin station
w2
q ∈W 2

i2q
— daily standing rate charged for one car waiting after unloading the product

at destination station
For each car type c ∈ C, we can obtain set Qc of demands, which a car of type c can fulfill.

For each source s ∈ S, we are given:
~is ∈ I — station where cars are located
~cs ∈ C — type of cars
~rs ∈ T — period, starting from which cars can be used
~ws ∈W 2

is
— daily standing rate charged for cars

~ks ∈ K — type of the latest delivered product
~ns ∈ N — number of cars in the source

For each car type c ∈ C, we can obtain set of sources Sc = {s ∈ S : ~cs = c}.
Additionally, functionsM(c, i, j, k) and D(c, i, j) are given which specify cost and duration

of transportation of one empty car of type c ∈ C from station i ∈ I to station j ∈ I under
condition, that the type of the latest delivered product is k ∈ K (for the cost).

3 Mathematical model

We represent movements of cars of each type c ∈ C by commodity c. For each commodity
c ∈ C, we introduce a directed graph Gc = (Vc, Ac). Set Vc of vertices is divided into two
subsets V 1

c and V 2
c which represent respectively states in which cars stand at a station before

being loaded and after being unloaded. A vertex v1w
cit ∈ V 1

c represents stay of cars of type c
waiting to be loaded at station i ∈ I at daily rate w ∈ W 1

i at period t ∈ T . Flow balance
b(v1w

cit) of this vertex is zero. A vertex v2wk
cit ∈ V 2

c represents stay of cars of type c after being
unloaded at station i ∈ I at daily rate w ∈W 2

i at period t ∈ T . Here k ∈ K is the type of
unloaded product. Flow balance b(v2wk

cit) of this vertex is determined as follows:

b(v2wk
cit) =

{
~ns, ∃s ∈ Sc :~is = i, ~rs = t, ~ws = w,~ks = k,

0, otherwise.

R. Sadykov, A. A. Lazarev, V. Shiryaev, and A. Stratonnikov 59

Additionally, there is a single terminal vertex with flow balance equal to −
∑
s∈Sc

~ns.
There are three types of arcs in Ac: waiting, empty transfer, and loaded transfer arcs.
A waiting arc aαwkcit represents waiting of cars of type c from period t ∈ T to t + 1 at
station i ∈ I at daily rate w ∈Wα

i before being loaded (α = 1) or after being unloaded
(α = 2). k ∈ K is the type of unloaded product in case α = 2. This arc goes from vertex
vαwkcit to vertex vαwkc,i,t+1, or to the terminal vertex if t+ 1 6∈ T . Cost of this arc is w.
An empty transfer arc aw′w′′kcijt represents a transfer of empty cars of type c waiting at
station i ∈ I at daily rate w′ ∈ W 2

i to station j ∈ I where they will wait at daily rate
w′′ ∈W 1

j , such that the type of latest unloaded product is k ∈ K, and transfer starts at
period t ∈ T . This arc goes from vertex v2w′k

cit to vertex v1w′′
cjt′ , or to the terminal vertex if

t′ 6∈ T , where t′ = t+D(c, i, j). Cost of this arc is M(c, i, j, k).
A loaded transfer arc acqt represents transportation of the product of demand q ∈ Q by
cars of type c starting at period t ∈ T ∩ [rq, rq + ∆q]. This arc goes from vertex v1w1

q

ciqt
to

vertex v2w2
qkq

c,jq,t+dq
, or to the terminal vertex if {t+ dq} 6∈ T . The cost of this arc is −ρqt.

A small example of graph Gc is depicted in Figure 1. In this example, there is only one
“before” vertex and one “after” vertex for each time period and each station. In real-life
examples, there are several rows of “before” and “after” vertices for each station.

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

station 1

station 2

station 3

· · · · · · · · · · · ·

· · · · · · · · · · · ·

“before” vertex (∈ V 1
c)

“after” vertex (∈ V 2
c)

waiting arc

empty transfer arc

loaded transfer arc

time

Figure 1 An example of graph Gc

We denote as Acq the set of all loaded transfer acs related to demand q ∈ Qc: Acq =
{acq′t ∈ Ac : q′ = q}. Also we denote as δ+(v) and δ−(v) the sets of incoming and outgoing
arcs for vertex vc.

From now on, graph Gc is assumed to be trivially preprocessed: we remove vertices with
degree two (replacing appropriately incident arcs), and remove every vertex (together with
incident arcs) such that there is no path from any source to it or there is no path from it to
the terminal vertex.

For each commodity c ∈ C and for each arc a ∈ Ac, we define an integer variable xa
which represents the flow size of commodity c along arc a. Cost of arc a is denoted as g(a).
Additionally, for each demand q ∈ Q, we define a binary variable yq which indicates whether
demand q is accepted or not.

Now we are able to present a multi-commodity flow formulation (MCF) for the problem.

ATMOS’13

60 Solving a Freight Railcar Flow Problem Arising in Russia

min
∑
c∈C

∑
a∈Ac

g(a)xa (1)

∑
c∈Cq

∑
a∈Acq

xa ≤ nmax
q yq ∀q ∈ Q (2)

∑
c∈Cq

∑
a∈Acq

xa ≥ nmin
q yq ∀q ∈ Q (3)

∑
a∈δ−(v)

xa −
∑

a∈δ+(v)

xa = b(v) ∀c ∈ C, v ∈ Vc (4)

xa ∈ Z+ ∀c ∈ C, a ∈ Vc (5)
yq ∈ {0, 1} ∀q ∈ Q (6)

Constraints (2) and (3) specify that the number of cars assigned to accepted demand q

should be between nmin
q and nmax

q . Constraints (4) are flow conservation constraints for each
commodity. As formulation (MCF) generalizes the standard multi-commodity flow problem
(where variables y are fixed to one), our problem is NP-hard in the strong sense.

The formulation (MCF) was tested in [10]. The main difficulty was to solve the LP relax-
ation of the problem, which we denote as (MCF)LP . Even after non-trivial problem-specific
preprocessing, solution time of (MCF)LP for typical real-life instances by a modern LP
solver on a modern computer is more than one hour. Therefore, our research is concentrated
on accelerating the resolution of (MCF)LP .

4 A column generation approach

A classic approach to solve multi-commodity flow formulations is to apply the column
generation procedure. Instead of working with arc variables, one uses variables of one the
following types.

A “path variable” determines the flow size of a commodity along a path from one of the
source nodes to a sink node of this commodity.
A “tree variable” specifies whether the flow of a certain size from a single source of a
commodity goes along a fixed (directed) tree with fixed flow sizes along its arcs. Leaves
of this tree are sink nodes of this commodity.
A “flow enumeration variable” specifies whether the flow of a single commodity is equal
to a fixed flow.

We now reformulate (MCF) using path variables, and then using flow enumeration
variables. The reformulation which uses the tree variables was not tried, as there is only one
sink per commodity.

4.1 Path reformulation
For each commodity c ∈ C and each source s ∈ Sc, we denote as Ps the set of paths going
from the corresponding source vertex in Vc to the terminal vertex of graph Gc. Each such
path represents a route for cars originating at source s. For a path p ∈ Ps, we introduce
a variable λp which determines the flow size along path p (or number of cars taking this
route). Let Apathp be the set of arcs taken by a path p ∈ Ps and gpathp be the cost of the path:
gp =

∑
a∈Apath

p
g(a). Let also Qpathp be the set of demands “covered” by path p. The path

reformulation (PTH) of (MCF) is the following.

R. Sadykov, A. A. Lazarev, V. Shiryaev, and A. Stratonnikov 61

min
∑
c∈C

∑
s∈Sc

∑
p∈Ps

gpathp λp (7)

∑
c∈Cq

∑
s∈Sc

∑
p∈Ps: q∈Qpath

p

λa ≤ nmax
q yq ∀q ∈ Q (8)

∑
c∈Cq

∑
s∈Sc

∑
p∈Ps: q∈Qpath

p

λa ≥ nmin
q yq ∀q ∈ Q (9)

∑
p∈Ps

λp = ~ns ∀c ∈ C, s ∈ Sc (10)

λp ∈ Z+ ∀c ∈ C, s ∈ Sc, p ∈ Ps
yq ∈ {0, 1} ∀q ∈ Q

Constraints (8) and (9) are rewritten constraints (2) and (3). Constraints (10) guarantee
that a route is assigned to every car in each source.

In order to solve the LP relaxation (PTH)LP of formulation (PTH), we apply the column
generation procedure. On each iteration of it, the formulation (PTH)LP with a restricted
number of variables λ (which we will call the restricted master) is solved, and optimal primal
and dual solutions are obtained. Let πmax, πmin, and µ be the vectors of optimal dual
solution values corresponding to constraints (8), (9), and (10). Then the pricing problem is
solved which determines whether there exists a variable with a negative reduced cost absent
from the restricted master. The reduced cost ḡpathp of a variable λp, p ∈ Ps, s ∈ Sc, c ∈ C is
computed as

ḡpathp =
∑

a∈Apath
p

g(a) +
∑

q∈Qpath
p

(πmax
q − πmin

q)− µs. (11)

The problem of finding a variable λ with the minimum reduced cost can be solved by
a sequence of shortest path problems between each source s ∈ Sc and the terminal vertex
for every commodity c ∈ C. To accelerate the solution of the pricing problem, instead of
searching the shortest path separately for each source, in each graph Gc, we can find a
minimum cost in-tree to the terminal vertex from every source in Sc. As directed graphs Gc
are acyclic (each arc except those from V 2

c to V 1
c induces a time increase), the complexity of

this procedure is linear in the number of arcs for each graph Gc.
This procedure is quite fast, but its disadvantage consists in significant demand “overcov-

ering”. This means that many generated paths contain arcs corresponding to same demands,
i.e. much more cars are assigned to these demands than needed. This has a bad impact on
the convergence of column generation.

Therefore, we developed an iterative procedure which heuristically constructs a solution
to the original problem with demand profits modified by the current dual solution values.
Then all paths which constitute this solution are added to the master. On each iteration,
we search for a shortest path tree and then remove covered demands and cars assigned to
them for the next iteration. The heuristic stops when either all demands are covered, or all
cars are assigned, or maximum number of iterations is reached. The latter is a parameter
which we denote as nbPricIter. This procedure for commodity c ∈ C is formally presented
in Algorithm 1. This procedure can be viewed as a heuristic for generating additional paths
to be added to the master for the convergence acceleration.

ATMOS’13

62 Solving a Freight Railcar Flow Problem Arising in Russia

Algorithm 1: Path generation iterative pricing procedure for graph Gc
foreach demand q ∈ Qc do uncovCarsq ← nmax

q ;
foreach source s ∈ Sc do remCarss ← ~ns;
iter ← 0;
repeat

Find an in-tree to the terminal from sources s ∈ Sc, remCarss > 0;
Sort paths p in this tree by non-decreasing of their reduced cost ḡpathp ;
foreach path p in this order do

minCars← min{uncovCarsq | q ∈ Qpathp };
if ḡp < 0 and minCars > 0 then

Add variable λp to the restricted master;
s← the source of p;
remCarss ← remCarss −min{remCarss,minCars};
foreach q ∈ Qpathp do

uncovCarsq ← uncovCarsq −min{remCarss,minCars};

iter ← iter + 1;
until uncovCarsq = 0, ∀q ∈ Qc, or remCarss = 0, ∀s ∈ Sc, or iter =nbPricIter ;

4.2 Flow enumeration reformulation

Each car type defines a commodity c ∈ C. We define by Fc the set of all fixed solutions
(fixed flows) for commodity c. For a flow f ∈ Fc, we introduce a binary variable ωf which
specifies whether cars of type c are routed according to flow f or not. Let fa be the size of
flow f along arc a ∈ Ac and gflowf be the cost of the flow: gflowf =

∑
a∈Ac

fa · g(a). The
commodity reformulation (FEN) of (MCF) is the following

min
∑
c∈C

∑
f∈Fs

gflowf ωf (12)

∑
c∈Cq

∑
f∈Fc

∑
a∈Acq

faωf ≤ nmax
q yq ∀q ∈ Q (13)

∑
c∈Cq

∑
f∈Fc

∑
a∈Acq

faωf ≥ nmin
q yq ∀q ∈ Q (14)

∑
f∈Fc

ωf = 1 ∀c ∈ C (15)

ωf ∈ {0, 1} ∀c ∈ C, f ∈ Fc
yq ∈ {0, 1} ∀q ∈ Q

Constraints (13) and (14) are rewritten constraints (2) and (3). Constraints (15) guarantee
that exactly one flow is assigned to commodity c ∈ C.

LP relaxation (FEN)LP of formulation (FEN) can also be solved by the column genera-
tion procedure. The pricing problem here decomposes into the minimum cost flow problems
for each commodity c ∈ C.

Our computational results showed that, solving (FEN)LP by column generation is
not practical due to convergence problems. However, in the next section, we present a
modification of this approach, which is computationally much more efficient.

R. Sadykov, A. A. Lazarev, V. Shiryaev, and A. Stratonnikov 63

5 A “column generation for extended formulations” approach

We adapt here the hybrid approach, reviewed under the name “column generation for
extended formulations” (CGEF) in [9]. The idea is to solve formulation (MCF)LP iteratively
by generating arc flow variables dynamically. On each iteration, we generate columns (single
commodity flows) for formulation (FEN)LP , and translate them into arc flow variables
which are added to formulation (MCF)LP .

In the CGEF approach, on each iteration, we first solve the formulation (MCF)LP with
a restricted number of variables x. We will also call this formulation the restricted master.
Then, we verify whether there are variables x with a negative reduced cost absent from the
restricted master. However, we do not do it by enumeration, but by using the same pricing
problem as in classic column generation for solving formulation (FEN)LP . If a pricing
problem solution with a negative reduced cost is found, we add to the restricted master
variables x which are positive in this solution (some of them can be already in the restricted
master).

As a consequence of the theorem proved in [9], we know that, if an arc flow variable x is
absent from the restricted master and has a negative reduced cost in the current solution of
the restricted master, there exists a pricing problem solution with a negative reduced cost
where this variable is positive. Therefore, if there are no pricing problem solutions with a
negative reduced cost, the current solution of the restricted master is optimal for (MCF)LP .

When solving formulation (MCF)LP by the CGEF approach, the pricing problem is
decomposed to a sequence of min-reduced-cost flow problems for each commodity c ∈ C, as
in the column generation approach for solving the commodity reformulation (FEN)LP . Let
πmax
q and πmin

q be the vectors of optimal dual solution values corresponding to constraints
(2), (3). Then, the reduced cost ḡflowf of a flow f ∈ Fc is computed as

ḡflowf =
∑
a∈Ac

fa · g(a) +
∑
q∈Qc

∑
a∈Acq

fa · (πmax
q − πmin

q). (16)

Note that dual values corresponding to flow conservation constraints (4) are not taken into
account when solving the pricing problem, as explained in [9]: this follows from the fact that
these constraints are satisfied by the pricing problem solution.

On each iteration, for each commodity c ∈ C, the pricing problem generates a flow f ∈ Fc
with the minimum reduced cost. If this cost is negative, variables x corresponding to arcs on
which flow f is positive, are added to the restricted master. Otherwise, the current solution
of the restricted master is optimal for (MCF)LP , and we stop.

6 Numerical results

The test instances were provided to us by the mathematical modeling departement of JSC
Freight One, which is one of the largest freight rail transportation companies in Russia.

We have numerically tested the following three approaches for solving formulation
(MCF)LP on these real-life instances.
1. Direct solution of (MCF)LP by the Clp LP solver [1]. Before applying the LP solver the

formulation is preprocessed by a non-trivial problem specific procedure. This procedure
is not public and it was not available to us. Moreover, the open-source solver Clp was
specifically modified to better tackle formulation (MCF)LP . Thus, this approach was
applied inside the company. We tried to solve (MCF)LP with only trivial preprocessing
by the default version of both LP solvers Clp and Cplex [2], but our solution times on a

ATMOS’13

64 Solving a Freight Railcar Flow Problem Arising in Russia

comparable computer were significantly larger. Therefore, for the comparison, we use the
solution times communicated to us by the company. We denote this approach as Direct.

2. Solution of the path reformulation (PTH)LP by column generation. The pricing problem
here is solved by the iterative shortest path tree procedure presented in Algorithm 1. The
effect of applying the iterative pricing procedure was significant. After preliminary tests,
the parameter nbPricIter was set to 5. For better convergence of the column generation
procedure, the following improvements are applied.

The restricted master is initialized with paths according to which cars stay at their
initial locations during all the planning horizon.
Stabilization by dual prices smoothing [8] is applied.
The restricted master is cleaned up every 10 iterations by deleting all columns with a
positive reduced cost.

The column generation approach was implemented in C++ programming language using
the BaPCod library [11] and Cplex as LP solver. We denote this approach as ColGen.

3. The solution of (MCF)LP by the CGEF approach. The pricing problem here is solved
using the minimum cost flow solver Lemon [3]. To improve convergence of the algorithm,
the master is initialized with the full set of waiting arcs. Note that in distinction to
Direct only a trivial procedure was applied to preprocess the formulation. This approach
was also implemented in the same manner as the previous one. We denote this approach
as ColGenEF.

The approach Direct was run on a computer with a processor Intel Xeon X5677 3.47 GHz,
the approaches ColGen and ColGenEF were run on a computer with a processor Intel
Xeon X5460 3.16 GHz in a single thread mode.

The first test set consists of 3 instances. Characteristics of these instances and results for
3 tested approaches for these instances are presented in Table 1.

The difference in performance of the approaches Direct and ColGenEF on instances
x3 and x3double can be explained by the problem specific preprocessing. Although we are
not aware of preprocessing details, we know that it is based on similarities between car types.
For instance 5k0711q in which there is only one car type, difference between two approaches
is much smaller. Note that this instance has been artificially created from the real-life one
by merging car types into one.

The second test set consists of instances with larger planning horizon length. These
instances contain 1’025 stations, up to 6’800 demands, 11 car types, 12’651 cars, and 8’232

Table 1 The first set of instances: characteristics and numerical results.

Instance name x3 x3double 5k0711q
Number of stations 371 371 1’900
Number of demands 1’684 3’368 7’424
Number of car types 17 17 1
Number of cars 1’013 1’013 15’008
Number of sources 791 791 11’215
Time horizon, days 37 74 35
Total number of vertices, thousands 62 152 22
Total number of arcs, thousands 794 2’846 1’843
Solution time for Direct 20s 1h34m 55s
Solution time for ColGen 22s 7m53s 8m59s
Solution time for ColGenEF 3m55s >2h 43s

R. Sadykov, A. A. Lazarev, V. Shiryaev, and A. Stratonnikov 65

80 100 120 140 160 1800

20

40

60

80

planning horizon length, days

so
lu
tio

n
tim

e,
m
in
ut
es

Direct
ColGenEF

Horizon Direct ColGenEF
80 5m24s 1m52s
90 7m05s 1m47s

100 9m42s 2m19s
110 13m38s 3m11s
120 17m19s 3m57s
130 25m52s 5m03s
140 35m08s 5m25s
150 44m58s 7m02s
160 57m11s 8m19s
170 1h13m58s 10m53s
180 1h26m46s 12m16s

Figure 2 Solution times for test instances with larger planning horizon length.

sources. The planning horizon length is from 80 to 180 days. The graph ∪c∈CGc for the
largest instance contains about 300 thousands nodes and 10 millions arcs. For these instances,
the two best approaches are Direct and ColGenEF. The comparison of their solution
times is presented in Figure 2. The approach ColGen is two to three times slower than
Direct.

An important observation is that the algorithm ColGenEF generally converges in less
than 10 iterations (and always in less than 15 iterations). The restricted master on the final
iteration contains only about 3% of the arc flow variables of formulation (MCF).

7 Conclusions and perspectives

We have formulated a freight car flow problem variant as a multi-commodity flow problem in
a large space-time graph. Three approaches for solving the LP relaxation of this formulation
has been tested on a set of real-life instances provided by one of the largest freight rail
transportation companies in Russia.

Computational results show that the classic column generation approach is the best for
instances with relatively small number of sources (different initial locations of cars). For other
instances, approaches based on the multi-commodity formulation produce better results.
Problem-specific preprocessing based on similarities between car types is an important
ingredient, which allows a modern LP solver to tackle quite efficiently instances with a
relatively small time horizon length. The best approach for instances with larger time
horizon length is solving the multi-commodity formulation by dynamically generating arc
flow variables (the “column generation for extended formulations” approach). Even without
applying problem-specific preprocessing, it outperforms the direct resolution approach, and
this advantage increases with the increase of the time horizon length. It is likely that the
combination of the CGEF approach with problem-specific preprocessing will produce even
better results. Such a combination could be used to produce better solutions by shortening
the time period length.

The most important research direction for the future is to obtain integer solutions for the
problem either by a branch-and-bound (or branch-and-price) methods or by heuristics based
on the fractional solution obtained by the approaches proposed here. Simple heuristics can
be based on rounding. Experiments conducted inside the company show that this approach
already produces good results, as the LP relaxation solutions are almost integer. Column

ATMOS’13

66 Solving a Freight Railcar Flow Problem Arising in Russia

generation based heuristics of the “diving” type [6] are likely to produce better results.
Note that the problem studied in this paper does not incorporate some practical consid-

erations. Some of them can be easily modeled by enlarging the space-time graph used in the
current approaches. These considerations are the following.

Waiting rates for cars are generally not linear but progressive. When a car arrives to
a station, the owner should pay an initial rate for every standing day. After a certain
period of time this rate increases. This increase can happen several times. In other words,
the daily waiting rate in every station is a non-decreasing function of the current stay
duration.
There is a set of special stations where cars can stay for a lower rate (although there is a
fix rate for putting cars there). A car can go to one of this stations between fulfilling
two demands in order to pay less for waiting. Note that it is advantageous to use these
stations only if a sufficiently long planning horizon is considered.
There is a compatibility function between two consecutive types of loaded products. This
means that even if a car type is suitable for a demand, a car of this type may not be
able to fulfill it because the type of previously loaded product is incompatible with the
product type of the demand. For example, the petrol cannot be loaded to a car after the
oil, but the oil can be put after the petrol. Also, there are special stations where cars can
be washed for a fee. After washing a car, the type of product previously loaded to it is
“nullified”.
When a demand is not selected, a penalty payment may be due.

There exists however a problem extension which cannot be solved by the approaches presented.
As mentioned in the introduction, transportation times and costs between each pair of stations
are communicated by the state company which is in charge of forming and scheduling trains.
In this paper, we considered that they depend only on the origin and destination stations.
However, in practice usually they also depend on the size of the group of cars sent together.
The larger this group is, the faster and with smaller unitary cost it will be delivered to the
destination. It seems that exact solution of real-life instances of this extension of the problem
is out of reach of modern optimization tools.

References
1 Clp – COIN-OR Linear Programming Solver. https://projects.coin-or.org/Clp.
2 IBM ILOG CPLEX Optimizer. http://www-01.ibm.com/software/integration/

optimization/cplex-optimizer/.
3 LEMON Graph Library. https://lemon.cs.elte.hu/trac/lemon.
4 Ricardo Fukasawa, Marcus Poggi de Aragão, Oscar Porto, and Eduardo Uchoa. Solving the

freight car flow problem to optimality. Electronic Notes in Theoretical Computer Science,
66(6):42–52, 2002. ATMOS 2002.

5 Kaj Holmberg, Martin Joborn, and Jan T. Lundgren. Improved empty freight car distri-
bution. Transportation Science, 32(2):163–173, 1998.

6 Cédric Joncour, Sophie Michel, Ruslan Sadykov, Dmitry Sverdlov, and François Vander-
beck. Column generation based primal heuristics. Electronic Notes in Discrete Mathematics,
36:695–702, 2010.

7 Andreas Löbel. Vehicle scheduling in public transit and lagrangean pricing. Management
Science, 44(12):1637–1649, 1998.

8 Artur Pessoa, Ruslan Sadykov, Eduardo Uchoa, and Francois Vanderbeck. In-out separa-
tion and column generation stabilization by dual price smoothing. In 12th International
Symposium on Experimental Algorithms, volume 7933 of Lecture Notes in Computer Sci-
ence, pages 354–365. 2013.

https://projects.coin-or.org/Clp
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
https://lemon.cs.elte.hu/trac/lemon

R. Sadykov, A. A. Lazarev, V. Shiryaev, and A. Stratonnikov 67

9 Ruslan Sadykov and François Vanderbeck. Column generation for extended formulations.
EURO Journal on Computational Optimization, 1(1-2):81–115, 2013.

10 Alexey Stratonnikov and Vitaly Shiryaev. A large-scale linear programming formulation
for railcars flow management (in Russian). In Fifth Russian conference on Optimization
Problems and Economic Applications, Omsk, Russia, July 2012.

11 François Vanderbeck. BaPCod — a generic Branch-And-Price Code. https://wiki.
bordeaux.inria.fr/realopt/pmwiki.php/Project/BaPCod.

ATMOS’13

https://wiki.bordeaux.inria.fr/realopt/pmwiki.php/Project/BaPCod
https://wiki.bordeaux.inria.fr/realopt/pmwiki.php/Project/BaPCod

A Configuration Model for the Line Planning
Problem ∗

Ralf Borndörfer, Heide Hoppmann, and Marika Karbstein

Zuse Institute Berlin
Takustr. 7, 14195 Berlin, Germany
{borndoerfer,hoppmann,karbstein}@zib.de

Abstract
We propose a novel extended formulation for the line planning problem in public transport. It is
based on a new concept of frequency configurations that account for all possible options to provide
a required transportation capacity on an infrastructure edge. We show that this model yields a
strong LP relaxation. It implies, in particular, general classes of facet defining inequalities for
the standard model.

1998 ACM Subject Classification G.2.3 Applications in Discrete Mathematics

Keywords and phrases combinatorial optimization, polyhedral combinatorics, line planning

Digital Object Identifier 10.4230/OASIcs.ATMOS.2013.68

1 Introduction

Line planning is an important strategic planning problem in public transport. The task is to
find a set of lines and frequencies such that a given demand can be transported. There are
usually two main objectives: minimizing the travel times of the passengers and minimizing
the line operating costs.

Since the late nineteen-nineties, the line planning literature has developed a variety
of integer programming approaches that capture different aspects, see Schöbel [15] for an
overview. Bussieck, Kreuzer, and Zimmermann [8] (see also the thesis of Bussieck [7]) propose
an integer programming model to maximize the number of direct travelers. Operating costs
are discussed in the articles of Claessens, van Dijk, and Zwaneveld [9] and Goossens, van
Hoesel, and Kroon [11, 12]. Schöbel and Scholl [16] and Borndörfer and Karbstein [3] focus
on the number of transfers and the number of direct travelers, respectively, and further
integrate line planning and passenger routing in their models. Borndörfer, Grötschel, and
Pfetsch [2] also propose an integrated line planning and passenger routing model that allows
to generate lines dynamically.

All these models employ some type of capacity or frequency demand constraints in order
to cover a given demand. In this paper we propose a concept to strengthen such constraints
by means of a novel extended formulation. The idea is to enumerate the set of possible
configurations of line frequencies for each capacity constraint. We show that such an extended
formulation implies general facet defining inequalities for the standard model. We remark that
configuration models have also been used successfully in railway vehicle rotation planning [4]
and railway track allocation applications [5].

∗ Supported by the DFG Research Center Matheon “Mathematics for key technologies”.

© R. Borndörfer, H. Hoppmann, and M. Karbstein;
licensed under Creative Commons License CC-BY

13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’13).
Editors: Daniele Frigioni, Sebastian Stiller; pp. 68–79

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2013.68
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

R. Borndörfer, H. Hoppmann, and M. Karbstein 69

2 Problem Description

We consider the following basic line planning problem. We have an undirected graph
G = (V,E) representing the transportation network, and a set L = {l1, . . . , ln}, n ∈ N, of
lines, where every line li is a path in G. Denote by L(e) := {l ∈ L : e ∈ l} the set of lines on
edge e ∈ E. Furthermore, we are given an ordered set of frequencies F = {f1, . . . , fk} ⊆ N,
such that 0 < f1 < . . . < fk, k ∈ N, and costs cl,f for operating line l ∈ L at frequency
f ∈ F . Finally, each edge e ∈ E in the network bears a positive frequency demand F (e)
giving the number of line operations that are necessary to cover the demand on this edge.

A line plan (L̄, f̄) consists of a subset L̄ ⊆ L of lines and an assignment f̄ : L̄ → F of
frequencies to these lines. A line plan is feasible if the frequencies of the lines satisfy the
given frequency demand F (e) for each edge e ∈ E, i.e., if∑

l∈L̄(e)

f̄(l) ≥ F (e) for all e ∈ E. (1)

We define the cost of a line plan (L̄, f̄) as c(L̄, f̄) =
∑

l∈L̄ cl,f̄(l). The line planning problem
is to find a feasible line plan of minimal cost.

2.1 Standard Model
The common way to formulate the line planning problem uses binary variables xl,f indicating
whether line l ∈ L is operated at frequency f ∈ F , cf. the references listed in the introduction.
In our case, this results in the following standard model:

(SLP) min
∑
l∈L

∑
f∈F

cl,fxl,f

s.t.
∑

l∈L(e)

∑
f∈F

f · xl,f ≥ F (e) ∀e ∈ E (2)

∑
f∈F

xl,f ≤ 1 ∀l ∈ L (3)

xl,f ∈ {0, 1} ∀l ∈ L,∀f ∈ F . (4)

Model (SLP) minimizes the cost of a line plan. The frequency demand constraints (2) ensure
that the frequency demand is covered. The assignment constraints (3) ensure that every line
operates at only one frequency. Hence, the solutions of (SLP) correspond to the feasible line
plans.

2.2 Extended or Configuration Model
In the following, we give an extended formulation for (SLP) in order to tighten the LP-
relaxation. The formulation is based on the observation that the frequency demand for an
edge e ∈ E can also be expressed by specifying the numbers qf of lines that are operated
at frequency f , f ∈ F , on edge e. We explain the idea using the example in Figure 1. The
transportation network consists of two edges and three lines. Each line can be operated at
frequency 2 or 8. The frequency demand on edge {u, v} is 9. To cover this demand using at
most three lines we need at least two lines with frequency 8 or one line with frequency 2 and
one line with frequency 8. We call these feasible frequency combinations configurations. In
this case the set of all possible configurations is Q̄({u, v}) = {(0, 2), (0, 3), (1, 1), (1, 2), (2, 1)},
where the first coordinate gives the number of lines with frequency 2 and the second

ATMOS’13

70 A Configuration Model for the Line Planning Problem

coordinate gives the number of lines with frequency 8. The set of minimal configurations
is Q({u, v}) = {(0, 2), (1, 1)}, i.e., any line plan that matches one configuration covers the
frequency demand of the edge {u, v}. Similarly, the minimal configurations for edge {v, w}
are Q({v, w}) = {(0, 1), (1, 0)}. Any line plan that matches one configuration for each edge
is a feasible line plan. A formal description is as follows.

I Definition 1. For e ∈ E denote by

Q̄(e) :=
{
q = (qf1 , . . . , qfk

) ∈ Nk
0 :
∑
f∈F

qf ≤ |L(e)|,
∑
f∈F

f · qf ≥ F (e)
}

the set of (feasible) (frequency) configurations of e and by

Q(e) :=
{
q ∈ Q̄(e) : (qf1 , . . . , qfi − 1, . . . , qfk

) /∈ Q̄(e) ∀i = 1, . . . , k
}

the set of minimal configurations of e.

Let q =
(
q(e)

)
e∈E

be some vector of minimal configurations, i.e., q(e) ∈ Q(e) for all e ∈ E,
and (L̄, f̄) a line plan. If (L̄, f̄) satisfies the inequality |{l ∈ L̄(e) : f̄(l) = f}| ≥ q(e)f for
all e ∈ E, f ∈ F , then (L̄, f̄) is feasible. Conversely, if (L̄, f̄) is a feasible line plan, then
qf = |l ∈ L̄(e) : f̄(l) = f |, f ∈ F , is a feasible frequency configuration for each edge e. In
other words, satisfying the frequency demand is equivalent to choosing a feasible configuration
for each edge.

We extend (SLP) using binary variables ye,q that indicate for each edge e ∈ E which
configuration q ∈ Q is chosen. This results in the following extended formulation:

(QLP) min
∑
l∈L

∑
f∈F

cl,fxl,f

s.t.
∑

l∈L(e)

xl,f ≥
∑

q∈Q(e)

qf · ye,q ∀e ∈ E,∀f ∈ F (5)

∑
q∈Q(e)

ye,q = 1 ∀e ∈ E (6)

∑
f∈F

xl,f ≤ 1 ∀l ∈ L (7)

xl,f ∈ {0, 1} ∀l ∈ L,∀f ∈ F (8)
ye,q ∈ {0, 1} ∀e ∈ E,∀q ∈ Q(e). (9)

The (extended) configuration model (QLP) also minimizes the cost of a line plan. The
configuration assignment constraints (6) ensure that exactly one configuration for each edge
is chosen while the coupling constraints (5) guarantee that sufficient numbers of lines are
operated at the frequencies of the chosen configurations.

I Example 2. Consider the line planning problem in Figure 1. We define the costs as
cl1,f = cl2,f = 2 · f and cl3,f = f . The standard model for this example reads as follows:

(SLP) min 4xl1,2+16xl1,8+4xl2,2+16xl2,8+2xl3,2+8xl3,8

s.t. 2xl1,2+8xl1,8 +2xl2,2+8xl2,8 +2xl3,2+8xl3,8 ≥ 9
2xl1,2+8xl1,8 +2xl2,2+8xl2,8 ≥ 1
xl1,2 +xl1,8 ≤ 1

+xl2,2 +xl2,8 ≤ 1
+xl3,2 +xl3,8 ≤ 1

xli,f ∈ {0, 1}.

R. Borndörfer, H. Hoppmann, and M. Karbstein 71

vu w

l3 l2

l1

F = {2, 8}
e e1 = {u, v} e2 = {v, w}
F (e) 9 1
L(e) {l1, l2, l3} {l1, l2}
Q(e) {(0, 2), (1, 1)} {(0, 1), (1, 0)}

Figure 1 An instance of the line planning problem. Left: Transportation network consisting of
two edges and three lines. Right: The given set of frequencies, frequency demands, and the minimal
frequency configurations.

The configuration model for this example is:
(QLP) min 4xl1,2+16xl1,8+4xl2,2+16xl2,8+2xl3,2+8xl3,8

s.t. xl1,2 +xl2,2 +xl3,2 −ye1,q2 ≥ 0
+xl1,8 +xl2,8 +xl3,8 −2ye1,q1−ye1,q2 ≥ 0

xl1,2 +xl2,2 −ye2,q2 ≥ 0
+xl1,8 +xl2,8 −ye2,q1 ≥ 0

xl1,2 +xl1,8 ≤ 1
+xl2,2 +xl2,8 ≤ 1

+xl3,2 +xl3,8 ≤ 1
+ye1,q1 +ye1,q2 = 1

+ye2,q1 +ye2,q2 = 1
xli,f ∈ {0, 1}
ye,q ∈ {0, 1}.

3 Comparison of the Models

In this section we compare the standard and the extended configuration model for the line
planning problem. We need some further notation. For an integer program (IP) = min{cTx :
Ax ≥ b, x ∈ Zn} we denote by PIP (IP) the polyhedron defined by the convex hull of all feasible
solutions of (IP) and by PLP (IP) the set of feasible solutions of the LP relaxation of (IP),
i.e., PIP (IP) = conv{x ∈ Zn : Ax ≥ b} and PLP (IP) = {x ∈ Rn : Ax ≥ b}. For a polyhedron
P = {(x, y) ∈ Rn+m : Ax + By ≥ b} denote by P |x := {x ∈ Rn : ∃y ∈ Rm s.t. (x, y) ∈ P}
the projection of P onto the space of x-variables.

Using this notation, we can state that solving (QLP) is equivalent to solving (SLP):

I Lemma 3. (QLP) provides an extended formulation for (SLP), i.e.,

PIP(QLP) |x = PIP(SLP) .

For the LP relaxations, however, the following holds:

I Theorem 4. The LP relaxation of PIP(QLP) |x is tighter than the LP relaxation of
PIP(SLP), i.e.,

PLP(QLP) |x ⊆ PLP(SLP) .

Proof. Let (x̄, ȳ) ∈ PLP(QLP). Obviously, x̄ satisfies (3) and (4). We further get∑
l∈L(e)

∑
f∈F

f · x̄l,f

(5)
≥
∑
f∈F

(
f ·

∑
q∈Q(e)

qf · ȳe,q

)
=

∑
q∈Q(e)

ȳe,q︸ ︷︷ ︸
(6)
= 1

·
∑
f∈F

f · qf︸ ︷︷ ︸
≥F (e)∀q∈Q(e)

≥ F (e).

Hence, x̄ satisfies (2) as well and is contained in PLP(SLP). J

ATMOS’13

72 A Configuration Model for the Line Planning Problem

The converse, i.e., PLP(SLP) ⊆ PLP(QLP) |x, does not hold in general, indeed, the ratio of
the optimal objectives of the two LP relaxations can be arbitrarily large.

I Example 5. Consider an instance of the line planning problem involving only one edge
E = {e}, one line L(e) = {l}, a frequency demand F (e) = 6, and one frequency F = {M}
such that M > 6 with cost function cl,M = M . The only minimal configuration for e is
q = (1).

QLPLP: min M · xl,M SLPLP: min M · xl,M

s.t. xl,M − yq ≥ 0 s.t. M · xl,M ≥ 6
yq = 1

yq, xl,M ≥ 0 xl,M ≥ 0

Obviously, xl,M = 1 is the only and hence optimal solution to QLPLP with objective value
M and xl,M = 6

M is an optimal solution to SLPLP with objective value 6.

In the following subsections we show that the LP relaxation of the configuration model
implies general classes of facet defining inequalities for the line planning polytope PIP(SLP)
that are discussed in the literature.

3.1 Band Inequalities
In this section we analyze band inequalities, which were introduced by Stoer and Dahl [19]
and are closely related to the knapsack cover inequalities, see Wolsey [21].

I Definition 6. Let e ∈ E.
A band fB : L(e)→ F ∪ {0} assigns to each line containing e a frequency or 0. We call
fB a valid band of e if∑

l∈L(e)

fB(l) < F (e).

We call the band fB maximal if fB is valid and there is no valid band fB′ with fB(l) ≤ fB′(l)
for every line l ∈ L(e) and fB(l) < fB′(l) for at least one line l ∈ L(e).
We call the band fB symmetric if fB(l) = f for all l ∈ L(e) and for some f ∈ F .

Applying the results of Stoer and Dahl [19] yields

I Proposition 7. Let fB be a valid band of e ∈ E, then∑
l∈L(e)

∑
f∈F

f>fB(l)

xl,f ≥ 1 (10)

is a valid inequality for PIP(SLP).

The simplest example is the case fB(l) ≡ 0, which states that one must operate at least one
line on every edge, i.e., one has to cover the demand.

I Proposition 8. The set cover inequality∑
l∈L(e)

∑
f∈F

xl,f ≥ 1 (11)

is valid for PIP(SLP) for all e ∈ E.

R. Borndörfer, H. Hoppmann, and M. Karbstein 73

The set cover inequalities (11) do not hold in general for the LP relaxation of the standard
model, compare with Example 5. Note that they are symmetric band inequalities.

Maximal band inequalities often define facets of the single edge relaxation of the line
planning polytope [13]. The symmetric ones are implied by the configuration model.

I Theorem 9. The LP relaxation of the configuration model implies all band inequalities (10)
that are induced by a valid symmetric band.

Proof. Assume fB is a valid symmetric band of some edge e with fB(l) = f̃ for all l ∈ L(e)
and for some f̃ ∈ F , f̃ < fk. Thus

∑
l∈L(e) fB(l) = |L(e)| · f̃ < F (e). Hence, in every minimal

configuration q ∈ Q(e) there is a frequency f > f̃ such that qf ≥ 1. Starting from (5), we
get: ∑

l∈L(e)

xl,f ≥
∑

q∈Q(e)

qf · yq ∀f ∈ F

⇒
∑
f∈F
f>f̃

∑
l∈L(e)

xl,f ≥
∑
f∈F
f>f̃

∑
q∈Q(e)

qf · yq

⇔
∑

l∈L(e)

∑
f∈F
f>f̃

xl,f ≥
∑

q∈Q(e)

yq ·
∑
f∈F
f>f̃

qf

︸ ︷︷ ︸
≥1

≥
∑

q∈Q(e)

yq = 1.

J

The same does not hold for the standard model as the following example shows.

I Example 10 (Example 2 continued). A valid symmetric band for edge e1 in Figure 1 is
given by fB(l) = 2 for all l ∈ L(e1). The corresponding band inequality

xl1,8 + xl2,8 + xl3,8 ≥ 1 (12)

is violated by x̃ ∈ PLP(SLP), where x̃l2,8 = 7
8 , x̃l3,2 = 1, and x̃l,f = 0 otherwise. One can

show that (12) is facet-defining for PIP(SLP) in this example.

3.2 MIR Inequalities
We study in this section the mixed integer rounding (MIR) inequalities and their connection
to the configuration model. MIR inequalities can be derived from the basic MIR inequality
as defined by Wolsey [22], see also Raack [14].

I Lemma 11 (Wolsey [22]). Let QI := {(x, y) ∈ Z× R : x+ y ≥ β, y ≥ 0}. The basic MIR
inequality

rx+ y ≥ rdβe

with r := r(β) = β − bβc is valid for QI and defines a facet of conv(QI) if r > 0.

We use mixed integer rounding to strengthen the demand inequalities (2).

ATMOS’13

74 A Configuration Model for the Line Planning Problem

I Proposition 12. Let λ ∈ R+, e ∈ E, and define r = λF (e)−bλF (e)c and rf = λf −bλfc.
The MIR inequality∑

l∈L(e)

∑
f∈F

(r bλfc+ min(rf , r))xl,f ≥ r dλF (e)e (13)

induced by the demand inequality (2) scaled by λ is valid for (SLP).

Proof. Scaling inequality (2) by λ > 0 yields

λ · F (e) ≤ λ ·
∑

l∈L(e)

∑
f∈F

f · xl,f =
∑

l∈L(e)

∑
f∈F
rf <r

λ · f · xl,f +
∑

l∈L(e)

∑
f∈F
rf≥r

λ · f · xl,f

≤
∑

l∈L(e)

∑
f∈F
rf <r

(bλ · fc+ rf) · xl,f +
∑

l∈L(e)

∑
f∈F
rf≥r

(bλ · fc+ 1) · xl,f

=
∑

l∈L(e)

∑
f∈F
rf <r

rf · xl,f

︸ ︷︷ ︸
≥0

+
∑

l∈L(e)

∑
f∈F

bλ · fc · xl,f +
∑

l∈L(e)

∑
f∈F
rf≥r

xl,f .

︸ ︷︷ ︸
∈Z

Applying Lemma 11 yields

r · dλ · F (e)e ≤
∑

l∈L(e)

∑
f∈F
rf <r

rf · xl,f + r ·
(∑

l∈L(e)

∑
f∈F

bλ · fc · xl,f +
∑

l∈L(e)

∑
f∈F
rf≥r

xl,f

)

=
∑

l∈L(e)

∑
f∈F

(r · bλfc+ min(rf , r)) · xl,f .

J

Notice that λ ∈ R+ only produces a non-trivial MIR inequality (13) if r = λF (e) −
bλF (e)c 6= 0. Dash, Günlük and Lodi [10] analyze for which λ the MIR inequality (13) is
non-redundant.

I Proposition 13 (Dash, Günlük and Lodi [10]). Each non-redundant MIR inequality (13) is
defined by λ ∈ (0, 1), where λ is a rational number with denominator equal to some f ∈ F .

Again, we can show that these inequalities are implied by the LP relaxation of the
configuration model. The proof is based on the following lemma, a configuration version of
Proposition 12.

I Lemma 14. For e ∈ E, q ∈ Q(e), and λ ∈ (0, 1), it holds

∑
f∈F

(r · bλfc+ min(rf , r))qf ≥ r · dλ · F (e)e,

where r = λF (e)− bλF (e)c and rf = λf − bλfc.

R. Borndörfer, H. Hoppmann, and M. Karbstein 75

Proof. q ∈ Q(e) implies
∑
f∈F

f · qf ≥ F (e) and hence we get for λ ∈ (0, 1)

λ · F (e) ≤ λ ·
∑
f∈F

f · qf =
∑
f∈F
rf <r

λ · f · qf +
∑
f∈F
rf≥r

λ · f · qf

≤
∑
f∈F
rf <r

(bλ · fc+ rf) · qf +
∑
f∈F
rf≥r

(bλ · fc+ 1) · qf

=
∑
f∈F
rf <r

rf · qf

︸ ︷︷ ︸
≥0

+
∑
f∈F

bλ · fc · qf +
∑
f∈F
rf≥r

qf .

︸ ︷︷ ︸
∈Z

Applying Lemma 11 yields

r · dλ · F (e)e ≤
∑
f∈F
rf <r

rf · qf + r ·
(∑

f∈F

bλ · fc · qf +
∑
f∈F
rf≥r

qf

)

=
∑
f∈F

(r · bλfc+ min(rf , r)) · qf .

J

I Theorem 15. Let λ ∈ (0, 1), e ∈ E, r = λF (e)− bλF (e)c and rf = λf − bλfc. Then the
MIR inequality∑

l∈L(e)

∑
f∈F

(r bλfc+ min(rf , r))xl,f ≥ r dλF (e)e

is implied by the LP relaxation of the configuration model, i.e., the MIR inequalities (13) are
valid for PLP(QLP) |x.

Proof. Let (x, y) ∈ PLP(QLP). Then by (5)∑
l∈L(e)

xl,f ≥
∑

q∈Q(e)

qf · yq ∀f ∈ F .

Scaling this inequality by λr
f := r · bλfc+ min(rf , r) yields∑

l∈L(e)

λr
f · xl,f ≥

∑
q∈Q(e)

λr
f · qf · yq ∀f ∈ F

⇒
∑
f∈F

∑
l∈L(e)

λr
f · xl,f ≥

∑
f∈F

∑
q∈Q(e)

λr
f · qf · yq

⇔
∑

l∈L(e)

∑
f∈F

λr
f · xl,f ≥

∑
q∈Q(e)

∑
f∈F

λr
f · qf · yq

(∗)
≥

∑
q∈Q(e)

r · dλ · F (e)e · yq

= r · dλ · F (e)e ·
∑

q∈Q(e)

yq

(6)= r · dλ · F (e)e.

(∗) apply Lemma 14 here. J

ATMOS’13

76 A Configuration Model for the Line Planning Problem

Table 1 Statistics on the line planning instances. The columns list the instance name, the number
of edges of the preprocessed transportation network, the number of lines, the number of variables
for lines and frequencies, and the number of configuration variables in the configuration model and
in the mixed model.

(SLP)/(SLP+) (SLPQ) (QLP)
name |E| |L| #vars #cons #vars #cons #vars #cons

China1 27 474 2 793 499 / 620 3 732 654 41 196 661
China2 27 4 871 29 170 4 896 / 5 016 36 757 5 058 67 575 5 058
China3 27 19 355 116 074 19 380 /19 500 145 736 19 542 154 479 19 542
Dutch1 30 402 1 544 424 / 502 1 760 580 1 760 580
Dutch2 30 2 679 11 779 2 701 / 2 779 11 997 2 859 11 997 2 859
Dutch3 30 7 302 33 988 7 324 / 7 402 34 206 7 482 34 206 7 482
SiouxFalls1 37 866 5 188 902 / 1 113 6 680 1 117 753 840 1 124
SiouxFalls2 37 9 397 56 374 9 433 / 9 644 73 531 9 648 902 703 9 655
SiouxFalls3 37 15 365 92 182 15 401 /15 612 117 711 15 616 938 511 15 623
Potsdam1998b 351 1 907 10 765 1 998 / 2 679 13 795 3 969 38 637 4 114
Potsdam1998c 351 4342 25 306 4 431 / 5 112 32 037 6 484 53 184 6 549
Potsdam2010 517 3433 9 535 3 109 / 3 584 11 524 4 986 11 524 4 986
Chicago 1 028 23 109 131 915 24 066 /28 297 165 083 30 229 2 503 163 30 285

Again, we can give an example where a MIR inequality is not valid for the LP relaxation of
the standard model.

I Example 16 (Example 2 continued). Let λ = 1
8 , then the MIR inequality for edge e1

xl1,2 + xl1,8 + xl2,2 + xl2,8 + xl3,2 + xl3,8 ≥ 2 (14)

is violated by x̃ ∈ PLP(SLP), where x̃l2,8 = 7
8 , x̃l3,2 = 1, and x̃l,f = 0 otherwise. It can be

verified that (14) is even facet-defining for PIP(SLP) in this example.

4 Computational Results

We have implemented the configuration approach to provide a computational evaluation of
the strength of the extended formulation (QLP). We compare it with the standard model
(SLP) and with two additional models (SLP+) and (SLPQ). Model (SLP+) is obtained by
adding the set cover, symmetric band, and MIR inequalities for all edges to the standard
model (SLP). Model (SLPQ) has been developed to cut down on the number of configuration
variables, which can explode for large instances. This model is situated between (SLP+)
and (QLP) and constructed as follows. We order the edges with respect to an increasing
number of minimal configurations and generate the configuration variables and the associated
constraints iteratively as long as the number of generated configuration variables does not
exceed 25% of the number of variables for lines and frequencies. For the remaining edges we
use the set cover, symmetric band, and MIR inequalities.

Our test set consists of five transportation networks that we denote as China, Dutch,
SiouxFalls, Chicago, and Potsdam. The instances SiouxFalls and Chicago use the graph and
the demand of the street network with the same name from the Transportation Network
Test Problems Library of Bar-Gera [20]. Instances China, Dutch, and Potsdam correspond
to public transportation networks. The Dutch network was introduced by Bussieck in
the context of line planning [6]. The China instance is artificial; we constructed it as a
showcase example, connecting the twenty biggest cities in China by the 2009 high speed

R. Borndörfer, H. Hoppmann, and M. Karbstein 77

Table 2 Statistics on the computations for the models (SLP), (SLP+), (SLPQ), and (QLP). The
columns list the instance name, model, computation time, number of branching nodes, the integrality
gap, the primal bound, the dual bound, and the dual bound after solving the root node.

name model time nodes gap primal dual root dual

China1 (SLP) 1h 1524169 1.22 % 236631,2 233772.3 233566.3
(SLP+) 1h 808186 0.37 % 235873.4 235006.5 234772.3
(SLPQ) 1h 1147588 0.21 % 235531.2 235038.6 234828.6
(QLP) 1h 31204 0.49 % 236149.0 235005.2 234878.3

China2 (SLP) 1h 154009 2.47 % 238187.4 232436.5 232294.8
(SLP+) 1h 24751 1.42 % 237333.4 234011.1 233860.8
(SLPQ) 1h 21388 0.50 % 235249.0 234076.8 233890.2
(QLP) 1h 13872 0.63 % 235549.0 234071.3 233891.2

China3 (SLP) 1h 21078 3.78 % 241046.0 232271.9 232203.5
(SLP+) 1h 2214 0.99 % 236067.0 233760.1 233735.5
(SLPQ) 1h 3880 0.88 % 235925.8 233862.9 233778.1
(QLP) 1h 3914 1.20 % 236639.6 233844.8 233778.1

Dutch1 (SLP) 1h 7427826 1.03 % 59000.0 58400.2 58227.4
(SLP+) 3.81s 1301 0.00 % 59000.0 59000.0 58841.7
(SLPQ) 0.98s 23 0.00 % 59000.0 59000.0 58868.6
(QLP) 0.99s 23 0.00 % 59000.0 59000.0 58868.6

Dutch2 (SLP) 1h 609931 12.76 % 59300.0 52587.5 52492.3
(SLP+) 1934.67s 352128 0.00 % 58600.0 58600.0 58392.2
(SLPQ) 45.62s 6407 0.00 % 58600.0 58600.0 58435.7
(QLP) 45.62s 6407 0.00 % 58600.0 58600.0 58435.7

Dutch3 (SLP) 1h 87746 14.64 % 59700.0 52075.0 52022.2
(SLP+) 1h 168915 0.38 % 58600.0 58376.6 58356.3
(SLPQ) 77.15s 1915 0.00 % 58500.0 58500.0 58372.9
(QLP) 76.64s 1915 0.00 % 58500.0 58500.0 58372.9

SiouxFalls1 (SLP) 1029.24s 1115540 0.00 % 2409.8 2409.8 2352.6
(SLP+) 270.45s 125157 0.00 % 2409.8 2409.8 2365.0
(SLPQ) 177.8s 51099 0.00 % 2409.8 2409.8 2357.2
(QLP) 1h 0 infinite - - -

SiouxFalls2 (SLP) 1h 11664 26.07 % 1815.3 1439.9 1439.9
(SLP+) 1h 44565 3.48 % 1704.2 1647.0 1647.0
(SLPQ) 1h 19324 3.48 % 1704.2 1647.0 1647.0
(QLP) 1h 0 infinite - - -

SiouxFalls3 (SLP) 1h 27994 23.89 % 1527.8 1233.2 1233.2
(SLP+) 1h 6452 4.13 % 1420.7 1364.4 1363.9
(SLPQ) 1h 7569 3.83 % 1416.3 1364.1 1363.9
(QLP) 1h 0 infinite - - -

Potsdam1998b (SLP) 1h 233518 3.74 % 36688.3 35365.0 35124.2
(SLP+) 1h 123701 0.77 % 36167.3 35891.0 35735.2
(SLPQ) 1h 237661 0.36 % 36067.0 35936.1 35770.6
(QLP) 1h 124082 0.14 % 36067.0 36018.0 35850.4

Potsdam1998c (SLP) 1h 105062 4.47 % 36617.1 35051.8 34896.9
(SLP+) 1h 38634 1.69 % 36243.5 35641.9 35510.1
(SLPQ) 1h 63336 0.56 % 35891.9 35690.7 35575.8
(QLP) 1h 11681 7.49 % 38345.8 35675.3 35521.8

Potsdam2010 (SLP) 2.47s 1 0.00 % 11066.6 11066.6 11066.6
(SLP+) 4.93s 8 0.00 % 11066.6 11066.6 11011.8
(SLPQ) 6.31s 7 0.00 % 11066.6 11066.6 11046.9
(QLP) 6.25s 7 0.00 % 11066.6 11066.6 11046.9

Chicago (SLP) 1h 2002 5.88 % 22990.6 21713.3 21666.6
(SLP+) 1h 553 2.79 % 22327.2 21722.2 21685.3
(SLPQ) 1h 319 5.73 % 22948.1 21705.0 21689.4
(QLP) 1h 0 infinite - - -

ATMOS’13

78 A Configuration Model for the Line Planning Problem

train network. The Potsdam instances are real multi-modal public transportation networks
for 1998 and 2009.

We constructed a line pool by generating for each pair of terminals all lines that satisfy a
certain length restriction. To be more precise, the number of edges of a line between two
terminals s and t must be less than or equal to k times the number of edges of the shortest
path between s and t. For each network, we increased k in three steps to produce three
instances with different line pool sizes. For Dutch and China instance number 3 contains all
lines, i.e., all paths that are possible in the network. The Potsdam2010 instance arose within
a project with the Verkehr in Potsdam GmbH (ViP) [18] to optimize the 2010 line plan [1].
The line pool contains all possible lines that fulfill the ViP requirements.

For all instances the lines can be operated at frequencies 3, 6, 9, 18, 36, and 72. This
corresponds to a cycle time of 60, 30, 20, 10, 5, and 2.5 minutes in a time horizon of 3 hours. We
set the line cost to be proportional to the line length and the frequency plus a fixed cost term
that is used to reduce the number of lines. The costs and the capacities of the lines depend
on the mode of transportation (e.g., bus, tram). In the instances each edge is associated with
exactly one mode, i.e., all lines on an edge have the same capacity, see Karbstein [13] for more
details. Hence, we can express capacities in terms of frequency demands. Table 1 lists some
statistics about the test instances. The second and third columns give the number of edges
and lines in the transportation network. The remaining columns list the number of variables
and constraints for the four models after preprocessing. The preprocessing eliminates for
instance dominated constraints and dominated and infeasible frequency assignments. For
example a frequency f is dominated for line l if f > maxe∈l{F (e)}.

The instances were solved using the constraint integer programming framework SCIP
version 3.0.1 [17] with Cplex 12.5 as LP-solver. We set a time limit of 1 hour for all instances
and used the default settings of SCIP, apart from the primal heuristic “shiftandpropagate”
which we turned off. All computations were done on an Intel(R) Xeon(R) CPU E3-1290, 3.7
GHz computer (in 64 bit mode) with 13 MB cache, running Linux and 16 GB of memory.
The results are shown in Table 2.

The computations show that the set cover, symmetric band, and MIR cuts indeed improve
the standard model. The superiority of model (QLP) does not always show up, because its root
LP cannot be solved within one hour for those instances where the number of configuration
variables is more than 10 times higher than the number of line and frequency variables. For
all other instances, the dual bounds after solving the root node for (SLPQ) and (QLP) are
better than those for (SLP+). Model (SLPQ) is performing best on nearly all instances.
Except for Chicago it has a better dual bound after terminating the computations than
models (SLP) and (SLP+). Hence, model (SLPQ) is a good compromise between improving
the formulation with configuration variables and keeping the size of the formulation small.

Acknowledgment We thank three referees for helpful comments and suggestions.

References
1 Ralf Borndörfer, Isabel Friedow, and Marika Karbstein. Optimierung des Linienplans 2010

in Potsdam. Der Nahverkehr, 30(4):34–39, 2012.
2 Ralf Borndörfer, Martin Grötschel, and Marc E. Pfetsch. A column-generation approach

to line planning in public transport. Transportation Science, 41(1):123–132, 2007.
3 Ralf Borndörfer and Marika Karbstein. A direct connection approach to integrated line

planning and passenger routing. In Daniel Delling and Leo Liberti, editors, ATMOS 2012 -
12th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and

R. Borndörfer, H. Hoppmann, and M. Karbstein 79

Systems, OpenAccess Series in Informatics (OASIcs), pages 47–57, Dagstuhl, Germany,
2012. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

4 Ralf Borndörfer, Markus Reuther, Thomas Schlechte, and Steffen Weider. A Hypergraph
Model for Railway Vehicle Rotation Planning. In Alberto Caprara and Spyros Kontogi-
annis, editors, 11th Workshop on Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems (ATMOS 2011), volume 20 of OpenAccess Series in Informat-
ics (OASIcs), pages 146–155, Dagstuhl, Germany, 2011. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. ZIB Report 11-36.

5 Ralf Borndörfer and Thomas Schlechte. Models for railway track allocation. In Christian
Liebchen, Ravindra K. Ahuja, and Juan A. Mesa, editors, ATMOS 2007 – 7th Workshop on
Algorithmic Approaches for Transportation Modeling, Optimization, and Systems, Dagstuhl,
Germany, 2007. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany. ZIB Report 07-02.

6 Michael Bussieck. Gams – lop.gms: Line optimization. http://www.gams.com/modlib/
libhtml/lop.htm.

7 Michael Bussieck. Optimal Lines in Public Rail Transport. PhD thesis, Teschnische Uni-
versität Braunschweig, 1998.

8 Michael R. Bussieck, Peter Kreuzer, and Uwe T. Zimmermann. Optimal lines for railway
systems. Eur. J. Oper. Res., 96(1):54–63, 1997.

9 M. T. Claessens, Nico M. van Dijk, and Peter J. Zwaneveld. Cost optimal allocation of rail
passanger lines. European Journal of Operations Research, 110(3):474–489, 1998.

10 Sanjeeb Dash, Oktay Günlük, and Andrea Lodi. MIR closures of polyhedral sets. Math-
ematical Programming, 121(1):33–60, 2010.

11 Jan-Willem Goossens, Stan van Hoesel, and Leo Kroon. On solving multi-type line planning
problems. METEOR Research Memorandum RM/02/009, University of Maastricht, 2002.

12 Jan-Willem Goossens, Stan van Hoesel, and Leo Kroon. A branch-and-cut approach for
solving railway line-planning problems. Transportation Science, 28(3):379–393, 2004.

13 Marika Karbstein. Line Planning and Connectivity. PhD thesis, TU Berlin, 2013.
14 Christian Raack. Capacitated Network Design – Multi-Commodity Flow Formulations, Cut-

ting Planes, and Demand Uncertainty. Phd thesis, TU Berlin, 2012.
15 Anita Schöbel. Line planning in public transportation: models and methods. OR Spectrum,

pages 1–20, 2011.
16 Anita Schöbel and Susanne Scholl. Line planning with minimal traveling time. In Leo G.

Kroon and Rolf H. Möhring, editors, Proceedings of 5th Workshop on Algorithmic Methods
and Models for Optimization of Railways, 2006.

17 SCIP – Solving Constraint Integer Programs. http://scip.zib.de.
18 Stadtwerke Potsdam – ViP Verkehrsbetrieb Potsdam GmbH. Vip website. http://

vip-potsdam.de.
19 Mechthild Stoer and Geir Dahl. A polyhedral approach to multicommodity survivable

network design, 1994.
20 Transportation network test problems. http://www.bgu.ac.il/~bargera/tntp/.
21 Laurence A. Wolsey. Valid inequalities for 0-1 knapsacks and MIPs with generalized upper

bound constraints. Discrete Applied Mathematics, 29:251–261, 1990.
22 Laurence A. Wolsey. Integer Programming. John Wiley & Sons, first edition, 1998.

ATMOS’13

http://www.gams.com/modlib/libhtml/lop.htm
http://www.gams.com/modlib/libhtml/lop.htm
http://scip.zib.de
http://vip-potsdam.de
http://vip-potsdam.de
http://www.bgu.ac.il/~bargera/tntp/

The Stop Location Problem with Realistic
Traveling Time ∗

Emilio Carrizosa1, Jonas Harbering2, and Anita Schöbel2

1 Universidad de Sevilla
C/ Tarfia s/n, 41012 Sevilla, Spain
ecarrizosa@us.es

2 Georg-August Universität Göttingen
Lotzestraße 16–18, 37083 Göttingen, Germany
{jo.harbering,schoebel}@math.uni-goettingen.de

Abstract
In this paper we consider the location of stops along the edges of an already existing public
transportation network. This can be the introduction of bus stops along some given bus routes,
or of railway stations along the tracks in a railway network. The positive effect of new stops is
given by the better access of the customers to the public transport network, while the traveling
time increases due to the additional stopping activities of the trains which is a negative effect for
the customers.

Our goal is to locate new stops minimizing a realistic traveling time which takes acceleration
and deceleration of the vehicles into account. We distinguish two variants: in the first (academic)
version we locate p stops, in the second (real-world applicable) version the goal is to cover all
demand points with a minimal amount of realistic traveling time. As in other works on stop
location, covering may be defined with respect to an arbitrary norm. For the first version, we
present a polynomial approach while the latter version is NP-hard. We derive a finite candidate
set and an IP formulation. We discuss the differences to the model neglecting the realistic
traveling time and provide a case study showing that our procedures are applicable in practice
and do save in average more than 3% of traveling time for the passengers.

1998 ACM Subject Classification G.1.6 Optimization

Keywords and phrases Stop Location, Realistic Traveling Time, IP Formulation

Digital Object Identifier 10.4230/OASIcs.ATMOS.2013.80

1 Introduction

The acceptance of public transportation depends on various components such as convenience,
punctuality, reliability, etc. In this paper, we address the question of convenience for the
passengers. In particular, we investigate the problem of establishing additional stops (or
stations) which on the one hand guarantee a good accessibility to the transportation network,
but on the other hand do not increase the traveling time of passengers too much.

Due to their great potential for improving public transportation systems, several versions
of the stop location problem (also called station location problem) have been considered by
various authors in the last years, see [16] for a survey. In order to find “good” locations for

∗ The first author is partially supported by MTM2012-36163-C06-03 and P11-FQM-7603. The other
authors are partially supported by the European Union Seventh Framework Programme (FP7-PEOPLE-
2009-IRSES) under grant number 246647 and the New Zealand Government (project OptALI).

© Emilio Carrizosa, Jonas Harbering, and Anita Schöbel;
licensed under Creative Commons License CC-BY

13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’13).
Editors: Daniele Frigioni, Sebastian Stiller; pp. 80–93

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2013.80
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

E. Carrizosa, J. Harbering, and A. Schöbel 81

new stops, several objective functions are possible. One of the most frequently discussed
goals is to minimize the number of stops such that each demand point is within a tolerable
distance from at least one stop. The maximal distance that a customer is willing to tolerate
is called covering radius, hence we call this type of stop location problem SL-Cov for short.
For bus stops a covering radius of 400 m is common. In rail transportation, the covering
radius is much larger (at least 2 km).

In the literature, stop location problems have been introduced in [1] and considered
in [12, 10, 11, 6, 18], see also references therein. In these papers, the problem is treated in a
discrete setting, i.e., a finite set is considered as potential new stops. [17] allow a continuous
set of possible locations for the stops, for instance, all points on the current bus routes or
railway tracks. An application of this continuous version is given in [2], where the authors
report on a project with the largest German rail company (Deutsche Bahn) and consider the
trade-off between the positive and negative effects of stops. The negative effect of longer
traveling times due to additional stops is compared with the positive effect of shorter access
times, the goal is to maximize the difference of the two effects.

Based on this application, variants of the continuous stop location problem have been
treated in [5, 16, 17]. The problem has been solved for the case of two intersecting lines, see
[7]. Algorithmic approaches for solving the underlying covering problem have been studied
in [15, 9]. Complexity and approximation issues have been presented in [8].

Another objective function is to minimize the sum of distances from the customers to the
public transportation system, i.e. the sum of the distances between the demand facilities and
their closest stops, see [13, 14]. Recently, covering a set of OD-pairs with a given number of
stops has been studied, see e.g., [4] and references therein.
Contribution. All the mentioned papers use a rough approximation of the traveling time by
adding a penalty for each stop. Since trains have a long acceleration and deceleration phase
this is unrealistic in practice. In this paper we consider stop location problems with realistic
traveling time.
Structure of the paper. We develop and analyze the realistic traveling time function in
Section 2. We then consider two variants of the stop location problem with realistic traveling
time. In Section 3 we want to locate p stops minimizing the traveling time, while in Section 4
we want to cover all demand points with a set of stops, again with minimal realistic traveling
time. While we present a polynomial algorithm for the former problem, the latter problem is
NP hard. Nevertheless we are able to develop a finite dominating set which is the basis for
an integer programming formulation. We compare our new model to the existing covering
models (without realistic traveling time) and present a case study with numerical results.
All proofs can be found in the appendix.

2 Stop location with realistic traveling time

In the stop location problems considered so far, the traveling time for passengers due to
new stops is estimated by adding a penalty timepen for every stop to be located. This is
an exact estimate if the distance between two stops is larger than the distance needed for
acceleration and deceleration, and if timepen gives the loss of traveling time resulting from
the additional stop. As an example, timepen is estimated as two minutes for German regional
trains. However, since trains accelerate slowly, this estimate is not realistic if the distance
between two stops is rather short.

In this section we hence first introduce a function describing the realistic traveling time
of a train between two consecutive stops. This function depends on the distance d between

ATMOS’13

82 The Stop Location Problem with Realistic Traveling Time

those two consecutive stops. Being able to compute realistic traveling times, we then define
two variants of the stop location problem, both with realistic traveling time.

I Lemma 1. [see also [3]] Let a maximum cruising speed v0 > 0, an acceleration of a0 > 0
and a deceleration of b0 > 0 of a vehicle be given. Then the traveling time function depending
on d, where d is the distance between two consecutive stops, is given as

T (d) =

√

2(a0+b0)
a0b0

d if d ≤ dmax
v0,a0,b0

d
v0

+ v0
2a0

+ v0
2b0

if d ≥ dmax
v0,a0,b0

where dmax
v0,a0,b0

= v2
0

2a0
+ v2

0
2b0

The formula is a simple consequence from Newton’s laws of motion. E.g., in [3] the
traveling time function for the case a0 = b0 is introduced, and the practical relevance of this
better estimate is analyzed for fire engines in New York City.

Note that dmax
v0,a0,b0

is the point where the traveling time function turns from a square root
behavior to a linear behavior.

The shape and exact values of the function can be easily calculated; its main properties
can be verified straightforwardly.

I Lemma 2. T (d) is continuous, differentiable, concave and monotonically increasing.
Furthermore, for any d we have

√
2(a0+b0)

a0b0
d ≤ d

v0
+ v0

2a0
+ v0

2b0
.

The properties of T can be shown by easy calculations.
In the two variants of the stop location problem our objective is to minimize the (realistic)

traveling time which is determined as follows.

Let G = (V,E) be the given network in which the new stops should be located. Let
e = (i, j) ∈ E be an edge with length de. A point s = (e, x) ∈ e is defined as the point
on edge e with distance d(i, s) = x and distance d(s, j) = de − x, 0 ≤ x ≤ de. Note that
i = (e, 0) and j = (e, de). The set of points of G is denoted as S =

⋃
e∈E e. The set of

points between two points s1 = (e, x1) and s2 = (e, x2) on the same edge is denoted as
[s1, s2] = {(e, x) : x1 ≤ x ≤ x2}.

A new stop s in the network may be any point s = (e, x). We assume that all vertices V
are existing stops.

Given a set S ∈ S of points of G, every set Se = S ∩ e = {s1, . . . , sp} ⊆ e of points on
e = (i, j) can be naturally ordered along the edge e such that d(s1, i) ≤ . . . ≤ d(sp, i). Let ≤e

denote this ordering. Adding the points of S as new stops gives a subdivision of the network
G, i.e. a new network (V ∪ S,E(S)) (see Figure 2), where

E(S) = {(si, sj) : si = (e, xi) and sj = (e, xj) are consecutive on some e ∈ E w.r.t. ≤e}.

The length of an edge e′ = ((e, xi), (e, xj)) ∈ E(S) is given as de′ = |xj − xi|.
Finally, given a set S of points on the graph G, we can define the (realistic) traveling

time function as

g(S) :=
∑

e′∈E(S)

T (de′).

The stop location problem (SL) on G = (V,E) is to locate a set of stops S which are
points on G. Our objective is to minimize the (realistic) traveling time g(S). This function
can be seen as an intrinsical property of the network and an estimation for the traveling time
of passengers without having information of their real paths and demands.

E. Carrizosa, J. Harbering, and A. Schöbel 83

1 2

3

4

5

6

Figure 1 Locating p = 4 new stops on a
Network G = (V, E).

1 2

3

4

5

6

7

8

9

10

Figure 2 The new network (V ∪ S, E(S))
with p = 4 new stops.

Without any constraints, S = ∅ would be the trivial optimal solution. We hence need to
ensure that enough new stops are located. We consider the following two possibilities:

(SL-TT-p) Here, the goal is to locate p new stops on G. It is further required that the
minimal distance between two stops is at least ε, i.e., de′ ≥ ε for all e′ ∈ E(S).

(SL-TT-Cov) This is an extension of the stop location problems considered in the
literature, in which it is assumed that the network is embedded in the plane R2, and that a
finite set of demand points P ⊆ R2 is given. Furthermore, to measure the access times from
the demand points to the railway network, a distance function dist : R2 × R2 → R is given
which has been derived from a norm, i.e. dist(x, y) = ‖y − x‖ for a given norm ‖ · ‖. For a
set S ∈ S we can now define the set of covered demand points as

I Definition 3. coverP(S) = {p ∈ P : dist(p, s) ≤ r for some s ∈ S}.

In (SL-TT-Cov) we look for a set S covering all demand points (i.e. coverP(S) = P).

3 (SL-TT-p) Locating p stops

We start with locating a fixed number of p stops on a single line segment. We hence have
G = (V,E) where V = {i, j} is the set of nodes and E = {e = (i, j)} is one edge. Locating
p new stops S on the edge e increases the traveling time for the passengers that want to
traveling from i to j. Our goal is to minimize this traveling time using the realistic traveling
time function g(S):

(Line-SL-TT-p) Let G = ({i, j}, {e}) be one single edge, v0 > 0, a0 > 0, and b0 > 0
and let a natural number p > 0, and 0 ≤ ε ≤ de

p+1 be given. Find a subset S∗ ⊆ S with
|S∗| = p and de′ ≥ ε for all e ∈ E(S∗) such that g(S∗) is minimized.

Note that (Line-SL-TT-p) is not feasible if de < (p+ 1)ε.
We start by discussing the case of locating only p = 1 stop without further restriction

(i.e. ε = 0) since this instance contains the main idea for the general case.
Let de be the length of edge e = (i, j). Let s = (e, x) be a new stop on e. We want to

determine x. Given any x ∈ [0, de], the traveling time for passengers from i to j is

g(S) = g(x) = T (x) + T (de − x),

i.e., we have to solve min{T (x) + T (de − x) : 0 ≤ x ≤ d}. Since T is a concave function, also
T (de − x) is concave, hence also g(x). A concave function over a compact interval takes its

ATMOS’13

84 The Stop Location Problem with Realistic Traveling Time

minimum at one of the endpoints of the interval, we hence evaluate g(0) = g(de) = T (0)+T (de)
and obtain

I Lemma 4. The only optima for (Line-SL-TT-p) for the case of locating p = 1 stop without
a minimal distance (i.e. ε = 0) are obtained at s1 = i and at s2 = j.

However, since i and j are already stops, this solution does not give any new stop and
consequently is not what we want. We hence require a minimal distance of ε > 0 between
any pair of stops. This means to solve min{T (x) + T (d − x) : ε ≤ x ≤ d − ε} and again
results in two optima on the boundary of the interval. We obtain:

I Lemma 5. The only optima for (Line-SL-TT-p) for the case of locating p = 1 stop on the
edge e = (i, j) are obtained at s1 = (e, ε) and s2 = (e, de − ε).

This result can be generalized for the case of locating p ≥ 2 stops s1 = (e, x1), . . . , sp =
(e, xp). We hence look for the values of x1, . . . , xp.

Fixing x0 = 0 and xp+1 = de, the respective optimization program is stated as

min
p+1∑
l=1

T (xl − xl−1)

s.t. xl − xl−1 ≥ ε ∀ l = 1, . . . , p+ 1
xl ∈ R ∀l = 1 . . . , p

First note, that for ε ≥ dmax
v0,a0,b0

there is not much to worry about.

I Lemma 6. If ε ≥ dmax
v0,a0,b0

, every feasible solution to (Line-SL-TT-p) has the same objective
value.

For ε < dmax
v0,a0,b0

we then find the following result.

I Lemma 7. If de

p+1 < ε < dmax
v0,a0,b0

, any solution where all but two stops are at ε-distance
to both of their neighbors, and the remaining two are at ε-distance to one of their neighbors,
is optimal.
If de

p+1 = ε < dmax
v0,a0,b0

, the unique solution where all stops are at ε-distance to both of
their neighbors is optimal.

We summarize that the p stops to be located are clustered together in an optimal solution
along one edge. As can be seen easily, this behavior still holds if a complete network is given
and p stops should be located there. Obviously such a solution is not realistic for practical
purposes. Thus, in the following a different model will be considered which is more related
to realistic needs.

4 (SL-TT-Cov) Covering all demand points

4.1 Feasibility and complexity of (SL-TT-Cov)
As seen in the previous section it does not make much sense just to add p new stops to
an existing network. The main objective function used for locating new stops is usually a
covering-type objective: With the new stops, one tries to cover as much demand as possible.
Given a set of demand points P in the plane, we say that p ∈ P is covered by a set of stops
S ∈ S if dist(p, s) ≤ r for some s ∈ S, where r is a fixed covering radius. The ’classic’ stop

E. Carrizosa, J. Harbering, and A. Schöbel 85

location problem (SL-Cov) asks for a set of stops of minimal cardinality covering all demand
points:

(SL-Cov) Let G = (V,E) be a graph and a finite set of points P ⊆ R2 be given. Find a
subset S∗ ∈ S, such that coverP(S∗) = P and |S∗| is minimized.

The goal of this section is is to cover all demand points with a set of stops S such that
the realistic traveling time function g(S) is minimal:

(SL-TT-Cov) Let G = (V,E) be a graph, P ⊆ R2 be a finite set of points, v0 > 0,
a0 > 0 and b0 > 0 be given. Find a subset S∗ ∈ S, such that coverP(S∗) = P and g(S∗)
is minimized.

(SL-TT-Cov) need not be feasible, but if it is it admits a finite solution whose objective
value can be bounded.

I Lemma 8. (SL-TT-Cov) has a solution if and only if coverP(S) = P.
If (SL-TT-Cov) has a feasible solution, then it also has a finite solution and g(S∗) ≤
(|E|+ |P|) ·

(
maxe∈E

de

v0
+ v0

2a0
+ v0

2b0

)
.

While feasibility is easy to check, solving (SL-TT-Cov) is NP-hard.

I Lemma 9. (SL-TT-Cov) is NP-hard.

4.2 A finite dominating set for (SL-TT-Cov)
In the following we show that (SL-TT-Cov) can be reduced to a discrete problem by identifying
a finite dominating set, i.e., a finite set of candidates Scand ⊆ S, for which we know that it
contains an optimal solution S∗, if the problem is feasible at all. Such a finite dominating set
will enable us to derive an IP formulation in Section 4.3. It turns out that we can use nearly
the same finite dominating set which has been used as candidate set for solving (SL-Cov)
(see [17]). Throughout this section, let us assume that (SL-TT-Cov) is feasible, which can be
tested (due to Lemma 8).

For an edge e = (i, j) ∈ E we define

T e(p) = {s ∈ e : dist(p, s) ≤ r}

as the set of all points on the edge e ⊆ S that can be used to cover demand point p.
Since T e(p) = e ∩ {x ∈ R2 : dist(p, x) ≤ r} is the intersection of two convex sets, and

contained in e, it turns out to be a line segment itself. This observation is due to [17].

I Lemma 10 ([17]). For each demand point p ∈ R2 the set T e(p) is either empty or an
interval contained in edge e.

Let fe
p , l

e
p denote the endpoints of the interval T e(p) (which may coincide with the endpoints

i, j of the edge e). We write [fe
p , l

e
p] = T e(p). For each edge e = (i, j) we define

Se
cand :=

⋃
p∈P
{fe

p , l
e
p},

which can be ordered along the edge e with respect to ≤e. Let the resulting set be given as
Se

cand = {s0, s1, . . . , sNe}. In the following we show that

Scand =
⋃

e∈E

Se
cand

is a finite dominating set for (SL-TT-Cov).

ATMOS’13

86 The Stop Location Problem with Realistic Traveling Time

From [17] we know that moving a point s ∈ S until it reaches an element of Scand does
not change coverP({s}).

I Lemma 11 ([17]). Let s ∈ e for an edge e of E, and let sj , sj+1 ∈ Scand be two consecutive
elements of the finite dominating set with sj <e s <e sj+1. Then

coverP({s}) ⊆ coverP({sj}) ∩ coverP({sj+1}),

in particular, the cover of s does not decrease when moving s between sj and sj+1.

Now we are able to prove that Scand =
⋃

e∈E Se
cand is, indeed, a finite dominating set.

I Theorem 12. Either (SL-TT-Cov) is infeasible, or there exists an optimal solution
S∗ ⊆ Scand.

The number of candidates |Scand| ≤ 2|E||P|. Thus iterating leads to a number of
O
(
22|E||P|) different solutions to be tested. In the following, this is done by integer program-

ming.

4.3 An integer programming formulation for (SL-TT-Cov)
Let Acov = (ap,s)p∈P,s∈Scand

denote the covering matrix, given by

aps =
{

1 if p ∈ coverP({s})
0 otherwise.

Furthermore, let Ecand = {(s, s′) : s, s′ ∈ Scand ∪ V and s, s′ ∈ e for some edge e ∈ E} be
the set of all possible edges obtained by building any set of stops S ⊆ Scand. For those edges
the distance de′ , e′ ∈ Ecand can be precalculated. The IP formulation of the discrete version
of (SL-TT-Cov) is then given by

min
∑

e∈Ecand

T (de)ye (1)

s.t.
∑

s∈Scand

apsxs ≥ 1 ∀p ∈ P (2)

xsi + xsj −
∑

s∈[si,sj]∩Scand

s 6∈{si,sj}

xs ≤ ye′ + 1 ∀e′ = (si, sj) ∈ Ecand (3)

x ∈ {0, 1}|Scand| (4)

y ∈ {0, 1}|Ecand| (5)

The variables xi and ye have the following interpretation.

xsi
=
{

1 if stop si ∈ Scand is built.
0 otherwise.

ye =
{

1 if edge e ∈ Ecand is built.
0 otherwise.

Constraint (2) ensures that every demand point is covered by at least one stop. Constraints
of type (3) ensure that an edge is considered in the objective function if and only if it is built,
i.e. if and only if its two endpoints are stops and no candidate between the two endpoints is
also a stop. Finally, the objective function (1) then gives the realistic traveling time:

I Lemma 13. The above stated IP formulation is correct for (SL-TT-Cov).

Since the proof is straight forward it is spared.

E. Carrizosa, J. Harbering, and A. Schöbel 87

p1

p2

p1

p2

v1 s1 s2 s3 v2

Figure 3 Example for SL-TT-Cov with more stops built than for SL-Cov.

I Remark. Consider the case, where de ≥ dmax
v0,a0,b0

for all e ∈ Ecand. Then the objective
function can be rewritten as∑

e′∈Ecand

T (de′)ye =
∑
e∈E

T (de) +
(
v0

2a0
+ v0

2b0

) ∑
s∈Scand

xs,

thus the variables ye can be eliminated, i.e., the objective function is equivalent to minimizing
the number of new stops in this case. We conclude that (SL-Cov) and (SL-Cov-TT) are
equivalent if de ≥ dmax

v0,a0,b0
for all e ∈ Ecand.

The number of constraints given by the candidate edges is of order O(|Scand|2):

I Lemma 14. Suppose a network G=(V ,E) and Scand are given. Let |E| = m and |Scand| =
n =

∑m
i=1 ni, where ni for i = 1, . . . ,m is the number of candidate stops on edge ei. Then

the number of candidate edges is given by |Ecand| =
m∑

i=1

(
ni + 2

2

)
Note that if there exists an 1 ≤ i ≤ m such that ni = 0 then T (dei

) is a constant and
thus does not have to be considered. In fact, the number of variables and constraints can
then be reduced.

We close this section by a comparison between (SL-Cov) and (SL-Cov-TT). The following
example shows a situation in which the realistic traveling time can be reduced by building
two stops instead of only one.

I Example 15. In Figure 3 two demand points p1 and p2 have to be covered by stops on
e = (v1, v2). In order to minimize the number of stops it is sufficient to build only one stop,
namely s2, i.e., s = {s2} is an optimal solution. We compare S with the solution S̃ = {s1, s2},
where s1 and s3 are close enough to v1 and v2 respectively. Assuming dv1,s2 , ds2,v2 ≥ dmax

v0,a0,b0
,

the traveling times can be computed as

f(S) = T (dv1,s2) + T (ds2,v2) = de

v0
+ v0

a0
+ v0

b0

f(S̃) = T (dv1,s1) + T (ds1,s3) + T (ds3,v2)

=

√
2(a0 + b0)
a0b0

dv1,s1 + de − dv1,s1 − ds3,v2

v0
+ v0

2a0
+ v0

2b0
+

√
2(a0 + b0)
a0b0

ds3,v2

and by letting dv1,s1 and ds3,v2 tend to 0, we see that f(S̃) < f(S).

Other examples of the same pattern can be constructed which show that the number of
stops in an optimal solution to (SL-TT-Cov) can differ by more than one from the number
of stops in an optimal solution to (SL-Cov).

ATMOS’13

88 The Stop Location Problem with Realistic Traveling Time

5 Experiments

Environment. All experiments were conducted on a PC with 24 six-core Intel Xenon X5650
Processor running at 2.67 GHz with 12 MB cache and a main memory of 94 GB. IPs were
solved using Xpress Optimizer v23.01.05. The running time limit of the solver was set to 300
seconds.

Benchmark set. The southern part of the existing railway network of Lower Saxony, Germany,
is used as the existing network G = (V,E). From the same area the 34 largest cities are
considered as demand points if they are not already close enough to an existing stop. This is
the setting for the first benchmark set (LS=Lower Saxony). For our second benchmark set,
stops which have only two adjacent tracks are removed and thus a set (LSR=Lower Saxony
Reduced) with longer tracks and more uncovered demand points is obtained. This set has
higher complexity.

The values for the traveling time are chosen according to the real properties, which
are acceleration and deceleration of 0.7m/s2 and a cruising speed of 200km/h. For a set
of different radii (r ∈ {1750, 2100, 2450, . . . , 12950} (in meters)), we constructed instances
containing all demand points which can be covered by r, i.e. P increases with the radius.

Figure 4 Traveling time with respect to the number of built stops.

Setup. The quality of the IP formulations for (SL-TT-Cov) and for (SL-Cov) (see [17] for
the IP formulation of (SL-Cov)) are compared. To this end, for each of the benchmark sets
and every radius r ∈ {1750, 2100, 2450, . . . , 12950} both models have been solved by Xpress
Optimizer. Then for each run the quality of the solution is measured by evaluating the
traveling time and the number of stops built.

Hypotheses. The evaluations are designed to approve or disprove the below stated hypotheses.
1. (SL-TT-Cov) performs better than (SL-Cov) in terms of traveling time.
2. (SL-TT-Cov) performs worse than (SL-Cov) in terms of number of stops.

E. Carrizosa, J. Harbering, and A. Schöbel 89

Table 1 Average values of the objective functions for the solutions of (SL-Cov) and (SL-TT-Cov).

Set (LS) SL-Cov SL-TT-Cov Set (LSR) SL-Cov SL-TT-Cov
Traveling Time g(S) 6878.62 6863.34 Traveling Time g(S) 5201.62 5069.24
Built stops |S| 35.09 35.09 # Built stops |S| 16.06 16.06

3. With increasing radius and a fixed set of demand points, the traveling time decreases.
4. The difference in performance between (SL-TT-Cov) and (SL-Cov) is more evident on

(LSR) than on (LS).
5. The running time of (SL-TT-Cov) is exponential in the number of candidates.
6. As the acceleration tends to infinity, the traveling time of the solutions of (SL-TT-Cov)

and (SL-Cov) tend to the traveling time with constant speed.

Results. Table 1 summarizes our results calculating the average values of the two objective
functions for all instances.

Hypotheses 1 and 2. Considering the benchmark sets (LS) and (LSR) the solutions of
(SL-Cov) and (SL-TT-Cov) in terms of the number of built stops do not vary at all. In terms
of the resulting traveling time on (LS) only small differences are recognizable. However, on
the benchmark set (LSR) the results show bigger differences. The average traveling time
of (SL-Cov) can be reduced by more than 3% by using (SL-TT-Cov). These messages can
clearly be confirmed by Figure 4. Hence, from the experiments we can approve hypotheses 1
and disprove 2.

Figure 5 Computing time with respect to the number of candidates.

Hypothesis 3. Figure 4 clearly shows that in both sets (LS) and (LSR) the traveling time
decreases with increasing radius r. This makes sense as for the same demand points but
increasing radius possibly more demand points can be covered by the same stop. In some
instances the number of stops or the traveling time increases with the radius, which is due
to the increased number of demand points which require more stops to be built. In general

ATMOS’13

90 The Stop Location Problem with Realistic Traveling Time

though, we can detect that the traveling time decreases with increasing radius. Thus, the
hypothesis 3 can be approved.

Hypothesis 4. Also hypothesis 4 can be approved by the results depicted in Figure 4.
Note that the vertices in the underlying network G are always stops. Thus, for (LS) already
35 stops are fixed to be built, which explains why there is no big difference between (SL-Cov)
and (SL-TT-Cov). For (LSR) though, the number of previously fixed stops is only 10, i.e.,
the models (SL-Cov) and (SL-TT-Cov) have more freedom to find a solution and hence the
difference in terms of the traveling time is bigger. Hypothesis 4 can hence be approved.

Figure 6 Relation between traveling time and accelera-
tion

Hypothesis 5. On the other
hand the more freedom is granted
to the models, the higher is the
complexity and subsequently the
higher is the running time. Fig-
ure 5 depicts the running time of
(SL-Cov) and (SL-TT-Cov) for (LS)
and (LSR). The maximal running
time for (SL-TT-Cov) is set to 300
seconds and the solution obtained if
the algorithm exceeds this limit is
usually not optimal. In the exper-
iments, all solution obtained were
at least feasible, and although not
necessarily optimal, the solutions
for (SL-TT-Cov) have lower trav-
eling times than the solutions for
(SL-Cov). Figure 5 hence approves
the hypothesis 5.

Hypothesis 6. Finally, Figure 6 depicts the behavior of the traveling time for increasing
acceleration and deceleration. To this end, we solved (SL-Cov) and (SL-TT-Cov) on (LS)
with a fixed radius of 3500 meters for different acceleration and deceleration values. It is
assumed that acceleration and deceleration are always equal. The traveling time is compared
to the function summing up all edge lengths and dividing by the cruising speed. This is the
traveling time function assuming a constant speed. For increasing acceleration we can detect
that the traveling time T tends to the value of the traveling time assuming constant speed.
Taking into account the shape of T (d) it means that for increasing a0 and b0 the acceleration
and deceleration phases become shorter. Thus, hypothesis 6 can be approved.

6 Conclusion and further research

In this paper we included a realistic traveling time function in stop location problems. We
derived a finite dominating set and an IP formulation and showed the applicability of the
model on two different benchmark sets. It turns out that the solutions of (SL-TT-Cov)
usually outperform the solutions of (SL-Cov) with a trade-off of having higher running times.

Further research on this topic goes into two directions. First, we assumed that all vertices
of the existing network are built as stops. However, it may be better to close or move some
of these. In order to model this appropriately, an integration with line planning is necessary.
Secondly, the traveling time for the passengers could be even more realistic if OD-pairs are
considered. Minimizing their traveling time leads to a different model and thus analysis.

E. Carrizosa, J. Harbering, and A. Schöbel 91

References
1 J. Gleason. A set covering approach to bus stop allocation. Omega, 3:605–608, 1975.
2 H.W. Hamacher, A. Liebers, A. Schöbel, D. Wagner, and F. Wagner. Locating new stops

in a railway network. Electronic Notes in Theoretical Computer Science, 50(1), 2001.
3 P. Kolesar, W. Walker, and J. Hausner. Determining the relation between fire engine travel

times and travel distances in new york city. Operations Research, 23:614–627, 1975.
4 M.-C. Körner, J.A. Mesa, F. Perea, A. Schöbel, and D. Scholz. A maximum trip covering

location problem with an alternative mode of transportation on tree networks and segments.
TOP, 2012. published online, DOI 10.1007/s11750-012-0251-y.

5 E. Kranakis, P. Penna, K. Schlude, D.S. Taylor, and P. Widmayer. Improving customer
proximity to railway stations. In CIAC, pages 264–276, 2003.

6 G. Laporte, J.A. Mesa, and F.A. Ortega. Locating stations on rapid transit lines. Com-
puters and Operations Research, 29:741–759, 2002.

7 M.F. Mammana, S. Mecke, and D. Wagner. The station location problem on two intersect-
ing lines. Electronic Notes in Theoretical Computer Science, 92:52–64, 2004.

8 S. Mecke, A. Schöbel, and D. Wagner. Stop location - complexity and approximation issues.
In 5th workshop on algorithmic methods and models for optimization of railways, number
06901 in Dagstuhl Seminar proceedings, 2006.

9 S. Mecke and D. Wagner. Solving geometric covering problems by data reduction. In
Proceedings of European Symposium on Algorithms (ESA), pages 760–771, 2004.

10 A. Murray. Strategic analysis of public transport coverage. Socio-Economic Planning
Sciences, 35:175–188, 2001.

11 A. Murray. A coverage models for improving public transit system accessibility and ex-
panding access. Annals of Operations Research, 123:143–156, 2003.

12 A. Murray, R. Davis, R.J. Stimson, and L. Ferreira. Public transportation access. Trans-
portation Research D, 3(5):319–328, 1998.

13 A. Murray and X. Wu. Accessibility tradeoffs in public transit planning. J. Geographical
Syst., 5:93–107, 2003.

14 D. Poetranto, H.W. Hamacher, S. Horn, and A. Schöbel. Stop location design in public
transportation networks: Covering and accessibility objectives. TOP, 17(2):335–346, 2009.

15 N. Ruf and A. Schöbel. Set covering problems with almost consecutive ones property.
Discrete Optimization, 1(2):215–228, 2004.

16 A. Schöbel. Optimization in public transportation. Stop location, delay management and
tariff planning from a customer-oriented point of view. Optimization and Its Applications.
Springer, New York, 2006.

17 A. Schöbel, H.W. Hamacher, A. Liebers, and D. Wagner. The continuous stop location
problem in public transportation. Asia-Pacific Journal of Operational Research, 26(1):13–
30, 2009.

18 C. Wu and A. Murray. Optimizing public transtit quality and system access: the multiple-
route, maximal covering/shortest path problem. Environment and Planning B: Planning
and Design, 32:163–178, 2005.

ATMOS’13

92 The Stop Location Problem with Realistic Traveling Time

A Appendix

Proof. (Lemma 6) Let S = {(e, x1), . . . , (e, xp)} with x1 < . . . < xp be a feasible solution,
and let x0 = 0 and xp+1 = de. Then

g(S) =
p+1∑
l=1

T (xl − xl−1) =
p+1∑
l=1

(xl − xl−1)
v0

+ v0

2a0
+ v0

2b0
= de

v0
+ v0(p+ 1)

2

(
1
a0

+ 1
b0

)
,

which is independent of S. J

Proof. (Lemma 7) Note that T (x − y) is a concave function in (x, y) on {(x, y) : x ≥ y},
hence g(x1, . . . , xp) =

∑p+1
l=1 T (xl−xl−1) is also concave. The minimum of the above program

is hence taken at an extreme point of the feasible polyhedral set P = {(x1, . . . , xp) : xl + ε ≤
xl+1, l = 0, . . . , p}. P has exactly p+ 1 extreme points given by

xh = (x0 + ε, x0 + 2ε, . . . , x0 + (h− 1)ε, xp+1 − (p− (h− 1)) ε, . . . , xp+1 − 2ε, xp+1 − ε)

for h = 1, . . . , p+ 1. Evaluating the objective function at an extreme point xh yields

g(xh) =
p∑

i=0
T (xh

i+1 − xh
i)

= pT (ε) + T (xp+1 − pε+ (h− 1)ε− x0 − (h− 1)ε) = pT (ε) + T (de − pε)

which is independent of h. Hence, any of the extreme points is optimal. J

Proof. (Lemma 8) The first part of the lemma is obvious. For the second part, let (SL-TT-
Cov) be feasible. Then there exists some point sp ∈ S such that dist(p, s) ≤ r for every
demand point p ∈ P. Choose S := {sp : p ∈ P} as a feasible solution. Each stop s ∈ S adds
a new edge to E(S), hence |E(S)| = |E|+ |P|. Let e′ = (i, j) ∈ E(S) be a new edge with
i = (ē, xi), j = (ē, xj) for some ē ∈ E. Then we estimate de′ ≤ dē ≤ maxe∈E de, and since T
is monotone we obtain

T (de′) ≤ max
e∈E

T (de)
(I)
≤ max

e∈E

de

v0
+ v0

2a0
+ v0

2b0
, where (I) is a result from Lemma 2.

Hence, g(S∗) ≤ g(S) ≤ |E(S)|max
e∈E

T (de) ≤ (|E|+ |P|) max
e∈E

de

v0
+ v0

2a0
+ v0

2b0
.

J

Proof. (Lemma 9) To see that (SL-TT-Cov) is NP-hard, we reduce it to the discrete stop
location in a network: Given a network embedded in the plane, a set of demand points,
and a finite candidate set Scand, find a set S∗ ⊆ Scand with minimal cardinality covering
all demand points. This problem is NP-hard, also if V ⊆ Scand, see [17]. Let an instance
of the discrete stop location problem be given. Determine m := min{d(s, s′) : s, s′ ∈
Scand, and s, s′ ∈ e for some e ∈ E} as the closest distance between two candidate locations
on the same edge. Note that for a0, b0 → ∞ we obtain that dmax

a0,b0,v0
→ 0. Hence choose

a0, b0 large enough such that dmax
a0,b0,v0

≤ m. We claim that a solution to the discrete stop
location problem with |S| ≤ K exists if and only if a solution S∗ to (SL-TT-Cov) exists with
g(S∗) ≤

∑
e∈E)

de

v0
+ (|E|+K)

(
v0
2a0

+ v0
2b0

)
.

To see this, note that for de′ ≥ dmax
a0,b0,v0

for all e′ ∈ E(S) the objective function of
(SL-TT-Cov) reduces to

g(S) =
∑

e′∈E(S)

(
de′

v0
+ v0

2a0
+ v0

2b0

)
=
∑
e∈E

de

v0
+ |E(S)|

(
v0

2a0
+ v0

2b0

)
. (6)

E. Carrizosa, J. Harbering, and A. Schöbel 93

”⇒” Let S be a solution to (SL) with |S| ≤ K. Then there exists another optimal solution
S∗ ⊆ Scand. Then S∗ is feasible for (SL-TT-Cov) and de′ ≥ m ≥ dmax

a0,b0,v0
for all

e′ ∈ E(S∗). Hence g(S) ≤
∑

e∈E
de

v0
+ (|E|+K)

(
v0
2a0

+ v0
2b0

)
.

”⇐” Let S∗ be a solution to (SL-TT-Cov) with g(S∗) ≤
∑

e∈E
de

v0
+ (|E|+K)

(
v0
2a0

+ v0
2b0

)
.

Again, there exists S ⊆ Scand with g(S∗) = g(S). Since de′ ≥ m ≥ dmax
a0,b0,v0

for all
e′ ∈ E(S∗) we have∑

e∈E)

de

v0
+ (|E|+K)

(
v0

2a0
+ v0

2b0

)
≥ g(S) = g(S∗) =

∑
e∈E

de

v0
+ |E(S)|

(
v0

2a0
+ v0

2b0

)
,

from which we conclude |E(S)| ≤ |E|+K ⇔ |S| ≤ K.
J

Proof. (Theorem 12) Let S∗ ⊆
⋃

e∈E,p∈P T
e(p) be optimal, but S∗ 6⊆ Scand. The goal is to

replace each s̃ ∈ S∗ \ Scand by a point in Scand without loosing feasibility or optimality. To
this end, take some s̃ ∈ S∗ \ Scand. If s̃ ∈ V , then s̃ can be removed, since the vertices are
existing stops. Thus, we can assume that s̃ 6∈ V , i.e. s̃ = (e, x) ∈ E. Now find the following
points on edge e:

sj = (e, xj), sj+1 = (e, xj+1) ∈ Scand with sj <e s̃ <e sj+1 for two consecutive elements
of Se

cand (if they exist on e), and
sleft, sright ∈ (S∗ ∪ V)∩ e with sleft <e s̃ <e sright for the two direct neighbors of s̃ on e
(which always exist)

We now investigate the objective function if we move s̃. For all s with sleft = (e, xleft) <e

s = (e, x) <e sright = (e, xright) the objective function h(x) := g(S \ s̃ ∪ {(e, x)}) is given as

h(x) =
∑

e′∈E(S\s̃∪{(e,x)}

T (de′) = const+ T (x− xleft) + T (xright − x)

where the constant part is independent of the choice of s = (e, x). As in Lemma 4, h(x)
is concave in x on the segment between sleft and sright. Furthermore, from Lemma 11 we
know that coverP({s}) ⊇ cover{s̃} for all s = (e, x) between sj and sj+1. Now consider the
minimization problem

min{h(x) = T (x− xleft) + T (xright − x) : max{xleft, xj} ≤ x ≤ min{xright, xj+1}}.

Due to the concavity of h(x) we know that an optimal solution x∗ ∈ {xleft, xright, xj , xj+1}
exists.
1. In case that x∗ = xj or x∗ = xj+1 we may replace s̃ by s = (e, x∗) ∈ Scand and hence

obtain a feasible solution with the same objective value.
2. In case that x∗ = xleft or x∗ = xright we may delete s̃ since the new solution is still

feasible and has the same objective value.
In both cases, we have reduced the number of points in S∗ \Scand. Proceeding with remaining
points of S∗ which do not belong to Scand finishes the proof. J

Proof. (Lemma 14) The sum is obtained since the number of candidate edges on each edge

e of the original graph G can be calculated independently by
(
n+ 2

2

)
. J

ATMOS’13

Evolution and Evaluation of the Penalty Method
for Alternative Graphs
Moritz Kobitzsch, Marcel Radermacher, and Dennis Schieferdecker

Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
{kobitzsch,schieferdecker}@kit.edu, marcel.radermacher@student.kit.edu

Abstract
Computing meaningful alternative routes in a road network is a complex problem – already
giving a clear definition of a best alternative seems to be impossible. Still, multiple methods
[1, 2, 4, 17, 18] describe how to compute reasonable alternative routes, each according to their
own quality criteria. Among these methods, the penalty method has received much less attention
than the via-node or plateaux based approaches. A mayor cause for the lack of interest might
be the unavailability of an efficient implementation. In this paper, we take a closer look at the
penalty method and extend upon its ideas. We provide the first viable implementation –suitable
for interactive use– using dynamic runtime adjustments to perform up to multiple orders of
magnitude faster queries than previous implementations. Using our new implementation, we
thoroughly evaluate the penalty method for its flaws and benefits.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Alternatives, Routing, Shortest Paths, Penalties, Parallelization

Digital Object Identifier 10.4230/OASIcs.ATMOS.2013.94

1 Introduction

Finding shortest paths in a road network is a well studied problem. Modern speed-up
techniques can compute routes in a split second. These algorithms are usually based on
an asymmetric approach: Exploiting the uniqueness of the shortest path distance, the
road network is processed and augmented in advance. This –potentially– time-consuming
preprocessing step then allows for fast subsequent queries. The approach inherently assumes
a static nature of the input, though.

In contrast to the shortest path, alternative routes do not need to be optimal. Existing
techniques to compute alternative routes either avoid speed-up techniques completely [2, 4],
or try to relax the computational methods used during preprocessing or at query time [1,18].
Methods that bypass speed-up techniques are only suitable for quality evaluations or offline
usage. Thus, algorithms like the penalty method [2] are not explored to their full potential,
lacking an efficient implementation.

While the authors of [2] hope for an efficient implementation to be feasible, they fail to
provide any details on how to achieve this. In fact, until recently it simply was not possible
to deal with the amount dynamic changes to the graph required by the penalty method –
even though some techniques already existed that could handle small search spaces quite
efficiently [5, 21]. By now, techniques such as Customizeable Route Planning [6] are available
that can be extended to allow for preprocessing of entire continental networks within less
than a second. This (near) real-time processing is achieved by extensive use of parallelism
and vectorization and brings an efficient implementation of the penalty method within reach.

In this paper we show how to achieve an efficient implementation of the penalty method,
providing speed-ups up to multiple orders of magnitude above previous implementations [2].

© Moritz Kobitzsch, Marcel Radermacher, and Dennis Schieferdecker;
licensed under Creative Commons License CC-BY

13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’13).
Editors: Daniele Frigioni, Sebastian Stiller; pp. 94–107

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2013.94
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Moritz Kobitzsch, Marcel Radermacher, and Dennis Schieferdecker 95

Based on this implementation, we thoroughly evaluate the potential of the penalty method.
The paper is structured as follows: Our terminology is introduced in Section 2, followed by
related work in Section 3. Our contribution to the penalty method is discussed in Section 4.
Supporting experiments are presented in Section 5, before a conclusion is drawn in Section 6.

2 Preliminaries

Every road network can be viewed as a directed and weighted graph:

I Definition 1 (Graph,Restricted Graph). A weighted graph G = (V,A, c) is described as a
set of vertices V, |V | = n, a set of arcs A ⊆ V × V, |A| = m and a cost function c : A 7→ N>0.
We might choose to restrict G to a subset Ṽ ⊆ V . This restricted graph G

Ṽ
is defined as

G
Ṽ

= (Ṽ , Ã, c), with Ã = {a = (u, v) ∈ A | u, v ∈ Ṽ }.

We define paths and the associated distances as follows:

I Definition 2 (Paths,Length,Distance). Given a graph G = (V,A, c): We call a sequence
ps,t = 〈s = v0, . . . , vk = t〉 with vi ∈ V, (vi, vi+1) ∈ A a path from s to t. Its length L(ps,t)
is given as the combined weights of the represented arcs: L(ps,t) =

∑k−1
i=0 c(vi, vi+1). If the

length of a path ps,t is minimal over all possible paths between s and t with respect to c, we
call the path a shortest path and denote ps,t = Ps,t. The length of such a shortest path is
called the distance between s and t: D(s, t) = L(Ps,t). Furthermore, we define Ps,v,t as the
concatenated path Ps,v,t = Ps,v · Pv,t.

In the context of multiple graphs or paths, we denote the desired restriction via subscript.
For example DG(s, t) denotes the distance between s and t in G, with Dps,t

(a, b) we denote
the distance between a and b when following ps,t.

Our metric of choice is the average travel time. Therefore, we might choose to omit the
cost function c when naming a graph and simply write G = (V,A).

3 Related Work

Both shortest paths and alternative routes computation are important for our work. Following,
we give a short overview of the techniques most relevant to our contribution.

Shortest Paths
Algorithms for computing exact shortest paths have come a long way. Starting back in
the late 1950s with Dijkstra’s algorithm [12], incredible progress was made in this area –
especially during the last decade. By now, we can answer distance queries on a road network
over a million times faster than Dijkstra’s algorithm.

All relevant speed-up techniques to Dijkstra’s algorithm share an asymmetric approach: In
a preprocessing step, auxiliary information is generated once and then used in all subsequent
queries. This approach is effective if arc costs do not change, but it becomes a major
bottleneck if not prohibitive, if preprocessing has to be repeated multiple times. [3,9,23] give
a general overview on speed-up techniques as we focus on the following two techniques:

Contraction Hierarchies [14] (CH) is probably the most studied speed-up technique.
During preprocessing, the graph representing the road network is augmented by carefully
chosen (shortcut) arcs while arcs not required for correctness are removed. This results
in a sparse directed acyclic graph (DAG). A query corresponds to a bidirectional variant

ATMOS’13

96 Evolution and Evaluation of the Penalty Method for Alternative Graphs

of Dijkstra’s algorithm on this modified graph. Road networks of continental size can
be preprocessed within minutes and distance queries run in the order of one hundred
microseconds. Reconstructing the complete shortest path requires roughly the same time.
This technique is most suited for static settings in which graphs do not change.

Customizeable Route Planning [6] (CRP, also known as Multi Level Dijkstra) is the
current pinnacle in a long list of multi-level separator based techniques, [8, 16, 22] to name a
few. In a first preprocessing step, a multi-level partition is generated. The boundary vertices
of this partition induce an overlay graph at each level. To maintain shortest paths, each cell
is connected in a clique. Computing this representation relies only on the structure of the
graph. A metric is incorporated in a second step, when correct costs are computed for all
arcs within the cliques. The (bidirectional) query traverses arcs like Dijkstra’s algorithm.
When a boundary vertex is reached, the query switches to the next higher level and continues
to traverse only arcs in the respective overlay graph1. CRP profits from using PUNCH [7] to
find tiny separators. The best variant uses a combination of up to 5 levels and an additional
set of guidance levels (or shadow levels) for preprocessing. This setup allows for distance
queries in about one millisecond and updates of the entire metric in less than a second.

Alternative Routes
Abraham et al. [1] were the first to formally introduce alternative routes in road networks,
even though related methods like the k-shortest path problem [13,24] have been introduced
before. We do not cover these methods as no suitable implementation exists for continental
sized road networks and because some of the earlier methods do not produce good alternative
routes due to a plethora of short detours available in road networks. By now, two most
common approaches found in the literature are via-node alternative routes or the related
plateaux method [1, 2, 4, 17, 18], and penalty-based approaches [2] (among others). Their
following description is taken partly from [17]:

Via-Node Alternative Routes

Within a graph G = (V,A), a via-node alternative to a shortest path Ps,t can be described
by a single vertex v ∈ V \ Ps,t. The alternative route is described as Ps,v,t. As this simple
description can result in arbitrarily bad paths, for example paths containing loops, Abraham
et al. [1] define a set of criteria to be fulfilled for an alternative route to be viable. A viable
alternative route provides the user with a real alternative, not just minimal variations (limited
sharing), is not too much longer (uniformly bounded stretch) and does not contain obvious
flaws, i.e. sufficiently small sub-paths have to be optimal (local optimality). Formally, these
criteria are defined as follows:

I Definition 3 (Viable Alternative Route). Given a graph G = (V,A), a source s, a target t,
and a via-node v as well as three tuning parameters γ, ε, α; v is a viable via-node and defines
a viable via-node alternative route Ps,v,t = Ps,v · Pv,t, if following criteria are fulfilled:

1. L(Ps,t ∩ Ps,v,t) ≤ γ · D(s, t) (limited sharing)
2. ∀a, b ∈ Ps,v,t, DPs,v,t(s, a) < DPs,v,t(s, b) :
DPs,v,t

(a, b) ≤ (1 + ε) · D(a, b) (uniformly bounded stretch)
3. ∀a, b ∈ Ps,v,t, DPs,v,t

(s, a) < DPs,v,t
(s, b),

DPs,v,t
(a, b) ≤ α · D(s, t) : DPs,v,t

(a, b) = D(a, b) (local optimality)

1 For efficiency, the query may descend to lower levels when close to target/source. See [6] for details.

Moritz Kobitzsch, Marcel Radermacher, and Dennis Schieferdecker 97

The usual choice for the tuning parameters is to allow for at most γ = 80 % overlap
between Ps,v,t and Ps,t. Furthermore the user should never travel more than ε = 25 % longer
than necessary between any two points on the track, and every subpath that is at most
α = 25 % as long as the original shortest path should be an optimal path.

These criteria require a quadratic number of shortest path queries to be fully evaluated.
Therefore, Abraham et al. propose an approximation [1]. For example, their T-test for local
optimality is achieved by a single query between two vertices close to the via-node. Due to
properties of this T-test, the criteria (and thus also the numbers in Section 5) are usually
evaluated only for the part of the via-route that is distinct from the shortest path.

Definition 3 can be directly extended to allow for a second or third alternative (alternative
routes of degree 2, 3 or even n), as only the limited sharing parameter has to be tested
against the full set of alternatives already known.

Abraham et al. [1] give multiple algorithms to compute alternative routes. The reference
algorithm (X-BDV) is based on a bidirectional implementation of Dijkstra’s algorithm and
is used as the gold standard. To avoid the long query time of Dijkstra’s algorithm on
continental-sized networks, they also give techniques based on Reach [15] and Contraction
Hierarchies [14]. Due to the strong restrictions of the search spaces caused by the speed-up
techniques, they present weakened query criteria which they call relaxation. For example,
in the Contraction Hierarchy they allow to look downwards in the hierarchy under certain
conditions. The relaxation can be applied in multiple intensities. Commonly used is the
3-relaxation which we refer to by X-CHV.

Luxen and Schieferdecker [18] improve the algorithm of Abraham et al. [1] in terms of
query times by storing a precomputed small set of via-nodes for pairs of regions within the
graph. This is the fastest method to compute via-node alternative routes as of now.

The Penalty Method

Bader et al. [2] describe an entirely different approach. Their main focus is on computing a
full alternative graph to present as a whole, or possibly to extract alternative routes from.
The construction of the graph, however, relies on the iterative computation of multiple
shortest paths. After a single path is computed, they apply a penalty to the path and
to every arc directly connected to it, thus potentially finding a different path in the next
iteration. By lowering successive increases in penalty, they propose to stop iterating when no
penalty is applied to the extracted path anymore. The publication itself does not give exact
numbers, but according to one of the authors 20 iterations are performed to generate paths.
From this set of computed paths, the best ones are selected and combined into an alternative
graph. To make the graph more readable, the authors present two filters that can be applied
to the graph. Again, they do not specify any details on how to select the paths for the final
graph. The quality of the graph is evaluated using two measures (total and average distance)
while at the same time limiting the complexity by putting a hard bound on vertices of degree
higher than two (decision vertices). It is defined as follows:

I Definition 4 (Alternative Graph Quality). The quality of an alternative graph H =
(VH , AH), also called target function, is given by totalDistance − (averageDistance − 1)
with averageDistance ∈ [1.0, 1.1]. The upper limit is enforced during graph construction.
Given start s and target t, the contributing values are defined as:
1. totalDistance :=

∑
a=(u,v)∈AH

c(a)
DH (s,u)+c(a)+DH (v,t) (indicates sharing)

2. averageDistance :=
∑

a∈AH
c(a)

D(s,t)·totalDistance (indicates stretch)

ATMOS’13

98 Evolution and Evaluation of the Penalty Method for Alternative Graphs

Intuitively speaking, the total distance describes how many distinct paths can be found
in the graph, while the average distance describes how much longer such a path is on average.
The authors themselves do not provide an efficient implementation of the penalty method
but claim the implementation to be possible with [21]. With single arc updates taking several
milliseconds this claim seems excessive.

Recently, Paraskevopoulos and Zaroliagis published a new paper [19] on the penalty
method. They suggest modifications to the penalization scheme to obtain higher quality
alternative graphs. Additionally, they introduce pruning techniques that allow for faster
query times than the original work by Bader et al. [2].

4 Alternative Graph Computation

The basic setup of our algorithm follows the ideas from [2], as described in Section 3. We
compute a shortest path, potentially add the obtained path to our output, penalize the arcs
on the path as well as the adjoined arcs and repeat. The general process is illustrated below
as Algorithm 1:

Algorithm 1 CRP-π
1 original_path = path = computeShortestPath ();
2 H = original_path;
3 while L(path) ≤ (1 + ε) · L(original_path) do
4 begin
5 applyPenalties (path);
6 path = computeShortestPath ();
7 if isFeasable(path) do
8 begin
9 H = H ∪ path;

10 end;
11 end;
12 return H;

Following, we explain the meaning of isFeasable(path) and the stopping criterion of our
algorithm. We describe the modifications we make to the algorithm proposed by Bader
et al., which we also refer to as classcial method. We show how to achieve an efficient
implementation and how to extract single alternative routes.

4.1 Path Selection
Algorithm 1 utilizes the procedure isFeasible(path) to decide whether to keep an alterna-
tive route or not. The original paper [2] does not specify how to exactly choose the paths
that form the alternative graph. According to personal conversation with one of the authors,
their algorithm computes up to 20 paths and performs a selection based on some priority
terms afterwards.

While their implementation does not focus on query times but on evaluating multiple
different approaches, we have to consider the cost of performing too many iterations. Thus,
we take a different approach. Instead of applying penalties as many as 20 times, we consider
the true length –without penalties– of the computed path. Whenever this length exceeds
(1 + ε) · D(s, t), we stop our algorithm (see Definition 3, uniformly bounded stretch).

Every path we find during the execution is evaluated by the aforenamed procedure for its
potential value to the alternative graph. We postulate that a path must offer at least one
deviation to the current alternative graph of length δ · D(s, t) or more, with δ usually chosen

Moritz Kobitzsch, Marcel Radermacher, and Dennis Schieferdecker 99

as δ = 0.1 (compare Definition 3, limited sharing). The detours satisfying this requirement
are checked against the current alternative graph H for stretch. If one of these detours
between vertices a, b is not longer than (1 + ε) · DH(a, b), its containing path is added to the
alternative graph. All other paths are rejected.

4.2 Changes to Penalization

As described above, the classical penalty method penalizes the arcs along the shortest path
by adding a fraction of the arcs’ original length. This fraction is called the penalty factor πf

and is usually chosen as πf = 0.04. Additionally, the adjoined arcs of the path are penalized
by adding πr = πf · 0.002 · D(s, t), the so called rejoin penalty. These changes to the metric
are persistent during the computation of an alternative graph.

The penalty method, as suggested by Bader et al. [2], requires a significant amount of
iterations. Even when using our stopping criterion from the previous section, we experience
a similar behavior, requiring about 20 iterations and more on average. Therefore, we take a
slightly different approach to penalization and modify the way penalties are introduced to
the graph.

In contrast to the choice of Bader et al., we multiply the current lengths of the arcs on
the shortest path by 1 + πf . Thus, we penalize arcs which are used often more strongly than
others, and significantly increase the rate at which penalties grow (geometrically growing).
This is in contradiction to Bader et al.’s preference to lower successive increases in penalty.
Our choice is not only motivated by its beneficial impact on the number of iterations, but also
favors detours to segments of the alternative graph that are already covered by multiple paths.
But of course, this may result in our algorithm missing some promising path candidates due
to the higher increase in penalties.

The higher penalization has influence on the choice of the rejoin penalty as well. While
Bader et al. propose a relatively small penalty πr, this choice proved to be not high enough
for our faster growing multiplicative penalties to prevent short detours. We therefore change
the additive penalty to πr = α ·

√
D(s, t), with α = 0.5 as a typical value. This change

is motivated by the following observation: Consider Ps,t and a new path ps,t found on
the penalized graph which deviates from Ps,t between vertices a, b. Due to penalization,
Dps,t(a, b) + 2 · πr ≤ (1 + π̄) · D(a, b), with π̄ the average penalization along Pa,b. In other
words, for a new detour to be found between vertices a, b, it has to be shorter, including
rejoin penalties, than the current (penalized) shortest path between a, b. This condition gets
easier to fulfill, the further s, t are apart as the rejoin penalty grows much slower than the
path length. Therefore, we allow for larger detours to be found on longer paths. But locally,
we only want short detours (compare Definition 3, local optimality).

4.3 Fast Computation

Our most significant change to the classical method is the introduction of CRP as speed-up
technique. While there are other methods for dynamic shortest path computation [5, 21],
none of them is sufficient for the high amount of dynamic behavior required for our cause.
As recent developments have shown, close to real-time processing of entire graphs is possible
with the CRP technique [10].

While we initially took a different approach, the general methods –making extensive
use of vector instructions and parallelism– remain the same. Even though it does not seem
intuitive to perform more work than necessary for a pure update of a shortest path, the

ATMOS’13

100 Evolution and Evaluation of the Penalty Method for Alternative Graphs

locality properties, vectorization and suitability for parallel processing allow a CRP based
implementation to outperform other approaches that consider only the changed arcs.

As our set of updating techniques –while much simpler to implement– is outperformed
by the methods recently described by Delling and Werneck [10], we do not focus on our
exact implementation of CRP. Instead, we concentrate on an essential modification to CRP,
required to achieve maximal performance of the penalty method:

Dynamic Level Selection

Applying a multi-level technique is always a balancing act between fast queries of long routes
and overhead for short routes. In our case, namely the reiterated computation of a shortest
path and the update of affected arcs between the same source and target, we also have to
weigh update costs against query times. While beneficial for long range queries, large cells in
the upper levels have a high update cost in comparison to the smaller cells further down the
hierarchy. These updates soon dominate the runtime of our algorithm as even rather short
paths can touch many high level cells. As we perform multiple computations between the
same source and target pair, we can alleviate this problem. After an initial computation of
the shortest path, we can analyze the path regarding its length and the cells the path touches
on different hierarchy levels. For the cost of storing some additional mapping information,
we use the obtained information to dynamically adjust our implementation of CRP to work
only on a fixed number of levels. Restricting to a subset of levels allows for faster updates of
CRP as not all levels have to be updated, at the cost of higher query times.

4.4 Alternative Route Extraction
When presented with an alternative graph, multiple ways exist to extract alternative routes.
To compare ourselves to other methods in terms of success rate, we apply a two-step approach.
In a first step, we perform X-BDV on our alternative graph without checking for local
optimality. This test is omitted as the alternative graph does not provide enough information
to compute shortest paths between arbitrary vertices with respect to the underlying graph.
We call the result of this first step CRP-π-via. After having searched exhaustively for
via-node alternatives, we run a simplified penalty method to extract further routes. We do
not apply rejoin penalties as the alternative graph is sparse and only contains meaningful
junctions. The X-BDV alternatives are used to initialize penalization, and the extracted
paths have to adhere to the same stretch and overlap criteria as imposed by X-BDV. The full
algorithm is named CRP-π. When omitting the first step, we call the results CRP-π-penalty.

5 Experiments

We first provide a detailed overview of our experimental setup and a short outline of the
quality measurements used during the evaluation of the penalty method. This is followed by
an extensive experimental evaluation of our techniques as introduced in Section 4.

Setup
We run our algorithm on four Intel Xeon E5-4640, clocked at 2.4 GHz with 32 cores in
total and 512 GB of RAM – the actual space consumption of CRP-π is much less though.
The machine is running Ubuntu 12.04. We apply the C++ compiler of the GNU Compiler
Collection (GCC), version 4.6.1, with parameters -std=c++0x -fopenmp -O3 -msse4.1
-mtune=native. For parallelization we use OpenMP. Our implementation is based on a

Moritz Kobitzsch, Marcel Radermacher, and Dennis Schieferdecker 101

partition generated by PUNCH, comparable to the one used in [6] with 5 levels, including a
shadow level. The road network of Western Europe supplied by PTV AG for the 9th Dimacs
Implementation Challenge [11] is used in our experiments. It contains 18 million nodes and
24 million edges and uses the travel time metric as arc costs. The graph consists of a single
strongly connecteed component. We present numbers based on random queries and on rank
queries. The Dijkstra rank of a vertex is defined as the step in which it is settled during the
execution of Dijkstra’s algorithm. For both variants we choose 1 000 queries uniformly at
random, unless said otherwise.

For comparison, we apply our own implementations of the competing via-node and penalty
approaches, with results similar to the original papers. Tuning parameters are chosen at their
usual values as introduced before. Note that our implementation of the classical penalty
method corresponds to CRP-π while using Dijkstra’s algorithm and the classical penalization
scheme. In particular, we apply our stopping criterion instead of running 20 iterations
straight and add each viable path to the alternative graph as soon as it is discovered. This is
due to Bader et al. not providing details on the path selection process in their paper.

5.1 Runtime
1

5
10

15
20

Dijkstra Rank

Ite
ra

tio
ns

 [#
]

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

CRP−ππ Classical

Figure 1 Number of iterations required by the
penalty method until the stopping criterion holds.

One of the most important characteristics
in routing applications is the query time.
Therefore, we first evaluate the runtime of
our algorithm before turning to the quality
of the computed routes.

The number of iterations performed is
likely the most influential factor to our query
time. Figure 1 shows that the number of
iterations is much higher for queries of lower rank. Therefore, it is important to perform
updates very fast for short queries. We also see that without our modifications to the
penalization, we experience an average of 12 iterations and higher across the full range
of queries. Remember, the original implementation by Bader et al. always computed
20 iterations. Considering the cost to perform a single iteration (Figure 2), the classical
penalization would not be suitable for an efficient implementation, even when using CRP.
We also see that update costs remain small as only affected cells are recomputed.

0.
1

1
10

10
0

Dijkstra Rank

Ite
ra

tio
n

T
im

e
[m

s]

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

CRP−ππ Classical

Figure 2 Sequential runtime of a single itera-
tion of the penalty method.

These findings are further confirmed by
Figure 3, which gives sequential runtimes
for using Dijkstra’s algorithm with classical
penalization. Note the logarithmic scale of
the y-axis. We see that query times already
become impractical for very short ranged
queries. This is expected behavior and com-
parable to the original algorithm [2].

Using a bidirectional implementaion of
Dijkstra’s algorithm could reduce runtimes
of the classical approach by a small constant
factor, but they would remain prohibitively
high. This becomes evident in particular when looking at long range queries, the classical
approach requires up to 5 seconds per iteration while CRP-π only takes between 100 and
200 milliseconds. Not even goal directed methods as in the new method of Paraskevopoulos
and Zaroliagis [19] seem to suffice for reaching the query performance of CRP-π.

ATMOS’13

102 Evolution and Evaluation of the Penalty Method for Alternative Graphs

Dynamic Level Selection

1
10

10
0

Dijkstra Rank

Q
ue

ry
 T

im
e

[m
s]

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

CRP−ππ, Rank Based Optimum
CRP−ππ, Dynamic Level Selection
Classical Penalty Method

Figure 3 Runtime of the penalty method with
dynamic level selection and rank based optima.
CRP-π uses 16 cores, the classical method 1 core.

Figure 4 gives an impression on the impact
of both parallel execution of our algorithm
as well as the overhead introduced by using
a fixed number of levels for CRP. Especially
for short routes, the negative effects of using
many levels of the partition become obvious.
This is as the cells in the higher levels are
very large and the costly updates dominate
the benefits in query time. Using all 5 lev-
els is actually only beneficial in CRP-π for
finding shortest paths in the original graph.
Moreover, we see that using more than 12
cores is hardly effective for any type of query. In fact, parallel execution only starts to pay
off for long range queries, with 12/16 cores performing up to 4 times faster than sequential
execution. For short to medium range routes, it can be deemed a waste of resources.

Following the results of Figure 4, we propose to use only two levels for short routes, switch
to three levels for the medium range, and finally apply four levels on long range queries. We
base the decision on how many levels to use on the hop count of the shortest path (which
is always computed using all 5 levels of the partition). To tune this selection process, we
generate a different set of routes for every Dijkstra rank and compute the average number of
hops on the shortest path.

The performance of the resulting dynamic algorithm is shown in Figure 3. We see
that our dynamic algorithm is sometimes even slightly faster than the best values of the
respective Dijkstra rank queries. This is, as the dynamic choice allows us to better adjust the
performance of our algorithm to the actually required workload whereas a forced number of
levels does not represent the required work as accurately. For comparison, Figure 3 shows the
respective best values from Figure 4. The values were extracted on Dijkstra-rank basis. Due
to very long arcs, i.e. ferry connections, we experience some erratic parallelization behavior
when dynamically selecting the levels based on the hop-count alone. A selection based on
affected cells in each level might provide better results in the future.

Avoiding dynamic level selection, the best choice is obviously using three levels of hierarchy.
Only for very short and very long range queries we see detrimental effects. But in the worst
case, there is a slowdown by a factor of up to 4.

Although, at the current state, the required number of cores for a viable execution of our
algorithm might be considered high for long range queries, the algorithm performs queries
efficiently and with a low number of cores for all reasonable distances. To improve workload,
dynamic selection of cores can be introduced similar to dynamic selection of levels.

Figure 3 compares only our best results, obtained by parallel processing, to the classical
approach, running sequentially. Though, we clearly outperform this approach even when
using a single core. Figure 4 demonstrates the performance benefits of our general approach
over the classicial method. As seen in the plot depicting dynamic level selection, CRP-π takes
at most 600 milliseconds on one core for the longest queries whereas the classical approach
requires beyond 100 seconds, which is off the scale in Figure 3.

For completeness, we state the runtimes of the via-node approaches introduced during
the following quality analysis. X-BDV requires 14.1 seconds on average to compute three
alternatives, where possible. X-CHV takes 4.95 milliseconds for the same task.

Moritz Kobitzsch, Marcel Radermacher, and Dennis Schieferdecker 103

1
10

10
0

10
00

Dijkstra Rank − 5 Level CRP−π

Q
ue

ry
 T

im
e

[m
s]

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

1 2 4 8 12 16

1
10

10
0

10
00

Dijkstra Rank − 4 Level CRP−π

Q
ue

ry
 T

im
e

[m
s]

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

1 2 4 8 12 16

1
10

10
0

10
00

Dijkstra Rank − 3 Level CRP−π

Q
ue

ry
 T

im
e

[m
s]

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

1 2 4 8 12 16

1
10

10
0

10
00

Dijkstra Rank − 2 Level CRP−π

Q
ue

ry
 T

im
e

[m
s]

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

1 2 4 8 12 16

1
10

10
0

10
00

Dijkstra Rank − 1 Level CRP−π

Q
ue

ry
 T

im
e

[m
s]

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

1 2 4 8 12 16

1
10

10
0

10
00

Dijkstra Rank − Dynamic Level Selection CRP−π

Q
ue

ry
 T

im
e

[m
s]

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

1 2 4 8 12 16

Figure 4 Runtime of the penalty method. Each illustration shows the runtime for a range of
cores. The number of levels of the underlying CRP implementation is either fixed to a given set of
levels, or dynamically adapted after the initial shortest path query.

5.2 Quality
First, we evaluate the results of our algorithm with regards to the quality as defined in the
original paper of Bader et al. [2]. We note that without access to their path selection criteria,
we were unable to reproduce the numbers listed in their work. In addition, their numbers
stem from a very sparse test set of 100 queries. Another implementation [20] faced similar
difficulties, but at least conducted more extensive measurements. They report an average
value of 2.89 for the alternative graph quality of Definition 4, compared to the 3.21 in [2].
Without filtering, our algorithm yields alternative graphs with an average quality rating of
3.32 with 17.4 decision vertices on average. As this is above the proposed hard limit in the
original paper, we can filter the graph by removing all arcs that are only contained in paths
longer than the allowed maximum stretch. The additional overhead is negligible, well below
100µs on average, as the alternative graphs are tiny. Filtering reduces the quality to 2.89
and the decision vertices to 9.53. While limiting the number of decision vertices is beneficial

ATMOS’13

104 Evolution and Evaluation of the Penalty Method for Alternative Graphs

Table 1 Success rates and average path quality numbers for the first through third alternatives in
terms of Definition 3. Compared to the results found in [1], local optimality is not strictly enforced.
See text for a discussion on maximum/minimum path quality values.

algorithm success [%] stretch [%] sharing [%] optimality [%]

first X-BDV 96.0 10.0 41.8 75.4
X-CHV 89.6 80.4 40.6 68.1
CRP-π-via 95.2 42.8 31.6 27.1
CRP-π-penalty 96.3 40.6 40.8 24.4
CRP-π 96.3 42.9 31.9 26.9

second X-BDV 87.6 13.8 59.5 65.1
X-CHV 72.5 269.0 57.6 57.2
CRP-π-via 79.8 47.1 44.7 22.9
CRP-π-penalty 83.1 60.5 36.8 10.8
CRP-π 84.0 47.6 45.9 22.1

third X-BDV 75.5 17.2 65.6 54.6
X-CHV 51.4 214.0 63.6 46.8
CRP-π-via 52.7 66.5 49.3 18.0
CRP-π-penalty 53.0 65.9 32.0 5.6
CRP-π 62.9 67.4 51.8 15.9

for the readability of an alternative graph, it reduces the potential for extracting multiple
viable alternatives. Thus, we opt to not apply the filter for the following analyses.

Now, we take a look at the well established via-node approach. For comparison, we
choose the Dijkstra based (X-BDV), and the Contraction Hierarchy based (X-CHV) variants
introduced in [1]. Table 1 summarizes the results, giving numbers for success rates, i.e.
how often we can extract one to three viable alternatives from our alternative graph, and
for the quality measures introduced in Definition 3. As we do not strictly enforce local
optimality, we disabled this criterion for X-BDV and X-CHV to allow for a fair comparison.
We see that success rates of CRP-π are well above X-CHV for all alternatives and even
on par with X-BDV for the first route. For second and third routes our algorithm fares
slighty worse compared to X-BDV. Note though that X-BDV obtains its high success rates
at the cost of prohibitively slow query times of about 14 seconds. Average path quality
measures seem reasonable with our uniformly bounded stretch and local optimality values
being worse but our sharing values being better than those of the via-node approaches. This
is an expected compromise as lower stretch comes with higher overlap and vice versa. The
overall high stretch values are due to none of the algorithms enforcing uniformly bounded
stretch explicitly, only total stretch of each path is enforced.

We further find that not enforcing local optimality has little impact on the average path
quality values. Only the uniformly bounded stretch of X-CHV increases significantly. Due
to the structure of CH search spaces, computed alternatives often exhibit an overlapping
subpath at the via-node. This would imply infinite stretch values, filtering these overlaps
we obtain the listed values of above 200. Maximum stretch and minimum optimality values
degrade dramatically without enforcing local optimality, though. This leads us to look more
closely into how poor bounded stretch and local optimality values arise. As they represent
averages of the worst values on each path, it is easy to see that even tiny suboptimalities
compared to the full path length lead to poor quality values. We find stretch values over

Moritz Kobitzsch, Marcel Radermacher, and Dennis Schieferdecker 105

100% for about 10% of all alternatives and local optimality values below 1% for about 20%
of all alternatives of CRP-π. This is about twice as often as for X-CHV, with X-BDV only
showing single poor values. We further checked that this is always caused by a single subpath
of small length (about 1% - 3% of the full path length). Thus, we conjecture that these
problems are repairable with very local searches at low costs.

Finally, we compare the results of running only one step of our alternative route extraction
to the full process. We see that the different extraction methods compliment each other. On
their own, they offer comparable success rates on par or even better than X-CHV. When
combined, the success rates increase – especially for higher degree alternatives. This leads us
to the conjecture that both approaches provide structural different routes.

Encouraged by this observation on the small scale, we study the structural differences
offered by our penalty approach compared to via-node based approaches on the whole. We
evaluate the extracted alternative routes with regards to the additional information they
provide that cannot be obtained by via-node based approaches. For this analysis we consider
all extracted routes ps,t, compute a via-node alternative Ps,v,t for each vertex v on that
route, and compute the overlap between these two paths. For a fair comparison, we only
consider vertices that yield a viable via-node alternative with respect to the stretch and
overlap criteria. Furthermore, we do not consider overlapping subpaths that are also part of
the shortest path Ps,t. We find that that maximum overlap is well below 80% and getting
smaller for higher degree alternatives – 77.9%, 72.7%, 65.5% for the first through third
alternative, respectively. This implies that our approach offers a meaningful addition to the
established via-node approaches.

6 Conclusion

The extensive use of vectorization and modern multi-core machines has enabled us to provide
the first implementation of the penalty method that is suitable for interactive applications.
We have shown the results to provide meaningful additions to the world of alternative routes.
Some open problems remain though. Most interesting would be to find an (approximable) set
of criteria to classify good alternatives, not tailored to one specific approach. Furthermore,
the runtime of our implementation remains high, especially when compared to shortest path
queries. We want to find ways to improve upon this implementation and compute alternative
graphs even quicker. The recent work by Paraskevopoulos and Zaroliagis [19] seems to be
promising in this respect. Their approach is orthogonal to ours and should integrate well.

Acknowledgements We would like to thank Daniel Delling of Microsoft Reasearch, Sillicon
Valley for providing a PUNCH partition of our European road network.

References
1 Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. Alternative

Routes in Road Networks. ACM Journal of Experimental Algorithmics, 18(1):1–17, 2013.
2 Roland Bader, Jonathan Dees, Robert Geisberger, and Peter Sanders. Alternative Route

Graphs in Road Networks. In International ICST Conference on Theory and Practice
of Algorithms in (Computer) Systems (TAPAS’11), volume 6595 of LNCS, pages 21–32.
Springer, 2011.

3 Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Dominik Schultes,
and Dorothea Wagner. Combining Hierarchical and Goal-Directed Speed-Up Techniques
for Dijkstra’s Algorithm. ACM Journal of Experimental Algorithmics, 15(2.3):1–31, 2010.

ATMOS’13

106 Evolution and Evaluation of the Penalty Method for Alternative Graphs

4 Cambridge Vehicle Information Tech. Ltd. Choice Routing. http://camvit.com/
camvit-technical-english/Camvit-Choice-Routing-Explanation-english.pdf,
2005.

5 Gianlorenzo D’Angelo, Mattia D’Emidio, Daniele Frigioni, and Camillo Vitale. Fully Dy-
namic Maintenance of Arc-Flags in Road Networks. In International Symposium on Exper-
imental Algorithms (SEA’12), volume 7276 of LNCS, pages 135–147. Springer, 2012.

6 Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck. Customiz-
able Route Planning. In International Symposium on Experimental Algorithms (SEA’11),
volume 6630 of LNCS, pages 376–387. Springer, 2011.

7 Daniel Delling, Andrew V. Goldberg, Ilya Razenshteyn, and Renato F. Werneck. Graph
Partitioning with Natural Cuts. In International Symposium on Parallel and Distributed
Processing (IPDPS’11), pages 1135–1146. IEEE, 2011.

8 Daniel Delling, Martin Holzer, Kirill Müller, Frank Schulz, and Dorothea Wagner. High-
Performance Multi-Level Routing. In The Shortest Path Problem: Ninth DIMACS Imple-
mentation Challenge, volume 74 of DIMACS Book, pages 73–92. AMS, 2009.

9 Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner. Engineering Route
Planning Algorithms. In Algorithmics of Large and Complex Networks, volume 5515 of
LNCS, pages 117–139. Springer, 2009.

10 Daniel Delling and Renato F. Werneck. Faster Customization of Road Networks. In Inter-
national Symposium on Experimental Algorithms (SEA’13), volume 7933 of Lecture Notes
in Computer Science, pages 30–42. Springer, 2013.

11 Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson, editors. The Shortest Path
Problem: Ninth DIMACS Implementation Challenge, volume 74 of DIMACS Book. AMS,
2009.

12 Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1:269–271, 1959.

13 David Eppstein. Finding the k Shortest Paths. In Symposium on Foundations of Computer
Science (FOCS’94), pages 154–165. IEEE, 1994.

14 Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Exact Routing
in Large Road Networks Using Contraction Hierarchies. Transportation Science, 46(3):388–
404, 2012.

15 Ronald J. Gutman. Reach-Based Routing: A New Approach to Shortest Path Algorithms
Optimized for Road Networks. In Workshop on Algorithm Engineering and Experiments
(ALENEX’04), pages 100–111. SIAM, 2004.

16 Martin Holzer, Frank Schulz, and Dorothea Wagner. Engineering Multi-Level Overlay
Graphs for Shortest-Path Queries. ACM Journal of Experimental Algorithmics, 13(2.5):1–
26, 2008.

17 Moritz Kobitzsch. An Alternative Approach to Alternative Routes: HiDAR. In European
Symposium on Algorithms (ESA’13). Springer, 2013.

18 Dennis Luxen and Dennis Schieferdecker. Candidate Sets for Alternative Routes in Road
Networks. In International Symposium on Experimental Algorithms (SEA’12), volume 7276
of LNCS, pages 260–270. Springer, 2012.

19 Andreas Paraskevopoulos and Christos Zaroliagis. Improved Alternative Route Planning.
In Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems (ATMOS’13), OASIcs. Dagstuhl Publishing, 2013.

20 Marcel Radermacher. Schnelle Berechnung von Alternativgraphen. Bachelor’s thesis, Karl-
sruhe Institute of Technology, Fakultät für Informatik, 2012.

21 Dominik Schultes and Peter Sanders. Dynamic Highway-Node Routing. In Workshop on
Experimental Algorithms (WEA’07), volume 4525 of LNCS, pages 66–79. Springer, 2007.

http://camvit.com/camvit-technical-english/Camvit-Choice-Routing-Explanation-english.pdf
http://camvit.com/camvit-technical-english/Camvit-Choice-Routing-Explanation-english.pdf

Moritz Kobitzsch, Marcel Radermacher, and Dennis Schieferdecker 107

22 Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Using Multi-Level Graphs for
Timetable Information in Railway Systems. In Workshop on Algorithm Engineering and
Experiments (ALENEX’02), volume 2409 of LNCS, pages 43–59. Springer, 2002.

23 Christian Sommer. Shortest-Path Queries in Static Networks, 2012. submitted. Preprint
available at http://www.sommer.jp/spq-survey.htm.

24 Jin Y. Yen. Finding the k Shortest Loopless Paths in a Network. Management Science,
17(11):712–716, 1971.

ATMOS’13

http://www.sommer.jp/spq-survey.htm

Improved Alternative Route Planning ∗

Andreas Paraskevopoulos1,2 and Christos Zaroliagis1,2

1 Computer Technology Institute & Press “Diophantus”
Patras University Campus, 26504 Patras, Greece

2 Department of Computer Engineering & Informatics
University of Patras, 26504 Patras, Greece
{paraskevop,zaro}@ceid.upatras.gr

Abstract
We present improved methods for computing a set of alternative source-to-destination routes

in road networks in the form of an alternative graph. The resulting alternative graphs are
characterized by minimum path overlap, small stretch factor, as well as low size and complexity.
Our approach improves upon a previous one by introducing a new pruning stage preceding any
other heuristic method and by introducing a new filtering and fine-tuning of two existing methods.
Our accompanying experimental study shows that the entire alternative graph can be computed
pretty fast even in continental size networks.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G2.2.2 Graph
Theory, G.4 Mathematical Software

Keywords and phrases Alternative route, stretch factor, shortest path, non-overlapping path,
Penalty, Plateau

Digital Object Identifier 10.4230/OASIcs.ATMOS.2013.108

1 Introduction

Route planning services – offered by web-based, hand-held, or in-car navigation systems
– are heavily used by more and more people. Typically, such systems (as well as the vast
majority of route planning algorithms) offer a best route from an origin s to a destination t,
under a single criterion (distance or time). Quite often, however, computing only one such
s-t route may not be sufficient, since humans would like to have choices and every human
has also his/her own preferences. These preferences may well vary and depend on specialized
knowledge or subjective criteria (like or dislike certain part of a road), which are not always
practical or easy to obtain and/or estimate (on a daily basis). Therefore, a route planning
system offering a set of good/reasonable alternatives can hope that (at least) one of them
can satisfy the user, and vice versa, the user can have them as back-up choices for altering
his route in case of emergent traffic conditions. In all cases, the essential task is to compute
reasonable alternatives to an s-t optimal route and this has to be done fast.

In this context, we are witnessing some recent research which investigates the computation
of alternative routes under two approaches. The first approach, initiated in [5] and further
extended in [19, 16], computes a few (2-3) alternative s-t routes that pass through specific
nodes (called via nodes). The second approach [6] creates a set of reasonable alternative routes
in the form of a graph, called alternative graph. Moreover, there are proprietary algorithms
used by commercial systems (e.g., by Google and TomTom) that suggest alternative routes.

∗ This work was supported by the EU FP7/2007-2013 (DG CONNECT.H5-Smart Cities & Sustainability),
under grant agreement no. 288094 (project eCOMPASS).

© Andreas Paraskevopoulos and Christos Zaroliagis;
licensed under Creative Commons License CC-BY

13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’13).
Editors: Daniele Frigioni, Sebastian Stiller; pp. 108–122

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2013.108
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

A. Paraskevopoulos and C. Zaroliagis 109

In this work, we focus on computing alternative graphs, which appear to be more suitable
for practical navigation systems [4, 18], since the approach with via-nodes may create higher
(than required) overlapping and may not be always successful. The study in [6] quantified
the quality characteristics of an alternative graph (AG), captured by three criteria. These
concern the non-overlappingness and the stretch of the routes, as well as the number of
decision edges (sum of node out-degrees) in AG. As it is shown in [6], all of them together
are important in order to produce a high-quality AG. However, optimizing a simple objective
function combining just any two of them is already an NP-hard problem [6]. Hence, one has
to concentrate on heuristics. Four heuristic approaches were investigated in [6] with those
based on Plateau [3], Penalty [7], and a combination of them to be the best.

In this paper, we extend the approach in [6] for building AGs in two directions. First,
we introduce a pruning stage that precedes the execution (and it is independent) of any
heuristic method, thus reducing the search space and hence detecting the nodes on shortest
routes much faster. Second, we provide several improvements on both the Plateau and
Penalty methods. In particular, we use a different approach for filtering plateaus in order
to identify the best plateaus that will eventually produce the most qualitative alternative
routes, in terms of minimum overlapping and stretch. We also introduce a practical and
well-performed combination of the Plateau and Penalty methods with tighter lower-bounding
based heuristics. This has the additional advantage that the lower bounds remain valid for
use even when the edge costs are increased (without requiring new preprocessing), and hence
are useful in dynamic environments where the travel time may be increased, for instance,
due to traffic jams. Finally, we conducted an experimental study for verifying our methods
on several road networks of Western Europe. Our experiments showed that our methods can
produce AGs of high quality pretty fast.

This paper is organized as follows. Section 2 provides background information, including
notation, formal problem definitions, and classic algorithms for the single pair shortest path
problem. Section 3 surveys the methods for building alternative graphs, presented in [6].
Section 4 presents our proposed improvements for producing AGs of better quality. Section 5
presents a thorough experimental evaluation of our improved methods. Conclusions are
offered in Section 6.
Recent related work. During preparation of our camera-ready version, we have been
informed about a different approach on reducing the running time of the Penalty method
[17], which is is based on Customizable Route Planning [8] and includes an iterative updating
of shortest path heuristics through a multi-level partition, in order to accommodate the
adjustments on the edge weights by the Penalty method.

2 Preliminaries

A road network can be modeled as a directed graph G = (V,E), where each node v ∈ V
represents intersection points along roads, and each edge e ∈ E represents road segments
between pairs of nodes. Let |V | = n and |E| = m.

We consider the problem of tracing alternative paths from a source node s to a target
node t in G, with edge weight or cost function w : E → R+. The essential goal is to obtain
sufficiently different paths with optimal or near optimal cost.

2.1 Alternative Graphs
The aggregation of alternative paths between a source s and a target t can be captured by
the concept of the Alternative Graph, a notion first introduced in [6]. An Alternative Graph

ATMOS’13

110 Improved Alternative Route Planning

(AG) is defined as the union of several s-t paths. Formally, an AG H = (V ′, E′) is a graph,
with V ′ ⊆ V , and such that ∀e = (u, v) ∈ E′, there is a Puv path in G and a Pst path in H,
so that e ∈ Pst and w(e) = w(Puv), where w(Puv) denotes the weight or cost of path Puv.
Let d(u, v) ≡ dG(u, v) be the shortest distance from u to v in graph G, and dH(u, v) be the
shortest distance from u to v in graph H.

Storing paths in an alternative graph AG makes sense, because in general alternative
paths may share common nodes (including s and t) and edges. Furthermore, their subpaths
may be combined to form new alternative paths.

In the general case, there may be several alternative paths from s to t. Hence, there is
a need of filtering and rating all alternatives, based on certain quality criteria. The main
idea of the quality criteria is to discard routes with poor rates. For this task, the following
quality indicators were used in [6]:

totalDistance =
∑

e=(u,v)∈E′

w(e)
dH(s, u) + w(e) + dH(v, t) (overlapping)

averageDistance =
∑

e∈E′ w(e)
dG(s, t) · totalDistance (stretch)

decisionEdges =
∑

v∈V ′\{t}

(outdegree(v)− 1) (size of AG)

In the above definitions, the totalDistance measures the extend to which the paths in
AG are non-overlapping. Its maximum value is decisionEdges+1. This is equal to the
number of all s-t paths in AG, when these are disjoint, i.e. not sharing common edges. The
averageDistance measures the average cost of the alternatives compared with the shortest
one (i.e. the stretch). Its minimum value is 1. This occurs, when every s-t path in AG

has the minimum cost. Consequently, to compute a qualitative AG, one aims at high
totalDistance and low averageDistance. The decisionEdges measures the size complexity
of AG. In particular, the number of the alternative paths in AG, depend on the “decision
branches” are in AG. For this reason, the higher the decisionEdges, the more confusion is
created to a typical user, when he tries to decide his route. Therefore, it should be bounded.

2.2 Shortest path Heuristics

We review now some shortest path heuristics that will be used throughout the paper.

Forward Dijkstra. Recall that Dijkstra’s algorithm [11] grows a full shortest path tree
rooted at a source node s, by performing a breadth-first based search, exploring the nodes in
G in increasing order of distance from s. More specifically, for every node u, the algorithm
maintains a tentative distance from s of the current known s-u shortest path and the
predecessor node pred of u on this path. The exploring and processing order of the nodes
can be controlled and guided by a priority queue Q. In each iteration, the node u with the
minimum tentative distance d(s, u) is removed from Q and its outgoing edges are relaxed.
More specifically, for any outgoing edge of u, e = (u, v) ∈ E, if d(s, u) +w(e) < d(s, v) then it
sets d(s, v) = d(s, u) + w(e) and pred(v) = u. Because the distance from s is monotonically
increasing (w : E → R+) a node dequeued from Q becomes settled, receiving the minimum
possible distance d(s, v) from s. The algorithm terminates when the queue becomes empty
or when a target t is settled (for single-pair shortest path queries). In the latter case the
produced shortest path tree consists of nodes with d(s, v) 6 d(s, t). We refer to Dijkstra’s
algorithm also as forward Dijkstra.

A. Paraskevopoulos and C. Zaroliagis 111

Backward Dijkstra. To discover the shortest paths from all nodes in G to a target node t
we can use a backward version of Dijkstra’s algorithm. The backward Dijkstra explores the
nodes in G in increasing order of their distance to t, traversing the incoming edges of the
nodes by the reverse direction. In this variant of Dijkstra’s algorithm, the successors (succ)
nodes are stored instead of the predecessor ones in order to orientate the direction of the
built shortest path tree towards the target node t.

The following bidirectional and A* variants of Dijkstra’s algorithm are used to reduce the
expensive and worthless exploration on nodes that do not belong to a shortest s-t path.

Bidirectional Dijkstra. This bidirectional variant runs forward Dijkstra from s and backward
Dijkstra from t, as two simultaneously auxiliary searches. Specifically, the algorithm alternates
the forward search from s and the backward (reverse) search from t, until they meet each
other. In this way, the full s-t shortest path is formed by combining a s-v shortest path
computed by the forward search and a v-t shortest path computed by the backward search.
Because two s-v and v-t shortest paths cannot necessarily build an entire shortest s-t path,
additionally, there is a need to keep the minimum cost w(s, v) + w(v, t) and the via node v
from all current traced paths in the meeting points of the two searches. Let ds(u) = d(s, u)
and dt(u) = d(u, t). The algorithm terminates after acquiring the correct s-t shortest path.
This is ensured only when the current minimum distance in the priority queue of forward
search Qf and the minimum distance in the priority queue Qb of backward search are such
that minu∈Qf

{ds(u)}+minv∈Qb
{dt(v)} > ds(t), meaning that the algorithm cannot anymore

provide shorter s-t paths than the previous discovered ones.

A* search. Given a source node s and a target node t, the A∗ variant [15] is similar to
Dijkstra’s algorithm with the difference that the priority of a node in Q is modified according
to a heuristic function ht : V → R which gives a lower bound estimate ht(u) for the cost of a
path from a node u to a target node t. By adding this heuristic function to the priority of
each node, the search becomes goal-directed pulling faster towards the target. The tighter the
lower bound is, the faster the target is reached. The only requirement is that the ht function
must be monotone: ht(u) ≤ w(u, v) + ht(v), ∀(u, v) ∈ E. One such heuristic function is the
Euclidean distance between two nodes. But in general, Euclidean lower bounds are not the
best approximations of shortest distances in road networks, because the majority of road
routes do not follow a strict straight course from s to t.

ALT. The ALT technique, that introduced in [13], provides a highly effective heuristic
function for the A∗ algorithm, using triangle inequality and precomputed shortest path
distances between all nodes and few important nodes, the so-called landmarks. Those
shortest distances can be computed and stored in a preprocessing stage. Then, during a
query, the lower bounds can be estimated in constant time. In particular, for a node v and
a landmark L, it holds that d(v, t) > maxL{d(L, t)− d(L, v), d(v, L)− d(t, L)} = ht(v) and
d(s, v) > maxL{d(L, v)− d(L, s), d(s, L)− d(v, L)} = hs(v). Obviously, these lower bounds
contain an important part of the information of the shortest path trees in G.

The efficiency of ALT depends on the number and the initial selection of landmarks. In
order to have good query times, peripheral landmarks as far away from each other as possible
must be selected, taking advantage of the fact that the road networks are (almost) planar.
The nodes in these positions can cover more shortest path trees in G and hence provide more
valuable heuristics.

We refer to the consistent bidirectional ALT algorithm, with the average heuristic function
[13], as BLA. In this variant, the forward and backward search use Hs and Ht as heuristic
functions, where Ht(v) = −Hs(v) = ht(v)−hs(v)

2 .

ATMOS’13

112 Improved Alternative Route Planning

3 Approaches for Computing Alternative Graphs

We briefly review the approaches considered in [6] for computing alternative graphs.
k-Shortest Paths. The k-shortest path routing algorithm [12, 22] finds k shortest paths in
order of increasing cost. The disadvantage of this approach is that the computed alternative
paths share many edges, which makes them difficult to be distinguished by humans. Good
alternatives could be revealed for very large values of k, but at the expense of a rather high
computational cost.
Pareto. The Pareto algorithm [14, 21, 10] computes an AG by iteratively finding Pareto-
optimal paths on a suitably defined objective cost vector. The idea is to use as first edge
cost the one of the single criterion problem, while the second edge cost is defined as follows:
all edges belonging to AG (initially the AG is the shortest s-t path) set their second cost
function to their initial edge cost and all edges not belonging to AG set their second cost
function to zero.
Plateau. The Plateau method [3] provides alternative Pst paths by connecting pairs of s-v
and v-t shortest paths, via a specific node v. In this matter, v is selected on the basis of
whether it belongs to a plateau (to be defined shortly).

In particular, the s-v and v-t paths that are required to form the Pst paths can be found on
a forward Tf shortest path tree, with root s, and a backward Tb shortest path tree, with root
t. On this, a classical approach for finding Tf and Tb is by performing forward and backward
Dijkstra. Apparently, from this process, connecting shortest subpaths does not necessarily
ensure the optimality of the resulted Pst paths, so there is a need to evaluate them. In
order to provide low overlapping alternative Pst paths, the connection-node v of s-v and v-t
paths should belong to a plateau. The plateaus are simple paths, P ⊆ Pst, consisting of more
than one successive nodes, with the property that ∀u, v ∈ P : ds(u) + dt(u) = ds(v) + dt(v).
The plateaus can be traced on the intersection of Tf and Tb. In this way, a node in a plateau
following the predecessor nodes in Tf and the successor nodes in Tb can build a complete

Figure 1 Graph G. Forward Tf shortest path tree with root s. Backward Tb shortest path tree
with root t.

Figure 2 The combination of Tf and Tb trees. The resulted graph reveals two plateaus. The first
one is s-a-b-t and the second one is d-c.

A. Paraskevopoulos and C. Zaroliagis 113

Figure 3 A Plateau.

Pst path. As the plateaus are usually too many, a filtering stage is used to select the best
of them. In [6], this is implemented by gathering plateaus P in a non-decreasing order of
rank = w(Pst) − w(P), where Pst is the resulted path via P . Therefore, a plateau that
corresponds to a shortest path from s to t has rank zero, which is the best value.
Penalty. The Penalty method [7] provides alternative paths by iteratively running shortest
path queries and adjusting the weight of the edges on the resulted Pst paths. The basic steps
are the following. A shortest Pst path is computed with Dijkstra’s algorithm or a speedup
variation of it. Then, Pst is penalized by increasing the weight of its edges. Next, a new
s-t query is executed. If the new computed P ′st path is short and different enough from the
previously discovered Pst paths, then it is added to the solution set. The same process is
repeated until a sufficient number of alternative paths (with the desired characteristics) is
found, or the weight adjustments of s-t paths bring no better results.

In order to offer the best results, an efficient and safe way on weight increases should be
adopted. A weight adjustment policy, also considered in [6], is as follows:

The increase on the weights should be of a small magnitude in order to keep the
resulted averageDistance low. When an edge of a Pst path is about to be penalized,
only a small fraction (penalty factor) 0.1 ≤ p ≤ 1 of its initial weight is added, i.e.,
wnew(e) = w(e) + p · wold(e). Note that the use of constant values is avoided, because
they do not always guarantee a balanced adjustment, since in some cases longer edges
may be favored over shortest ones. In general, the higher the penalty factor is, the more
the new shortest path may differ from the last one. On the other hand, the lower the p
penalty factor is, more shortest path queries can be performed and less alternative paths
may be lost.
The weight adjustment is restricted when it could lead to the loss of good alternatives.
Notice that, an unbounded penalty leads to multiple increases on the edge weights and
is risky. For example, suppose that there is only one fast highway into a city, whereas
there are many alternatives through the city center. If we allow multiple increases on the
weights of the highway then its cost will be increased several times during the iterations.
This for new s-t shortest path queries may result to new computed paths that now begin
from a detour longer than the highway. Therefore, because of the high cost any possible
alternative inside the city will be lost, and the algorithm will terminate with poor results.
To overcome this problem the number of the increases or the magnitude of p is limited
for edges already included in AG.
In order to avoid the overlapping between the computed alternative paths is useful to
extend the weight adjustment to their neighborhood. This is reasonable, because in
some cases the new computed alternative paths may share many small detours with
the previous ones. For example, it is possible that the first path is a fast highway and
the new computed paths are in the same course with the highway but having one or

ATMOS’13

114 Improved Alternative Route Planning

many outgoing and incoming small detours distributed along the highway. This increases
the decisionEdges and offers meaningless (non-discrete) alternatives. Therefore, when
increasing the weight of the edges in a shortest Pst path, the weights of edges around Pst

that leave and join the current AG should be additionally penalized (rejoin-penalty) by a
factor 0.1 ≤ r ≤ 1. Consequently, the rejoin-penalty r contributes to high totalDistance.

Thinout. A major issue is the optimality regarding the cost. In [6], the optimality is
ensured by bounding the averageDistance, and further in a post-processing phase by setting
tighter bounds to the local optimality of the edges or the subpaths in AG. In Plateau
method, the local optimality of the s-v and v-t paths is guaranteed because these are selected
from the Tf and Tb shortest path trees. In the penalty method, however, the adjustment
of the weights may insert non optimal paths. A way in [6] to overcome this issue, when
considering alternative paths globally, is by performing a global refinement (focusing on the
entire s-t paths), and an iterative local refinement (focusing on individual edges). In more
detail, for some δ > 1, in global refinement, an edge e = (u, v) ∈ E′ is removed from AG if
dH(s, u) + w(u, v) + dH(v, t) > δ · dH(s, t). In local refinement, an edge e = (u, v) ∈ E′ is
removed from AG if w(u, v) > δ · dH(u, v).

4 Our improvements

As the experimental study in [6] showed, the k-Shortest Paths and the Pareto approaches
generate alternative graphs of low quality and hence we shall not investigate them. On the
other hand, the Plateau and Penalty methods are the most promising ones and thus we focus
on extending and enhancing them. Our improvements are twofold :

A. We introduce a pruning stage that precedes the Plateau and Penalty methods in order to
a-priori reduce their search space without sacrificing the quality of the resulted alternative
graphs.

B. We use a different approach for filtering plateaus in order to obtain the ones that generate
the best alternative paths. In addition, we fine tune the penalty method, by carefully
choosing the penalizing factors on the so far computed Pst paths, in order to trace the
next best alternatives.

4.1 Pruning
We present two bidirectional Dijkstra-based pruners. The purpose of both of them, is to
identify the nodes that are in Pst shortest paths. We refer to such nodes, as the useful
search space, and the rest ones, as the useless search space. Our goal, through the use of
search pruners, is to ensure: (a) a more quality-oriented AG construction and (b) a reduced
dependency of the time computation complexity from the graph size. The latter is necessary,
in order to acquire fast response in queries. We note that the benefits are notably for the
Penalty method. This is because, the Penalty method needs to run iteratively several s-t
shortest path queries. Thus, having put aside the useless nodes and focussing only on the
useful ones, we can get faster processing. We also note that, over the Pst paths with the
minimum cost, may be desired as well to let in AG paths with near optimal cost, say τ ·ds(t),
which will be the maximum acceptable cost w(Pst). Indicatively, 1 6 τ 6 1.4. Obviously,
nodes far away from both s and t, with ds(v) + dt(v) > τ · ds(t), belong to Pst paths with
prohibitively high cost. In the following we provide the detailed description of both pruners,
which is illustrated by Figures 4 and 5.

A. Paraskevopoulos and C. Zaroliagis 115

Figure 4 The forward and backward searches meet each other. In this phase the minimum
distance ds(t) is traced.

Figure 5 The forward and backward settles only the nodes in the shortest paths, taking account
the overall ds(v) + dt(v).

Uninformed Bidirectional Pruner. In this pruner, there is no preprocessing stage. Instead,
the used heuristics are obtained from the minimum distances of the nodes enqueued in Qf

and Qb, i.e. Qf .minKey() = minu∈Qf
{ds(u)} and Qb.minKey() = minv∈Qb

{dt(v)}.

We extend the regular bidirectional Dijkstra, by adding one extra phase. First, for
computing the minimum distance ds(t), we let the expansion of forward and backward
search until Qf .minKey() +Qb.minKey() ≥ ds(t). At this step, the current forward Tf and
backward Tb shortest path trees produced by the bidirectional algorithm will have crossed
each other and so the minimum distance ds(t) will be determined. Second, at the new extra
phase, we continue the expansion of Tf and Tb in order to include the remaining useful nodes,
such that ds(v) + dt(v) ≤ τ · ds(t), but with a different mode. This time, we do not allow the
two searches to continue their exploration at nodes v that have ds(v) + ht(v) or hs(v) + dt(v)
greater than τ · ds(t). We use the fact that Qf and Qb can provide lower-bound estimates for
hs(v) and ht(v). Specifically, a node that is not settled or explored from backward search has
as a lower bound to its distance to t, ht(v) = Qb.minKey(). This is because the backward
search settles the nodes in increasing order of their distance to t, and if u has not been settled
then it must have dt(u) ≥ Qb.minKey(). Similarly, a node that is not settled or explored
from forward search has a lower bound hs(v) = Qf .minKey(). Furthermore, when a search
settles a node that is also settled from the other search we can calculate exactly the sum
ds(u) + dt(u). In this case, the higher the expansion of forward and backward search is, the
more tight the lower bounds become. The pruning is ended, when Qf and Qb are empty.
Before the termination, we exclude the remaining useless nodes that both searches settled
during the pruning, that is all nodes v with ds(v) + dt(v) > τ · ds(t).

ATMOS’13

116 Improved Alternative Route Planning

Informed ALT bidirectional pruner. In the second pruner, our steps are similar, except
that we use tighter lower bounds. We acquire them in an one-time preprocessing stage, using
the ALT approach. In this case, the lower bounds that are yielded can guide faster and
more accurately the pruning of the search space. We compute the shortest distances between
the nodes in G and a small set of landmarks. For tracing the minimum distance ds(t), we
use BLA as base algorithm, which achieves the lowest waste exploration, as experimental
results showed in [13, 20]. During the pruning, we skip the nodes that have ds(v) + ht(v) or
hs(v) + dt(v) greater than τ · ds(t).

The use of lower-bounding heuristics can be advantageous. In general, a heuristic stops
being valid when a change in the weight of the edges is occurred. But note that in the penalty
method, we consider only increases on the edge weights and therefore this does not affect the
lower bounds on the shortest distances. Therefore, the combination of the ALT speedup
[20, 13] with Penalty is suitable. However, depending on the number and the magnitude of
the increases the lower bounds can become less tight for the new shortest distances, leading
to a reduced performance on computing the shortest paths.

4.2 Filtering and Fine-tuning
Over the standard processing operations of Penalty and Plateau, we introduce new ones for
obtaining better results. In particular:
Plateau. We use a different approach on filtering plateaus. Specifically, over the cost of a
plateau path we take account also its non-overlapping with others. In this case, the difficulty
is that the candidate paths may share common edges or subpaths, so the totalDistance is
not fixed. Since at each step an insertion of the current best alternative path in AG may
lead to a reduced totalDistance for the rest candidate alternatives, primarily we focus only
on their unoccupied parts, i.e., those that are not in AG. We rank a x-y plateau P with
rank = totalDistance − averageDistance, where totalDistance = w(P)

ds(x)+w(P)+dt(y)
is its

definite non-overlapping degree, and averageDistance = w(P)+ds(t)
(1+totalDistance)·ds(t) is its stretch

over the shortest s-t path in G. During the collection of plateaus, we insert the highest in
rank of them via its node-connectors v ∈ P in Tf and Tb to a min heap with fixed size equal
to decisionEdges plus an offset. The offset increases the number of the candidate plateaus,
when there are available, and it is required only as a way out, in the case, where several Pst

paths via the occupied plateaus in AG lead to low totalDistance for the rest Pst paths via
the unoccupied plateaus.
Penalty. When we “penalize” the last computed Pst path, we adjust the increases on the
weights of its outgoing and incoming edges, as follows:

wnew(e) = w(e) + (0.1 + r · ds(u)/ds(t)) · wold(e), ∀e = (u, v) ∈ E : u ∈ Pst, v /∈ Pst

wnew(e) = w(e) + (0.1 + r · dt(v)/dt(s)) · wold(e), ∀e = (u, v) ∈ E : u /∈ Pst, v ∈ Pst

The first adjustment puts heavier weights on those outgoing edges that are closer to the
target t. The second adjustment puts heavier weights on those incoming edges that are closer
to the source s. The purpose of both is to reduce the possibility of recomputing alternative
paths that tend to rejoin directly with the previous one traced.

An additional care is given also for the nodes u in Pst, having outdegree(u) > 1. Note
that their outgoing edges can form different branches. Since the edge-branches in G constitute
generators for alternative paths, they are important. These edges are being inserted to AG
with a greater magnitude of weight increase than the rest of the edges.

A. Paraskevopoulos and C. Zaroliagis 117

The insertion of the discovered alternative paths in G and the maintenance of the overall
quality of AG should be controlled online. Therefore, we establish an online interaction with
the AG’s quality indicators, described in Section 2, for both Plateau and Penalty. This is
also necessary because, at each step an insertion of the current best alternative may lead to
a reduced value of totalDistance for the next candidate alternative paths that share common
edges with the already computed AG.

In order to get the best alternatives, we seek to maximize the targetfunction =
totalDistance− α · averageDistance, where α is a balance factor that adjusts the stretch
magnitude rather than the overlapping magnitude. Maximization of the target function leads
to select the best set of low overlapping and shortest alternative paths.

Since the penalty method can work on any pre-computed AG, it can be combined with
Plateau. In this way, we collect the best alternatives from Penalty and Plateau, so that the
resulting set of alternatives maximizes the target function. In this matter, we can extend the
number of decision edges and after the gathering of all alternatives, we end by performing
thinout in AG. Moreover, in order to guide the Penalty method to the remaining alternatives,
we set a penalty on the paths stored by Plateau in AG, by increasing their weights. We also
use the same pruning stage to accommodate both of them.

5 Experimental Results

The experiments were conducted on an Inte(R) Xeon(R) Processor X3430 @ 2.40GHz, with
a cache size of 8Mb and 32Gb of RAM. Our implementations were written in C++ and
compiled by GCC version 4.6.3 with optimization level 3.

The data sets of the road networks in our experiments were acquired from OSM [1] and
TomTom [2]. The weight function is the travel time along the edges. In the case of OSM,
for each edge, we calculated the travel time based on the length and category of the roads
(residential street, tertiary, secondary, primary road, trunk, motorway, etc). The data set of
the Greater Berlin area was kindly provided by TomTom in the frame of the eCOMPASS
project [4]. The size of the data sets are reported in Table 1.

For our implementations, we used the packed-memory graph (PMG) structure [20]. This is
a highly optimized graph structure, part of a larger algorithmic framework, specifically suited
for very large scale networks. It provides dynamic memory management of the graph and
thus the ability to control the storing scheme of nodes and edges in memory for optimization
purposes. It supports almost optimal scanning of consecutive nodes and edges and can
incorporate dynamic changes in the graph layout in a matter of µs. The ordering of the

Table 1 The size of road networks.

map n m

B Berlin 117,839 310,152

LU Luxembourg 51,576 119,711
BE Belgium 576,465 1,376,142
IT Italy 2,425,667 5,551,700
GB GreatBritain 3,233,096 7,151,300
FR France 4,773,488 11,269,569
GE Germany 7,782,773 18,983,043
WE WesternEurope 26,498,732 62,348,328

ATMOS’13

118 Improved Alternative Route Planning

nodes and edges in memory is in such a way that increases the locality of references, causing
as few memory misses as possible and thus a reduced running time for the used algorithms.

We tested our implementations in the road network of the Greater Berlin area, the Western
Europe (Austria, Belgium, Denmark, France, Germany, Italy, Luxembourg, Netherlands,
Norway, Portugal, Spain, Sweden, Switzerland, and Great Britain), as well as in the network
of each individual West European country. In the experiments, we considered 100 queries,
where the source s and the destination t were selected uniformly at random among all nodes.
For the case of the entire Western Europe’s road network, the only limitation is that the s-t
queries are selected, such that their geographical distance is at most 300 kilometers. This
was due to the fact that although modern car navigation systems may store the entire maps,
they are mostly used for distances up to a few hundred kilometers.

For far apart source and destination, the search space of the alternative Pst paths gets
too large. In such cases, it is more likely that many non-overlapping long (in number of
edges) paths exist between s and t. Therefore, this has a major effect on the computation
cost of the overall alternative route planning. In general, the number of non-overlapping
shortest paths depends on the density of the road networks as well on the edge weights.

There is a trade-off between the quality of AG and the computation cost. Thus, we can
sacrifice a bit of the overall quality to reduce the running time. Consequently, in order to
deal with the high computation cost of the alternative route planning for far apart sources
and destinations we can decrease the parameter τ (max stretch). A dynamic and online
adjustment of τ based on the geographical distance between source and target can be used
too. For instance, at distance larger than 200km, we can set a smaller value to τ , e.g., close
to 1, to reduce the stretch and thereby the number of the alternatives. We adopted this
arrangement on large networks (Germany, Western Europe). In the rest, we set τ = 1.2,
which means that any traced path has cost at most 20% larger than the minimum one. To
all road networks, we also set averageDistance ≤ 1.1 to ensure that, in the filtering stage,
the average cost of the collected paths is at most 10% larger than the minimum one.

In order to fulfill the ordinary human requirements and deliver an easily representable
AG, we have bounded the decisionEdges to 10. In this way, the resulted AG has small size,
|V ′| � |V | and |E′| � |E|, thus making it easy to store or process. Our experiments showed
that the size of an AG is at most 2 to 3 times the size of a shortest s-t path, which we
consider as a rather acceptable solution.

Our base target function 1 in Plateau and Penalty is totalDistance−averageDistance+1.
Regarding the pruning stage of Plateau and Penalty, we have used the ALT-based informed
bidirectional pruner with at most 24 landmarks for Western Europe.

In Tables 2, 3, and 4, we report the results of our experiments on the various quality
indicators: targetFunction (TargFun), totalDistance (TotDist), averageDistance (AvgDist)
and decisionEdges (DecEdges). The values in parentheses in the header columns provide
only the theoretically maximum or minimum values per quality indicator, which may be far
away from the optimal values (that are based on the road network and the s-t queries).

In Tables 2, 3, and 4, we report the average value per indicator. The overall execution
time for computing the entire AG is given in milliseconds. As we see, we can achieve a
high-quality AG in less than a second even for continental size networks. The produced
alternative paths in AG are directly-accessible for use (e.g., they are not stored in any
compressed form).

1 We have been very recently informed [9] that this is the same target function as the one used in [6] and
not the erroneously stated totalDistance− averageDistance in that paper.

A. Paraskevopoulos and C. Zaroliagis 119

Table 2 The average quality of the resulted AG via Plateau method.

map TargFun TotDist AvgDist DecEdges Time
(max:11) in [6] (max:11) (min:1) (max:10) (ms)

B 3.82 - 3.91 1.09 9.95 45.61

LU 4.44 3.05 4.49 1.05 9.73 37.05
BE 4.83 - 4.87 1.04 10.00 85.08
IT 4.10 - 4.14 1.04 9.92 114.29
GB 4.36 - 4.40 1.04 9.93 180.12
FR 4.22 - 4.26 1.04 9.97 159.93
GE 4.88 - 4.92 1.04 10.00 286.40
WE 4.35 3.08 4.37 1.02 9.88 717.57

Table 3 The average quality of the resulted AG via Penalty method.

map TargFun TotDist AvgDist DecEdges Time
(max:11) in [6] (max:11) (min:1) (max:10) (ms)

B 4.16 - 4.23 1.07 9.92 49.34

LU 5.14 2.91 5.19 1.05 9.23 41.56
BE 5.29 - 5.33 1.04 9.54 159.71
IT 4.11 - 4.14 1.03 9.47 105.84
GB 4.38 - 4.41 1.03 9.87 210.94
FR 4.11 - 4.16 1.05 9.32 192.44
GE 5.42 - 5.46 1.04 9.91 388.97
WE 5.21 3.34 5.24 1.03 9.67 776.97

Table 4 The average quality of the resulted AG via the combined Penalty and Plateau method.

map TargFun TotDist AvgDist DecEdges Time
(max:11) in [6] (max:11) (min:1) (max:10) (ms)

B 4.55 - 4.61 1.06 9.97 54.12

LU 5.25 3.29 5.30 1.05 9.81 43.69
BE 5.36 - 5.41 1.05 9.89 163.75
IT 4.37 - 4.41 1.04 9.79 178.08
GB 4.67 - 4.71 1.04 9.86 284.38
FR 4.56 - 4.60 1.04 9.86 217.30
GE 5.50 - 5.54 1.04 9.89 446.38
WE 5.49 3.70 5.52 1.03 9.94 987.42

ATMOS’13

120 Improved Alternative Route Planning

Table 5 Alternative route queries in the road network of Western Europe, with geographical
distance up to 500km and τ value of up to 1.2.

map WE TargFun TotDist AvgDist DecEdges
Plateau 4.71 4.73 1.02 10.00
Penalty 6.46 6.48 1.02 9.97

Plateau & Penalty 6.82 6.84 1.02 9.98

Due to the limitation on the number of the decision edges in AG and the low upper
bound in stretch, we have chosen in the Penalty method small penalty factors, p = 0.1 and
r = 0.1. In addition, this serves in getting better low-stretch results, see Table 3. In contrast,
the averageDistance in Plateau gets slightly closer to the 1.1 upper bound.

In our experiments, the Penalty method clearly outperforms Plateau on finding more
qualitative results. However it has higher computation cost. This is reasonable because it
needs to perform around to 10 shortest s-t path queries. The combination of Penalty and
Plateau is used to extract the best results of both of the methods. Therefore in this way
the resulted AG has better quality than the one provided by any individual method. In
Tables 2, 3, and 4, we also report on the TargFun quality indicator of the study in [6]. The
experiments in that study were run only on the LU and WE networks, and on data provided
by PTV, which concerned smaller in size networks and which may be somehow different from
those we use here [1]. Nevertheless, we put the TargFun values in [6] as a kind of reference
for comparison.

We would like to note that if we allow a larger value of τ (up to 1.2) for large networks
(e.g., WE) and for s-t distances larger than 300km, then we can achieve higher quality
indicators (intuitively, this happens due to the much more alternatives in such a case).
Indicative values of quality indicators for WE are reported in Table 5.

6 Conclusion

We have extended the Penalty and Plateau based methods in [6] as well as their combination
in several ways. We can generate a large number of qualitative alternatives with high
non-overlappingness and low stretch in time less than 1 second on continental size networks.
The new heuristics can tolerate edge cost increases without requiring new preprocessing.

References

1 Openstreetmap. http://www.openstreetmap.org.
2 Tomtom. http://www.tomtom.com.
3 Camvit: Choice routing, 2009. http://www.camvit.com.
4 eCOMPASS project, 2011-2014. http://www.ecompass-project.eu.
5 Ittai Abraham, Daniel Delling, Andrew V Goldberg, and Renato F Werneck. Alternative

routes in road networks. In Experimental Algorithms (SEA), pages 23–34. Springer, 2010.
6 Roland Bader, Jonathan Dees, Robert Geisberger, and Peter Sanders. Alternative route

graphs in road networks. In Theory and Practice of Algorithms in (Computer) Systems,
pages 21–32. Springer, 2011.

7 Yanyan Chen, Michael GH Bell, and Klaus Bogenberger. Reliable pretrip multipath plan-
ning and dynamic adaptation for a centralized road navigation system. Intelligent Trans-
portation Systems, IEEE Transactions on, 8(1):14–20, 2007.

A. Paraskevopoulos and C. Zaroliagis 121

8 Daniel Delling, Andrew V Goldberg, Thomas Pajor, and Renato F Werneck. Customizable
route planning. In Experimental Algorithms, pages 376–387. Springer, 2011.

9 Daniel Delling and Moritz Kobitzsch. Personal commnication, July 2013.
10 Daniel Delling and Dorothea Wagner. Pareto paths with SHARC. In Experimental Al-

gorithms, pages 125–136. Springer, 2009.
11 Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische math-

ematik, 1(1):269–271, 1959.
12 David Eppstein. Finding the k shortest paths. SIAM Journal on computing, 28(2):652–673,

1998.
13 Andrew V Goldberg and Chris Harrelson. Computing the shortest path: A* search meets

graph theory. In Proc. 16th ACM-SIAM symposium on Discrete algorithms, pages 156–165.
Society for Industrial and Applied Mathematics, 2005.

14 Pierre Hansen. Bicriterion path problems. In Multiple criteria decision making theory and
application, pages 109–127. Springer, 1980.

15 Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic de-
termination of minimum cost paths. Systems Science and Cybernetics, IEEE Transactions
on, 4(2):100–107, 1968.

16 Moritz Kobitzsch. An alternative approach to alternative routes: HiDAR. In Euroepan
Symposium on Algorithms (ESA). Springer, 2013. to appear.

17 Moritz Kobitzsch, Dennis Schieferdecker, and Marcel Radermacher. Evolution and evalu-
ation of the penalty method for alternative routes. In ATMOS, 2013.

18 Felix Koenig. Future challenges in real-life routing. In Workshop on New Prospects in Car
Navigation. February 2012. TU Berlin.

19 Dennis Luxen and Dennis Schieferdecker. Candidate sets for alternative routes in road
networks. In Experimental Algorithms, pages 260–270. Springer, 2012.

20 Georgia Mali, Panagiotis Michail, Andreas Paraskevopoulos, and Christos Zaroliagis. A
new dynamic graph structure for large-scale transportation networks. In Algorithms and
Complexity, volume 7878, pages 312–323. Springer, 2013.

21 Ernesto Queiros Vieira Martins. On a multicriteria shortest path problem. European
Journal of Operational Research, 16(2):236–245, 1984.

22 Jin Y Yen. Finding the k shortest loopless paths in a network. management Science,
17(11):712–716, 1971.

ATMOS’13

122 Improved Alternative Route Planning

A Appendix

Figure 6 shows visualized AGs for a few representative cases.

(a) Penalty (b) Penalty and Plateau

(c) Plateau (d) Penalty and Plateau

Figure 6 Shape of AG: (a) Italy, (b) France, (c) Spain, (d) Berlin.

Result Diversity for Multi-Modal Route Planning ∗

Hannah Bast, Mirko Brodesser, and Sabine Storandt

Albert-Ludwigs-Universität Freiburg
Freiburg, Germany
{bast,brodessm,storandt}@informatik.uni-freiburg.de

Abstract
We study multi-modal route planning allowing arbitrary (meaningful) combinations of public
transportation, walking, and taking a car / taxi. In the straightforward model, the number of
Pareto-optimal solutions explodes. It turns out that many of them are similar to each other
or unreasonable. We introduce a new filtering procedure, Types aNd Thresholds (TNT), which
leads to a small yet representative subset of the reasonable paths. We consider metropolitan areas
like New York, where a fast computation of the paths is difficult. To reduce the high compu-
tation times, optimality-preserving and heuristic approaches are introduced. We experimentally
evaluate our approach with respect to result quality and query time. The experiments confirm
that our result sets are indeed small (around 5 results per query) and representative (among the
reasonable Pareto-optimal paths), and with average query times of about one second or less.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Route Planning, Multi-Modal, Result Diversity

Digital Object Identifier 10.4230/OASIcs.ATMOS.2013.123

1 Introduction

We want to efficiently compute small yet representative sets of reasonable paths in a multi-
modal scenario (car, walking, transit). The majority of current route planning systems
computes optimal paths for a certain type of transportation. If one wants to take a car, one
uses a navigation system. If one wants to travel by public transportation, one can obtain the
optimal paths from websites like Google Maps. Both require to decide in advance for a means
of transportation. For the case when one does not want to decide this beforehand, we want to
offer the user a small yet representative set of reasonable paths. Moreover, we allow optimal
paths which include different means of transportation. Furthermore, also for metropolitan
areas like New York, computation should work fast, such that interactive queries are possible.
For road networks, state-of-the-art algorithms answer shortest path queries in the order of
milliseconds [9]. Public transportation networks are more challenging and many algorithms
of road networks are not applicable [1]. Computing optimal paths becomes more complex,
since not only the fastest connection is demanded, but also the number of transfers is an
important criterion for the quality of a path, potentially leading to multiple optimal paths.
When combining road and transit networks, this increases complexity further, bringing along
many similar paths. Typical variations are: ”take a bus for 30 minutes, then take a taxi for
9 minutes”, ”take a bus for 32 minutes, then take a taxi for 8 minutes”, . . . , ”take a bus for
42 minutes, then take a taxi for 3 minutes”. To determine a small yet representative set of
reasonable paths, it is necessary to filter, which is a challenge on its own. In the following we
introduce an approach to deal with these challenges.

∗ Partially supported by a Google Focused Research Award.

© Hannah Bast, Mirko Brodesser, and Sabine Storandt;
licensed under Creative Commons License CC-BY

13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’13).
Editors: Daniele Frigioni, Sebastian Stiller; pp. 123–136

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2013.123
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

124 Result Diversity for Multi-Modal Route Planning

1.1 Contribution

We propose Types aNd Thresholds, an approach to efficiently compute small yet representative
sets of reasonable paths in a multi-modal scenario (car, walking, transit). To obtain diverse
sets of paths, we use Pareto sets [11] with multiple optimization criteria. Taking into account
properties (velocity, availability, costs) of the various means of transportation, we argue
that not all Pareto optimal paths are reasonable. We carefully define types of reasonable
paths and propose a two-stage filtering procedure. In the first stage, all unreasonable paths
are removed. In the second stage, a small yet representative subset of the remaining paths
is determined. To achieve average query durations of roughly one second, we make use
of properties of the types and propose a relaxation of the model and a (close to optimal)
heuristic. We confirm query durations and quality with experimental results.

2 Related Work

When considering road and transit networks separately, many algorithms exist for both
networks. Next, we give a brief overview. For road networks several variants of the famous
Dijkstra algorithm exist. An outstanding one is Contraction Hierarchies [9], which after a
brief precomputation enables to quickly answer queries, even for large areas (e.g., Europe on
the order of milliseconds). Fast routing on transit networks requires other approaches and
algorithms. Among them are a multi-criteria generalization of Dijkstra’s algorithm [8], relaxed
Pareto dominance [13] and Round-Based Public Transit Routing [6]. One state-of-the-art
algorithm is to compute transfer patterns [2] between all pairs of stations. A transfer pattern
is the sequence of stations where vehicle changes occur on an optimal path. For each pair of
stations these are few and allow to answer queries efficiently. However, the computation of
patterns is time-consuming.

Also for multi-modal networks several approaches exist. However, many of those are quite
limited with respect to the extent of their multi-modality. For instance, [5] limits car usage
to the beginning and end of journeys. Other approaches [12] compute a single optimal path
by combining multiple criteria to one, but this results in missing reasonable paths (see [3] for
an example). Further approaches [16, 7] expect the user to specify a hierarchy of modes (e.g.
between train usage, car is forbidden). The problem is that one has to know the constraints
in advance, which in practice is often not the case.

A less restricted approach focussing on computing multiple optimal paths in a multi-modal
scenario similar to ours was presented in [4]. To not miss reasonable paths, multiple criteria
with Pareto sets [11] are used. As this leads to numerous optimal paths, fuzzy filtering is
used to rank them according to scores. For the found set of paths P = {p1, . . . , pn}, the score
of pi is dependent on P and a measure for fractional dominance between a path p ∈ P and
the paths in P\{p}. However, for the measures used in [4], the set of the top-k paths is not
necessarily representative when k is small, and no experiments are provided on this quality
aspect in [4]. In short, it is not clear if and how small yet representative sets of optimal
paths can be determined with this approach.

3 Preliminaries

In this section, we describe how to model a multi-modal network and discuss the necessity for
multiple optimality criteria. We briefly recapitulate Contraction Hierarchies as a speed-up
technique and explain how to use existing algorithms to compute optimal paths in our setting.

H. Bast, M. Brodesser, and S. Storandt 125

3.1 Modelling
In the following we describe separate models for road and transit networks and how to
combine them to a multi-modal model. To model the static road networks (car, walking),
we use the common approach of one node per location (given as longitude, latitude) and
time-independent arcs annotated with the duration to travel from one node to the other.
For simplicity, we ignore turn restrictions and assume that all roads can be traveled in both
directions by car and by foot. That is, the car and walking network have the same structure.

To model the transit network, we decided for a variation of the train-route model as
explained in [15]. In the following we provide basic definitions and describe the model. A
transit connection starting at a specific time at a specific station and ending at some station
is called a trip. Trips sharing the same stop sequence and not overtaking each other are
grouped as a line. For each stop, a station arrival and a station departure node are created.
For each line, for each of its stops, a line arrival node and a line departure node are created.
The nodes of a line are connected according to their stop sequence and the durations of the
arcs are time-dependent. When boarding a line, the transfer buffer is added (we chose 5
minutes). Station arrival and station departure nodes are connected with their geographically
closest car and walking node. We call these nodes link nodes. That is, each station arrival
node has outgoing arcs to the closest car and walking node and they have outgoing arcs to
the station departure node.

Unlike the model used in [4], our model prohibits to change from car to walking (and
vice versa). The intention is that when going to a station by car, one does not stop on the
way and walk the rest (or the other way around). Instead, to reach a station one either takes
the car or walks. We consider this reasonable, since taking the car and walking is possible
from and to all stations in our model. In practice, walking a short distance to or from a car
is no problem, as we can consider this part of the transfer buffer. Note that car usage is not
limited to the beginning and end of a journey, but is also allowed between taking two public
transportation vehicles. We chose this model, because we consider it the most efficient in
terms of query duration. Note that our filtering approach, which we describe in Section 4, is
independent of the used model.

3.2 Optimality Criteria
In the following we explain the necessity for multiple optimality criteria to compute diverse
sets of paths in our multi-modal scenario. When referring to duration, we mean the duration
to reach the target, given a fixed departure time. Using duration as a single criterion would
result in exactly one path. Therefore, we use multiple criteria with Pareto sets. Each criterion
corresponds to one entry in a tuple. For tuples t1, t2, tuple t1 is said to dominate t2 if t1 is
at least as good as t2 with respect to all criteria. Two tuples are called incomparable if none
of them dominates the other. A Pareto set is a maximal set of non-dominating tuples. A
label contains such a tuple and is associated with a predecessor label. In a multi-criteria
Dijkstra, each node contains a Pareto set of labels.

For transit networks, duration and transfer penalty (= number of boarded vehicles) are
two commonly used Pareto criteria. However, in our setting this almost always leads to
exactly two optimal paths: walking the whole way and using the car for the whole way. The
reasons are: Taking a car is very fast and in our model is available everywhere and boarding
it once yields a transfer penalty of one, therefore it usually dominates all paths which include
transit usage. Walking the whole way is incomparable to using the car, because it is slower
and has zero transfers.

ATMOS’13

126 Result Diversity for Multi-Modal Route Planning

Therefore, we use car duration as another Pareto criterion, leading to a diverse set of
optimal paths. However, solutions then become too numerous and many of them are similar.
A typical variation is the one mentioned in the introduction, where paths differ only slightly
in the car duration. In one of the scenarios from [4], they use arrival time (equivalent to our
duration), number of transfers, walking duration, and taxi cost as Pareto criteria.

3.3 Contracting the Road Networks
As the majority of nodes are car and walking nodes (see Table 4 for details), optimizing the
routing on the road network is important to reduce computation times. A well-known speed-
up technique applicable to road networks is Contraction Hierarchies [9]. During shortest
path queries it allows to skip many nodes, hence unnecessary propagation of labels is avoided.
Recently, a variant [4] for a multi-modal scenario similar to ours was introduced, we refer
to this as contracting the road network. Next, we summarize its most important properties.
After an efficient precomputation, all nodes in the road network have a rank. There exists
a core of nodes which comprises all link nodes and the rank of these nodes is infinity. For
queries from all road network nodes the following holds: when ignoring arcs to nodes with
lower rank, distances to all link nodes are equal to those in the original road network. As a
special case distances between all pairs of link nodes are preserved. In the next section, we
describe how to use these properties to efficiently compute shortest paths.

3.4 Computing Multi-Criteria Optimal Paths
In the following we explain how to perform location-to-location queries. We call the graph
with inverted arc directions backwards graph. Given the road network is contracted as
mentioned above (one contraction for usage by car, and one contraction for usage by walking),
location-to-location queries are performed in two steps.

First, a query from the source to all nodes and a query (in the backwards graph) from the
target to all nodes are performed. Recall that during the contraction process road network
nodes were assigned a rank. For both queries, arcs to nodes with lower rank are ignored.
We call the duration of walking (taking the car) from the source to the target, pure walking
(car) duration.

Second, a multi-criteria Dijkstra initialized with the labels of the link nodes reached from
the source is run. Temporary arcs with the previously computed durations from the link
nodes to the target are added. Again, arcs to nodes with lower rank are ignored. The Pareto
set of pure car and walking duration and the labels at the target forms the result. Dominance
by early results and label forwarding [8] are used to accelerate query computation.

Note that this is essentially one of the query algorithms proposed in [4].

4 Types aNd Thresholds

In this section we describe the concept of Types aNd Thresholds (TNT) to obtain small but
representative sets of reasonable paths. We present speed-up techniques to reduce query
times towards practical usage. We start by introducing the idea of discretization which leads
to TNT.

4.1 Discretization
Using duration, transfer penalty and car duration as Pareto criteria leads to numerous
optimal paths, among which many are similar. To filter out a more concise subset, we

H. Bast, M. Brodesser, and S. Storandt 127

Table 1 Excerpt of the tuples of the optimal paths of an example query using duration, trans-
fer penalty and car duration as Pareto criteria. Green tuples are still Pareto optimal after the
discretization, gray ones are not.

duration transfer penalty car duration discretized car duration
0:28:57 1 0:28:57 0:30:00

. . .
1:43:43 3 0:16:35 0:20:00
1:44:01 3 0:16:26 0:20:00
1:44:09 3 0:16:04 0:20:00
1:44:34 5 0:11:07 0:20:00
1:44:36 3 0:15:56 0:20:00
1:45:12 4 0:15:51 0:20:00

. . .
7:06:00 0 0 0:00:00

examine the post-processing step of discretizing car duration to certain blocks (for example,
ten minutes). Table 1 shows an excerpt of the results of a query on New York.

Discretization was also introduced in [4], however, it was used as a heuristic during query
time to reduce computation complexity. Our motivation is different: given that many Pareto
optimal solutions are similar, we use it to choose a representative subset.

Although discretization allows to reduce the number of Pareto-optimal solutions remark-
ably, unreasonable paths can remain. Consider the example in Figure 1. It is not very
meaningful to walk a long distance and then take a taxi for a short distance. We argue that,
in practice, one would either walk the whole way, walk and take a train or use the car for
the whole way. In the following we propose a new approach to filter out such unreasonable
paths, and then to obtain a small representative subset of the remaining paths.

2 hours 10 min 5 min

Figure 1 An example for a path which we consider unreasonable.

4.2 Types
With the example in Figure 1, we illustrated that some Pareto optimal solutions can be
unreasonable. To justify why certain types of paths are unreasonable, we analyze triples of
transit, walking and car duration with respect to their relative durations (RD). We classify
each possible triple as either reasonable or unreasonable. As relative durations we use the
abstract terms zero (), little () and much (), hence RD := { , , }. In Section 4.3 we
provide concrete definitions. We assume the natural order of < < . For example, the
triple (, ,) represents paths with much transit usage, zero walking and little car usage.

Our rationale behind this (rather coarse) classification is as follows. Small differences in
duration are of little practical concern to users, little is little. However, there is a difference
between little and zero, because using a particular mode of transport at all incurs a tangible
overhead (organizing a car/taxi, dealing with the circumstances of public transportation).

ATMOS’13

128 Result Diversity for Multi-Modal Route Planning

Table 2 All combinations of relative durations (zero = , little = , much =) for transit, car
and walking duration with the classifications and violated axioms. White background indicates a
relative duration triple is not valid. From the remaining triples, the ones classified reasonable are
green, the others are red.

transit walking car violated
duration duration duration axiom classification

7
7
3
7
7

A1 7
3

A2 7
A1 7

7
7

A1 7
7
7

A1 7
3

A2 7
A1 7

3
3

A1 7
3
3

A1 7
3

A2 7
A1 7

Once a certain mode of transportation is used more than little, it is reasonable to assume
that one is willing to use it as much as is necessary to obtain an optimal solution. For
example, if one is willing to use the car for one hour, one might as well use it for the whole
trip if that is the fastest way. This is not necessarily true for walking (one might be willing to
walk 1 hour but not 10 hours), however, that is not a problem in practice, because optimal
paths rarely comprise very much walking (with the exception of the trivial walk-everything
solution, which is always computed in our model).

As and can be distinguished with respect to the total duration only if both occur in a
triple, the set of all triples containing but not is equivalent to the set of triples containing
but not . Moreover, the triple without and , that is (, ,), does not exist for real

paths. Therefore, we call a triple valid iff at least one component is .
Consider the properties of our model and of the different modes of transportation:

Public transit is limited to stations and schedules, medium-fast and medium-expensive.
Walking is possible everywhere at all times, slow and cheap.
Cars (taxis) are available everywhere at all times, fast and expensive.

Given these properties, we claim the following axioms should hold for all reasonable paths:
A1: Much car usage implies zero walking and zero transit usage.
A2: Much walking implies zero car usage.

From the axioms we deduce which triples of relative durations are reasonable. Table 2
contains all triples, annotated with the classification as reasonable (3) or unreasonable (7).

H. Bast, M. Brodesser, and S. Storandt 129

The classification is consistent in the sense that for each triple classified as reasonable,
each valid component-wise smaller triple is classified reasonable, too. This can be inferred
from Table 2. For instance, triple (, ,) is valid and triple (, ,), too. Finally, we
determine three types incorporating all triples classified as reasonable:
1. Only car.
2. Much transit, much walking, no car.
3. Much transit, little walking, little car.

Here, the attributes much and little should be thought of to include the smaller relative
durations. The types are complete to the effect that all relative duration triples classified as
reasonable are included. This can again be deduced from Table 2. For practical purposes,
relative durations need to be defined concretely. In the following, we introduce such definitions.

4.3 Thresholds
To practically use the types defined above, we propose to use threshold values for the
relative durations. The following definitions reflect that zero signifies a transportation mode
is not used, little depends on the mode and much means unlimited usage of a mode (durations
in minutes):

zero(∗) := 0 min
little(walking) := 10 min

little(car) :=
{
0 min, if pure car duration < 20 min
max(10 min, 0.25 · pure car duration), otherwise

much(∗) :=∞ min

Note that we defined the thresholds for a metropolitan setting. The definition for much is
natural, since it represents everything which is greater than little. One can observe that
the definition of little(car) is only relevant for paths belonging to type 3. Moreover, a path
of this type is only interesting if it significantly differs from the path of type 1 (using the
car for the whole way) in terms of car usage, otherwise one could just choose the path of
type 1. Therefore, we chose 25% of its duration as upper bound but at least 10 minutes
in order to avoid enforcing absurdly low car durations. For little(walking) we decided for a
fixed threshold in order to allow nearby stations to be reached but avoiding journeys where
walking significantly exceeds car usage. We consider a fixed threshold reasonable, as paths
of type 3 have a duration of at most a few hours (in a metropolitan setting). If we chose
little(walking) dependent on this maximal duration, it would be bounded from above by an
absolute value anyway. However, we want to stress that the types can be used with other
definitions of thresholds as well.

4.4 Filtering
We introduce a post-processing procedure to obtain small yet representative sets of reasonable
paths from Pareto sets. Given the above defined types and (arbitrary) thresholds, we explain
how to use them to remove unreasonable paths and how to obtain small yet representative
paths in a second step. We call the whole concept Types aNd Thresholds (TNT).

We say a path belongs to a type if none of the type’s thresholds is exceeded. For instance,
assuming a pure car duration of 15 minutes, the path of Figure 1 belongs to none of the
three types. To remove all unreasonable paths, the ones belonging to no type are removed.
Note that for optimal results, walking duration must be considered as a Pareto criterion, too.
That is, Pareto criteria are duration, transfer penalty, car duration and walking duration.

ATMOS’13

130 Result Diversity for Multi-Modal Route Planning

Table 3 Excerpt of the tuples of the optimal paths for an example query for Dallas. Pareto
criteria are duration, transfer penalty, car duration and walking duration. Green tuples remained
after filtering with TNT, gray ones did not. Before filtering, there were 66 Pareto optimal paths,
after filtering only 7 reasonable paths remain.

duration transfer penalty walking duration car duration type
0:29:17 1 0:00:00 0:29:17 1

. . .
1:52:11 4 0:07:33 0:13:35 none
1:56:10 4 0:04:18 0:09:52 3
1:56:10 5 0:06:54 0:09:35 3

. . .
2:08:49 3 0:02:17 0:09:43 3
2:42:13 3 0:48:42 0:00:00 2
2:57:49 2 0:54:38 0:00:00 2
3:37:10 1 2:23:07 0:00:00 2
6:02:31 0 6:02:31 0:00:00 2

After removing the unreasonable paths, we drop walking duration as a Pareto criterion.
This removes undesired (minor) variation in the result set with respect to walking duration.
Potentially, this can lead to the loss of interesting (reasonable) optimal paths. However, that
is unlikely because it is unlikely that a path with higher walking duration dominates a path
with lower walking duration in all other criteria.

To determine a small and representative subset from the remaining paths, we propose to
transform all car durations according to their relative durations:

rd(car duration) :=

0, if car duration = zero(car)
1, if zero(car) < car duration ≤ little(car)
2, if little(car) < car duration < much(car)

Note that this coarse discretization is in sync with our coarse classification of travel times
into three categories (zero, little, much) argued for in Section 4.2. The Pareto set of the
transformed labels constitutes the result, now indeed a small yet representative subset of the
reasonable Pareto-optimal solutions. Table 3 shows an excerpt of the results of a real query
for Dallas.

Influence of Thresholds on the Results. The choice of fixed thresholds obviously restricts
the space of possible paths, but one does not want to miss significantly better paths which
do not severely exceed the thresholds. Next, we explain how this can be achieved.

An advantage of our system is that lowering the thresholds can never lead to better
paths with respect to duration and transfer penalty. To avoid missing significantly better
paths which are not severely above the thresholds we propose to offer the user an outlook
of how the paths improve with a higher threshold. One way to achieve this is to compute
the difference in duration of the fastest paths for two significantly different thresholds. This
enables the user to decide if she wants to run another query with modified threshold values.

4.5 Speed-up Techniques for Faster Query Answering
Each additional Pareto criterion enlarges the set of optimal paths significantly, resulting in
infeasible query times for large datasets. To speed up query computation we introduce an
optimality preserving extension, a relaxation of the model and a heuristic.

H. Bast, M. Brodesser, and S. Storandt 131

4.5.1 Extended Dominance by Early Results
To prune labels during query computation dominance by early results was introduced in
[8]. All labels dominated by the target labels can be discarded, since they and all their
extensions can not become Pareto-optimal at the target. For TNT, this can be extended to
labels not belonging to any type. Extensions of such labels can not belong to any type and
can therefore be discarded. Therefore, for the multi-criteria Dijkstra, dominance by early
results can be extended to ignore labels for which the following holds:

walking duration > little(walking) and car duration > zero(car) or
car duration > little(car)

Recall that little(car) depends on pure car duration, which is computed in the first step of
the shortest-path computation described in Section 3.4. Hence, it is available for the (time-
consuming) multi-criteria Dijkstra. Note that this optimization is applicable independent
from the threshold definition.

4.5.2 Rounding on Transfers
As we exemplified in Table 1, many Pareto optimal paths are similar. The table indicates
that many solutions differ only by seconds. In our implementation, arc durations are stored
with a resolution of one second. This is enough to avoid the accumulation of rounding errors
(which for a resolution of, say, one minute, would tangibly impact result optimality). For road
networks, we calculate durations depending on distances and speed, leading to an accuracy of
seconds. The GTFS data [10], which we use to model the transit network, provides durations
in seconds.

However, public transportation in practice rarely provides accuracy by seconds and the
speed of humans in terms of walking and car usage varies, too. Inspired by discretization,
we propose to relax the model and to round up durations to full minutes immediately before
transfers. Compared to rounding at each node, this restricts error accumulation sufficiently.
Moreover, it can be interpreted as a coarse transfer buffer. With respect to reality, we
consider this an optimality preserving technique.

Arc relaxations will happen for less labels, and less comparisons have to be performed
when inserting a label to the set of labels attached to a node. Therefore, we expect rounding
during query time to notably speed-up computation time.

4.5.3 Using Implicit Walking Duration
As mentioned in Section 4.4, when filtering labels to their types, walking duration has to be
a Pareto criterion to obtain optimal results. Nevertheless, when walking duration is not a
Pareto criterion, we expect the difference to the optimal results to be minor. Therefore, we
propose the heuristic of using implicit walking duration by keeping it in a hidden variable,
which is not used as Pareto criterion. The priority queue order is chosen such that in case of
tie-breaking the label with less walking duration is released earlier from the queue. For labels
with equal Pareto criteria the one with less walking duration is kept. It is worth noting that
using implicit walking duration does not affect the quality of type 1 (only car) and type 2
(much transit, much walking, no car) paths. For type 1, this is clear since the optimal path
is computed separately using only duration as criterion. As labels of type 2 (that is, with car
duration = 0) cannot be dominated from labels with car duration > 0, we can ignore car
duration when proving the optimality for labels of type 2 in the following lemma.

ATMOS’13

132 Result Diversity for Multi-Modal Route Planning

I Lemma 1. Let LA be the label set at a node u ∈ V after termination of the Pareto-Dijkstra
run considering the criteria D(uration), T(ransfer) P(enalty) and W(alking) D(uration).
Also let LB be the respective label set for a Pareto-Dijkstra run regarding only the criteria D
and TP. We claim that ∀l ∈ LA∃l′ ∈ LB : l′ ≤ l |(D,T P).

Proof. Let l∗ ∈ LA be the label with TP (l∗) = TP (l) and minimal duration. Obviously when
neglecting walking duration and following the same path that lead to the creation of l∗ at u,
the label l∗ |(D,T P) is a possible candidate for being in LB . Hence it must exist a label l′ ∈ LB

with TP (l′) ≤ TP (l∗) and D(l′) ≤ D(l∗). Therefore it holds l′ ≤ l∗ |(D,T P)≤ l |(D,T P). J

To see that paths of type 3 are not necessarily optimal, consider the following tuples which
are incomparable with Pareto criteria duration, transfer penalty, car and walking duration:
(40 min, 2, 10 min, 5 min) and (30 min, 2, 10 min, 6 min). Using implicit walking duration,
only the latter would be optimal. However, assuming an extension by 5 minutes of walking,
the latter tuple would belong to no type and hence be filtered out, whereas the former would
not.

5 Experimental Results

In this section we evaluate the concept of using Types aNd Thresholds (TNT) and its
speed-up techniques with respect to result quality and query time.

5.1 Setup
Our implementation of the graph model and the optimal path algorithm, as described in
Section 3, is written in C++ and compiled with GCC 4.6.3 with the -O3 flag. Experiments
were performed on a machine with 96GB of RAM and two Intel Xenon E5649 CPUs with 8
cores, each having a frequency of 2.53 GHz (exactly one core was used at a time). The used
OS is Ubuntu 12.04, operating in 64-bit mode.

To instantiate the multi-modal networks we used publicly available OSM [14] and
GTFS data [10]. Details on our data sets can be found under http://ad.informatik.
uni-freiburg.de/publications. We used the data of the first available Monday. OSM
data was chosen to cover the terrain corresponding to the GTFS data. The road network
graphs are symmetric and reduced to their largest connected component. For walking, we
assumed an average speed of 5 km/h. For the car network, average velocity was chosen
depending on the road type, ranging from 5 to 110 km/h. We evaluated our algorithm on
the networks of Austin, Dallas, Toronto and New York City (in the following abbreviated
as just New York). Table 4 contains an overview of the most important properties of these
networks.
For each dataset, experiments were performed using 1000 queries between two random
locations, each at most 1 km away from at least one transit station. We chose this restriction
to avoid a significant amount of queries in areas where transit is not available, in which case
the only interesting solutions would be car-only and walking-only. Departure times were
chosen uniformly at random from the time range between 6:00 a.m. and 10:00 p.m.

5.2 Results
We evaluate the concept of TNT with respect to query time and quality of the found sets of
paths. Experiments were performed for the normal graph model (Section 3.1) and the model
with rounding on transfers (Section 4.5.2). We refer to the latter as the relaxed model. For

http://ad.informatik.uni-freiburg.de/publications
http://ad.informatik.uni-freiburg.de/publications

H. Bast, M. Brodesser, and S. Storandt 133

Table 4 Overview of important properties of the evaluated networks. Recall that the time-
consuming step of the path computation operates on the cores instead of the whole road networks.

Graph Austin Dallas Toronto New York

Complete Nodes 0.7M 2.8M 0.9M 4.0M
Arcs 2.9M 12.0M 3.7M 17.3M

Transit

Stations 2.7K 11.6K 10.9K 16.9K
Nodes 14.3K 49.0K 80.4K 118.6K
Arcs 21.2K 73.0K 119.5K 175.9K
Lines 235 563 1120 1989
Trips 6062 10849 40740 62824

Car Nodes (core) 3.3K 20.8K 10.9K 28.1K
Walking Nodes (core) 4.0K 20.2K 12.2K 32.5K

Table 5 Average query times for all datasets.

Model Algo Austin Dallas Toronto New York

Normal Basic 0.6s 3.7s 16.6s 108.0s
IWD 0.1s 0.8s 0.6s 1.7s

Relaxed Basic 0.4s 2.2s 4.0s 18.0s
IWD 0.1s 0.8s 0.6s 1.4s

both models we compare the basic algorithm (Section 3.4) and the heuristic of using implicit
walking duration (IWD, Section 4.5.3).

Table 5 shows average query times for all of our four datasets.
It indicates that both, rounding on transfers and the IWD heuristic reduce query times.

While the heuristic has a stronger effect, the lowest query times (roughly one second) are
achieved by applying both. It is noteworthy that the speed-up increases significantly with
the size of the network (roughly from factor 5 to factor 75). Query times are comparable to
those presented in [4].

For the largest dataset (New York) we evaluate the basic algorithm and the IWD heuristic
in more detail, for both models and with respect to both result quality and query time; see
Table 6. As quality measures of the heuristic we use precision1 and recall2. It can be seen
that (with the IWD heuristic in the relaxed model) for a few outliers the query time rises
up to seven seconds, but the majority of queries can be answered in roughly one second.
Precision and recall indicate that for both models the IWD heuristic leads to only a small
fraction of non-optimal results.

To evaluate if the computed sets of paths are small and representative, Table 7 shows the
distribution of paths with respect to our types for the basic algorithm on New York. Paths
of type 3 that also belong to type 2 were only counted for type 3. For example, the table
shows that around 15.8% of the queries lead to exactly one path of type 1, three paths of
type 2 and one path of type 3. Note that for almost 50% of the queries there is no optimal
path of type 3. One reason for this is that if pure car duration is relatively small (below 20
minutes, see section 4.3 and 4.4), no path solely belonging to type 3 can exist.

To see how paths of type 3 improve when increasing the little(car) threshold, we experi-

1 Precision = |relevant-paths ∩ found-paths| / |found-paths|
2 Recall = |relevant-paths ∩ found-paths| / |relevant-paths|

ATMOS’13

134 Result Diversity for Multi-Modal Route Planning

Table 6 Query times and result quality for New York. For all measured variables we list average,
50-percentile, 90-percentile and 99-percentile values.

Time [s] Precision Recall
Model Algo avg 50 90 99 avg 50 90 99 avg 50 90 99

Normal Basic 108.0 32.7 289.0 865.0 1 1 1 1 1 1 1 1
IWD 1.7 1.0 3.3 10.0 0.99 1 1 1 0.96 1 1 1

Relaxed Basic 18.0 8.8 40.0 140.0 1 1 1 1 1 1 1 1
IWD 1.4 1.0 2.5 6.6 0.99 1 1 1 0.96 1 1 1

Table 7 Percentage of queries which lead to the different combinations of paths of type 2 and
type 3. For each query one path of type 1 was optimal.

#
ty
pe

-3
pa

th
s 3 - - 0.1% 1.0% 0.2% - -

2 - 0.9% 5.6% 7.0% 2.2% 0.4% -
1 - 1.2% 15.8% 14.4% 2.7% 0.3% 0.1%
0 1.6% 10.6% 20.9% 12.5% 2.4% 0.1% -

1 2 3 4 5 6 7
#type-2 paths

mentally evaluated the maximal gain in time when extending the threshold by 10 minutes.
For this, we considered queries which already for little(car) had labels of type 3 and compared
the fastest such label (= with the smallest duration) with the fastest label when using
the extended threshold. Figure 2 shows the results for New York. For 42% of the queries,
increasing car travel time up to 10 minutes allows to reduce the total duration by 20-30
minutes. For practically every query increasing little(car) leads to faster paths. As explained
in Section 4.4, this information could be communicated to the user (for the given query),
with the option to relaunch the query with an accordingly modified threshold value.

Figure 2 Maximal possible gain in time for labels of type 3, when allowing additional car travel
time of up to 10 minutes. The heat map shows the gain in time and respective additional car travel
time (with respect to little(car)) for the different queries.

0 10 20 30 40 50 60 70
Gain in time (min)

0
2
4
6
8

10

Ad
d.

 c
ar

 d
ur

at
io

n
(m

in
)

0% 1% 2% 3%

6 Conclusions & Future Work

We studied multi-modal route planning involving (almost) unrestricted combinations of
walking, car, and transit. The goal was to efficiently compute small yet representative sets of
optimal paths. We illustrated that multiple criteria are necessary to obtain diverse sets of
paths. To remove unreasonable paths and to extract a small representative subset of the

H. Bast, M. Brodesser, and S. Storandt 135

remaining paths, we introduced a new approach of using Types aNd Thresholds (TNT).
To reduce infeasible query times induced by multiple optimality criteria, we introduced an
extension of dominance by early results, a relaxation of the model (rounding on transfers) and
a heuristic. We experimentally evaluated TNT and the speed-up techniques. While the basic
algorithm results in infeasible query times, relaxing the model and using the (almost optimal)
heuristic reduces them to an average of roughly one second. Our experiments confirmed that
our result sets are indeed small and representative, at least from the point of view of our
model. Possible future work comprises examining other threshold definitions, extending the
filtering step and considering fare zones. Lowering query times when using TNT is a further
challenge. For the latter, one possibility could be to extend Transfer Pattern Routing [2]
to our multi-modal scenario. Moreover, reliability and robustness (i.e., if connections are
missed, how good are the alternatives) are important issues to consider.

Acknowledgements We want to thank an anonymous reviewer for his/her extensive feed-
back.

References
1 Hannah Bast. Car or public transport – two worlds. In Efficient Algorithms, LNCS 5760,

pages 355–367, 2009.
2 Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Harrelson, Veselin

Raychev, and Fabien Viger. Fast routing in very large public transportation networks using
transfer patterns. In ESA, LNCS 6346, pages 290–301, 2010.

3 Daniel Delling, Julian Dibbelt, Thomas Pajor, Dorothea Wagner, and Renato F. Werneck.
Computing and evaluating multimodal journeys. Technical report, Karlsruhe Institute of
Technology, 2012.

4 Daniel Delling, Julian Dibbelt, Thomas Pajor, Dorothea Wagner, and Renato F. Werneck.
Computing multimodal journeys in practice. In SEA, LNCS 7933, pages 260–271, 2013.

5 Daniel Delling, Thomas Pajor, and Dorothea Wagner. Accelerating multi-modal route
planning by access-nodes. In ESA, LNCS 5757, pages 587–598, 2009.

6 Daniel Delling, Thomas Pajor, and Renato Fonseca F. Werneck. Round-based public transit
routing. In ALENEX, pages 130–140, 2012.

7 Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. User-constrained multi-modal route
planning. In ALENEX, pages 118–129, 2012.

8 Yann Disser, Matthias Müller-Hannemann, and Mathias Schnee. Multi-criteria shortest
paths in time-dependent train networks. In WEA, LNCS 5038, pages 347–361, 2008.

9 Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Contraction
hierarchies: Faster and simpler hierarchical routing in road networks. In WEA, LNCS
5038, pages 319–333, 2008.

10 General Transit Feed Specification (GTFS). https://developers.google.com/transit/
gtfs/, October 2012.

11 P. Hansen. Bricriteria path problems. In Fandel, G., Gal, T. (eds.) Multiple Criteria
Decision Making – Theory and Application, pages 109–127. Springer, 1979.

12 Paola Modesti and Anna Sciomachen. A utility measure for finding multiobjective shortest
paths in urban multimodal transportation networks. European Journal of Operational
Research, 111(3):495–508, 1998.

13 Matthias Müller-Hannemann and Mathias Schnee. Finding all attractive train connections
by multi-criteria pareto search. In ATMOS, LNCS 4359, pages 246–263, 2004.

14 Open Street Map (OSM). http://www.openstreetmap.org, October 2012.

ATMOS’13

https://developers.google.com/transit/gtfs/
https://developers.google.com/transit/gtfs/
http://www.openstreetmap.org

136 Result Diversity for Multi-Modal Route Planning

15 Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos D. Zaroliagis. Efficient
models for timetable information in public transportation systems. ACM Journal of Ex-
perimental Algorithmics, 12, 2007.

16 Haicong Yu and Feng Lu. Advanced multi-modal routing approach for pedestrians. In
Consumer Electronics, Communications and Networks (CECNet), 2012 2nd International
Conference on, pages 2349–2352, April 2012.

Column Generation for Bi-Objective Vehicle
Routing Problems with a Min-Max Objective

Boadu Mensah Sarpong1,2, Christian Artigues2,3, and
Nicolas Jozefowiez1,2

1 CNRS, LAAS, 7 avenue du colonel Roche, F–31400 Toulouse, France
{bmsarpon,artigues,njozefow}@laas.fr

2 Université de Toulouse, INSA, LAAS, F–31400 Toulouse, France
3 Université de Toulouse, LAAS, F–31400 Toulouse, France

Abstract
Column generation has been very useful in solving single objective vehicle routing problems
(VRPs). Its role in a branch-and-price algorithm is to compute a lower bound which is then
used in a branch-and-bound framework to guide the search for integer solutions. In spite of the
success of the method, only a few papers treat its application to multi-objective problems and
this paper seeks to contribute in this respect. We study how good lower bounds for bi-objective
VRPs in which one objective is a min-max function can be computed by column generation. A
way to model these problems as well as a strategy to effectively search for columns are presented.
We apply the ideas to two VRPs and our results show that strong lower bounds for this class of
problems can be obtained in “reasonable” times if columns are intelligently managed. Moreover,
the quality of the bounds obtained from the proposed model are significantly better than those
obtained from the corresponding “standard” approach.

1998 ACM Subject Classification G.1.6 Integer Programming, G.2.3 Applications

Keywords and phrases multi-objective optimization, column generation, integer programming,
vehicle routing

Digital Object Identifier 10.4230/OASIcs.ATMOS.2013.137

1 Introduction

Bounds (lower and upper) have been the backbone of methods for solving difficult single
objective problems including VRPs. For this reason, it is natural to expect that bounds
will also be useful for multi-objective problems. It is, thus, necessary to develop models and
strategies for computing good bounds for multi-objective problems. In this paper, we study
the use of column generation in computing strong lower and upper bounds for bi-objective
VRPs in which one objective is a min-max function. We will use the acronym BOVRPMMO
to refer to a problem of this kind.

A BOVRPMMO can be defined by means of a Dantzig-Wolfe decomposition as the
selection of a set of columns with minimum total cost such that the maximum value of an
attribute associated with the set is minimized. More formally, we consider problems of the

© Boadu Mensah Sarpong, Christian Artigues, and Nicolas Jozefowiez;
licensed under Creative Commons License CC-BY

13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’13).
Editors: Daniele Frigioni, Sebastian Stiller; pp. 137–149

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2013.137
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

138 Column Generation for BOVRPMMO

form:

Minimize
∑
k∈Ω

ckλk (1)

Minimize Γmax (2)

subject to
∑
k∈Ω

aikλk ≥ bi (i ∈ I) , (3)

Γmax ≥ σkλk (k ∈ Ω) , (4)
λk ∈ {0, 1} (k ∈ Ω) , (5)

where λk and Γmax are decision variables, Ω is the set of all feasible columns whose description
depends on the particular problem, and I is an index set. For each column k ∈ Ω, ck and
σk are two associated values which we suppose to be integers. We need to select columns
with minimum sum of ck such that Γmax = maxk∈Ω{σkλk} is also minimized. Bi-objective
generalizations of several vehicle routing problems satisfying this condition can be defined.
In general, we want to minimize the combined cost of a set of routes such that the value
of a property associated with the selected routes (eg. the maximum length of a route, max
capacity of a route, etc.) is minimized. We will later present two of such problems namely
the bi-objective uncapacitated vehicle routing problem (BOUVRP) and the bi-objective
multi-vehicle covering tour problem (BOMCTP).

A BOVRPMMO is a special case of a multi-objective combinatorial optimization (MOCO)
problem. A general MOCO problem concerns the minimization of a vector of two or more
functions F (x) = (f1(x), . . . , fr(x)) over a finite domain of feasible solutions X . The vector
x = (x1, . . . , xn) is the decision variable or solution, Y = F (X) corresponds to the images
of the feasible solutions in the objective space, and y = (y1, . . . , yr), where yi = fi (x), is a
point of the objective space. A solution x′ dominates another solution x′′ if for any index
i ∈ {1, . . . , n}, fi (x′) ≤ fi (x′′) and there is at least one index i ∈ {1, . . . , n}, such that
fi (x′) < fi (x′′). A feasible solution dominated by no other feasible solution is said to be
efficient or Pareto optimal and its image in the objective space is said to be nondominated.
The set of all efficient solutions is called the efficient set (denoted XE) and the set of all
nondominated points is the nondominated set (denoted YN). Although the meaning of
bounds in single objective optimization is well studied and understood, the situation is quite
different in the multi-objective case. Ideal and nadir points are well known lower and upper
bounds, respectively, of the set YN . The coordinates of the ideal point are obtained by
optimizing each objective function independently of the others, whereas the coordinates of
the nadir point correspond to the worse value of each objective function when we consider
the set XE . From Figure 1, it can be seen that these points are usually poor bounds since
they just estimate the whole region where a member of YN may lie. In this paper, we will
be interested in bounds that can reduce the region where the members of YN are and thus
narrow down the search for nondominated points.

Given that a MOCO problem is a discrete problem, its lower bound can be defined as a
finite set of points such that the image of every feasible solution is dominated by at least
one of these points [15]. The members of a lower bound set do not necessarily belong to Y.
An upper bound may also be defined as a finite set of points in Y that do not dominate
one another. This idea of bound sets for bi-objective combinatorial optimization (BOCO)
problems has recently been revisited by other authors [3, 6, 14]. They compute strong lower
bounds based on a weighted sum scalarization which can then be used in developing exact
algorithms for the problems they consider. Although each objective function fi of the vector
F can either be a sum objective as in (1) or a min-max objective, examples given in the

B.M. Sarpong, C. Artigues, and N. Jozefowiez 139

ideal

nadir
f2

f1

member of lower bound

image of feasible solution

estimate of feasible region

Figure 1 Lower and upper bounds of a bi-objective combinatorial optimization problem.

cited papers consider only the “sum” type of objectives. This in a way justifies the use of
a weighted sum method since they can efficiently find supported efficient solutions (those
that correspond to points on the convex part of YN) by using well known single objective
optimization methods. Very good lower bounds for many problems can be defined from
the set of supported efficient solutions. The situation is quite different when we consider a
combination of a sum and a min-max objective function as in the case of a BOVRPMMO.
Indeed, a general linearizing method for the min-max objective destroys the problem structure
and so the desirable quality of being able to use known methods for the resulting problem
does not necessarily apply [5]. A similar thing happens when we use a standard ε-constraint
approach although this latter approach can find non-supported solutions which cannot be
found by the weighted sum method. Moreover, as shown by results in [6], the quality of the
bounds obtained by the weighted sum method for set covering problems are not very good.
Nevertheless, the quality of lower bounds produced from set covering based formulations
for single objective VRPs are one the best and so we can expect good quality lower bounds
from formulations of this type in the multi-objective case too. these reasons, the approach
proposed in this paper uses a variant of the ε-constraint method applied to a set covering
based formulation for the BOVRPMMO.

The main contribution of this work is to define the application of column generation to
a BOVRPMMO that does not rely on any “standard” multi-objective technique. In this
way, we avoid some drawbacks such as the impossibility to find non-supported solutions
by a weighted sum method or the possible loosening of a lower bound by explicitly adding
constraints on objectives as it in the case of a standard ε-constraint approach. Moreover,
if the problem linked to the first objective is a well-studied problem for which an efficient
column generation algorithm exists then it is possible to reuse the pricing scheme to solve
the bi-objective problems obtained by adding a second objective linked to a property of a
selected set of columns. Another contribution is the computation of bound sets by using a
scalar method other than the weighted sum method which has been used in published papers
(to the best of our knowledge).

The use of column generation to compute bounds for a BOVRPMMO is explained in
Section 2. Applications problems are discussed in Section 3. Computational results and
conclusions are provided in Sections 4 and 5, respectively.

2 Column Generation for a BOVRPMMO

A close examination of formulation (1 – 5) reveals that a BOVRPMMO decomposes naturally
into two problems. For any set of feasible columns, the associated value of Γmax can easily

ATMOS’13

140 Column Generation for BOVRPMMO

be computed. We can therefore use a variant of the ε-constraint method with one main
difference. Instead of explicitly adding a constraint of the form Γmax ≤ ε to the formulation,
we rather drop (4) and use it to redefine the feasibility of a column. Thus, we define a new set
of feasible columns Ω̄ where the feasibility of a column k ∈ Ω̄ now depends on its associated
value σk. Depending whether or not a column k ∈ Ω may be associated with more than one
value of σk, we may have a larger set of feasible columns after the redefinition. The strength
of the model is conserved at the expense of having a possibly more difficult problem due to
the possible increase in the number feasible columns. The master problem (MP) becomes
the following single-objective program:

Minimize
∑
k∈Ω̄

ckλk (6)

subject to
∑
k∈Ω̄

aikλk ≥ bi (i ∈ I) , (7)

λk ∈ {0, 1} (k ∈ Ω̄) . (8)

Before solving MP for a given limit ε on the value of Γmax, we need to set λk = 0 for all
columns k ∈ Ω̄k having σk > ε. The linear relaxation of MP (ie. λk ≥ 0 ∀k ∈ Ω̄) is denoted
as LMP.

2.1 Computing Lower and Upper Bounds
For a BOVRPMMO, Γmax can only take on a finite number of values. If the complete set
of feasible columns Ω̄ is known, a lower bound can be computed by using a variant of the
ε-constraint approach as given in Algorithm 1. The algorithm starts with no restriction
on the value of σk for a column. At each iteration, a linear relaxation of the problem is
solved after which the optimal value as well as the value of Γmax are determined. In the next
iteration, the problem is updated to exclude columns k for which σk is greater than Γmax.
This iterative process continues for as long as the problem remains feasible. In practice,
the cardinality of Ω̄ is too large and so a column generation method needs to be used by
considering only a subset Ω̄1 of Ω̄. The restriction of MP to Ω̄1 is called the restricted master
problem (RMP) and the resulting linear relaxation (ie. λk ≥ 0 ∀k ∈ Ω̄1) is denoted LRMP.
Let πi (i ∈ I) be the dual variables associated with LRMP. The subproblem is defined as

S(ε) = min
k∈Ω̄\Ω̄1

{
ck −

∑
i∈I

πiaik : σk ≤ ε
}
, (9)

where ε is a maximum allowed value of Γmax in LRMP. In applying column generation to
compute a lower bound, we need to be able to efficiently search for relevant columns and so
we explore some strategies in the next subsection.

Algorithm 1 Computing a lower bound
1: Set lb← ∅.
2: while LMP is feasible do
3: Solve LMP. Let c∗ be the optimum, and λ∗ be the optimal solution vector.
4: Compute Γmax = maxk∈Ω̄ σkλ

∗
k.

5: lb← lb ∪ {(c∗,Γmax)}.
6: Set λk ← 0 for all k such that σk ≥ Γmax.
7: end while

B.M. Sarpong, C. Artigues, and N. Jozefowiez 141

After computing a lower bound, a simple way to compute an upper bound is to solve
RMP (the integer program) several times by following the idea of Algorithm 1. That is, we
consider the RMP with the columns it contains after computing a lower bound and follow
Algorithm 1 by replacing LMP with RMP. This is perhaps the simplest column generation
heuristic. Although an upper bound is made up of feasible points, they do not necessary
belong to YN since the RMP may not contain all relevant columns. Nevertheless, if the
columns in RMP are relevant for the integer program then we expect that the upper bound
produced will be a good approximation of YN .

2.2 Column Search Strategies
A first approach of applying column generation to compute a lower bound of a BOIPMMO
follows the idea of a standard ε-constraint method. For a fixed value of ε, LRMP is solved
to optimality by column generation before moving on to another value of ε. An iteration
of column generation consists in solving LRMP once to obtain a vector of dual values, and
then solving the corresponding subproblem to obtain new columns to add to LRMP. The
method converges when no new columns are produced from the subproblem. We denote
this approach as the “Point-by-Point Search (PPS)”. Although PPS is simple and easy to
implement, it takes no advantage of the similarities in the subproblems for the different
values of ε and so a tremendous amount of computational time may be spent in computing
each member of a lower bound.

Using heuristics to generate columns can improve the performance of column generation [4].
These heuristics are used to cheaply generate other relevant columns from those found by a
subproblem algorithm. In the bi-objective case, we are interested in heuristics that can take
advantage of similarities in the different subproblems solved when computing each point of
a lower bound. That is, once the cost of finding a first column has been paid we wish to
quickly generate other relevant columns that are relevant for the current subproblem and
may also be relevant for other subproblems. A column which has negative reduced cost for a
current subproblem, does not necessary have a negative reduced cost for another subproblem
since the associated dual variables do not necessarily have the same values. Nevertheless,
it can be expected that two subproblems that are close in terms of objectives, may also be
close in terms of the solution of LRMP and therefore close in terms of dual variable values.
For this reason, a column generated by a heuristic may also be of negative reduced cost for
several other subproblems apart from the current one. In addition, standard algorithms
used to solve a subproblem are most times only interested in finding the best columns. This
means that many columns having negative reduced costs are left out because the algorithm
finds “better” columns. This may be desirable in the single objective case. In the bi-objective
case, however, a column which may not be so good for a subproblem may be the best for
another subproblem so we are interested in heuristics that can efficiently search for these
columns by modifying the ones found by a subproblem algorithm. We denote an approach
which incorporate such heuristics as “Improved Point-by-Point Search (IPPS)”. IPPS can be
useful as a column generation based heuristic since at each iteration it tries to generate a set
of columns that are relevant for several subproblems. IPPS is summarized in Algorithm 2
and the heuristic used in Step 7 obviously depends on the problem at hand.

3 Application Problems

In this section, we apply the ideas presented so far to compute lower and upper bounds for
two BOVRPMMO. Just as for most VRPs, the subproblem encountered in both examples is

ATMOS’13

142 Column Generation for BOVRPMMO

Algorithm 2 Improved Point-by-Point Search (IPPS)
1: Set ε←∞, and lb← ∅.
2: while LRMP is feasible do
3: Solve LRMP once to obtain a vector of dual values.
4: Let c∗ be the optimum, λ∗ the optimal vector, and compute Γmax = maxk∈Ω̄ σkλ

∗
k.

5: Solve the subproblem S(ε) and let Λ be the set of columns obtained.
6: if |Λ| 6= 0 then
7: For each column in Λ use heuristics to generate other relevant columns from it.
8: else
9: lb← lb ∪ {(c∗,Γmax)}.

10: Set λk ← 0 for all k such that σk ≥ σ∗, and ε← Γmax − 1.
11: end if
12: end while

an elementary shortest part problem with resource constraints (ESPPRC) which we solve
by the decremental state space relaxation algorithm (DSSR) [1, 13]. For each considered
problem, we discuss the specific implementation of DSSR as well as the heuristic used in
implementing IPPS. A complete description of DSSR can be obtained from the two references.
We will also be using the same notations introduced earlier and so only their specific meanings
for each example will be mentioned.

3.1 The Bi-Objective Uncapacitated Vehicle Routing Problem

The bi-objective uncapacitated VRP (BOUVRP) is defined on an undirected graph G = (V,E)
where V = {v0, . . . , vn} is a set of nodes and E = {(vi, vj) : vi, vj ∈ V, i 6= j} is a set of edges.
Node v0 is the depot where all routes should start and end. The other nodes represent n
customers with each having a fixed demand. A distance matrix D = (dij) which satisfies
the triangle inequality is defined on E. The problem is to design a set of routes with the
objectives of minimizing both the total length of all routes and the maximum total demand
of customers served by any single route. The demand of each customer is to be met by at
least one visiting route and the number of available vehicles as well as the capacity of a
vehicle are unlimited.

Master Problem and Subproblem

Following the notations used in Section 2, we let Ω be the set of all feasible columns. A
column k ∈ Ω is a Hamiltonian cycle on a subset of V which includes the depot. For each
column k, ck is its length and σk is the sum of the demands of the customers visited by the
route it represents. By redefining the feasibility of a column to take into account the total
demand of the customers visited by the route it represents, we obtain a new set of feasible
columns Ω̄. The master problem (MP) then becomes a capacitated VRP given by:

Minimize
∑
k∈Ω̄

ckλk (10)

subject to
∑
k∈Ω̄

aikλk ≥ 1 (vi ∈ V \{v0}) , (11)

λk ∈ {0, 1} (k ∈ Ω̄) , (12)

B.M. Sarpong, C. Artigues, and N. Jozefowiez 143

where aik = 1 if the route of column k visits customer vi. As explained in the previous
section, the second objective to minimize the total demand of customers served by a single
route (Γmax) does not appear in the master problem. The subproblem is given by:

S(ε) = min
k∈Ω̄\Ω̄1

{
ck −

∑
vi∈V \{v0}

πiaik : σk ≤ ε
}
, (13)

where πi are dual values and ε is a limit imposed on the sum of the demands of customers
visited by the same route.

Subproblem Algorithm

In (13), we are supposed to find feasible routes with negative reduced costs such that the
sum of demands of the subset of customers it visits is at most ε. The reduced cost of a route
is given by its length minus the sum of the profits (dual values) associated to the nodes it
visits. The only considered resource when implementing DSSR is the sum of the demands a
route visits. This sum cannot be more than ε. For two labels l1 and l2 arriving at the same
node, l1 dominates l2 if l1 has a smaller reduced cost and smaller sum of demands than l2.
In this situation, l2 is rejected.

IPPS Heuristic

Although DSSR is able to return several columns with negative reduced cost, some columns
are not generated since they are dominated by other generated ones. Nevertheless, some of
these rejected columns have negative reduced costs and may be relevant for a subproblem
corresponding to a different value of ε. The purpose of the heuristic is to find these kind of
routes by using the following idea. Given a column with negative reduced cost, we try to
remove a visited node from (or insert a non-visited node in) the route in such a way that we
obtain a new route which is still of negative reduce cost but has different values of ck and
σk. Due to the change in the value of σk, a new route found in this way can be valid for a
different subproblem for which the original route was not valid. This new route may also be
of negative reduced cost for a different subproblem.

3.2 The Bi-Objective Multi-Vehicle Covering Tour Problem
The bi-objective multi-vehicle covering tour problem (BOMCTP) is an extension of the
covering tour problem (CTP) [7]. The CTP consists in designing a route over a subset of
locations with the aim of minimizing the length of the route. In addition, each location
not visited by the route should lie within a fixed radius of a visited location. The fixed
radius is called the cover distance. A generic application of the CTP is given in the design of
bi-level transportation networks where the aim is to construct a primary route such that all
points that are not on it can easily reach it [2]. Other applications are the post box location
problem [11] and in the delivery of medical services to villages in developing countries [2, 9].
A bi-objective generalization [10] as well as a multi-vehicle extension [8] of the CTP have been
proposed. In the bi-objective version, the cover distance is not fixed in advance but rather
induced by the constructed route. It is computed by assigning each non-visited location to the
closest visited location and calculating the maximum of these distances. The objectives are
to minimize the length of the route as well as the induced cover distance. In the multi-vehicle
version, the combined length of a set of routes is minimized for a fixed cover distance. The
number of locations that a single route can visit is limited by a predetermined constant p.

ATMOS’13

144 Column Generation for BOVRPMMO

The BOMCTP discussed here, is a combination of the bi-objective and the multi-vehicle
extensions of the CTP and it is defined on an undirected graph G = (V ∪W,E). Set V
represents locations which can be visited by a route whereas the members of W are to be
assigned to visited locations of V . Node v0 ∈ V is the depot where all routes must start and
also end. Set E consist of edges connecting all pairs of nodes in V ∪W and a distance matrix
D = (dij) satisfying the triangle inequality is defined on this set. The problem consists in
minimizing both the total length of a set of routes constructed over a subset of V and the
induced cover distance.

Master Problem and Subproblem

Let Ω represent the set of all feasible columns. A feasible column k ∈ Ω is defined as a
route Rk which is a Hamiltonian cycle on a subset of V , includes the depot and visits not
more than p nodes. The length of Rk is denoted ck. For each route Rk, we choose a subset
Ψk ⊆W of nodes it may cover and define σk as the maximum distance between a node of
Ψk and the closest node of Rk. The constant aik = 1 if wi ∈ Ψk and aik = 0 otherwise. Let
Γmax represent the cover distance induced by a set of routes. Just as before, we define a new
set of feasible columns Ω̄ where the feasibility of a column k ∈ Ω̄ depends not just on Rk but
also on σk. The master problem (MP) is given by:

Minimize
∑
k∈Ω̄

ckλk (14)

subject to
∑
k∈Ω̄

aikλk ≥ 1 (wi ∈W) , (15)

λk ∈ {0, 1} (k ∈ Ω̄) . (16)

The function (14) minimizes the total length of the set of routes and (15) ensures that each
node of W is covered by a selected route. The second objective to minimize Γmax does not
appear in the above formulation for the same reasons as before. If πi are the dual values
associated with (15) then the subproblem is

S(ε) = min
k∈Ω̄\Ω̄1

{
ck −

∑
wi∈W

πiaik : σk ≤ ε
}
. (17)

Subproblem Algorithm

Given that Rk ⊆ V whereas Ψk ⊆ W , we need to construct a route on a subset of V
with the aim of minimizing its length ck and also choose a subset of W with the aim of
maximizing the profits (πi) associated to its members. The profit associated to a node of
wi ∈W can be collected at most once on any single route even though different nodes of the
route may be able to cover wi. Two resources are considered in implementing DSSR for this
problem. The first is concerned with the number of nodes a route visits which is limited to
a maximum of p. The second resource constraint is that a route may only cover nodes of
W that lie within a radius of ε from a node of V it visits. During the extension of a label,
nodes of W not yet covered by the label but which can be covered are identified and the
resulting profit is subtracted from the current reduced cost of the label. Doing so ensures
that we obtain the minimum possible reduced cost for each label and this is the goal of the
subproblem. Checking whether a label l1 dominates another label l2 follows the usual rules
when comparing the consumption of resources. When comparing the reduced costs, however,
a factor F12 which represents the sum of the profits associated to nodes of W covered by l1

B.M. Sarpong, C. Artigues, and N. Jozefowiez 145

but not yet covered by l2 should be subtracted from the reduced cost of l2. This is to ensure
that no label that can lead to an optimal solution is eliminated. Similar dominance rules
used in dynamic programming algorithms for solving shortest path problems like the one
encountered here (called non-additive shortest path problems) are discussed in [12].

IPPS Heuristic

The subproblem constructs a column k by taking Ψk to be all the nodes of W that can be
covered by the constructed route Rk. This helps with the goal of minimizing the reduced
cost. We note, however, that Ψk does not necessarily need to include all the nodes of W
that can be covered by Rk. Indeed, Ψk can be chosen to be any subset of W such that the
sum of the associated profits exceeds the cost ck. A column defined in this way is never
found by DSSR for the current subproblem since it is dominated by another column defined
by the same route, but covers some more nodes of W . The IPPS heuristic employed here
relies on this observation. For each column k given by (Rk,Ψk) that is found by DSSR,
we successively remove the node of Ψk that induces the value of σk (i.e. which is farthest
from the closest node of Rk) in order to create another column k′ with c′k = ck but σ′k < σk.
We recall that σk = max{dij : vi ∈ Rk and wj ∈ Ψk}. A column found in this way can
be valid (and possibly have a negative reduced cost) for another subproblem for which the
original column returned by DSSR is not valid. This is due to the different value of ε each
subproblem is based on.

4 Computational Results

Evaluating the Quality of Lower and Upper Bounds

In order to evaluate the quality of the computed lower and upper bound sets, we used a
distance based measure (µ1), and an area based measure (µ2) which were presented in [6].
Combining an area based measure with a distance based measure gives a better indication of
the quality of the bounds. Roughly speaking, µ1 represents the worst distance (with respect
to the range of objective values) between a point of the upper bound and a point of lower
bound closest to it. Also, µ2 represents the fraction of the area that is dominated by the
lower bound but not by the upper bound. This is, the area where additional points of YN can
be found. If a lower bound and a corresponding upper bound are good then we expect that
both µ1 and µ2 will be small in value. The smaller both values are, the better the quality of
the bounds. These two measures complement each other so the quality of the bounds cannot
be said to be very good if just one of the measures is small in value but the other is very
big. As explained by the author, these measures can be seen to play a role analogous to the
optimality gap in single objective optimization. The reader is referred to the relevant paper
[6] for further explanation of the measures.

Experiments

Experiments were conducted to evaluate the quality of lower and upper bounds obtained from
the model presented (by redefining the feasibility of a column) with respect to a standard
ε-constraint model (by explicitly adding constraints on objectives in the master problem).
We recall that in the standard ε-constraint model, constraints that limit the value of σk

for a column are directly added to the master problem and nothing special is done in the
subproblem. On the other hand, the new model does not explicitly add constraints to the
master problem but rather limit the value of σk for a column by redefining the meaning

ATMOS’13

146 Column Generation for BOVRPMMO

Table 1 Comparison of the quality of bound sets for the BOUVRP.

Standard PPS IPPS

Instance |lb| |ub| µ1% µ2% |lb∗| |ub| µ1% µ2% |ub| µ1% µ2%

eil7 2 6 2.60 37.32 6 6 0.00 3.26 6 0.00 3.26
eil13 2 32 2.92 25.22 99 33 0.13 2.72 34 0.10 2.67
eil22 11 36 1.17 11.68 100 41 0.15 2.24 40 0.11 2.11
eil23 2 11 1.48 50.14 130 14 0.30 16.24 17 0.13 15.90
eil30 5 18 9.12 24.30 152 19 1.08 5.32 22 0.98 4.89
eil31 13 44 5.30 10.95 173 41 0.88 2.69 42 0.40 2.65

of a feasible column both in the master problem and subproblem. The principle used to
determine the values of ε is the same for both models. Given a value for Γmax in an iteration,
we define ε = Γmax − 1 in the next iteration. We also wanted to compare the quality of the
bounds and the computational times of PPS and IPPS. Capacitated VRP instances from
the TSPLIB (http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/) having up
to 31 nodes were used for the BOUVRP. For the BOMCTP, the Mersenne Twister random
number generator (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html) was
used to generate instances similar to those described in the literature [7, 8, 10] but which
are not publicly available. The node sets were obtained by generating |V | + |W | points
in the [0, 100] × [0, 100] square with the depot restricted to lie in [25, 75] × [25, 75]. Set
V is taken to be the first |V | points and set W is taken as the remaining points. The
distance between two points is calculated as the Euclidean distance. Five instances for
every combination of |V | ∈ {40, 50} and |W | ∈ {2|V |, 3|V |} were generated and values
of p ∈ {5, 8} were tested. The exact instances used for our experiments can be found
at http://homepages.laas.fr/bmsarpon/ctp_instances.zip. All computer codes were
written in C/C++ and the LRMP was solved with ILOG CPLEX 12.4. Tests were run on an
Intel(R) Core(TM)2 Duo CPU E7500 @ 2.93GHz computer with a 2 GiB RAM. Summary
of results for the BOUVRP are given in Tables 1 and 2 whereas those for the BOMCTP are
given in Tables 3 and 4. The values for the BOMCTP are averages over the five instances
as explained. The column headings of the tables have the following meaning: |lb| and |ub|
are the cardinalities of a lower bound and upper bound set, respectively; µ1% and µ2% are
the values of the quality measures multiplied by 100; time is the computational time in cpu
seconds; dssr is the number of times the sub-problem was solved with DSSR; cols is the total
number of columns generated. Since PPS and IPPS are based on the same model, the same
lower bounds were obtained and this conforms to the theory of column generation which is
an exact method for the LMP. The cardinality of the common lower bound is given in the
column |lb∗|.

From the results obtained, we see that the bounds obtained by the model that redefines the
feasibility of a column are significantly better than those obtained by a standard ε-constraint
approach. This is seen by comparing the values of µ1 and µ2 for PPS and IPPS with their
counterparts from “Standard”. For example, in Table 1 a standard ε-constraint approach
obtained the values (µ1% = 9.12, µ2% = 24.30) for the instance eil30 whereas those for PPS
and IPPS were (µ1% = 1.08, µ2% = 5.32) and (µ1% = 0.98, µ2% = 4.89), respectively. A
similar thing can be seen in Table 3 for p = 8, |V | = 40, |W | = 80. The values for a standard
ε-constraint approach for this instance were (µ1% = 8.38, µ2% = 25.86) which are very huge
when compared to (µ1% = 0.32, µ2% = 3.04) for PPS and (µ1% = 0.38, µ2% = 2.46) for IPPS.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://www.math.sci.hiroshima-u.ac.jp/~ m-mat/MT/emt.html
http://homepages.laas.fr/bmsarpon/ctp_instances.zip

B.M. Sarpong, C. Artigues, and N. Jozefowiez 147

Table 2 Comparison of computational times for the BOUVRP.

Standard PPS IPPS

Instance time dssr cols time dssr cols time dssr cols

eil7 0.1 15 24 0.1 24 29 0.1 13 51
eil13 1.4 60 335 12.3 355 916 8.8 270 1982
eil22 246.3 298 2295 428.7 648 3480 289.6 482 6026
eil23 4216.7 421 3386 7578.5 1238 7946 5979.1 916 12951
eil30 5861.2 541 2976 9746.2 1110 7312 7114.7 828 14922
eil31 2851.0 368 2719 5372.4 957 4514 5027.3 804 7389

Table 3 Comparison of the quality of bound sets for the BOMCTP.

Standard PPS IPPS

p |V | |W | |lb| |ub| µ1% µ2% |lb∗| |ub| µ1% µ2% |ub| µ1% µ2%

5 40 80 7 23 6.41 23.22 26 26 1.07 7.69 27 1.01 6.09
5 40 120 8 24 4.67 23.35 27 28 0.91 11.92 29 0.92 10.33
5 50 100 7 28 4.74 21.94 32 33 0.70 9.48 33 0.68 7.85
5 50 150 10 24 4.33 26.44 30 30 1.20 16.67 30 1.20 15.41
8 40 80 7 26 8.38 25.86 27 27 0.32 3.04 27 0.38 2.46
8 40 120 8 28 6.48 21.70 29 30 0.40 4.50 30 0.40 3.70
8 50 100 7 32 6.13 21.83 32 32 0.32 3.83 33 0.31 3.65
8 50 150 9 30 5.00 18.70 30 30 0.31 4.30 30 0.36 3.66

It seems natural that better values for the measures are obtained when the lower and upper
bound sets contain more elements. This is probably where a standard ε-constraint method
falls short since the lower bounds it computes contain very few points in comparison to those
computed by the model on which PPS and IPPS are based. Better values of µ1 and µ2 were
obtained for IPPS in comparison to PPS for the tested instances of both the BOUVRP and
the BOMCTP. Since the same lower bounds were computed by both approaches for any
given instance, we can attribute the better values of the measures for IPPS to the quality
of the upper bounds it produces. In terms of computational times, the standard approach
is the fastest and this is not so surprising given the number of points it computes and the
poor quality of the bounds it produces when compared to the others. When computing the
lower bounds, IPPS needs to solve fewer subproblems than PPS (see values for dssr) and
also generates significantly more columns than (see values for cols). The effect is that, the
computational times is significantly reduced for IPPS in comparison to PPS. Finally, since
the members of an upper bound set correspond to images of feasible solutions, the results
mean PPS and IPPS can be used to provide very good approximations of the nondominated
set YN for the class of problems considered.

5 Conclusions

This paper discusses the application of column generation to bi-objective VRPs in which
one objective is a min-max function. An idea for formulating these problems based on a
variant of the ε-constraint method is presented. Instead of adding constraints on an objective

ATMOS’13

148 Column Generation for BOVRPMMO

Table 4 Comparison of computational times for the BOMCTP.

Standard PPS IPPS

p |V | |W | time dssr cols time dssr cols time dssr cols

5 40 80 27.5 137 790 49.5 228 1597 40.5 155 2099
5 40 120 38.9 163 1027 126.8 330 2571 94.0 201 3388
5 50 100 68.5 197 1240 205.8 390 3035 153.9 226 3459
5 50 150 42.2 150 875 392.5 486 4053 287.0 247 4054
8 40 80 61.0 217 1498 113.4 302 2283 103.6 218 2961
8 40 120 132.1 299 2205 511.2 481 3949 503.9 293 4663
8 50 100 281.2 326 2398 1343.7 522 4306 1012.5 335 5071
8 50 150 333.0 380 2872 1525.2 672 5799 1186.2 384 6005

in the master problem, we rather redefine the set of feasible columns to take the objective
into account. We keep the strength of the model at the expense of a possibly more difficult
problem. The advantages of using this model is clearly exhibited from the quality of the
bounds obtained from it. We also investigate a strategy to accelerate and improve the
column generation method. The proposed ideas are applied to two VRPs and the results
obtained indicate that an intelligent management of columns in a multi-objective perspective
can yield significant speedups in computing lower and upper bounds. Given that the time
needed to compute such quality bounds can be very long, future works are aimed at finding
a good compromise between the quality of bounds and the computational time. It will also
be interesting to develop branching rules in order to explore the idea of a multi-objective
branch-and-price algorithm.

References

1 Natashia Boland, John Dethridge, and Irina Dumitrescu. Accelerated label setting al-
gorithms for the elementary resource constrained shortest path problem. Operations Re-
search Letters, 34(1):58–68, 2006.

2 John R. Current and David A. Schilling. The median tour and maximal covering tour prob-
lems: Formulations and heuristics. European Journal of Operational Research, 73(1):114–
126, 1994.

3 Charles Delort and Olivier Spanjaard. Using bound sets in multiobjective optimization:
Application to the biobjective binary knapsack problem. In Experimental Algorithms, pages
253–265. Springer, 2010.

4 Guy Desaulniers, Jacques Desrosiers, and Marius M. Solomon. Accelerating Strategies
in Column Generation Methods for Vehicle Routing and Crew Scheduling Problems. In
Essays and Surveys in Metaheuristics, volume 15 of Operations Research/Computer Science
Interfaces Series, pages 309–324. Springer US, 2002.

5 Matthias Ehrgott. A discussion of scalarization techniques for multiple objective integer
programming. Annals of Operations Research, 147(1):343–360, 2006.

6 Matthias Ehrgott and Xavier Gandibleux. Bound sets for biobjective combinatorial optim-
ization problems. Computers & Operations Research, 34(9):2674–2694, 2007.

7 Michel Gendreau, Gilbert Laporte, and Frédéric Semet. The Covering Tour Problem. Op-
erations Research, 45(4):568–576, 1997.

B.M. Sarpong, C. Artigues, and N. Jozefowiez 149

8 Mondher Hachicha, M John Hodgson, Gilbert Laporte, and Frédéric Semet. Heuristics for
the multi-vehicle covering tour problem. Computers & Operations Research, 27(1):29–42,
2000.

9 M. John Hodgson, Gilbert Laporte, and Frederic Semet. A Covering Tour Model for
Planning Mobile Health Care Facilities in SuhumDistrict, Ghama. Journal of Regional
Science, 38(4):621–638, 1998.

10 Nicolas Jozefowiez, Frédéric Semet, and El-Ghazali Talbi. The bi-objective covering tour
problem. Computers & Operations Research, 34(7):1929–1942, 2007.

11 Martine Labbé and Gilbert Laporte. Maximizing User Convenience and Postal Service
Efficiency in Post Box Location. Cahiers du GÉRAD. Université de Montréal, Centre de
recherche sur les transports, 1986.

12 Line Blander Reinhardt and David Pisinger. Multi-objective and multi-constrained non-
additive shortest path problems. Computers & Operations Research, 38(3):605–616, 2011.

13 Giovanni Righini and Matteo Salani. New dynamic programming algorithms for the re-
source constrained elementary shortest path problem. Networks, 51(3):155–170, 2008.

14 Francis Sourd and Olivier Spanjaard. A multiobjective branch-and-bound framework: Ap-
plication to the biobjective spanning tree problem. INFORMS Journal on Computing,
20(3):472–484, 2008.

15 Bernardo Villarreal and Mark H. Karwan. Multicriteria integer programming: A (hy-
brid) dynamic programming recursive approach. Mathematical Programming, 21(1):204–
223, 1981.

ATMOS’13

Carpooling : the 2 Synchronization Points
Shortest Paths Problem ∗

Arthur Bit-Monnot1,2, Christian Artigues1,2, Marie-José Huguet1,3,
and Marc-Olivier Killijian1,2

1 CNRS, LAAS, 7 avenue du colonel Roche, F–31400 Toulouse, France
2 Université de Toulouse, LAAS, F–31400 Toulouse, France
3 Université de Toulouse, INSA, F–31400 Toulouse, France

{bit-monnot, artigues, huguet, killijian}@laas.fr

Abstract
Carpooling is an appropriate solution to address traffic congestion and to reduce the ecological
footprint of the car use. In this paper, we address an essential problem for providing dynamic
carpooling: how to compute the shortest driver’s and passenger’s paths. Indeed, those two paths
are synchronized in the sense that they have a common subpath between two points: the location
where the passenger is picked up and the one where he is dropped off the car. The passenger
path may include time-dependent public transportation parts before or after the common subpath.
This defines the 2 Synchronization Points Shortest Path Problem (2SPSPP). We show that the
2SPSPP has a polynomial worst-case complexity. However, despite this polynomial complexity,
one needs efficient algorithms to solve it in realistic transportation networks. We focus on efficient
computation of optimal itineraries for solving the 2SPSPP, i.e. determining the (optimal) pick-
up and drop-off points and the two synchronized paths that minimize the total traveling time.
We also define restriction areas for reasonable pick-up and drop-off points and use them to
guide the algorithms using heuristics based on landmarks. Experiments are conducted on real
transportation networks. The results show the efficiency of the proposed algorithms and the
interest of restriction areas for pick-up or drop-off points in terms of CPU time, in addition to
its application interest.

1998 ACM Subject Classification G.2.1 Combinatorics, G.2.2 Graph Theory, F.2.2 Nonnumer-
ical Algorithms and Problems

Keywords and phrases Dynamic Carpooling, Shortest Path Problem, Synchronized Paths

Digital Object Identifier 10.4230/OASIcs.ATMOS.2013.150

1 Introduction

Due to the demographic evolution and the urban spread off during the last decades, people
have moved away from urban centers and now live in residential areas. In order to decrease
the urban traffic congestion and its societal issues, transport strategies have encouraged
to park private cars near multimodal hubs (i.e. park and ride stations) and to use the
public transport system to reach downtown destinations. However, congestion problems
have moved from urban to sub-urban areas where people commute with their cars either to
reach the employment areas or to connect to the public transport system. An appropriate
solution, requiring little investment and reducing the ecological footprint of the car use, is

∗ This work was partially supported by LAAS, CNRS and ANR French national program for Security
and Informatics (grant #ANR-11-INSE-010).

© Arthur Bit-Monnot, Christian Artigues, Marie-José Huguet, and Marc-Olivier Killijian;
licensed under Creative Commons License CC-BY

13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’13).
Editors: Daniele Frigioni, Sebastian Stiller; pp. 150–163

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2013.150
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

A. Bit-Monnot, C. Artigues, M.-J. Huguet, and M.-O. Killijian 151

the promotion of shared transport, like carpooling, which enables private cars to become
part of the public transport system. The main restraints of carpooling development are
insecurity, payment transaction of the shared journey, low number of matches and lack of
flexibility, as well as constraint feelings. For instance, regular (i.e., static) carpooling forces
the driver to directly go home after work or to plan his trip in advance. Dynamic carpooling
relaxes some of these constraints (few matches, lack of flexibility and constraint feelings).
Dynamic carpooling should enable automatic (or semi-automatic) destination guessing and
trip proposals for drivers. Regarding users, it should help real-time matching with drivers.
In this paper, we address the issue of computing journeys for a driver and a passenger to
carpool together in a complete trip. The two synchronized paths can be decomposed into
5 subpaths. The trip is composed of two convergent paths towards a first synchronization
point, i.e. the meeting point, a shared path towards the second synchronization point, i.e.,
the drop-off point and two divergent paths from this drop-off point towards each destination,
henceforth the name 2 Synchronization Points Shortest Path Problem (2SPSPP).

In the problem definition, we can distinguish two types of users. The driver drives his car
and is willing to take a detour in order to pick up a passenger and drive him for some part of
the trip. The passenger can walk or use public transportation to join a pick-up point in order
to be driven. For example, as in the AMORES project[2], we can consider that the users use
smartphones to communicate carpooling requests and offers, to find matches between those,
and possibly to compute their optimal itineraries. In this paper, we focus explicitly on the
computation of optimal itineraries for the 2SPSPP, i.e. the (optimal) pick-up and drop-off
points and the 5 paths which compose the full trip as in figure 1. We consider the objective
of minimizing the total travel time for both users.

2 Problem Statement

A multimodal transportation network is modeled with an edge-labeled graph G = (V,E,Σ)
where V is the set of nodes, Σ the set of modes (for instance foot, car or public transportation)
and E is the set of labeled edges. A labeled edge (i, j,m) is a route from a node i to a node
j having the mode m. Moreover, a cost function cijm is associated to each edge (i, j,m)
representing the travel time. These costs may be static or time-dependent, in this case
cijm(τ) gives the travel time from i to j in mode m when leaving i at time τ . A path Pij is
an ordered list of nodes from i to j. Its cost, denoted by len(Pij , τ), is the sum of the cost of
each edge when leaving node i at time τ .

I Definition 1 (2SPSPP). Consider an edge-labeled graph G = (V,E,Σ), a car driver c and
a pedestrian p with their own origins and destinations, denoted by oc, dc and op, dp, and
with their departure times τc and τp respectively. One aims to determine a pick-up point
xup and a drop-off point xoff , and five paths Popxup

, Pocxup
, Pxupxoff

, Pxoff dp
, Pxoff dc

such
that a carpooling cost is minimized.

This problem is depicted in figure 1; in this figure edges’ labels represent the allowed
modes in each part of the network: {c} (ie. car) for the driver and {f, pt} (ie. foot or public
transportation) for the pedestrian.

A solution S of the carpooling problem is a pair of pick-up and drop-off points (xup, xoff)
and five paths. The considered cost of a carpooling itinerary is the sum of travel times for the
two users from their origin to their destination, i.e. difference between arrival and departure
time for both users. Let us define τ (u)

x the arrival time of user u at point x, for instance
τ

(p)
dp

is the arrival time of the passenger at dp. For the considered overall carpooling cost, we

ATMOS’13

152 Carpooling : the 2SPSPP

oc

xup xoff

dc

op dp{f, pt}

{c}

{c}
{c}

{f, pt}

Figure 1 Illustration of the considered carpooling problem.

point out that τ (p)
xoff = τ

(d)
xoff since both users arrive together at xoff , and that they leave

xup at max(τ (p)
xup , τ

(c)
xup) since the first one arrived waits for the other.

I Definition 2 (Carpooling Cost). Given a solution S of the 2SPSPP, we aim at minimizing
cost(S) = (τ (c)

dc
− τ (c)

oc) + (τ (p)
dp
− τ (p)

op), the total time spent traveling by both users.

cost(S) = (τ (c)
dc
− τ (c)

oc
) + (τ (p)

dp
− τ (p)

op
)

= len(Popxup
, τ (p)

op
) + len(Pocxup

, τ (c)
oc

) + |τ (c)
xup
− τ (p)

xup
|

+ 2× len(Pxupxoff
,max(τ (p)

xup
, τ (c)

xup
))

+ len(Pxoff dp , τ
(p)
xoff

) + len(Pxoff dc , τ
(c)
xoff

) (1)

The first line corresponds to the cost of the 2 paths Popxup
and Pocxup

plus the waiting time,
the second line is the cost of the path Pxupxoff

counted twice since it is made by both users
and the third one is the cost of the 2 paths Pxoff dp and Pxoff dc .

We remark that we are dealing with a polynomial problem as, for fixed synchronization
points, 5 calls to the Dijkstra algorithm (two of them with the time-dependent variant)
are sufficient to obtain the optimal solution. As there are O(|V |2) possible synchronization
points, the complexity result follows. However, a naive method of enumerating all possible
pairs of synchronization points is not applicable on transportation networks having realistic
size. The aim of this study is to propose an efficient algorithm for solving the 2SPSPP.

3 Related Work

Given a weighted graph G = (V,E), an origin node o and a destination node d, the Shortest
Path Problem from o to d (SPP) is solved in polynomial time with the well-known Dijkstra
algorithm. In this algorithm, a label lx = (πx, px) is associated to a node x, where πx is the
current cost from o to x, and px the reference of the predecessor node for the current best
path from o to x. A queue Q is used for exploring the labels in an increasing order of their
costs: the label with minimal cost is extracted from Q, settled and its successors are updated
or inserted in Q. The algorithm stops when node d is settled, πd then gives the cost of the
shortest path from o to d and the path is obtained by exploring the predecessor pd until
the origin is reached. Speed-up techniques were introduced to improve the efficiency of this
algorithm for solving the one-to-one shortest path problem. In the A∗ goal directed search,
the Dijkstra algorithm is guided towards the destination using an estimate cost between
the current node and the destination d. The optimal solution is obtained if the estimation is
a lower bound of the exact cost. In bidirectional search, two algorithms run: one from o to
d (forward search) and one from d to o on the reverse graph (backward search). When a

A. Bit-Monnot, C. Artigues, M.-J. Huguet, and M.-O. Killijian 153

connection is found between the forward and the backward algorithms a feasible solution is
obtained. However, this solution may not be optimal and the two algorithms run until there
is no better solution connecting the forward and the backward labels.

In addition, different preprocessing techniques were proposed. The objective is to compute
and store informations on the graph to speed-up the shortest path queries. An overview of
various efficient preprocessing techniques such as landmarks, contraction hierarchy or flags is
given in [4]. We only present one of them, the ALT algorithm [5] that we use later. ALT is
based on landmarks and consists in computing the shortest paths from all the nodes to a
(small) subset of landmarks. These precomputed shortest paths are then combined with the
A∗ search and triangular inequality to provide strong lower bounds on the shortest paths.

Some extensions of the SPP were proposed to deal with time-dependency of travel times.
When the cost function on arcs satisfies the FIFO property, the time-dependent SPP remains
polynomially solvable [7] and a straightforward adaptation of the Dijkstra algorithm can be
done. The FIFO property guarantees that, along any edge, it is never possible to depart
later and arrive earlier. In the time-dependent Dijkstra algorithm, when the destination is
reached, one has both the minimal cost of the shortest path and the minimal arrival time at
the destination. However, many efficient techniques based on bidirectional search cannot be
easily extended in the time-dependent case as the start time is given at only one node (at
the origin or at the destination). For instance, an adaptation of the bidirectional ALT was
proposed in [9] by considering a lower bound of travel time in the backward search. Each
connection then needs to be re-evaluated to obtain the exact cost from the connection point
to the destination, increasing the complexity of the problem.

When taking multimodality into account, one has to model the transportation network
and the constraints on transportation modes (for instance a passenger may wish to avoid a
given sequence of modes). In [3], the authors use an edge-labeled graph where a mode m is
associated to each edge. They propose to use a regular language L to model constraints on
modes and define the regular language constrained shortest path problem (RegLCSP). Their
algorithm, called DRegLC , is an extension of the Dijkstra algorithm constrained by the
regular language. Product-nodes are simply a pair (x, s) where x is a node and s a state in
the automaton. The algorithm should be stopped as soon as a product-node (d, sf) is settled,
where d is the destination and sf is an accepting state in the automaton.

We are not aware of research addressing problems similar to the 2SPSPP. In carpooling
papers, the authors usually consider variants of vehicle routing problems for solving static or
long term carpooling problems (to collect several people at their home for instance and drive
them at work each week or each day). Dynamic carpooling problems were also considered
and several authors (see for instance [1, 10]) proposed a multi-agent architecture in which
some heuristics are used to solve the matching problem between drivers and requesters. But,
to the best of our knowledge, the driver is not derouted for collecting a user.

In [6], the authors propose a method for synchronizing two itineraries in a point such
that the global cost of the two paths is minimized. The problem under study is the 2-Way
Multi Modal Shortest Path problem in which two itineraries are defined for the same user at
different times of the day between a given origin and destination. The proposed method is
based on 4 multi-directional algorithms (forward and backward search) to obtain the optimal
parking node such as the sum of an outgoing path and a return path is minimized. As
already mentioned, the main difficulty arises when facing time-dependency, an expensive
re-evaluation process is added to the 4 algorithms to obtain the exact cost of paths.

ATMOS’13

154 Carpooling : the 2SPSPP

oc

xupi
xoffj

Dc

xup1

xup2

xupp

xoff1

xoffq

op dp

A1, {f, pt}

A2, {c}

A3, {c}

A4, {c}

A5, {f, pt}

Figure 2 General principle for solving the 2SPSPP.

4 The proposed approach for the 2SPSPP

4.1 General principle
In the problem under study, we consider that travel times for the car and foot modes are time-
independent, unlike travel times for the public transportation mode that are time-dependent.
Moreover, departure times are given at the origins. The proposed method aims to overcome
the difficulty due to time-dependency, i.e. the use of lower bounds in algorithms where
start times are unknown and the need for re-evaluation. Indeed, as public transportation is
time-dependent, the use of backward search from the pedestrian’s destination or from the
potential drop-off points requires some (time consuming) re-evaluation. Therefore, in our
method, forward search (from the origin to the destination) is used as long as it is possible
to obtain the exact value of travel time and not a lower bound.

We propose a method combining 4 forward algorithms and 1 backward algorithm without
any need of re-evaluation. In Figure 2, the arrows on the arcs indicates the direction of
the algorithms. First, we launch 2 forward algorithms (A1 and A2) from the origins and 1
backward algorithm (A4) from the driver’s destination. Each node reached by the 2 forward
algorithms A1 and A2 is a potential pick-up point. A forward algorithm A3 is then launched
from the set of potential pick-up points towards potential drop-off points. The aim of A3
is to find the best origin between a set of potential origin nodes (here the pick-up points)
and a set of destination node (here the drop-off points). Then, each time a node is reached
by algorithm A3 and the backward algorithm A4, a potential drop-off point is determined.
Finally, another forward algorithm A5 is launched from the set of drop-off points towards the
pedestrian’s destination. The aim is to determine the best origin between a set of potential
origin nodes (drop-off points) and a single destination node (pedestrian’s destination).

Algorithms A1, A2 and A4 are standard DRegLC for solving the one-to-all SPP in a
multimodal and time-dependent network. The multimodal constraints only state that car
must be used in A2, A3 and A4 and that either foot or public transportation can be used in
A1 and A5. Algorithms A3 and A5 are dedicated to solving the best origin problem. We
present in the next section how this problem can be solved.

4.2 The Best-Origin Problem
Given a set S of several origin nodes with individual costs and arrival times (ie. πx and
τx∀x ∈ S) and a set of target nodes D, we aim at selecting the best origin to minimize the
cost at the destinations.

A. Bit-Monnot, C. Artigues, M.-J. Huguet, and M.-O. Killijian 155

o1

(8:05,2)

o2

(8:06,0)

v

(8:06,3)

(8:07,1)

d

(8:15,12)

(8:19,13)

τ = 8 : 05 → ∆ = 1

τ = 8 : 06 → ∆ = 1

τ = 8 : 06 → ∆ = 9
τ = 8 : 07 → ∆ = 12

Figure 3 An example of the Best Origin Problem with two potential origins {o1, o2} and
inconsistent costs and arrival times. Labels are placed above (resp. below) the node if they are
issued from o1 (resp. o2). Edges are associated with weight τ = a → ∆ where ∆ is the cost of
traversing the edge when departing at time a.

I Definition 3 (Best Origin Problem (BOP)). Given a weighted directed graph G = (V,E),
a set of origins S and a set of destination nodes D, the expected output is, for every d ∈ D,
an origin x having label (πx, τx) such that, for any other origin y ∈ S with label (πy, τy), it
holds that: πx + len(Pxd, τx) ≤ πy + len(Pyd, τy).

Solving BOP in time-independent networks has been done implicitly for decades using the
forward Dijkstra algorithm from the origins. Each time a node is touched by the algorithm,
it is updated with the best available cost. The only predecessor kept is the one providing the
best cost. This problem can therefore be solved by inserting all potential origins with their
initial costs into the priority queue and let the Dijkstra algorithm run until every d ∈ D is
settled. The last predecessor of d in the optimal path would be the best origin.

In the time-dependent context, when there is consistency between cost and arrival time
(see Definition 4), we can consider that the label with the best cost is the one with the best
arrival time. Using the FIFO-property, it is easy to see that the only label we are interested
in is the one with the lowest cost. The Dijkstra approach (dropping all labels with greater
cost) can therefore be applied to solve this problem.

I Definition 4 (Consistency between cost and arrival time). Given a shortest path solver using
cost and arrival time labels, we say that cost and arrival times are consistent if and only if,
for any two labels (πx, τx) and (πy, τy), πx ≤ πy ⇔ τx ≤ τy

However, the classical solution approach does not hold when costs and arrival times are
not consistent. Figure 3 gives an example of the BOP with inconsistent costs and arrival
times. Let S = {o1, o2} be a set of origins having respective inconsistent labels (8 : 05, 2) and
(8 : 06, 0), and a destination d. Travel times are time-dependent and are detailed in Figure
3. Two labels are obtained for v: (8 : 06, 3) due to o1 and (8 : 07, 1) due to o2. The best
origin for d is o1 (with a cost of 12), but the best label for v is the one from o2. Applying the
Dijkstra algorithm on this instance would discard the (8 : 06, 3) label in v and o2 would be
selected as the best origin, giving a suboptimal result.

To solve this problem, we propose an algorithm performing forward search only and not
doing any reevaluation. This algorithm is inspired by Martins’ algorithm [8] to keep track of
costs and arrival times. However, we note that this algorithm stays mono-objective since we
are only interested in finding the best cost in d. Labels are sorted by cost only and priority
queues for the Dijkstra algorithm can be used. Moreover, the extension of this algorithm

ATMOS’13

156 Carpooling : the 2SPSPP

x1

(9:10,41)

x2

(9:04,39)

y

(9:12,43)

(9:05,40)

z

(9:17,48)

(9:17,52)

2

1

τ = 9 : 12 → ∆ = 5
τ = 9 : 05 → ∆ = 12

Figure 4 An instance where dominance rule 2 would yield suboptimal results.

to a multimodal network is straightforward using the product network of the graph and the
automaton representing constraints on modes.

To prune labels during the search, we introduce the following dominance rule that allows
discarding labels that can not be part of an optimal solution.

I Definition 5 (Exact Dominance rule (1)). Given a node x and two labels l = (πx, τx) and
l′ = (π′x, τ ′x), we say that l dominates l′ if and only if τx ≤ τ ′x and πx − π′x ≤ τx − τ ′x.

I Proposition 6. At least one optimal solution is reachable if dominance rule 1 is applied.

Proof. Let us select an optimal path P from an origin o to dp that verifies
1. i is the first node on the path such that the label (π′, τ ′), extended to obtain P , is

dominated according to rule 1 by another label (π, τ) of node i.
2. Among the optimal paths, P is the one with the smallest number of arcs between i and

dp

According to rule 1 we have π ≤ π′− (τ ′− τ) and τ ≤ τ ′. Let Pidp
the subpath of P from i to

destination dp. It comes: π+ len(Pidp
, τ) ≤ π′ + len(Pidp

, τ)− (τ ′ − τ). Since len(Pidp
, τ) ≤

len(Pidp
, τ ′) + (τ ′− τ) in FIFO networks, we finally have π+ len(Pidp

, τ) ≤ π′+ len(Pidp
, τ ′).

It follows that extending label (π, τ) from node i yields an optimal path. J

As it will be shown in Section 6, solving the BOP with this dominance rule is not always
efficient. We, then, introduce a second dominance rule which is heuristic. The pros and cons
of those two dominance rules will be discussed further.

I Definition 7 (Heuristic Dominance rule (2)). Given a node x and two labels l = (πx, τx)
and l′ = (π′x, τ ′x), we say that l dominates l′ if and only if τx ≤ τ ′x and πx ≤ π′x.

This second dominance rule is heuristic as it may prune labels leading to optimal solutions.
An illustration of this situation is given in figure 4 where nodes x1 and x2 are potential
drop-off points, nodes y and z are explored by the pedestrian to reach his destination. Labels
of x1 and x2 are extended to y. When considering the second dominance rule, at node y, the
blue label (9 : 12; 43) is dominated by the green one (9 : 05; 40). However, the extension of
the blue label to node z gives a better solution (9 : 17; 48) due to the time-dependent arc
from y to z. This models a situation where the passenger would have to wait for the same
bus whether it was dropped at x1 or at x2. As a consequence, the second dominance rule
may filter labels that could lead to optimal solutions in terms of cost since it doesn’t account
for those situations.

In our mono-objective variant of Martins algorithm, at first, all potential origins are
inserted in a queue Q with their original costs and arrival times. At each iteration, the

A. Bit-Monnot, C. Artigues, M.-J. Huguet, and M.-O. Killijian 157

undominated label with lowest cost in Q is selected, settled and its edges are relaxed. The
generated labels are inserted in Q. Either dominance rule can be used to prune dominated
labels.
I Proposition 8. At each iteration, a label settled has a cost greater than or equal to the
cost of any label previously settled.

Proof. Given that edge weights are non-negative, the cost of a label will be greater than or
equal to its predecessor’s. Since the priority queue selects labels with lowest cost first, all
labels inserted in queue will have a cost greater or equal than the one currently selected. J

I Corollary 9. In the Mono-Objective Martins algorithm, the lowest cost of a node is
the one of its first settled label.

Using Corollary 9, we can stop the algorithm as soon as a label is settled for all d ∈ D.
By looking at predecessors, we deduce the best origins o and the paths Pod.
I Proposition 10. There can be at most |S| undominated labels per node, |S| being the
number of potential origins.

Proof. Given a potential origin o with label (πo, τo) and a node v, we suppose there are
two paths P and P ′ from o to v. The label generated in v by following those paths would
be lv = (πo + len(P, τo), τo + len(P, τo)) and l′v = (πo + len(P ′, τo), τo + len(P ′, τo)). Note
that the second inequality of dominance rule 1 is always verified since (πo + len(P, τo))−
(πo + len(P ′, τo)) = (τo + len(P, τo))− (τo + len(P ′, τo)). Thus, if len(P, τo) ≤ len(P ′, τo), lv
dominates l′v. Otherwise lv is dominated by l′v. Therefore, each potential origin generates at
most one undominated label per node. J

Complexity. Using Proposition 10, we deduce that there can be at most |E| · |S| labels
inserted in Q. When extracted from the queue, these labels need to be checked for dominance,
which can be done in |S|. Hence, the worst-case complexity of this algorithm is O(|E| · |S| ·
rQ + |E| · |S| · eQ + |E| · |S|2) where rQ is the cost of reordering the queue after inserting one
label and eQ is the complexity of extracting the next label.

We note that this worst-case complexity is greater than the one of running |S| Dijkstra
algorithms. However, in our experiments, these two rules allow to discard many labels.

5 Algorithm for the 2SPSPP

5.1 A sequential approach
In our method, we split the carpooling problem into three One-to-All Shortest Path Problems
and two Best Origin Problems. The two BOP are using the nodes settled by the shortest
path algorithms as their potential origins. We call Ai the algorithm used to solve the ith

problem and Ni the set of nodes it settles. A specification of the algorithms and the problems
they have to solve is given in Table 1. All five algorithms are to be executed sequentially.
The 2SPSPP is solved when dp is settled by algorithm A5: we are able to retrieve xoff (best
origin of dp in A5) and xup (best origin of xoff in A3).

We saw in section 4.2, that the consistency between costs and arrival times has an impact
on which algorithm can be used to solve the BOP. We will therefore study this consistency
for each part of the proposed method. We call π(i)

x the cost of node x in algorithm Ai and
τ

(i)
x the arrival time at x for the algorithm Ai. We are also given τ (p)

op and τ (c)
oc , respectively

the departure times of the passenger and the driver. Note that in A1, A2 costs and arrival

ATMOS’13

158 Carpooling : the 2SPSPP

Table 1 Specification of the algorithms used to solve the 2SPSPP for carpooling.

Algorithm Source Target Settled Nodes Problem
A1 op All N1 Shortest Path (forward)
A2 oc All N2 Shortest Path (forward)
A3 Xup = N1 ∩N2 All N3 Best Origin
A4 dc All N4 Shortest Path (backward)
A5 Xoff = N3 ∩N4 dp N5 Best Origin

times are consistent and then in A4 we do not consider the time since it is executed on
a time-independent graph and the arrival time has no impact on the rest of the method.
Then, for A3 and A5, initial costs and arrival times of nodes in Xup and Xoff derive from
Definition 2 and are defined as follow:

in A3, for x ∈ Xup : τ (3)
x = max(τ (1)

x , τ (2)
x); and π(3)

x = π(2)
x + π(1)

x + |τ (1)
x − τ (2)

x |

in A5, for x ∈ Xoff : τ (5)
x = τ (3)

x ; and π(5)
x = π(3)

x + π(4)
x (2)

Given this definition and recalling that cost is counted twice in A3, it is fairly easy to
show that, for any node x ∈ N3, π(3)

x = 2× τ (3)
x − τ (p)

op − τ
(c)
oc . Hence, costs and arrival times

are consistent in N3. However, breaking down the cost of a node x ∈ Xoff leads us to
π

(5)
x = 2× τ (3)

x − τ (p)
op − τ

(c)
oc + π

(4)
x , showing that costs and arrival times are not consistent in

N5 (since Xoff is a subset of N5).
According to those results, a Dijkstra like algorithm can be used for solving BOP in

A3. However, because of the inconsistency between costs and arrival times in A5, Mono-
Objective Martins has to be used to make sure no solution is discarded.

The complexity of this approach falls back on the one of four Dijkstra algorithms and
one Mono-Objective Martins. Since any node of the graph can be a potential drop-off
point, the worst-case complexity of our method is O(|E| · |V |2) when using a binary heap.

5.2 Integrated Approach

The sequential approach raises the problem of exploring four times the whole graph. In this
section, we present a method integrating the five algorithms to speed up the search. The
idea is to have all five algorithms initialized and select the one with the lowest cost in its
heap for execution as illustrated in the algorithm given in Listing 1. When a pick-up (resp.
drop-off) point is discovered, it is dynamically inserted into A3 (resp. A5)’s heap.

Listing 1 Integrated approach: the algorithm with lowest cost is selected for execution.
// Init : insert op in A1 ’s heap , oc is A2 ’s heap and dc in A4 ’s heap
while not all heaps empties
k = number of algorithm with smallest cost in heap
// run one iteration in selected algorithm
// and retrieve the settled node
x = Algo[k]. make_one_iteration () // x is settled in Ak

if x = dp and k = 5 then stop // Problem solved
if k = 1 or k = 2 then check pick -up point
if k = 3 or k = 4 then check drop -off point

stop // no solution found

A. Bit-Monnot, C. Artigues, M.-J. Huguet, and M.-O. Killijian 159

Initialization is done by inserting the origin of the passenger, the origin of the driver and
the destination of the driver into, respectively, A1, A2 and A4’s heaps with a zero cost and
departure times from the origins.

An iteration of our method starts by selecting k such that the next label to be settled in
Ak has the lowest cost among all algorithms’ heaps. Then, Ak makes one iteration (settling
the next label and relaxing its edges) and yields the node x it just settled. If dp was settled
by A5, the problem is solved. Otherwise, we check if x can be used as a pick-up or drop-off
point. A node x is admissible as a pick-up point if it has been settled by A1 and A2. If
that’s the case, a new label (x, π(3)

x , τ
(3)
x) is inserted in A3’s heap (computed with first line of

Equation 2). A similar approach is taken for drop-off points: if x was settled by A3 and A4,
a label (x, π(5)

x , τ
(5)
x) is inserted in A5’s heap (second line of Equation 2).

When executed on a product network, one has to make sure pick-up (resp. drop-off) nodes
correspond to start states in the automaton modeling constraints on modes. Furthermore,
they have to derive from nodes with accepting states in A1 and A2 (resp. A3 and A4).
I Proposition 11. In Listing 1, a label settled by the algorithm has a cost greater than or
equal to the cost of any label previously settled.

Proof. There are two ways of inserting a label in our algorithm: when executing one step
of Dijkstra or Mono-Objective Martins and when creating a new pick-up or drop-off
label. In both Dijkstra and Mono-Objective Martins, no node with lower cost might
appear as an effect of settling a node. Insertion of pick-up and drop-off points is done when
a node n(l) is settled and the cost of the newly created label is always greater than π(l)

n (see
the previous section for the costs expressions). Thus, every newly created label’s cost will
be greater or equal than the ones previously settled. Since we select the lowest label of all
heaps, labels are settled by increasing cost. J

I Corollary 12. (Correctness) When the node dp is settled in A5, π(5)
dp

is the minimal
carpooling cost.

5.3 Restrictions on pick-up and drop-off points
A carpooling problem usually comes with preferences about where the pick-up and drop-off
can occur. In this part, we present how such preferences can be used for guiding and stopping
our method.

Let Zup be a set of nodes accessible by both the passenger and the driver. When restricting
pick-up points to be in Zup, it is easy to see that the goal of A1 and A2 is to settle all nodes
in Zup and that they can stop once they have done it. This defines a stop-condition.

Furthermore, we would like to guide A1 and A2 towards Zup. Suppose we have a set of
consistent heuristic ht(u) that gives a lower bound of the distance from u to t. To guide
towards an area Z, we define HZ(u) = min

z∈Z
hz(u). Combining consistent heuristics with

min results in a consistent heuristic. Furthermore, ∀z ∈ Z : HZ(z) ≤ 0. Hence, HZ(u) can
be used in the A∗ algorithm for guiding towards a set of nodes Z. In practice, using this
heuristic results in guiding towards the closest node of the area.

However, this raises the problem of computing |Z| heuristics at every iteration of the
algorithm. We note as d(u, v) the length of the shortest path from u to v. For every
landmark L and every node t, algorithm ALT [5] provides us with two consistent heuristics:
h+

t (u) = d(u, L) − d(t, L) and h−t (u) = d(L, t) − d(L, u). Taking the minimum of each of
those functions leads us to H+

Z (u) = d(u, L)−max
z∈Z

d(z, L) and H−Z (u) = min
z∈Z

d(L, z)−d(L, u).
Note that max

z∈Z
d(z, L) and min

z∈Z
d(L, z) are not dependent on u and are to be computed only

ATMOS’13

160 Carpooling : the 2SPSPP

once per carpooling problem. The final heuristic we propose to use is given by taking the
max of H+

Z and H−Z over all landmarks.
We can use this heuristic in A1 and A2 to guide towards Zup. A similar approach can be

taken when we are given a set Zoff of potential drop-off points to (a) stop A3 and A4 once
they have settled all potential drop-off points (b) guide A3 and A4 towards Zoff .

6 Experimental study and discussion

All experiments were conducted under Ubuntu 13.04 on an HP Pavilion g6 with 4GB of RAM.
The processor is a 2.10GHz Pentium-4 with 2MB of L2 cache. Algorithms are implemented
in C++ and compiled with gcc with optimization level 2. The source code is available as
free software under a CeCILL-B license1. We use a multi-modal graph modeling the French
regions of Aquitaine and Midi-Pyrénées. All transportation data used in these experiments
are free data. Road network corresponds to the OpenStreetMap2 datasets and were provided
by GeoFabrik3. Our public transportation network is based on The General Transit Feed
Specification4 format. When converted into an edge-labeled multi-modal graph, it contains
629 765 nodes (21 439 of them being public transportation nodes) nodes and about 5 millions
edges (edges are duplicated for every transportation mode).

We consider 3 cities to define our instances: Toulouse, Albi and Bordeaux5. Both users
start their journey in Bordeaux, the passenger is willing to go to Toulouse and the driver goes
to Albi. Origins and destinations are randomly chosen in the respective cities and the start
times of both users are identical during daytime (to have access to public transportation).
In this configuration, passenger and driver typically meet in Bordeaux. The passenger is
dropped-off in Toulouse and the driver continues his journey towards Albi. All presented
results are an average over 50 of those instances using the presented integrated approach.

To measure the efficiency of stop conditions and guiding, we use two different restrictions
on pick-up and drop-off points:

Cities: Zup (resp. Zoff) contains all car accessible nodes within 20 minutes walk from
Bordeaux (resp. Toulouse)’s public transports. Those areas contain respectively 29 865
and 46 584 nodes. In practice, these correspond to the whole cities.
10-min: Zup (resp. Zoff) contains all car accessible nodes within 10 minutes by foot or
public transportation from op (resp. to dp). Areas defined this way contain, on average,
a few hundred nodes.

The three tested configurations are (a) unrestricted: the integrated approach defined in
Section 5.2, (b) stop-conditions: stop conditions based on the areas Cities or 10-min (c)
stop-conditions-guided: stop conditions and landmarks in A2, A3, and A4 to guide towards
the pick-up and drop-off areas.

Tables 2 and 3 give the results of our method using respectively dominance rule 1 and
dominance rule 2. In the first column, we give the tested configuration. The second, third,
fourth and fifth columns present the runtime in ms, the number of settled labels, the number
of labels per node in A5 (for solving the Best Origin Problem) and the average carpooling
cost over the 50 instances. There is a significant gap between the two dominance rules,

1 http://projects.laas.fr/MuPaRo/
2 http://www.openstreetmap.org/
3 http://www.geofabrik.de/
4 https://developers.google.com/transit/gtfs/
5 Bordeaux-Toulouse is a two hours and a half drive while Toulouse-Albi takes about one hour.

http://projects.laas.fr/MuPaRo/
http://www.openstreetmap.org/
http://www.geofabrik.de/
https://developers.google.com/transit/gtfs/

A. Bit-Monnot, C. Artigues, M.-J. Huguet, and M.-O. Killijian 161

Table 2 Results with dominance rule 1 (exact).

Restrictions Runtime (ms) Settled labels Labels/node in A5 Cost (s)
– 48 377 5 610 354 21.52 24 607

cities 6 212 1 135 823 13.99 24 610
cities-guided 5 910 928 487 13.99 24 610

10-min 603 374 974 4.54 24 881
10-min-guided 220 122 706 4.54 24 881

Table 3 Results with dominance rule 2 (heuristic).

Restrictions Runtime (ms) Settled labels Labels/node in A5 Cost (s)
– 4 316 1 793 205 1.17 24 621

cities 1 139 585 760 1.26 24 623
cities-guided 853 378 404 1.26 24 623

10-min 571 372395 1.15 24 881
10-min-guided 195 120 126 1.15 24 881

especially without restrictions on pick-up and drop-off areas. The average runtime with the
exact dominance rule without restriction is about 48 sec. and goes down to 4.3 sec. with
the heuristic rule, for a cost increasing of only 14 seconds. This gap comes from algorithm
A5 that has a high number of labels per nodes. With restrictions, this gap is shortened
and the two rules are very close for the 10-min restriction with guided heuristic as they
provide the same carpooling cost with a similar runtime. With restrictions, our algorithm
has acceptable runtime with the two dominance rules. Moreover, one can see the interest of
the heuristic dominance rule that leads to a small number of labels per node in A5 giving a
runtime performance close to Dijkstra’s on an equivalent BOP with consistency. In our
instances, the two dominance rules discard many labels as, in the unrestricted configuration,
there is on average 366 745 drop-off points evaluated as potential origins in the BOP.

In these tables, the stop conditions yield a major improvement. The gain of guiding our
algorithms is much more noticeable for the 10-min restriction than for the Cities restriction.
This difference is mainly due to the quality of our guidance-heuristic increasing with smaller
areas. For the Cities restriction, carpooling solutions are mainly identical to solutions for
the unrestricted variant. When considering the 10-min restriction, the cost of carpooling
solutions is increasing of 259 seconds comparatively to the unrestricted variant.

Table 4 and 5 give the average cost6 and, in brackets, number of nodes settled by each
algorithm of our method for each dominance rule. Firstly, one can see the interest of the
integrated approach comparatively to the sequential one on A1, whose exploration is limited
to a small part of the network. It is not the case for A2 and A4, they both settle all nodes
because the use of the car allows exploring the graph while keeping the cost low. The benefits
of using the integrated approach increases with the size of the network.

Secondly, these tables show that, in terms of number of settled nodes, restrictions have an
impact on all algorithms but this impact is more important for A2, A4 and A5. Algorithms
A2 and A4 only consider the car mode and can, when there is no restrictions, explore the
whole graph with low cost before a solution is found. Moreover, in terms of number of settled
labels, the guiding variant has a light impact on A2 but a large impact on A3 and A4 since
considered paths are longer.

6 Recall that the cost in algorithm A3 is counted twice

ATMOS’13

162 Carpooling : the 2SPSPP

Table 4 Dominance rule 1 (exact): Average Cost and Number of labels settled by each algorithm.
The waiting times are respectively 97, 103, 103, 439, 439.

Restrictions A1 A2 A3 A4 A5

- 830 (70023) 896 (569033) 9456 (366412) 3666 (569024) 204 (4035862)
cities 824 (45120) 897 (57213) 9457 (318811) 3666 (119432) 203 (595247)

cities-guided 824 (45120) 897 (52311) 9457 (146338) 3666 (89443) 203 (595275)
10-min 492 (252) 930 (17977) 9619 (275551) 3727 (77980) 53 (3214)

10-min-guided 492 (252) 930 (10548) 9619 (68141) 3727 (40551) 53 (3214)

Table 5 Dominance rule 2 (heuristic): Average Cost and Number of labels settled by each
algorithm. The waiting times are respectively 97, 103, 103, 439, 439.

Restrictions A1 A2 A3 A4 A5

- 830 (70048) 896 (569033) 9478 (366754) 3689 (569024) 150 (218346)
cities 824 (45120) 897 (57213) 9479 (318811) 3689 (119432) 149 (45184)

cities-guided 824 (45120) 897 (52311) 9479 (146338) 3689 (89443) 149 (45192)
10-min 492 (252) 930 (17977) 9619 (275551) 3727 (77980) 53 (635)

10-min-guided 492 (252) 930 (10548) 9619 (68141) 3727 (40551) 53 (634)

It should be noted that the optimal drop-off point is the passenger’s destination in 29
instances (over 50) in all configurations. This leads to the average cost in A5 being small.
However the passenger’s origin is never selected as the pick-up point since any waiting time
is considered as part of the cost. As expected, restrictions limit the cost of the passenger’s
trips, this cost being transfered on waiting time and driver’s costs.

7 Conclusions

In this paper, we propose a new algorithm to efficiently solve the 2SPSPP problem aiming at
computing two synchronized paths for a driver and a pedestrian in a carpooling application,
while minimizing the total travel time. Obtaining a solution is a matter of seconds on a large
regional network. We also study the Best Origin Problem and exhibit precise conditions for
which the problem can be challenging and benefits from a multi-label algorithm. For this
problem, we propose exact and heuristic dominance rules.

Furthermore, it is worth noting that our approach of splitting the 2SPSPP into several
Shortest Path and Best Origin Problems is very flexible and can easily be used to solve
related problems. For instance, to solve two subproblems of the 2SPSPP: where the two users
have the same origin or the same destination. Moreover, our approach is flexible enough so
that other carpooling costs can be considered as long as consistency between costs and arrival
times is preserved. But, one should notice than, even if the consistency is not preserved,
the proposed method can be adapted by running our mono-objective variant of Martins
algorithm for the best origin subproblems, leading to a more time-consuming approach.

We propose to use restricted drop-off and pick-up areas and we introduce a heuristic
based on landmarks to guide the search towards these areas. These restrictions allow to
obtain good solutions in less than one second, taking advantage of —highly desirable in
practice— user-defined pick-up and drop-off areas with very low impact on optimality.

Future research directions include a better definition of restriction areas and integration
of other acceleration techniques such as contraction hierarchies to speed up the algorithm.

We suppose in this paper that a matching was done (usually based on geographical
information) between a driver and a pedestrian. Nevertheless, our method can be included

A. Bit-Monnot, C. Artigues, M.-J. Huguet, and M.-O. Killijian 163

to improve the matching. While we only consider two agents, our approach may be extended
to a few number of pedestrians and one driver, either by using the same pick-up and drop-off
points or by enumerating the set of pick-up and drop-off points. In addition, extension to a
greater number of pedestrians may introduce an higher level of complexity by increasing the
number of pick-up and drop-off points and by the need of re-evaluation of some paths from
drop-off points to pedestrians’ destinations in the time-dependent part of the network. Further
studies may then be conducted to evaluate the computational time of such approaches.

In the 2SPSPP, we consider the minimization of a carpooling cost representing the total
travel time of the two itineraries for pedestrian and driver. This carpooling cost introduces a
cooperation between the two agents who both aim at reducing the total cost. However, it
would be interesting to consider other objectives such as cost or profit for pedestrians and
drivers in addition to the cost based on travel time. The proposed method can be seen as a
first step towards a multi-objective approach or a fair optimization combining combinatorial
optimization and game theory.

Acknowledgements We would like to thank Dominik Kirchler for his precious comments
on the Best Origin Problem and on the dominance rule.

References
1 G. Arnould, D. Khadraoui, M. Armendáriz, J. C. Burguillo, and A. Peleteiro. A transport

based clearing system for dynamic carpooling business services. In 11th International IEEE
Conference on ITS Telecommunications (ITST), pages 527–533, 2011.

2 C. Artigues, Y. Deswarte, J. Guiochet, M.-J. Huguet, Marc-Olivier Killijian, D. Powell,
M. Roy, C. Bidan, N. Prigent, E. Anceaume, S. Gambs, G. Guette, M. Hurfin, and
F. Schettini. Amores: an architecture for mobiquitous resilient systems. In Proceedings
of AppRoaches to MObiquitous Resilience (ARMOR’12), a EDCC workshop., 2012.

3 C. L. Barrett, R. Jacob, and M. Marathe. Formal-Language-Constrained Path Problems.
SIAM Journal on Computing, 30(3):809–837, 2000.

4 D. Delling, P. Sanders, D. Schultes, and D. Wagner. Engineering route planning algorithms.
In Algorithmics of Large and Complex Networks, volume 5515 of LNCS, pages 117–139,
2009.

5 A. V. Goldberg and R. F. Werneck. Computing point-to-point shortest paths from external
memory. In ALENEX/ANALCO, pages 26–40. SIAM, 2005.

6 M.-J. Huguet, D. Kirchler, P. Parent, and R. Wolfler Calvo. Efficient algorithms for the
2-Way Multi-Modal Shortest Path Problems. In International Network Optimization Con-
ference (INOC), 2013.

7 E. Kaufman and R. L. Smith. Fastest paths in time-dependent networks for intelligent
vehicle-highway systems applications. IVHS Journal, 1(1):1–11, 1993.

8 E. Martins. On a multicriteria shortest path problem. European Journal of Operational
Research, 16(2):236–245, 1984.

9 G. Nannicini, D. Delling, D. Schultes, and L. Liberti. Bidirectional A* search on time-
dependent road networks. Networks, 59(2):240–251, 2012.

10 M. Sghaier, H. Zgaya, S. Hammadi, and C. Tahon. A novel approach based on a distributed
dynamic graph modeling set up over a subdivision process to deal with distributed optim-
ized real time carpooling requests. In 14th International IEEE Conference on Intelligent
Transportation Systems (ITSC), pages 1311–1316, 2011.

ATMOS’13

	p000-frontmatter
	Preface
	Organization

	p001-goerigk
	Introduction
	Model and Notation
	Timetable information
	Delays
	Recoverable Robust Timetable Information

	Algorithms for Recoverable Robust Paths
	A Recovery-Label Setting Algorithm
	Single-Criteria Versions of Recoverable Robustness

	Experimental Results
	Test Instances
	Generating Information Scenarios
	Environment
	Experiments

	Conclusion and Further Research
	Algorithmic Approach

	p015-firmani
	Introduction
	Preliminaries
	Experimental Setup
	Experiments
	Simulation system

	Experimental Results
	Measured error coefficients
	Correlations in ranking

	Final Remarks

	p027-boehmova-old
	Introduction
	Related Work
	Modeling issues
	Model
	Computation of Feasible Routes
	Computing the earliest arriving journey

	Maximizing the Unexpected Similarity
	Journey Reliability
	Small Experimental Evaluation
	Discussion

	p027-boehmova
	Introduction
	Related Work
	Modeling issues
	Model
	Computation of Feasible Routes
	Computing the earliest arriving journey

	Maximizing the Unexpected Similarity
	Journey Reliability
	Small Experimental Evaluation
	Discussion

	p042-bast
	Introduction
	Related Work
	Preliminaries
	Modeling timetables
	Routing with Transfer Patterns

	Delay and Robustness
	Delay Scenarios
	Delay and Transfer Patterns
	Updating the Direct Connection Data

	Experiments
	Global Delay Scenarios
	Controlled Delay
	Dependencies of the Robustness
	Improving the Robustness

	Conclusion & Future Work

	p055-sadykov
	Introduction
	Problem description
	Mathematical model
	A column generation approach
	Path reformulation
	Flow enumeration reformulation

	A ``column generation for extended formulations'' approach
	Numerical results
	Conclusions and perspectives

	p068-borndoerfer
	Introduction
	Problem Description
	Standard Model
	Extended or Configuration Model

	Comparison of the Models
	Band Inequalities
	MIR Inequalities

	Computational Results

	p080-carrizosa
	Introduction
	Stop location with realistic traveling time
	(SL-TT-p) Locating p stops
	(SL-TT-Cov) Covering all demand points
	Feasibility and complexity of (SL-TT-Cov)
	A finite dominating set for (SL-TT-Cov)
	An integer programming formulation for (SL-TT-Cov)

	Experiments
	Conclusion and further research
	Appendix

	p094-kobitzsch
	Introduction
	Preliminaries
	Related Work
	Alternative Graph Computation
	Path Selection
	Changes to Penalization
	Fast Computation
	Alternative Route Extraction

	Experiments
	Runtime
	Quality

	Conclusion

	p108-paraskevopoulos
	Introduction
	Preliminaries
	Alternative Graphs
	Shortest path Heuristics

	Approaches for Computing Alternative Graphs
	Our improvements
	Pruning
	Filtering and Fine-tuning

	Experimental Results
	Conclusion
	Appendix

	p123-bast
	Introduction
	Contribution

	Related Work
	Preliminaries
	Modelling
	Optimality Criteria
	Contracting the Road Networks
	Computing Multi-Criteria Optimal Paths

	Types aNd Thresholds
	Discretization
	Types
	Thresholds
	Filtering
	Speed-up Techniques for Faster Query Answering
	Extended Dominance by Early Results
	Rounding on Transfers
	Using Implicit Walking Duration

	Experimental Results
	Setup
	Results

	Conclusions & Future Work

	p137-sarpong
	Introduction
	Column Generation for a BOVRPMMO
	Computing Lower and Upper Bounds
	Column Search Strategies

	Application Problems
	The Bi-Objective Uncapacitated Vehicle Routing Problem
	The Bi-Objective Multi-Vehicle Covering Tour Problem

	Computational Results
	Conclusions

	p150-bit-monnot
	Introduction
	Problem Statement
	Related Work
	The proposed approach for the 2SPSPP
	General principle
	The Best-Origin Problem

	Algorithm for the 2SPSPP
	A sequential approach
	Integrated Approach
	Restrictions on pick-up and drop-off points

	Experimental study and discussion
	Conclusions

