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Preface

This proceedings volume contains original research papers presented at the German Conference
on Bioinformatics 2013 (GCB’13) held at Georg-August-University, Göttingen, Germany,
September 11–13, 2013.

The GCB is an annual, international conference devoted to all areas of bioinformatics.
Recent meetings attracted a multinational audience with 250 – 300 participants each year.

GCB’13 is organized by the bioinformatics groups at Göttingen Research Campus in
cooperation with the German Society for Chemical Engineering and Biotechnology (DE-
CHEMA), the Society for Biochemistry and Molecular Biology (GBM) and the Special Interest
Group on Informatics in Biology of the German Society of Computer Science (GI).

Five internationally renowned speakers agreed to give keynote talks at GCB’13: Manfred
Eigen, Gene Myers, Erwin Neher, Terry Speed and Sarah Teichmann. Four satellite workshops
were held on 10 September 2013 on Statistical Methods in Bioinformatics, Computational
Methods for Metagenomics and Meta-Omics, Alignment-Free Sequence Comparison and
Methods for Integrated Analysis of Multi-Level Datasets.

Submissions to GCB’13 were possible as Regular Papers, i.e. original research papers,
Highlight Papers, usually reporting on work published during the last year, or poster abstracts.

Overall, we received 26 submissions for Regular Papers and 19 Submissions for Highlight
Papers. After a careful reviewing procedure and discussions in the Program Committee, 12
out of the 26 Regular submissions and 8 out of the 19 Highlight submission were selected for
oral presentation at the conference. This proceedings volume contains revised versions of the
12 selected Regular Papers.

We would like to thank all authors, members of the Program Committee and subreviewers
as well as the members of the local Organizing Committee and the support team for their
work. In particular, we are indebted to Dr. Anne-Kathrin Schultz for doing most of the
organization work for GCB’13. We thank Andreas Leha for organizing the production of
this proceedings volume and Britta Leinemann for administrative support.

Göttingen, September 2013
Burkhard Morgenstern and Edgar Wingender
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On the estimation of metabolic profiles in
metagenomics∗

Kathrin Petra Aßhauer and Peter Meinicke†

Department of Bioinformatics, Institute for Microbiology and Genetics
University of Göttingen
37077 Göttingen, Germany
peter@gobics.de

Abstract
Metagenomics enables the characterization of the specific metabolic potential of a microbial
community. The common approach towards a quantitative representation of this potential is to
count the number of metagenomic sequence fragments that can be assigned to metabolic pathways
by means of predicted gene functions. The resulting pathway abundances make up the metabolic
profile of the metagenome and several different schemes for computing these profiles have been
used. So far, none of the existing approaches actually estimates the proportion of sequences
that can be assigned to a particular pathway. In most publications of metagenomic studies,
the utilized abundance scores lack a clear statistical meaning and usually cannot be compared
across different studies. Here, we introduce a mixture model-based approach to the estimation of
pathway abundances that provides a basis for statistical interpretation and fast computation of
metabolic profiles. Using the KEGG database our results on a large-scale analysis of data from
the Human Microbiome Project show a good representation of metabolic differences between
different body sites. Further, the results indicate that our mixture model even provides a better
representation than the dedicated HUMAnN tool which has been developed for metabolic analysis
of human microbiome data.

1998 ACM Subject Classification J.3 Life and Medical Sciences – Biology and genetics

Keywords and phrases metagenomics, metabolic profiling, taxonomic profiling, abundance esti-
mation, mixture modeling

Digital Object Identifier 10.4230/OASIcs.GCB.2013.1

1 Introduction

In metagenomics a central task is to characterize the metabolic potential of a microbial
community. The metabolic profile of a metagenome quantifies the amount of genetic material
that can be attributed to metabolic pathways. The abundance of a pathway is usually
estimated by the number of sequences that can be mapped to gene families with functional
roles within that pathway. Several heuristics exist to compute a corresponding estimate.
Using for instance the KEGG database, an abundance may be estimated by counting all
BLAST best hit matches to KEGG Orthologs which are annotated for the particular pathway
(see e.g. [4]). There are two major difficulties with this classical approach of metabolic
profiling: First, the computational effort for the identification of homologs can become
burdensome. Usually the BLASTX tool is required, which takes a considerable amount of

∗ This work was partially supported by the Deutsche Forschungsgemeinschaft (ME3138 “Compositional
descriptors for large scale comparative metagenome analysis“).
† corresponding author

© Kathrin Petra Aßhauer and Peter Meinicke;
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2 On the estimation of metabolic profiles in metagenomics

CPU-time even for a moderately sized data set. Second, the usual counting scheme lacks
a probabilistic model that would provide a clear statistical interpretation of the resulting
quantities. To our knowledge, none of the existing heuristics actually yields an estimate of
the fraction of sequence material that can be mapped to a particular pathway. Depending on
the particular method the existing tools merely provide different kinds of abundance scores
[14, 12, 1, 5, 4]. Although these scores may be used for comparative analysis as well, they do
not provide a strictly probabilistic description of metagenomic sequence data. Therefore,
the comparison and combination with other methods or models is at least problematic. We
address both problems, the algorithmic and statistical efficiency within a metabolic mixture
model in terms of a mixture of pathways (MoP). This model is capable to provide both,
a sound statistical basis and a fast estimation of pathway abundances. Our results on a
large-scale analysis of data from the Human Microbiome Project (HMP) show the utility of
our method for fast model-based estimation of pathway abundances. Further, the results for
the mixture-based metabolic profiles indicate a better separation between body sites than
for the profiles of the HUMAnN tool which has particularly been developed for analyis of
HMP data.

2 Material

2.1 Human Microbiome Project (HMP)

Within the scope of the Human Microbiome Project (HMP) [3] an extensive collection of
samples from healthy individuals from diverse human body sites was established allowing
an insight into the functions of the healthy human microbiome. More than thousand HMP
data sets are recorded in HMP’s Data Acquisition and Coordination Center (DACC) Project
Catalog (http://www.hmpdacc.org/resources/data_browser.php) providing a comprehensive
data basis for large-scale comparative studies investigating the associations of the human
microbiome in healthy and diseased states.

From the HMP-DACC website we assessed the available metadata for the metagenomic
samples (http://www.hmpdacc-resources.org/hmp_catalog/main.cgi) and the metabolic
reconstruction data (http://www.hmpdacc.org/HMMRC/). The metabolic reconstruction
data is obtained through the HMP Unified Metabolic Analysis Network (HUMAnN) pipeline
[1]. HUMAnN performs functional and metabolic profiling directly from high-throughput
metagenomic short sequence reads. The pipeline starts with a similarity search against a
functional sequence database including the KEGG Orthologs (Release 54) using an accelerated
translated BLAST implementation. Subsequently, the output is used for a series of gene-
and pathway-level quantification, noise reduction, and smoothing steps resulting in the
identification of present/absent pathways and modules together with their relative abundances.
From the available metabolic reconstruction data, we used the “KEGG pathway abundance
values – Summary file” (as of February 2013).

For our mixture modeling approach we used the reduced data samples of the HMP
as describes in [10]. For comparability, the available samples and pathway abundances of
HUMAnN and our mixture modeling approach were reduced to a subset of samples and
pathways available in both methods. The final dataset includes 680 data samples from 14
specific body subsites, which can be grouped into five major body sites.
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2.2 KEGG database
For the metabolic mixture modeling approach introduced here, we use the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database as reference knowledge base for estimating the
pathway abundances of metagenomic samples [9, 8]. KEGG integrates a variety of information
and provides links from gene catalogs to higher-level systematic functions of the organisms
enabling biological interpretation of genomes and high-throughput datasets.

An essential part of the database with respect to metabolic profiling are the KEGG
Orthologs (KO) that consist of gene groups with specific functions directly linked to known
pathways in the KEGG Pathway database. Further, the KEGG Orthology is structured as a
hierarchy of four flat levels: top, second, third level, and leaf nodes. While the leaf nodes
represent the KEGG Orthologous groups, the third level represents the KEGG Pathways,
which can be further summarized in higher level pathway classes (top and second level).

For the mixture modeling the required data reference was extracted from the KEGG
database (Release 64.0).

2.3 MarVis
The MarVis-Suite (Marker Visualization) [7, 6], a toolbox originally developed for the
analysis of metabolomic data, was used for filtering, clustering, and visualization of the
pathway abundances. For exploration of complex pattern variation within the samples of the
different body sites/subsites we used the MarVis-Cluster interface which permits high-level
visualization and cluster analysis based on a one-dimensional self-organizing map (1D-SOM).
The MarVis-Filter software was used for the identification of pathways overrepresented in
the gastrointestinal tract samples compared to the other body subsites.

3 Methods

3.1 Taxonomic mixture modeling
The mixture model based Taxy approach provides a fast and direct estimation of taxonomic
abundances in metagenomes. Taxy-Oligo [13] and Taxy-Pro [10] do not perform a taxonomic
classification of sequencing reads but instead apply a mixture model to approximate the
overall metagenome distribution of oligonucleotides and protein domain hits, respectively.
The discrete distribution of oligonucleotides/protein domains is modeled by a mixture of
organism-specific profiles as obtained from sequenced reference genomes. Because of the
computational efficiency of the taxonomic mixture model approach, both methods were able
to perform a large-scale analysis of sequence data from the HMP without using a computer
cluster or special hardware. All reference profiles were obtained from the bacterial and
archaeal genomes available in the KEGG database (Release 64.0). These genomes were also
used for pre-computing the organism-specific pathway abundances for the metabolic profiling
of metagenomes. For Taxy-Pro, all protein domain profiles according to the Pfam database
[2] were obtained from the CoMet web server [11].

3.2 Metabolic mixture modeling
For metabolic profiling, we assume that the genomic sequence material to some degree can
be explained by a mixture of pathways. The mixture approach accounts for the fact that in
most cases a putative gene function as observed in a sequence fragment provides evidence for
more than one metabolic pathway. The statistical representation of this ambiguity of the

GCB 2013



4 On the estimation of metabolic profiles in metagenomics

function-to-pathway mapping was the main motivation for the development of the following
model. With M pathways Pi the probability to observe a function F encoded in sequences
under this model is:

p̃(F ) =
M∑

i=1
p(Pi)p(F |Pi) (1)

The tilde indicates that p̃(F ) only is an approximation of the functional profile p(F ) because
not every function can be explained in terms of metabolic pathways. The prior pathway
probabilities p(Pi) denote the overall sequence-based abundance of functions associated with
pathway Pi and correspond to the mixture weights of the model. These weights are the
central model parameters, which can directly be used and interpreted in terms of the relative
abundances of a metabolic profile. The conditional probability p(F |Pi) denotes the i-th
pathway-specific distribution over N possible gene functions Fj . The annotation in current
databases, such as KEGG, can be represented by some M ×N assignment matrix A with
binary entries Aij = 1 denoting that function j is associated with pathway i. From that
assignment it follows that all functions not associated with pathway i must attain a zero
conditional probability. Just from the annotation, we cannot draw any conclusions about
the other probabilities. Without further knowledge the only reasonable assumption is that
the p(F |Pi) are proportional to the corresponding overall function probabilities, i.e.

∀i, j : p(Fj |Pi) ∝ Aijp(Fj). (2)

This constraint implies that the ratio between any two non-zero function probabilities in a
pathway is equal for all pathways these two functions are associated with and must equal
the global ratio of the corresponding probabilities of the functional profile p(F ). With the
N estimates p̂(Fj) of the specific function probabilities of the profile as derived from the
observed frequencies, e.g. from BLAST hit counts, we have the following estimator of the
conditional probabilities:

p̂(Fj |Pi) = Aij p̂(Fj)∑N
k=1 Aikp̂(Fk)

. (3)

Now let us consider the assignment probability

p(P |Fj) = p(P )p(Fj |P )∑M
i=1 p(Pi)p(Fj |Pi)

(4)

which denotes the responsibility of a pathway for a given function Fj , i.e. the contribution
of a pathway to the explanation of that function. We assume that this probability is equal
for all pathways the function is associated with. Without further knowledge, just with the
underlying pathway annotation, there is no reason to prefer a particular pathway for the
explanation of an observed function. This implies the following additional constraint:

∀i, j, k : Akjp(Pi|Fj) = Aijp(Pk|Fj). (5)

For a function Fj that is annotated in two pathways Pi and Pk we can obtain the ratio of
the corresponding pathway abundance estimators using the former three equations (3), (4)
and (5):

p̂(Pi)
p̂(Pk) = p̂(Fj |Pk)

p̂(Fj |Pi)
=

∑N
s=1 Aisp̂(Fs)∑N
t=1 Aktp̂(Ft)

. (6)
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From the above proportionality, we finally obtain the estimator of the pathway probabilities:

p̂(Pi) =
∑N

j=1 Aij p̂(Fj)∑M
k=1

∑N
l=1 Aklp̂(Fl)

. (7)

Using matrix vector algebra we can compute the whole metabolic profile vector p with
entries p̂(Pi) from the functional profile vector f with entries p̂(Fj) by

p = Af
1T Af (8)

where 1 is an M -vector of ones. In an application of the above mixture model most time
will be spent for the computation of the functional profile which usually requires a costly
BLASTX matching of metagenomic reads against a database of functionally annotated
protein sequences, such as the KEGG Orthologues. However, with our formulation in terms
of a statistical model we are able to provide a shortcut that utilizes the combination with
another model to obtain a hierarchical mixture of pathways. Assume that we have the
functional profiles of K reference organisms as columns in an N ×K matrix F and we have
estimated the relative abundances of the reference organisms in a taxonomic profile vector t.
Then we can approximate the functional profile of the metagenome by a linear combination
of reference profiles Ft. In Taxy-Pro [10] we use this mixture model in combination with
Pfam functional profiles to estimate the taxonomic abundances in a metagenome. Here,
we propose a combination with K pre-computed KEGG reference profiles to predict the
functional profile of a metagenome from its taxonomic profile which may be obtained by
some fast method such as the oligonucleotide-based Taxy tool [13]. The estimator of the
metabolic profile is then

p = AFt
1T AFt . (9)

Note that also the matrix product AF can be pre-computed to obtain K organism-specific
metabolic profiles which are then just combined by the taxonomic weights t of a metagenome
to obtain its metabolic profile. In principle, this gives rise to a nested model where a mixture
of pathways is first used for each reference organism to estimate its metabolic profile. This
step has only to be performed once for each organism and therefore even a costly BLASTX
analysis may be used for the “offline” training of the organism-specific models. When applied
to metagenomic data a mixture of the utilized reference organisms has to be estimated by
some taxonomic profiling method. In order to combine the two models the second step
requires a profiling method that actually estimates the abundances in terms of the amount
of sequence material that can be attributed to a particular organism. For example, this
requirement is automatically fulfilled when using Taxy-Oligo [13] or Taxy-Pro [10], which we
both included in the evaluation of our approach, as described above. For an application of
the MoP model, it is important to check whether the metagenome composition can actually
be approximated by a mixture of known reference organisms. If the reference is completely
insufficient for a description of the metagenome composition, the mixture approach in general
would become inadequate. Therefore, it is desirable, that the taxonomic profiling method
gives us an indication of the fidelity of the abundance estimates. Both, Taxy-Oligo and
Taxy-Pro provide a specific error measure to assess the adequacy of the underlying model. In
this case, the fraction of oligonucleotides unexplained (FOU) and the fraction of domain-hits
unexplained (FDU) should be inspected when using Taxy-Oligo and Taxy-Pro, respectively.
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3.2.1 Workflows
For the evaluation of our model, we implemented the direct application of the metabolic
mixture model as well as the nested model.

The direct application of the mixture model starts with a BLASTX analysis where the
metagenomic reads are mapped against a reference database consisting of KO amino acid
sequences of bacterial or archaeal origin. By default BLAST hits with E-value ≤ 10−2 were
considered to be significant. The functional profile vector f is obtained by counting the KO-
specific BLAST hits using a fractional increment of 1/K if K different KOs simulataneously
show significant hits for a particular sequence. Note that due to the computational expense of
BLASTX on metagenomes, we restricted the correlation analyis (see section 4.1) to a subset
of six HMP data samples from different body subsites (SRS013825, SRS016752, SRS022621,
SRS024265, SRS024428, and SRS055401). For the computation of the assignment matrix
A the association of KOs with KEGG Pathways was extracted from the database and
transformed into a binary matrix. Finally, the mixture model was applied as described above
using the functional KO profile vector f and matrix A as input.

For the nested model, we first pre-computed the organism-specific metabolic profiles from
reference genomes using all bacterial and archaeal KEGG Genomes. The KEGG Genomes
were downloaded and subsequently fragmented in overlapping reads of length 400 bp with
200 bp overlap simulating a two-fold coverage of the genomes as previously described in [10].
For each reference organism, first the functional profile vector is calculated and then the
metabolic profile is estimated applying the steps as described for the direct mixture approach.
By combining the weights t of a metagenome with the pre-computed organism-specific
metabolic profiles the metabolic profile of a metagenome can be obtained in an efficient
manner. Note that a BLASTX/KO analysis of the metagenome is not required in this case.
For the estimation of the taxonomic profile t, we were using both, Taxy-Oligo and Taxy-Pro.
According to the utilized taxonomic profiling method we denote our metabolic mixture model
MoP-Oligo and MoP-Pro, respectively.

4 Results

To validate the metabolic mixture model on a well-studied dataset, we analyzed metagenomic
sequences from the Human Microbiome Project (HMP) [3]. Originally, the metabolic profiles
of the HMP data have been investigated by means of the HMP Unified Metabolic Analysis
Network (HUMAnN) pipeline [1]. In the following, we use the metabolic profiles of HUMAnN
for comparison with the abundance estimates that we obtained from our mixture of pathways
model.

4.1 Correlation analysis
To study the similarity of metabolic profiles across different methods we computed the
Pearson and Spearman (rank) correlation coefficients of the pathway abundance estimates.
First, we evaluated the fast approximation scheme using pre-computed reference profiles based
on Taxy-Pro taxonomic profiles (MoP-Pro). The resulting metabolic profiles were compared
with the direct application of the mixture model to KO frequencies, which were obtained
from a more time consuming BLASTX analysis. For each data sample, the correlation of the
pathway abundances on two different pathway hierarchy levels (second and third level) was
calculated.

The means and standard deviations of all data examples of the Pearson and Spearman
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correlation coefficients are shown in Table 1. The results show a very high correlation of
the approximation-based and the directly obtained abundances. By reducing the number
of pathways from 340 to 38 according to the third and second pathway hierarchy levels an
increase of the correlation from 0.9558 to 0.9804 and 0.9491 to 0.9842 could be observed for
the Taxy-Pro-based approximation. These results indicate that the approximative approach
is very close to the direct approach and therefore provides a computationally attractive
alternative to the BLAST-based estimation.

Table 1 Correlation analysis based on the metabolic abundances obtained by applying the
Taxy-Pro-based approximation and the direct mixture approach. The correlation is calculated
according to Spearman and Pearson and at the third and second pathway hierarchy level.

Pearson Spearman
Third level 0.9557 (± 0.0409) 0.9491 (± 0.0124)
Second level 0.9803 (± 0.0150) 0.9842 (± 0.0110)

The correlations are similarly high for the even faster Taxy-Oligo variant (MoP-Oligo)
with results shown in Table 2.

Table 2 Correlation analysis based on the metabolic abundances obtained by applying the
Taxy-Oligo-based approximation and the direct mixture approach. The correlation is calculated
according to Spearman and Pearson and at the third and second pathway hierarchy level.

Pearson Spearman
Third level 0.9575 (± 0.0409) 0.9466 (± 0.0105)
Second level 0.9796 (± 0.0138) 0.9813 (± 0.0087)

In contrast to the high similarity of results between different variants of the mixture
approach the correlation between the mixture-based pathway abundances and the HUMAnN-
based profiles is comparatively low with a Pearson correlation of 0.5290 as shown in Table 3.
However, the correlation is increasing when considering the second pathway level or when
using the Spearman rank correlation. A maximum rank correlation of 0.9080 indicates that
the coarse shape of metabolic profiles is still rather similar between different approaches.
Note that the correlation with HUMAnN profiles was averaged over all 680 HMP samples.

Table 3 Correlation analysis based on the metabolic abundances obtained by applying HUMAnN
and the TaxyPro-based mixture model. The correlation is calculated according to Spearman and
Pearson and at the third and second pathway hierarchy level.

Pearson Spearman
Third level 0.5290 (± 0.0206) 0.7588 (± 0.0242)
Second level 0.7884 (± 0.0308) 0.9080 (± 0.0135)

4.2 Nearest neighbor classification
To assess the quality of the estimated metabolic profiles we first investigated whether the body
site (subsite) classification of HMP samples can be reproduced by the corresponding pathway
abundances. For that purpose, we evaluated the predictive power of metabolic profiles by
some nearest neighbor classification scheme using different profile distance measures. We
utilized a leave-one-out cross validation, measuring the classification rate for Euclidean
distance, City block metric and Shannon-Jensen divergence on profiles.
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The results for body sites and subsites as shown in Table 4 reveal that the nearest neighbor
classification rate is rather high and varies between 0.9735 and 0.9897 for the five body sites
and between 0.8853 and 0.9235 for the 14 body subsites. For both classification problems,
HUMAnN shows the highest prediction accuracy irrespective of the distance measure used.
However, the two mixture variants are always very close with a maximum difference of 2.94%
for the Euclidean distance on body subsite level between HUMAnN and MoP-Oligo.

Table 4 Nearest neighbor classification performing a leave-one-out cross validation with the
Euclidean distance, City block metric and Shannon-Jensen divergence as distance measure for the
approaches HUMAnN, MoP-Pro, and MoP-Oligo.

Body site Body subsite
Euclidean City block Jensen-Shannon Euclidean City block Jensen-Shannon

HUMAnN 0.9838 0.9897 0.9868 0.9147 0.9235 0.9132
MoP-Pro 0.9794 0.9809 0.9779 0.9103 0.9103 0.9059
MoP-Oligo 0.9735 0.9750 0.9779 0.8853 0.8956 0.9132

4.3 Clustering performance
For a more comprehensive analysis of profile distances, we compared the body site (subsite)
classification of samples with a profile-based clustering of the data. For clustering, we used a
standard hierarchical approach with average linkage, also known as UPGMA. In this context,
we evaluated the same three distance measures as for the nearest neighbor classification
experiment. The quality of the cluster partitioning was assessed by the Jaccard coefficient,
measuring the overlap of the resulting clusters with the HMP body site (subsite) groups.

The results obtained through the application of HUMAnN, MoP-Pro, and MoP-Oligo are
presented in Table 5 which shows a large variation of the clustering performance.

Table 5 Cluster partitioning quality in terms of the Jaccard coefficient based on Euclidean
distance, City block metric and Shannon-Jensen divergence for metabolic profiles of HUMAnN,
MoP-Pro, and MoP-Oligo

Body site Body subsite
Euclidean City block Jensen-Shannon Euclidean City block Jensen-Shannon

HUMAnN 0.4335 0.4342 0.4325 0.2361 0.3715 0.2344
MoP-Pro 0.6958 0.8817 0.6971 0.4791 0.4603 0.4801
MoP-Oligo 0.6577 0.7251 0.6382 0.3671 0.3008 0.3939

The Jaccard coefficient varied between 0.4325 and 0.8817 at body site level and between
0.2344 and 0.4801 at body subsite level. The partitioning of the MoP-Pro approach always
showed the highest values on body site and subsite level. For both levels, the clustering
performance of the MoP-Oligo approach is superior to HUMAnN except for the City block
metric at body subsite level.

4.4 1D-SOM clustering and visualization
In order to study the overall variation of pathway abundance patterns over the whole range
of HMP samples, we analyzed the estimated metabolic profiles with the MarVis tool. A
one-dimensional self-organizing map (1D-SOM) was created using MarVis-Cluster (see Figure
1) to obtain a set of ordered prototypes well-suitable for visualization of profile variations.
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Here, we utilized the second pathway level where we reduced the profiles to include
just the top 10 pathways with the highest variance over all samples. Taking the union of
the top 10 MoP and HUMAnN pathways we achieved a total of 13 profile dimensions that
we used for 1D-SOM clustering with 14 prototypes and a unit 2-norm scaling of profile
vectors. The resulting visualization indicates that most of the body sites are separated
into distinct clusters (Figure 1). For the MoP profiles three major groups of clusters can
be identified: gastrointestinal tract (GI tract, left side), urogenital tract (UG tract, right
side), and an intermediate set of clusters from airways, oral and skin sites. Furthermore
there are some interesting gradients (left to right) that show a decreasing relative abundance
for Amino Acid Metabolism, Carbohydrate Metabolism, and Signal Transduction pathways
and an increasing abundance for Membrane Transport, Nucleotide Metabolism, Replication
and Repair, and Translation pathways. In contrast, the 1D-SOM based on the HUMAnN
pathway profiles shows a distinct picture of the overall variation. The different body sites are
not as clearly separated as for the MoP-based SOM and the overall abundance gradients of
selected pathways are not as prominent as for the MoP results. The visible gradients (left to
right) that show a decreasing abundance include the Amino Acid Metabolism and Metabolism
of Cofactors and Vitamins pathways while an increasing abundance can be observed for
Metabolism of Other Amino Acids, Replication and Repair, and Translation pathways.

Figure 1 1D-SOM created with MarVis-Cluster at second pathway hierarchy level for MoP-Pro
(upper) and HUMAnN (lower) profiles (GI tract – gastrointestinal tract; UG tract – urogenital tract).
The numbers (in brackets) indicate the number of profiles (samples) assigned to the corresponding
prototype (cluster) above.
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4.5 Significant pathways
For a specific analysis of the metabolic profiles in terms of statistically significant differences
in pathway abundances between different body sites we compared the gastrointestinal (GI)
tract samples with all other HMP samples. To identify overrepresented pathways for the
GI body site we applied an ANOVA with Holm-Bonferroni (FWER) correction on pathway
abundances of the second level pathway hierarchy, filtered for pathways with an FWER
below 0.05, and ranked the remaining pathways according to their fold-change in terms of
the corresponding overrepresentation factor on mean abundances. In Table 6 the significant
pathways of MoP-Pro and HUMAnN with a calculated fold-change larger than 1 are listed.

Table 6 MarVis-Filter analysis for the identification of overrepresented pathways in the gastroin-
testinal tract samples in comparison to all other body subsites. All second level pathways obtained
through the application of the MoP-Pro and HUMAnN approach with a fold-change larger than 1
are listed.

MoP-Pro
Pathway (second level) Fold-Change

Transport and Catabolism 2.00
Signal Transduction 1.81
Digestive System 1.79
Biosynthesis of Other Sec-
ondary Metabolites

1.53

Nervous System 1.48
Carbohydrate Metabolism 1.23
Glycan Biosynthesis and
Metabolism

1.15

Endocrine System 1.13
Immune System 1.12

HUMAnN
Pathway (second level) Fold-Change

Digestive System 2.04
Endocrine System 1.12
Glycan Biosynthesis and
Metabolism

1.07

Amino Acid Metabolism 1.06
Biosynthesis of Other Sec-
ondary Metabolites

1.06

Energy Metabolism 1.01

HUManN and MoP-Pro identified pathways associated with the Digestive System, En-
docrine System, Biosynthesis of Other Secondary Metabolites, Glycan Biosynthesis and
Metabolism to be overrepresented in GI tract samples. For all these pathways, except for
the Digestive System, the MoP-Pro fold-change was higher than the corresponding factor of
HUManN. Exclusively for the HUMAnN approach, pathways associated with Amino Acid
Metabolism and Energy Metabolism are found to be slightly overrepesented. Furthermore,
through the application of the MoP-Pro we detected five additional pathways to be overrep-
resented: Transport and Catabolism, Signal Transduction, Nervous System, Carbohydrate
Metabolism, and Immune System. These additional pathways are possibly related to a mutu-
ally beneficial relationship between the gut microbiota and the host, maintaining a normal
mucosal immune function and nutrient absorption. Furthermore, the overrepresentation of
pathways associated with the nervous system may provide an indication for the bidirectional
brain-gut interactions which have an important role in the modulation of gastrointestinal
functions and possibly support the hypothesis of a communication pathway between the
microbiota and the host’s central nervous system [15].

4.6 Runtime
To get an overview of the computational cost of the different variants of the mixture modeling,
we measured the approximate runtime averaged over the six selected HMP data samples
(average size ~200 MB) used for the correlation analysis. For the selected data sets the
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mean runtime ranges from minutes to months. The longest CPU times were required by the
direct application of the mixture model due to the costly similarity searches against the KO
database. On a computer with four CPUs (2.4 GHz) BLASTX searches and calculation of
the metabolic profile took approximately 58 days. The fastest method was MoP-Oligo with
about half a minute, followed by the MoP-Pro method with about one minute runtime in
total. Once the taxonomic profile is estimated, using either MoP-Oligo or MoP-Pro, the
resulting matrix vector multiplication for obtaining the metabolic profile of a metagenome
can be done within a second.

5 Discussion

We presented a novel metabolic profiling approach for metagenomics, which is based on
a mixture of pathways (MoP) model for estimation of pathway abundances. To overcome
computationally intense homology searches, we implemented a shortcut to estimate the
metabolic profile of a metagenome. Here, we link the taxonomic profile of the metagenome
to a set of pre-computed metabolic reference profiles. The combination of the taxonomic
abundance estimates, obtained through the fast methods Taxy-Oligo and Taxy-Pro, and the
metabolic reference profiles, based on the KEGG database, achieves an unrivaled speed of
the metabolic profiling approach.

We are aware of the difficulties in the evaluation that arise when trying to assess the
quality of the resulting metabolic profiles. Therefore we restricted our evaluation to the
large-scale data from the Human Microbiome Project (HMP) and to the comparison with
the observations and findings for this data obtained through the HUMAnN approach. In this
setup we tried to provide several views on metabolic profiles considering different aspects of
quality: Our correlation analysis has shown that the pathway abundances obtained through
our statistical model are slightly different when compared to the HUMAnN abundance
predictions. However, we demonstrated through the nearest neighbor classification that our
model based approach is at least comparable to the HUMAnN approach when considering
the prediction of body sites and subsites. Considering the cluster performance analysis,
our approach even outperforms the HUMAnN pipeline in most cases. Furthermore, our
case study on statistically overrepresented pathways in the gastrointestinal tract provides
additional insight in comparison with the results of the dedicated HUMAnN approach.

To our knowledge, the MoP approach for the first time provides a potentially unbiased
estimator of the fraction of sequences that can be attributed to a particular pathway. In
addition, our model-based combination with taxonomic abundance estimators also provides
the fastest way to estimate the metabolic profile of a metagenome. We intend to make the
method accessible via an easy-to-use interface by integration into the CoMet web server [11]
(http://comet.gobics.de).
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Abstract
Gene order analysis aims at extracting phylogenetic information from the comparison of the or-
der and orientation of the genes on the genomes of different species. This can be achieved by
computing parsimonious rearrangement scenarios, i.e. to determine a sequence of rearrangements
events that transforms one given gene order into another such that the sum of weights of the
included rearrangement events is minimal. In this sequence only certain types of rearrangements,
given by the rearrangement model, are admissible and weights are assigned with respect to the
rearrangement type. The choice of a suitable rearrangement model and corresponding weights
for the included rearrangement types is important for the meaningful reconstruction. So far the
analysis of weighting schemes for gene order analysis has not been considered sufficiently. In this
paper weighting schemes for gene order analysis are considered for two rearrangement models:
1) inversions, transpositions, and inverse transpositions; 2) inversions, block interchanges, and
inverse transpositions. For both rearrangement models we determined properties of the weight-
ing functions that exclude certain types of rearrangements from parsimonious rearrangement
scenarios.
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1 Introduction

The order of the genes on the chromosomes has changed during evolution by different types
of rearrangement operations. For unichromosomal genomes, like most bacterial and mito-
chondrial genomes, inversions, transpositions, inverse transpositions, and tandem duplication
random loss operations modified the order and/or orientation of the genes. In addition
deletions, duplications, and horizontal transfer changed the gene content. Multichromo-
somal genomes, e.g. nuclear genomes, have been subject to additional interchromosomal
rearrangement operations (e.g. fission, fusion, translocation, and chromosome duplication).

Gene order data has become an important source of phylogenetic information over the last
two decades [14, 22]. The phylogenetic information contained in gene orders can be extracted
with methods based on the maximum maximum parsimony principle, i.e. an explanation for
given gene order data is sought that uses a minimal number of rearrangement operations (but
see also [1]). For a pair of gene orders such an explanation is given by a shortest sequence of
rearrangements that transforms one of the given gene orders into the other. If more than
two gene orders are given a phylogenetic tree with the given gene orders at the leaves and a
minimum number of rearrangements along the edges of the tree, such that a gene order at
the root is transformed into the leaf gene orders, serves as an explanation of the data.

Algorithms for pairwise gene order analysis have been studied extensively for separate
rearrangement operations. Efficient algorithms for the case that only inversions are considered
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are known [15]. In contrast the problem is NP-hard if only transpositions are allowed [9].
But, in order to get reliable reconstructions all rearrangement operations that played a role
during evolution need to be considered. Ideally, different weights should be used for the
different types of rearrangements reflecting their importance in gene order evolution.

There are only a few algorithms for weighted gene order analysis considering more than
one type of rearrangement operation. DERANGE [8, 21] is one of the first algorithms for gene
order analysis. It is a 3-approximation algorithm that considers inversions, transpositions,
and inverse transpositions. The algorithm explores possible rearrangement scenarios greedily
by minimizing the number of breakpoints. Both, the possibility to weight the different
types of rearrangements and to weight the operations by the number of affected genes,
have been implemented. It was shown empirically that the reconstructions obtained with
DERANGE are strongly influenced by the choice of the weights [8], see also [12]. Several
improved approximation algorithms for this set of rearrangement operations have been
introduced [4, 13, 16, 17]. DERANGE and the other algorithms assume the same weight for the
two types of transpositions. The algorithm from [4] allows a weight of 1 for inversions and
a weight in ∈ [1 : 2] for transpositions. Other algorithms allow only fixed weights (1:2 [13]
or 1:1 [16, 17]). With CREx an efficient heuristic for unweighted rearrangement analysis is
available that incorporates tandem duplication random loss as a fourth type of rearrangement
operation [6]. Also for multiple genome rearrangement analysis a heuristic, that is based
on [4], is available that incorporates weights [3].

Block interchange is a generalization of the transposition operation. Since pairwise gene
order analysis for this operation can be solved efficiently [10] this operation has become
an interesting alternative for transpositions. It is an integral part (with inversions and
translocations) of the double cut and join frame work [23] that became a highly active
research area in the last years. The SPRING software [19] and the approach described
in [20] allow for reconstructing pairwise rearrangement scenarios based on inversions and
block interchanges using a corresponding weight ratio of 1:2. Approximation algorithms for
other weighting schemes have been devised in [18]. By allowing for the additional operations
tandem duplication and deletion the heuristic presented in [2] can also compute rearrangement
scenarios consisting of inversions and block interchanges for gene orders with unequal gene
content using a weight of 1 for inversions and 2 for each of the other operations.

All approaches mentioned above assign a (usually two times) larger weight to transpositions
or block interchanges than to inversions. This is justified by the larger number of inversions
than transpositions that can be observed for several biological data sets. But this is not the
case for all data sets, e.g. for metazoan mitogenomes inversions seem to account for only a
small proportion of the rearrangements [7].

Besides the possibility to weight rearrangements by the type of the rearrangement also
weighting by the length of the affected segments (e.g. [5, 8, 12]), the types of the affected
genes, or by other factors that determine the likelihood of a rearrangement (e.g. transcript
structures) might be incorporated. Certain constraints as an extreme case can be introduced
by allowing for infinite weights which excludes certain types of rearrangements. CREx for
instance forbids rearrangement that destroy conserved gene clusters [6].

Weighting schemes for genome rearrangement analysis have not been considered in suffi-
cient detail in the literature [14]. Here we analyze weighting schemes for two rearrangement
models: (1) Inversions, transpositions, and inverse transpositions (Section 3); (2) Inversions,
block interchanges, an inverse transpositions (Section 4). For both cases we derive properties
of weighting schemes that exclude one/more of the rearrangement operations from any
parsimonious reconstruction of genome rearrangement evolution.

GCB 2013



16 On Weighting Schemes for Gene Order Analysis

2 Basic Definitions

In the context of this work a gene order is regarded as a signed permutation π = (π(1), . . . , π(n)),
which is a permutation of the elements {1, . . . , n} where each element has an additional
orientation, denoted by a “+” or “−” sign. Each element of a gene order represents one
genetic marker, e.g. a gene, and the sign its strandedness. If not stated otherwise, we assume
a signed permutation to be directed, i.e. π 6= −π = (−π(n), . . . ,−π(1)). An interval X of
a permutation π is a non-empty subset of (unsigned) elements X ⊆ {1, . . . , n} which are
consecutive with respect to π, i.e. ∃i, j ∈ [1 : n] : X = {|π(k)| : i ≤ k ≤ j}. I(π) gives the
set of all possible intervals of a permutation π. A rearrangement ρ is an operation applied to
a signed permutation π that changes the position and/or orientation of some of the elements
resulting in a new signed permutation denoted as π ◦ ρ. For two rearrangements ρ and ρ′,
with ρ 6= ρ′, and a gene order π it holds that π ◦ ρ 6= π ◦ ρ′. Let R be the set of all n!2n
different rearrangement operations.

Let w : R→ R>0 be a weighting function for rearrangement operations. A classification
into rearrangement types T = {T1, . . . , Tk, Tε} is a partition of R into distinct sets of
rearrangements with all ρ ∈ Tj having the same weight w(ρ) = wTj . The set Tε refers to
rearrangements with a weight of wTε = ∞ and is used for rearrangement operations that
are not regarded. The set of valid rearrangement types is denoted as T|Tε = T \ Tε. A
rearrangement scenario for a permutation π is a sequence of rearrangements S = (ρ1, . . . , ρl)
such that π ◦ ρ1 ◦ . . . ◦ ρl = ι and ∀ : i ∈ [1 : l] : ρi /∈ Tε. The weight of a scenario S is given
by w(S) =

∑|S|
i=1 w(ρi). A scenario for π with minimal weight is called parsimonious. If not

stated otherwise, we consider normalized weights for the admissible rearrangement types, i.e.
the weight for one type of rearrangement operation is divided by the sum of the weights of
all allowed rearrangement types.

Here we consider the rearrangement operations inversions (I), transpositions (T), inverse
transpositions (iT), and block interchanges (BI). In Section 3 the set of valid rearrangement
types T|Tε = {I, T, iT}, with weights wI , wT , and wiT , respectively, is considered. In
Section 4 block interchange with weight wBI is considered instead of transpositions. Each
rearrangement is specified by the intervals it affects. An inversion ρI on a signed permutation
π is defined by the interval A ∈ I(π), where in π ◦ ρI the order of the elements from A is
reversed and the orientation is switched. A transposition ρT is defined by two disjoint and
consecutive intervals A,B ∈ I(π), i.e. A ∪ B ∈ I(π), A ∩ B = ∅. By a transposition the
position of the two intervals is switched in π ◦ ρT . Analogous to a transposition an inverse
transposition ρiT is also defined by two disjoint and consecutive intervals A and B. It is a
combination of transposition and inversion, where after the transposition of A and B an
additional inversion of A is performed. A block interchange ρBI is a generalization of the
transposition in the way that the two intervals A and B do not have to be consecutive.
There might be an interval X in between A and B such that in π ◦ ρBI A and B switch
their positions with respect to X. In the following we denote the rearrangements ρI , ρT , ρiT ,
and ρBI together with the intervals they affect by I(A), T (A,B), iT (A,B), and BI(A,B),
respectively. It holds that T (A,B) = T (B,A) and BI(A,B) = BI(B,A).

3 Inversions, transpositions, and inverse transpositions

First we consider the rearrangement model consisting of the following three types of re-
arrangements: inversions, transpositions, and inverse transpositions. There are several
possibilities to mimic a single rearrangement, i.e. achieve the same effects, by combinations
of rearrangements of other types. In the following we derive the different possibilities for
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replacing one rearrangement of a certain type by a smallest number of rearrangements of the
other type(s).

I Lemma 1. For any rearrangement scenario the following replacements are possible within
the T|Tε = {I, T, iT} model:
1. A transposition T (A,B) can be replaced by each of the following sets of rearrangements

a. three inversions I(A), I(B), and I(A ∪B),
b. one inverse transposition iT (A,B) and one inversion I(A), or
c. two inverse transpositions when the genome has at least three genes. Then at least

one of the following cases holds:
Case i. There exists an interval X such that B ∪X is an interval and X ∩A = ∅ =
X ∩B: iT (A,B ∪X) and iT (A,X).

Case ii. There exists an interval X such that X ∪A is an interval and X ∩A = ∅ =
X ∩B: iT (B,X ∪A) and iT (B,X)

Case iii. There exists a bipartition of A into intervals A1 and A2 (i.e. |A| ≥ 2) such
that A2 ∪B is an interval: iT (B,A2) and iT (B,A1)

Case iv. There is a bipartition of B into intervals B1 and B2 (i.e. |B| ≥ 2) such that
B1 ∪A is an interval: iT (A,B1) and iT (A,B2).

4. An inverse transposition iT (A,B) can be replaced by each of the following sets of re-
arrangements:
a. one transposition T (A,B) and one inversion I(A) or
b. two inversions I(A ∪B) and I(B).

3. An inversion I(A) can be replaced by each of the following sets of rearrangements:
a. inverse transposition(s) and one transposition according to the following cases:

Case i. When at least one gene is not included in A, i.e. there exists an interval X
with X ∩A = ∅ and X ∪A is an interval: iT (A,X) and T (A,X).

Case ii. A includes the whole gene order and can be partitioned into two intervals A1
and A2 (i.e. |A| ≥ 2): iT (A2, A1), iT (A1, A2), T (A1, A2).

b. three inverse transpositions when the gene order has at least three genes. Then at least
one of the following cases holds:
Case i. There exists a partition of A into three intervals A1, A2, and A3 (i.e. |A| ≥ 3)

such that A1∪A2 and A2∪A3 are intervals: iT (A1, A2), iT (A3, A1), and iT (A2, A3).
Case ii. There exists a bipartition of A into two intervals A1 and A2 (i.e. |A| ≥ 2)

and there exists an interval X with A ∩ X = ∅ such that A2 ∪ X is an interval:
iT (A2 ∪X,A1), iT (X,A2), and iT (A1, X).

Case iii. There exists an interval X that can be partitioned into intervals X1 and
X2 (i.e. |X| ≥ 2) with A ∩ X = ∅ such that AX1 is an interval: iT (A,X1),
iT (X1, A ∪X2), and iT (X1, X2).

Case iv. There exist two disjoint intervals X1 and X2 with X1 ∩A = ∅ = X2 ∩A such
that X1 ∪A and A∪X2 are intervals: iT (A,X2), iT (X2, X1), and iT (X2, X1 ∪A).

I Lemma 2. Lemma 1 lists all possibilities (with respect to number and type of the rearrange-
ment operations) to replace a single rearrangement of a certain type ∈ {T, iT, I} by a smallest
number of rearrangements of one or two of the other types of rearrangements ∈ {T, iT, I}.

Proof. By definition of the rearrangement operations it is not possible to replace a single
operation of one type by any single operation of another type. Observe also that a transposi-
tion T (A,B) cannot be replaced by any number of inverse transpositions when the genome
has only two genes, i.e. A and B contain only a single gene and there exists no other gene
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Figure 1 Barycentric plot showing the weighting schemes where transpositions (left), inverse
transpositions (middle), and inversions (right) need to be considered; shaded areas indicate for
each of the inequalities the valid weighting schemes; darker shading indicates the area where all
inequalities hold; the limiting cases, i.e. equality, is annotated by the corresponding equation number
given in bold text; dashed lines give the demarcation line between each pair of the alternatives,
colored dashed or dotted areas indicate which of the alternatives needs to be considered: blue
horizontal lines 2iT, red vertical lines iT+ I, green dots 3I (left) red vertical lines I+T, green dots 2I
(middle) red vertical lines T+iT, green dots 3iT (right); the dotted line and red dots indicate the
weighting schemes considered in [8]; note that the borders of the plot, i.e. weights of 0, are excluded.

in the genome. Moreover, it is easy to see that a transposition cannot be replaced by two
inversions. Hence, the lemma follows with respect to the replacement of transpositions.

Now observe, that any combination of transpositions can neither replace one inversion
nor one inverse transposition. This is because both an inversion and an inverse transposition
change the sign of at least one gene but a transposition cannot change the sign of a gene. It
can also be seen that an inversion cannot be replaced by inverse transpositions when the
genome has only one or two genes. It is also not hard to see that an inversion cannot be
replaced by two or less inverse transpositions. An inversion of the whole genome cannot be
replaced by one inverse transposition plus any number of transpositions. Hence, it follows
that for this case at least two inverse transposition plus one transposition are necessary.
When the genome has only one gene it is not possible to replace an inversion by any number
of inverse transpositions plus transpositions. Thus, the lemma holds also with respect to the
replacement of inverse transpositions and inversions. J

In the following we will only consider gene orders consisting of at least three elements.
Furthermore we exclude the case of the inversion of the complete gene order, i.e. Case 3.b.ii.
The seven replacement possibilities that are listed in Lemma 1 imply certain properties that a
weighting function for the different types of rearrangement operations has to satisfy in order
to make the corresponding rearrangement operation possible for a parsimonious scenario.
These properties can be formulated in the form of inequalities between the different weights.
A graphical representation of the inequalities and their consequences is given in Fig. 1. The
seven inequalities implied by Lemma 1 are:

wT ≤ wI + wiT (1)
wT ≤ 3wI (2)
wT ≤ 2wiT (3)

wiT ≤ wI + wT (4)
wiT ≤ 2wI (5)

wI ≤ wT + wiT (6)

wI ≤ 3wiT (7)
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Each of these inequalities decides if a single rearrangement of a certain type or an altern-
ative more complex, i.e. longer, rearrangement scenario of the other types of rearrangements
is parsimonious. The respective single rearrangement operation can occur in a parsimo-
nious scenario only if all of the corresponding inequalities are satisfied, i.e. (1) to (3) for
transpositions, (4) and (5) for inverse transpositions, and (6) and (7) for inversions (unless
other restrictions exclude one of the corresponding replacement scenarios). If one of these
inequalities is violated the corresponding alternative is more parsimonious. For example,
when inequality (4) is not satisfied an inverse transposition cannot occur in any parsimonious
scenario (unless other restrictions exclude an inversion or a transposition).

In case that a rearrangement operation of a certain type cannot occur in a parsimonious
scenario not all of the replacements that are listed in Lemma 1 might be possible in a
parsimonious scenario. In the following this aspect is discussed in more detail.

There are three alternatives for a transposition: iT + I, 3I, and 2iT with associated
weights: wiT + wI , 3wI , and 2wiT . Thus, one can decide between the three alternatives by
comparing their weights.

iT+I needs to be considered only if wiT +wI ≤ 3wI (⇔ wiT ≤ 2wI) and wiT +wI ≤ 2wiT
(⇔ wI ≤ wiT ).
3I is a feasible alternative only if 3wI ≤ wiT + wI (⇔ wiT ≥ 2wI) and 3wI ≤ 2wiT .
2iT needs to be considered as alternative only if 2wiT ≤ wiT + wI (⇔ wiT ≤ wI) and
2wiT ≤ 3wI .

This set of inequalities “partitions” the set of all weighting schemes where transpositions are
not parsimonious between the three alternatives (in case of equal weights two or three of the
alternatives might be possible). The different sets of the partition are shown as differently
patterned areas in Fig. 1.

For the weighting schemes where inverse transpositions are not parsimonious there are the
two replacements 2I and I + T . The former is possible only if 2wI ≤ wI + wT (⇔ wI ≤ wT )
holds. Similarly the alternatives for the case that an inversion is not parsimonious, i.e. T + iT
and 3iT , can be chosen on the basis of the comparison wT +wiT ≤ 3wiT (⇔ wT ≤ 2wiT ). As
presented in Fig. 1 the remaining weighting schemes are partitioned between the alternatives.
It can be readily verified that for each alternative scenario the corresponding necessary
rearrangement operations are itself not excluded by any of the other inequalities.

Weighting schemes for the rearrangement model with transpositions, inverse transpositions
and inversions as rearrangement operations and the implications of the choice of the weights
on the reconstructions that can be obtained with a greedy heuristic that was called DERANGE
have been discussed in [8]. The weights that have been analyzed in greater detail assumed a
fixed weight for inversions and equal weights for transpositions and inverse transpositions that
are at least as large as the weight for inversions. In particular, the following (unnormalized)
weights have been considered: wI = 1 and weights for transpositions and inverse transpositions
that are “somewhat less to somewhat more than” 2, or more exactly wT = wiT ∈ [1 : 3]. In
terms of normalized weights the corresponding set of weights corresponds to a (half open)
line in the barycentric plot between the center point of the plot at wI = wT = wiT = 1/3

and the middle point of the bottom line (i.e. wI = 0) but excluding the middle point itself.
This line and five selected points (corresponding to unnormalized inversion weight of 1 and
(inverse) transposition weights 1, 1.5, 2, 2.5, and 3) of it are shown in Fig. 1.

For the considered weighting schemes a “phase transition” for the length of the recon-
structions, i.e. the number of rearrangements, made with heuristic DERANGE was observed at
approximately wT = wiT = 2 [8]. The corresponding strong increase of the reconstruction
lengths was observed for random data as well as real, i.e. mitochondrial and bacterial, gene
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orders. This effect was attributed to the greedy nature of the algorithm that tries to find a
move x, with weight wx removing Bx breakpoints, minimizing wx −Bx and the observation
that Bx is nearly always 1 : 2 for inversions vs. (inverse) transpositions (and not the optimal
case 2 : 3). This leads to the preference of (inverse) transpositions for wiT = wT < 2
and of inversions for wT > 2 inversions. Since more inversions are necessary to remove all
breakpoints the rearrangement scenarios are longer in the latter case.

In the light of the analysis presented here we can add a further explanation for the
observed “phase transition”. Exactly for the unnormalized (inverse) transposition weight of 2
an inverse transposition has equal weight as the alternative consisting of two inversions. For
a weight larger than two inverse transpositions cannot be in a parsimonious rearrangement
scenario but they must be replaced by two inversions, i.e. twice the number of rearrangements.
The other way round inverse transpositions cannot be replaced by this alternative for weights
smaller than two. Based on the empirical results Blanchette et al. [8] suggested to that an
(inverse) transposition weight of “slightly greater than 2 may be an appropriate value”. Our
analysis shows that this is not maintainable for any (optimal/suboptimal) solution, since in
such a weighting inverse transpositions are excluded as they need to be replaced by the more
parsimonious alternative consisting of two inversions. Another “phase transition” should
occur for the reconstructions made with DERANGE (and must occur for optimal reconstruction)
for unweighted (inverse) transposition weights > 3 which makes inversions the only type of
rearrangements that can occur in parsimonious rearrangement scenarios.

4 Inversion, inverse transposition, and block interchange

In this section we study the rearrangement model consisting of inversions, inverse transposi-
tions, and block interchanges, i.e. T|Tε = {I,BI, iT}. It is assumed here that transpositions
are a special case of block interchanges. A block interchange BI(A,B) is called proper when
there exists an interval X 6= ∅ such that X ∩ A = ∅ = X ∩ B and A ∪X and X ∪ B form
intervals. X is called the intermediate interval.

It is clear that for any rearrangement scenario all the replacements that are listed in
Lemma 1 also hold for the rearrangement model T|Tε = {I,BI, iT} when a transposition
T (A,B) is exchanged by a (non-proper) block interchange BI(A,B). In addition the
replacements listed in Lemma 3 are relevant for the T|Tε = {I,BI, iT} model.

I Lemma 3. For any rearrangement scenario the following replacements are possible within
the T|Tε = {I,BI, iT} model:
1. A proper block interchange BI(A,B) with intermediate interval X can be replaced by each

of the following sets of rearrangements
a. three inversions: I(A ∪X), I(A ∪B), I(B ∪X),
b. three inverse transpositions: iT (A ∪X,B), iT (X,A), iT (A,X)
c. one inverse transposition and two inversions: iT (A ∪X,B), I(X), I(A), or
d. two inverse transpositions and one inversion: iT (X,B), iT (A,B), I(A ∪X).

I Lemma 4. Lemmas 1 and 3 list all possibilities (wrt. number and type of rearrangement
operations) to replace a single rearrangement of a certain type ∈ {BI, iT, I} by a smallest
number of rearrangements of one or two of the other types of rearrangements ∈ {BI, iT, I}.

Proof. It is clear that for all replacements listed in Lemma 1 the use of a proper block
interchange instead of transpositions can not lead to a shorter replacement. Hence, by
Lemma 2 it follows that the result holds for all replacements listed in Lemma 1. It remains
to consider replacements for a proper block interchange BI(A,B) as considered in Lemma 3.
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Since inversions and inverse transpositions change the sign of at least one gene it is clear that
BI(A,B) can neither be replaced by a single inversion nor by a single inverse transposition.
Assume that it is possible to replace BI(A,B) by two rearrangements from {I, iT}. Then the
sign changes that are made by the first of the two operations has to be reversed by the second
operation (and no other sign changes can be made by the second operation). Hence, the
interval with the sign changes has to be the same for both operations. Then it is not possible
that both operations are inversions (since then one inversion simply reverses the effect of the
other inversion). It can also not be the case that one or both rearrangements are inverse
transpositions. This is due to the fact that the interval which is inverted is the same for both
operations which implies that their effect is equal to the effect of one transposition. J

Interestingly block interchanges and transpositions can be replaced with the same number
of inversions, i.e. three, but a larger number of rearrangements is necessary if inverse
transpositions or mixed rearrangement types are involved. Another difference of block
interchanges to transpositions, as discussed in Section 3, is that there are two alternatives
consisting of inversions and inverse transpositions.

The replacements given above are captured by a set of inequalities that need to be
satisfied if a certain type of rearrangements can be part of a parsimonious rearrangement
scenario. Since the replacements for inverse transpositions and inversions are the same as for
T|Tε = {I, T, iT} also the corresponding inequalities and properties of the weighting schemes
are the same when replacing T by BI. Thus, in the following only the case of the block
interchange is discussed. Equations (8) to (11) describe the relations of the weights that
render block interchanges impossible if one of them is violated. A visual representation is
shown in Fig. 2. Note that, a transposition (as a special block interchange) can be replaced
by two (instead of three) inverse transpositions and one inversion and inverse transposition
(instead of two for one of the rearrangement types). These replacements would induce tighter
bounds on the weights for block interchanges. But since these replacements are not possible
for proper block interchanges these tighter bounds cannot be applied in general.

wBI ≤ wI + 2wiT (8)
wBI ≤ 2wI + wiT (9)

wBI ≤ 3wI (10)
wBI ≤ 3wiT (11)

For weighting schemes where block interchanges are not possible one or more of the
replacement scenarios must be employed. For each of the six pairs of replacements the
parsimonious replacement is determined by comparing wI and wiT . Weighing schemes where
these two weights are equal are indicated by a dashed line in Fig. 2. Weighing schemes on
this line are a “no man’s land” where all four replacements have equal weight. Above this
line the replacement by three inverse transpositions and below this line the replacement by
three inversions is parsimonious. Interestingly the replacement consisting of inversions and
inverse transpositions is not parsimonious in these areas but only on the “no man’s land”.
For wI = 0.2, wBI = 0.6, wiT = 0.2 where all lines in the plot intersect, block interchanges
and all of its replacements that are listed in Lemma 3 have equal weights.

5 Conclusion and Discussion

In this paper weighting schemes for two rearrangement models have been analyzed formally:
1) inversions, transpositions, and inverse transpositions; 2) inversions, block interchanges,
and inverse transpositions. These rearrangement models are important for the analysis of
unichromosomal genomes with equal gene content. For both models inequalities have been
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Figure 2 Barycentric plot showing the weighting schemes where block interchanges need to be
considered; shaded areas indicate for each of the inequalities the valid weighting schemes; darker
shading indicates the area where all inequalities hold; the limiting cases, i.e. equality, is annotated
by the corresponding equation number given in bold text; the dashed line gives the demarcation line
between the alternative 3I (green dots) and 3iT (blue horizontal lines).

derived that describe weighting schemes for which certain rearrangement types are excluded
from parsimonious scenarios. This has been done by analyzing the possibilities to achieve
the effects of one rearrangement type by rearrangements of one or more other type(s).

The choice of appropriate weights is an open problem. But, if estimates for the frequency
of the different rearrangement operation are available, e.g. from large scale pairwise com-
parisons [7], it seems to be intuitive to use weights that are inversely (e.g. reciprocal or
antiproportional) related to the frequencies. In fact, this is often done to justify chosen
weights, e.g. [8]. But then, our results imply hard bounds for the reconstructibility of
genome rearrangements by parsimony. If, for instance, inversions are more than three times
as frequent as (inverse) transpositions the corresponding reciprocal (unnormalized) weighting
scheme (wI = 1 and wT , wiT > 3) forbids an exact reconstruction by parsimony since
transpositions and inverse transpositions can not be included in any optimal solution for
weighted genome rearrangement problems. These hard bounds might be loosened by using
other inverse functional relations of frequency and weight, e.g. by adjusting the factor in
case of antiproportionality. Introducing constraints enforcing certain proportions of the
frequencies of rearrangement types are another option.

Considering rearrangement models for the case of undirected gene orders (i.e. π = −π),
distinguishing between transpositions and proper block interchanges, or incorporating multi-
chromosomal rearrangements (e.g. [11, 23]) is future work.
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Abstract
Alignment-free methods are increasingly used for genome analysis and phylogeny reconstruction
since they circumvent various difficulties of traditional approaches that rely on multiple sequence
alignments. In particular, they are much faster than alignment-based methods. Most alignment-
free approaches work by analyzing the k-mer composition of sequences. In this paper, we propose
to use ‘spaced k-mers’, i.e. patterns of deterministic and ‘don’t care’ positions instead of contigu-
ous k-mers. Using simulated and real-world sequence data, we demonstrate that this approach
produces better phylogenetic trees than alignment-free methods that rely on contiguous k-mers.
In addition, distances calculated with spaced k-mers appear to be statistically more stable than
distances based on contiguous k-mers.
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1 Introduction

Traditional methods for comparative sequence analysis and phylogeny reconstruction are
based on pairwise and multiple sequence alignment, see e.g. [14, 29] for an overview. During
the last years, however, a large number of alignment-free methods have been proposed for
sequence comparison, see [38] for a review. The main advantage of these methods is that
they are much faster than alignment-based approaches. While aligning two sequences takes
time proportional to the product of the sequence lengths, most alignment-free approaches
work in linear time.

Consequently, alignment-free methods are increasingly used for genome comparison, in
particular for genome-based phylogeny reconstruction [17, 10, 24]. In addition to being faster,
alignment-free approaches circumvent some well-known problems such as finding ortholog
genes [32] or aligning large genomic sequences [4]. Another advantage of alignment-free
genome comparison is that these approaches can work with unassembled reads [34] and are
not sensitive to genome rearrangements. Alignment-free methods have also been used for
database searching [40] and to construct guide trees as a prerequisite for progressive multiple
sequence alignment [22, 11, 3]. Here, alignment-free sequence comparison could crucially
speed-up progressive multiple alignment, since the run time for alignment-based phylogeny
reconstruction becomes prohibitive if the number of input sequences exceeds a few hundred
or so.
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Most alignment-free methods that have been proposed so far rely on some sort of k-mer
statistics. That is, for a fixed integer k, they consider the (relative) frequencies of all possible
k-mers for each of the input sequences and then define some distance measure based on these
frequency vectors [20, 7, 39, 15]. Standard distance-based methods such as UPGMA [33] or
NeighbourJoining [31] can then be used to calculate phylogenetic trees from the resulting
distance matrices. Other approaches consider the local context of each sequence position in
terms of overlapping k-mers [8]. Some alignment-free methods do not rely on a fixed k but
allow for matches of variable length [37, 19, 9]. However, these methods are still based, in
one way or the other, on contiguous exact matches.

Exact pattern matching is used in many areas of biological sequence comparison, see for
example [16]. A traditional application of k-mer comparison in bioinformatics is database
searching. Fast alignment programs such as FASTA [27] and BLAST [1] originally relied
on identifying word matches of a fixed length. Such word matches, that are referred to as
seeds, can be rapidly found in an initial phase of the algorithm, in a second phase these
‘seeds’ are then extended into both directions by slower but more accurate methods for local
sequence alignment. The size of seeds is a trade-off between sensitivity and speed: short
words are more sensitive, since more matches are found where local alignments are triggered
and evaluated. This increases, however, the running time of these programs, since the local
alignment step is the most time-consuming part of the algorithm. Longer word lengths lead
to an increase in speed, but result in lower sensitivity.

In a pioneering paper, Ma et al. proposed to use spaced seeds instead of contiguous word
matches as the first step in database searching [28]. That is, they proposed to use fixed
patterns of match and don’t care positions and to search for word pairs matching at the
pre-defined match positions, with possible mismatches at the don’t care positions. Their
approach is implemented in the program PatternHunter [25]. The main advantage of spaced
seeds is that hits at different positions are statistically less correlated with each other than
contiguous word matches are. Also spaced seeds are better able to identify homolog sequence
regions in the presence of mismatches. Ma et al. showed that for database searching, spaced
seeds are superior to contiguous word matches in terms of sensitivity and speed. For this
reason, the original contiguous seeds have been largely replaced by spaced seeds in rapid
database search programs. Similarly, Burkhardt and Kärkkäinen [6] used gapped q-grams
instead of contiguous q−grams (q-mers) in a filtering step for the well-studied k-differences
problem.

In this paper, we propose to use spaced k-mers, i.e. k-mers with don’t care characters at
fixed, pre-defined positions, as a basis for alignment-free sequence comparison. Note that
this approach is quite different form the above mentioned spaced-seeds approach to database
searching: instead of using spaced k-mers to trigger local alignments for homology searching,
we want to estimate the global degree of similarity between sequences by comparing their
spaced k-mer composition. To do so, we use a generic distance measure on DNA and protein
sequences based on their spaced k-mer frequencies. We use these distances to construct
phylogenetic trees for simulated and real-world sequences, and we compare these results with
trees constructed by the same method, but with contiguous k-mers that are traditionally used
by alignment-free methods for sequence comparison. Our study shows that, for phylogeny
reconstruction, spaced k-mers often outperform contiguous k-mers. In addition, we found
that the variance of distances values calculated from spaced k-mers is lower than the variance
calculated with contiguous k-mers.
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Figure 1 Tree representing the frequencies of spaced k-mers (k = 3) for an underlying pattern P =
X0X0X in a set of three sequences S1 = AT T CGCCAT T G, S2 = GT T CACACCAT T, S3 =
GT T CCAT T GGT T . For example, the spaced 3-mer corresponding to the word T GT and pattern
P occurs twice in sequence S3 and does not occur in sequences S1 and S2.

2 Calculating trees with spaced k-mers

As usual, for an alphabet A and l ∈ N, Al denotes the set of all sequences over A with length
l. S[i] denotes the i-th character of a sequence S. In our study, the alphabet A represents
the set of nucleotides or amino acids, respectively. In analogy to the terminology introduced
by Ma et al., we define a spaced k-mer as a sequence P ∈ {0, X}l, i.e. a sequence of ‘0’
and ‘X’ characters (the underlying pattern), such that there are exactly k positions i in P
with P [i] = 1, together with a finite sequence w ∈ Ak (the underlying word) with l, k ∈ N
and k < l. In addition, we require that P [1] = P [l] = X holds, i.e. the first and the last
characters in P must be ‘X’. The ‘X’ positions in the pattern P denote match positions
while the ‘0’ positions are the don’t care positions. We call l the length of the spaced k-mer
and k its weight. (One could also include the case k = l, but in order to distinguish ‘spaced
k-mers’ from words or k-mers in the usual sense, we require k to be smaller than l.) We use
the notation length and weight for the underlying pattern P accordingly.

Let α be a spaced k-mer with pattern P , word w, weight k and length l such that
1 = p1, . . . , pk = l denote the positions of the ‘X’ characters in P . We say that α occurs
in a sequence S at position i if S[i + pj − 1] = w[j] for all 1 ≤ j ≤ k. For example, the
spaced k-mer α consisting of the pattern P = XX00X and the word w = AGT occurs in
the sequence S = GGAGCTTCAGGATCC at positions 3 and 9.

In order to define a distance function on a set of sequences S1, . . . , SN over A, we consider
a fixed pattern P with length l and weight k. We then calculate for each sequence Si the
relative frequencies of all possible spaced k-mers that involve our pattern P – relative to
the sequence length –, and we represent each sequence Si by the |A|k-dimensional vector
of the relative frequencies of the spaced k-mers with respect to the pattern P - similarly as
sequences are represented as vectors of (relative) k-mer frequencies in standard alignment-free
approaches.

The spaced k-mer frequencies of the input sequences S1, . . . , SN can be conveniently
stored in a tree, as for the usual (contiguous) k-mers, see Figure 1. It is straight forward
to calculate the spaced k-mer composition of a sequence of length n in O(n× k) time with
a ‘naive’ algorithm. For contiguous k-mers, this can be reduced to O(n) time, e.g. using a
rolling hash approach [21]. This approach can be easily generalized to spaced k-mers by first
considering (contiguous) l-mers and then correcting for the don’t-care positions. This way,
the spaced-k-mer frequencies can be calculated in O(n× d) where d = l− k is the number of
don’t-care positions in the pattern P .

Once the spaced k-mer compositions are calculated for all input sequences, we proceed
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Figure 2 Performance of different patterns of weight w = 10 on simulated DNA sequences.
We used Rose [35] to create 40 sequence sets, each containing 100 simulated DNA sequences of
length 20,000. Tree topologies calculated with spaced and contiguous 10-mers were compared to the
respective reference trees from Rose using the Robinson-Foulds metric. The horizontal green line is
the RF distance obtained with the contiguous 10-mer.

as other alignment-free methods: we define the distance between sequences Si and Sj as
the distances of the corresponding frequency vectors. In the present study, we used the
Jensen-Shannon distance [26] as this distance measure led to better results than alternative
distances. Finally, we construct unrooted trees from the calculated distance matrix using the
Neighbour-Joining program [31] from the PHYLIP package [13].

3 Benchmark data

To evaluate the k-mer and pattern-based methods, we used four different categories of
benchmark data, consisting of simulated and real-world sets of DNA and protein sequences.
For each sequence set, we used a reference tree that we consider to be reliable. We evaluated
the methods under consideration by comparing the trees that they produce to the respective
reference trees in our benchmark sequence sets.

To generate simulated sequences, we used the program Rose [35]. Rose mimics molecular
evolution by producing a set of sequences along an evolutionary tree, starting with a
common ancestral sequence. Mutations are randomly incorporated according to a pre-
defined stochastic model of molecular evolution. As a result, one obtains a set of sequences
with known evolutionary history that can be used to benchmark methods for phylogeny
reconstruction. The parameter relatedness determines the average evolutionary distance,
measured in PAM units, between the sequences produced by Rose.

For DNA sequence comparison, we created 40 sets of sequences, each of which containing
20 sequences of length 20,000 using Rose with a relatedness value of 70. In addition, to
evaluate the variance of the distances defined with contiguous and spaced k-mers, we created
pairs of DNA sequences with Rose using different values for relatedness (see below for details).
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Figure 3 Performance of different patterns of weight w = 4 on BAliBASE. The total sum of
Robinson-Foulds distances over the BAliBASE is shown for spaced k-mers with weight = 4 and
length between 4 and 8.

As real-world DNA sequences, we used a set of 27 primate mitochondrial genomes that has
already been used by Haubold et al. [18] as benchmark data for alignment-free sequence
comparison.

To benchmark the various phylogeny-reconstruction methods on protein sequences, we
simulated sets of 100 protein sequences with Rose, each sequence with a length of 300. Here,
we used the Rose default values, together with relatedness values of 200, 350, 450 and 550.
As real-world protein sequences, we used the BAliBASE benchmark database, a standard
benchmark database for multiple alignment [2]. Since BAliBASE contains no information
about the underlying phylogenetic trees, we applied Maxium Likelihood [12] approach to
the reference multiple alignments from BAliBASE, and we used the resulting trees as the
reference trees in our program evaluation.

To evaluate the various alignment-free methods described in the previous section and to
compare them to the classical alignment-based approach, we compared the tree topologies
generated by these methods to the topologies of the respective reference trees using the
Robinson-Foulds (RF) metric [30].

4 Test results

To each category of benchmark data, we first applied the above outlined approach using
contiguous k-mers with various values for k. This way, we identified for each category of
benchmark sequences the k-mer length that gives the best result regarding the RF distances
to the respective reference trees. For the this value of k, we then generated patterns with
weight k and with varying lengths. Since the number of possible patterns grows rapidly with
k, we randomly selected patterns for those data sets where the optimal k was too large to
test all possible patterns exhaustively.
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Figure 4 Performance of different approaches on protein sequences, simulated with Rose using
relatedness values of 200 (left) and 350 (right). Clustal W and Maximum Likelihood

4.1 Genomic sequences
For the simulated DNA sequences of length 20,000, we found that k-mers with k = 10 gave
the best results, with an average RF distance of 5 to the respective reference trees. Thus, we
created patterns with a weight of 10; we varied their lengths between 11 and 13. That is,
each pattern contained 10 ‘match’ positions and between one and three ‘don’t care’ positions.
Overall, we used 32 different patterns of weight w = 10, namely 3 patterns of length 11, 8
patterns of length 12 and 21 patterns of length 13; the patterns were randomly selected.
The test results with these patterns are shown in Figure 2. All patterns of length 11 and
most patterns of length 12 produced better results than the corresponding approach with
the contiguous 10-mer.

For the primate mitochondrial genomes, we obtained the best results with k-mers of
length k = 8, so we generated patterns P with a weight of 8 and with varying lengths. In
contrast to the simulated DNA sequences, our pattern-defined spaced 8-mers performed
slightly worse than the contiguous 8-mer. The RF distance to the reference tree was 4 for
the contiguous 8-mer, while the average RF distance for our spaced 8-mers was 4.68, with a
range between 2 and 10.

4.2 Protein sequences
On our simulated and real-world protein sequences, contiguous k-mers with k = 4 produced
the best results, with the exception of simulated Rose sequences with relatedness of 200 where
k = 3 performed better, see Figures 3,4, 5. For protein sequences, we therefore generated
patterns with weight k = 4 and varying lengths.

As shown in Figure 3, 4 and 5, all test runs with spaced 4-mers of length l ≤ 7 gave better
results than the corresponding test runs with contiguous 4-mers – with the notable exception
of the periodic pattern P = X0X0X0X which performed similar to the contiguous k-mers
or even worse. On the simulated sequence sets with a relatedness value of 550, however, the
difference was less clear. On these distantly related protein sequences, contiguous and spaced
4-mers performed almost equally.

We also applied the classical approach to phylogeny reconstruction to our sequence sets
by calculating multiple alignments with Clustal W [36] and then applying the Maximum
Likelihood (ML) software from the PHYLIP package [13]. The results of these test runs for
the simulated protein sequences are inluded in Figures 4 and 5. On BAliBASE, the total RF
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distance between the Clustal/ML trees and the reference trees was 4,478. On all sets of real
and simulated protein sequences, this classical approach produced better results than our
alignment-free methods, except for the simulated protein sequences with relatedness of 550
where both approaches performed comparably.

4.3 Variance of sequence distances calculated with spaced and
contiguous k-mers

Finally, we investigated the variance of the distances that we used for the various alignment-
free methods in this study. To do so, we simulated pairs of DNA sequences with pre-defined
evolutionary distances with Rose, using relatedness values between 2 and 51. For each
relatedness value we created 200 pairs of sequences of length 2,500 each. We then calculated
the distance for each sequence pair as described in section 2 with a value of k = 5 which
performed best on DNA sequences of this length. We measured the variance of these distance
values for each value of relatedness, for all 200 sequence pairs and for each 5-mer. It turned
out that for the contiguous pattern XXXXX and for the periodic pattern X0X0X0X0X,
the variance was considerably higher than for the non-periodic patterns. The results are
summarized in Figure 6.

5 Discussion

The k-mer composition of DNA and protein sequences is frequently used to analyse evol-
utionary relationships and to construct phylogenetic trees. A certain disadvantage of this
approach is the fact that k-mer occurrences at different sequence positions are far from
independent from each other. For this reason, some authors corrected the k-mer statistics of
sequences for the dependency of overlapping k-mer matches, e.g. Göke et al. [15]. For the
same reason, k-mer matches have been replaced in homology searching by so-called spaced
seeds where non-periodic patterns of ‘match’ and ‘don’t care’ positions are used instead of
contiguous word matches [28]. Motivated by this approach, we propose to use spaced k-mers
instead of the traditionally used contiguous k-mers to define distances between sequences
and to construct phylogenetic trees. While, under an i.i.d. Bernoulli model, the expected
number of occurrences of a spaced k-mer in a random sequence is approximately the same as
for a contiguous k-mer, occurrences of a spaced k-mers at different sequence positions are
less dependent, provided that a non-periodic underlying pattern P is used.

To compare spaced and contiguous k-mers, we implemented a generic approach to phylo-
geny reconstruction based on the (spaced) k-mer composition of sequences and evaluated the
resulting trees on various types of benchmark data. Figures 3, 4 and 5 show that distance
matrices based on spaced 4-mer frequencies in protein sequences led to consistently better
phylogenetic trees than the same approach with contiguous 4-mers. This is similar for
simulated DNA sequences as shown in Figure 2, although here improvements could only be
achieved with shorter patterns containing only up to two don’t care positions. If the number
of don’t care positions - and thus the length of the pattern - was further increased, the
results deteriorated. This is probably due to the frequency of insertions and deletions in Rose
which make longer gap-free matches in ‘homologous’ regions less likely. Not surprisingly, the
conventional approach for phylogeny reconstruction using maximum likelihood and multiple
alignments performed better than the alignment-free approaches that we tested. Neverthe-
less, for very distantly related simulated protein sequences, the performance of k-mer and
alignment-based phylogeny methods converged.
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Figure 5 Performance of different approaches on protein sequences, simulated with Rose using
relatedness values of 450 (left) and 550 (right).

As mentioned, a main advantage of spaced k-mers is that matches at different sequence
positions are statistically less dependent on each other than matches of contiguous words
are - as long as the underlying pattern is non-periodic (or ‘irregular’). Distance measures
using spaced k-mers can therefore be expected to be more stable than distances based on
contiguous words. Figure 6 shows, for example, that the statistical variance of distances based
on the contiguous pattern XXXXX and the periodic (‘regular’) pattern X0X0X0X0X is
higher than for non-periodic patterns with the same number of ‘match’ positions.

Correspondingly, for the real-world and simulated protein sequences, ‘non-regular’ patterns
for which matches at different sequence positions have less overlap, often performed better
than ‘regular’ patterns where matches at different positions are statistically more dependent.
For BAliBASE and for the Rose sequence sets of relatedness 200 and 350, for example,
the ‘irregular’ pattern X0X00XX performed clearly better than the more ‘regular’ pattern
XX000XX. Spaced 4-mers performed always better than contiguous words on these sequence
sets – except for the periodic pattern X0X0X0X. Spaced k-mers with this periodic pattern
often performed similar or even worse than the contiguous 4-mer.

A crucial question in our approach is how to select good patterns P . One approach would
be to minimize the dependency of spaced k-mer matches at different sequence positions. First
test runs indicate that the summed correlation coefficients for matches at different positions
may be an indicator of how good a pattern is at distinguishing random similarities from true
homologies.

The statistical properties of spaced seeds used in database searching have been studied
extensively during the last ten years, and efforts have been made to identify optimal spaced
seeds, see for example [23, 5]. Note, however, that these questions are quite different from
the questions that are relevant in our approach. In database searching, one is interested
in the probability of finding (at least) one hit between sequences with a certain degree of
similarity, to trigger a local alignment. This probability determines the sensitivity of a
spaced seed and has to be balanced against the number of random hits that slow down the
program. By contrast, with our spaced k-mer approach, we want to study the global degree
of similarity between two sequences by comparing their (spaced) k-mer compositions. Here,
we are interested in the expected number of matching spaced k-mers and its variance in
homologous vs. unrelated sequences. We are planning to study the statistical behaviour
of spaced and contiguous k-mer matches in more detail to identify optimal patterns for
alignment-free sequence comparison and phylogeny reconstruction.
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Figure 6 Variation coefficients for the distance values calculated with various spaced and contiguous
5-mers. We used Rose to simulate pairs of DNA sequences with different values of relatedness, i.e.
evolutionary distances. For each value of relatedness between 2 and 51, we we generated 200 sequence
pairs of length 2,500 and estimated the pairwise distances with the different k-mer based approaches.
For each approach, the graphic shows the variation coefficient for the resulting 200 distance values.
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Abstract
We present a pangenome data structure (“PanCake”) for sets of related genomes, based on
bundling similar sequence regions into shared features, which are derived from genome-wide
pairwise sequence alignments. We discuss the design of the data structure, basic operations
on it and methods to predict core genomes and singleton regions. In contrast to many other
pangenome analysis tools, like EDGAR or PGAT, PanCake is independent of gene annotations.
Nevertheless, comparison of identified core and singleton regions shows good agreements. The
PanCake data structure requires significantly less space than the sum of individual sequence files.
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1 Introduction

With an increasing amount of available sequence data, biological research shifts towards the
exploration of the global gene repertoire of related species, called the pangenome, instead of
single genomic sequences. The term “pangenome” was introduced in 2005 in a study that
compared eight strains of Streptococcus agalactiae [13], identified roughly 1800 genes shared
by all strains and defined them as the “core genome”. The core genome is assumed to consist
mainly of genes regulating essential life processes, and hence being indispensable to cell
survival. Genes only present in a subset of genomes were called “dispensable” [13]. Analysis of
the pangenome of a set of related prokaryotic strains yields insight in the delineation of species
and can be taken as a basis for taxonomic classification [10]. Genes identified as specific
to a single genome, called “singletons”, act as candidates accountable for strain-specific
characteristics like virulence or synthesis of certain metabolites [9, 14].

Several tools for the analysis of pangenomes exist. Many of them require pre-computed
information stored in databases [2, 4, 5]. Consequently these tools are applicable only for
a set of provided strains. Furthermore, most applications rely on the availability of gene
annotations [2, 15], which may not be on hand in all cases, or incomplete, or erroneous [11, 12].

The pangenome concept can be extended to the level of pure genomic sequences without
annotations. Information about pairwise local sequence similarities can be obtained from
alignment tools like BLAST [1] or nucmer [7]. Based on pairwise similarities, Mancheron et
al. [9] introduced an approach for the identification of regions shared by all input sequences,
which was subsequently improved by Jahn et al. [6]. Regions that appear similar in all
compared sequences are expected to be part of the core genome, while putative singletons lie
in areas not aligned to any of the other genomes. Core and singleton identification based
on pairwise alignments is independent from annotaions, is able to handle gene duplication
events and can even serve as a resource for annotation refinement [9].
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We present a novel approach for the analysis of pangenomes based on pooling related
genomic subsequences into common objects, which we call shared features. Pangenome-related
information of the genomes (such as core regions) can be derived directly from shared features.
Additionally, storage requirements are reduced in comparison to pure sequences, even without
using explicit compression, but by storing similar sequences via sequences of edit operations
with respect to a common reference [3, 8].

In Section 2 we introduce the PanCake data structure, especially shared features and
feature instances. In Section 3 we explain our approach of decoding sequences as edit
operations with respect to a given reference. In Section 4 we show how the data structure
is built iteratively from pairwise alignments between the included genome sequences. In
Section 5 we explain how the data structure is used to identify core and singleton regions.
Section 6 briefly describes the PanCake software. In Section 7 we report results on strains
from three different prokaryotic genera by comparing our findings with those of pangenome
analysis tools PGAT [4] and EDGAR [2]. A discussion with outlook concludes the paper.

2 The PanCake Data Structure

In our model, a pangenome P consists of ng ≥ 1 genomes. Each genome consists of one or
several chromosomes, such that the pangenome consists in total of nc ≥ ng chromosomes.
The sequence of chromosome C between positions p and q, inclusive, is written as C[p : q].

The centerpiece of our approach is the bundling of similar subsequences from diverse
genomes into a common object, which we call a shared feature.

I Definition 1 (pangenome). A pangenome consists of a set of genomes, a set of chromosomes,
a mapping of chromosomes to genomes, and a set of shared features (Definition 2).

Each shared feature consists of one reference sequence r and a non-empty set of so-called
feature instances. An example of a shared feature with four feature instances is shown in
Figure 1 (left). Each feature instance represents a single genomic interval on a chromosome.

I Definition 2 (shared feature). A shared feature is a pair (r,F), consisting of a DNA
reference sequence r and a set F of feature instances (Definition 3).

I Definition 3 (feature instance). A feature instance F = (C, start, stop, S, e, b, prev, next)
consists of a chromosome identifier C with start and stop positions start ≤ stop on C. Further,
S references the shared feature F is organized in, e is the sequence of edit operations which
have to be applied to S’s reference sequence r to obtain the feature instance’s sequence,
and b is a direction bit that takes the values forward or reverse. If the direction bit is
forward, application of e to the reference sequence results in the chromosome sequence
C[start : stop] directly, otherwise in its reverse complement. The feature instances belonging
to the same chromosome are organized as a doubly linked list, with prev pointing to the
previous (upstream) feature instance ending at position start− 1, and next pointing to the
next (downstream) one starting at position stop + 1. (At the chromosome telomers, these
take a special null value.)

Any chromosome C can be reconstructed by iterating over linked feature instances,
starting from the feature instance covering the chromosome’s start and stopping at its end.
Linearly iterating over a linked list to access a specific chromosome position can be slow,
so we use an index that maps each ∆-th position of a chromosome to the feature instance
covering it, for navigation within the data structure. Currently, we use ∆ = 10 000.
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Figure 1 A shared feature before and after reverse-complementing (flipping) with reference
sequence ATGTGTTCATGT or rev. complement ACATGAACACAT and four feature instances (Definition 3).
The direction bit is shown as a minus sign in front of the list of edit operations if it is reverse.
Colored arrows represent links to next and from previous feature instances. The feature instance
covering chr1 is not linked to an upstream feature instance because it covers the chromosome’s start.

If a shared feature contains only a single feature instance (as all do initially, when no
sequence similarities have been detected and processed), we dispense with the overhead of
shared features and store such an instance as an unaligned feature instance, which is a tuple
(C, start, stop, s, prev, next), whereby definitions of C, start, stop, prev and next are the same
as in Definition 3 and s directly spells the covered C[start : stop] (instead of representing it
indirectly via a reference r of a shared feature S and edit operations e and a direction bit b).

3 Sequence Encoding by Edit Operations

As explained in Definition 3, the chromosomal sequence s of a feature instance is encoded
through a reference sequence r (of the enclosing shared feature) and edit operations e plus a
direction bit b. In Section 3.1 we explain how e is derived from a pairwise alignment of r and s.
However, if (e.g. for incorporation of similarity information) a feature instance has to be
moved from one shared feature to another, its edit operations have to be adapted (rebased) to
a new reference sequence without explicit knowledge of the corresponding pairwise alignment.
Our rebasing approach is discussed in Section 3.2.

3.1 Deriving Edit Operations from Pairwise Alignments

Edit operations describe the alignment of a feature instance’s sequence to the reference
sequence of its enclosing shared feature by using the standard operations (match, substitution,
insertion, deletion) on single characters. They can be encoded efficiently as byte sequences, as
each represented DNA sequence is assumed to be closely similar to the reference. Therefore
one can store bytes with the most significant bit deciding wheter a number or character is
stored. If a number is stored, the second most significant bit determines the sign. A positive
number indicates consecutive matches; a negative number indicates consecutive deletions.
If a character is stored, we store its ASCII code in seven bits: Substitutions are encoded
by the uppercase IUPAC symbol of the substituted nucleic acid, insertions are encoded by
lower-case symbols. In this paper, we show edit operations as lists of numbers and IUPAC
symbols, prepending them by a minus sign if and only if the direction bit is reverse. It is
straightforward to convert between a sequence of edit operations and an alignment, as edit
operations are simply a compact encoding of the alignment, given the original sequence.
We summarize both e and the direction bit b as an edit transformation t = (e, b) and write
r

t7→ s. Such a transformation is equivalent to a pairwise alignment of r and s, or of r and
the reverse complement of s.
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r′ AT-GTGTTCATGT A-T-GTGTTCATGT
r ATAGTGTT–A-GT A-TAGTGTT–A-GT

⇒ ⇒ A-T-GTGTTCATGT r′

r A-TAGTGTTAGT A-TAGTGTT–A-GT AGTCGT-TT–A-GT s

s AGTCGT-TTAGT AGTCGT-TT–A-GT

r′
t∗−−−−→ r′′ye′ e′′

y
s′

a−−−−→ s′′

Figure 2 Left: Rebasing s on a new reference r′ from previous reference r when a transformation
(alignment) between r′ and r is known (left): Gaps in both alignments are expanded to their union,
such that the gapped representation of the old reference r becomes equal in both alignments (middle)
This directly results in an alignment between r′ and s by forgetting r (right). Right: Commutative
diagram showing how to find a transformation t∗ between two reference sequences r∗ = r′ and r′′,
when transformations r′

e′7→ s′, s′
a7→ s′′ and r′′

e′′7→ s′′ are given: t∗ = e′ · a · e′′−1.

3.2 Rebasing Edit Operations on a Different Reference Sequence
If we have to rebase a feature instance’s sequence s on a different reference sequence r′, we
need to find a transformation t′ such that r′

t′7→ s. Of course, we could compute an optimal
alignment between r′ and s (or its reverse complement) from scratch. However, this would be
time-consuming, and we can assume that we already have an alignment (or transformation u)
between r′ and original reference r. Algebraically, if we have r′

u7→ r and r
t7→ s, we can

compose them to r′
u7→ r

t7→ s, and we will write t′ = u · t. We will also use the multiplicative
notation if a transformation is applied to a sequence, i.e. r′ · t′ = r′ · u · t = s. This notation
is completely analogous that of linear algebra, multiplying a row vector r′ with several
(size-compatible) matrices u, t, obtaining a new row vector s. Of course, the operations have
nothing in common with matrix multiplication; we simply borrow the notational convenience.

The transformation t′ corresponds to a pairwise alignment between r′ and s, but not
necessarily an optimal one, even if transformations t and u are optimal. The process of
composing edit transformations can be understood in terms of pairwise alignements, as
explained in Figure 2. In some cases, the resulting alignment or transformation can be
simplified directly: In the alignment, columns of gap aligned to gap are removed. Insertions
directly followed by deletions (or vice versa) can be converted to substitutions.

4 Building the PanCake Data Structure

Initially, each of the nc chromosomes in a PanCake data structure is represented by its
own shared feature and feature instance. During an iterative building process, feature
instances are bundled into shared features on the basis of pairwise alignments computed
by external tools. Section 4.1 describes how similarity information arising from a single
pairwise alignment is integrated into the data structure. In summary, integration occurs in
three steps, namely division (Section 4.2), (conditional) flipping (Section 4.3), and merging
(Section 4.4) of shared features.

4.1 Including a Pairwise Alignment into the PanCake Data Structure
Independently of using BLAST [1] or nucmer [7] for computation, PanCake represents a
pairwise alignment as follows.

I Definition 4 (PanCake pairwise alignment). PanCake describes a pairwise alignment
A = (A1, A2) between two chromosomal intervals by two 5-tuples Ai = (Ci, starti, stopi, bi, si)
with i ∈ {1, 2}. Here Ci[starti : stopi] defines the i-th sequence by specifying its chromosome,
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Figure 3 Inclusion of pairwise alignment A into an initial PanCake data structure containing
two artificial chromosmomes of length 12bp and 15bp and consisiting of six feature instances
organized in five shared features. Let A = ((chr1, 4, 8, forward, CCCAC), (chr2, 8, 12, reverse, CCGAC)).
As the aligned subsequence chr1[4:8] spans more than one feature instance initially, A is divided
into A′ = ((chr1, 4, 6, forward, CCC), (chr2, 10, 12, reverse, CCG)) and A′′ = ((chr1, 7, 8, forward, AC),
(chr2, 8, 9, reverse, AC)). Then, A′ and A′′ are integrated separately.

start and stop position (C1 = C2 is possible). If bi is forward, that sequence is aligned,
otherwise its reverse complement. The rows of the alignment (sequences with gap characters)
are given by s1, s2.

To incorporate the information of a pairwise alignment A = ((C1, start1, stop1, b1, s1),
(C2, start2, stop2, b2, s2)) into the data structure, we proceed as follows. We find the (at most
four different) feature instances F start

1 , F stop
1 , F start

2 and F stop
2 , covering positions C1[start1],

C1[stop1], C2[start2] and C2[stop2], respectively. We divide F start
1 at C1[start1] according to

Section 4.2 (unless the feature instance ends at that position anyway) and do so analogously
for the other feature instances and corresponding positions.

If, thereafter, C1[start1 : stop1] or C2[start2 : stop2] spans more than a single feature
instance, we divide the alignment A into several disjoint alignments such that for each
resulting subalignment A′ = ((C ′1, start′1, stop′1, b′1, s′1), (C ′2, start′2, stop′2, b′2, s′2)), chromosmal
region C ′1[start′1 : stop′1] is covered entirely by a feature instance F1 and chromosomal region
C ′2[start′2 : stop′2] is covered entirely by F2. We then merge the shared features containing
F1 and F2 into a single one according to Section 4.4. Depending on the direction bits of
the alignment, one shared feature may have to be flipped before (Section 4.3). If division
results in a subalignment A′ with either s′1 or s′2 consisting exclusively of gaps, then this
subalignment is discarded, and no merge is performed. An example is shown in Figure 3.

The resulting data structure depends on the order in which the alignments are processed.

4.2 Dividing a Shared Feature and its Feature Instances
Dividing a feature instance into two disjoint parts implies the division of its containing shared
feature and hence all other contained feature instances, too.

Given a feature instance F = (C, start, stop, S, e, b, prev, next) and a cutting index c with
1 ≤ c ≤ stop− start + 1, the task is to divide F at distance c from the start or stop position,
depending on the direction bit b. This results in F being divided into two new feature
instances F ′ and F ′′ and corresponding new shared features S′ and S′′.

Precisely, if b is forward, this results in two new feature instances

F ′ = (C, start, start + c− 1, S′, e′, forward, prev, F ′′),
F ′′ = (C, start + c, stop, S′′, e′′, forward, F ′, next).

Otherwise, if b is reverse, this results in

F ′ = (C, start, stop− c, S′, e′, reverse, prev, F ′′),
F ′′ = (C, stop− c + 1, stop, S′′, e′′, reverse, F ′, next).

GCB 2013



40 PanCake: A Data Structure for Pangenomes

Figure 4 Division of the orange feature instance F = (chr1, 1, 12, S, [12], forward, prev, next) at
cutting index c = 3. Computing the cutting indexes for the reference r and all other feature instances
F̃ ∈ S results in cr = 3 and cF̃ = 3 except instance (chr3, 30, 40, . . . ), where cF̃ = 2. The newly
formed shared features are concatenated shared features, cf. Section 5.

Note that all feature instances of the corresponding shared feature S have to be divided as
well to maintain the data structure. An example is given in Figure 4.

To divide the containing shared feature S, we must compute the position cr at which the
reference r of S has to be divided, such that the references of S′, S′′ are r′ = r[1 : cr] and
r′′ = r[(cr + 1) : |r|]. Computation of cr from c and implicit sequence s of F proceeds by
counting positions in the implicit aligment represented by edit transformation r

(e,b)7→ s until
the length of the processed part of s becomes ≥ c.

Once cr is known, divided shared features S′, S′′ are initialized with the prefix and suffix
of the reference sequence, respectively. Their feature instances are included successively
while iterating over all feature instances in S. For each feature instance F̃ ∈ F \ F , splitting
position c̃ is determined (analogously to computation of cr) in order to compute new edit
operation lists ẽ′, ẽ′′ and adapt the start and stop positions of the newly formed feature
instances. Start and stop positions of the divided feature instances F̃ ′ and F̃ ′′, as well as
their links to next and previous feature instances, depend on F̃ ’s direction bit b̃.

During division, two special cases may arise. First, empty feature instances F̃ ′ or F̃ ′′ with
edit operations consisting of only deletions may occur. Such feature instances are deleted
entirely and links from previous and next instances adjusted accordingly. Second, an empty
reference sequence rS′ or rS′′ may occur if the beginning or end of F ’s edit operation list e
consists exclusively of insertions. Then any feature instance is chosen (e.g., randomly) whose
decoded sequence provides the new reference. The edit operations of the remaining feature
instances are then rebased on the new reference (Section 3.2).

Dividing a shared feature and its feature instances requires updating the navigation index
if for any chromosome, a position divisible by ∆ belonged to the divided S.

4.3 Flipping a Shared Feature
Flipping a shared feature S = (r,F) works as follows. After reverse-complementing the
reference sequence r, new edit operations are computed for each feature instance F ∈ F by
reversing the sequence, reverse-complementing symbols referring to substitutions or insertions,
and finally flipping F ’s direction bit. By flipping, none of the chromosome sequences change,
but only their representation by a reference sequence and edit operations. Applying flipping
twice results in the original representation.

4.4 Merging Shared Features
When two shared features S′ = (r′,F ′) and S′′ = (r′′,F ′′) have similar reference sequences
r′ ≈ r′′ (e.g., as evidenced by finding a good alignment between feature instances of S′ 6= S′′),
it is beneficial to merge S′ and S′′ into a new combined shared feature S∗ = (r∗,F ′ ∪ F ′′)
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Figure 5 Merging two shared features, assuming that an alignment between chr2, positions 41–51,
and chr3, positions 30–40, has been found.

containing all feature instances from both S′ and S′′. Assume without loss of generality that
S′ is larger, i.e., |F ′| ≥ |F ′′|. Then we pick r∗ := r′ as reference and move each F ′ ∈ F ′
into F∗ unmodified. We have to base each feature instance of S′′ on r∗ = r′. This works as
explained in Section 3.2, but we need to know a transformation t∗ such that r′

t∗7→ r′′. In
a typical case, we do not have such a transformation available directly, but first need to
compute it from a given alignment (e.g., found by BLAST) between two feature instances F ′

and F ′′. Say the rows of the pairwise alignment are given by s′ and s′′, corresponding to an
edit transformation a. We also know edit transformations r′

e′7→ s′ and r′′
e′′7→ s′′ stored in the

feature instances. Now t∗ = e′ · a · e′′−1, as shown by the commutative diagram in Figure 2
(Right). Here e′′

−1 denotes the inverse edit transformation, replacing insertions by deletions
and vice versa and swapping goal and target of substitutions. An example of the result of
merging two shared features is provided in Figure 5.

Merging two shared features requires updating the navigation index for those positions
divisible by ∆ contained in the smaller S′′.

5 Applications: Core and Singleton Identification

Once a PanCake representation of several genomes is built and stored, there are several
applications; the two most important of which are the identification of singletons (here
meaning genomic regions not shared with any other genome) and of the core genome (here
referring to genomic regions shared with every other genome).

Singleton identification is straightforward. By definition, the set of singleton regions
of a genome G consists of all unaligned feature instances belonging to chromosomes of G

(see Section 2) or being part of a shared feature containing exclusively feature instances
originating from G. They can be easily enumerated by iterating over all feature instances of
chromosomes of G.

The core genome can be identified by considering core features, defined as follows.

I Definition 5 (core feature). A G-core feature for a set G of genomes is a shared feature
that contains at least one feature instance from each genome G ∈ G.

Identification and enumeration of core features is straightforward by using the map of
contained chromosomes to genomes. If we only need to know which positions in a genome
belong to the core, we are done now. However, we additionally want to list all (maximal) core
regions whose definition corresponds to maximum common intervals (MCIs) by Mancheron
et al. [9] or maximum overlapping intervals (MOIs) by Jahn et al. [6]. We first need the
notion of concatenated shared features.

I Definition 6 (concatenated shared features). An ordered pair (S′, S′′) of shared features is
concatenated, if they have the same number of feature instances and for all feature instances
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F ′ in S′ with direction bit forward, there exists a feature instance F ′′ in S′′ with next′ = F ′′

and direction bit forward, and for all F ′ in S′ with direction bit reverse, there exists F ′′

in S′′ with next′′ = F ′ and direction bit reverse. (S′, S′′) is also called concatenated if any
combination of flipping results in concatenation.

Concatenated shared features can arise from dividing a shared feature (Section 4.2; Figure 4).
The concept is iteratively extended to more than two shared features. We now define what it
means that a sequence of consecutive feature instances from the same chromosome forms a
core region part and then define a core region as a maximal core region part.

I Definition 7 (core region part). Let G be a set of genomes. Let Fi, 1 ≤ i ≤ n be consecutive
feature instances (meaning that stopi + 1 = starti+1 for all i) on a chromosome C from
genome G ∈ G. Let Si = (ri,Fi) be the shared feature containing Fi.

The Fi, 1 ≤ i ≤ n (and the induced interval C[start1, stopn]) is a core region part of G

with respect to G, if for all 1 ≤ i ≤ n, there exists a subset of feature instances, F̂i ⊆ Fi,
such that: (a) the reduced shared features Ŝi := (ri, F̂i) are concatenated shared features,
and (b) for each genome G′ ∈ G, there exists at least one feature instance in F̂i covering a
chromosome from G′.

Every core feature gives rise to a core region part for each of its contained feature instances,
but a core region part can be longer than a single feature instance. Our interest lies in
connecting these parts to a (full) core region which cannot be extended further.

I Definition 8 (core region). A core region part (Fi), 1 ≤ i ≤ n, of C or G is a core region
of C or G if it is maximal in the sense that both upstream elongation (by prepending prev1)
and downstream elongation (by appending nextn) do not yield core region parts.

Identification of core regions of a chromosome C with respect to a genome set G occurs
in two steps. First, starting from each C-covering feature instance F contained in a core
feature with respect to G, we search for the longest core region part of C starting with F . In
a second step, whenever identified core region parts share stop positions on the reference
genome, shorter ones are removed from output.

In practice, there exist short unaligned feature instances (e.g., 1–5 bp) between otherwise
concatendated shared features, breaking the concatenation property. As this results in
unnecessary cutting of long core regions, we have implemented a gap-tolerant version of the
above method that ignores intermediate feature instances shorter than a user-defined length.

6 The PanCake Software

The PanCake software is written in Python 3.2 and available from https://bitbucket.
org/CorinnaErnst/pancake under the MIT license. It has a command-line interface with
several subcommands, allowing to add chromosomes from .fasta files, to specify a genome
for each chromosome, to add alignments, to compute core and singleton regions, and to
output selected subsequences of the contained chromosomes. Intermediate representations
of the data structure are serialized into a text-based file format (PanCake .pan format),
which is manipulated by these subcommands. Even though unoptimized, significant savings
against the .fasta files are visible (cf. Table 1). Core genome computation outputs a .bed
file with intervals for each chromosome covering the core regions, and optionally one .fasta
file per core region, containing their unaligned sequences, so they can be optimally aligned
and inspected with standard tools.

https://bitbucket.org/CorinnaErnst/pancake
https://bitbucket.org/CorinnaErnst/pancake
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Table 1 PanCake statistics on three genera (see text). Computation time refers to a single core
on an Intel Core i7-2600 CPU at 3.40GHz with 8 GB RAM.

Genus genome FASTA number of PanCake comp
(number of strains) size [Mbp] size [MB] alignments size [MB] time
Pseudomonas (3) 19.4 19.7 1405 7.7 (39%) 20 sec
Yersinia (8) 38.0 38.5 324925 8.9 (23%) 16.5 h
Burkholderia (10) 65.3 66.2 147344 22.0 (33%) 10.8 h

Pseudomonas Yersinia Burkholderia

Core Regions

Singleton Regions

Figure 6 Overlap of core and singleton regions as identified by EDGAR, PGAT and PanCake on
the datasets of Table 1.

7 Results

We compare the results of PanCake against those of two other comparative genome analysis
tools: EDGAR [2] and PGAT [4]. Both approaches identify core genes and singletons
by comparing pre-annotated coding sequences only, while PanCake does whole-genome
comparisons. As EDGAR and PGAT are web-based database applications, analysis is limited
to the sets of provided pre-processed strains, at least in open access mode. PGAT provides
8 bacterial genera, from which we chose Pseudomonas, Yersinia and Burkholderia; we exclude
strains marked as draft assembly and strains with chromosomes or plasmids which are absent
in EDGAR’s open access mode. This results in the following sets of strains:
Pseudomonas (3 strains): P. aeruginosa PAO1, P. aer. UCBPP-PA14, P. aer. LESB58.
Yersinia (8 strains): Y. pestis Angola, Y. pestis Antiqua, Y. pestis KIM 10, Y. pestis Microtus

91001, Y. pestis Nepal 516, Y. pestis Pestoides F, Y. pestis Z176003, Y. pestis CO92.
Burkholderia (10 strains): B. pseudomallei 1026b, B. pseudomallei 1106a, B. pseudomallei

1710b, B. pseudomallei 668, B. pseudomallei K96243, B. mallei ATCC 23344, B. mallei
NCTC 10229, B. mallei NCTC 10247, B. mallei SAVP1, B. thailandensis E264.
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With PanCake, we build a data structure for each genus, using all pairwise alignments
computed by nucmer [7] with option --maxmatch (use all anchor matches regardless of their
uniqueness), removing obivously redundant alignments. Some statistics are given in Table 1.

For each genus we compute the core genome and singletons, according to each tool’s
definitions and default parameters and recommendations, using the EDGAR web applications
and PGAT’s ’Prescence and Abscence Tool’ with option ’consider pseudogenes as present’.
As EDGAR acts exclusively on annotated genes, we only evaluate on such positions.

The results (Figure 6) show that core regions identified by the three tools are in good
agreement. For Yersinia and Burkholderia, the amounts of identical core positions identified
by PanCake and PGAT are higher than in combinations including EDGAR. This may be
explained by EDGAR’s approach of determining orthologs stringently by bidirectional best
BLAST hits [2], resulting in fewer predicted core regions and more predicted singleton regions.
In contrast, PGAT allows genes to be related to various similar regions in other genomes; so
PGAT’s results show significantly better agreement with the results of PanCake than with
EDGAR. Concerning the singleton regions, only small amounts from 4.29% down to 0% of
the genomic positions identified by PanCake do not agree with one of the other tools.

8 Discussion and Conclusion

We presented a data structure and software implementation (PanCake) for pangenomes. It
is based on pooling similar genomic subsequences, as evidenced by pairwise alignments, into
shared features. We discussed basic operations on the data structure (flipping, re-basing,
division, merging) and how to iteratively build it from alignments. We also presented a
method to identify the core genome and singletons from the data structure. Comparison with
PGAT and EDGAR shows good agreement with PGAT, while EDGAR uses a more stringent
approach to identify orthologs (instead of “similar regions”). PanCake is not restricted to
annotated genes, and the data structure can be built iteratively from available (un-annotated)
FASTA files and stored persistently.

In the future, we aim to reduce computation times (the current version uses un-optimized
pure Python code) and storage requirements by optionally using a more efficient binary
format to store the data structure. Already, the PanCake file size is only 40% to 25% of the
sum of FASTA file sizes. At the moment, the resulting representation of the data structure
depends on the order in which the alignments are processed (and on the quality of the
alignments themselves). We are working on a refactoring operation that will provide a better
representation of each shared feature (say, using a median reference sequence with short edit
operation lists). New classes of shared features, such as one representing variable-length
repeats, are also of interest, as well as avoiding occasional artifacts of short feature instances
that result from division when an alignment does not end at, but close to, the border
of a shared feature. To determine core regions faster, efficient algorithms [6, 9] could be
implemented.

The current state of PanCake is a proof of concept. We plan to substantially broaden
PanCake’s applications by including additional features, such as better support for other
alignment tools, optional inclusion of annotation data, taxonomic analysis and creation of
synteny plots. A typical future query might be: Output all regions (in any genome) that are
similar to the metH gene in any Y. pestis strain.

Acknowledgements We thank Johannes Köster and Marcel Martin for helpful discussions
and sharing their Python knowledge.
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Abstract
Bayesian Networks are an established computational approach for data driven network inference.
However, experimental data is limited in its availability and corrupted by noise. This leads to
an unavoidable uncertainty about the correct network structure. Thus sampling or bootstrap
based strategies are applied to obtain edge frequencies. In a more general sense edge frequencies
can also result from integrating networks learned on different datasets or via different inference
algorithms. Subsequently one typically wants to derive a biological interpretation from the results
in terms of a consensus network. We here propose a log odds based edge score on the basis
of the expected false positive rate and thus avoid the selection of a subjective edge frequency
cutoff. Computing a score optimal consensus network in our new model amounts to solving
the maximum weight acyclic subdigraph problem. We use a branch-and-cut algorithm based
on integer linear programming for this task. Our empirical studies on simulated and real data
demonstrate a consistently improved network reconstruction accuracy compared to two threshold
based strategies.
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1 Introduction

Reverse engineering of biological networks is key to the understanding of biological systems.
The exact knowledge of interdependencies between genes and proteins not only provides deep
insight into the functionality of a cell, but is crucial for the identification of drug targets for
various diseases. Apart from literature driven approaches, a wide range of methods from
statistics and machine learning for estimating regulatory networks from experimental data
has been proposed. Examples thereof are static and dynamic Bayesian Networks (BNs)
[5, 16, 18, 25, 14, 7], correlation and mutual information based algorithms, such as ARACNE
[11, 27], and Gaussian Graphical Models (GGMs) [19, 13, 17, 22], see [12] for a review. In
this paper our focus lies on Bayesian Networks as an established probabilistic graphical
modeling approach for network reverse engineering.
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When learning BN structures from experimental data the uncertainty about individual
network structures has to be taken into account. Each edge can only be inferred up to a
certain probability. In a Bayesian sense this amounts to compute posterior probabilities,
which can be approximated via Markov Chain Monte Carlo (MCMC) sampling techniques.
From a frequentist point of view, bootstrapping [4] provides a possibility to assess edge
confidences. Both approaches result in a matrix of relative frequencies for each edge, which
then can be thresholded appropriately to decide which interactions are supported by the
data with high confidence and which not. Similarly, a matrix of relative edge frequencies can
result from integrating networks inferred on different datasets [8] or via different inference
algorithms [10].

In any of these cases the choice of the threshold above which edges are considered
to be relevant is typically highly subjective and can influence the subsequent biological
interpretation significantly. In addition, a complicating but most often ignored issue is that
applying a cutoff typically leads to network structures that are inconsistent with the original
model assumptions for BNs. That means that the obtained network graph is no longer acyclic
(more specifically: a completed partially directed acyclic graph). As a consequence this may
result in a graph that is principally impossible to model via BNs. This can in turn lead to a
reduced network reconstruction accuracy, because it only makes sense to choose BNs as a
modeling approach, if indeed the true biological network can be assumed to be acyclic.

Our contribution in this paper is two-fold: First, we propose a method to avoid the
selection of an arbitrary frequency cutoff by estimating the proportion of false positive edges.
This results in an edge-wise score, which is essentially an adjusted log odds ratio. Second, we
show that computing a score optimal consensus network structure in this new model amounts
to solving the maximum weight acyclic subdigraph problem. We propose a branch-and-cut
algorithm based on integer linear programming (ILP) for this task. Our simulation results
indicate that we enhance the network reconstruction accuracy significantly in comparison to a
threshold guided as well as the Consensus Bayesian Network algorithm by Steele and Tucker
[21], which is not guaranteed to yield a valid completed partially directed acyclic graph
(CPDAG) structure. The utility of our approach is further demonstrated by applications
on learning the yeast heat-shock response network [24] as well as the yeast Raf signaling
pathway structure [18]. Notably, our proposed approach is fast enough to run on a standard
desktop computer within a few seconds.

2 Problem Definition

Given a set G = {G1, G2, . . . , G`} of ` Bayesian network structures on the same set of nodes
V . For example, each Gk ∈ G may be inferred on a different dataset, a different data sub-set
or via a different learning algorithm. We propose to find a consensus CPDAG G∗ = (V,E∗),
which explains a maximal fraction of the observed edges. A CPDAG is defined as the set
of all Markov equivalent directed acyclic graph (DAG) structures and can be represented
conveniently by a partially directed graph (see [15] for an excellent description). It can be
computed from a DAG by making all edges undirected that are neither part of a v-structure
(i.e., a motif of the form A→ C ← B) nor by reversal introduce any new v-structure.

Let F = (fij), i, j = 1, . . . , n with n = |V | be a matrix of observed relative edge frequencies.
Then we define G∗ as the CPDAG that characterizes the equivalence class of the maximum
weight DAG D∗ = (V,A∗), where A∗ ⊂ V × V and the weight of an edge (i, j) ∈ V × V is
given by a suitable weight function derived from the frequencies. In other words, the task is
to find the maximum weight acyclic subdigraph D∗ of a complete digraph with edge weights
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w(F ). A natural weight function is, for example, w(ij) = fij − θ, for 1 ≤ i, j ≤ n, where θ is
a suitable frequency threshold. In the next section, we propose a more sophisticated weight
function based on the expected false positive rate of edges.

Once D∗ is computed, the CPDAG that characterizes the corresponding equivalence class
can be calculated via the algorithm of Chickering [3]. It has to be emphasized that Bayesian
Network structures can principally only be resolved up to these equivalence classes.

3 Expected FPR Adjustment

In the absence of any gold standard network the selection of a frequency cutoff θ becomes a
practically difficult problem. We here suggest a rational approach based on the expected
false positive rate of edges. The underlying idea is that relative edge frequencies {fij} can
be assumed to be drawn from a mixture of two beta distributions, namely Beta(α, 1), if in
reality the edge exists, and Beta(1, β), if in reality there is no such biological interaction.
Correspondingly we have:

fij ∼ π0Beta(1, β) + (1− π0)Beta(α, 1) (1)

The parameters of this mixture model can be estimated conveniently via an expectation
maximization (EM) algorithm. We can now compute the posterior log odds ratio for each
edge (i, j):

rij = log Beta(fij , α, 1)(1− π0)
Beta(fij , 1, β)π0

(2)

If we predicted every edge with a positive log odds ratio, then the overall expected fraction
of false positive edges would be given by the area under the Beta(1, β) distribution, which is
below the Beta(α, 1) distribution, see Figure 1 left. However, instead of choosing a log odds
ratio cutoff of 0, we could also take any other one. In particular we can select a cutoff τ such
that

∫ 1
τ

Beta(x, 1, β)dx = q, where q is a prescribed false positive rate (here: 10%). This is
equivalent to setting w(ij) = rij − τ , for 1 ≤ i, j ≤ n, which is an adjusted log odds ratio
score.

4 Finding Score Optimal Network Structures

Finding the maximum weight acyclic subgraph is a well-known NP-hard problem. It is
equivalent to the minimum weight feedback arc set problem, which was one of the 21 problems
for which Karp showed hardness in his famous work [9]. We model the problem as an integer
linear programming (ILP) formulation and solve it using branch-and-cut.

Given matrix W containing the weights of the complete digraph on n nodes, our goal is
to find the maximum weight subgraph D = (V,A∗) such that A∗ contains no directed cycles.
We therefore introduce binary variables x ∈ {0, 1}|V×V | with the interpretation xa = 1 for
a ∈ A∗ and xa = 0 otherwise. The ILP is as follows:

max
∑

a∈V×V
waxa (3)

subject to
∑
a∈C

xa ≤ |C| − 1 for all directed cycles C

xa ∈ {0, 1} for all a ∈ V × V
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Figure 1 Left: Example of a fitted two component beta mixture model. Green = null distribution
(edge does not exist in reality); red = alternative distribution (edge exists in reality); black = mixture.
The shaded region indicates the expected false positive rate at a log odds ratio cutoff of 0. Right:
ROC curve. True positive (TPR) and false positive rates (FPR) averaged over repeated data
drawings for 20 networks. The plot shows the median TPR and FPR, respectively as well as the
median absolute deviation (MAD) (depicted as error bars) for these 20 networks. Orange: point
selected by the expected false discovery rate based method.

Since there is an exponential number of directed cycles in the complete digraph, we
resort to a cutting plane approach to solve the linear programming relaxation of (3), which
is the ILP without integrality constraints. This means, we initially leave out the directed
cycle constraints and iteratively solve the following separation problem: Given a fractional
solution x̄ of an intermediate linear program, find a violated directed cycle inequality, that is,
a directed cycle C with

∑
a∈C x̄a > |C| − 1 or state that no such violated inequality exists.

This problem can be solved in polynomial time by defining ȳ = 1 − x̄ and by computing
shortest paths with respect to ȳ between all pairs of nodes j and i. It is easy to see that a
violated inequality is found if and only if the ȳ-weight of such a path plus ȳij is less than one.
In this case, we add the inequality

∑
a∈C xa ≤ |C| − 1 and iterate. If no such cycle exists,

we have solved the LP relaxation.
As we can solve the separation problem in polynomial time, we can also solve the full LP

relaxation of (3) in polynomial time [6]. We use the LP bound within a branch-and-bound
algorithm to obtain an optimal solution for the integer linear program and thus a maximum
weight DAG in our input data. Subsequently, we compute the corresponding CPDAG with
the algorithm of Chickering [3].

5 Results

5.1 Simulating KEGG Signaling Sub-Pathways

In order to test our approach we conducted simulation studies with sub-networks of KEGG
signaling pathways with 10, 20, 40 and 60 nodes. We generated 20 directed, acyclic networks
for each number of nodes. To obtain our ground truth networks we parsed XML files of all
KEGG signaling pathways and converted them into graphs via the R-package KEGGgraph
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[26]. Then we randomly picked one of these graphs and performed a random walk starting
from a randomly selected core node. The random walk was stopped once the predefined
number of distinct nodes had been visited. In case that the resulting sub-network between
visited nodes contained cycles we repeated the whole procedure until a DAG structure had
been found.

5.1.1 Network and Edge Frequency Sampling
We now simulated edge frequency matrices for the simulated KEGG DAGs by drawing
for each existing edge from a Beta(α, 1) and for each non-existing edge from a Beta(1, β)
distribution for varying parameters α and β, see below. We made sure that fij + fji ≤ 1
for each existing edge (i, j). This is necessary, because an undirected edge {i, j} can never
appear with a frequency of more than 100%. We repeated the simulation procedure five
times for each network. For each frequency matrix we reconstructed a consensus Bayesian
Network and calculated the corresponding CPDAG. We measured the performance in terms
of balanced accuracy (BAC), i.e., average of sensitivity and specificity, by comparing the
inferred CPDAG to the CPDAG of the original network. We conducted the comparison on
the level of CPDAGs, because Bayesian Network structures can only be resolved up to these
equivalence classes.

5.1.2 Effect of Edge Scoring Scheme
We exemplify the effect of our adjusted log odds scoring scheme compared to a varying
cutoff applied to raw edge frequencies. This is done for a five times repeated simulation
with n = 20 network nodes and α = 2, β = 10. By varying the edge frequency threshold
we obtain a ROC curve, which depicts true positive against false positive rates for network
reconstruction (Figure 1 right). Our proposed edge scoring method corresponds to picking
a point at the prescribed FPR of ∼ 10% in the ROC curve. This demonstrates that our
adjusted log odds scoring scheme can be used as an objective criterion to select a suitable
edge frequency threshold.

5.1.3 Dependency on Number of Network Nodes
We went on to investigate the dependency of our proposed exact consensus Bayesian Network
method (exact) on the number of network nodes for fixed α = 2, β = 10. This was done in
comparison to two other methods: (i) simple thresholding of the adjusted log odds ratio
(threshold) at 0 and (ii) the consensus Bayesian Network algorithm proposed by Steele and
Tucker (CBN ) [21], which was also applied to adjusted log odds ratios here in order to
have a fair comparison. Despite its name the CBN method does not guarantee to obtain a
valid CPDAG structure, since it simply assigns each edge a direction based on a majority
vote. The threshold method is equivalent to applying an edge frequency cutoff such that the
expected FPR is 10%.

We observed a better network reconstruction performance of our exact method compared
to both competing methods for all number of nodes. To assess the statistical significance of
the observed differences we conducted one-sided paired Wilcoxon signed rank tests (with
FDR multiple testing correction [1]). This indicated a highly significant result in all cases
(Figure 2). Interestingly, significance levels increased with more network nodes. This may be
explained by the larger space of CPDAG structures being consistent with the observed edge
frequencies. The larger this space the more likely it is that a simple threshold based strategy
(or variation thereof) fails. Hence, there is an increasing advantage of our exact approach.
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Figure 2 Left: Balanced accuracies (BACs) for network reconstruction with different consensus
methods in dependency on number of network nodes. Right: Significance level (− log10 FDR) of
exact versus threshold and CBN.
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Figure 3 Empirical run time behavior for our exact method (log10 s). Times were measured on
an Intel Xeon 8 core machine with 96GB RAM.

Notably, even for networks with n = 60 nodes with our proposed method a consensus
Bayesian Network that is provably optimal with respect to our scoring function could be
found below 30 CPU s (Figure 3) on a standard desktop computer.

5.1.4 Dependency on Distribution Parameters

We repeated our above described simulation with different combinations of α and β for
n = 20 nodes. This showed that in all but the extreme case (α = 2, β = 2) a highly significant
improvement of our method compared to threshold and CBN could be achieved (Figure 4).
Please note that in the case (α = 2, β = 2) the two beta distributions are very flat and

GCB 2013



52 Reconstructing Consensus Bayesian Network Structures

(alpha=2,beta=10) (alpha=2,beta=5) (alpha=5,beta=5) (alpha=2,beta=2)

●

●

●

●

●

●

●
●

●

●

●

●

0.70

0.75

0.80

0.85

0.90

0.95

C
B

N

ex
ac

t

th
re

sh
ol

d

C
B

N

ex
ac

t

th
re

sh
ol

d

C
B

N

ex
ac

t

th
re

sh
ol

d

C
B

N

ex
ac

t

th
re

sh
ol

d

ba
la

nc
ed

 a
cc

ur
ac

y

method

CBN

exact

threshold

(2, 10) (2, 5) (5, 5) (2, 2)

0

2

4

6

C
B

N

th
re

sh
ol

d

C
B

N

th
re

sh
ol

d

C
B

N

th
re

sh
ol

d

C
B

N

th
re

sh
ol

d

−
lo

g1
0(

F
D

R
)

method2

CBN

threshold

Figure 4 Left: Balanced accuracies (BACs) for network reconstruction with different consensus
methods in dependency on different distribution parameter settings. Right: Significance level
(− log10 FDR) of exact versus threshold and CBN.

extremely overlapping, making a reliable distinction of likely existing and non-existing edges
highly difficult.

5.2 Yeast Heat-Shock Network

We applied all tested methods to a network of nine transcription factors (TFs) related to
heat-shock response in yeast (Figure 5 left). The network was taken from [21]. We collected
four microarray datasets (GSE3406, GSE3316, GSE40073, GSE40817) consisting of gene
expression measurements after heat shock for varying conditions (GSE40817), time points
(GSE3406, GSE3316, GSE40073) and strains or strain mutations (GSE3406, GSE40073).
After k-NN imputation of missing values [23] quantile normalization was applied to each
dataset [2]. We then used a quantile based discretization of each dataset. As variables in the
Bayesian Network structure, which we wanted to learn from these datasets, we considered—
besides the nine TFs—three additional variables, namely condition, time and strain. This was
done, because these factors could potentially influence TF expression. The additional three
variables were only allowed to have ingoing, but no outgoing edges. We then applied Bayesian
Network learning using a greedy hill climber, as implemented in the R-package bnlearn
[20]. This was done using a non-parametric bootstrap with 10,000 replicates. Accordingly
we arrived at an edge frequency matrix, which we used to calculate a consensus network
structure.

We compared the CPDAG of the consensus network on each of the four datasets against
the CPDAG of the gold standard network from [21] and computed the balanced accuracies,
see Figure 5 right. This demonstrates that our exact approach achieved the best performances
on all four datasets. Interestingly, the performance of all methods showed a high variability
across datasets. Whereas on dataset GSE3316 a balanced accuracy of 82% with our method
could be achieved, on GSE3406 this was only 55%. The reason is probably the high number
of different conditions, time and strain combinations coupled with a comparably low number
of replicates in GSE3406.



H. Fröhlich and G. W. Klau 53

HSF1

RPN4 SKN7

YAP1

REB1 ROX1

SIP4

SFL1TYE7

GSE3406 GSE3316 GSE40073 GSE40817

5251
55

81

69

82

56

46

59 6061 61

0.00

0.25

0.50

0.75

1.00

C
B

N

ex
ac

t

th
re

sh
ol

d

C
B

N

ex
ac

t

th
re

sh
ol

d

C
B

N

ex
ac

t

th
re

sh
ol

d

C
B

N

ex
ac

t

th
re

sh
ol

d

ba
la

nc
ed

 a
cc

ur
ac

y

method

CBN

exact

threshold

Figure 5 Left: Gold standard heat-shock network [21]. Right: Balanced accuracies for network
reconstruction using a 10,000 times bootstrapped greedy hill climber and different consensus network
approaches.
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Figure 6 Left: Gold standard Raf signaling pathway [18] Right: Balanced accuracies for network
reconstruction using a 10,000 times bootstrapped greedy hill climber and different consensus network
approaches.

5.3 Yeast Raf Signaling Pathway

In addition we applied all tested methods to inferring parts of the yeast Raf signaling
pathway based on the dataset by Sachs et al. [18], see Figure 6 left. The dataset contains
measurements of 11 proteins under 14 different treatment conditions. The same technique
for Bayesian Network inference as for the yeast heat-shock network with the same number of
bootstraps was applied. Comparison of our exact consensus method against the CBN and
threshold approaches yielded an improvement of 3% in terms of balanced accuracy (Figure 6
right).
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6 Conclusions

In reverse engineering of biological networks edge frequency matrices can result from aggreg-
ating bootstrap or MCMC results, combining outputs of different inference algorithms [10]
or integrating experimental datasets [8]. In order to interpret these meta results one usually
has to come up with a way to compute a consensus network. So far most authors do this
by applying a defined threshold to the edge frequencies, which is (i) highly subjective and
(ii) leads to consensus models inconsistent with the model assumptions. Here we propose
an automated threshold selection based on the expected false positive rate. This yields
an adjusted log odds ratio as an edge-wise score. Based on this score we showed that
computing provably score optimal consensus Bayesian Network structures amounts to solving
the maximum weighted directed subgraph problem. We proposed a branch-and-cut algorithm
based on an integer linear programming formulation for this task.

Our simulation studies as well as our results on two yeast networks showed that our new
approach consistently improves network reconstruction accuracy. Our simulations showed
that the expected gain increases with the number of network nodes. At this point we should
emphasize that both of our tested yeast networks were comparably small. Higher significant
results can thus be expected for larger datasets. Although the computation time of our
proposed method scales exponentially with the number of network nodes we did not observe
any practical limitation by this fact. Even with 60 nodes networks our algorithm took only a
few seconds on a standard desktop computer. This should specifically be seen in relation to
the high computation time needed for bootstrapping or sampling based network inference.

References

1 Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: A practical and
powerful approach to multiple testing. J. Royal Statist. Soc., Series B, 57:289 – 300, 1995.

2 B. M. Bolstad, Irizarry R. A., M. Astrand, and T. P. Speed. A comparison of normal-
ization methods for high density oligonucleotide array data based on bias and variance.
Bioinformatics, 19:185–193, 2003.

3 D. M. Chickering. Learning equivalence classes of Bayesian network structures. Journal of
Machine Learning Research, 2:445–498, 2002.

4 A.C. Davison and D.V. Hinkley. Bootstrap Methods and Their Application. Cambridge
University Press, Cambdrige, UK, 1997.

5 N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian networks to analyze
expression data. J Comput Biol, 7(3-4):601–620, 2000.

6 M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Op-
timization, volume 2 of Algorithms and Combinatorics. Springer, second corrected edition,
1993.

7 M. Grzegorczyk and D. Husmeier. Improvements in the reconstruction of time-varying
gene regulatory networks: dynamic programming and regularization by information sharing
among genes. Bioinformatics, 27(5):693–699, Mar 2011.

8 C. Huttenhower, K. T. Mutungu, N. Indik, W. Yang, M. Schroeder, J. J. Forman, O. G.
Troyanskaya, and H. A. Coller. Detailing regulatory networks through large scale data
integration. Bioinformatics, Oct 2009.

9 R. M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, Proc. Sympos. IBM Thomas J. Watson Res. Center, Yorktown Heights,
N.Y., New York: Plenum, pages 85–103, 1972.



H. Fröhlich and G. W. Klau 55

10 D. Marbach, J. C. Costello, R. Küffner, N. M. Vega, R. J. Prill, D. M. Camacho, K. R.
Allison, The Dream Consortium, M. Kellis, J. J. Collins, and G. Stolovitzky. Wisdom of
crowds for robust gene network inference. Nature Methods, 9(8), 2012.

11 A. A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R. Dalla Favera, and
A. Califano. ARACNE: an algorithm for the reconstruction of gene regulatory networks in
a mammalian cellular context. BMC Bioinformatics, 7 Suppl 1:S7, 2006.

12 Florian Markowetz and Rainer Spang. Inferring cellular networks–a review. BMC Bioin-
formatics, 8 Suppl 6:S5, 2007.

13 N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with
the Lasso. Annals of Statistics, 34(3):1436–1462, 2006.

14 S. Mukherjee and T. P. Speed. Network inference using informative priors. Proceedings of
the National Academy of Sciences, 105(38):14313–14318, 2008.

15 R. Neapolitan. Learning Bayesian Networks. Pearson Prentice Hall, Upper Saddle River,
NJ 07458, 2004.

16 D. Pe’er, A. Regev, G. Elidan, and N. Friedman. Inferring subnetworks from perturbed
expression profiles. Bioinformatics, 17(Suppl 1):S215 – S224, 2001.

17 V. Pihur, S. Datta, and S. Datta. Reconstruction of genetic association networks from
microarray data: a partial least squares approach. Bioinformatics, 24(4):561–568, Feb
2008.

18 K. Sachs, O. Perez, D. Pe’er, D. Lauffenburger, and G. Nolan. Causal protein-signaling
networks derived from multiparameter single-cell data. Science, 208(5721):523 – 529, 2005.

19 J. Schäfer and K. Strimmer. An empirical Bayes approach to inferring large-scale gene
association networks. Bioinformatics, 21(6):754–764, Mar 2005.

20 M. Scutari. Learning Bayesian networks with the bnlearn R package. Journal of Statistical
Software, 35(3):1–22, 2010.

21 E. Steele and A. Tucker. Consensus and meta-analysis regulatory networks for combining
multiple microarray gene expression datasets. J Biomed Inform, 41(6):914–926, Dec 2008.

22 A. Tenenhaus, V. Guillemot, X. Gidrol, and V. Frouin. Gene association networks from mi-
croarray data using a regularized estimation of partial correlation based on PLS regression.
IEEE/ACM Trans Comput Biol Bioinform, 7(2):251–262, 2010.

23 O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D. Botstein,
and R. B. Altman. Missing value estimation methods for DNA microarrays. Bioinformatics,
17(6):520–525, Jun 2001.

24 Y. Wang, T. Joshi, X.-S. Zhang, D. Xu, and L. Chen. Inferring gene regulatory networks
from multiple microarray datasets. Bioinformatics, 22(19):2413–2420, Oct 2006.

25 A. V. Werhli and D. Husmeier. Reconstructing gene regulatory networks with Bayesian
networks by combining expression data with multiple sources of prior knowledge. Stat Appl
Genet Mol Biol, 6:Article15, 2007.

26 S. Zhang, H. Chen, K. Liu, and Z. Sun. Inferring protein function by domain context
similarities in protein-protein interaction networks. BMC Bioinformatics, 10:395, January
2009.

27 P. Zoppoli, S. Morganella, and M. Ceccarelli. TimeDelay-ARACNE: Reverse engineering
of gene networks from time-course data by an information theoretic approach. BMC Bioin-
formatics, 11:154, 2010.

GCB 2013



Efficient Interpretation of Tandem Mass Tags in
Top-Down Proteomics
Anna Katharina Hildebrandt1, Ernst Althaus2, Hans-Peter Lenhof1,
Chien-Wen Hung3, Andreas Tholey3, and Andreas Hildebrandt2

1 Center for Bioinformatics, Saarland University, 66041 Saarbrücken, Germany
{anna.hildebrandt, lenhof} @ bioinf.uni-sb.de

2 Johannes-Gutenberg-University Mainz, 55128 Mainz, Germany
{andreas.hildebrandt, ernst.althaus} @ uni-mainz.de

3 Institut für Experimentelle Medizin, Kiel University, 24105 Kiel, Germany
{cw.hung, a.tholey} @ iem.uni-kiel.de

Abstract
Mass spectrometry is the major analytical tool for the identification and quantification of proteins
in biological samples. In so-called top-down proteomics, separation and mass spectrometric
analysis is performed at the level of intact proteins, without preparatory digestion steps. It
has been shown that the tandem mass tag (TMT) labeling technology, which is often used
for quantification based on digested proteins (bottom-up studies), can be applied in top-down
proteomics as well. This, however, leads to a complex interpretation problem, where we need to
annotate measured peaks with their respective generating protein, the number of charges, and
the a priori unknown number of TMT-groups attached to this protein. In this work, we give an
algorithm for the efficient enumeration of all valid annotations that fulfill available experimental
constraints. Applying the algorithm to real-world data, we show that the annotation problem can
indeed be efficiently solved. However, our experiments also demonstrate that reliable annotation
in complex mixtures requires at least partial sequence information and high mass accuracy and
resolution to go beyond the proof-of-concept stage.
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1 Introduction

The two major goals of proteomics are to identify and quantify proteins present in a given
sample. Today, the most important analytical technique for this purpose is mass spectrometry
(MS). Typical protein mixtures are highly complex: proteomes contain hundreds to several
hundreds of thousands of proteins and protein forms. Often, many components of the sample
will have similar masses, leading to overlapping signals in the spectrum that are hard to
disentangle. Hence, the proteins usually have to be separated prior to MS with respect to a
property that is not strongly correlated with the mass; a powerful technique for this purpose
is liquid chromatography (LC).

The separated samples are then injected into a mass spectrometer, leading to a series of
mass spectrometric runs, each applied on the sample content eluting from the chromatographic
column at a specific retention time (RT) interval. In the mass spectrometer, the molecules are
then ionized by the attachment of z protons (simultaneously delivering z positive charges),
and accelerated in an electric field. Since the reaction of the peptide to the field depends on
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the ratio m
z of peptide mass over its acquired charge, this quantity can now be measured. In

realistic spectra, the informative parts of the mass spectrum (the ’signal’ content) have to
be identified and separated from parasitics, such as high-frequency noise or low-frequency
baseline terms [5]. The resulting parts of the signal that are believed to arise from a molecule
of interest are known as peaks. MS signals are usually formed by groups of peaks, representing
the sum of all isotopes contained in the molecule. Consequently, if the spectrometer records
a peak for a molecule with mass mi at mi

z , we can typically expect to find a peak also at
mi+mp

z , where mp is the mass of a single proton. If the spectral resolution allows to separate
and identify at least two successive isotopic peaks, the molecular charge can be inferred.

With this information, we can now try to identify the molecular content of the sample.
In proteome analysis, we are typically given a database with the amino acid sequences of
potentially occurring proteins. In the general case, this database might be comprised of all
proteins contained in, e.g., Uniprot [2] for the species of interest. The masses found in the
experiment are then used as a query against the database. But unfortunately, the molecular
mass alone is often not sufficiently characteristic for the molecule. Trivially, all sequence
permutations of a given protein lead to the same mass and, hence, cannot be distinguished
from this information alone. Even mutations of the sequence often lead to mass differences
that are too small to be recognizable.

In tandem mass spectrometry, or MS/MS, this problem is solved by fragmentation of
those parts of the sample that were identified to be potentially relevant. Since proteins
preferably break at well-defined positions along their backbone, a large enough sample of
the fragmentation space (induced, e.g., through molecular collisions) will lead to pairs of
corresponding masses from which at least partial sequence information can be derived. Since
this information characterizes the molecule much better MS/MS is typically required today
for reliable identification.

For molecules as large as proteins, many steps of this procedure become very challenging.
For instance, the MS/MS spectra of proteins are much harder to interpret than those of
smaller molecules, and their isotopic patters are much more complex. Thus, proteins are
often first digested into peptides with the help of specific proteases. The query database is
then virtually digested: for a given protein sequence, the resulting peptides can be easily
inferred from the protein’s primary sequence, since the restriction enzymes cut the sequence
at specific cleavage sites1. From the identification of the peptides found in the mass spectrum,
we try to infer the proteins that contained those peptides. To this end, different scoring
schemes [3, 10] based on different statistical models can be used to generate p-values for the
occurrence of the proteins in the database.

Such a setup, with its digestion of proteins into peptides, which are then identified
and used as evidence for their containing proteins, is known as shotgun- or bottom-up
proteomics. The major advantage of this technology is that peptides are much simpler to
separate by LC and can be measured with higher mass accuracy and sensitivity in mass
spectrometry. The MS/MS spectra of peptides are easier to interpret, even though in many
cases a large percentage of them cannot be annotated successfully. Thus, even though
bottom-up proteomics is a very sensitive method, many of the peptides are missed in practice.
Also, some of the digestion peptides for a given protein might not ionize sufficiently well to
allow their detection, or they might be too small or too large for the given experimental
setup. This often leads to non-optimal coverage of the protein sequence by peptides in the

1 Since the protease might miss potential cuts, it is customary to generate all peptide combinations up to
a fixed number of missed cleavage sites.
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digest: even though the protein has been identified through several of its digestion peptides,
large parts of its sequence might not be represented in the results. In summary, the increased
complexity of the samples – out of a single protein, multiple peptides are generated – imposes
challenges even though each individual component is more easily identified.

These drawbacks are avoided by so-called top-down proteomics studies, where no digestion
of the protein into peptides is performed. Instead, the sample is separated via LC at the level
of intact proteins, at which also the MS experiment is performed. Hence, the information
belonging to a single protein is not distributed over many peptides, which allows direct
distinction of protein isoforms or of post-translationally modified forms from their non-
modified counterparts. However, the separation of intact proteins is not as straightforward
as that of peptides, and the detection limits of proteins in MS are strongly elevated with
increasing protein size. The situation is complicated further, as from the MS/MS spectra
of intact proteins, only limited information about N- and C-terminal parts of the protein
sequence can be derived, hampering unambiguous identification. Nevertheless, the clear
advantages for downstream analysis due to an automatically full sequence coverage of the
proteins make top-down proteomics an increasingly popular alternative to bottom-up studies.

An even greater challenge than the identification of proteins is their accurate quantification.
Several strategies for relative as well as for absolute quantification have been proposed [1].
In addition to label-free approaches, methods for quantification in MS mode using stable
isotope labeling quantification have been developed, where the molecules of interest are
modified with chemical groups that allow for an accurate quantification. Another approach
is the use of isobaric labeling strategies, where the samples are labeled with reagents which
consist of three major groups: (i) a reactive group that allows covalent attachment of the
reagent to the peptide, in particular the N-termini and epsilon-amino groups of Lysine
residues; (ii) a reporter group and (iii) a balancer group. These reagents can now be formed
in four or eight (iTRAQ [4]) or six (TMT [13]) different flavors: for TMT, for instance, a
reporter group in the first flavor has a mass of 126 Da, the corresponding balancer of 103
Da, yielding a total mass of the label of 229 Da. The reporter of the second flavor has
a mass of 127 Da, the balancer of 102 Da, again yielding the same total mass of 229 Da.
As the different flavors share the same molecular properties and only differ in the isotope
composition, they also appear at the same retention times. Hence, after labeling of different
biological samples with these reagents (one flavor per sample), the labeled samples can
be combined, treated by LC, and analyzed by MS. In MS mode, equivalent peptides from
different biological samples will have the same m/z-values, as the reagents were isobaric.
But upon fragmentation of the peptides in MS/MS experiments, the reporter groups are
liberated, yielding signals of the corresponding reporter ions at 126, 127, . . . , 131 Da. The
intensities of these reporter ion signals deliver a direct readout of the relative quantities
of the peptides in the different biological samples. Isobaric labeling strategies have been
originally developed for quantification studies in bottom-up approaches, i.e., at the level
of peptides. But a recent pilot study [6] has shown that tandem mass tag labelling can be
applied in a top-down setting as well. At this stage, the method is still restricted to the
quantification and simultaneous MS/MS-based identification of relatively small proteins up
to ≈ 35 kDa. A severe bottleneck is the interpretation of MS- and MS/MS-spectra of such
isobarically labeled intact proteins, which will be the focus of this work.

Three different effects render this a challenging task: (i) The degree of labeling may differ
and is unknown for an a-priori unknown protein. This is caused by incomplete labeling or
unwanted non-specific labeling of residues in proteins. Consequently, a theoretical protein
with 15 Lysine residues can lead to a mixture containing protein species with 12 to about
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Figure 1 The experimental setup of top-down tandem mass tag proteomics [6]

18 isobaric labels attached. (ii) Each of the proteins features a complex isotopic pattern as
outlined above. (iii) In the ionization process (electrospray) used for the analyis of intact
proteins, species with different charge states are formed by attachment of different numbers
of protons. Thus, a single theoretical protein with a mass of 15 kDa may have 10, 11, . . . , 20
attached protons, leading to peak groups at 15

10 kDa, 15
11 kDa, . . . , 15

20 kDa. This number of
attached protons cannot be predicted, in particular not for unknown proteins in unknown
proteomes. But it can be deduced from the mass differences of the isotopes in the peak
group according to the relation given above.

These factors lead to a difficult interpretation problem, where we want to analyze for
each peak which proteins could have generated it, and compute the corresponding number
of charges2 and TMT marker groups. In this work, we will present an efficient algorithm
for this annotation task and will apply it to real-world experimental data. Using our
algorithm, we will further demonstrate that the information contained in the experiment is
insufficiently specific, resulting in false-positive annotations that match the given masses.
We will then discuss how to integrate further experimental insight into the algorithm at
moderate computational cost that can weed out many false positives.

2 Methods

2.1 Experimental setup

For generation of MS and MS/MS datasets, a mixture of six known model proteins was
labeled with the TMT-6-plex reagent. It has to be noted that several of the six model proteins
contained impurities, thus finally ten different proteins were present in the test mixture (see
Tab. 1). The proteins were separated via ion paring reversed phase chromatography using
monolithic columns and analysed in a Thermo Orbitrap Velos mass spectrometer equipped
with ETD. The mass spectrometer was operated in the data-dependent mode to switch
automatically between Full-MS (scan 1), HCD-MS2 (scan 2), and ETD-MS2 (scan 3). After
a Full-MS scan acquired in the ion trap MS, the most abundant protein ion (top 1) was
selected for an HCD-MS2 scan and an ETD-MS2 scan. Full details of the experimental
procedure were described in [6]. A schematic sketch of the approach is shown in Fig. 1.

2 Please note that, in principle, other ionization types than addition of protons can occur, and can
indeed be handled by our method. For reasons of simplicity, these will not be considered in the current
manuscript.
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Table 1 The ten protein mix and the results of the manual annotation [6]. Note that in the
manual annotation, all Lysine residues were assumed to carry a TMT group. The mix consists of six
known model proteins labeled with the TMT-6-plex reagent and four impurities.
∗ : C-terminal seq. of ovalbumin - ASVSEEFRADHPFLFCIKHIATNAVLFFGRCVSP
#: undefinable in manual annotation due to the poor MS quality derived from post-translational
modifications (e.g. phosphorylation, glycosylation etc)

Theo. No. Of Theo. MW Observed Charge Calc.
Protein Name MW Cys/Lys with TMT m/z State MW

(kDa) (kDa) (Da)

Cytochrome C 12.3 2C/19K 16.8 1045.7 16 16714.3
(Equine) 1115.2 15 16713.2

1194.8 14 16713.0
Myoglobin 16.9 0C/19K 21.5 1436.6 15 21533.9
(Equine) 1539.1 14 21533.3

1657.4 13 21533.1
Carbonic Anhydrase 29.1 0C/18K 33.2 949.7 35 33205.6
(Bovine) 977.7 34 33208.9

1007.2 33 33205.3
Carb. Anhydrase Impurity 1 8.5 0C/7K 10.2 1017.9 10 10168.9
Ubiquitin 1130.8 9 10168.1
partial seq. 1272.0 8 10168.2
Carb. Anhydrase Impurity 2 15.5 3C/10K 17.9 1278.4 14 17882.8
Superoxide Dismutase 1376.7 13 17883.7

1491.2 12 17882.2
Ovalbumin (Gallus) 42.8 6C/20K 47.7 UD#

Ovalbumin Impurity 1 20.1 18C/13K 24.3 UD#

Ovomucoid
Ovalbumin Impurity 2 3.8 2C/1K 4.3 877.5 5 4382.5
C-terminal ovalbumin∗ 1096.5 4 4381.9

1461.9 3 4382.7
BSA (Bovine) 66.6 34C/60K 82.3 UD#

Apo-transferrin (Bovine) 77.7 38C/64K 94.5 UD#

2.2 Formal problem formulation: The TMT annotation problem

In this section, we will introduce the formal definition of the annotation problem posed by
top-down TMT labelling. Informally, we want to query a database of known protein masses
(e.g., the whole proteome of the organisms contained in the sample) against the peaks detected
in the experiment. To this end, we want to decide for every protein in the database and for
every peak, whether this protein could have led to the peak’s observed mass-over-charge
ratio through a feasible combination of base protein mass, TMT attachments, and charges
(protons). To formally formulate the problem, we first need a few definitions.

Let mT denote the mass of the TMT marker group (mT ≈ 229.162932 Da), and mp

the mass of a single proton. By DB := {mi|i = 1, . . . nDB}, we denote the database
we want to query, where mi is the monoisotopic mass of the i-th protein in DB. We
assume that the spectrum has been pre-processed to yield a set of mass spectrometric peaks
S := {pj |j = 1, . . . nS}.
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Let us further assume that one of the populations in the sample was given by the i-th
protein, to which βi TMT-groups and αi excess protons have been attached, with βi, αi ∈ N+.
This protein will have a charge of z = αi, measured in units of elementary charge, and a
total mass-over-charge ratio of

mz,i (αi, βi) := mi + αimp + βimT

αi

This relation between protein, ionization state, and TMT assignment is not unique: one
protein species may acquire different ionization states as well as different numbers of attached
TMT groups. However, in practice, not all values of αi and βi are possible: the amount of
charges and of TMT groups that a given protein can acquire falls within limited ranges, i.e.,

αi ∈ {αmini , . . . αmaxi } and βi ∈ {βmini , . . . βmaxi }

In the following we describe how to efficiently reduce the parameter search space. Since
the TMT markers attach to Lysine-residues, it is natural to choose βmini , βmaxi accordingly,
and hence limit the number of TMT-attachments to a 2x window, i.e.:

βi ∈ {max(0,#LYS− x), . . .#LYS + x} for x ∈ N+

We now want to annotate all measured peaks pj ∈ S with all predicted peaks p̂i due
to feasible protein/TMT/proton combinations within a given accuracy threshold. As the
accuracy of mass spectra is typically dependent on the mass-over-charge ratio, it is customary
to use relative measures of error. Thus, for every measured peak pj we want to determine all
feasible predicted peaks p̂i with

|p̂i − pj |
pj

≤ ε

To solve this problem, we will compute for every protein mi in DB and for every peak pj
all feasible values of αi,j and βi,j , such that the assumption of protein i with αi,j attached
protons and βi,j attached TMT markers explains peak pj within the given relative accuracy
threshold ε, which gives the following combinatorial problem:

∀i ∈ {1, . . . , nDB} :
∀j ∈ {1, . . . , nS} :

find αi,j ∈ {αmini,j , . . . , αmaxi,j },
βi,j ∈ {max(0,#LYS− x), . . .#LYS + x} : |mz,i(αi,j , βi,j)− pj | ≤ ε · pj

Obviously, not all combinations of αi,j , βi,j will lead to a valid annotation. In the following
we will determine reasonable boundaries for αi,j , given βi,j :

|mz,i(αi,j , βi,j)− pj | ≤ ε · pj

⇔
∣∣∣∣mi + αi,jmp + βi,jmT

αi,j
− pj

∣∣∣∣ ≤ ε · pj

αi,j>0
⇐==⇒ |mi + αi,jmp + βi,jmT − αi,jpj | ≤ αi,j · ε · pj

In practice, the allowed window 2x for the parameter βi,j is quite small (in our experiments,
we used x = 3). We can thus easily test all allowed values for βi,j . For any such fixed but
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arbitrary βi,j , we find

|mi + βi,jmT + αi,j(mp − pj)| ≤ αi,j · ε · pj
⇔ (mi + βi,jmT + αi,j(mp − pj)) ≤ αi,j · ε · pj ∧

(mi + βi,jmT + αi,j(mp − pj)) ≥ −αi,j · ε · pj
⇔ αi,j(mp − pj − ε · pj) ≤ −(mi + βi,jmT ) ∧

αi,j(mp − pj + ε · pj) ≥ −(mi + βi,jmT )

Remembering that mp denotes the mass of a single proton, and pj a mass-to-charge ratio
in a feasible range for proteins, we see that mp � pj . In addition, the accuracy threshold ε
is small in practice – on the order of tens or hundreds of parts per million (ppm) – so that
we also find ε · pj � pj . Indeed, we can safely assume that mp + ε · pj � pj and, hence,

(mp − pj − ε · pj) < 0 ∧ (mp − pj + ε · pj) < 0

We thus find:

αi,j ≥ −
mi + βi,jmT

mp − pj − ε · pj
∧ αi,j < −

mi + βi,jmT

mp − pj + ε · pj

We can thus restrict αi,j as a function of the fixed but arbitrary βi,j . For simplicity of
notation, we introduce ai,j := mi + βi,jmT > 0 and bj := pj −mp > 0, which yields

αi,j ≥ −ai,j
−bj − ε · pj

= ai,j
bj + ε · pj

> 0

∧ αi,j <
−ai,j

ε · pj − bj
= ai,j

bj − ε · pj
> 0

so that we finally obtain

αmini,j :=
⌈

ai,j
bj + ε · pj

⌉
, αmaxi,j :=

⌊
ai,j

bj − ε · pj

⌋
Thus, we only have to consider αi,j ∈ {αmini,j , . . . , αmaxi,j }. Each of these values will lead to
a valid explanation of the peak, i.e., the triple < mi, αi,j , βi,j > yields an m/z-value that
deviates from pj by less than ε. We can thus trivially enumerate all valid annotations.

2.3 Results of the procedure
We implemented the scheme described above in OpenMS [9]. To test the correctness, efficiency,
and utility of our approach, we applied our implementation to the experimental data set used
in [6]. The parameters used in our study were chosen to conform with experience gathered by
our experimental partners. For the limits on the number of attachable TMT groups, we used

βmini,j := (#LY S + 1)− 2, βmaxi,j := (#LY S + 1) + 3

where the +1 accounts for attachment at the N-terminus. The accuracy threshold was varied
to study its influence on the number of generated solutions. Typical values are in the order of
tens to hundreds parts per million, i.e., ε ≈ 10−5 to 10−4. While the minimal and maximal
number of charges that can explain a given peak have been computed as a function of βi,j
above, we also enforce global limits on them. Obviously, we require αi,j > 0. In accordance
with experimental insight, we also introduce an upper boundary: αi,j < 40.
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Table 2 Results on the 10-protein mix from [6]. ε is given in ppm.

ε annotated peaks valid annotations identified proteins

10 510 546 8
20 992 1092 8
100 5090 7665 8
300 12614 30408 8

In [6], the proteins were first subjected to certain chemical modifications, as is commonly
the case in proteomics. To account for these modifications in our study, we performed a
virtual carboxyaminomethylation. This modification changes the mass of Cysteine-residues
by δcarbm ≈ +57.0214 Da. We assume this modification to be fully effective (“fixed”), and
hence arrive at a mass difference of #CYS · δcarbm for every protein in the reference database.
In addition, every initiator Methionine might be removed, with an acetylation of the new
N-terminus, yielding a mass difference of δacetm ≈ −89.0299 Da. To account for this variable
modification, we add a modified and an unmodified variant for each protein to the reference
database.

With these preparations, we first attempted to recreate the results described in [6]. To
this end, the reference database was set to contain the 10 proteins known to be present in the
sample (for details, see [6]). The spectrum was processed using the OpenMS Wavelet-based
peak picker [8, 7, 12], leading to 16, 042 peaks. The runtime of our algorithm did not change
significantly with varying values of ε, and was ≈ 0.55 seconds in each case. Tab. 2 describes
the results: 8 out of 10 proteins were consistently found, but many more valid annotations
were found than previously expected.

The method as described above uses total mass as a descriptor for a protein, which
is known to be insufficiently specific in the general case. Still, the large number of valid
annotations came as a surprise for two reasons: first, since the query database is small, only
very few proteins were expected to fit a given peak (for larger data bases, partial sequence
information derived from MS/MS experiments can help in filtering false positive protein
identifications). Second, as a result of the time-consuming manual annotation process used
previously, it was suspected that only a small number of TMT/charge-combinations of a
given protein would explain any given peak, if it could be explained at all.

In practice, though, the mass accuracy achieved in the ion trap MS is insufficient to
rule out many of the possible explanations. For low mass accuracy, several of the peaks of
our spectrum could be reasonably explained by multiple variants. For the determination
of intact protein masses, the ion trap was used [6]; here the mass accuracies achievable for
intact proteins are at best greater than 10 ppm for very small proteins and can reach the Da
range for larger ones, yielding very large ppm values3. Accordingly, we also performed our
experiments with large mass deviations. However, for deviations as large as ε = 100 ppm,
we could often not even distinguish between acetylated and non-acetylated versions of the
protein. We thus decided to adapt the algorithm for improved specificity.

3 These large mass deviations also prevent to distinguish individual peaks in the isotopic pattern and,
hence, a simple determination of the charge. This also prevents application of most feature detection
procedures used in bottom-up proteomics.
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Figure 2 Potential charge ladders of annot-
ated neighbouring peaks (blue nodes). These
can be used for filtering significant hits.

Figure 3 Sweep line (red nodes) travers-
ing all charge variants (i, αk, β) of protein i
having β TMT-assignments.

2.4 Refined problem formulation
As by design every annotation computed by our algorithm is valid, i.e., falls within a
chemically reasonable range of TMT- and proton-number, ruling out explanations will require
either improved mass accuracy to allow for reducing the threshold ε, or the use of additional
information. One restriction that can be obtained without any further experimental effort
stems from what we call the charge-ladder assumption.

Assume that the sample contains a species of protein i with αi,j attached charges and
βi,j TMT markers. According to experimental experience, it is then very likely that the
sample contains the same protein with the same number of TMT markers, but with a
charge that is smaller or greater by one. We thus call two annotations < mi, αi,j , βi,j >

and < mi, αi,k, βi,k > neighbours, iff |αi,j − αi,k| = 1. Consequently, we should expect that
if we can explain a peak with a given annotation, we can also explain other peaks in the
spectrum by its neighbours. Indeed, a manual annotator would reject an explanation if it
would not be supported by a gap-less chain of neighbouring annotations. Detection of such
chains, however, is complicated by the fact that the corresponding peaks may not necessarily
co-elute and, hence, occur at different retention times. But since the physico-chemical change
of the neighbouring protein species is small, we expect the neighbouring peaks to be located
within a certain retention time interval.

To assign an annotation with a high probability of occurrence, we thus now demand the
existence of a charge ladder (c.f. Fig. 2) of a minimal length, i.e., a chain of neighbouring
explanations that all occur in an RT-window of finite, specified length ∆RT .

Considering the annotations individually as in the last section, we often find many valid
explanations for any given peak. However, only one of these annotations will typically be the
“true” solution, while the others occur by chance. The idea behind our refined procedure is
then that false positive explanations will have a significantly smaller probability of supporting
long charge ladders than the true positives.

The assignment of peak annotations into charge ladders can be achieved efficiently
using a sweep algorithm [11]: for every protein i in the database, we iterate over all TMT-
assignments βi,j that lead to a valid explanation. For each of those (i, βi,j)-pairs, we then
determine a set of potential charge ladders, i.e., maximal sets of neighbouring assignments
{(i, αi,j + k, βi,j)|k = 0, . . . ,K}, disregarding the difference of their retention times (this can
be done efficiently by sorting the set with respect to αi,j). Please note that, usually, many of
the (i, αi,j + k, βi,j) values will occur at different retention times.
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Table 3 Results on the 10-protein mix from [6] when including the charge ladder filter with
varying accuracy threshold ε, RT window ∆RT , and ladder length L.

ε ∆RT L annotated peaks valid annotations found ladders found proteins

10 10 2/3/4 52/10/0 54/10/0 24/3/0 6/3/0
10 20 2/3/4 71/15/0 77/15/0 30/4/0 7/3/0
10 50 2/3/4 83/18/0 91/18/0 31/5/0 7/3/0
20 10 2/3/4 253/83/9 269/87/9 117/28/2 7/5/1
20 20 2/3/4 343/149/44 371/161/56 151/52/10 7/6/2
20 50 2/3/4 408/186/84 444/206/100 151/50/17 7/7/3
100 10 2/3/4 3788/2823/2095 5657/4207/3128 1715/1034/640 8/8/7
100 20 2/3/4 4278/3674/3121 6405/5511/4701 1396/1033/774 8/8/7
100 50 2/3/4 4426/3955/3459 6621/5914/5181 792/571/434 8/8/7

In the next step, we consider each potential ladder individually to extract valid ladders
within the given RT interval. For each αi,j-value in the current potential ladder, we store the
RT values of all peaks that were explained by this annotation in a sorted list. Our sweep line
starts at the annotation with lowest4 RT value, regardless of its charge, and will progress in
order of increasing RT value. In each step, we then try to extend valid ladders to the left
and right, starting from the annotation currently touched by the sweep line, which will form
the lower boundary of the RT interval ∆RT . The ladder can be iteratively extended if a
neighbouring annotation within this RT interval exists. Since annotations are sorted with
respect to RT, and since the sweep line always rests at the annotation with currently lowest
RT value, it suffices to check the lowest-RT remaining (i.e., above the sweep line) annotation
for each charge state. Thus, in each step, only one comparison per charge state is necessary.
If a consecutive list of a user-defined minimal length L has been detected, all annotations in
that list are marked as part of a charge ladder. Finally, the current annotation is removed
from the list and the sweep line progresses to the next annotation. A snapshot at one step of
the algorithm is depicted in Fig. 3.

For pre-sorted input, this algorithm obviously requires O(n · L) operations, where n is
the total number of annotations, since every annotation can be part of only one potential
ladder and is touched at most once by the sweep line, and since every check requires
up to L comparisons. Combined with the sorting steps, we arrive at a total runtime of
O(n · L+ n log(n)).

3 Results of the refined procedure

We implemented the refined algorithm as a TOPP [9] tool, which is fully integrated into
the OpenMS framework. The results of the refined procedure on the ten-protein mix are
shown in Tab. 3. These demonstrate that charge-ladders indeed provide a strong filter: with
increasing ladder length, the amount of remaining annotations drops particularly strongly for
presumed low mass accuracy, and the amount of explanations per annotated peak becomes
significantly smaller.

4 In the degenerate case, where the minimum is not unique, annotations are visited from lowest to highest
charge state.
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In general, however, the problem setting is still highly ambiguous, despite the charge-
ladder constraint. To further demonstrate this fact, we again applied our procedure on the
data set of [6], but now with a much larger reference database to query: all proteins contained
in UniProtKB/Swiss-Prot [2] that fall into a similar mass range as the ones known to be
contained in the sample. The resulting data set consists of 3, 990, 159 proteins, including the
10 true positives. Treatment of variable modifications doubles the database size to 7, 980, 318
proteins. The computational efficiency of our method is demonstrated by the fact that the
query of 16, 042 peaks against this huge database terminated in 488 minutes on a single core
of a standard desktop PC (please note that the method can be trivially parallelized with
nearly linear speed-up by splitting query database). However, the specificity on this data
set is very low. Of the 7, 980, 318 proteins in the database, 6, 566, 123 have not only been
annotated successfully, but also as part of stable charge ladders of length at least 3 in an
RT-window of 20 seconds and with a maximal mass deviation of 20 ppm. If we choose more
restrictive parameter values, some of the false-positive identifications indeed vanish (with
ε = 10 ppm the number drops to 1, 112, 502), but so do the true positive ones.

4 Conclusion and Outlook

Top-down proteomics is a promising alternative to the popular shotgun approaches that are
commonly applied. Its deficiencies in sensitivity are often made up for by avoiding coverage
problems as they are common in bottom-up settings. Unfortunately, many of the established
solutions for identification and quantification in the bottom-up domain cannot be simply
transferred to the top-down case. This work was concerned with one such solution – the
use of TMT-labelling for quantification purposes. In [6], the analytical background to apply
TMT-markers to intact proteins was established, but resulted in a challenging annotation
problem. In the pilot study, annotation was performed in a time-consuming manual fashion
which can neither be performed on a high-throughput basis, nor generalized to the case of
large reference databases.

Here, we have shown how the same annotation problem can be solved efficiently on a
computer. Application of our method on the original data set has shown that the manual
annotation was valid, but was only one of a variety of equally probable explanations. Only
prior knowledge about the outcome allowed the annotator to select the “true” solution
intuitively, which he validated by using further experimental constraints. We then proceeded
to derive a refined algorithm for improved specificity without the need for further experimental
effort. Through the use of so-called charge-ladders, we can exclude at least some of the noise
present in the annotations, i.e., explanations that were only valid by chance without further
supporting information in the spectrum. The resulting annotation problem seems to become
significantly more complex, but can be solved efficiently using the sweep-paradigm.

Application to the data set has shown that the method is indeed efficient enough to be
applied to real-world data sets. But whether it is specific enough to be applied routinely
is still an open question. If at least partial sequence information is known from MS/MS
experiments, the use of charge-ladders suppresses most false positive TMT/charge-variants.
If ambiguity persists, all valid annotations will be returned to the user, who will then have
to decide whether one of them can be trusted. Without such constraints, the amount of
false-positives is clearly too large to be used routinely, even for moderate sample complexity.
To go beyond the proof-of-concept stage in the general case will thus require at least an
improved mass accuracy, but possibly also the use of other kinds of experimental constraints.
This will be the focus of our future work.
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Abstract
Introduction: With the so-called OMICS technology the scientific community has generated huge
amounts of data that allow us to reconstruct the interplay of all kinds of biological entities. The
emerging interaction networks are usually modeled as graphs with thousands of nodes and tens
of thousands of edges between them. In addition to sequence alignment, the comparison of
biological networks has proven great potential to infer the biological function of proteins and
genes. However, the corresponding network alignment problem is computationally hard and
theoretically intractable for real world instances.

Results: We therefore developed GEDEVO, a novel tool for efficient graph comparison dedic-
ated to real-world size biological networks. Underlying our approach is the so-called Graph Edit
Distance (GED) model, where one graph is to be transferred into another one, with a minimal
number of (or more general: minimal costs for) edge insertions and deletions. We present a
novel evolutionary algorithm aiming to minimize the GED, and we compare our implementa-
tion against state of the art tools: SPINAL, GHOST, C-GRAAL, and MI-GRAAL. On a set
of protein-protein interaction networks from different organisms we demonstrate that GEDEVO
outperforms the current methods. It thus refines the previously suggested alignments based on
topological information only.

Conclusion: With GEDEVO, we account for the constantly exploding number and size of
available biological networks. The software as well as all used data sets are publicly available at
http://gedevo.mpi-inf.mpg.de.
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1 Introduction

We have finally arrived in the post-genome era. At the web site of the National Center for
Biotechnology Information (NCBI) we find registered sequencing projects for >1,500 euka-
ryotes, >8,500 prokaryotes and >3,000 viruses with >8,000,000 gene sequences in total [26].
However, the genes’ function is often unclear and most-widely deduced from similarities to the
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Table 1 The highest edge correctnesses (EC) achieved by different tools for aligning two pairs
of networks, adopted from [14] and extended by the results of SPINAL and GHOST. Note that
GHOST did not terminate for yeast2 vs. human1. Note that GEDEVO obtained better results
(refer to Table 3). Table 2 summarizes all data sets.

IsoRank
[29]

GRAAL
[13]

H-GRAAL
[17]

MI-GRAAL
[14]

C-GRAAL
[16]

SPINAL
[1]

GHOST
[20]

yeast2 vs. human1 3.89 11.72 10.92 23.26 22.55 19.33 -
Meso vs. Syne 5.33 11.25 4.59 41.79 26.02 25.86 41.98

sequences of genes with known functions. Consequently, we still lack fundamental knowledge
about crucial genetic programs, the interplay of genes and their products (the proteins),
their biochemical regulations and their evolutionary appearance. We know very little about
how cells, organs and tissues regulate survival, reproduction, differentiation or movement in
response to changing internal and external conditions [24]. Many problems in understanding
these issues are concerned with biological networks that model the interplay of all kinds of
biological entities [4]. Most widely known are transcriptional gene regulatory networks and
protein-protein interaction (PPI) networks. More than 16 million protein-protein interactions
available through PSICQUIC [3] may serve as an example for the ongoing “data explosion”.

One of the major computational challenges in systems biology is biological Network
Alignment [11], which aims to find a node-to-node mapping between two or more biological
networks, optimizing a certain quality criterion. A quality criterion of a mapping usually
reflects topological aspects and biological aspects, such as the number of shared interactions
induced by a mapping of the nodes from two networks or a similarity of the biological
sequences underlying the nodes. Comparing biological networks, particularly protein-protein
interaction (PPI) networks, from different organisms has proven very useful for inferring
biological function, besides relying on DNA sequence similarity alone [27, 16].

Biological Network Alignment was recently addressed by several tools. IsoRank [29]
integrates the nodes’ neighborhoods with sequence information and models the alignment
as an eigenvalue problem. C-GRAAL [16], SPINAL [1], GHOST [20], and MI-GRAAL [14]
use a similar seed-and-extend approach. While C-GRAAL greedily builds a neighborhood-
dependent mapping, SPINAL and MI-GRAAL model (and solve) a weighted bipartite graph
problem. IsoRank was shown to be be outperformed by MI-GRAAL [14]. On real PPI
networks, SPINAL as well as the GRAAL collection, proved to perform best and to offer
biologically meaningful alignments. A brief comparison previously used in [14] is given in
Table 1. Instead of replicating the conclusion from the above cited papers that Network
Alignment offers biological insights, we concentrate on the methodological problem that the
existing tools possess.

All approaches struggle to provide high-quality results on the huge, yet constantly
increasing, biological networks that we are confronted with nowadays (Table 2). As we will
demonstrate, the existing software cannot cope well with such big networks. This becomes
most evident when we see them fail on aligning a network to itself, which should result in
100% node mapping accuracy.

In this paper we present GEDEVO, a novel method for PPI Network Alignment. GEDEVO
is an evolutionary algorithm that uses the Graph Edit Distance as optimization model for
finding the best alignments. For evaluation, we use a set of high quality PPI networks,
including the same networks previously used for C-GRAAL [16] and MI-GRAAL [14] for
comparison with existing tools (see Table 1). We will demonstrate that GEDEVO performs
comparable or better than recent tools, being at the same time fast and flexible. An
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implementation of GEDEVO as well as all used data sets are publicly available under
http://gedevo.mpi-inf.mpg.de.

2 Methods

2.1 Problem definition
Consider a pair of PPI networks modeled as two unlabeled unweighted graphs G1 = (V1, E1)
and G2 = (V2, E2) and a one-to-one mapping f between nodes V1 and V2. We define
the Graph Edit Distance (GED) between G1 and G2 induced by mapping f as follows:
GEDf (G1, G2) = |{(u, v) ∈ E1 : (f(u), f(v)) 6∈ E2} ∪ {(u′, v′) ∈ E2 : (f−1(u′), f−1(v′)) 6∈
E1}|. By definition, GEDf (G1, G2) counts inserted or deleted edges induced by the mapping
f , and it can easily be extended to reflect node/edge dissimilarities or any other related
information (e.g. protein sequence similarity). Here, for Network Alignment, we aim to find
a mapping f that minimizes the GEDf (G1, G2). Graph Edit Distance is a general model for
the Graph Matching problem and defined as the minimal amount of modifications required
in graph G1 to make it isomorphic to graph G2 (see for example [6] for more details).

In previous work, the quality of the mapping f of most biological network aligners is
assessed by using the number of shared interactions, defined as |{(u, v) ∈ E1 : (f(u), f(v)) ∈
E2}| or the number of conserved interactions, defined as |{(u, v) ∈ E1 : dist(v, f(v)) <

∆,dist(u, f(u)) < ∆, (f(u), f(v)) ∈ E2}|, where dist(x, y) is a dissimilarity between x ∈ V1
and y ∈ V2 (such as BLAST E-value), and ∆ is the node dissimilarity threshold. This
corresponds to the intuition that the closer two species in the evolutionary tree are, the
higher the number of conserved interaction partners they share. Incorporating external
biological information, such as sequence similarity, can relax the Network Alignment problem
to some extent by significantly reducing the search space by pre-defining preferable sets of
nodes to be mapped. Although GEDEVO can include such external information, a “good”
method should be able to determine an optimal mapping, by maximizing the number of
shared interactions and thus utilizing the graph structure alone. For this reason and to
assure comparability between the existing biological Network Alignment tools we focus on
topological criteria only in this paper.

2.2 Evolutionary algorithm for Graph Edit Distance
Evolutionary Algorithms (EAs) are nature inspired heuristics, which are widely used to
tackle many NP-hard problems (see for example [8]). The key idea behind EAs is mimicking
the rule “survival-of-the-fittest” on a population of different individuals. Note that in [15]
an EA was suggested for the Graph Matching problem. However, the major hindrance for
efficient EA-based combinatorial optimization remained unsolved: the generation of new
individuals. In the following we briefly introduce a general scheme of an EA and describe
how we modified it with partial adoptions from [15] to Network Alignment.

In an EA an individual represents a solution for the problem, i.e. a mapping of nodes
between two networks (see Figure 1). The state of an individual determines how well
the individual fits to the requirements of the environment it populates. New individuals
result from inheriting parts of solutions from its parents; the better an individual fits
the requirements, the higher are its chances to survive and to pass its solution to future
generations. Mutations of the solutions exposed to a new individual are another way of
mimicking nature in EAs. The requirements of the environment are related to the fitness
function, for which we utilize the above defined GED. Starting with generating a (quasi)

http://gedevo.mpi-inf.mpg.de
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Figure 1 A mapping between networks H1 (nodes A, B, C, D, E, and F) and H2 (nodes T, V, W,
X, Y, and Z) with arbitrary pair scores (for illustration only). In this mapping, node A fits perfectly
to node Z, node C corresponds quite poorly to node X, node E is deleted and node V is inserted and
both have worst pair scores. One major principle behind GEDOVO’s generation of new individuals
is to swap pairs of nodes with bad pair scores.

nodes of H1 A B C D E Ø F

0.0 0.4 0.7 0.5 1.0 1.0 0.2

nodes of H2 Z Y X W Ø V T

random initial population, an EA repeats the following three steps (individual evaluation,
offspring generation, survival function application) until a termination criterion is met.

2.2.1 Initial Population Generation and Evaluation of an Individual
An individual represents a mapping f . Individuals in the initial population are created with
random permutations. However, initialization in a more sophisticated manner, which, as
a consequence, will require more time, may reduce the convergence time of the algorithm.
Here, we may use protein sequence similarities, acquired by BLAST [2], for instance.

Evaluating individuals, for every pair u ∈ V1 and v ∈ V2 with v = f(u), we define a pair
score that reflects how well node u corresponds to node v given a mapping f :

pairScoref (u, v) = (pairGEDf (u, v) + grlets(u, v))/2

where pairGEDf (u, v) is the relative number of deleted and inserted edges induced by
mapping node u to node v given mapping f , and grlets(u, v) is the graphlet degree signature
distance introduced in [18]. The graphlet signature distance (GSD) can be interpreted as
the difference in neighboring topologies (within distance 4) of two nodes. GSD is computed
from two graphlet degree vectors (GDVs); a GDV of a node counts graphlet orbits, which
are topologically distinct induced subgraphs (with up to five nodes) the node touches. Note
that although computing GDVs for a network with |V | nodes requires O(|V |5) time it is
still practically feasible for graphs as sparse as PPI networks. In addition, GDVs can be
precomputed for each network and stored with the graph itself on the hard disk.

The pairScore is mainly used as local optimization guideline. The Graph Edit Distance
(GED) is the final, global fitness score of an individual that is to be optimized. GEDEVO
exploits the graphlet degree signature distance (GSD) only to accelerate convergence of the
algorithm. It is not bound to it; and other external data, such as sequence similarities,
may be introduced as additional (weighted or unweighted) terms to the pairScore formula.
Computing pairGEDf (u, v) requires not more than O(d1 + d2) = O(d) time, where d1, d2 are
the maximal node degrees in G1 and G2 and d := max(d1, d2). Given precomputed GSDs,
a look-up for grlets(u, v) needs constant time. Thus, computing pair scores for a mapping
takes O(n · (d + s)) = O(n · d), where n = |V1|+ |V2|, and s is the number of precomputed
terms on the right side of the pairScoref (u, v) formula.

The score of an individual together with its health, a non-increasing function of the
number of iterations and GED of the individual, defines its fitness. The introduction of
health allows keeping individuals with a “bad” GED for a number of iterations instead of
simply discarding them immediately. This introduces some divergence and contributes to
avoiding local optima.
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2.2.2 Offspring generation
To generate new individuals we combine a set of different operations to balance between a
reasonably high population diversity to avoid local optima and a high and fast convergence
towards optimal solutions. The operations are as follows:

Random generation creates an individual by relating it to a mapping based on a random
permutation; it requires O(n) time.
In PMX-like mutation we adopt the idea of partially-mapped crossover (PMX), initially
introduced in [10]. We partition a mapping into two sets of pairs, low scores and high
scores, by using the average over all pair scores in the mapping as a threshold. Afterwards,
the high scoring pairs are swapped randomly. To avoid local minima, however, we also
swap low scoring pairs with a low probability (of 1% for GEDEVO and PPI networks).
PMX-like mutation evaluates each pair by using the pairScore, which requires at most
O(n · d) time.
A so-called crossover results in an individual that in the first place preserves pairs with
low pair scores from two or more parents. Ties are resolved randomly. Crossover is similar
to the previous operation with a term responsible for sorting n pairs from a constant
number of parents p ≤ 8, which results in O(p · (n ·d) + p ·n · log(p ·n)) = O(n · (log n + d))
time.
With directed mutations we swap of a number r ≤ 20 randomly chosen “bad” pairs in the
mapping of an individual. At the end, the one swap that induces the best score is kept.
One swap requires recomputing two pair scores. Thus, the running time of the operation
is bound by O(r · 2 · n · (d + s)) = O(n · d).

These operations are GEDEVO’s strategies to find and keep “good” pairs while a “bad”
pair is swapped more often with another “bad” pair, in this way improving the final score of
the mapping. Over a number of iterations, many individuals are exposed to these operations
by GEDEVO to traverses the search space and optimizes the final score.

2.2.3 Termination
No practical exact algorithm for the Graph Edit Distance computation on large graphs exists.
Consequently, it is hard to theoretically estimate the number of necessary iterations until a
“good” solution can be achieved. Convergence time mainly depends on the population size as
well as on the input graphs’ topological properties. Our implementation of GEDEVO can
be set to execute (1) a specified number of iterations, (2) a pre-specified running time, or
(3) a fixed number of iterations of no significant changes in the mapping scores of the best
individuals (such that convergence was probably reached).

The total theoretical running time of GEDEVO is based on the run times of the individual
steps. The evaluation step is performed in O(N · n · d), where N is the population size. The
offspring generation step requires O(N ·(n+n ·d+n ·(log n+d)+n ·d)) = O(N ·n ·(log n+d))
time. The selection step sorts the individuals from the older and new generations in
O(2 · N · log(2 · N)) time. Given that GEDEVO runs I iterations, its total running time
sums up to O(I ·N · n · (log n + d)).

3 Data

For the evaluation of GEDEVO with existing tools we used several PPI networks (see
Table 2). The following six networks were previously used for evaluating C-GRAAL and
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Table 2 Summary of PPI networks used for evaluations.

Short
name Species Source Proteins Interactions

cjejuni Campylobacter jejuni [19] 1,095 2,988
Meso Mesorhizobium loti [28] 1,803 3,094
Syne Synechocystis sp.(PCC6803) [25] 1,908 3,102
ecoli_fi Escherichia coli [21] 1,941 3,989
yeast2 Saccharomyces cerevisiae [7] 2,390 16,127
SC Saccharomyces cerevisiae [31] 5,152 24,847
HS Homo Sapiens [31] 5,878 14,015
DM Drosophila Melanogaster [31] 7,533 22,477
ulitsky Homo Sapiens [30] 7,384 23,462
human1 Homo Sapiens [23] 9,141 41,456
hprd Homo Sapiens [22] 9,672 3,7047

MI-GRAAL. The two bacterial networks cjejuni and ecoli_fi are well-studied high-confidence
networks: The first network resulted from high-throughput yeast two-hybrid screens; the
second network was constructed using experimental and computational data (see [21]). The
Syne network was obtained through a modified high-throughput yeast two-hybrid assay and
covers around half (52%) of the total protein coding genes; similarly for network Meso that
involves 24% of the protein coding genes. The high-confidence network human1 was created
by combining data from multiple sources including HPRD [22]. The network from [7] is
based on (post-processed) data from high throughput experiments.

In addition, we obtained the networks DM, SC, and HS from the DIP database, which
contains experimentally determined and manually curated protein interactions. The hprd
network is a PPI network obtained from the Human Protein Reference Database (HPRD),
which is a repository storing high-quality manually curated human interaction data. The
human interactome network ulitsky is a compilation of protein-protein interactions, based
mostly on small-scale experiments, from several interaction databases, including the HPRD
database. Refer to Table 2 for a summary and citations.

4 Result and Discussions

Here, we evaluate GEDEVO against the four tools GHOST, SPINAL, C-GRAAL and
MI-GRAAL, which form the current state of the art and have been shown to outperform
other existing tools [1, 14, 16].

All tools were executed on a 64 bit Linux 2.6.32 kernel, running on an Intel Xeon CPU
W3550 @ 3.07GHz and 12 GB RAM. SPINAL is deterministic and was thus executed only
one time for each pair of the input networks, while MI-GRAAL, GHOST, C-GRAAL and
GEDEVO, as randomized algorithms, we executed 10 times for each pair. The execution of
all tools was interrupted after 24 hours of runtime without termination. MI-GRAAL and
C-GRAAL, similarly to GHOST, require graphlet degree signatures as preliminary node
similarity measures, which were precomputed and used as input (precomputation time not
taken into account for evaluation). The termination criterion for GEDEVO was set to stop
after 3,000 iterations of no significant improvement of the GED score amongst the best
solutions (individuals).

The performance of all methods, similarly to [14] and [16], is assessed with the so-called
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Figure 2 The influence of the population size to the performance of GEDEVO aligning yeast2
vs. human1 in comparison to SPINAL, C-GRAAL and MI-GRAAL. Each line/symbol represents
one run.

Edge Correctness, which is particularly useful when comparing many networks with different
numbers of nodes and edges. Defined as EC = #sharedInteractions

min(|E1|,|E2|) × 100 [%], its highest value
is 100% and occurs if one input network is isomorphic (or sub-isomorphic) to the other.

Note that GEDEVO internally utilizes the Graph Edit Distance for optimization, not the
EC. This makes GEDEVO more applicable to general graph comparison problems outside
computational biology. However, if we set the costs for node deletions/insertions/substitutions
and edge substitution to zero but only the cost for edge deletions/insertions to one, the EC
will be related to GED as EC = (|E1|+ |E2| −GED)/(2 ·min(|E1|, |E2|))× 100 [%]. This
allows us to compare GEDEVO to existing approaches on protein-protein interaction Network
Alignment based on the EC criterion, as in previous work [14, 16], which is particularly
useful for networks where differences between |V1| and |V2| are common (as in PPI networks
from different organisms).

In Figure 2 we depict the influence of the population size to the progression of the EC
(convergence). Runs with 50 individuals (black line) converged earlier to the final solution,
still providing quite high values of EC. With larger population sizes the runs obtained slightly
better alignments with higher EC and reached them slightly faster. This indicates that
GEDEVO is quite robust to different population sizes, given that they are reasonably large.
In the remaining (below described) evaluations we used 500 individuals per run.

We executed GEDEVO and the four competing tools on multiple pairs of networks from
Table 2. The resulting edge correctnesses and the according run times for all tools are depicted
in Figure 3. Since SPINAL, C-GRAAL and MI-GRAAL do not provide intermediate results,
the final values are shown point-wise (diamonds, triangles, and circles); for GEDEVO the
progression of EC is depicted with lines. The plot illustrates that GEDEVO can provide a
“good” solution comparably fast. A summary of the maximal EC values from the plot is given
in Table 3. Unsuccessful runs (no termination after 24 hours) of SPINAL and MI-GRAAL
are marked with an “x”). Note: Since GHOST only terminated for the alignment of the two
small networks Meso and Syne (with best EC: 41.98, runtime: 140 sec) we did not add it to
Table 2 and Figure 3.

The networks human1, hprd and ulitsky are all human PPI networks, therefore the EC
scores for GEDEVO are comparably high. The results for aligning ulitsky with human1 or
hprd are rather “poor” since ulitsky is a compilation of data from different databases. The
known overlap of ulitsky with hprd is only 649 nodes and 15, 305 interactions, from which
GEDEVO aligned 11, 800.
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should result in an Edge Correctness of 100%,
which is achieved with GEDEVO and C-GRAAL
in most cases (see text). Each line/symbol rep-
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To further investigate the robustness of the four methods on networks where we definitely
know the correct solution, we aligned some PPI networks against themselves. Naturally, this
should result in an EC of 100%. In Figure 4, we plot the EC vs. run time for the following
data sets: Meso, ecoli_fi, ulitsky, DM, and human1. Note that GHOST only terminated for
the self-alignment of the two smallest networks Meso (with best EC: 100%, runtime: 197
sec) and ecoli_fi (with best EC: 100%, runtime: 173 sec). We also downloaded and tested
Natalie 2.0 [9] on our servers. It terminated with memory faults for all network pairs but
the two smallest ones: For cjejuni vs. ecoli_fi (runtime: 7 hours) and self-alignment of
Meso (runtime: 11 hours) the tool resulted with edge correctnesses of 97.64% and 20.38%
respectively. Hence, we did not include GHOST and Natalie 2.0 with Figure 4. Further
note that a set of methods exists that restrict alignment candidates to a set of pre-mapped
nodes (limited search space), see for example [12] and [5]. GEDEVO can be restricted to
such pre-mappings (e.g. with BLAST as preprocessing) but it does not rely on it.

In conclusion, GEDEVO, in contrast to the other approaches, was able to achieve the
expected 100% EC in all cases, often even faster than the existing tools. C-GRAAL reached
around 97-98% of EC in most cases, but required up to 11 hours for the biggest networks
(hprd, human), for which GEDEVO needed only approx. 10 minutes.

To sum up, in almost all cases, GEDEVO outperformed SPINAL, GHOST, C-GRAAL
and MI-GRAAL in terms of quality and run time. Moreover, GEDEVO in contrast to the
other methods was able to recognize the high similarity (human1 vs. hprd) and composition
(ulitsky vs. hprd) between the human PPI networks using topological information only. In
addition, we wish to emphasize that GEDEVO provides intermediate results that allow
for a manual termination of the software at earlier iterations when a high EC score (or a
corresponding low Graph Edit Distance solution) has been found and convergence seems to
be reached.
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Table 3 The highest achieved Edge Correctness (EC) quality scores for alignments of different
PPI networks from Figure 3.

EC (%)
Network 1 Network 2 GEDEVO MI-GRAAL C-GRAAL SPINAL

cjejuni ecoli_fi 33.70 24.60 22.56 22.09
Meso Syne 43.60 39.88 33.19 25.86
yeast2 human1 38.14 21.38 22.20 19.33
HS SC 30.40 26.15 24.15 25.59
SC DM 20.79 17.73 20.59 21.07
DM human1 21.88 x 27.36 27.04
ulitsky hprd 32.00 x 27.56 24.68
human1 hprd 89.37 x 47.07 x

5 Conclusion

We presented GEDEVO, a novel Network Alignment algorithm, and evaluated it on protein-
protein interaction networks. GEDEVO uses an evolutionary algorithm to heuristically
approximate the Graph Edit Distance optimization problem. On a wide range of real PPI
networks our approach outperforms state-of-the-art methods in terms of speed and quality,
and provides intermediate alignment results on the fly. GEDEVO is robust and not limited
to PPI networks (unlabeled, undirected, and unweighted graphs), but flexible enough to be
applicable to other types of networks as well, biological and non-biological.

In the future we will speed-up the convergence of our algorithm by improving the
population initialization by complementing the random permutations in this step with an
assignment function that depends, for instance, on the degree differences between candidate
node pairs (the less the difference, the higher the chance to contribute to low GED and high
EC in the final solution). While in this paper, the quality measures were derived from purely
topological alignments, in the future we will experiment with integrating additional external
node-to-node scoring functions, such as BLAST.

GEDEVO as well as all used data sets are publicly available at http://gedevo.mpi-inf.
mpg.de.
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Abstract
With the advent of metatranscriptomics it has now become possible to study the dynamics of
microbial communities. The analysis of environmental RNA-Seq data implies several challenges
for the development of efficient tools in bioinformatics. One of the first steps in the compu-
tational analysis of metatranscriptomic sequencing reads requires the separation of rRNA and
mRNA fragments to ensure that only protein coding sequences are actually used in a subsequent
functional analysis. In the context of the rRNA filtering task it is desirable to have a broad
spectrum of different methods in order to find a suitable trade-off between speed and accuracy
for a particular dataset. We introduce a machine learning approach for the detection of rRNA
in metatranscriptomic sequencing reads that is based on support vector machines in combina-
tion with dinucleotide distance histograms for feature representation. The results show that our
SVM-based approach is at least one order of magnitude faster than any of the existing tools
with only a slight degradation of the detection performance when compared to state-of-the-art
alignment-based methods.
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1 Introduction

Metatranscriptomics has become an essential tool for the investigation of gene expression in
microbial communities [6, 16, 7, 2, 13]. Compared to metagenomics, metatranscriptomics
provides a dynamic picture of the adaptation of organisms to changing environmental condi-
tions. Depending on the particular protocol for extraction and sequencing of environmental
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RNA, a substantial amount of the resulting sequences actually correspond to ribosomal
RNA (rRNA) that cannot be used for the analysis of gene expression levels. Therefore an
important first step in the analysis of RNA-Seq data from metatranscriptomic experiments
is to filter out the fraction of sequencing reads with significant similarity to known rRNA
genes. After that the remaining messenger RNA (mRNA) reads are usually analyzed in
terms of possible gene functions based on sequence similarity to known proteins from, for
instance, the Pfam [17] or KEGG [10] databases. Without a prior rRNA filtering the risk is
high to obtain a large number of false positive protein matches. For example, in a previous
release of the Pfam database, due to misannotation, several families have been composed of
spurious ORFs on the reverse strand of rRNA and therefore systematically accounted for
false protein matches in metatranscriptomic RNA-Seq data [22]. Besides a time-consuming
BLASTN [1] search against a comprehensive rRNA database, several recent tools can be used
which all provide a computationally faster rRNA detection. The accelerating techniques in
these tools include Hidden Markov Models [9, 12], the Burrows-Wheeler transformation [21]
and TRIE-structures in combination with a fast bitvector matching [11]. We here propose
a machine learning approach using a feature space based on oligomer distance histograms
which have originally been introduced for remote homology detection in protein sequence
analysis [14]. For rRNA detection we have implemented a specific feature extraction that
counts the occurrences of all dinucleotide pairs over a range of possible distances (spacers)
between them. Our results indicate that dinucleotide distance histograms provide a suitable
representation of rRNA sequences and that SVMs are well-suitable for fast detection of rRNA
in metatranscriptomic datasets.

2 Materials & Methods

Our approach for rRNA detection in metatranscriptomic datasets is based on an RNA-specific
adaption of the oligomer distance histogram (ODH) representation for biological sequences
[14] and Support Vector Machines (SVM) for discrimination between rRNA and non-rRNA
sequence fragments. After training of SVM classifiers using reference datasets for 16S/23S-
rRNA and non-rRNA examples, we evaluate the performance of our method and several
state-of-the-art rRNA detection approaches on simulated and real-world metatranscriptomics
datasets. In the following sections we describe in detail the utilized datasets and the modified
ODH feature space and we outline the methods used for performance comparison. The C
source code for ODH-based rRNA detection is available from the authors.

2.1 Datasets

Reference datasets
To construct a reference dataset for training and test of SVM classifier models, we obtained all
available rRNA gene sequences from the SILVA database [18] and separated them according
to their phylogenetic origin (Archaea/Bacteria) and type (16S/23S). 3’ and 5’ sequence
overhangs were removed by trimming the sequences according to their relevant rRNA region
using the ARB software package [15]. To reduce the redundancy of the dataset and avoid
overlaps between training and test data, we clustered the resulting sequence sets with
USEARCH (version 6.0.307) [4] using a sequence identity threshold of 95%. The final
bacterial/archaeal rRNA reference datasets contained 80,832/4,217 16S-rRNA sequences and
1,930/137 23S-rRNA sequences, respectively.

For evaluation of different methods we partitioned the reference datasets into training
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and test sets containing 80% and 20% of the sequences, respectively. Here, we attempted
to create sequence sets with similar sequence variability (for details see Appendix). By
this means we obtained 64,665 (16,167) full length training (test) 16S-rRNA sequences for
Bacteria and 3,373 (844) sequences for Archaea. The respective 23S datasets consist of 1,544
(386) bacterial and 109 (28) archaeal sequences.

For our discriminative learning approach we also require the training and test datasets to
contain negative sequence examples, i.e. suitable non-rRNA sequences. For this purpose we
masked 1,705/121 completely sequenced bacterial/archaeal genomes with respect to known
rRNA and non-coding regions. For each rRNA reference dataset we extracted fragments from
the remaining sequence material to yield a negative dataset of identical size and sequence
length distribution.

Simulated metatranscriptome dataset
In order to evaluate the rRNA detection performance of different methods, we generated
a simulated metatranscriptome dataset with known rRNA and non-rRNA labels. For this
purpose we applied MetaSim[19] to our positive and negative test sequences to produce
rRNA and non-rRNA sequence reads, respectively. Here, the MetaSim default parameters for
the Roche 454 sequencer model (including a relatively high error rate of 5%) were used and
the average read length was set to 250 bp. Multiple (forward/reverse) reads were generated
for each reference sequence until at least 80% of the original sequence was covered. Sequence
fragments that had an overlap of more than 150 bp with another read were removed. In total,
our simulated dataset consists of 214,270/10,535 16S/23S-rRNA and 952,215 non-rRNA
reads, respectively.

Real-world metatranscriptome datasets
In [12] two metatranscriptome datasets were used for comparative evaluation of the rRNA
detection performance of the rRNASelector and Meta-RNA methods. The datasets (’Tidal
salt marsh’ and ’Mushroom Spring’) revealed a remarkably high predicted fraction (54% and
89%, respectively) of rRNA-related sequences. The Mushroom Spring dataset (SRR106861)
consists of 113,128 sequences (≈30 Mbp) and an average read length of ≈267 bp, while
the Tidal salt marsh dataset (SRR013513) comprises 238,250 sequences (≈62 Mbp) and an
average read length of ≈259 bp. Both samples have been sequenced using the Roche 454
FLX Titanium platform. We downloaded the two datasets from the National Center for
Biotechnology Information (NCBI) Sequence Read Archive (SRA1), converted the sequences
into the FASTA format and applied PRINSEQ [20] to the sequence sets to remove replicates
and sequences exceeding 5 undefined bases. After application of PRINSEQ, 196,512 sequences
(≈50 Mbp) and 91,589 sequences (≈24 Mbp) remained for testing in the reduced SRR013513
and SRR106861 dataset, respectively.

2.2 Dinucleotide distance histogram feature space
In [14], oligomer distance histograms (ODH) have been introduced as a vector space represent-
ation method for protein sequences. In the ODH feature space each sequence is represented
as a numerical vector in which each dimension indicates the number of occurrences of a
particular oligomer (k-mer) pair at a particular distance in the sequence. For a specific

1 http://www.ncbi.nlm.nih.gov/sra

http://www.ncbi.nlm.nih.gov/sra
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sequence analysis problem the ODH feature space consists of the required dimensions to
consider all possible oligomer pairs for all distances (including the ’zero’ distance D = 0) up
to the longest observable distance between two oligomers.

To apply ODHs to the rRNA detection problem (in a computationally efficient manner),
we here fix the length k of the oligomers to k = 2 (dinucleotides) and introduce an upper
limit Dmax for the distance between two oligomers. In contrast to [14] we here omit oligomer
distances that reflect an overlap of two oligomers, i.e. the distances D = 0 and D = 1, and
instead refer to an inventory of ’spacers’ from D0 (i.e. D = k) to Dmax (Dmax +k). Therefore,
our dinucleotide distance histogram feature space consists of 162 ∗ Dmax dimensions. The
maximum spacer value Dmax constitutes a so-called hyperparameter whose optimal value
has to be determined by evaluation.

Discriminative classifier training
In order to distinguish between rRNA and non-rRNA sequence reads in metatranscriptomics
datasets, we trained discriminative linear classifier models using Support Vector Machines
(SVM) in combination with dinucleotide distance histogram feature space representatives of
the reference dataset sequences. Here, we aggregated bacterial and archaeal sequences to
obtain one 16S- and one 23S-rRNA classifier, respectively. For SVM training we used the
LIBLINEAR implementation [5] with default parameters for the slack variables (C = 1) and
termination tolerance (ε = 0.1). Because the LIBLINEAR toolbox does not provide an option
to account for imbalanced numbers of positive and negative training data, we ’oversampled’
the positive examples to yield the same amount of rRNA and non-rRNA sequences while
retaining the diversity of non-rRNA sequences. As a consequence, we used up to 30 duplicates
(archaeal 23S-rRNA) of an rRNA example for model training.

2.3 Experimental setup
For performance evaluation we compared our approach to different state-of-the-art methods
for rRNA detection. Besides the riboPicker [21] and SortMeRNA [11] methods, we used
HMMER3 [3] as a representative method for HMM-based detection approaches such as Meta-
RNA [9] or rRNASelector [12]. The riboPicker detection software is based on a pre-computed
rRNA database2 which does not allow the convenient removal of particular sequences. To
avoid an overlap of training and test sequences, we refrained from using riboPicker for
evaluation on the simulated metatranscriptome dataset and instead performed a BLASTN
homology search. Here, we used the rRNA/non-rRNA assignment of the best BLAST hit
up to an E-value threshold of 1e−3 for read classification. For the simulated data, the
reference models/databases for all methods were built using only the training sequences.
Here, separate HMMER3 models for Archaea and Bacteria were trained. For evaluation on
the real-world metatranscriptome dataset we used all reference dataset sequences for training
of HMMER3 models and SVM classifiers and we utilized the default databases for riboPicker
and SortMeRNA.

3 Results

In order to evaluate our distance histogram-based rRNA detection approach, we investigated
the prediction performance on simulated and real-world metatranscriptome data. First, we

2 http://edwards.sdsu.edu/ribopicker/rrnadb/rrnadb_2012-01-17.tar.gz
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Figure 1 Dependency of the 16S-/23S-rRNA detection performance on the maximum distance
parameter. Maximum F1 performance values are indicated by triangles.

determined optimal values for the maximum distance parameter of our method for 16S- and
23S-rRNA classifiers, respectively. Then we compared the rRNA detection performance and
the runtime of our approach to those of state-of-the-art methods.

Selection of optimal values for the maximum distance parameter
Our distance histogram-based feature space for nucleotide sequences (DDH) requires the
definition of a maximum distance (spacer) Dmax between two dimers (see also section
2.2). While small values for Dmax lead to a memory-efficient feature space representation of
DNA/RNA sequences, higher values allow to model conserved long-range correlations between
particular residues in the sequence. To determine optimal values for the maximum distance
parameter, we performed a 5-fold cross-validation on simulated 16S- and 23S-rRNA training
datasets using different values for Dmax = [0, .., 19]. To yield meaningful performance measure
values, we balanced the number of positive and negative test examples by oversampling the
rRNA example sequences analogously to the classifier training procedure (see section 2.2).

Figure 1 shows the dependency of the rRNA detection performance on the maximum
distance value in terms of precision ( #T P

#T P +#F P ) and recall ( #T P
#T P +#F N ) curves. While the

recall values already start to decrease for medium values of Dmax, the precision increases
until a plateau is reached. The F1 measure, which combines precision and recall, shows
different specific local performance maxima for 16S (Dmax = 7) and 23S (Dmax = 4) data.
In the following, we use these optimal values for all evaluations.

Performance on simulated data
Our simulated dataset allows to evaluate the rRNA detection performance of different methods
independently for 16S- and 23S-rRNA sequence fragments based on a known classification of
the reads. Table 1 shows the performance values of four different methods for our simulated
16S- and 23S-rRNA datasets, respectively. For 16S-rRNA data, the HMMER3 method
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Table 1 rRNA detection performance on simulated metatranscriptome data for different methods.
All values represent percentages.

DDH HMMER3 BLASTN SortMeRNA # reads

16s
recall 98.79 99.94 99.06 99.90

428540precision 99.60 100.0 100.0 100.0
F1 99.19 99.97 99.53 99.95

23s
recall 97.17 99.28 91.40 98.92

21070precision 98.00 100.0 100.0 100.0
F1 97.58 99.63 95.51 99.46

achieves almost perfect classification of the reads, closely followed by SortMeRNA. BLASTN
and our DDH approach show a slightly lower detection performance in terms of the F1
measure due to a higher fraction of overlooked 16S-rRNA sequences. Remarkably, HMMER3,
SortMeRNA and BLASTN only classify very few non-rRNA reads as ribosomal RNA and
thus yield a (rounded) precision of 100%.

For the simulated 23S-rRNA data HMMER3 and SortMeRNA also achieve very high
detection performance values. The precision and recall values of the DDH method slightly
decrease as compared to the 16S dataset, which has presumably to be attributed to the
much smaller number of training examples for the 23S dataset. The detection performance
of BLASTN in terms of the recall value substantially decreases for 23S-rRNA reads due to
a considerably reduced number of significant hits to the database sequences. Additional
experiments with longer sequence reads (400bp) and a lower simulated read error rate (2.5%)
indicated that the detection performance of all methods increases, with BLASTN showing
the biggest improvement (data not shown).

3.1 Performance on metatranscriptome data
In contrast to the simulated datasets, the classification of reads from real-world metatran-
scriptome data is not known and thus no ground truth exists. Because the HMMER3 method
outperformed the other approaches on the simulated data, we first measured the overlap
with the other methods in terms of a hypothetical ground truth on the real-world datasets
provided by HMMER3 predictions. Table 2 shows the results of the overlap analysis in
terms of hypothetical recall, precision and F1 estimates for different methods on the two
real-world metatranscriptome datasets. For the Mushroom spring dataset, SortMeRNA
achieved the highest agreement with the HMMER3 prediction followed by riboPicker and our
distance histogram approach. While the overlap recall ranged from 89% to almost 100%, the
overlap precision of all methods was very high. This can be attributed to the high fraction
of predicted rRNA (≈89%) in this dataset (see also section 2.1). In contrast, the Tidal salt
marsh dataset showed a substantially lower predicted fraction of rRNA reads (≈54%). Here,
the precision value for riboPicker and our DDH approach decreased to ∼92%, while the
SortMeRNA method still showed a high value (99%). However, because of a substantially
diminished recall value for SortMeRNA on this dataset, riboPicker exhibited the highest
agreement with the HMMER3 predictions in terms of the combined F1 measure.

Figure 2 shows Venn diagrams representing the overlap of predicted rRNA fractions as
obtained from the three abovementioned methods without HMMER3. For the Mushroom
Spring datasets the three methods agreed on≈86% of the sequence fragments, while no method
exclusively classified more than 1% of the reads as rRNA. The Venn diagram associated with
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Table 2 rRNA detection overlap of different methods with HMMER3 predictions on real-world
metatranscriptome data. All values represent percentages.

riboPicker SortMeRNA DDH

Mushroom Spring
recall 97.60 99.78 89.39

precision 99.75 99.78 98.93
F1 98.66 99.78 93.92

Tidal salt marsh
recall 97.54 81.81 82.72

precision 91.57 99.00 92.80
F1 94.46 89.60 87.47

the Tidal marsh dataset shows a substantially smaller consensus of the method predictions.
Here, riboPicker and our DDH approach filtered ≈ 15% and 5% of the reads exclusively. The
classification overlap between the DDH method and riboPicker/SortMeRNA was ≈7.3%/0.9%,
respectively.

Figure 2 Venn diagrams showing the overlap of rRNA classification results for different methods
on real-world metatranscriptome data. Left-hand side: Mushroom spring dataset, right-hand side:
Tidal salt marsh dataset.

In comparison with our performance analysis on simulated data the results on the real-
world datasets indicate a much larger disagreement of different methods than expected.
This discrepancy, in principle, could already be seen in the evaluation of the SortMeRNA
tool [11]. On one hand this indicates that the simulation setup that we used in a similar
way like other researchers have done before, is too simple to capture the complexity of real
metatranscriptomic data. On the other hand this shows the difficulty of measuring the rRNA
detection performance in general and we have to admit that the assumption of a putative
best method (HMMER3) is possibly not appropriate to tackle this problem.

3.1.1 Runtimes
Current next-generation sequencing methods yield a large number of sequencing reads with
rapidly growing sizes of the resulting datasets. Therefore, the speed of an rRNA detection



H. Klingenberg et al. 87

Table 3 Runtimes of different methods on real-world metatranscriptome datasets.

dataset method time in sec

Mushroom Spring

DDH 5.7
SortMeRNA 81.2
riboPicker 363
HMM 3016

Tidal salt marsh

DDH 12.1
SortMeRNA 156
riboPicker 591
HMM 4487

method is an important aspect for the timely downstream analysis of the functionally
relevant metatranscriptome data. To compare the runtimes of different detection methods,
we performed all classification analyses for the real-world metatranscriptome datasets in
single core mode on an Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz with 32GB RAM. Here,
the runtimes for HMMER3 and our DDH approach are aggregated over all (16S, 23S, Archaea,
Bacteria) model/classifier evaluations.

As shown in table 3, our distance histogram approach is ≈13 times faster than the
second-fastest method, SortMeRNA. The speed-up factor of the DDH method over riboPicker
and HMMER3 ranged between ≈47 to 64 and 370 to 530, respectively. These numbers
indicate the suitability of our approach for fast rRNA detection in very large datasets.

4 Discussion

We introduced a machine learning approach to the detection of ribosomal RNA in metatran-
scriptomic sequences. The utilized feature space is composed of frequencies of spacer lengths
between pairs of dinucleotides. The corresponding dinculeotide distance histograms (DDH)
provide a natural representation of mismatches and therefore can cope with a relatively
high rate of sequencing errors. In our experiments we found that a maximum distance of
approximately 10 nt, i.e. a feature space with at most 2500 dimensions, is sufficient to provide
a good discrimination of rRNA from coding regions. In comparison with alignment-based
methods the DDH implies a position independent analysis and therefore neglects some
conserved position information that is present in rRNA sequences. As a consequence, our
results indicate a slightly lower detection sensitivity and specificity. The advantage over the
existing methods is the computational speed, which is more than 10 times higher than for
the previously fastest method (SortMeRNA). In future work we will address some of the
limitations that result from our current training setup where we utilize the LIBLINEAR
SVM implementation. With this library we have to keep all training vectors in memory
and therefore the number of examples is restricted to about 150,000 DDH feature vectors
for 32GB RAM. Using regularized least squares training (see e.g. [8]), we will be able to
substantially increase training sets and therefore more realistic training examples may be
obtained from a large number of simulated sequencing reads. In particular, we expect a
better representation of 23S-rRNA and a better coverage of the negative examples in terms
of a more comprehensive sampling of coding regions.

Acknowledgements This work was supported by the Deutsche Forschungsgemeinschaft
[grant numbers Me3138 (“Computational models for metatranscriptome analysis”) and Li2050
(“Machine learning methods for functional characterization of the peroxisome”)].
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A Construction of training and test sets

To create training and test sets with similar sequence variability, we analyzed the original
SILVA alignments regarding the variability of the alignment columns and assigned a score
to each sequence that reflects its distance from the consensus sequence/profile. Given an
alphabet A = {A,C,G,T,N,-} and a sequence S, the score Tk,j for a symbol k ∈ A and an
alignment position j is calculated by

Tk,j =

 0, if
∑m

i=1
Si,j=′-′

m > 0.5

log10(
∑m

i=1
Si,j=k

m ), else

whereby m represents the number of sequences. The sequence score is then calculated as
score(S) =

∑L
j=1 TSk,j

. As a result, a lower sequence score indicates a higher deviation from
the consensus sequence. Sequences for the final training and test datasets were then sampled
from the reference datasets subject to similarly distributed sequence scores.

References
1 S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment

search tool. J Mol Biol, 215(3):403–410, Oct 1990.
2 L. C. Carvalhais, P. G. Dennis, G. W. Tyson, and P. M. Schenk. Application of metatran-

scriptomics to soil environments. J. Microbiol. Methods, 91(2):246–251, Nov 2012.
3 S. R. Eddy. Accelerated Profile HMM Searches. PLoS Comput. Biol., 7(10):e1002195, Oct

2011.
4 R. C. Edgar. Search and clustering orders of magnitude faster than BLAST. Bioinformatics,

26(19):2460–2461, Oct 2010.
5 R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A Library

for Large Linear Classification. J. Mach. Learn. Res., 9:1871–1874, June 2008.
6 J. A. Gilbert, D. Field, Y. Huang, R. Edwards, W. Li, P. Gilna, and I. Joint. Detection of

large numbers of novel sequences in the metatranscriptomes of complex marine microbial
communities. PLoS ONE, 3(8):e3042, 2008.

7 J. A. Gilbert and M. Hughes. Gene expression profiling: metatranscriptomics. Methods
Mol. Biol., 733:195–205, 2011.

8 K. J. Hoff, M. Tech, T. Lingner, R. Daniel, B. Morgenstern, and P. Meinicke. Gene
prediction in metagenomic fragments: a large scale machine learning approach. BMC
Bioinformatics, 9:217, 2008.

9 Y. Huang, P. Gilna, and W. Li. Identification of ribosomal RNA genes in metagenomic
fragments. Bioinformatics, 25(10):1338–1340, May 2009.

10 M. Kanehisa, S. Goto, S. Kawashima, and A. Nakaya. The KEGG databases at GenomeNet.
Nucleic Acids Res., 30(1):42–46, Jan 2002.

11 E. Kopylova, L. Noe, and H. Touzet. SortMeRNA: fast and accurate filtering of ribosomal
RNAs in metatranscriptomic data. Bioinformatics, 28(24):3211–3217, Dec 2012.

12 J. H. Lee, H. Yi, and J. Chun. rRNASelector: a computer program for selecting ribosomal
RNA encoding sequences from metagenomic and metatranscriptomic shotgun libraries. J.
Microbiol., 49(4):689–691, Aug 2011.

13 B. Leis, A. Angelov, and W. Liebl. Screening and expression of genes from metagenomes.
Adv. Appl. Microbiol., 83:1–68, 2013.

14 T. Lingner and P. Meinicke. Remote homology detection based on oligomer distances.
Bioinformatics, 22(18):2224–2231, Sep 2006.



H. Klingenberg et al. 89

15 W. Ludwig, O. Strunk, R. Westram, L. Richter, H. Meier, Yadhukumar, A. Buchner,
T. Lai, S. Steppi, G. Jobb, W. Förster, I. Brettske, S. Gerber, A. W. Ginhart, O. Gross,
S. Grumann, S. Hermann, R. Jost, A. König, T. Liss, R. Lüssmann, M. May, B. Nonhoff,
B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig,
A. Bode, and K. H. Schleifer. ARB: a software environment for sequence data. Nucleic
Acids Res. 25;32(4):1363-71, 32(4):1363–1371, Feb 2004.

16 R. S. Poretsky, S. Gifford, J. Rinta-Kanto, M. Vila-Costa, and M. A. Moran. Analyzing
gene expression from marine microbial communities using environmental transcriptomics.
J Vis Exp, (24), 2009.

17 M. Punta, P. C. Coggill, R. Y. Eberhardt, J. Mistry, J. Tate, C. Boursnell, N. Pang,
K. Forslund, G. Ceric, J. Clements, A. Heger, L. Holm, E. L. Sonnhammer, S. R. Eddy,
A. Bateman, and R. D. Finn. The Pfam protein families database. Nucleic Acids Res,
40:D290–D301, Jan 2012.

18 C. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies, and F. O.
Glöckner. The SILVA ribosomal RNA gene database project: improved data processing
and web-based tools. Nucleic Acids Res., 41(Database issue):D590–596, Jan 2013.

19 D. C. Richter, F. Ott, A. F. Auch, R. Schmid, and D. H. Huson. MetaSim: a sequencing
simulator for genomics and metagenomics. PLoS ONE, 3(10):e3373, 2008.

20 R. Schmieder and R. Edwards. Quality control and preprocessing of metagenomic datasets.
Bioinformatics, 27(6):863–864, Mar 2011.

21 R. Schmieder, Y. W. Lim, and R. Edwards. Identification and removal of ribosomal RNA
sequences from metatranscriptomes. Bioinformatics, 28(3):433–435, Feb 2012.

22 H. J. Tripp, I. Hewson, S. Boyarsky, J. M. Stuart, and J. P. Zehr. Misannotations of rRNA
can now generate 90% false positive protein matches in metatranscriptomic studies. Nucleic
Acids Res., 39(20):8792–8802, Nov 2011.

GCB 2013



Utilization of ordinal response structures in
classification with high-dimensional expression
data
Andreas Leha∗, Klaus Jung, and Tim Beißbarth

Department of Medical Statistics
University Medical Center Göttingen
Humboldtallee 32, D-37073 Göttingen
andreas.leha@med.uni-goettingen.de

Abstract
Molecular diagnosis or prediction of clinical treatment outcome based on high-throughput ge-
nomics data is a modern application of machine learning techniques for clinical problems. In
practice, clinical parameters, such as patient health status or toxic reaction to therapy, are often
measured on an ordinal scale (e.g. good, fair, poor).
Commonly, the prediction of ordinal end-points is treated as a multi-class classification problem,
disregarding the ordering information contained in the response. This may result in a loss of pre-
diction accuracy. Classical approaches to model ordinal response directly, including for instance
the cumulative logit model, are typically not applicable to high-dimensional data.
We present hierarchical twoing (hi2), a novel algorithm for classification of high-dimensional data
into ordered categories. hi2 combines the power of well-understood binary classification with or-
dinal response prediction.
A comparison of several approaches for ordinal classification on real world data as well as simu-
lated data shows that classification algorithms especially designed to handle ordered categories
fail to improve upon state-of-the-art non-ordinal classification algorithms. In general, the classific-
ation performance of an algorithm is dominated by its ability to deal with the high-dimensionality
of the data. Only hi2 outperforms its competitors in the case of moderate effects.
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1 Introduction

In the pursuit of personalized medicine there is increasing demand to classify patients
individually based on molecular features. Therefore, classification methods which are capable
to handle high-dimensional data from high-throughput omics data are needed. In clinical
problems it is oftentimes desired to classify patients into ordered categories, because many
clinically relevant parameters, such as patient health status or toxic reaction, are measured on
ordinal scales. Examples include the TNM-status [30] or the Acute Toxicity Grades [11, 32].

Standard classification methods for high-throughput data can only handle categorical
responses [13]. In practice these methods are typically applied after dichotomization of an
ordinal therapy response parameter [18, 20]. Not to use the ordered structure, however,
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can lead to sub-optimal classification results, as exploiting the information contained in the
ordering can improve the classification performance [2, 16].

Another approach to address the classification into ordered categories is regression. In
this approach, the levels of the response (e.g. good, fair, poor) are mapped to numerical
numbers (e.g. 1, 0, -1) and a regression model is fitted. While mapping the levels to numbers
preserves the order, this approach imposes additional structure, that might not be actually
present, as it restricts the distances between the levels. However, if the number of levels gets
large (e.g. the CMTNS with 37 levels [28]), this bias is comparably small.

Several ordinal classification algorithms have been proposed, e.g. the cumulative logit
model or the continuation ratio model [1], which are typically not suited for high-dimensional
problems.

The set of ordinal classification methods that are suitable for high-dimensional data
is small. It includes rpartOrdinal [2] and its variant rpartScore [17], which both extend
classification trees by several methods to split the nodes to favour classification preserving
the ordinality. Archer and Williams [3] propose a second method based on continuation
ratio models and L1 penalization. Ordinal extensions exist for the k-nearest neighbours
classification [19] as well as for support vector machines [10].

In this regard we propose hierarchical twoing (hi2), a classification scheme for ordinal
classification, that takes the idea of twoing from Breiman et al. [5] which is also used by
Frank and Hall [16]. Twoing is the idea to take all possible ways of splitting the data into two
sets and of constructing the overall classifier out of binary classifiers based on these splits.
Hereby, hi2 extends the method of Frank and Hall to a forest of hierarchical configurations.
hi2 is a classification scheme, s.t. the choice of the dichotomous classification algorithm used
internally is free and can be adapted to best suit the data at hand.

This paper is organized as follows: Section 2 details the proposed hi2 method and describes
the alternatives. Different methods to evaluate the performance of classifiers with ordinal
response are discussed as well. After that, in section 3 we present a comparative evaluation
of different ordinal classification methods, in a simulated setting as well as applied to real
data. Following a discussion on the results in section 4 the paper concludes with section 5.

2 Methods

In the following the response variable is denoted as C and can take one of p ordered values
C1 < C2 < · · · < Cp. If the response variable of a sample takes the value Cj we also speak
of the sample being in class j or in class Cj .

2.1 Related Work

Our comparison contains a nullmodel for comparison. This nullmodel does not use any
information from the features for classification, but only relies on the relative group frequencies
in the training set. If, for example, 50% of all samples in the training set are in class 1,
the nullmodel will classify an unseen sample into class 1 with a probability of 50%. The
nullmodel is called relfreq in the remainder of this paper.

As a second ‘benchmark’ we trained standard support vector machines, which are known
to handle high-dimensional data well [4]. SVMs fit a hyperplane in the feature space which
best separates the samples from two groups. By means of a kernel function (the radial
basis function kernel was used in this paper) the data are mapped into a higher-dimensional
space to enhance the linear separability. In order to accommodate more than two classes a
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all binary subclass comparisons are performed and a voting mechanism decides the overall
classification result.

A third method, which will be called limma+lda throughout this paper, first does a
feature selection to reduce the dimensionality of the data. To that end it performs an ANOVA
per feature where internally the residual mean squares are moderated between the features
[29]. The resulting p-values reflect an overall relation between a feature’s expression profile
and the response and are used to filter the features. The number of features to use is a
crucial parameter in this algorithm and an inner cross validation tunes that number. The
retained features are then used as predictors in a linear discriminant analysis (lda) [31]. The
lda projects the data onto linear subspaces in a way that maximises the separation of the
projected means of the classes while normalizing for the inner-class variance, such that the
ratio of inter- and intra-variance is maximized

Also shown are results from ordinal classification trees, implemented in the R-package
rpartOrdinal [2]. Classification trees select the splitting features during the tree construction,
thus, a explicit feature selection is not necessary. Several splitting functions are proposed in
that package. We present results based on the ordered twoing approach, which – although
being computationally the most demanding one – performed best in our experiments. To
accommodate for overfitting rpartOrdinal proposes a bagging approach where several classi-
fication trees are grown on bootstrapped samples and the majority vote of these trees is used
as the overall classification result.

Frank and Hall [16] present a classification framework, that extends binary classification to
the ordinal case. In the remainder of this paper we will refer to their method as Frank&Hall.
In short, given a p-class problem, Frank&Hall trains p− 1 binary classifiers and uses them to
assign a class probability to each of the p ordinal classes C1, . . . , Cp when an unseen sample
is classified. The class with the highest probability is used as classification result. The
probability of the first class (C1) is simply 1−Pr(sample > C1) and depends only on a single
binary classifier that distinguishes C1 from the other values. Analogously, the probability of
Cp is also computed using a single binary classifier as Pr(sample > Cp−1). The probability
of the remaining classes Cj is Pr(sample > Cj−1)− Pr(sample > Cj), j = 2, . . . , p− 1 and
therefore dependent on two binary classifiers. Thus, Frank&Hall present a classification
framework and the user can plug in any binary classifier suitable for the data.

2.2 Hierarchical Twoing (hi2)
We propose hi2 as an extension of Frank&Hall. The classification result in Frank&Hall
is dependent on maximally 2 classifiers and information from more distant classes is not
considered directly. We propose to apply a hierarchical tree-like classification scheme, that
recursively partitions the data into two-class problems, so that in hi2 the information from
distant classes has a more direct impact on the local binary classification.

hi2 has two main modes: the all data mode and the split data mode.

2.2.1 All Data Mode
In the all data mode, hi2 trains the same classifiers as Frank&Hall but does the prediction
in a hierarchical way: hi2 chooses one of the p− 1 trained classifiers as the root classifier,
e.g. it might choose the first classifier that separates class 1 from the rest. In the ordinal
setting each binary classifier can only separate lower classes from higher classes, which we
call the left side and right side of the classifier, respectively. The hierarchical scheme of hi2
now works recursively on both sides of the chosen classifier. In our example the left side
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Table 1 The number of classification trees in hi2 grows with the number of ordinal classes in the
classification problem following the Catalan Numbers. The table shows the number of trees that hi2
has to construct for classification problems up to size 10. While it is still feasible to apply hi2 for 10
class problems, computing time constrains the applicability to problems with more classes. That
does not represent a real constraint, though, as with a growing number of classes, classification into
ordinal classes approximates a regression problem.

number of classes

3 4 5 6 7 8 9 10

number of trees 2 5 14 42 132 429 1430 4862

consists only of one class – class 1 – so the classifier is done here. The right side consists of
the p− 2 remaining classes, and hi2 again chooses one classifier. This is recursively repeated
until all classifiers have been chosen. That way a classification tree is built. Dependent
on which classifier are chosen after each other, that classification tree will have a different
topology. hi2 builds all possible classification trees and takes a weighted majority vote as
final classification result.

The weight of each tree is the classification performance of that tree on the training data
measured by Kendall’s τ (see 2.3 below).

As hi2 generates all possible classification trees and the number of classification trees is
dependent on the number of classes, hi2 is not suited for problems with many (> 10) classes
(Table 1). We consider that to be not a strong limitation, as when the number of classes gets
large, regression methods usually yield good results. The number of classes is given by the
Catalan Numbers:

Cq =
(2q

q

)
q + 1 = (2q)!

q!(q + 1)! , (1)

where q = p− 1 : number of binary classifiers

2.2.2 Split Mode
In split mode, the training phase of hi2 also follows the hierarchical scheme. That means that
also the training set is split into samples that are classified into the left side of a classifier
and samples that are classified into the right side. The recursive training is then carried out
on the reduced training set in both sides. This approach poses an additional computational
burden, as many more binary classifiers have to be trained compared to the all data mode.
We found that computational burden to be acceptable. But furthermore, the reduction of
the training set in each recursion might lead to an increase situations, where training of a
classifier is not possible any more. The minimum number of necessary samples is dependent
on the chosen binary classification method. The more unbalanced the group sizes are, the
more frequent is that situation. So, we regard this mode suitable for classification problems
with many samples and close-to balanced group sizes only. Therefore, the results presented
below are from the all data mode.

2.3 Methods of Evaluation
In order to compare different classification methods we need a measure to compare their
performance. The most common measure to evaluate a classifier is the accuracy, i.e. the
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fraction of the number of correctly classified samples by the number of available samples.
An equivalent measure is the misclassification error rate (MER) where MER = 1− accuracy.
These measures are not suitable for the ordinal case, as they do not have a notion of different
levels of mis-classification, but treat a classification result as either correct or wrong. In the
ordinal setting there are different levels of mis-classification, as classifying a sample into a
neighbouring class should be considered a better result than classifying it into a distant class.

Therefore, different measures to evaluate a classifier have been proposed. One proposal is
to look at all pairwise comparisons and to refrain from an overall measure [22]. It is, however,
inconvenient to not have one overall measure. Most alternative performance measures that
do an overall evaluation are based on the non-parametric notion of concordant and discordant
pairs [12]. Here, the classification result of a pair of samples is called concordant if the relative
order of their class values is the same in the classification compared to the true values. If the
relative order is reverse to the true values, the pair is called discordant. Kendall’s correlation
coefficient τb [21] is the most common evaluation method of these rank based methods. τb is
defined as

τb := nc − nd√
nc + nd − n(r)

t

√
nc + nd − n(t)

t

, (2)

where nc : number of concordant pairs,
nd : number of discordant pairs,
n

(r)
t : number of ties in the classification result only,
n

(t)
t : number of ties in the true values only

Pairs which have ties in both the classification result as well as the true value are ignored
by Kendall’s τb. It is possible to calculate confidence intervals for Kendall’s τb [23, p. 78]
which is the main reason why we used τb as performance measure in the remainder of this
paper.

As τb works on pairs of samples, it can not be used to compare different classifiers
using one sample only. Alternative measures, include the minimum/maximum mean average
error [12] which works on the absolute distance of classes, where all classes are mapped to
integers or the ordinal classification index [8] which has both, a rank-based component and
a distance-based component.

3 Results

In all settings the (not ordinal) limma+lda showed a very strong performance. Thus, we
used limma+lda as the binary plug-in classifier in Frank&Hall as well as in hi2.

All analysis were implemented and performed in the statistical programming framework
R [25]. Org mode [27] was used as environment for reproducible research.

3.1 Simulation
A simulation study was conducted to assess the influence of different data characteristics on
the classification performance.

We simulated gene expression data for 1000 genes from 90 patients – 60 patients in
a training set and 30 patients in a test set. The expression data was simulated to follow
a multivariate normal distribution with expectation vector µ = 0 and a block-structured
covariance matrix Σ: 20 blocks containing 50 genes each are placed along the diagonal. Each
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Figure 1 This Figure presents the results from a simulation study. Gene expression of 1000
genes was simulated for 90 patients belonging to 5 ordinal classes. 60 patients were used to train
the classifiers and the remaining 30 patients formed the test set. Shown is Kendall’s τ comparing
the classification result (the predicted class) with the true value. Kendall’s τ takes values between
-1 (perfect negative correlation) and 1 (perfect correlation). The left panel (a) shows the results
for different effect sizes δ. 50 genes cave been simulated to be differentially expressed across the 5
ordinal classes and δ is the level of differential expression. The right panel (b) shows results for a
fixed effect δ = 0.2 but different number of groups.

block has an autoregressive structure with parameter ρ = 0.9, i.e. the value is ρd where d is
the unit distance to the diagonal. See the ’Autoblocks’ panel in Figure 2a for a visualization.

In both groups, the training set and the test set, we simulated five ordinal groups of
equal size. 50 randomly chosen genes were set to be differentially expressed following a linear
trend pattern across the ordered groups with an effect size δ = 0.2, i.e. the expectation of
the expression for these 50 genes is (j − 1) ∗ δ for group j, j = 1, . . . , p. All simulations were
repeated 100 times.

In a first experiment the effect size δ was varied from 0 (no differentially expressed
genes) to 1 (highly differentially expressed genes). Results are presented in Figure 1a. As
expected all classification methods improve their performance with increasing effect size
except the nullmodel which does not take the gene expression data into account. In the
case δ = 0 the performance of all classifiers is not better than guessing. Interestingly, the
classification framework by Frank and Hall shows a much lower performance compared to the
other methods and levels off at a moderately high effect size so that higher effect sizes do not
lead to further improvements. The performance of rpartOrdinal, the second ordinal method
under consideration, also does not match the other classifiers. Even the purely nominal
methods svm and limma+lda perform better, where limma+lda again is the better choice.
For small and moderate effect sizes, hi2 is the best classifier. Only for very large effect sizes,
limma+lda again outperform hi2.

In a second experiment the effect size was fixed at δ = 0.2 and the group size was varied
between 3 (the smallest ordinal case) and 9. The aim of this experiment is to evaluate
whether methods that exploit the ordinality of the response gain from more groups, as more
groups can carry more ordinal information. We can observe, that the method Frank&Hall
does not seem to gain from the presence of more groups. Also rpartOrdinal gains less from
the increasing group number compared to hi2 or limma+lda. svm shows mixed results, as it
takes advantage of more groups up until 6. For more groups, the performance shows a drop.
But over all group numbers hi2 keeps the best performance.
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Figure 2 For the simulation study gene expression data of 1000 genes were simulated. We
simulated the gene expression with different correlation structures. The left panel (a) shows the first
100 rows and columns of the used correlation matrices. The right panel (b) shows the behaviour
of the classifiers under the different correlation structures. All classifiers have more difficulties in
settings where all genes are correlated to each other. limma+lda and hi2 show the best performance
across all settings.

The third experiment looks at different correlation structures. Besides the described
block structure, a similar autoregressive structure without blocks, a compound symmetry
with all values off the diagonal set to 0.5 and a random (unstructured) covariance have been
simulated (see also Figure 2a). The settings with less correlation, namely autoblocks and
autoregressive, are easier settings as all classifiers perform better in these two settings. Hi2
outperforms all other classifiers in these cases. Second best performs limma+lda followed
by the svm. The ordinal method rpartScore and Frank&Hall perform similar, but are less
potent compared to the others. In the settings with high correlation the difference between
the methods is less pronounced. Limma+lda and hi2 change places and Frank&Hall has the
most problem in these settings.

3.2 Analysis of a Data Examples

3.2.1 miRNA Expression in Breast Cancer
microRNAs have been shown to be important regulators of mRNA expression [9]. We analyzed
a publicly available miRNA expression dataset [7] downloaded from the gene expression
omnibus data base [14] (accession GSE22216). This data is part of a joint mRNA-miRNA
analysis in 207 breast cancer patients. The annotation includes the tumor grade assigned
following the modified method of Bloom and Richardson[15], which takes one of the values 1,
2, or 3. 42 patients have been assigned tumor grade 1, 87 and 65 have been assigned tumor
grade 2 and 3, respectively. The annotation of the remaining patients was missing. The
miRNA in that study had been measured using Illumina Human v1 MicroRNA expression
beadchip which contains 735 miRNAs.

We present results from a 10-fold cross validation where the data was put into random
order and split into 10 parts, each of which served in turn as test set, while the other 9 parts
were used as training set.

On that setting (Table 2) the rpartOrdinal performs very well, but is still outperformed by
hi2. The best classification, however, is delivered by the non-ordinal svm, but the confidence
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Table 2 The classification algorithms under consideration have been applied to two publicly
available datasets. This table shows their performance measured by Kendall’s τ and includes the
95% confidence intervals. The dashed line in the visualizations marks the evaluation measure for a
classification result that is completely uncorrelated to the truth. The left part of the table shows the
results for miRNA expression data of 193 patients suffering from breast cancer split into 3 ordered
groups. The right part shows results from mRNA data in 84 neuroblastoma patients of 5 ordered
groups. The nullmodel relfreq performs consistently bad on both datasets. In contrast hi2 performs
consistently strong on both datasets. The svm performs best on the miRNA data but surprisingly
fails on the mRNA data.

Breast Cancer (miRNA) Neuroblastoma (mRNA)

Method τ 95% CI τ 95% CI

relfreq

0 0.5 1

0.03 [−0.05; +0.11]

0 0.5 1

−0.04 [−0.17; +0.10]
svm 0.38 [+0.34; +0.41] 0.05 [−0.04; +0.13]
limma+lda 0.27 [+0.21; +0.33] 0.29 [+0.18; +0.41]
rpartOrdinal 0.31 [+0.24; +0.38] 0.20 [+0.07; +0.32]
Frank&Hall 0.05 [−0.03; +0.13] 0.17 [+0.08; +0.26]
hi2 0.36 [+0.32; +0.41] 0.28 [+0.15; +0.40]

intervals of the estimated performances overlap.

3.2.2 mRNA Expression in Neuroblastoma

As a second dataset an mRNA expression dataset [24] was downloaded from ArrayExpress [26]
(identifier: E-TABM-38) and analyzed, again using a 10-fold cross validation scheme. This
dataset includes mRNA expression levels for 10155 mRNAs from 251 patients suffering from
neuroblastoma. 84 patients have been classified according to the International Neuroblastoma
Staging System in its revised version [6] into one of the 5 classes {1, 2a, 2b, 3, 4}. The results
from this dataset are presented in Table 2. While the svm performed best on the previous
dataset, here it hardly outperforms the nullmodel. hi2 performs very strong again, and is
only outperformed by limma+lda.

4 Discussion

Across all settings, the simulated ones and the real world data, hi2 shows a consistently
strong performance: It performs best or second best result in all settings. We therefore
consider hi2 a both good and safe choice for high-dimensional classification problems with
ordered responses.

This stands in contrast to svm, for example, that is strong in some settings but fails
completely on the mRNA data and also has problems in the simulation with 7-9 groups. We
expect that better fine tuning of svm’s parameters would help in these situations. But such
fine tuning is not needed for hi2 with limma+lda as the used binary classifier. The main
parameter of hi2 in this combination is the number of features to retain from limma and we
propose to use an inner cross validation to determine that number.

limma+lda performs surprisingly strong even when it is applied on its own and not as part
of the hi2 framework. When used on its own, the feature selection has information on all the
groups and not only on a binarization of the grouping as in hi2. Thus, we take limma+lda’s
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strength as an indication that in these high-dimensional problems feature selection is a crucial
step.

That point is supported by the observation that limma+lda even outperforms hi2 when
the effect size δ between the groups is high. When the relevant features show a very strong
effect, the task of selecting them gets easier and, thus, methods with a strong feature selection
profit more than others. We also see a strong performance of limma+lda on the mRNA
dataset which has many features. This again points to the importance of a good feature
selection.

Another observation is that the performance of all classifiers drops considerably when we
simulate features which are all strongly correlated. We take this as a hint that maybe other
methods need to be used or developed that deal better with such highly correlated data. We
target, however, data from mRNA or miRNA studies, where the correlation is expected to
form blocks (e.g. higher correlation within pathways) where especially hi2 seems very well
suited.

5 Conclusion

We presented a comparison of different classification methods applicable to high-dimensional
data when the response lives on an ordinal scale. Both, simulated data and real data, have
been used. The comparison includes the novel classification scheme hierarchical twoing (hi2),
that performs consistently strong across all discussed settings, and seems especially strong in
settings with small effects between the groups.
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Abstract
The transcription of genes is often regulated not only by transcription factors binding at single
sites per promoter, but by the interplay of multiple copies of one or more transcription factors
binding at multiple sites forming a cis-regulatory module. The computational recognition of cis-
regulatory modules from ChIP-seq or other high-throughput data is crucial in modern life and
medical sciences. A common type of cis-regulatory modules are homotypic clusters of binding
sites, i.e., clusters of binding sites of one transcription factor. For their recognition the homotypic
Sunflower Hidden Markov Model is a promising statistical model. However, this model neglects
statistical dependences among nucleotides within binding sites and flanking regions, which makes
it not well suited for de-novo motif discovery. Here, we propose an extension of this model
that allows statistical dependences within binding sites, their reverse complements, and flanking
regions. We study the efficacy of this extended homotypic Sunflower Hidden Markov Model
based on ChIP-seq data from the Human ENCODE Project and find that it often outperforms
the traditional homotypic Sunflower Hidden Markov Model.
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1 Introduction

The computational recognition of cis-regulatory modules (CRMs) is an important task in
DNA sequence analysis. If the sequence motifs of the transcription factor binding sites
(TFBSs) involved in putative CRMs are known, CRM recognition reduces to finding the
composition of TFBS occurrences in a set of promoters or other unaligned sequences, and
many methods exist for this task [13]. However, if the sequence motifs are unknown, CRM
recognition becomes challenging, and reliable methods are still missing.

A promising model for CRMs is the Sunflower Hidden Markov Model (Sunflower HMM)
proposed by Hoffmann and Birney [6], which allows multiple occurrences of TFBSs per
sequence. However, the Sunflower HMM assumes statistical independence of the nucleotides
within TFBSs and flanking regions, which limits its applicability to de-novo motif discovery.
There is evidence about the presence of statistical dependences among adjacent nucleotides
within TFBSs [9, 2, 1], and neglecting the dependences within flanking regions often leads to
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the erroneous identification of repeats instead of putative TFBSs or to poor performance in
the recognition of TFBSs [12].

Multiple TFBSs of the same transcription factor often build homotypic clusters, which
we call homotypic CRMs. Such homotypic CRMs are frequent not only in invertebrates [8],
but also in humans [4]. In this paper we focus on their recognition by a homotypic version of
the Sunflower HMM, and by its extension that allows statistical dependences among adjacent
nucleotides both within TFBSs and flanking regions.

The rest of the paper is structured as follows: in Section 2 we present the extended
homotypic Sunflower HMM and corrresponding learning algorithms, and in Section 3 we
study the efficacy of the extended homotypic Sunflower HMM in comparison to the traditional
homotypic Sunflower HMM based on ChIP-seq data from the ENCODE project [11].

2 Extended homotypic Sunflower Hidden Markov Models

In the following two subsections, we introduce the extended homotypic Sunflower HMM and
the Baum-Welch algorithm for estimating its model parameters. For the sake of convenience,
we call the (traditional or extended) homotypic Sunflower HMM simply (traditional or
extended) Sunflower HMM from now on.

2.1 Model
Consider a data set of N sequences x1, . . . , xN , and denote the i-th sequence of length Li by
xi = (xi,1, . . . , xi,Li

), where i ∈ {1, . . . , N}. In analogy to the traditional Sunflower HMM,
we define the probability of sequence xi given model parameters π and φ by

P (xi|π, φ) =
∑
u

i

P (ui|π)P (xi|ui, φ), (1)

where ui denotes a hidden path consisting of states ui,j ∈ {m1, . . . ,mM ,m1, . . . ,mM , f1, f2},
withM denoting the width of a putative TFBS. Here, π denotes the probability of a transition
from a flanking region to a TFBS or its reverse complement, and φ denotes all emission
parameters of the model.

The states ui,j are indicator variables for TFBS occurrences in the following manner:
ui,j = mk indicates that xi,j is the k-th nucleotide of a TFBS on the forward strand,
ui,j = mk indicates that xi,j is the k-th nucleotide (read in 3′ → 5′ direction) of a TFBS on
the reverse complementary strand, and ui,j = f1 and ui,j = f2 indicate that xi,j is part of
the flanking region. State f1 indicates the start position of a flanking region, while state f2
indicates subsequent positions of a flanking region.

In analogy to the traditional Sunflower HMM, we define the probability of path ui given
model parameter π by

P (ui|π) = P (ui,1|π) ·
Li∏

j=2
P (ui,j |ui,j−1, π), (2)

which states that the hidden path ui is a realization of a homogeneous first-order Markov
model.

The transition of one state to another is parameterized by a sparse transition matrix.
There are three possible transitions from states f1 and f2: to m1 with probability π/2, to mM

with probability π/2, and to f2 with probability 1−π. Here, we assume that the probabilities
for the occurrence of a TFBS on the forward strand and on the reverse complementary strand
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f1

f2

m1 m2 . . . mMmM. . .m2m1

π/2

1− π

π/2

1− π

π/2π/2

flanking region

TFBSreverse complementary TFBS

Figure 1 Graphical representation of the transition matrix of the extended Sunflower HMM.
Circles denote states of the HMM. States f1 and f2 emit the flanking region, m1, m2, . . . , mM emit
the TFBS, and mM , mM−1, . . . , m1 emit the reverse complementary TFBS. States in the same color
correspond to the same position in the motif. Arrows represent transition probabilities between
states with a probability greater than zero. The transition probability is either marked as a label of
the corresponding arrow or is 1 in case of unlabeled arrows.

are equal. There are deterministic transitions from mk to mk+1, from mk to mk−1, from
mM to f1, and from mM to f1. All other transitions are forbidden, i.e., their propabilities
are zero. The graphical representation of this transition matrix is shown in Figure 1.

In contrast to the traditional Sunflower HMM, we define the likelihood of sequence xi

given path ui and model parameter φ by

P (xi|ui, φ) = P (xi,1|ui,1, φ) ·
Li∏

j=2
P (xi,j |ui,j , xi,j−1, φ). (3)

In the traditional Sunflower HMM, the conditional probabilities P (xi,j |ui,j , xi,j−1, φ) from
equation 3 are replaced by P (xi,j |ui,j , φ), which states that xi,j and xi,j−1 are conditionally
independent given ui,j and model parameter φ. This conditional independence of the
traditional Sunflower HMM is responsible for the occasionally erroneous identification of
repeats instead of putative TFBSs, and it is this conditional independence assumption that
we drop in the extended Sunflower HMM.

Figure 2 shows the additional conditional dependences among adjacent nucleotides by red
and blue arrows. Red arrows represent conditional dependences within TFBSs and within
reverse complementary TFBSs, and blue arrows represent conditional dependences within
flanking regions. We assume that nucleotides in TFBSs or reverse complementary TFBSs are
independent of nucleotides in flanking regions and vice versa, so there are no arrows between
TFBSs and flanking regions or between reverse complementary TFBSs and flanking regions.

We denote the probability of emitting symbol a in state f1 by λ1,a, the conditional
probability of emitting nucleotide b in state f2 given that the previous nucleotide is a by
λ2,a,b, and all of these model parameters by λ. In analogy to λ, we denote the probability of
emitting nucleotide a in state m1 by θ1,a, the conditional probability of emitting nucleotide
b in state mk given nucleotide a emitted by state mk−1 by θk,a,b, for k ∈ {2, . . . ,M}, and all
of these model parameters by θ. These parameters are equivalent to the parameters of the
weight array model of [14], i.e., to those of an inhomogeneous first-order Markov model.

The emission probabilities of states m1, . . . ,mM corresponding to the reverse complemen-
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f1 f2 m1 m2 m3 f1 f2 f2 m3 m2 m1 f1 f2

A T G C A A C A T G C A G

flanking region TFBS flanking region reverse complementary
TFBS flanking region

Figure 2 Extended Sunflower HMM for an example sequence of length 13 bp. The sequence
contains a 3 bp long TFBS at positions 3-5 and its reverse complement at positions 9-11. The circles
denote the values of the hidden states and the boxes the emitted nucleotides. Black arrows encode
the dependences present in traditional Sunflower HMMs. Colored arrows encode the additional
dependences modeled by the extended Sunflower HMMs: red arrows represent dependences within
TFBSs, and blue arrows represent conditional dependences within flanking regions.

tary TFBS can be computed as a function of θ by

P (xi,j = a|ui,j = mM , θ) = ψM,a

P (xi,j = b|ui,j = mk, xi,j−1 = a, θ) =
θk+1,b,a · ψk,b

ψk+1,a
,

(4)

where a denotes the complementary nucleotide to a, and the auxiliary variables ψk,a are
given by the recursion

ψ1,a = θ1,a

ψk,a =
∑

b∈{A,C,G,T}

θk,b,a · ψk−1,b,
(5)

where k ∈ {2, . . . ,M}.
We denote φ = (θ, λ), and by plugging equations 2 and 3 into equation 1, we obtain the

definition of the extended Sunflower HMM with model parameters π and φ.

2.2 Learning
In this section we describe how the model parameters π, θ, and λ of the extended Sunflower
HMM can be learned and derive the corresponding Baum-Welch algorithm.

Model parameter π encodes the expected frequency with which TFBSs occur in a data
set, and we allow the user to externally set this intuitive model parameter. Likewise, we
treat the model parameter of the flanking regions λ as fixed, and we set it as maximum-
likelihood estimator of a homogeneous first-order Markov model estimated from the entire
data set. The reason for not learning λ via the Baum-Welch algorithm is that dynamically
learning λ requires computing the sufficient statistics over almost the entire data set, which
is unnecessarily time consuming given that the difference to the sufficient statistics of the full
data set is only small, since the number of nucleotides in flanking regions and the number of
nucleotides in the entire data set differ only slightly.

In analogy to [7] and many other de-novo motif discovery algorithms, we estimate the
model parameter θ by a maximum-likelihood approach. To this end, we derive a Baum-Welch
algorithm [10] for the extended Sunflower HMM, which is a special case of the EM algorithm
[3]. Formally, the Baum-Welch algorithm consists of two steps, which we will call E step
and M step in analogy to the EM algorithm. The algorithm iterates between computing the
expected sufficient statistics from the current values of the model parameters in the E step
and computing the model parameters that maximize the log-likelihood of these expected
values in the M step.
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Here, we denote the conditional probability that nucleotide a is emitted in state m1 or the
complementary nucleotide a is emitted in state mM by γ1,a, and we denote the conditional
probability that nucleotide b is emitted in state mk given the previous nucleotide a or the
reverse complementary nucleotide b is emitted in state mk given the following nucleotide a
by γk,a,b for k ∈ {2, . . . ,M}. In the E step we compute γ1,a and γk,a,b by using the current
estimate of model parameter θ(t) by

γ
(t)
1,a =

N∑
i=1

Li∑
j=2

P (ui,j = m1|xi, θ
(t), π, λ)δxi,j ,a

+
N∑

i=1

Li∑
j=2

P (ui,j = mM |xi, θ
(t), π, λ)δxi,j ,a

γ
(t)
k,a,b =

N∑
i=1

Li∑
j=2

P (ui,j = mk|xi, θ
(t), π, λ)δxi,j−1,aδxi,j ,b

+
N∑

i=1

Li∑
j=2

P (ui,j−1 = mk|xi, θ
(t), π, λ)δxi,j−1,bδxi,j ,a.

(6)

In the M step we use the conditional probabilities from the E step to compute the next
estimate of model parameter θ(t+1) by

θ
(t+1)
1,a =

γ
(t)
1,a∑

a∈{A,C,G,T}
γ

(t)
1,a

θ
(t+1)
k,a,b =

γ
(t)
k,a,b∑

b∈{A,C,G,T}
γ

(t)
k,a,b

.

(7)

For the computation of P (ui,j = k|xi, θ, λ) needed by each E step, we derive a Forward-
Backward algorithm for the extended Sunflower HMM. First, we compute the forward
variables αi

j,k = P (xi,1, . . . , xi,j , ui,j = k|θ, λ) for k ∈ {m1, . . . ,mM ,m1, . . . ,mM , f1, f2} by
the recursion

αi
1,k = P (xi,1|ui,1 = k, θ, λ)δk,f1

αi
j,k =

∑
l

αi
j−1,lP (ui,j = k|ui,j−1 = l, π)P (xi,j |ui,j = k, xi,j−1, θ, λ). (8)

Second, we compute the backward variables βi
j,k = P (xi,j+1, . . . , xi,Li |ui,j = k, θ, λ) for

k ∈ {m1, . . . ,mM ,m1, . . . ,mM , f1, f2} by the recursion

βi
Li,k = 1

βi
j,k =

∑
l

βi
j+1,lP (ui,j+1 = l|ui,j = k, π)P (xi,j+1|ui,j+1 = l, xi,j , θ, λ). (9)

Finally, we combine the forward and backward variables and obtain

P (ui,j = k|xi, θ, λ) =
αi

j,kβ
i
j,k∑

k α
i
j,kβ

i
j,k

. (10)

The Baum-Welch algorithm iterates the E step and the M step, yielding monotonically
increasing log-likelihoods, and we terminate the algorithm when the difference of two subse-
quent log-likelihoods falls below ε = 10−6. Typically, the algorithm reaches different local
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Figure 3 ROC curves (a) and PR curves (b) for the classification on the CREB1 data set. We
find that in both cases the curves of classifier B, which uses the extended Sunflower HMM, lie
above the curves of classifier A, which uses the traditional Sunflower HMM, except for recalls near
zero, where the precisions of the traditional Sunflower HMM are greater than the precisions of the
extended Sunflower HMM.

maxima or saddle points for different initializations, so we run it multiple times with different
initializations and finally select the model parameter θ with the highest log-likelihood.

3 Results

We have implemented the traditional and extended Sunflower HMMs including all algorithms
in Java using Jstacs [5]. To assess the efficacy of the traditional and extended Sunflower HMM
for the recognition of homotypic CRMs, we perform a classification of ChIP-seq positive
versus negative regions based on data of human embryonic cells from the ENCODE project.
We use the data for the six transcription factors CREB1, SP1, GABP, TEAD4, USF1, and
YY1 from the HAIB TFBS track of the UCSC Genome Browser 1. We select genomic regions
covered by peaks with a score above 200 as positive sequences and the adjacent genomic
regions of the same length as negative sequences. We split the positive and negative data
sets for each transcription factors in two subsets, one for training and one for testing, at a
ratio of 2:1.

We build two classifiers as follows: classifier A combines a traditional Sunflower HMM as
foreground model for the positive sequences with a homogeneous Markov model of order 0
as background model for the negative sequences, while classifier B combines an extended
Sunflower HMM for the positive sequences with a homogeneous Markov model of order 1 for
the negative sequences.

For each transcription factor, we estimate the parameters of the homogeneous Markov
models of order 0 and 1 by maximum likelihood from the union of positive and negative
training data sets. We use these values as parameters of the background models of the
classifiers and also as parameter λ of the Sunflower HMMs.

We learn the model parameters θ on the positive data set by applying the traditional
and extended Baum-Welch algorithm of Section 2.2. As a consequence, the only features
discriminating between positive and negative sequences in each classifier are TFBSs in the

1 http://genome.ucsc.edu/cgi-bin/hgTables

http://genome.ucsc.edu/cgi-bin/hgTables
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Figure 4 Classification results for six transcription factors. We classify the test data sets for
CREB1, SP1, GABP, TEAD4, and USF1 using the two classifiers A and B trained on the training
data sets. We show results of classifier A based on the traditional Sunflower HMM in light brown
and those of classifier B based on the extended Sunflower HMM in red. Figure (a) shows the results
in the area under the receiver operating characteristic curve (AUC-ROC), and Figure (b) shows the
area under the precision-recall curve (AUC-PR).

foreground model. We may thus reason that a foreground model with a better classification
performance has recognized TFBSs more accurately, so the classification performance may
be regarded a measure of accuracy of recognition of homotypic CRMs from ChIP-seq data.

We compute the receiver operating characteristic (ROC) curves and the precision-recall
(PR) curves for all six pairs of data sets. The ROC curve shows the true positive rate, also
known as recall, as a function of false negative rate. The true positive rate is defined as
the ratio of true positives and all positives. Analogously, the false positive rate is the ratio
of false positives and all negatives. The PR curve shows the positive predictive value, also
known as precision, as a function of the true positive rate. The positive predictive value
is the ratio of true positives and the sum of true positives and false positives. Figure 3
shows the ROC and PR curves for the CREB1 data set. Both the ROC curves and the PR
curves indicate that taking into account dependences among adjacent nucleotides leads to an
improved recognition of CREB1 binding sites.

For calculating the overall classification performance we use the area under the ROC curve
(AUC-ROC) and the area under the PR curve (AUC-PR). Figure 4 shows the AUC-ROC and
AUC-PR values for both classifiers and each of the six transcription factors. The first pair
of columns in each figure corresponds to the area under the curves shown in Figure 3. For
CREB1, we observe that classifier B increases the AUC-ROC by 0.02 and the AUC-PR by
0.04 over classifier A. For the remaining transcription factors, we observe that the extended
Sunflower HMM achieves higher AUC-ROC values and higher AUC-PR values than the
traditional Sunflower HMM also for GABP, USF1, and YY1, whereas we do not observe an
improved recognition of homotypic CRMs by taking into account dependences for SP1 and
TEAD4.

4 Conclusions

In this work, we have extended the Sunflower HMM for homotypic CRMs by allowing
statistical dependences among adjacent nucleotides within TFBSs and flanking regions. We
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have derived a modified Baum-Welch algorithm including modified forward and backward
algorithms, and we have found by case studies on ChIP-seq data that this extension improves
the recognition of TFBSs for four out of six studied transcription factors.

However, this work is limited in several aspects. First, we have considered only one
motif type and only first-order dependences. Second, the learning algorithm is based on the
maximum likelihood principle, which neglects prior knowledge. Despite these limitations, the
extended homotypic Sunflower HMM presented here might possibly be a useful starting point
for the reliable recognition of CRMs. Further promising extensions could involve Bayesian or
discriminative learning approaches or a generalization of the model to heterotypic CRMs, to
higher-order nucleotide dependences.
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Abstract
Several algorithms have been suggested for minisatellite alignment. Their time complexity is
high—close toO(n3)—due to the necessary reconstruction of duplication histories. We investigate
the uniqueness of optimal alignments computed under the common single-copy duplication model.
To this extent, it is necessary to avoid ambiguity in the algorithm employed. We re-code the
ARLEM algorithm in the form of a grammar, and apply a disambiguation technique which uses
a mapping to a canonical representation of minisatellite alignments. Having arrived at a non-
ambiguous algorithm this way, we demonstrate that the underlying model—independent of the
algorithm—gives rise to an exorbitant number of different, co-optimal alignments when applied to
real-world data. We conclude that alignment-free methods should be considered for minisatellite
comparison.
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1 Introduction

1.1 Background
The minisatellite comparison problem

Minisatellites are repetitive DNA sequences that have been used in population genetics and
forensic studies [14,17,23]. They consist of short sequence motifs (6 – 100 bases), called units,
which can spread over several kilobases as tandem repeats. The main mechanism behind
their generation is unequal chromosomal crossover, which creates an extra copy of a unit in
one chromosome, and a loss of such a unit in the other. In the course of evolution, units
can pick up point mutations, which are then inherited by further copies. Thus, minisatellite
alleles in a population differ not only in length, but also show microheterogeneities that
make them useful—or even dangerous—genetic markers. For example, Jobling et al. have
shown significant correlations between minisatellites on the human Y chromosome and the
most common family names in England [16]. Recently, it has become of concern that these
markers allow to re-personalize patient genome data [15].

Algorithms for minisatellite alignment

The minisatellite alignment problem has attracted substantial interest in bioinformatics.
Analysis of highly repetitive sequences is difficult in general, as there is little information
hidden in large data sets. Minisatellite sequences are compacted into “maps”, i.e. sequences
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of characters, where each character denotes a unit that differs from others by point muta-
tions. Compacting microsatellites, characterized by a shorter unit length, leads to the same
representation. These maps are then aligned as one does with protein or DNA sequences,
but placement and scoring of gaps receives special attention. A gap in a minisatellite align-
ment has the interpretation that at this point, the two alleles have undergone a divergent
duplication history, and these duplication histories are reconstructed and scored in order to
make optimal gap placements.

We only recall previous work that leads directly to our present approach. Bérard and
Rivals proposed an O(n4) time and O(n3) space algorithm [6]. This was improved to O(|Σ|n3)
and O(|Σ|n2) by Behzadi and Steyaert [5]. Here, Σ is the alphabet size, i.e. the number of
different unit types. They also introduced run-length encoding, where a minisatellite map
such as aaabbbbbccacccc is encoded as a3b5c2a1c4. Abouelhoda et al. gave an algorithm
with a slightly more general model that runs in O(n3) time and O(n2) space, and also has a
variant for run-length encoded maps [2]. This algorithm is the basis of the ARLEM web
server1 [1], and the starting point for the present work. A further improvement has been
made by Pinhas et al. by using fast matrix multiplication techniques, achieving a running
time of O( |Σ|n

3 log3 log n
log2 n

) [18]. While the underlying model of minisatellite evolution has
become slightly more general along the way, the main concern of this line of work (including
our own contributions) has been the improvement of efficiency. We do not pursue any further
this intention here, but instead we raise the question: Should we align minisatellites at all?

1.2 Motivation of the present study
Significance of alignments

Alignment is a powerful method in biosequence analysis for two reasons: First of all, it
gives us a quantitative measure of sequence similarity, which is taken as an indicator of
evolutionary relatedness. But second, aside from such a distance or similarity score, the
alignment from which this score is derived also gives us some qualitative information. It
denotes homologous residues, elucidates sequence motifs more conserved than their context,
and points out compensating base changes in RNA, which preserve secondary structure
in the presence of sequence variation. There are many scenarios, however, where detailed
information of the second type is not needed or considered too expensive to compute. In this
case, alignment-free methods of sequence comparison are employed, such as k-mer profiles or
word metrics [20, 24]. Hybrid methods are also common, the most prominent example being
BLAST, where high-scoring segment pairs are found from k-mer matches, but in the output,
sequences are aligned [3].

Statistical significance of alignments is commonly rated by P-values, but there is also the
independent concern of uniqueness. Detailed information conveyed by an alignment is only
dependable when the alignment is unique in the sense that there are no other alignments
of similar score, or if so, they differ from the optimal one only in minor aspects. While
it is common practice to speak of “the” optimal alignment or “the” minimum free energy
structure found by dynamic programming, bioinformaticians are generally aware that the
optimal answer to a combinatorial problem does not need to be unique, and co-optimal
answers need not be similar. Although few programs do, it appears fair to ask a dynamic
programming algorithm to report, together with a solution, the total number of co-optimal
solutions (or even report all co-optimal answers on demand). In our case, we ask: How

1 http://www.nubios.nileu.edu.eg/tools/, but currently unavailable due to political circumstances.
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many co-optimal alignments are there for a given pair of minisatellites? How many different,
but co-optimal duplication histories can be reconstructed? Only when the answer to either
question is a very small number (such as 1), it makes sense to interpret the alignments in
detail. However, there lies an intrinsic difficulty in this request, which is less widely known.

Ambiguity in combinatorial optimization

Dynamic programming algorithms used in biosequence analysis often explore a search space
of exponential size in polynomial time. The candidates in the search space of the algorithm
represent the features of our interest – homology assignments to residues, RNA structures,
duplication histories. But they need not do so in a unique fashion. An algorithm may construct
several candidates which mean the same feature of interest – this phenomenon is called
semantic ambiguity. For example, with context-free grammars modeling RNA secondary
structure, two different parses of an RNA sequence may indicate the same structure. This
becomes apparent by mapping parse trees to dot-bracket strings, which constitute a canonical
representation of structures. In a reasonable model, all candidates with the same meaning
achieve the same score. If one of them is optimal, they all are. This is the crux of the
question about co-optimal answers: The algorithm has no way to decide whether a large
number of co-optimal candidates designates many different features of interest, or is merely
a technical artifact of the algorithm. The meaning we associate with the candidates is not
represented within the algorithm itself.

This problem has been defined formally and evaluated empirically, its undecidability
was shown, and methods for testing or avoiding semantic ambiguity were suggested in
[8, 9, 11,12,19]. We build on this work below when we eliminate semantic ambiguity from
minisatellite alignment algorithms in order to correctly assess the uniqueness of their results.

1.3 Goals and preview of results

These are the goals and results of the present study:
We raise the question: “How unique are minisatellite alignments constructed by the
algorithms mentioned above?” and take the ARLEM algorithm as their representative.
This question is relevant to decide whether the effort of constructing such alignments is
well spent.
We observe that the answer to this question is obscured by a high degree of semantic
ambiguity in the ARLEM algorithm. We modify the algorithm such that it evaluates
the same search space in a unambiguous fashion. The technique we use here is interesting
in its own right.
With the unambiguous algorithm we observe that the number of co-optimal alignments and
duplication histories is extraordinarily large, leading to the conclusion that alignment-free
methods should be considered as an alternative mode of minisatellite comparison.

Note that focusing on one particular algorithm does not limit the generality of our conclusion:
While semantic ambiguity is a property of a particular algorithm, the question of result
uniqueness is not: After weeding out semantic ambiguity, all algorithms implementing
the same model must agree not only on the optimal score, but also on the number of
co-optimal solutions. When ARLEM is plagued with co-optimals, so are all other algorithms
implementing the same model. This stringency of the method employed here may render it
useful also with other combinatorial optimization problems in biosequence analysis.
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2 Abstracting the ARLEM algorithm

The ARLEM algorithm is given in [2] in the traditional form of dynamic programming
recurrences, which makes it rather difficult to reason about ambiguity. We develop here a more
abstract presentation of this algorithm in the form of a tree grammar. This representation
is helpful to explain the underlying alignment and duplication history model, and serves
as the starting point of disambiguation in the next section. Better than the recurrences,
the grammar reflects the algorithm’s division in two logically independent parts: (i) the
alignment itself, with the well-known edit operations match, insertion and deletion, and (ii)
the computation of duplication histories, which refer to units where the alleles have undergone
a divergent development. Incorporated into the alignment, the duplication histories describe
a more sophisticated gap model, which can be computed for either sequence individually.

The alignment model

Grammar ARLEM
Alignment

A∗ → match(a,A, b) | lDupS(←−Lo, A) | lDupT(A,←−Lo) | rDup(Ro, A,Ro) | empty

Duplication history
Lo → cfl(Lo, U) | ifl(Lo, U) | a
Ro → cfr(U,Ro) | ifr(U,Ro) | a
U → L | R | a
L → cfl(U,U) | ifl(U,U)
R → cfr(U,U) | ifr(U,U)

The first rule of grammar ARLEM shows the classical edit distance model, adapted to the
alignment of two minisatellite maps S and T. An asterisk marks the axiom of the grammar.
It provides five edit operations: match (of two units in S and T), lDupS (left duplication in
S), lDupT (left duplication in T), and rDup (right duplications in S and T).2 Finally, empty
represents the alignment of two empty minisatellites. The characters a and b are terminal
symbols and denote arbitrary units from the unit alphabet. Lo and Ro denote duplications
histories with their origin in the left/rightmost unit. They are further explained in the
subgrammar for duplication histories. The left arrow indicates that the origin of duplication
is one unit to the left and therefore also takes part in a previous match or rDup operation.

Duplication history model

A left (right) duplication is a sequence of units which originate from their leftmost (rightmost)
unit. These sequences can be considered as gaps in the alignment. There is no need for
duplication history rules with the origin in the middle of the sequence, since these cases can
be constructed by simply using a right duplication followed by a left one. The rDup operation
internally accounts for a match between the origin units of the two right duplications in S
and T, where either right duplication may actually be empty. This asymmetric treatment of
left and right duplications is a technical property of the ARLEM algorithm.

2 Duplications in S could be called deletions, duplications in T insertions, but we avoid the directional
bias of this terminology here.
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(a) Tree structure showing sequence of
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(b) Arched-arrow representation of the
alignment

S operations T

a a match←−−→ a a
a lDupS←−−− a
ab a cfl−−→ b a
adb a cfl−−→ d a
adbb b cfr←−− b a
adbcb b ifl−−→ c a
adbcba a rDup←−→ a aa
adbcba e cfr←−− a aea
adbcba a cfr←−− a aeaa
adbcba lDupS←−−− aeaa
adbcbab a cfl−−→ b aeaa
adbcbabb b cfl−−→ b aeaa
adbcbabb lDupT−−−→ aeaa
adbcbabb a cfl−−→ a aeaaa
adbcbabb a cfl−−→ a aeaaaa
adbcbabb empty aeaaaa

(c) Table showing the sequence of events together with
the growing sequences of S and T.

Figure 1 Example of a minisatellite alignment of two sequences S=“adbcbabb” and T=“aeaaaa”.
The red-circled units and dashed lines connect all units which occur twice, but in our implementation
are only “read” once.

Duplication histories follow the single-copy model of ARLEM. They can be constructed
for (sub)-sequences of S and T individually and use the following operations: cfl (copy from
left) and cfr (copy from right) describe duplications from left to right (or vice versa) followed
by an optional mutation of the new unit. The operations ifl (insertion from left) and ifr
(insertion from right) seem syntactically similar, but describe an insertion of a single unit
which is a foreign DNA fragment, most likely due to a transposition event. Since the unit is
inserted, it has no unit of origin in the duplication history. But for the technical purpose of
integrating this event in the duplication history, it takes a neighboring unit as its origin, but
this unit does not contribute to the insertion score. In the grammar, nonterminals Lo and Ro

mark histories that entail the left/right origin, whereas arbitrary histories are derived from
nonterminal symbols L and R. Again, a is a terminal symbol and denotes an arbitrary unit.

Representation of alignments and histories

An example of an alignment with the incorporation of duplication histories is given in Figure 1.
Figure 1(a) shows a tree-like representation of the alignment. Along the middle axis, we
see the edit operations, noting that only two pairs of units are matched. The first is the
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explicit match operator near the root of the tree, the second is implicit in the rDup operator.
All others units arise from duplications, which branch from the stem in the tree towards
the left for S, and towards the right for T, and are built from left and right duplication
operators. Providing concrete scoring functions for the edit operations, such a tree can be
directly evaluated to its alignment score. Figure 1(b) shows a graphical representation of
an alignment and embedded duplication histories. Figure 1(c) shows a possible history of
events that produces the two minisatellite sequences from a joint ancestor aa. (Note that
one cannot reconstruct the exact order in time.)

Implementation in Bellman’s GAP

A grammar like the above can be written in GAP-L, the language of the Bellman’s GAP
system [22], which generates recurrences automatically and functions as a programming
system for Algebraic Dynamic Programming (ADP) [10, 13]. This was used to create a
faithful emulation of the original ARLEM algorithm, and afterwards its dis-ambiguated
version. Important for our intentions, Bellman’s GAP allows to augment scoring schemes
with “counting algebras”, enabling us to evaluate the number of co-optimal solutions. This
feature will be used in Section 4 to compare ARLEM with our dis-ambiguated version.

Simplifications

The implementation handles a number of subtleties that have been abstracted away in our
presentation. Certain units take part in several edit operations. For instance, take the first
left duplication in S from position 1 to 5 in Figure 1. The first unit takes part in the match
operation as well as in a left duplication, as it is the leftmost unit and origin of a duplication
history in S. So, the tree appears to hold this element twice. The dashed line connecting
both instances indicates that in our implementation, the grammar “reads” this element just
once. In the grammar, this is indicated by a red arrow above the nonterminal symbol.

The second problem arises while using the cfl and cfr operations of the duplication
history part of the grammar. Consider the uppermost cfl operation in the tree of the first
left duplication in S and the scenario that the score for the cfl operation is the sum of
the scores of its two children plus the score of duplicating the unit a and mutating it to b.
Here, it may be possible that there are two (sub-)trees with better scores than the ones of
the uppermost cfl in Figure 1(a), but since this alignment is optimal, the mutation from
the duplicated a to c has to score worse than the chosen one from a to b. In general, the
optimization chooses the two best scoring (sub-)trees of cfl and cfr from the underlying
sequence interval without considering the cost for the eventual duplication and mutation of
the origin, which could lead to suboptimal results at this stage of the alignment and would
therefore violate Bellman’s Principle of Optimality. This problem is solved by a slightly
different decomposition of duplication history intervals.

A third simplification concerns efficiency. The treatment of rDup in the grammar would
lead to an O(n4) time algorithm. Using two separated operations like rDupS and rDupT3,
one can reduce the runtime to O(n3). This is a common speed-up technique in dynamic
programming and is applied in ARLEM as well as in our Bellman’s GAP implementations.

Finally, ARLEM allows inserted units to duplicate. We consider this an oversight in
ARLEM, as foreign DNA inserts do not support unequal crossover. As this artificially blows
up the search space, it will be disallowed in our next version of the algorithm.

3 Both rDupT and rDupS include their origin (at the rightmost position), in contrast to lDupS and lDupT.
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Table 1 Examples for the ambiguity of the ARLEM algorithm shown as tree structures as well
as canonical representations of the alignments and the corresponding ambiguity type.

Type Alignment tree structure Canonical representation

1
match(a, lDupS(cfl(a, b), lDupT(empty, cfl(a, c))), a)

a > (b) >

a > (c) >
match(a, lDupT(lDupS(cfl(a, b), empty), cfl(a, c)), a)
rDup(a, lDupS(cfl(a, b), lDupT(empty, cfl(a, c))), a)

2 rDup(e, empty, cfr(cfl(cfr(a, b), c), d)) e

< ((a)b(c)) < drDup(e, empty, cfr(cfr(a, cfl(b, c)), d))

3 match(a, lDupS(cfl(ifl(a, b), c), empty), a) a > [b](c) >

a

match(a, lDupS(cfl(a, ifr(b, c)), empty), a) a > ([b]c) >

a

3 Dis-ambiguation of the ARLEM algorithm

Semantic ambiguity in ARLEM

Running our emulation of the ARLEM algorithm, in addition to the original scoring scheme
we employ a counting algebra to report the number of co-optimal alignments for each pair
of minisatellites. Even for very short sequences, we obtain a large number of co-optimals.
For example, aligning adbcbabb and aeaaaa from Figure 1 gives 1052 co-optimal answers.4
Closer inspection shows that the same optimal alignment is returned several times. The
algorithm is semantically ambiguous. For sources of ambiguity, consider Table 1.
1. Ambiguity type 1 shows three candidates that refer to the same “real” situation. Between

the first two, the order of lDupS and lDupT is reversed, while in reality, these are individual
duplication histories in S and T and do not happen in any order. The third entry uses
the rDup operation with two empty histories, which is equivalent to a plain match.

2. Ambiguity type 2 shows a match between two d units, which is preceded by a right
duplication in T showing a b unit originating from d and creating an a to the left and a c
to the right. In the first example, the a is copied from b after the copy of c, while the
second example reverses this order. This is within the duplication history of the same
minisatellite. There is no evidence of which event happened first. Hence, we want to
avoid reporting this situation twice.

3. Ambiguity type 3 shows an insertion of a unit b, which is modeled both as insertion from
the left (unit a) and from the right (unit c). Remember that the insertion score depends
neither on a nor on c. It is merely a technical requirement of the algorithm that the
inserted unit has an origin, and hence one of the two cases should be ruled out.

These are just examples – note that there may be further sources of ambiguity!

Canonical alignment representation

Controlling ambiguity requires formalizing the “real world meaning” of the candidate align-
ments produced by the algorithm by means of a canonical representation [11], together with
a semantic mapping µ that maps candidates to their meanings. For this mapping, we must
show that c 6= c′ implies µ(c) 6= µ(c′) – then the algorithm is semantically unambiguous.

4 For larger examples, numbers get so large that the counting algebra provided by Bellman’s GAP
overflows, and we had to use unlimited integers.
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This is our canonical representation: Minisatellite alignments are represented as strings
on two lines. Left duplications are enclosed in two “<”s, right duplications are enclosed
in two “<”s. For empty right duplications, the “<”s may be omitted. Matched units of
S and T are written below each other on the two lines; spaces have no meaning. For the
duplication histories, we have to distinguish between the duplication (cfl and cfr) and
insertion (ifl and ifr) operations. In case of duplications, the newly copied units are
enclosed in parentheses (“()”) and written to the right (left) of their origin. The same
holds for insertions except that square brackets (“[]”) are used. Examples of the canonical
representation are given in the rightmost column of Table 1. Note that all the ambiguous
cases there map to the same canonical representation, as intended. Formally, the canonical
mapping µ is defined as follows:

Alignment

µ(lDupS(S,A)) =
{
” > ” ~+ σ(S) ++ ” > ”

}
++ µ(A)

µ(lDupT(T,A)) =
{
” > ” ~+ σ(T ) ++ ” > ”

}
++ µ(A)

µ(rDup(S, T,A)) =
{
” < ” ++ σ(S) +~ ” < ”
” < ” ++ σ(T ) +~ ” < ”

}
++ µ(A)

Duplication history
σ(cfl(A,B)) = σ(A) ++ ”(” ++ σ(B) ++ ”)”
σ(ifl(A,B)) = σ(A) ++ ”[” ++ σ(B) ++ ”]”
σ(cfr(A,B)) = ”(” ++ σ(A) ++ ”)” ++ σ(B)
σ(ifr(A,B)) = ”[” ++ σ(A) ++ ”]” ++ σ(B)
σ(a) = ”a”

String concatenation operators{
A
C

}
++

{
B
D

}
=

{
AB
CD

}
A ++ B = AB

A ~+ xB = AB

A ” < ” x +~ ” < ” B = AxB

A ” < ” C̃x +~ ” < ” B = A ” < ” C̃ ” < ” xB

where capital letters A,B,C and D denote strings of length ≥ 0, x denotes a single unit and
C̃ designates a string with length > 0 in which no “<” character is allowed.

Dis-ambiguating ARLEM

Grammar ARLEM-nonamb
Alignment

A∗ → rDup(Ro, B,Ro) | empty
B → lDupS(←−Lo, C) | C
C → lDupT(A,←−Lo) | A

Duplication history
Lo → cfl(L,R) | Li

Li → ifl(Li, a) | ifl(a, a)
L → Lo | a
Ro → ifr(a,Ro) | Rh

Rh → cfr(R,Rh) | a
R → cfr(R,R) | L

The grammar ARLEM-nonamb avoids the aforementioned types of ambiguity by the
following means:
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1. Type 1 ambiguity is avoided because the new grammar forces lDupS from nonterminal B
before lDupT from nonterminal C, and the reverse order is not allowed. Also, we simply
abandon the match operation, since it is covered by the more general rDup.

2. To avoid type 2, it is sufficient to restrict the left side of the cfl operation to the
nonterminal L so that all cfr operations of one unit occur “before” the cfl operations.

3. We insist that the (merely technical) origin of an insertion is always on the left (unless it
happens at the beginning of the minisatellite). If the direct left neighbor itself is inserted,
the nearest left neighbor that is not inserted becomes origin of the ifl operation. This
policy is reflected by the nonterminal Li, whereas Ro holds the ifr operation in case the
leftmost units of a right duplication have to be inserted. Finally, the nonterminal Rh is
necessary to ensure that all right duplications starting with Ro have a right origin and
Lo guarantees that a left duplication is at least of length two.

A proof is required to show that the grammar ARLEM-nonamb is semantically unambiguous
for the chosen canonical representation. We construct a context-free grammar that generates
canonical representations in 1:1 correspondence with candidates constructed by ARLEM-
nonamb. Then the unambiguity of this grammar was proven with an automated ambiguity
checker [8]. The full construction is included in Appendix B.

4 Assessing the co-optimal alignment search space

Using ARLEM-nonamb, we investigate the number of co-optimal alignments, using three
data sets: A set of random data (270 alignments), and the two “real-world” sets MSY1
and MS205 (59340 resp. 91806 alignments). See Appendix A for details. We use the same
scoring system as in [2]. For comparison, we also describe the higher numbers reported by
ARLEM due to its ambiguity. We find that while disambiguation has reduced the numbers
reported, the co-optimal alignment space is still extremely large. See Figure 2. For sequences
of average length 100, we find about 10100 co-optimal alignments, and 10500 for sequence
length 400. The maps in the “real-world” data set are rather short, but still, 1020 co-optimal
alignments discourage the idea that choosing a particular, optimal alignment for biological
interpretation would be a meaningful effort.

We further investigated if the above situation might be alleviated by a version of the
algorithm making use of run-length encoding. This has the effect that all duplication histories
without modifications (a run) are considered equivalent and reported as one. While the
counts are reduced further, an exponential pattern still prevails. See Appendix C for details.

5 Conclusion

Dynamic programming algorithms as used in minisatellite alignment perform exact (rather
than heuristic) combinatorial optimization. When such an algorithm is unambiguous and
still reports a large number of co-optimal answers, the underlying problem is ill-posed. From
our experiments with ARLEM-nonamb, we conclude that the commonly used model of
duplication histories lacks the distinctive power to designate a most plausible individual
duplication history and pairwise minisatellite alignment.

A more fine-grained scoring scheme might produce sharper peaks for the same model.
However, our own experiments with training match(a,A, b) from data sets has not led to an
improvement. From this point, one could also move forward to advocate more sophisticated
models of repeat evolution, such as the VNTR model in [21], where multiple copies are
allowed and copies need not match unit boundaries. Ambiguity in such models has not yet



B. Löwes and R. Giegerich 119

(a) Number of co-optimal alignments using random
sequences

(b) Number of co-optimal alignments in MSY1
(length 48− 114) and MS205 (length 23− 75)

Figure 2 Numbers of co-optimal alignments reported by ARLEM-nonamb and the emulated
ARLEM algorithm. The y-axes show the logarithms (log10) of the actual values.

been addressed; a more elaborate model may lead to a smaller number of co-optimal results.
Computational effort, however, will rise above O(n3).

We are not saying that minisatellite alignment methods have lost their merits. There
may be data sets where alignments are unique. Observations like the directional bias of
minisatellite growth, seen in [2], can only be made with an alignment method. Still, with
large scale data and when only a similarity measure is required, we propose that minisatellite
alignment should be abandoned in favor of alignment-free methods [20, 24]. These methods
are based on k-mer composition and are often used for read clustering in meta-genomics.
However, there is no off-the-shelf solution, as minisatellites are repetitive sequences and their
k-mer profiles are dominated by a small number of k-mers that carry little information.
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A Data sets used in evaluation

In the evaluation of the different algorithms, we used three data sets, a random one and two
from human. We used random sequences of lengths 100, 200, 300, 400, 500 and 750 for the
pairwise comparison of 10 sequences per length, resulting in 270 different alignments. In
order to create some variance, the sequences were allowed to be 20% longer or shorter than
the default length and the maximal repeat length of a unit was set to 25% of the complete
length. The alphabet size of the 10 sequences per length was allowed to be in the range of
5% to 10% of the sequence length.

The MSY1 data set [7, 16] is based on a locus which lies on the human Y chromosome
and shows sequence lengths varying between 48 and 114 units with a single unit having a
length of 25 nt. Initially, five different unit types were identified, which differ only by few
base substitutions at fixed sites. By using an extended approach, three additional unit types,
which are mutated versions of the previous ones, could be identified, resulting in an alphabet
size of 8. Overall, the data set consists of 345 distinct sequences which results in 59340
different pairwise alignments.

The locus of the MS205 data set [4] maps to the subtelomeric part of the short arm of
the 16th human chromosome. The complete length of the tandem repeat region is less than
5 kb and consists of 23 to 75 repeats with a unit length ranging from 45 to 54 bp. Overall,
the data set consists of 429 different sequences with an alphabet size of only two, but with
several sites of variation between the two types. This results in 91806 different pairwise
alignments.

B Proof of unambiguity

Grammar ARLEM-nonamb-string
Alignment

A∗ → ” < ” Ro ” < ” B ” < ” Ro ” < ” | ”$”
B → ” > ” Lo ” > ” C | C
C → A ” > ” Lo ” > ” | A

Duplication history
Lo → L ”(” R ”)” | Li

Li → Li ”[” U ”]” | U ”[” U ”]”
L → Lo | U
Ro → ”[” U ”]” Ro | Rh

Rh → ”(” R ”)” Rh | U
R → ”(” R ”)” R | L
U → ”a” | . . . | ”z”

In order to show that the (tree) grammar ARLEM-nonamb is semantically unambiguous
for the canonical representation µ, we transform the given grammar into a context-free
(string) grammar ARLEM-nonamb-string. Productions of both grammars are isomorphic,
such that for a minisatellite alignment t ∈ L(ARLEM-nonamb), µ(t) is generated by
ARLEM-nonamb-string by the same derivation. If ARLEM-nonamb was semantically
ambiguous, then ARLEM-nonamb-string would be syntactically ambiguous. We use an
ambiguity analyzer for context-free grammars [8] to prove that ARLEM-nonamb-string is
unambiguous, i.e. there is only one derivation for each valid canonical alignment string. This
establishes the desired result.
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A few technical problems must be solved before we can encode µ(L(ARLEM-nonamb))
as a context-free grammar. First, the two alignment strings for S and T are now written on a
single line, separated by a “$” character. The string for T shows the alignment operations
in reverse order, while between them, duplication histories are in their original order. For
instance,

a > (b) > d

a > (a) > c

is now produced as

< a <> a(b) >< d < $ < c <> a(a) >< a <,

and describes the alignment starting with a match of two a units, followed by a left duplication
in S and T. It ends with a match between units c and d.

The example also shows two further deviations from the original canonical representation:
right duplications include their origin within the <-brackets, rather than showing it outside
to their right. Since for the sake of unambiguity, matches are treated as right duplications of
length zero in ARLEM-nonamb, the matched units are now shown as singletons between <
and <.

With respect to left duplications, the string grammar is allowed to produce the same unit
twice, first as a match between S and T and then again as the origin inside the duplication
history. A match of unit a followed by a left duplication in S now reads

< a <> a(b) > $ < a <

where the a in S actually exists only once. Still, this notation is in 1:1 correspondence with
that generated by µ, although it is less readable for the human eye.

However, being context-free, the grammar also generates additional strings such as

< a <> c(b) > $ < a <

with a 6= c. This does not correspond to a canonical representation generated by µ, so
we have a language inclusion: L(ARLEM-nonamb-string) ⊃ µ(L(ARLEM-nonamb))
modulo the aforementioned notation changes.

Syntactic ambiguity of context-free grammars, in general, is an undecidable problem.
However, there are powerful semi-decision procedures. Finally, grammar ARLEM-nonamb-
string is submitted to the ACLA ambiguity checker at http://www.brics.dk/grammar,
which confirms that it is unambiguous.

C Co-optimal alignment search space using run-length encoding

Presentation of new algorithms using run-length encoding

In addition to the two algorithms ARLEM and ARLEM-nonamb, we used the idea
introduced by Behzadi et al. [5] to incorporate run-length encoding (RLE) into the design
of the algorithm. In Abouelhoda et al. [2], the initial goal was to use RLE to speed up the
computation while ensuring that the optimal overall score is found. Speed plays only a minor
role in our study; we want to use RLE to reduce the number of co-optimal alignments. We
have realized this idea in two different ways. First, the algorithm RLE v1 uses the same
approach as ARLEM-nonamb, but with RLE sequences as input, such as aaabbcddd now
represented as a3b2c1d3. Obviously, the basic algorithm ARLEM-nonamb can be easily

http://www.brics.dk/grammar
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Table 2 Scoring statistics of the algorithms RLE v1 and RLE v2 using the random, MSY1 and
MS205 data set. Here, v1 and v2 are used synonymously for the scores of the algorithms RLE v1
and RLE v2.

Random MSY1 MS205

# alignments 270 59340 91806
v1 = v2 4% 34% 25%
mean v1

v2 1.04 1.20 1.64
max. v1

v2 1.29 7.66 7.66

modified to parse a unit as a character and an integer instead of just a character. Additionally,
the scoring functions have to take the changes into account. For example, a run of length m
scores as m− 1 duplications, with no mutations involved. Overall, the basic approach of the
algorithm remains unchanged. Taking advantage of the RLE input significantly speeds up
the algorithm, but introduces the problem that we can no longer guarantee that the optimal
alignment score will be found. This occurs when optimality requires to split runs, e.g. when
aligning a41 to a20b1a20.

Therefore, we tried a second approach, resulting in the algorithm RLE v2, to use the
RLE idea and to guarantee that the optimal score can be found. Such an algorithm was
already given by Abouelhoda et al., but with the problem that it introduces yet another
source of semantic ambiguity. A further issue is that this algorithm is not exclusively based
on dynamic programming, but also makes us of combinatorics to compute the scores for the
left/right duplications of the whole sequences from the scores of left/right duplications of the
RLE sequences. In general, this approach uses the full-length sequences as input, but exploits
the advantages of the RLE approach in the matrix recurrences. Despite these problems, we
have also implemented RLE v1 and the slower but correct RLE v2 using the Bellman’s
GAP system and have eliminated the semantic ambiguity in similar fashion as before. In fact,
our RLE v2 algorithm considers all duplication histories without modification equivalent
and reports them as one.

Scoring statistics of RLE v1 versus RLE v2

Using these two new grammars, we have investigated in what percentage the RLE v1
algorithm was able to compute the optimal alignment score. The result can be seen in
Table 2. While the scores for the random sequences show no major differences between the
two algorithms, the “real-word” data sets show large differences in cases of their maximum
difference. In some cases the calculated score is not even near the optimum, which discourages
the use of the RLE v1 algorithm.

Co-optimal alignments under run-length encoding

To evaluate if RLE reduces the number of co-optimal alignments significantly, see Figure 3.
For the RLE v2 algorithm, we observe that for random sequences of 300 units still 1050

different alignments exist. The same holds for the MSY1 and MS205 data sets where the
median of RLE v2 is only a fraction smaller than the one of ARLEM-nonamb. While
the measured maximum value has decreased drastically, the median value is still high and
discourages the use of this algorithm.

In contrast, the RLE v1 algorithm is characterized by a relatively small number of
co-optimal alignments since the medians for the random sequences of lengths 200 and 300 are

GCB 2013



124 Avoiding Ambiguity and Assessing Uniqueness in Minisatellite Alignment

(a) Number of co-optimal alignments using random
sequences and the ARLEM-nonamb and RLE v2
algorithms

(b) Number of co-optimal alignments using random
sequences and the RLE v1 algorithm

(c) Number of co-optimal alignments using the
MSY1 and MS205 data sets and the ARLEM-
nonamb and RLE v2 algorithms

(d) Number of co-optimal alignments using the
MSY1 and MS205 data sets and the RLE v1 algo-
rithm

Figure 3 Numbers of co-optimal alignments reported by the ARLEM-nonamb, RLE v1 and
RLE v2 algorithm. The y-axes show the logarithms (log10) of the actual values.

about 10 and 200. This impression is confirmed when looking at the MSY1 data set, whereas
the MS205 record shows a higher number of co-optimal alignments. This may be due to the
small alphabet size of MS205, which inevitably leads to fewer different alignment scores.

In the end, the RLE v2 algorithm is not able to eliminate the exponential pattern of
co-optimal alignments, while RLE v1 performs well in this regard, but strongly diverges
from the optimal alignment score.
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Abstract
A read from 454 or Ion Torrent sequencers is natively represented as a flowgram, which is a
sequence of pairs of a nucleotide and its (fractional) intensity. Recent work has focused on
improving the accuracy of base calling (conversion of flowgrams to DNA sequences) in order to
facilitate read mapping and downstream analysis of sequence variants. However, base calling
always incurs a loss of information by discarding fractional intensity information. We argue
that base calling can be avoided entirely by directly aligning the flowgrams to DNA sequences.
We introduce an algorithm for flowgram-string alignment based on dynamic programming, but
covering more cases than standard local or global sequence alignment. We also propose a scoring
scheme that takes into account sequence variations (from substitutions, insertions, deletions)
and sequencing errors (flow intensities contradicting the homopolymer length) separately. This
allows to resolve fractional intensities, ambiguous homopolymer lengths and editing events at
alignment time by choosing the most likely read sequence given both the nucleotide intensities
and the reference sequence. We provide a proof-of-concept implementation and demonstrate the
advantages of flowgram-string alignment compared to base-called alignments.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, J.3 Life and
Medical Sciences
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1 Introduction

Pyrosequencing or Sequencing by Synthesis Pyrosequencing, also sequencing by synthesis,
is a technology for DNA sequencing that does not sequence single nucleotides, but one run of
nucleotides (homopolymer), at a time. There are two commercial sequencing technologies that
use this approach: 454 (now owned by Roche) [10, 5] and Ion Torrent’s “Ion semiconductor
sequencing” (now owned by Life Technologies) [6].

Sequencing by synthesis starts with a single-stranded DNA template with an initial
sequencing primer. Nucleotides of a single type are added and extend the primer if the
next free bases on the template strand are complementary. The activity of the enzyme
that catalyzes this reaction can be measured optically through its intermediate release of
pyrophosphate (454). Alternatively, a change in pH value caused by the incorporation of
nucleotides into the double strand can be measured directly with a semiconductor chip (Ion
Torrent). The intensity of the measured signal is, in principle, proportional to the number of
bases incorporated. All remaining free nucleotides are then removed and a different type
of nucleotide is added. By cyclically flowing all four nucleotides and measuring the signal
intensity, the sequence of the template DNA fragment can be reconstructed.

Using initial key sequences for each read, the signal intensities are normalized such that
an intensity of 1.0 represents the incorporation of a single base. Due to the linearity of the
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signal, 2.0 represents two bases and so on. This linearity of signal intensity can be maintained
up to eight bases on a 454 system [5], but errors can occur at lower intensities.

The sequencing results from both mentioned technologies are natively output not as regular
DNA sequences, but as so-called flowgrams, which associate each nucleotide homopolymer
with its measured fractional intensity. It is therefore possible, for example, that a nucleotide
homopolymer was measured at an “intensity of 2.4” (see Section 2).

Information Loss from Base Calling By rounding intensities to the nearest integer, a
regular DNA sequence can be inferred (for a thymine at 2.4, this could be TT or TTT), a
step known as base calling. Subsequently, standard read-mapping and sequence alignment
algorithms can be used to compare the obtained sequence reads with reference sequences.

Recent work has focused on improving base calling from straightforward rounding to the
nearest integer towards more elaborate statistical methods based on HMMs [3]. Nevertheless,
base calling always incurs a loss of information by replacing the fractional intensity with a
sequence of integer length. For example, the distinction between a C observed at an intensity
of 5.4 vs. an intensity of 4.6 is lost. Both are called as CCCCC, but in the first case, alignment
to six Cs is much more plausible than in the latter case.

Previous Work Avoiding Base Calling We put forward the hypothesis that it makes more
sense to invent alignment algorithms that directly work on flowgrams, instead of on a base-
called sequence. A few publications on flowgram-based alignment already exist, but none
clearly separates the two processes of sequence editing and flowgram under- and overcalling.

Vacic et al. [12] model the distribution of flowgram intensities and derive a probabilistic
model to compute the log-odds score that a given flowgram originates from a given
genomic sequence. Their software FLAT is intended for mapping sequenced small RNA
molecules to a reference and not for aligning diverged DNA sequences, so they do not
take into account editing events. We use a similar way of deriving log-odds scores for
differences between aligned reference and flow intensity.
Quince et al. [9] use an algorithm adapted from global alignment [8] to align two flowgrams,
first converting the reference sequence into flowspace. The authors’ idea is to introduce
gaps only in steps of four in order to take into account the cyclic nature of the flow order.
The remaining description in the paper is brief, but one can deduce that a single flow is
aligned to a homopolymer. It is unclear how editing is handled. The cost function used
is − logP (f | `), where P (f | `) is the probability of observing flow intensity f given a
homopolymer of length `.
Lysholm et al. [4] propose a different method of aligning flowgrams, which is an extension
of the Smith-Waterman local alignment algorithm [11] and can handle substitutions and
indels with affine gap costs. FAAST’s alignment is computed between the reference string
and the base-called flowgram. Its modified scoring system reduces gap costs at points of
uncertain homopolymer lengths.

Our Contributions In contrast to previous work, we do neither convert the reference into
flowspace nor the flowgram to a string. Instead, we present the first algorithm that directly
aligns a flowgram to a reference sequence, being aware of two processes in between: sequence
editing between the reference and the (unknown) sequenced sample, and sequencing errors
resulting in imprecise flow intensities.

After stating basic definitions (Section 2), we introduce a dynamic programming algorithm
for optimal flowgram-string alignment (Section 3). The key component is a detailed scoring
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scheme that models both sequence editing events and flow intensity measurement errors; it
is described in detail in Section 4, where we also explain how the scoring parameters can
be set to reasonable values. In Section 5, we demonstrate how flowgram-string alignment
improves upon aligning a base-called sequence. A discussion and outlook on future work
concludes the paper. A proof-of-concept implementation is available as a Python module
from http://www.rahmannlab.de/software.

2 Basic Definitions and Ideas

Let Σ be the DNA alphabet. Let b` be the character b ∈ Σ repeated ` times. Such a string
is called a homopolymer of length `.

The output of a 454 or Ion Torrent sequencer for a single read is a sequence of pairs of a
nucleotide character and an intensity, called a flowgram [5], which we now define formally.

I Definition 1 (Flow). A flow is a pair (b, f), where b ∈ Σ is the flow character (or flow
nucleotide) and f ∈ R+

0 is the flow intensity.

In analogy to exponentiation, we also write a single flow as bfi

i , that is, as the flow character
followed by the flow intensity as a superscript. For example, instead of (A, 3.4), we write A3.4.

I Definition 2 (Flowgram). A flowgram is a finite sequence F = (F1, F2, . . . , Fm) of flows
Fi = (bi, fi). The flowgram length is m. For k = 1, . . . ,m− 1, we require that bi 6= bi+1.

The four nucleotides are typically added in repeating cycles. While our algorithm does not
depend on it, we assume in the following that the order is (T, A, C, G, . . . ), the typical order
used in 454 instruments (that for Ion Torrent is different), and that the first flow character
is always T. We may also say that a read is in flowspace to indicate that it is a flowgram.

Given flowgram F = (F1, . . . , Fm), the sequence Fj...k := (Fj , . . . , Fk) is a subflowgram.
For j = 1, it is a flowgram prefix, and for k = m, it is a flowgram suffix.

I Example 3. A possible measured flowgram for the sequence TTCGG is T2.3A0.1C0.9G1.9.

The data output by both 454 and Ion Torrent sequencers contains flowgrams and uses
the Standard Flowgram Format (.sff). The cycle order is stored once globally, and each
flow intensity is stored as a 16-bit unsigned integer value and scaled such that a value of 100
represents an intensity of 1, thus allowing values from 0.00 up to (216 − 1)/100 = 655.35.

I Definition 4 (Canonical flowgram). Given a string s, the canonical flowgram for s is the
flowgram that arises when we substitute all runs of character b of length n with the flow bn

and insert appropriate flows of intensity zero in between or in the beginning in order to get
the correct order of nucleotides according to cycle order.

I Example 5. The canonical flowgram for ACTT (using cycle order TACG) is T0A1C1G0T2.

I Definition 6 (Canonical DNA sequence). Given a flowgram F , let F̄ be the flowgram with
each intensity rounded to the nearest integer. The canonical DNA sequence for F is the
DNA sequence which has the canonical flowgram F̄ , if it exists, and is undefined otherwise.

Note that a canonical DNA sequence for F = T1.1A0.1C0.4G0.2T2.3 does not exist, as rounding
leads to F̄ = T1A0C0G0T2, but TTT has a canonical flowgram starting with T3. (A base
caller that is cleverer than rounding [3] calls TCTT in this example instead of a non-existing
canonical DNA sequence.)
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reference r editing read/sample s sequencing flowgram F
substring t −→ homopolymer b` −→ flow bf

(known) (unknown) (observed)

Figure 1 Differences between an observed flowgram F and a reference sequence r arise from two
different processes that cannot be distinguished by the observer: Sequence editing, responsible for
differences between the sequenced sample and the reference in databases, and sequencing errors
(intensity overcalls and undercalls) incurred during the sequencing process.

A2.1

C1.1

G2.2

A0.1

C2.7

G0.2

T A A G G A T G T C C

substitution G→T

homopolymer

error
insertion

deletion

T1.0

T3.1

empty �ows

match

Figure 2 A visualization of the alignment of Example 8. The black path represents the alignment.
The path may skip an arbitrary number of columns, but it cannot skip rows.

The problem just illustrated is sufficient motivation to find methods that skip base calling
and directly align a flowgram to a reference sequence. Our main idea is to conceptually
model a two-stage process (sequence editing, errors during sequencing) within one model
and scoring function. It is best visualized with Figure 1.

We align a flowgram directly to a reference, without converting it to a string. Fractional
intensities and ambiguous run lengths are resolved at alignment time by choosing the most
likely read sequence given flowgram and reference sequence. In contrast to Vacic et al.’s
work [12], we also model differences due to editing events. Every observed flow bf must be
explained by a substring t of the reference. The substring and the flow need not necessarily
agree: If there is a non-b character in t, then there is a substitution or an insertion, and if
the absolute difference between f and |t| is sufficiently large, then there is an insertion or
deletion event or a homopolymer error. Thus, a flow bf can be explained as a sequenced
homopolymer b` (where ` is integer), which in turn is an edited version of t (cf. Figure 1).

3 A Flowgram-String Alignment Algorithm

3.1 Alignments

I Definition 7 (Flowgram-string alignment). A flowgram-string alignment F between a
flowgram F of length m and a string s of length n is a finite sequence of pairs F = (F ′i , ti),
where each F ′i is a flow or the space character (−) such that the concatenation of all non-space
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s1 s2 sj-1 sj

bi

fi

insertion or
empty �ow

…

matches to suffixes of s1,…,j

deletion (i,j)

Figure 3 Visualization of different types of edges of the alignment graph and of the recurrence
for cell (i, j) in the dynamic programming matrix.

F ′i is the flowgram F , and where the ti are (possible empty) substrings of s such that their
concatenation is equal to s.

I Example 8. Given are flowgram F = T1.0A2.1C1.1G2.2T3.1A0.1C2.7G0.2 and the string s =
TAAGGATGTCC. Using a notation in which F ′i is written above ti, separating elements (F ′i , ti)
with a vertical line, a possible alignment is the following (see also Figure 2):

T1.0 A2.1 C1.1 G2.2 − T3.1 A0.1 C2.7 G0.2

T AA ε GG A TGT ε CC ε

We see that flowgram-string alignment can describe all editing events: T3.1 aligned to TGT
involves a mismatch (G instead of T); C1.1 aligned to ε means that there is an insertion;
and the space aligned to an A is a deletion. We will also see below that, with the proper
scoring function, flowgram-string alignment can distinguish between homopolymer errors
and insertions. The scoring function will inform us whether the rightmost flow G0.2 aligned
to an empty string ε of the reference needs to be interpreted as a homopolymer error of 0.2
or as an insertion. Our alignment algorithm picks the option with the better score.

A flowgram-string alignment describes how (1) editing events and (2) sequencing errors
due to over- or undercalling add up to result in an observed flowgram. In contrast to previous
flowgram alignment ideas, there is no need to convert the reference to a flowgram or to
convert the flowgram into a string. Instead, a flowgram-string alignment describes a direct
relationship between flowgram and reference.

3.2 The Flowgram-String Alignment Graph
A flowgram-string alignment can be interpreted as a path through a graph of (m+1)× (n+1)
vertices (i, j) ∈ { 0, . . . ,m }×{ 0, . . . , n } that has different types of edges with different scores
(see Figures 2 and 3). The score of an alignment F is the sum of the scores of the individual
edges used by the alignment, and so finding the optimal alignment is equivalent to finding a
highest-scoring path. The following two edge type exist:

horizontal edges that connect (i, j) to (i, j − 1). These represent deletions, i.e., the
flowgram indicates that a nucleotide from the reference is missing in the sample. The
score del < 0 is assigned to these edges.
vertical and diagonal edges that connect (i, j) to (i− 1, j − k) for all k ∈ { 0, . . . , j }. For
k = 0, the edge is vertical and interpreted as either an empty flow aligned to an empty
substring, or as an insertion, where the flowgram indicates a homopolymer not present in
the reference. These edges use a complex scoring function v(b, f, t) for aligning flow bf to
substring t = sk+1...j . This scoring function is central to our method and discussed in
detail in Section 4.
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3.3 Recurrence
Let (b, f) be a flow and t ∈ Σ∗ a string. We assume that scoring parameter del and scoring
function v(b, f, t) are available (see Section 4).

Let S(i, j) be the optimal score between the length-i prefix of flowgram F of total lengthm
and the length-j prefix of string s of total length n = |s|. The recurrence for S(i, j) follows
from the structure of the alignment graph, in which the optimal flowgram-string alignment
is a highest-scoring path, analogously to standard global alignment. Other variants (local,
free end gaps, etc.) are possible; for ease of exposition, we focus on the global case. We have

S(0, j) = j · del,

S(i, 0) =
i∑

k=1
v(bk, fk, ε),

S(i, j) = max
{

S(i, j − 1) + del,
max

k=0,...,j

(
S(i− 1, k) + v(bi, fi, sk+1...j)

) } . (1)

The two cases for S(i, j) correspond to the two types of edges. The inner maximization
corresponds to the vertical and diagonal edges, in which the score of aligning the current
flowgram to all suffixes of s1...j (including the empty suffix for case k = j) is found. It is the
main difference to regular global alignment. With dynamic programming, S(m,n) can be
computed in time O(mn2), assuming v can be evaluated in constant time.

4 Scoring

The score v(b, f, t) for pairing flow (b, f) with string t must take into account two different
processes that cannot be distinguished by an observer (Figure 1). First, editing events occur
that change a substring t of the reference into b`, but ` is unknown. Second, an intensity f
is measured for b`. We score the first process by sedit(b, `, t), which is the score of an optimal
alignment between t and b`. The score σ(f, `) is assigned to measuring intensity f for a
homopolymer run of length `; we assume that it does not depend on the nucleotide b.

Since ` is unknown, to obtain v(b, f, t) we maximize over all possible lengths in order to
pick the most plausible explanation:

v(b, f, t) := max
`=0,1,2,...

(
sedit(b, `, t) + σ(f, `)

)
(2)

As we will see in the two following subsections, this potentially infinite maximization is in
fact finite, since a value of `� max{|t|, f} will yield a strongly negative score in both terms
and cannot achieve the maximum. In practice, positive scores are only obtained if f ≈ |t| for
a choice of ` close to both f and |t|.

To reconstruct the most plausible process to flow bf via homopolymer b` from sequence t,
we also store the value of ` maximizing v(b, f, t) in (2),

L(b, f, t) := argmax`=0,1,2,...

(
sedit(b, `, t) + σ(f, `)

)
. (3)

It is this (unknown but inferred) value of ` = L(b, f, t) that links the two processes of sequence
editing and sequencing shown in Figure 1.

As we will show, the score v(b, f, t), and hence L(b, f, t), depends on b and t only through
the number e = e(t, b) of characters in t that are equal to b and the number ē = ē(t, b) of
characters different from b (see Section 4.1). Therefore we can write v(b, f, t) = v′(f, e, ē) and
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L(b, f, t) = L′(f, e, ē). A table of L′ (or tables of both L′ and v′ for realistic flow intensities
f ∈ {0.00, 0.01, . . . , 9.99} and values of e and ē, both in {0, . . . , 9}, i.e., 100 000 values overall,
is pre-computed. As the recurrence (1) considers different substrings t that differ in length
by 1, the bs in t can be counted in amortized constant time for each t, so each value of
v(b, f, t) is available in constant time. The non-tabulated rare cases can be computed on
demand without measurably affecting the running time.

4.1 Scoring of Editing Events
In this section, we derive the edit score sedit(b, `, t) to align two sequences: b` and t. This is,
in fact, a classical sequence alignment problem, with the special property that one sequence
b` is a homopolymer. Instead of using a standard global alignment algorithm every time
when sedit is called, we can give a closed formula because of the special structure.

We assume that scores for insertion (ins), deletion (del), mismatch (mis) and match
(mat) are available and fulfill ins, del < mis < 0 < mat.

Let e and ē = |t| − e be the number of characters in t that are equal to b and not equal
to b, respectively. If |t| = `, the score is composed of only match (e times) and mismatch (ē
times) scores. If t is longer than `, then |t| − ` characters must be deleted from t to obtain
length `, and it is advantageous to delete only non-b characters, as long as there are any.
If t is shorter than `, we have e matches and ē mismatches, and `− |t| characters must be
inserted into t. Thus the score for aligning t to b` can be expressed as

sedit(b, `, t) =


e ·mat + ē ·mis if ` = |t|,
e ·mat + ē ·mis + (`− |t|) · ins if ` > |t|,
min{e, `} ·mat + max{`− e, 0} ·mis + (|t| − `) · del if ` < |t|.

The parameter values for mat, mis, ins, del must be compatible with the scores for
scoring flow intensities f against substring lengths `, which we discuss next. We come back
to choosing appropriate values in Section 4.3.

4.2 Scoring of Flow Intensities Against Substring Lengths
Here we describe how to set the scores σ(f, `) for scoring the event that a flow of intensity f
is aligned to a DNA sequence of length `. Our approach is similar to that of Vacic et al. [12],
but we go further by analyzing the resulting empirical scores parametrically.

Intuitively, the score should be positive if f ≈ ` and drop into the negative range when
|f − `| gets large. A consistent set of score values is obtained by using log-odds scores [2, 7],
having their roots in the theory of score matrices for amino acids, such as the famous
PAM matrices [2]. There the score Σij between amino acids i and j is computed as the
log-odds Σij = log(Pij/(πi · πj)), where Pij is the probability of observing i and j paired
in an alignment and πi, πj are the background frequencies of amino acids i, j, respectively.
Moreover, the joint probabilities Pij depend on the divergence time t of the aligned sequences,
and so different score matrices Σ(t)

ij are used for differently diverged sequences.
Here we follow a similar idea for deriving scores for evaluating differences between f and

`. We estimate frequencies from (assumedly correctly) aligned flowgrams to DNA sequences.
For ease of exposition, we do not discuss different divergence times, and we assume that the
flowgrams have been obtained from the DNA reference by sequencing, or at least from a very
closely related reference sequence.

Given a large number of such aligned flowgram-DNA alignments, we construct a count
matrix C = (Cf,`) for all reasonable genomic lengths ` ∈ {0, 1, 2, . . . } and flow intensities
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Figure 4 Left: Empirically determined score functions σ(f, l) for each genomic sequence length `
(see legend) from carefully crafted alignments of flowgrams against an Arabidopsis reference. Right:
As each function on the left panel can be described by a piecewise affine function with three
components, one of them constant, we estimated five parameters from five characteristic score values:
for each length `, the score values at f ∈ {`− 1.0, `− 0.75, `, `+ 0.75, `+ 1.0}. The plot shows these
five score values as a function of `.

f ∈ {0.00, 0.01, 0.02, . . . , 1.00, . . . }, such that Cf,` counts the number of times we observe a
flow of intensity f aligned to a genomic sequence of length `. We obtain a joint probability
matrix P = (Pf,`) by dividing C through the sum of its entries. Background frequencies
π = (π`) for genomic lengths are obtained as marginal probabilities π` =

∑
f Pf,`, and

similarly background frequencies τ = (τf ) for flow intensities. The score component for
aligning a flow of intensity f to homopolymer of length ` is defined in units of nats as

σ(f, `) := log Pf,`

τf · π`
.

To obtain such scores, we used three .sff files containing Arabiopsis reads (from an unspecified
strain), provided by the chair of Genome Research at Bielefeld University. To measure only
the effects of homopolymer errors, only reads aligning close-to-perfectly to the A. thaliana
reference sequence were considered further, and the empirical joint distribution of flow
intensities f and homopolymer lengths ` was tabulated where f ∈ [`− 1, `+ 1]. The resulting
scores are shown in Figure 4, one curve for each ` with sufficient data. Unsurprisingly,
the maximum score occurs at flow f = ` for each `. More remarkably, the score stays
almost constant at the same level in the interval f ∈ [` − 0.5, ` + 0.5]. At ` ± 0.5, there
appears to be a sudden drop in the scoring function, beyond which we can observe an
affine-linear course in the intervals [` − 1.0, ` − 0.5] and [` + 0.5, ` + 1.0]. Therefore, for
each `, the score function can be described by five parameters, namely the values of S`,f

for f ∈ {`− 1.0, `− 0.75, `, `+ 0.75, `+ 1.0}. Scores at other values of f are obtained by
linear resp. constant interpolation (or extrapolation outside the 1.0-neighborhood). The
parameters for lengths ` ≤ 7 are shown in Figure 4 (right). As empirical data becomes
sparser for larger `, it is advisable to extrapolate the parameters instead of relying on data.

In summary, we implement σ(f, `) for each ` as a piecewise affine function consisting of
three components, given by the empirically determined parameters shown in Figure 4 (right).
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(A) (B)
original reference r TAAGAAC TAAACACCCGG

mutated sample s TAAAAAC TAAAACCCCGG
flowgram F T0.9A4.4C1.1 T0.9A3.4C3.4G2.0

base-called TAA-AAC TAAA--CCCGG
reconstructed TAAAAAC TAAAACCCCGG
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Figure 5 Left: Example errors made by alignment after base calling in contrast to flowgram-string
alignment: (A) The G → A substitution is mistakenly reported as a 1 bp deletion because of the
low flow value. For flowgram-string alignment with the surrounding context, the case that AAGAA
generated A4.4 is plausible. (B) Similarly, but slightly more complex, the CA→ AC flip is mistakenly
reported as a 2 bp deletion after base calling. For our method, however, two mismatches plus
small intensity errors are more plausible than two deletions. Right: Histograms of the number of
differences due to sequencing and base-calling errors for naive base calling (blue) and our method
(red). Note how the red distribution is shifted towards zero.

4.3 Parameters for Editing Events
It remains to appropriately set the match, mismatch, insertion and deletion score parameters
mat, mis, ins and del, respectively. These depend on the assumed degree of divergence of
the sequenced sample and the reference and can be obtained by (approximate) log-odds.

Assuming 3% divergence (i.e., 97% matches, as opposed to about 30% in alignments of
random sequences), and rare insertions/deletion with a rate of 1/3000, it is reasonable to use

mat ≈ log(0.97/0.3) = 1.173 ≈ 1.2,
mis ≈ log(0.03/0.7) = −3.1498 ≈ −3.1,
ins = del ≈ log

(
(1/3000)/C

)
≈ −8.0 with some C ≈ 1.

These are the scores that we use for evaluation; other assumptions will result in different
scores. It is important to use the same logarithm (and scaling, if any) as for σ(f, `) in order
to keep both score components compatible.

5 Evaluation

Before we evaluate flowgram-string alignment against base-called alignment, let us illustrate
typical miscalls made by base calling. Obviously, the most common case is that a homopolymer
length is simply off by 1 because of rounding in the wrong direction. This can always be
corrected by post-processing the alignments. However, there are more complex errors, such
as spurious indels in the middle or between two homopolymers, as illustrated in Figure 5
(left).

We now demonstrate that flowgram-string alignment reduces the number of differences
between observed sequence and reference that are due to sequencing errors, but leaves
actual mutation events untouched (see Figure 1). We simulate DNA fragments of E. coli
K12 (NC_000913); call this the original data. We introduce mutations by adding 3%
substitutions and 0.05% indels (mutated data). Then the 454 sequencing process is simulated
with flowsim [1]. Reads in the resulting .sff file are base-called by rounding flow intensities
(basecalled) and aligned to the original sequence. Alternatively, we use our flowgram alignment
algorithm to align each flowgram to the original sequence. During the process, the most likely
base-space mutated sequence is reconstructed using function L(b, f, t) from (3) (reconstructed).

All differences between mutated and basecalled are necessarily due to sequencing errors
and wrong base calls. Similarly, all differences between mutated and reconstructed are due to
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sequencing errors and errors by our alignment method. Figure 5 compares histograms of the
number of differences, measured by unit-cost edit distance. The differences are considerably
reduced for flowgram-string alignment in comparison to base-calling: The distribution is
shifted towards the left side. Thus, flowgram alignment is able to distinguish editing events
and true mutations.

6 Discussion and Conclusion

We presented a dynamic programming alignment algorithm that optimally aligns flowgrams
output by Roche/454 or Ion Torrent sequencers to DNA reference sequences directly, without
explicit base calling. Our approach can also be interpreted as calling bases conditional on
the reference we align to, i.e., doing both steps at the same time instead of sequentially. Our
algorithm is based on a two-stage process model (Figure 1) that explains both sequence
editing and homopolymer sequencing errors. In particular, in the process, we can reconstruct
the most plausible homopolymer length ` for each flow bf and thus separate flow intensity
over- and under-calling from sequence editing. Our method is the first one that cleanly
separates the two processes.

A major challenge is to design a scoring scheme for flowgram-DNA alignment that is of
low complexity (i.e., has few parameters) and statistically well-founded. We here started
from a classical log-odds framework [2] that was also used by Vacic et al. [12]. Going a step
further, we noted that for each length `, the score function has a simple three-component
piecewise affine form that can be described by only five parameters. This yields the first
low-complexity scoring scheme for directly aligning 454 flowgrams to DNA sequences.

There are several ways to extend this work in the future. For example, finding a more
robust way to estimate the divergence rate between reference and sample than guessing it
before computing alignments would be of interest. On the practical side, several optimizations
of the basic alignment algorithm are possible, improving the running time from O(mn2) to
O(mn) by restricting the considered predecessors in each node (i, j) of the alignment graph
(cf. Figure 3). It is clear that for a flow bf , the best choices for t and ` have |t| ≈ ` ≈ f .
Extending the algorithm to be able to use affine gap costs would be of high practical relevance.
This is not entirely trivial, as gaps could extend over several flows, which in the current
model can only be considered separately.

Our approach should of course work on Ion Torrent datasets as well, using a different
scoring function. The 454 technology can be used for bisulfite amplicon sequencing to
determine CpG methylation. The resulting datasets contain long T- or A-homopolymers after
bisulfite conversion and have different characteristics than standard 454 datasets. Thus it is
of interest to estimate scoring parameters for this application.

Acknowledgements We thank Bernd Weisshaar (Genome Research, Bielefeld University)
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