
2013 Imperial College
Computing Student Workshop

ICCSW’13, September 26–27, 2013, London, United Kingdom

Edited by

Andrew V. Jones
Nicholas Ng

OASIcs – Vo l . 35 – ICCSW’13 www.dagstuh l .de/oas i c s

Editors
Andrew V. Jones Nicholas Ng
Department of Computing Department of Computing
180 Queen’s Gate, London, SW7 2AZ 180 Queen’s Gate, London SW7 2AZ
United Kingdom United Kingdom
andrewj@doc.ic.ac.uk nickng@doc.ic.ac.uk

ACM Classification 1998
A.0. Conference Proceedings

ISBN 978-3-939897-63-7

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-63-7.

Publication date
September, 2013

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.ICCSW.2013.i

ISBN 978-3-939897-63-7 ISSN 2190-6807 http://www.dagstuhl.de/oasics

http://www.dagstuhl.de/dagpub/978-3-939897-63-7
http://www.dagstuhl.de/dagpub/978-3-939897-63-7
http://dnb.d-nb.de
http://dx.doi.org/10.4230/OASIcs.ICCSW.2013.i
http://www.dagstuhl.de/dagpub/978-3-939897-63-7
http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

iii

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 2190-6807

www.dagstuhl.de/oasics

ICCSW’13

http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

Contents

Preface
Andrew V. Jones and Nicholas Ng . i

Keynotes

Laws of programming with concurrency
Tony Hoare . 1

Building Better Online Courses
Peter Norvig . 2

Regular Papers

A swarm based heuristic for sparse image recovery
Theofanis Apostolopoulos . 3

Scalable and Fault-tolerant Stateful Stream Processing
Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki,
and Peter Pietzuch . 11

Generalizing Multi-Context Systems for Reactive Stream Reasoning Applications
Stefan Ellmauthaler . 19

Conformal Prediction under Hypergraphical Models
Valentina Fedorova, Alex Gammerman, Ilia Nouretdinov, and Vladimir Vovk 27

Relational Knowledge Extraction from Attribute-Value Learners
Manoel V. M. França, Artur S. D. Garcez, and Gerson Zaverucha 35

Tools for the implementation of argumentation models
Bas van Gijzel . 43

Towards the Development of a Hybrid Parser for Natural Languages
Sardar F. Jaf and Allan Ramsay . 49

Improving the quality of APIs through the analysis of software crash reports
Maria Kechagia, Dimitris Mitropoulos, and Diomidis Spinellis 57

Fast Implementation of the Scalable Video Coding Extension of the
H.264/AVC Standard

Xin Lu and Graham R. Martin . 65

Improved Rate Control Algorithm for Scalable Video Coding
Xin Lu and Graham R. Martin . 73

An Optimal Real-time Pricing Algorithm for the Smart Grid:
A Bi-level Programming Approach

Fan-Lin Meng and Xiao-Jun Zeng . 81
2013 Imperial College Computing Student Workshop (ICCSW’13).
Editors: Andrew V. Jones, Nicholas Ng

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

vi Contents

Dreaming Machines: On multimodal fusion and information retrieval using
neural-symbolic cognitive agents

Leo de Penning, Artur d’Avila Garcez, and John-Jules C. Meyer 89

Self-composition by Symbolic Execution
Quoc-Sang Phan . 95

Evaluation of Social Personalized Adaptive E-Learning Environments:
End-User Point of View

Lei Shi, Malik Shahzad Awan, and Alexandra I. Cristea . 103

Logical Foundations of Services
Ionuţ Ţuţu . 111

Refactoring Boundary
Tim Wood and Sophia Drossopoulou . 119

Using Self-learning and Automatic Tuning to Improve the Performance of
Sexual Genetic Algorithms for Constraint Satisfaction Problems

Hu Xu, Karen Petrie, and Iain Murray . 128

Achieving Superscalar Performance without Superscalar Overheads – A Dataflow
Compiler IR for Custom Computing

Ali Mustafa Zaidi and David J. Greaves . 136

A Graph based approach for Co-scheduling jobs on Multi-core computers
Huanzhou Zhu and Ligang He . 144

Preface

We are pleased to present the proceedings of the third Imperial College Computing Student
Workshop (ICCSW’13), which took place on 26th–27th September 2013 in London, and was
hosted by Imperial College London.

ICCSW is an event organised with the “by students, for students” ethos in mind. The
organisation work of the workshop was done by a committee formed of Ph.D. students in the
Department of Computing, Imperial College London.

The vision for ICCSW is to provide a venue for doctoral students to experience running
and participating in an academic workshop, as well as providing a networking opportunity
for researchers in similar stages of their career. All of the papers and reviews for ICCSW
were written by students; we adopted a unique peer review system in which all authors are
also programme committee members for the workshop.

For the workshop’s second year, we introduced a highly successful ambassador programme
for students in different institutions to promote ICCSW. This invaluable programme helps
to increase the scope and prominence of the event both nationally and internationally.

These proceedings contain 19 contributions in various fields from across computer science.
This year the workshop received 27 submissions over two tracks: technical papers track, and
tools and demonstrations track.

After a rigorous review and selection process, 19 papers were accepted to be presented at
ICCSW’13, representing a 70% acceptance rate.

Both days of the workshop featured a keynote from a prominent researcher in computer
science; we were truly grateful to have Turing Award winner, Sir Tony Hoare and Google’s
Director of Research, Peter Norvig, as our keynote speakers.

The talks were entitled:
Laws of Programming with Concurrency, by Tony Hoare (Microsoft Research); and
Building Better Online Courses, by Peter Norvig (Google Inc.)

On behalf of the organising committee, we wish to thank all authors, accepted or not, and
our ambassadors, who acted as reviewers in our unique peer review process. Furthermore,
we also wish to thank our sponsors: Imperial College London, who provided us with more
than just financial support; Google, our platinum-level sponsor, who have supported ICCSW
since its inception in 2011; Facebook for their gold-level sponsorship; and ARM and HP for
their bronze-level sponsorship. Without the support of our sponsors, ICCSW’13 would not
have been possible.

Andrew V. Jones and Nicholas Ng
ICCSW’13 Editors

2013 Imperial College Computing Student Workshop (ICCSW’13).
Editors: Andrew V. Jones, Nicholas Ng

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Conference Organisation

Organising Committee

Feryal Mehraban Pour Behbani Imperial College London
Ali Ghoroghi Imperial College London
Marcel Chris Guenther Imperial College London
Petr Hošek Imperial College London
Andrew V. Jones Imperial College London
Roman Kolcun Imperial College London
Rumyana Neykova Imperial College London
Nicholas Ng Imperial College London
Marily Nika Imperial College London
Claudia Schulz Imperial College London
Călin-Rares Turliuç Imperial College London
Zhongliu Xie Imperial College London

Imperial College London
ACM Student Chapter
http://acm.doc.ic.ac.uk/

Ambassadors
Theofanis Apostolopoulos King’s College London
Khulood Alyahya University of Birmingham
Reza Asadi Northeastern University
Matthew Forshaw Newcastle University
Sarah Gaggl TU Dresden
Cristian Gratie University Politehnica of Bucharest
Evgenios Hadjisoteriou University of Cyprus
Jesus Omana Iglesias University College Dublin
Nuo Li University of Nottingham
Nuno Dias Martins University of Lisbon
Andrei Melnik University of Osnabruck
Artur Meski University of Lodz
Amin Mobasheri Delft University of Technology
Amin Mobasheri Heidelberg University
Qais Noorshams Karlsruhe Institute of Technology
Ali Oghabian University of Helsinki
Fatemeh Pakpour University of Manchester
Marco Paolieri University of Florence
Alireza Pourranjbar University of Edinburgh
William Sonnex University of Cambridge
Nasim Souri Bournemouth University
Max Tschaikowski LMU Munich
Hu Xu University of Dundee
Marcelo Serrano Zanetti ETH Zurich
Huanzhou Zhu University of Warwick

2013 Imperial College Computing Student Workshop (ICCSW’13).
Editors: Andrew V. Jones, Nicholas Ng

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://acm.doc.ic.ac.uk/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

x Conference Organisation

External Reviewers
Khulood Alyahya University of Birmingham
Theofanis Apostolopoulos King’s College London
Reza Asadi Northeastern University
Leonardo Bartoloni University of Pisa
Andrea Canciani University of Pisa
Raul Castro Fernandez Imperial College London
Leo de Penning TNO Behaviour and Societal Sciences
Stefan Ellmauthaler Leipzig University
Valentina Fedorova Royal Holloway, University of London
Matthew Forshaw Newcastle University
Manoel França City University London
Nentawe Gurumdimma University of Warwick
Sardar Jaf University of Manchester
Maria Kechagia Athens University of Economics and Business
Xin Lu University of Warwick
Fanlin Meng University of Manchester
Amin Mobasheri Heidelberg University
Davide Morelli University of Pisa
Ali Oghabian University of Helsinki
Jesus Omana Iglesias University College Dublin
Mert Ozkaya City University London
Marco Paolieri University of Florence
Alan Perotti University of Turin
Quoc-Sang Phan Queen Mary, University of London
Łukasz Rogowski University of Lodz
Petch Sajjacholapunt University of Warwick
Lei Shi University of Warwick
Wilson Tan University of Warwick
Ionuţ Ţuţu Royal Holloway, University of London
Bas van Gijzel University of Nottingham
Tim Wood Imperial College London
Hu Xu University of Dundee
Ali Mustafa Zaidi University of Cambridge
Marcelo Serrano Zanetti ETH Zurich
Huanzhou Zhu University of Warwick

Supporters and Sponsors

Supporting Scientific Institutions

Imperial College London
http://www.imperial.ac.uk/

Platinum Sponsors

Google Inc.
http://www.google.com/

Gold Sponsors

Facebook Inc.
http://www.facebook.com/

Bronze Sponsors

ARM Holdings, plc.
http://www.arm.com/

Hewlett-Packard Company
http://www.hp.com/

2013 Imperial College Computing Student Workshop (ICCSW’13).
Editors: Andrew V. Jones, Nicholas Ng

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.imperial.ac.uk/
http://www.google.com/
http://www.facebook.com/
http://www.arm.com/
http://www.hp.com/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Laws of programming with concurrency
Tony Hoare

Microsoft Research

Abstract
The algebraic laws for programming with concurrency are as simple as (and very similar to) the
familiar laws of arithmetic. Yet they are stronger for reasoning about the properties of programs
than the axioms of Hoare Logic and the rules of an operational semantics put together.

1998 ACM Subject Classification F.1.2 Parallelism and concurrency

Keywords and phrases Concurrency,Programming

Digital Object Identifier 10.4230/OASIcs.ICCSW.2013.1

Category Invited Talk

© Tony Hoare;
licensed under Creative Commons License CC-BY

2013 Imperial College Computing Student Workshop (ICCSW’13).
Editors: Andrew V. Jones, Nicholas Ng; pp. 1–1

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2013.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Building Better Online Courses
Peter Norvig

Google Inc.

Abstract
We now have many choices in designing a course, whether it is in the classroom, online, or a
hybrid. This talk will cover some of the mechanics of running an online course, including the
factors involved in building a community. And we will discuss whether building a course is
like building software: in the early days, software was crafted by individuals, but over time we
established processes that enabled large groups to build much larger systems. Today, courses are
still crafted by an individual teacher — if we want to build a larger class, serving more students,
and more potential paths through the material, do we need a new set of course building processes?
How can we assure that our courses will continually improve in quality?

1998 ACM Subject Classification K.3.1 Distance learning

Keywords and phrases Online courses

Digital Object Identifier 10.4230/OASIcs.ICCSW.2013.2

Category Invited Talk

© Peter Norvig;
licensed under Creative Commons License CC-BY

2013 Imperial College Computing Student Workshop (ICCSW’13).
Editors: Andrew V. Jones, Nicholas Ng; pp. 2–2

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2013.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

A swarm based heuristic for sparse image recovery
Theofanis Apostolopoulos

King’s College London, Department of Informatics
Strand, London, WC2R2LS, United Kingdom
theofanis.apostolopoulos@kcl.ac.uk

Abstract
This paper discusses the Compressive Sampling framework as an application for sparse representa-
tion (factorization) and recovery of images over an over-complete basis (dictionary). Compressive
Sampling is a novel new area which asserts that one can recover images of interest, with much
fewer measurements than were originally thought necessary, by searching for the sparsest repres-
entation of an image over an over-complete dictionary. This task is achieved by optimizing an
objective function that includes two terms: one that measures the image reconstruction error and
another that measures the sparsity level. We present and discuss a new swarm based heuristic for
sparse image approximation using the Discrete Fourier Transform to enhance its level of sparsity.
Our experimental results on reference images demonstrate the good performance of the proposed
heuristic over other standard sparse recovery methods (L1-Magic and FOCUSS packages), in a
noiseless environment using much fewer measurements. Finally, we discuss possible extensions
of the heuristic in noisy environments and weakly sparse images as a realistic improvement with
much higher applicability.

1998 ACM Subject Classification I.4.0 Image processing software

Keywords and phrases Compressive Sampling, sparse image recovery, non-linear programming,
sparse representation, linear inverse problems

Digital Object Identifier 10.4230/OASIcs.ICCSS.2013.3

1 Introduction

The famous sampling theorem of Shannon-Nyquist has been very important in engineering.
Straightforward and precise, it sets forth the number of measurements required to reconstruct
any type of signal or image data. However, many real world applications, such as sound,
images and video are represented, stored and processed in computers as big files or collections
of bits, which has many disadvantages in comparison with small files; they require more
storage space, they take longer to transmit and they demand an overwhelming computational
cost for processing. For this purpose many signal/image compression techniques have been
introduced including the emerging field of Compressed Sensing (CS). Compressive Sampling
or Compressed Sensing (CS) is a fairly new area which was previously introduced empirically
in the sciences (e.g. by Claerbout-Muir in Seismology) [3, 4, 5, 9]. CS as a cheap and
fast sampling and recovery process has attracted considerable research with several new
application areas over the past few years. By exploiting the image (sparsity) and the
measurements (random samples) structure we are able to recover an image from what was
previously considered as highly incomplete and inaccurate (under-sampled) measurements.
Following the pioneer theoretical and practical works by Donoho [6], Candes, Romberg and
Tao [4, 5, 9, 22] we are able to recover an under-sampled image, with high probability, by
solving an ill-posed inverse problem, as a combinatorial optimization problem. Towards this
direction, many variants and extensions of CS have been introduced in the literature recently
(1000+ papers in the last 8 years) [21]. This paper proposes a new swarm based heuristic

© Theofanis Apostolopoulos;
licensed under Creative Commons License CC-BY

Imperial College Computing Student Workshop 2013 (ICCSW’13).
Editors: Andrew V. Jones, Nicholas Ng; pp. 3–10

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSS.2013.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

4 A swarm based heuristic for sparse image recovery

for sparse image approximation and representation based on the key mathematical aspects
of the CS method. We have already discussed and suggested the basics of this approach
in signals [1, 17]. In this paper we aim to preset and extend the heuristic in images which
introduces a more complete and realistic application. The heuristic is also compared with
other well-known alternative methods in terms of recovery error, samples size and average
computation time. The rest of this paper is organised as follows: The next Section presents
the sparse image recovery problem. Then, we briefly discuss two well-known methods used
for sparse image recovery (Section 3), while the proposed swarm-based iterative method is
described in Section 4. Section 5 presents some experimental results of the proposed heuristic
and its comparison with the other methods, while the Section 6 provides some conclusions
and extensions of the proposed method.

2 Images as sparse representations

In computers, a image can be represented as a two dimensional array of points of the same
size as the image. Each of these points is called pixel. Every pixel as a sample from the image
and an element of its corresponding matrix represents the spatial irradiance distribution at
the corresponding position. In other words, a pixel can be seen as a continuous function f of
two variables m,n which correspond to its position of the array/grid (coordinates), while
the function’s value represents the type of light/color intensity. This light intensity value
depends on the standard followed; it can be one value representing the tone of gray (gray
level images) or multiple values for colour images, such as RGB and HSI pallets. For example,
the corresponding array for a digital 512× 512 gray level 2D image with 8 bit representation
standard (256 colour intensity values) can be defined as [12, 18, 19, 22]:

f = {f(m,n) = z;m,n = 0 : 511, z = 0 : 255} (1)

Sometimes to further enhance the processing steps or operations in an image (and thus its
sparsity) we need to apply a so-called Unitary Transform [4, 12, 19, 22]. By this way we
change the domain of representation (i.e. image function) from spatial (pixels) to frequency
(spectra). In this case the image is represented as a linear combination of basis functions
of a linear integral transform. This operation converts an image into one having relatively
fewer values significantly different from zero. Obviously, the pursue of the best Transform
domain which leads to the sparsest representation highly depends on the trade-off between
the computation time and the size of the dictionary basis [12, 18, 19]. In this paper, we will
apply the Discrete Fourier Transform (DFT), which uses cosines and sines as basis functions
(i.e. eiω = cos(ω) + i sin(ω)), to gray level images. The 2D DFT (spectrum) of an image
f(m,n) can be defined as [12, 18, 19, 22]:

X(u, v) = 1
MN

M−1∑
m=0

N−1∑
n=0

f(m,n) exp[−2πi(mu
M

+ nv

N
)], (2)

for u = 0, 1, . . . ,M − 1 and v = 0, 1, . . . , N − 1. The inverse DFT is given by:

f(m,n) =
M−1∑
u=0

N−1∑
v=0

X(u, v) exp[−2πi(mu
M

+ nv

N
)], (3)

for m = 0, 1, . . . ,M − 1 and n = 0, 1, . . . , N − 1. Usually in images M = N , which is also the
case for the test images discussed in this paper. Note also that there is one-to-one mapping
between the spatial and frequency domain. The 2D DFT maps an M ×N real-valued matrix

T. Apostolopoulos 5

f(m,n) on M ×N complex-value matrix X(u, v), while the inverse DFT maps the X(u, v)
on f(m,n) [12, 18, 19]. In practice, the DFT is computed using the Fast Fourier Transform
(FFT) algorithm, which is nothing but a computationally efficient way of obtaining the DFT
coefficients based on the symmetries of the basis (matrix Ψ) [12, 18, 19, 22]. Many natural
images have concise representations when expressed in a convenient basis. In CS we use
DFT to enhance the sparsity of an image before down-sampling it. In image processing, for
simplicity reasons (eg. Histogram of an image), it is very common to treat an N ×N image
as a N := N2 vector and samples as a vector on the M frequencies (M � N); principle we
will also adopt here. Let’s assume we have a noiseless image f ∈ <N which we expand in an
orthonormal basis (such as a Fourier basis) Ψ = [ψ1, ψ2, . . . , ψN] as X =

∑N
i=1 fiψi. Then

the image can be represented as a sparse linear combination of atoms in Φ. In vector format,
we have [3, 4, 5, 6, 12, 22]:

XN×1 = ΨN×NfN×1, (4)

where Ψ is a unitary N × N matrix (basis) with ψ1, . . . , ψN as columns and X is the
vector of frequency coefficients with respect to Ψ. So, the N-point DFT is expressed as an
N-by-N matrix multiplication, where f is the original input image and X is the DFT of
the image. Then we can sense or collect partial information about X (measurements) as
yk =< X,φk >, k = 1, 2, ...,M or in vector format as [3, 4, 5, 6, 12, 22]:

YM×1 = CM×NXN×1 = ΦM×N ΨN×NfN×1 (5)

That is, we simply correlate the object we wish to acquire with the waveforms Φ, which is
the measurement or sampling operator and Ψ is the sparcifying operator (Fourier transform)
[3, 4, 5, 6, 8]. In fact, there is no formal difference between Φ and Ψ. In theory, the former
refers to the dictionary of physical spectra and the later refers to the dictionary of image
waveforms. In practice, Ψ is a partial Fourier matrix obtained by selecting M rows (i.e.
measurements) uniformly at random, using Gaussian distribution, and then re-normalising
the columns so that they are unit-normed (See [5, 6, 8, 12, 19, 22]). Note that the random
Fourier ensemble is only used as a more realistic application and thus efficient recovery of
the original image f still requires a unique sparsest solution. In a nutshell, the key steps of
CS are: take the DFT of the desired image to enhance its sparsity, under-sample it (lossy
compression) randomly, transmit/store it and then decompress (recover) it by solving an
optimisation problem. As we will see in the next section, different recovery methods solve
slightly different optimisation problems, though all these approaches serve the same purpose:
the sparse recovery of a (compressed) image as a solution to an optimisation problem.

3 Methods for sparse recovery in images

CS is very advantageous in images which are sparse (have only a few non-zero entries)
in a known basis provided that the measurements collected are incoherent (i.e. random)
[3, 4, 5, 8, 12, 19, 22]. Since we are interested in sparsely representing highly under-sampled
images, the linear system describing the measurements in (5) is under-determined and
therefore has infinitely many solutions [3, 4, 5, 6]. This instance of an under-determined
system of linear equations constitutes a linear inverse problem (LIP) [4, 5, 6, 8]. In this
paper we will consider C as a random Fourier ensemble (rows are randomly chosen DFT
vectors), in a noiseless environment. Note that randomness of sampling guarantees that we
have a linearly independent system of equations and hence a unique solution. We will also
restrict our approach to image restoration experiments applied to this problem and not to

ICCSW’13

6 A swarm based heuristic for sparse image recovery

general applicability LIPs [4, 5, 8]. We discuss two well-known optimisation principles which
are implemented in Matlab packages and have been extensively studied mathematically.

3.1 The L1 Magic
L1 MAGIC is a collection of MATLAB routines, based on standard interior-point methods,
for solving optimization programs relevant to Compressive Sampling [5, 7]. In the case of the
sparse image (noiseless) recovery problem the L1 Magic solves the TV minimisation problem
with equality constraints which is a Second Order Cone Programming (SOCP) [4, 5, 7, 22]:

min TV (X) s.t. CX = Y, (6)

where C is the Sampling/Sensing matrix (the under-sampling Fourier operator Fu), Y is the
measurements vector, while TV stands for the Total Variation, which is the sum of magnitudes
of the discrete gradient DijX at every point/pixel xij of a FFT image X with i representing
the rows and j representing the columns (assume sparsity in gradients) [4, 5, 7, 22]:

TV (X) :=
N−1∑

ij

√
(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2 =

∑
ij

‖DijX‖2 (7)

The L1 Magic uses a log-barrier method to solve the SOCP in (6). It initially transforms it
into a series of linearly constrained problems and then solves them by forming a a series of
quadratic approximations (i.e. a Newtonian iteration step which proceeds by minimizing
each of these systems of equations) [7].

3.2 The FOCUSS
FOCUSS package, which stands for FOCal Under-determined System Solver, is an algorithm
designed to obtain sub-optimally sparse solutions to linear inverse problems in relatively noise-
free environments [14, 20]. It is an affine-scaling transformation interior point optimisation
algorithm which is based on conjugate gradient factorisation for finding sparse solutions of
the following concave function [14, 20]:

X̂ = args min
X

1
2‖Y − CX‖

2 + λdp(X), (8)

where C is the Sampling/Sensing matrix, Y is the measurements vector, 0 < λ < 1 is a
regularisation parameter. This reflects the trade-off between the sparse residual ‖Y − CX̂‖
and the sparse source vector estimate X̂ and depends on the compression rate of the sampled
FFT image X. The quantity dp(X) corresponds to the following norm [14, 20]:

dp(X) = ‖X‖lp
=

∑
i,j

‖xij‖p, (9)

for 0 < p ≤ 1 which enforces sparse solutions to the problem.

4 Research Approach

A simple technique for recovering an image of interest X from partial measurements Y is to
find a solution from an infinite set with the minimum sparsest norm [3, 4, 5, 6, 8, 9, 12, 19]:

min ‖X‖l0 s.t. Y = CX (10)

T. Apostolopoulos 7

where, the norm ‖.‖l0 counts the non-zero elements of the vector X and thus ‖X‖l0 = S for
a S-sparse image (S non-zero entries). As X represents the partial Fourier measurements
the image can be reconstructed as f = ΨX. A common approach to overcome the difficulties
of the combinatorial search required for solving (10) would be to replace it by its convex
relaxation and particularly by substituting the l1 norm for the l0 pseudo-norm (For details
see [3, 4, 5, 6, 9]). In this paper, we will follow a different approach which introduces an
efficient way to approximate the l0 by the following smoother, continuous and easier to
differentiate Laplace function [1, 10, 13, 15, 16, 17]:

‖X‖l0
≈ f(|X|, σ) =

N∑
i=1

1− f(|xi|, σ) = N −
N∑

i=1
exp(−|xi|2

2σ2), (11)

where xi is the i-th element of vector X of length N and σ is a sequence index parameter.
Among the advantages of this approach are the robustness of the l0 norm to noisy samples,
the number of measurements required, which is much smaller than the ones required by
its convex analog (l1 norm), and less restrictions in the design of Sensing matrices C. The
problem in (10) is now reformed as an unconstrained optimisation problem:

min f(|X|, σ) = (M −
M∑

i=1
exp(− (yi − cixi)2

2σ2)) (12)

where xi and yi are the i-th elements of vectors X ∈ CN and Y ∈ CN respectively, while
ci represents the i-th row of Sensing matrix C ∈ CM×N with M � N . The purpose is
to minimise both the objective function in (12) and the parameter σ. The value of this
parameter represents the tradeoff between accuracy and smoothness of the approximation.
The smaller the σ, the better the approximation, while the larger the σ, the smoother the
approximation. In fact, the functional in (11) interpolates the function space between l1
and l0 across σ ∈ [0,∞) in the same manner as does lp norm for p ∈ [0, 1] (i.e. f(1, σ) = 1
and σ →∞ admits f(|X|, σ)→ ‖X‖). This approach has been successfully used for similar
recovery problems and proven to yield a unique and sparse solution similar to the approach
yielded by the l0 quasi-norm (See [10, 13, 15, 16] for details and extensive results).

4.1 The Heuristic
The heuristic is an iterative stochastic swarm-based method for finding the global minimum
of a non-convex, unconstrained continuous function in (12). The steps of the heuristic are:
Proposed l0-norm based Heuristic:
Problem : Determine X ∈ CN s.t. CX = Y .
Inputs : σ, C, Y , Iterations , Agents , Sparsity S, f(|X|, σ), Basis Ψ.
Outputs : best value f∗(|X∗|, σ), best sparse vector X∗, image f∗.
Main steps of the swarm based Heuristic :
Initial solution for every swarm i:X(0)

i = ((CTC)−1CTY) +R(0) × ‖CTY ‖∞
Set σ

(0)
i = ‖Y −X(0)

i ‖∞ for every swarm i

While (t < Iterations)
For i := Agents/Swarms to 25 Do

Evaluate f(|X|, σ) for every X
(t)
i

Find current best X
(t)
∗ so as min f(|X|, σ)

Set X
(t)
∗ = X

(t)
i′ (keep the best i’th solution)

Check X
(t)
∗ entries for feasibility

Set all but S largest entries of X
(t)
∗ to zero

ICCSW’13

8 A swarm based heuristic for sparse image recovery

Generate new solutions for all the other agents using (14)
End For loop;

Set σ(t+1) = σ(t) × 0.6
End While loop;

Reconstruct image f∗ = Ψ−1X∗ (IFFT of X∗ ∈ CN to derive f∗ ∈ <N).
Display the recovered image f∗,Calculate the time and error recovery .

Initially the heuristic is initialised with a population of 25 agents each of which carrying a
slightly different solution and σ parameter. A variation of pseudo-inverse (((CTC)−1CTY) +
R(0) × ‖CTY ‖∞) is chosen as an estimate of the initial sparse solution in (10), which will be
further improved through the iterations of the heuristic. X(t)

i is the current solution vector
for agent i at time t, while R is a vector of randomly generated values between 0 and 1,
using the Normal distribution. Note that ‖.‖∞ is the infinity or Chebychev norm, which is
defined as ‖L‖∞ = max ‖l1‖, . . . , ‖lN‖ for a vector L = [l1, . . . , lN] in a finite dimensional
coordinate space. Note that, at each iteration the current best solution X(t)

∗ is chosen after
being corrected for sparsity and feasibility (be within the ranges of the original transformed
image). Then a new solution is created for each remaining particle which is updated based
on the following rule:

X
(t)
i = 2×R(t) ×X(t−1)

i + (1−R(t))× σ2L × L, (13)

where, R is a vector of small random numbers, different for every swarm i, (t) is the current
iteration, X(t)

i and X
(t−1)
i is the current and the previously generated solution vector of

swarm i and L is the infinity norm ‖CT (CX(t−1)
i − Y)‖∞. The σ value is initially assigned

to the maximum value between the samples vector and the sampled pseudo-inverse and then
it is gradually decreased at each iteration. This assignment was chosen experimentally based
on the nature of the initial vector. Note that due to the randomness in each step of the
heuristic, there is no mathematical guarantee of achieving a global minimum as does its
convex l1 analogue. However, the local minimum found by solving the non-convex problem in
(12) typically allows for accurate and successful recovery even at much higher under-sampling
rates where linear optimisation fails (See Section (5) for details).

5 Simulations and Results

All the numerical experiments were performed on an Intel Core i5 CPU (3.20 GHz) with 3 GB
RAM, using Matlab R2012b under MS Windows XP Pro. We have tested the performance of
the heuristic as a sparse recovery method in two 256×256 images which have been extensively
used for testing purposes, namely Shepp-Logan Phantom and Circles (See [2, 9, 13, 19, 21]).
The result of the experiments is shown in Figure (1) which presents the original images, the
Sampling pattern (i.e. number of lines through origin), the Back-projection (CTY), which
represents direct recovery from partial measurements, and the recovered image (estimate)
using the methods L1 Magic, FOCUSS and the Heuristic. The performance of the heuristic is
compared with the other methods in terms of recovery error (RE) as a metric to evaluate the
recovered image quality. The recovery error was calculated as RE = (‖X̂ −X‖l2)/(‖X‖l2),
where X̂ and X is the recovered and original image respectively, while the CPU cycles were
used as a rough estimation of execution time for all the methods. The average time for the
phantom image recovery was 468.27 (∼ 10 mins) for L1 Magic with 15 Log-barier iterations,
322.85 (∼ 6 mins) for FOCUSS with 15 iterations, λ = 2.0e− 3 and p = 0.5, and 120 (∼ 3
mins) for the heuristic with 23 iterations and 25 agents. The average time for the circle
image recovery was 448 (∼ 7 mins) for L1 Magic, 290 (∼ 5 mins) for FOCUSS and 86 (∼ 2

T. Apostolopoulos 9

Figure 1 Image recovery experiments for L1 Magic, FOCUSS and Heuristic.

mins) for the heuristic, using the same parameters as previously. Notice that a few frequency
coefficients (magnitudes) can capture most of the image energy, as most of such images are
highly compressible. Notice also that the performance of the heuristic (in accordance with all
the other methods) is increasing as the number of measurements increases and deteriorates
as the sparsity of images decreases, which is expected as fewer measurements cause loss of
image quality and thus loss of substantial information (i.e. aliasing in the reconstruction).
However, the heuristic is found to have significantly better performance with smaller run
times than the other recovery methods, particularly for much under-sampled data (less than
15 radial lines), while the difference between the recovered and the original image is hardly
noticeable in some cases (particularly for more than 15 radial lines).

6 Conclusions

In this paper the performance of the proposed method for sparse image recovery was studied
and compared with other methods. The heuristic essentially helps in faster and quicker sparse
recovery of the test images by solving a non-convex unconstrained optimization problem
with complex values, resulting in decreasing the requirement of the number of measurements
needed by other alternative sparse recovery algorithms. It is expected that the performance
of the heuristic, especially in noisy environments, can be improved by assigning weights to
the objective function as an efficient way to improve the search direction. This approach
has been proven to be useful and helps in better recovery for similar recovery problems
and methods using the l1, l2 and l0 norms (See [9, 11, 13]). Another possible direction is
to investigate if we could design Sensing matrices which do not follow the Gaussian and
Bernoulli distributions, or the random Fourier ensemble. These are the only distributions
used to efficiently recover strictly sparse images from corrupted measurements (using the l1
norm) as they satisfy the properties of UUP and RIP (i.e. mutual coherence between the
Basis Ψ and the Sensing Φ matrices, for details See [4, 5, 8]). However, images of practical

ICCSW’13

10 A swarm based heuristic for sparse image recovery

interest are generally weakly sparse or compressive, in essence that their sorted magnitudes
in a known basis usually decay exponentially, and thus further experimentation may yield to
reveal an even better recovery for weakly sparse images and signals (See [12, 19]).

Acknowledgements The author would like to thank his supervisor, Dr. Tomasz Radzik,
for his insight and constructive comments and the anonymous reviewers for their suggestions.

References
1 T. Apostolopoulos. A heuristic for sparse signal reconstruction. In ICCSW 2012, volume 28

of OASIcs, pages 8–14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2012.
2 Calibrated Imaging Lab at Carnegie Mellon University. Collection of test images.

http://www.cs.cmu.edu/afs/cs/project/cil/ftp/html/v-images.html.
3 R. Baraniuk. Compressive sensing. IEEE Signal Processing Magazine, pages 118–120, 2007.
4 E. J. Candès. Compressive sampling. Proceedings of the International Congress of Math-

ematicians, Madrid, Spain, 2006.
5 E. J. Candès. Robust uncertainty principles: exact signal reconstruction from highly in-

complete frequency information. IEEE Trans on Information Theory, 52(2):489–509, 2006.
6 D. Donoho. Compressed sensing. IEEE Trans on Information Theory, 52(4):1289–1306,

2006.
7 E. J. Candès et al. L1-magic: Recovery of sparse signals via convex programming.

http://users.ece.gatech.edu/ justin/l1magic/downloads/l1magic.pdf.
8 E. J. Candès et al. Sparsity and incoherence in compressive sampling. Inverse Problems,

23(3):969–985, June 2007.
9 E.J. Candès et al. Enhancing sparsity by reweighted l1 minimization. Journal of Fourier

Analysis and Applications, 14(5):877–905, December 2004.
10 H. Mohimani et al. A fast approach for overcomplete sparse decomposition based on

smoothed l0 norm. IEEE Trans on signal processing, 57(1):289–301, November 2009.
11 J. K. Pant et al. Reconstruction of sparse signals by minimizing a re-weighted approximate

l0-norm in the null space of the measurement matrix. Circuits and Systems,53rd IEEE
International Midwest Symposium, pages 430–433, August 2010.

12 J. L. Starck et al. Sparse Image and Signal Processing; Wavelets, Curvelets, Morphological
Diversity. Cambridge University Press, UK, 2010.

13 J. Trzasko et al. Highly undersampled magnetic resonance image reconstruction via homo-
topic l0-minimisation. IEEE Trans. on Medical Imaging, 28(1):106–121, January 2009.

14 K. Kreutz-Delgado et al. Dictionary learning algorithms for sparse representation. Neural
Computation, 15(2):349–396, February 2003.

15 P. Huber et al. Robust Statistics. Wiley, 2 edition, 2009.
16 S. Ashkiani et al. Error correction via smoothed l0-norm recovery. IEEE Statistical Signal

Processing Workshop (SSP), pages 289–292, June 2011.
17 T. Apostolopoulos et al. A swarm based method for sparse signal recovery. In

ARSR/SWICOM 2013, Luton, pages 1–5, 2013.
18 B. Jaehne. Digital Image Processing. Springer, 2002.
19 S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, 3 edition, 2009.
20 J. F. Murray. Focuss website. http://dsp.ucsd.edu/ jfmurray/software.htm.
21 Compressive Sensing Resources. Rice university. http://dsp.rice.edu/cs.
22 J. Romberg. Imaging via compressive sampling. Signal Processing Magazine, IEEE,

25(2):14–20, March 2008.

Scalable and Fault-tolerant Stateful Stream
Processing∗

Raul Castro Fernandez1, Matteo Migliavacca2,
Evangelia Kalyvianaki3, and Peter Pietzuch1

1 Dept. of Computing, Imperial College London
rc3011@doc.ic.ac.uk, prp@doc.ic.ac.uk

2 Dept. of Computing, University of Kent
mm53@kent.ac.uk

3 School of Informatics, City University London
evangelia.kalyvianaki@city.ac.uk

Abstract
As users of “big data” applications expect fresh results, we witness a new breed of stream pro-
cessing systems (SPS) that are designed to scale to large numbers of cloud-hosted machines. Such
systems face new challenges: (i) to benefit from the “pay-as-you-go” model of cloud computing,
they must scale out on demand, acquiring additional virtual machines (VMs) and parallelising
operators when the workload increases; (ii) failures are common with deployments on hundreds
of VMs—systems must be fault-tolerant with fast recovery times, yet low per-machine overheads.
An open question is how to achieve these two goals when stream queries include stateful operators,
which must be scaled out and recovered without affecting query results.

Our key idea is to expose internal operator state explicitly to the SPS through a set of state
management primitives. Based on them, we describe an integrated approach for dynamic scale
out and recovery of stateful operators. Externalised operator state is checkpointed periodically
by the SPS and backed up to upstream VMs. The SPS identifies individual operator bottlenecks
and automatically scales them out by allocating new VMs and partitioning the checkpointed
state. At any point, failed operators are recovered by restoring checkpointed state on a new VM
and replaying unprocessed tuples. We evaluate this approach with the Linear Road Benchmark
on the Amazon EC2 cloud platform and show that it can scale automatically to a load factor of
L=350 with 50 VMs, while recovering quickly from failures.

1998 ACM Subject Classification H2.4 Database Systems. Systems

Keywords and phrases Stateful stream processing, scalability, fault tolerance

Digital Object Identifier 10.4230/OASIcs.ICCSW.2013.11

1 Introduction

In many domains, “big data” applications [2], which process large volumes of data, must
provide users with fresh, low latency results. For example, web companies such as Facebook
and LinkedIn execute daily data mining queries to analyse their latest web logs [8]; online
marketplace providers such as eBay and BetFair run sophisticated fraud detection algorithms
on real-time trading activity [7]; and scientific experiments require on-the-fly processing of
data.

∗ A longer version of this paper appeared in the proceedings of ACM International Conference on
Management of Data (SIGMOD) [4].

© Raul Castro Fernandez, Matteo Migliavacca, Eva Kalyvianaki, Peter Pietzuch;
licensed under Creative Commons License CC-BY

2013 Imperial College Computing Student Workshop (ICCSW’13).
Editors: Andrew V. Jones, Nicholas Ng; pp. 11–18

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2013.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

12 Scalable and Fault-tolerant Stateful Stream Processing

Therefore stream processing systems (SPSs) have evolved from cluster-based systems, de-
ployed on a few dozen machines [1], to extremely scalable architectures for big data processing,
spanning hundreds of servers. Scalable SPSs such as Apache S4 [6] and Twitter Storm [12]
parallelise the execution of stream queries to exploit intra-query parallelism. By scaling
out partitioned query operators horizontally, they can support high input stream rates and
queries with computationally demanding operators.

While mechanisms for scale out [10, 9] and fault tolerance [13, 11, 15] in stream processing
have received considerable attention in the past, it remains an open question how SPSs can
scale out while remaining fault tolerant when queries contain stateful operators. Especially
with recently popular stream processing models [6, 12] that treat operators as black boxes in
a data flow graph, users rely on operators that have large amounts of state, which potentially
depends on the complete history of previously processed tuples [3]. This is in contrast to, for
example, window-based relational stream operators [1], in which state typically only depends
on a recent finite set of tuples.

We make the observation that both scale out and failure recovery affect operator state,
and therefore can be solved more efficiently using a single integrated approach. Our key idea
is to externalise internal operator state so that the SPS can perform explicit operator state
management. We then define a set of primitives for state management that allow the SPS
to checkpoint, backup, restore and partition operator state. Based on these primitives, we
describe an integrated approach for scale out and recovery of stateful operators in an
SPS.

We evaluate how our approach scales out queries as part of a prototype SPS using closed
and open loop workloads. We report the performance of the Linear Road Benchmark [3] on
the Amazon EC2 cloud platform.

In summary, the paper makes the following contributions:

1. a description of operator state and management primitives to be used by an SPS;
2. an integrated approach for automatically scaling out bottleneck operators and recovery

of failed operators based on managed operator state;
3. an experimental evaluation on a public cloud, showing that this approach can parallelise

complex queries to a large number of VMs, while being resilient to failures.

Next we analyse the problem; §3 presents our state management technique; based on
this, we introduce the integrated approach for scale out and recovery (§4); §5 provides
experimental results; and we finish with conclusions (§6). For related work and further
details on this paper we refer the reader to [4].

2 Problem Statement

We want to enable the deployment of SPSs on infrastructure-as-a-service (IaaS) clouds,
such as Amazon EC2 and Rackspace, across hundreds of VMs. An SPS in a cloud setting
must support the automated deployment and management of stateful streaming queries. In
particular, this requires (i) the exploitation of intra-query parallelism to scale processing
across VMs; (ii) the masking of failures for continuous processing; and (iii) adaptation to a
VM model.

Stateful operators. Existing systems typically assume that operators are either state-
less [6] or that state can be ignored when e.g. recovering operators [12]. While this simplifies
the architecture of the SPS, it puts a considerable burden on developers when they need
scalable and fault-tolerant stateful operators.

R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch 13

query graph

execution graph

o1

o1
1

o2
1

o2

o1
2

o2
2

o3

o1
3

o4

o1
4

o2
4

src

src

snk

snk

Figure 1 Example of query and exe-
cution graphs.

word splitter
(o)

∅

routing state

processing state

buffer state

word counter
(c1)

word counter
(c2)

{τ=1, ('f': "first:1")}

{τ=4, ('s': "second:1, set:2")}

{τ=2, k='s', p="set"}
{τ=3, k='s', p="second"}

{τ=4, k='s', p="set"}
{τ=5, k='t', p="third"}

{τ=1, k='f', p="first"}

{ (c1, ['a', 'l']), (c2, ['l', 'z']) }

{τ=1, …, p=" first set "}
{τ=2, …, p=" second set "}

{τ=3, ..., p=" third set "}

s1

s2

Figure 2 Different types of state in
a stateful query for counting word fre-
quencies.

Intra-query parallelism. Decisions about parallelising operators can occur statically—
at query deployment time—or dynamically—at runtime. Static scale out requires knowledge
of resource requirements of operators, which depend on stream rates and data distributions,
and are typically estimated by cost models [14]. Therefore dynamic scale out is preferable in
a cloud setting because the SPS can adapt to changes in the workload, observing resource
consumption and VM performance.

Fault tolerance. Previous studies have shown that a substantial fraction of machines in
large data centres develop faults during operation [5]. We assume a typical failure model, in
which machine and network failures are modeled as independent, random crash-stop failures.
Similar to other cloud-deployed applications, an SPS must be fault tolerant and cope with
regular failures.

3 State Management

System Model

Data Model. A stream s is an infinite series of tuples t ∈ s. A tuple t = (τ, k, p) has a
logical timestamp τ , a key field k and a payload p. The timestamp τ ∈ N+ is assigned by a
monotonically increasing logical clock of an operator when a tuple is created in a stream.
Tuples in a stream are ordered according to their timestamps. Keys are not unique and used
to partition tuples. They can be computed as a hash based on the payload.

Operator model. Tuples are processed by operators. An operator o takes n input
streams, Io, processes their tuples and produces one or more output streams, Oo.

An operator function fo defines the processing of operator o on input tuples: fo :
(Io, τo, θo, σo)→ (Oo, τo, θo, σo). A stateful operator has access to state θo, which is updated
after processing. We assume that operators are deterministic and do not have other, externally
visible side-effects. The timestamp σo specifies the oldest tuples that affected the state θo,
i.e. the state depends only on tuples with timestamps σoi ≤ τ i ≤ τoi for each input stream si.

Query model. As shown at the top of F. 1, a query is specified as a directed acyclic
query graph q = (O,S) where O is the set of operators and S is the set of streams.

Query execution. A query is deployed on a set of nodes. A node can host multiple
operators but, without loss of generality, we assume one operator per node. We distinguish
between the logical representation of a query, in terms of its query graph, and its physical
realisation, as shown at the bottom of F. 1. In the physical execution graph q̄, an operator o
may be parallelised into a set of partitioned operators o1 . . . oπ.

ICCSW’13

14 Scalable and Fault-tolerant Stateful Stream Processing

State Definition

The state of a query consists of the operator state of each query operator. We divide the
operator state into processing state, buffer state and routing state, as illustrated in F. 2,
which we use as a running example below.

Processing state. Output tuples from stateful operators depend on input tuples and
the history of past tuples. Operators typically maintain an internal summary of this history
of input tuples, which we term the operator’s processing state. The current processing state θo
of an operator o was computed from all past tuples with σoi ≤ τ i ≤ τoi : si ∈ Io.

Exposing the processing state to the SPS has several reasons: (i) it enables the SPS to
recover stateful operators more efficiently after failure. Instead of re-processing all tuples
in the range σoi ≤ τ i ≤ τoi, recreating the processing state, the SPS can restore the state
directly from a state checkpoint, and (ii) it allows the SPS to redistribute processing state
across a set of new partitioned operators to support scale out.

In F. 2, we give an example of processing state for the word frequency operators.The
upstream word split operator sends the word “first” to the word count operator c1 at τ = 1,
resulting in the processing state θc1 = {(’f’, “first:1”)} and timestamp τc1 = (1). The words
“set”, “second” and “set” are processed by c2, instead, which at τc2 = (4) holds processing
state θc2 = {(’s’, “second:1, set:2”)}.

Buffer state. An SPS typically interposes output buffers between operators, which
buffer tuples before sending them to downstream operators (see F. 2). Buffers compensate
for transient fluctuations of stream rates and network capacity.

Tuples in output buffers contribute to the query state managed by the SPS: (i) output
buffers store tuples that have not yet been processed by downstream operators and therefore
must be re-processed after failure; (ii) after dynamic operator scale out, tuples in output
buffers must be dispatched to the correct partitioned downstream operator.

Routing state. An operator o in the query graph may correspond to multiple partitioned
operators o1, . . . , oπ in the execution graph. An upstream operator u has to decide to which
partitioned operator oi to route a tuple. Since the partitioning can change dynamically, an
operator has explicit routing state, which must be restored after failure.

Operations

The above operator state can be manipulated by the SPS through a set of state management
primitives.

Checkpoint state. The SPS can obtain a representation of the processing state θo
and the buffer state βo of an operator o in the form of a checkpoint. This is taken by the
function checkpoint-state(o)→ (θo, τo, βo). It obtains the processing state θo safely by calling
the user-implemented function get-processing-state(), which also returns the timestamp τo
of the most recent tuples in the streams from the upstream operators that affected the
state checkpoint. This permits the SPS to discard tuples with older timestamps, which are
duplicates, during replay (see below).

The function checkpoint-state is executed asynchronously and triggered every checkpointing
interval c, or after a user-defined event, e.g. when the state has changed significantly.

Backup state. The operator state, as returned by checkpoint-state, can be backed up to
an upstream operator in anticipation of a restore or partition operation. After the operator
state was backed up, already processed tuples from output buffers in upstream operators can
be discarded because they are no longer required for failure recovery.

Restore state. Backed up operator state is restored to another operator to recover a

R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch 15

u o
u

o2

o1

u

u2

o6

o1

o5

u1

o6

o1

o5

(a) (b)

(c) (d)

s

s2

s1

...

bottleneck new operator

...

Figure 3 Example of scale out of stateful operators.

failed operator or to redistribute state across partitioned operators. A function takes the
state to restore to operator o. It then initialises the processing state using a user-defined
function and also assigns the buffer and routing states.

After the state was restored from a checkpoint, unprocessed tuples in the output buffer
from an upstream operator are replayed to bring the operator o’s processing state up-to-date.
Before operator o emits new tuples, it resets its logical clock to the timestamp τ from the
restored checkpoint so that downstream operators can detect and discard duplicate tuples.

Partition state. When a stateful operator scales out, its processing state must be split
across the new partitioned operators. This is done by repartitioning the key space of the
tuples processed by the operator (i.e. by doing consistent hashing). In addition, the routing
state of its upstream operators must be updated to account for the new partitioned operators.
Finally, the buffer state of the upstream operators is partitioned to ensure that unprocessed
tuples are dispatched to the correct partition.

4 Scale Out and Fault Tolerance

Using the above state management primitives, we present our integrated approach for stateful
operator scale out and recovery. We discuss our scaling strategy and fault tolerance, before
describing our fault-tolerant scale out algorithm.

To scale out queries at runtime, the SPS partitions operators on-demand in response to
bottleneck operators. Bottleneck operators prevent the system from increasing processing
throughput. After scaling out a bottleneck operator, its processing load is shared among a
set of new partitioned operators, thus increasing available resources to the SPS. Our scale
out mechanism partitions operator state and streams without violating query semantics.

We give an example of operator scale out in F. 3, which shows four versions of an execution
graph during scale out. When first deployed (F. 3a), the execution graph has one operator
for each (logical) operator in the query graph. An operator o is connected through stream s

to an upstream operator u. We assume that operator o is the bottleneck operator. F. 3b
shows how the upstream operator u can partition its output streams into two streams. The
two partitioned operators, o1 and o2, share the processing load and alleviate the bottleneck
condition. In the same way, additional operators can be added to the execution graph for
further scale out (F. 3c). When the upstream operator u becomes the new bottleneck (F. 3d),
it is also partitioned and its output streams are replicated.

Even in the absence of bottlenecks, if a VM hosting a stateful operator fails, the SPS
must replace it with an operator on a new VM. In our approach, overload and failure are

ICCSW’13

16 Scalable and Fault-tolerant Stateful Stream Processing

Data
Feeder

Balance
Account*

Forwarder

Toll
Calculator*

Toll
Assessment*

Toll
Collector

Sink

[24 instances]

[12 instances]

[5 instances]

[6 instances]

Figure 4 Query for the Linear Road
Benchmark.

0

1

2

3

4

5

6

7

 0 500 1000 1500 2000
 0
 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

Tu
p
le

s/
s

(x
1

0
0

K
)

N
u
m

b
e
r

o
f

V
M

s

Time (seconds)

Throughput (tuples/s)
Input rate (tuples/s)

Num. of VMs

Figure 5 Dynamic scale out for the
LRB workload with L=350 (closed loop
workload).

handled in the same fashion. Operator recovery becomes a special case of scale out, in which
a failed operator is scaled out to a parallelisation level of 1. This means that the SPS does
not require a sophisticated failure detector to distinguish between the two cases but instead
scales out an operator when it has become unresponsive.

5 Evaluation

The goals of our experimental evaluation are to investigate:
(i) the effectiveness of our stateful operator scale out approach for a closed loop
workload.
(ii) the recovery time of the stateful recovery mechanism for a windowed word frequency
query.
(iii) the impact of our state management approach on tuple processing latency.

The experiments are conducted using an experimental stream processing system imple-
mented in Java. We deploy it on Amazon EC2 across 60 VMs.

Dynamic Scale Out

We first evaluate the effectiveness of our scale out approach when adapting to an increasing
workload, i.e. when the SPS has to scale out to match an increasing input stream rate
without tuple loss. The workload is the Linear Road Benchmark (LRB) (see [3] for details).

Our LRB query implementation consists of 7 operators, as shown in F. 4. We deploy the
LRB query on Amazon EC2. Our deployment achieves a maximum L-rating of L=350 with
50 VMs. After that, the source and sink become the bottleneck, handling a maximum of
600,000 tuples/s due to serialisation overheads. The partitioned execution graph of the LRB
is as shown in F. 4. We observe that the SPS maintains the required result throughput for
the input rate, requesting additional VMs as needed. At times t=475 and t=1016, multiple
operators are scaled out in close succession because bottlenecks appear in two operators
simultaneously.

F. 6 shows processing latencies of output tuples, as a metric for the performance experi-
enced by the query. The 99th and 95th percentiles of the latency are 1459 ms and 700 ms,
respectively; the median is 153 ms, which are all below the LRB target of 5 s. This confirms
that our maximum L-rating is indeed due to the limited source and sink capacities.

Failure Recovery

To evaluate failure recovery, we first compare recovery time against other fault tolerance
approaches, upstream backup (UB) and source replay (SR). UB buffers tuples in each operator

R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch 17

 0

 1000

 2000

 3000

 4000

 5000

 0 500 1000 1500 2000
 0
 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

La
te

n
cy

 (
m

ill
is

e
co

n
d

s)

N
u
m

b
e
r

o
f

V
M

s

Time (seconds)

Latency
Num. of VMs

Figure 6 Processing latency for LRB
workload.

0

2

4

6

8

10

12

14

100 500 1000

R
ec

ov
er

y
Ti

m
e

(s
ec

on
ds

)

Input Rate (tuples/s)

Recovery using State Management (R+SM)
Source replay (SR)
Upstream backup (UB)

Figure 7 Recovery time for different
fault tolerance mechanisms.

and re-processes them to recover operator state. SR is a variant of UB, in which tuples are
only buffered and replayed by the source [12]. We use a query that counts word frequencies
over a 30 s window.

We observe the recovery times for the three approaches. For R+SM, we set the check-
pointing interval c to 5 s. During the experiment, we fail the VM and measure the time to
recover (i.e. until the complete operator state was restored).

F. 7 shows results averaged over 10 runs for different input rates. SR achieves slightly
faster recovery than UB because of the short length of the operator pipeline and the fact
that it stops the generation of new tuples during the recovery phase. R+SM achieves lower
recovery times than both UB and SR. Due to the state checkpoints, it re-processes fewer
tuples to recover the stateful operator.

In F. 8, we show the change in recovery time as a function of the checkpointing interval
for different input rates. Recovery time increases with longer checkpointing intervals because
more tuples are replayed. Tuple buffering is the main factor determining recovery time, which
is why recovery time increases considerably with higher rates. While frequent checkpointing
incurs overhead, it reduces recovery time, even for high rates.

State Management Overhead

The overhead on processing throughput could not be observed, so we measure its effect on
tuple processing latency.

We synthetically vary the state size (in this case a dictionary) between small (102 entries;
≈2 Kb), medium (104 entries; ≈200 Kb) and large (105 entries; ≈2 Mb).

F. 9 shows that the 95th percentile of tuple processing latencies increases with state size.
For large state sizes, checkpointing takes longer and occupies more CPU time, which is
unavailable for tuple processing. Higher input rates increase the load on the operator, resulting
in less headroom for the checkpointing process. For input rates of 100 and 500 tuples/s, the
latency remains small but grows for 1000 tuples/s.

6 Conclusions

We presented an integrated approach for scale out and failure recovery through explicit state
management of stateful operators. Our approach treats operator state as an independent
entity, which can be checkpointed, backed up, restored and partitioned by the SPS. Based
on these operations, the SPS can support dynamic scale out of operators while being fault
tolerant.

Our results show that our approach can be used effectively to provision Amazon EC2
resources against increasing input rates in the Linear Road Benchmark and also support

ICCSW’13

18 Scalable and Fault-tolerant Stateful Stream Processing

0

1

2

3

4

5

6

7

8

 1 5 10 15 20 25 30

R
e
co

v
e
ry

 T
im

e
 (

se
co

n
d
s)

Checkpointing Interval (seconds)

Input rate (100 tuples/s)
Input rate (500 tuples/s)
Input rate (1K tuples/s)

Figure 8 Recovery time for different
R+SM checkpointing intervals.

 0

 100

 200

 300

 400

 500

Small Medium Large No
Checkpointing

La
te

n
cy

 (
m

ill
is

e
co

n
d

s)

State Size

Input rate (100 tuples/s)
Input rate (500 tuples/s)
Input rate (1000 tuples/s)

Figure 9 Overhead of state check-
pointing for different input rates and
state sizes

open loop workloads. Despite the state checkpointing, processing latency remains within
desired levels.

As future work, we plan to extend our scale out policy with support for scale in to enable
truly elastic deployments of cloud-based SPSs.

Acknowledgements This work was supported by a PhD CASE Award funded by the
Engineering and Physical Sciences Research Council (EPSRC) and BAE Systems.

References
1 Daniel J Abadi, Y Ahmand, et al. The Design of the Borealis Stream Processing Engine.

In CIDR, 2005.
2 D Agrawal, S Das, et al. Big Data and Cloud Computing: Current State and Future

Opportunities. In EDBT, 2011.
3 Arvind Arasu, Mitch Cherniack, et al. Linear Road: A Stream Data Management Bench-

mark. In VLDB, 2004.
4 Raul Castro Fernandez, Matteo Migliavacca, et al. Integrating Scale Out and Fault Toler-

ance in Stream Processing using Operator State Management. In SIGMOD, 2013.
5 Phillipa Gill, Navendu Jain, et al. Understanding Network Failures in Data Centers: Meas-

urement, Analysis, and Implications. In SIGCOMM, 2011.
6 L Neumeyer, B Robbing, et al. S4: Distributed Stream Computing Platform. In ICDMW,

2010.
7 Nish Parikh and Neel Sundaresan. Scalable and Near Real-Time Burst Detection from

eCommerce Queries. In SIGKDD, 2008.
8 M Russell. Mining the Social Web. O’Reilly, 2011.
9 Benjamin Satzger, Waldemar Hummer, et al. Esc: Towards an Elastic Stream Computing

Platform for the Cloud. In IEEE CLOUD, 2011.
10 Scott Schneider, Henrique Andrade, et al. Elastic Scaling of Data Parallel Operators in

Stream Processing. In IPDPS, 2009.
11 Zoe Sebepou and Kostas Magoutis. CEC: Continuous Eventual Checkpointing for Data

Stream Processing Operators. In DNS, 2011.
12 Twitter Storm. github.com/nathanmarz/storm/wiki.
13 Rohit Wagle, Henrique Andrade, et al. Distributed Middleware Reliability and Fault Tol-

erance Support in System S. In DEBS, 2011.
14 Erik Zeitler and Tore Risch. Massive Scale-out of Expensive Continuous Queries. VLDB

Endowment, 4(11), 2011.
15 Zhe Zhang, Yu Gu, et al. A Hybrid Approach to HA in Stream Processing Systems. In

ICDCS, 2010.

github.com/nathanmarz/storm/wiki

Generalizing Multi-Context Systems for Reactive
Stream Reasoning Applications∗

Stefan Ellmauthaler

Intelligent Systems, Institute of Computer Science, Leipzig University
P.O. Box 100920, 04009 Leipzig, Germany
ellmauthaler@informatik.uni-leipzig.de

Abstract
In the field of artificial intelligence (AI), the subdomain of knowledge representation (KR) has
the aim to represent, integrate, and exchange knowledge in order to do some reasoning about
the given information. During the last decades many different KR-languages were proposed for
a variety of certain applications with specific needs. The concept of a managed Multi-Context
System (mMCS) was introduced to provide adequate formal tools to interchange and integrate
knowledge between different KR-approaches. Another arising field of interest in computer sci-
ence is the design of online applications, which react directly to (possibly infinite) streams of
information. This paper presents a genuine approach to generalize mMCS for online applica-
tions with continuous streams of information. Our major goal is to find a good tradeoff between
expressiveness and computational complexity.

1998 ACM Subject Classification 1.2.11 Distributed Artificial Intelligence

Keywords and phrases Knowledge Representation, Artificial Intelligence

Digital Object Identifier 10.4230/OASIcs.ICCSW.2013.19

1 Introduction

Research in the field of knowledge representation has originated a large variety of formats
and languages. To use those formal concepts a wealth of tools have emerged (e.g. databases,
ontologies, triple-stores, modal logics, temporal logics, nonmonotonic logics, logic programs
under nonmonotonic answer set semantics, . . .). Those tools were designed for specific needs
of certain applications in mind. With the idea of a “connected world”, nowadays we do not
intend to divide information over different applications. It is desirable to have all information
available for every application if need be. To express all of this knowledge, represented in
specifically tailored languages, in a universal language would be too hard to achieve from
the point of view of complexity as well as the troubles arising from the translation of the
representations.

A second issue in current knowledge representation, which is already addressed in dif-
ferent fields of knowledge representation (e.g. stream data processing and querying [10, 9],
stream reasoning with answer set programming [6], forgetting in general [8, 5]), is the lack
of online usage of KR tools and formalisms. Most of the approaches only assume one-shot
computations, which is triggered by a user. This may be a specific request in the form of a
query to a computer. In practice there are many applications where knowledge is provided in
a constant flow of information and it is desired to reason over this knowledge in a continuous
manner.

∗ This research has been funded by DFG (project FOR 1513)

© Stefan Ellmauthaler;
licensed under Creative Commons License CC-BY

2013 Imperial College Computing Student Workshop (ICCSW’13).
Editors: Andrew V. Jones, Nicholas Ng; pp. 19–26

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2013.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

20 Generalizing Multi-Context Systems for Reactive Stream Reasoning Applications

The concept of nonmonotonic Multi-Context Systems (MCS) [2] is a promising approach
to achieve a formalism which will not suffer from any of the two shortcomings of current
KR-languages. The problem of connecting divided knowledge was the motivation of MCS
and its successor [4]. In the following we want to generalize those mMCS to be reactive to
their environment.

The paper proceeds as follows. After providing some motivating examples for an applic-
ation of reactive managed Multi-Context Systems in Section 2, we will give an overview on
the necessary background regarding managed Multi-Context Systems in Section 3. Section
4 will then introduce the new reactive concepts as an extension to managed Multi-Context
Systems. A conclusion with possible future work and a discussion of related work concludes
the paper.

2 Motivation

In this section we want to describe one specific application, where a reactive version of MCS
would be beneficial. Although our new concept was intended to work for this special use-
case, the present approach provides a general and abstract formalism for the whole variety
of online-applications.

2.1 Assisted Living
In general we mean by Assisted Living some sort of intelligent apartment, which tries to
analyze the behavior of its inhabitants to support them in their daily living. To be more
precise, one application of Assisted Living could be the detection of emergencies that may
occur in the apartment. As an example imagine a kitchen with different sensors installed.
One severe emergency would be that the resident forgot to turn off the cooking stove.
Then the intelligent system should react accordingly and either turn it off by itself or by
giving an adequate reminder to the resident. Another example could be the detection of
an accident. In case one inhabitant had a heart attack or got injured badly, the intelligent
apartment should detect it and launch an appropriate emergency-measure (e.g. emergency
call). Another convenience-increasing action that could be taken by the apartment is to
detect whether the inhabitant wants to be disturbed or not (e.g. he is sleeping). Based
on this knowledge it could become handy to mute the mobile phone to avoid an unwanted
interruption. But it would be wise to enable the sound again if someone important is calling
or the alarm clock wants to awake the inhabitant. These examples are only few possibilities
and they may be extended by additional interaction of the apartment (e.g. by giving it access
to robots and similar mechanics).

2.2 Realization
The above described apartment may be realized by the installation of different sensors in
each room. Some possibilities would be: cameras, microphones, pressure plates, thermostats,
and power meters. Each of these sensors will provide a constant flow of information (i.e. a
stream). For one apartment an intelligent agent will reason about these streams and conclude
on the current behavior of the inhabitant (e.g. if the inhabitant is in the kitchen and the
cooking stove is on then he will cook something). Due to the high amount of information
given by the stream of each sensor, it is now desirable to get some preprocessing done by the
sensors before they send their information to the agent (e.g. the camera detects movement
or identifies objects). To get more sophisticated information it is now imaginable to group

S. Ellmauthaler 21

a set of sensors to an own agent with its own reasoning (e.g. all sensors in the kitchen,
all sensors that track movement, . . .). Then it is the task for the apartment-agent to find
reasonable conclusions based on the information delivered by the different sensors/agents.
Those conclusions can be the current activity of one inhabitant and the appropriate reactions
by the agent itself. Due to the possibility of wrong sensor-data, previously drawn conclusions
which are refuted, and other inconsistencies/conflicts between the different streams, it is
now important to find some kind of equilibria between those agents in a similar way as it is
described for Multi-Context Systems [3, 4, 1].

In addition, the agent may encounter many situations with exceptions. One example
could be that an inhabitant is cooking and during the waiting time he goes to the restroom.
In this case the apartment would not be asked for detecting an emergency. It may also not
be an emergency if the inhabitant is going to watch television during the cooking time. But
it is an emergency situation if he falls asleep during watching television and will not awake
when the meal is done.

3 Background

In this section we will present the already existing definitions for managed Multi-Context
Systems (mMCS) [4]. Intuitively, the management extension of MCS changes the bridge
rules of the MCS in such a way, that the head of the bridge rule is an arbitrary operator. At
first we need to define a logic suite, which allows dynamic changes of the context semantics.

I Definition 1. A logic suite LS = (BSLS ,KBLS ,ACCLS) consists of the set BSLS of
possible belief sets, the set KBLS of well-formed knowledge-bases, and a nonempty set
ACCLS of possible semantics of LS, i.e. ACCLS ∈ ACCLS implies ACCLS : KBLS → 2BSLS .

Each logic suite LS has a set of formulas FLS = {s ∈ kb | kb ∈ KBLS} which represent
all formulas occurring in its knowledge base. To describe which operators are allowed, we
use a management base OP , which is a set of operation names. For each logic suite LS

and management base OP , let F OP
LS = {o(s) | o ∈ OP, s ∈ FLS} be the set of operational

statements which can be built from OP and FLS . The semantics of statements in F OP
LS is

defined in terms of a management function. It allows to modify formulas in a context (e.g.
by addition, removal, . . .) as well as any desired operation to be applied on a formula or a
context.

I Definition 2. A management function over a logic suite LS and a management base OP

is a function mng : 2F OP
LS ×KBLS → 2KBLS×ACCLS \ {∅}.

I Definition 3. A managed Multi-Context System M is a collection (C1, . . . , Cn) of man-
aged contexts where, for 1 ≤ i ≤ n, each managed context Ci is a quintuple Ci =
(LSi, kbi, bri, OPi, mngi) such that

LSi = (BSLSi ,KBLSi ,ACCLSi) is a logic suite,
kbi ∈ KBLSi

is a knowledge base,
OPi is a management base,
bri is a set of bridge rules for Ci, with the form

opi ← (c1 : p1), . . . , (cj : pj), not(cj+1 : pj+1), . . . , not(cm : pm).

such that opi ∈ F OPi

LSi
and for all 1 ≤ k ≤ m there exists a context ck ∈ (C1, . . . , Cn)

such that pk ∈ S ∈ BSLSck
, and

mngi is a management function over LSi and OPi.

ICCSW’13

22 Generalizing Multi-Context Systems for Reactive Stream Reasoning Applications

For a bridge rule r ∈ bri we will use op(r) to denote the operator opi ∈ F OPi

LSi
and body(r)

denotes the set {(ck1 : pk1) | 1 ≤ k1 ≤ j} ∪ {not(ck2 : pk2) | j < k2 ≤ m}.
A belief state S = (S1, . . . , Sn) of M is a belief set for every context, i.e. Si ∈ BSLSi

. We
denote the set of applicable operations by appi(S) = {op(r) | r ∈ bri ∧ S |= body(r)}. The
term of equilibrium is used to define the semantics of an mMCS.

I Definition 4. Let M = (C1, . . . , Cn) be an mMCS. A belief state S = (S1, . . . , Sn) is an
equilibrium of M iff for every 1 ≤ i ≤ n there exists some (kb′i, ACCLSi) ∈ mngi(appi(S), kbi)
such that Si ∈ ACCLSi

(kb′i).

4 Reactive Managed Multi-Context Systems

In the following we will present different approaches to a reactive managed Multi-Context
System. At first we will try to get a generalization of the already existing approach of
managed Multi-Context Systems. Afterwards we will propose a less complex approach for
faster reactions to incoming information. Finally we will combine both variants to gain a
solution which benefits from both approaches.

4.1 Preference-Based Iterative Managed Multi-Context System
This part will sketch what needs to be added to the current approach of mMCS to make
it suitable for the previously given applications. We have chosen a similar approach to the
reactive concept as it was applied by Schaub et al. [6, 7] for their Answer Set Programming-
Solver. So we will manipulate our knowledge bases iteratively, based on the current equilibria
which may take different input stream information into account. Therefore we will refer to
it as an iterative managed Multi-Context System (imMCS). For easier recognition of the
different tasks, we will introduce different types of contexts. We will need at least three of
them:

observing contexts: these contexts are connected via sensors to the outside world and
obtain new information constantly.
reasoning contexts: these contexts are internal modules. It is important that those are
not connected to sensors and so they do rely on the information given by other contexts.
They are responsible to interpret the different observations and determine what is going
on, i.e. are things working properly, does an action need to be taken.
control contexts: this context has the role to do some kind of meta-reasoning for the
imMCS. Its role is to:
1. set sliding windows for other contexts1,
2. set inconsistency handling policies (e.g. take sensor reliability into account in case of

inconsistencies),
3. set the used semantics and reasoning modes,
4. determine necessary actions2 (e.g. start an alarm), and
5. decide which contexts need to re-reason (e.g. after a change done by the control

context) or which context shall be idle.
To model the dynamic development of equilibria over time, we introduce the notion of a
run of an mMCS. Intuitively a run describes the provided knowledge and the computed
equilibria at a given time.

1 Reactive reasoning mechanisms use sliding windows to handle possibly infinite streams (c.f. [6]).
2 It would be reasonable to use such control contexts as the way to communicate with the real world

S. Ellmauthaler 23

I Definition 5. Let M be a managed MCS with contexts C = (C1, . . . , Cn) (C1, . . . , Ck are
observer contexts). Let Obs = (Obs0, Obs1, . . .) be a sequence of observations, that is, for
j ≥ 0, Obsj = (Obsj

i)i≤k, where Obsj
i is the new (sensor) information for context i at step

j, which is formalized as sets of formulas. A run R of M induced by Obs is a sequence

R = Kb0, Eq0, Kb1, Eq1, . . .

where
Kb0 = (Kb0

i)i≤n is the collection of initial knowledge bases, Eq0 an equilibrium of Kb0,
for j ≥ 1 and i ≤ n, Kbj

i is the knowledge base of context Ci produced by the context’s
management function for the computation of Eqj−1, and Kbj = (Kbj

i)i≤n,
for j ≥ 1, Eqj is an equilibrium for the knowledge bases

(Kbj
0 ∪Obsj

0, . . . , Kbj
k ∪Obsj

k, Kbj
k+1, . . . , Kbj

n).

We call M ′ = (C, Obs) an iterative managed MCS (imMCS).

Note that there may be more than one equilibrium, which would lead to different knowledge
bases at the next step of the run. To avoid this multiplication of underlying knowledge, we
need to introduce a method to reduce the number of possible equilibria. For this task there
are different possible approaches:
1. usage of brave and cautious reasoning methods3 for the selection of the applicable oper-

ations on the contexts.
2. preferences over the bridge rules to get a preferred equilibrium.
In general it may lead to side effects when using brave reasoning for the selection of applicable
operations. For example one equilibrium may add a positive literal to a knowledge base,
while another equilibrium would add the negated literal. That would lead obviously to
an inconsistency although both equilibria were consistent. On the other hand cautious
reasoning may lead to a situation where some crucial consistency preserving operations may
be missing (c.f. Example 6).

I Example 6. Let Kb0
1 be an initial knowledge base in an imMCS M ′. The operation insert

(resp. revoke) adds (resp. removes) formulas to (resp. from) the knowledge base. Suppose
the negated literals ¬a and ¬b are both in Kb0

1. The computation of the equilibria results in
two sets of belief states {Eq0

1 , Eq0
2} = Eq0, where app1(Eq0

1) = {revoke(¬a), insert(a ∨ b)}
and app1(Eq0

2) = {revoke(¬b), insert(a ∨ b)}. With cautious reasoning only the operation
insert(a ∨ b) would be executed, which would result in an inconsistent knowledge base.

To ensure that only one equilibrium remains, we will introduce the preference function pref i.
Each context provides this function, which takes the set of equilibria and returns a strict
total order over them. In addition the whole Multi-Context System provides the preference
function pref, which takes the total orderings and returns one unique equilibrium.
I Definition 7. Let M = (C, Obs) be an imMCS and EQ be a set of equilibria. Mp =
(C, Obs, pref) is a preference based imMCS (pimMCS) where

each context Ci has a function prefi : EQ → total(EQ), where
total(EQ) = {R ⊆ EQ × EQ | R is strictly totally ordered} to associate a strict total
ordering of equilibria to each context, and
the function pref : (pref1(EQ), . . . , prefn(EQ)) 7→ Eq returns exactly one equilibrium
Eq ∈ EQ.

3 Intuitively, given alternative sets of beliefs, for brave reasoning it is sufficient that one belief set supports
a conclusion, while cautious reasoning requires that each belief set supports a conclusion

ICCSW’13

24 Generalizing Multi-Context Systems for Reactive Stream Reasoning Applications

Intuitively, each context propagates its most appreciated equilibria. Afterwards the Multi-
Context System determines the "best" fitting equilibrium. Note that at this point we do
not intend to give a semantic definition for those two functions. How these equilibria are
ordered and how the equilibrium is selected remains adjustable to the specific instance of
the Multi-Context System.

4.2 Reactive Bridge Rules
In general the computation of equilibria is expensive [4]. It was shown that the identifica-
tion of a global equilibria is always one level higher on the polynomial hierarchy than the
computation of belief sets of the context with the hardest problem. Due to this potentially
high amount of computation time, we present another approach, which will not utilize the
concept of global equilibria. The intuitive idea behind our Reactive Bridge Rules (RBR) is
to provide rules to add supplementary information to the input stream of another reactive
context. These rules are evalutated over the belief sets of the different contexts. To control
how "informative" one of those rules is, it can be specified for each rule whether its literals
need to occur in one or every belief set of the context.

I Definition 8. A Reactive Bridge Rule (RBR) r for a context Ci of a collection of n contexts
is a rule of the form

t, j : h← b1, . . . , bk, not bk+1, . . . , not bm

where
t ∈ {b, c} specifies whether the literals need to be evaluated bravely or cautiously,
j ≤ n specifies which context will be provided with additional information,
h is some information which may be added to the input stream of Cj , and
for l ≤ m, bl is a literal.

We will denote the body of one RBR r as body(r), all positive literals bl, where l ≤ k as
b+(r), and all negated literals bl, where k < l ≤ m as b−(r). Based on the given evaluation
mode of the rule, there are different semantics to be applied to the rule. Note that it is
obligatory for each context that it has an input stream.

IDefinition 9. Let r be an RBR of a context Ci, ACCLSi
∈ ACCLSi

be a selected semantics,
and S = {S1 . . . , Sj} be the belief sets of Ci at the step t, such that S = ACCLSi

(kbt
i), where

kbt
i is the knowledge base of context Ci at step t.
If r is a cautious RBR, it is satisfied if ∀B∈S(b+(r) ⊆ B ∧ b−(r) ∩B = ∅).
If r is a brave RBR, it is satisfied if ∃B∈S(b+(r) ⊆ B ∧ b−(r) ∩B = ∅).

If a rule r is satisfied, then h will be added to the input stream of the context Cj at step
t + 1.

We will writeRBRj
i to denote the set of added information to the input stream of context i at

step j+1, based on the belief sets of step j. Intuitively a RBR wants to inform other contexts
of the outcome of different conclusions drawn by a context, based on its observations. The
two types of rules were chosen to distinguish between possible conclusions which may be very
important and those conclusions which can be drawn safely. In our assisted living scenario
there may be events which are more critical than others. For example the possibility of an
emergency should be considered as soon as possible, even if it is not assured in every belief
set of a context. On the other hand some conclusions may not be neccessary to be forwarded
to another context. One example could be the control of the door lock. The door should
only open for visitors if every belief set is sure that the person may enter the assisted living
environment.

S. Ellmauthaler 25

4.3 Combination Of Both Concepts
The two newly introduced concepts have their advantages and disadvantages. The pimMCS
do compute equilibria and therefore it is required that all involved contexts agree on a de-
cision. Alas, their computation is quite expensive. Thus it may happen that the computation
of an equilibrium takes very long compared to the intervals of newly arriving information
in the input streams. With infinite data streams in mind this is a serious issue. The use
of sliding windows will force that older, but probably important information is lost due to
its size. In case the window is extended automatically to be able to fit all new information
since the last equilibria-computation in the run, this memory will grow larger the longer
the computation takes. In addition a larger window may also increase the time effort of the
next computation of the equilibria, which is some kind of a vicious cycle.

On the other hand RBRs only need the belief sets of each context and there is no
need for any agreement on their conclusions and beliefs. This computation involves no
communication between the contexts and further it is not neccessary to find an equilibrium.
Of course the results are not as strong as an equilibrium, as there is no commonly acceptable
belief set of the problem and only local points of view about them.

Now we want to combine both approaches to achieve a Reactive Managed Multi-Context
System (rmMCS), which takes the advantages of both ideas and avoids their disadvantages.
In general it is desirable to get a formal system which computes equilibria on which decisions
are done. Our idea is to compute a run for a pimMCS, where each context has an input
stream. During the computation of an equilibrium each context can agree with, RBRs are
allowed to manipulate the input streams of the contexts. We also allow each context to
change its belief sets based on new stream information, such that another set of RBRs is
allowed to manipulate the streams further. Note that this manipulation and change of beliefs
shall not affect the computation of the equilibrium. Intuitively, it can be seen as a parallel
process.

I Definition 10. Let M be a preference based iterative managed MCS with contexts
C0, . . . , Cn, context-specific preferences pref0, . . . , prefn and a global preference pref . Let
Is = (Is0, Is1, . . .) be a sequence of input streams, that is, for j ≥ 0, Isj = (Isj

i)i≤n, where
Isj

i is the current input stream for context i at step j. Let f(Eqi) be a function that returns
the step where the computation of the equilibrium of step i finished, and RBR be a set of
reactive bridge rules. A run R of M induced by IS is a sequence

R = Kb0, Eq0, Kbf(Eq0), Eqf(Eq0), . . .

where
Kb0 = (Kb0

i)i≤n is the collection of initial knowledge bases, Eq0 an equilibrium of Kb0,
for i ≤ n, mIs0

i = Is0
i is the modified initial input stream,

for j ≥ 1 and i ≤ n, mIsj
i = Isj

i ∪RBR
j−1
i is the modified input stream at step j,

for j ≥ 0, Eqj is the preferred equilibrium at step j,
for j ≥ 1 and i ≤ n, Kbj

i is the knowledge base of context Ci produced by the context’s
management function for the computation of Eqk, such that f(Eqk) = j, and Kbj =
(Kbj

i)i≤n, and
for j ≥ 1, Eqj is an equilibrium for the knowledge bases

(Kbj
0 ∪mIsj

0, . . . , Kbj
n ∪mIsj

n).

We call M ′ = (M, Is, RBR) a reactive managed Multi-Context System.

ICCSW’13

26 Generalizing Multi-Context Systems for Reactive Stream Reasoning Applications

5 Conclusion & Future Work

In this paper we have presented two generalizations for managed Multi-Context Systems,
which can utilize streams containing information. We want to mention again that we had
stream reasoners, such as oclingo[6] as contexts in mind. However, the presented formalism
may work well with different approaches. Our goal with this new formalism is to provide a
framework where as many formalisms as possible may be used as contexts.

Intended future work is an instantiation of the formalism, to model the given application
of assisted living. In addition it will be necessary to investigate possible side effects of the
RBR with respect to the rmMCS. In this field there are also some questions which are
not answered in this paper (e.g. how should the preference functions be handled). Another
interesting field is in general the usage of other formalisms. Are there any undesired effects
if we use e.g. C-SPARQL [9]. Is it important to restrict our systems in any way to such
that their underlying contexts are not affected in an undesired way. Additionally it is open
on how to utilize KR formalisms and tools which do not support online reasoning. Is it
sufficient to provide some kind of reactive add-on, which communicates between a stream
and a one-shot offline formalism?

References
1 Gerhard Brewka. Multi-context systems: Specifying the interaction of knowledge bases

declaratively. In Markus Krötzsch and Umberto Straccia, editors, RR, volume 7497 of
Lecture Notes in Computer Science, pages 1–4. Springer, 2012.

2 Gerhard Brewka and Thomas Eiter. Equilibria in heterogeneous nonmonotonic multi-
context systems. In AAAI, pages 385–390. AAAI Press, 2007.

3 Gerhard Brewka, Thomas Eiter, and Michael Fink. Nonmonotonic multi-context systems:
A flexible approach for integrating heterogeneous knowledge sources. In Marcello Balduc-
cini and Tran Cao Son, editors, Logic Programming, Knowledge Representation, and Non-
monotonic Reasoning, volume 6565 of Lecture Notes in Computer Science, pages 233–258.
Springer, 2011.

4 Gerhard Brewka, Thomas Eiter, Michael Fink, and Antonius Weinzierl. Managed multi-
context systems. In Toby Walsh, editor, IJCAI, pages 786–791. IJCAI/AAAI, 2011.

5 Fu-Leung Cheng, Thomas Eiter, Nathan Robinson, Abdul Sattar, and Kewen Wang. Lp-
forget: A system of forgetting in answer set programming. In Abdul Sattar and Byeong Ho
Kang, editors, Australian Conference on Artificial Intelligence, volume 4304 of Lecture
Notes in Computer Science, pages 1101–1105. Springer, 2006.

6 Martin Gebser, Torsten Grote, Roland Kaminski, Philipp Obermeier, Orkunt Sabuncu, and
Torsten Schaub. Stream reasoning with answer set programming: Preliminary report. In
Gerhard Brewka, Thomas Eiter, and Sheila A. McIlraith, editors, KR. AAAI Press, 2012.

7 Martin Gebser, Orkunt Sabuncu, and Torsten Schaub. An incremental answer set pro-
gramming based system for finite model computation. AI Communications, 24(2):195–212,
2011.

8 Jérôme Lang and Pierre Marquis. Reasoning under inconsistency: A forgetting-based
approach. Artif. Intell., 174(12-13):799–823, 2010.

9 Danh Le-Phuoc, Josiane Xavier Parreira, and Manfred Hauswirth. Linked stream data
processing. In Thomas Eiter and Thomas Krennwallner, editors, Reasoning Web, volume
7487 of Lecture Notes in Computer Science, pages 245–289. Springer, 2012.

10 Carlo Zaniolo. Logical foundations of continuous query languages for data streams. In
Pablo Barceló and Reinhard Pichler, editors, Datalog, volume 7494 of Lecture Notes in
Computer Science, pages 177–189. Springer, 2012.

Conformal Prediction under Hypergraphical
Models∗

Valentina Fedorova, Alex Gammerman, Ilia Nouretdinov, and
Vladimir Vovk

Computer Learning Research Centre
Royal Holloway, University of London, UK
{valentina,ilia,alex,vovk}@cs.rhul.ac.uk

Abstract
Conformal predictors are usually defined and studied under the exchangeability assumption.
However, their definition can be extended to a wide class of statistical models, called online
compression models, while retaining their property of automatic validity. This paper is devoted
to conformal prediction under hypergraphical models that are more specific than the exchange-
ability model. We define conformity measures for such hypergraphical models and study the
corresponding conformal predictors empirically on benchmark LED data sets. Our experiments
show that they are more efficient than conformal predictors that use only the exchangeability
assumption.

1998 ACM Subject Classification I.2.6 Learning

Keywords and phrases conformal prediction, hypergraphical models, conformity measure

Digital Object Identifier 10.4230/OASIcs.ICCSW.2013.27

1 Introduction

The method of conformal prediction was introduced and is usually used for producing valid
prediction sets under the exchangeability assumption; the validity of the method means that
the probability of making a mistake is equal to (or at least does not exceed) a prespecified
significance level ([5], Chapter 2). However, the definition of conformal predictors can be
easily extended to a wide class of statistical models, called online compression models (OCMs;
[5], Chapter 8). OCMs compress data into a more or less compact summary, which is
interpreted as the useful information in the data. With each “conformity measure”, which,
intuitively, estimates how well a new piece of data fits the summary, one can associate a
conformal predictor, which still enjoys the property of automatic validity.

This paper studies conformal prediction under the OCMs known as hypergraphical models
([5], Section 9.2). Such models describe relationships between data features. In the case where
every feature is allowed to depend in any way on the rest of the features, the hypergraphical
model becomes the exchangeability model. More specific hypergraphical models restrict
the dependence in some way. Such restrictions are typical of many real-world problems:
for example, different symptoms can be conditionally independent given the disease. A
popular approach to such problems is to use Bayesian networks (see, e.g., [2]). The definition
of Bayesian networks requires a specification of both the pattern of dependence between
features and the distribution of the features. Usual methods guarantee a valid probabilistic
outcome if the used distributions of features are correct. Several algorithms (see, e.g., [2],

∗ A longer version of this paper appeared in the proceedings of COPA 2013 [4].

© Valentina Fedorova, Alex Gammerman, Ilia Nouretdinov, and Vladimir Vovk;
licensed under Creative Commons License CC-BY

2013 Imperial College Computing Student Workshop (ICCSW’13).
Editors: Andrew V. Jones, Nicholas Ng; pp. 27–34

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2013.27
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

28 Conformal Prediction under Hypergraphical Models

Chapter 9) are known for estimating the distribution of features; however, the accuracy of such
approximations is a major concern in applying Bayesian networks. The conformal predictors
constructed from hypergraphical OCMs use only the pattern of dependence between the
features but do not involve their distribution. This makes conformal prediction based on
hypergraphical models more robust and realistic than Bayesian networks.

As far as we know, conformal prediction has been studied, apart from the exchangeability
model and its variations, only for the Gauss linear model and Markov model (see [5],
Chapter 8, and [3]). Hypergraphical OCMs have been used only in the context of Venn
rather than conformal prediction (see [5], Chapter 9).

The rest of the paper is organised as follows. Section 2 formally defines hypergraphical
OCMs and briefly reviews their basic properties. Section 3 describes the method of conformal
prediction in the context of hypergraphical models and introduces a class of conformity
measures for hypergraphical OCMs. Section 4 reports the performance of the corresponding
conformal predictors on benchmark LED data sets. Section 5 concludes.

2 Background

Consider two measurable spaces X and Y; elements of X are called objects and elements
of Y are called labels. Elements of the Cartesian product X ×Y are called examples. A
training set is a sequence of examples (z1, . . . , zl), where each example zi = (xi, yi) consists
of an object xi and its label yi. The general prediction problem considered in this paper is
to predict the label for a new object given a training set. We focus on the case where X and
Y are finite.

2.1 Hypergraphical Structures

In this paper we assume that examples are structured, consisting of variables. Hypergraphical
structures describe relationships between the variables. Formally a hypergraphical structure1
consists of three elements (V, E ,Ξ):
1. V is a finite set; its elements are called variables.
2. E is a finite collection of subsets of V whose union covers all variables:

⋃
E∈E E = V .

Elements of E are called clusters.
3. Ξ is a function that maps each variable v ∈ V into a finite set (of the values that v can

take).
A configuration on a set E ⊆ V (we are usually interested in the case where E is a cluster) is
an assignment of values to the variables from E; let Ξ(E) be the set of all configurations on
E. A table2 on a set E is an assignment of natural numbers to the configurations on E. The
size of the table is the sum of values that it assigns to different configurations. A table set is
a collection of tables on the clusters E , one for each cluster E ∈ E . The number assigned by
a table set σ to a configuration on E is called its σ-count.

1 The name reflects the fact that the components (V, E) form a hypergraph, where a hyperedge E ∈ E
can connect more than two vertices.

2 Generally, a table assigns real numbers to configurations. In this paper we only consider natural tables,
which assign natural numbers to configurations, and omit “natural” for brevity.

V. Fedorova, A. Gammerman, I. Nouretdinov, and V. Vovk 29

2.2 Hypergraphical Online Compression Models
The example space Z associated with the hypergraphical structure is the set of all con-
figurations on V . One of the variables in V is singled out as the label variable, and the
configurations on the label variable are denoted Y. All other variables are object variables,
and the configurations on the object variables are denoted X. Since Z = X×Y, this is a
special case of the prediction setting described at the beginning of this section.

An example z ∈ Z agrees with a configuration on a set E ⊆ V (or the configuration
agrees with the example) if the restriction z|E of z to the variables in E coincides with the
configuration. A table set σ generated by a sequence of examples (z1, . . . , zn) assigns to each
configuration on each cluster the number of examples in the sequence that agree with the
configuration; the size of each table in σ will be equal to the number of examples in the
sequence, and this number is called the size of the table set. Different sequences of examples
can generate the same table set σ, and we denote #σ the number of different sequences
generating σ.

The hypergraphical online compression model (HOCM) associated with the hypergraphical
structure (V, E ,Ξ) consists of five elements (Σ,2,Z, F,B), where:
1. The empty table set 2 is the table set assigning 0 to each configuration.
2. The set Σ is defined by the conditions that 2 ∈ Σ and Σ \ {2} is the set of all table sets

σ with #σ > 0. The elements σ ∈ Σ are called summaries.
3. The forward function F (σ, z), where σ ranges over Σ and z over Z, updates σ by adding

1 to the σ-count of each configuration which agrees with z.
4. The backward kernel B maps each σ ∈ Σ \ {2} to a probability distribution B(σ) on

Σ× Z assigning the weight #(σ ↓ z)/#σ to each pair (σ ↓ z, z), where z is an example
such that, for all configurations which agree with z, the corresponding σ-counts are
positive, and σ ↓ z is the table set obtained by subtracting 1 from the σ-counts of the
configurations that agree with z. Notice that B(σ) is indeed a probability distribution,
and it is concentrated on the pairs (σ ↓ z, z) such that F (σ ↓ z, z) = σ.

We will use “hypergraphical models” as a general term for hypergraphical structures and
HOCMs when no precision is required. When discussing hypergraphical models we will
always assume that the examples z1, z2, . . . are produced independently from a probability
distribution Q on Z that has a decomposition

Q({z}) =
∏
E∈E

fE(z|E) (1)

for some functions fE : Ξ(E)→ [0, 1], E ∈ E , where z is an example and z|E its restriction
to the variables in E.

2.3 Junction Tree Structures
An important type of hypergraphical structures is where clusters can be arranged into a
“junction tree”. For the corresponding HOCMs we will be able to describe efficient calculations
of the backward kernels. If one wants to use the calculations for a structure that cannot be
arranged into a junction tree it can be replaced by a more general junction tree structure
before defining the HOCM.

Let (U, S) denote an undirected tree with U the set of vertices and S the set of edges.
Then (U, S) is a junction tree for a hypergraphical structure (V, E ,Ξ) if there exists a bijective
mapping C from the set of vertices U of the tree to the set E of clusters of the hypergraphical
structure that has the following property: Cu ∩ Cw ⊆ Cv whenever a vertex v lies on the
path from a vertex u to a vertex w in the tree (we let Cx stand for C(x)).

ICCSW’13

30 Conformal Prediction under Hypergraphical Models

If s = {u, v} ∈ S is an edge of the junction tree connecting vertices u and v then Cs
stands for Cu ∩ Cv. It is convenient to identify vertices u and edges s of the junction tree
with the corresponding clusters Cu and sets Cs, respectively.

If E1 ⊆ E2 ⊆ V and f is a table on E2, the marginalisation of f to E1 is the table f∗
on E1 assigning to each a ∈ Ξ(E1) the number f∗(a) =

∑
b f(b), where b ranges over the

configurations on E2 such that b|E1 = a. If σ is a summary then for u ∈ U denote σu the
table that σ assigns to Cu, and for s = {u, v} ∈ S denote σs the marginalisation of σu (or
σv) to Cs. We will use the shorthand σu(z) for the number assigned to the restriction z|Cu

by the table for the vertex u and σs(z) for the number assigned to z|Cs by the marginal
table for the edge s. Consider the HOCM corresponding to the junction tree (U, S). We use
the notation Pσ(z) for the weight assigned by B(σ) to (σ ↓ z, z). It has been proved ([5],
Lemma 9.5) that

Pσ(z) =
∏
u∈U σu(z)

n
∏
s∈S σs(z)

, (2)

where n is the size of σ. If any of the factors in (2) is zero then the whole ratio is set to zero.

3 Conformal Prediction for HOCM

Consider a training set (z1, . . . , zl) and an HOCM (Σ,2,Z, F,B). The goal is to predict the
label for a new object x.

A conformity measure for the HOCM is a measurable function A : Σ × Z → R. The
function assigns a conformity score A (σ, z) to an example z w.r. to a summary σ. Intuitively,
the score reflects how typical it is to observe z having the summary σ.

For each y ∈ Y denote σ∗ ∈ Σ the table set generated by the sequence (z1, . . . , zl, (x, y))
(the dependence of σ∗ on y is important although not reflected in our notation). For z ∈ Z
such that σ∗ ↓ z is defined denote the conformity scores as αz := A (σ∗ ↓ z, z) (notice that
α(x,y) is always defined). The p-value for y, denoted p(y), is defined by

p(y) :=
∑

z:αz<α(x,y)

Pσ∗(z) + θ ·
∑

z:αz=α(x,y)

Pσ∗(z) (3)

(cf. (8.4) in [5]), where θ ∼ U[0, 1] is a random number from the uniform distribution on
[0, 1], Pσ∗(z) is the backward kernel, as defined above, and the sums involve only those z ∈ Z
for which αz is defined. Then for a significance level ε the conformal predictor Γ based on A
outputs the prediction set

Γε(z1, . . . , zl, x) := {y ∈ Y : p(y) > ε}.

The following section 3.1 defines one class of conformity measures for HOCMs and section 3.2
describes the criteria for the quality of conformal predictions which we use in the paper; for
other conformity measures and more criteria see sections 3.1 and 3.2 in [4].

3.1 Conformity Measures for HOCM
Consider a summary σ and an example (x, y). The conditional probability Pσ∗(y | x) of y
given x under Pσ∗ can be computed using (2) as follows

Pσ∗(y | x) = Pσ∗ ((x, y))∑
y′∈Y Pσ∗ ((x, y′)) ,

V. Fedorova, A. Gammerman, I. Nouretdinov, and V. Vovk 31

where σ∗ := F (σ, (x, y)) and Pσ∗ ((x, y)) is the backward kernel. Define the predictability of
an object x ∈ X as

f(x) := max
y∈Y

Pσ∗(y | x), (4)

the maximum of conditional probabilities. If the predictability of an object is close to 1 then
the object is “easily predictable”. Fix a choice function ŷ : X→ Y such that

∀x ∈ X : f(x) = Pσ∗(ŷ(x) | x).

The function maps each object x to one of the labels at which the maximum in (4) is attained.
The signed predictability conformity measure is defined by

A(σ, (x, y)) :=
{
f(x) if y = ŷ(x)
−f(x) otherwise.

(5)

3.2 Criteria for the Quality of Conformal Prediction

In this paper we study the performance of conformal predictors in the online prediction
protocol (Protocol 1). Reality generates examples (xn, yn) from a probability distribution Q
satisfying (1) for some hypergraphical structure. Predictor uses a conformal predictor Γ to
output the prediction set Γεn := Γε(x1, y1, . . . , xn−1, yn−1, xn) at each significance level ε.

Protocol 1 Online prediction protocol
for n = 1, 2, . . . do
Reality outputs xn ∈ X
Predictor outputs Γεn ⊆ Y for all ε ∈ (0, 1)
Reality outputs yn ∈ Y

end for

Two important properties of conformal predictors are their validity and efficiency; the
first is achieved automatically and the second is enjoyed by different conformal predictors
to a different degree. Predictor makes an error at step n if yn is not in Γεn. The validity of
conformal predictors means that, for any significance level ε, the probability of error yn /∈ Γεn
is equal to ε. It has been proved that conformal predictors are automatically valid under
their models ([5], Theorem 8.1). In this paper we study problems where the hypergraphical
model used for computing the p-values is known to be correct; therefore, the predictions will
always be valid, and there is no need to test validity experimentally. One possible way to
measure efficiency is to count the number of multiple predictions Multεn over the first n steps
defined by

multεn :=
{

1 if |Γεn| > 1
0 otherwise

and Multεn :=
n∑
i=1

multεi

at each significance level ε ∈ (0, 1) (cf. [5], Chapter 3). In our experiments we will look at
the percentage of multiple predictions Multεn/n; we would like it to be close to 0 for small
significance levels.

ICCSW’13

32 Conformal Prediction under Hypergraphical Models

Figure 1 LED images for digits 7, 8, and 9 in the seven-segment display.

4 Experimental Results

4.1 LED Data Set
For our experiments we use benchmark LED data sets generated by a program from the
UCI repository [1]. The problem is to predict a digit from an image in the seven-segment
display. Figure 1 shows several objects in the data set (these are “ideal images” of digits;
there are also digits corrupted by noise). The seven LEDs (light emitting diodes) can be lit
in different combinations to represent a digit from 0 to 9. The program generates examples
with noise. There is an ideal image for each digit. An example has seven binary attributes
s0, . . . , s6 (si is 1 if the ith LED is lit) and a label c, which is a decimal digit. The program
randomly chooses a label (0 to 9 with equal probabilities), inverts each of the attributes of
its ideal image with probability pnoise = 1% independently, and adds the noisy image and
the label to the data set.

4.2 Hypergraphical Assumptions for LED Data Sets
We consider two hypergraphical models that agree with the generating mechanism. These
models make different assumptions about the pattern of dependence between the attributes
and the label; they do not depend on a particular probability of noise pnoise or the fact that
the same value of pnoise is used for all LEDs. For both hypergraphical structures the set of
variables is V := {s0, . . . , s6, c}.
Nontrivial Hypergraphical Model. Consider the hypergraphical structure with the
clusters E := {{si, c} : i = 0, . . . , 6}. A junction tree for this hypergraphical structure can be
defined as a chain with vertices U := {ui : i = 0, . . . , 6} and the bijection Cui

:= {si, c}.
Exchangeability Model. The hypergraphical model with no information about the pattern
of dependence between the attributes and the label is the exchangeability model. The
corresponding hypergraphical structure has one cluster, E := {V }. The junction tree is the
one vertex associated with V .

4.3 Experiments
For our experiments we create a LED data set with 10000 examples. The data are generated
by the program described in section 4.1 with the probability of noise pnoise = 1%.

We consider predictors based on the signed predictability conformity measure (5). The
graph with no characters on it corresponds to the idealized predictor and represents an
unachievable ideal goal. In the idealized case we know the true distribution for data and use
it instead of the backward kernel Pσ∗ in both (3) and (5). The pure hypergraphical conformal
predictor (the graph with circles) is obtained using the nontrivial hypergraphical model both
when computing p-values (3) and when computing the conformity measure (5). Analogously
we use the exchangeability model to obtain the pure exchangeability conformal predictor (the

V. Fedorova, A. Gammerman, I. Nouretdinov, and V. Vovk 33

significance level

p
er

ce
n
ta

g
e

o
f

m
u
lt

ip
le

 p
re

d
ic

ti
o
n
s

0% 0.5% 1% 1.5% 2% 2.5% 3%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

pv: exch; CM: exch

pv: exch; CM: hgr

pv: hgr; CM: exch

pv: hgr; CM: hgr

pv: ideal; CM: ideal

Figure 2 The final percentage of multiple predictions for significance levels between 0% and 3%.
The results are for the LED data set with 1% of noise and 10000 examples.

Table 1 The final percentage of multiple predictions in Figure 2 for the significance level 1% and
for the graphs with squares and circles.

Seed (104) 0 1 . . . 99 Average St. dev.

pv: exch; CM: hgr 0.197 0.243 . . . 0.248 0.192 0.052
pv: hgr; CM: hgr 0.203 0.244 . . . 0.250 0.196 0.049

graph with triangles point up). The two mixed conformal predictors (the graphs with squares
and triangles point down) are obtained when we use different models to compute the p-values
and the conformity scores. The intuition behind the pure and mixed conformal predictors can
be explained using the distinction between hard and soft models made in [6]. The model used
when computing the p-values (3) is the hard model; the validity of the conformal predictor
depends on it. The model used when computing conformity scores (5) is the soft model; when
it is violated, validity is not affected, although efficiency can suffer. The true probability
distribution for our generated data conforms to both the exchangeability model and the
nontrivial hypergraphical model; so all four conformal predictors are automatically valid,
and we study only their efficiency. Figure 2 shows the percentage of multiple predictions
Multε10000/10000 as function of the significance level ε ∈ [0, 0.03]. In the legend, the hard
model used is indicated after “pv” (the way of computing the p-values), and the soft model
used is indicated after “CM” (the conformity measure); “exch” refers to the exchangeability
model, and “hgr” refers to the nontrivial hypergraphical model. The most interesting graph
is the one with squares, corresponding to the exchangeability model as the hard model and
the nontrivial hypergraphical model as the soft model. The performance of the corresponding

ICCSW’13

34 Conformal Prediction under Hypergraphical Models

conformal predictor is typically better than, or at least close to, the performance of any of
the remaining realistic predictors. The fact that the validity of the conformal predictor only
depends on the exchangeability assumption makes it particularly valuable. The graph with
triangles point down corresponds to the nontrivial hypergraphical model as the hard model
and the exchangeability model as the soft model; the performance of the corresponding
conformal predictor is very poor in our experiments.

Table 1 shows the percentage of the multiple prediction at the significance level 1% for
two graphs (with squares and with circles) for several seeds of the pseudorandom number
generator. The values of the seed are given in the units of 10,000 (so that 0 stands for 0, 1
for 10,000, 2 for 20,000, etc.). The column “Average” gives the average of all the 100 values,
and column “St. dev.” gives the standard estimate of the standard deviation computed from
those 100 values. The table confirms that the graphs are very close on average (see the
penultimate column), but the accuracy of our experiments is insufficient to say which tends
to be lower (see the last column).

5 Conclusion

The main finding of this paper is that nontrivial hypergraphical models can be useful for
conformal prediction when they are true. More surprisingly, in our experiments they only
need to be used as soft models; the performance does not suffer much if the exchangeability
model continues to be used as the hard model. This interesting phenomenon deserves a
further empirical study.

Acknowledgements We thank the COPA 2013 reviewers for comments that improved the
results of the paper. We are indebted to Royal Holloway, University of London, for continued
support and funding. This work has also been supported by: the EraSysBio+ grant SHIPREC
from the European Union, BBSRC and BMBF; a VLA grant on machine learning algorithms;
a grant from the National Natural Science Foundation of China (No. 61128003); a grant from
the Cyprus Research Promotion Foundation (research contract TPE/ORIZO/0609(BIE)/24);
grant EP/K033344/1 from EPSRC.

References
1 K. Bache and M. Lichman. UCI machine learning repository. School of Information and

Computer Sciences, University of California, Irvine, CA, USA, 2013.
2 R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Probabilistic Networks

and Expert Systems. Springer, New York, 1999. Reprinted in 2007.
3 V. Fedorova, I. Nouretdinov, and A. Gammerman. Testing the Gauss linear assumption

for on-line predictions. Progress in Artificial Intelligence, 1:205–213, 2012.
4 V. Fedorova, I. Nouretdinov, A. Gammerman, and V. Vovk. Conformal prediction under

hypergraphical models. In Proceedings of the Ninth International Conference on Artificial
Intelligence Applications and Innovations (AIAI 2013), Paphos, Cyprus, 2013. To appear,
available at www.alrw.net/articles/09.pdf.

5 V. Vovk, A. Gammerman, and G. Shafer. Algorithmic Learning in a Random World.
Springer, New York, 2005.

6 V. Vovk, I. Nouretdinov, and A. Gammerman. On-line predictive linear regression. On-line
Compression Modelling project (New Series), Working Paper 1, May 2005.

Relational Knowledge Extraction from
Attribute-Value Learners
Manoel V. M. França1, Artur S. D. Garcez2, and
Gerson Zaverucha3

1,2 Department of Computing
School of Informatics, City University London
EC1V 0HB London, United Kingdom
manoel.franca.1,aag@city.ac.uk

3 Programa de Engenharia de Sistemas e Computação
COPPE, Universidade Federal do Rio de Janeiro
21941-972 Rio de Janeiro, Brazil
gerson@cos.ufrj.br

Abstract
Bottom Clause Propositionalization (BCP) is a recent propositionalization method which allows
fast relational learning. Propositional learners can use BCP to obtain accuracy results comparable
with Inductive Logic Programming (ILP) learners. However, differently from ILP learners, what
has been learned cannot normally be represented in first-order logic. In this paper, we propose
an approach and introduce a novel algorithm for extraction of first-order rules from propositional
rule learners, when dealing with data propositionalized with BCP. A theorem then shows that
the extracted first-order rules are consistent with their propositional version. The algorithm was
evaluated using the rule learner RIPPER, although it can be applied on any propositional rule
learner. Initial results show that the accuracies of both RIPPER and the extracted first-order
rules can be comparable to those obtained by Aleph (a traditional ILP system), but our approach
is considerably faster (obtaining speed-ups of over an order of magnitude), generating a compact
rule set with at least the same representation power as standard ILP learners.

1998 ACM Subject Classification I.2.3 Deduction and Theorem Proving

Keywords and phrases Relational Learning, Propositionalization, Knowledge Extraction

Digital Object Identifier 10.4230/OASIcs.ICCSW.2013.35

1 Introduction

Relational learning can be described as the task of learning a first-order logic theory from
examples [10, 3]. Inductive Logic Programming (ILP) [15, 17] performs relational learning
either directly by manipulating first-order rules or through a method called propositionaliza-
tion [13, 22], which brings the relational task down to the propositional level by representing
subsets of relations as features that can then be used as attributes. In comparison with full
ILP, propositionalization normally exchanges accuracy for efficiency [11], as it enables the
use of fast attribute-value learners such as rule learners [2], but could lose information in the
translation of first-order rules into features. Bottom Clause Propositionalization (BCP) [5] is
a recent propositionalization method which allows fast relational learning and also allows
propositional learners to obtain accuracy results on par with Inductive Logic Programming
(ILP) learners, although differently from ILP learners, what has been learned is not possible
to be represented in first-order.

© Manoel V. M. França, Artur S. D. Garcez, and Gerson Zaverucha;
licensed under Creative Commons License CC-BY

Imperial College Computing Student Workshop (ICCSW’13).
Editors: Andrew V. Jones, Nicholas Ng; pp. 35–42

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2013.35
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

36 Relational Knowledge Extraction from Attribute-Value Learners

In this paper, we introduce a novel algorithm for consistent extraction of first-order rules
from propositional rule learners, when dealing with data propositionalized with BCP. Bottom
clauses are variablized first-order clauses that are used as boundaries in ILP hypothesis
search space, firstly introduced by Progol [14]. Given an ILP dataset, bottom clauses are
built from one positive example e, background knowledge BK (a set of clauses that describe
what is known) and language bias L (a set of clauses that define how clauses can be built).
A bottom clause is the most specific clause (with most literals) that can be considered a
candidate hypothesis. BCP uses bottom clauses for propositionalization because they carry
semantic meaning, and because bottom clause literals can be used directly as features in a
truth-table, simplifying the feature extraction process [16, 4]. BCP extends Progol’s bottom
clause generation algorithm to deal with negative examples and it keeps track of a hash
table which is responsible to map each constant found during bottom clause generation to
an unique variable, for each example. This hash table is one of the key differences between
BCP and other propositionalization methods such as RSD [22], SINUS [10] and RELAGGS
[12], and is used by our approach to transform propositional rules learned from data which
was propositionalized with BCP (which we will refer in this work simply as BCP-rules)
to consistent and accurate relational (first-order) rules. A theorem then shows that the
extracted first-order rules are consistent with their propositional version.

Our methodology is evaluated using BCP for propositionalization and the propositional
rule learner RIPPER on four Alzheimer datasets [9] and we have used three metrics to
present our results: standard classification accuracy (the percentage of correctly classified
examples, among all tested examples), runtime (total time taken to complete the experiment,
from training to testing), and rule size (we define rule size as the number of body and head
literals in the entire induced theory). Results show that although information loss is expected
when dealing with propositionalization methods [22, 10, 5], the accuracy of both RIPPER
and the first-order rules can be comparable with Aleph [20], a traditional ILP system, in
some cases, while being considerably faster and generating rules with lower size. The rules
generated by our algorithm also have more representational power, by being able to represent
disjunctions and negation as failure.

The remainder of this paper is as follows: in Section 2, we review BCP and the proposi-
tional rule learner RIPPER. In Section 3, we introduce our contribution: an algorithm for
extracting relational rules from BCP-rules. Our empirical results with regard to classification
accuracy, runtime and rule size in comparison with RIPPER and Aleph is shown in Section
4, and in Section 5, we conclude and discuss directions for future work.

2 Background

In this section, the key methods and algorithms used in our work are introduced: Bottom
Clause Propositionalization and RIPPER.

Bottom Clause Propositionalization [5] is a logic-based propositionalization method
which takes advantage of Progol’s bottom clause generation algorithm and the previous work
from [4], which shows that bottom clause literals can be used as propositional features. In
[5], BCP managed to achieve comparable results with Aleph in a number of ILP datasets,
even though propositionalization methods incur information loss. Additionally, BCP was
faster and also obtained better accuracy and runtime results when compared to RSD. One
problem with the obtained results, though, was that all tests were done in the propositional
level. We investigate in this paper how to bring those results back to first-order.

BCP has two steps: bottom clause generation and attribute-value mapping. In the first

M. V. M. França, A. S. D. Garcez, and G. Zaverucha 37

step, each example is given to Progol’s bottom clause generation algorithm [21] to create
a corresponding bottom clause representation. To do so, a slight modification is needed to
allow the same hash function to be shared among all examples, in order to keep consistency
between variable associations (i.e., to ensure that variable associations are done in the same
way, for different bottom clauses), and to allow negative examples to have bottom clauses as
well; the original algorithm deals with positive examples only. The generation algorithm has
a single parameter, depth, which is the variable depth of the bottom clause generation process.
A more detailed description of the modified version of Progol’s bottom clause generation
algorithm can be found in [5].

To illustrate BCP’s bottom clause generation, consider the well-known family relation-
ship [15] ILP example: BK = {mother(mom1, daughter1), wife(daughter1, husband1),
wife(daughter2, husband2)}, positive example motherInLaw(mom1, husband1), and negative
example motherInLaw(daughter1, husband2). If the modified bottom clause generation al-
gorithm is executed with depth = 1 on the positive and negative examples shown above, it gen-
erates the following training set: S⊥ = {motherInLaw(A,B) :- mother(A,C), wife(C,B);
∼ motherInLaw(A,B) :- wife(A,C)}.

After the creation of the S⊥ set, each bottom clause inside S⊥ is converted into a binary
vector vi, 0 ≤ i ≤ n, according to the presence or absence of each found literal inside S⊥,
where n is the number of distinct literals inside S⊥.

RIPPER [2] is a well-known propositional rule learner which can be considered the
propositional version of the FOIL first-order theory induction algorithm [8] in the sense
that it also performs a covering-based algorithm to choose literals to build its theory, using
information gain as search heuristic. RIPPER’s focus is to tackle noisy data and achieve
competitive results with regard to Quinlan’s propositional tree-learner C4.5 [18]. RIPPER
extends its predecessor IREP [6], by improving its information gain heuristic and its stopping
criteria (this improvement was named IREP*), and uses IREP* multiple times, to perform
different parts of the learning task. Those parts are: IREP* is used once to obtain an initial
rule set, covering part of the positive examples; The rules are optimized with regard to
redundancy/consistency; and IREP* is used again to cover the remaining positive examples.

RIPPER has been shown in [2] to generate rules with better performance than C4.5’s
decision trees and to be efficient (fast and accurate) on large and noisy datasets. RIPPER’s
ability to generate good rules when dealing with large and noisy datasets is the reason it
is chosen to process data which was propositionalized with BCP: bottom clauses can be
considerably large, possibly having infinite size [14], and a learner which can deal with large
number of noisy features is better suited to deal with BCP.

3 Extracting Relational Knowledge from BCP-Rules

In this section, our algorithm for generating first-order rules from BCP-rules is introduced.
It is important to notice that the described methodology below does not require a specific
attribute-value learner: any propositional learner which is able to generate logic rules to
describe what has been learned, e.g. decision tree learners, rule learners and graph learners,
are all able to be used for the proposed rule extraction.

As a first step of our approach, we explain hereafter how BCP-rules are generated. Firstly,
BCP is applied in the examples set, generating a bottom clause set S⊥, as shown in Section
2. Then, attribute-value learning takes place. In this work, we have chosen RIPPER due to
the advantages described in Section 2, but any learner that can generate rules can be used,
although further investigation is required.

ICCSW’13

38 Relational Knowledge Extraction from Attribute-Value Learners

By using RIPPER on data propositionalized with BCP, a set of rules is created. From an
ILP point of view, those rules do not necessarily obey variable chaining properties or any
kind of language bias restrictions: each feature (i.e. each distinct bottom clause atom) is seen
as propositional features by RIPPER and thus, further processing needs to be done in order
to treat it as first-order. As an example, consider the following propositionalized dataset:

S⊥ = {motherInLaw(A,B) : − mother(C,B), wife(C,D); (1)
motherInLaw(A,B) : − mother(A,C), wife(C,B);

∼ motherInLaw(A,B) : − wife(C,B), parents(C,B,D), dad(E,F)}.

From this dataset, one possible rule generated by RIPPER (containing features from
positive examples and negated features from negative examples), in Prolog format, could be:

R⊥ = {motherInLaw(A,B) : − mother(A,C), wife(C,D), not(dad(E,F))}. (2)

The first point worth noticing regarding R⊥ is that it can represent the absence of a BCP
feature, e.g. not(dad(E,F)), which is equivalent to negation as failure [7] and shows that
the rules we generate have more representational power. The second point is that there is a
problem with the generated BCP-rule R⊥, if it is treated directly as first-order: the variables
of dad(E,F) are not present in any other body or head atom (from now on, we will refer
to those variables as unconstrained variables). This is possible to happen due to the fact
that all atoms are seen as features generated by BCP, thus not taking into consideration the
language bias. If R⊥ is used as theory to infer unseen first-order data, as long as there is at
least one dad/2 ground atom1 inside the background knowledge, dad(E,F) would always
be true and thus, not(dad(E,F)) would always be false and R⊥ would always be false as
well, thus limiting the generalization capabilities of R⊥. In order to solve this issue, after
generating BCP-rules using RIPPER and obtaining a set of BCP-rules R⊥, all unconstrained
variables need to be removed from R⊥ before treating it as a first-order theory.

The process of extracting first-order rules from BCP-rules can be divided into three steps:
unconstrained variables search, unconstrained variables replacing and first-order filtering. In
the first step, unconstrained variables search, a search is done in the BCP-rules to find literals
with unconstrained variables (i.e., finding all occurrences of literals such as not(dad(E,F))
in R⊥ above). We detect unconstrained variables from the rightmost literal to the leftmost
one, by verifying if the variable being checked, belonging to a body literal li, appears on
any other body literal in {lj |j < i}. For each BCP-rule r ∈ R⊥, we store unconstrained
variables (and the literals where they were found) to be used in the next step of our algorithm,
unconstrained variables grounding.

As an example, let us use the R⊥ defined in (2) as input for unconstrained variables
search. Firstly, unconstrained variables are searched in the single clause of R⊥, from the
right to the left. In the rightmost literal, not(dad(E,F)), two unconstrained variables are
found: E and F . Because of that, both variables and the literal where they were found are
stored. After advancing to the next rightmost literal, one more unconstrained variable is
found: D. Thus, D is stored for the next part of our algorithm, together with the literal
wife(C,D) where it was found. Note that the other variable, C, is not included, since it
appears in mother(A,C) and thus, it is not unconstrained. Since no more unconstrained
variables can be found, the first step of our extraction algorithm comes to an end with the
following variables/literals stored: M ={E,F, not(dad(E,F)); D,wife(C,D)}.

1 Ground atoms are atoms which does not contain variables, only constants.

M. V. M. França, A. S. D. Garcez, and G. Zaverucha 39

After that, unconstrained variables replacing comes into place. All the stored variables
are replaced using the hash table generated during BCP, as mentioned on Section 2, in
order to eliminate all unconstrained variables which were found in the previous steps. To
illustrate that, let us continue our family relationship example. Three variables have been
flagged as unconstrained: E and F , from the literal not(dad(E,F)), and D, from the literal
wife(C,D). Assume the same propositionalized examples set S⊥ shown in (1), that generated
the BCP-rules set R⊥. Since the body of the first example of S⊥ contains one variable of M
(which is D), the second example does not contain any of the variables mapped in M , and
the third example contains all three variables inside M , which are D, E and F (totalizing
two occurrences of D and one occurrence of both E and F on S⊥), BCP’s hash must have
two entries for D, one entry for E and one entry for F . Let us assume that those entries are
{D/husband1}, {D/daughter1}, {E/mom1} and {F/daughter1}.

As explained earlier, as long as a BCP-propositionalized example contains a literal
lexically identical to a literal from another example, both will be considered to have the
feature represented by that literal. In the case of the feature wife(C,D), for instance, even
though different examples have different hash mappings for C and D, the presence or not of
wife(C,D) is what is considered for propositional learning. This suggests that the rule that
defines the truth-value of a feature is a disjunction over all observed mappings (unifications)
in the training set during BCP propositionalization. Theorem 2 below shows that for each
BCP feature, a disjunction over all possible unifications of a feature with grounding operators
over all examples is semantically equivalent to the feature itself.

I Definition 1. Let e ∈ E be an example of an dataset E, propositionalized with BCP.
Also, let f be a BCP feature, let U be the set of all unconstrained variables which can be
found inside f , having size k, and let hashe be the variable/constant mapping generated for
example e during BCP. The grounding unifier θf

e for a feature f with regard to an example
e is defined as θf

e = {v1/c1, v2/c2, · · · , vk/ck}, where vi ∈ U, 1 ≤ i ≤ k is an unconstrained
variable and ci is the constant which is mapped to vi, according to hashe. If k = 0, θf

e = ∅.

I Theorem 2. Let E be an example set, propositionalized with BCP and having size n,
and f be one of the generated features with BCP when applied to E. Also, let v(f) be a
valuation function, which associates a boolean truth-value for a feature f . Then, v(f) ≡
v(fθf

e1
) ∨ v(fθf

e2
) ∨ · · · ∨ v(fθf

en
), where {e1, e1 · · · e1} ⊂ E and fθf

ei
is the unification of

feature f with a grounding unifier θf
ei
, 1 ≤ i ≤ n.

Proof. Proof by contradiction. Suppose that there exists a feature f and examples ei ∈ E,
1 ≤ i ≤ n, where v(f) 6≡ v(fθf

e1
)∨ v(fθf

e2
)∨ · · · ∨ v(fθf

en
) holds. There are two case scenarios

that makes this equation true:

There exists a feature f with truth-value true, but all possible unifications of f with
ground unifiers θf

ei
, 1 ≤ i ≤ n, are false. If f appears in a rule, it must have been found

in at least one bottom clause generated with BCP from an example e ∈ E. Then, there
exists one set of unifications {v/c} in hashe, one for each v inside f , which makes f{v/c}
true. If this unifier is used as θf

e , then at least one member of the disjunction is true.
There exists a feature f which is false, but at least one possible unification θf

ei
of f ,

1 ≤ i ≤ n, with ground unifier θf
ei
, is true. Definition 1 ensures that f can be found inside

ei, otherwise θf
ei

would not exist. Thus, if θf
ei

is a valid unifier for ei, it also needs to be
a valid unifier for f .

J

ICCSW’13

40 Relational Knowledge Extraction from Attribute-Value Learners

We now can solve the problem of BCP-rules having unconstrained variables by replacing
them with disjunctions of grounding unifications (we call those unified BCP-rules constrained
BCP-rules). We illustrate the second step of our algorithm by continuing our family
relationship example. From the first step of our relational knowledge extraction algorithm, we
have obtained a list of variables that are unconstrained and need to be replaced: E and F , from
feature not(dad(E,F)), and D, from feature wife(C,D). From (1), one example contains
the feature not(dad(E,F)) and two contain feature wife(C,D). Thus, not(dad(E,F)) is
replaced by one grounded literal and wife(C,D) is replaced by a disjunction of two grounded
literals, by applying Theorem 2 and using the previously specified hash entries for those
examples: {D/husband1}, {D/daughter1}, {E/husband2} and {F/daughter1}. Those
replacements are {not(dad(E,F)) 7→ not(dad(husband1, daughter1))} and {wife(C,D) 7→
wife(C, daughter1) ∨ wife(C, husband2)} and thus, the resulting constrained BCP-rule set
RC

⊥ after replacing R⊥ from (2) with the created grounded atoms (in prolog format) is

RC
⊥ = {motherInLaw(A,B) : −mother(A,C), (wife(C, daughter1);wife(C, husband2)),

not(dad(husband1, daughter1))}.

Lastly, in first-order filtering, we apply a modified version of the theory filtering algorithm
T-reduce [20], a companion program to Aleph, in theory RC

⊥. The original T-reduce al-
gorithm is capable of removing rules that do not cover any first-order training example
and rules that contribute negatively to the theory accuracy. We modified T-reduce to
also to cut out redundant literals and literals that do not have variables on it. Literals
without variables need to be removed for the same reason the unconstrained variables of
not(dad(E,F)) need to be replaced: depending on the background knowledge, those literals
are always true or always false, thus contributing negatively to the rule’s ability to generalize.
As an example, if our version of T-reduce is applied on RC

⊥, assuming that RC
⊥ is non-

redundant (otherwise it would be removed by T-reduce), we obtain the final first-order theory
RF OL

⊥ = {motherInLaw(A,B) :- mother(A,C), (wife(C, daughter1);wife(C, husband2))},
since not(dad(husband1, daughter1)) does not have variables on it.

To illustrate the whole process of extracting first-order rules from BCP-rules, our complete
procedure is summarized in Algorithm 1. It receives as input a set of BCP-rules R⊥ and
outputs a set RF OL

⊥ of extracted first-order rules.

Algorithm 1 First-order Rules Extraction from BCP-rules
1: RF OL

⊥ = ∅
2: Let U be the set of unconstrained variables and their respective literals inside R⊥
3: for each rule r of R⊥ do
4: Apply Theorem 2 by using U on r to obtain a constrained clause cr

5: Apply (modified) T-reduce on cr to obtain a filtered clause rtreduce

6: Check if rtreduce contributes positively towards accuracy; if not, discard it
7: Add rtreduce to RF OL

⊥ , if it has not been discarded
8: end for
9: return RF OL

⊥

4 Initial Results

In this section, we present the experimental methodology and initial results for our relational
knowledge extraction algorithm. We show comparative results between the ILP system

M. V. M. França, A. S. D. Garcez, and G. Zaverucha 41

Aleph, RIPPER when trained with BCP-data (we will refer to it as BCP+RIPprop) and
the extracted first-order rules from BCP+RIPprop (we will refer to it as BCP+RIPF OL),
using the methodology presented on Section 3. We have used the Alzheimers benchmark [9],
which consists of four datasets: Amine, Acetyl, Memory and Toxic. The used experimental
configurations on Aleph, RIPPER and BCP can be found on http://soi.city.ac.uk/
~abdz937/iccsw13Parameters.txt.

We evaluate the results on three aspects: standard accuracy, runtime and theory size. We
define standard accuracy as the percentage of correctly classified examples over test data;
we define runtime as the total pre-processing, training and testing times for each system;
and we define theory size as the total number of literals (body literals and head literals) in
the learned theory. Our obtained results, averaged by 10-fold cross-validation for accuracy
and theory size, and accumulated over all 10 fold with regard to runtime, are presented
on Table 1. In the accuracy results, values in bold are the highest ones obtained between
BCP+RIPprop and BCP+RIPF OL and the difference between them and the ones marked
with asterisk (*) are statistically significant by two-tailed, paired t-test.

Table 1 Accuracy results (with standard deviation), runtimes and theory size measurements
for the Alzheimers benchmark (accuracies in the first line; runtimes, theory size in the second
line). The results accuracy difference between BCP+RIPprop and Aleph, on all four datasets, are
not statistically significant. Between BCP+RIPprop and BCP+RIPF OL, BCP+RIPF OL managed
to obtain statistically comparable accuracy results with BCP+RIPprop in the first two datasets
(Alz-ami and Alz-ace). Comparing directly BCP+RIPF OL with Aleph, BCP+RIPF OL also managed
to obtain statistically comparable results on two datasets, Alz-ami and Alz-ace. Additionally, it can
be seen that the our methodology is considerably faster than Aleph, obtaining an average speed-up
over all four datasets of more than one order of magnitude, while generating smaller rules as well.

Alz-ami Alz-ace Alz-mem Alz-tox

Aleph 78.71(±5.25) 69.46(±4.6) 68.57(±5.7) 80.5(±4.83)
(baseline) 1:31:05, 36.1 8:06:06, 47.3 3:47:55, 45.7 6:02:05, 37.9

BCP+RIPprop 73.35(±4.32) 67.8(±3.77) 65.27(±7.11) 78.44(±5.44)
0:19:49/30 0:23:21/20.1 0:25:11/14.4 0:17:41/35.2

BCP+RIPF OL 77.73(±4.57) 63.56(±5.06) 57.64 ∗ (±5.7) 66.45 ∗ (±6.93)
0:21:59/30.4 0:26:39/18.7 0:28:45/13.8 0:20:57/18

5 Conclusion and Future Work

This paper has tackled the problem of accurately and consistently represent what has been
learned with data previously propositionalized with BCP, but back to a relational format, by
introducing a novel algorithm for consistent extraction of first-order rules from propositional
rules described with BCP features. A theorem shows that the extracted first-order rules are
consistent with their propositional version. Our results show that the presented methodology
is promising and it can not only extract accurate rules from propositional learners which
used BCP as propositionalization method, but it can also improve its accuracy in the process.
Additionally, our approach is capable of generating first-order rules with disjunctions and
negation as failure, which standard ILP inducers cannot, and our results show that our
approach is considerably faster than Aleph (a speed-up of over an order of magnitude on
average) and also generates smaller rules.

ICCSW’13

http://soi.city.ac.uk/~abdz937/iccsw13Parameters.txt
http://soi.city.ac.uk/~abdz937/iccsw13Parameters.txt

42 Relational Knowledge Extraction from Attribute-Value Learners

As future work, experiments on datasets with numerical (continuous) data, such as
Carcinogenesis [19] and with very large data, such as CORA [1] are underway. Also, a new
version of RIPPER which satisfies mode declarations, for learning with BCP, is being studied.

References
1 M. Bilenko and R. J. Mooney. Adaptive duplicate detection using learnable string similarity

measures. In Proc. ACM SIGKDD, pages 39–48, New York, NY, USA, 2003.
2 W. W. Cohen. Fast effective rule induction. In Armand Prieditis and Stuart J. Russell,

ed., ICML, pg. 115–123. Morgan Kaufmann, 1995.
3 L. De Raedt. Logical and Relational Learning. Cognitive Technologies. Springer, 2008.
4 F. DiMaio and J. W. Shavlik. Learning an Approximation to Inductive Logic Programming

Clause Evaluation. In ILP, vol. 3194 of LNAI, pg. 80–97, 2004.
5 M. V. M. França, G. Zaverucha, and A. S. D. Garcez. Fast relational learning using bottom

clause propositionalization with artificial neural networks. Mach. Learn., pg. 1–24, 2013.
6 J. Fürnkranz and G. Widmer. Incremental reduced error pruning. In William W. Cohen

and Haym Hirsh, ed., ICML, pg. 70–77. Morgan Kaufmann, 1994.
7 M. L. Ginsberg, editor. Readings in nonmonotonic reasoning. Morgan Kaufmann, San

Francisco, CA, USA, 1987.
8 J. R. Quinlan and R. M. Cameron-Jones. FOIL: A Midterm Report. In Proc. ECML, pages

3–20. Springer, 1993.
9 R.D. King and A. Srinivasan. Relating chemical activity to structure: An examination of

ILP successes. New Generation Computing, 13(3-4):411–434, 1995.
10 S. Kramer, N. Lavrač, and P. Flach. Relational Data Mining. chapter Propositionalization

approaches to relational data mining, pg. 262–286. Springer, New York, NY, USA, 2000.
11 M. A. Krogel, S. Rawles, F. Železný, P. Flach, N. Lavrač, and S. Wrobel. Comparative

Evaluation Of Approaches To Propositionalization. In ILP, vol. 2835 of LNAI, pg. 194–217.
Springer, 2003.

12 M. A. Krogel and S. Wrobel. Facets of Aggregation Approaches to Propositionalization.
pg. 30–39. Department of Informatics, University of Szeged, September 2003.

13 N. Lavrač and S. Džeroski. Inductive logic programming: techniques and applications.
Ellis Horwood, 1994.

14 S. Muggleton. Inverse Entailment and Progol. New Generation Computing, 13(3-4):245–
286, 1995.

15 S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods. J.
Log. Program., 19/20:629–679, 1994.

16 S. Muggleton and A. Tamaddoni-Nezhad. QG/GA: a stochastic search for Progol. Mach.
Learn., 70:121–133, 2008.

17 S.H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Programming, vol.
1228 of LNAI. Springer, 1997.

18 J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann, San Francisco,
CA, USA, 1993.

19 A. Srinivasan, R. D. King, S. H. Muggleton, and M. J. E. Sternberg. Carcinogenesis
Predictions using ILP. Proc. International Workshop on Inductive Logic Programming,
1297(1297):273–287, 1997.

20 A. Srinivasan. The Aleph System, version 5. http://www.cs.ox.ac.uk/activities/
machlearn/Aleph/aleph.html, June 2007. Last accessed on July/2013.

21 A. Tamaddoni-Nezhad and S. Muggleton. The lattice structure and refinement operators
for the hypothesis space bounded by a bottom clause. Mach. Learn., 76(1):37–72, 2009.

22 F. Železný and N. Lavrač. Propositionalization-based Relational Subgroup Discovery With
RSD. Machine Learning, 62:33–63, 2006.

Tools for the implementation of argumentation
models
Bas van Gijzel

Functional Programming Laboratory,
School of Computer Science,
University of Nottingham,
United Kingdom
bmv@cs.nott.ac.uk

Abstract
The structured approach to argumentation has seen a surge of models, introducing a multitude
of ways to deal with the formalisation of arguments. However, while the development of the
mathematical models have flourished, the actual implementations and development of methods
for implementation of these models have been lagging behind. This paper attempts to alleviate
this problem by providing methods that simplify implementation, i.e. we demonstrate how the
functional programming language Haskell can naturally express mathematical definitions and
sketch how a theorem prover can verify this implementation. Furthermore, we provide methods
to streamline the documenting of code, showing how literate programming allows the implementer
to write formal definition, implementation and documentation in one file. All code has been made
publicly available and reusable.

1998 ACM Subject Classification I.2.3 Nonmonotonic reasoning and belief revision

Keywords and phrases argumentation, implementation, functional programming, Haskell,
Carneades

Digital Object Identifier 10.4230/OASIcs.ICCSW.2013.43

1 Introduction

Argumentation theory is an interdisciplinary field studying how conclusions can be reached
through logical reasoning in settings where the soundness of arguments might be subjective
and arguments can be contradictory. There are two main approaches: the structured approach
giving a predetermined structure to arguments, including for example legal and scientific
arguments, while the abstract approach makes no specific assumptions about the form of
arguments and is thus generally applicable. Structured argumentation models have seen a
recent surge, with new developments in both general frameworks [17, 1, 3] and more domain
specific approaches [12, 11]. For the abstract approach, a significant effort has been directed
towards the construction of usable tools and efficient implementations; see [4] for a survey.
In addition there has been a recent development of translations between structured and
abstract argumentation models, allowing an implementer to sidestep the implementation of
the structured model by implementing the translation instead and relying on an existing
efficient implementation of the translation target. However, despite these tools and existing
translations of structured argumentation models into abstract argumentation frameworks in
the literature [17, 10, 9, 2], there is a lack of implementations of the structured models.

We give a number of potential reasons:
Most implementations of structured argumentation models are not publicly available.
Simari [18] gives an overview of some of the structured argumentation models, but most

© Bas van Gijzel;
licensed under Creative Commons License CC-BY

2013 Imperial College Computing Student Workshop (ICCSW’13).
Editors: Andrew V. Jones, Nicholas Ng; pp. 43–48

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2013.43
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

44 Tools for the implementation of argumentation models

implementations are now unavailable or closed source. In the case the code has never
been published it means that the information regarding the techniques of implementation
are effectively lost, forcing new implementers to develop methods from scratch.
Translations can be notoriously complex, both in implementation and in verification.
As a good example, consider the translation of Carneades to ASPIC+ [10, 9], or the
translation of abstract dialectical frameworks to Dung [2]. Both proofs are at least a
page long, and are hard to verify even by experts in the field.

To tackle this problem, we introduce a set of methods and tools in Section 2. Then in
Section 3 we provide an introduction to the definitions of Carneades each time providing
corresponding implementations using previously discussed methods and tools. We conclude
in Section 4 with a discussion of our study and how to go from this implementation to an
automatic verification in a theorem prover.

2 Tools and methods

2.1 Functional programming
When looking at recent developments in abstract argumentation [4], we can see that answer set
programming (ASP) and Prolog have taken a significant role in the efficient implementation
and development of general tools. Part of this success can be explained by the paradigm of ASP
and logic programming which can express computational problems for Dung’s argumentation
frameworks [6] in a very natural way, making it possible to make the code partly self-
documenting. See also [6], which relates abstract argumentation to logic programming with
negation as failure.

For structured argumentation, there has not been such a convincing implementation
language yet. There are various implementations done in Java [18], but they are quite far
removed from the logical specification making it significantly harder to verify whether the
implementation is actually correct. In this paper we instead apply functional program-
ming, using the programming language Haskell [16]. The declarative nature of functional
programming, similar to logic programming, is a natural candidate to express structured
argumentation frameworks in such a way that the code is close to the actual mathematical
definitions [13], while additionally simplifying future verification of such implementations.

2.2 Literate programming
Although implementations of structured argumentation models often have appropriate user
instructions, it is less common that such an implementation also documents its methods of
implementation. To make this process more attractive, we employ literate programming [14],
a technique that allows the user to write both the implementation and documentation,
including the formal definitions, in one file. Literate Haskell is Haskell’s native version
of literate programming, which allows programmers to intermix the writing of LATEX and
Haskell code, while still being readable by a standard Haskell compiler. Additionally, the
tool called lhs2tex [15] provides the user with the automatic typesetting of Haskell code
within a Literate Haskell file, generating appropriate LATEX code. This ensures that the
documentation is kept up to date along with the programming code.

2.3 Open source and public repositories
As we discussed in Section 1, most implementations of structured argumentation models are
not publicly available (anymore) or are closed source. We believe that to progress the know-

B. van Gijzel 45

ledge of implementing techniques for (structured) argumentation models, implementations
should be made publicly available. The implementation in this paper has also been made
available through the standard Haskell package repository called Hackage1, providing source
files and automatic generation of html documentation of the API. The public availability and
documentation of the implementation has attracted other people to contribute as well, e.g.
see Stefan Sabev’s github2 where he extended our implementation for a university module.

2.4 Formalisation in a theorem prover
Given the complexity of some of the structured models and translation we might want to be
able to verify the correctness of our implementation. One way to achieve this beyond the
proofs done on paper, is to formalise the implementation through an interactive theorem
prover of our choice. Haskell, allows for code very close to the mathematics and additionally
is of the same functional nature as most theorem provers, making the step from a Haskell
program to a theorem prover very natural. We do not have the space to demonstrate this
approach here, however an implementation of Dung’s argumentation frameworks has been
made available online3. See [8] for an expanded exposition.

3 A documented implementation of Carneades

In this section we will give definitions of Carneades [12, 11], an argumentation model designed
to capture standards and burdens of proof. We discuss the version as given in Gordon and
Walton [12], after each definition showing our corresponding implementations in Haskell4.
Due to space constraints, we do not give the complete implementation, however the source
code of this section, is available as a literate programming source file, containing all the left
out definitions, corresponding implementations and explanations5. This literate programming
file can immediately be loaded into the Haskell compiler and is also available as an open source
library on Hackage6. Although Carneades is very suitable to demonstrate the implementation
techniques explained in this paper; it does already have a quite mature implementation
available7.

3.1 Arguments
We strive for a realisation in Haskell that mirrors the mathematical model of Carneades
argumentation framework as closely as possible. Ideally, there would be little more to a
realisation than a transliteration. In Carneades all logical formulae are literals in propositional
logic; i.e., all propositions are either positive or negative atoms. Taking atoms to be strings
suffice in the following, and propositional literals can then be formed by pairing this atom
with a Boolean to denote whether it is negated or not:

type PropLiteral = (Bool, String)

We write p for the negation of a literal p. The realisation is immediate:

1 http://hackage.haskell.org/
2 https://github.com/SSabev/Haskell_Carneades
3 http://www.cs.nott.ac.uk/~bmv/Code/AF2.agda
4 This section is largely based on previous work in [7].
5 See http://www.cs.nott.ac.uk/~bmv/CarneadesDSL/ for the source code and instructions.
6 http://hackage.haskell.org/package/CarneadesDSL
7 http://carneades.github.com/

ICCSW’13

http://hackage.haskell.org/
https://github.com/SSabev/Haskell_Carneades
http://www.cs.nott.ac.uk/~bmv/Code/AF2.agda
http://www.cs.nott.ac.uk/~bmv/CarneadesDSL/
http://hackage.haskell.org/package/CarneadesDSL
http://carneades.github.com/

46 Tools for the implementation of argumentation models

negate :: PropLiteral → PropLiteral
negate (b, x) = (¬ b, x)

An argument is a tuple of two lists of propositions, its premises and its exceptions, and a
proposition that denotes the conclusion:

newtype Argument = Arg ([PropLiteral], [PropLiteral], PropLiteral)

Due to lack of space, we will not discuss the details and the implementation of the set of
arguments; see [7] for details.

3.2 Carneades Argument Evaluation Structure
The main structure of the argumentation model is called a Carneades Argument Evaluation
Structure (CAES):

I Definition 1 (Carneades Argument Evaluation Structure (CAES)). A Carneades Argument
Evaluation Structure (CAES) is a triple 〈arguments, audience, standard〉 where arguments

is an acyclic set of arguments, audience is an audience as defined below (Def. 2), and standard
is a total function mapping each proposition to its specific proof standard.

The transliteration into Haskell is almost immediate

newtype CAES = CAES (ArgSet, Audience, PropStandard)

I Definition 2 (Audience). Let L be a propositional language. An audience is a tuple
〈assumptions, weight〉, where assumptions ⊂ L is a propositionally consistent set of literals
(i.e., not containing both a literal and its negation) assumed to be acceptable by the audience
and weight is a function mapping arguments to a real-valued weight in the range [0, 1].

This definition is captured by the following Haskell definitions:

type Audience = (Assumptions, ArgWeight)
type Assumptions = [PropLiteral]
type ArgWeight = Argument →Weight
type Weight = Double

Further, as each proposition is associated with a specific proof standard, we need a
mapping from propositions to proof standards. A proof standard is a function that given a
proposition p, aggregates arguments pro and con p and decides whether it is acceptable or
not:

type PropStandard = PropLiteral → ProofStandard
type ProofStandard = PropLiteral → CAES → Bool

The above definition of proof standard demonstrates that implementation in a typed language
such as Haskell is a useful way of verifying definitions from argumentation theoretic models.
Our implementation effort revealed that the original definition of proof standard as given
in [12] could not be realised as stated, because proof standards in general not only depend
on a set of arguments and the audience, but may need the whole CAES. However, due to
space constraints we will omit the definition of specific proof standards.

B. van Gijzel 47

3.3 Evaluation

Two concepts central to the evaluation (semantics) of a CAES are applicability of arguments,
which arguments should be taken into account, and acceptability of propositions, which
conclusions can be reached under the relevant proof standards, given the beliefs of a specific
audience.

I Definition 3 (Applicability of arguments). Given a set of arguments and a set of assumptions
(in an audience) in a CAES C, then an argument a = 〈P, E, c〉 is applicable iff

p ∈ P implies p is an assumption or [p is not an assumption and p is acceptable in C]
and
e ∈ E implies e is not an assumption and [e is an assumption or e is not acceptable in
C].

I Definition 4 (Acceptability of propositions). Given a CAES C, a proposition p is acceptable
in C iff (s p C) is true, where s is the proof standard for p.
The realisation of applicability and acceptability in Haskell is straightforward:

applicable :: Argument → CAES → Bool
applicable (Arg (prems, excns,)) caes@(CAES (, (assumptions,),))

= and $ [(p ∈ assumptions) ∨ (p ‘acceptable‘ caes) | p ← prems]
++
[(e ∈ assumptions) ↓ (e ‘acceptable‘ caes) | e ← excns]

where
x ↓ y = ¬ (x ∨ y)

acceptable :: PropLiteral → CAES → Bool
acceptable c caes@(CAES (, , standard))

= c ‘s‘ caes
where s = standard c

4 Conclusions and future work

As we have seen, functional programming allows to realise structured argumentation models
in such a way that the implementation is sufficiently close to the mathematical definitions to
serve as specifications in their own right. Furthermore, by making the code publicly available
and open source we improve the chances that implementation methods will progress more
efficiently. For related work, researchers working in answer set programming have been
working on extensions of ASP to make it more of a general purpose programming language.
This has also allowed Charwat et al. to implement argument generation and visualisation for
structured based approaches [5].

For future work, we are putting the formalisation methods discussed in Section 2.4 into
practice, see also [8]. Thus, in addition to the discussed implementation of argumentation
models using the described methods and tools, we want to verify the correctness of implement-
ations and furthermore employ the same techniques for translations between argumentation
models. Our ultimate goal is to have verified translations from structured argumentation
models into efficiently implemented abstract argumentation models, resulting in a verified
and efficient implementation method for structured argumentation models.

ICCSW’13

48 Tools for the implementation of argumentation models

References
1 Andrei Bondarenko, Phan Minh Dung, Robert A. Kowalski, and Francesca Toni. An

abstract, argumentation-theoretic framework for default reasoning. Artificial Intelligence,
93:63–101, 1997.

2 Gerhard Brewka, Paul E. Dunne, and Stefan Woltran. Relating the semantics of abstract
dialectical frameworks and standard AFs. In Proceedings of the 22nd International Joint
Conference on Artificial Intelligence (IJCAI-11), pages 780–785, 2011.

3 Gerhard Brewka and Stefan Woltran. Abstract dialectical frameworks. In Proceedings of
the Twelfth International Conference on the Principles of Knowledge Representation and
Reasoning, pages 102–111. AAAI Press, 2010.

4 Günther Charwat, Wolfgang Dvorák, Sarah Alice Gaggl, Johannes Peter Wallner, and
Stefan Woltran. Implementing abstract argumentation - a survey. Technical Report DBAI-
TR-2013-82, Vienna University of Technology, 2013.

5 Günther Charwat, Johannes Peter Wallner, and Stefan Woltran. Utilizing ASP for gener-
ating and visualizing argumentation frameworks. CoRR, abs/1301.1388, 2013.

6 Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artificial Intelligence, 77(2):321–
357, 1995.

7 Bas van Gijzel and Henrik Nilsson. Haskell gets argumentative. In Proceedings of the
Symposium on Trends in Functional Programming (TFP 2012), LNCS 7829, pages 215–
230, St Andrews, UK, 2013. LNCS.

8 Bas van Gijzel and Henrik Nilsson. Towards a framework for the implementation and
verification of translations between argumentation models. Draft Proceedings of The 25th
symposium on Implementation and Application of Functional Languages, August 2013.

9 Bas van Gijzel and Henry Prakken. Relating Carneades with abstract argumentation. In
Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI-
11), pages 1113–1119, 2011.

10 Bas van Gijzel and Henry Prakken. Relating Carneades with abstract argumentation via
the ASPIC+ framework for structured argumentation. Argument & Computation, 3(1):21–
47, 2012.

11 Thomas F. Gordon, Henry Prakken, and Douglas Walton. The Carneades model of argu-
ment and burden of proof. Artificial Intelligence, 171(10-15):875–896, 2007.

12 Thomas F. Gordon and Douglas Walton. Proof burdens and standards. In Guillermo
Simari and Iyad Rahwan, editors, Argumentation in Artificial Intelligence, pages 239–258.
Springer US, 2009.

13 John Hughes. Why functional programming matters. Computer Journal, 32(2):98–107,
April 1989.

14 D. E. Knuth. Literate programming. The Computer Journal, 27(2):97–111, 1984.
15 Andres Löh. lhs2tex. http://www.andres-loeh.de/lhs2tex/. Accessed July 10, 2013.
16 Simon Marlow et al. Haskell 2010 language report. http://www.haskell.org/

onlinereport/haskell2010, 2010.
17 Henry Prakken. An abstract framework for argumentation with structured arguments.

Argument & Computation, 1:93–124, 2010.
18 Guillermo R. Simari. A brief overview of research in argumentation systems. In Proceedings

of the 5th international conference on Scalable uncertainty management, SUM’11, pages 81–
95, Berlin, Heidelberg, 2011. Springer-Verlag.

http://www.andres-loeh.de/lhs2tex/
http://www.haskell.org/onlinereport/haskell2010
http://www.haskell.org/onlinereport/haskell2010

Towards the Development of a Hybrid Parser for
Natural Languages
Sardar F. Jaf1 and Allan Ramsay2

1 School of Computer Science, The University of Manchester
2.46 Kilburn Building, Oxford Road, Manchester, M13 9PL, United Kingdom
sardar.jaf@manchester.ac.uk

2 School of Computer Science, The University of Manchester
2.21 Kilburn Building, Oxford Road, Manchester, M13 9PL, United Kingdom
allan.ramsay@manchester.ac.uk

Abstract
In order to understand natural languages, we have to be able to determine the relations between
words, in other words we have to be able to ‘parse’ the input text. This is a difficult task,
especially for Arabic, which has a number of properties that make it particularly difficult to
handle.

There are two approaches to parsing natural languages: grammar-driven and data-driven.
Each of these approaches poses its own set of problems, which we discuss in this paper. The
goal of our work is to produce a hybrid parser, which retains the advantages of the data-driven
approach but is guided by grammar rules in order to produce more accurate output. This work
consists of two stages: the first stage is to develop a baseline data-driven parser, which is guided
by a machine learning algorithm for establishing dependency relations between words. The
second stage is to integrate grammar rules into the baseline parser. In this paper, we describe
the first stage of our work, which is now implemented, and a number of experiments that have
been conducted on this parser. We also discuss the result of these experiments and highlight the
different factors that are affecting parsing speed and the correctness of the parser results.

1 Introduction

Processing human languages to determine the structural relations between words is called
parsing in Computational Linguistics (CL) [1, p.63]. Parsing is one of the core components of
many Natural Language Processing applications [2], such as: Machine Translation Systems,
Tutoring and Speech Recognition Systems, Information Retrieval Systems, and Question and
Answering Systems.

Producing a comprehensive parser is a challenging task due to language ambiguities
[13], which is caused by such factors as multiple interpretations of words, flexibility of word
order, and missing items. Hence, adequate parsing systems are often unavailable for natural
languages, especially for languages with complex structures such as Arabic [18, p.82].

It is desirable that parsers have three main features - efficiency, robustness and accuracy.
The efficiency of parsers is concerned with consuming as little time as possible, the robustness
is for enhancing the system’s ability to cope with agrammatical inputs, and the accuracy
is required to ensure that the results produced are accurate. However, it is not possible to
achieve all three features at once [7]. Some parsers have traded off accuracy for efficiency,
while others sacrificed efficiency for robustness [18]. The goal of our work is to optimise
speed and accuracy while maintaining a reasonable level of robustness. We aim to test our
parser on Arabic because Arabic presents a number of challenges which make it hard to
parse, and hence it will act as a rigorous test-bed for our approach.

© Sardar F. Jaf and Allan Ramsay;
licensed under Creative Commons License CC-BY

2013 Imperial College Computing Student Workshop (ICCSW’13).
Editors: Andrew V. Jones, Nicholas Ng; pp. 49–56

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

50 Towards the Development of a Hybrid Parser for Natural Languages

2 Parsing natural language approaches

There are two different kinds of approaches to parsing natural languages: grammar-driven
approaches, and data-driven approaches. In grammar-driven approaches, the parser depends
on grammatical rules suitably specified in accordance with some linguistic theory. while in
data-driven approaches, the parser mainly depends patterns extracted from preprocessed
data, such as treebank data. In this section, we describe each of these approaches.

2.1 Grammar-driven approach
Grammar-driven parsing uses a formal grammar G, which defines a formal language L(G)
for an alphabet A. A grammar G is used as a system for generating strings over A; The
language L(G) that is defined by G is the set of all strings x that can be generated by G.

The assumption in grammar-driven parsing is that L(G) is an approximation of the
language L. However, the formal grammars that have been developed to date fail to meet this
assumption [7]. Having said that, the principles behind grammar-driven approaches should
not be neglected because the linguistic theories advancement may subsequently lead to better
approximations, but, in the mean time it creates some practical problems for grammar-driven
parsing.

Robustness in parsing natural languages is the capacity of parsers to analyse as many
input strings as possible. A parser is considered robust if it can analyse a large proportion
of the sentences of the language in question. One of the major problems associated with
grammar-driven parsing is robustness. This problem occurs because some input strings in a
given sentence may not exist in the formal language L(G) that is defined by the grammar G.
Generally, there are two kinds of robustness problem: (i) coverage problem and (ii) robustness
proper.

The coverage problem normally occurs when an input string x is not part of the formal
language L(G) even though it is grammatically a legitimate sentence of L. Hence, at least in
theory, it should exist in L(G), because L(G) is an approximation of L, but the sentence
may not exist in L(G) because it is not covered by G. On the other hand, robustness proper
occurs when an input string x is understandable by the speaker of L but it is not part of the
language L and so it should not exist in L(G) either. Robustness proper actually occurs if a
word is misspelled or if material is omitted or agreement constraints are violated.

The robustness problem can be solved by relaxing grammar constraints in parsers [4].
But, relaxing grammar constraints could result in many analyses becoming available for a
given input text, hence it leads to the problem of disambiguation, which is a major problem
for parsing natural language sentences, because applications that depend on the output of
parsing systems typically require a small number of analyses (preferably just one analysis)
for a given input text x. Having many analyses for a given x means that parsers will have
to consume more time and resources exploring these analyses which create a problem with
efficiency and also may result in selecting an incorrect analyses, which may affect accuracy.

The problem of robustness and disambiguating aggravates the problem of accuracy.
Robustness attempts to produce analyses for input strings x that may not exist in L(G) that
is defined by G, while disambiguation insists on removing extra analyses that are assigned
to x by G. These moves by any parsers may reduce the chance that an x that is part of a
text is given the correct analysis by parsers. Hence, a joint optimisation between robustness,
disambiguating and accuracy is necessary, or at least they are prioritised and the trade off
between them is carefully chosen based on the nature of the parsing system.

Joint optimisation between robustness, disambiguating and accuracy triggers the problem

S. F. Jaf and A. Ramsay 51

of efficiency. The problems with efficiency in grammar-driven approach depend mainly on
the expressivity and the complexity of the formal language that is used for parser [7]. The
most commonly used algorithms are at least N3 in the length of the input text, which is
daunting in situations where sentences may contain tens or even hundreds of words.

2.2 Data-driven parsing
In data-driven approaches, an inductive mechanism is used for mapping from input strings
to output analyses. This mechanism, that is applied to a text sample Tt = (x1,...,xn) from
the language L to be analysed, makes the abstract problem of data-driven approach that is
used to approximate text parsing a problem of inductive inference.

According to [7], data-driven parsers consist of three main components: (i) permissible
analyses for sentences in the language L as defined by a formal model M. (ii) a sample of text
Tt = (x1,...,xn) from L with or without the correct analyses At = (y1,...,yn), and (iii) actual
analyses for the sentences T = (x1,...,xn) in L is defined by an inductive inference scheme I,
which is relative to model M and Tt and possibly At. Based on these components, a model
M could represent a formal grammar G for restricting string representations to strings of the
language L.

Training data, that is used in this approach, is a sample of text Tt. This could be raw data
or an annotated treebank of the language L, where treebanks may or may not be annotated
with representations satisfying the constraints of M. If the sample data is a treebank then a
form of supervised machine learning is used for inductive learning because, according to the
treebank annotation, the correct analyses of an input string xi is in the sequence of analyses
At = (y1,...,yn). While unsupervised machine learning is used if the sample data is raw text
because no sequence of analyses will exist in T.

Similarly to grammar-driven approaches, data-driven approaches are also based on the
approximation that the formal language L is an approximation of the language L, but, this
approximation is different in data-driven parsing because it is based on inductive inference
from a finite sample Tt = (x1,...,xn) to the infinite language L

The problem of robustness also exists in data-driven approach, robustness here depends
on the formal model M properties as well as the inference scheme I which are used for
processing new sentences. According to [7], in most existing data-driven parsers any input
strings x are assigned at least one analysis, which means that data-driven parsers are highly
robust. However, the extreme robustness of data-driven parsers means that they will assign
analyses that are probably not in the language L.

Furthermore, the problem of disambiguation can be even more severe in data-driven
parsers because the improved robustness is the result of extreme constraints relaxation. but,
this is compensated by the fact that the inductive inference scheme I provides a mechanism for
disambiguation, by associating a score with each analysis intended to reflect some optimality
criterion, or, by implicitly maximising this criterion in a deterministic selection.

Regarding the problem of efficiency, it is argued that data-driven approaches is superior
to grammar-driven approaches [7], but it is often at the expense of less accurate output [8]

3 Arabic

Ambiguity is a central problem in natural language parsing [11, 13]. Arabic contains many
complexities and subtleties [10], which lead to even greater potential for ambiguities than is
present with other languages. In the following sections we briefly highlight some of the main
sources of ambiguities in Arabic.

ICCSW’13

52 Towards the Development of a Hybrid Parser for Natural Languages

3.1 Missing diacritics
Arabic diacritics are short strokes placed above or below consonants. There are three sets
of diacritics: (i) Short vowels are symbols placed either above or below letters, such as /a/
sound as

�
@, /u/ sound as

�
@, or /i/ sound as @�. (ii) Double case endings are also vowels and

they suggest indefiniteness and are manifested in the form of case marking or in conjunction
with case marking. these are placed on the final letter of a word, such as a /aN/ sound as
in

�
@, /uN/ sound as in

�
@ or /iN/ sound as in @

�
. (iii) Syllabification marks are placed above

Arabic letters denoting the doubleing of the consonant, they are usually combined with short
vowels. There are two types of syllabifications: (i) is called shadda written as a gemination
marks as ��Q and (ii) is called sukun, which is a small circle as

�
A, and it marks the boundaries

between syllables, end of verbs, or it indicates that the word does not contain vowels.
Arabic texts without diacritics are ambiguous. Many words with different diacritic

patterns appear identical in a diacriticless settings but they may have different syntactic
roles [6]. e.g. the word ÕÎ« alam can have many roles when diacritised, such as: noun as in
�Õ
�
Î«

� ‘ilmuN “knowledge”, transitive verb as in �Õ

��
Î

�
« ‘u-llima “is taught” or intransitive verb as

in �ÕÎ�

�
« ‘ulima “is known”. Written Modern Standard Arabic (MSA) generally omits diacritics,

which leads to widespread lexical ambiguity of the kind shown [17].

3.2 Free word order
Arabic has a high degree of syntactic flexibility [10]. The canonical order of an Arabic
sentence is VSO. But, a range of other word orders such as VOS, SVO and OVS are also
possible [3], which is a source of ambiguities in Arabic [14, p.179]. It is not easy to distinguish
between the nominative and accusative cases when word orders are changed, i.e. it is hard
to identify the subject and object of a sentence, for example, in the sentence ú

Î

�
« ÐQ

��
�
�
m�

�
'

 Y

�
Ôg

�
@

a.hmad ya.hatarm ‘aly “Ahmed respects Aly” it is clear that Ahmed is the subject in the
sentence and Aly is the object. However, reordering the words in the same sentence as

ú

Î

�
« Y

�
Ôg

�
@ ÐQ

��
�m�

�
'

 ya.htarm ’a.hmad ‘aly “respects Ahmed Aly” means that the subject could

be either Ahmed or Aly. This results in structural ambiguity.

3.3 Arabic clitics
Clitics are morphemes 1 that possess the syntactic characteristics of a word, but, they are
morphologically bound to other words [5]. Arabic clitics could be attached to the start or
end of words, this often alters their formation, for example they could alter word types from
noun to verbs, or even changes the verb type from transitive to intransitive [17]. For example,
conjunctions in Arabic can often appear as clitics and modify Arabic verbs. For instance,
the sentence �

éË
�
A��ÜÏ @ ú

	
¯ �ú

Î

�
« Ñ

�
î

��
D
Ë�ð wali-yyahum‘alyuN fy Al mas’Ala “Ali is the leader in their

situation” where �
Ñ

�
î

��
D
Ë�

�
ð walyahum “their leader”, which is a noun, is ambiguous because the

letters ð /w/ and Ë / l/ could be clitics attached to the word Ñ
�
î

��
D
Ë� li-yyahum “take charge”

and can modify these words into verbs, as in the sentence �
éË

�
A��ÜÏ @ ú

	
¯ �ú

Î

�
« Ñ

�
î

��
D
Ë�ð wa li -yyahum

‘alyuN fy Al mas’AlT “and Ali to take charge of the situation”, where the word is a verb.

1 A morpheme is a small grammatical unit of a language.

S. F. Jaf and A. Ramsay 53

3.4 Noun multi-functionality
It is difficult to define Arabic nouns in comparison to its verbs because they encompass
a wide range of categories. One of the reasons that Arabic nouns create ambiguities is
that some nouns are derived from verbs, and they can function as verbs sometimes [14].
e.g., �

Ij
�
J. Ë @ Alba.h_t “search” can function as a noun as in �

é
�
ªÓ� A

�
j. ÊË�

�
I
�

j
�
J. Ë @ ú

	
¯

�	
YJ
ÒÊ

�
J�Ë @

��Q
�
Ò

��
J�@�

istama-rra Altilmy_du fy Alba.h_ti liljAmi‘aT “the student continued in his research for the
university”, and as a verb as in �

é
�
ªÓ� A

�
m.
Ì'@ 	á

�
«

�
I
�

j
�
J. Ë @ ú

	
¯

�	
YJ
ÒÊ

�
J�Ë @

��Q
�
Ò

��
J�@� istama-rra Altilmy_du fy

Alba.h_ti ‘an AljAmi‘aT “the student continued searching for the university”

3.5 Arabic pro-drop
In pro-drop, the subject of a sentence could be omitted if the verb’s agreement features are
rich enough to recover its content [15]. Arabic verbs recover missing subjects by conjugating
themselves to indicate the gender, number and person of the omitted pronoun subject [14].
Arabic pronouns may be omitted if the verb can recover them, as in, �

ék. Ag. YË@
�

IÊ¿ @ Akalat
Al dajAjT “ate the chicken”. The verb �

IÊ¿ @ Akalat “ate” indicates that the missing subject
is a singular, feminine and third person pronoun. In Arabic, verbs can be transitive and
intransitive when a pronoun is dropped. It is not clear from the above sentence that the NP
�
ék. Ag. YË@ Al dajAjT “the chicken” following the verb �

IÊ¿ @ Akalat “ate” is the subject. The
sentence would mean the chicken was eaten and the verb �

IÊ¿ @ Akalat “ate” is intransitive if
the NP is the subject. But, the sentence would mean she ate the chicken and the verb �

IÊ¿ @

Akalat “ate” is transitive if the NP is the object of the verb and the subject is an omitted
pronoun (as “she”). Hence, due to pro-drops, parsers generate different structural analysis.

4 Work to date

We have implemented a dynamic programming version of shift-reduce parsing algorithm [1,
p.368]. The dynamic programming algorithm stores partial parse analyses that are generated
by the shift-reduce parsing algorithm. The shift-reduce parser has two data structures, queue
and stack which contain items with the following features: (i) Part of Speech (POS), (ii)
word form, (iii) word span within the sentence and (iv) words actual position in the sentence.
Three operations are performed on queues and stacks: (i) shift, (ii) left-reduce, and (iii)
right-reduce, where each of these operations results in a new queue and a new stack which
are stored in a database as partial parse analyses. Shift operation moves the first token from
the queue to the top of the stack producing a new queue and a new stack. left-reduce and
right-reduce operations perform two main operations: First, a parent-daughter (dependency)
relation between the first item on the queue and one of the items on the stack is determined.
Second, the daughter (dependent) from the dependency relation is removed and the parent’s
start and end position is modified to create a span covering the position of the daughter
within the parent’s start and end position. Left-reduce operation makes a token from the
stack a dependency parent of the token at the beginning of the queue. Right-reduce operation
makes the token at the beginning of the queue a dependency parent of a token on the stack.
These three operations continue until the queue is empty and a stack with one token is found
in which the token’s start and end position covers the whole sentence length in question, in
which case the parse is considered successful. Otherwise, is unsuccessful.

We integrated an oracle in the parser for determining parser’s action. We ask the oracle
whether we should do a shift, left-reduce or right-reduce operation. If it suggests more than

ICCSW’13

54 Towards the Development of a Hybrid Parser for Natural Languages

one operations then we add them onto an agenda. The parser will then work through the
agenda to explore the suggested actions specified in the agenda. The oracle determines the
parser type, the parser becomes a grammar-driven parser if the oracle is a formal grammar,
and it becomes a data-driven parser if the oracle is a set of inferred rules, which are extracted
from a treebank. At this stage, the oracle is a set of inferred rules, which are extracted from
a dependency treebank using a decision tree algorithm. Data-points for the decision tree
algorithm are state:action pairs.

5 Preliminary results

We have conducted some preliminary tests on the the data-driven parser using a combination
of techniques. The parser, by construction, is efficient and robust, because we provide it with
shift, left-reduce or right-reduce action at each parse step, which deterministically lead to
some analysis. However, the efficiency and robustness of the parser comes at the expense
of its accuracy. We identified a number of factors that may potentially affect the accuracy,
the main factors are: (i) the size of the queues and stacks used for parser training (where
the Penn Arabic Treebank is used for training and testing the parser), (ii) the length of
sentences, and (iii) the size of training data. As shown in Table 1, having one item on the
queue affected the accuracy greatly, while variations in the stack size have less effects on
the accuracy. The parser accuracy improved significantly when we trained it with queues
containing more than one item. We also tested the parser on various sentence lengths. We
divided the sentences in the test data into different sets of data size ranging from eight words
to one hundred or more words. The highest accuracy is obtained with sentences that have
less than twenty five words, as shown in Table 2. Using smaller training size than testing size
also affects the accuracy. Larger training data produce better accuracy as can be seen from
Table 3. The current state-of-the-art data-driven parser achieve %85 accuracy by combining
a weighted combination of two state-of-the-art parsers (MaltParser and MSTParser) [12].
Our accuracy is below state-of-the-art because, at this preliminary stage, we included a
limited number of features on that queue and stack which are used for parser training.

Table 1 Parser training with various number of items on queue and stack.

Queue items 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
Stack items 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Results (%) 25 25 24 10 57 57 57 57 60 60 60 60 60 61 61 61

Table 2 Parsing with various sentence length.

No. words in Sentences 8 to 25 26 to 50 51 to 75 76 to 100 over 100
Results (%) 66 59 59 58 57

Table 3 Parsing 500 sentences with training data ranging from 125 to 5000 sentences.

Training data 125 250 500 1000 2000 3000 4000 5000
Results (%) 55 57 58 59 61 60 60 60

S. F. Jaf and A. Ramsay 55

5.1 Related work
There is an increasing interest for combining various parsing algorithms. Some work involved
combining state-of-art dependency data-driven parsers, such as MaltParser [7] and MSTParser
[18], while some other works focused on combing data-driven and grammar-driven parsers.
The latter is the type of work that is more relevant to the work we present in this paper.

[16] combined a grammar-driven parser (XLE system), which is based on Lexical Func-
tional Grammar (LFG), with a data-driven parser (MaltParser). In their approach, they
supply a data-driven parser with outputs from a grammar-driven parser. The grammar-driven
parser outputs phrase structured trees containing grammatical features. They convert the
output of their XLE platform to dependency trees in order to have two parallel versions of
the treebank: (i) a gold standard treebank, (ii) and a dependency treebank by converting
the XLE system output which contains additional grammatical features. They extend the
gold standard treebank with additional information from the corresponding LFG analyses.
MaltPaser is then trained on the enhanced gold standard treebank. Their results showed a
small improvement in accuracy when applied to English and German.

A similar work in this area is conducted by [9]. They constrain a Head-driven Phrase
Structure Grammar (HPSG) parser with outputs from a data-driven parser. HPSG parsers
use a small number of schemas for explaining general construction rules, and a large number
of lexical entries for expressing word-specific syntactic and semantic constraints. HPSG parse
trees are converted to Context Free Grammar style (CFG-style) trees and a dependency
treebank is then extracted from the CFG-style trees. the dependency treebank is used for
training a dependency data-driven parser, such as MaltPaser and MSTParser. Outputs from
data-driven parsers are used to constrain the HPSG parser. During HPSG parsing process,
the lexical head of each partial parse tree is stored and in each schema application the head
child is determined. Having such information about the head child and the lexical head,
the dependency produced by the schema application is identified and whether the schema
application violates the dependencies in the dependency treebank is checked. The HPSG
parser is forced to produce parse trees that are consistent with the dependency trees. This
approach is tested on English and some improvements in accuracy was achieved.

5.2 Next stage
The next stage is to implement a hybrid parser by integrating grammatical rules into this
parser. The aim is to constrain our data-drive parser with features from grammar-driven
approaches. In order to produce a hybrid parser, we make the oracle a weighted combination
of grammar W and decision tree D. We fix D to be 1 (or 1 times whatever probability we
can extract from it). If W = 0 then the parser is a data-driven parser. If W = N+1, where
N is the length of sentence, then the parser becomes a grammar-driven parser. Intermediate
values produce combinations. Low value for W will be fairly fast but prone to producing
non-conforming trees, high value for W will be slow but trees will tend to be legal.

6 Conclusion

Problems associated with using grammar-driven approaches and data-driven approaches
are discussed in this paper. The main structural complexities of Arabic are identified and
described in section 3. The first stage of our approach to hybrid parsing is explained and
the next stage for full hybrid parsing implementation is established. Preliminary results for
the parser is included in section 5. The parser is tested on Arabic because it is a complex

ICCSW’13

56 Towards the Development of a Hybrid Parser for Natural Languages

language, compare to some other languages, hence it provides a rigorous test-bed. Finally,
two various related works in hybrid parsing approaches for natural language processing is
identified and briefly described.

References
1 Alfred, V., Aho and Jeffery, D., Ullman. The Theory of Parsing, Translation, and Compil-

ing, volume 1. Prentic-Hall, 1972.
2 Ali, Farghaly and Khaled, Shaalan. Arabic Natural Language Processing: Challenges and

Solutions. ACM Computing Surveys, 8(4):1–22, 2009.
3 Allan, Ramsay and Hanady, Mansour. Local Constraints on Arabic Word Order. In

Proceedings of the 5th international conference on Advances in Natural Language Processing,
FinTAL’06, pages 447–457, Berlin, Heidelberg, 2006. Springer-Verlag.

4 Christa, Samuelsson and Mats, Wirèn. Parsing techniques. Marcel Dekker, 2000.
5 David, Crystal. A First Dictionary of Linguistics and Phonetics. Deutsch, London, 1980.
6 Imed, Zitouni and Jaffery, S., Sorensen and Ruhi, Sarikaya. Maximum Entropy Based Res-

toration of Arabic Diacritics. In Proceedings of the 21st International Conference on Com-
putational Linguistics and the 44th annual meeting of the Association for Computational
Linguistics, pages 577–584, Stroudsburg, PA, USA, 2006. Association for Computational
Linguistics.

7 Joakim, Nivre. Inductive Dependency Parsing. Springer, 2006.
8 Ronald M. Kaplan, Stefan Riezler, Tracy H. King, John T. Maxwell III, Alexander Vasser-

man, and Crouch Richard. Speed and accuracy in shallow and deep stochastic parsing.
In Proceedings of Human Langauge Technology and the Conference of the North American
Chapter of teh Association for Computational Linguistics (HLT-NAACL, pages 97–104,
2004.

9 Kenji, Sagae and Yusuke, Miyao. Hpsg parsing with shallow dependency constraints. In
In Proc. ACL 2007, 2007.

10 Kevin, Daimi. Identifying Syntactic Ambiguities in Single-parse Arabic Sentence. 35(3):333–
349, 2001.

11 Marlyse, Baptista. On the Nature of Pro-drop in Capeverdean Creole. 5:3–17, 1995.
12 Maytham, Alabbas and Allan, Ramsay. Evaluation of combining data-driven dependency

parsers for arabic. In Proceedings of the 5th Language & Technology Conference Human
Language Technologies as a Challenge for Computer Science and Linguistics, pages 546–
550, 2011.

13 Michael, Collins. Head-Driven Statistical Models for Natural Language Parsing. Comput.
Linguist., 29(4):589–637, 2003.

14 Mohammed, A., Attia. Handling Arabic Morphological and Syntactic Ambiguities within
the LFG Framework with a View to Machine Translation. PhD Thesis, School of Languages,
Linguistics and Cultures, Manchester University, 2008.

15 Noam, Chomsky. Lectures on Goverment and Binding. Dordrecht: Foris, 1981.
16 Øvrelid, Lilja and Kuhn, Jonas and Spreyer, Kathrin. Improving data-driven dependency

parsing using large-scale lfg grammars. In Proceedings of the ACL-IJCNLP 2009 Conference
Short Papers, ACLShort ’09, pages 37–40, Stroudsburg, PA, USA, 2009. Association for
Computational Linguistics.

17 Rani, Nelken and Stuart, M., Shieber. Arabic Diacritization Using Weighted Finite-State
Transducers. In Proceedings of the ACL Workshop on Computational Approaches to Semitic
Languages, Semitic ’05, pages 79–86, Stroudsburg, PA, USA, 2005. Association for Compu-
tational Linguistics.

18 Ryan, MacDonald. Discriminative Learning and Spanning Tree Algorithms for Dependency
Parsing. PhD Thesis, Computer and Information Science, the University of Pennsylvania,
2006.

Improving the quality of APIs through the analysis
of software crash reports
Maria Kechagia, Dimitris Mitropoulos, and Diomidis Spinellis

Athens University of Economics and Business
Department of Management Science and Technology
{mkechagia, dimitro, dds}@aueb.gr

Abstract
Modern programs depend on apis to implement a significant part of their functionality. Apart
from the way developers use apis to build their software, the stability of these programs relies
on the apis design and implementation. In this work, we evaluate the reliability of apis, by
examining software telemetry data, in the form of stack traces, coming from Android application
crashes. We got 4.9 GB worth of crash data that thousands of applications send to a centralized
crash report management service. We processed that data to extract approximately a million
stack traces, stitching together parts of chained exceptions, and established heuristic rules to
draw the border between applications and api calls. We examined 80% of the stack traces to
map the space of the most common application failure reasons. Our findings show that the
top ones can be attributed to memory exhaustion, race conditions or deadlocks, and missing or
corrupt resources. At the same time, a significant number of our stack traces (over 10%) remains
unclassified due to generic unchecked exceptions, which do not highlight the problems that lead
to crashes. Finally, given the classes of crash causes we found, we argue that api design and
implementation improvements, such as specific exceptions, non-blocking algorithms, and default
resources, can eliminate common failures.

1998 ACM Subject Classification D.2.2 Design Tools and Techniques, D.2.5 Testing and De-
bugging, D.2.7 Distribution, Maintenance, and Enhancement

Keywords and phrases application programming interfaces, mobile applications, crash reports,
stack traces

Digital Object Identifier 10.4230/OASIcs.ICCSW.2013.57

1 Introduction

Many modern applications use Application Programming Interfaces (apis) to build their
basic functionalities. The stability of these applications depends not only on the use of the
apis by developers, but, also, on the api design and implementation itself.

Even though the software engineering literature encounters works related to software
development practices [7], metrics [6], and bug report analysis [10], there are limited studies
regarding apis. We have mainly found sources regarding the usability of apis [8], [9] and
general design practices [4], [2]. Therefore, there is a demand for studies on the assessment
of apis.

In this work, we report how we used software telemetry data, in the form of stack traces,
coming from Android application crashes, to analyze their causes and evaluate the reliability
of the used apis. First, we got a 4.9 GB data dump of crash reports from several mobile
applications. Then, we processed that data to get an amount of a million Java stack traces
in an appropriate form for our analysis. Finally, we applied heuristic rules to draw the
border between applications and api calls. This helped us to locate problematic calls to api

© Maria Kechagia, Dimitris Mitropoulos, and Diomidis Spinellis;
licensed under Creative Commons License CC-BY

2013 Imperial College Computing Student Workshop (ICCSW’13).
Editors: Andrew V. Jones, Nicholas Ng; pp. 57–64

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2013.57
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

58 Improving the quality of APIs through the analysis of software crash reports

methods and investigate the reasons that these api deficiencies lead to applications crashes.
In addition, knowing the crash causes map of our sample’s applications, we were able to
argue about related api design and implementation recommendations.

We chose to focus on the study of api crashes for a number of reasons. First, crashes
that could have been avoided through a better api land on the hands of application builders.
These builders can fix their applications on a case-by-case basis. Thus, locating weaknesses
in the apis and improving their design or implementation can ensure the stability of the
thousands of applications that use them. Finally, the fact that most apis are available as
open source software makes them a valuable ground for research.

In addition, we chose the Android platform as the subject of our study because of its
popularity, diversity, and availability. Specifically, more than 800 million devices use the
Android platform and 700,000 applications are written for Android. In addition, the Android
api is quite large (3,000 classes and 300 packages) for examination and its interfaces are
open source.

In the rest of this work, we first outline the methods we used (Section 2). In Section 3,
we discuss the crash categories we found, and make api recommendations. In Section 4, we
present the threats to validity of our study, and we end up with our conclusions and future
work in Section 5.

2 Methodology

Our methodology involves data collection, cleaning, processing, and analysis. First, we got our
data set and we conformed the stack traces to a certain format for analysis. Then, we applied
heuristic rules to the stack traces to extract from each a representative triplet—signature
hereafter, related to the crash cause. We sorted the signatures based on the times they
appear in the stack traces, and we examined the top 600 ones (80% of the total population)
to investigate the reasons behind the application failures. Finally, we categorized the crash
causes we found into main classes and we made related api recommendations.

2.1 Data Origin
The subject of our empirical study consists of Java stack traces, coming from Android
application crashes, collected through a centralized crash report management service.

Android mobile phones are embedded devices that use the Linux operating system and
host applications. Here, we briefly discuss an overview of the Android framework. In
the bottom layer, there is the Linux kernel, which is the border between the device and
the software. It provides services such as memory management, networking, and power
management. In the middle layer, there is the Dalvik process virtual machine (VM) for
the running of several applications on the system and the Java Native Interface (JNI) that
is used to perform calls from Java code into native code. Finally, on the top layer, there
are several Java classes coming from: 1) basic applications (contacts, browser, phone), 2)
third-party applications, and 3) the Java Platform (J2SE). The methods of these classes are
used for the development of Android applications and consist subject of our study.

The provider of our data set is the BugSense Inc., a privately held company, founded
in 2011, and based in San Francisco. The aim of BugSense is to provide error reports and
analytics regarding the performance and quality of mobile applications. Our sample comes
to 2,042,700 crash reports, collected in real time from the 13th of January of 2012 to the
11th of April of 2012, from 4,618 distinct applications. The examined Android api refers to
versions from 1.0.0 to 4.1.1.

M. Kechagia, D. Mitropoulos, and D. Spinellis 59

2.2 Data Cleaning

In order to conduct our analysis, we first needed to clean our data. From our initial sample,
we only kept Java stack traces from Android applications. For this, we wrote a program
in Python and parsed our data set. Specifically, by using regular expressions, we checked
the format validity of the stack traces, based on the printStackTrace() method, from
the Throwable1 Java class. Thus, from our initial sample, we concluded on 901,274 well-
formed Java stack traces. Listing 1 shows a representative example from the Throwable
documentation. In addition, we transformed each stack trace for further analysis. We
reversed each exception level sequence of call methods and joined the levels at the common
methods. Then, the final chain of Listing 1 would be .main.a.b.c.

Listing 1 Throwable stack trace.
HighLevelException : MidLevelException :

at Junk.a(Junk.java :13)
at Junk.main(Junk.java :4)

Caused by: MidLevelException :
at Junk.c(Junk.java :23)
at Junk.b(Junk.java :17)
at Junk.a(Junk.java :11)
... 1 more

2.3 Identification of Risky API calls

Isolating calls to arbitrary apis within stack traces of unknown application code called in
diverse ways from a larger framework is not trivial. In general, a stack trace of method calls
from the Android framework F leading to an exception E, possibly through an application
A and an api I. This can be expressed by the following regular expression.

((F + (A + I∗)∗)|(F ∗ (A + I∗)+))E

This expression reflects several cases in which an exception can occur. For instance consider:

Within the Android framework: F + E

Within the application: F ∗A + E

When the application calls an api: F ∗A + I + E

Within an api-registered application callback: F ∗ (A + I + A+) + E

When an api-registered application callback calls an api: F ∗ (A + I+) + E

To locate the api calls that lead to application crashes we had to locate the last instance
of an AI pair. We had however no a priori knowledge of the methods that belong to the
sets F , A, and I. Thus, we used heuristics to determine them. In particular, we constructed
from the stack traces n-tuples of length 1–15 anchored to the left hand side of the stack trace
and determined their times of occurrence. Looking at the most common ones, we manually
established the name space of the Android framework’s methods. The sixth most common
n-tuple we found was the following:

1 http://docs.oracle.com/javase/7/docs/api/java/lang/Throwable.html

ICCSW’13

http://docs.oracle.com/javase/7/docs/api/java/lang/Throwable.html

60 Improving the quality of APIs through the analysis of software crash reports

dalvik . system . NativeStart .main
com. android . internal .os. ZygoteInit .main
com. android . internal .os. ZygoteInit$ \

MethodAndArgsCaller .run
java.lang. reflect . Method . invoke
java.lang. reflect . Method . invokeNative
android .app. ActivityThread .main

From this 6-tuple we deduced that the framework calls applications through methods that
belong to the packages dalvik.*, com.android.*, java.*, and android.*. In addition,
we searched for other common n-tuples from third parties to fill the framework’s name
space. For instance, these are the top ones: com.badlogic.gdx.backends.android.* and
org.cocos2d.*.

Knowing the application’s name space, we searched the stack traces backwards (from the
rhs to the lhs) to locate the first place where an application’s method called a method that
did not belong to its name space (an AI sequence). This was, by definition, a call to an api
method. In Listing 2, the interesting api call is that to the setContentView method.

Listing 2 Exceptional sequence.
com. example . Serialize$Looper .run
android .os. Looper .loop
android .os. Handler . dispatchMessage
com. example . SerializeHandler . onMessage
com. example .app. Activity$1 .work
android .app. Activity . setContentView

Finally, from the stack traces we extracted for further analysis signatures representing
the api method (e.g. android.app.Activity.setContentView), the exception reported
by the api method (e.g. android.view.inflateException), and the root exception that
triggered the application crash—the exception at the bottom of the stack (e.g. java.lang.-
NullPointerException). Each signature represents a way in which an api call can fail.
Thus, one signature can be associated with many different stack traces and reflects the main
cause of a crash. We used the signatures in order to group our data and as a guide for
studying the reason of an application failure behind the thrown exceptions.

3 Crash Categories and API Recommendations

Further analyzing our data set, we wanted to see why application crashes occur and what
api deficiencies are responsible for them. To achieve this, we examined the signatures
we extracted from the stack traces and we identified major classes of crash causes. In
particular, we sorted the signatures according to their number of occurrence and we got
the top 600 ones (80% of the stack traces) for analysis. For each signature, we identified
the reason of its application failure, and allocated the signature to a broad crash cause
category (Figure 1). For the signatures with specific exceptions (e.g. OutOfMemoryError
and OutOfBoundsException) it was easy for us to understand the problems. However, for
these with generic unchecked exceptions (e.g. RuntimeException, NullPointerException
and IllegalArgumentException) the reason of the execution failure was not clear. Thus,
we needed to search in the Android api reference and consulting sites (stackoverflow)2 to

2 http://stackoverflow.com. All sites were accessed on the 20th of July, 2013.

http://stackoverflow.com

M. Kechagia, D. Mitropoulos, and D. Spinellis 61

Improper	 component	
iden-fica-on	

3.37%	

Missing	 or	 corrupt	 resource	
17.08%	

Memory	 exhaus-on	
25.69%	

Race	 condi-on	 or	 deadlock	
17.43%	

Connec-vity	 problems	
4.33%	

Insufficient	 permission	
3.83%	

Indexing	 problem	
6.51%	

Invalid	 format	 or	 syntax	
8.47%	

Unclassified	
13.29%	

Figure 1 Causes of api-related crashes from top 600 stack traces (80% of total crashes).

reveal the real crash causes. Table 1 presents each crash cause category giving examples
of signatures allocated to them and illustrates related api recommendations. Following we
discuss each crash category and provide indicative api design and implementation choices.

Memory exhaustion is the most common application crash cause. This was a result
we expected, as mobile devices can have constrained memory and developers are seldom
aware of the amount of the available memory. Table 1 shows a characteristic example of this
category related to a failed import operation for a bitmap. In order to decrease the number
of this category’s crashes, the api can include an interface for the adaptation of memory
consuming resources, so that they can fit in the memory. For instance, if an image cannot be
loaded, the developer could sample it first. Moreover, the api can restrict the use of cache
structures that trigger memory leaks. Finally, the api can permit the use of file formats that
can consume less memory (vector graphics).

Race condition or deadlock is another significant cause of application crashes. This
category contains signatures related to: a. database deadlocks, b. race conditions in
asynchronous tasks (see Table 1), c. abnormal execution of the lifecycle of an activity,
and d. synchronization issues with iterators. To eliminate these crashes, the api should
provide non-blocking primitives. Also, developers can catch these problems by using profiling
(Traceview3 and Jinsight4) and testing tools [1].

Missing or corrupt resource cause refers, also, to a great number of crashes. In this
category, we have added signatures that imply the absence of a resource or inability of the
system to decode a resource (see Table 1). We refer to external resources, such as an image
or an audio file, and not application components (activities, services, broadcast receivers,
and content providers). Crashes because of missing resources can be avoided if the api
includes default resources (e.g. layouts). In addition, we found that some exceptions related
to this category are unclear (NullPointerException). Thus, it is not easy for the developers

3 http://developer.android.com/tools/debugging/debugging-tracing.html
4 http://www-03.ibm.com/systems/z/os/zos/features/unix/tools/jinsightlive.html

ICCSW’13

http://developer.android.com/tools/debugging/debugging-tracing.html
http://www-03.ibm.com/systems/z/os/zos/features/unix/tools/jinsightlive.html

62 Improving the quality of APIs through the analysis of software crash reports

Table 1 Categories and Recommendations.
Categories Signatures Recommendations

Memory
Exhaustion

android.app.Activity.setContentView Resource auto-resize
android.view.InflateException interface

java.lang.OutOfMemoryError Restricted use of cache
structures (e.g. LruCache)
Use of cheap file formats

(vector graphics)
Race
Condition or
Deadlock

android.os.AsyncTask.execute Non-blocking algorithms
java.util.concurrent.RejectedExecutionException Specific exceptions
java.util.concurrent.RejectedExecutionException

Missing or
Corrupt
Resource

android.app.Activity.setContentView Default resources
android.view.InflateException Specific exceptions
java.io.FileNotFoundException

Improper
Component
Identification

android.app.Activity.startActivity Useful ids
android.content.ActivityNotFoundException Type Checking
android.content.ActivityNotFoundException

Insufficient
Permission

android.app.Activity.startActivity Clear documentation
java.lang.SecurityException Specific exceptions
java.lang.SecurityException

Invalid Format
or Syntax

android.database.sqlite.SQLiteDatabase.execSQL Interface for queries
android.database.sqlite.SQLiteException on collections (e.g. JQL)
android.database.sqlite.SQLiteException

Indexing
Problem

java.util.ArrayList.get Error-free arguments
java.lang.IndexOutOfBoundsException (iterators)
java.lang.IndexOutOfBoundsException Error ignorance

(in loop conditions)
Connectivity
Problems

org.apache.http.impl.client.AbstractHttpClient.execute User menu
org.apache.http.NoHttpResponseException (1. wait, 2. new provider,
org.apache.http.NoHttpResponseException 3. pause, 4. terminate)

Unclassified
android.hardware.Camera.open Clear documentation

java.lang.RuntimeException Specific exceptions
java.lang.RuntimeException

to understand where a crash comes from. This means that the api should offer specific
exceptions regarding problematic resources.

Improper component identification category includes signatures that indicate crashes
due to either undeclared components or system’s failure to locate a suitable component
for a specific task. Crashes of this category can occur because of wrong declaration of the
application components (activity, service, broadcast receiver, and content provider). To
prevent such crashes, the api can use more meaningful component codes (easy remembered)
and appropriate type checks.

Insufficient permission category covers signatures related to crashes because of missing
or incorrect activity permissions. Table 1 shows a representative example. The activity
cannot start, as the Intent object, which should be passed to the system, has not got the
right permissions (for another device to be eligible to receive a message). Specific exceptions
and clear documentation provided by the api can eliminate such problems. Static checking
tools, also, can help in the early location of permission issues [3].

Invalid format or syntax category refers to crashes due to erroneous method inputs.
Specifically, the signatures that belong here imply format problems and invalid syntax of
sql queries. For instance, the corresponding exception in Table 1 reflects that the signature
is related to a wrong sql query syntax. In order to avoid such problems, the api can include
an interface for queries on collections (e.g. jql)5. Static checking tools can, also, eliminate

5 http://homepages.ecs.vuw.ac.nz/~djp/jql/

http://homepages.ecs.vuw.ac.nz/~djp/jql/

M. Kechagia, D. Mitropoulos, and D. Spinellis 63

these crashes (consider the lint6 tool).
An Indexing problem can be caused by invalid loop conditions and inappropriate

structures (see Table 1). Crashes due to these problems can be avoided with the use of
error-free arguments (e.g. implicit loops and integer indices), as well as error ignorance (in
case a threshold is greater than the size of a list). Also, static checking can solve such issues
(consider FindBugs [5]).

Connectivity problems cover signatures associated with networking exceptions (see
Table 1). To prevent such cases, the system instead of throwing exceptions can provide the
user with a user menu for next actions, such as: 1) wait, 2) choose a new network provider,
3) pause the application, 4) terminate the application. Then, the user has to choose one
of these options, and the system can proceed accordingly. Other possible solutions include
stress tests and notifications from the system (via monitoring of the network activity).

Unclassified signatures do not give clear information about the real causes of their
crashes. For instance, consider a representative example in Table 1 that reflects a crash where
the camera cannot be opened. This occurs either because another application is using the
camera or because the application has not got the permission to use the camera. However,
the RuntimeException is generic for one to understand whether the crash cause is a race
condition or an insufficient permission. We argue that such exceptions consist an api design
problem, and there is a demand for more specific exceptions.

4 Threats to validity

In this section, we discuss the limitations of our study. Internal validity refers to the
implications of the method used for the analysis of the stack traces. While, external validity
aims to ensure that the findings of our empirical study can be generalized for other samples,
too.

4.1 Internal validity
As we had no a priori knowledge of the methods that belong to the Android framework,
we used heuristics to determine them. We sorted the n-tuples, by their frequency, and
looked at the six most common ones to manually establish the name space of the Android
framework’s methods. In addition, we manually examined other common n-tuples to find
application-specific methods. Therefore, although we identified the Android framework’s
methods that are used to call applications, we may have missed the less common ones,
especially from third-party applications.

4.2 External validity
We argue that our findings can be representative of a large population for a number of
reasons. First, we believe that for another Android sample we will possibly get the same
results. To support this, we examined 600 signatures (rest 20% of the stack traces) through
a random sample from our data set, and we validated our crash cause categories against
our original data set. Second, we argue that our categories could be the same for another
platform because of: 1) the amount of the crashes and applications we examined, 2) the fact
that Android runs on a diversity of devices, 3) the size of Android’s api, and 4) the generic
nature of our categories. We have, however, to validate our results by examining data from
platforms, such as ios and Windows mobile.

6 http://developer.android.com/tools/help/lint.html

ICCSW’13

http://developer.android.com/tools/help/lint.html

64 Improving the quality of APIs through the analysis of software crash reports

5 Conclusions and Future Work

In this work, we presented an analysis of Java stack traces from Android application crashes
and an investigation of the causes behind execution failures. As future work, we aim to
analyze crash reports from other operating systems such as the ios and Windows for mobile
devices. In addition, we aim to combine the crash reports with other metadata related to
specific devices and demographic data. Finally, we work toward to the examination of more
stack traces from our sample and the validation of our categories, as well as the automation
of our classification method.

Acknowledgements We would like to thank the BugSense Inc., and more specifically its
founders Panos Papadopoulos and John Vlachogiannis. Also, we want to thank Panos
Louridas, Georgios Gousios, Marios Fragkoulis, and Vassilios Karakoidas for their internal
reviews.

This research has been co-financed by the European Union (European Social Fund —
ESF) and Greek national funds through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework (NSRF) — Research Funding
Program: Thalis — Athens University of Economics and Business — Software Engineering
Research Platform.

References
1 Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore De Carmine,

and Atif M. Memon. Using GUI ripping for automated testing of Android applications.
In Proceedings of the 27th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2012, pages 258–261, New York, NY, USA, 2012. ACM.

2 Joshua Bloch. How to design a good API and why it matters. In Companion to the
21st ACM SIGPLAN symposium on Object-oriented programming systems, languages, and
applications, OOPSLA ’06, pages 506–507, New York, NY, USA, 2006. ACM.

3 Patrick P.F. Chan, Lucas C.K. Hui, and S. M. Yiu. DroidChecker: analyzing Android
applications for capability leak. In Proceedings of the fifth ACM conference on Security
and Privacy in Wireless and Mobile Networks, WISEC ’12, pages 125–136, New York, NY,
USA, 2012. ACM.

4 Michi Henning. API design matters. Commun. ACM, 52(5):46–56, May 2009.
5 David Hovemeyer and William Pugh. Finding bugs is easy. SIGPLAN Not., 39(12):92–106,

December 2004.
6 Stephen H. Kan. Metrics and Models in Software Quality Engineering. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2002.
7 Steve McConnell. Code Complete, Second Edition, pages 133–143. Microsoft Press, Red-

mond, WA, USA, 2004.
8 Martin P. Robillard and Robert DeLine. A field study of API learning obstacles. Empirical

Software Engineering, 16(6):703–732, 2011.
9 J. Stylos and Carnegie Mellon University. Making APIs More Usable with Improved API

Designs, Documentation and Tools. Carnegie Mellon University, 2009.
10 Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang, Yuanyuan Zhou, and Chengxiang Zhai.

Bug characteristics in open source software. Empirical Software Engineering, pages 1–41,
2013.

Fast Implementation of the Scalable Video
Coding Extension of the H.264/AVC Standard∗

Xin Lu and Graham R. Martin

Department of Computer Science
University of Warwick, Coventry
CV4 7AL, United Kingdom
{xin, grm}@dcs.warwick.ac.uk

Abstract
In order to improve coding efficiency in the scalable extension of H.264/AVC, an inter-layer pre-
diction mechanism is incorporated. This exploits as much lower layer information as possible
to inform the process of coding the enhancement layer(s). However it also greatly increases the
computational complexity. In this paper, a fast mode decision algorithm for efficient implement-
ation of the SVC encoder is described. The proposed algorithm not only considers inter-layer
correlation but also fully exploits both spatial and temporal correlation as well as an assessment
of macroblock texture. All of these factors are organised within a hierarchical structure in the
mode decision process. At each level of the structure, different strategies are implemented to
eliminate inappropriate candidate modes. Simulation results show that the proposed algorithm
reduces encoding time by up to 85% compared with the JSVM 9.18 implementation. This is
achieved without any noticeable degradation in rate distortion.

1998 ACM Subject Classification I.4.2 Compression (Coding), E.4 Coding and Information
Theory

Keywords and phrases Fast mode selection, Inter-layer prediction, Scalable Video Coding (SVC),
SVC extension of H.264/AVC.

Digital Object Identifier 10.4230/OASIcs.ICCSW.2013.65

1 Introduction

The Scalable Video Coding (SVC) extension of H.264, also known as MPEG-4 part 10
Advanced Video Coding Amendment 3 [2], is the result of joint standardisation work by
ISO/IEC JTC1 SC29/WG11 (MPEG) and ITU-T. SVC enables a video sequence to be
decoded fully or partially with variable quality, resolution and frame rate depending on the
available network bandwidth or application requirements [10].

The coding mode decision process in the enhancement layer(s) requires an extremely
large amount of computation. It is observed that this process dominates the encoding time
in H.264/SVC. This is due to the application of many time consuming encoding tools. For
instance, rate distortion optimisation and inter-layer prediction are involved in the mode
decision process. Evaluation results show that the mode decision process in the enhancement
layers accounts for 90% of the total computational requirement [3], and the encoding time of
the enhancement layer is 10 times more than that of the base layer. In the rate distortion
optimised mode decision process, more candidate partition modes are involved in SVC than
any previous video coding standard. In SVC, all the encoding tools of H.264/AVC have been

∗ A longer version of this paper appeared in IEEE T-CSVT [8].

© Xin Lu and Graham R. Martin;
licensed under Creative Commons License CC-BY

2013 Imperial College Computing Student Workshop (ICCSW’13).
Editors: Andrew V. Jones, Nicholas Ng; pp. 65–72

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2013.65
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

66 Fast Implementation of the SVC Extension of the H.264/AVC Standard

INTRA

INTRA

(a) Partition prediction.

2x1,2y1

2x2,2y2

16

16

x1,y1

x2,y2

8

8

(b) Motion prediction.

Figure 1 Inter-layer prediction.

inherited [9], and these are supplemented by additional tools to support scalability. SVC uses
a layer-based scheme to provide spatial and quality scalability [10], and in order to improve
coding efficiency, it employs a mechanism to reuse the coded lower layer data for encoding the
corresponding enhancement layer. This is referred to as inter-layer prediction [11]. In this,
a new block mode is introduced, a base layer skip (BLSKIP), which applies three types of
coding tools including inter-layer texture prediction, inter-layer motion prediction and inter-
layer residual prediction, as shown in Figure 1. There are eight available macroblock modes
for inter prediction in H.264/AVC, namely MODE_SKIP, MODE_16×16, MODE_16×8,
MODE_8×16, MODE_8×8, MODE_8×4, MODE_4×8, MODE_4×4 (Figure 2), and two
modes for intra prediction, INTRA_4×4 and INTRA_16×16 [13]. For an enhancement
layer in SVC, all the modes concerned with inter prediction, intra prediction and inter layer
prediction are evaluated, and the mode with the minimum rate distortion (RD) cost is
selected as the best mode for the current macroblock. The rate distortion function for a
block ωk is given by

J(ωk, ω̂k,MODE|Qp) = D(ωk, ω̂k,MODE|Qp)
+ λ(Qp)×R(ωk, ω̂k,MODE|Qp) (1)

where ωk is an original macroblock at time k, and ω̂k is the corresponding constructed block.
Qp is the quantisation parameter [12]. R represents the number of bits, and D denotes

4

MODE_8×4

8

MODE_4×8

4

8
4

MODE_4×4

4

16

16

MODE_16×16

16

8

MODE_16×8 MODE_8×16

8

16

8

8

MODE_8×8

Figure 2 Block modes for inter-frame prediction in H.264/AVC.

X. Lu and G. R. Martin 67

a distortion measure. When exhaustive mode selection is used, the rate distortion cost
must be evaluated for all modes in order to decide which mode should be employed. A set
of time consuming encoding tools are incorporated in SVC as well as in H.264/AVC, for
instance, bi-directional motion prediction, quarter-pixel precision motion estimation, and
motion compensation using multiple reference blocks. In addition, the inter-layer prediction
tools of SVC also incur excessive computational cost. In particular, inter-layer residual
prediction doubles the computational complexity of the mode decision process [3]. Inter-layer
motion prediction also results in a significant increase in computational complexity.

Several algorithms have been suggested to reduce the computational complexity of SVC.
In [5], Kim et al. used the RD cost of the base layer skip mode and the information in
the base layer to categorise macroblocks into different groups. The algorithm then reduces
the number of candidate modes for the enhancement layer. The algorithm’s performance
is highly dependent on a constant K which determines the time saving and reconstructed
picture quality. In [7], depending on the mode distribution relationship between the base
layer and enhancement layers, Li et al. reduced the number of candidate modes in the
enhancement layer according to the best mode in the corresponding position in the base
layer. However, this method provides poor results when the correlation between base layer
and enhancement layer is weak. Goh et al. [4] proposed an algorithm that makes use of the
relationship between current macroblocks and their neighbours to decrease the encoding time.
Nevertheless, for fast changing video sequences, it results in expected bit-rate degradation.
In [16], Zhao et al. utilised the encoding mode of the base layer to initialise the candidate
mode list of the enhancement layer, thus saving the overall encoding time. However the
mode relationship between the macroblock and its neighbours is not investigated, and the
time saving can be further improved.

In this paper we suggest a fast mode decision approach to alleviate the computational
complexity of the SVC encoder without any significant loss of compression performance and
coding efficiency. The remainder of this paper is organised as follows. Section 2 discusses
the formulation of the proposed algorithm, and the overall structure is described in Section
3. Extensive experimental results are presented in Section 4 and conclusions are given in
Section 5.

2 Observations and Analysis

The proposed algorithm is formulated as a hierarchical application of knowledge gained from
previously processed information and the inherent content of the video being encoded.

2.1 Mode Correlation between Base Layer and Enhancement Layer

In order to support spatial and quality scalability, SVC adopts a multi-layer coding approach.
To improve coding efficiency, a new prediction mechanism referred to as inter-layer prediction
was incorporated into the standard. The purpose of using inter-layer prediction tools is to
exploit as much lower layer information as possible for improving the coding efficiency of the
enhancement layer.

In general, the base layer is first encoded independently, followed by the enhancement layer.
As the input video of the different layers is generated from the same original video source
but at different spatial resolution, the picture content is highly correlated [15]. Specifically,
the prediction mode and motion vectors of the enhancement layer are strongly correlated
with those of the base layer. Consequently, by exploiting the mode information of the

ICCSW’13

68 Fast Implementation of the SVC Extension of the H.264/AVC Standard

Table 1 % Mode Correlation between Base Layer and Corresponding Enhancement Layer.

Sequence Qp
24 28 32 36 40

Bus 40.09 47.30 53.16 58.61 65.71
Foreman 42.90 53.97 61.04 69.14 79.94
Mobile 49.92 57.70 63.57 65.44 70.35
Mother-Daughter 78.81 85.40 90.37 95.03 97.64

corresponding macroblock in the base layer, the computational complexity of the mode
decision process in the enhancement layer can be reduced significantly.

To illustrate the mode relationship between the base layer and the enhancement layers
and to justify our proposed algorithm, we analysed the probability of macroblocks in the
enhancement layers being encoded as MODE_SKIP when the mode of the co-located
macroblock in the base layer is also MODE_SKIP. Table 1 shows the mode correlation
between the base layer and the enhancement layer as defined in equation (2). We examined
four video sequences with different degrees of activity and detail. The statistics were collected
from the first 90 frames of each video sequence.

MCIL = MBB&E_SKIP

MBE_SKIP
× 100% (2)

where MBB&E_SKIP is the number of macroblocks predicted as MODE_SKIP in the base
layer when the corresponding macroblock in the enhancement layer is MODE_SKIP too.
MBE_SKIP is the number of MODE_SKIP macroblocks in the enhancement layer.

From Table 1, we deduce that if the best mode for the macroblock in the base layer is
MODE_SKIP, the corresponding macroblock mode in the enhancement layer is very likely
to be MODE_SKIP as well. This is true regardless of video sequence.

2.2 Mode Correlation between Macroblock and its Neighbours
Besides the correlation between layers, there is also a significant dependency of neighbouring
macroblocks in the enhancement layer. For a majority of video sequences, MODE_SKIP
macroblocks tend to occur in clusters, such as a patch of static background. Consequently
there is a high possibility that the best mode for the current macroblock is similar to that of
its neighbours, that is, coded macroblocks which are located to the above and to the left of
the current macroblock.

In order to reveal the mode dependency between macroblocks, we measured the probability
that the current macroblock is coded as MODE_SKIP, if one or both of the neighbouring
macroblocks are also coded MODE_SKIP.

Equation (3) denotes the mode correlation between the current macroblock and its
neighbours.

MCSN = MBC&N_SKIP

MBC_SKIP
× 100% (3)

where MCSN is the mode correlation between a macroblock and its spatial neighbours.
MBC&N_SKIP is the number of the macroblocks which are predicted MODE_SKIP when
the macroblock’s neighbours in the enhancement layer are MODE_SKIP as well. MBC_SKIP

is the number of MODE_SKIP macroblocks in the enhancement layer. Table 2 shows the
mode correlation between a macroblock and its spatial neighbours as defined in equation (3).

X. Lu and G. R. Martin 69

From the observations above, we infer that if the best mode for the co-located macroblock
in the base layer or the neighbouring macroblocks in the enhancement layer is MODE_SKIP,
there is a high probability that the current macroblock in the enhancement layer is also
MODE_SKIP, because of the strong dependency that exists.

2.3 DCT Coefficients and Picture Content
In a smooth region of an image that has been transformed using the discrete cosine transform
(DCT), the DCT energy generally tends to be concentrated in the low frequency components.
Whereas, in a block comprising high detail, the frequency domain energy is concentrated in
the AC coefficients. On this basis, the sum of the AC coefficients can be chosen as a coarse
measure of homogeneity.

For a 16×16 macroblock, the energy of the AC coefficients EAC is calculated as

EAC =
15∑

x=0

15∑
y=0

(f (x, y))2 − 1
256

(15∑
x=0

15∑
y=0

f(x, y)
)2

(4)

Yu et al [14] showed that for fast mode selection in H.264/AVC, when the total energy of the
AC coefficients in the macroblock is greater than 92735, the macroblock is best categorised as
containing high spatial detail, as shown in (5), and for this to be considered when choosing a
reduced subset of modes for evaluation.

homogeneity =
{
high if EAC > 92735
low otherwise (5)

In the evaluation, an AC energy threshold of 92735 was chosen to categorise the homogeneity
of the macroblock content.

2.4 Detection of Motion Activity
As mentioned in [10], not all lower layer up-sampling data is suitable for inter-layer prediction,
especially for video sequences with slow motion and high spatial detail. Therefore it is
important to identify the amount of motion as well as the spatial detail.

Motion vector difference (MVD) between key frames in each GOP is chosen as the
assessment of motion. MVD is the difference between the actual motion vector and the
predicted motion vector, defined as

|MVD| = |MVactual −MVp| (6)

where MVactual is the actual motion vector for the block and MVp is the predicted motion
vector.

Table 2 % Mode Correlation between Macroblock and its Neighbours.

Sequence Qp
24 28 32 36 40

Bus 45.24 52.18 56.95 62.52 66.88
Foreman 45.00 55.24 61.93 69.26 77.53
Mobile 46.06 52.43 57.78 62.16 66.27
Mother-Daughter 71.73 82.05 87.07 92.86 96.16

ICCSW’13

70 Fast Implementation of the SVC Extension of the H.264/AVC Standard

Generally, sequences containing little motion tend to have small MVDs and vice versa.
The MVD is easy to extract from the coded data, and this satisfies the overall objective
of the research, to reduce computational complexity. In the evaluation, a MVD of 1.0 was
chosen as the threshold.

3 Proposed Algorithm

The basic motivation is to reduce the number of mode candidates in the enhancement layer
by exploiting the information in co-located macroblocks in the base layer and in neighbouring
macroblocks. As the coded data of the base layer will be reused either directly or indirectly,
its efficacy influences the performance of the encoder. The mode chosen for a macroblock in
the base layer is estimated using an exhaustive search evaluation. As to the enhancement
layer, our proposed algorithm is described as follows:
1. Check the mode of the co-located macroblock in the base layer. If it is intra coded, it

means that a matching macroblock via inter prediction in the reference frames could not
be found. Usually, such macroblocks contain fast changing or highly detailed information.
For such macroblocks, we compare the RD cost of all the modes (including inter-layer
prediction) and select the mode with minimum RD cost as the best mode for the current
macroblock. Otherwise, proceed to step 2.

2. Check the co-located macroblock in the base layer and the neighbouring macroblocks. If
at least one of these macroblocks is encoded with MODE_SKIP, we evaluate the RD
cost of employing either MODE_SKIP or MODE_16×16. If mode MODE_SKIP has
the least RD cost, it is chosen as the best mode for the current macroblock. Otherwise,
proceed to step 3.

3. Measure the homogeneity of the macroblock content. In the case of low homogeneity, i.e.
EAC ≤ 92735, large block partition sizes (MODE_16×16, MODE_16×8, MODE_8×16)
require evaluation. Otherwise, proceed to step 4.

4. Observe the MVD which is easily extracted from the coded bit stream. If MVD<1, the
macroblock contains little motion, and motion estimation can be performed with fewer
candidates. Otherwise, more candidates are chosen corresponding to a larger search
range.

4 Experimental Evaluation

The proposed algorithm was implemented using the JSVM 9.18 reference software [1]. Four
standard video test sequences with diverse motion content were utilised with different Qp
factors ranging from 24 to 40. The GOP size for the hierarchical B structure was set to 8 and
over 90 frames were coded to generate a reliable result. We considered only the two-layer case.
The same Qp was used for both base layer and enhancement layer. We chose computation
Time Reduction (TR), bit-rate and PSNR as the performance measures. Table 3 shows the
coding results of the standard JSVM 9.18 implementation and the proposed algorithm.

Table 3 shows that, in the case of the Bus sequence with fast motion activity and the
Mobile sequence with high spatial detail, as the percentage of MODE_SKIP macroblocks in
the base layer is small, the time reduction is lower than the other test sequences. Even so,
the computation time is reduced by over 61%. For the Mother-Daughter sequence comprising
little motion, an average time saving of 78% is achieved. In Table 4, it is apparent that the
encoding time reduction increases as the value of Qp increases. The maximum time saved
is 85% for the sequence containing slow motion. The proposed algorithm shows minimal
degradation in coding efficiency with a bit-rate increment of no more than 1.6%, and a

X. Lu and G. R. Martin 71

Table 3 Performance when Encoding QCIF/CIF Sequences.

Sequence Qp JSVM Proposed TR
BR(bits/s) PSNR(dB) BR(bits/s) PSNR(dB)

Bus

40 344.28 26.93 345.56 26.89 67.06
36 565.78 29.44 570.09 29.39 64.36
32 942.03 32.15 952.37 32.09 63.23
28 1579.67 35.07 1593.86 34.98 61.28
24 2581.37 38.00 2606.26 37.81 61.39

Foreman

40 157.93 30.28 157.76 30.25 73.19
36 246.51 32.68 247.43 32.63 68.61
32 390.35 34.96 392.54 34.91 65.07
28 635.55 37.32 643.00 37.25 62.71
24 1073.34 39.57 1090.13 39.47 60.53

Mobile

40 469.64 25.86 470.31 25.83 71.27
36 752.69 28.44 754.84 28.41 69.85
32 1314.27 31.25 1319.59 31.21 69.04
28 2342.70 34.48 2359.49 34.42 68.58
24 3940.10 37.71 3966.08 37.63 67.63

Mother-
Daughter

40 66.83 32.24 66.66 32.22 84.59
36 107.42 34.62 107.52 34.61 81.94
32 175.36 37.08 175.43 37.07 78.42
28 284.31 39.59 284.58 39.56 74.98
24 463.07 41.87 463.36 41.83 69.45

Table 4 Overall Comparison of Proposed Algorithm and JSVM Implementation.

Sequence Performance Qp Average
40 36 32 28 24

Bus
∆PSNR(dB) -0.04 -0.05 -0.06 -0.09 -0.19 -0.09
∆BR(%) 0.37 0.76 1.10 0.90 0.96 0.82
TR(%) 67.06 64.36 63.23 61.28 61.39 63.46

Foreman
∆PSNR(dB) -0.03 -0.05 -0.05 -0.07 -0.1 -0.06
∆BR(%) -0.11 0.37 0.56 1.17 1.56 0.71
TR(%) 73.19 68.61 65.07 62.71 60.53 66.02

Mobile
∆PSNR(dB) -0.03 -0.03 -0.04 -0.06 -0.08 -0.05
∆BR(%) 0.14 0.29 0.40 0.72 0.66 0.44
TR(%) 71.27 69.85 69.04 68.58 67.63 69.27

Mother-
Daughter

∆PSNR(dB) -0.02 -0.01 -0.01 -0.03 -0.04 -0.02
∆BR(%) -0.25 0.09 0.04 0.09 0.06 0.01
TR(%) 84.59 81.94 78.42 74.98 69.45 77.88

decrease in PSNR of no more than 0.2%. Compared with Lee’s algorithm [6], our proposed
scheme achieves a greater time reduction for sequences with varying motion activity and
spatial detail. The method also outperforms that of both Zhao [16] and Kim [5].

ICCSW’13

72 Fast Implementation of the SVC Extension of the H.264/AVC Standard

5 Conclusion

A fast hierarchical mode selection algorithm for the SVC extension of H.264/AVC has been
described. The scheme reduces the number of mode candidates that need to be evaluated by
exploiting the base layer information. Simulation results show that the algorithm achieves a
reduction in encoding time of up to 85% with negligible reduction in coding efficiency and
reconstructed video quality.

References
1 JSVM (Joint Scalable Video Model) reference software for SVC. Online. Available: CVS

server garcon.ient.rwth-aachen.de.
2 H.264: Advanced Video Coding for Generic Audiovisual Services, ITU-T Rec. H.264 and

ISO/IEC 14496-10 Advanced Video Coding, Mar. 2010.
3 Z. Y. Chen, J. W. Syu, and P. C. Chang. Fast inter-layer motion estimation algorithm on

spatial scalability in H.264/AVC scalable extension. In Proc. IEEE ICME, pages 442–446,
2010.

4 G. Goh, J. Kang, M. Cho, and K. Chung. Fast mode decision for scalable video coding
based on neighboring macroblock analysis. In Proc. ACM Appl. Computing, pages 1845–
1846, 2009.

5 S. T. Kim, K. Reddy Konda, P. S. Mah, and S. J. Ko. Adaptive mode decision algorithm for
inter layer coding in scalable video coding. In IEEE Trans. Circuits Syst. Video Technol.,
pages 1297–1300, 2010.

6 B. Lee, M. Kim, S. Hahm, C. Park, and K. Park. A fast mode selection scheme in inter-layer
prediction of H.264 scalable extension coding. In Proc. IEEE BMSB, pages 1–5, 2008.

7 H. Li, Z. G. Li, and C. Wen. Fast mode decision for coarse grain SNR scalable video coding.
In Proc. IEEE ICASSP, volume 2, pages II–II, 2006.

8 X. Lu and G. R. Martin. Fast mode decision algorithm for the H.264/AVC scalable video
coding extension. IEEE Trans. Circuits Syst. Video Technol., 23(5):846–855, 2013.

9 H. Schwarz, D. Marpe, and T. Wiegand. Overview of the scalable H.264/MPEG4-AVC
extension. In Proc. IEEE ICIP, pages 161–164, 2006.

10 H. Schwarz, D. Marpe, and T. Wiegand. Overview of the scalable video coding extension
of the H.264/AVC standard. IEEE Trans. Circuits Syst. Video Technol., 17(9):1103–1120,
2007.

11 C. A. Segall and G. J. Sullivan. Spatial scalability within the H.264/AVC scalable video
coding extension. IEEE Trans. Circuits Syst. Video Technol., 17(9):1121–1135, 2007.

12 T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G. J. Sullivan. Rate-constrained
coder control and comparison of video coding standards. IEEE Trans. Circuits Syst. Video
Technol., 13(7):688–703, 2003.

13 T. Wiegand, G. J. Sullivan, G. Bjφntegaard, and A. Luthra. Overview of the H.264/AVC
video coding standard. IEEE Trans. Circuits Syst. Video Technol., 13(7):560–576, 2003.

14 A. C. W. Yu, G. R. Martin, and H. Park. Fast inter-mode selection in the H.264/AVC
standard using a hierarchical decision process. IEEE Trans. Circuits Syst. Video Technol.,
18(2):186–195, 2008.

15 R. Zhang and M. L. Comer. Efficient inter-layer motion compensation for spatially scalable
video coding. IEEE Trans. Circuits Syst. Video Technol., 18(10):1325–1334, 2008.

16 T. Zhao, H. Wang, and S. Kwong. Fast inter-layer mode decision in scalable video coding.
In Proc. IEEE ICIP, pages 4221–4224, 2010.

Improved Rate Control Algorithm for Scalable
Video Coding∗

Xin Lu and Graham R. Martin

Department of Computer Science
University of Warwick, Coventry
CV4 7AL, United Kingdom
{xin, grm}@dcs.warwick.ac.uk

Abstract
In the Scalable Video Coding (SVC) standard, a multi-layer based structure is utilised to support
scalability. However in the latest Joint Scalable Video Model (JSVM) reference software, the
rate control algorithm is implemented only in the base layer, and the enhancement layers are not
equipped with a rate control scheme. In this work, a novel rate control algorithm is proposed
for when inter-layer prediction is employed. Firstly, a Rate-Quantisation (R-Q) model, which
considers the coding properties of different prediction modes, is described. Secondly, an improved
Mean Absolute Difference (MAD) prediction model for the spatial enhancement layers is proposed,
in which the encoding results from the base layer are used to assist the linear MAD prediction
in the spatial/CGS enhancement layers. Simulation results show that, on average, rate control
accuracy is maintained to within 0.07%. Compared with the default JVT-G012 rate control
scheme employed in SVC, the proposed rate control algorithm achieves higher coding efficiency,
namely an improvement of up to 0.26dB in PSNR and a saving of 4.66% in bitrate.

1998 ACM Subject Classification E.4 Coding and Information Theory

Keywords and phrases Inter-layer prediction, MAD prediction, Rate control, Scalable Video
Coding (SVC), SVC extension of H.264/AVC.

Digital Object Identifier 10.4230/OASIcs.ICCSW.2013.73

1 Introduction

Scalable Video Coding (SVC), the scalable extension of the H.264/AVC standard, provides
solutions for video applications with different network bandwidths, device capabilities and
user demands. Bandwidth is a valuable resource, and often there are situations in which
the bandwidth is insufficient or the network is unstable. Sometimes even the bitstream
comprising the basic layer cannot be transmitted completely, resulting in frame skipping. In
these cases, effective rate control is essential. In real-time applications, rate control enables
the output bit rate to adjust quickly depending on the available channel bandwidth. With a
proper control scheme, “overflow” and “underflow” of the buffer are prevented, which means
that frame skipping and wastage of channel resources can be avoided. Thus, rate control
extends the scalability of SVC. Furthermore, rate control appropriately allocates the available
bits according to the complexity of the image content, so that the quality of the video is
maximised.

Several rate control algorithms have been proposed for non-scalable video coders, such
as the Test Model 5 (TM5) [10] for MPEG-2, Test Model Near-term 8 (TMN8) [5] for

∗ A longer version of this paper appeared in the proceedings of IEEE MMSP’13 [9].

© Xin Lu and Graham R. Martin;
licensed under Creative Commons License CC-BY

2013 Imperial College Computing Student Workshop (ICCSW’13).
Editors: Andrew V. Jones, Nicholas Ng; pp. 73–80

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2013.73
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

74 Improved Rate Control Algorithm for SVC

H.263, Verification Model 8 (VM8) [11] for MPEG4 and JVT-G012 [6] for H.264/AVC.
The JVT-G012 rate control algorithm is only implemented in the base layer of the latest
JSVM reference software, and it does not support the enhancement layers which provide the
scalability functions. Rate control algorithms that address the properties of the enhancement
layers in SVC need to be developed. Several rate control algorithms have been suggested for
SVC [16, 8, 4, 7]. They consider either precise target bit allocation or the optimisation of the
rate quantisation model. Xu et al. proposed a rate control algorithm for spatial and Coarse
Gain SNR (CGS) scalable coding in SVC [16]. This method employs the improved TMN8
model for quantisation parameter (Qp) estimation based on the mode analysis of I, P, and B
frames. In [8], Liu et al. proposed that the MAD can be predicted from either the previous
frame in the same layer or the corresponding frame in the base layer through a switching
law. Hu et al. [4] proposed a frame level rate control algorithm for temporal scalability of
scalable video coding by developing a set of weighting factors for bit allocation. In [7], Liu et
al. proposed a bit allocation algorithm for SVC when the inter-layer dependency is taken
into consideration.

SVC employs so called inter-layer prediction to reduce the redundancies between layers.
However, the effects of inter-layer prediction are not taken into consideration in the rate
control scheme of the JSVM. The rate control strategies assume that the statistical property
of a video source is fixed [15], and then they derive a precise rate distortion model [12]. From
observation and analysis, macroblocks coded using inter-layer prediction and those coded
by intra-layer prediction (inter-frame prediction and intra-frame prediction) have dissimilar
statistical properties. Furthermore, some encoding results of the base layer can be used to
inform the encoding of the enhancement layers, thus benefiting from the bottom-up coding
structure of SVC. These observations motivate us to propose a rate control scheme with
a precise Rate-Quantisation (R-Q) model and optimised MAD prediction for the spatial
enhancement layers.

The remainder of this paper is organised as follows. Section 2 discusses the formulation
of the proposed rate distortion model, and the proposed MAD prediction scheme is presented
in Section 3. Extensive experimental results are presented in Section 4 and conclusions are
given in Section 5.

2 Rate-Distortion Model for Spatial Enhancement Layer

With the hypothesis that the residual coefficients obey a Laplacian distribution, the classic
quadratic rate-distortion (R-D) model is described as follows [3],

Rtxt =
X1 × MADpred

Q2
step

+
X2 × MADpred

Qstep
(1)

where Rtxt is the target number of bits assigned to code the texture information of a basic
unit; MADpred indicates the mean absolute difference of the residual component; Qstep is
the quantisation step size to be calculated and X1 and X2 are model coefficients. X1 and X2
are updated using a linear regression method after the coding of each basic unit [3].

In SVC, the inter-layer prediction tools are employed to reduce the redundancies between
layers. However, inter-layer prediction is not efficient for coding sequences containing homo-
geneous texture or slow motion, since the high frequency components in the enhancement
layer cannot be reconstructed well by upsampling the information of the base layer. Mac-
roblocks with little detail and slow motion are more likely to be best matched with a block
by inter-frame prediction in the same layer. Consequently, temporal prediction (inter-frame

X. Lu and G. R. Martin 75

Table 1 Relationship between average number of texture bits per coded unit and Qp for both
inter-layer predicted macroblocks and intra-layer predicted macroblocks.

Sequence Prediction
mode

Qp
28 32 36 40 44

Bus Intra-layer 98.98 47.91 18.53 6.26 1.66
Inter-layer 98.68 52.22 28.05 15.28 7.94

Football Intra-layer 77.89 43.92 22.07 9.41 3.79
Inter-layer 100.3 56.63 32.12 20.31 11.76

Foreman Intra-layer 18.61 6.52 2.40 0.86 0.39
Inter-layer 28.81 14.27 7.59 4.72 3.20

Mobile Intra-layer 185.2 77.89 22.57 6.76 2.23
Inter-layer 162.4 96.88 46.41 22.33 12.79

prediction) is more efficient than inter-layer prediction, especially for sequences with slow
motion. In contrast, inter-layer prediction performs well for fast moving sequences. However,
macroblocks with fast movement usually need more bits to encode. So we observe that the
average number of texture bits for inter-layer predicted macroblocks in the enhancement
layers is significantly greater than for macroblocks which have been coded using temporal
and spatial prediction within the same enhancement layer.

The significant difference in the number of texture bits generated for inter-layer predicted
macroblocks and intra-layer predicted macroblocks leads to serious prediction errors in the
rate-distortion model coefficients. To illustrate the mathematical relationship between Qp
and the texture bits for both inter-layer predicted macroblocks and intra-layer predicted
macroblocks, and to justify our proposed algorithm, we analysed the simulation results from
processing four sequences with different degrees of activity and detail. The statistics were
collected from the first 150 frames of each video sequence. QCIF sequences were used for the
base layer and CIF were used for the enhancement layer.

Table (1) shows the average number of texture bits for inter-layer predicted macroblocks
in the enhancement layer and those for intra-layer predicted macroblocks in the same
enhancement layer, under a variety of Qp values. It is observed that the average number of
bits used for encoding inter-layer predicted macroblocks is significantly different from that
required for intra-layer predicted macroblocks. In general, as Qp increases, significantly more
bits are consumed by inter-layer prediction coding than by intra-layer prediction.

The model relationship between Qp and Qstep is

Qp = 2
Qstep

6 ζ(Qstep%6) (2)

where ζ(0)=0.675; ζ(1)=0.6875; ζ(2)=0.8125; ζ(3)=0.875; ζ(4)=1.0; ζ(5)=1.125 [13].
Figure (1) illustrates the relationship between Qstep values and the obtained number

of texture bits Rtxt for both inter-layer predicted macroblocks and intra-layer predicted
macroblocks. The quadratic curves fitting the measured data are also presented. It can be
seen that the measured data can be represented by quadratic functions very well.

Rtxt =
a

Q2
step

+ b
Qstep

+ c (3)

where c ≈ 0. The coefficients of the quadratic model are obtained by finding the minimal
fitting error. Although the observed Rtxt - Qstep relationship can be represented by quadratic
models, the model coefficients are significantly different. From these observations, it is
concluded that for optimised rate control within the enhancement layers, separate, and

ICCSW’13

76 Improved Rate Control Algorithm for SVC

0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 60
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

B u s Q C I F / C I F 3 0 H z

Te
xtu

re
bit

s/M
B (

bit
)

1 / Q S t e p

 I n t r a l a y e r p r e d i c t e d M B
 Q u a n d r a t i c f i t : a = 1 3 1 7 4 . 7 , b = 9 3 4 . 8 , c = - 1 0 . 3
 I n t e r l a y e r p r e d i c t e d M B
 Q u a n d r a t i c f i t : a = 8 6 8 6 . 8 , b = 1 1 0 1 . 1 , c = - 3 . 9

(a) Bus.

0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 60
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0
1 1 0

F o o t b a l l Q C I F / C I F 3 0 H z

Te
xtu

re
bit

s/M
B (

bit
)

1 / Q S t e p

 I n t r a l a y e r p r e d i c t e d M B
 Q u a n d r a t i c f i t : a = 2 0 8 7 . 4 , b = 1 2 8 0 . 4 , c = - 1 0 . 0
 I n t e r l a y e r p r e d i c t e d M B
 Q u a n d r a t i c f i t : a = 6 5 7 9 . 1 , b = 1 2 0 7 . 4 , c = - 0 . 6

(b) Football.

0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 60
3
6
9

1 2
1 5
1 8
2 1
2 4
2 7
3 0
3 3

F o r e m a n Q C I F / C I F 3 0 H z

Te
xtu

re
bit

s/M
B (

bit
)

1 / Q S t e p

 I n t r a l a y e r p r e d i c t e d M B
 Q u a n d r a t i c f i t : a = 5 5 6 6 . 4 , b = - 5 6 . 1 , c = 0 . 4
 I n t e r l a y e r p r e d i c t e d M B
 Q u a n d r a t i c f i t : a = 4 5 7 1 . 2 , b = 1 5 7 . 9 , c = 1 . 1

(c) Foreman.

0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 60
2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0
2 0 0

M o b i l e Q C I F / C I F 3 0 H z

Te
xtu

re
bit

s/M
B (

bit
)

1 / Q S t e p

 I n t r a l a y e r p r e d i c t e d M B
 Q u a n d r a t i c f i t : a = 4 2 3 8 7 . 5 , b = 4 8 8 . 3 , c = - 9 . 6
 I n t e r l a y e r p r e d i c t e d M B
 Q u a n d r a t i c f i t : a = 3 2 3 6 . 7 , b = 2 6 9 5 . 2 , c = - 1 7 . 5

(d) Mobile.

Figure 1 Relationship between average number of texture bits and Qstep for both inter-layer
coding and non-inter-layer coding. Points are actual data; curves are fitted to the data.

sufficiently accurate, models must be used for inter-layer prediction and intra-layer prediction.
Consequently, Qinter

step and Qintra
step can be modelled accurately by quadratic functions with their

respective model coefficients.

Rtxt =
Xinter
1 × MADpred(

Qinter
step

)2 +
Xinter
2 × MADpred

Qinter
step

Rtxt =
Xintra
1 × MADpred(

Qintra
step

)2 +
Xintra
2 × MADpred

Qintra
step

(4)

where Rtxt is the target number of texture bits for the current basic unit; MADpred is
the MAD predicted from the previous coding results, Qinter

step and Qintra
step are the desired

quantisation step sizes for inter-layer prediction and intra-layer prediction respectively, Xinter
1

and Xinter
2 , Xintra

1 and Xintra
2 , are the model coefficients for inter-layer prediction and intra-

layer prediction, each updated after the coding of a basic unit using inter-layer prediction
and intra-layer prediction respectively.

3 Optimisation of MAD Prediction for Spatial Enhancement Layer

From equations (4) it can be seen that the quantisation step sizes Qinter
step and Qintra

step depend
on the model coefficients, the target number of bits Rtxt for the current basic unit, and the
predicted MAD value of the current basic unit. However, the MAD value is unknown before

X. Lu and G. R. Martin 77

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 03 . 5
4 . 0
4 . 5
5 . 0
5 . 5
6 . 0
6 . 5

F o o t b a l l Q C I F / C I F Q p = 3 4

F r a m e n u m b e r

 P r e d i c t e d M A D o f L a y e r 1
 A c t u a l M A D o f L a y e r 1

(a)

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0 2 2 0 2 4 0 2 6 001
23
45
67

F o o t b a l l Q C I F / C I F Q p = 3 4

F r a m e n u m b e r

 A c t u a l M A D o f L a y e r 0
 A c t u a l M A D o f L a y e r 1

(b)

Figure 2 The MAD relationships (part of Football sequence) (a) Predicted and actual MAD
values; (b) Actual MAD values of base layer and spatial enhancement layer.

rate-distortion optimisation (RDO). The MAD value can only be obtained after coding the
current basic unit using the quantisation step size, but the model needs the MAD value to
calculate the quantisation step size. This is a “chicken and egg situation”. The JVT-G012
rate control algorithm overcomes this problem by using the MAD value of the basic unit in
the same position of the previous frame to predict the MAD value of current basic unit, thus
permitting the quantisation step size to be calculated. A linear MAD model is adopted here
as [6]:

MADj = a1 × MADj–1 + a2 (5)

where a1 and a2 are model coefficients, updated after the coding of each frame. MADj
denotes the predicted MAD of the current basic unit and MADj–1 denotes the actual MAD
of the basic unit in the corresponding position of the previous frame.

In the quadratic R-D model, MAD prediction is very important as it directly affects
the allocation of bits. As the prediction is not always accurate, there is always some small
error in bit allocation, and this cannot be avoided in the JVT-G012 algorithm. As shown
in Figure (2)(a), if the MAD fluctuates due to fast motion or scene changes in the video
sequence, the linear model performs poorly, and there is always a delay. In the example, this
phenomenon is particularly obvious at frames 9, 41 and 44.

In the SVC encoding process, for each frame, the base layer is encoded first, prior to the
enhancement layers. Furthermore, the content of the base layer and enhancement layers are
highly correlated. As shown in Figure (2)(b), even though the MAD values of the two layers
are not the same, they have a similar tendency in the presence of abrupt changes. This leads
to the idea that some encoding results of the base layer can be used to inform the coding
of the enhancement layer(s), thus benefitting from the bottom-up coding structure of the
standard. Therefore, a new MAD prediction model for the spatial enhancement layer using
the encoding results from the base layer as a factor in the MAD prediction procedure is
proposed. The new prediction model is defined as:

E_MADj = a1 × E_MADj–1 + a2 + a3 × Γj (6)

As for equation (5), a1 and a2 are model coefficients updated after the coding of each
frame. The prefix E_ indicates the enhancement layer. Note that the model is a general
model and can be used at the basic coding unit (e.g. macroblock) level or at frame level.
Therefore, E_MADj may refer to the predicted MAD value of the jth frame or that of one
basic unit in the jth frame. Similarly, E_MADj–1 may refer to the actual MAD value of the
previous frame or that of one basic unit in the same position of the previous frame. Γj refers
to the difference between the actual and predicted MAD of the base layer of the jth frame in
the base layer, and is defined as

Γj = B_MADactual,j – B_MADpredicted,j (7)

ICCSW’13

78 Improved Rate Control Algorithm for SVC

Table 2 Comparison of rate control accuracy.

Sequence Target bitrate
(kbps)

FixedQp JVT-G012 Proposed
BR (kbps) Mism. (%) BR (kbps) Mism. (%) BR (kbps) Mism. (%)

Bus

384 391.5 1.94 385.0 0.26 384.4 0.10
512 522.1 1.96 513.3 0.25 512.0 0.00
768 745.6 2.91 769.1 0.14 768.6 0.08
1280 1303.9 1.87 1282.1 0.16 1280.6 0.05

Football

768 743.2 3.23 768.5 0.07 768.0 0.00
1024 1042.3 1.79 1024.5 0.05 1024.6 0.06
1536 1519.7 1.06 1538.3 0.15 1535.5 0.03
2560 2513.3 1.82 2560.1 0.00 2559.2 0.03

Foreman

192 191.8 0.12 192.9 0.47 192.3 0.16
256 257.1 0.42 256.7 0.27 256.3 0.12
384 389.2 1.35 385.0 0.26 384.3 0.08
640 637.7 0.36 641.3 0.20 639.8 0.03

Mobile

256 251.3 1.83 256.1 0.04 256.6 0.23
384 370.3 3.57 384.7 0.18 384.4 0.10
512 522.0 1.96 512.8 0.16 512.1 0.02
768 777.4 1.22 769.0 0.13 767.6 0.05

Average 1.71 0.17 0.07

where the prefix B_ indicates the base layer. a3 is the Γj weighting factor and typically is
assigned a value of 0.1. The value of a3 is determined from consideration of a very large
number of training samples and many different types of picture content. Consequently it is
reliable and widely-applicable. It may be possible to define an adaptive threshold that is
even more accurate, and this may be pursued in the future.

With the above model, the prediction errors from the base layer are used to assist
estimation of the MAD in the enhancement layers. When encoding the enhancement layers,
the encoder is made aware of the abrupt changes of MAD in advance and promptly adjusts
the MAD prediction to reduce the prediction errors. In this way, the bits are allocated more
appropriately and not only is there an improvement in the rate control accuracy, but also an
increase in the quality of the reconstructed video.

4 Experimental Results

The proposed algorithm was incorporated in the SVC reference software JSVM9.19.14 [1]. In
order to validate the effectiveness of the proposed algorithm, video sequences with different
degrees of motion activity and picture detail were coded, and the results compared with the
JVT-G012 algorithm. The first 150 frames of each video sequence were coded to generate a
reliable result. Two spatial layers are evaluated and the proposed algorithm is applied to the
enhancement layer. Adaptive inter-layer prediction is enabled for the enhancement layer. As
our algorithm attempts to optimise the R-Q model and MAD prediction model, which are
only involved in P frames, the GOP structure is set to IPPP. In this work, a macroblock
is chosen as the basic unit for rate control. To compare the results with the JVT-G012
algorithm, the initial Qp value is set to 32 for both schemes. Other parameters are set to the
default values of the reference software.

The bit-rate mismatch (%Mism.) and rate distortion performance in terms of , BDBR (%),
BDPSNR (dB), ∆BR (%), and ∆PSNR (dB) [2] were measured against the JVT-G012 scheme
to evaluate the coding performance of the proposed rate control algorithm. ∆PSNR(dB)
is computed according to ∆PSNR = PSNRProposed – PSNRG012, where PSNRProposed and
PSNRG012 denote the PSNR resulting from the proposed algorithm and JVT-G012, and

X. Lu and G. R. Martin 79

Table 3 Comparison of rate distortion performance.

Sequence JVT-G012 Proposed ∆BR
(%)

∆PSNR
(dB)

BDBR
(%)

BDPSNR
(dB)BR (kbps) PSNR (dB) BR (kbps) PSNR (dB)

Bus

385.0 28.00 384.4 28.13 -0.16 0.13
-3.55 0.17513.3 29.28 512.0 29.43 -0.25 0.15

769.1 31.10 768.6 31.28 -0.07 0.18
1282.1 33.67 1280.6 33.82 -0.12 0.15

Football

768.5 32.94 768.0 33.11 -0.07 0.17
-4.66 0.261024.5 34.29 1024.6 34.59 0.01 0.30

1538.3 36.53 1535.5 36.78 -0.18 0.25
2560.1 39.39 2559.2 39.66 -0.04 0.27

Foreman

192.9 32.85 192.3 32.97 -0.31 0.12
-2.68 0.11256.7 34.06 256.3 34.17 -0.16 0.11

385.0 35.69 384.3 35.78 -0.18 0.09
641.3 37.64 639.8 37.77 -0.23 0.13

Mobile

256.1 23.98 256.6 24.07 0.20 0.09
-4.01 0.16384.7 25.61 384.4 25.71 -0.08 0.10

512.8 26.64 512.1 26.83 -0.14 0.19
769.0 28.08 767.6 28.38 -0.18 0.30

Average -0.12 0.17 -3.73 0.18

∆BR(%) is computed as ∆BR = (BRProposed – BRG012)/BRG012 × 100%, where BRProposed
and BRG012 denote the bit-rate resulting from the proposed algorithm and JVT-G012,
respectively.

The rate control accuracy for four target bit rates is summarised in Table (2). All the
test sequences and bitrates used in the experiments are those recommended by the JVT
in document JVT-Q205 [14]. It can be seen that both the proposed algorithm and the
JVT-G012 scheme work well at various target bit rates. Although both methods produce the
target bit rates, the accuracy of the proposed algorithm is better than JVT-G012 in most
cases. This is because the proposed optimised MAD prediction model results in a smaller
prediction error when fast motion occurs. Most of the mismatch errors are less than 0.1%
and the maximum error is 0.23%. The overall average absolute mismatch error is 0.07%.
Consequently, it can be considered that bit rate is precisely controlled using the proposed
algorithm.

The proposed rate control mechanism also achieves better rate-distortion performance for
the enhancement layers than the JVT-G012 scheme. The comparative performance results
are shown in Table (3). The results show that 1) given the same bit rate, the proposed
algorithm increases the average PSNR by up to 0.26dB, and 2) given the same video quality
(PSNR), the proposed algorithm produces a saving in average bit rate of up to 4.66%,
compared to the JVT-G012 algorithm. In general, the PSNR of each of the four sequences is
increased at all ranges of target bit rate. The maximum coding gain is 0.30dB. Therefore,
the proposed algorithm improves the coding efficiency compared with the JVT-G012 rate
control algorithm, and this is true regardless of target bit rate.

In order to test the robustness of the proposed algorithm, it was applied to video sequences
of larger spatial resolution and with multiple enhancement layers. The experimental results
show that the proposed algorithm consistently achieves a significant improvement in RD
performance compared with that of JVT-G012. Due to limitations on space, the detailed
results are presented in the longer version of this paper.

5 Conclusions

A rate control scheme for the spatial enhancement layer(s) in SVC has been described. The
scheme introduces a separate rate-quantisation (R-Q) model for inter-layer prediction coding

ICCSW’13

80 Improved Rate Control Algorithm for SVC

in the enhancement layer. An improved MAD prediction model is also proposed, where the
MAD from previous temporal frames and previous spatial frames are considered together.
In applying each of the above techniques, both the target bit rate mismatch is reduced and
the coding efficiency is significantly improved. Simulation results show that the proposed
method achieves better rate control accuracy than the JVT-G012 scheme, the average rate
control mismatch error being 0.07%. Furthermore, the proposed algorithm attains higher
coding efficiency than the JVT-G012 rate control algorithm. The improvement, averaged
over the different types of video sequences coded, is an increase in PSNR of 0.18dB or a
saving in bit rate of 3.73%.

References
1 JSVM (Joint Scalable Video Model) reference software for SVC. Online. Available: CVS

server garcon.ient.rwth-aachen.de.
2 G. Bjφntegaard. Calculation of average PSNR differences between RD-curves. VCEG-M33,

Apr. 2001.
3 T. Chiang and Y. Zhang. A new rate control scheme using quadratic rate distortion model.

IEEE Trans. Circuits Syst. Video Technol., 7(1):246–250, 1997.
4 S. Hu, H. Wang, S. Kwong, T. Zhao, and C.-C. J. Kuo. Rate control optimization

for temporal-layer scalable video coding. IEEE Trans. Circuits Syst. Video Technol.,
21(8):1152–1162, 2011.

5 ITU-T Study Group 16. Video Codec Test Model, Near-Term, Version 8 (TMN8). ITU-
T/SG16/VCEG/Q15 A59, Jun. 1997.

6 Z. G. Li, W. Gao, F. Pan, S. W. Ma, K. P. Lim, G. N. Feng, X. Lin, S. Rahardja, H. Q.
Lu, and Y. Lu. Adaptive rate control for H.264. J. Vis. Commun. Image Represent.,
17(2):376–406, 2006.

7 J. Liu, Y. Cho, Z. Guo, and C.-C. J. Kuo. Bit allocation for spatial scalability coding
of H.264/SVC with dependent rate-distortion analysis. IEEE Trans. Circuits Syst. Video
Technol., 20(7):967–981, 2010.

8 Y. Liu, Z. Li, and Y. Soh. Rate control of H.264/AVC scalable extension. IEEE Trans.
Circuits Syst. Video Technol., 18(1):116–121, 2008.

9 X. Lu and G. R. Martin. Rate control for scalable video coding with rate-distortion analysis
of prediction modes. In Proc. IEEE MMSP, pages 289–294, 2013.

10 MPEG-2 Video Test Model Editing Committee. MPEG-2 Video Test Model 5 (TM5).
ISO/IEC JTC1/SC29/WG11 N0400, Apr. 1993.

11 MPEG Video Group. MPEG-4 Video Verification Model Version 8 (VM8). ISO/IEC
JTC1/SC29/WG11 N1796, Jul. 1997.

12 J. Ribas-Corbera and S. Lei. Rate control in DCT video coding for low-delay communica-
tions. IEEE Trans. Circuits Syst. Video Technol., 9(1):172–185, 1999.

13 I. E. Richardson. H.264 and MPEG-4 video compression: video coding for next-generation
multimedia. Wiley, 2003.

14 M. Wien and H. Schwarz. Testing conditions for SVC coding efficiency and JSVM perform-
ance evaluation. JVT-Q205, Jul. 2005.

15 J. Xie and L. Chia. Study on the distribution of DCT residues and its application to R-D
analysis of video coding. J. Vis. Commun. Image Represent., 19(7):411–425, Oct. 2008.

16 L. Xu, W. Gao, X. Ji, D. Zhao, and S. Ma. Rate control for spatial scalable coding in SVC.
In Proc. PCS, 2007.

An Optimal Real-time Pricing Algorithm for the
Smart Grid: A Bi-level Programming Approach∗

Fan-Lin Meng and Xiao-Jun Zeng

School of Computer Science, University of Manchester
Manchester, United Kingdom
mengf@cs.man.ac.uk, x.zeng@manchester.ac.uk

Abstract
This paper proposes an improved approach to our previous work [11]. [11] uses Stackelberg game
to model the interactions between electricity retailer and its customers and genetic algorithms are
used to obtain the Stackelberg Equilibrium (SE). In this paper, we propose a bi-level programming
model by considering benefits of the electricity retailer (utility company) and its customer. In
the upper level model, the electricity retailer determines the real-time retail prices with the aim
to maximize its profit. The customer reacts to the prices announced by the retailer aiming to
minimize their electricity bills in the lower level model. In order to make it more tractable, we
convert the hierarchical bi-level programming problem into one single level problem by replacing
the lower lever’s problem with his Karush–Kuhn–Tucker (KKT) conditions. A branch and bound
algorithm is chosen to solve the resulting single level problem. Experimental results show that
both the bi-level programming model and the solution method are feasible. Compared with the
genetic algorithm approach proposed in work [11], the branch and bound algorithm in this paper
is more efficient in finding the optimal solution.

1998 ACM Subject Classification G.1.6 Optimization

Keywords and phrases Real-time Pricing, Demand Response, Smart Gird, Bi-level Program-
ming, Branch and Bound Algorithm

Digital Object Identifier 10.4230/OASIcs.ICCSW.2013.81

1 Introduction

The traditional electricity grid is facing many existing and potential problems with the
increased demand from customers in recent years, and the reliability of the grid has been
put in danger. In addition, the average household electricity load has the potential to double
with the deployment of plug-in hybrid electric vehicles (PHEVs), which will further endanger
the existing grid.

Instead of building more power plants to meet the peak demand of customers, demand
response is a better choice for solving the above problems, especially with the development
of the smart grid.

Real-time pricing (RTP) is one of the most important DR strategies, where the prices
announced by retailers change typically hourly to reflect variations of the price in the
wholesale market over time. Generally, customers are notified of RTP prices the day before
or a few hours before the delivery time. One of the most typical types of RTP is day-ahead
RTP, in which customers receive the prices for the next 24 hours [6].

∗ Parts of this paper appeared in the proceedings of UKCI 2012 [11].

© Fan-Lin Meng and Xiao-Jun Zeng;
licensed under Creative Commons License CC-BY

2013 Imperial College Computing Student Workshop (ICCSW’13).
Editors: Andew V. Jones, Nicholas Ng; pp. 81–88

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2013.81
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

82 An Optimal Real-time Pricing Algorithm for the Smart Grid

There exists much literature on RTP. However, the results and analysis in this paper
differ from the related work in several aspects:

In the work of [16], they analytically models the customers’ preferences and customers’
electricity consumption patterns in form of utility functions and it shows that the proposed
algorithm can benefit both customers and energy providers. However, no explicit form of
the customers’ utility functions is given. [8] and [18] further develop the work of [16]. Both
works use the same concept of utility functions to model the satisfaction of customers as [16],
but similarly no explicit form of the utility functions are given. As a result, the approach is
unable to help the customers to find the best scheme to minimize their bills. To overcome this
weakness, the approach given in this paper aims to provide the best solution for customers
to achieve the minimal bills.

Since the RTP design needs the participation of electricity retailer and its customers and
the decision makings are sequential, i.e., the electricity retailer announces the prices first,
then its customers react to the prices by shifting the energy use. The interactions between
electricity retailer and its customers can be represented as a leader-follower Stackelberg
game, and thus can be modelled using a bi-level programming model. In fact, the bi-level
programming problem is a static Stackelberg game where two players try to maximize their
individual objective functions [1].

Due to the hierarchical structure of the Stackelberg game or bi-level programming
model, many real-world problems with two decision levels can be modelled using the bi-level
programming approach. Price setting problems are two decision levels problems and have
been studied for several years using bi-level programming approach [14, 15, 7]. [2] proposes
a decision-making scheme for electricity retailers based on Stackelberg game. They model
the customers’ preference and satisfaction as utility functions. [4] presents an optimal
demand response scheduling with Stackelberg game approach. Similar to [2], they model
the customers’ behaviour patterns as utility functions. However, no explicit form of utility
functions are given. The difference between our work and [2] and [4] lies in that we model
the follower level problem (lower level problem) with appliance-level details, which is more
practical and thus more difficult to solve.

The main focus of this paper is to propose a decision making scheme based on bi-level
programming model for the electricity retailer and its customer by considering the benefits
of both participants and give efficient solutions to the proposed model.

The rest of this paper is organized as follows. The background of bi-level programming
model is introduced in Section 2. In Section 3, the system model and the solution method are
given. Experimental results are presented in Section 4. The paper is concluded in Section 5.

2 Background of Bi-level Programming Model

Decision making problems in decentralized organizations are often modelled as Stackelberg
games, and they are formulated as bi-level mathematical programming problems. The major
feature of a bi-level programming problem is that it includes two optimization problems
within a single instance. The lower level executes its own optimal policy after decisions are
made at the upper level [10].

The general formulation of a bi-level programming problem can be represented as follows:

(Upper Level) min
x
F (x, y)

s.t. G(x, y) ≤ 0

F. Meng and X. Zeng 83

where y = y(x) is implicitly defined by:

(Lower Level) min
y
f(x, y)

s.t. g(x, y) ≤ 0

where F is the objective function of the upper level problem; f is the objective function of
the lower level problem; G is the constraint set of the upper level decision vector; g is the
constraint set of the lower level decision vector; x is the decision vector of the upper level;
and y is the decision vector of the lower level. y = y(x) is called reaction function. To solve
the bi-level programming model, one needs to obtain the reaction function by solving the
lower-level problem and replace the variable y in the upper level problem with the reaction
function [17]. However, for many real applications, the reaction function y = y(x) is not able
to be explicitly represented. Thus, the problems can not be handled in the above way and
become more difficult to solve.

Even though the simple linear bi-level programming problems are proven to be NP-hard,
there are many methods arising in the last thirty years for solving the bi-level programming
problems, such as the extreme-point approach for the linear bi-level programming, branch
and bound method, descent methods, penalty function methods and trust region methods
[5]. In this paper, the branch and bound method is chosen to solve our proposed bi-level
programming problems as this algorithm was proved to be able to obtain the global optimal
solutions [1].

3 System Model and Solution Method

In this section, we provide a mathematical representation of the considered decision making
problem. Firstly, our focus is to formulate the electricity consumption scheduling problem in
response to the real-time pricing in each household as an optimization problem that aims
to minimize the payment bills. Secondly, we model the profit optimization problem for the
retailer who will offer the 24 hours real-time prices to the customer.

We define P = [p1, p2, ..., ph, ...pH] as the leader’s strategy space, where ph represents
the electricity price at hour h and H represents the scheduling time window. We assume
that pmin ≤ ph ≤ pmax, where pmin represents the minimum price that the retailer (utility
company) can offer to the customer and pmax represents the maximum price that the retailer
can offer. It is also reasonable to assume that the price that the retailers can offer is greater
than the wholesale price of each hour. The prices of pmin and pmax are usually designed
based on history data and conditions of the wholesale price. However, since most of the retail
markets now are regulated, there exists a price cap for the retail price and pmax should be
less than the price cap. For the following part of this paper, we set H , {1, 2, ...,H}. Usually,
H = 24. We define the set of appliances in the customer’s household S. In this paper, we
only consider the one-leader, one-follower case, i.e., in our model, only one electricity retailer
and one customer are considered.

3.1 Lower-level Model Problem
This model improves that of [13]. In their work, a upper limit for hourly electricity usage is
set for each household, but we do not have such constraints for the optimization problem at
customer’s side as there is no such usage limits in practice. Instead, we consider the total

ICCSW’13

84 An Optimal Real-time Pricing Algorithm for the Smart Grid

upper limit of hourly usage in the optimization problem at retailers’ side. This is to represent
the maximum load capacity of power networks. Therefore, we can actually control the hourly
use of electricity of each household by properly determining the retail price, which is more
practical from an application point of view.

For each appliance s ∈ S , we define an electricity consumption scheduling vector:

es = [e1
s, ..., e

h
s , ..., e

H
s] (1)

where H is the scheduling window. For each hour h ∈ H , {1, 2, ...,H}, ehs ≥ 0 represents
the customer’s electricity consumption of appliance s at time h.

It is reasonable to assume that the energy consumption of each appliance s during a
typical day is maintained at the same level and the total electricity consumed by appliance s
in a typical day is defined as Es. Moreover, the customer needs to set a valid scheduling
window Hs , {αs, ..., βs} by specifying the beginning operation time αs ∈ H and the end
operation time βs ∈ H of appliance s. Based on the above analysis, we have

βs∑
h=αs

ehs = Es (2)

and

ehs = 0,∀h ∈ H\Hs (3)

After defining the minimum power level γmins and the maximum power level γmaxs for
each appliance s ∈ S , we have

γmins ≤ ehs ≤ γmaxs ,∀h ∈ Hs. (4)

Then, the payment bill optimization problem for the customer can be modelled as follows:

min
eh

s

∑H
h=1 p

h × (
∑
s∈S e

h
s)

s.t.∑βs

h=αs
ehs = Es,

ehs = 0,∀h ∈ H\Hs,
γmins ≤ ehs ≤ γmaxs ,∀h ∈ Hs.

(5)

3.2 Upper-level Model Problem
In this section, we model the profit of the retailer by using the revenue subtracting the energy
cost imposed on the retailer. We will discuss about the energy cost model first, and then a
profit maximization model will be proposed.

In the practical application scenario, to determine the retail price, we need to consider
many factors such as running cost of the retailers including the payments incurred in the
wholesale market and so on. For simplicity, we define a cost function Ch(Lh) indicating the
cost of providing electricity by the retailers at each hour h ∈ H, where Lh represents the
amount of power provided to the customer at each hour of the day. We assume that the cost
function Ch(Lh) is increasing in Lh for each h [12, 8, 3]. In view of this, we design the cost
function as follows [12].

Ch(Lh) = ahLh + bh (6)

F. Meng and X. Zeng 85

where ah > 0 and bh ≥ 0 at each hour h ∈ H.
For each hour h ∈ H, by defining the minimum price that the retailer (utility company)

can offer pmin and the maximum price pmax, we have pmin ≤ ph ≤ pmax. Note that there is
usually a maximum load capacity, denoted as Emax

h , of power networks at each hour. Thus,
we have following constraints:∑

s∈S
ehs ≤ Emax

h ,∀h ∈ H (7)

Then the profit maximization problem can be modelled as (8).

max
ph
{

∑
h∈H

ph ×
∑
s∈S

ehs −
∑
h∈H

Ch(
∑
s∈S

ehs)}

s.t.

pmin ≤ ph ≤ pmax∑
s∈S

ehs ≤ Emax
h ,∀h ∈ H

(8)

3.3 Solution Method
Instead to solve the bi-level problem in its hierarchical form (Eqs.(8) and (5)), we convert
it into a standard mathematical program by replacing the follower’s problem (lower level
problem, Eq.(5)) with his Karush–Kuhn–Tucker (KKT) conditions. Then a branch and
bound algorithm is chosen to solve the resulting non-linear programming problem [1]. We
adopt the YALMIP solver, which is based on the above mentioned algorithm and implemented
in Matlab, to solve our bi-level programming mode [9].

4 Experimental Results

We simulate a simple one energy retailer (utility company), one customer case. It is assumed
that the customer has 4 appliances: dish washer, washing machine, clothes dryer and PHEV.
Note that the scheduling horizon is from 8AM to 8AM (the next day).

For the cost of the energy provided to the customer by utility company, we model this
as a cost function. We choose a simple linear cost function: Ch(Lh) = ahLh + bh , where
Lh represents the amount of power provided to the customer at each hour of the day. For
simplicity we assume that bh = 0 for all h ∈ H. Also, we have ah = 5.5 cents during the day,
i.e., from 8AM to 12AM and ah = 4.0 cents at night hours, i.e., from 13AM to 8AM (the
next day). Finally, the parameter settings of these home appliances can be found in Table 1.

Getting ideas from the time-of-use pricing (ToU), we divide the 24 hours prices into three
levels, i.e., peak hours(5PM-12AM), mid-peak hours(8AM-5PM) and off-peak hours(12AM-
8AM). For peak hours, the prices range from 12 cents to 14 cents. Similarly, the prices range

Table 1 Home Appliances’ Parameter Settings.

Appliance Name Es Hs γmin
s γmax

s

Dish washer 1.8kwh 8PM-6AM 0.1kwh 1.0kwh
Washing machine 1.94kwh 8AM-8PM 0.1kwh 1.0kwh
Clothes dryer 3.4kwh 7PM-7AM 0.25kwh 3.0kwh
PHEV 9.9kwh 8PM-7AM 0.3kwh 2.0kwh

ICCSW’13

86 An Optimal Real-time Pricing Algorithm for the Smart Grid

Table 2 24 Hours Optimal Prices Offered by the Retailer.

Time 8AM 9AM 10AM 11AM 12PM 1PM 2PM 3PM
Price(cents) 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
Time 4PM 5PM 6PM 7PM 8PM 9PM 10PM 11PM
Price (cents) 12.00 12.00 12.00 14.00 14.00 14.00 14.00 14.00
Time 12AM 1AM 2AM 3AM 4AM 5AM 6AM 7AM
Price(cents) 14.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

8AM 11AM 2PM 5PM 8PM 11PM 2AM 5AM
10

10.5

11

11.5

12

12.5

13

13.5

14

Hours

E
le

c
tr

ic
it
y
 P

ri
c
e
 (

c
e
n
ts

)

Figure 1 Optimal Real-time Prices Offered by the Retailer.

from 8 cents to 12 cents for mid-peak hours while the prices float between 6 cents to 10 cents
for off-peak hours.

The aim of our proposed optimal RTP scheme is to find the optimal 24 hours prices by
maximizing the retailer’s profit (upper level problem). Besides this, with this identified price
information, the customer can achieve his best benefit, i.e., minimize his payment bills (lower
level problem).

Applying the open source solver YALMIP to our proposed bi-level programming problems,
we can get the optimal 24 hours prices shown as Table 2 and Figure 1.

With the purpose to design a benchmark, we assume, without our proposed optimal
appliances scheduling scheme, the appliances start working right at the beginning of the time
interval Hs and at its typical power level. The energy consumption comparison of appliances
with and without scheduling can be seen from Figure 2. We can easily find from Figure 2
that the customer shifts the energy use from high price periods to low price period. As a
result, with our proposed scheduling scheme, the electricity bill of the customer for one day
is reduced from 2.35 $ to 1.94 $.

Based on the above analysis, we can see that with this bi-level programming model not
only the electricity retailer can maximize his benefits, but the customer can also benefit from
the reduced electricity bills.

Last but not least, the proposed branch and bound algorithm is more efficient compared

F. Meng and X. Zeng 87

8AM 11AM 2PM 5PM 8PM 11PM 2AM 5AM
0

1

2

3

4

k
w

h

Hours

8AM 11AM 2PM 5PM 8PM 11PM 2AM 5AM
10

11

12

13

14

c
e
n
ts

with scheduling

without scheduling

electricity price

Figure 2 Energy Consumption Comparison with Scheduling and without Scheduling under
Obtained Optimal Real-time Pricing.

with genetic algorithms used in [11]. Ten separate experiments for each approach have been
done for the computation time comparison. The average time cost of the genetic algorithm
approach in obtaining the optimal solution to our proposed bi-level programming model is
around 120 seconds while the branch and bound algorithm takes only around 8 seconds.

5 Conclusion and Future Work

We propose a bi-level programming approach to model the interactions between the retailer
and its customer. First, a electricity bill minimization model (lower level model) has been
proposed for the customer to incentive him to change his electricity use pattern. Second, a
profit maximization model (upper level model) for the retailer has been modelled. A branch
and bound algorithm is chosen to solve this propose bi-level programming problem. As
the simulation results show that both the retailer and the customer can benefit from the
proposed framework, it has great potential to improve the implementation of current energy
pricing programs, help customers to reduce the increasing energy bills, and change their
energy usage patterns.

This work can be extended in several directions. First, we will enrich the lower level
problem by considering the trade-off between minimizing bills and satisfying customer’s
comfort. Second, we will extend the current one-leader one follower case to one-leader
multiple-followers bi-level programming model in our future work.

References
1 Jonathan F Bard and James T Moore. A branch and bound algorithm for the bilevel

programming problem. SIAM Journal on Scientific and Statistical Computing, 11(2):281–
292, 1990.

2 S. Bu, F. Richard Yu, and Peter X. Liu. A game-theoretical decision-making scheme
for electricity retailers in the smart grid with demand-side management. In 2011 IEEE

ICCSW’13

88 An Optimal Real-time Pricing Algorithm for the Smart Grid

International Conference on Smart Grid Communications (SmartGridComm), pages 387–
391, 2011.

3 C. Chen, S. Kishore, and L.V. Snyder. An innovative rtp-based residential power scheduling
scheme for smart grids. In Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE
International Conference on, pages 5956–5959. IEEE, 2011.

4 Jiang Chen, Bo Yang, and Xinping Guan. Optimal demand response scheduling with stack-
elberg game approach under load uncertainty for smart grid. In Smart Grid Communic-
ations (SmartGridComm), 2012 IEEE Third International Conference on, pages 546–551.
IEEE, 2012.

5 Benoît Colson, Patrice Marcotte, and Gilles Savard. Bilevel programming: A survey. 4OR,
3(2):87–107, 2005.

6 Seppo Kärkkäinen Corentin Evens. Pricing models and mechanisms for the promotion
of demand side integration. Technical Report VTT-R-06388-09, VTT Technical Research
Centre of Finland, 2009.

7 Martine Labbé and Alessia Violin. Bilevel programming and price setting problems. 4OR,
pages 1–30, 2013.

8 Na Li, Lijun Chen, and Steven H. Low. Optimal demand response based on utility max-
imization in power networks. In 2011 IEEE Power and Energy Society General Meeting,
pages 1–8, 2011.

9 Johan Lofberg. Yalmip: A toolbox for modeling and optimization in matlab. In Computer
Aided Control Systems Design, 2004 IEEE International Symposium on, pages 284–289.
IEEE, 2004.

10 Huina Mao, Xiao-Jun Zeng, Gang Leng, Yong-Jie Zhai, and John A Keane. Short-term
and midterm load forecasting using a bilevel optimization model. Power Systems, IEEE
Transactions on, 24(2):1080–1090, 2009.

11 Fan-Lin Meng and Xiao-Jun Zeng. A stackelberg game approach to maximise electricity
retailer’s profit and minimse customers’ bills for future smart grid. In Computational
Intelligence (UKCI), 2012 12th UK Workshop on, pages 1–7. IEEE, 2012.

12 A Mohsenian-Rad and VWS Wong. Autonomous demand-side management based on game-
theoretic energy consumption scheduling for the future smart grid. Smart Grid, IEEE,
1(3):320–331, 2010.

13 Amir-Hamed Mohsenian-Rad and Alberto Leon-garcia. Optimal Residential Load Control
With Price Prediction in Real-Time Electricity Pricing Environments. Smart Grid, IEEE,
1(2):120–133, 2010.

14 Erling Pettersen, Andrew B Philpott, and Stein W Wallace. An electricity market game
between consumers, retailers and network operators. Decision support systems, 40(3):427–
438, 2005.

15 Vesna Radonjić and Vladanka Aćimović-Raspopović. Responsive pricing modeled with
stackelberg game for next-generation networks. annals of telecommunications-annales des
télécommunications, 65(7-8):461–476, 2010.

16 Pedram Samadi, Amir-Hamed Mohsenian-Rad, Robert Schober, Vincent W. S. Wong, and
Juri Jatskevich. Optimal Real-Time Pricing Algorithm Based on Utility Maximization for
Smart Grid. In 2010 First IEEE International Conference on Smart Grid Communications,
pages 415–420, 2010.

17 Huijun Sun, Ziyou Gao, and Jianjun Wu. A bi-level programming model and solution
algorithm for the location of logistics distribution centers. Applied Mathematical Modelling,
32(4):610–616, 2008.

18 Peng Yang, Gongguo Tang, and Arye Nehorai. A game-theoretic approach for optimal time-
of-use electricity pricing. Power Systems, IEEE Transactions on, 28(2):884–892, 2013.

Dreaming Machines: On multimodal fusion and
information retrieval using neural-symbolic
cognitive agents
Leo de Penning1, Artur d’Avila Garcez2, and John-Jules C. Meyer3

1 TNO Behaviour and Societal Sciences
Soesterberg, The Netherlands
leo.depenning@tno.nl

2 Department of Computing, City University
London, UK
aag@soi.city.ac.uk

3 Department of Information and Computing Sciences, Utrecht University
Utrecht, The Netherlands
jj@cs.uu.nl

Abstract
Deep Boltzmann Machines (DBM) have been used as a computational cognitive model in various
AI-related research and applications, notably in computational vision and multimodal fusion.
Being regarded as a biological plausible model of the human brain, the DBM is also becoming
a popular instrument to investigate various cortical processes in neuroscience. In this paper,
we describe how a multimodal DBM is implemented as part of a Neural-Symbolic Cognitive
Agent (NSCA) for real-time multimodal fusion and inference of streaming audio and video data.
We describe how this agent can be used to simulate certain neurological mechanisms related to
hallucinations and dreaming and how these mechanisms are beneficial to the integrity of the
DBM. Finally, we will explain how the NSCA is used to extract multimodal information from
the DBM and provide a compact and practical iconographic temporal logic formula for complex
relations between visual and auditory patterns.

1998 ACM Subject Classification I.2.0 Cognitive simulation

Keywords and phrases Multimodal fusion, Deep Boltzmann Machine, Neural-Symbolic Cognit-
ive Agent, Dreaming, Hallucinations

Digital Object Identifier 10.4230/OASIcs.ICCSW.2013.89

1 Introduction

The human brain has always inspired many of us to investigate and try to understand its
complex processes. Ranging from neuroscientists that try to model the brain in terms of
neurons, synapses and pathologies, to psychologists and cognitive scientists that try to model
it in terms of human and social behaviour, to computer scientists that try to model it in
terms of computational models that can perform intelligent tasks. A common tool in all these
sciences is the use of abstract models of the human brain that help us to simulate, analyse
and understand how it works. From a computer science perspective, computational models
of the human brain are often based on models from neuroscience (e.g. neural networks)
or models from cognitive and social sciences (e.g. cognitive models). These models have
enabled computer scientists to build very complex systems that are able to perform tasks of
human intelligence (e.g. visual recognition, speech recognition and driving a car). On the

© Leo de Penning, Artur d’Avila Garcez, and John-Jules C. Meyer;
licensed under Creative Commons License CC-BY

2013 Imperial College Computing Student Workshop (ICCSW’13).
Editors: Andrew V. Jones, Nicholas Ng; pp. 89–94

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2013.89
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

90 Dreaming Machines

other hand, these computational models have also been used in neural, cognitive and social
sciences to investigate the human brain itself. For example, computational models have
been used to investigate biological pathways in the visual cortex [5], neurological pathologies
that cause hallucinations [10], the role of long-term memory in perception [8], and social
dynamics of cognitive and affective processes [14]. Even in the investigation of more elusive
and abstract processes related to the brain, computational models have been used. For
example, to illustrate the role of mind and brain in cognitive psychology [12] and to explain
the function of dreaming [1].

In this paper we will describe the use of a Deep Boltzmann Machine (DBM) as computa-
tional model to simulate certain neurological processes related to hallucination and dreaming
and describe how these processes can be applied to multiple modalities, specifically streaming
audio and video. Furthermore we will describe and illustrate how a Neural-Symbolic Cognit-
ive Agent (NSCA) can be used to retrieve information from this model in a temporal logic
formula that incorporates iconographic representations of the visual and auditory patterns.

2 Multimodal Deep Learning

Similar to the approach described in [9] we apply a Deep Boltzmann Machine (DBM)
for multimodal fusion of visual and auditory information. A DBM can learn hierarchical
representations of data, using several layers of Restricted Boltzmann Machines (RBMs)
[11]. Each RBM represents a stochastic neural network with visible units v, that represent
input variables (or hidden-unit activations of lower-layer RBMs), and hidden units h, that
represent the likelihood of certain activation patterns in v. There are symmetric weighted
connections between the hidden and visible units with weights W , but no connections within
the hidden units or visible units. The weights can be trained to model a joint probability
distribution over h and v (Equation 1, where b and c denote the biases of the hidden and
visible units and σ(x) the logistic sigmoid function). This particular configuration makes it
easy to compute the conditional probability distributions, when v or h is fixed (Equation 2),
enabling the reconstruction of input data based on partial information in v. This is done by
sampling the conditional probability distribution in Equation 2, where h′j = 1 with p(hj |v)
(and h′j = 0 otherwise), and calculating the reconstructed data v’, where v′i = p(vi|h’).

− logP (v,h) ∝ E(v,h) = −cT v− bT h− hTWv (1)
p(hj |v) = σ(bj + wT

j v) (2)

To train a DBM, each RBM layer is trained separately using Contrastive Divergence
learning [5]. This learning algorithm tries to minimize the difference between v and v’ by
changing the weights using a Hebbian-like learning rule such that 4W ∼= v · h − v’ · h’,
with the network in the long run learning to approximate the joint probability distribution
P (v,h).

Figure 1 depicts the RBMs used to model the auditory and visual patterns (1a, b) and
two possible configurations for fusion of these patterns (1c, d). In this work we apply the
same architecture as the bimodal DBN1 (1d), to optimize the learning of relations across
modalities (see [9]). We do not apply the deep autoencoders as proposed in [9] as we assume
both modalities will be present during training and testing. Also, we will explain how

1 Deep Boltzmann Machine are also referred to as Deep Belief Networks (DBN).

L. de Penning, A. d’Avila Garcez, and J. C. Meyer 91

Figure 1 RBMs that model auditory (a) and visual patterns (b) and combine these patterns in
higher-order multimodal representations (c, d).

certain neurological mechanisms can be used to overcome the multimodal inference problem
addressed in [9]. To train the RBMs for audio (1a) and video (1b) we decode the audio stream
as a spectrogram of 10 frames x 1024 frequencies using Discrete Cosine Transformation
(DCT) on decoded audio samples, and the video stream as monochrome images that are
reduced in scale, resulting in 160x120 pixels. Both transformations are fast and reversible
allowing us to reconstruct video and audio from the DBM in real-time. As explained later,
this approach will also enable us to do multimodal information retrieval and demonstrate
the effect of neurological processes related to hallucinations and dreaming. As an extension
to the DBM we also investigated the use of Recurrent Temporal RBMs in the top layer to
model temporal sequences of audio and video patterns by taking into account the hidden
unit activations in the previous time step [13].

Figure 2 Adobe Flash based client that records from webcam and plays back reconstructed audio
and video from a DBM. The real-time activations of all hidden units in the DBM is visualized as
follows: on the left-side is depicted the hidden unit activations of the video, on the right-side the
hidden unit activations of the audio, and on the bottom the hidden unit activations after multimodal
fusion in the top layer of the DBM.

For demonstration purposes we implemented the DBM in a multi-agent platform, called
Trinity2, that supports real-time media streaming for Adobe Flash based clients that stream
audio and video from a webcam. We implemented the DBM as part of a NSCA that
enables the interpretation and reconstruction of audio and video information in a stream

2 Trinity is a successor of the SimSCORM platform that has been developed for automated training and
assessment [4].

ICCSW’13

92 Dreaming Machines

and supports automated video indexing or assessment of observed human behaviour. As
depicted in Figure 2, the client plays back the reconstructed audio and video and displays
the real-time activation of the hidden units residing in each hidden layer. The use of a NSCA
also allows to retrieve and investigate the contents of each visual, auditory and multimodal
pattern that has learned by the DBM (see section 4). These patterns can be visualized in
the tool by clicking on the bar of a related hidden unit in the activation graphs. We believe
that this tool can help in future work on both multimodal fusion as well as the investigation
of neurological processes.

3 Hallucinations and Dreaming

As described in [10], the DBM is a biologically plausible computational model for the
investigation of neurological processes related to cortical learning, perception and diseases. It
is able to simulate certain cortical processes that result in hallucinations due to loss of vision
(i.e. Charles Bonnet Syndrome). Reichert describes how homoeostatic mechanisms in the
cortex can stabilize neuronal activity to recover correct internal representations from degraded
input. After some period this process can lead to complex vivid visual hallucinations. This
mechanism can be implemented in the DBM as a regularization term for hidden unit biases
(Equation 3) that is similar to mechanisms employed in other DBM-like models to enforce
sparsity in the activations [9, 7].

4bi = η(pi − ai) (3)

Using this model and regularization term, we have conducted several experiments that
indeed demonstrate the forming of hallucinations when visual input is completely or partially
blanked (mimicking loss of vision). These experiments also showed that when random noise
is applied to the input, smaller overall bias shifts were necessary to restore original activity
levels and produce hallucinations. This effect resembles another cognitive process, called
reverse learning.

Reverse learning is a mechanism that is believed to be used in Rapid Eye Movement
(REM) sleep to remove certain undesirable modes of interaction in networks of cells in the
cerebral cortex. According to [1] the trace in the brain of the unconscious dream causes
these modes to be weakened by applying random stimulation of the forebrain generated by
the brain stem. This will tend to excite the inappropriate modes of brain activity, especially
those which are too prone to be set off by random noise rather than by highly structured
specific signals. Due to the random noise, overall neuron activity will drop, similar to the
overall bias shift described before, automatically weakening the connections that encode
these inappropriate modes.

Basically this means that reverse learning can also be regarded as a form of homoeostasis,
which is beneficial to the integrity of the human brain and can be implemented in a DBM
using the same stabilization mechanism as described before. We have implemented these
mechanisms in all hidden layers of our DBM, resulting in a form of multimodal hallucination
and dreaming. The effect of these mechanisms on the quality of the knowledge encoded in the
DBM is still under investigation, but preliminary results have shown that the DBM indeed
recovers from loss of audio or video input, producing hallucinations during stabilization of
neuron activity, and that sparsity has improved the overall quality of the temporal relations
encoded in the model.

L. de Penning, A. d’Avila Garcez, and J. C. Meyer 93

4 Multimodal Information Retrieval

As described in [9], DBMs can produce good models for multimodal inference. For example,
for the reconstruction of phonemes based on a visual representation of the mouth, and
vice versa. But this approach will not explain the complex temporal relations encoded in a
multimodal DBM. With a NSCA we are able to use an extraction mechanism that allows us to
describe these multimodal relations, for example in terms of logic-based rules. As described in
[3, 2], a NSCA uses the conditional probability distributions of a RBM to extract logic-based
rules that describe the temporal relations between beliefs B encoded by the visible units and
hypotheses H encoded by the hidden units. Typically, the temporal relations are represented
by clauses of the form H1 ↔ B1∧B3∧•H1 which denotes that hypothesis H1 holds at time t
if and only if beliefs B1 and B3 hold at time t and hypothesis H1 holds at time t−1, where we
use the previous time temporal logic operator • to denote t−1 [6]. If we extend this approach
to a DBM we get clauses that describe hierarchical relations between hypotheses H(l) and
lower-order hypotheses H(l−1). If we apply this notation to our multimodal DBM for audio
and video we get clauses that describe higher-order temporal relations between auditory and
visual patterns, such as Hfusion

1 ↔ Haudio
1 ∧Hvideo

4 ∧ •Hfusion
2 , and lower-order relations

describing the most likely auditory and visual patterns in terms of pixels and frequencies,
such as Hvideo

4 ↔ Bvideo
10 ∧Bvideo

443 ∧Bvideo
753 ∧

Such textual descriptions would of course be very elaborate and impractical to under-
stand at the level of individual pixels or frequencies. Therefore, we have implemented an
iconographic representation for these visual and auditory patterns that enables us to present
more compact and meaningful descriptions of Hvideo and Haudio. Similar to the approach
suggested in [5], to investigate the weights of a RBM in terms of 2D images, we create icons
from the pixel and frequency patterns that are extracted for each hypothesis Hvideo

j and
Haudio

k and resample them in black and white to emphasize the most significant aspects
of the patterns. An example, extracted during one of the experiments, of an iconographic
temporal logic description of a multimodal relation is given in Equation 4. The first two
icons show a person on the left side of the camera with a hand under his head. The other
two icons visualize spectrograms of 10 frames x 1024 frequencies depicting the word “hel-lo”
in phonemes.

Hmind
42 ↔ ∧ ∧ ∧ ∧ •Hmind

7 (4)

5 Conclusions and Future Work

Computational models used in AI research, such as the RBM and DBM, are becoming popular
instruments in neural, cognitive and social sciences for the investigation of the human brain.
In this paper, we discussed how these instruments can be used to model and simulate certain
neurological processes, related to hallucinations and dreaming, such as homoeostasis and
reverse learning. We have explained how such processes are beneficial to the recovery of
appropriate and the reduction of inappropriate traces of the brain and implemented these
mechanisms in a multimodal DBM for streaming audio and video. Early experiments with
the DBM have shown similar effects as in homoeostasis and reverse learning (i.e. multimodal
hallucinations and dreaming) and we expect these mechanisms will improve the integrity of
the model, by stimulating sparsity, recovery of missing input, and unlearning inappropriate
relations.

ICCSW’13

94 Dreaming Machines

As part of future work we will investigate the actual improvements to the overall quality of
the model, using benchmarks for comparison with other models, but also using the knowledge
extracted from our model for expert analysis. In preparation of this, we already implemented
the multimodal DBM as part of a NSCA that is able to extract temporal relations between
auditory and visual patterns in the form of a iconographic temporal logic formula. Such
a representation makes it practical to describe the visual and auditory patterns in terms
of images and spectrograms. This will help us to understand and investigate the complex
temporal relations encoded in multimodal DBMs and explain why certain neurological
phenomenon occur, either in the DBM as a computational model or in the human brain that
it tries to simulate.

References
1 F Crick and G Mitchison. The function of dream sleep. Nature, 304(5922):111–114, 1983.
2 Leo de Penning, Artur S. d’Avila Garcez, Luís C. Lamb, and John-Jules C. Meyer. A

Neural-Symbolic Cognitive Agent for Online Learning and Reasoning. In Proc. of the
International Joint Conference on Artificial Intelligence (IJCAI), Barcelona, Spain, 2011.

3 Leo de Penning, R.J.M. den Hollander, H. Bouma, G.J. Burghouts, and A.S d’Avila Garcez.
A Neural-Symbolic Cognitive Agent with a Mind’s Eye. In Workshop on Neural-Symbolic
Learning and Reasoning at AAAI, 2012.

4 Leo de Penning, Bart Kappé, and Eddy Boot. Automated Performance Assessment and Ad-
aptive Training for Training Simulators with SimSCORM. In Proc. of the Interservice/In-
dustry Training, Simulation, and Education Conference (I/ITSEC), pages 1–7, Orlando,
USA, 2009.

5 Geoffrey E Hinton. Learning to represent visual input. Philosophical transactions of the
Royal Society of London. Series B, Biological sciences, 365(1537):177–84, January 2010.

6 Luís C. Lamb, R.V. Borges, and Artur S. d’Avila Garcez. A connectionist cognitive model
for temporal synchronisation and learning. In Proc. of the AAAI Conference on Artificial
Intelligence, pages 827–832. AAAI Press, 2007.

7 Honglak Lee, C Ekanadham, and A Ng. Sparse deep belief net model for visual area V2.
Advances in Neural Information Processing Systems, 20, 2008.

8 Martial Mermillod, Robert M. French, Paul C. Quinn, and Denis Mareschal. The import-
ance of long-term memory in infant perceptual categorization. In Proc. of the 25th Annual
Conference of the Cognitive Science Society, Boston, Massachusetts, 2003.

9 Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and Andrew Y. Ng.
Multimodal Deep Learning. In International Conference on Machine Learning (ICML),
Bellevue, WA, USA, 2011.

10 D.P. Reichert, Peggy Series, and A.J. Storkey. Hallucinations in Charles Bonnet Syndrome
Induced by Homeostasis: a Deep Boltzmann Machine Model. Advances in Neural Inform-
ation Processing Systems, 23(23):2020–2028, 2010.

11 Ruslan Salakhutdinov and Geoffrey E. Hinton. Deep boltzmann machines. In Proceedings of
the International Conference on Artificial Intelligence and Statistics, pages 448–455, 2009.

12 E. Smith and S. Kosslyn. Cognitive Psychology: Mind and Brain. Prentice-Hall, 2006.
13 Ilya Sutskever. The recurrent temporal restricted boltzmann machine. In Advances in

Neural Information Processing Systems (NIPS), 2008.
14 Chantal Natalie van der Wal. Social Agents: Agent-Based Modelling of Integrated Internal

and Social Dynamics of Cognitive and Affective Processes. PhD thesis, Vrije Universiteit
Amsterdam, 2012.

Self-composition by Symbolic Execution
Quoc-Sang Phan

Queen Mary University of London
qsp30@eecs.qmul.ac.uk

Abstract
Self-composition is a logical formulation of non-interference, a high-level security property that
guarantees the absence of illicit information leakages through executing programs. In order to
capture program executions, self-composition has been expressed in Hoare or modal logic, and
has been proved (or refuted) by using theorem provers. These approaches require considerable
user interaction, and verification expertise. This paper presents an automated technique to prove
self-composition. We reformulate the idea of self-composition into comparing pairs of symbolic
paths of the same program; the symbolic paths are given by Symbolic Execution. The result of
our analysis is a logical formula expressing self-composition in first-order theories, which can be
solved by off-the-shelf Satisfiability Modulo Theories solvers.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Information Flow, Symbolic Execution, Satisfiability Modulo Theories

Digital Object Identifier 10.4230/OASIcs.ICCSW.2013.95

1 Secure information flow: from non-interference to self-composition

Information flow in an information theoretical context is the transfer of information from
a variable H to a variable O in a given process. The simplest case of information flow is
explicit flow (or direct flow) where the whole or partial value of H is copied directly to O,
for example:

O = H + 3;

There are more subtle cases, which are categorized as implicit flow (or indirect flow). Consider,
for example, the program below, which simulates a common password checking procedure:

Listing 1 a password checking program
if (H == L)

O = true;
else

O = false;

H is the password, i.e. the confidential data; L is the public input provided by the user; O is
the observable output, O = true means the password is accepted. Although H is not directly
copied to O, there is still information flow leaked H → O. This information is “small”, but
one can reveal all information about H if he is allowed to make enough attempts.

Obviously, information flow from confidential data to observable output is not desirable,
which is the motivation of research in secure information flow. Dating back to the pioneering
work of the Dennings in the 1970s [4], secure information flow analysis has been an active
research topic for the last four decades.

© Quoc-Sang Phan;
licensed under Creative Commons License CC-BY

2013 Imperial College Computing Student Workshop (ICCSW’13).
Editors: Andrew V. Jones, Nicholas Ng; pp. 95–102

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2013.95
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

96 Self-composition by Symbolic Execution

Non-interference. A popular security policy that guarantees the absence of information
flow leaks is non-interference [2, 5]. It is stated as follows: suppose a program P takes secret
input H, public input L and produces public output O. Then P satisfies the non-interference
property iff the value of O does not depend on H.

There has been a large body of work that has used type systems for validating non-
interference, following the idea of Volpano et al. [10]. Type systems are fast and the analysis
is safe, which means a program is classified as “secure”, then it is actually secure, there are
no false negatives. However, they also return too many false positives, which means secure
programs can be classified as “insecure”. For example, consider again the two examples with
a small modification to make them satisfy non-interference:

Listing 2 A trivial secure program
O = H - H + 3;

Listing 3 An “always-reject” password checking program
if (H == L)

O = false;
else

O = false;

Typing rules would always classify programs like the above as insecure. Another tricky case
is of programs that leak information in the intermediate states, but sanitize information at
the end, for example:

O = H + 3;
O = 3;

Given that the attacker can only observe the final value of the output O, the program is
secure. However, it would be classified as insecure by type systems.

Self-composition. Another prominent approach for secure information flow is to use theorem
proving, in which non-interference is logically formulated as self-composition [3, 1], as non-
interference itself is not a logical property.

We assume a similar setting as in the case of non-interference: given a program P that
takes secret input H, public input L and producing public output O, we denote by P1 the
same program as P , with all variables renamed: H as H1, L as L1 and O as O1. For example,
consider again the password checking program P in Listing 1, the composition of P and its
copy P1 is as follows:

if (H == L)
O = true;

else
O = false;

/* copy of the same program with all variables renamed */
if (H1 == L1)

O1 = true;
else

O1 = false;

Self-composition is expressed in Hoare-style framework as [1]:

{L = L1}P ;P1{O = O1} (1)

Q. Phan 97

The Hoare triple states that if the precondition L = L1 holds, then after the execution of
P ;P1, the postcondition O = O1 also holds. Recall that non-interference requires the output
O not to depend on the secret input H, which means that for any pair of possible executions
of P that only differ in H, they have to agree on the public output O. In self-composition,
the purpose of having the copy P1 with all variables renamed is to have another P to compare
with P , so self-composition is logical formulation of non-interference.

For the example above, by choosing H = L∧H1 6= L1, it is easy to find a counterexample
for the Hoare triple in (1), such that L = L1 holds and O = O1 does not hold. Therefore,
the password checking program violates self-composition, and hence there is information
leaked H → O.

Compared to type system approach, the theorem proving approach is much more precise,
returning no false positives. However, it is impractical in reality, as elegantly put in [9] by
Terauchi and Aiken:

“When we actually applied the self-composition approach, we found that not only are the
existing automatic safety analysis tools not powerful enough to verify many realistic problem
instances efficiently (or at all), but also that there are strong reasons to believe that it is
unlikely to expect any future advance.”

Terauchi and Aiken also pointed out that the limitations of self-composition come from
the symmetry and redundancy of the self-composed program, which lead to some partial-
correctness conditions that hold between P and P1. To find these conditions is crucial for
the effectiveness of the analysis, however, finding them is in general impractical.

Moreover, to prove (or refute) self-composition with theorem provers requires considerable
user interaction and verification expertise [3].

Contribution. This paper presents an automated technique for non-interference based on
self-composition. The self-composition approach can be divided into two steps: first, to
compose the program with a copy of itself; second, to perform analysis on the self-composed
program. Our approach is to delay self-composing to the second step: first, we perform
analysis on the original program with Symbolic Execution; second, we self-compose the
result of the analysis to get the formula of self-composition. The idea of self-composition
is to have a copy P1 of P to compare with itself. We expand this idea into comparing all
pairs of executions ρ of P and ρ1 of P1. Since it is impossible to enumerate all possible
executions, we use Symbolic Execution to synthesize the symbolic paths that represents a set
of concrete executions, and perform comparison on these symbolic paths, which we formulate
as path-equivalence.

The delay of self-composing after performing the analysis is the main novelty of our
approach. In this way, we could avoid the symmetry and redundancy of the self-composed
program. Moreover, the symbolic paths synthesized by Symbolic Execution are presented
by first-order theories, just as the generated formula of self-composition. The validity of
this formula can be automatically and efficiently checked by powerful Satisfiability Modulo
Theories (SMT) solvers.

2 Preliminaries

A deterministic program is modelled as a transition system:

P = (Σ, I, F, T)

where Σ is the set of program states; I ⊆ Σ is the set of initial states; F ⊆ Σ is the set of final
states; and T ⊆ Σ× Σ is the transition function. Under this setting, a trace of (concrete)

ICCSW’13

98 Self-composition by Symbolic Execution

execution of program P is represented by a sequence of states:

ρ = σ0σ1..σn

such that σ0 ∈ I, σn ∈ F and 〈σi, σi+1〉 ∈ T for all i ∈ {0, .., n− 1}. We define two functions
init and fin to get the initial state and final state of ρ:

init(ρ) = σ0 and fin(ρ) = σn

The semantics of P is then defined as the set R of all possible traces.
We assume that each initial state σ ∈ I is a pair 〈H,L〉, i.e. I = IH × IL, in which H

is the confidential component to be protected and L is the public component that may be
controlled by an attacker.

Symbolic Execution. Symbolic Execution (SE), first introduced by King in the 1970s [6], is
a technique widely used in verification and testing. The key idea is the following. Instead of
taking inputs to be concrete values, SE takes inputs to be symbols, e.g. α, β, which represent
sets of concrete input values; the program is then executed just like in normal execution. In
the setting of SE, the program P is modelled as a transition system:

P = (Σs, Is, F s, T s)

where Σs is the set of symbolic states; each σs ∈ Σs represents a set of concrete states σ ∈ Σ.
Is ⊆ Σs is the set of initial symbolic states; F s ⊆ Σs is the set of final symbolic states; and
T s ⊆ Σs ×Σs is the transition function. A symbolic path (symbolic trace) of the program P

is represented by a sequence of symbolic states:

ρs = σs0σ
s
1..σ

s
n

such that σs0 ∈ Is, σsn ∈ F s and 〈σsi , σsi+1〉 ∈ T s for all i ∈ {0, . . . , n − 1}. The symbolic
semantics of P is then defined as the set of all symbolic paths Rs, which is also called as the
symbolic execution tree. Likewise, each ρs ∈ Rs represents a set of traces ρ ∈ R.

We denote by X|y the value of the variable X at the state y. After symbolically executing
the program P with initial input symbols H = α,L = β, for each σsi ∈ F s, i.e. each leaf of
the symbolic execution tree, we have a symbolic formula for the value of the output O in the
symbolic environment:

O|σs
i

= fi(α, β)

Another product of SE is the path condition pci ≡ ci(α, β) for σsi to be reachable. Each pci
corresponds to a symbolic path ρsi . The following theorem was also proved by King [6]:

I Theorem 1.
∀i, j ∈ [1, n] ∧ i 6= j.pci ∧ pcj = ⊥

We define the function path such that:

path(ρsi) = pci

The output O can be considered as a result of the following function:

O =

f1(α, β) if c1(α, β)
f2(α, β) if c2(α, β)
.

fn(α, β) if cn(α, β)

 (2)

Or the following always holds:

Q. Phan 99

I Corollary 2.
∀i ∈ [1, n].ci(α, β)→ O = fi(α, β)

fi and ci are in general combination of first-order theories, e.g. linear arithmetic, bit vector
and so on. SE tools make use of off-the-shelf SMT solvers to check the satisfiability of ci,
and eliminate unreachable paths (which may appear in the control flow graph).

3 Self-composition by Symbolic Execution

To avoid the limitation of the theorem proving approach, we need to reformulate the self-
composition formula into a simpler logic which does not contain the program P . This is
made possible by using the trace semantics of programs.

3.1 Self-composition as path-equivalence
Given a program P that takes secret input H, public input L and producing public output
O; P1 is the same program as P , with all variables renamed: H as H1, L as L1 and O as O1.
The trace semantics of P and P1 are R and R1 respectively.

I Definition 3 (trace-equivalence). The program P satisfies non-interference if:

∀ρ ∈ R, ρ1 ∈ R1.L|init(ρ) = L1|init(ρ1) → O|fin(ρ) = O1|fin(ρ1) (3)

It is stated similarly to the Hoare triple in (1): for all possible pairs of traces ρ of P , and ρ1
of P1: if L = L1 at the initial states, then O = O1 at the final states. At this point, we have
a formulation of self-composition that does not involve the programs P and P1.

However, even with simple programs, it is impossible to compute all the traces. Our
solution is to use trace-equivalence with SE. Recall that each symbolic path represents a
set of traces, and it is possible to build a complete symbolic execution tree (here we only
consider bounded programs). Following Corollary 2, trace-equivalence in the context of SE
is redefined as follows:

I Definition 4 (path-equivalence). The program P satisfies non-interference if:

∀ρs ∈ Rs, ρs1 ∈ Rs1.(L|init(ρs) = L1|init(ρs
1))∧path(ρs)∧path(ρs1)→ (O|fin(ρs) = O1|fin(ρs

1))
(4)

In this way, we have an SMT formula, i.e. a combination of first-order theories. This is the
key novelty of our approach, since the formulation of self-composition in first-order theories
enables us to solve it efficiently using off-the-shelf SMT solvers.

3.2 Path-equivalence generation
Suppose P is symbolically executed with H = α,L = β. To simplify the formula, we choose
the input symbols for P1 as H1 = α1, L1 = β so that L|init(ρs) = L1|init(ρs

1) is automatically
satisfied. That means:

(H|init(ρs) = α) ∧ (L|init(ρs) = β) ∧ (H1|init(ρs
1) = α1) ∧ (L1|init(ρs

1) = β)

Given the result of SE is a function of the output O as in (2), the path-equivalence in (4)
can be rewritten as:

PE ≡ DF ∧ IF

ICCSW’13

100 Self-composition by Symbolic Execution

where:

DF ≡
n∧
i=1

ci(α, β) ∧ ci(α1, β)→ (fi(α, β) = fi(α1, β)) (5)

IF ≡
n−1∧
i=1

n∧
j=i+1

ci(α, β) ∧ cj(α1, β)→ (fi(α, β) = fj(α1, β)) (6)

DF checks the path-equivalence when both P and P1 follow the same symbolic path, and thus
it guarantees the absence of direct flows. On the other hand, IF checks the path-equivalence
when P and P1 follow different symbolic paths, and it guarantees the absence of implicit
flows.

4 Case Studies

We illustrate the approach with some toy examples. Here we assume the same setting as
above: a program P with confidential input H, public input L, and output O. SE executes
P with input symbols H = α and L = β.

4.1 Implicit flow

Consider the password checking program in Listing 1. By SE, we have:

O =
{
true if α = β

false if α 6= β

}
DF and DF are generated as follows:

DF ≡ (α = β ∧ α1 = β → true = true) ∧ (α 6= β ∧ α1 6= β → false = false)
IF ≡ α = β ∧ α1 6= β → true = false

It is trivial to prove that DF is valid and IF is invalid, and thus the program violates
non-interference and leaks information via implicit flows.

4.2 No flow

Consider the modified version of the password checking procedure in Listing 3. By SE, we
have:

O =
{
false if α = β

false if α 6= β

}
DF and IF are generated as follows:

DF ≡ (α = β ∧ α1 = β → false = false) ∧ (α 6= β ∧ α1 6= β → false = false)
IF ≡ α = β ∧ α1 6= β → false = false

It is trivial to prove that both DF and IF are valid, and thus the program satisfies non-
interference. Note that this is the case that type systems, taint analysis would decide as
violating non-interference.

Q. Phan 101

No confidential data involved. Consider again the password checking program, with a
small modification to exclude the confidential data in its computation, i.e. to make it secure.

Listing 4 A program without confidential data
if (L == 3)

O = true;
else

O = false;

Similarly we have:

O =
{
true if β = 3
false if ¬(β = 3)

}
DF and IF are derived as:

DF ≡ (β = 3 ∧ β = 3→ true = true) ∧ (¬(β = 3) ∧ ¬(β = 3)→ false = false)
IF ≡ β = 3 ∧ ¬(β = 3)→ true = false

Both DF and IF are valid, which confirms the intuition that the program is secure.

4.3 Both implicit and explicit flows
Consider the following data sanitization program:

if (H < 16)
O = H + L;

else
O = L;

The summaries and path conditions returned by SE are as follows:

O =
{
α+ β if α < 16
β if ¬(α < 16)

}
DF and DF are generated similarly:

DF ≡ (α < 16 ∧ α1 < 16→ α+ β = α1 + β) ∧ (¬(α < 16) ∧ ¬(α1 < 16)→ β = β)
IF ≡ α < 16 ∧ ¬(α1 < 16)→ α+ β = β

It is easy to find counterexamples to make DF and IF invalid, for example: (α = 1;α1 = 2)
for DF and (α = 1;α1 = 17) for IF. So the program leaks via both implicit and explicit flows.

5 Related Work

Self-composition was first introduced by Darvas et al. [3] who expressed it in dynamic
logic and proved information flow properties for Java CARD programs. Their approach is
not automated, requiring users to provide loop invariants, induction hypotheses and so on.
Barthe et al. [1] then coined the term “self-composition” and investigated its theoretical
aspects, extending the problem to non-deterministic and termination-sensitive cases.

Terauchi and Aiken [9] found that self-composition was problematic, since the self-
composed programs contains symmetry and redundancy. They proposed a type-directed
transformation for a simple imperative language to deal with the problem. Milushev et al.

ICCSW’13

102 Self-composition by Symbolic Execution

[7] implemented this type-directed transformation and used Dynamic Symbolic Execution
(also known as concolic testing) as a program analysis tool for non-interference.

To our knowledge, our technique is unique in that it only performs analysis on the original
program, rather than the self-composed program, the idea of self-composition is shown in
the way we rename the symbolic formula, not in the analysis stage.

In our previous work [8], we proposed Symbolic Quantitative Information Flow (SQIF), an
approach that uses Symbolic Execution to “measure” information flow leaks, i.e. quantitative
information flow.

6 Conclusion

We have presented an automated method for secure information flow analysis. We build
our work on the classical self-composition approach. However, instead of performing the
analysis on the self-composed program, we use SE on the original program. This is enabled by
reformulating self-composition into path-equivalence, a property for symbolic paths returned
by SE.

Acknowledgements. We thank Nikos Tzevelekos and the anonymous reviewers for con-
structive comments.

References
1 Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure information flow by self-

composition. In Proceedings of the 17th IEEE workshop on Computer Security Foundations,
CSFW ’04, pages 100–, Washington, DC, USA, 2004. IEEE Computer Society.

2 E. S. Cohen. Information transmission in sequential programs. In R. A. DeMillo, D. P.
Dobkin, A. K. Jones, and R. J. Lipton, editors, Foundations of Secure Computation, pages
297–335. Academic Press, 1978.

3 Ádám Darvas, Reiner Hähnle, and David Sands. A theorem proving approach to analysis of
secure information flow. In Proceedings of the Second international conference on Security
in Pervasive Computing, SPC’05, pages 193–209, Berlin, Heidelberg, 2005. Springer-Verlag.

4 Dorothy E. Denning and Peter J. Denning. Certification of programs for secure information
flow. Commun. ACM, 20(7):504–513, July 1977.

5 Joseph A. Goguen and José Meseguer. Security policies and security models. In IEEE
Symposium on Security and Privacy, pages 11–20, 1982.

6 James C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–394,
July 1976.

7 Dimiter Milushev, Wim Beck, and Dave Clarke. Noninterference via symbolic execution. In
Proceedings of the 14th joint IFIP WG 6.1 international conference and Proceedings of the
32nd IFIP WG 6.1 international conference on Formal Techniques for Distributed Systems,
FMOODS’12/FORTE’12, pages 152–168, Berlin, Heidelberg, 2012. Springer-Verlag.

8 Quoc-Sang Phan, Pasquale Malacaria, Oksana Tkachuk, and Corina S. Păsăreanu. Sym-
bolic quantitative information flow. SIGSOFT Softw. Eng. Notes, 37(6):1–5, November
2012.

9 Tachio Terauchi and Alex Aiken. Secure information flow as a safety problem. In Proceed-
ings of the 12th international conference on Static Analysis, SAS’05, pages 352–367, Berlin,
Heidelberg, 2005. Springer-Verlag.

10 Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A sound type system for secure flow
analysis. J. Comput. Secur., 4(2-3):167–187, January 1996.

Evaluation of Social Personalized Adaptive
E-Learning Environments: End-User Point of View
Lei Shi, Malik Shahzad Awan, and Alexandra I. Cristea

University of Warwick
Department of Computer Science, University of Warwick, Coventry, CV4 7AL. UK
{lei.shi, malik, acristea}@dcs.warwick.ac.uk

Abstract
The use of adaptations, along with the social affordances of collaboration and networking, carries
a great potential for improving e-learning experiences. However, the review of the previous
work indicates current e-learning systems have only marginally explored the integration of social
features and adaptation techniques. The overall aim of this research, therefore, is to address this
gap by evaluating a system developed to foster social personalized adaptive e-learning experiences.
We have developed our first prototype system, Topolor, based on the concepts of Adaptive
Educational Hypermedia and Social E-Learning. We have also conducted an experimental case
study for the evaluation of the prototype system from different perspectives. The results show
a considerably high satisfaction of the end users. This paper reports the evaluation results from
end user point of view, and generalizes our method to a component-based evaluation framework.

1998 ACM Subject Classification H.3.4 Systems and Software, H.5.1 Multimedia Information
Systems, K.3.1 Computer Uses in Education

Keywords and phrases adaptive educational hypermedia, social e-learning, evaluation

Digital Object Identifier 10.4230/OASIcs.ICCSW.2013.103

1 Introduction

Adaptive Educational Hypermedia (AEH) [1] has been designed to offer a personalized
learning process. It combines the ideas from Adaptive Hypermedia [2] and Intelligent
Tutoring Systems [22], with the aim of producing applications wherein learning contents
is adapted to personalized needs. The rapidly emerging social networking apps, offers an
opportunity to improve the adaptive e-learning experience by introducing a social dimension.
The study on introducing social dimension into adaptive e-learning has recently accumulated
a considerable set of theories and techniques, which have been used for building a variety of
e-learning systems with both adaptive and social features. As these theories and techniques
promote such systems from research labs to real usage, the evaluation becomes more crucial
and even more important than proposing new but questionable theories and techniques [5].

This paper aims to 1) present the evaluation of Topolor [18] that was designed based on
the concepts of AEH [1] and Social E-Learning [9], and 2) propose a novel component-based
evaluation framework that was generalized from our evaluation method. The evaluation was
conducted from end user point of view, which reflect critical feedbacks during the real usage.
It also intends to minimize the level of biasedness arising from the answers of a user.

In the following, section 2 presents related works, including existing e-learning systems
that support adaptation and social interaction, and the existing evaluation methods; section
3 introduces Topolor; section 4 describes the collected data and questionnaire, and reports
the evaluation results; section 5 summarizes our evaluation methods to propose a generic
evaluation framework; section 6 draws conclusions and outlines future research.

© Lei Shi, Malik Shahzad Awan, and Alexandra I. Cristea;
licensed under Creative Commons License CC-BY

2013 Imperial College Computing Student Workshop (ICCSW’13).
Editors: Andrew V. Jones, Nicholas Ng; pp. 103–110

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2013.103
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

104 Evaluation of SPAE Environments: End User Point of View

2 Related Work

An AEH system aims at producing educational applications in which learning contents is
adapted to every learner’s personalized needs, such as knowledge level, learning goals and
learning styles [3]. To extend an AEH system with social networking services, the support
for knowledge networking and community building should be added to the system [8].

Several e-learning systems and services with both adaptive and social features have been
developed in the last decade. For instance, Progressor [12] is a visual interface for open
student modelling [13]. It provides students with a holistic and easy-to-grasp view on their
progress and allows relating it to the progress of other students. QuizGuide [6] is an adaptive
e-learning system that helps students in selecting relevant self-assessment quizzes assigned
to topics. It uses adaptive annotation to support adaptive navigation, in order to provide
personalized guidance to show which topics are more important and which require further
study. Knowledge Sea II [4] uses social navigation to help students navigate from lectures to
relevant online tutorials in a map style social navigation based on traffic and annotation.

These systems have only focused on a few aspects of adaptive and social facilities in an
e-learning environment, thus, requiring the development of more comprehensive systems that
support the integration and mutual promotion of these facilities. Further, the flourishing
development of social, personalized and adaptive e-learning systems requires more generic
approaches to evaluate and compare different systems. Therefore, it is essential to develop
new evaluation methods that provide wider coverage in an e-learning environment.

One important issue associated with the development of a social personalized adaptive e-
learning system is selecting an effective evaluation method to capture its broader perspective.
It’s also important that the adopted evaluation method is appropriate and correct [10].
Several evaluation methods have been developed. For example, Chao [7] suggested 5 criteria
to such as 1) e-learning material, 2) quality of web learning platform, 3) synchronous learning,
4) self-learning, and 5) learning record. Ozkan [14] proposed a 6-dimension framework 1)
system quality, 2) service quality, 3) content quality, 4) learner perspective, 5) instructor
attitudes, and 6) supportive issues. These evaluation methods are only able to cover limited
perspectives, although they were trying to cover more. Besides, they have no ability to
compare, classify or linguistically represent different evaluated e-learning systems.

3 Topolor

Topolor [20] is featured as a social personalized adaptive e-learning system, and has been
used as an online learning environment at the University of Warwick. Topolor was developed
based on a classical layered architecture (inspired by the Dexter model [11]), extended with a
social flavour: a storage layer, a persistence infrastructure for physical entities; and a runtime
layer, parsing adaptation strategies to present adaptive and/or adaptable learning materials,
providing Web 2.0 tools for social interaction, and monitoring learners’ behaviour [15].

Topolor has a Facebook-like appearance (Fig. 1a): the profile avatar and user information,
the fixed-position top menu, the left navigation bar, and the information flow wall for social
interaction. As shown in Fig. 1b, Topolor supports topic and learning path adaptation, which
provides various levels of granularity of learning content adaptation, and personalized order
of learning those recommended topics; it supports peer recommendation, which is based on
each learner’s learning history and previous performance, in order to provide opportunities
for them to learning from each other; it also support social interaction, which provides Web
2.0 tools that they are familiar with, so that they can comment on, share a topic, a question,
a note, etc. This is a much broader range of adaptation than in regular AEH systems.

L. Shi, M. S. Awan, and A. I. Cristea 105

Figure 1 The screenshots of Topolor: a. Topolor – Home; b. Module Centre – Topic.

4 Evaluation

To evaluate Topolor, an experiment was conducted with the help of 21 students at the
University of Warwick. They were learned an online course on “collaborative filtering” using
Topolor in a 2-hour intensive learning session. Before the session, a ‘to-do list’ was handed
out to make sure they have a reminder of all functionalities at their disposal. The order
of using the functionalities, and if to repeat was up to them. During the session, a logging
mechanism kept track of each of their actions. After the session, they were asked to fill in an
optional and anonymous questionnaire. 10 out of 21 students returned the questionnaire.

Based on the collected data, Topolor has been evaluated from different perspectives
[16][17][21]. We have also investigated learning behaviour patterns of users using machine
learning, educational data mining and data visualization techniques [19]. This paper focuses
on only the evaluation from the end user’s point of view based on the questionnaire analysis.

This method consists of 3 perspectives: functionality, learning perspective and system
prospect. The following sections present the analysis process and report evaluation results.

4.1 Functionality
10 functionalities were evaluated from two performance aspects: usefulness and ease of use
as below. The score values of the two considered performance aspects of each functionality
ranged between 0.85-1.40 and 0.95-1.44 for ‘usefulness’ and ‘ease of use’ respectively. Figure
2 presents the classification of them on a Likert Scale from -2 to 2.

Overall-Sub. This represents the overall view of each subsystem.
Status. The status (post) functionality supports learners to publish and share their

learning status and comment on each other’s status.
Messaging. It aims at helping in making the intra-system communication more efficient.
Q&A. The questioning and answering functionality helps learners learn and manage the

queries related to learning topics.
Note. The note management functionality records learners’ personal thought related to

learning topics. Notes can also be shared to other learners.
To-do. The to-do management functionality aims at helping learners arrange their own

learning plans and remind them to finish their tasks.

ICCSW’13

106 Evaluation of SPAE Environments: End User Point of View

Module. The module management functionality includes activities such as arranging
topics within a module, reviewing topics learnt, accessing to a recommended topic.

Topic. The represents the functionalities that supports topic-learning activities such as
accessing the previous and next learning topic according to the recommended learning path,
discussing with others who are learning the same topic, commenting on the topic.

Testing. This includes taking quizzes for a learning topic and taking tests for a module
(a set of organized learning topics). It also assesses the process of reviewing quizzes/tests,
and getting access to the learning topics related to the questions in a quiz/test.

Statistics. This represents the statistics about the numbers of, e.g., how many topics
a learner has learnt, how many questions a learner has asked/answered, how many status
(post) a learner has commented on and shared, and so on.

Figure 2 The result from the System Functionality Questionnaire.

4.2 Learning Perspective
The learning perspective was tested by the “Overall Topolor System – Five Scales for Believes”
questionnaire, which include 7 questions shown as below. The individual score values for
each of the questions are shown in Figure 3. Q1. I believe Topolor helps me learn more
topics; Q2. I believe Topolor helps me learn more profoundly (deeply); Q3. I believe Topolor
increases my learning outcome; Q4. I believe compare to other e-learning system, Topolor
is easy to use; Q5. I believe compare to other e-learning system, Topolor is useful; Q6. I
believe that the interaction with Topolor is easy to learn; Q7. I believe that the interaction
with Topolor is easy to remember how to use.

Figure 3 The result from the Overall Topolor System – Five Scales for Believes Questionnaire.

4.3 System Prospect
Two parameters were considered for evaluating the system prospects: 1) identification of the
most useful features; and 2) improvements suggested by users. These two parameters were
evaluated using a questionnaire with open-ended questions, in order to allow users to present
a more practical and broader feedbacks on the features that were either helpful in learning or
necessary to improve to be more useful features. From the questionnaire, four ‘Best’ features
(Table 1) and four ‘Need to Improve’ features (Table 2) were identified respectively.

L. Shi, M. S. Awan, and A. I. Cristea 107

Table 1 The reported “Best Features”.

Best Features Frequency
Ask & answer questions 3
Filter learning content 3
Review quizzes 2
Discuss with others 2
Identified features: 4 10

Table 2 Suggestions on improvements.

Improvements Frequency
Share questions 4
To-do management 3
Interaction with contents 2
Searching tools 2
identified features: 4 11

5 Evaluation Framework

We propose a component-based evaluation framework to generalize our methods that and
overcome the shortcomings of existing methods. The proposed framework has 4 components.
The first 3 evaluate an e-learning system from different perspectives. The 4th component
combines the evaluation results of the first 3, summarizes and provides system classification
and linguistic representation. The score values for the first 3 components are obtained from
a questionnaire that system users fill in, after using the system for a given period of time.

5.1 Functionality
This component aims at using a Likert Scale to evaluate system functionalities from different
performance aspects such as accessibility, effectiveness, operability, reliability, scalability
and usability. We associate a weight, w with each considered performance aspect, which
represents its significance. The score value of this component, CF UNC , is calculated using
Eq. 1a for representing the overall system value against the considered system functionalities.
The score value is calculated by taking the weighted sum of the considered performance
aspects, SubSys(aspectID,subSysID), and the associated weight, w(aspectID,subSysID), where
aspectID represents a considered performance aspect; subSysID represents a considered
sub-systems; m represents the number of the considered sub-systems. The generalized
description of SubSys(aspect,subSys) for each considered system functionality represented as
F(aspectID,funcID,subSysID), could be calculated using Eq. 1b, where funcID represents a
considered functionality; w(aspectID,funcID) represents the corresponding associated weight;
n represents the number of the considered system functionalities within the sub-system.
F(aspectID,funcID,subSysID) could be calculated using Eq. 1c, where q(i,j) represents the jth
question related to the considered system functionality, F(aspectID,funcID,subSysID), answered
by the ith respondent; wj represents the corresponding associated weight of this question; k
represents the number of the questions related to the considered performance aspect of a
considered system functionality; a represents the total number of respondents. The term 1/a
is used to minimize the level of biasedness arising from the answers of a respondent.

CF UNC =
m∑

subSysID=1
SubSys(aspectID,subSysID) × w(aspectID,subSysID) (1a)

SubSys(aspectID,subSysID) =
n∑

funcID=1
F(aspectID,funcID,subSysID) ×w(aspectID,funcID) (1b)

F(aspectID,funcID,subSysID) = 1
a

×
a∑

i=1

k∑
j=1

q(i,j) × wj (1c)

ICCSW’13

108 Evaluation of SPAE Environments: End User Point of View

5.2 Learning Perspective
This component evaluates the impact that the learning system had on the overall learning
experience as perceived by learners. It also evaluates the user-system interaction considered as
helpful in learning as perceived by learners based on a Likert Scale against the defined criteria.
The score value for this component, CLEARN could be calculated using Eq. 2, where q(j,j) is
the jth question answered by the ith respondent; wj represents the corresponding associated
weight of this question; k represents the number of the questions related to the considered
performance aspect of a functionality; a represents the total number of respondents.

CLEARN = 1
a

×
a∑

i=1

k∑
j=1

q(i,j) × wj (2)

5.3 System Prospect
This component identifies the learner characterization for the system features using simple
questions grouped into different categories such as 1) identifying “the best feature(s)” of
an e-learning system, 2) identifying the features that require further improvements. The
score value for this component, ‘CP ROS ’ could be calculated using Eq. 3a, where Freqj

could either represent the number of features identified as “the best feature(s)” by a learner
or those requiring improvements; wj represents the associated significance of the feature
category, i.e. the most useful and those requiring improvements; k represents the distinct
feature categories in the evaluation. Freqj could be calculated by counting the frequency of
an identified feature, FeatureCounti, as grouped by the ith respondent, and a represents the
total number of respondents, as shown in Eq. 3b. A value ranging from -2 to 2 represents the
frequency of a reported feature. For 0 or 1 reported feature, FeatureCounti has an assigned
value -2; Similarly, for 2, 3 and 4 reported features, the FeatureCounti has an assigned value
of -1, 0 and 1 respectively. For 5 or more features, the assigned value is 2.

CP ROS = 1
k

×
k∑

j=1
Freqj × wj (3a)

Freqj = 1
a

×
a∑

i=1
FeatureCounti (3b)

5.4 Overall System Classification and Linguistic Representation
This component provides an overall system classification and linguistic representation for the
evaluated system. Its score value could be calculated using Eq. 4, where CF UNC , CLEARN

and CP ROS have been calculated using Eq. 1a, Eq. 2 and Eq. 3a respectively, and then
rounded off the mean score value to the nearest integer value on a Likert Scale from -2 to 2
(-2: very bad; -1: bad; 0: medium; 1: good; 2: very good).

System =
∥∥ 1

3 × (CSYSFUNC + CLEARN + CPROS)
∥∥ (4)

The measurements in this component mainly involved counting the frequency of the
system features reported by the learners against the two parameters considered in this case
study. To maintain consistency in the value scale with the other two framework components,

L. Shi, M. S. Awan, and A. I. Cristea 109

namely, system functionality and learning perspective, we used the same scale, from -2 to 2,
for assigning a score to each reported feature, and the score value is kept constant at 2 when
the number of reported features exceeds 5. Likewise, for a non-reported feature or suggestion,
a default score of -2 is added for maintaining consistency of results on the defined scale.

6 Conclusions and Future Work

In this paper, we have reported the evaluation of Topolor, a social personalized adaptive e-
learning environment, and generalized the evaluation method to a component-based evaluation
framework that provides broader and objective perspectives of a system evaluation report.
The framework consists of 4 components, namely, functionality, learning perspective, system
prospect and system classification. These components could be used for evaluating the
effectiveness of a social personalized adaptive e-learning system from different perspectives
with low level of biasedness. The evaluation involves the calculation of a score value using a
component-specific mathematical model for each components. These score values are further
used for calculating an overall rounded mean score value for the system. This rounded mean
score value is then mapped to a Likert Scale for classifying the system into five (5) different
categories, namely, 1) very bad, 2) bad, 3) medium, 4) good and 5) very good.

We further plan to broaden the data set for the evaluation of Topolor, so that, along with
human experts, we could deploy advanced artificial intelligence techniques, e.g., artificial
neural networks, case-based reasoning, machine learning, etc., for automatically learning
the associated weights of framework components, system functionalities and question items
during the system classification process. We further plan to extend the evaluation process by
using fuzzy rule-based reasoning and consider the linguistic representation for classifying a
social personalized adaptive e-learning system to present a more empirical view of system
performance. Our future plans also include introducing mechanisms for estimating cost
and effort associated with the measurement using our evaluation framework and perform a
cost-and-benefit analysis for evaluating social personalized adaptive e-learning systems.

We claim that the proposed methodology is transferable to other social personalized
adaptive e-learning systems and would enable researchers to: 1) gain a global view of
assessments on an e-learning system; 2) evaluate each sub-system and functionality from
different perspectives; 3) obtain learners perception of learning experience; 4) identify the best
system features from learners’ point of view and gain suggestions on the system improvement;
5) quantify the evaluation using component-specific mathematical models; and 6) classify
the system on a Likert Scale for linguistic representation.

References

1 Peter Brusilovsky. Adaptive educational hypermedia. International PEG Conference,
strony 8–12, 2001.

2 Peter Brusilovsky. Adaptive hypermedia. User modeling and user-adapted interaction,
11(1-2):87–110, 2001.

3 Peter Brusilovsky. Adaptive educational hypermedia: From generation to generation. Pro-
ceedings of 4th Hellenic Conference on Information and Communication Technologies in
Education, Athens, Greece, strony 19–33, 2004.

4 Peter Brusilovsky, Girish Chavan, Rosta Farzan. Social adaptive navigation support for
open corpus electronic textbooks. Adaptive Hypermedia and Adaptive Web-Based Systems,
strony 24–33. Springer, 2004.

ICCSW’13

110 Evaluation of SPAE Environments: End User Point of View

5 Peter Brusilovsky, Charalampos Karagiannidis, Demetrios Sampson. Layered evaluation
of adaptive learning systems. International Journal of Continuing Engineering Education
and Life Long Learning, 14(4):402–421, 2004.

6 Peter Brusilovsky, Sergey Sosnovsky, Olena Shcherbinina. Quizguide: Increasing the edu-
cational value of individualized self-assessment quizzes with adaptive navigation support.
World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Edu-
cation, wolumen 2004, strony 1806–1813, 2004.

7 Ru-Jen Chao, Yueh-Hsiang Chen. Evaluation of the criteria and effectiveness of distance
e-learning with consistent fuzzy preference relations. Expert Systems with Applications,
36(7):10657–10662, 2009.

8 Mohamed Amine Chatti, Matthias Jarke, Dirk Frosch-Wilke. The future of e-learning: a
shift to knowledge networking and social software. International journal of knowledge and
learning, 3(4):404–420, 2007.

9 Stephen Downes. Feature: E-learning 2.0. Elearn magazine, 2005(10):1, 2005.
10 Cristina Gena, Stephan Weibelzahl. Usability engineering for the adaptive web. The

adaptive web, strony 720–762. Springer-Verlag, 2007.
11 Frank Halasz, Mayer Schwartz, Kaj Grønbæk, Randall H Trigg. The dexter hypertext

reference model. Communications of the ACM, 37(2):30–39, 1994.
12 I-Han Hsiao, Julio Guerra, Denis Parra, Fedor Bakalov, Birgitta König-Ries, Peter Brusil-

ovsky. Comparative social visualization for personalized e-learning. Proceedings of the
International Working Conference on Advanced Visual Interfaces, 303–307. ACM, 2012.

13 Antonija Mitrovic, Brent Martin. Evaluating the effect of open student models on self-
assessment. Journal of Artificial Intelligence in Education, 17(2):121–144, 2007.

14 Sevgi Ozkan, Refika Koseler. Multi-dimensional students’ evaluation of e-learning systems
in the higher education context: An empirical investigation. Computers & Education,
53(4):1285–1296, 2009.

15 Lei Shi, Dana Al Qudah, Alexandra I. Cristea. Designing social personalized adaptive e-
learning. The 18th Annual Conference on Innovation and Technology in Computer Science
Education (ITiCSE 2013), 2013.

16 Lei Shi, Malik Shahzad K Awan, Alexandra I Cristea. Evaluating system functionality in
social personalized adaptive e-learning systems. Scaling up Learning for Sustained Impact,
strony 633–634. Springer, 2013.

17 Lei Shi, Dana Al Qudah, Alexandra I. Cristea. Social e-learning in topolor: a case study.
IADIS International Conference e-Learning, 2013.

18 Lei Shi, Dana Al Qudah, Alaa Qaffas, Alexandra I Cristea. Topolor: a social personalized
adaptive e-learning system. User Modeling, Adaptation, and Personalization, strony 338–
340. Springer, 2013.

19 Lei Shi, Alexandra I. Cristea, Malik Shahzad Awan, Craig Stewart, Maurice Hendrix. To-
wards understanding learning behavior patterns in social adaptive personalized e-learning
systems. The 19th Americas Conference on Information Systems (AMCIS 2013), strony
708–711. Springer-Verlag, Berlin, Heidelber, 2013.

20 Lei Shi, George Gkotsis, Karen Stepanyan, Dana Al Qudah, Alexandra I. Cristea. Social
personalized adaptive e-learning environment - topolor: Implementation and evaluation.
The 16th International Conference on Artificial Intelligence in Education (AIED 2013),
strony 708–711. Springer-Verlag Berlin Heidelberg, 2013.

21 Lei Shi, Karen Stepanyan, Dana Al Qudah, Alexandra I. Cristea. Evaluation of social
interaction features in topolor - a social personalized adaptive e-learning system. The 13th
IEEE International Conference on Advanced Learning Technologies (ICALT 2013), 2013.

22 Derek Sleeman, John Seely Brown. Intelligent tutoring systems. 1982.

Logical Foundations of Services
Ionuţ Ţuţu1,2

1 Department of Computer Science, Royal Holloway University of London
2 Institute of Mathematics of the Romanian Academy, Research group of the

project ID-3-0439
ittutu@gmail.com

Abstract
In this paper we consider a logical system of networks of processes that interact in an asynchron-
ous manner by exchanging messages through communication channels. This provides a found-
ational algebraic framework for service-oriented computing that constitutes a primary factor in
defining logical specifications of services, the way models of these specifications capture service
orchestrations, and how properties of interaction-points, i.e. points through which such networks
connect to one another, can be expressed. We formalise the resulting logic as a parameterised
institution, which promotes the development of both declarative and operational semantics of
services in a heterogeneous setting by means of logic-programming concepts.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Formal methods, Service-oriented computing, Institution theory

Digital Object Identifier 10.4230/OASIcs.ICCSW.2013.111

1 Introduction

Service-oriented computing is a recent paradigm focusing on computation in data processing
infrastructures that are globally available, and in which software applications can discover
and bind dynamically to services offered by providers. The present paper builds on earlier
theoretical work on algebraic structures that capture the way services are orchestrated [8, 6],
and on the mechanisms that formalise the discovery of services that can be bound to a client
application in terms of logical specifications of required/provided services [9, 7]. It explores
one of the most technical aspects of a recent approach proposed in [3] that describes how
aspects specific to the logic-programming paradigm can be used to capture the declarative
and operational semantics of service-oriented computing.

To this purpose, we advance an integrated algebraic framework that constitutes the
primary factor in defining logical specifications of services, as well as models of these specific-
ations that correspond to orchestrations of components depending upon externally provided
services. Our work upgrades the formalism considered in [3] by making a clear distinction
between specifications of services and their orchestrations, which results in a framework that
we consider to be more appropriate for addressing aspects such as heterogeneity.

Since the logic-programming semantics of services is technically based on an underlying
logical system that is formalised as an institution [10], we will concentrate our efforts on
proving that the proposed logic of networks of processes constitutes an institution. We recall
that the theory of institutions is a categorical abstract model theory [4] that promotes a
universal approach to the study of logics by abstracting the notion of truth, which is supposed
to be invariant with respect to the change of notation. Formally, an institution is a quadruple
I =

〈
SigI ,SenI ,ModI , |=I〉 that consists of

– a category SigI of signatures and signature morphisms,
© Ionuţ Ţuţu;
licensed under Creative Commons License CC-BY

2013 Imperial College Computing Student Workshop (ICCSW’13).
Editors: Andrew V. Jones, Nicholas Ng; pp. 111–118

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2013.111
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

112 Logical Foundations of Services

– a sentence functor SenI : SigI → Set defining for every signature Σ the set SenI(Σ) of
Σ-sentences, and for every signature morphism ϕ : Σ→ Σ′ the sentence translation map
SenI(ϕ) : SenI(Σ)→ SenI(Σ′),

– a model functor ModI : (SigI)op → Cat defining for every signature Σ the category
ModI(Σ) of Σ-models and Σ-homomorphisms, and for every morphism ϕ : Σ→ Σ′, the
reduct functor ModI(ϕ) : ModI(Σ′)→ ModI(Σ),

– a family of satisfaction relations |=I
Σ ⊆ |ModI(Σ)| × SenI(Σ), indexed by signatures,

such that the following satisfaction condition holds:

M ′ |=I
Σ′ SenI(ϕ)(ρ) if and only if ModI(ϕ)(M ′) |=I

Σ ρ,

for every signature morphism ϕ : Σ→ Σ′, Σ′-model M ′ and Σ-sentence ρ.

2 Asynchronous Relational Networks

The first step towards the formulation of the logical framework for service orchestrations is
the introduction of a parameterised construction of a category 〈Sig, L〉-ARN of asynchronous
relational networks. In the subsequent sections of the present paper this will serve as
foundation for both the syntactic and the semantic dimensions of the proposed logical system.

Throughout this section we will consider
– a fixed category Sig (of signatures and signature morphisms) and
– a behavioural labelling functor L : |Sig| → Cat assigning to every signature Σ∈ |Sig| a
category L(Σ) of behavioural Σ-labels.

For presentation purposes, we will assume Sig to be the category of signatures of linear
temporal logic, and L(Σ) to be the category of Σ-presentations, i.e. of sets of Σ-sentences.

The asynchronous relational networks that we examine here follow closely the formalisation
from [3], and are similar to those defined in [6] except that we rely on hypergraphs [5, 2]
instead of graphs, and on abstract labels instead of signatures of linear temporal logic and
sets of traces. Just as in [6], the proposed concepts reflect the intuitive representation of
service components as networks of processes that interact asynchronously by exchanging
messages through communication channels. However, since the role of messages (organised
into structures called ports) is merely to provide a convenient description of certain signatures
of linear temporal logic, we choose not to introduce them explicitly, but to refer directly to
the signatures they designate, similarly to [9].

Processes are defined by sets of interaction-points labelled with port signatures and by
behavioural labels that correspond to the way the processes operate.

I Definition 1 (Process). A 〈Sig, L〉-process 〈X, (Σx
ιx−→ Σ)x∈X ,Λ〉 consists of a set X of

interaction-points, each point x∈X being labelled with a port signature Σx ∈ |Sig|, a process
signature Σ∈ |Sig| such that (Σx

ιx−→ Σ)x∈X is a coproduct in Sig, and a label Λ∈ |L(Σ)|.

In the actual situations the port signatures Σx are sets of actions that match either the
publication m! of an outgoing message m or the delivery m¡ of an incoming message m. The
process signature Σ is given by the disjoint union

⊎
x∈X Σx = {x.a | x∈X, a∈Σx}, while

the injections ιx are the obvious prefix maps x._ : Σx → Σ. The behaviour of the process is
specified through a set Λ of sentences of linear temporal logic over Σ.

I Example 2. In Figure 1a we depict a process JourneyPlanner that provides directions
from a source to a target location. The process interacts with the environment through two
interaction-points: JP1 and JP2. The first one is used for communicating with potential

I. Ţuţu 113

Journey
Planner

ΛJP

planJourney¡
directions!

JP1
getRoutes!
routes¡
timetables¡

JP2

(a)

getRoutes!
routes¡
timetables¡

JP2
getRoutes¡

routes!

R1

routes¡
timetables!

R2

C

ΛC

(b)

Figure 1 The ARN JourneyPlanner: (a) the process JourneyPlanner, (b) the connection C.

client processes – the request for directions (including the source and the target locations)
is encoded into the delivery action planJourney¡, while the response is represented by the
publication action directions!. The second point defines actions that correspond to the
interaction between JourneyPlanner and other necessary processes – the publication action
getRoutes! can be seen as a query for all possible routes between the specified source and
target locations, while routes¡ and timetables¡ define the delivery of the result of the query
and of the timetables of the available transport services for the selected routes.

The behaviour of the process JourneyPlanner can be described as follows:
– Whenever it receives a request planJourney¡ it immediately initiates the search of available
routes through the publication action getRoutes!.

2 (planJourney¡ ⊃ © getRoutes!)

– Once it receives both the routes and the corresponding timetables it compiles the directions
and replies to the client.

2

(
getRoutes! ⊃

(
routes¡ R (routes¡ ⊃ (timetables¡ R (timetables¡ ⊃ 3 directions!))) ∨

timetables¡ R (timetables¡ ⊃ (routes¡ R (routes¡ ⊃ 3 directions!)))
))

Processes communicate by transmitting messages through channels. As in [1, 6], channels
are bidirectional, in the sense that they may transmit both incoming and outgoing messages.

I Definition 3 (Channel). A 〈Sig, L〉-channel 〈Σ,Λ〉 consists of a channel signature Σ∈ |Sig|
and a behavioural label Λ∈ |L(Σ)|.

Note that channels do not provide any information about the interacting entities, but only
on how the communication is realised. In order to enable the communication between given
processes, channels need to be attached to their interaction-points, thus forming connections.

I Definition 4 (Connection). A 〈Sig, L〉-connection 〈Σ,Λ, (Σ ιx←− Σ′
x
µx−−→ Σx)x∈X〉 between

the port signatures (Σx)x∈X , where X is a set of interaction-points, consists of a channel
〈Σ,Λ〉 and a family of attachment spans (Σ ιx←− Σ′

x
µx−−→ Σx)x∈X in Sig.

The channel signature Σ is given in general by a set of both publication and delivery
actions m! and m¡ determined by messages m. As in the case of processes, the behaviour of
the channel is specified through a set of sentences of linear temporal logic over Σ. The maps
ιx and µx are considered to be set-theoretic inclusions and polarity-preserving injections,
respectively, i.e. injective functions µx with the property that µx(a) is a publication action of
Σx if and only if a is a publication action of Σ, and for this reason they are often presented as

ICCSW’13

114 Logical Foundations of Services

partial maps µx : Σ ⇀ Σx; in addition, the signatures (Σ′
x)x∈X are usually chosen such that

for any point x∈X, m!∈Σ′
x (m¡∈Σ′

x) if and only if m¡∈Σ′
y (m!∈Σ′

y) for some y ∈X \ {x}.
This condition ensures an appropriate pairing of messages: every published message of Σx,
for x∈X, is paired with a delivered message of Σy, for some y ∈X \ {x}, and vice versa.

I Example 5. In order to illustrate how the process JourneyPlanner can interact with other
processes, we consider the connection C depicted in Figure 1b that moderates the flow of
messages between the port signature named JP2 and two other port signatures, R1 and R2.

The underlying channel of C is given by the set of actions Σ = {g!, g¡, r!, r¡, t!, t¡} together
with the set of sentences of linear temporal logic

ΛC =
{
2 (m!→©m¡) | m∈{g, r, t}

}
that specifies the delivery of all published messages without any delay. It is attached to the
port signatures JP2, R1 and R2 through the partial injections µJP2 , µR1 and µR2 given by
– µJP2 = {g! 7→ getRoutes!, r¡ 7→ routes¡, t¡ 7→ timetables¡},
– µR1 = {g¡ 7→ getRoutes¡, r! 7→ routes!} and
– µR2 = {r¡ 7→ routes¡, t! 7→ timetables!}.

Note that the actual senders and receivers of messages are specified through the attachment
injections. For example, the message g is delivered only to the port signature R1 (because
µR2 is not defined on g¡), while r is simultaneously delivered to both JP2 and R2.

We can now define asynchronous networks of processes as hypergraphs having vertices
labelled with port signatures and hyperedges labelled with processes and connections.

I Definition 6 (Hypergraph). An (edge-labelled) hypergraph 〈X,E, γ〉 consists of a set X of
vertices or nodes, a set E of hyperedges disjoint from X, and an incidence map γ : E → P(X)
defining for every hyperedge e∈E a non-empty set γe ⊆ X of vertices it is incident with.

A hypergraph 〈X,E, γ〉 is said to be edge-bipartite if E is partitioned into two subsets
F and G such that no adjacent hyperedges belong to the same partition, i.e. for every two
hyperedges e1, e2 ∈E such that γe1 ∩ γe2 6= ∅, either e1 ∈F and e2 ∈G, or e1 ∈G and e2 ∈F .

I Definition 7 (Asynchronous Relational Network – ARN). A 〈Sig, L〉-asynchronous relational
network A = 〈X,P,C, γ,Σ, ι, µ,Λ〉 consists of an edge-bipartite hypergraph 〈X,P,C, γ〉 of
points x∈X, computation hyperedges p∈P , communication hyperedges c∈C, together with
– a port signature Σx ∈ |Sig| for every point x∈X,
– a process

〈
γp,
(
Σx

ιpx−→ Σp
)
x∈ γp

,Λp
〉
for every hyperedge p∈P , and

– a connection
〈
Σc,Λc,

(
Σc

ιcx←− Σcx
µc

x−−→ Σx
)
x∈ γc

〉
for every hyperedge c∈C.

I Example 8. By putting together the process and the connection presented in Examples 2
and 5, we obtain the ARN JourneyPlanner depicted in Figure 1. Its underlying hypergraph
consists of the points JP1, JP2, R1 and R2, the computation hyperedge JP, the communication
hyperedge C, and the incidence map γ given by γJP = {JP1, JP2} and γC = {JP2,R1,R2}.

An interaction-point of a 〈Sig, L〉-ARN A is a point of A that is not bound to both
computation and communication hyperedges. We distinguish between requires-points and
provides-points, as follows.

I Definition 9 (Requires and Provides-point). A requires-point of 〈Sig, L〉-ARN A is a point
of A that is incident only with a communication hyperedge. Similarly, a provides-point of A
is a point incident only with a computation hyperedge.

I. Ţuţu 115

Morphisms of 〈Sig, L〉-ARNs can be defined as injective homomorphisms between their
underlying hypergraphs that preserve all labels, except those associated with requires-points.

I Definition 10 (Homomorphism of Hypergraphs). A homomorphism h between hypergraphs
〈X,E, γ〉 and 〈X ′, E′, γ′〉 consists of functions hv : X → X ′ and he : E → E′, usually denoted
simply by h, such that for any x∈X and e∈E, x∈ γe if and only if hv(x)∈ γ′

he(e).

I Definition 11 (Morphism of ARNs). Given two 〈Sig, L〉-ARNs A = 〈X,P,C, γ,Σ, ι, µ,Λ〉
and A′ = 〈X ′, P ′, C ′, γ′,Σ′, ι′, µ′,Λ′〉, a morphism ϕ : A→ A′ consists of
– an injective homomorphism ϕ : 〈X,P,C, γ〉 → 〈X ′, P ′, C ′, γ′〉 between the underlying

hypergraphs of A and A′ such that ϕ(P) ⊆ P ′ and ϕ(C) ⊆ C ′, and
– a family ϕpt of signature morphisms ϕpt

x : Σx → Σ′
ϕ(x), for x∈X,

such that
– for every non-requires-point x∈X, ϕpt

x = 1Σx ,
– for every hyperedge p∈P , Σp = Σ′

ϕ(p), Λp = Λ′
ϕ(p), and ιpx = (ι′)ϕ(p)

ϕ(x) for any point x∈ γp,
– for every hyperedge c∈C, Σc = Σ′

ϕ(c), Λc = Λ′
ϕ(c) and the following diagram is well-

defined and commutative, for any point x∈ γc.

Σc

1Σc

��

Σcx
µc

x //

1Σc
x

��

ιcxoo Σx

ϕpt
x

��
Σ′
ϕ(c) (Σ′)ϕ(c)

ϕ(x) (µ′)ϕ(c)
ϕ(x)

//
(ι′)ϕ(c)

ϕ(x)

oo Σ′
ϕ(x)

I Proposition 12. The morphisms of 〈Sig, L〉-ARNs form a category denoted 〈Sig, L〉-ARN.

3 An institution of ARNs

We now turn our attention to the main contribution of the paper: the presentation of a
logical framework for service orchestrations in an institutional setting. Similarly to the
construction detailed in the previous section, the concepts discussed here are parameterised
over an arbitrary logical system that satisfies a number of additional properties. More
precisely, we consider a fixed institution I =

〈
SigI ,SenI ,ModI , |=I〉 such that

– the category SigI of I-signatures is cocomplete,
– there exist cofree models along any signature morphism, i.e. the reduct functor ModI(ϕ)
of any signature morphism ϕ admits a right adjoint, and

– the category of models ModI(Σ) of any signature Σ has products.
An example of such institution is MA-LTL – a variant of linear temporal logic whose models
are not traces, but Muller automata [11], and in which an automaton satisfies a sentence if
and only if every trace accepted by the automaton satisfies the considered sentence. MA-LTL
was originally proposed in [3] as an alternative to conventional linear temporal logic with the
aim of capturing a more operational notion of service orchestration.

3.1 Signatures
We start by defining the category Spec-ARNI of signatures and signature morphisms of our
institution, which we denote SOCI . These are asynchronous relational networks determined

ICCSW’13

116 Logical Foundations of Services

by the category SigI of signatures and by the labelling functor SpecI : |SigI | → Cat that
assigns to every I-signature Σ the preorder category of Σ-presentations.

Spec-ARNI =
〈
SigI ,SpecI〉-ARN

3.2 Sentences and Sentence Translations
The sentences of SOCI express properties about the points of the considered ARNs.

I Definition 13 (Sentence). For any network A∈ |Spec-ARNI |, i.e. for any SOCI-signature
A, the set SenSOC

I (A) of (atomic) A-sentences is defined as the set of pairs 〈x, ρ〉, usually
denoted @x ρ, where x is a point of A and ρ is an I-sentence over Σx.

The translation of sentences is straightforward: for every morphism ϕ : A → A′ in
Spec-ARNI , the map SenSOC

I (ϕ) : SenSOC
I (A)→ SenSOC

I (A′) is given by

SenSOC
I (ϕ)(@x ρ) = @ϕ(x) SenI(ϕptx)(ρ)

for any point x of A and any I-sentence ρ over the signature of x.

I Proposition 14. SenSOC
I is a functor Spec-ARNI → Set.

3.3 Models and Model Reductions
The model functor of our institution assigns appropriate models of the underlying institution
to the computation and communication hyperedges of the considered ARNs, and ground
networks to their requires-points. Formally, we first define
– Mod-ARNI as the category

〈
SigI , |ModI |

〉
-ARN,

– Mod-ARNAI , for any ARN A = 〈X,P,C, γ,Σ, ι, µ,Λspec〉 ∈ |Spec-ARNI |, as the discrete
subcategory of Mod-ARNI given by networks α = 〈X,P,C, γ,Σ, ι, µ,Λmod〉 such that
Λmod
e |=I

Σe
Λspec
e for every computation or communication hyperedge e of A, and

– GARNI as the full subcategory of Mod-ARNI determined by ground networks, i.e. by
networks with no requires-points.

I Definition 15 (Model). For any ARN A∈ |Spec-ARNI |, the category ModSOC
I (A) of

A-models or A-interpretations is defined as the comma category Mod-ARNAI /GARNI .

It follows that A-interpretations are morphisms of ARNs ν : α→ β such that α∈ |Mod-ARNAI |
and β ∈ |GARNI |, which can also be seen as collections of ground networks that are designated
to the requires-points of α. In order to explain this in more detail let us introduce the
following notions of dependency and ARN defined by a point.

I Definition 16 (Dependency). Let x and y be points of an ARN α. The point x is said
to be dependent on y if there exists a path from x to y that begins with a computation
hyperedge, i.e. if there exists an alternating sequence x e1 x1 · · · en y of (distinct) points and
hyperedges such that x∈ γe1 , y ∈ γen

, xi ∈ γei
∩ γei+1 for any 1 ≤ i < n, and e1 ∈P .

I Definition 17 (ARN Defined by a Point). The sub-ARN defined by a point x of an ARN α

is the full sub-ARN αx of α determined by x and the points on which x is dependent.

One can now see that any interpretation ν : α→ β of an ARN A∈ |Spec-ARNI | assigns to
each requires-point x of α the ground sub-ARN βν(x) of β defined by ν(x).

With respect to model reducts, one can easily see that every ARN morphism ϕ : A→ A′ in
Spec-ARNI and every network α′ ∈ |Mod-ARNA

′

I | determine a (unique) morphism of ARNs

I. Ţuţu 117

ϕ : α→ α′ in Mod-ARNI such that α∈ |Mod-ARNAI |. This observation allows us to define
the reduction of interpretations as the left composition with the considered ARN morphism.
Hence, for every ARN morphism ϕ : A→ A′, ModSOC

I (ϕ) is given by ModSOC
I (ϕ)(ν′) = ϕ; ν′

for A′-interpretations ν′ and ModSOC
I (ϕ)(ζ ′) = ζ ′ for A′-interpretation homomorphisms ζ ′.

I Proposition 18. ModSOC
I is a contravariant functor Spec-ARNop

I → Cat.

3.4 The Satisfaction Relation
The evaluation of SOCI sentences with respect to the interpretations relies on the concepts
of diagram of a network and of model defined by a point, whose purpose is to describe the
observable behaviour of a ground network through one of its points.
I Fact 19 (Diagram of an ARN). Every ARN α = 〈X,P,C, γ,Σ, ι, µ,Λmod〉 ∈ |Mod-ARNI |
defines a diagram Dα : Jα → SigI as follows:
– Jα is the free preorder category given by the set of objects

X ∪ P ∪ C ∪ {〈c, x, α〉 | c∈C, x∈ γc}

and the arrows
{x→ p | p∈P, x∈ γp} for computation hyperedges, and
{c← 〈c, x, α〉 → x | c∈C, x∈ γc} for communication hyperedges;

– Dα is the functor that provides the signatures of ports, processes and channels, together
with the appropriate mappings between them.
Since SigI is cocomplete, we can define the signature of a network based on its diagram.

I Definition 20 (Signature of an ARN). The signature of an ARN α∈ |Mod-ARNI | is the
colimiting cocone ξ : Dα ⇒ Σα of the diagram Dα.

The most important construction that allows us to define the satisfaction relation is the
one that defines the observed behaviour of a (ground) network at one of its points.

I Definition 21 (Model Defined by a Point). Let x be a point of a ground ARN β ∈ |GARNI |.
The observed model Λmod

x at x is given by the reduct ModI(ξx)(Λmod
βx

), where
– βx = 〈X,P,C, γ,Σ, ι, µ,Λmod〉 is the sub-ARN of β defined by x,
– ξ : Dβx

⇒ Σβx
is the signature of βx,

– Λmod
βx

is the product
∏
e∈P∪C Λmod

βx,e
, and

– Λmod
βx,e

is the cofree expansion of Λmod
e along ξe, for any hyperedge e∈P ∪ C.

We now have all the necessary concepts for defining the satisfaction of SOCI sentences
by interpretations. Let us thus consider an ARN A∈ |Spec-ARNI |, an A-interpretation
ν : α→ β and an A-sentence @x ρ. Then

ν |=SOC
I,A @x ρ if and only if ModI(νptx)

(
Λmod
ν(x)
)
|=I

Σx
ρ,

where Λmod
ν(x) is the observed model at ν(x) in β.

The construction of the institution of ARNs is completed by the following result, which
states that satisfaction is invariant with respect to changes of ARNs.

I Proposition 22. For every ARN morphism ϕ : A→ A′ in Spec-ARNI , any A′-interpreta-
tion ν′ and any A-sentence @x ρ,

ν′ |=SOC
I,A′ SenSOC

I (ϕ)(@x ρ) if and only if ModSOC
I (ϕ)(ν′) |=SOC

I,A @x ρ.

I Corollary 23. SOCI =
〈
Spec-ARNI ,SenSOC

I ,ModSOC
I , |=SOC

I
〉
is an institution.

ICCSW’13

118 Logical Foundations of Services

4 Conclusions

In this paper we proposed a logical framework of networks of processes that can be used in
combination with concepts and results specific to the logic-programming paradigm [3] to offer
an integrated semantics for the static and dynamic aspects of service-oriented computing.
We distinguish between specifications of services and their models, which are orchestrations
of components that rely upon externally provided services. The resulting institution is
parameterised over an arbitrary logical system such that (a) its category of signatures is
cocomplete, (b) there exist cofree models along any signature morphism, (c) the category
of models of any signature has products. This level of generality encourages us to further
investigate the service-oriented computing paradigm over a variety of logics. An issue to be
pursued towards this heterogeneous setting is the way in which the change of the underlying
logics induces appropriate translations between the corresponding institutions of ARNs.

Acknowledgements. The author would like to thank José Fiadeiro for many useful dis-
cussions and feedback on the logic-programming semantics of services. This research has
been supported by a grant of the Romanian National Authority for Scientific Research,
CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0439.

References
1 Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. Journal of

the ACM, 30(2):323–342, 1983.
2 Roberto Bruni, Fabio Gadducci, and Alberto Lluch-Lafuente. A graph syntax for processes

and services. In Cosimo Laneve and Jianwen Su, editors, Web Services and Formal Methods,
Lecture Notes in Computer Science, pages 46–60. Springer, 2009.

3 Ionuţ Ţuţu and José L. Fiadeiro. A logic-programming semantics of services. In Reiko
Heckel and Stefan Milius, editors, Conference on Algebra and Coalgebra in Computer Sci-
ence, Lecture Notes in Computer Science, pages 299–313. Springer, 2013.

4 Răzvan Diaconescu. Institution-independent model theory. Studies in Universal Logic.
Birkhäuser, 2008.

5 Gian Luigi Ferrari, Dan Hirsch, Ivan Lanese, Ugo Montanari, and Emilio Tuosto. Synchron-
ised hyperedge replacement as a model for service oriented computing. In Frank de Boer,
Marcello Bonsangue, Susanne Graf, and Willem de Roever, editors, Formal Methods for
Components and Objects, Lecture Notes in Computer Science, pages 22–43. Springer, 2005.

6 José L. Fiadeiro and Antónia Lopes. An interface theory for service-oriented design. In Di-
mitra Giannakopoulou and Fernando Orejas, editors, Fundamental Approaches to Software
Engineering, Lecture Notes in Computer Science, pages 18–33. Springer, 2011.

7 José L. Fiadeiro and Antónia Lopes. A model for dynamic reconfiguration in service-
oriented architectures. Software and Systems Modeling, pages 1–19, 2012.

8 José L. Fiadeiro, Antónia Lopes, and Laura Bocchi. Algebraic semantics of service compon-
ent modules. In José L. Fiadeiro and Pierre-Yves Schobbens, editors,Workshop on Algebraic
Development Techniques, Lecture Notes in Computer Science, pages 37–55. Springer, 2006.

9 José L. Fiadeiro, Antónia Lopes, and Laura Bocchi. An abstract model of service discovery
and binding. Formal Aspects of Computing, 23(4):433–463, 2011.

10 Joseph A. Goguen and Rod M. Burstall. Institutions: Abstract model theory for specifica-
tion and programming. Journal of the ACM, 39(1):95–146, 1992.

11 Dominique Perrin and Jean Éric Pin. Infinite Words: Automata, Semigroups, Logic and
Games. Pure and Applied Mathematics. Elsevier Science, 2004.

Refactoring Boundary
Tim Wood1 and Sophia Drossopoulou2

1 Imperial College London t.wood12@imperial.ac.uk
2 Imperial College London s.drossopoulou@imperial.ac.uk

Abstract
We argue that the limit of the propagation of the heap effects of a source code modification is
determined by the aliasing structure of method parameters in a trace of the method calls that
cross a boundary which partitions the heap. Further, that this aliasing structure is sufficient to
uniquely determine the state of the part of the heap which has not been affected. And we give a
definition of what it means for a part of the heap to be unaffected by a source code modification.
This can be used to determine the correctness of a refactoring.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Refactoring, Object Oriented

Digital Object Identifier 10.4230/OASIcs.ICCSW.2013.119

1 Introduction

A refactoring is a transformation applied to the source code of a program that preserves
the meaning of the program. Most refactorings however do affect the internal behaviour
of a program, for example, new classes and methods may be introduced, conditionals may
be replaced with polymorphism and classes may be in-lined. Determining if a particular
transformation is indeed meaning preserving is a challenge.

According to our proposal, the heap is partitioned into an affected part and an unaffected
part. Moreover we give a sufficient condition that determines that the effects of the code
modification do not spread from the affected part into the unaffected part — which we call a
bounded modification.

Motivation: A programmer modifying a program wants to avoid breaking existing
functionality, even functionality that they may not be aware of. A programmer wants to
convince other programmers to accept their patch, and wants to show that their change is
safe. A programmer wants to precisely characterise the difference between two versions of a
program.

Contributions: We argue that a good way to characterise the difference between two
versions of a program is to partition the heap into an affected part and an unaffected part,
and require that executions correspond in the unaffected part. We propose a precise definition
of this novel property. We propose a novel sufficient condition for such a correspondence of
heaps — that there will be a correspondence in the unaffected part whenever the aliasing
structure of stack frames witnessed at the heap partition boundary is isomorphic between
executions of the two versions. We anticipate that this sufficient condition will provide a
basis for automated tools that can check if a modification is bounded

Our proposal gives a novel general definition of refactoring correctness in terms of the
heap effect of the modification. Moreover it offers a wider definition of refactoring correctness
than other approaches, depending on what unaffected partition is picked. For example, if all
I/O occurs in the unaffected partition then our approach is similar to traditional definitions

© Tim Wood and Sophia Drossopoulou;
licensed under Creative Commons License CC-BY

2013 Imperial College Computing Student Workshop (ICCSW’13).
Editors: Andrew V. Jones, Nicholas Ng; pp. 119–127

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2013.119
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

120 Refactoring Boundary

of refactoring correctness, but other choices of partition are possible that allow differences in
program I/O. This notion of correctness does not require any additional specification of the
program, nor does it require the programmer to limit themselves to previously known-correct
refactorings with established pre-conditions.

Related Work: Typically the correctness of refactorings is defined as I/O equivalence and
is checked by ad-hoc pre-condition checking[10][1] or by composing smaller refactorings[12].
State based encapsulation provides a method for reasoning about the equivalence of classes[9].
Program slicing can be used to establish the correctness of some statement reordering
refactorings[2]. Graph transformations have been suggested as a means to reason about
refactorings in general[11]. Regression verification uses bounded model checking to verify
the equivalence of some loop and recursion free programs[3]. Program verification tools
in conjunction with automated theorem provers can be used to check some programs for
equivalence[4][6], or library versions for backward compatibility[13]. Semantics aware trace
analysis[5] and BCT[7] use traces captured at runtime to attempt to isolate the causes
of regression failures. Guru[8] uses sequences of messages sends to define equivalence of
differently factored method implementations in an object-oriented system.

Structure: In section 2 we give a motivating example, and describe what it means for
the effect of a refactoring to be bounded. In section 3 we give a sufficient condition for
determining if a part of the heap is unaffected between executions of two versions of the
program. Then in section 4 we describe exactly how partitioning and trace comparison
works. In section 5 we give several interesting properties of bounded modifications, and in
section 6 sketch a proof of those properties.

2 Bounded Effect

An object oriented program p is modified to produce a program q. The heap is partitioned
into two parts Φm and Φu. We say that Φm bounds the modification if for any execution in
p there is a corresponding execution in q such that the heaps are equivalent within Φu. In
other words, the heap effect of a bounded modification does not spread beyond Φm.

1 class FiFo {
2 Node f;
3 void add(final Object o) {
4 if(f == null) { f=new Node(o); }
5 else { f.add(o); }}
6 Object remove () {
7 Object r=f. value (); f=f.next (); return

r;}}
8
9 class Node {

10 Object o; Node n;
11 Node(Object o) { this.o=o; }
12 Node next () { return n; }
13 Object value () { return o; }
14 void add(final Object o) {
15 if(n == null) { n=new Node(o); }
16 else { n.add(o); }}}

Listing 1 Program p — fifo queue with
recursive add.

1 class FiFo {
2 Node f, l;
3 void add(final Object o) {
4 if(f == null) { l=f=new Node(o); }
5 else { l=l.add(o); }}
6 Object remove () {
7 Object r=f. value (); f=f.next (); return

r;}}
8
9 class Node {

10 Object o; Node n;
11 Node(Object o) { this.o=o; }
12 Node next () { return n; }
13 Object value () { return o; }
14 Node add(Object o) {
15 return n=new Node(o); }}
16

Listing 2 Program q — fifo queue with
last element pointer. The modified parts are
highlighted.

1 class Test { Fifo fi = new Fifo (); Object o1 = new Object () , o2 = new Object ();
2 void test () { fi.add(o1); fi.add(o2); fi. remove (); fi. remove () ;}}

Listing 3 Test program for the FiFo queue.

T. Wood and S. Drossopoulou 121

We shall clarify the meaning of execution, correspondence, partitioning and equivalence
in terms of the following example. Listing 1 shows part of a larger program p. The code
shown is a fifo queue consisting of two classes FiFo and Node. The code is modified, as in
listing 2, to produce a new version q where the implementation and representation of the
queue has changed. Listing 3 shows a test program that could be run with the code from
either Listing 1 or Listing 2. The only values in our language are addresses, which can be
compared for equality but are otherwise opaque, and all fields are private.

Consider Figure 1 which shows the stack and heap when an execution of the test program
in Listing 3 with p is just about to return from the second call to add on line 2 of Listing 3.
In this figure Φm is chosen to include only objects of the FiFo and Node classes.

Key:
stack
boundary

1 object 1
pointer

this 3

o 2

this 0

Φu Φm

0

1

2

3

4
5

o1
o2

fi

f

n
o

o

Figure 1 Snapshot of an execution of p (Listing 3 and Listing 1). The heap and top two stack
frames are shown. The heap is partitioned so that objects at addresses 0,1,2 are in Φu, and objects
3,4,5 are in Φm. The top stack frame has a this pointer into the Φm partition, the stack frame below
it has a this pointer into the Φu partition.

In Figure 2 we show the stack and heap at a corresponding point in the execution of the
test program in Listing 3 with q. Notice that when compared to Figure 1 this figure has an
additional pointer between objects 10 and 12, this is due to the field l which has been added
in q as shown on line 2 of Listing 2.

We notice that the heap in Figure 1, which we will call h1, and the heap in Figure 2,
which we will call h2, are isomorphic when only the objects within Φu are considered. We
say that h1 is equivalent to h2 wrt. Φu, and in our notation we write this as h1 ≈Φu h2. In
this case, object 0 corresponds with object 7, 1 with 8, and 2 with 9.

Key:
stack
boundary

1 object 1
pointer

this 10

o 9

this 7

Φu Φm

7

8

9

10

11
12

o1
o2

fi

f

n
o

o

l

Figure 2 Snapshot of an execution of q (Listing 3 and Listing 2). Notice that there is an extra
pointer between objects 10 and 12 when compared to Figure 1.

Definition 1 gives the formal meaning of bounded, where we use γ, γp, γq to range over
runtime configurations, and γ−→−→pγ

′ to mean the multi-step execution of program p from
configuration γ to configuration γ′. We write heap(γ) to mean the heap of configuration γ.
The judgement init(γ) holds when γ is an initial state, which means it has an empty stack
and an expression consisting of a call to the program’s main method.

ICCSW’13

122 Refactoring Boundary

I Definition 1 (bounded). When Φm bounds the effect, for every sequence of states reachable
in p there is a sequence of states with equivalent heaps wrt. Φu reachable in q.

∀γ, γp, γ′
p : init(γ) ∧ γ−→−→pγp−→−→pγ

′
p

=⇒ ∃γq, γ′
q : γ−→−→qγq−→−→qγ

′
q ∧ heap(γp) ≈Φu heap(γq) ∧ heap(γ′

p) ≈Φu heap(γ′
q)

3 Trace Equivalence

Definition 1 is difficult to establish, it requires considering a potentially infinite number of
executions and deep inspection of the heap. In this section we propose a sufficient condition
for Definition 1, which can be established by inspection of the stack only at certain points in
each execution. We show this sufficient condition in Definition 2. We anticipate that this
condition combined with suitable approximation techniques will allow us to make progress in
applying static analysis to the problem of checking the correctness of refactorings.

In Definition 2 we will consider traces. A trace is the sequence of stack frames observable
upon entry/exit of Φu. Traces for our running example are shown in Figure 3. In this case
the elements of the trace correspond to the entry and exit points of the constructor, and
the add and remove methods, of the class FiFo. Each trace element contains the address of
the method receiver and the address of any parameters. On method return we use ret as a
synthetic method name, and also to name the return value. For example, on entry to the add
method we capture the address of this and the parameter o. On exit of the remove method
we capture the address of the return value. The ith element of trace τs is written as τsi.

Figure 3 also shows examples of isomorphic and non-isomorphic traces. Two traces are
equivalent if they have the same aliasing structure and null in the same places. Section
4 describes this in more detail. The judgement τs ≈ τs′ holds whenever τs and τs′ are
isomorphic modulo addresses.

Definition 2 gives the formal meaning of trace equivalent executions. It holds whenever,
for every initial state, execution in p produces an equivalent trace with execution in q.
We write γ τs−→−→pγ

′ to mean the multi-step execution of program p from configuration γ to
configuration γ′ with trace τs. Trace concatenation is performed by the · function.

I Definition 2 (Trace Equivalent Executions). p and q are trace equivalent iff for every state
reachable from an initial state with some trace in p (q), a state is reachable from the same
initial state in q (p) with an equivalent trace.

p and q are trace equivalent when:

∀ τsp, τsq, γ, γp, γq : init(γ) ∧ γ
τsp−→−→pγp ∧ γ

τsq−→−→qγq

=⇒

(
∃ τs′

p, γ
′
p : γp

τs′
p−→−→pγ

′
p ∧ τsp · τs′

p≈ τsq
)

∨(
∃ τs′

q, γ
′
q : γq

τs′
q−→−→qγ

′
q ∧ τsp≈ τsq · τs′

q

)

Lemma 3 relates Definition 1 and Definition 2. It directly relates equivalence of traces
to equivalence of heaps wrt. Φu. In particular it says that whenever executions of p and q

produce equivalent traces, then they will also correspond in Φu. Section 6 sketches a proof of
Lemma 3.

I Lemma 3. If p is trace equivalent with q (Definition 2) then Φm bounds the modification
(Definition 1).

T. Wood and S. Drossopoulou 123

4 Partitions and Traces

Heap partition is defined by the function part : Object→{Φm,Φu}, which gives a partition
identifier for any object. Objects must not move between partitions during execution. The
judgement mod(o) holds iff the object o is modified. An object is modified iff its class is
modified, and a class is modified iff any of its methods’ bodies or its fields differ between
p and q. All modified objects must be in the Φm partition, but the Φm may also contain
non-modified objects1.

We say that Φu is entered whenever the this pointer of the top stack frame points into Φm

and a stack frame is pushed or popped leaving a top stack frame whose this pointer points
into the Φu. And conversely for exit of Φu. For example, in Figure 1 if the top stack frame is
popped execution will enter Φu.

τsp1 Fifo this: 3
τsp2 ret ret: 3
τsp3 add this: 3 o: 1
τsp4 ret
τsp5 add this: 3 o: 2
τsp6 ret
τsp7 remove this: 3
τsp8 ret ret: 1
τsp9 remove this: 3
τsp10 ret ret: 2

τsp

τsp ≈β τsq when β = τsq 6≈ τsr(1,8),(3,10),(2,9)

τsq1 Fifo this: 10
τsq2 ret ret: 10
τsq3 add this: 10 o: 8
τsq4 ret
τsq5 add this: 10 o: 9
τsq6 ret
τsq7 remove this: 10
τsq8 ret ret: 8
τsq9 remove this: 10
τsq10 ret ret: 9

τsq

τsr1 Fifo this: 7
τsr2 ret ret: 7
τsr3 add this: 7 o: 4
τsr4 ret
τsr5 add this: 7 o: 6
τsr6 ret
τsr7 remove this: 7
τsr8 ret ret: 6
τsr9 remove this: 7
τsr10 ret ret: 4

τsr

Figure 3 Three traces. The trace τsp is from an execution of p. The trace τsq is from an execution
of q. The trace τsr is fictional and does not come from either p or q. Trace τsp is equivalent to trace
τsq under the address bijection, β, shown. Trace τsr is not equivalent to either τsp or τsq, there is
no bijection between the addresses of τsp and τsr that also preserves the aliasing structure of the
traces.

Each element of a trace contains the values of method parameters, or method return values,
from the top stack frame whenever the partition is crossed. Only the address values, and
associated parameter names, actually present in the stack frame are captured, no information
from the heap is needed. Since the actual addresses used by any two executions can vary
unpredictably we cannot compare traces directly. Instead we say that traces are equivalent
if there exists a bijection β between the addresses present in each trace, that preserves the
structure of the trace. Figure 3 shows an example of trace equivalence and non-equivalence.

We write τsi(x) to mean the value at the location associated with the variable x in the
ith element of trace τs, or ⊥ if the variable is not defined in that trace element, and τsi(meth)
to mean the name of the method associated with the ith element of trace τs.

1 For example, we may refactor some code to keep a list sorted for improved search performance. The
code of list would not be modified, but its state in the heap would be affected.

ICCSW’13

124 Refactoring Boundary

The equivalence relation ≈ over traces, τs, τs′, holds if the traces contain the same number
of elements, elements at the same position in the sequence are calls to methods with the same
identifier, there is a structure preserving bijection between the addresses in each trace, and
both traces have null at the same locations. Therefore, whenever τs≈ τs′ holds, whatever is
an alias in τs is an alias in τs′ and vice versa.

I Definition 4. The relation ≈ holds whenever two traces contain the same sequence of
method names, and when the aliasing structure of both traces is precisely the same.

≈β ⊆ Trace×Trace

τs≈β τs′ def⇐⇒ ∀i ∈ N, x ∈ Idv : (τsi(meth) = τs′
i(meth) ∧ β(τsi(x)) = τs′

i(x)) ∧
β(null) = null ∧ (∀a, a′ :β(a) = β(a′) =⇒ a = a′)

τs≈ τs′ def⇐⇒ ∃β : τs≈β τs′

5 Properties of Bounded modifications

In this section we describe some properties of executions when part has been picked such that
Definition 1 holds, i.e. Φm bounds the modification of interest. The usefulness of definition 1
is that it helps a programmer to reason about heaps, stacks and executions. We now describe
some properties of heaps, stacks and executions that follow from Lemma 3 and hold for
bounded modifications.

The structure of executions wrt. the partitioning is a sequence of execution steps in one
partition, followed by a sequence of execution steps in the other partition, then back to the
original partition, and so on in an interleaved fashion as shown in Figure 4.

Corollary 5 describes the sequences of states that the Φu partition reaches when execution
is in Φm. We write part(γ) to mean the partition of the object pointed to by the this pointer
of the topmost stack frame of state γ. Figure 4 illustrates the preservation of Φu heap
equivalence, when execution is in Φm, that the corollary describes. In particular, between
corresponding parts of the executions in Φm all of the heaps are equivalent wrt. the Φu

partition.

I Corollary 5. When Φm bounds the modification, every state with execution inside Φm

reachable with some trace in p, and every state reachable with some equivalent trace in q

have equivalent heaps wrt. Φu.

∀γ, γp, γq, τsp, τsq : init(γ) ∧ γ
τsp−→−→pγp ∧ γ

τsq−→−→qγq ∧ τsp≈ τsq ∧ part(γp) = Φm

=⇒ heap(γp) ≈Φu heap(γq)

Corollary 6 describes the sequences of states that the Φu partition reaches for execution in
Φu. We write τ−→p to mean a single execution step in program p that produces the non-empty
trace τ , and we write ε−→p to mean a single execution step in program p that produces an
empty trace. We use the equivalence γ ≈Φu γ′ to mean that the part of the heap consisting
only of objects in Φu and the topmost stack frames of γ and γ′ are isomorphic modulo
addresses. Figure 4 illustrates the lockstep equivalence wrt. Φu when execution is within Φu.

In particular, between corresponding parts of the executions in Φu, the same number
of steps are executed in p as q, and corresponding pairs of states are equivalent wrt. Φu.
Intuitively, the two executions proceed in lockstep for as long as execution remains in Φu.

I Corollary 6. When Φm bounds the modification, for every state reachable n steps after
entering Φu with some trace in p, there is an equivalent state wrt. Φu reachable n steps after

T. Wood and S. Drossopoulou 125

each entry to Φu that is reachable with an equivalent trace in q, provided that none of the n
steps in p crosses out of Φu.

∀γ, n, γp, γp1 . . . γpn, γq, γ′
q, τsp, τp, τsq, τ

′
q :∃γq1 . . . γqn :

init(γ) ∧ part(γp1) = Φu ∧ τsp · τp≈ τsq · τ q
γ
τsp−→−→pγp

τp−→p γp1
ε−→p ...

ε−→p γpn ∧ γ
τsq−→−→qγq

τq−→q γ
′
q

=⇒

γ′
q = γq1 ∧ γq1

ε−→q ...
ε−→q γqn ∧

n∧
i=1

γpi ≈Φu γqi

≈Φu ≈Φu ≈Φu ≈Φu

Φu Φm

≈Φu ≈Φu ≈Φu ≈Φu

Φu Φm

≈Φu ≈Φu ≈Φu ≈Φu

Φu

p γ

heap ≈Φu heap heap ≈Φu heap

q γ

≈Φu ≈Φu ≈Φu ≈Φu

Φu Φm

≈Φu ≈Φu ≈Φu ≈Φu

Φu Φm

≈Φu ≈Φu ≈Φu ≈Φu

Φu

p γ

heap ≈Φu heap heap ≈Φu heap

q γ

≈Φu ≈Φu ≈Φu ≈Φu

Φu Φm

≈Φu ≈Φu ≈Φu ≈Φu

Φu Φm

≈Φu ≈Φu ≈Φu ≈Φu

Φu

p γ

heap ≈Φu heap heap ≈Φu heap

q γ

Figure 4 Two executions from initial state γ are shown. The top execution is of program p and
the bottom execution is of q. The modification between p and q is assumed to be bounded by Φm.
The leftmost magnified area shows the step wise correspondence of execution steps when execution
is within Φu. The pairs of states are stepwise equivalent wrt. Φu, in accordance with Corollary 6.
The rightmost magnified area shows the preservation of heap equivalence wrt. Φu whilst execution is
in Φm, in accordance with Corollary 5.

6 Proof Sketch

We provide two auxiliary lemmas that support Lemma 3. Lemma 7 says that for as long as an
execution remains outside of a partition, it will not affect the state of any heap objects inside
of the partition. We write heap(γ)φ to mean the the heap of state γ with objects outside
φ deleted (leaving dangling pointers if necessary). We justify this lemma by noting that:
privacy of fields prevents manipulation of the state of a partition unless the this pointer is
pointing inside that partition; entering the partition would cause the trace to be non-empty.

I Lemma 7. As long as the execution is outside the partition the heap inside the partition
is preserved.

∀p, γ, γ′, φ : γ ε−→−→pγ
′ ∧ part(γ) 6= φ =⇒ heap(γ)φ = heap(γ′)φ

Lemma 8 says that the behaviour of an execution while it is in a partition φ is not affected
by the state of the heap outside of that partition. We write γφ to mean the state which
is the same as γ, but with any objects not in φ deleted from the heap. In particular that,
unless execution leaves φ, the heap inside the partition will reach the same heap states wrt.
the partition dependent only on the state inside the partition. We justify this lemma by
noting that: field privacy prevents observation of the state of a partition unless execution is

ICCSW’13

126 Refactoring Boundary

in the partition; execution is deterministic; and the continuations of γ and γφ are the same.
Therefore, only the aliasing structure of pointers inside the partition (including those that
point out of the partition), and the code of the classes of objects inside the partition, affects
the execution inside the partition.

I Lemma 8. The state of the heap outside a partition does not affect execution inside the
partition. In particular, if all the objects outside of the partition φ were deleted from the
heap, execution will still reach equal states wrt. φ as long as execution does not leave φ.

∀p, φ, γ, γ′∃γ′′ : part(γ) = φ ∧ γ
ε−→−→pγ

′ =⇒ γφ
ε−→−→pγ

′′ ∧ γ′
φ = γ′′

7 Conclusion

We have argued that information about aliasing in partition crossing calls is sufficient to check
the propagation of heap effects between areas of the heap. We have presented a definition
of what it means for the heap effect of a program modification to be contained within a
programmer defined heap partition.

We intend to continue this work by performing a proof of the lemmas given in this paper.
We will then try to extend this work to characterise program modifications that are not
behaviour preserving.

References
1 Fabian Bannwart and Peter Müller. Changing programs correctly: Refactoring with spe-

cifications. FM 2006: Formal Methods, pages 492–507, 2006.
2 Ran Ettinger. Program sliding. In James Noble, editor, ECOOP 2012 Object-Oriented

Programming, volume 7313 of Lecture Notes in Computer Science, pages 713–737. Springer
Berlin Heidelberg, 2012.

3 B. Godlin and O. Strichman. Regression verification. In Design Automation Conference,
2009. DAC ’09. 46th ACM/IEEE, pages 466 –471, july 2009.

4 Chris Hawblitzel, Ming Kawaguchi, Shuvendu K Lahiri, and Henrique Rebêlo. Towards
modularly comparing programs using automated theorem provers. International Confer-
ence on Automated Deduction, June 2013.

5 Kevin J. Hoffman, Patrick Eugster, and Suresh Jagannathan. Semantics-aware trace ana-
lysis. In Proceedings of the 2009 ACM SIGPLAN conference on Programming language
design and implementation, PLDI ’09, pages 453–464, New York, NY, USA, 2009. ACM.

6 Shuvendu Lahiri, Ken McMillan, Rahul Sharma, and Chris Hawblitzel. Differential asser-
tion checking. In Foundations of Software Engineering. ACM, 2013.

7 Leonardo Mariani, Fabrizio Pastore, and Mauro Pezze. Dynamic analysis for diagnosing
integration faults. IEEE Trans. Softw. Eng., 37(4):486–508, July 2011.

8 Ivan Moore. Automatic inheritance hierarchy restructuring and method refactoring. In
ACM SIGPLAN Notices, volume 31, pages 235–250. ACM, 1996.

9 David Naumann and Anindya Banerjee. State based encapsulation for modular reasoning
about behaviour-preserving refactorings. In Dave Clarke, James Noble, and Tobias Wrig-
stad, editors, Aliasing in Object-oriented Programming. Springer State-of-the-art Surveys,
2012.

10 William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, 1992.
11 Javier Perez, Yania Crespo, Berthold Hoffmann, and Tom Mens. A case study to evaluate

the suitability of graph transformation tools for program refactoring. Software Tools for
Technology Transfer - Special Section on GraBaTs 08, 12(3-4):183–199, 2009. (c) Springer,
2009.

T. Wood and S. Drossopoulou 127

12 Max Schäfer, Mathieu Verbaere, Torbjörn Ekman, and Oege Moor. Stepping stones over
the refactoring rubicon. In Proceedings of the 23rd European Conference on ECOOP 2009
— Object-Oriented Programming, Genoa, pages 369–393, Berlin, Heidelberg, 2009. Springer-
Verlag.

13 Yannick Welsch and Arnd Poetzsch-Heffter. Verifying backwards compatibility of object-
oriented libraries using boogie. In Proceedings of the 14th Workshop on Formal Techniques
for Java-like Programs, FTfJP ’12, pages 35–41, New York, NY, USA, 2012. ACM.

ICCSW’13

Using Self-learning and Automatic Tuning to
Improve the Performance of Sexual Genetic
Algorithms for Constraint Satisfaction Problems∗

Hu Xu1, Karen Petrie2, and Iain Murray3

1 Computing School,
QMB 1.10, University of Dundee
huxu@computing.dundee.ac.uk

2 Computing School,
QMB 2.10, University of Dundee
karenpetrie@computing.dundee.ac.uk

3 Computing School,
QMB 2.21, University of Dundee
irmurray@computing.dundee.ac.uk

Abstract
Currently the parameters in a constraint solver are often selected by hand by experts in

the field; these parameters might include the level of preprocessing to be used and the variable
ordering heuristic. The efficient and automatic choice of a preprocessing level for a constraint
solver is a step towards making constraint programming a more widely accessible technology.
Self-learning sexual genetic algorithms are a new approach combining a self-learning mechanism
with sexual genetic algorithms in order to suggest or predict a suitable solver configuration for
large scale problems by learning from the same class of small scale problems. In this paper,
Self-learning Sexual genetic algorithms are applied to create an automatic solver configuration
mechanism for solving various constraint problems. The starting population of self-learning
sexual genetic algorithms will be trained through experience on small instances. The experiments
in this paper are a proof-of-concept for the idea of combining sexual genetic algorithms with a
self-learning strategy to aid in parameter selection for constraint programming.

1998 ACM Subject Classification I.2.6 Learning

Keywords and phrases Self-learning Genetic Algorithm, Sexual Genetic algorithm, Constraint
Programming, Parameter Tuning

Digital Object Identifier 10.4230/OASIcs.ICCSW.2013.128

1 Introduction

The selection of suitable preprocessing levels for a given constraint problem is an important
part of constraint programming (CP); efficiently tuning a constraint solver will shorten the
search time and reduce the running cost. One significant method of increasing the search
speed for a constraint solver is by tuning the solver’s parameters [8]. Currently, the job of
tuning the parameters is done manually; a skilled user selects the most suitable preprocessing
method using previous experience from similar classes of problems. In most cases, the best
preprocessing method used in similar classes of problems will provide a useful clue to aid the

∗ This work was funded by the School of Computing, University of Dundee.

© Hu Xu , Karen Petrie, and Iain Murray;
licensed under Creative Commons License CC-BY

2013 Imperial College Computing Student Workshop (ICCSW’13).
Editors: Andew V. Jones, Nicholas Ng; pp. 128–135

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2013.128
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

H. Xu , K. Petrie, and I. Murray 129

user’s selection. However, this learning curve could be a barrier to novice users in learning
how to efficiently use a CP solver [9].

Genetic algorithms (GA) are a classic global optimisation method posed by John Holland
[6], which mimic the competition of organisms in nature and the mechanisms of evolution.
GAs are usually implemented in a computer simulation in which a population of abstract
representations of candidate solutions to an optimisation problem evolves towards better
solutions. GAs are widely applied to optimisation problems such as function optimisation.
Ansótegui et al. have proposed a gender-based genetic algorithm for the automatic config-
uration of algorithms[1] ; it shows that the sexual genetic algorithm (SGA) is feasible for
automatic configuration.

In this paper, sexual genetic-based algorithms were chosen to select a preprocessing
method for constraint satisfaction problems. There are three main reasons to choose SGAs
to optimise preprocessing selection:

SGAs have a powerful ability to tackle optimisation problems which lack auxiliary
information
SGAs perform parallel search rather than linear search; each chromosome (solution to
the problem) competes against others in each generation
SGAs are more efficient than standard GAs in preprocessing selection; it is not necessary
for the SGA to evaluate the fitness of all chromosomes, which is a considerable consumer
of CPU time.

Therefore the idea of combining SGAs and constraint programming seems worth exploring
further and it is expected that automatic tuning will lead to improvements over manual
tuning by users. ParamILS and CALIBRA [7] have demonstrated the practicality and
efficiency of automatic configuration for constraints solvers. However, the general framework
of combining GAs with constraint programming and the exploration of parameter sensitivity
of GAs to any problems, has not been achieved. In light of this situation, a self-learning sexual
genetic-based method for tuning Minion [4], which is one of the most efficient constraint
solvers in the world, was proposed.

This paper firstly investigates an SGA and explores its features. The efficiency of this
SGA will be tested by comparison with a standard GA for the Travelling Salesman Problem.
The self-learning genetic algorithm (SLGA) will then be introduced and applied to select
the preprocessing level. Finally, the efficiency of the self-learning sexual genetic algorithm
(SLSGA) will be analysed. This paper also provides a proof for one possibility of improving
sexual genetic algorithms for preprocessing selection in constraint satisfaction problems [2].

2 Sexual Genetic Algorithm

The basic concepts and features of SGAs are similar to standard GAs. As in standard
GAs, there are three basic operators in sexual genetic algorithms: selection, crossover and
mutation. The selection, which decides the parents for mating, is very important for evolution.
In standard genetic algorithms, there is just one selection strategy during evolution. In
nature, male individuals try to spread their gene information as widely as possible and
female individuals try to select the fittest males to mate with [13]. Inspired by the natural
behaviour of male vigor and female choice, sexual genetic algorithms [10] [12] apply two
different selection mechanisms: male group (competitive) and female group (co-operative).

The first step of a genetic algorithm (GA) is called the encoding which is to construct a
suitable starting chromosome for the optimisation problem and which can transfer solutions
of the optimisation problem to the child chromosomes, where each child chromosome presents

ICCSW’13

130 Self-learning Sexual Genetic Algorithm

0 20 40 60 80 100 120 140 160 180 200
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Generations

F
it
n
e
s
s

Standard GA

Sexual GA

SGA with two Elistisms

SGA with roulette wheell

Figure 1 The efficiency of sexual genetic algorithm in solving the Travelling Salesman Problem.

one possible solution. Fitness describes the ability of an individual to reproduce in biology;
the fitness function evaluates the difference between the desired result and the actual result.

Selection in genetic algorithms is the strategy which allows the best parents (with
highest fitness) to have an increased chance of being selected to generate the next generation.
Roulette wheel selection is a commonly-used way of choosing individuals from the population
of chromosomes in a way that is proportional to their fitness. Roulette does not guarantee that
the fittest member goes through to the next generation, merely that it has a better chance
of doing so. In sexual genetic algorithms, the population is randomly divided into to two
groups: male (competitive) and female (co-operative) as in nature. The male chromosomes
have to compete for the chance of mating (the elitisms (the chromosomes with better fitness)
will confer an increased chance of mating), while the female chromosomes have the same
opportunity for mating. The running time of the fitness evaluation is substantial when
automated tuning is used, because the fitness (searching time) of each chromosome has to
be calculated with a given set of preprocessing for the constraint problem. The pseudocode
(Algorithm 1) shows that half of the population is selected as male, meaning that half of the
fitness evaluation time is saved while the variety of the population is maintained. This is the
most important reason that sexual genetic algorithms were selected for the experiment in
this paper.

Crossover can improve the fitness of the whole population quickly by mating parents
to produce an offspring. Single-point crossover is the most common crossover in genetic
algorithms because it can be easily understood and realized. The single crossover will be
applied in sexual genetic algorithm.

Mutation, which changes one or more genes in an individual, is another operator used
in GA. Mutation can help genetic algorithms escape the local maximum state by creating a
new gene string. All of the mutations in this paper’s experiments are single-point mutations.

3 Sexual Genetic Algorithm vs. Standard Genetic Algorithm by
Solving TSP

The Travelling Salesman Problem (TSP) seeks the shortest Hamiltonian cycle path between
n given cities and is a classic NP-complete problem. To prove the efficiency of sexual genetic
algorithms and explore their features, a sexual genetic algorithm was applied to solve the TSP
with different elitism percentages and this was compared with a standard genetic algorithm.
There are three elitism strategies: one elitism, two elitisms and roulette wheel selection
elitism.

H. Xu , K. Petrie, and I. Murray 131

Table 1 The solving times of different constraint satisfaction problems using of a sexual genetic
algorithm.

BIBD Langford
(Solving Time) (Solving Time)

Sexual GA 1.7 s 3.2 s
Standard GA 3.5 s 4.3 s

Figure 1 shows the efficiency of an SGA to solve the TSP. There are four curves in the
graph: standard GA, SGA with one elitism, two elitisms and roulette wheel selection elitisms
in male competition. It clearly shows that the SGA with two elitisms in male competition
is most the efficient in solving the TSP; however, more elitisms does not mean better
evolutionary speed because more elitisms could lead to high convergence. Compared with
the standard GA, the SGA with optimised elitisms in male competition always approaches a
better fitness.

Finally, the SGA was used to choose the best preprocessing method for constraint
problems. In this paper, two classic constraint optimisation problems, balanced incomplete
block design (BIBD) and the Langford’s Number problem1 , were chosen as the optimisation
problem for testing the SGA. Following David’s MicroGA Settings[3], the crossover rate is
0.5 and the mutation rate is 0.04 in all experiments. Each trial was run 100 times and the
average of the minima was recorded.

Table 1 shows the solving times of the SGA for different problems in comparison with a
standard GA. It shows that the SGA could find better preprocessing methods for both the
BIBD and Langford’s Number problems than standard GA for a small number of generations.

4 Self-learning Sexual Genetic Algorithm vs. Self-learning Genetic
Algorithm

Generally, machine learning makes predictions by training, validation and testing itself against
existing data [11] . Self-learning, which learns its own inductive bias based on previous
experience, is one of the typical algorithms in the machine learning domain. Self-learning
could avoid repetition of searching and computation in the previous experiments. In genetic
algorithms, the generation of the starting population is a considerable factor, as are the
crossover rate and mutation rate.

To check the influence of the fitness value in the starting population of genetic algorithms,
two different starting populations (set to high fitness and low fitness) were applied to optimise
the same function F (x) = x10[5] where 0 < x < 1. The size of both starting populations was
30 chromosomes. Figure 2 shows that the genetic algorithm with a starting population with
high fitness could approach better fitness than the one with a starting population with poor
fitness. This demonstrates that a suitable starting population for a genetic algorithm could
lead to a more rapid approach to best fitness, and suggests that this could be applied to
self-learning in machine learning.

A self-learning genetic algorithm (SLGA) [14] is an algorithm which makes the prepro-
cessing prediction by using previous experience on the same classes of constraint satisfaction
problem. An SLGA can improve the search speed by defining a specific starting population

1 All From www.csplib.org

ICCSW’13

132 Self-learning Sexual Genetic Algorithm

0

0.01

0.1

1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

0

0.2

0.4

0.6

0.8

1

Mutation Rate
Crossover Rate

F
it
n
e
s
s

0

0.01

0.1

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

0

0.2

0.4

0.6

0.8

1

Figure 2 The evolutionary speed comparison with different starting populations. The X axis
is the mutation rate and the Y axis the Crossover rate. The Z axis is the best fitness after 50
generations with different mutation rate and crossover rate. The fitness of the starting population of
the left graph is lower than 0.1. The fitness of the starting population in the right graph is randomly
generated between 0 and 1.

(instead of a random starting population as normally used), with the starting population
taken from the training data of the same class of small instance problems.

4.1 Self-learning Sexual Genetic Algorithm for Constraint Satisfaction
Problem

The SLSGA pseudocode (Algorithm 1) introduces SLSGA’s working principle and clearly
shows how self-learning combines with the sexual genetic algorithm. Compared with the
self-learning standard genetic algorithm, the self-learning sexual genetic algorithm halves
the time spent on fitness evaluation and selects k elitisms from the male group, instead of
from the whole population. Compared with the SGA, the SLSGA also has an optimised
starting population; the SLSGA is trained using small scale problems to select the starting
population for large scale problems.

Algorithm 1 Self-learning Sexual Genetic Algorithm
Produce the starting populations Pi for small instance problem from the experience of
small instance . i is the population size
for j = 1 to n do . j is the generation

repeat
Randomly select m chromosomes of population as male
The rest chromosomes is selected as female . m = i/2 in our SGA for tuning

constraint programming solver
Evaluate the fitness of male chromosomes
Select k elitisms from male chromosomes to mating pool
Each female chromosomes has the same possibility for mating
New generation is created from k elitisms and mother chromosomes by crossover

and mutation
until λ =The best preprocessing found or the searching time is out of time limit

end for
return λ

H. Xu , K. Petrie, and I. Murray 133

Ta
bl
e
2
T
he

so
lv
in
g
ti
m
es

of
Se

lf-
Le

ar
ni
ng

Se
xu

al
G
en

et
ic

A
lg
or
it
hm

.
”C

SP
P
ro
bl
em

s”
re
fe
rs

to
th
e
tr
ai
ni
ng

in
st
an

ce
an

d
th
e
op

ti
m
is
ed

pr
ob

le
m
s.

”T
ra
in
in
g
In
st
an

ce
”
is

th
e
se
ar
ch

ti
m
e
in

se
co
nd

s
an

d
to
ta
l
se
ar
ch

no
de

s
fo
r
sm

al
l
in
st
an

ce
s
w
it
ho

ut
pr
ep

ro
ce
ss
in
g.

”T
ar
ge
t
In
st
an

ce
”
is
th
e
se
ar
ch

ti
m
e
an

d
to
ta
ls
ea
rc
h
no

de
s
fo
r
op

ti
m
is
ed

(l
ar
ge
)
in
st
an

ce
s
w
it
ho

ut
pr
ep

ro
ce
ss
in
g.

”S
ex
ua

lG
A
”
an

d
”S

LS
G
A
”
ar
e
th
e
se
ar
ch

ti
m
e
an

d
to
ta
ls

ea
rc
h
no

de
s
w
it
h
pr
ep

ro
ce
ss
in
g
th
at

ha
d
be

en
op

ti
m
is
ed

w
it
h
Se

xu
al

G
en

et
ic

A
lg
or
ith

m
an

d
Se

lf-
le
ar
ni
ng

Se
xu

al
G
en

et
ic

A
lg
or
ith

m
.

C
SP

P
ro
bl
em

s
Tr

ai
ni
ng

In
st
an

ce
Ta

rg
et

In
st
an

ce
Se

xu
al

G
A

SL
SG

A
R
un

ni
ng

T
im

e
N
od

es
R
un

ni
ng

T
im

e
N
od

es
R
un

ni
ng

T
im

e
N
od

es
R
un

ni
ng

T
im

e
N
od

es
B
IB

D
lin

e1
0.
75

43
32

3.
67

48
50
2

3.
67
1

48
50
2

2.
5

32
77
3

B
IB

D
lin

e6
B
IB

D
lin

e1
0.
75

43
32

6.
56

90
43
2

5.
21

11
3.
8

11
B
IB

D
lin

e8
B
IB

D
lin

e2
1.
21

10
95
2

6.
56

90
43
2

3.
81

25
26
9

3.
7

25
26
9

B
IB

D
lin

e8
O
pe

nS
ta
ck
1

0.
15
6

10
6

13
.2

83
55
67

9.
9

15
82
8

9.
9

15
82
8

O
pe

nS
ta
ck
2

La
nf
or
d(
3,
10
)

0.
16

60
22

28
09
68

1.
95

22
0.
21

69
6

La
nf
or
d(
2,
20
)

La
nf
or
d(
3,
10
)

0.
16

60
13
.2

10
58
73

2.
13

11
84
0

1.
59

87
29

La
nf
or
d(
3,
17
)

B
IB

D
lin

e4
2.
3

29
25
7

20
7

22
87
94
0

13
6

16
70
53
5

13
6

16
70
53
5

B
IB

D
lin

e1
1

ICCSW’13

134 Self-learning Sexual Genetic Algorithm

The experimental results of SLSGA show that an optimised starting population easily
and quickly leads to a better evolutionary result. The aim of automatic tuning is to use the
shortest time possible to find the optimal preprocessing settings. To prove the correctness
of the hybridization idea (combining self-learning with SGA) and the efficiency of SLSGA,
it was then applied to solve some constraint satisfaction problems with different instances:
BIBD, Langford’s Number and Open Stack problems. All the settings used were the same as
others described in this paper.

Table 2 shows the efficiency of SLSGA for solving various constraint satisfaction problems.
The table shows the number of search nodes and running time for the solver to find the
solution after optimisation of SGA and SLSGA. It clearly shows that SLSGA could arrive at
acceptable result more efficiently than SGA, improving the evolutionary speed and deriving
useful results at the same time. This shows that self-learning is a feasible algorithm for
preprocessing selection in constraint satisfaction problems, although the optimal result from
SLSGA is not significantly better than that from SGA.

5 Conclusions and Future work

To prove the concept and potential effectiveness of self-learning sexual genetic algorithms,
this paper has firstly shown the efficiency of a sexual genetic algorithm by solving the TSP
and comparing this with a standard genetic algorithm. It has demonstrated that the elitisms
percentage in the SGA is very important and that selecting suitable elitisms percentages
leads to an ideal optimisation speed. Self-learning was proposed to improve the tuning
efficiency from previous experience (in the same way as human behaviour) rather than by
logical inference. The experimental results showed that the large scale problem could be
properly solved using an optimised starting population which was trained using data from
small scale problems. Thus the self-learning sexual genetic algorithm was able to achieve
satisfactory results by combining two strategies.

The results show that self-learning genetic algorithms can be efficient methods for selecting
preprocessing of constraint-solving problems. However, a number of challenges remain for
future exploration. In this paper, four classic problems were used to verify the efficiency of a
self-learning sexual genetic algorithm on large problems. More and larger-scale problems
such as the car sequence problem will be used to explore the efficiency and limitations of
SLSGAs. With regard to self-learning, the convergence of the starting population is worth
further exploration, for example whether having many optimised individuals in the starting
population can lead to local traps. The application of the self-learning strategy to deal with
multiple instances is also of interest.

Currently the best model to solve a constraint satisfaction problem is selected by hand
by the user; this paper has shown that improved performance may be obtained by applying
self-learning sexual genetic algorithms to constraint satisfaction problems.

References

1 C. Ansótegui, M. Sellmann, and K. Tierney. A gender-based genetic algorithm for the auto-
matic configuration of algorithms. In Principles and Practice of Constraint Programming-
CP 2009: 15th International Conference, CP 2009 Lisbon, Portugal, September20-24, 2009
Proceedings, page 142. Springer, 2009.

2 David L Applegate, Robert E Bixby, Vasek Chvatal, and William J Cook. The traveling
salesman problem: a computational study. Princeton University Press, 2011.

H. Xu , K. Petrie, and I. Murray 135

3 David L. Carroll. Chemical laser modeling with genetic algorithms. Aiaa Journal, 34:338–
346, 1996.

4 Ian P. Gent, Christopher Jefferson, and Ian Miguel. Minion: A fast scalable con-
straint solver. In Proceedings of the 17th Eureopean Conference on Artificial Intelligence
(ECAI’06), pages 98–102, 2006.

5 David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1989.

6 John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis
with Applications to Biology, Control, and Artificial Intelligence. 1992.

7 Frank Hutter, Holger H. Hoos, and Thomas Stützle. Automatic algorithm configuration
based on local search. In Proceedings of the 22nd national conference on Artificial intelli-
gence - Volume 2, AAAI’07, pages 1152–1157. AAAI Press, 2007.

8 Lars Kotthoff, Ian Miguel, and Peter Nightingale. Ensemble classification for constraint
solver configuration. In Principles and Practice of Constraint Programming–CP 2010, pages
321–329. Springer, 2010.

9 Tony Lambert, Carlos Castro, Eric Monfroy, María Riff, and Frédéric Saubion. Hybrid-
ization of Genetic Algorithms and Constraint Propagation for the BACP, volume 3668 of
Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2005.

10 M.M. Raghuwanshi and O.G. Kakde. Genetic algorithm with species and sexual selection.
In Cybernetics and Intelligent Systems, 2006 IEEE Conference on, pages 1–8, 2006.

11 Simon Rogers and Mark Girolami. A First Course in Machine Learning. Chapman &
Hall/CRC, 1st edition, 2011.

12 M. Jalali Varnamkhasti and MasoumehVali. Sexual selection and evolution of male and
female choice in genetic algorithm. Scientific Research and Essays, 7(31):2788–2804, 2012.

13 Stefan Wagner and Michael Affenzeller. Sexualga: Gender-specific selection for genetic
algorithms. In Proceedings of the 9th World Multi-Conference on Systemics, Cybernetics
and Informatics (WMSCI), volume 4, pages 76–81. Citeseer, 2005.

14 Hu Xu and Karen Petrie. Self-Learning Genetic Algorithm For Constrains Satisfaction
Problems. In Andrew V. Jones, editor, 2012 Imperial College Computing Student Work-
shop, volume 28 of OpenAccess Series in Informatics (OASIcs), pages 156–162, Dagstuhl,
Germany, 2012. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

ICCSW’13

Achieving Superscalar Performance without
Superscalar Overheads – A Dataflow Compiler IR
for Custom Computing
Ali Mustafa Zaidi and David J. Greaves

University of Cambridge Computer Laboratory
Cambridge CB3 0FD, UK
{ali-mustafa.zaidi, david.greaves}@cl.cam.ac.uk

Abstract
The difficulty of effectively parallelizing code for multicore processors, combined with the end
of threshold voltage scaling has resulted in the problem of ‘Dark Silicon’, severely limiting per-
formance scaling despite Moore’s Law. To address dark silicon, not only must we drastically
improve the energy efficiency of computation, but due to Amdahl’s Law, we must do so without
compromising sequential performance. Designers increasingly utilize custom hardware to dra-
matically improve both efficiency and performance in increasingly heterogeneous architectures.
Unfortunately, while it efficiently accelerates numeric, data-parallel applications, custom hard-
ware often exhibits poor performance on sequential code, so complex, power-hungry superscalar
processors must still be utilized. This paper addresses the problem of improving sequential
performance in custom hardware by (a) switching from a statically scheduled to a dynamically
scheduled (dataflow) execution model, and (b) developing a new compiler IR for high-level syn-
thesis that enables aggressive exposition of ILP even in the presence of complex control flow.
This new IR is directly implemented as a static dataflow graph in hardware by our high-level
synthesis tool-chain, and shows an average speedup of 1.13× over equivalent hardware generated
using LegUp, an existing HLS tool. In addition, our new IR allows us to further trade area &
energy for performance, increasing the average speedup to 1.55×, through loop unrolling, with
a peak speedup of 4.05×. Our custom hardware is able to approach the sequential cycle-counts
of an Intel Nehalem Core i7 superscalar processor, while consuming on average only 0.25× the
energy of an in-order Altera Nios IIf processor.

1998 ACM Subject Classification B.5.1 Design, B.6.1 Design Styles, B.6.3 Design Aids, C.1.3
Other Architecture Styles, D.3.2 Language Classifications, D.3.4 Processors

Keywords and phrases High-level Synthesis, Instruction Level Parallelism, Custom Computing,
Compilers, Dark Silicon

Digital Object Identifier 10.4230/OASIcs.ICCSW.2013.136

1 Introduction

Despite ongoing exponential growth of on-chip resources with Moore’s Law, the performance
scalability of future designs will be increasingly restricted. This is because the total usable
on-chip resources will be growing at a much slower rate, due to the recently identified problem
of Dark Silicon [6, 7]. Esmaelzadeh et al. identify two main sources of Dark Silicon:

1. Amdahl’s Law: With the exception of certain numeric, data-parallel applications, most
applications in the general-purpose domain lack sufficient explicit parallelism to make
full use of the ever increasing number of cores on chip [1]. Due to Amdahl’s Law, the
overall speed-up for such applications is strictly constrained by sequential performance.

© Ali Mustafa Zaidi and David J. Greaves;
licensed under Creative Commons License CC-BY

2013 Imperial College Computing Student Workshop (ICCSW’13).
Editors: Andew V. Jones, Nicholas Ng; pp. 136–144

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2013.136
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

A. M. Zaidi and D. J. Greaves 137

2. Utilization Wall: Even when an embarrassingly parallel application is not limited by
Amdahl’s Law, overall performance scaling will still be limited by the Utilization Wall [7,
17]: with each process generation, a decreasing fraction of on-chip transistor resources
may be switched at full speed at one time, in order to meet the power budget.

Recent work has exploited custom (and reconfigurable) hardware to improve the per-core
energy efficiency for the general-purpose application domain [17, 3]. Unfortunately, sequential
code often exhibits much lower performance in custom hardware than a typical out-of-order
superscalar processor [2, 3, 17]. For the general-purpose domain, sequential code involves
irregular memory accesses and complex control-flow (e.g. nested loops, data-dependent
branching). Currently the only means of achieving high performance on such code is through
the use of complex, inefficient out-of-order superscalar processors. Such processors exhibit
an exponential increase in power dissipation as performance increases [8].

This puts us between a rock and a hard place: without utilizing complex processors,
performance scaling is limited by Amdahl’s Law and poor sequential performance, but with
such processors, the Utilization Wall limits speed-up by limiting the total active resources at
any time. Esmaelzadeh et al. [6] focused on desktop, server and workstation domains, that
have a reasonable power budget of 20-200W. This problem is exacerbated even further when
we consider the increasingly important and rapidly growing portable computing domain,
where power budgets are further limited to only 0.5-5W.

Our goal is to enable much more pervasive utilization of custom or reconfigurable hardware
for general-purpose computation in order to mitigate the effects of dark silicon. For this, we
must (a) overcome the performance limitations on sequential code in custom hardware, (b)
without compromising its inherent energy-efficiency, while (c) requiring minimal programmer
effort (i.e. minimal or no alterations to the source code or programming language).

To this end, we develop a new compiler intermediate representation (IR), called the Value
State Flow Graph (VSFG), that exposes instruction-level parallelism (ILP) from sequential
code even in the presence of complex control-flow. The VSFG is also designed to be directly
implementable as custom hardware, replacing the traditionally used Control-Data Flow
Graph (CDFG) [16]. To test our new IR, we have implemented a new high-level synthesis
(HLS) tool-chain, that compiles from LLVM [13] to the VSFG, then implements it as a
Verilog hardware description. Unlike the statically-scheduled execution model of traditional
custom hardware, we employ the dynamically-scheduled ‘Spatial Computation’ model [3], in
order to match the dynamic scheduling advantages of out-of-order processors, allowing for
better tolerance of variable latencies and statically unpredictable behaviour.

2 Enhancing sequential performance in Custom Hardware

There are two main reasons that out-of-order superscalar processors are able to achieve
higher performance on control-flow intensive sequential code [15]:

Aggressive control-flow speculation to exploit ILP from across multiple basic-blocks, and
Dynamic execution scheduling of instructions, approximating the dynamic dataflow
execution model at runtime.

The Superscalar performance advantage: A Case Study. Listing 1 presents a code sample,
and Figure 1a presents its equivalent CDFG (blue blocks represent ‘if ’ statement operations,
while yellow blocks form the remainder of the for loop). Branch prediction in a superscalar
processor will be able to overcome the control-flow dependences between the three basic blocks

ICCSW’13

138 Accelerating Sequential Code with a Dataflow Compiler IR for Custom Computing

Listing 1 Example C Code
for (i = 0; i < 100; i++)

if (A[i] > 0) foo ();
bar ();

(a) The CDFG for List-
ing 1.

(b) The VSFG for Listing 1.

Figure 1 The equivalent CDFG and VSFG for the code given in Listing 1.

composing the for-loop. Furthermore, branch prediction enables dynamic unrollling of the for-
loop, and exploitation ILP from across multiple iterations. Conventional processors make use
of a centralized in-order commit buffer (i.e. re-order buffer) to selectively commit executed
instructions in the correct CDFG order. In case of misprediction, executed instructions from
mispredicted paths can simply be discarded, preserving correct program state.

On the other hand, custom hardware lacks the mechanisms to perform such aggressive
control-flow speculation: unlike a conventional processor, there is no centralized commit
buffer that can be used for misspeculation recovery. In the case of some forward (i.e. if-else)
branches, it is sometimes possible to employ if-conversion to perform speculation by executing
both sides of the branch and then discarding the result from the false path. However, this
technique is limited to the simple cases where only data-flow is involved – the if branch
in Listing 1 may invoke a separate function with its own control and data flow, and hence
cannot simply be if-converted for speculation in hardware.

As it is not possible to perform speculation on backwards branches (i.e. loops) in custom
hardware, High-level synthesis tools attempt to overcome this limitation by statically unrolling
(as shown in Figure 2), flattening and pipelining loops in order to decrease the number of
backwards branches that would be dynamically executed, but this can significantly increase
the complexity of the centralized finite-state machines, resulting in very long combinational
paths that can overwhelm any gains in ILP [11, 9].

In addition to aggressive control-flow speculation, superscalar processors employ dynamic
execution scheduling, which helps in dealing with unpredictable behavior at runtime. In-
structions are allowed to execute as soon as their input operands, as well as the appropriate
execution resources, become available. Processors can even have multiple instances of the
same instruction (say from a tightly wound loop) in flight, with their results written to
different locations via register renaming. Using renaming, contemporary processors are able
to approximate the dynamic-dataflow model of execution, allowing them to easily adapt to
runtime variability to improve performance. For instance, even in the case that the load ("=

A. M. Zaidi and D. J. Greaves 139

Figure 2 The CDFG from Figure 1a with the loop unrolled 4 times.

A[i]") instruction encounters a cache miss, all the remaining operations that are in flight
from the multiple blocks and loop iterations may still execute in dataflow order - only those
operations that are dependent on the value of the load will be delayed.

On the other hand, custom hardware employs static execution scheduling, where the
execution schedule for operations is determined at compile-time, and implemented at run-time
by a centralized state machine. This means that such hardware can only be conservatively
scheduled for the multiple possible control-flow paths through the code, leaving it unable to
adapt to runtime variability that may occur due to data-dependent control-flow, variable-
latency operations, or unpredictable events such as cache misses.

The combination of these factors results in custom hardware exhibiting poor performance
when implementing general-purpose sequential code via high-level synthesis. Venkatesh et
al [17] generate custom hardware conservation cores from hot regions of sequential general-
purpose code to improve energy efficiency. However, their cores are at best only able to
match the performance of an in-order MIPS 24KE processor.

Matching Superscalar performance with the VSFG. To overcome the sequential perform-
ance issues of custom hardware, we propose two key changes during high-level synthesis:

Instead of using a static scheduling based execution model for custom hardware, a
dynamically scheduled execution model like Spatial Computation should be used [3], that
implements code as a static dataflow graph in hardware.
A new compiler IR is needed to replace the CDFG based IRs that are traditionally used
for hardware synthesis. This new IR should be based on the Value State Dependence
Graph (VSDG) [14] as it has no explicit representations of control-flow, instead only
representing the necessary value and state dependences in the program.

A new compiler IR for implementing spatial computation, called the Value State Flow
Graph (VSFG), has been developed based on the VSDG but modified for direct implementa-
tion in hardware as a static dataflow machine. The VSFG for Listing 1 is shown in Figure 1b.
Unlike the CDFG, there is no subdivision of operations into basic blocks, and consequently,
no notion of flow of control from one block to another. Instead, only dataflow dependences
are represented, along with a sequentializing state-edge (dashed line in Figure 1b) that
ensures that all side-effecting operations occur in the correct program order.

Instead of flow of control, the execution of operations is controlled through the use of
predicates (purple dotted line in Figure 1b) – boolean expressions generated based on the
control-flow of the CDFG. The VSFG is also a hierarchical graph – all loops and function calls
are represented as nested subgraphs. From the perspective of any level in the graph hierarchy,

ICCSW’13

140 Accelerating Sequential Code with a Dataflow Compiler IR for Custom Computing

Figure 3 The VSFG from Figure 1b with the loop unrolled 4 times.

nested subgraphs appear as ordinary dataflow operations with their defined dataflow inputs
and outputs (including predicate and state). The only difference being that nested subgraphs
may exhibit a variable execution latency. As with other dataflow operations, multiple such
subgraphs may execute concurrently, so long as their dataflow dependences are satisfied.

The VSFG is a directed acyclic graph, so loops are implemented without introducing
explicit cycles in the graph by representing them instead as tail-recursive functions. As can be
seen from Figure 1b, the "Next iteration of the for-loop" is represented as a nested subgraph
in the same way as both the foo() and bar() functions. This presents a key advantage
when we try to extract ILP from across multiple iterations of a loop. Any of the nested
subgraphs in a VSFG can be flattened into the body of the parent graph. In the case of loops,
flattening the subgraph representing the tail-recursive loop call is essentially equivalent to
unrolling the loop. Figure 3 shows the for loop unrolled 4 times. Furthermore, as each loop
is implemented within its own subgraph, this type of unrolling may be implemented within
different subgraphs independently of others. Therefore, it is possible in the VSFG to exploit
ILP by unrolling each loop within a loop nest independently of the other loops. (Note that
in the actual hardware implementation, cycles must be reintroduced once the appropriate
degree of unrolling has been done for each loop).

Thanks to the explicit control predicates, is also possible to perform aggressive control
flow speculation by selectively controlling the execution of subgraphs. For instance, for the
foo() function subgraph, we may choose whether this function executes speculatively or not:
the predicate input to foo() may be used to only allow its execution when the predicate
is true, thereby providing no speculation. Alternatively, the function may start executing
irrespective of the predicate value. In this case, the predicate value will be passed into
the subgraph, where side-effect free operations may execute speculatively even before the
predicate value becomes available (all side-effecting operations will always be predicated).

Another advantage of having control flow converted in to boolean predicate expressions
is the ability to perform control dependence analysis to identify regions of code that are
control-flow equivalent and may therefore execute in parallel (provided all state and dataflow
dependences are satisfied). Consider the bar() function in the CDFG (Figure 1a). Despite the
aggressive branch prediction, a superscalar processor will not be able to start executing the
bar() function until it has exited the loop. Similarly, when the if branch is predicted-taken,
the superscalar processor must switch from executing multiple dynamically unrolled copies
of the for-loop and instead focus on executing the control-flow within foo(). This is because
a conventional processor can only execute along a single flow of control [12].

The VSFG on the other hand can use control dependence analysis to identify the control-
flow equivalence between the contents of the for-loop and the bar() function, and so long
as the dataflow and state-ordering dependences are resolved, the bar() function may start

A. M. Zaidi and D. J. Greaves 141

(a) Performance in Cycle Counts vs LegUp.

(b) Energy Consumption comparison vs LegUp and an Altera Nios IIf
in-order Processor.

Figure 4 Performance and Energy Comparison of VSFG, normalized to LegUp results.

executing in parallel with the for-loop. Similarly, the contents of the foo() subgraph can also
execute in parallel with its parent graph. If we combine this concurrency with loop unrolling,
it becomes possible in Figure 3 to execute multiple copies of the loop and foo(), in parallel
with the execution of bar()! This ability to execute multiple regions of code concurrently is
equivalent to enabling execution along multiple flows of control, and can potentially expose
greater ILP than even a superscalar processor.

3 Evaluation Methodology & Results

To evaluate our IR and execution model, we implemented a HLS toolchain to compile LLVM
IR to custom hardware. We present results for 3 versions of our VSFG hardware: VSFG_0
has no loop unrolling/flattening, VSFG_1 has all loops unrolled once, and VSFG_3 has all
loops unrolled thrice. We compare our results against LegUp [4], an established HLS tool
that utilizes the CDFG IR and static scheduling (Figure 4). The input LLVM IR to both
toolchains was optimized with ‘-O2’ flags, and with no link-time inlining or optimization.
All generated circuits were targeted for implementation on an Altera Stratix IV GX FPGA.

We also compare performance against two conventional processors: an Intel Nehalem
Core i7 Processor – simulated using Sniper from Intel [5] – as well as an Altera Nios IIf
processor, also implemented on the Altera Stratix IV FPGA (Figure 5). Both processors are
configured with perfect L1 caches and a hit latency of 1 cycle. Six of the benchmarks used
are part of the CHStone HLS benchmark suite [10], while two other are home grown: bimpa
is a neural network simulator, and epic is a matrix transpose function – both of the latter
wer selected specifically because they have complex and data-dependent control flow.

Our generated hardware achieves a geometric mean speedup of 1.55× (max 4.05×) over
equivalent hardware generated by LegUp (Figure 4a), and is able to better approach (in some
cases even exceed) the performance of the Intel Core i7 (Figure 5). While this performance

ICCSW’13

142 Accelerating Sequential Code with a Dataflow Compiler IR for Custom Computing

(a) epic (×1K cycles) (b) adpcm (×1K cycles) (c) dfsin (×1K cycles) (d) bimpa (×1M cycles)

(e) dfadd (×1K cycles) (f) dfdiv (×1K cycles) (g) dfmul (×1K cycles) (h) mips (×1K cycles)

Figure 5 Performance Comparison (Cycle Count) vs an out-of-order Intel Nehalem Core i7
processor, and an Alteral Nios IIf in-order processor.

incurs an average 3× higher energy cost than LegUp, the VSFG-based hardware’s energy
dissipation is still only 0.25× that of a highly optimized in-order Nios IIf processor (Figure 4b).

4 Conclusion

We combine static-dataflow execution model with a new compiler IR in order to match the
sequential performance of superscalar processors in custom hardware. The hierarchical and
control-flow agnostic nature of the VSFG not only enables the exploitation of ILP from
across multiple levels of a loop nest, but also enables control-dependence analysis and allows
execution along multiple flows of control, potentially exploiting more ILP than is theoretically
possible for even superscalar processors.

Our results show a performance improvement of as much as 35% over LegUp, at a 3×
higher average energy cost. This performance is close to what is achieved by an Intel Nehalem
Core i7, while being only 0.25× the energy cost of an in-order Altera Nios IIf processor.
We believe that our new IR, coupled with the Spatial Computation execution model is a
promising step towards addressing the problem of dark silicon by facilitating the development
of high-performance custom hardware.

References
1 Geoffrey Blake, Ronald G. Dreslinski, Trevor Mudge, and Krisztián Flautner. Evolution

of thread-level parallelism in desktop applications. In Proceedings of the 37th annual inter-
national symposium on Computer architecture, ISCA ’10, pages 302–313, New York, NY,
USA, 2010. ACM.

2 M. Budiu, P.V. Artigas, and S.C. Goldstein. Dataflow: A complement to superscalar. In
Performance Analysis of Systems and Software, 2005. ISPASS 2005. IEEE International
Symposium on, pages 177 –186, march 2005.

3 Mihai Budiu, Girish Venkataramani, Tiberiu Chelcea, and Seth Copen Goldstein. Spatial
computation. In Proceedings of the 11th international conference on Architectural support
for programming languages and operating systems, ASPLOS-XI, pages 14–26, New York,
NY, USA, 2004. ACM.

4 Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Jason H.
Anderson, Stephen Brown, and Tomasz Czajkowski. Legup: high-level synthesis for fpga-

A. M. Zaidi and D. J. Greaves 143

based processor/accelerator systems. In Proceedings of the 19th ACM/SIGDA international
symposium on Field programmable gate arrays, FPGA ’11, pages 33–36, New York, NY,
USA, 2011. ACM.

5 Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. Sniper: Exploring the level of ab-
straction for scalable and accurate parallel multi-core simulations. In International Confer-
ence for High Performance Computing, Networking, Storage and Analysis (SC), November
2011.

6 Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and Doug
Burger. Dark silicon and the end of multicore scaling. In Proceedings of the 38th annual
international symposium on Computer architecture, ISCA ’11, pages 365–376, New York,
NY, USA, 2011. ACM.

7 N. Goulding-Hotta, J. Sampson, G. Venkatesh, S. Garcia, J. Auricchio, P. Huang, M. Arora,
S. Nath, V. Bhatt, J. Babb, S. Swanson, and M. Taylor. The greendroid mobile application
processor: An architecture for silicon’s dark future. Micro, IEEE, pages 86–95, March
2011.

8 Ed Grochowski and Murali Annavaram. Energy per instruction trends in intel® micropro-
cessors. 2006.

9 Sumit Gupta, Nikil Dutt, Rajesh Gupta, and Alexandru Nicolau. Loop shifting and com-
paction for the high-level synthesis of designs with complex control flow. In Proceedings
of the conference on Design, automation and test in Europe - Volume 1, DATE ’04, pages
10114–, Washington, DC, USA, 2004. IEEE Computer Society.

10 Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, Hiroaki Takada, and Katsuya Ishii.
Chstone: A benchmark program suite for practical c-based high-level synthesis. In
ISCAS’08, pages 1192–1195, 2008.

11 Srikanth Kurra, Neeraj Kumar Singh, and Preeti Ranjan Panda. The impact of loop
unrolling on controller delay in high level synthesis. In Proceedings of the conference on
Design, automation and test in Europe, DATE ’07, pages 391–396, San Jose, CA, USA,
2007. EDA Consortium.

12 Monica S. Lam and Robert P. Wilson. Limits of control flow on parallelism. In Proceedings
of the 19th annual international symposium on Computer architecture, ISCA ’92, pages
46–57, New York, NY, USA, 1992. ACM.

13 Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the international symposium on Code gener-
ation and optimization: feedback-directed and runtime optimization, CGO ’04, pages 75–,
Washington, DC, USA, 2004. IEEE Computer Society.

14 Alan C. Lawrence. Optimizing compilation with the Value State Dependence Graph. Tech-
nical Report UCAM-CL-TR-705, University of Cambridge, Computer Laboratory, Decem-
ber 2007.

15 Daniel S. McFarlin, Charles Tucker, and Craig Zilles. Discerning the dominant out-of-order
performance advantage: is it speculation or dynamism? In Proceedings of the eighteenth
international conference on Architectural support for programming languages and operating
systems, ASPLOS ’13, pages 241–252, New York, NY, USA, 2013. ACM.

16 R. Namballa, N. Ranganathan, and A. Ejnioui. Control and data flow graph extraction
for high-level synthesis. In VLSI, 2004. Proceedings. IEEE Computer society Annual Sym-
posium on, pages 187–192, 2004.

17 G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-Martinez, S. Swan-
son, and M.B. Taylor. Conservation cores: reducing the energy of mature computations.
ACM SIGARCH Computer Architecture News, 38(1):205–218, 2010.

ICCSW’13

A Graph based approach for Co-scheduling jobs
on Multi-core computers
Huanzhou Zhu and Ligang He

University of Warwick
Coventry, UK
{zhz44, liganghe}@dcs.warwick.ac.uk

Abstract
In a multicore processor system, running multiple applications on different cores in the same
chip could cause resource contention, which leads to performance degradation. Recent studies
have shown that job co-scheduling can effectively reduce the contention. However, most existing
co-schedulers do not aim to find the optimal co-scheduling solution. It is very useful to know
the optimal co-scheduling performance so that the system and scheduler designers can know
how much room there is for further performance improvement. Moreover, most co-schedulers
only consider serial jobs, and do not take parallel jobs into account. This paper aims to tackle
the above issues. In this paper, we first present a new approach to modelling the problem of
co-scheduling both parallel and serial jobs. Further, a method is developed to find the optimal co-
scheduling solutions. The simulation results show that compare to the method that only considers
serial jobs, our developed method to co-schedule parallel jobs can improve the performance by
31% on average.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Co-scheduling algorithm, Multicore processor, Cache interference, Par-
allel Job

Digital Object Identifier 10.4230/OASIcs.ICCSW.2013.144

1 Introduction

Multicore processors have now become a mainstream product in CPU industry. In a
multicore processor, multiple cores reside on the same chip and share the resources in the
chip. However, running multiple applications on different cores in the same chip could cause
resource contention, which leads to performance degradation. Many research studies have
shown that it is possible to isolate some resources, such as disk bandwidth [15], network
bandwidth [8] for the co-running jobs. However, it is very difficult to isolate the on-chip last
level cache (LLC). This problem is known as the shared cache contention and has been studied
in literature [9,11,18]. The existing approaches to addressing on-chip shared cache contention
fall into the following three categories: 1) Architecture-level solutions that focus on improving
the hardware to provide isolation among threads [13] [14], 2) System-level solutions that
focus on partitioning the cache for each application [16] [12], and 3) Software-level solutions
that tend to develop the contention-aware scheduler to reduce the contention [5] [7]. In the
above three categories, the architecture-level solution is still under active development by
the processor vendors. The cache partitioning solution requires many changes in the existing
system-level software (such as operating system), and therefore incurs high implementation
cost. The third approach, the contention-aware schedulers, is a fairly lightweight approach,
and therefore attracts many researchers’ attention, which is also the focus of this work.

© Huanzhou Zhu and Ligang He;
licensed under Creative Commons License CC-BY

2013 Imperial College Computing Student Workshop (ICCSW’13).
Editors: Andrew V. Jone, Nicholas Ng; pp. 144–151

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2013.144
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

H. Zhu and L. He 145

A number of contention-aware co-schedulers have been developed in the literature [1,4,7].
These studies demonstrated that contention-aware schedulers can deliver better performance
than the conventional schedulers. However, they do not aim to find the optimal co-scheduling
performance. It is very useful to know the optimal co-scheduling performance. With the
optimal performance, the system and co-scheduler designers can know how much room there
is for further performance improvement. In addition, knowing the distance between current
performance and optimal performance can help the scheduler designers to make the tradeoff
between scheduling efficiency and scheduling quality.

The co-schedulers discussed in literature only consider serial jobs (each of which runs on
a single core), and do not take parallel jobs into account. However, both parallel jobs and
serial jobs often exist in a multicore computer system. For example, both parallel and serial
jobs are submitted to a cluster consisting of multi-core computers.

The work in [9] modelled the optimal co-scheduling problem for serial jobs as an integer
programming problem. However, we will show in this paper (Section 2) that this modelling
approach cannot be extended to parallel jobs. This motivates us to develop a new method
that is flexible to model the problem of co-scheduling both serial and parallel jobs.

In this paper, we first present a new approach to modelling the problem of co-scheduling
both parallel and serial jobs. Further, a method is developed to find the optimal co-scheduling
solutions.

We have conducted the simulation experiments to evaluate the co-scheduling algorithms
we developed. The results show that taking parallelism into account can significantly improve
performance. More specifically, if the method developed for serial jobs is used to co-schedule
a mix of parallel and serial jobs, the performance achieved by the new method that takes
parallel jobs into account is 31% better on average than only considering serial jobs.

The rest of the paper is organized as follows. Section 2 formalizes the problem of co-
scheduling a mix of parallel and serial jobs. Section 3 presents a method to find the optimal
co-scheduling solutions. The experimental results are presented in Section 4. Finally, the
paper is concluded in Section 6.

2 Formalizing the problem of co-scheduling parallel jobs

The work in [9] i) formalized the problem of co-scheduling serial jobs, and ii) proposed an
approach to modelling and finding the optimal co-scheduling solution. In this section, we
first briefly summarize their formalization method in Subsection 2.1, then in Subsection 2.2
extend the method to incorporate parallel jobs, and present our own approach to modelling
the problem of co-scheduling a mix of parallel and serial jobs, and developing the methods
to solve the model for optimal co-scheduling solutions.

2.1 Formalizing the problem of co-scheduling serial jobs [9]

The work in [9] shows that on a multicore processor, the co-running jobs are generally slower
than when they run alone due to resource contention. This performance degradation is called
co-run degradation. The co-run degradation of a job is defined as the difference between the
execution time of the job when it co-runs with a set of other jobs and its execution time
when it runs alone. Formally, the performance degradation of a job i is expressed in Eq.
1, where fti is the execution time when job i runs alone, S is a set of jobs and fti,S is the

ICCSW’13

146 A Graph based approach for Co-scheduling jobs on Multi-core computers

execution time when job i co-runs with the set of jobs in S.

Di = fti,S − fti

fti
(1)

In the co-scheduling problem, n jobs need to be allocated to a cluster of u-core mul-
tiprocessors so that each core is allocated with one job. m denotes the number of u-core
multiprocessors needed, which can be calculated as dn

ue. The objective of the co-scheduling
problem is to find the optimal way to partition n jobs into m u-cardinality sets, so that the
sum of Di in Eq. 1 over all n jobs is minimized, which is shown in Eq. 2. Note that if n is
not the multiple of u, i.e., n%u 6= 0, we can simply generate u− n%u imaginary jobs whose
performance degradation with any job is 0.

min

|n|∑
i=1

Di (2)

2.2 Formalizing the problem of co-scheduling parallel jobs
As defined in Eq. 2, in order to find the optimal co-scheduling solution, the objective is to
minimize the sum of the performance degradation experienced by each job. This objective
function is designed for co-scheduling serial jobs. A parallel job consists of multiple processes
(or threads). Applying Eq.2 directly to the case involving parallel jobs, the total degradation
of a mix of parallel and serial jobs is the sum of the degradation experienced by each process
in all parallel jobs plus the sum of the degradation by each serial job. However, the finishing
time of a parallel job is determined by its slowest process. A larger degradation for a process
indicates a longer execution time for that process. Therefore, no matter how small the
degradation is for other processes, they have to wait until the process with the largest
degradation finishes, which essentially means that all processes suffer the same degradation
as the largest degradation. Thus, the total degradation for a parallel job is the largest
degradation among all degradations experienced by its processes multiplied by the number of
the processes in the parallel job, which can be formally defined as Mi×max(Dij), where Mi

is the number of processes in parallel job i and Dij is the degradation of process j in parallel
job i. Based on this analysis, we re-formulate the objective function of finding the optimal
co-scheduling solution for a set of jobs containing parallel jobs. The objective function is
expressed in Eq. 3, where J is a set of all jobs, PJ is the set of parallel jobs in J, |J | and
|PJ | represent the number of the jobs in the set J and PJ , respectively.

min(
|P J|∑
i=1

(Mi ×max{Dij}) +
|J|−|P J|∑

i=1
Di) (3)

In order to solve this problem, we propose a new method to model the problem of
co-scheduling serial jobs. The new modelling approach is flexible and can be extended to
incorporate parallel jobs.

3 Modelling the co-scheduling problem

3.1 Graph Model of the problem
As formalized in Section 2, the objective of solving the co-scheduling problem is to find a way
to partition n jobs, j1, j2, ..., jn, into m u-cardinality sets, so that the total performance

H. Zhu and L. He 147

degradation of all jobs is minimized. The number of all possible u-cardinality sets is
(

n
u

)
. In

this paper, a graph called the co-scheduling graph is constructed, to model the co-scheduling
problem. There are

(
n
u

)
nodes in the graph and a node corresponds to a u-cardinality set.

The ID of a node is coded a u-digit number, using the IDs of the jobs in the corresponding
u-cardinality set. In the encoding, the job IDs are always placed in an ascending order
from the most to the least significant digit. The weight of a node is defined as the total
performance degradation of the u jobs in the node. The nodes are organized into different
levels in the graph. The i-th level contains all nodes whose first digit of the ID is i. In each
level, the nodes are placed in the ascending order of their ID’s. A start node and an end
node are added as the first level (level 0) and the last level of the graph, respectively. The
weights of the start and the end nodes are both 0. Figure 1 illustrates when co-scheduling 6
jobs to 2-core processors, how to code the nodes in the graph, and how to organize the nodes
into different levels. Note that for the clarity of the figure we did not draw all edges.

1,2

1,3

1,4

1,5

1,6

2,3

2,4

2,5

2,6

3,4

3,5

3,6

4,5

4,6

5,6
Start

End

Figure 1 Degradation graph for 6 jobs on dual core system, the number in each node represents
a Job ID, and edges with same color forms a group of possible schedule.

3.2 Optimal Parallel aware Shortest Path algorithm
A path from the start to the end node in the graph forms a co-scheduling solution if the
path does not contain duplicated jobs, which is called a valid path. The distance of a path is
defined as the sum of the weights of all nodes on the path. Finding the optimal co-scheduling
solution is equivalent to finding the shortest valid path from the start node to the end node.
In this paper, a algorithm, called OP-SCG (Optimal Parallel aware Shortest path algorithm
for the Co-scheduling Graph) is developed to find the shortest valid path in the constructed
graph. OP-SCG is adapted from Dijkstra’s shortest path algorithm [3]. The main differences
between OP-SCG and Dijkstra’s algorithm lie in three aspects: 1) there are no edges between
nodes in the graph in OP-SCG, and the edges are established as the algorithm progresses,
2) the invalid paths, which contain the duplicated jobs, have to be disregarded, and 3) the
ability to compute degradation of parallel jobs.

In this algorithm, every node v of the graph contains some attributes, in which the
v.distance attribute records the length of the shortest path from the start node to node v,
the v.path attribute is a list and records the sequence of nodes in the shortest path up to v.
The purpose of this design is to avoid spending time checking whether adding a new node
will invalidate the resulting path.

In Algorithm 1, object Q is a list that holds jobs in ascending order of all paths that have
been visited by the algorithm. For example, if the algorithm visited the paths [(1,3),(2,4)] and

ICCSW’13

148 A Graph based approach for Co-scheduling jobs on Multi-core computers

Algorithm 1 The OP-SCG Algorithm
1 for every node v in the graph do
2 v.distance = 0;
3 v.previous = NULL;
4 Q = start.ID;
5 v = start;
6 while v != end
7 for every level l from v.level + 1 to end.level do
8 if l is not a digit of the ID of the nodes in v.path
9 valid_l = l;

10 for every node k in the valid_l level do
11 if the jobs in node k are not in v.path:
12 if k contains parallel job:
13 label = compute_label(k, v + v.previous);
14 else:
15 label = v.distance + k.weight;
16 if k + v.path is not in Q or label < Q[k + v.path]:
17 Q[k + v.path] = label;
18 k.path = v.path + k;
19 remove node v from Q;
20 obtain such a node v from Q that has the smallest v.distance;

[(1,3),(2,5)], the data stored in Q is [(1234),(1235)]. For every node it visits, the algorithm
searches for a valid level (Line 7-9), which is a level that contains at least one node that can
form a valid path with the nodes in the current partial path. After a valid level is found,
Algorithm 1 continues to search this level for the valid nodes that can form a valid path (Line
10-11). If a valid node, k, is found, the algorithm further checks if there are any parallel jobs
in this node, and calculates the distance with function compute_label if the node k contains
parallel jobs. Otherwise, the distance is computed by adding the previous distance with
weight of k (Line 12). If node k has not been visited yet or the new path will form a shorter
path (Line 16), the algorithm either adds node k to Q or updates the distance stored in Q[k]
(Line 16-18).

Also, by removing Line 12-14 from Algorithm 1, we obtain another algorithm, called
B-SCG (Basic Shortest path algorithm for the Co-scheduling Graph) which is used to find
the shortest path in the graph when there are only serial jobs.

4 Evaluation

In this section, we present the scheduling results produced by our optimal algorithm through
a set of simulation tests. The configuration of simulation environment is based on Intel Core
2 series processor with 2 cores, 4 cores, 6 cores respectively, all running 2.66GHz, and having
one shared 6MB, 4096 sets*24 way set associative last level cache.

4.1 Co-scheduling Result
In order to examine the capability of OP-SCG algorithm, we compare the results produced
by B-SCG algorithm with it. The simulation is conducted by scheduling a set of artificially
generated jobs. The degradation value of every node in the co-scheduling graph is computed
by prediction model developed by Dhruba et.al [2]. As required by Dhruba’s method, a stack
distance profile with randomly generated cache hits and misses is assigned to each job, since
we are interested in difference between results produced by two algorithms, the randomness
has negligible influence on this experiment since both algorithms will operate on same job
set.

H. Zhu and L. He 149

2 ∗ 4 4 ∗ 4 6 ∗ 4
0

2 · 105

4 · 105

6 · 105

core∗nodes

C
ac
he

m
iss

es

(a)

4 ∗ 2 4 ∗ 4 4 ∗ 8
0

10,000

20,000

core∗nodes

Av
er
ag
e
C
ac
he

m
iss

es

Parallel Aware
Non-parallel Aware

(b)

Figure 2 Changing core number and node number.

The first simulation tested the correctness of mathematical model and OP-SCG algorithm.
This simulation was conducted by scheduling 8, 16, 24 jobs to 4 nodes cluster with 2, 4, and
6 cores respectively, half of which were parallel processes. The result is shown in Figure 2a.
The metric used in this experiment is the total cache misses of each job. It is worthwhile to
note that lower cache misses suggests lower performance degradation.

As shown in the Figure 2a, the parallel aware optimal scheduler produces lower cache
misses in all cases due to consideration of parallelism. The average distance between the
two algorithms is 31%. This result not only demonstrates the correctness of the algorithm
presented in this paper but also proves that considering parallelism can significantly improve
performance. In addition, the result also shows that the cache misses increase as the core
number increases. Because the cache size does not increase as core number increases, the
degradation increases since there are more jobs competing for the limited number of cache
lines.

Since the basic principle of co-scheduling algorithm is to balance the on-chip shared
resource usage, the second experiment was conducted to examine this ability of algorithm
presented in this paper. In this experiment, 8, 16, 32 jobs with 50% parallel processes were
scheduled to clusters with 2, 4, and 8 nodes respectively, each node has a quad-core processor.
The results are shown in Figure 2b.

The metric used in this experiment is average cache misses of all jobs, the parallel aware
optimal scheduler produced the lowest average cache misses among three cases again. The
average cache misses between three cases are very similar, the difference between the highest
and lowest result being 3%. This result suggests that the algorithm balanced the resource
usage among every node within the cluster well, which also means that the fairness of this
algorithm is good.

5 Discussion

The primary goal of this paper is to provide the theoretical insight for finding optimal
co-scheduling with parallel job considered. Apart from that, practical co-scheduler designs
can benefit from this work in two ways: Firstly, the optimal model presented in this paper
provided a sufficient way of evaluating the co-scheduling results when parallel jobs are

ICCSW’13

150 A Graph based approach for Co-scheduling jobs on Multi-core computers

considered. Knowing the optimal solution is important for practical co-schedule system
design, because the tradeoff between efficiency and quality can be made based on knowledge
about the distance between current results and the optimal solution. Secondly, the algorithm
proposed in this work can be directly used in a proactive co-scheduling system. Predicting
the co-run performance has been widely studied by many researchers (e.g., [2] [6] [10] [17]).
Those studies make it possible to predict co-run performance accurate and efficiently. With
accurate prediction, the proactive schedulers may use the algorithm proposed in this work to
determine the optimal or near-optimal schedules.

In this work, we assumed that each core will execute only single job, however, the
effectiveness of our approach is not strictly limited by this assumption. If there are multiple
jobs running on same core, they are more likely to be executed in a time-sharing basis,
therefore, our algorithm will still be an essential component for finding the optimal schedule
in each time slice. The scheduler can re-schedule jobs at time slice boundaries.

6 Conclusion

This paper explored the problem of parallel aware optimal job co-scheduling on multiprocessor
system. The paper built a mathematical model that can be used to find the optimal
scheduling with consideration of parallel jobs. Based on this model the paper described an
optimal parallel aware co-scheduling algorithm (OP-SCG) for multicore processor systems
by formulating the problem as a shortest path problem. The experiment results show
that by considering parallelism, the parallel aware optimal algorithm decreases the average
performance degradation by 31%.

The mathematical model and algorithm in this paper offer the theoretical and practical
support for the evaluation of co-scheduling systems.

References
1 Sergey Blagodurov, Sergey Zhuravlev, and Alexandra Fedorova. Contention-aware schedul-

ing on multicore systems. ACM Transactions on Computer Systems (TOCS), 28(4):8, 2010.
2 Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan Solihin. Predicting inter-thread

cache contention on a chip multi-processor architecture. In Proceedings of the 11th Interna-
tional Symposium on High-Performance Computer Architecture, HPCA ’05, pages 340–351,
Washington, DC, USA, 2005. IEEE Computer Society.

3 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction
to algorithms. MIT press, 2001.

4 Alexandra Fedorova, Sergey Blagodurov, and Sergey Zhuravlev. Managing contention for
shared resources on multicore processors. Communications of the ACM, 53(2):49–57, 2010.

5 Alexandra Fedorova, Margo Seltzer, and Michael D Smith. Cache-fair thread scheduling for
multicore processors. Division of Engineering and Applied Sciences, Harvard University,
Tech. Rep. TR-17-06, 2006.

6 Alexandra Fedorova, Margo Seltzer, and Michael D Smith. Improving performance isolation
on chip multiprocessors via an operating system scheduler. In Proceedings of the 16th
International Conference on Parallel Architecture and Compilation Techniques, pages 25–
38. IEEE Computer Society, 2007.

7 J. Feliu, S. Petit, J. Sahuquillo, and J. Duato. Cache-hierarchy contention aware scheduling
in cmps. Parallel and Distributed Systems, IEEE Transactions on, PP(99):1–1, 2013.

8 Diwaker Gupta, Ludmila Cherkasova, Rob Gardner, and Amin Vahdat. Enforcing perform-
ance isolation across virtual machines in xen. In Middleware 2006, pages 342–362. Springer,
2006.

H. Zhu and L. He 151

9 Yunlian Jiang, Kai Tian, Xipeng Shen, Jinghe Zhang, Jie Chen, and Rahul Tripathi. The
complexity of optimal job co-scheduling on chip multiprocessors and heuristics-based solu-
tions. Parallel and Distributed Systems, IEEE Transactions on, 22(7):1192–1205, 2011.

10 Seongbeom Kim, Dhruba Chandra, and Yan Solihin. Fair cache sharing and partitioning
in a chip multiprocessor architecture. In Proceedings of the 13th International Conference
on Parallel Architectures and Compilation Techniques, pages 111–122. IEEE Computer
Society, 2004.

11 Younggyun Koh, Rob Knauerhase, Paul Brett, Mic Bowman, Zhihua Wen, and Calton Pu.
An analysis of performance interference effects in virtual environments. In Performance
Analysis of Systems & Software, 2007. ISPASS 2007. IEEE International Symposium on,
pages 200–209. IEEE, 2007.

12 Min Lee and Karsten Schwan. Region scheduling: efficiently using the cache architectures
via page-level affinity. In Proceedings of the seventeenth international conference on Archi-
tectural Support for Programming Languages and Operating Systems, pages 451–462. ACM,
2012.

13 Kyle J Nesbit, James Laudon, and James E Smith. Virtual private caches. In ACM
SIGARCH Computer Architecture News, volume 35, pages 57–68. ACM, 2007.

14 Shekhar Srikantaiah, Mahmut Kandemir, and Mary Jane Irwin. Adaptive set pinning:
managing shared caches in chip multiprocessors. ACM Sigplan Notices, 43(3):135–144,
2008.

15 Jianyong Zhang, Anand Sivasubramaniam, Qian Wang, Alma Riska, and Erik Riedel. Stor-
age performance virtualization via throughput and latency control. ACM Transactions on
Storage (TOS), 2(3):283–308, 2006.

16 Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. Towards practical page coloring-based
multicore cache management. In Proceedings of the 4th ACM European conference on
Computer systems, pages 89–102. ACM, 2009.

17 Qin Zhao, David Koh, Syed Raza, Derek Bruening, Weng-Fai Wong, and Saman Amaras-
inghe. Dynamic cache contention detection in multi-threaded applications. ACM SIGPLAN
Notices, 46(7):27–38, 2011.

18 Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. Addressing shared re-
source contention in multicore processors via scheduling. In ACM SIGARCH Computer
Architecture News, volume 38, pages 129–142. ACM, 2010.

ICCSW’13

	p000_Frontmatter
	Preface
	Conference Organisation
	Supporters and Sponsors

	p001_Hoare
	p002_Norvig
	p003_Apostolopoulos
	Introduction
	Images as sparse representations
	Methods for sparse recovery in images
	The L1 Magic
	The FOCUSS

	Research Approach
	The Heuristic

	Simulations and Results
	Conclusions

	p011_Castro_Fernandez
	Introduction
	Problem Statement
	State Management
	Scale Out and Fault Tolerance
	Evaluation
	Conclusions

	p019_Ellmauthaler
	Introduction
	Motivation
	Assisted Living
	Realization

	Background
	Reactive Managed Multi-Context Systems
	Preference-Based Iterative Managed Multi-Context System
	Reactive Bridge Rules
	Combination Of Both Concepts

	Conclusion & Future Work

	p027_Fedorova
	Introduction
	Background
	Hypergraphical Structures
	Hypergraphical Online Compression Models
	Junction Tree Structures

	Conformal Prediction for HOCM
	Conformity Measures for HOCM
	Criteria for the Quality of Conformal Prediction

	Experimental Results
	LED Data Set
	Hypergraphical Assumptions for LED Data Sets
	Experiments

	Conclusion

	p035_Franca
	Introduction
	Background
	Extracting Relational Knowledge from BCP-Rules
	Initial Results
	Conclusion and Future Work

	p043_Gijzel
	Introduction
	Tools and methods
	Functional programming
	Literate programming
	Open source and public repositories
	Formalisation in a theorem prover

	A documented implementation of Carneades
	Arguments
	Carneades Argument Evaluation Structure
	Evaluation

	Conclusions and future work

	p049_Jaf
	Introduction
	Parsing natural language approaches
	Grammar-driven approach
	Data-driven parsing

	Arabic
	Missing diacritics
	Free word order
	Arabic clitics
	Noun multi-functionality
	Arabic pro-drop

	Work to date
	Preliminary results
	Related work
	Next stage

	Conclusion

	p057_Kechagia
	Introduction
	Methodology
	Data Origin
	Data Cleaning
	Identification of Risky API calls

	Crash Categories and API Recommendations
	Threats to validity
	Internal validity
	External validity

	Conclusions and Future Work

	p065_Lu
	Introduction
	Observations and Analysis
	Mode Correlation between Base Layer and Enhancement Layer
	Mode Correlation between Macroblock and its Neighbours
	DCT Coefficients and Picture Content
	Detection of Motion Activity

	Proposed Algorithm
	Experimental Evaluation
	Conclusion

	p073_Lu
	Introduction
	Rate-Distortion Model for Spatial Enhancement Layer
	Optimisation of MAD Prediction for Spatial Enhancement Layer
	Experimental Results
	Conclusions

	p081_Meng
	Introduction
	Background of Bi-level Programming Model
	System Model and Solution Method
	Lower-level Model Problem
	Upper-level Model Problem
	Solution Method

	Experimental Results
	Conclusion and Future Work

	p089_Penning
	Introduction
	Multimodal Deep Learning
	Hallucinations and Dreaming
	Multimodal Information Retrieval
	Conclusions and Future Work

	p095_Phan
	Secure information flow: from non-interference to self-composition
	Preliminaries
	Self-composition by Symbolic Execution
	Self-composition as path-equivalence
	Path-equivalence generation

	Case Studies
	Implicit flow
	No flow
	Both implicit and explicit flows

	Related Work
	Conclusion

	p103_Shi
	Introduction
	Related Work
	Topolor
	Evaluation
	Functionality
	Learning Perspective
	System Prospect

	Evaluation Framework
	Functionality
	Learning Perspective
	System Prospect
	Overall System Classification and Linguistic Representation

	Conclusions and Future Work

	p111_Tutu
	Introduction
	Asynchronous Relational Networks
	An institution of ARNs
	Signatures
	Sentences and Sentence Translations
	Models and Model Reductions
	The Satisfaction Relation

	Conclusions

	p119_Wood
	Introduction
	Bounded Effect
	Trace Equivalence
	Partitions and Traces
	Properties of Bounded modifications
	Proof Sketch
	Conclusion

	p128_Xu
	Introduction
	Sexual Genetic Algorithm
	Sexual Genetic Algorithm vs. Standard Genetic Algorithm by Solving TSP
	Self-learning Sexual Genetic Algorithm vs. Self-learning Genetic Algorithm
	Self-learning Sexual Genetic Algorithm for Constraint Satisfaction Problem

	Conclusions and Future work

	p136_Zaidi
	Introduction
	Enhancing sequential performance in Custom Hardware
	Evaluation Methodology & Results
	Conclusion

	p144_Zhu
	Introduction
	Formalizing the problem of co-scheduling parallel jobs
	Formalizing the problem of co-scheduling serial jobs Jiang2011
	Formalizing the problem of co-scheduling parallel jobs

	Modelling the co-scheduling problem
	Graph Model of the problem
	Optimal Parallel aware Shortest Path algorithm

	Evaluation
	Co-scheduling Result

	Discussion
	Conclusion

