
3rd Symposium on Languages,
Applications and Technologies

SLATE’14, June 19–20, 2014, Bragança, Portugal

Edited by

Maria João Varanda Pereira
José Paulo Leal
Alberto Simões

OASIcs – Vo l . 38 – SLATE’14 www.dagstuh l .de/oas i c s

Editors
Maria João Varanda Pereira José Paulo Leal Alberto Simões
CCTC CRACS & INESC TEC CEHUM & CCTC
Escola Superior de Tecnologia e Gestão Faculdade de Ciências Instituto de Letras e Ciências Humanas
Instituto Politécnico de Bragança Universidade do Porto Universidade do Minho
mjoao@ipb.pt zp@fcc.fc.up.pt ambs@ilch.uminho.pt

Funding
This publication is funded by National Funds through the FCT – Fundação para a Ciência e a Tecnologia
(Portuguese Foundation for Science and Technology) within project PEst-OE/EEI/UI0752/2014.

ACM Classification 1998
D.3 Programming Languages, D.2.12 Interoperability, I.2.7 Natural Language Processing

ISBN 978-3-939897-68-2

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-68-2.

Publication date
June, 2014

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: OASIcs.SLATE.2014.i

ISBN 978-3-939897-68-2 ISSN 2190-6807 http://www.dagstuhl.de/oasics

http://www.dagstuhl.de/dagpub/978-3-939897-68-2
http://www.dagstuhl.de/dagpub/978-3-939897-68-2
http://dnb.d-nb.de
http://dx.doi.org/10.4230/OASIcs.SLATE.2014.i
http://www.dagstuhl.de/dagpub/978-3-939897-68-2
http://www.dagstuhl.de/dagpub/2190-6807
http://www.dagstuhl.de/oasics

iii

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 2190-6807

www.dagstuhl.de/oasics

SLATE 2014

http://www.dagstuhl.de/dagpub/2190-6807
http://www.dagstuhl.de/oasics

Contents

Preface
Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões viii

Invited Talks

Language-Driven Software Development
José-Luis Sierra . 3

An Overview of Open Information Extraction
Pablo Gamallo . 13

Program Comprehension

Conclave: Writing Programs to Understand Programs
Nuno Ramos Carvalho, José João Almeida, Maria João Varanda Pereira, and
Pedro Rangel Henriques . 19

Leveraging Program Comprehension with Concern-oriented Source Code Projections
Jaroslav Porubän and Milan Nosáľ . 35

Comment-based Concept Location over System Dependency Graphs
Nuno Pereira, Maria João Varanda Pereira, and Pedro Rangel Henriques 51

Domain Specific Languages

ReCooPLa: a DSL for Coordination-based Reconfiguration of Software Architectures
Flávio Rodrigues, Nuno Oliveira, and Luís S. Barbosa . 61

A Workflow Description Language to Orchestrate Multi-Lingual Resources
Rui Brito and José João Almeida . 77

Converting Ontologies into DSLs
João M. Sousa Fonseca, Maria João Varanda Pereira, and Pedro Rangel Henriques 85

JSON on Mobile: is there an Efficient Parser?
Ricardo Queirós . 93

Unfuzzying Fuzzy Parsing
Pedro Carvalho, Nuno Oliveira, and Pedro Rangel Henriques . 101

Programming Languages and Compilers

Contract-Java: Design by Contract in Java with Safe Error Handling
Miguel Oliveira e Silva and Pedro G. Francisco . 111

Implementing Python for DrRacket
Pedro Palma Ramos and António Menezes Leitão . 127

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

vi Contents

Plagiarism Detection: A Tool Survey and Comparison
Vítor T. Martins, Daniela Fonte, Pedro Rangel Henriques, and Daniela da Cruz . . 143

Target Code Selection by Tilling AST with the Use of Tree Pattern Pushdown Automaton
Jan Janoušek and Jaroslav Málek . 159

Semantics in Natural Language Processing

Assigning Polarity Automatically to the Synsets of a Wordnet-like Resource
Hugo Gonçalo Oliveira, António Paulo Santos, and Paulo Gomes 169

Detecting a Tweet’s Topic within a Large Number of Portuguese Twitter Trends
Hugo Rosa, João Paulo Carvalho, and Fernando Batista . 185

Multiscale Parameter Tuning of a Semantic Relatedness Algorithm
José Paulo Leal and Teresa Costa . 201

Rocchio’s Model Based on Vector Space Basis Change for Pseudo Relevance Feedback
Rabeb Mbarek, Mohamed Tmar, and Hawete Hattab . 215

Automatic Identification of Whole-Part Relations in Portuguese
Ilia Markov, Nuno Mamede, and Jorge Baptista . 225

Natural Language Processing Tools and Resources

Automatic Detection of Proverbs and their Variants
Amanda P. Rassi, Jorge Baptista, and Oto Vale . 235

Language Identification: a Neural Network Approach
Alberto Simões, José João Almeida, and Simon D. Byers . 251

LemPORT: a High-Accuracy Cross-Platform Lemmatizer for Portuguese
Ricardo Rodrigues, Hugo Gonçalo Oliveira, and Paulo Gomes . 267

Expanding a Database of Portuguese Tweets
Gaspar Brogueira, Fernando Batista, João P. Carvalho, and Helena Moniz 275

MLT-prealigner: a Tool for Multilingual Text Alignment
Pedro Carvalho and José João Almeida . 283

Preface

The communication from man to man evolved, from long time ago to the communication
between man and machine. Communication is achieved when the receiver understands the
words, the sentences and knows its meaning in a certain context. A successful communication
depends on so many factors: the adequacy of the language type (considering the stakeholders),
mutual agreement on the language to use, the ability of the issuer to express himself with
the proper words and well-constructed sentences, the ability of the receiver to process the
information received and react. The communication between man and computer implies
preparing the machine with proper software to be able to receive source texts and perform
actions. The study of formalisms and the creation of new approaches associated language
processing tasks, is an important research topic in the area of Computer Science.

Techniques and approaches have been developed to speed up and make more efficient
the use of the languages either improving the processing tasks of well-known programming
languages, constructing new program comprehension tools to be used in the maintenance
phase, creating domain specific languages or dealing with problems concerning with natural
language processing (NLP) and other topics that relate languages with technology. In SLATE
2014 a challenge is proposed to all participants: update the state-of-the-art, discuss solutions
for identified problems, present new ideas and have fun.
The symposium is divided in three tracks:

The HHL (Human-Human Languages) track is concerned with natural language processing
issues and their application in several contexts.
The HCL (Human-Computer Languages) track is dedicated to exchange ideas about
language design, processing, assessment and comprehension and an huge number of
applications that can be created to deal with this.
The CCL (Computer-Computer Languages) track whose main goal is to discuss the use
and associated technologies of the XML markup language.

This volume contains the proceedings of the 3rd edition of SLATE, held in the School
of Technology and Management of Polytechnic Institute of Bragança, Portugal, during
19th–20th June, 2014. This year, SLATE received a total of 20 full paper submissions and 9
short paper submissions. Each submission was reviewed by at least three Program Committee
members, from a global group of 63 researchers. At the end of the review process, 12 papers
were accepted as full papers, 4 full papers were invited to submit as short papers, and 6 short
papers were also accepted for publication and presentation at the symposium. So, SLATE
2014 had a 24% rejection and 22 papers presentations: 12 full papers (20 min + 5 min of
questions) and 10 short papers (10 min + 5 min of questions).
This set of presentations is divided into the following five sessions:

Domain Specific Languages, includes one full paper and four short papers dedicated to the
creation of new DSLs and techniques to implement this kind of languages.

Programming Languages and Compilers, includes three full papers and one short paper
about programming language implementation, source code analysis, and target code
generation.

Program Comprehension, includes two full papers and one short paper about different
techniques used for program comprehension: identifier analysis, concern-based projections,
and system dependency graph enriched with source code comments.

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

viii Preface

Semantics in NLP, includes four full papers and one short paper related to the analysis of
semantic in natural language processing, namely on the extraction of semantic relationships
from texts, and on the use of semantic-rich structures;

NLP Tools and Resources, includes two full papers and three short papers on identification
and analysis of natural language sentences, text alignment and databases.

Moreover, SLATE 2014 program also includes two keynotes: one on Language-driven
Software Development, by José Luís Sierra from Complutense University of Madrid and
another on Open Information Extraction by Pablo Gamallo from University of Santiago
de Compostela.

The organizers of SLATE 2014 want to thank to many people without whom this event
would never be possible: our sponsors Efacec, Computer Science and Technology Center
(CCTC), Polytechnic Institute of Bragança (IPB) and Fundação para a Ciência e a Tecnologia
(FCT, Portuguese Foundation for Science and Technology); Easychair conference management
system; the Program Committee members for spending their time reviewing the papers and
writing the reports; the authors of the submitted papers for their contribution and interest
in the symposium and, finally, to all participants that came to Bragança to such a fruitful
meeting.

Maria João Varanda Pereira
José Paulo Leal
Alberto Simões

List of Authors

José João Almeida
CCTC, Departamento de Informática
Universidade do Minho
Braga, Portugal
jj@di.uminho.pt

Jorge Baptista
INESC-ID Lisboa, L2F
Universidade do Algarve – FCHS/CECL
Faro, Portugal
jbaptis@l2f.inesc-id.pt

Luís S. Barbosa
HASLab – INESC TEC
Universidade do Minho
Braga, Portugal
lsb@di.uminho.pt

Fernando Batista
INESC-ID Lisboa & ISCTE
Instituto Universitário de Lisboa
Lisboa, Portugal
fernando.batista@iscte.pt

Rui Brito
CCTC, Departamento de Informática
Universidade do Minho
Braga, Portugal
ruibrito@di.uminho.pt

Gaspar Brogueira
Laboratório de Sistemas de Língua Falada
INESC-ID, Lisboa, Portugal
gmrba@iscte.pt

Simon D. Byers
AT & T Labs
Bedminster NJ
United States of America
headers@gmail.com

João Paulo Carvalho
INESC-ID Lisboa
IST – Universidade de Lisboa
Lisboa, Portugal
joao.carvalho@inesc-id.pt

Nuno Ramos Carvalho
CCTC, Departamento de Informática
Universidade do Minho
Braga, Portugal
narcarvalho@di.uminho.pt

Pedro Carvalho
Departamento de Informática
Universidade do Minho
Braga, Portugal
pedrocarvalho@di.uminho.pt

Teresa Costa
CRACS & INESC-Porto LA
Faculty of Sciences
University of Porto
Porto, Portugal
teresa.costa@dcc.fc.up.pt

Daniela da Cruz
CCTC, Departamento de Informática
Universidade do Minho
Braga, Portugal
danieladacruz@gmail.com

João Manuel Sousa Fonseca
CCTC, Departamento de Informática
Universidade do Minho
Braga, Portugal
jprophet89@gmail.com

Daniela Fonte
CCTC, Departamento de Informática
Universidade do Minho
Braga, Portugal
danielamoraisfonte@gmail.com

Pedro G. Francisco
University of Aveiro, IEETA
Campus Universitário de Santiago
Aveiro, Portugal
goucha@ua.pt

Pablo Gamallo
Universidade de Santiago de Compostela
Galiza, Spain
pablo.gamallo@usc.es

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

x Authors

Paulo Gomes
CISUC, Department of Informatics
Engineering
University of Coimbra
Coimbra, Portugal
pgomes@dei.uc.pt

Hawete Hattab
Umm Al-qura University
Department of Mathematics
Makkah, KSA
hshattab@uqu.edu.sa

Pedro Rangel Henriques
CCTC, Departamento de Informática
Universidade do Minho
Braga, Portugal
prh@di.uminho.pt

Jan Janoušek
Department of Theoretical Computer Science
Faculty of Information Technologies
Czech Technical University in Prague
Prague, Czech Republic
Jan.Janousek@fit.cvut.cz

José Paulo Leal
CRACS & INESC-Porto LA
Faculty of Sciences
University of Porto
Porto, Portugal
zp@dcc.fc.up.pt

António Menezes Leitão
INESC-ID, Instituto Superior Técnico
Universidade de Lisboa
Lisboa, Portugal
antonio.menezes.leitao@tecnico.ulisboa.pt

Jaroslav Málek
Department of Theoretical Computer Science
Faculty of Information Technologies
Czech Technical University in Prague
Prague, Czech Republic

Nuno Mamede
INESC-ID Lisboa, L2F
Instituto Superior Técnico,
Universidade de Lisboa,
Lisboa, Portugal
Nuno.Mamede@l2f.inesc-id.pt

Ilia Markov
INESC-ID Lisboa, L2F
Universidade do Algarve – FCHS
Faro, Portugal
Ilia.Markov@l2f.inesc-id.pt

Helena Moniz
Laboratório de Sistemas de Língua Falada
INESC-ID, Lisboa, Portugal
helena.moniz@inesc-id.pt

Vítor T. Martins
CCTC, Departamento de Informática
Universidade do Minho
Braga, Portugal
vtiagovm@gmail.com

Rabeb Mbarek
Sfax University
Multimedia Information Systems and
Advanced Computing Laboratory
Sfax, Tunisia
rabeb.hattab@gmail.com

Milan Nosáľ
Faculty of Elect. Eng. and Informatics
Technical University of Košice
Košice, Slovakia
milan.nosal@gmail.com

Hugo Gonçalo Oliveira
CISUC, Department of Informatics
Engineering
University of Coimbra
Coimbra, Portugal
hroliv@dei.uc.pt

Nuno Oliveira
HASLab – INESC TEC
Universidade do Minho
Braga, Portugal
nunooliveira@di.uminho.pt

Maria João Varanda Pereira
CCTC, Instituto Politécnico de Bragança
Bragança, Portugal
mjoao@ipb.pt

Nuno Pereira
CCTC, Departamento de Informática
Universidade do Minho
Braga, Portugal
nuno.filipe.gomes.pereira@gmail.com

Authors xi

Jaroslav Porubän
Faculty of Elect. Eng. and Informatics
Technical University of Košice
Košice, Slovakia
jaroslav.poruban@tuke.sk

Ricardo Queirós
CRACS & INESC-Porto LA
Escola Superior de Estudos Industriais e de
Gestão
Instituto Politécnico do Porto
ricardo.queiros@eu.ipp.pt

Amanda P. Rassi
Federal University of São Carlos-UFSCar
São Carlos, São Paulo, Brasil
aprassi@ualg.pt

Pedro Palma Ramos
INESC-ID, Instituto Superior Técnico
Universidade de Lisboa
Lisboa, Portugal
pedropramos@tecnico.ulisboa.pt

Flávio Rodrigues
HASLab – INESC TEC
Universidade do Minho
Braga, Portugal
pg22826@alunos.uminho.pt

Ricardo Rodrigues
Centre for Informatics and Systems of the
University of Coimbra Coimbra, Portugal
rmanuel@dei.uc.pt

Hugo Rosa
INESC-ID Lisboa
IST – Universidade de Lisboa
Lisboa, Portugal
hugohrosa@gmail.com

António Paulo Santos
GECAD, Institute of Engineering
Polytechnic of Porto
Porto, Portugal
pgsa@isep.ipp.pt

Jose-Luis Sierra
Fac. Informática
Universidad Complutense de Madrid
Madrid, Spain
jlsierra@fdi.ucm.es

Miguel Oliveira e Silva
University of Aveiro, IEETA, DETI
Campus Universitário de Santiago
Aveiro, Portugal
mos@ua.pt

Alberto Simões
Centro de Estudos Humanísticos
Universidade do Minho
Braga, Portugal
ambs@ilch.uminho.pt

Mohamed Tmar
Sfax University
Multimedia Information Systems and
Advanced Computing Laboratory
Sfax, Tunisia
mohamedtmar@yahoo.fr

Oto Vale
Federal University of São Carlos-UFSCar
São Carlos, São Paulo, Brasil
otovale@ufscar.br

SLATE 2014

Committees

Program Chairs

Maria João Varanda Pereira
Instituto Politécnico de Bragança, Portugal

José Paulo Leal
Universidade do Porto, Portugal

Alberto Simões
Universidade do Minho, Portugal

Publication Chair

Alberto Simões
Universidade do Minho, Portugal

Program Committee

Salvador Abreu
Universidade de Évora, Portugal

José João Almeida
Universidade do Minho, Portugal

Jorge Baptista
Universidade do Algarve, Portugal

Fernando Batista
ISCTE-IUL & INESC-ID, Portugal

Mario Berón
Universidad Nacional de San Luis, Argentina

Michele Bugliesi
Università Ca’Foscari Venezia, Italy

João M. P. Cardoso
Universidade do Porto & INESC TEC,
Portugal

Nuno Ramos Carvalho
Universidade do Minho, Portugal

Matej Crepinsek
Univerza v Mariboru, Slovenia

Daniela da Cruz
Universidade do Minho, Portugal

Jürgen Ebert
Universität Koblenz-Landau, Germany

Gabriel David
Universidade do Porto & INESC TEC,
Portugal

Daniel Diaz
Université Paris 1, France

Brett Drury
Universidade de São Paulo, Brazil

Jean-Marie Favre
Université Joseph Fourier, Grenoble, France

Luís Ferreira
Instituto Politécnico do Cávado e Ave,
Portugal

Jean-Christophe Filliâtre
CNRS & Université Paris Sud, France

Niklas Fors
Lund University, Sweden

Pablo Gamallo
Universidade de Santiago de Compostela,
Spain

Alda Lopes Gançarski
Institut Mines-Télécom/Télécom SudParis,
France

Xavier Gómez Guinovart
Universidade de Vigo, Spain

Ulrich Heid
Universität Hildesheim, Germany

Pedro Rangel Henriques
Universidade do Minho, Portugal

Mirjana Ivanovic
University of Novi Sad, Serbia

Jan Janoušek
Czech Technical University in Prague, Czech
Republic

Ján Kollár
Technical University of Košice, Slovakia

Tomaž Kosar
Univerza v Mariboru, Slovenia

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

xiv Committees

Eugenijus Kurilovas
Vilnius Gediminas Technical University,
Lithuania

José Paulo Leal
Universidade do Porto, Portugal

António Menezes Leitão
INESC-ID & Universidade de Lisboa,
Portugal

Giovani Librelotto
Universidade Federal Santa Maria, Brazil

João Correia Lopes
Universidade do Porto & INESC TEC,
Portugal

Ivan Lukovic
University of Novi Sad, Serbia

Paulo Matos
Instituto Politécnico de Bragança, Portugal

Marjan Mernik
Univerza v Mariboru, Slovenia

Michal Krátký
VŠB – Technical University of Ostrava,
Czech Republic

Hugo Gonçalo Oliveira
Universidade de Coimbra, Portugal

Nuno Oliveira
Universidade do Minho, Portugal

Alexander Paar
TWT GmbH Science and Innovation,
Germany

Lluís Padró
Universitat Politècnica de Catalunya, Spain

Thiago Pardo
Universidade de São Paulo, Brazil

Maria João Varanda Pereira
Instituto Politécnico de Bragança, Portugal

Jaroslav Porubän
Technical University of Košice, Slovakia

Ricardo Queirós
Instituto Politécnico do Porto, Portugal

José Carlos Ramalho
Universidade do Minho, Portugal

Sebastian Rahtz
University of Oxford, United Kingdom

Cristina Ribeiro
Universidade do Porto & INESC TEC,
Portugal

Ricardo Rocha
Universidade do Porto, Portugal

Casiano Rodriguez-Leon
Universidad de La Laguna, Spain

Dietmar Seipel
Universität Würzburg, Germany

José Luis Sierra
Universidad Complutense de Madrid, Spain

Josep Silva
Universitat Politècnica de València, Spain

Alberto Simões
Universidade do Minho, Portugal

Boštjan Slivnik
Univerza v Ljubljani, Slovenia

Peter Sloep
Open Universiteit, Netherlands

Simão Melo de Sousa
Universidade da Beira Interior, Portugal

Ralf Steinberger
EC – Joint Research Centre, Italy

Kari Systä
Tampere University of Technology, Finland

António Teixeira
Universidade de Aveiro, Portugal

Jörg Tiedemann
Uppsala University, Sweden

Guido Wachsmuth
Delft University of Technology, Netherlands

Yorick Wilks
Florida Institute for Human and Machine
Cognition, USA

Committees xv

Sub Reviewers

Mário Rodrigues
Universidade de Aveiro, Portugal

Paula Christina Figueira Cardoso
Universidade de São Paulo, Brazil

Marcos Garcia
Universidade de Santiago de Compostela,
Spain

Liliana Ferreira
Fraunhofer AICOS, Portugal

Organization Committee

Maria João Varanda
Instituto Politécnico de Bragança, Portugal

José Paulo Leal
Universidade do Porto, Portugal

Alberto Simões
Universidade do Minho, Portugal

Pedro Henriques
Universidade do Minho, Portugal

Nuno Ramos Carvalho
Universidade do Minho, Portugal

José Eduardo Fernandes
Instituto Politécnico de Bragança, Portugal

Paulo Matos
Instituto Politécnico de Bragança, Portugal

Paulo Alves
Instituto Politécnico de Bragança, Portugal

SLATE 2014

Part I

Invited Talks

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Language-Driven Software Development
José-Luis Sierra

Fac. Informática, Universidad Complutense de Madrid
C/ Prof. José García Santesmases 9, 28040 Madrid, Spain
jlsierra@fdi.ucm.es

Abstract
Language-driven software development consists in applying computer language design and imple-
mentation techniques to build conventional software. The keynote reviews two different language-
driven development approaches: domain-specific languages (DLSs), and language-oriented archi-
tectures (LOAs). The DSL approach focuses on the provision of languages specialized in different
application aspects, which are used by developers, and even by domain experts, during applica-
tion construction and maintenance. The LOA strategy, in its turn, conceives applications them-
selves as coordinated collections of language processors, which can be developed using language
implementation tools (parser generators, attribute grammar-based systems, etc.). The presenta-
tion of the approaches is supported by case studies from the fields of knowledge-based systems,
e-Learning, semi-structured data processing, and digital humanities.

1998 ACM Subject Classification D.3.4 Translator writing systems and compiler generators,
D.3.2 Specialized Application Languages, D.2 Software Engineering, D.2.11 Software Architec-
tures

Keywords and phrases domain-specific languages; language-oriented architectures; parser gen-
erators; attribute grammars; application domains

Digital Object Identifier 10.4230/OASIcs.SLATE.2014.3

Category Invited Talk

1 Introduction

Nowadays design and implementation of computer languages is a mature and well-understood
field, which comprises a wide spectrum of precise and well-founded methods, techniques
and tools grounded in strong theoretical and mathematical principles [2]. Regardless of
their initial limited applicability to the specialized compiler construction arena, recently
these approaches have been recognized as very valuable instruments in many mainstream
software development scenarios [43, 10, 19, 23, 24], which leads to a distinguished paradigm
of software construction: language-driven software development. In these scenarios it is
meaningful to recognize the linguistic nature of different aspects of software development, and
therefore to undertake these aspects as ones concerning the explicit conception, design and
implementation of special-purpose computer languages. The paradigm is particularly suited
to address complex development situations involving sophisticated and highly customizable
architectures, interdisciplinary teams of developers and domain experts, clearly defined stacks
of abstraction levels, etc., in which the language development effort can pay off. Quoting to
[1] “ . . . seen from this perspective, the technology for coping with large-scale computer systems
merges with the technology for building new computer languages, and computer science itself
becomes no more (and no less) than the discipline of constructing appropriate descriptive
languages”.

© José-Luis Sierra;
licensed under Creative Commons License CC-BY

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões; pp. 3–12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2014.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

4 Language-Driven Software Development

This document summarizes the contents addressed in the keynote Language-Driven
Software Development given in SLATE’14. The keynote is focused on two different practices
concerning this development approach: domain-specific languages and language-oriented
architectures. While the first one is well-established in the research community, and in
recent years also among practitioners, the second one is more speculative and inspired by
the Speaker’s own research at Complutense University of Madrid, Spain (UCM).

2 Software Development based on Domain-Specific Languages

Quoting to [43] a domain-specific language (DSL) is “a programming language or executable
specification language that offers, through appropriate notations and abstractions, expressive
power focused on, and usually restricted to, a particular problem domain”. In this way, the
concept of DSL is a well-established one in software development scenarios, where software
developers have used several sorts of DSLs for decades (e.g., SQL for updating and querying
relational databases, make or ant for tracking the dependencies among the files of a software
systems and for automating the production of these software systems, YACC-like tools for
generating parsers from grammar-based specifications, etc.) [31]. In addition, many DSLs
have been also provided to facilitate application development in concrete domains [43, 24].

DSLs tailored to concrete application domains are particularly attractive from a software
development perspective. Indeed, being more expressive and easy-to-use than a general-
purpose programming language, these DSLs make possible, to some extent, the active
participation of domain-experts in the development process. In this way, and in an idealized
world, the aim of DSLs is to upgrade software developers to DSL designers and implementers,
as well as to promote domain-experts to application developers [10, 12]. Of course, in the
real world this idealized scenario (sometimes referred as end-user programming [16]) is hardly
reachable due the fuzziness and dynamic nature of application domains, as well as to the
difficulty of capturing some aspects of a system in terms of suitable domain abstractions.
Regardless this difficulty, it is a matter of fact that this kind of DSLs can facilitate the active
participation of domain-experts during the development process (e.g., they can understand
specifications prepared in DSLs with suitable notations, suggest modifications, or even take
the responsibility of producing and maintaining specific parts of the applications using
suitable DSLs) [10, 12, 44].

Finally, before going into the details of DSL-based development, it is worthwhile to
highlight the relationships among this approach and model-driven engineering [40, 44].
Indeed, model-driven engineering can be understood as a particular incarnation of DSL-
based development, in which DSLs take the form of domain-specific meta-models, and DSL
sentences take the form of models resulting of instantiating these meta-models. Therefore,
many of the reflections made in the following presentation can be also applied to model-driven
engineering without substantial change.

2.1 DSL-oriented Process Models
From a process model perspective, DSL-oriented software development shares many features
with generative approaches to software development [21, 6]. Common activities undertook
during DSL-oriented software development are Domain Engineering Activities, Language
Design and Implementation Activities and Application Development Activities.

J.-L. Sierra 5

2.1.1 Domain Engineering Activities
These activities are oriented to determine the commonalities and the variability of applications
in the target application domain [6], and those can be carried out by adopting well-established
domain engineering approaches [17, 39, 41]. In DSL-oriented software development variability,
which is concerned with the differences among concrete applications, is usually captured in
terms of feature models [6] that set the conceptual basis for subsequent DSL design. On
the other hand, commonality (the core part shared by all the applications in a domain) is
essential for providing DSL runtime support (e.g., as a specific object-oriented framework).

2.1.2 Language Design and Implementation Activities
These activities deal with usual aspects concerning the design and implementation of computer
languages (lexical and syntactical specification, specification of the static and dynamic
semantics, etc.) [11]. For this purpose, a common practice in DSL design is to invert the
conventional workflow in computer language design (i.e., going from concrete to abstract
syntax [2]). Indeed, modern tendencies in DSL design promote to start by an abstract
syntax. Following the jargon used by the DSL community, abstract syntax is formalized in
object-oriented terms, as a set of interrelated classes that makes up the semantic model of
the DSL [10, 19, 44]. This model will be based on the variability analysis performed during
the domain engineering activities.

Once a suitable semantic model is available, it is possible to provide one or several
alternative concrete syntaxes. Depending of the intended use of the DSL, concrete syntaxes
can be embedded in general-purpose programming languages (internal syntaxes) or those
can be externally provided (external syntaxes). Still, each alternative can be accomplished
using a wide range of techniques:

Concerning internal syntaxes, their provision strongly depends on the features of the host
programming language. For instance, LISP-like homogeneous syntaxes have proven to be
specially amenable for supporting internal syntaxes for many embedded DSLs [1], while
extensible syntaxes enabled by user-defined operators like the supported by Prolog-like
languages or by modern functional languages can be particularly useful for better fitting
domain notations[15]. Recently, dynamic languages with very expressive grammars have
been also adopted as host languages for DSLs [7, 12, 29, 30]. In object-oriented languages,
two usual design patterns for internal syntax design are method nesting expressions and
fluent APIs [10, 12].
In its turn, external syntaxes can be accomplished by using a general-purpose semantic
agnostic notation (like XML), by defining a DSL-specific textual syntax (the classic
approach promoted by compiler construction textbooks), or even by defining a visual
syntax amenable for implementations based on DSL workbenches [4, 14].

Concerning semantics, it is worthwhile to notice that the term semantic model is somewhat
confusing, since the model has little to do with semantic processing, but it is an explicit
formalization of the language abstract syntax. Semantics themselves must be added as
processes that operate on the instances of the semantic model. For this purpose:

As a representation of the abstract syntax, the semantic model usually addresses the
structure of the sentences of the language. Static semantics deals with additional
constraints beyond these structural aspects. While in classic language design static
semantics lead to type systems [35], which are subsequently implemented as type checking
algorithms on the abstract syntax trees / graphs, in the DSL world it is usual to find

SLATE 2014

6 Language-Driven Software Development

more pragmatic approaches based on constraint languages for object-oriented models,
like OCL [19], or in ontology-aware semantic technologies [46].
Dynamic semantics, in their turn, take either the form of translations to target program-
ming languages, or operational semantics specifications. The first scenario leads to the
subsequent provision of code generators, while the second one leads to the provision of
interpreters operating on instances of the semantic model [10].

In this way, the final implementation of the DSL typically consists of:
A way of editing DSL programs. It can be as simple as using an existing text editor or
an existing IDE (e.g., in the case of internal syntaxes or XML-based syntaxes), or as
complex as using a dedicated IDE for the DSL. In order to cope with the later scenario it
is possible to base the implementation of the DSL in a language workbench [4, 10, 14].
A binding component, which maps concrete syntax sentences in semantic model instances.
This component is analogous to the parser of a classic language processing architecture
[2]. The exact nature of the component will depend of the nature of the concrete syntax
and the semantic model.
A static semantic analyzer. This component will be in charge of ensuring the additional
semantic constraints on the semantic model instances.
A dynamic semantic infrastructure. This infrastructure will vary on whether DSL
execution is supported by translation or by interpretation. However, in both cases it is
common to find a runtime support in terms of the domain-specific library or framework
that results of the commonality analysis performed during the domain engineering
activities. In this way, translators generate code that makes use of this domain-specific
framework, while interpreters directly perform the operations on this framework required
to carry out the execution (e.g., on-the-fly object instantiation and assembling, method
invocation on the instantiated objects. etc.)

2.1.3 Application Development Activities
Once a suitable DSL is available, it can be used by developers and by domain experts
to develop applications in the domain. As indicated earlier, in an idealized situation a
DSL could free developers of application construction and maintenance in favor of domain-
experts. However, a more realistic approach promotes the tight collaboration or both types
of stakeholders in interdisciplinary development teams.

2.2 Development Process Dynamics
In a realistic DSL-based development process, DSLs must evolve according the expressive
needs of domain experts. In this way, new expressive needs that are made apparent during
application development imply the extension of the DSL infrastructure to accommodate these
needs. As a consequence, DSL-based development processes are iterative and incremental in
nature, promoting the iterative enhancement and the incremental extension of the DSL as a
consequence of application construction.

The iterative and incremental nature of DSL construction shifts the recurrent software
maintenance and evolution concerns to the language design and implementation level. Indeed,
DSL maintenance and evolution is a keystone aspect of the DSL approach [42]. In particular,
maintenance and evolution of dynamic semantics related components (translators and
interpreters) are particularly critical due to the semantic modularity problem: local changes
in a language can imply global changes in the associated processors [25, 45]. In this way,
since DSLs are exposed to constant evolution and enhancement, the construction of their

J.-L. Sierra 7

processors (translators, interpreters) can take benefit of modularization techniques used in
semantic specification and language processor construction [8, 15, 18, 22].

2.3 Some DSL-based Experiences
The Speaker of this keynote has been involved in DSL-based development in several fields,
including knowledge-based systems and e-learning:

During the early nineties of the past century, the Speaker had the opportunity of
working at the Intelligent Systems Research Group, led by Prof. José Cuena, one of the
pioneers of knowledge-based systems and artificial intelligence in Spain. Instead of using
general-purpose knowledge representation formalisms (e.g., rule-based systems) to build
intelligent systems, Cuena promoted the provision of formalisms specially tailored to
each application domain, adopting in this way the concept of DSL several years before
to its popularization and applying it to the development of knowledge-based systems
for real-time decision-making support (in particular, Cuena developed several decision-
making intelligent systems in the fields of traffic management and watershed management)
[5]. Cuena’s systems usually included specialized knowledge editors, which supported
specialized knowledge-representation languages, and which were used directly by domain
experts to provide the knowledge required by the system, as well as inference engines
(interpreters of the aforementioned languages) able to execute the provided knowledge
models. As a consequence of these experiences, Cuena’s team developed an environment
called KSM (Knowledge Structured Management), which was used to build this kind
of knowledge-based systems [26]. In this sense, KSM could be understood as a sort of
language workbench specialized in the field of knowledge-based systems.
In 1998 the Speaker moved to UCM, where he was involved in several research projects
concerning information management in e-learning. Indeed, e-learning is a field rich in
examples concerning special-purpose languages (e.g., educational modeling languages
intended to be used by instructors to describe the design of their courses [20]). At UCM,
the Speaker took contact with the works done by the team of Prof. Fernández-Valmayor
in the production and maintenance of complex educational hypermedia applications for
second language learning [9]. In order to facilitate application maintenance, contents and
other critical structures of the application were provided by domain experts (experts in
philology) as structured documents marked with a SGML-based notation specific for the
applications being constructed. These documents were subsequently processed in order to
automatically update the application. Building on this idea, during the first decade of the
present century, the Speaker worked on an approach for the development of educational
(and other content intensive) systems based on the explicit formulation of XML-based
DSLs, as well as in the construction of application generators for the resulting DSLs
[37, 38].

3 Language-Oriented Architectures

The DSL approach promotes the use of language-driven techniques in the provision of
domain-specific development tools. Indeed, a DSL is intended to describe different aspects
of an application, but the internals of this application do not necessarily include language
processing components. It can be even true when a DSL interpreter is used, since in this
case the interpreter can bind the DSL description into an instantiation of an underlying
runtime framework, and then to activate this instantiation by invoking suitable methods in
the resulting objects. On the contrary, Language-oriented Architectures (LOAs), an approach

SLATE 2014

8 Language-Driven Software Development

that the Speaker’s team is experiencing at UCM, promotes to upgrade language processing
techniques to the core of conventional applications.

3.1 Anatomy of a LOA
A LOA encourages the organization of an application as a coordinated set of language
processors. Each processor operates on an information domain (e.g., a type of XML documents,
an object-oriented class model, an even stream in an interactive application, etc.) and consists
of:

A reader that is able to read information instances in this information domain. As a
consequence, it transforms these instances into sequences of tokens. Therefore, the reader
plays the role of a scanner in a conventional language processor.
A syntax-directed processor, which processes the sequence of tokens directed by its
underlying syntactic structure. It is analogous to a parser extended with semantic actions.

3.2 Language Implementation Tools as General-Purpose Development
Tools

There are not significant differences among the syntax-directed processor of a LOA and
the corresponding component in a conventional language processor, since both components
act on sequences of tokens. Indeed, readers in a LOA adapt information domains to the
requirements of classic syntax-directed language processing models [2]. As a consequence,
language implementation tools (like parse generators or attribute grammar-based tools)
[2, 28], traditionally used in specialized fields like compiler construction, adopt a new and
unexpected role as general-purpose development tools for applications architected according
to the LOA principle. Indeed, a LOA-conforming application can be developed in terms of:

A set of readers, one for each language processor that integrate the application. Although
the provision of these readers can require conventional programming, in many information
domains it will be possible to take advantage of the information structure (e.g., the
markup in an XML document, the structure of an object model) to easily produce these
readers by customizing generic ones using high-level customization specifications.
A set of syntax-directed specifications (e.g., YACC, JavaCC or ANTLR translation
schemes, LISA attribute grammars, etc.). These specifications are keystone assets in the
development of the application, since they will serve to automatically generate the syntax-
directed processors by using suitable language implementation tools (YACC, ANTLR,
LISA . . .)
Additional conventional software components used to support the semantic actions invoked
by the syntax-directed translators.

The resulting development approach to LOA applications has been called grammatical
approach by the Speaker’s team at UCM, since it strongly relies on the use of grammarware
as primary development support. In addition, contrarily to other approaches that promote
the application of grammatical formalisms specially tailored to each application domain (e.g.,
tree grammars in the XML field, graph grammars in model-driven engineering scenarios), the
grammatical approach promotes the use of classic string-oriented grammars. The adaptation
to each information domain is, in turn, delegated to suitable readers (in other words, to
apply the grammatical approach to a new information domain, the first thing to do is to
decide how to read information elements in this domain). Once it is done, it is possible to
facilitate the application of the grammatical approach by devising specific grammar-based

J.-L. Sierra 9

notations for each particular domain, as well as ways of transforming these notations into
the basic model.

3.3 Experiences with the LOA Approach

The Speaker’s team at UCM is currently working with the characterization and generation
of several kinds of processors to be integrated in applications organized according to LOAs:

XML syntax-directed processors. The team has devised several models for processing XML
documents based on the combination of XML stream-oriented processing frameworks
(SAX and STaX) with parser generation tools (JavaCC and CUP) [34]. They also have
defined a specific grammar-based notation for describing XML processing tasks based
on attribute grammars (XLOP: XML Language Oriented Processing), together with its
transformation into the processing framework integrated by STaX + CUP [33].
JSON syntax-directed processors. The work concerning JSON processing is similar to the
work concerning XML. In this case the parser generator tool was ANTLR [32]. Currently
the team is working on JLOP (JSON Language Oriented Processing) a meta-tool similar
to XLOP.
Model transformation based on attribute grammars. Attribute grammars in this proposal
operate on spanning trees of object networks serialized by suitable readers (a prototype
implementation is described in [13]).
Syntax-directed processors of event streams in interactive applications. The idea is similar
to the described in [27], and oriented to generate controllers for interactive applications
from attribute grammar-based specifications (see [36] for an alternative approach based
on structural operational semantics specifications)

In addition, the team is also working on the definition of a LOA for @note, a RIA for the
collaborative annotation of digitized literary text [3]

4 Closing

This keynote has reviewed two different approaches for bringing computer language design
and implementation technologies to mainstream software development scenarios: DSLs,
which are oriented to provide domain-specific development tools, and LOAs, which promotes
to architect applications as coordinated sets of language processors. Both approaches are
oriented to enhance the production and maintenance of applications by providing specification
of components to higher levels than the enabled by general-purpose programming languages:
domain-specific notations in the case of DSLs, grammar-oriented specifications in the case of
LOAs.

Currently the Speaker’s team is working on refining the concept of LOA and in applying it
to real case-studies in the field of digital humanities. Concerning future work, the relationships
and synergies of DSL and LOA-based approaches arise as a very promising field. Also a
more in-depth insight concerning the relationships of these language-driven approaches with
model-driven ones appears to be a promising concern to explore.

Acknowledgements. Work partially supported by project grant TIN2010-21288-C02-01.

SLATE 2014

10 Language-Driven Software Development

References
1 Harold Abelson and Gerald J. Sussman. Structure and Interpretation of Computer Pro-

grams. MIT Press, Cambridge, MA, USA, 2nd edition, 1996.
2 Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,

and Tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition,
2007.

3 Juan Cigarrán-Recuero, Joaquín Gayoso-Cabada, Miguel Rodríguez-Artacho, María-
Dolores Romero-López, Antonio Sarasa-Cabezuelo, and José-Luis Sierra. Assessing se-
mantic annotation activities with formal concept analysis. Expert Syst. Appl., 41(11):5495–
5508, 2014.

4 Steve Cook, Gareth Jones, Stuart Kent, and Alan Wills. Domain-specific Development with
Visual Studio Dsl Tools. Addison-Wesley Professional, 2007.

5 José Cuena. Architectures for second generation knowledge based systems. In Proceedings
of the International Summer School on Advanced Topics in Artificial Intelligence, pages
373–403, London, UK, UK, 1992. Springer-Verlag.

6 Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods, Tools,
and Applications. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 2000.

7 Fergal Dearle. Groovy for Domain-Specific Languages. Packt Publishing, 1st edition, 2010.
8 Dominic Duggan. A mixin-based, semantics-based approach to reusing domain-specific

programming languages. In Elisa Bertino, editor, ECOOP, volume 1850 of Lecture Notes
in Computer Science, pages 179–200. Springer, 2000.

9 Baltasar Fernandez-Manjon and Alfredo Fernandez-Valmayor. Improving world wide web
educational uses promoting hypertext and standard general markup language content-based
features. Education and Information Technologies, 2(3):193–206, 1997.

10 Martin Fowler. Domain Specific Languages. Addison-Wesley Professional, 1st edition, 2010.
11 Daniel P. Friedman and Mitchell Wand. Essentials of Programming Languages, 3rd Edition.

The MIT Press, 3 edition, 2008.
12 Debasish Ghosh. DSLs in Action. Manning Publications Co., Greenwich, CT, USA, 1st

edition, 2010.
13 Juan-Pablo Gracia. Marco para la transformacion de modelos basado en gramaticas de

atributos. Master’s thesis, Facultad de Informatica, UCM, 2010.
14 Richard C. Gronback. Eclipse Modeling Project: A Domain-Specific Language (DSL)

Toolkit. Eclipse Series. Pearson Education, 2009.
15 Paul Hudak. Building domain-specific embedded languages. ACM Comput. Surv., 28(4es),

December 1996.
16 Capers Jones. End-user programming. IEEE Computer, 28(9):68–70, 1995.
17 Kio C. Kang, Sholom G. Cohen, Janes A. Hess, William E. Novak, and A. Spencer Peterson.

Feature-oriented domain analysis (foda) feasibility study. Technical report, Carnegie-Mellon
University Software Engineering Institute, November 1990.

18 Uwe Kastens and William M. Waite. Modularity and reusability in attribute grammars.
Acta Inf., 31(7):601–627, October 1994.

19 Anneke Kleppe. Software Language Engineering: Creating Domain-Specific Languages Us-
ing Metamodels. Addison-Wesley Professional, 2008.

20 Rob Koper and Bill Olivier. Representing the learning design of units of learning. Educa-
tional Technology & Society,, 7(3):97–111, 2004.

21 Charles W. Krueger. Software reuse. ACM Comput. Surv., 24(2):131–183, June 1992.
22 Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular interpret-

ers. In Proceedings of the 22Nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’95, pages 333–343, New York, NY, USA, 1995. ACM.

J.-L. Sierra 11

23 Sjouke Mauw, Wouter T. Wiersma, and Tim A. C. Willemse. Language-driven sys-
tem design. International Journal of Software Engineering and Knowledge Engineering,
14(6):625–663, 2004.

24 Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop domain-
specific languages. ACM Comput. Surv., 37(4):316–344, December 2005.

25 Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92, July
1991.

26 Martín Molina, José-Luis Sierra, and José Cuena. Reusable knowledge-based components
for building software applications: A knowledge modelling approach. International Journal
of Software Engineering and Knowledge Engineering, 9(3):297–317, 1999.

27 Albert Nymeyer. A grammatical specification of human-computer dialogue. Comput. Lang.,
21(1):1–16, 1995.

28 Jukka Paakki. Attribute grammar paradigms—a high-level methodology in language
implementation. ACM Comput. Surv., 27(2):196–255, June 1995.

29 Paolo Perrotta. Metaprogramming Ruby: Program Like the Ruby Pros. Pragmatic Bookshelf
Series. Pragmatic Bookshelf, 2010.

30 Ayende Rahien. DSLs in Boo: Domain Specific Languages in .Net. Manning Pubs Co
Series. Manning Publications Company, 2010.

31 Peter H. Salus. Little Languages and Tools. Macmillan Technical Publishing, 1st edition,
1998.

32 Antonio Sarasa-Cabezuelo and José-Luis Sierra. Grammar-driven development of json
processing applications. In Maria Ganzha, Leszek A. Maciaszek, and Marcin Paprzycki,
editors, FedCSIS, pages 1545–1552, 2013.

33 Antonio Sarasa-Cabezuelo and José-Luis Sierra. The grammatical approach: A syntax-
directed declarative specification method for xml processing tasks. Comput. Stand. Inter-
faces, 35(1):114–131, January 2013.

34 Antonio Sarasa-Cabezuelo, Bryan Temprado-Battad, Daniel Rodriguez-Cerezo, and José-
Luis Sierra. Building xml-driven application generators with compiler construction tools.
Comput. Sci. Inf. Syst., 9(2):485–504, 2012.

35 Michael L. Scott. Programming Language Pragmatics, Third Edition. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 3rd edition, 2009.

36 José-Luis Sierra, Baltasar Fernández-Manjón, and Alfredo Fernández-Valmayor. A
language-driven approach for the design of interactive applications. Interacting with Com-
puters, 20(1):112–127, 2008.

37 José-Luis Sierra, Alfredo Fernández-Valmayor, and Baltasar Fernández-Manjón. A
document-oriented paradigm for the construction of content-intensive applications. Com-
put. J., 49(5):562–584, 2006.

38 José-Luis Sierra, Alfredo Fernández-Valmayor, and Baltasar Fernández-Manjón. From doc-
uments to applications using markup languages. IEEE Softw., 25(2):68–76, March 2008.

39 Mark A. Simos. Organization domain modeling (odm): Formalizing the core domain mod-
eling life cycle. In Proceedings of the 1995 Symposium on Software Reusability, SSR ’95,
pages 196–205, New York, NY, USA, 1995. ACM.

40 Thomas Stahl, Markus Voelter, and Krzysztof Czarnecki. Model-Driven Software Develop-
ment: Technology, Engineering, Management. John Wiley & Sons, 2006.

41 Richard N. Taylor, Will Tracz, and Lou Coglianese. Software development using domain-
specific software architectures: Cdrl a011—a curriculum module in the sei style.
SIGSOFT Softw. Eng. Notes, 20(5):27–38, December 1995.

42 Arie van Deursen and Paul Klint. Little languages: Little maintenance. Journal of Software
Maintenance, 10(2):75–92, March 1998.

SLATE 2014

12 Language-Driven Software Development

43 Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages: An annotated
bibliography. SIGPLAN Not., 35(6):26–36, June 2000.

44 Markus Voelter, Sebastian Benz, Christian Dietrich, Birgit Engelmann, Mats Helander,
Lennart C. L. Kats, Eelco Visser, and Guido Wachsmuth. DSL Engineering - Designing,
Implementing and Using Domain-Specific Languages. dslbook.org, 2013.

45 Philip Wadler. How to declare an imperative. ACM Comput. Surv., 29(3):240–263, Septem-
ber 1997.

46 Tobias Walter, Fernando Silva Parreiras, and Steffen Staab. Ontodsl: An ontology-based
framework for domain-specific languages. In Proceedings of the 12th International Confer-
ence on Model Driven Engineering Languages and Systems, MODELS ’09, pages 408–422,
Berlin, Heidelberg, 2009. Springer-Verlag.

An Overview of Open Information Extraction
Pablo Gamallo

CITIUS
Universidade de Santiago de Compostela
Galiza, Spain
pablo.gamallo@usc.es

Abstract
Open Information Extraction (OIE) is a recent unsupervised strategy to extract great amounts
of basic propositions (verb-based triples) from massive text corpora which scales to Web-size
document collections. We will introduce the main properties of this extraction method.

1998 ACM Subject Classification I.2.6 Learning: Knowledge acquisition

Keywords and phrases information extraction, natural language processing

Digital Object Identifier 10.4230/OASIcs.SLATE.2014.13

Category Invited Talk

1 Introduction

Recent advanced techniques in Information Extraction aim to capture shallow semantic
representations of large amounts of natural language text. Shallow semantic representations
are conceived as an intermediate level in the process of structuring textual information.
In further processes, shallow semantics can be applied to more complex semantic tasks
involved in text understanding, such as textual entailment, filling knowledge gaps in text, or
integration of text information into background knowledge bases.

There is an emerging field in Information Extraction interested in applying shallow
semantics techniques, namely Machine Reading [7], Learning by Reading [4], or Discovery
Information1. In this new field, the different techniques used to perform the extraction are
not bound by a pre-specified schema of information, but rather they discover relational or
categorial structure automatically from given unstructured data using unsupervised strategies.

One of the most used strategies in this new field aimed at discovering shallow semantic
representations is known as Open Information Extraction (OIE). The main goal of OIE is to
extract a large set of verb-based triples (or propositions) from unrestricted text. An OIE
system reads in sentences and rapidly extracts one or more textual assertions, consisting
in a verb relation and two arguments, which try to capture the main relationships in each
sentence [3]. Wu and Weld [13] define an OIE system as a function from a document d, to a
set of triples, (arg1, rel, arg2), where arg1 and arg2 are verb arguments and rel is a textual
fragment (containing a verb) denoting a semantic relation between the two verb arguments.
Unlike other relation extraction methods focused on a predefined set of target relations,
the Open Information Extraction paradigm is not limited to a small set of target relations
known in advance, but extracts all types of (verbal) binary relations found in the text. The
main general properties of OIE systems are the following: (i) they are domain independent,

1 http://www.aha-workshop.de/

© Pablo Gamallo;
licensed under Creative Commons License CC-BY

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões; pp. 13–16

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2014.13
http://www.aha-workshop.de/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

14 An Overview of Open Information Extraction

(ii) they rely on unsupervised extraction methods, and (iii) they are scalable to large amouts
of text [6].

2 Basic Propositions

An OIE system extracts different triples (arg1, rel, arg2), representing basic propositions
or assertions from each sentence in a text. Propositions are defined as coherent and non
over-specified pieces of basic information. Consider for example the sentence:

In May 2010, the principal opposition parties boycotted the polls after accusations of
vote-rigging.

An OIE system must transform this sentence into a set of triples:

(“the principal opposition parties”, “boycotted”, “the polls”)
(“the principal opposition parties”, “boycotted the polls in”, “May 2010”)
(“the principal opposition parties”, “boycotted the polls after”, “accusations of vote-rigging”)

They represent coherent and non over-specified items of information organized by means of
three different relations: “boycotted”, “boycotted the polls in”, and “boycotted the polls
after”. Incoherent extractions would be for, instance, the following triples:

(“parties boycotted”, “after”, “accusations of vote-rigging”)
(“May 2010”, “boycotted”, “the polls”)

They are incoherent because, on the one hand, “parties boycotted” cannot be considered as
the argument of any relation and, on the other hand, “May 2010” should not be taken as the
subject argument of “boycotted”.

Examples of over-specified triples extracted from the same sentences are:

(“the principal opposition parties”, “boycotted the polls in May 2010 after accusations of ”,
“vote-rigging”)
(“the principal opposition parties”, “boycotted”,
“the polls in May 2010 after accusations of vote-rigging”)

They are over-specified since both the relation “boycotted the polls in May 2010 after
accusations of” and the argument “the polls in May 2010 after accusations of vote-rigging”
convey too much information to be useful in further semantic tasks, such as semantic
entailment or ontology population.

3 Overview of Different OIE Systems

A great variety of OIE systems has been developed in recent years. They can be organized in
two broad categories: those systems requiring automatically generated training data to learn
a classifier and those based on hand-crafted rules or heuristics. In addition, each system
category can also be divided in two subtypes: those systems making use of shallow syntactic
analysis (PoS tagging and/or chunking), and those based on dependency parsing. In sum,
we identify four categories of OIE systems:

(1) Training data and shallow syntax: The first OIE system, TextRunner [2], belongs to
this category. Two more recent versions of TextRunner, also using training data and shallow
syntactic analysis, are ReVerb [9] and R2A2 [8]. Another system of this category is WOEpos

[13] whose classifier was trained with corpus obtained automatically from Wikipedia.

P. Gamallo 15

(2) Training data and dependency parsing: These systems make use of training data
represented by means of dependency trees: WOEdep [13] and OLLIE [12].

(3) Rule-based and shallow syntax: They rely on lexical-syntactic patterns hand-crafted
from PoS tagged text: ExtrHech [15] and LSOE [14].

(4) Rule-based and dependency parsing: They make use of hand-crafted heuristics oper-
ating on dependency parses: ClauseIE [6], CSD-IE [5], KrakeN [1], and DepOE [11].

4 Evaluation and Conclusions

According to the experiments and evaluation we have performed [10], we showed that the rule-
based systems perform better than the classifiers based on automatically generated training
data. This is in accordance with previous work reported in [6, 5]. Moreover, the systems
based on dependency analysis improve over those relying on shallow syntax (TextRunner
and ReVerb). It follows that it is not necessary to make use of training data and machine
learning strategies to perform open information extraction. We just require a dependency
parser and a set of basic rules transforming the parses into triples.

Acknowledgments. This work was partially supported by Projects Celtic, Plastic (Innter-
conecta, FDTI), and HPCPLN (Xunta de Galicia).

References
1 Alan Akbik and Alexandre Loser. Kraken: N-ary facts in open information extraction.

In Joint Workshop on Automatic Knowledge Base Construction and Web-scale Knowledge
Extraction, pages 52–56, 2012.

2 Michele Banko, , and Oren Etzioni. The tradeoffs between open and traditional relation
extraction. In Annual Meeting of the Association for Computational Linguistics, 2008.

3 Michele Banko, Michael J Cafarella, Stephen Soderland, Matt Broadhead, and Oren Etzioni.
Open information extraction from the web. In International Joint Conference on Artificial
Intelligence, 2007.

4 K. Barker, B. Agashe, S. Chaw, J. Fan, N. Friedland, M. Glass, J. Hobbs, E. Hovy, D. Israel,
D.S. Kim, et al. Learning by reading: A prototype system, performance baseline and lessons
learned. In Proceeding of Twenty-Second National Conference of Artificial Intelligence
(AAAI 2007), 2007.

5 Hannah Bast and Elmar Haussmann. Open information extraction via contextual senten-
tence decomposition. In ICSC 2013, pages 154–159, 2013.

6 Luciano Del Corro and Rainer Gemulla. Clausie: Clause-based open information extraction.
In Proceedings of the World Wide Web Conference (WWW-2013), pages 355–366, Rio de
Janeiro, Brazil, 2013.

7 Oren Etzioni, Michele Banko, and Michael J. Cafarella. Machine reading. In AAAI Con-
ference on Artificial Intelligence, 2006.

8 Oren Etzioni, Anthony Fader, Janara Christensen, Stephen Soderland, and Mausam. Open
information extraction: the second generation. In International Joint Conference on Arti-
ficial Intelligence, 2011.

9 Anthony Fader, Stephen Soderland, and Oren Etzioni. Identifying relations for open in-
formation extraction. In Conference on Empirical Methods in Natural Language Processing,
2011.

SLATE 2014

16 An Overview of Open Information Extraction

10 Pablo Gamallo and Marcos Garcia. Open information extraction based on argument struc-
ture detection. In (submitted paper), 2014.

11 Pablo Gamallo, Marcos Garcia, and Santiago Fernández-Lanza. Dependency-based open
information extraction. In ROBUS-UNSUP 2012: Joint Workshop on Unsupervised and
Semi-Supervised Learning in NLP at the 13th Conference of the European Chapter of the
Association for Computational Linguistics (EACL 2012), Avignon, France, 2012.

12 Mausam, Michael Schmitz, Stephen Soderland, Robert Bart, and Oren Etzioni. Open lan-
guage learning for information extraction. In Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning, pages 523–534, 2012.

13 Fei Wu and Daniel S. Weld. Open information extraction using wikipedia. In Annual
Meeting of the Association for Computational Linguistics, 2010.

14 Clarissa C. Xavier, Marlo Souza, and Vera S. de Lima. Open information extraction based
on lexical-syntactic patterns. In Brazilian Conference on Intelligent Systems, pages 189–
194, 2013.

15 Alisa Zhilla and Alexander Gelbukh. Comparison of open information extraction for engish
and spanish. In Dialogue 2014, 2014.

Part II

Program Comprehension

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Conclave:
Writing Programs to Understand Programs
Nuno Ramos Carvalho1, José João Almeida1,
Maria João Varanda Pereira2, and Pedro Rangel Henriques1

1 Departamento de Informática/CCTC
Universidade do Minho, Braga, Portugal
{narcarvalho,jj,prh}@di.uminho.pt

2 Escola de Tecnologia e Gestão/CCTC
Instituto Politécnico de Bragança, Bragança, Portugal
mjoao@ipb.pt

Abstract
Software maintainers are often challenged with source code changes to improve software systems,
or eliminate defects, in unfamiliar programs. To undertake these tasks a sufficient understanding
of the system, or at least a small part of it, is required. One of the most time consuming tasks
of this process is locating which parts of the code are responsible for some key functionality or
feature.

This paper introduces Conclave, an environment for software analysis, that enhances pro-
gram comprehension activities. Programmers use natural languages to describe and discuss the
problem domain, programming languages to write source code, and markup languages to have
programs talking with other programs, and so this system has to cope with this heterogeneity
of dialects, and provide tools in all these areas to effectively contribute to the understanding
process. The source code, the problem domain, and the side effects of running the program are
represented in the system using ontologies. A combination of tools (specialized in different kinds
of languages) create mappings between the different domains. Conclave provides facilities for
feature location, code search, and views of the software that ease the process of understanding
the code, devising changes. The underlying feature location technique explores natural language
terms used in programs (e.g. function and variable names); using textual analysis and a collection
of Natural Language Processing techniques, computes synonymous sets of terms. These sets are
used to score relatedness between program elements, and search queries or problem domain con-
cepts, producing sorted ranks of program elements that address the search criteria, or concepts
respectively.

1998 ACM Subject Classification D.2.7 Distribution, Maintenance, and Enhancement – Re-
structuring, reverse engineering, and reengineering

Keywords and phrases software maintenance, software evolution, program comprehension, fea-
ture location, concept location, natural language processing

Digital Object Identifier 10.4230/OASIcs.SLATE.2014.19

1 Introduction

Reality shifts, bug fixes, updates or introduction of new features often require source code
changes. These software changes are usually undertaken by software maintainers that may
not be the original writers of the code, or may not be familiar with the code anymore. In
order to carry out these changes, programmers need to first understand the source code [41].
This task is probably the main challenge during software maintenance activities [10]. The

© Nuno Ramos Carvalho, José João Almeida,Maria João Varanda Pereira, and Pedro Rangel Henriques;
licensed under Creative Commons License CC-BY

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões; pp. 19–34

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2014.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

20 Conclave: Writing Programs to Understand Programs

programmer is able to understand the program when he or she can explain the source code,
and relate the code with the concepts in its problem domain [3].

Software reverse engineering is a process that tries to infer how a program works by
analyzing and inspecting its building blocks and how they interact to achieve their intended
purpose. Many of the techniques used in reverse engineering rely on mappings between
human oriented concepts (described using natural language), and program elements (im-
plemented using programming languages) [33]. These are often used to locate which parts
of the program are responsible for addressing specific domain concepts [3], and are usually
referred in the literature as feature location techniques [11].

Natural languages are used to describe and discuss real world problems, and programming
languages are used to develop computer programs that address these problems. Although,
programming languages have unambiguous grammars and limit the sentences that can be
used to write software, still give some degree of freedom to the programmer to use natural
language terms (e.g. program identifiers, constant strings or comments). These terms can
give clues about which concepts the source code is addressing, and the meaningfulness of
these terms can have a direct impact on future program comprehension tasks [24]. Most
of the programming communities promote the use of best practices and coding standards
that usually include rules and naming conventions that improve the quality of terms used
(e.g. the “Style Guide for Python Code”1). Feature location techniques that exploit such
elements and possible relations between different language domains are typically described
as textual analysis, often combined with static analysis [11].

This paper introduces Conclave2, a system of tools for software analysis. The main
goal of this system is to provide programmers with insight and information about software
packages to enhance program understanding activities and ease software maintenance tasks.
The system provides a set of facilities for searching and a feature location technique, that
measures semantic relatedness between source code elements, and elements supplied by the
maintainer as query searches. Several views provide mappings between source code and
real world concepts, facilitating feature location activities. The underlying feature location
technique uses source code static analysis to extract data from source code (e.g program
identifiers, function definitions). The extracted data is loaded to an ontology that represents
the program. Other ontologies can be added to the system if available (e.g. the problem
domain ontology, dynamic traces information). Using a set of Natural Language Processing
(NLP) techniques and textual analysis, kind-of Probabilistic Synonymous Sets (kPSS) are
computed for every element present in the ontologies, and a scoring function is used to
measure the semantic relatedness3 between them. The main output of this tool is a list of
ranks – sorted by relevance – of program elements that are prone to address some specific
real world domain concept. The system also provides a Domain Specific Language (DSL),
for writing search queries.

The next section introduces the Conclave system, including a brief description about
the major stages of the system workflow. Section 3 describes in more detail some tools
and results that can be produced using the system. Section 4 presents related work, and
introduces some state-of-the-art techniques for feature location. Section 5 describes the
experimental validation held to do a preliminary evaluation of some Conclave tools and

1 Available from: http://www.python.org/dev/peps/pep-0008/ (Last accessed: 29-01-2014).
2 Conclave website: http://conclave.di.uminho.pt (Last accessed: 10-03-2014).
3 In ontologies the term similarity is used to refer how similar two concepts are, and is usually based on
a hierarchy of is-a relations, in the context of this work concepts can be related in many ways, hence
the adoption of the term relatedness.

http://www.python.org/dev/peps/pep-0008/
http://conclave.di.uminho.pt

N.R. Carvalho, J. J. Almeida, M. J. V. Pereira, and P. R. Henriques 21

Figure 1 Overview of the major stages of the Conclave system workflow.

techniques, including results discussion. Finally, Section 6 presents some final remarks and
trends for future work.

2 Conclave Architecture Overview

The Conclave environment provides a set of tools to perform software analysis. The main
system workflow is divided in three stages: (a) collecting data; (b) processing collected data
and loading ontologies; and, (c) reasoning about data in the ontologies and providing views
of computed information. Figure 1 illustrates this workflow, and the next sections describe
in more detail the different stages. All the tools implemented in the context of this system
are modular (or work as plugins), and some provide web-services, so that they can be used
as standalone applications, or composed together to create more complex applications or
other workflows.

2.1 Collecting Data
This is the first stage of the main workflow; its goal is to collect data from a software
package, and any kind of problem specification if available. It takes as input the complete
package (and other available documents) and produces as output an heterogeneous collection
of resources. The processing tools involved in this stage can use different type of analysis:
static source code analysis (e.g. parsing code to extract identifiers and static call graphs),
dynamic analysis (e.g. execution traces), Natural Language Processing (NLP) approaches
(e.g. processing non-source code content for domain vocabulary), etc.

Any analysis can be used to collect information, and produce a resource. In the context
of this work, some tools were implemented to provide some initial data to the system and
contribute to PC in general, here are some examples:

Conc-clang: is a static analysis tool, based on the clang compiler library [22] for gathering
identifiers and static functions calls information for C/C++ programs;

Conc-antlr: is a static analysis tool, based on the ANTLR parser generator framework
[29], for gathering program identifiers information for Java programs;

SLATE 2014

22 Conclave: Writing Programs to Understand Programs

DMOSS: is a toolkit for software documentation assessment. It produces an attribute
tree representation of a software package, and other software related resources like the
documentation corpus that is used later to create a initial version of the problem ontology.
For more details about this framework refer to [8].

The heterogenous set of tools used during this stage produce a multitude of resources in
distinct formats. In order to take advantage of all these resources, all the information needs
to be conveyed to a common format, more suitable for querying and processing. Ontologies
were adopted as a common target format. Building ontologies from collected data is done
during the second stage, which is discussed in the next section.

2.2 Normalizing Information, Populating Ontologies
The main goal of this stage is to convey the data collected during the previous stage into
the system ontologies. The input of this stage is a collection of resources, and the output
is a set of populated ontologies. Usually three ontologies are populated for each software
package:

Program Ontology: abstract representation of some key program elements (e.g. methods,
functions, variables, classes);

Problem Ontology: concepts and relations in the problem domain;
World 4 Ontology: runtime effects of executing the program (e.g. program run traces).

There are two important details about this stage. The first one is the format and tech-
nology chosen to store the ontologies. A RDF based triple-store technology was adopted
to store the data. This allows for a scalable and efficient method for performing storing
and querying operations, and also allows to export the data in several community accep-
ted ontology formats (e.g. OWL, RDF/XML, Turtle) [19, 21]. Querying facilities are also
readily available; for instance, SPARQL is a querying domain specific language for RDF
triple-stores [30,32].

Although these technologies provide scalable and efficient environments for handling in-
formation, development wise, they are far from the abstraction desired by the applications
level implementation. To overcome this problem the Ontology ToolKit (OTK)4 was de-
veloped, which provides an abstraction layer on top of the RDF technology, to develop
ontology-aware applications. In practice, when applications developers want to perform an
ontology related operation, instead of using triple-store low level primitives, they can use
the abstraction layer. To motivate for the development of this abstract framework, con-
sider the modern Object-Relational Mappers (ORM) in the context of relational databases.
Which provide an abstraction layer and interface for programming languages to handle data
(stored in databases) as objects, allowing the development of applications regardless of the
underlying database technology used [20].

The second important detail is the data semantic shift. Resources tend to produce raw
data, but the data stored in the ontologies conveys a richer semantic. Most resources require
a specific tool to read the resource data, and translate it to information that is ready to
store in the ontology, i.e. follows the semantic defined by the ontology. OTK has also proven
useful to implement this family of tools.

4 Implemented as a set of libraries for the Perl programming language.

N.R. Carvalho, J. J. Almeida, M. J. V. Pereira, and P. R. Henriques 23

Figure 2 Program ontology sub-set of the class hierarchy.

A simple example to illustrate the previously discussed details follows. Imagine the
Conc-clang tool was used to process a C source code file, included in a software package.
The raw output of this tool is a set of lines that look something like5:

Function , source .c:: add ::6,add ,, source .c,6,8

This line by itself conveys small to none semantic of the data being included in the final
resource. In loose english this line states that: “in the ‘source.c’ file there is a ‘Function’
definition which has a identifier represent by the string ‘add’ that starts in line ‘6’ and ends
in line ‘8’ ”, and this is the kind of semantic that needs to be conveyed to the ontological
representation of the program. The Program Ontology has a class to represent instances of
elements that are functions in the source code, another for identifiers, and the line numbers
are stored as data proprieties6. To illustrate the use of OTK, the following snippet illustrates
a simplified version of the required code to load this information to the Program Ontology.

use OTK;
my $ontology = OTK ->new($pkgid , ’program ’);
$ontology -> add_instance (’add ’, ’Function ’);
$ontology -> add_instance (’add ’, ’Identifier ’);
$ontology -> add_data_prop (’add ’, ’hasLineBegin ’, 6, ’int ’);
$ontology -> add_data_prop (’add ’, ’hasLineEnd ’, 8, ’int ’);
$ontology -> add_obj_prop (’add ’, ’inFile ’, ’source .c ’);

The Program Ontology used is in line with other authors’ proposed descriptions (e.g.
[35,43,44]). This also eases future integration processes with other tools that followed similar
approaches. Figure 2 illustrates a subset of the class hierarchy exported to OWL. Once all
the data is stored in the ontologies, the reasoning layer can be used to relate information
gathered from different elements and domains to build semantic bridges between elements.
More details about this stage are discussed in the next section.

2.3 Reasoning and Views
During this stage more knowledge about the system is built and provided to the system
end-user. The tools in this stage use as input the ontologies built during the previous
stage, and generally fall in one of the two categories, either they: (a) process information to

5 More examples available in the tool website: http://conclave.di.uminho.pt/clang (Last accessed:
27-01-2014).

6 Although a triple-store RDF approach is used to store the actual information, we are using OWL
vocabulary and specification to make clear the aimed semantics for the program representation [2].

SLATE 2014

http://conclave.di.uminho.pt/clang

24 Conclave: Writing Programs to Understand Programs

Table 1 Some AbcMidi package characteristics.

Total Files Size (KLOC9) Total Ids. Multi-word Ids.

86 ∼ 33 3437 2142 (62%)

compute new information and knowledge about the system – usually in this case the tool
output is new content added to the ontologies; or (b) information or knowledge suitable for
visualization is built – in this case the output is a view about a particular aspect of the
package system.

Querying the ontology, and adding information if necessary, can easily be done using
the OTK framework. Also note that the tools in this stage are language agnostic, in the
sense that data about the source code (language dependent) has already been gathered, and
OTK tools do not depend anymore on the source language. For example, if a tool processes
identifiers, to get a list of the program identifiers simply query the Program Ontology using
OTK, as follows:

use OTK;
my $ontology = OTK ->new($pkgid , ’program ’);
my @identifiers = $ontology -> get_instances (’Identifier ’);

Conclave-Mapper, one of the tools described in the next section, is an example of
tools that are used during this stage.

3 Conclave Quick Tour

The goal of this section is to illustrate some practical applications of the Conclave system.
Two tools are introduced, and some features are illustrated. The software analyzed and
used in the next examples in this section is AbcMidi (version 2012.12.25)7, a package that
provides a set of tools to convert Abc8 files to the Midi format. Table 1 presents some
characteristics about this software package.

Figure 3 illustrates the Conclave web interface front page, the system is divided in
blocks, and most of the applications use resources produced by other blocks. The tools
presented in this section address two popular problems in the context of program compre-
hension: (1) splitting multi-term program identifiers, and (2) mappings between program
elements and real world concepts.

3.1 Splitting Identifiers: Lingua-IdSplitter
Lingua-IdSplitter (henceforth abbreviated LIdS) is a simple and fast algorithm that
addresses the problem of splitting soft words10 that compose an identifier. It handles abbre-
viations, acronyms, or any type of linguistic short-cuts (for example, use only the first letter
of a word). The algorithm calculates a ranked list of all the possible splits for an identifier,
based on a set of dictionaries, and the top entry in the rank is proposed as the correct split.

7 Available from http://abc.sourceforge.net/abcMIDI/ (Last accessed: 11-03-2014).
8 A text notation to represent music.
9 Thousands Lines of Code.
10Usually refers to words that are combined together to create an identifier without using an explicit
mark between them (e.g., “timesort”) [24].

http://abc.sourceforge.net/abcMIDI/

N.R. Carvalho, J. J. Almeida, M. J. V. Pereira, and P. R. Henriques 25

Figure 3 Conclave system web interface front page, main applications are divided in blocks.

Besides the actual split, the result includes the set of full terms that compose the identifier,
in case abbreviations were used for example. This technique can use an arbitrary set of
dictionaries, but one of the benefits introduced by this approach is the use of a software
specific dictionary computed automatically from a software package corpus – also computed
automatically and specific to each software package – using a combination of Natural Lan-
guage Processing (NLP) techniques. This dictionary enables the algorithm to correctly
handle identifiers splitting using arbitrary abbreviations or combinations of term specific to
the application domain, not prone to be present in more general programming dictionaries.
this technique can also cope with identifiers that use explicit marks, like underscores (e.g.,
“time_sort”) or the CamelCase notation (e.g., “timeSort”).

This tool is implemented as a Perl library that can be used in other tools and contexts,
and is available for download in the official Perl library archive11. In the context of PC this
is relevant when dealing with program identifiers (e.g., variable names, function names) that
were created using a combination of abbreviation and words. Correctly splitting program
identifiers has a direct impact on future programming comprehension techniques [24]. Even
a simple program can have thousands of identifiers, undertake this task manually would be
unfeasible, so the literature is rich on techniques to address this problem (e.g., [13, 14,23]).

In the Conclave system this tool retrieves the identifiers from the ontology, making it
independent of the programming language used. The resulting split and expansion sets are
loaded to the ontology and related to each identifier, so they are readily available for other
applications to use. Table 2 illustrates the split and term sets computed for some AbcMidi
identifiers, and Figure 4 is a screenshot of Conclave identifiers table for AbcMidi including
the splits and terms sets computed by LIdS.

LIdS algorithm for computing soft splits starts by computing all the possible valid strings
that can be found starting at every position of the identifier. A string is considered valid if
it is successfully found in any of the dictionaries being used. The next step is to build an
automaton, with all the strings found, to calculate all the possible sequence of nodes (paths),
that concatenate to rebuild the original identifier. The set of paths in the automaton defines

11Available from: http://search.cpan.org/dist/Lingua-IdSplitter/ (Last accessed: 18-03-2014).

SLATE 2014

http://search.cpan.org/dist/Lingua-IdSplitter/

26 Conclave: Writing Programs to Understand Programs

Table 2 AbcMidi identifiers examples, and corresponding splits and abbreviation expansions.

Identifier Splits Expands

mrest m | rest { multibar, rest }
timesig time | sig { time, signature }
chan chan { channel }

Figure 4 Conclave interface to view the splits and terms set for all identifiers in the package
being analyzed.

the set of string sequences that are candidates to be the identifier correct split. Next, the
algorithm computes the score for each candidate, creating a rank, where the top element
(the sequence with the higher score) is the resulting split.

The formula to calculate the score for a given sequence is analytically defined as:

score(S) =
(
∏length(S)

i=1 factor(Si)) + length(m)
length(S)2

where the multiplicand of factors (a factor is calculated for each element in the sequence)
plus the length of the longer string in the sequence, is normalized by the squared sequence
length. Each factor is calculated according to the formula:

factor(s, t, w) = length(s)× w

i.e., the length of the string found times the dictionary weight that validated the string.
The final result sets of terms are loaded to the program ontology, and related with the

corresponding identifier. These sets of terms, can then be used to compute relatedness with
words from other domains by other applications, like the one described in the next section.
More details about this technique in [7].

3.2 Creating Mappings: Conclave-Mapper
Conclave-Mapper is an application that relies on data computed by other tools (see
Sec. 2.1 and 2.2), to create relations between elements of any of the ontologies available
for a given package. The input for this application is a set of ontologies, and either a

N.R. Carvalho, J. J. Almeida, M. J. V. Pereira, and P. R. Henriques 27

search query, or a mapping query; and the output is a sorted rank of element relations, or a
mapping of element relations respectively. The Program Ontology represents the elements
of the program, a software maintainer can ask the application to compute the relations
between elements in the program and either a set of keywords provided in a search query,
or elements in other ontologies (e.g. Problem Ontology) using a mapping query. In the first
case, the result is a sorted rank of the program elements that are related with the keywords
provided in the search query, and in the latter a matrix of relatedness score between the
elements selected from both ontologies. Both approaches can be used to find which parts of
the code are responsible for implementing a domain concept – feature location.

A rank is defined as a collection of entries, where each entry contains the semantic
relatedness score, between the element and the search query. An element represents an
instance in any ontology (if elements of the Program Ontology are being used all other data
is also available: source file, begin and end line, identifier, etc.), so elements in different
ontologies can be related. A map is defined as a matrix, with an element for each row
and column; each cell in the matrix (besides its position information) contains the semantic
relatedness measure score for the corresponding elements.

The application implements two main functions to compute each one of the available
output types. The locate function creates a rank and has the following signature:

locate :: Query → Rank

This function, given a query, computes a rank, by iterating over all the elements being ana-
lyzed (defined by the search query), and for each element computing a semantic relatedness
score, and adding it to the rank as a new entry. The element set being searched and the
scoring function are defined by the search query. The mapping function creates a map and
has the following signature:

mapping :: Query → Query → ScoreFunction → Map

This function, given two queries, and a scoring function, calculates a matrix of elements
where each cell includes the relatedness score between the corresponding row and column
element. This provides a matrix of relations between all selected (program, application
domain, etc.) elements, that can be sorted by relevance. Figure 5 illustrates a possible view
of these mappings, highlighting the best relevance ranking between the application domain
and functions.

The Query type used before describes a query supplied by the user (a pre-defined set of
queries is also available via the system interface). A DSL was developed to describe these
queries (either search or mapping). Each query has at least three main components: (a)
keywords; (b) domain and range constrains (e.g. search only functions, or variables); and,
(c) the scoring function used to compute the relatedness score between the elements (all
except keywords have default values). To illustrate the DSL some query examples are given
below.

The following query performs a search for the words "color" and "schema", but only
analyses elements that are instances of the class Function.

[word=color word= schema class= Function]

The next query searches variables for the word "color", and uses the levenshtein word
distance algorithm [25], to compute the score. By default, the scoring function based on
kPSS is used.

SLATE 2014

28 Conclave: Writing Programs to Understand Programs

Figure 5 A mapping produced by Conclave-Mapper: on the left the Problem Ontology can be
used to constrain the concepts being searched, on the right the Program Ontology can be used to
constrain the range of which program elements are being analyzed, and in the center the resulting
rank sorted by relevance (hovering the program element shows the corresponding zone in the file
where the element appears).

[word=color class= Variable score= levenshtein]

The following query, searches all the functions, and for each function also considers all the
elements that are related with that function by the relation inFunction (defined in the
ontology):

[word=color class= Function aggr= inFunction]

The inFunction relation is used to link all the local variables and parameters to all the
functions (or methods depending on programming language) where they are defined and
used. In practice, the score for each element (function) is the average between computing
the score for the element itself, and the score for every local variable and parameter defined
in that function.

The score between two elements (or an element and a word) quantify how close they are
semantically related. This score is used to sort the ranks computed by the locate function
by relevance, or to highlight the cells that express close relatedness between elements in the
matrixes computed with the mapping function.

The main scoring function available in the Conclave system is the kpss function (used
by default), and is based on kPSS, which defines a formalism to describe synonymous sets
based on Probabilist Synonymous Sets (PSS) [5, 40]. These define synonymous sets based
on statistical analysis of parallel corpora.

Once a kPSS is available for a pair of words, the relatedness score between these words
can be calculated. The kpss function is used to compute this score (as a Float) and is defined
as:

N.R. Carvalho, J. J. Almeida, M. J. V. Pereira, and P. R. Henriques 29

kpss :: kPSS → kPSS → Float
kpss k1 k2 =

∑
[min (prob x) (prob y) |

x ← flatten k1, y ← flatten k2, word x == word y]

This function iterates over the flattened version of the kPSS, and sums the minimum prob-
abilities for terms that are common. The flattened version of the kPSS is simply a single
list of terms and corresponding probabilities.

Other scoring functions can be used to produced different ranks and mappings. The
levenshtein function is another example, this calculates the score as the word distance
between terms. Another function implemented in the system is the match function (this
helps simulating techniques based on grep12), that simply returns 1 if the words match, or
0 otherwise. Full details about Conclave-Mapper available in [6].

4 Related Work

Program Comprehension (PC) is a field of research concerned with devising ways to help
programmers understand software systems. In this context, feature (or concept) location is
the process of locating program elements that are relevant to a specific feature implement-
ation. This is typically the first step a programmer needs to perform in order to devise a
code change [3, 33].

Feature location techniques are usually organized by types of analysis: (a) dynamic
analysis, which is based in software execution traces, and examines programs runtime (e.g.
[1, 38]); (b) static analysis, based on static source code information, such as slicing, control
or data flow graphs (e.g. [9, 27, 37]); and (c) textual analysis, explore natural language
text found in programs like comments or documentation. This last type can be based on
Information Retrieval (IR) methods (e.g. [4, 26]), NLP (e.g. [18, 39]), or pattern matching
(sometimes also referred as grep-like) based approaches (e.g. [12]). For more details about
different trends and other approaches please refer to surveys [11] and [42].

The Conclave-Mapper underlying feature location technique uses a combination of
static and textual analysis, and ontologies. Examples of other approaches that explore the
same combination of analysis include: in [45], Zhao et al use a static representation of the
source code named BRCG (branch-reserving call graph) to improve connections between
features and computational units gathered using an IR technology; in [17], Hill et al present
a technique that exploits the program structure and also program lexical information; in [34],
Ratiu and Florian establish a formal framework that allows the classification of redundancies
and improper naming of program elements, which is used as a based to represent mappings
between the code and the real world concepts in ontologies; in [16], Hayashi et al proposed
linking user specified sentences to source code, using a combination of textual and static
analysis domain ontologies. Other applications of ontologies in software engineering in [15].

State-of-the-art feature location approaches involve combining techniques taking advant-
age of having data produced from different types of analysis (e.g. [23,26]).

5 Experimental Validations

This section describes two evaluations done for the tools illustrated in Section 3.

12 http://www.gnu.org/software/grep/ (Last accessed: 29-01-2014)

SLATE 2014

http://www.gnu.org/software/grep/

30 Conclave: Writing Programs to Understand Programs

HardSplit SoftSplit CorpDict
0%

50%

100%

52%

91%
95%

50%

92%
96%

precision
recall

Figure 6 Precision and recall means
for correct splits.

HardSplit SoftSplit CorpDict
0%

50%

100%

47%

86%
90%

45%

87% 90%precision
recall

Figure 7 Precision and recall means
for correct terms.

5.1 Splitting Evaluation
Section 3.1 describes the identifier splitting technique available in Conclave. This section
briefly describes the experimental study undertaken to evaluate the technique ability to
correctly split and expand multi-term identifiers. The following research questions were
defined:
RQ1: What is the percentage of identifiers in a program that LIdS can correctly split?
RQ2: What is the percentage of identifiers in a program that LIdS can correctly split and
expand in case abbreviations were used?

To help answering these questions the following experience was performed:
Step 1: Create the oracle, i.e., for every AbcMidi identifier manually create the correct split

set, and correct term set. (this was done by the authors, and in cases where the was not
an agreement, or the original programmer purpose was not clear, the identifier was not
included).

Step 2: Compute the split and terms sets for every identifier in the oracle using LIdS hard-
split function.

Step 3: Compute the split and terms sets for every identifier in the oracle using LIdS soft-
split function, providing general purpose dictionaries.

Step 4: Compute the split and terms sets for every identifier in the oracle using LIdS soft-
split function, providing general purpose dictionaries and the software specific dictionary.

Step 5: Compare sets computed in Step 2-4 and the sets manually created in Step 1 and
measure precision and recall.

For a given identifier id to split let the oracle split set be: o = {o1, o2, ..., on}, and
s = {s1, s2, ..., sn} the computed split, then the precision and recall are calculated as:

precision = |o ∩ s|
|s|

recall = |o ∩ s|
|o|

where |x| represents the cardinality of x. The same formulae are applied when calculating
the measures for correct terms, but using the calculated sets of terms instead of splits.

Figures 6 and 7 illustrate the measurement results. For this software package the pro-
posed technique was able to correctly split and expand almost all identifiers (precision and
recall in the order of 90%). More details about this evaluation and comparisons with other
techniques in [7].

N.R. Carvalho, J. J. Almeida, M. J. V. Pereira, and P. R. Henriques 31

Table 3 Better effective measure for different approaches for the jEdit benchmark.

Scoring Analyzed Better Eff.
Function Bugs Measure

match 150 22
kPSS 150 51

5.2 Query Search Evaluation
Section 3.2 describe the underlying technique used in the Conclave system for feature
location, based on kPSS. This section describes the preliminary evaluation done, to verify
if this technique introduces benefits over other common techniques. In current available
IDEs, common search facilities available to programmers, are still grep-like approaches, so
the following research question was formulated:
RQ1: How does the kpss scoring function performs, when compared to the match scoring

function, for finding relevant elements of the code given a search query?
To help answering this question the following experience was performed:
Step 1: in order to ease the process or replicating this experience the benchmark provided

by Dit et al13 for the jEdit14 editor (version 4.3) was used, instead the devising a new
data set. The benchmark contains a set of 150 bug reports, including the function set
that was changed to resolve the bug (referred as the gold set) – more details about the
benchmark in [11];

Step 2: the title for each bug report was extracted, stop words15 were removed, and the
resulting set was archived as keywords;

Step 3: for each bug report, the locate function to compute a rank was called, using the
match scoring function, the keyword set computed in Step 2, and setting as range the
Function program element;

Step 4: replicate Step 3 but using the kpss scoring function;
Step 5: calculate the effectiveness measure for each resulting rank.

The effectiveness measure is calculated by analyzing the computed rank in order, and
its value is the first position of the rank that is a relevant function. Functions that are part
of the set of functions changed to resolve the bug (the gold set) are considered relevant.
The rank position can be compared for different scoring functions to measure which rank
produced the best results. This approach was also used in [31] and [36] for comparing feature
location techniques performance.

The results of this experience are presented in Table 3. They show that for this software
package the kPSS based scoring approach produced a better result 51 times, outperforming
the 22 better results achieved by the simple match function. The remaining times either both
approaches scored the same, or none of the relevant functions were found in the resulting
rank.

Although these results are satisfactory, they do not provide enough empirical data to
generalize the performance of kPSS based techniques. Also, the keywords used to build the
queries and the functions gold sets are a threat to validity because: (a) the keywords set
was built automatically from reports titles that sometimes lack relevant terms, or use only

13Available from: http://www.cs.wm.edu/semeru/data/benchmarks/ (Last accessed: 29-01-2014).
14Available from: http://www.jedit.org/ (Last accessed: 29-01-2014).
15Common words that tend to express poor semantics (e.g. “the”, “a”, “too”) [28].

SLATE 2014

http://www.cs.wm.edu/semeru/data/benchmarks/
http://www.jedit.org/

32 Conclave: Writing Programs to Understand Programs

ambiguous words (e.g. “bug”), a human would be more prone to devise a set of terms (after
reading the report) that would create a more accurate rank; (b) sometimes, when fixing
bugs, the actual defect is really not related to the concepts functions are addressing, which
translates in changing code unrelated to search queries. Full details about this experiment
and other case studies in [7].

6 Conclusion

Systems like Conclave enables software engineers to devise mappings between the source
code and problem domain concepts. These relations help the programmer to understand
quicker the software, and discover which areas of the code need changing to address a specific
feature or bug fix.

Many tools and techniques can be used to gather information about programs and the
problem domain. The quicker the information is abstracted, the quicker other applications
can use it. Using ontologies allows the combination of heterogenous results and data in a
single representation format. Also, applications can take advantage of a panoply of tools
available (e.g. inference engines, descriptive logics, OTK-like frameworks), to perform data
analysis and relate elements in different domains. kPSS based feature location is a sound
example of such applications. The OTK framework for abstracting ontology operations from
the underlying technology has proven a valuable asset during applications implementation.

The main trends for future work include devising new functions to score relations between
elements in the different ontologies, as well as combinations of approaches to produce more
resources, and to convey more semantic information to ontologies with current available
resources.

Acknowledgements. This work is funded by National Funds through the FCT – Fundação
para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within
project PEst-OE/EEI/UI0752/2014.

References
1 Giuliano Antoniol and Y.-G. Guéhéneuc. Feature identification: An epidemiological meta-

phor. Software Engineering, IEEE Transactions on, 32(9):627–641, 2006.
2 Sean Bechhofer, Frank Van Harmelen, et al. Owl web ontology language reference. W3C

recommendation, 10:2006–01, 2004.
3 T. J. Biggerstaff, B.G. Mitbander, and D. Webster. The concept assignment problem in

program understanding. In Proceedings of the 15th international conference on Software
Engineering, pages 482–498. IEEE Computer Society Press, 1994.

4 David Binkley and Dawn Lawrie. Information retrieval applications in software develop-
ment. Encyclopedia of Software Engineering, 2010.

5 Nuno Ramos Carvalho, José João Almeida, Maria João Varanda Pereira, and Pedro Rangel
Henriques. Probabilistic synset based concept location. In SLATE’12 – Symposium on
Languages, Applications and Technologies, June 2012.

6 Nuno Ramos Carvalho, José João Almeida, Maria João Varanda Pereira, and Pedro Ran-
gel Henriques. Conclave: Ontology-driven measurement of semantic relatedness between
source code elements and problem domain concepts. In 14th International Conference on
Computational Science and Its Applications (ICCSA), 2014. [forthcoming].

7 Nuno Ramos Carvalho, José João Almeida, Maria João Varanda Pereira, and Pedro Rangel
Henriques. From source code identifiers to natural language terms. Journal of Systems and
Software, 2014. [under review process].

N.R. Carvalho, J. J. Almeida, M. J. V. Pereira, and P. R. Henriques 33

8 Nuno Ramos Carvalho, Alberto Simões, and José João Almeida. Open source software
documentation mining for quality assessment. In Advances in Information Systems and
Technologies, volume 206 of Advances in Intelligent Systems and Computing, pages 785–
794. Springer Berlin Heidelberg, 2013.

9 Kunrong Chen and Václav Rajlich. Case study of feature location using dependence graph.
In 8th International Workshop on Program Comprehension. IEEE, 2000.

10 T.A. Corbi. Program understanding: Challenge for the 1990s. IBM Systems Journal,
28(2):294–306, 1989.

11 Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. Feature location
in source code: a taxonomy and survey. Journal of Software: Evolution and Process, 2013.

12 George W. Furnas, Thomas K. Landauer, Louis M. Gomez, and Susan T. Dumais. The
vocabulary problem in human-system communication. Communications of the ACM,
30(11):964–971, 1987.

13 Latifa Guerrouj, Massimiliano Di Penta, Giuliano Antoniol, and Yann-Gaël Guéhéneuc.
Tidier: an identifier splitting approach using speech recognition techniques. Journal of
Software Maintenance and Evolution: Research and Practice, 2011.

14 Latifa Guerrouj, Philippe Galinier, Y. Gueheneuc, Giuliano Antoniol, and Massimiliano
Di Penta. Tris: A fast and accurate identifiers splitting and expansion algorithm. In
Reverse Engineering (WCRE), 2012 19th Working Conference on. IEEE, 2012.

15 Hans-Jörg Happel and Stefan Seedorf. Applications of ontologies in software engineering. In
Proc. of Workshop on Sematic Web Enabled Software Engineering"(SWESE) on the ISWC,
pages 5–9. Citeseer, 2006.

16 Shinpei Hayashi, Takashi Yoshikawa, and Motoshi Saeki. Sentence-to-code traceability
recovery with domain ontologies. In Software Engineering Conference (APSEC), 2010
17th Asia Pacific, pages 385–394. IEEE, 2010.

17 Emily Hill, Lori Pollock, and K. Vijay-Shanker. Exploring the neighborhood with dora to
expedite software maintenance. In Proceedings of 22nd IEEE/ACM international confer-
ence on Automated software engineering, pages 14–23, 2007.

18 Emily Hill, Lori Pollock, and K. Vijay-Shanker. Automatically capturing source code
context of nl-queries for software maintenance and reuse. In Proceedings of the 31st Inter-
national Conference on Software Engineering. IEEE, 2009.

19 I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL:
the making of a web ontology language. Web Semantics: Science, Services and Agents on
the World Wide Web, 1(1):7–26, 2003.

20 Wolfgang Keller. Mapping objects to tables. In Proc. of European Conference on Pattern
Languages of Programming and Computing, Kloster Irsee, Germany. Citeseer, 1997.

21 Graham Klyne, Jeremy J. Carroll, and Brian McBride. Resource description framework
(rdf): Concepts and abstract syntax. W3C recommendation, 10, 2004.

22 Chris Lattner. Llvm and clang: Next generation compiler technology. In The BSD Con-
ference, pages 1–2, 2008.

23 D. Lawrie and D. Binkley. Expanding identifiers to normalize source code vocabulary. In
27th IEEE International Conference on Software Maintenance, pages 113–122, 2011.

24 D. Lawrie, C. Morrell, H. Feild, and D. Binkley. What’s in a name? a study of identifiers.
In 14th International Conference on Program Comprehension, 2006.

25 Vladimir Iosifovich Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. Soviet Physics Doklady, 10:707–710, 1966.

26 A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic. An information retrieval approach to
concept location in source code. In Reverse Engineering, 2004. Proceedings. 11th Working
Conference on, pages 214–223. IEEE, 2004.

SLATE 2014

34 Conclave: Writing Programs to Understand Programs

27 Andrian Marcus, Vaclav Rajlich, Joseph Buchta, Maksym Petrenko, and Andrey Sergeyev.
Static techniques for concept location in object-oriented code. In Program Comprehension,
2005. IWPC 2005. Proceedings. 13th International Workshop on, pages 33–42. IEEE, 2005.

28 James H Martin and D Jurafsky. Speech and language processing, 2000.
29 Terence Parr. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, 2013.
30 Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity of sparql.

In The Semantic Web-ISWC 2006, pages 30–43. Springer, 2006.
31 Denys Poshyvanyk, Y.-G. Guéhéneuc, Andrian Marcus, Giuliano Antoniol, and Vaclav Ra-

jlich. Feature location using probabilistic ranking of methods based on execution scenarios
and information retrieval. IEEE Transactions on Software Engineering, 2007.

32 Eric Prud’Hommeaux, Andy Seaborne, et al. Sparql query language for rdf. W3C recom-
mendation, 15, 2008.

33 V. Rajlich and N. Wilde. The role of concepts in program comprehension. In Program
Comprehension, 2002. Proceedings. 10th International Workshop on. IEEE, 2002.

34 Daniel Ratiu and Florian Deissenboeck. How programs represent reality (and how they
don’t). In Reverse Engineering, 2006. WCRE’06. 13th Working Conference on, pages 83–
92. IEEE, 2006.

35 Daniel Ratiu and Florian Deissenboeck. From reality to programs and (not quite) back
again. In Program Comprehension, 2007. ICPC’07. 15th IEEE International Conference
on, pages 91–102. IEEE, 2007.

36 Meghan Revelle, Bogdan Dit, and Denys Poshyvanyk. Using data fusion and web mining
to support feature location in software. In Program Comprehension (ICPC), 2010 IEEE
18th International Conference on, pages 14–23. IEEE, 2010.

37 Martin P. Robillard. Topology analysis of software dependencies. ACM Transactions on
Software Engineering and Methodology (TOSEM), 17(4):18, 2008.

38 H. Safyallah and K. Sartipi. Dynamic analysis of software systems using execution pattern
mining. In 14th IEEE International Conference on Program Comprehension, 2006.

39 David Shepherd, Zachary P. Fry, Emily Hill, Lori Pollock, and K. Vijay-Shanker. Using
natural language program analysis to locate and understand action-oriented concerns. In
Proceedings of the 6th international conference on Aspect-oriented software development,
pages 212–224. ACM, 2007.

40 Alberto Simões, José João Almeida, and Nuno Ramos Carvalho. Defining a probabilistic
translation dictionaries algebra. In XVI Portuguese Conference on Artificial Inteligence –
EPIA, pages 444–455, September 2013.

41 A. Von Mayrhauser and A.M. Vans. Program comprehension during software maintenance
and evolution. Computer, 28(8):44–55, 1995.

42 Norman Wilde, Michelle Buckellew, Henry Page, Vaclav Rajlich, and LaTreva Pounds. A
comparison of methods for locating features in legacy software. Journal of Systems and
Software, 2003.

43 Michael Würsch, Giacomo Ghezzi, Gerald Reif, and Harald C. Gall. Supporting developers
with natural language queries. In Proceedings of the 32nd ACM/IEEE International Con-
ference on Software Engineering-Volume 1, 2010.

44 Yonggang Zhang. An Ontology-based Program Comprehension Model. PhD thesis, Concor-
dia University, Montreal, Quebec, Canada, 2007.

45 Wei Zhao, Lu Zhang, Yin Liu, Jiasu Sun, and Fuqing Yang. Sniafl: Towards a static
noninteractive approach to feature location. ACM Trans. Softw. Eng. Methodol., 15(2):195–
226, April 2006.

Leveraging Program Comprehension with
Concern-oriented Source Code Projections

Jaroslav Porubän and Milan Nosáľ

Department of Computers and Informatics,
Faculty of Electrical Engineering and Informatics,
Technical University of Košice
Letná 9, 042 00, Košice, Slovakia
jaroslav.poruban@tuke.sk, milan.nosal@gmail.com

Abstract
In this paper we briefly introduce our concern-oriented source code projections that enable look-
ing at same source code in multiple different ways. The objective of this paper is to discuss
projection creation process in detail and to explain benefits of using projections to aid program
comprehension. We achieve this objective by showing a case study that illustrates using projec-
tions on examples. Presented case study was done using our prototypical tool that is implemented
as a plugin for NetBeans IDE. We briefly introduce the tool and present an experiment that we
have conducted with a group of students at our university. The results of the experiment indicate
that projections have positive effect on program comprehension.

1998 ACM Subject Classification D.2.6 Programming Environments, D.2.11 Software Architec-
tures

Keywords and phrases concern-oriented source code projections, program comprehension, pro-
jectional editing, code projections, programming environments

Digital Object Identifier 10.4230/OASIcs.SLATE.2014.35

1 Introduction

Program comprehension is a process of retrieving information and knowledge about a
software system by studying its source code. It is a process of recreating the mapping
between the problem and the solution (implementation) domain that was created during
the implementation phase of the software. Solutions in this area aim to reduce the amount
of time needed for understanding the program source code. More radical solutions, like for
example literate programming [12] or elucidative programming [14], were not adapted in
the industry, probably because they were too distant from the industrial practice. In our
previous work in this area presented in [11] we proposed a concept of concern-oriented source
code projections. Concern-oriented source code projections overcome static structure of the
source code by providing means to dynamically request a concrete view of the source code
based on its concerns. In our method proposal specific concerns are associated with the
source code by a metadata facility.

In this paper we continue in research presented in [11] and we discuss the process of
creating projections. In addition we provide a case study that explains projections on a
Minesweeper implementation in Java programming language. We have also implemented a
tool prototype to experimentally evaluate the significance of concern-oriented source code
projections for program comprehension.

© Jaroslav Porubän and Milan Nosáľ;
licensed under Creative Commons License CC-BY

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões; pp. 35–50

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2014.35
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

36 Leveraging Program Comprehension with Concern-oriented Source Code Projections

2 Concern-oriented Source Code Projections

Many times one source code is considered good by one programmer and bad by another
one. In our work we recognize that the problem of multiple viewpoints to the source code
quality is, to some degree, a consequence of static structuring of the source code. As
time and programmer’s experience changes, the programmer would choose different design,
different code structure as best. The evaluation also depends on the problem that the
programmer currently deals with. The problem of current approaches such as the object-
oriented programming or aspect-oriented programming is that they allow the structure
to meet some concrete needs, but adaptation of the structure to the new needs requires
rebuilding the whole solution. Each new programmer has to work with the design that was
previously chosen by someone else. They have to grasp a mental model of someone else even
when the original design decisions are not relevant anymore. The comprehension of such a
code is significantly impeded.

Our code projections are based on dynamic structuring of program’s source code. By
dynamic source code structuring we mean multiple different structures of the source code at
the same time. In a specific situation the programmer would be able to choose the structure
that he/she currently considers the most relevant. One structure is base structure (we can
look at a base structure as a serialization structure of the system). Base structure is used to
initially implement the system. Other concern-oriented source code structures are dependent
on the base structure. A concern-oriented source code structure is a view of the source code
that takes into account source code concerns (int this way it relates to an aspect from AOP).
Concern-oriented source code projections can overlap; the same piece of code can belong to
multiple projections.

These concern-oriented structures have to be properly presented to programmer; otherwise
they would be useless for program comprehension. A code projection maps a set of base
source code structures to a set of views. The special Identity projection defines a view that
is identical to base source code structure; therefore it has to fully describe the system. A
single view consists of source code fragments that share a concern (or a set of concerns). We
will call these fragments view members. Relations between view members may be explicitly
expressed in the view – e.g., a view can be graphical. A concrete code projection is specified
by a sentence in a program query language (PQL). Practically any PQL can be used; however,
it has to support querying some form of custom metadata. E.g., then a projection can query
for code that implements logging, etc.

A programmer creates a projection query that specifies which concerns are relevant to
his/her current situation. Projection queries can be shared and stored for later reuse, or
modified if necessary. The concept of the code projections is outlined in Figure 1.

To provide code projections there has to be a tool that would be able to create a view
while managing the source code in its base structure. In case of code projections we see
as a best option utilization of the IDE thanks to its approach to handle language in its
infrastructure (considering IDE is an integrated set of language tools). An IDE usually works
with language on three levels – notation, model and view. The notation level is the language
concrete syntax that is used to serialize a sentence of the language to the file system. The
model is basically a form of abstract syntax tree that is obtained by parsing a sentence.
The view is a presentation syntax of the language that is shown to the programmer. IDE
components usually work upon the language model. The transition from the model to the
view is done by the editor component of the IDE (there may be multiple different editors for
one language). To provide code projections all that needs to be done is a substitution or

J. Porubän and M. Nosáľ 37

Figure 1 The concept of the concern-oriented source projections.

modification of an editor within the existing IDE. Since the editor works mainly with language
model (abstract language representation), the concern-oriented source code projections are a
specialized case of projectional editing discussed by Fowler in [3].

3 How to Create Projection Specification

As we have argued in previous section, our motivation for having different views of the
software implementation is the variability of forces that affect the evaluation of the source
code quality. In this section we will discuss the process of creating projections that provide
programmers with those views.

Considering how a particular projection is created, we have following projection types:

annotation-based projections that are based on explicit embedded metadata that are
attached to source code just to create a projection,
configuration-based projections that are based on explicit configuration or code conventions
that are used to configure some framework or a tool, and
source intrinsic projections that are based on the analysis of the rest of the source code.

A special case of projection is a projection composition that composes multiple different
projections. Component projections may belong to different categories according to their
creation. An example of a composite projection is a projection that shows all controllers
(MVC pattern) that work with user profiles. First component of the projection is a projection
showing all controllers and the second one a projection showing classes working with user
profiles.

3.1 Need of Annotations
One of the biggest problems of program comprehension is the semantic gap between pro-
gram representations on different abstraction levels. This covers also notoriously known
semantic gap between model and implementation. However, the same can be observed on
more fine-grained levels, such as in different source code representation. For example, let

SLATE 2014

38 Leveraging Program Comprehension with Concern-oriented Source Code Projections

us consider a software system implemented in Java. The implementation represented in
Java source code will provide the reader with comments. Compilation, however, discards
comments. Compilation will reduce explicit information about the program from its current
representation. Moving from higher abstraction level to lower one decreases the amount of
problem domain information.

The process of mapping the program representation from its current abstraction level to
a higher one is the topic of program comprehension. Although there are attempts to aid
comprehension with automatic program analysis (reverse engineering) these attempts are still
not effective enough to significantly help the programmer. Usually the reverse engineering
tools just provide a few source intrinsic projections of the program (e.g., visual projection
showing the class diagram).

This is the reason why we believe that we have to record the mapping between the
problem domain (model) and the solution domain (implementation) explicitly in every
program representation. To record this knowledge in the source code any appropriate
embedded metadata format can be used. Source code annotations, structured comments,
code conventions or any other embedded format that will preserve the knowledge close to
the source code (a brief comparison of metadata formats can be found in [9]). Explicit
recording of the design decisions and high level semantic properties is a basis for annotation-
based projections and moreover, it tightly couples the requirements and model to the
implementation.

Annotation-based projections are the most expensive to create because they require
the programmer to explicitly add declarative marks to the source code. These embedded
metadata do not have semantics in a formal meaning, their presence in the source code does
not change the behaviour of a program. However, they significantly narrow the semantic
gap between the problem domain and the solution domain and this fact is a motivation for
their creation. Even comments can be used to create annotation-based projections if they
are structured. Using the method we proposed in [10] we can also use the concern-oriented
annotations to generate documentation for the source code.

There are two scenarios for creating annotation-based projections. In the first scenario
source code author records his design decisions and program requirements implemented by
particular source code element seamlessly along with implementation. In the second scenario
a new programmer is trying to comprehend existing source code and records his current
understanding (in other words he is making notes).

3.2 Configuration-based Projections
Configuration-based projections use additional information in the source code that was not
primarily intended for projections. For example, let us assume that a programmer uses Java
Persistence API (JPA) compliant ORM mapping framework (such as Hibernate) for object
persistence. To define mapping between the database and classes he/she has to provide an
appropriate configuration. This could mean marking all the entity classes with the @Entity
and @Table annotations and their fields with @Column, @Id, @Basic, etc., respectively. This
configuration information is processable by a projection tool to provide views that are specific
for a domain for which the framework was implemented (in case of JPA the data persistence
domain).

This category of projections covers also code conventions. If we have classes to follow
Java Beans convention we can easily identify all the methods that are used to access fields of
classes. They all start with ‘get’ prefix. In [9] we have included naming and type conventions
as a metadata format. Here we argue that every convention can be considered a metadata

J. Porubän and M. Nosáľ 39

format and in consequence is a viable input for concern-oriented source code projections.
Using conventions we can provide multiple projections for existing projects without requiring
any additional effort from their authors.

Conventions have been and still are used as a configuration format in multiple frameworks
and tools and their popularity grows with application of the Convention over Configuration
(COC) design pattern. COC requires users of a framework to follow some conventional
decisions (such as a particular naming convention, etc.) and for that they do not have to
specify configuration for the framework that is usually complex. If the programmers do not
want to spend a lot of time configuring the framework, they can choose to go with default
settings and enjoy fast product delivery. Let us take a look on the Hibernate framework
again. Since Hibernate uses COC design pattern all we have to do to have an entity class
persisted is to mark it with the @Entity annotation. If we do not configure deviations from
the default the framework conventionally maps class names to the identically named database
tables and the fields to its columns, respectively. Therefore the configuration knowledge
about the entity class is present in the source code (although less explicit). Since COC is
usually applied with the Principle of Least Astonishment, the information “recorded” by
conventions can be easily extracted from the source code. E.g., if we want to extract the
names of persisted fields of an entity class, we can just take names of all the field of the class
that are not marked with @Exclude annotation (@Exclude explicitly marks a field as not
persisted).

This type of projections requires additional work from the programmers as well, however,
this effort is motivated by the benefits gained from using external frameworks or tools1. How-
ever, the semantic gap between the problem and solution domains is wider. A configuration
domain is usually an implementation domain (e.g., model-view-controller pattern) or a very
specific problem domain (e.g., object-relational mapping domain).

3.3 Source Code Queries
The last type of projections are source intrinsic projections. In this case there is no need for
any additional effort in form of conventions, annotations or comments from the programmer
to enhance the source code. The bare implementation is projected using just queries in a
PQL. An example of such a projections are projections implemented in current IDEs. Find
usages projection shows all the usages of a particular program element (e.g., all method
calls). Reverse engineering deals with this category of projections. E.g., a reverse engineering
tool can build a class diagram of the implementation thus realizing a graphical projections of
the system.

In this case we expect each line of code to directly effect the execution of the program.
This is a direct benefit of writing the source code. However, the semantic gap is wider then
in the other two projection types. A programmer transforms requirements in the problem
domain to implementation in the solution domain (general purpose language). During this
transformation the problem domain dissolves in the implementation.

3.4 Summary
These three projection types differ in effort and costs needed to prepare them. Figure 2
summarizes their nature. Source intrinsic projections can be done upon any implementation

1 A programmer is not marking an entity class with @Entity to include it to a projection. He/she does it
so the class would be processed by the JPA tool. The projection is just a by-product.

SLATE 2014

40 Leveraging Program Comprehension with Concern-oriented Source Code Projections

Annotation-based projections

Configuration-based projections

Source intrinsic projections

Abstraction level
grows (semantic
gap narrows)

Execution effect
grows (higher
immediate benefit)

Figure 2 Different projection types.

but they lack proximity to the problem domain. Annotation-based projections require the
code author to explicitly record his decisions and requirements that are implemented by
the source code. This way annotation-based projections push the implementation closer
to the problem domain. However, they require additional effort from the programmer. A
compromise between the two are configuration-based projections that use conventions or
configuration metadata. These metadata slightly narrow the semantic gap and their use is
motivated enough even without projections.

4 Minesweeper Case Study

To illustrate concern-oriented source code projections on a meaningful example we will take
a look at a Minesweeper game implemented in Java. The game is a simple reincarnation of
the notoriously known Microsoft Minesweeper game that was distributed with the Windows
OS family. Our Java Minesweeper has a text-based console user interface and has standard
features such as monitoring the game state, opening tiles, marking tiles, etc.

In Figure 3 there is a simplified class diagram of the whole project. All the classes of the
project represent the base structure of the implementation. However, Figure 3 is already a
manually created projection – it hides the implementation of the methods and shows only
the overall structure of the program.

4.1 Game State Semantic Concern
One of the core concepts of the game is the need to monitor the current state of the game
and to behave according to that. The game starts with the state of generating the playing
field. In this state the game is not playable. After the field is populated it gets the playing
game state. In this state a player can play the game, he/she can open and mark tiles. Then
we need at least two other states representing victory and game loss. These game states
indicate that the game ended and that the player should not be able to interact with the
game field anymore. A change of the state triggers some additional actions, such as recording
a new high score or notifying the player that the game is over. In Figure 4 there is a state
diagram of the game that represents a requirement for the implementation.

We had explicitly recorded the ‘Game state management’ concern of the source code
in the implementation. To illustrate the ‘Game state management’-oriented projection we
have created a concrete view with our prototype implementation and it is shown in Figure 5.
Its view members include the enumeration type for the game state and an attribute and
methods of the Field class that are used to manage the current game state. Comments
highlighted in green explain mapping the view back to the base structure of the program.

A skilled programmer might argue that in this case all we needed to do was to find all
places where the Field.state is set. This is true. However, the knowledge that Field.state
attribute is the right place where to start can be done only by code examination (unless we

J. Porubän and M. Nosáľ 41

Clue

-value: int

+getValue(): int

Field

-rowCount: int
-columnCount: int
-mineCount: int

+openTile(row: int, column: int)
+markTile(row: int, column: int)
+getState(): GameState
+openTile(row: int, column: int)
+markTile(row: int, column: int)
+unmarkTile(row: int, column: int)
-isSolved(): boolean
-generate()
-countAdjacentMines(row: int, column: int): int
-getNumberOf(state: Tile.State): int

Mine

Tile.State
<<enumeration>>

+OPEN
+CLOSED
+MARKED

GameState
<<enumeration>>

+GENERATING
+PLAYING
+SOLVED
+FAILED

-state 1

Tile

+getState(): Tile.State
~setState(state: Tile.State)

-tiles

0..*,0..*

-state 1

* ConsoleUI

+newGameStarted(field: Field)
+update()
-readLine(): String
-processInput()

-field

1

Minesweeper

+main(args: String)
+getInstance(): Minesweeper
+addHighScore(name: String, time: int)
+...()

-userInterface1

-instance
1

Figure 3 Simplified class diagram of the Minesweeper game.

PLAYING

FAILEDSOLVED

openTile : [tileIsMine] openTile : [isSolved]

openTile : [not (isSolved or tileIsMine)]

GENERATING

generate

Figure 4 State diagram of the game state.

are authors of the code and we remember it). Here we used an explicit mark that annotates
all program elements that manage the game state.

A source code projection based on this concern might be useful in multiple situations. It
would simplify searching for a possible bug in a game state management, ease its comprehen-
sion for a new contributor to the project or simplify adding a new state to the game if that
would be needed. Locating all the source code artefacts that would be affected by a state
addition will be much faster with a projection based on this concern.

SLATE 2014

42 Leveraging Program Comprehension with Concern-oriented Source Code Projections

Initializing the state attribute
of the Field class is the transition
to the first game state

The openTile method can
change the state from PLAYING
to SOLVED or FAILED

The generate method generates
the field and after the generation
sets the state to PLAYING

Enumeration that represents
game states

Locates the file of the class

Identifies code fragment

Figure 5 ‘Game state management’-oriented view of the Minesweeper game.

4.2 Singleton Design Concern

The same way we can use annotations to record also design decisions. As an example of
a design decision for Minesweeper implementation we decided to implement Minesweeper
class as a singleton. The Minesweeper class is a main class of the application. It manages
game instances, it is responsible for the user interface choice (in future we want to support
graphical UI), it will monitor game time and manage connection to database (to store high
scores), etc. Although it did not have to be a singleton, it was our design decision and the
class was implemented that way.

In Figure 6 there a ‘Singleton design decision’-oriented view of the Minesweeper imple-
mentation. Minesweeper class is the only singleton in the implementation. For this projection
we could also use just the naming convention of the public static getInstance() method.
However, then if somebody would create a method with this signature that would not be a
part of the singleton pattern the projection would be incorrect.

J. Porubän and M. Nosáľ 43

Just a single singleton
in the game
implementation

Figure 6 Singleton projection of the Minesweeper game.

This projection could be useful for software architect that wants to be sure that all
the singletons in the implementation are indeed implemented as singleton, or in a similar
scenario.

5 Prototype Implementation

In this section we present a prototype of concern-oriented source code projections tool. The
tool was named Sieve Source Code Editor (SSCE) and it was used in an experiment with the
students at our university. The SSCE tool was designed and implemented as a plugin for the
NetBeans IDE2. This tool works with the code written in the Java programming language.

5.1 Expressing Concerns

In our prototype tool the concerns and the design decisions are preserved using an embedded
form of software system metadata – structured comments. For our prototype tool we have
use special comments that starts with the SsceIntent keyword. The follows enumeration
of concerns separated by semicolon that crosscut the commented program element. For
example we can take a look at a source code in listing 1 with the addHighScore method
that besides other things is also responsible for persisting the current high score to database.
These comments map the implementation details (JDBC connection, statement, etc.) to the
problem domain (high score implementation, high score persistence).

2 https://netbeans.org/

SLATE 2014

https://netbeans.org/

44 Leveraging Program Comprehension with Concern-oriented Source Code Projections

Listing 1 ‘Database connection’ concern recorded using SSCE structured comment.
// SsceIntent :High score; High score persistence ;
public void addHighScore (String name , int time) {

...
Connection connection =

DriverManager . getConnection (URL , USER , PASSWORD);
Statement stm = connection . createStatement ();
...

}

5.2 SSCE User Interface

In the time of the experiment we supported only marker structured comments that do not
have parameters. A programmer can mark program elements with tags expressing their
design or semantic properties – concerns. Then when another programmer is interested in a
particular concern the SSCE can be used to select ("sieve") the relevant code according to
these markers. To provide such a view SSCE defines an editor that is designed to present the
result of the projection. An example of a view by a code projection using Sieve editor was
already presented in Figure 5 where the user selected the Game state management source
code concern. Another example was presented in Figure 6 where the selected concern was
the Singleton design pattern application.

The result of the SSCE concern-oriented projection is a view that contains relevant code
fragments (view members), which are presented in a single stand-alone document. View
members in this document are wrapped in the contextual frames #file() and #code() to
make clear the connection of the presented fragments to the base structure of the source code
and to express the context of the code fragments. In Figure 5 these frames are annotated
with comments highlighted in green. The #file() frame encapsulates code fragments from
the same base file. The #file() frame is divided to the #code() frames that specify a
connection of the code fragment to its parent in program elements tree (e.g., to which class a
method belongs, etc.). These frames are used to provide context of the code fragments and
to allow consistent editing of the source code in concern-oriented views. This way any code
can be unambiguously mapped back to the base code structure. The mapping frames are
generated and protected by the editor (protection is done using guarded sections feature of
NetBeans IDE).

The Sieve editor utilizes code folding, guarded sections and syntax highlighting techniques
for better orientation and readability of the result of the projection. E.g., by default all code
fragments in the view are collapsed to provide better initial overview.

Concerning code projections, the SSCE tool provides two more user interface components
for the user. One interface is called Intents manager and it can be used to edit concern tags
of the selected program element. The Intents manager is shown in Figure 7. A programmer
can mark program elements directly through the editor using the SSCE structured comments,
or he/she can use this Intents manager to pick existing intents (concerns) and the SSCE will
mark currently selected program element for him/her. This interface was designed to provide
easier manipulation of the explicit concerns in the source code.

The last interface component is the Intents filter that serves for creating simple concern-
oriented queries. The Intents filter is shown in Figure 8. Using the Intents filter the
programmer can pick a concern or concerns from the list of all concerns present in the
source code. The selected concern or concerns define a projection that will be used by the

J. Porubän and M. Nosáľ 45

Singleton design decision is
already selected

A new concern can be added
by typing it here

Currently selected program element

Figure 7 The SSCE Intents manager.

SSCE Sieve editor to create a view of the project’s source code. The available concerns are
presented in a simple multi-selection list. The set of concerns present in the source code is
obtained by analysing the source code base.

So far to keep things simple we decided to use such a simple interface instead of a
full-fledged PQL3. The Intents filter allow querying the code for code fragments that share
some single concern, code fragments that all share a set of intents or code fragments that are
a union of code fragments with at least one of the specified intent. This is done by selecting
a single concern, selecting multiple concerns and choosing the AND composition mode or
selecting multiple concerns and choosing the OR composition mode respectively. AND and OR
composition modes allow simple composition of annotation-based projections.

6 Experiment

The idea of the concern-oriented source code projections was introduced to 40 respondents.
These respondents were in the time of experiment bachelor’s degree students in the 2nd year
of study. 28 of them were working with Java for less than a year. The rest stated that they
were working with Java for a year or two. Only one of the respondents had experience with
Java for more than two years. Thanks to their relatively short experiences with the language
and programming we could assume that they would not be biased against the new technique.
Since we use the NetBeans IDE on our practical lessons, all of them were familiar with it.

6.1 Experiment Setup
Our main intention in this experiment was to verify our hypothesis about code projections
and their contribution to program comprehension. We therefore designed two tasks, in which
the respondents had to fix a bug and change some implementation in an unfamiliar source

3 Our experiment was performed on a group of our bachelor’s degree students in the 2nd year of study.
Therefore we decided to use this simple mechanism instead of a full-fledged PQL, so they would not
be overwhelmed by a complexity of a PQL and could rather focus on the contributions of the code
projections method.

SLATE 2014

46 Leveraging Program Comprehension with Concern-oriented Source Code Projections

Two projections are composed,
current view shows elements that
implement at least one of them

Field.markTile method
manages the state of a tile

Field.getNumberOf method
access the tile state but not change
it

SSCE editor allows to fold view
members that we do not want
access right now

Folds highlighted in green show
concerns associated with program
elements using SSCE structured
comments

Figure 8 The SSCE Intents filter used to create simple composite projection.

code. As a source code sample we used the implementation of the SSCE plugin. The version
of the plugin that was used in the experiment consisted of 33 classes with approximately 10
kLOC. Its character provided required complexity that could be compared to complexity
of real world systems. The implementation was annotated with SSCE comments recording
28 different high level concerns (e.g., ‘GUI update’, ‘Querying and concerns configuration’,
‘Annotations for recording concerns’, ‘Monitoring changes in Java classes’, and more).

In their first task, they had to fix a bug with the OR composition mode of intents querying.
In the implementation we have commented out few lines that took care of the OR mode.
The main problem therefore did not have algorithmic character. It was rather a problem of
program comprehension. Students had to browse the 10000 lines of code and search them
for the implementation of composition modes. However, they could (and were encouraged
to) use the plugin to prepare a view that would reduce the code needed to be searched. In
this case it would mean selecting the ‘Querying and concerns configuration’ concern in the
SSCE Intents filter. The SSCE editor would show them a single document with 830 LOC
that consists of 1 whole class and 2 fields and 17 methods of 5 other classes. Instead of
browsing all the classes the respondents could focus solely on the code that authors identified
as relevant to querying the source code and concerns configuration. The view reduced the
code to be searched more than 10 times.

J. Porubän and M. Nosáľ 47

8 18 12 20 6 7 22 18 15 12 25 17 8 3 10 6 9 13 2 1 3 1 0 3 0 0 0 1 0 0
0

5

10

15

20

25

30

1 2 3 4 5 6

Useful Rather useful Neutral Rather useless Useless

Figure 9 Usability rating of the code projections.

The second task was oriented more towards system evolution than to fixing bugs. The
students had to change the structure of the SSCE structured comments. In this case it was
again a matter of program comprehension, because they had to identify source code that
implemented processing the SSCE structured comments. Here selecting the ‘Annotations
for recording concerns’ concern for the view reduced the code to be searched to 500 LOC
(≈ 20x less than the whole code base).

6.2 Survey
After finishing these tasks the respondents were given a questionnaire about the method.
They were asked to rate the significance of the code projections for the following activities:
1. Development of a new software system.
2. Maintenance of an existing system.
3. Program comprehension and understanding of the source code.
4. Orientation and navigation in the source code.
5. Testing and fixing bugs.
6. Documenting the source code.

All of these activities are related to program comprehension. The results are presented in
Figure 9. In general, the code projections were rated positively, being considered useful or
rather useful for all mentioned activities. Activities 2 and 4 were rated the best, indicating
a positive impact on program comprehension. This experiment verified the importance of
source code projections in the context of program comprehension. The results about activities
1 and 6 were more or less theoretical, because the respondents did not have to develop a whole
new system and explicitly mark the source code with the SSCE structured comments. They
could only experiment with tagging using the Intents manager. The problem of development
and implementation of concern-enriched source code is a matter of our future research.

In summary the questionnaire results indicate that concern-oriented source code projec-
tions are beneficial for program comprehension. We believe that the relevance of the results

SLATE 2014

48 Leveraging Program Comprehension with Concern-oriented Source Code Projections

is even higher since the experiment was conducted with a very simple and feature-limited
prototype of the tool.

7 Related Work

Our previous work presented in [11] provides motivation for source code projections and
detailed description of our proposal. Section 2 provides brief introduction that covers the topic.
Considering that with projections we aim to bring the formal source code representation closer
to programmer’s mental model, a related work to our is also the work of Kollár [5] who analyses
the opposite direction in human-computer interaction. He discusses binding of informal
semantics (human thinking) to semantic symbols (symbols processable by computer). His
work is based on concept of language metalevels that can be used for slicing the abstraction
gap between model and executable program (he uses the concept also in [6] for genetic
evolution of programs).

Similar approach is used by Desmond et al. [2] in so called Fluid source code views. They
allow viewing method bodies in place of their calls, thus reducing the need of browsing the
source files. It is kind of similar to Go To Declaration projection of current IDEs, however
using fluid source code views the body is shown directly in place of call using a tooltip. No
explicit navigation across the source files is needed.

In modern Integrated Development Environments (IDE) there are already some built-in
projections that use non-standard metadata, such as TODOs view that can show all lines
of code marked with TODO comments. Or there is a projection that crosses out all the
program elements marked with @Deprecated annotation, indicating that these program
elements are deprecated and are not supposed to be used. In Jetbrains IntelliJ Idea there are
multiple code projections that increase code comprehension. An example might be folding
an anonymous class into lambda-like notation that is introduced by Java 8.

Intentional source code views [8] are sets of related program elements that share some
intention. In this sense they are very similar to concern-oriented code projections. In
Intentional views the intentions of the source code are specified using logic metaprogramming.
Although they are close to our approach by providing means of defining architectural and
conceptual information about source code, they differ in few rather important aspects.
Intentional views require knowledge of logic metaprogramming. It is hard to expect every
programmer to be a logic programmer. The Intentional View Browser is a new tool. In
our code projections we want to utilize common programmer’s natural environment – code
projections are to be made integral part of a modern IDE. Intentional views use code
conventions that tend to be fragile (see [4]).

Source code views are also proposed by Lommerse et al. [7]. However, their approach
provides static view – merely according to standard source code properties (such as a
Navigator view of the modern IDEs). They provide three views: the syntactic view showing
syntactic constructs; the symbol view showing objects available after compilation; and the
evolution view showing different version of source file. In this context it is worth to mention
Concern Graphs [13], an abstraction used for better understandability of concerns in source
code.

Callau et al. [1] introduce a concept of ghost classes. A ghost class is a class that is used
but not yet defined. host classes exist so programmers can use them even if they have not
defined them yet. Their usage raises no errors and IDE acts as if the classes existed. Callau
et al. argue that ghost classes are useful for incremental programming where they represent
flexible class prototypes.

J. Porubän and M. Nosáľ 49

Wada et al. [16] work in model driven development research. They use source code
annotations to preserve links from the generated source code to the model used for generation.
Their annotations therefore can be used to create our concern-oriented source code projections.

Besides Fowler another well known name in the field of projectional editing is Markus
Voelter. His research is mostly centered around JetBrains MPS4 language workbench. MPS
utilizes projectional editing. Each language implemented in MPS defines also ‘editors’ for
language concepts that define how are the concepts projected and edited in the MPS. One of
Voelter’s works is presented in [15] where he describes implementation of feature variability
using MPS projectional language workbench. The MPS-like concept of projectional editing
is focused on removing the parsing process from language editing. Instead of text-based
editor that requires the editor to parse the input to provide any help MPS uses structural
editor (structure-aware editor) that directly creates language AST. Their aim is to improve
notation flexibility, error prevention, etc. In our work we understand projections rather as a
mean to provide multiple different views of the same system.

8 Conclusion

In this paper we have discussed the basics of creation of our concern-oriented source code
projections. The paper included a case study that shows usage of projections in a meaningful
context and therefore explains motivation for using projections. We have also presented a
prototypical tool that is an implementation of simple annotation-based source code projections.
This tool was used in an experiment to get feedback on our concern-oriented source code
projections from our students.

Contributions of this paper are as follows:
A discussion of creation of concern-oriented projections with respect to costs.
A case study explaining source code projections.
Experimental evaluation by a survey confirming projections’ positive effect on program
comprehension.

Our plans for future work include improving the tool to work with Java annotations
and to be able to support source intrinsic and configuration-based projections. From the
methodical point of view we want to analyse how to prepare annotation-based projections so
that they would cost as little as possible and still give programmers benefit. We perceive
that the problem of motivation for explicit recording of concerns in the code is the main
obstacle for using concern-oriented projections in practice.

Acknowledgements. Research presented in this paper is supported by VEGA Grant No.
1/0341/13 “Principles and Methods of Automated Abstraction of Computer Languages and
Software Development Based on the Semantic Enrichment Caused by Communication”.

References

1 Oscar Callau and Éric Tanter. Programming with ghosts. IEEE Software, 30(1):74–80,
2013.

2 Michael Desmond, Margaret-Anne Storey, and Chris Exton. Fluid source code views.
In Proceedings of the 14th IEEE International Conference on Program Comprehension,
ICPC’06, pages 260–263, Washington, DC, USA, 2006. IEEE Computer Society.

4 http://www.jetbrains.com/mps/

SLATE 2014

http://www.jetbrains.com/mps/

50 Leveraging Program Comprehension with Concern-oriented Source Code Projections

3 Martin Fowler. Projectional editing. Blog entry, available at http://martinfowler.com/
bliki/ProjectionalEditing.html, January 2008.

4 Gregor Kiczales and Mira Mezini. Separation of concerns with procedures, annotations,
advice and pointcuts. In Proceedings of the 19th European conference on Object-Oriented
Programming, ECOOP’05, pages 195–213, Berlin, Heidelberg, 2005. Springer-Verlag.

5 Ján Kollár. Formal processing of informal meaning by abstract interpretation. In KES IDT
2014 – 6th International Conference on Intelligent Decision Technologies, KES IDT 2014,
Chania, Greece, June 2014. Accepted.

6 Ján Kollár and Emília Pietriková. Genetic evolution of programs. In Proceedings of the
Twelfth International Conference Informatics 2013, pages 127–132, November 2013.

7 Gerard Lommerse, Freek Nossin, Lucian Voinea, and Alexandru Telea. The visual code
navigator: An interactive toolset for source code investigation. In Proceedings of the 2005
IEEE Symposium on Information Visualization, INFOVIS’05, pages 4–, Washington, DC,
USA, 2005. IEEE Computer Society.

8 Kim Mens, Bernard Poll, and Sebastián González. Using intentional source-code views
to aid software maintenance. In Proceedings of the International Conference on Software
Maintenance, ICSM’03, pages 169–178, Washington, DC, USA, 2003. IEEE Computer So-
ciety.

9 Milan Nosáľ. Software system metadata alternatives to annotations. In Proceedings of
Poster 2013: 17th International Student Conference on Electrical Engineering, pages 1–5,
May 2013.

10 Milan Nosáľ and Jaroslav Porubän. Software documentation through source code annota-
tions. In Informatics 2013 : Proceedings of the Twelfth International Scientific Conference
on Informatics, Informatics’2013, pages 180–185, 2013.

11 Matej Nosáľ, Jaroslav Porubän, and Milan Nosáľ. Concern-oriented source code projections.
In Federated Conference on Computer Science and Information Systems (FedCSIS), 2013,
pages 1541–1544, Sept 2013.

12 James Dean Palmer and Eddie Hillenbrand. Reimagining literate programming. In Proceed-
ings of the 24th ACM SIGPLAN conference companion on Object oriented programming
systems languages and applications, OOPSLA’09, pages 1007–1014, New York, NY, USA,
2009. ACM.

13 Martin P. Robillard and Gail C. Murphy. Concern graphs: finding and describing concerns
using structural program dependencies. In Proceedings of the 24th International Conference
on Software Engineering, ICSE’02, pages 406–416, New York, NY, USA, 2002. ACM.

14 Thomas Vestdam. Elucidative programming in open integrated development environments
for Java. In Proceedings of the 2nd international conference on Principles and practice
of programming in Java, PPPJ’03, pages 49–54, New York, NY, USA, 2003. Computer
Science Press, Inc.

15 Markus Voelter. Implementing feature variability for models and code with projectional
language workbenches. In Proceedings of the 2Nd International Workshop on Feature-
Oriented Software Development, FOSD’10, pages 41–48, New York, NY, USA, 2010. ACM.

16 Hiroshi Wada, Junichi Suzuki, and Katsuya Oba. Modeling Turnpike: A model-driven
framework for domain-specific software development. In Companion to the 20th Annual
ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and
Applications, OOPSLA’05, pages 128–129. ACM, 2005.

http://martinfowler.com/bliki/ProjectionalEditing.html
http://martinfowler.com/bliki/ProjectionalEditing.html

Comment-based Concept Location over System
Dependency Graphs
Nuno Pereira1, Maria João Varanda Pereira2, and
Pedro Rangel Henriques1

1 Centro de Ciência e Tecnologia da Computação (CCTC)
Departamento de Informática, Universidade do Minho
Braga, Portugal
{nuno.filipe.gomes.pereira,pedrorangelhenriques}@gmail.com

2 Centro de Ciência e Tecnologia da Computação (CCTC)
Departamento de Informática e Comunicações,
Instituto Politécnico de Bragança
Bragança, Portugal
mjoao@ipb.pt

Abstract
Software maintenance is one of the most expensive phases of software development and under-

standing a program is one of the most important tasks of software maintenance. Before making
the change to the program, software engineers need to find the location, or locations, where the
changes will be made, they need to understand the program. Real applications are huge, some-
times old, were written by other person and it is difficult to find the location of the instructions
related to a specific problem domain concept.

There are various techniques to find these locations minimizing the time spent, but this stage
of software development continues to be one of the most expensive and longer. The concept
location is a crucial task for program understanding.

This paper presents a project whose main objective is to explore and combine two Program
Comprehension techniques: visualization of the system dependency graph and concept location
over source code comments. The idea is to merge both features in order to perform concept
location in system dependency graphs. More than locate a set of hot instructions (based on the
associated comments) it will allow to detect the other instructions (the whole method).

1998 ACM Subject Classification D.2.7 Maintenance

Keywords and phrases program comprehension, concept location, comment analysis, system
dependency graph

Digital Object Identifier 10.4230/OASIcs.SLATE.2014.51

1 Introduction

It is known that the software maintenance task is the most expensive phase of software
development: 80% to 90% of the overall costs [5]. According to [6] we conclude that half
the time spent in software maintenance is used to understand the program code and the
instructions that have to be changed. We are aware that this task would be easier when a
model driven software development is used [10] but this is not the most usual case.

These conclusions are easily understandable because before making the change to the
program, software engineers need to find the location, or locations, where the changes will
be made. These programs tend to be huge, in terms of lines of code and number of files,
are usually written by different software engineers with different visions of the problem and

© Nuno Pereira, Maria João Varanda Pereira, and Pedro Rangel Henriques;
licensed under Creative Commons License CC-BY

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões; pp. 51–58

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2014.51
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

52 Comment-based Concept Location over System Dependency Graphs

different forms of thinking. Moreover the variable and method names in the source code may
not be explicit and usually the program does not have good documentation.

There are various techniques to find these locations minimizing the time spent searching
but the most used techniques consists in navigating through the statements dependencies or
search for keywords that can indicate where the concept is implemented.

According to Kernighan and Plauger [7], the best documentation for a program includes
comments; software engineers make a lot (and relevant) comments in the source code [12].
About 19% of the source code are comments. Comments can explain source code in a natural
language connecting the program domain with the problem domain [1]. Aware of that,
software engineers search for certain keywords in the code (related to the change that will
be made) that can indicate the location, or locations, where the software engineer needs to
modify source code.

Static dependency search consists in navigating through the dependencies among elements.
Software engineers usually begin at the main function and follow a specific path in order to
find the desired concept implementation. If the search is not successful, they must backtrack
to the previous point (e.g., class, method or conditional structure) and choose a different
path.

For all these reasons it becomes clear that it is challenging and useful to create a tool
with a friendly interface that allows to perform concept location over a System Dependency
Graph (SDG). The main idea is to visualize a dependency graph (control flow and data
dependencies) and locate the nodes that can be related to a given term.

The term to search usually belongs to the problem domain and the related nodes are
identified through the source code comments associated to each node/statement. To detect
the comments that are related to a given term/concept a tool called Darius is used. Darius,
which was developed in the context of our research group by Freitas [3], is based on natural
language techniques applied to the comment words; it also produces a set of statistics
concerning those comments. The System Dependency Graph is automatically generated from
the software package.

The final objective of the tool, DariusSDG, proposed in this paper, is to decrease the
time spent to locate concepts in source code in order to reduce the cost of maintenance tasks.

The paper will have four more sections. In Section 2 are discussed the area of Program
Comprehension: some concepts, definitions and techniques which are fundamental to this
work. Section 3 describes the tool architecture. The methodology and all the work related
to the construction of the tool will be described in Section 4, which is divided in three
subsections:

Comments Analysis: where Darius will be introduced.
System Dependency Graph (SDG): this subsection will describe in more detail this
technique along with a tool that help building the graph.
Integration: this subsection will describe the proposed DariusSDG that integrates the
tool that builds the SDG with the tool that analyses source code comments (Darius) as
well as other new features.

This document ends in Section 5 where conclusions and future work are described.

2 Contextualization: Program Comprehension

Program Comprehension [13] is a component of Software Engineering discipline whose
principal purpose is to study how software engineers understand programs.

N. Pereira, M. J. V. Pereira, and P. R. Henriques 53

Every software engineer has its own way to understand a program, to capture information
from the source code [14]. To help him on this task there are several tools that can be used
to explore the source code. The choice depends on the needs of the user: static or dynamic
source code analysis, use of visualizations or textual information to show the results and so
on. Moreover, almost tools are programming language dependent and some of them adopt
invasive approaches that modify the source code with code inspection instructions [2].

Understanding a program depends on the knowledge the software engineers has about
the program that is being analysed, on his experience and on his knowledge about the real
world problem that the program solves. These two concepts, real world problem and how it
is solved in a programming language, are known in Program Comprehension as: Problem
Domain and Program Domain.

We can see Problem Domain as the concepts related to the problem, the relations between
them and how the problem can be solved. For instance, if a teacher needs to manage a
school class there are various concepts related to that problem like students, grades, faults,
summaries and so on. In a similar way there are various tasks to be accomplished like adding
a summary, register the grades of the students, register the information about the students.

Program Domain is concerned with the programming language and with the implement-
ation techniques used to solve the problem in a computer. Taking the example above, we
can say that in Program Domain the concern is what data structures will be used to store
the information (an array?), how the information about the grades will be implemented (as
attribute of the school class or the student?) among others.

The time spent understanding a program also depends on the program that is being
analysed: how it was created, how it is being maintained, in which programming language is
written. The changes that should be implemented also have a strong influence in the effort
and time required for program comprehension. When a software engineer analyses a program
he constructs a Mental Model [14] of the program, which is updated when new information
are collected.

The software engineer needs to know the flow of the program, which methods are called,
by who, what these methods do, the data dependencies and the effect a change may cause.
As said before, programs tend to be huge (many lines of code, many methods and many
files) and it causes to be unworkable the task of knowing all these details about the program
by hand. Every time a change need to be made in the program the software engineer need
to navigate in the methods and discover the location where the change will take place.
This is an enormous waste of time. The System Dependency Graph [8] is a visual artefact,
used by program comprehension researchers, that shows all the static dependencies of a
program in the form of a graph. Software engineers can see the flow of the program and data
dependencies in a very easy and intuitive way.

From the text (comments, variable names, method names, constant Strings) in the program
software engineers can obtain various kinds of semantic information about a program. If
a method is called “return_average_grade” it is almost certain what the method returns.
There are many techniques of Information Retrieval that can be used to retract important
information about a program. The software engineer can search for certain keywords and
the system retrieves this information (associated whit other important information like the
file, the method or the line where the information was located).

It is interesting and makes sense to join these two techniques in one tool: showing
semantic and structural information about a program. This means the Information Retrieval
techniques can be associated to the System Dependency Graph showing concepts that appear
in a certain comment associated with a certain method.

SLATE 2014

54 Comment-based Concept Location over System Dependency Graphs

Figure 1 Architecture of DariusSDG.

3 DariusSDG: Architecture

As mentioned before the objective of DariusSDG, the tool proposed in this paper, is join
two technique of program comprehension reducing the time spent to understand a program.
To achieve this goal DariusSDG will be composed of three main components (that will be
described in more detail in the next section):

Darius: A comment analyser tool
SDG API: A tool to extract flow and data dependency graphs from a program
JGraphX: A tool that can be used to draw graphs

In Figure 1 we can see the diagram that depicts the tool architecture, its structure,
components and connections among them. From this diagram it is possible to understand
the steps that are taken by the tool to build the result, which is the construction of the
System Dependency Graph and the mapping of the extracted information from source code
comments with the nodes of the graph. The tool receives a program as input and uses the
SDG API to build the System Dependency Graph of the program. As mentioned in Figure 1
the SDG is divided in methods allowing to have big programs as input. The input program
will be also analysed by Darius, constructing a list of comments based on Vector Space Model
(VSM) technique. The final result is a conjugation of the outputs of Darius and SDG API in
a form of a graph, using JGraphX.

4 DariusSDG: Development

This section is divided in three subsections where will be described the tools and the steps
used to build DariusSDG.

4.1 Comments Analysis
Comments in the code are one of the most important source of information about the program.
It is one of the best ways to understand what the software engineer was thinking and how

N. Pereira, M. J. V. Pereira, and P. R. Henriques 55

the Problem Domain and Program Domain were related. Studies [17, 15] conclude that
programs that have more comments are more easily understandable by software engineers.

To extract and search information in the comments we need to use Information Retrieval
techniques. As we can see in [11], an Information Retrieval System analyses several documents
processing its text with the assistance of some tools like:

Sentence tokenizer Separates the text into sentences.
Word tokenizer Separates the sentences into words.
Stemming Reduce the word to its grammatical root.
Elimination Eliminates words that do not have significance or value.

After the system complete all the tasks the user only needs to insert the query (set of
keywords) to execute. The system perform the same process mentioned before in the query,
to assure consistence, and retrieves a set of documents that satisfy the search ranking them
by relevance.

There are various algorithms designed to rank documents, however in our work we will
be concerned mainly with Vector Space Model [18] (that is used by Darius).

Darius, built by José Luís Freitas, in his master work [3] at our research group, uses
several techniques of Information Retrieval to analyse the various types (inline, singleline,
multiline and Javadoc) of comments presented in the source code.

The lack of available tools that can perform these actions, the quality of the tool and the
fact that José Luís provided its source code were the reasons to choose Darius.

Darius is composed by four main modules: a comment extractor; a statistic calculator;
a word analyser and a concept locator. As mentioned before, Vector Space Model is one
of the most used algorithms to rank documents and it is used by Darius. There are many
algorithms to calculate the weight of a word like the frequency of the word in the document
but the one adopted is the Term Frequency – Inverse Document Frequency.

4.2 System Dependency Graph
The System Dependency Graph [8] is a visual artefact representing the static dependencies of
a program as a graph. The System Dependency Graph (SDG) is composed of two components:
the Control Flow Graph (CFG) and the Data Dependency Graph [4] (DDG).

CFG shows all the dependencies and calls between methods. It shows all the statements
of the program and how they are related. If a statement B is called by a statement A,
statement B is connected to statement A and it is positioned one level above statement A.
Just looking to the CFG, a software engineer can see the flow of the program and discover in
which class, method and statement, he will do the change (when a maintenance is needed).

DDG shows where the variables in the code are changed (variable dependencies). As in
CFG, when a variable is changed in one statement it is connected to that statement showing
that there is a dependency between them.

As mentioned above, when joined, these two graphs form the System Dependency Graph.
A graph where the software engineers can see all the static dependencies and workflow of the
program in a very easy and intuitive way.

In Figure 2 we can see the System Dependency Graph of the source code in Listing 1
(example extracted from [16]).

Creating by hand a SDG for a given program is not an easy task. And despite the fact
that Java is one of the most famous programing language, there is a very small amount of
tools to analyse Java code and build its dependencies (packages, classes, variables, methods),
and an even more small number to build the SDG.

SLATE 2014

56 Comment-based Concept Location over System Dependency Graphs

Listing 1 Excerpt of a Java program.
public static void main(String [] args) {

int sum = 0, i = 0;
while (i < 11) {

sum = add(sum , i);
}
System .out. println (" sum = " + sum);
System .out. println ("i = " + i);

}

Figure 2 A System Dependency Graph.

The Java System Dependence Graph API [16], as the name indicates, is a tool that
constructs the SDG of a program and provides methods to access it. The tool provides
methods to navigate throw the nodes using algorithms like the Breadth First Search. We
choose this tool because it is simple to use (does not need configurations or databases), it is
open source and after some tests we have confirmed that the tool does what it compromises.

4.3 Integration
As mentioned before, DariusSDG is a combination between tools (Darius, JGraphX and
SDG API). These tools were built independently and not with the purpose of being joined,
therefore there is some adjustments to be made.

As said above, SDG is an important and useful tool due to its graphical representation.
The System Dependence Graph API only offers methods to access the different nodes and
connections between them (edges) in a text representation. On account of that, it is necessary
a tool to build the graphical representation of the SDG. JGraphX [9] is a Java Swing library
that provides functionality for visualisation and interaction with graphs. It offers many
methods to construct the graph, change the colour of the nodes or the edges and can order
the graph in a hierarchical form (which is the typical form of a System Dependency Graph).
By combining these two tools it is possible to build a System Dependency Graph of any Java
program.

As the SDG of a program can be very huge, hindering the work of the software engineer
instead of helping, DariusSDG provides the System Dependency Graph divide by methods.
As we can see in Figure 3 DariusSDG provides a list (on the right) of all methods used by the
program and the name of the class they belong. By clicking on the method the corresponding
part of the System Dependency Graph is shown on the centre of the window.

As mentioned before, DariusSDG show the SDG divided by methods, decreasing the size

N. Pereira, M. J. V. Pereira, and P. R. Henriques 57

Figure 3 DariusSDG GUI.

of the graph shown, but, if the method has many instructions and dependencies it can be a
little confuse. DariusSDG has some options to help the software engineer, for example the
Data Dependency edges can be hidden; it is possible zoom in or zoom out in the graph; or
drag the nodes changing its original position.

Darius retrieves a list of comments ordered by similarity according to the list of searched
terms. Each comment has associated the comment itself, the file where it is located, the
type of comment (inline, singleline, multiline and Javadoc) and the line after the comment.
We decided to follow the same logic and return the method associated with the comment (if
exists) and the line where the comment start.

When the software engineer searches for terms a list of comments is presented and its
similarity with the searched terms on the left side of the window (see Figure 3). These
comments are ordered by similarity and if the user clicks in one of them DariusSDG shows
the information associated with the comment and the part of the System Dependency Graph
associated with the respective method. The list in the right automatically changes the
selected row to the row that corresponds with the graph that is being shown.

5 Conclusion

As mentioned along this paper, software maintenance is one of the most expensive parts of
software development, and the time spent by software engineers to understand the program
(an compulsory but unproductive phase) is the main reason for that.

Program Comprehension researchers studied and develop many techniques and tools to
decrease the time spent to understand a program, but software maintenance still a very
demanding task. The number of tools found, for the Java programming language, which can
assist software engineers in program comprehension, is small and focused in one technique of
program comprehension.

DariusSDG try to combine two techniques of Program Comprehension that can show
semantic and structural information about a program. DariusSDG also was built to be
easy to use and understand, avoiding even more wasted time, perform concept location over
System Dependency Graph.

In the future the tool will infer the exact instruction associated with the comment. With
this we can emphasize the node of the System Dependency Graph associated with the
comment and the instruction associated. As future work we will also perform tests, with real

SLATE 2014

58 Comment-based Concept Location over System Dependency Graphs

programs and software engineers, to verify if the time spent using the tool is smaller than
without the tool.

Acknowledgements. This work is funded by National Funds through the FCT – Fundação
para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within
project PEst-OE/EEI/UI0752/2014.

References
1 Ruven E. Brooks. Using a behavioral theory of program comprehension in software en-

gineering. In Maurice V. Wilkes, Laszlo A. Belady, Y.H. Su, Harry Hayman, and Philip
H. Enslow Jr., editors, ICSE, pages 196–201. IEEE Computer Society, 1978.

2 Daniela da Cruz, Mario Béron, Pedro Rangel Henriques, and Maria João Varanda Pereira.
Code inspection approaches for program visualization. Acta Electrotechnica et Informatica,
9(3):32–42, Jul-Sep 2009. ISSN: 1335-8243.

3 José Luís Figueiredo de Freitas. Comment analysis for program comprehension. Master’s
thesis, University of Minho, 2011.

4 Lin Du, Guorong Xiao, and Daming Li. A novel approach to construct object-oriented
system dependence graph and algorithm design. JSW, 7(1):133–140, 2012.

5 L. Erlikh. Leveraging legacy system dollars for e-business. In IT Professional, volume 2.
IEEE Computer Society, 2000.

6 R.K. Fjeldstad and W.T. Hamlen. Application program maintenance study: Report to
our respondents. In Proceedings of GUIDE 48, April 1983.

7 Brian W. Kernighan and P. J. Plauger. The elements of programming style. McGraw-Hill,
second edition edition, 1978.

8 Panos E. Livadas and Theodore Johnson. An optimal algorithm for the construction of the
system dependence graph. Inf. Sci., 125(1–4):99–131, 2000.

9 JGraph Ltd. JGraphX. https://github.com/jgraph/jgraphx, 2014.
10 I. Luković, S. Ristić, S. Aleksic, and A. Popović. An application of the MDSE principles.

In III Workshop on Model Driven Software Engineering (MDSE 2008), 2008.
11 Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to In-

formation Retrieval. Cambridge University Press, 2009.
12 I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleris. Code quality analysis in open

source software development. Information Systems, 12(1):43–60, 2002.
13 Margaret-Anne D. Storey. Theories, methods and tools in program comprehension: Past,

present and future. In IWPC, pages 181–191. IEEE Computer Society, 2005.
14 Margaret-Anne D. Storey, F. David Fracchia, and Hausi A. Müller. Cognitive design ele-

ments to support the construction of a mental model during software exploration. Journal
of Systems and Software, 44(3):171–185, 1999.

15 T. Teny. Procedures and comments vs. the Banker’s algorithm. In SIGCSE Bull, pages
44–53, 1985.

16 Eric Chi Lik Tong, Chun Yinand Lo and Ming Hay Luk. Java system dependence graph
API. http://www4.comp.polyu.edu.hk/~cscllo/teaching/SDGAPI/, 2010.

17 Scott N. Woodfield, Hubert E. Dunsmore, and Vincent Yun Shen. The effect of modulariz-
ation and comments on program comprehension. In Seymour Jeffrey and Leon G. Stucki,
editors, ICSE, pages 215–223. IEEE Computer Society, 1981.

18 Wei Zhao, Lu Zhang, Yin Liu, Jiasu Sun, and Fuqing Yang. SNIAFL: towards a static
noninteractive approach to feature location. ACM Trans. Softw. Eng. Methodol., 15(2):195–
226, 2006.

https://github.com/jgraph/jgraphx
http://www4.comp.polyu.edu.hk/~cscllo/teaching/SDGAPI/

Part III

Domain Specific Languages

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

ReCooPLa: a DSL for Coordination-based
Reconfiguration of Software Architectures
Flávio Rodrigues, Nuno Oliveira, and Luís S. Barbosa

HASLab – INESC TEC & Universidade do Minho
Braga, Portugal
pg22826@alunos.uminho.pt, {nunooliveira,lsb}@di.uminho.pt

Abstract
In production environments where change is the rule rather than the exception, adaptation of
software plays an important role. Such adaptations presuppose dynamic reconfiguration of the
system architecture, however, it is in the static setting (design-phase) that such reconfigurations
must be designed and analysed, to preclude erroneous evolutions. Modern software systems,
which are built from the coordinated composition of loosely-coupled software components, are
naturally adaptable; and coordination specification is, usually, the main reference point to insert-
ing changes in these systems.

In this paper, a domain-specific language—referred to as ReCooPLa—is proposed to design
reconfigurations that change the coordination structures, so that they are analysed before being
applied in run time. Moreover, a reconfiguration engine is introduced, that takes conveniently
translated ReCooPLa specifications and applies them to coordination structures.

1998 ACM Subject Classification D.2.11 Software Architectures, F.3.2 Semantics of Program-
ming Languages

Keywords and phrases domain-specific languages, architectural reconfiguration, coordination

Digital Object Identifier 10.4230/OASIcs.SLATE.2014.61

1 Introduction

For the last few years, Service-Oriented Architecture (SOA) has been adopted as the archi-
tectural style to support the needs of modern intensive software systems [9]. SOA systems
are based on services, which are distributed, loosely-coupled entities that offer a specific com-
putational functionality via published interfaces. Within SOA, services are coordinated, so
that the ensemble delivers the system required functionality. Coordination is the design-time
definition of a system behaviour. It establishes interactions between software building blocks
(services, in SOA systems), including their communication constraints and policies. Such
policies may be encapsulated in a multitude of ways [3], but point-to-point communication
approaches (e.g., channels [4]), gain relevance by fomenting the desired decoupling between
computation and coordination concerns. This separation of concerns makes SOAs flexible,
easier to analyse and naturally dynamic. Although policies are pre-established, services with
similar interface may be discovered and bound to the architecture at run time, rather than
fixed at design time.

Flexibility and dynamism are desired features in production environments where change is
the rule rather than the exception. Constant environment evolution brings new requirements
to the system, may contribute to degradation of contracted Quality of Service (QoS) values,
or introduce failure [24, 28]. These changes raise the need for systems to adapt to new
contexts while running.

© Flávio Rodrigues, Nuno Oliveira, and Luís S. Barbosa;
licensed under Creative Commons License CC-BY

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões; pp. 61–76

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2014.61
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

62 ReCooPLa: a DSL for Coordination-based Reconfiguration of Software Architectures

Reconfigurations upon SOA systems usually target the manipulation of services: dynamic
update of service functionality, substitution of services with compatible interfaces (but
not necessarily the same behaviour) or removal of services [26, 23, 11]. However, in some
situations, this may not be enough. For instance, when a substituting service has incompatible
interface, it may be necessary to target, with further detail, the way services interact
with each other. This sort of reconfiguration goes into the coordination layer and usually
substitute, add or remove interaction components (e.g., communication channels), move
communication interfaces between components and may even rearrange a complex interaction
structure [13, 14]. Thus, there is a mismatch between project needs and what is currently
offered in practice. More worryingly it is the lack of rigorous (formal) methods to correctly
design and analyse this sort of reconfigurations.

In the authors’ previous work [19, 20], a formal framework for modelling and analysing
coordination-based reconfigurations in the context of SOA was defined. In this framework, a
coordination structure (referred to as a coordination pattern) is regarded as a graph whose
nodes reprsent interaction points (with either services or other coordination patterns), and
edges are communication channels with a specific behaviour. However, this framework lacks
mechanisms to express and apply reconfigurations, in practice. Such is the purpose of this
paper: to introduce a Domain-specific Language (DSL), referred to as ReCooPLa, to express
coordination-based reconfigurations, materialising the formal model presented in [19] and
briefly discussed in further sections.

DSLs [27, 18, 21] are languages focused on particular application domains and building
on specific domain knowledge. Their level of abstraction is tailored to the specific domain,
allowing for embedding high-level doamin concepts in the language constructs, and hiding
low-level details under their processors. In addition, they allow for validation and optimisation
at the domain level, offering considerable gains in expressiveness and ease of use, compared
with General-purpose Programming Languages (GPLs) [12].

In this spirit, ReCooPLa is a simple and small language that provides a precise, high-level
interface for reconfiguration designers. The reconfiguration construct plays, then, a main
role in ReCooPLa. It resembles functions, as in GPLs, with a header and a body. The header
defines the reconfiguration identifier and its arguments; the body is composed of instructions,
where coordination-specific notions are embodied in constructs that manipulate the graph
structure which underlies coordination patterns.

A suitable reconfiguration engine, for application of the reconfigurations expressed in
ReCooPLa is also proposed in this paper. It is regarded as a machine that executes recon-
figurations over the target coordination patterns. To this end, a translation of ReCooPLa
constructs into the engine’s running code is carefully defined.

Outline. Related work is presented in Section 2 and background notions are introduced
in Section 3. In Section 4 the ReCooPLa language is introduced with a detailed way and
illustrated by small examples. Then, Section 5 introduces the reconfiguration engine along
with a suitable translation of ReCooPLa constructs into it. Section 6 discusses an example.
Finally, Section 7 concludes and proposes some topics for future work.

2 Related Work

Domain-specific languages constitute an important tool to tackle the specificities of particular
application domains. The design of reconfigurations in the context of SOA is the domain
underlying this work. Typical design approaches to reconfigurability in software architecture
and component based design are discussed in this section.

F. Rodrigues, N. Oliveira, and L. S. Barbosa 63

Fractal [6] is a hierarchical and reflective component model intended to implement,
deploy, and manage complex software systems, which embodies mechanisms for component
composition and dynamic reconfiguration. It counts on FPath and FScript [8], which are
DSLs, to securely apply changes. The former eases the navigation inside a Fractal architecture
trhough queries. The latter, which embeds FPath, enables the definition of adaptation scripts
to modify the architecture of a Fractal application, with transactional support.

Reference [7] proposes Architectural Design Rewriting (ADR) as a declarative rule-based
approach for modeling reconfigurable Software Architectures (SAs). It is based on an algebraic
presentation of graph structures and conditional rewrite rules, suitable to model. hierarchical
designs, and inductively defined reconfigurations.

In general, Architecture Description Languages (ADLs) provide a rigorous foundation for
describing SAs, specifying syntax and semantics to describe components, connectors, and
their configurations. Numerous ADLs have been developed, each providing complementary
capabilities for architectural development and analysis. Their use has been limited to static
analysis and generation focused on static issues and, therefore, unable to support architectural
changes. However, a few ADLs, such as Darwin [16], Rapide [15], Wright [2] and Acme [10]
can express run time architectural provided they have been previously specified.

While ADLs aim at describing SAs for the purposes of analysis and system generation,
Architectural Modification Languages (AMLs) focus on describing changes to architecture
descriptions and are, thus, useful for introducing unplanned changes to deployed systems.
The Extension Wizard’s modification scripts, C2’s AML [17], and Clipper [1] are examples
of such languages. Similarly, Architectural Constraint Languages (ACLs) have been used to
restrict the system structure using imperative [5] as well as declarative [16] specifications.

These languages endow SA design approaches with mechanisms to specify reconfigurations.
However, the latter focus on the high-level entities of architectures, rather than on the
coordination glue code. A ReCooPLa, in contrast, is targets the whole coordination pattern
of a system and is oriented towards reconfiguration analysis.

Also related to ReCooPLa is the GP programming language presented in [25]. It is a
language for solving graph problems, based on a notion of graph transformation and four
operators shown to be Turing-complete. Like GP, ReCooPLa actuates over a graph-based
structure to perform modifications. While GP does so with program rules, ReCooPLa defines
reconfiguration methods based on primitive (coordination-oriented) constructs.

3 Reconfiguration Model

This section provides an informal account of the reconfiguration model, which has been
introduced and formalised in [19, 20]. In particular, it introduces the notions of a coordination
pattern and coordination-based reconfiguration, which are later embodied in the constructs
of ReCooPLa.

3.1 Coordination Protocols

A coordination protocol works as a glue code to define and constrain the interaction between
components or services of a system. In this model, it is called a coordination pattern and
regarded as a reusable and composable architectural element. It is formalised as a graph of
channels whose nodes are interaction points through which it can plug to other coordination
patterns or services; edges are uniquely identified point-to-point communication devices with

SLATE 2014

64 ReCooPLa: a DSL for Coordination-based Reconfiguration of Software Architectures

a specific behaviour given by a channel typing system. Formally,

ρ ⊆ N × I × T ×N ,

where N is a set of nodes (to be precise, a node in a coordination pattern corresponds to a
set of channel ends), I is a set of channel identifiers and T is a channel typing system. Set
T ={sync, lossy, fifo, drain} is adopted in the sequel as the working channel typing system
in the spirit of the Reo coordination language [4]. Nodes that are used exclusively for data
input (respectively, output) constitute the input (respectively, output) ports of the pattern.
All the others are classified as internal or mixed nodes.

Listing 1 presents two coordination patterns. Coordination pattern cp1 comprises two
channels: a channel x1 of type sync, and channel x2 of type lossy. Channel x1 has an input
node a and an output node b.c1. In turn, channel x2 has an input node b.c (corresponding
to output node of channel x1, once they are connected), and an output node d.

Listing 1 Two simple coordination patterns.
cp1: {(a, x1 , sync , b.c), (b.c, x2 , lossy , d)}
cp2: {(g, x3 , sync , h.i.j), (h.i.j, x4 , lossy , k),

(h.i.j, x5 , fifo , l)}

3.2 Coordination-based Reconfigurations
A reconfiguration is a modification of the original structure of a coordination pattern obtained
through sequential or parallel application of parametrised elementary operations, which are
called reconfiguration primitives.

Let ρ be a coordination pattern.The simplest reconfigurations are the identity (id) and
the constant (const(ρ)) primitives. The former returns the original coordination pattern,
while the latter replaces it with ρ.

The par(ρ) primitive sets the original coordination pattern in parallel with the ρ,
without creating any connection between them. It is assumed, without loss of generality, that
nodes and channel identifiers in both patterns are disjoint. Listing 2 presents the resulting
coordination pattern, after applying par(cp2) to cp1.

Listing 2 Resulting coordination pattern after applying the par primitive.
cp1: { (a, x1 , sync , b.c), (b.c, x2 , lossy , d), (g, x3 , sync , h.i.j),

(h.i.j, x4 , lossy , k), (h.i.j, x5 , fifo , l)}

The join(N) primitive, where N is a set of nodes, creates a new node by merging all
nodes in N , into a single one.

For instance, applying join(a,g) to cp1 (c.f., Listing 2) creates a connection on node
a.g, as presented in Listing 3.

Listing 3 Resulting coordination pattern after applying the join primitive.
cp1: {(a.g, x1 , sync , b.c), (b.c, x2 , lossy , d),
(a.g, x3 , sync , h.i.j), (h.i.j, x4 , fifo , k), (h.i.j, x5 , drain , l)}

The split(n) primitive, where n is a node, is dual to the join combinator because it
breaks connections within a coordination pattern by separating all channel ends coincident

1 Notation b.c is used to express the node {b,c}, where b and c are channel ends.

F. Rodrigues, N. Oliveira, and L. S. Barbosa 65

in n. Listing 4 presents the resulting coordination pattern, after applying split(h.i.j) to
cp1 from Listing 3. Notice that the ends composing node h.i.j are assigned to each channel
that previously shared this node (viz. channels x3, x4 and x5), in a non-deterministic way.

Listing 4 Resulting coordination pattern after applying the split primitive.
cp1: {(a.g, x1 , sync , b.c), (b.c, x2 , lossy , d), (a.g, x3 , sync , h),
(i, x4 , fifo , k), (j, x5 , drain , l)}

Finally, the remove(c) primitive, where c is a channel identifier, removes channel c, if it
exists, from the coordination pattern. In addition, if c was connected to other channel(s),
these connections are also broken as it happens with split. Listing 5 presents the resulting
coordination pattern, after applying remove(x2) to cp1 from Listing 4. Notice how node
b.c was split and its end c was removed along with channel x2. Again, this process is
non-deterministic.

Listing 5 Resulting coordination pattern after applying the remove primitive.
cp1: { (a.g, x1 , sync , b), (a.g, x3 , sync , h), (i, x4 , fifo , k),

(j, x5 , drain , l)}

These primitive operations are assumed to be applied in sequence. Their parallel ap-
plication is also valid, but only when they can be shown to be mutually independent: i.e.,
affecting separated substructures of the target coordination pattern. This possibility of
composing primitive operations in sequence or parallel, allows for the definition of complex
reconfigurations, referred to as reconfiguration patterns. Actually, they affect significant parts
of a coordination pattern at a time, and are expected to be generic, parametric and reusable.
The ReCooPLa language offers a way of specifying such combinations in an imperative-like
style.

4 ReCooPLa: Reconfiguration Language

ReCooPLa is a language for designing coordination-based reconfigurations. As a DSLs tailored
to the area of architectural reconfigurations, it makes possible to abstract away from specific
details, such as the effect of each primitive operation and their actual application (whether
in sequence or in parallel), as well as to hide their actual computation under a processor.

4.1 Overview
In ReCooPLa, a reconfiguration is a first class citizen, as much as functions are in some
programming languages. In fact, these two concepts share characteristics: both have a
signature (identifier and arguments) and a body which designates a specific behaviour.
However, a reconfiguration is always applied to, and always returns, a coordination pattern.
Additionally, reconfigurations accept arguments of the following data types: Name, Node,
Set, Pair, Triple, Pattern and Channel.

The reconfiguration body is a list of different sorts of instructions. The main one concerns
application of (primitive, or previously defined) reconfigurations, since this is the only way
of modifying a coordination pattern. As auxiliar operations, ReCooPLa resorts to other
constructs that mainly manipulate the parameters of a reconfiguration. In particular, they
provide ways to declare, assign and manipulate local variables, for example, field selectors,
the usual set connectives (union, intersection and subtraction), and an iterative control
structure to iterate over the elements of a set.

SLATE 2014

66 ReCooPLa: a DSL for Coordination-based Reconfiguration of Software Architectures

In brief, ReCooPLa is a small language borrowing most of its constructs from imperative
programming languages. Actually, reconfigurations are better expressed in a procedural/al-
gorithmic way, which justifies the choice of an imperative style.

4.2 The Language
In the sequel, we introduce ReCooPLa by presenting (the most important) fragments of the
underlying grammar. A number of constructs are defined for further reference in the paper.
Formally, a sentence in ReCooPLa specifies one or more reconfigurations.

Reconfiguation

A reconfiguration (see Listing 6) is expressed similarly to a function. The header is composed
of a reserved word reconfiguration followed by a unique identifier (the reconfiguration
name) and a list of arguments, which may be empty. The body is a list of instructions as
explained below. Arguments are aggregated by data type, differently from what happens in
conventional languages where data types are replicated for every different argument.

Listing 6 Extended Backus–Naur Form (EBNF) notation for the reconfiguration production.
reconfiguration

: ’reconfiguration ’ ID ’(’ args* ’)’ ’{’ instruction + ’}’
args : arg (’;’ arg)*
arg : datatype ID (’,’ ID)*

The constructor for a reconfiguration is given by: rcfg(n, t1, a1, . . . , tn, an, b), where n is
the name of the reconfiguration; each ai is an argument of type ti; and b is the body of the
reconfiguration.

Data types

ReCooPLa builds on a small set of data types: primitive (Name and Node), generic (Set,
Pair and Triple) and structured (Pattern and Channel). Name is a string and represents a
channel identifier or a channel end. Node, although considered as a primitive data type, is
internally seen as a set of names, to maintain compatibility with its definition in Section 3.
The generic data types (based on the Java generics) specify a type by its contents, as seen in
Listing 7.

Listing 7 EBNF notation for the datatype production.
datatype : ...

| (’Set ’ | ’Pair ’ | ’Triple ’) ’<’ datatype ’>’

Structured data types have an internal state, matching their definition in Section 3. Each
instance of these types is endowed with attributes and operations, which can be accessed
using selectors (later in this section).

The construct of a data type is either given as T () or TG(t), where T is a ReCooPLa data
type and t is a subtype of a generic data type TG.

Reconfiguration body

The reconfiguration body is a list of instructions, where each instruction can be a declaration,
an assignment, an iterative control structure, or an application of a reconfiguration. A
declaration is expressed as usual: a data type followed by an identifier or an assignment.

F. Rodrigues, N. Oliveira, and L. S. Barbosa 67

In its turn, an assignment associates an expression, or an application of a reconfiguration,
to an identifier. The respective constructs are, then, decl(t, v) and either assign(t, v, e) or
assign(v, e), where t is a data type, v a variable name; and e an expression.

The control structure forall is used to iterate over a set of elements. Again, a list
of instructions defines the behaviour of this structure. In Listing 8 it can be seen the
corresponding production rule.

Listing 8 EBNF notation for the forall production.
forall : ’forall ’ ’(’ datatype ID ’:’ ID ’)’ ’{’ instruction + ’}’

The constructor for this iterative control structure is given as forall(t, v1, v2, b), where t
is a data type, v1, v2 are variables and b is a set of instructions.

The application of a reconfiguration, (c.f., reconfiguration_apply production in List-
ing 9), is expressed by an identifier followed by the ’@’ operator and a reconfiguration
name. The latter may be a primitive reconfiguration or any other previously declared.
The ’@’ operator stands for application. A reconfiguration is applied to a variable of type
Pattern. In particular, this variable may be omitted (optional identifier in the production
rule reconfiguration_apply); when this is the case, the reconfiguration called is applied to
the original pattern. This typical usage can be seen in Listing 13

Listing 9 EBNF notation for the reconfiguration_apply production.
reconfiguration_apply

: ID? ’@’ reconfiguration_call
reconfiguration_call

: (’join ’|’split ’|’par ’|’ remove ’|’const ’|’id ’|ID) op_args

Application is called either as @(c) or @(p, c), where p is a Pattern and c a reconfig-
uration call. Each reconfiguration call also has its own constructor: r(a1, . . . , an), for r a
reconfiguration name, and each ai one of its arguments.

Operations

An expression is composed of one or more operations. They can be specific constructors
for generic data types, including nodes, or operations over generic or structured data types.
Listing 10 shows examples of these types of operation. Each constructor is defined as a
reserved word (S stands for Set, P for Pair, T for Triple and N for Node); and a list of values
which is expected to comply to the data type involved. The corresponding production rule is
given in Listing 10 and exemplified in Listing 11.

Listing 10 EBNF notation for the constructor production.
constructor

: ’P’ ’(’ expression ’,’ expression ’)’
| ’T’ ’(’ expression ’,’ expression ’,’ expression ’)’
| ’S’ ’(’ (expression (’,’ expression)*)? ’)’
| ’N’ ’(’ ID (’,’ ID)* ’)’

For the Set data type, ReCooPLa provides the usual binary set operators: ‘+’ for union,
‘−’ for subtraction and ‘&’ for intersection. For the remaining data types (except Node and
Name), selectors are used to apply the operation, as shown in Listing 12 (production rule
operation). Symbol # is used to access a specific channel from the internal structure of a
pattern.

SLATE 2014

68 ReCooPLa: a DSL for Coordination-based Reconfiguration of Software Architectures

Listing 11 Constructors input example.
Pair <Node > a = P(n1 , n2);
Triple <Pair <Node > b = T(a, P(n1 ,n2), P(n3 ,n4));
Set <Node > c = S(n1 , n2 , n3 , n4 , n5 , n6);
Node d = N(e1 , e2);

Listing 12 EBNF notation for the operation and attribute_call productions.
operation

: ID (’#’ ID)? ’.’ attribute_call
attribute_call

: ’in ’ (’(’ INT ’)’)?
| ’out ’ (’(’ INT ’)’)?
| ’ends ’ ’(’ ID ’)’
| ’name ’ | ’nodes ’ | ’names ’ | ’channels ’
| ’fst ’ | ’snd ’ | ’trd ’

An attribute_call corresponds to an attribute or an operation associated to the last
identifier, which must correspond to a variable of type Channel, Pattern, Pair or Triple. The
list of attributes/operations in the language is presented in Listing 12 and described below:

in: returns the input ports from the Pattern and Channel variables. It is possible to
obtain a specific port refered by an optional integer parameter indexing a specific entry
from the set (seen as an array).
out: returns the output ports from the Pattern and Channel variables. The optional
parameter can be used as explained for the in attribute call.
name: returns the name of a Channel variable, i.e., a channel identifier.
ends: returns the ends of a Channel variable in the context of a Pattern given as
parameter.
nodes: returns all input and output ports plus all the internal nodes of a Pattern variable.
names: returns all channel identifiers associated to a Pattern variable.
channels: returns a set of channels associated to a Pattern variable.
fst, snd, trd: act, respectively, as the first, second and third projection from a tuple
(Pair and Triple variables).

All these operations give rise to their own language constructors. For example, the
constructor of a Pair data type is P (e1, e2), where e1, e2 are expressions; for field selection
.(v, c) is used, where v is a variable and c a call to an operation; for set union we write
+(s1, s2), with s1, s2 variables of type Set. The remaining constructors are defined similarly.

Listing 13 shows an example of valid ReCooPLa sentences which declare two reconfigura-
tions: removeP and overlapP. The former removes from a coordination pattern an entire
set of channels by applying the remove primitive repeatedly. The latter sets a coordination
pattern in parallel with the original one, using the par primitive, and performs connections
between the two patterns by applying the join primitive with suitable arguments.

5 ReCooPLa: Language Compilation

This section introduces the reconfiguration engine, which executes reconfigurations specified
in ReCooPLa, and the correspnding translation schema into Java code.

F. Rodrigues, N. Oliveira, and L. S. Barbosa 69

Listing 13 ReCooPLa input example.
reconfiguration removeP (Set <Name > Cs) {

forall (Name n : Cs) {
@ remove (n);

}
}
reconfiguration overlapP (Pattern p; Set <Pair <Node >> X) {

@ par (p);
forall (Pair <Node > n : X) {

Node n1 , n2;
n1 = n.fst;
n2 = n.snd;
Set <Node > E = S(n1 , n2);
@ join(E);

}
}

CoordinationPattern

Channel
0..*

Node
2

<<interface>>
IReconfiguration

<<abstract>>
Reconfiguration

Par SplitJoinConst Remove Id

1 1

1

12..*

Name
1

id ends

arg

argarg
channels

argarg

OverlapP

RemoveP

implodeP

MoveP

...

package: cp.model

Reconfiguration
Creator <<create>>

<<implement>>

Figure 1 The Reconfiguration Engine model.

5.1 Reconfiguration Engine
As it often happens with domain specific languages, ReCooPLa is translated into a subset
of Java, which is then recognised and executed by an engine. This engine, referred to
as the Reconfiguration Engine, is developed in Java to execute reconfigurations specified
in ReCooPLa over coordination patterns, which are defined in CooPLa [20], a lightweight
language to define the graph-like structure of coordination patterns. The model of the engine
is as simple as it can be, taking into account only a few entities. Figure 1 presents the
corresponding Unified Modelling Language (UML) class diagram.

Package cp.model, represented as a shaded diagram, concerns the model of a coordination
pattern. This is actually, the implementation of the formal model presented in Section 3.
Both CoordinationPattern and Channel classes provide attributes and methods that match

SLATE 2014

70 ReCooPLa: a DSL for Coordination-based Reconfiguration of Software Architectures

the attributes and operations of the Pattern and Channel types in ReCooPLa. For instance,
the attribute nodes of the Pattern type has its corresponding method getNodes() in the
CoordinationPattern class.

The remaining entities of the diagram are concerned with reconfigurations themselves,
and assumed to belong to a cp.reconfiguration package. Clearly, classes Par, Const, Remove,
Join, Split and Id are the implementation of the corresponding primitive reconfigurations
also introduced in Section 3. The relationships with the elements of the cp.model package
define their arguments. Moreover, these classes have a common implicit method (given by
the interface IReconfiguration): apply(CoordinationPattern p), where the behaviour of these
primitives is defined as the combined effect of their application to the coordination pattern p
given as an argument.

The Reconfiguration class represents a generic reconfiguration that requires its concrete
classes to implement the apply(CoordinationPattern p) method. The careful reader may have
noticed that the concrete classes of Reconfiguration are greyed-out, and also that they are not
all presented. This is where the most interesting part of the engine comes into play. In fact,
there are no such concrete classes at design time. All of them are created dynamically, at
run time, by the ReconfigurationCreator class, taking advantage of reflection in Java Virtual
Machine (JVM) and working packages like Javassist2. This implementation follows a similar
approach to the well-known Factory design pattern, but instead of creating instances, it creates
concrete classes of Reconfiguration. The idea is that each reconfiguration definition within a
ReCooPLa specification gives rise to a newly created class with an apply(CoordinationPattern
p) method. Then, the content of such method is derived from the content of the ReCooPLa
reconfiguration and added dynamically, via reflection, to the created class. Once the classes
are loaded into the running JVM, the application of reconfigurations becomes as simple as
calling the apply method from instances of such classes.

However, for this to be possible, it is first necessary to correctly translate ReCooPLa
constructs into the code accepted by the Reconfiguration Engine. Section 5.2 goes through
the details of such a translation.

The application of reconfigurations is also specified in ReCooPLa, taking into consideration
the coordination patterns defined in CooPLa (which may be imported to ReCooPLa, a detail
omitted in this paper). A script-based structure is assumed to define how reconfigurations
are concretely applied to coordination patterns. A glimpse of how this can be achieved is
unveiled in Listing 14.

Listing 14 Sketch of a reconfiguration script.
import " patterns .cpl", " reconfigurations .rcpl"
reconfigure (UserUpdate sq1)

UserUpdate sq2 ;
sq1 @ OverlapP (sq2 , S(P(sq1#f2.out [0], sq2#s1.in [0])));

Its meaning is straightforward. First, the necessary definitions (reconfigurations and
patterns) are imported. Then, the reconfigure reserved word marks the beginning of the
reconfiguration script. Parameter UserUpdate sq1 defines a UserUpdate coordination pattern
(c.f. Figure 2) in some configuration. This is not limited to one pattern and in the future it
may be a pointer to some ADL specification, where coordination patterns play the role of
connectors. The declaration UserUpdate sq2 defines a fresh instance of this coordination
pattern. Finally, an OverlapP reconfiguration is applied on sq1 with appropriated arguments.

2 http://www.javassist.org

http://www.javassist.org

F. Rodrigues, N. Oliveira, and L. S. Barbosa 71

5.2 ReCooPLa Translation
Throughout this subsection, it is assumed the existence of Java classes to match the types
in ReCooPLa. This means that, besides the classes already mentioned in Figure 1, the
following ones are also assumed: Pair, with a getFst() and a getSnd() methods to access its
fst and snd attributes; Triple, extending Pair with an attribute trd and method getTrd(); and
the LinkedHashSet from the java.util package, which is abbreviated to LHSet for increased
readability. Moreover, keep exposition simple, details about reflection will be ignored or
abstracted. For instance, method mkClass(cl, t1, a1, . . . , tn, an, b) abstracts the dynamic
creation of a Reconfiguration class with name cl; attributes a1, . . . , an of type t1, . . . , t_n,
respectively; and method apply with body b, which always ends with a return p instruction,
where p is the argument of apply.

This said, the translation of ReCooPLa constructors into the Reconfiguration Engine is
given by the rule-based function T (C), where C is a constructor of ReCooPLa as presented
in Section 4 and defined as shown in Table 1.

Table 1 Translation rules for ReCooPLa constructs.3

T (rcfg(n, t1, a1, ...tn, an, b)) → mkClass(n, T (t1), a1, ... T (tn), an, T (b))
T (T ()) → T
T (TG(t)) → TG<T (t)>
T (Set(t)) → LHSet<T (t)>

T (decl(t, v)) → T (t) v

T (assign(t, v, e)) → T (decl(t, v)) = T (e)
T (assign(v, e)) → v = T (e)

T (forall(t, v1, v2, b)) → for(T (t) v1 : v2){T (b)}
T (@(r(e1, . . . , en))) → r rec = new r(T (e1), . . . , T (en)); rec.apply(p)
T (@(r(p, e1, . . . , en))) → r rec = new r(T (e1), . . . , T (en)); rec.apply(p)

T (P (e1, e2)) → new Pair(T (e1), T (e2))
T (T (e1, e2, e3)) → new Triple(T (e1), T (e2), T (e3))
T (S(e1, . . . , en)) → new LHSet<T>(){{add(T (e1)); . . . ; add(T (en)); }} 4

T (N(n1, . . . , nn)) → new Node(new LHSet<String>(){{add(n1); . . . ; add(nn); }})
T (+(s1, s2)) → (new LHSet(s1)).addAll(s2)
T (−(s1, s2)) → (new LHSet(s1)).removeAll(s2)
T (&(s1, s2)) → (new LHSet(s1)).retainAll(s2)
T (#(p, c)) → p.getChannel(c)
T (.(v, c)) → v.T (c)
T (in(i)) → getIn(i)
T (out(i)) → getOut(i)
T (ends(p)) → getEnds(p)
T (oper()) → getOper()

3 By convention n is used for identifiers; t, ti for data types; ai for arguments; b for set of instructions;
T for non-generic data type; TG for generic data type, except Set; v, vi for local variables; e, ei for
expressions; p for patterns; si for sets; c for channel names; i for numbers; and finally oper for the
operations enumerated in Section 4.2.

4 T comes from the context where the construct appears or the type of the composing expressions ei.

SLATE 2014

72 ReCooPLa: a DSL for Coordination-based Reconfiguration of Software Architectures

Listing 15 Example of a ReCooPLa reconfiguration translated.
public class OverlapP extends Reconfiguration {

private CoordinationPattern p;
private LHSet <Pair <Node , Node >> X;
public OverlapP (CoordinationPattern arg1 ,

LHSet <Pair <Node , Node >> arg2) {
this.p = arg1;
this.X = arg2;

}
public CoordinationPattern apply(CoordinationPattern pat) {

Par par;
Join join;
par = new Par(this.p);
par.apply(pat);
for(Pair <Node > n : this.X) {

Node n1 , n2;
n1 = n. getFst ();
n2 = n. getSnd ();
LHSet <Node > E = new LHSet <Node >() {{

add(n1); add(n2);
}};
join = new Join(E);
join.apply(pat);

}
return pat;

}

It goes without saying that a translation can only occur when the ReCooPLa specification
is syntactically and semantically correct. The ReCooPLa parser ensures syntactic correctness;
on the other hand, a semantic analyser is defined to report errors concerning structure,
behaviour and data types. Its definition is out of the scope of this paper.

Listing 15 shows the result of applying the translation rules to the OverlapP ReCooPLa
reconfiguration documented in Listing 13.

6 Example

Consider a company that sells training courses on line and whose software system originally
relied on the following four components: Enterprise Resource Planner (ERP), Customer
Relationship Management (CRM), Training Server (TS) and Document Management System
(DMS). In seeking an expedite expansion of the company and its information systems, a
major software refactoring project was launched adopting a SOA solution. This entailed the
need to change from the original structure of monolithic components into several services
and their integration and coordination with respect to the different business activities.

One of the most important activities for the company concerns the updating of user
information, which is accomplished taking into account the corresponding new user update
services derived from the original ERP, CRM and TS components. Originally such an update
was designed to be performed sequentially as shown in the coordination pattern of Figure 2.

However, other configurations were considered and studied taking advantage of the
ReCooPLa language and the underlying reconfiguration reasoning framework. For instance,

F. Rodrigues, N. Oliveira, and L. S. Barbosa 73

i

UUerp UUcrm UUts

j1 j2 j3s1

:: fifoe

s
2

::
s
y

n
c

f1

:: fifoe

s
3

::
s
y

n
c

f2

:: fifoe

s
4

::
s
y

n
c

Figure 2 The User update coordination pattern. Each channel is identified with a unique name
and a type (::t notation). It defines an instance of a sequencing pattern, where UUerp executes first,
then UUcrm and finally UUts with data entering in port i. Graphically, white circles represent input
and output nodes while black ones represent mixed nodes.

Listing 16 implodeP reconfiguration pattern.
reconfiguration implodeP (Set <Node > X; Set <Name > Cs) {

@ removeP (Cs);
@ join (X);

}

another configuration for the user update activity may be given by the coordination pattern
in Figure 3. This can be obtained from the initial pattern by application of a reconfiguration
that collapses nodes and channels into a single node. In ReCooPLa, this is easy to define, as
shown in Listing 16, resorting to removeP already defined in Listing 13.

This reconfiguration pattern takes as parameters the set of nodes and channels realtive
to the strucutre one pretends to implode. Channels are removed and the nodes are joined.
The translation mechanism of ReCooPLa specifications produces a Java class similar to the
one presented in Listing 17.

Listing 17 ImplodeP class generated.
public class ImplodeP extends Reconfiguration {

private LHSet <Node > X;
private LHSet <Name > Cs;
public OverlapP (LHSet <Node > arg1 ,LHSet <Name > arg2) {

this.X = arg1;
this.Cs = arg2;

}
public CoordinationPattern apply(CoordinationPattern pat) {

RemoveP removeP ;
Join join;
removeP = new RemoveP (this.Cs);
removeP .apply(pat);
join = new Join(this.X);
join.apply(pat);

return pat;
}

}

In this example, applying implodeP ({j1, j2, j3}, {f1, f2}) to the original coordination
pattern would result in the one depicted in Figure 3, where (for reading purposes) node k is
used to represent the union of j1 and j2.

SLATE 2014

74 ReCooPLa: a DSL for Coordination-based Reconfiguration of Software Architectures

i

UUerp

UUcrm

UUts

k
s1

:: fifoe

s2:: sy
nc

s4

:: sync

s5

:: sync

Figure 3 The User update coordination pattern reconfigured. It defines an instance of a parallel
pattern, where UUerp, UUcrm and UUts execute in parallel with data entering in port i.

7 Conclusions and Future Work

The paper introduces ReCooPLa, a DSL for the design of coordination-based reconfigurations.
These reconfigurations act, through the application of primitive atomic operations, over
a graph-based structure, which is an abstract representation of the coordination layer of
a SOA-based system. ReCooPLa resorts to a Reconfiguration Engine that, via reflection,
processes and applies such reconfigurations.

ReCooPLa differs from other architecture-oriented languages in the sense that it focus
on reconfigurations rather than on the definition of architectural elements like components,
connectors and their interconnections. Moreover, the language and the underlying approach is
intended to target the early stages of software development; i.e., the design of reconfigurations
and their analysis against requirements of the system. However, this approach may be lifted
to the dynamic setting by mapping the code of each reconfiguration and coordination pattern
to the actual coordination layer of a system. This would allow to reconfigure deployed
systems offering an abstract, but effective way of planning such reconfigurations.

As future work, it is planned the full integration of ReCooPLa with the framework for
reconfiguration analysis conceptualised in [19, 20]. In particular, it is intended to extend
the language to cope with the probabilistic coordination model introduced in [22].

Acknowledgements. This work is partly funded by ERDF – European Regional Develop-
ment Fund through the COMPETE Programme (operational programme for competitiveness)
and by National Funds through the FCT, the Portuguese Foundation for Science and Tech-
nology, within project FCOMP-01-0124-FEDER-028923. Nuno Oliveira is supported by an
Individual Doctoral Grant from FCT, with reference SFRH/BD/71475/2010.

References
1 B. Agnew, C. Hofmeister, and J. Purtilo. Planning for change: a reconfiguration language

for distributed systems. In Proceedings of 2nd International Workshop on Configurable
Distributed Systems, 1994, pages 15–22, 1994.

2 R. Allen. A Formal Approach to Software Architecture. PhD thesis, Carnegie Mellon, School
of Computer Science, January 1997. Issued as CMU Technical Report CMU-CS-97-144.

3 G.R. Andrews. Paradigms for process interaction in distributed programs. ACM Computer
Surveys, 23(1):49–90, March 1991.

4 F. Arbab. Reo: a channel-based coordination model for component composition. Mathem-
atical. Structures in Comp. Sci., 14(3):329–366, June 2004.

5 R. Balzer. Enforcing architecture constraints. In Proceedings of ISAW’96, pages 80–82,
NY, USA, 1996. ACM.

F. Rodrigues, N. Oliveira, and L. S. Barbosa 75

6 E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The fractal component
model and its support in java: Experiences with auto-adaptive and reconfigurable systems.
Softw. Pract. Exper., 36(11-12):1257–1284, September 2006.

7 R. Bruni, A. Lluch-Lafuente, U. Montanari, and E. Tuosto. Style-based architectural
reconfigurations. Bulletin of the European association for theoretical computer science,
94:161–180, February 2008.

8 P.-C. David, T. Ledoux, M. Léger, and T. Coupaye. Fpath and fscript: Language support
for navigation and reliable reconfiguration of fractal architectures. Annals of Telecommu-
nications - Annales des Télécommunications, 64(1-2):45–63, 2009.

9 T. Erl. SOA Design Patterns. Prentice Hall PTR, NJ, USA, 1st edition, 2009.
10 D. Garlan, R. Monroe, and D. Wile. Acme: An architecture description interchange lan-

guage. In Proceedings of the CASCON’97, pages 7–. IBM Press, 1997.
11 P. Hnětynka and F. Plášil. Dynamic reconfiguration and access to services in hierarchical

component models. In I. Gorton, G. T. Heineman, I. Crnković, H. W. Schmidt, J. A.
Stafford, C. Szyperski, and K. Wallnau, editors, Component-Based Software Engineering,
volume 4063 of LNCS, chapter 27, pages 352–359. Springer, 2006.

12 T. Kosar, N. Oliveira, M. Mernik, M. J.V. Pereira, M. Črepinšek, D. da Cruz, and P.R.
Henriques. Comparing general-purpose and domain-specific languages: An empirical study.
Computer Science and Information Systems, 7(2):247–264, May 2010.

13 C. Krause. Reconfigurable Component Connectors. PhD thesis, Leiden University, Amster-
dam, The Netherlands, 2011.

14 C. Krause, Z. Maraikar, A. Lazovik, and F. Arbab. Modeling dynamic reconfigurations in
Reo using high-level replacement systems. Science of Computer Programming, 76(1):23–36,
2011.

15 D.C. Luckham and J. Vera. An event-based architecture definition language. IEEE Trans.
Softw. Eng., 21(9):717–734, September 1995.

16 J. Magee and J. Kramer. Dynamic structure in software architectures. In Proceedings of
SIGSOFT’96, page 3–14, NY, USA, 1996. ACM.

17 N. Medvidovic. Adls and dynamic architecture changes. In Proceedings of ISAW’96, pages
24–27, NY, USA, 1996. ACM.

18 M. Mernik, J. Heering, and A.M. Sloane. When and how to develop domain-specific
languages. ACM Computing Surveys., 37(4):316–344, December 2005.

19 N. Oliveira and L. S. Barbosa. On the reconfiguration of software connectors. In Proceedings
of SAC’13, pages 1885–1892, NY, USA, 2013. ACM.

20 N. Oliveira and L. S. Barbosa. Reconfiguration mechanisms for service coordination. In
M.H. Beek and N. Lohmann, editors, Web Services and Formal Methods, volume 7843 of
LNCS, pages 134–149. Springer, 2013.

21 N. Oliveira, M. J.V. Pereira, P.R. Henriques, and D. da Cruz. Domain-specific languages:
a theoretical survey. In INForum’09, pages 35–46, Lisbon, Portugal, September 2009.

22 N. Oliveira, A. Silva, and L. S. Barbosa. Quantitative analysis of Reo-based service coordin-
ation. In Proceedings of SAC’14, volume 2, pages 1247–1254. ACM, March 2014.

23 P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture-based runtime software evolution.
In Proceedings of ICSE’98, pages 177–186, WA, USA, 1998. IEEE Computer Society.

24 D.E. Perry. An overview of the state of the art in software architecture. In Proceedings of
ICSE’97, pages 590–591, NY, USA, 1997. ACM.

25 D. Plump. The graph programming language GP. In S. Bozapalidis and G. Rahonis,
editors, Algebraic Informatics, volume 5725 of LNCS, chapter 6, pages 99–122. Springer,
Berlin, Heidelberg, 2009.

26 A. J. Ramirez and B.H.C. Cheng. Design patterns for developing dynamically adaptive
systems. In Proceedings of SEAMS’10, pages 49–58, NY, USA, 2010. ACM.

SLATE 2014

76 ReCooPLa: a DSL for Coordination-based Reconfiguration of Software Architectures

27 A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: An annotated biblio-
graphy. SIGPLAN Not., 35(6):26–36, June 2000.

28 A.L. Wolf. Succeedings of the isaw-2. SIGSOFT Softw. Eng. Notes, 22(1):42–56, January
1997.

A Workflow Description Language to Orchestrate
Multi-Lingual Resources
Rui Brito and José João Almeida

University of Minho
Department of Informatics
{ruibrito,jj}@di.uminho.pt

Abstract
Texts aligned alongside their translation, or Parallel Corpora, are a very widely used resource

in Computational Linguistics. Processing these resources, however, is a very intensive, time
consuming task, which makes it a suitable case study for High Performance Computing (HPC).

HPC underwent several recent changes, with the evolution of Heterogeneous Platforms, where
multiple devices with different architectures are able to share workload to increase performance.

Several frameworks/toolkits have been under development, in various fields, to aid the pro-
grammer in extracting more performance from these platforms. Either by dynamically scheduling
the workload across the available resources or by exploring the opportunities for parallelism. How-
ever, there is no toolkit targeted at Computational Linguistics, more specifically, Parallel Corpora
processing. Parallel Corpora processing can be a very time consuming task, and the field could
definitely use a toolkit which aids the programmer in achieving not only better performance, but
also a convenient and expressive way of specifying tasks and their dependencies.

1998 ACM Subject Classification D.3.4 Processors

Keywords and phrases workflow, orchestration, parallelism, domain specific languages, corpora

Digital Object Identifier 10.4230/OASIcs.SLATE.2014.77

1 Introduction

It is widely accepted that tasks can be very difficult to manage, mainly when they have many
steps, often with time consuming tools, interdependent tasks and huge datasets. As the
complexity of applications increases, so does the difficulty to efficiently manage the different
available resources. Users have to adopt frameworks/toolkits, as a way to improve their
path to achieve the desired goals. The aim of this paper is to provide a toolkit targeted
at Computational Linguistics, which may also benefit other fields that require workflow
management. Texts aligned alongside their translation, or parallel corpora, are considered
very rich resources for machine translation, whose formats usually follow Translation Memory
eXchange (TMX) or Probabilistic Translation Dictionaries (PTD). Tools to aid machine
translation based on parallel corpora include text aligners (e.g. Moses [6]), morphological
taggers (e.g. Apertium [4] and Freeling [8]) and dictionary generators (e.g. NATools [10]).
Some of these tools are computationally intensive, taking too long to display useful results.
Most data is the result of a complex task chain and ever-changing data, which makes the
results difficult to predict and errors difficult to detect. This type of work is currently done
either by hand or by very crude scripts, but could be significantly improved if the linguistics
community could access a toolkit to create and manage the interrelated parallel corpora
processing tasks and take advantage of current heterogeneous computing systems. The lack
of such a tool is the main motivation to pursue this work, developing a Workflow Description
Language (WDL), which is a DSL to orchestrate Multi-Lingual resources.

© Rui Brito and José João Almeida;
licensed under Creative Commons License CC-BY

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões; pp. 77–83

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2014.77
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

78 A Workflow Description Language to Orchestrate Multi-Lingual Resources

Previous work of the authors on the Per-Fide [1] project gained insight on the requirements
to specify and develop a toolkit to chain tasks and to handle large data sets with different
data formats. The task chain usually contains many steps, from different tools, which may
change frequently, making it difficult to keep track of the results being produced. The tasks
involved are mostly irregular, where memory access patterns may not be predictable, with
consequent penalties on execution time. This brings forth the need to develop a toolkit to
describe tasks, their chaining, their dependencies, their types and with the need to provide
environment details to better take advantage of current heterogeneous computing systems.

Given a set of tools, the user should be able to specify tasks to be executed and visually
follow the workflow execution phases and results. This can be achieved with a flow-graph.
Some work has been done in this area, particularly with the Makefile::Parallel [9] tool,
which, provides a way of describing tasks and workflows to be performed in either a cluster
environment or a single machine.

The expected contribution of the work described in this paper is a toolkit to better
organize, manage and modify on the fly. The toolkit will also make an efficient use of the
available computational resources, by dynamically scheduling the workload with high-level
directives that abstract efficient implementations.

The Section 2 begins by describing the Workflow Description Language and its aims.
Section 3 presents some examples of the language, as well as some use case scenarios. Finally,
section 4 presents our conclusions on the work already done.

2 Workflow Description Language

The main goal of this paper is to describe an efficient toolkit to orchestrate computational
linguistics tasks. The user specifies through a WDL how individual tasks are performed. The
main features of the toolkit are as follows:

The toolkit will be environment-aware, and thus, take advantage as best as possible of
the computing units and systems available;
The toolkit should also be able to revert back to its most recent stable state (if the task
is aborted);
Primitives to generate reports, diagrams and type signature should be provided;
There should be a mode in which the user provides heuristics on how to best use the
available computing units;
The user should be able to specify mapReduce [3, 7, 2] functions to achieve certain tasks;

A cleaner and more elegant way of specifying tasks;
Efficient low-level implementations are hidden from the end user;

The WDL should be Algebra based, providing:
Familiar operations such as composition, which makes the language clearer;

The toolkit should contemplate not only complex cluster systems, but also single user
systems.

Some of the generic goals of the toolkit to be developed include:
A declarative approach;
Separation of elemental/independent tools;
Separation of resources/machines;
Reuse of existing research;
Expressive power.

R. Brito and J. J. Almeida 79

Figure 1 WDL Description.

The general organization of the WDL is described in the Figure 1. There are, essentially,
three distinct parts to the language. A Machine Specification part, where all the computing
systems available are described. In its simplest form, this means specifying hosts and users
for remote machines. In the case of a cluster environment, there are primitives to find out
which nodes are free, to ask for a full node (or nodes), since most cluster schedulers (e.g.
PBS or Maui [5]) never supply the user with a full node, unless asked to. These are called
execution attributes. There are also primitives to ascertain, for example, if a certain tool is
available in a specific machine. Primitives of this kind are called existence attributes.

Then, there is a Tool Specification part, where all the tool to be used are described, along
with any eventual execution attributes. Finally, there is an Task Specification part, where
the Tasks are organized in a workflow.

This paper focus mostly on parts 2 and 3.
This WDL grammar is being developed using Perl YAPP, a Perl extension for generating

and using LALR parsers. This decision is mainly because of Perl’s expressive power and
Regular Expressions, which make it easier to develop the kind of language we’re trying to
achieve.

As it can be seen from the grammar presented in Table 1, the user begins by specifying
tools, which, in their most distilled form, are a collection of actions paired with an in and
out type definition. The action production provides a way to specify how a certain tool is
run. As it can be seen from the grammar, it can be either a bash script, or Perl code which
is preprocessed before execution. The execAttr production’s goal is to provide execution
details for the tool, such has maximum desired walltime, whether it can run on a GPU or in
Intel’s MIC micro-architecture. In the case of a cluster environment, how many cores and
how many nodes are needed for a specific tool. Eventually, more attributes will be added, or
even changed. Once the tools are specified, the user begins specifying tasks. The production
shown here (taskSpec), while not complete, hints at the direction we’re aiming.

3 WDL Examples

Listing 1 presents how the syntax expressed in the grammar can be used to specify tools and
tasks. First, the tool’s type signature is specified, then a set of execution attributes followed
by how to execute the tool. A couple of conventions were adopted, for example, for a given
resource named corpus.pt.en.tmx:

$B1 is the name of the resource (corpus);
$1 is the name of the resource coupled with its extension (corpus.pt.en.tmx).

It is also possible to specify variable filenames, or type extensions, as seen in the tmx2tmxa
tool definition in listing 1. This way, the user can make variable parts of a filename part of
the type definition (e.g. language pairs).

SLATE 2014

80 A Workflow Description Language to Orchestrate Multi-Lingual Resources

Table 1 Workflow Description Language Grammar.

wdl → ‘%tools’ toolDefs ‘%tasks’ taskSpecs
;

toolDefs → toolName ‘:’ signature tool
| toolDefs toolName ‘:’ signature tool
;

signature → type_id ‘→’ type_id
;

tool → ‘{’ action execAttrs split join ‘}’
;

action → ‘@BASH’ ‘{’ STRING ‘}’
| ‘@PERL’ ‘{’ STRING ‘}’
;

execAttrs → execAttrs execAttr
| ε

execAttr → ‘wall=’wall
| ‘gpu=’ bool
| ‘mic=’ bool
| ‘ncores=’ INT
| ‘nnodes=’ INT
| · · ·
;

split → ‘split=’ action
| ε

;
join → ‘join=’ action

| ε

;
taskSpecs → taskSpecs task

| ε

;
task → toolName ‘(’ args ‘)’

| toolName ‘.’ toolName ‘(’ args ‘)’
| ‘#make’ ‘(’ args ‘)’
| ‘#span’ ‘(’ args ‘)’
;

args → ID
| args ‘,’ ID
;

R. Brito and J. J. Almeida 81

Listing 1 WDL Example.
1
2 tmx2ptd : tmx -> ptd {
3 @BASH {
4 nat - create -id $B1.ptd -tmx $1
5 }
6 }
7
8 tmx2tmxa : $l1.$l2.tmx -> tmxa {
9 @BASH {

10 tmx2tmxa -l $l1 -$l2 -f $1 -o $B1.$l1.$l2.tmxa
11 }
12 }
13
14 tmx2ptda : tmxa -> ptda {
15 @BASH {
16 tmxa - lemmatizer -i $1 -o $B1.tmxpl
17 nat - create -id $B1.ptda -tmx $B1.tmxpl
18 }
19 }
20
21 tmx2tmxa (corpus .pt.en.tmx)

f.tmx f.tmxa
tmx2tmxa

f.ptda
tmxa2ptda

Figure 2 Typical serial workflow.

An alternative to specifying tasks in a function call fashion is to write something like the
following using function composition:

1 tmxa2ptda . tmx2tmxa (corpus .pt.en.tmx)

The resulting workflow can be seen in Figure 2.
For example, the following definition adds mapReduce primitives to the tmxa2ptda tool1.
The resulting workflow can be seen in Figure 3.
More complex examples, given there are no dependencies, would allow tasks to execute

in parallel in a Cluster environment, spawning several processes in a single machine, or
even across multiple machines. This would allow for a more efficient use of the available
computational resources. Communication is done preferably by rsync, since it is a safer and
faster alternative to scp.

There is also ongoing work in modes in which the user writes:

1 #span(resource . src_type)
2 #make(resource . target_type)

The #span construct will traverse the graph generated from the type signatures of the
tools and generate all the resources possible from the achievable nodes. The #make construct

1 tmxsplit is a script that cuts a tmx when possible after a given number of lines. ptdcat is a script that
concatenates the various parts of a ptd file.

SLATE 2014

82 A Workflow Description Language to Orchestrate Multi-Lingual Resources

Listing 2 WDL with MapReduce Example.
1 tmxa2ptda : tmxa -> ptda {
2 @BASH {
3 tmxa - lemmatizer -i $1 -o $B1.tmxpl
4 nat - create -id $B1.ptda -tmx $B1.tmxpl
5 }
6 split=@BASH {
7 tmxsplit -l 10000 $1
8 }
9 join=@BASH {

10 ptdcat *. ptda > result .ptda
11 }
12 }

f.tmx f.tmxa
tmx2tmxa split

p1.tmxa

p2.tmxa

p3.tmxa

p4.tmxa

...

pn.tmxa

f.ptda
reduce

p1.ptda
tmxa2ptda

p2.ptda
tmxa2ptda

p3.ptda
tmxa2ptda

p4.ptda
tmxa2ptda

...
tmxa2ptda

pn.ptda
tmxa2ptda

Figure 3 Workflow with MapReduce.

will take a resource.target_type, and, by inference, figure out the correct path to generate it
from an existing resource.src_type. There will also be a built-in Perl preprocessor, so that
the user can build more complex tasks.

4 Conclusions

Workflow orchestration and management is something very present in today’s computing
world and specially in fields that deal with intensive tools and very large data-sets. The lack
of a tool to achieve this end, makes it even more difficult. In this short paper we introduced a
new language to orchestrate workflows and to better manage existing computational resources.
High level primitives and the direct integration of a scripting language (Perl) means we
achieved a versatile format to express complex workflows.

Acknowledgments. This work is funded by National Funds through the FCT – Fundação
para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within
project PEst-OE/EEI/UI0752/2014

R. Brito and J. J. Almeida 83

References
1 José João Almeida, Sílvia Araújo, Nuno Carvalho, Idalete Dias, Ana Oliveira, André San-

tos, and Alberto Simões. The Per-Fide corpus: A new resource for corpus-based termino-
logy, contrastive linguistics and translation studies. In Tony Berber Sardinha and Telma
São-Bento Ferreira, editors, Working with Portuguese Corpora, chapter 9, pages 177–200.
Bloomsbury Publishing, April 2014.

2 M. Bhandarkar. MapReduce programming with Apache Hadoop. Parallel & Distributed
Processing (IPDPS), 2010 IEEE International Symposium on, 2010.

3 Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. Communications of the ACM, 51(1):1–13, 2008.

4 Mikel L. Forcada, Mireia Ginestí-Rosell, Jacob Nordfalk, Jim O’Regan, Sergio Ortiz-Rojas,
Juan Antonio Pérez-Ortiz, Felipe Sánchez-Martínez, Gema Ramírez-Sánchez, and Fran-
cis M. Tyers. Apertium: a free/open-source platform for rule-based machine translation.
Machine Translation, 25(2):127–144, 2011.

5 David Jackson, Quinn Snell, and Mark Clement. Core Algorithms of the Maui Scheduler.
In Job Scheduling Strategies for Parallel Processing, pages 87–102. Springer-Verlag, 2001.

6 Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico,
Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer,
Ondřej Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for
statistical machine translation. In Proceedings of the 45th Annual Meeting of the ACL on
Interactive Poster and Demonstration Sessions, ACL’07, pages 177–180, Stroudsburg, PA,
USA, 2007. Association for Computational Linguistics.

7 K.H. Lee, Y. J. Lee, H. Choi, Y.D. Chung, and B. Moon. Parallel data processing with
MapReduce: a survey. ACM SIGMOD Record, 40(4):11–20, 2012.

8 Lluís Padró and Evgeny Stanilovsky. FreeLing 3.0: Towards Wider Multilinguality. LREC,
pages 2473–2479, 2012.

9 Alberto Simões, Rúben Fonseca, and José João Almeida. Makefile::Parallel Dependency
Specification Language. In Anne-Marie Kermarrec, Luc Bougé, and Thierry Priol, editors,
Euro-Par 2007, pages 33–41, Rennes, France, August 2007. Springer-Verlag.

10 Alberto M. Simões and J. J. Almeida. NATools – a statistical word aligner workbench.
Procesamiento del Lenguaje Natural, 31:217–224, Sep. 2003.

SLATE 2014

Converting Ontologies into DSLs
João M. Sousa Fonseca1, Maria João Varanda Pereira2, and
Pedro Rangel Henriques1

1 Centro de Ciência e Tecnologia da Computação (CCTC)
Departamento de Informática, Universidade do Minho
Braga, Portugal
{jprophet89,pedrorangelhenriques}@gmail.com

2 Centro de Ciência e Tecnologia da Computação (CCTC)
Departamento de Informática e Comunicações,
Instituto Politécnico de Bragança
Bragança, Portugal
mjoao@ipb.pt

Abstract
This paper presents a project whose main objective is to explore the Ontological-based develop-
ment of Domain Specific Languages (DSL), more precisely, of their underlying Grammar.

After reviewing the basic concepts characterizing Ontologies and Domain-Specific Languages,
we introduce a tool, Onto2Gra, that takes profit of the knowledge described by the ontology
and automatically generates a grammar for a DSL that allows to discourse about the domain
described by that ontology.

This approach represents a rigorous method to create, in a secure and effective way, a grammar
for a new specialized language restricted to a concrete domain. The usual process of creating
a grammar from the scratch is, as every creative action, difficult, slow and error prone; so this
proposal is, from a Grammar Engineering point of view, of uttermost importance.

After the grammar generation phase, the Grammar Engineer can manipulate it to add syn-
tactic sugar to improve the final language quality or even to add semantic actions.

The Onto2Gra project is composed of three engines. The main one is OWL2DSL, the compon-
ent that converts an OWL ontology into an attribute grammar. The two additional modules are
Onto2OWL, converts ontologies written in OntoDL (a light-weight DSL to describe ontologies)
into standard OWL, and DDesc2OWL, converts domain instances written in the DSL generated
by OWL2DSL into the initial OWL ontology.

1998 ACM Subject Classification D.3.4 Processors

Keywords and phrases ontology, OWL, RDF, languages, DSL, grammar

Digital Object Identifier 10.4230/OASIcs.SLATE.2014.85

1 Introduction

The use of domain-specific languages (DSL) enables a quick interaction with different domains,
thereby taking a greater impact on productivity because there is no need for special or deep
programming skills to use that language [3]. However, to create a domain-specific languages
is a thankless task, which requires the participation of language engineers, which are (usually)
not experts in the domain for which the language is targeted [4].

The work hereby presented takes advantage of the processable nature of OWL1 ontologies

1 Web Ontology Language as defined at http://www.w3.org/TR/owl-features/

© João Manuel Sousa Fonseca, Maria João Varanda Pereira, and Pedro Rangel Henriques;
licensed under Creative Commons License CC-BY

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões; pp. 85–92

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2014.85
http://www.w3.org/TR/owl-features/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

86 Converting Ontologies into DSLs

to generate DSLs from the enclosed domain knowledge. This is expected to automatize,
at a certain extent, the language engineer task of bringing program and problem domains
together.

Ontologies are usually created as only a scheme of the domain knowledge. But this is far
from being a complete ontology. Ontologies also support instances of the concepts and their
relations, but populating such database is a tremendous manual and time consuming routine.

An additional outcome of the proposed work is the possibility of populating ontologies
from text files written in the new and automatically generated DSL. This would combine the
best of both worlds. In practice, it is desired to take advantage of modelling the domain
as an ontology from where a DSL (and its processor) can be extracted. The DSL processor
can be specialized to convert its input into new OWL files containing the concept instances
described in the input.

In this paper we will demonstrate that, given an abstract ontology describing a knowledge
domain in terms of the concepts and the relations holding among them, it is possible to
derive automatically a grammar, more precisely an attribute grammar, to define a DSL for
that same domain.

The rest of the paper is organized as follows. Section 2 is used to discuss work by
other authors similar to ours. Section 3 is devoted to an overview of Onto2Gra, discussing
its functionality and introducing its architecture. The two modules already implemented,
Onto2OWL and OWL2DSL, are presented in Section 4 and Section 5, respectively. The
paper ends in Section 6 with some concluding remarks and guidelines for future work.

2 Related Work

In [2], a DSL is defined as a language designed to provide a notation tailored to one aplication
domain and is based on the relevant concepts and features belonging to that domain. By
providing notations tailored to the application domain, a DSL offers substancial gains in
productivity and turns easier the task of the end-user. The main disadvantage of DSL is the
cost of their development, requiring both domain and language development expertise.

Tairas et al. in [4], the authors explore the use of ontologies to perform domain analysis.
A domain model is created by defining the scope of the domain, the terminology, concepts
description and features model describing commonalities and variabilities. An ontology can
be used to define the domain model. The information contained in the ontology will influence
the language shape contributing for the early development stages. With this approach there
is no need to start from scratch the DSL development. So, this work uses ontologies to
validate the domain analysis and to get the domain terminology for the DSL creation.

Ceh et al. presented in [1] a concrete tool for ontology-based domain analysis and its
incorporation on the early design phase of the DSL development. In this work, the authors
identified several phases that a DSL development need. The most important are the decision,
domain analysis, design, implementation and deployment.

The domain analysis is a process that uses several methodologies that differ on the level
of formality and on the information extraction approach. The objective is to select and define
the domain focus and collect the important information and integrate within a domain model.
However, little attention is being paid to the analysis and design phase comparing with
the efforts done in the implementation phase for instance. The methodologies have proven
to be too complex (too much work) and they do not provide guidelines about how to use
that information in the design phase. Subsequently the domain analysis is often performed
informally.

J.M. S. Fonseca, M. J. V. Pereira, and P. R. Henriques 87

The main idea of this work is to use ontologies to define the domain model. OWL classes,
which define basic concepts, may be organized into a hierarchy. OWL defines two kinds of
classes: simple named and predefined (the “Thing” and “Nothing”). The second component,
the properties, is a binary relation, which associates values with individuals. The two main
kinds of properties in OWL are object properties and datatype properties. Object properties
relate objects to other objects. Datatype properties relate objects to datatype values. The
third component, the individuals, are members of the user-defined ontology classes.

The authors of [1] also created a framework, called Ontology2OWL, to enable the
automatic generation of a grammar from a target ontology. This framework accepts OWL
files as input and parses them in order to generate and fill internal data structures. Then
following transformation patterns, execution rules are applied over those data structures. The
result is a grammar, acquired automatically, that is inspected for a DSL engineer in order to
verify and find any irregularities. The engineer can either correct the constructed language
grammar or change the transformation pattern or the source ontology. If the change was
done on the ontology or transformation pattern, then a new transformation run is required.
The framework can then use the old transformation pattern on the new ontology, the new
transformation pattern on the old ontology, or the new transformation pattern on the new
ontology. The DSL engineer can edit the source ontology with the use of a preexisting tool,
such as Protégé. The final grammar can later be used for the development of DSL tools that
are developed with the use of language development tools (e.g., LISA, VisualLISA).

This framework has the same objective as the one presented in this paper but some
features were improved: reduction of the generation process steps, reduction of the user
dependency, validation of the resulting grammar, transformation of the developed DSL to
a form that is compatible with compiler generators, and generation of semantic actions
associated with the grammar.

3 Onto2Gra: General Overview and Architecture

The purpose of Onto2Gra project here reported is to create automatically a Domain Specific
Language based on an ontological description of that domain.

Figure 1 – the block diagram that depicts the architecture of Onto2Gra system – represents
how, given an abstract ontology describing a knowledge domain in terms of its concepts and
the relations among them, it is possible to derive automatically a grammar to define a new
DSL for that same domain.

In a first stage the objective was to create a tool that allows to upload into the Protégé
System an ontology in an acceptable OWL format. The original ontology shall be described in
a special purpose DSL, a kind of natural language specifically tailored for that purpose, called
OntoDL – Ontology light-weight Description Language. This tool was named Onto2OWL
and what it does is to take an OntoDL file, that is an ontology specification file, and to
convert it into OWL, that is the standard format for ontology descriptions. The aim of this
tool is to offer an easy way to build a knowledge base to support the next phase. However, it
is important to notice that this phase is not mandatory – this step can be skipped if the
source ontology is already available in OWL format (or even in RDF/XML format). In that
case, the user of Onto2Gra system can go directly to the second stage.

The second block is the most important on this proposal, and also the core of Onto2Gra.
It is composed of a tool, OWL2DSL that makes the conversion of an OWL file into a grammar.
This grammar is created systematically from a set of rules that will be explained in Section 5.
From the OWL ontology description, OWL2DSL is able to infer: the non-terminal and

SLATE 2014

88 Converting Ontologies into DSLs

Figure 1 Onto2Gra Architecture.

terminal symbols; the grammar production rules; the symbol attributes and their evaluation
rules2. Besides that, OWL2DSL generates a set of Java classes that are necessary to create
an Internal Representation of the concrete ontology3 extracted from each sentence of the
target language4

The Grammar generated by OWL2DSL is written in such a format that can be compiled
by a Compiler Generator (specifically in our case we are using the AnTLR compiler generator)
in order to immediately create a processor for the sentences of the new DSL. AnTLR builds
a Java program to process the target language; we call that processor DDesc2OWL and it is
precisely the engine in the center of the third block.

Finally in the last block of the Onto2Gra architecture, the above referred tool DDesc2OWL,
will read an input file, with a concrete description of the Domain specified by the initial
ontology, and will generate an OWL file that, when merged into the original OWL file, will
originate a specification that populates the original ontology creating a network of knowledge.

4 Onto2OWL Module

Onto2OWL is the first module of Onto2Gram system. The objective is to offer the possibility
creating a specification file in the standard notation for ontologies specification that is
OWL/XML from a file with a different and simple ontology specification language.

This module is compose of two parts. The first is a parser for the input files written in a
DSL, called OntoDL, we have specially designed to describe ontologies. The second part is a
transalator (a Java class) that manipulates the information gathered by the parser in order
to generate the OWL file. In the next subsections it will be explained how these two parts
work together.

2 In the future we will also be able to derive the contextual conditions.
3 An ontology with instances.
4 The new Domain Specific Language defined by the generated Grammar.

J.M. S. Fonseca, M. J. V. Pereira, and P. R. Henriques 89

4.1 The Parser for OntoDL Files
This parser is generated from a grammar that was created to specify OntoDL language. It
recognizes all the basic components of an ontology described in OntoDL language.

After analyzing the problem, we found that only four parts are essential for a basic
description of an ontology: Concepts, Hierarchies, Relations and Links. This supported the
definition of OntoDL language as schematized below.

Listing 1 Template for a OntoDL File.
Ontology {

Concepts [List of concepts]
(, Hierarchies [List of hierarchies])?
(, Relations [List of relations])?
(,Links[List of links])?

}

An ontology is a specification of a certain domain. In order to describe the domain objects
the ontology uses Concepts, or Classes. A Concept has a name, a description and a list of
attributes. An attribute has a name and a type that can be a ‘string’, ‘int’, ‘boolean’ or
‘float’.

After the Concepts specification, it is possible to define the hierarchy between two
Concepts, the first is the father Concept(the super-class) and second is the son Concept(the
sub-class). If one of the Concepts is not previously specified, the program ignores the
Hierarchy that is being specified and issues a warning message.

After defining the hierarchical relations holding among Concepts, it is necessary to define
the non-hierarchical Relations that will be used to connect Concepts. A Relation is a bridge
between Concepts and it brings semantic value to the domain graph. With that in mind it
was added a production rule to describe a Relation.

At last, we need to define the Links to identify the Concepts and the Relation that connect
them. A Link is composed of two Concepts and one Relation. If one of the three items is not
previously specified, the Link is ignored and a warning is displayed on the console. Listing 2
is an example of an OntoDL file to describe a small ontology called BookIndex (we will use
this as a running example along the paper).

Listing 2 OntoDL File for the BookIndex example.
Ontology {

Concepts [{ Book },{ Page },{ Title },{ SpecialTerm }]
Hierarchies []
Relations [{ has },{ contains }]
Links [{ Book has Page },{ Book has Title}, {Page contains

SpecialTerm }]
}

From OntoDL grammar it is possible to generate a parser to process OntoDL sentences
(ontology descriptions). This parser will store the information extracted from the input file
in a set of java classes that was designed to accommodate the needs of the translator, as
explained in the next subsection.

SLATE 2014

90 Converting Ontologies into DSLs

Figure 2 The generated OWL BookIndex ontology opened in Protégé.

4.2 The OWL File Generator
The OWL file generation has the objective of taking the information that was retrieved by
the parser and stored in the java classes in order to generate the final product that is an
OWL/XML file.

The parser returns an object of the class “Ontologies”. Listing 3 shows how this class is
organized.

Listing 3 Ontologies Class.
public class Ontologies {

public ArrayList <Concepts > concept ;
public ArrayList < Hierarchies > hierarchy ;
public ArrayList <Relations > relation ;
public ArrayList <Triples > triple ;
public void gerarowl (String input){...}

}

As the listing above shows, the object that is returned by the parser already has all the
information required to generate the OWL file. This information is stored in four important
Array List. The first is the array of Concepts. This array stores all the Concepts that are
processed by the parser. The second list stores the Hierarchies between concepts. This object
is very simple, it only saves the name of the super-class and of the sub-class. The next
ArrayList is also important because it stores all the non-hierarchical connections between
Concepts. If a relation is not present in this list its name can not be used to create Links.
As was referred above, the final array is the one that stores the Links or Triples. The links
state what Concepts are connected and with what Relations.

To generate the final OWL/XML file it is enough to run the method with the name
“gerarowl(String name)” that belongs to the Ontologies class. This method receives a string
parameter. This parameter specifies the name of the OWL file; normally this name is the
same as the OntoDL file, sent as input to the parser.

After the generation of the OWL/XML file we can work more on the ontology, to explore
or to edit it. For that purpose we can load it into any tool that supports OWL/XML,
like Protégé5. Then it is also possible to add information to enrich the ontology. Figure 2
represents the OWL version of the BookIndex ontology produced from the OntoDL description
by the Onto2OWL module.

Concluding, this module was created with the objective of generating OWL files from
simple descriptions of the domain. It can be used separately and independent of the other
components, but it was important to generate input files for the second module of this
project, OWL2DSL.

5 http://protege.stanford.edu/

http://protege.stanford.edu/

J.M. S. Fonseca, M. J. V. Pereira, and P. R. Henriques 91

5 OWL2DSL Module

This section introduces the OWL2DSL module, that is presented in Figure 1 , and explains
how it is possible to generate a grammar specification and generate a parser for a DSL to
describe elements for the domain.

This module combines two phases the OWL or RDF parser and the CodeGenerator. This
first phase, is a simple OWL or RDF parser that retrieves a Ontology Object (OO).This OO
is crucial because it will enable the creation of the desired grammar.The CodeGenerator
receives as input this OO and produces: the grammar and a set of Java classes necessary
to implement the next module DDesc2OWL. The output grammar is composed of simple
productions that obey a set of transformation rules. Those rules, look for OWL patterns to
transform them systematically into grammar elements (symbols, and productions).

To start the generation process, we create a production with the axiom, Thing and we
insert as many alternatives as the number of Concepts that are hierarchically connected to
Thing. The listing below shows the production diagram generated by the application of that
first transformation rule.

Listing 4 Thing Production.
thing: ’Thing [’(Tproduction1 | Tproductioni | TproductionN)(’,’(

Tproduction1 | Tproductioni | TproductionN))*’]’ ;

After the creation of this main production, all the Concepts that appeared on its RHS
are iterated aiming at creating all the subsequent productions for those concepts. This task
is accomplished by a recursive function sub-production. The function sub-production
generates almost all the complementary Java classes that add dynamic semantics to the
generated Grammar. As this sub-production function is recursive, it explores all the
sub-Concepts and returns all the productions to the CodeGenerator Class.

The productions corresponding to the concepts also are generated according to a set of
systematic transformation rules. These productions are composed of four parts. The first
part is an ID that will be used to identify each instance of that concept. The attributes are
specified using a non-terminal symbol preceded by a keyword (attribute name). Then, for
each attribute, one new production is added to the grammar in order to return its value. After
the list of attributes we have the third part, a set of sub-productions. Each sub-production
contains on the RHS a sub-concept that is connected to the main Concept by a is-a relation.
The last part of the production is used to specify the non-hierarchical relationships for the
non-hierarchical relationships that connect these Concepts with other concepts.

The listing below shows some of the productions of the grammar generated from the
BookIndex ontology displayed in Figure 2.

Listing 5 Example of a Generated Grammar: BookIndex.
thing: ’Thing [’(book | page | title | specialterm) (’,’(book | page |

title | specialterm))* ’]’;
book:’Book{’ bookID (’,’’[’(book_has)(’,’(book_has))*’]’)?’}’;
bookID : STRING ;
book_has :’{’’has ’ STRING ’}’; // Book has Page or Title use the STRING

to link them

Summing up, it was demonstrated that a complete grammar for the new DSL can be
generated from the ontology that describes that domain applying a small set of transformation
rules. The upcoming grammar is completely human readable and can be adapted to any

SLATE 2014

92 Converting Ontologies into DSLs

special purpose. Adding to the grammar the Java Classes, also generated systematically and
explained above, it is possible to obtain a processor to cope with the sentences of the new
DSL. Listing 6 is a short example of a sentence written in the language BookIndex defined
by the generated grammar shown in the previous listing.

Listing 6 Example of a DDesc input file.
Thing{

Book{ " Ref_002 " ,[{ has "Game of Thrones "},{ has "Page1 "}, {has
"Page2 "}]} ,// the reasoner will infer the types on the

has relations
Page{ "Page1 "},
Page{ "Page2 "},
Title{ "Game of Thrones "}

}

6 Conclusion

As it was presented in this paper, the ontologies are a very useful formalism to specify
domain models. Moreover a direct translation to a grammar avoids manual and informal
methodologies in the design phase of a new language. This work is focused on the offline
properties that an ontology can offer and define a set of transformation rules to convert
the ontological information into an AntLR grammar. It was possible to automatize this
process in such a way that the user has no need to interfere. Besides the grammar, associated
attribute evaluation is also generated in order to fill internal data structures that can be
used in a further step. At the end, it will be possible to describe a specific domain using
the new created DSL and to use the information extracted from each description (written in
that DLS) to populate the initial ontology.

Acknowledgements. We are indebted to Marjan Mernik and his team for the preliminary
discussion on this topic. This work is funded by National Funds through the FCT – Fundação
para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within
project PEst-OE/EEI/UI0752/2014.

References

1 I. Čeh, M. Črepinšek, T. Kosar, and M Mernik. Ontology driven development of domain-
specific languages. Comput. Sci. Inf. Syst., 8(2):317–342, 2011.

2 Tomaz Kosar, Pablo Martinez Lopez, Pablo A. Barrientos, and Marjan Mernik. A prelim-
inary study on various implementation approaches of domain-specific language. Inf. Softw.
Technol., 50(5):390–405, April 2008.

3 Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop domain-
specific languages. ACM Comput. Surv., 37(4):316–344, December 2005.

4 Robert Tairas, Marjan Mernik, and Jeff Gray. Using ontologies in the domain analysis of
domain-specific languages. In Michel R. Chaudron, editor, Models in Software Engineering,
pages 332–342. Springer-Verlag, Berlin, Heidelberg, 2009.

JSON on Mobile: is there an Efficient Parser?
Ricardo Queirós

CRACS & INESC-Porto LA & DI-ESEIG/IPP, Porto, Portugal
ricardo.queiros@eu.ipp.pt

Abstract
The two largest causes for battery consumption on mobile devices are related with the display
and network operations. Since most application need to share data and communicate with
remote servers, communications should be as lightweight and efficient as possible. In network
communication, serialization plays a central role as the process of converting an object into a
stream of bytes. One of the most popular data-interchange format is JSON (JavaScript Object
Notation). This paper presents a survey on JSON parsers in mobile scenarios. The aim of
the survey is to find the most efficient JSON parser in mobile communications characterised by
high transfer rate of small amounts of data. In the performance benchmark we compare the time
required to read and write data with several popular JSON parser implementations such as Gson,
Jackson, org.json and others. The results of this survey are important for others that need to
select an efficient parser for mobile communication.

1998 ACM Subject Classification D.2.2 Design Tools and Techniques, D.4.4 Communications
Management

Keywords and phrases serialization formats, mobile communication

Digital Object Identifier 10.4230/OASIcs.SLATE.2014.93

1 Introduction

Mobile devices have become a necessity for many people around the world. The ability to
keep in touch with family and business partners or to share data in real time are only a few
of the reasons for the increasing importance of mobile devices. The flip side of this global
trend is related with battery consumption. Smartphones are evolving from the past ten
years with faster CPUs, cheaper and bigger storage, and higher-quality displays. However,
battery technology did not improve at the same pace. The two biggest causes for battery
consumption on mobile devices are related with the display and network traffic. The display
is a major mobile phone energy hog, that can be softened by reducing its brightness and
timeout.

Network operations are unavoidable in today’s clouds world where everything is a service.
Mobile devices need to communicate to achieve usefulness whether to transmit data over the
Internet or to share data with another device. Therefore, developers followed best practices
to reduce the amount of network operations in order to increase the battery’s life. Basically
they all resume to the following four best practices [3]:

Consider first the need to perform a network call right now. Alternatives are pulling the
service at regular intervals or allowing the server to push the data down to the client.
Consider how much data you need to retrieve. It is possible to use different types of
caches (e.g., response cache introduced for HttpUrlConnection in Android 4/ICS) and
retrieving smaller pages of data from the service will greatly reduce your application’s
network traffic.
Use transparent compressions (supported by HttpUrlConnection class) verifying that the
data retrieved from the server is gzip-compressed.

© Ricardo Queirós;
licensed under Creative Commons License CC-BY

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões; pp. 93–100

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2014.93
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

94 JSON on Mobile: is there an Efficient Parser?

Choose a better data format, which usually involves a balance between size optimization
and how dynamic the format is. If you can, choose a format that allows you to extend
your data definition without losing backward-compatibility. There are several solutions
such as XML, YAML, JSON, Protobuf, and others.

The last recommendation touches in a very important factor data transmission over the
Internet. In a communication process it is necessary to transform data into a format that
is suitable for transmission over the network and that allows the recipient to consume it
without any problems. This technique is called serialization. In the context of data storage
and transmission, serialization is the process of writing an object to a stream of bytes.
That stream can then be sent through a socket, stored to a file and/or database or simply
manipulated so that this exact same memory representation can be read later. This last
process is called deserialization.

In the serialization realm, XML was used as the standard language for data representation.
The most notable advantage regarding the use of XML is its heterogeneous facet. However,
when encoding data in XML, the result is typically larger in size than other formats due to
XML’s well-known verbosity which also negatively affects the reading process. To overcome
this disadvantage, JSON [1] is currently becoming a popular data representation. When data
is encoded in JSON, the result is typically much smaller in size than an equivalent encoding
in XML.

This paper presents a survey on JSON parsers in mobile scenarios. The aim of the survey
is to find the most efficient JSON parser implementation in mobile communications. The
types of communication are characterized by a high transfer rate of small amounts of data.
Based on a performance benchmark we compare the time required to read and write data
with several popular JSON parser implementations such as Gson, Jackson, org.json and
others. The criteria used for the selection of the parser implementations were based on their
popularity.

With this paper we do not intend to present an in depth description of the serialization
mechanism. The results of this survey are important for others that need to select an efficient
parser for mobile communication.

The remainder of this paper is organized as follows: Section 2 introduces several serializa-
tion formats. Then, we focus on the comparison of several JSON parser implementations to
evaluate efficiency. Finally, we conclude with a summary of the main contributions of this
work.

2 Serialization Formats

Serialization consists in the conversion of an object into a representation that can be
transmitted. An application that is aware of the serialization format used can then recreate
a serialized object by deserialization. The object is then restored to its original state.

In this process the serialization format plays a central role. There are two types of
serialization: textual and binary. The following subsections enumerate various serialization
format for both types.

2.1 Textual Serialization

One of the first standard data serialization formats was the External Data Representation
(XDR) developed and published in 1987 at Sun Microsystems. XDR became an IETF
standard in 1995.

R. Queirós 95

Table 1 Textual serialization formats.

Name Date Creator Based on Schema/IDL Human-Readable

CSV 1967 Yakov Shafranovich n/a partial yes
XML 1998 W3C SGML yes yes
XML-RPC 1998 Dave Winer XML/SOAP no yes
JSON 2001 Douglas Crockford JavaScript partial yes
YAML 2001 Clark Evans C/Perl/XML partial yes
Candle 2005 Henry Luo XML/JSON yes yes
OpenDDL 2013 Eric Lengyel C/PHP no yes

In 1998, XML was introduced for asynchronous transfer of structured data between client
and server in Ajax Web applications. In this context XML was defined as a human readable
text-based encoding that can be used to persist objects and transmit them to other systems
regardless of the platform or programming language used. Despite the format verbosity, the
human readability and language independent features were very appreciated. In order to
overcome the compactness issue, Binary XML has been proposed as an alternative to the
regular XML.

To overcome XML’s disadvantages, JavaScript Object Notation (JSON) is currently
becoming a popular data representation. When data is encoded in JSON, the result is
typically smaller in size than an equivalent encoding in XML. JSON is defined as a low-
overhead alternative to XML and is commonly used for client-server communication in Web
applications. JSON is based on JavaScript syntax, but is supported in other programming
languages as well. There also exists binary encoding for JSON (e.g. BSON, Smile, UBJSON).

Another human-readable serialization format is YAML (a super-set of JSON). The
main features of this format includes tagging data types, support for non-hierarchical data
structures, data structures with indentation, and multiple forms of scalar data quoting.

Table 1 presents a comparison of textual data serialization formats [6].

2.2 Binary Serialization
In addition to textual formats, several binary data interchange formats have been proposed
over the last decade in order to address the verbosity and the efficiency limitations of
widely-accepted text-based formats such as XML and JSON [5, 4]. Among these formats we
highlight the Apache Thrift, Apache Avro and the Google Protocol Buffers. Each of these
protocols uses a custom Interface Description Language (IDL) to specify the structure of the
exchanged data.

Google Protocol Buffer, or protobuf, is an extensible way (regardless of platform/language)
for serializing structured data for use in communication protocols, data storage, among others.
Protobuf is used at Google to encode structured data in binary format for implementing
smaller and faster serialization. The implementation of a strategy using the protobuf format
follows the sequence:

1. Definition of the schema file for the structured data;
2. Compilation of the file for generation of access classes;
3. Use of the programming language API for reading and writing messages.

After the schema definition is stored in a file (.proto), we use the protobuf compiler to
generate the data access classes. These classes provide accessors for each field, methods to

SLATE 2014

96 JSON on Mobile: is there an Efficient Parser?

serialize and deserialize data and special builder classes to encapsulate internal data structure.
Listing 1 presents an example of a protobuf schema that defines the shopping item entity.

Listing 1 The protobuf schema.
package com. example . protobuf .model;
option optimize_for = LITE_RUNTIME ;
option java_package = "com. example . protobuf .model ";
option java_outer_classname = " Shopping ";
message Item {

required string name = 1;
required string category = 2;
optional int32 quantity = 3 [default = 1];
enum status {

BOUGHT = 1;
CANCEL = 2;

}
message Provider {

required string name = 1;
required float price = 2;

}
repeated Provider providers = 4;

}

Listing 2 shows how to build a new protobuf object to an item. You start by creating a
new Builder for the specific object you want to build and then sets up the desired values, and
finally, we use the Builder.build() method to create an immutable protobuf object (object
item). The Item object is then serialized to an OutputStream.

Listing 2 The protobuf serialization.
public void writeToStream (
String name , String cat , int qt , Shopping .Item. Status status ,
List < Shopping .Item.Provider > providers ,
OutputStream os) throws IOException {

Shopping .Item. Builder builder = Shopping .Item. newBuilder ();
builder . setName (name);
builder . setCategory (cat);
builder . setQuantity (qt);
builder . setStatus (status);
if (providers != null)

builder . addAllProviders (providers);
Shopping .Item item = builder .build ();
item. writeTo (os);

}

Listing 3 shows how to deserialize a protobuf object from an InputStream.
Protobuf has a lite version for Java suitable for Android. Protobuf has more limited

language reach compared to JSON or XML. Officially, Google only provides compilers for
C++, Java and Python.

Thrift is a binary communication protocol. Although developed at Facebook, it is
now an open source project of the Apache Software Foundation. The currently supported
programming languages are C++, Java, Python, PHP, Ruby, Erlang, Perl, Go, Haskell, C#,

R. Queirós 97

Listing 3 The protobuf deserialization.
public Shopping .Item readFromStream (InputStream is) {

Shopping .Item item;
item = Shopping .Item. newBuilder (). mergeFrom (is). build ();
Log.d(" ProtobufDemo ", "Read item name: " + item. getName ());
return item;

}

Table 2 Binary serialization formats.

Name Date Creator Based on Schema/IDL Human-Readable

Avro 2009 ASF n/a yes no
BSON 2003 MongoDB JSON no no
Cap’n Proto 2013 Kenton Varda protobuf yes no
Protocol Buffers 2008 Google n/a yes no
Thrift 2007 Facebook/Apache yes yes no

Cocoa, JavaScript, Node.js, Smalltalk, and OCaml. Similarly to the protobuf format, we
need to prepare a schema definition as input for the code generation tool generates source
code for a specified programming language. A typical thrift schema representing a phone
object is presented in Listing 4.

Listing 4 The thrift schema.
enum PhoneType {

HOME ,
OTHER

}
struct Phone {

1: i32 id ,
2: string number ,
3: PhoneType type

}

Apache Avro is a serialization framework. It uses JSON for defining data types and
protocols, and serializes data in a compact binary format. Its primary use is in Apache
Hadoop, where it can provide both a serialization format for persistent data, and a wire
format for communication between Hadoop nodes, and from client programs to the Hadoop
services. It is similar to Thrift, but does not require running a code-generation program
when a schema changes. The currently supported programming languages are Java, Scala, C,
C++, C#, Python and Ruby.

Table 2 presents a comparison of binary serialization formats [6].
Choosing textual or binary data formats often depends on the context in which thay are

used. Text-based formats (XML, JSON) are parsed character by character, thus imposing a
limit on deserialization speed. On the other hand, binary formats make use of positional
binding which allows storing the"name part of the name-value pairs in a separate file (e.g.,
‘.proto’ for ProtoBuf). These files do not need to be sent over the Web, which decrease the
size of the data to be communicated. However, since these files have to be compiled before
being included in a program, there are restrictions based on what languages each protocol
supports.

SLATE 2014

98 JSON on Mobile: is there an Efficient Parser?

Figure 1 Research articles about serialization on Google Scholar.

2.3 Selection of a Serialization Format
In this subsection, we present the criteria used for the selection of the serialization format
that will be used in the benchmark. Several criteria could be used to select a serialization
format: the most popular, the most used among existent Web services, the one used in most
popular applications, and others. In this case we decide that the selection will be based on
the research papers found in the freely accessible Web search engine Google Scholar. This
search engine indexes the full text of scholarly literature.

Figure 1 shows a comparison of the three most cited serialization formats on the Google
Scholar website.

Based on the values presented in Figure 1 and, despite the XML format being the most
cited in research articles, is the JSON format that has the highest growth in recent years.
For this reason we decided to use JSON for the benchmark tests in the next section.

3 Comparison and Benchmark of JSON Libraries

In this section we compare the performance of several JSON parser implementations. The
purpose of this benchmark is only to ensure a reasonable reading and writing performance
compared to other parsers. It is obvious that the performance depends on several factors
such as the used operating system, the programming language and network signal. All this
just to say that the benchmark results may be misleading – if you want to infer results for a
concrete case it is better to produce your own tests, with your custom data on your own
hardware.

3.1 Setup and Methodology
To examine the performance of serializing and deserializing structured data, an experiment
was designed using the following hardware and software:

Hardware: ASUS Padfone with 1.5 GHz dual-core Qualcomm Krait and 1 GB memory
Operating System: Android version 4.1.1
Java: version 1.6.0

R. Queirós 99

The test object used for this experiment is a JSON object obtained from a weather
service called OpenWeatherMap. This service is often used in order to present a description
of the weather of a given city. A request to the REST service returns OpenWeatherMap
meteorological data of a certain city (set in the request) in JSON format. For instance, this
is a typical URL request: http://api.openweathermap.org/data/2.5/weather?q=porto.
The service returns the output in JSON format presented in listing 5.

Listing 5 OpenWeatherMap meteorological data.
{"id ":88319 ," dt ":1345284000 ," name ":" Porto",

"coord ":{" lat ":41.15 ," lon ": -8.61} ,
"main ":{" temp ":306.15 ," pressure ":1013 ," humidity ":44 ,
" temp_min ":306 ," temp_max ":306} ,
"wind ":{" speed ":1 ," deg ":-7},
" weather ":[

{"id ":520 ," main ":" Rain",
" description ":" light intensity shower rain",
"icon ":"09d"},

{"id ":500 ," main ":" Rain",
" description ":" light rain "," icon ":"10d"},

{"id ":701 ," main ":" Mist",
" description ":" mist "," icon ":"50d"}

],
" clouds ":{" all ":90} ,
"rain ":{"3h":3}}

The JSON libraries are selected based on their popularity. Tested libraries and their
versions are the following: Gson (2.2.4), Jackson (2.2.1), Minimal-json (0.9.1) and org.json
(n/a).

The experiment was designed as follows:
1. 100 iterations were executed for warming-up, and then 100 iterations were executed for

measuring.
2. The execution time was measured using System.currentTimeMillis().
3. Finally, the average execution time is taken for each operation and library.

3.2 Performance Benchmark
While mobile devices are becoming more powerful, they still lack the processing speed of
desktop PCs. Despite this fact, it is essential that the chosen data serialization format allows
fast serialization and deserialization of an object. For the performance comparison of the
JSON libraries previously enumerated, we compared the time required to read and write
a typical weather message with the parser implementations. The results are presented in
Figure 2.

Our conclusion is that when you need to serialize/deserialize Java POJOs without sacrifi-
cing performance you should choose Jackson [2]. Although minimal-json cannot outperform
Jackson’s writing performance, it offers a very good reading and writing performance.

4 Conclusions

This paper presented a comparison on the use of a set of JSON libraries within a mobile
application. When comparing serialization libraries on a mobile platform, it is necessary to

SLATE 2014

http://api.openweathermap.org/data/2.5/weather?q=porto

100 JSON on Mobile: is there an Efficient Parser?

Figure 2 Java JSON libraries benchmark.

consider the most important aspects for this environment, such as data size and serialization
speed. In this paper we focus on the performance facet.

The main contribution of this paper is two-fold: a survey on serialization formats organized
by types: textual and binary; a performance benchmark that could be important for others
that need to select an efficient parser for mobile communication.

Based on the benchmark results one can conclude that Jackson showed the best combined
results. However, if your mobile app will only deserialize data, minimal-json offers the best
performance in the experiment.

References
1 T. Bray. RFC 7159 – the javascript object notation (json) data interchange format. http:

//tools.ietf.org/html/rfc7159, 2014. [Online; accessed 06-May-2014].
2 Codehaus. High-performance json processor. http://jackson.codehaus.org/, 2013. [On-

line; accessed 06-May-2014].
3 Erik Hellman. Android Programming – Pushing the limits. Wiley, 2013.
4 K. Maeda. Performance evaluation of object serialization libraries in XML, JSON and

binary formats. In Digital Information and Communication Technology and its Applications
(DICTAP), 2012 Second International Conference on, pages 177–182, May 2012.

5 Audie Sumaray and S. Kami Makki. A comparison of data serialization formats for optimal
efficiency on a mobile platform. In Proceedings of the 6th International Conference on
Ubiquitous Information Management and Communication, ICUIMC’12, pages 48:1–48:6,
New York, NY, USA, 2012. ACM.

6 Wikipedia. Comparison of data serialization formats. http://en.wikipedia.org/wiki/
Comparison_of_data_serialization_formats, 2014. [Online; accessed 15-April-2014].

http://tools.ietf.org/html/rfc7159
http://tools.ietf.org/html/rfc7159
http://jackson.codehaus.org/
http://en.wikipedia.org/wiki/Comparison_of_data_serialization_formats
http://en.wikipedia.org/wiki/Comparison_of_data_serialization_formats

Unfuzzying Fuzzy Parsing
Pedro Carvalho, Nuno Oliveira, and Pedro Rangel Henriques

Departamento de Informática, Universidade do Minho, Braga, Portugal
{pedrocarvalho,nunooliveira,prh}@di.uminho.pt

Abstract
Traditional parsing has always been a focus of discussion among the computer science community.
Numerous techniques and algorithms have been proposed along these years, but they require that
input texts are correct according to a specific grammar. However, in some cases it’s necessary
to cope with incorrect or unpredicted inputs that raise ambiguities, making traditional parsing
unsuitable. These situations led to the emergence of robust parsing theories, where fuzzy parsing
gains relevance. Robust parsing comes with a price by losing precision and decaying performance,
as multiple parses of the input may be necessary while looking for an optimal one.

In this short paper we briefly describe the main robust parsing techniques and end up propos-
ing a different solution to deal with fuzziness of input texts. It is based on automata where states
represent contexts and edges represent potential matches (of constructs of interest) inside those
contexts. It is expected that such an approach reduces recognition time and ambiguity as contexts
reduce the search space by defining a smaller domain for constructs of interest. Such benefits
may be a great addition to the robust parsing area with application on program comprehension,
among other research fields.

1998 ACM Subject Classification D.3.4 Processors

Keywords and phrases robust parsing, fuzzy parsing, automata

Digital Object Identifier 10.4230/OASIcs.SLATE.2014.101

1 Introduction

Recognizing sentences of a language has always been an interesting topic in computer science.
This need can be easily transposed to our common life, as in our daily routine we are
constantly in need to interpret all kind of inputs like images, texts or sounds. A good
example of natural parsing is our ability to listen to human’s speech and collect useful
information from those sounds (sometimes imperceptible because of surrounding noise).
Computer Science builds on this, as computers must understand each other or (primarily)
the commands given by humans under the shape of programming language sentences.

To transpose this abstract notion of parsing to a formal domain, like computer science,
rules and methodologies had to be engineered. Concerning classical parsing theory [1], the
recognition process is done in accordance to rules of a formal grammar. This process is
divided into three different types of analysis: Lexical, Syntactic and Semantic. Lexical
analysis consists in reading and grouping the characters of an input text into tokens. In
syntactic analysis a tree-like intermediate representation (the parsing tree) is built, based on
the tokens and the rules of the underlying grammar. Finally, in Semantic analysis, the actual
values of symbols are computed to decorate that tree and a check for consistency between
the source and the language semantics definition is carried out.

In classical parsing theory sentences either belong or not to the language; and when
belonging they must be derived from the grammar, following a structured set of rules without
uncertainty. This property is related with the basic membership concept found on set

© Pedro Carvalho, Nuno Oliveira, and Pedro Rangel Henriques;
licensed under Creative Commons License CC-BY

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões; pp. 101–108

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2014.101
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

102 Unfuzzying Fuzzy Parsing

theory [11]. However, in the recognition of unpredictable input (incomplete sentences or
handwritten expressions [9, 13, 8]), it is impossible to create a grammar that covers all
possible cases. If in some cases classical parsing falls short to solve the problem at hand, in
other cases it goes beyond the needs. For instance, generating high level models from source
code (in the context of program comprehension) does not require its complete recognition.
By limiting the recognition process only to the essential portions, smaller parsing trees will
be generated and unnecessary work will be spared. These scenarios where classical parsing
proved to be inadequate, led to the emergence of robust parsing theories. In this context, a
sentence belongs to a language with some degree of uncertainty, differently from the do or
die situation seen before.

To cope with the robust parsing idea, two generic approaches have stood out: Island
and Fuzzy grammars. But still in these approaches, parsing tends to be time consuming as
multiple attempts may be required while looking for an optimal one. Performance decays
and recognition precision may be partially or completely lost, which is undesirable when the
objective is to extract reliable information from the input sentences.

In this context, this short paper overviews an approach for fuzzy parsing that is targeted
for reliably extracting information from partially correct or incomplete input texts. We claim
that the recognition in our approach is precise while tolerant to the input’s fuzziness. The
underlying grammar is partial w.r.t. the original one. Therefore, our approach defines a
minimum degree m of certainty (in the interval [0,1]), with which each recognized sentence
belongs to the original language. The approach is based on deterministic finite automata
where states define precise contexts within the sentences and edges represent potential
matches of constructs of interest1 inside each context. By using this notion of contexts,
the search space becomes smaller, reducing both the time to recognize the input and the
ambiguity conflicts.

Since this is a starting project, this paper only scratches the surface of the approach.

Outline. The reminder of the paper provides a running example in Section 2 to make the
discussion of the paper clear. Related work on the two mentioned approaches, island and
fuzzy grammars, is presented in Section 3. Then, in Section 4 it is introduced our approach
for fuzzy parsing, highlighting its main aspects and features. Finally, in Section 5 we conclude
the paper, with a discussion of our approach in comparison with others, and also, presenting
the steps for future work.

2 Running Example

Program comprehension [17, 18] is a research field aiming at studying and providing means to
allow software engineers to understand legacy code, which is intended to be evolved. Several
techniques have been proposed [16, 6, 5, 4, 10] for the elaboration of high-level models that
abstract aspects of the programs, known to be relevant for their comprehension. One such
model is the class diagram of a system, where relations between the several entities implied
in the system are shown along with their internal attributes and methods. Usually, to obtain
such diagrams it is necessary to process the whole system and to construct the complete
parsing tree, from where only a tiny part of it is of interest.

In this example, the intention is to extract relevant information from Java programs
in order to create simplified class diagrams that only show relations of classes and ignores

1 A construct of interest is any portion of the original language that is desired to be recognized.

P. Carvalho, N. Oliveira, and P. R. Henriques 103

methods and attributes. Clearly, only the definition of the headers of classes are relevant to
analyse. Everything else is to be ignored. To add complexity, amounts the fact that there
are several ways of implementing classes as can be seen a few in Listing 1.

Listing 1 Examples of class headers in the Java language.
public class A { . . . }
public class E extends Exception { . . . }
public interface I { . . . }
public class B extends A implements I { . . . }

3 Related Work

In order to fix notations for a better understanding of this section, a brief recall of the formal
definition of Context-Free Grammar [7] is given. Let G be such a context free grammar.
Formally it is defined by the 4-tuple G = (V,Σ, R, S) where:

V is a set of nonterminals, which are syntactic variables denoting sets of sentences that
can be derived by successive applications of the production rules.
Σ is the alphabet of the language, and each symbol σ in Σ is called a terminal (or a
token). Terminals are the basic immutable symbols of the grammar (i.e., they are never
rewritten by production rules), and together form the sentences of the language.
R is a set of production rules that specify the concrete way in which terminals and
nonterminals may be combined to form sentences. A production rule p is formally given
as a function of the form V → (V ∪ Σ)∗, meaning that the left-hand side (LHS) symbol
(a nonterminal) derives into a sub-language given by the symbols in the right hand side
(RHS). The latter may be the empty string or any combination of symbols from V or Σ.
S ∈ V is the start symbol (or axiom) of G.

Informally, a context-free grammar, is a set of production rules that syntactically derive
sentences of a formal language. These rules describe how to form sentences from the language’s
alphabet that are valid according to the language’s syntax. A grammar is considered context-
free when its production rules can be applied regardless of the context of a nonterminal. A
context-free grammar G defines a language, given by L(G), corresponding to all the sentences
accepted by G.

3.1 Island Grammars
Island Grammars have been described in [15, 14]. They consist in grammars that are
conceptually divided in two core sections: (i) productions where we specify constructs of
interest – referred to as Islands – and (ii) productions designed to match the rest of the input
– referred to as Water.

From a formal point of view, given a context-free grammar G = (V,Σ, R, S), such and
a set of constructs of interest I ⊂ Σ∗ such that ∀i∈I ∃s1,s2∈Σ∗ . s1 i s2 ∈ L(G). An island
grammar GI = (VI ,ΣI , RI , SI) for L(G) defines a new language L(GI), and has the following
properties:

1. L(G) ⊂ L(GI), this is, GI generates an extension of L(G);
2. ∀i∈I ∃v∈VI

. v → i∧∃s3,s4∈Σ∗ . s3 i s4 6∈ L(G)∧ s3 i s4 ∈ L(GI), this is, GI can recognize
constructs of interest from I in at least one sentence that is not recognized by G.

SLATE 2014

104 Unfuzzying Fuzzy Parsing

Let’s consider the running example introduced in Section 2. Listing 2 shows the base
specification for an Island Grammar that recognizes the headers of classes in Java. First
it is defined the start symbol input that derives in a (possibly empty) sequence of chunks.
Then, all chunks derive in either water or island. In this particular case islands will match
the constructs of interest for analysing class headers.

Listing 2 Island grammar intended to recognize classes in Java.
input : chunk*

chunk : island | water

island : ’class ’ ID extend ? impls?
| ’interface ’ ID

extend : ’extends ’ ID
impls : ’implements ’ ID (’,’ ID)*

...

water : .*

ID : [A-Z][A-Z0 -9]*

Although simple at first glance, this grammar is able to recognize all class headers in
Java source code. More complex problems may imply the implementation of new islands,
producing an almost tailored made parser.

3.2 Fuzzy Grammar
A fuzzy parser [12] is able to recognize only parts of a language according to some kind of
specification, or set of rules, that are established by the programmer. It ignores the input
that is being consumed until it reaches a mark that symbolizes the start of a substring that
is meant to be recognized. These special marks are commonly referred to as anchors.

From a more formal stand, considering a context-free grammar G = (V,Σ, R, S), a fuzzy
parser F (G) is defined as F (G) = (V ′,Σ, R′, A, S), where V ′ is a set of anchor nonterminals, Σ
remains the alphabet of the language, R′ is the provided set of rules of type V ′ → A×(Σ∪V ′)∗,
A ⊆ Σ is the set of anchor symbols and S is the start symbol.

An anchor flags, thus, the beginning of a substring that is meant to be recognized by
F (G); this means that each s ∈ L(G) contains at least one anchor that is accepted by F (G).
For each anchor a ∈ A there is a rule ra ∈ R′ that specifies the substring of s that is meant
to be recognized. In conclusion, the language L(F (G)) that is partially accepted by F (G)
can be described as follows: L(F (G)) = {s ∈ L(G)|s = ω1aω2 ∧ ω1 ∈ Σ∗ ∧ ω2 ∈ Σ∗ ∧ a ∈ A},
where S →∗ s (s derives from S by multiple applications of rules in R).

Considering again the running example, it can be easily re-engineered to conform to this
notion of Fuzzy grammars. The obtained grammar is showed in 3.

The main difference to the island grammars approach is the implicit existence of a water
section that consumes characters not matching anchors and associated rules.

4 Our Approach

Our approach springs from fuzzy grammars and it is intended to precisely recognize constructs
of interest of some language, while dealing with the fuzziness (incompleteness, incorrectness,
etc.) of the inputs. We do this by adding the notion of contexts that unfuzzy the parsing

P. Carvalho, N. Oliveira, and P. R. Henriques 105

Listing 3 Fuzzy grammar able to recognize classes in Java.
input : anchor *

anchor : ’class ’ ID ext? impls?
| ’interface ’ ID

ext : ’extends ’ ID
impls : ’implements ’ ID (’,’ ID)*

...

ID : [A-Z][A-Z0 -9]*

and reduce the search space for constructs of interest. Since this is a fresh idea, by the time
of writing of this paper, no formal definition was defined for this approach. Therefore, the
following presentation is rather informal, and kept at a high level of abstraction following
the running example of Section 2.

The approach is based on deterministic finite automata notions. The rationale is to
recognize constructs of interest defined within specific contexts of a language. Anchors and
associated rules define the syntax of such constructs of interest and their recognition may or
may not define transitions between contexts. To be precise, in a context, any sequence of
characters is consumed and ignored unless a rule for such a sequence is defined. The normal
behavior after matching a rule is to remain in the same context (defining a loop transition in
the automaton); the exception is to transit to a different context.

Contexts are (final) states in an automaton with particular notion of hierarchy. This
means that a context is inside other contexts, facilitating transitions from a child context to
its parent, when explicit transitions are not suitable. In a sense, the overall behaviour of
the context space can be regarded as a non-linear stack machine, where pushing contexts is
as usual, but popping contexts may depend on the existence of a transition (defined in the
respective automaton) to a deeper context in the stack. Bare in mind that this is different
to backtracking in parsing strategies: it is intended behaviour jumping from contexts to
contexts.

Because our approach requires the generation of a deterministic automaton, ambiguity
will not be an issue (as in many fuzzy parsing approaches). Consequently, a unique parsing
tree is produced that only contemplates the recognized constructs of interest (it is not a full
parsing tree). Considering these claims, performance gains seem to be evident.

To make things clear, let’s build on the running example by adding a new level of
complexity: recognizing methods and their arguments inside each class. In the following,
notation @X and >> X, is considered meaning respectively, the definition of a new context
X and the definition of a transition to the concrete context X. In the latter, X may be
substituted by ∧ to express a transition to the parent context. Optionally, >> X[A] may be
used to specify that after transiting to context X, the input text must be read from before
the previously consumed anchor A, and not from the current position.

The grammar begins with a default context (@default). In this context, when an anchor
class is recognized (along with the associated construct of interest) a transition is made to
the @cls_hdr context:

@default
class : ’class ’ ID >> cls_hdr
iface : ’interface ’ ID

SLATE 2014

106 Unfuzzying Fuzzy Parsing

Inside the @cls_hdr context, two constructs of interest are defined that detail the
relationships of the class (Extends and Implements) with other classes. This means that
the search space in this context is limited to these two constructs. However, since the body
of the class is also required to be analysed, an extra construct ‘{’ shall be recognized that
defines a transition to the new context @cls_bdy:
@cls_hdr
ext : ’extends ’ ID
impl : ’implements ’ ID (’,’ ID)*
cls_in : ’{’ >> cls_bdy

To unburden notation and recognition complexity, the (’,’ ID)* construction on impl
rule could be defined within a new context as follows:
@cls_hdr
...
impl : ’implements ’ >> ids
...

@ids
id : ID

Besides alleviating the notation, this version modularizes the grammar as @ids context
may be reused from another context or construct of interest. Moreover, details like ’,’
symbols are automatically ignored and all the ID symbols are processed as a unit and not
as a list, which may be beneficial when extracting and transforming data. However, extra
rules would be needed to define when to transit to a different context, since @ids may not be
desired to be final, implying more parsing time. Also, the notion of concrete context is lost
(contradictory to the philosophy of the approach), being only possible to recover it by taking
advantage of semantic actions (not in the scope of this paper).

When in the context of the body of a class (@cls_bdy), for this example, only the
constructs for public methods and private instance attributes are of interest. Notice that
methods also include class constructors and that, in Java, they have different syntax:
@cls_bdy
cons : ’public ’ ID ’(’ >> args
mthd : ’public ’ TYPE ID ’(’ >> args
mthd_in : ’{’ >> mth_bdy
attr : ’private ’ TYPE ID ’;’

However, both constructors and methods define their arguments following the same
syntax. Therefore, and following the approach exemplified above, a new context (@args)
is defined to parse the arguments. This is an example of reusing a context from different
constructs of interest:
@args
arg : TYPE ID
arg_ext : ’)’ >> ∧

@mth_bdy
mth_ext : ’}’ ’public ’ >> ∧ [’public ’]

As explained above, an extra rule is added to the @args context in order to pop it from
the stack and returning to the parent context (@cls_bdy, in this example). Such a pop occurs
when ’)’ anchor is matched.

P. Carvalho, N. Oliveira, and P. R. Henriques 107

@default

@args

@cls_bdy@cls_hdr

@mth_bdy

'class' ID

'extends' ID
'implements' ID (',' ID)*

'{'

'private' TYPE ID ';'

'public' ID '('

TYPE ID

'public' TYPE ID '('

')''{'

'interface' ID

'}' 'public'

@default

@cls_hdr

@cls_bdy

@args

@mth_bdy

Figure 1 Automata and stack representation of the unfuzzied fuzzy grammar for the Java classes
recognition.

Still in the @cls_bdy, when ’{’ occurs, the parsing transits to @mth_bdy, i.e., the body
of a method. Since for the purpose of the running example, nothing is required from the
interior of a method, the grammar only pops the context when ’}’ is recognized. Everything
else is ignored. The recognition of ’public’ after the ’}’ is necessary, so that other ’{’
and ’}’ (representing blocks inside the method) will be ignored. But notice that recognition
of ’public’ is discarded once going to the parent context, in order to be recognized again
as part of the @cls_body context. The careful reader may be asking what happens when
there is no ’public’ anchor to leave @mth_body context. This occurs, for instance, on the
definition of the last method of a class. In these cases the parsing will finish in the @mth_bdy
context, as there is nothing else of interest to recognize at that point. Since every context is
a final state in the automaton, then the recognition correctly accepts the input.

As expected, this last context as well as the mthd_in rule could be left out of the grammar.
This is only included to show that from a context, it is possible to go to more than one
different contexts.

The main difference of this approach to the ones presented in Section 3 resides in the
usage of contexts while processing the input. This allows for a finer assessment of data,
because the constructs of interest are limited to a smaller domain. This, in turn, allows
for the reduction of uncertainty that is inherent to robust parsing, and to fuzzy parsing in
particular (thus the title of this paper).

5 Conclusion

In this paper we informally presented an approach to fuzzy parsing that reduces the uncer-
tainty of what is being recognized. The introduction of a notion of contexts (as states of an
automaton) provide such disambiguation and goes beyond diminishing the search space for
constructs of interest. The reduction of uncertainty is more valuable when the objective is to
extract reliable information from the parsed input, by means of semantic actions. Semantic
actions were not covered in this paper due to space limitations and lack of completeness by
the time of writing. However it seems easy to understand the role of contexts to this end:
at each context, it is known exactly what each syntactic construction means; for instance,
TYPE ID can represent in a context a variable declaration whereas in another one it may be
the declaration of a class attribute.

A key point of this approach is that only a part of a parsing tree will be generated.
Although not covered by this paper, several approaches decided to recognize the entire
source, sometimes even making multiple parses [2, 3, 9]. Again, the precise definition of the
processing steps for our approach is left for future work. Nevertheless, the automata- and
stack-based operational behaviours seem to provide basic intuition about it.

SLATE 2014

108 Unfuzzying Fuzzy Parsing

References
1 Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and

Tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.
2 Peter R. J. Asveld. A fuzzy approach to erroneous inputs in context-free language re-

cognition. In Proceedings of the Fourth International Workshop on Parsing Technologies
IWPT’95, pages 14–25, Prague, Czech Republic, 1995. Institute of Formal and Applied
Linguistics, Charles University.

3 Peter R. J. Asveld. Fuzzy context-free languages – Part 2: Recognition and parsing al-
gorithms. Theoretical computer science, 347(1):191–213, 2005.

4 Mario Berón, Pedro R. Henriques, Maria J. Pereira, and Roberto Uzal. Program inspection
to incerconnect behavioral and operational view for program comprehension. In York
Doctoral Symposium, 2007. University of York, UK, 2007.

5 Mario Berón, Pedro R. Henriques, Maria J.V. Pereira, and Roberto Uzal. Static and
dynamic strategies to understand c programs by code annotation. In OpenCert’07, 1st Int.
Workshop on Fondations and Techniques for Open Source Software Certification (co-located
with ETAPS’07), 2007.

6 Elliot J. Chikofsky and James H. Cross. Reverse engineering and design recovery: A
taxonomy. Software, IEEE, 7(1):13–17, 1990.

7 N. Chomsky. Three models for the description of language. Information Theory, IRE
Transactions on, 2(3):113–124, 1956.

8 John A. Fitzgerald, Franz Geiselbrechtinger, and Mohand Tahar Kechadi. Application of
fuzzy logic to online recognition of handwritten symbols. In IWFHR, pages 395–400, 2004.

9 John A. Fitzgerald, Franz Geiselbrechtinger, and Mohand Tahar Kechadi. Structural ana-
lysis of handwritten mathematical expressions through fuzzy parsing. ACST, 6:151–156,
2006.

10 Yann-Gaël Guéhéneuc. A theory of program comprehension: Joining vision science and
program comprehension. International Journal of Software Science and Computational
Intelligence, 1(2):54–72, 2009.

11 Alexander S. Kechris. Classical descriptive set theory, volume 156. Springer-Verlag New
York, 1995.

12 Rainer Koppler. A systematic approach to fuzzy parsing. Software Practice and Experience,
27:649, 1996.

13 Scott MacLean and George Labahn. Recognizing handwritten mathematics via fuzzy pars-
ing. Technical report, Tech. Rep. CS-2010-13, School of Computer Science, University of
Waterloo, 2010. 3, 2010.

14 Leon Moonen. Generating robust parsers using island grammars. In Reverse Engineering,
2001. Proceedings. Eighth Working Conference on, pages 13–22, 2001.

15 Leon Moonen. Lightweight impact analysis using island grammars. In Program Compre-
hension, 2002. Proceedings. 10th International Workshop on, pages 219–228. IEEE, 2002.

16 Václav Rajlich and Norman Wilde. The role of concepts in program comprehension. In
IWPC’02: Proceedings of the 10th International Workshop on Program Comprehension,
pages 271–278, Washington, DC, USA, 2002. IEEE Computer Society.

17 Scott Tilley. 15 years of program comprehension. In Program Comprehension, 2007.
ICPC’07. 15th IEEE International Conference on, pages 279–280, 2007.

18 A. von Mayrhauser and A.M. Vans. Program comprehension during software maintenance
and evolution. Computer, 28(8):44–55, 1995.

Part IV

Programming Languages

and Compilers

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Contract-Java: Design by Contract in Java with
Safe Error Handling

Miguel Oliveira e Silva1 and Pedro G. Francisco2

1 University of Aveiro, IEETA, DETI
Campus Universitário de Santiago, Aveiro, Portugal
mos@ua.pt

2 University of Aveiro, IEETA
Campus Universitário de Santiago, Aveiro, Portugal
goucha@ua.pt

Abstract

Design by Contract (DbC) is a programming methodology in which the meaning of program
entities, such as methods and classes, is made explicit by the use of programming predicates
named assertions. A false assertion is always a manifestation of an incorrect program.

This simple founding idea, when properly applied, give programmers a tool able to specify,
test, debug, document programs, as well as a mechanism to construct a simple, safe and sane error
handling mechanism. Nevertheless, although well adapted to object-oriented programming (and
other popular techniques such as unit testing), DbC still has a very low practical acceptance and
application. We believe that one of the main reasons for such is the lack of a proper support for
it in many programming languages currently in use (such as Java). A complete support for DbC
requires not only the ability to specify assertions; but also the necessity to distinguish different
kinds of assertions, depending of what is being asserted; a proper integration in object-oriented
programming; and, finally, a coherent connection with error handling mechanisms.

It is in this last requirement that existing tools that extend Java with DbC mechanisms com-
pletely fail to properly, and coherently, integrate DbC within Java programming. The dominant
practices for systematically handling failures in programming languages are not DbC based, us-
ing instead a defensive programming approach, either by using normal languages mechanisms
(as in programming language C) or by the use of typed exceptions in try/catch based exception
mechanisms.

In this article, we will present and justify the requirements posed on programming languages
for a complete support for DbC; On the context of the last presented requirement – error handling
– defensive programming will be discussed and criticized; It will be showed that, unlike Eiffel’s
original DbC error handling, existing typed exceptions in try/catch based exception mechanisms
are not well adapted to algorithmic abstraction provided by methods; Finally, a new DbC Java
extension named Contract-Java will be presented and it will be showed that it is coherently
integrated both with Java existing mechanisms and DbC. It will be presented an innovative
Contract-Java extension to DbC that automatically generates debugging information for (non-
rescued) contract failures, that we believe further enhances the DbC debugging capabilities.

1998 ACM Subject Classification D.2.4 Software/Program Verification, D.2.5 Testing and De-
bugging, D.3.4 Processors

Keywords and phrases design by contract, defensive programming, exceptions, Java, contract-
Java

Digital Object Identifier 10.4230/OASIcs.SLATE.2014.111

© Miguel Oliveira e Silva and Pedro G. Francisco;
licensed under Creative Commons License CC-BY

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões; pp. 111–126

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2014.111
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

112 Contract-Java: Design by Contract in Java with Safe Error Handling

1 Introduction

Design-by-Contract programming, or officially [21] Design by ContractT M (DbC)1 is a
development methodology inspired both by studies on formal programming and also, by the
way contracts work in the “real world”, in particular, in a clear distribution of responsibilities
whenever a failure occurs in a program. It aims for a substantial improvement of a program
correctness and robustness. It was born in 1986 [19, 21, 18] and first implemented within
the Eiffel language (1988) [20].

The concepts in which Design by Contract is based are present in the works of Turing [27],
Floyd [5], Hoare [9], Dijkstra [4], Gries [8], Jones [11, 10] and also Goguen [7].

Several approaches exist to extend Java with DbC: Jass [2], Modern Jass [26], JML2 [13],
Cofoja [12], ezContract [3], and DbC4J [1]. However, all have achieved just a portion of the
features required by the methodology. All but one (Jass) fail to implement fault tolerance with
a disciplined exception mechanism and automatic documentation generation; furthermore, all
treat the DbC approach as an optional add-on to the language (using annotations or aspects),
failing to fulfill the requirements for the full implementation of DbC. A full integration
of contracts as core language syntactical constructs enhances the possibility to fulfill all
the requirements including a disciplined exception mechanism (in which the knowledge of
contracts is essential). Although in this approach it is not possible to directly use of native
Java compilers when the new syntax is involved (as happens with other approaches) it not
only makes contracts non-optional language constructs (impossible to ignore), but is also
allows the direct integration and use of native Java code (allowing the direct reuse of existing
Java code and libraries). Table 1 summarizes the support for DbC of all these approaches.

Regarding error handling, defensive programming [14] remains the dominant approach to
systematically handle internal program’s failures. This dominance has also “contaminated”
some DbC approaches (e.g. JML’s exceptional_behavior) in which the launch of exceptions
can also be made part of a contract specification blurring the simple DbC view of methods
(that either succeed, meeting its postcondition and the object’s invariant, or fail with a
contract failure). If a method terminates launching a contractualized exception, did it really
fail, or is it simply meeting its contract?

The way DbC handles errors is much simpler, coherent and safe. It even gives the ability
for a program to unambiguous know when it is (or it is not) failing, without the necessity for
an external error arbitration, or a deep knowledge of the way programmer implement their
code. Current use of exceptions disallow such possibility, because there are many types of
exceptions, and some of them are, sometimes, used as normal program’s flux control, to the
point of such usage is promoted as a good programming practice [14].

It should be clarified that we are following a very pragmatic view of DbC in the line of
original Eiffel’s proposal and implementation, and not aiming a more formal assurance of
contracts. Also, we are not stating that in practice contracts express the full semantics of
modules (e.g. a formally complete postcondition), but simply assert some of those semantics.

This article is structured as follows. In Section 2 we present our contributions. In Section
3 we identify an justify the requirements posed for a complete DbC language implementation.
Section 4 the problems and solutions for systematic error handling are discussed. Section 5
presents Contract-Java approach. Finally, Section 6 present some concluding remarks and
future evolutions of the language.

1 Trademarked by Eiffel Software in the United States
2 Java Modeling Language.

M. Oliveira e Silva and P. G. Francisco 113

2 Contributions

The major contributions of this article are the following:
The presentation and justification of the necessary requirements posed to a programming
language for a complete pragmatic support for DbC;
A critical comparison between defensive programming and DbC approaches to error
handling, and, in particular, the algorithm abstraction problems posed by typed exceptions
and try/catch based exceptions mechanisms;
A new complete DbC extension for Java named Contract-Java (able to accept and compile
existing Java code);
A complete support for a disciplined exception mechanism in Contract-Java without
negative and undesirable interferences with native’s Java exception mechanism;
An innovative, and safe, integration of Java’s native exception mechanism within DbC
(allowing the application of the powerful DbC disciplined exception mechanism to any
Java exception);
A DbC enhanced debugging mechanism, by automatic generation of semantic information
in the presence of an assertion failure (freeing the programmer from that burden).

3 Requirements

To achieve a complete pragmatic support for DbC within a programming language, we must
clearly identify the necessary requirements to be fulfilled and justify the rationale behind
them. That is the goal of this section.

3.1 Different Assertions
I Requirement 1 (different assertions). Different kinds of contracts (preconditions, postcon-
ditions, invariants and others) should be represented by different assertions. These assertions
assume different roles depending on their kind, carefully assigning responsibility to different
parts of the program.

Although one can attach the (total or partial) meaning of a software element by an
assertion, different responsibility chains are involved depending on where the assertion
resides. A clear identification of such responsibility is required for a proper software element
understanding.

In general one may identify assertions (preconditions) that must be observed before a
subprogram execution (method or block), and the ones that must be ensured afterwards
(postconditions). The former, are the responsibility of the client of the subprogram execution
(caller or the code before the block), and the latter are the subprogram’s responsibility.
Hence, in the presence of an error (false assertion), depending on the type of the assertion,
different program parts are to be blamed (this distinction is essential not only for debugging
but also for the implementation of an appropriate error handling mechanism).

Structured programming gives a special abstraction role to methods, from which a
separation of method assertions and internal algorithm assertions is desirable. Hence the
terms precondition and postcondition are usually applied to methods, and other internal
assertions are named assert (or check in Eiffel).

From object-oriented programming also results the necessity for a new type of assertion:
invariant. It is needed to properly attach meaning to abstract data types implementations
(based on classes and objects). In particular, it asserts the conditions that are required to be

SLATE 2014

114 Contract-Java: Design by Contract in Java with Safe Error Handling

true whenever objects are in an observable state (stable time) [21]. Invariants also clearly
identifies who’s responsible for it (the object).

A DbC realization that does not syntactically differentiates all these different assertions
may lead to a wrongly attributed responsibility chain, compromising its proper specification
and rectification.

3.2 Locality of Contracts
I Requirement 2 (locality). Contracts should be defined near to the entities they specify.
The meaning (specification) of a software entity should be defined near the classes they
contractualize; they are integral part of the code.

This requirement simply states that the programmer should not be mislead to assume a
different contract of a software entity than the one that was really defined. Also, no doubt
should ever exist on the complete contract that applies to it.

Such possibility arises when one allows that the definition of a contract to reside elsewhere
in the program text other than near to the software element if contractualizes. By definition,
AOP approaches to DbC suffer from this problem.

3.3 Contracts are Part of the Interface
I Requirement 3 (interface). Contracts are part of the interface3 (not implementation):
contracts are expected to be readily available to anyone, with or without access to the source
code of a contracted program: they are part of a program’s interface with the rest of the
program.

An Abstract Data Type (ADT) [15, 21] defines a class of abstract objects which is
completely characterized by the (public) operations available to those objects. A class is a
(possible partial) implementation of an ADT [22]. An object-oriented program is a structured
collection of ADT implementations [22]. Hence, ADTs are the most important abstraction
blocks within object-oriented programming.

However, ADTs without explicit semantics (as provided by non DbC languages such as
Java) suffer from the same serious problems as methods without contracts, increased by a
scale factor because an ADT exports multiple methods (and not just one) and contains a
(possible abstract) data representation.

Since a class is much more than the sum of its public methods, a new contract is required
to express such semantics. That is the role of invariants, which express assertions that must
be always true when the class’s instances (objects) are in an observable state (named stable
time [22]).

The set of contracts (preconditions and postconditions) of all the class’s public methods
together with the class invariant form the class contract. This kind of contract is the most
important contract in object-oriented programming.

If we take a broader view of these concepts – ADTs, contracts, methods and classes – we
can recognize that they all fit perfectly together. ADTs define the class interface. The class
contract implements the ADT’s semantics. The class is defined as a set of public methods
glued by a common invariant, and method contracts implement the method semantics.

Contracts must, as such, be integral to the class interface, as is the name of the methods
and its arguments. They define the ADT by means of a specification and, as such, contracts

3 in terms of defining an ADT, not in terms of the Java’s interface mechanism

M. Oliveira e Silva and P. G. Francisco 115

are independent of the implementation. Furthermore, when we extend the class, using
subtype polymorphism, the ADT must be kept consistent. The only way this is possible is if
contracts belong to the class interface and not to its implementation.

3.4 Contracts are Inherited
I Requirement 4 (inheritance). Contracts are inherited: a descendant class must fulfill at
least all contracts of its parent class, as well as its method’s postconditions; preconditions
can, but don’t have to, be loosened.

Liskov’s substitution principle states that, on object-oriented programming, any property
which is verified on a supertype also holds for its subtypes.

Let φ(x) be a property provable about objects x of type T . Then φ(y) should be true
for objects y of type S where S is a subtype of T [16].

In the context of DbC, this implies that class contracts must be inherited. As Meyer
states [21] it is possible to redefine contracts on descendant classes as long as certain conditions
are met. The precondition of the descendant class must be equal or weaker than that of the
parent class and, in the case of invariants and postconditions, the descendant class must
abide at least by the parent class, meaning it can further restrict its invariant and/or its
output (postconditions), but never to weaken them.

Since contracts must be taken in consideration by the descendant classes in order to
not change the ADT associated with the parent class, we further strengthen the need for
requirement R3: the contracts must be part of the class interface and not implementation
– otherwise, the semantic meaning of the class would be partially hidden from the outside
view, stripping the added value which contracts bring on defining ADT.

3.5 Documentation
I Requirement 5 (documentation). The documentation must not only be included in the code
but also validated with the code as much as possible and, thus, be at least partially extracted
from the defined contracts, forming the class and method specification. In order to properly
support contracts, the documentation must support inheritance. In addition, to completely
document the method/class, the documentation should feature a flat view of the documented
class. Full documentation support for contracts is not only desirable but a requirement to
implement Design by Contract. Contracts (and thus, the documentation they provide) are
validated at every program run.

Design by Contract in its full form allows for the “single product principle”: the product
is the software. All specification and documentation is in, or extracted automatically from,
the software [23].

In order to be useful, the documentation of a class must present the full overview of this
class. This means that the documentation must be presented in flat form: it must contain not
only the contracts that were defined on that class and its methods but as well all contracts
inherited from the implemented interfaces and from its superclasses. The flat documentation
allows for a complete documentation of the class expressed semantics in one place.

3.6 DbC Exceptions
I Requirement 6 (DbC exceptions). An error handling mechanism should be provided in
order to ensure that a method can only succeed, by observing all of its attached assertions, or

SLATE 2014

116 Contract-Java: Design by Contract in Java with Safe Error Handling

Table 1 Support for DbC in some of existing Java extensions.

DbC Java R
1-
di
ffe

re
nt

as
se
rt
io
ns

R
2-
lo
ca
lit
y

R
3-
in
te
rf
ac
e

R
4-
in
he

rit
an

ce

R
5-
do

cu
m
en
ta
tio

n

R
6-
D
bC

ex
ce
pt
io
ns

Native Java no yes no no no no
jass yes yes no no partial partial
Modern Jass yes yes yes yes no no
JML yes yes yes yes no no
Cofoja yes yes yes yes no no
ezContract yes yes no no no no
DbC4J yes yes yes no no no

fail signaling its failure to the caller with an exception; no other outcome should be allowed.
Also, a disciplined exception mechanism should be provide to support a clean termination or
for fault tolerance purposes, without ever compromising the method execution semantics.

This last requirement will be discussed in the next section.

4 Systematic Approaches for Error Handling

The dominant practice for handling errors in use today, is based on defensive programming [14].
In this methodology, partial procedures are considered a bad idea, and should be replaced
with methods that, accepting everything, protect themselves by using normal language
constructs – such as conditionals, results, error variables or exceptions – to identify the
error and notify the caller. Lacking an exception mechanism, programming language C, uses
function results (given two different meanings to the result), or global variables (as errno).
On the other hand, Java and other more recent languages, use also the exception mechanism
for the same purpose. As an example, consider the following code excerpt:

s t a t i c double s q r t (double x) {
i f (x < 0)

throw new I l l ega lArgumentExcept ion () ;
· · ·

}

It is assumed that all clients of sqrt should track IllegalArgumentException to ensure
complete robustness. Even if a client it confident that the argument will never be negative –
by simply performing the logical test before the call – one cannot deactivate internal method’s
defensive code (because it is a total procedure).

Hence, since methods are implemented as total procedures, in defensive programming no
special burden is putted on a method’s client before its execution. It is assumed that the
client will take the proper measures to handle possible failures after the method’s execution.
Such practice, however, is not only seriously flawed when exceptions are not used (because
it is easy to forget such post-execution verifications), but it may also be flawed when they
are used. Not only it is easy in a try/catch instruction to ignore the exception (all that
is required is an empty catch block), but also, in this example, it completely misses the
real source of the error: a precondition failure. To support this argument, it is of little
importance to verify that such precondition is not explicit in the code. No sane programmer

M. Oliveira e Silva and P. G. Francisco 117

implements a real number sqrt method for negative arguments, only for non-negative ones.
The precondition is simply implicit in the code, implemented defensively with a conditional
and an IllegalArgumentException, but it is, nevertheless, there. Hence, the guilty part
for this failure is not the sqrt method (as its post-execution error handling might suggests
it was), but its caller. The fault precedes the call. Also, it should be absolutely clear that a
call to sqrt with a negative argument should be considered a program error (and not some
ambiguous execution state of the program).

DbC takes the opposite approach to this problem: methods should be specified for what
they are meant to do. If such goal only makes sense for some of the possible states of its
arguments (or its object’s state) so be it. A partial method implementation should be the
choice, expressing clearly the necessary preconditions for its use (and the postcondition for
its effect and result). It is important to note, that nothing is lost in terms of detecting errors
and protecting methods and classes. To that goal, in DbC, all that is required is active
executable assertions. In this respect, the difference to defensive programming is that we
may deactivate particular assertions if we are confident the asserted code is correct.

However, taking now a broader perspective on systematic error handling methodology,
DbC gives us much more than simply a way to detect and act on errors.

First, as already stated, in DbC a program knows when and if it has failed: simply
when a false assertion (any one) was executed. In defensive programming, no such simple
criteria exists to assert the program correctness (while executing). Not even the existence of
an active exception is a similar criteria because, due to defensive programming practices,
exceptions are used also as a simple flux control instruction, and sometimes promoted as
perfectly acceptable practices [14].

Secondly, DbC clearly and unambiguously distributes the responsibility of the fault: a
precondition failure is the responsibility of the method’s caller, any other false assertion is of
the responsibility of the method and/or class it belongs to.

Finally, it is perfectly adapted to method’s algorithmic abstraction, the meaning of a
failure adapts itself automatically as we climb up the method execution stack. For example,
a precondition failure is the responsibility of the method’s direct caller, but if this failure
propagates in the execution stack, it no longer is a precondition failure to the caller of the
caller (which would not make sense, because the precondition failure was in another method).

To better understand this last point we must take a more detail view of the dominant
exception mechanism in use today.

4.1 Typed Exceptions and try/catch Instruction
In modern programming languages, faults are handled through exception handling mechan-
isms. The rationale is to attach a particular exception type to each fault source, and then
allow the programmer to explicitly handle them elsewhere in the program. However, methods
and classes can be very powerful abstraction mechanisms. A particular type of exception
might be meaningful near to where it is generated, but soon enough it loses its meaning
as one travels up in the method call stack. Such problem has been identified more than 30
years ago [17], and to cope with it an “explicit propagation of exceptions” requirement was
defined for an alleged ideal exception mechanism [6].

Take, as an example, a possible function to solve the quadratic equation (using the
previous listed sqrt method).

SLATE 2014

118 Contract-Java: Design by Contract in Java with Safe Error Handling

/∗∗
∗ ax2 + bx + c = 0
∗ the 2 root returned as a 4 l e n g t h array ({ r1 . re , r1 . im , r2 . re , r2 . im }.
∗/
s t a t i c double [] quadrat i cEquat ionSo lver (double a , double b , double c) {

i f (a == 0)
throw new I l l ega lArgumentExcept ion () ;

· · · sq r t (de l t a) · · ·
}

For the sake of the argument, lets suppose that this method is incorrectly implemented
and the programmer did not take enough care to ensure a call to sqrt with a non-negative
argument. Obviously, a IllegalArgumentException will be throwed by sqrt. However, if
automatically propagated to quadraticEquationSolver client, as the exception mechanism
does by default, it will fool it to believe that it as passed a wrong argument (a = 0).

To cope with this serious problem, some authors [14] suggest that the exception should be
handled in places in which its meaning is correct, and eventually a different type of exception
should be launched. To put this wise advise in practice, however, not only it could be an
overwhelming amount of extra work on the part of programmers (and easy to miss, creating
hard to track errors), but also questions one of the main goals of the exception mechanism: to
separate normal code from exceptional one. Our methods would be “contaminated” with lots
of try/catch/throw instructions. A new defensive exception mechanism could be devised,
in which the automatic propagation of exceptions in the call stack, would be always wrapped
in new MethodFailure alike exceptions. But such a mechanism seems clumsy, inefficient,
and most of all, not necessary because DbC provides a much simpler solution.

In Java, it is also suggested that the method signature should always list the exceptions it
may throw (and its meaning), which would also “contaminate” our code with lots of throws
declarations, making it a possible maintenance nightmare.

But even if we assume that such a practice was the only way to handle exceptions
(which is is not), it would still break algorithmic abstraction of methods: When a method is
constructed, an abstraction barrier is created between the client (caller) of the method, and
its implementation. The client care only for the meaning of the method (its postcondition).
The implementer job, is to use an algorithm than fulfills such meaning. However, the possible
exceptions that might be launched depends on the algorithm chosen by the implementer.
Take, for example, the case of a “days of a month” method:

public s t a t i c int daysOfMonth (int month , int year) {
f i n a l int [] days = {31 ,28 ,31 ,30 ,31 ,30 ,31 ,31 ,30 ,31 ,30 ,31} ;
int r e s u l t = days [month−1] ; // P o s s i b l e ArrayIndexOutOfBoundsException
i f (month == 2 && leapYear (year))

r e s u l t++;
return r e s u l t ;

}

Should ArrayIndexOutOfBoundsException exception be part of the method’s signature?
It might, in this particular implementation, but different algorithms can be devised in which
no such exception will ever be launched:

public s t a t i c int daysOfMonth (int month , int year) {
int r e s u l t = 0 ;
switch (month) {

case 1 : case 3 : case 5 : case 7 : case 8 : case 10 : case 12 :
r e s u l t = 31 ;
break ;

· · ·
}
return r e s u l t ;

}

M. Oliveira e Silva and P. G. Francisco 119

Please note that, as already mentioned, the alternative usage of other exception types,
such as IllegalArgumentException, would still be problematic because its scope (meaning)
only reached the method’s direct caller (hence a try/catch would be required to handle the
exception).

This clearly shows that attaching such exceptions to the method’s signature would be
an overspecification, hence: a break in the algorithm abstraction of methods. Thus, any
exception type linked only to an algorithm’s implementation, should never be part of the
method’s specification.

4.2 DbC Error Handling

In a DbC approach, running a method can only result in two possible outcomes (no compromise
here): either the method succeeds, observing all its attached assertions (postcondition,
possible object invariants, and other internal assertions); or it fails raising a DbC exception.
Furthermore, the meaning of the exception signaled by methods is not immutable (forever
binded to its original fault). As the exception propagates in the method invocation stack,
its abstract meaning changes, going from the original assertion failure to the failure of each
method in which it is propagated. What this means is that if the programmer desires to
build a fault tolerant program, he can adapt it (automatically) to the abstraction level of
the redundant method, regardless of the primeval fault origin. The rationale is as simple
as it is powerful: a method need only to ensure its attached assertions, hence in a DbC
fault tolerant program we only need a disciplined exception mechanism [20] containing a
rescue execution block, in which either the method execution is retried (possibly selecting
a different execution path within the method), or it fails (with an exception propagation).
The possible alternative method execution, need only to be concerned with ensuring the
method postconditions (and object invariant), not with any possible internal assertion failure
that might have occurred in a previous failed execution (hence, for fault tolerance goals, the
specific type of the original exception loses much of its importance, as long as the objects
involved were properly cleaned-up).

In a disciplined exception mechanism it is structurally very hard to ignore an exception
either by distraction, laziness, or bad coding practices: A DbC exception is only recovered iff
due to the interaction of the rescue code and the methods body, the method is able to fulfill
its postcondition (and invariant). To the clients of such a method, the program proceeds as
if nothing wrong had happened, thus achieving a simple, safe, and powerful fault tolerance
mechanism.

To stress even further the importance of requirement 1, the rescue code should only be
applied to faults of the responsibility of the method. Hence, if this method’s precondition
has failed, its eventual rescue clause should not be executed (it is impossible to ensure
postconditions, in the presence of a false precondition).

Serving as an introduction to the next section, Contract-Java’s implementation of the
quadratic equation solver methods follows:

s t a t i c double s q r t (double x)
requires x >= 0 ;

{ · · · }
ensures Math . abs (result ∗ result − x) <= NEAR_ZERO;

s t a t i c double [] quadrat i cEquat ionSo lver (double a , double b , double c)
requires a != 0 ;

{ · · · }
ensures areRoots (a , b , c , result) ;

SLATE 2014

120 Contract-Java: Design by Contract in Java with Safe Error Handling

Listing 1 Example of a Contract-Java array implementation.
public c lass Array<T>
{

public invariant (isEmpty () && s i z e () == 0) | | // o b j e c t ’ s ADT
(! isEmpty () && s i z e () > 0) ; // i n v a r i a n t

public Array (int s i z e)
requires s i z e >= 0 ; // Constructor

{ // precondi t ion
array = (T []) new Object [s i z e] ;

}

public int s i z e ()
{

return array . l ength ;
}

ensures result >= 0 ; // s i z e p o s t c o n d i t i o n

public T get (int idx)
requires idx >= 0 && idx < s i z e () ; // g e t precondi t ion

{
return array [idx] ;

}

public void s e t (int idx , T elem)
requires idx >= 0 && idx < s i z e () ; // s e t precondi t ion

{
array [idx] = elem ;

}
ensures get (idx) == elem ; // s e t p o s t c o n d i t i o n

protected T [] array ;

protected invariant array != null ; // i n t e r n a l r e p r e s e n t a t i o n
} // i n v a r i a n t

5 Contract-Java

Contract-Java language was developed to ease and to take full advantage of DbC programming
within Java, while attempting to retain usual syntactical and semantic choices in the language.
A special care was taken both to disallow undesirable side-effects and to promote synergic
behaviors with existing mechanisms (exceptions, for instance).

Unlike most existing approaches, Contract-Java makes DbC constructs normal language
entities and fully implements all six requirements for DbC support as specified in section 3.
As such, Contract-Java is defined as a superset of the Java language aiming the support of
DbC4. All Java code is a valid Contract-Java code (obviously, the reverse is not true).

To achieve a full implementation of all six requirements, Contract-Java extends Java with
nine new keywords: invariant, requires, ensures, rescue, retry, check, local, old and
result.

Listing 1 shows an example of an array module’s ADT in Contract-Java.
The syntax diagrams of the Contract-Java extensions to Java are showed in appendix 6.1.

5.1 Method Contracts
Contract-Java allows methods to be attached with a precondition and a postcondition. Such
assertions must be defined near to the method declaration, and as close as possible as to where

4 Minor incompatibilities may arise due to the new language keywords, although a proper compiler
implementation might eliminate or reduce them to a minimum (check).

M. Oliveira e Silva and P. G. Francisco 121

(when) they apply: precondition before the methods body, and postcondition afterwards
(following Eiffel’s approach). A contract might be applied to abstract methods (and even to
an interface method declaration). All method interface contracts are inherited as described
by requirement 4.

In the method’s postcondition two new keyword are recognized in order to allow to
express assertions using the method’s result (if any), and the values of expressions when the
method started its execution. Respectively: result and old.

No support exists yet for frame rules within method assertions to express what should
not change during its execution.

5.2 Class Contracts

One or more invariant declarations might be declared in a Contract-Java class. Syntactically
they are similar to method’s preconditions and postconditions, except that its scope is within
the class and its visibility can be specified (as happens with other class members).

The visibility definition of an invariant in Contract-Java is an interesting feature of
the language because it allows the definition of different invariants applied to different
abstraction levels (public, package, protected and private). Public invariants are the ADT’s
invariants. One the other hand, protected (or other) invariants are useful to express less
abstract representation invariants5. These differences should be taken into consideration by
Contract-Java’s automatic documentation tools. Listing 1 exemplifies the usage of both an
ADT and a representation invariant.

When a class is a descendant of another class (or one or more interfaces) it inherits its
invariants (as explained in requirement 4).

5.3 Java Interfaces

Interfaces specify an ADT without providing its implementation. As such, to completely
specify the ADT, contracts need to be supported on interface classes. In the same way
Native Java’s throws are considered part of the class interface, contracts also belong to it.
By implementing an interface, a class inherits the interface contracts. The same rules apply
to inheritance on interfaces as to normal classes: interfaces are also ADT definitions and as
such have the same treatment.

5.4 DbC Exceptions

The sixth requirement of our DbC requirements (section 3) is support for DbC exceptions.
To that goal, Contract-Java implements a set of DbC exceptions (descendant of Error

type), for each type of assertion (although, as showed, such detail in not very important in
DbC error handling, in which all that matter is if the method succeeds or has failed, and, if so,
whose to blame for that). So, as part of the language specification, assertion errors will in fact
be handled by Java’s exception mechanism. However, it is ensure by the language semantics
that it is impossible for a try/catch/throw/throws to use such exceptions6. These special
exceptions can only be handled by the language’s disciplined exception mechanism.

5 Consistently, a private invariant will be hidden from descendant classes.
6 Even catching Throwable does not catch a Contract-Java exception.

SLATE 2014

122 Contract-Java: Design by Contract in Java with Safe Error Handling

Listing 2 Example of real code of how to define a rescue clause on a class.
public c lass AFaultTolerantMethod

// Does a path e x i s t in l a b y r i n t h from src to d s t ?
public boolean f indPath (Labyrinth labyr inth , Locat ion src , Loca l i t y dst)

requires l aby r in th != null ; // t h i s precondi t ion i s not rescued by
s r c != null ; // t h i s method ’ s rescue c lause .
dst != null ;

local
int attempt = 1 ;

{
boolean result = f a l s e ;
switch (attempt)
{

case 1 :
result=findPathAlg1 (labyr inth , src , dst) ; // a method t h a t t r i e s
break ; // to f i n d the path

case 2 :
result=findPathAlg2 (labyr inth , src , dst) ; // another method t h a t t r i e s
break ; // to f i n d the path

}
return result ;

}
rescue (RuntimeException e) // rescues both DbC except ions and
{ // runtime except ions .

i f (attempt < 2)
{

attempt++;
retry ;

}
// except ion propagated to c a l l e r !

}

This mechanism, whose syntax is showed in appendix 6.1, works in a similar way as Eiffel’s
original mechanism [21], but fully adapted to Java’s mechanisms, in particular, exception
handling.

Syntactically, methods were extended with an optional rescue clause able catch and
handle contract failures within the execution of the method, and also (if desired) an optional
rescue clause in which variables can be declared whose scope includes method’s body and
rescue clauses. This local clause allows the construction of rescue code which may depend
on previous retried executions of the method.

A disciplined exception mechanism works as follows. With the important exception of
the method’s preconditions, all contract failures that occur during the method execution
(including its postcondition, the invariant, and contract failures of called methods) are
cached by the method’s rescue clause. However, unlike catch blocks in usual exceptions
mechanisms, rescue clauses are only allowed to retry the methods execution (command:
retry), or re-propagate the failure to the caller method (if the rescue clause finishes without
a retry command). Hence, they serve the purpose of an eventual object’s cleanup, or to
support a fault tolerant method.

Since some contract failures are sometimes implicit, and rely on the native exception
mechanism (e.g. NullPointerException), Contract-Java extends rescue clause with an
optional argument, quite similar to Java’s 7 catch syntax, enabling the possibility to rescue
non-DbC exceptions. This functionality could be extremely useful as it also eases the
integration of legacy code within Contract-Java.

All these semantics is possible, because Contract-Java compiler is able to unambiguously
distinguish Contract-Java classes and native Java’s classes (both classes and object can
coexist peacefully in a Contract-Java program).

Listing 2 exemplifies a fault tolerant method (allegedly it tries two algorithms for searching
a path within a labyrinth).

M. Oliveira e Silva and P. G. Francisco 123

The rescue clause must be associated to a non-abstract method. If the failure is of the
method’s responsibility (i.e., not on a precondition) then the execution jumps to the rescue
clause where the failure is attempted to be dealt with. If the rescue clause reaches its end
without a retry, or there is no rescue clause, the Contract-Java exception is rethrown, in
order for the upper level of execution to be able to decide what to do with the error: either
recover for it, or throw it again to its caller. In case a retry is done, the execution restarts
on the beginning of the method; only local variables will keep its state.

5.5 Enhanced Debugging in Contract-Java

When checking for an assertion the programmer can define an appropriate error message to
be used when that assertion fails. For example, the program:

public c lass TestAssert {
s t a t i c boolean boolFunc01 () { return f a l s e ; }
s t a t i c boolean boolFunc02 () { return true ; }
s t a t i c boolean boolFunc03 () { return f a l s e ; }

public s t a t i c void main (St r ing [] a rgs) {
a s s e r t (boolFunc01 () && boolFunc02 ()) | | boolFunc03 () : " message " ;

}
}

would yield the result:

$ java -ea TestAssert
Exception in thread "main"

java.lang. AssertionError : message
at TestAssert .main(TestAssert .java :16)

However, in Contract-Java the error messages associated with the assertion failures are
automatically enhanced with relevant debugging information, such as the boolean expression
that failed, and an expansion of the various expression values, thus reducing the need of
manual definition of the assertions’ associated text and providing a clearer view of why the
assertion failed. If the following example program is executed:

public c lass TestBooleanExpansion {

boolean boolFunc01 () { return f a l s e ; }
boolean boolFunc02 () { return true ; }
boolean boolFunc03 () { return f a l s e ; }

public void doSomething ()
r e qu i r e s (boolFunc01 () && boolFunc02 ()) | |

boolFunc03 () ;
{ . . . }

}

it could be created the following output:

$ java TestBooleanExpansion
Exception in thread "main"

Contract_JavaPreconditionFailure
at TestBooleanExpansion .main

TestBooleanExpansion .java :16)
Precondition failed : boolFunc01 () &&

boolFunc02 () || boolFunc03 ()
boolFunc01 () && boolFunc02 () ||

boolFunc03 () => false ;
boolFunc01 () && boolFunc02 () => false ;
boolFunc01 () => false ;
boolFunc02 () => true ;
boolFunc03 () => false ;

SLATE 2014

124 Contract-Java: Design by Contract in Java with Safe Error Handling

5.5.1 Fine-tuning
Contract-Java allows the possibility to fine-tune the activation and deactivation of assertions
(by assertion kind, to the whole program, to packages, or class by class). However, unlike
Java’s native assert, contracts are defined at compile time.

5.6 Other Assertions
We support the equivalent to the assert keyword from Java, namely check. This instruction
allows for the verification of a boolean expression triggering a failure when it is not true, of
type checkFailure.

5.7 Contract-Java Native Library
Contract-Java does not support contracting preexisting class files. The alternative is to
create wrapper classes in order to encapsulate access to a preexisting class file, adding the
desired contracts on the wrapper class.

Since Java uses defensive programming, Contract-Java would probably benefit from an
effort to contractualize Java libraries providing new libraries which wrap and contractualize
native libraries, which would lead to new classes7 being defined.

5.8 Documentation
The support for full automatic documentation generation is the fifth requirement of our DbC
requirements (Section 3). All contracts (with the exception of non-public invariants) must be
extracted from the definition and automatically added to the documentation. In the cases
where inheritance is involved, each class documentation should allow a full listing of the ADT
definition, namely make documentation available in “flat” form (which includes all available
public methods, their contracts and the class public invariant). Such documentation would
be extracted using another tool, which would generate javadoc-like documentation with the
addition of contract information.

6 Conclusion

We have presented and justified the requirements needed to completely implement Design
by Contract in an Object-Oriented programming language. Systematic error handling
approaches, such as defensive programming, were critically analyzed and compared with
DbC alternative. It was showed that typed exceptions and try/catch instructions break
algorithmic abstraction of methods; hence becoming a questionable alternative to handle
errors in a program. A better approach, based on DbC was presented and justified.

A new DbC language extension to Java – named Contract-Java – was presented. This new
language accepts all existing Java code, and was implemented in order to avoid undesirable
side-effects with Java’s native mechanisms. Is was given a special care to error handling, thus,
Contract-Java implements a disciplined exception mechanism, preventing exceptions from
being ignored, and easing the development of fault-tolerant programs. To better integrate
with existing Java code, this new exception mechanism is able to integrate any desired

7 With a different ADT, since Java native classes follow defensive programming and have no regard for
command-query separation.

M. Oliveira e Silva and P. G. Francisco 125

non-DbC exceptions within the DbC error handling mechanism. Finally, a new enhanced
debugging mechanism was implemented in which relevant information is automatically
generated and printed in the presence of a contract failure.

6.1 Future Developments

We expect to enhance Contract-Java with mechanisms for pure query detection (assertions
should use only expressions without side-effects to the program’s state).

Some work on frame rules (predicates expressing what did not change), is also one of our
objectives. Also, the implementation of other kinds of assertions like loop invariants

Finally, work in on the way for a concurrent versions of Contract-Java (Concurrent
Contract-Java) adapting one of the authors PhD work [24, 25] to Java.

Acknowledgment. This work was partially supported by IEETA (Instituto de Engenharia
Electrónica e Telemática de Aveiro), funded by FCT’s project PEst-OE/EEI/UI0127/2014.

Contract-Java new Syntax

c l a s sDe c l a r a t i o n : mod i f i e r s " c l a s s " name (typeParameters)?
" { " (" ; " | s t a t i cB l o ck | i n t e r f a c eDe c l a r a t i o n |

c l a s sDe c l a r a t i o n | f i e l d | method | i nva r i an t)+ " } "

method : mod i f i e r s type name " (" (arguments)? ") "
(p r e cond i t i on)?
((l o c a l)? " { " body " } ")?
(po s t cond i t i on)?
(r e s cue)?

i nva r i an t : (" pub l i c " | " p rotec ted " | " " | " p r i va t e ")
" i nva r i an t " (a s s e r t i onC lau s e)+

precond i t i on : " r e qu i r e s " (a s s e r t i onC lau s e)+

pos t cond i t i on : " ensure s " (a s s e r t i onC lau s e)+

as s e r t i onC lau s e : c ond i t i ona lExpr e s s i on
(" : " exp r e s s i on)? " ; "

r e s cue : " r e s cue " (excpDecl)? " { " blockStatement " } "

excpDecl : " (" excpTypeList name ") "

excpTypeList : excpType (" | " excpType)∗

References

1 Sérgio Agostinho. An aspect-oriented infrastructure for design by contract in java. Master’s
thesis, Universidade Nova de Lisboa, 2008.

2 D. Bartetzko, C. Fischer, M. Möller, and H. Wehrheim. Jass – Java with assertions. Elec-
tronic Notes in Theoretical Computer Science, 55(2):103–117, October 2001.

3 Chien-Tsun Chen, Yu Chin Cheng, and Chin-Yun Hsieh. Contract specification in java:
Classification, characterization, and a new marker method. IEICE – Trans. Inf. Syst.,
E91-D(11):2685–2692, November 2008.

4 Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, Inc., October 1976.
5 Robert Floyd and J.T. Schwartz. Assigning meanings to programs. In Proceedings of a

Symposium on Applied Mathematics, volume 19, pages 19–31, 1967.

SLATE 2014

126 Contract-Java: Design by Contract in Java with Safe Error Handling

6 Alessandro F. Garcia, Cecília M.F. Rubira, Alexander Romanovsky, and Jie Xu. A com-
parative study of exception handling mechanisms for building dependable object-oriented
software. Journal of Systems and Software, 59(2):197–222, November 2001.

7 J.A. Goguen, J.W. Thatcher, E.G. Wagner, and R. Yeh. An initial algebra approach to the
specification, correctness and implementation of abstract data types. In Current Trends
in Programming Methodology: Data Structuring, volume 4, pages 80–149. Prentice–Hall,
1978.

8 David Gries. The Science of Programming. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 1st edition, 1987.

9 C.A.R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, October 1969.

10 C.B. Jones. Systematic software development using VDM. Prentice Hall International (UK)
Ltd., Hertfordshire, UK, 1986.

11 Cliff B. Jones. Software Development: A Rigorous Approach. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1980.

12 Nhat Minh Lê. Contracts for java: A practical framework for contract programming. Tech-
nical report, Google Switzerland GmbH, 2011.

13 Gary T. Leavens. The java modeling language (jml) online page. http://www.eecs.ucf.
edu/~leavens/JML/download.shtml, August 2013.

14 Barbara Liskov and John Guttag. Program Development in Java: Abstraction, Specification,
and Object-Oriented Design. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1st edition, 2000.

15 Barbara Liskov and Stephen Zilles. Programming with abstract data types. SIGPLAN
Not., 9(4):50–59, March 1974.

16 Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM Trans.
Program. Lang. Syst., 16(6):1811–1841, November 1994.

17 B.H. Liskov and A. Snyder. Exception handling in clu. IEEE Transactions on Software
Engineering, 5(6):546–558, 1979.

18 B. Meyer. Applying ‘design by contract’. Computer, 25(10):40–51, October 1992.
19 Bertrand Meyer. Technical report tr-ei-12/co. Technical report, Interactive Software En-

gineering Inc., 1986.
20 Bertrand Meyer. Eiffel: A language and environment for software engineering. The Journal

of Systems and Software, 1988.
21 Bertrand Meyer. Object-oriented software construction. Prentice-Hall, New York, 1988.
22 Bertrand Meyer. Object-oriented software construction. Prentice Hall, 2nd edition, 1997.
23 Bertrand Meyer. Software architecture: Lecture 4: Design by contract. http://se.inf.

ethz.ch/old/teaching/ss2007/0050/slides/04_softarch_contract_6up.pdf, ETHZ,
March-July 2007.

24 Miguel Oliveira e Silva. Concurrent object-oriented programming: The mp-eiffel approach.
Journal of Object Technology, 3(4):97–124, April 2004. Proceedings of the TOOLS USA
2003 Conference, September 30 to October 1, 2003 – Santa Monica, CA.

25 Miguel Oliveira e Silva. Automatic realizations of statically safe intra-object synchron-
ization schemes in MP-Eiffel. In Proceedings of the first Symposium on concurrency,
Real-Time, and Distribution in Eiffel-Like Languages, CORDIE’06, pages 91–118. Uni-
versity of York – Department of Computer Science, July 2006. Available at http:
//www.ieeta.pt/~mos/pubs.

26 J. Rieken. Design by contract for java-revised. Master’s thesis, Department für Informatik,
Universität Oldenburg, 2007.

27 A. Turing. Checking a large routine. In Martin Campbell-Kelly, editor, The Early British
Computer Conferences, pages 70–72. MIT Press, Cambridge, MA, USA, 1989.

http://www.eecs.ucf.edu/~leavens/JML/download.shtml
http://www.eecs.ucf.edu/~leavens/JML/download.shtml
http://se.inf.ethz.ch/old/teaching/ss2007/0050/slides/04_softarch_contract_6up.pdf
http://se.inf.ethz.ch/old/teaching/ss2007/0050/slides/04_softarch_contract_6up.pdf
http://www.ieeta.pt/~mos/pubs
http://www.ieeta.pt/~mos/pubs

Implementing Python for DrRacket
Pedro Palma Ramos and António Menezes Leitão

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa
Rua Alves Redol 9, Lisboa, Portugal
{pedropramos,antonio.menezes.leitao}@tecnico.ulisboa.pt

Abstract
The Python programming language is becoming increasingly popular in a variety of areas, most
notably among novice programmers. On the other hand, Racket and other Scheme dialects are
considered excellent vehicles for introducing Computer Science concepts. This paper presents an
implementation of Python for Racket and the DrRacket IDE. This allows Python programmers to
use Racket libraries and vice versa, as well as using DrRacket’s pedagogic features. In particular,
it allows architects and designers to use Python as a front-end programming language for Rosetta,
an IDE for computer-aided design, whose modelling primitives are defined in Racket.

Our proposed solution involves compiling Python code into equivalent Racket source code.
For the runtime implementation, we present two different strategies: (1) using a foreign function
interface to borrow the data types and primitives from Python’s virtual machine or (2) imple-
menting Python’s data model over Racket data types.

While the first strategy is easily implemented and provides immediate support for Python’s
standard library and existing third-party libraries, it suffers from performance issues: it runs, at
least, one order of magnitude slower when compared to Python’s reference implementation.

The second strategy requires us to implement Python’s data model in Racket and port all
of Python’s standard library, but it succeeds in solving the former’s performance issues. Fur-
thermore, it makes interoperability between Python and Racket code easier to implement and
simpler to use.

1998 ACM Subject Classification D.3.4 Programming Languages: Processors

Keywords and phrases Python, Racket, language implementations, compilers

Digital Object Identifier 10.4230/OASIcs.SLATE.2014.127

1 Introduction

Architects who use computer-aided design (CAD) applications are beginning to shift from a
traditional approach to an algorithmic approach. This is leading to an increasing need for
the CAD community to master generative design, a design method based on a programming
approach which allows them to build complex three-dimensional structures that can then be
effortlessly modified through simple changes in a program’s code or parameters. It is, thus,
increasingly important for architects to master programming techniques.

Although most CAD applications provide programming languages for generative design,
programs written in these languages have very limited portability, as each CAD application
provides its own specific language and functionality. Therefore, a program written for one
CAD application cannot be used on other CAD applications. In addition to this, these
programming languages are rarely pedagogical and most of them are poorly designed or
obsolete.

With this in mind, we are developing Rosetta, an extensible integrated development
environment (IDE) for generative design [11]. Rosetta seeks to answer the portability
problem by allowing the development of programs in different programming languages

© Pedro Ramos and António Menezes Leitão;
licensed under Creative Commons License CC-BY

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões; pp. 127–141

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2014.127
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

128 Implementing Python for DrRacket

Figure 1 DrRacket’s graphical user interface.

which are then portable across different CAD applications. A program written in one of
the supported programming languages is compiled to an intermediate language, where the
primitives essential to 3D modelling are defined. These primitives are then translated to
commands of the selected CAD application’s interface and invoked through interprocess
communication. This design allows Rosetta to support new front-end programming languages
and new back-end CAD applications, independently from each other.

Currently, Rosetta is based on the DrRacket IDE and uses Racket as its intermediate
language. DrRacket (formerly known as DrScheme) is a pedagogic IDE for the Racket
programming language, a dialect of LISP and a descendant of Scheme [3, 4].

Unlike IDEs such as Eclipse or Microsoft Visual Studio, DrRacket provides a simple
and straightforward interface (Figure 1). It also provides a set of tools, including a syntax
highlighter, a syntax checker, a macro stepper and a debugger, aimed at inexperienced
programmers, such as the target audience of Rosetta.

Additionally, Racket and DrRacket support the development and extension of other
programming languages [20], which is crucial for Rosetta’s front-end extensibility. Currently,
Rosetta supports front-ends for Racket, AutoLISP, JavaScript and RosettaFlow (a graphical
language inspired by Grasshopper). AutoLISP and JavaScript were chosen precisely because
they have been used for generative design. More recently, the Python language has emerged
as a good candidate for this area of application.

Python is a high-level, interpreted, dynamically typed programming language [23, p. 3]. It
supports the functional, imperative and object-oriented programming paradigms and features
automatic memory management. It is mostly used for scripting, but it can also be used
to build large scale applications. Its reference implementation, CPython, is written in C
and it is maintained by the Python Software Foundation. There are also other third-party
implementations such as Jython (written in Java), IronPython (written in C#) and PyPy
(written in Python).

P. P. Ramos and A.M. Leitão 129

Due to its large standard library, expressive syntax and focus on code readability, Python
is becoming an increasingly popular programming language in many areas, including archi-
tecture. Python has been receiving a lot of attention in the CAD community, particularly
after it has been made available as scripting language for CAD applications such as Rhino or
Blender. This justifies the need for implementing Python as another front-end language of
Rosetta, i.e. implementing Python in Racket.

Therefore, our goal is to develop a correct and efficient implementation of the Python
language for Racket, which is capable of interfacing Python and Racket code. This will allow
Rosetta users to use Python as a front-end programming language for generative design.
Additionally, we want to support some of DrRacket’s features for Python development,
namely syntax highlighting, syntax checking and debugging.

In the next sections, we will briefly examine the strengths and weaknesses of other Python
implementations, describe the approaches we took for our own implementation and showcase
the results we have obtained so far.

2 Related Work

There are a number of Python implementations that are good sources of ideas for our own
implementation. In this section we describe the most relevant ones.

2.1 CPython
CPython, maintained by the Python Software Foundation, is written in the C programming
language and has been the reference implementation of Python since its first release. It
parses Python source code (from .py files or interactive mode) and compiles it to bytecode,
which is then interpreted on a virtual machine.

The Python standard library is implemented both in Python and C. In fact, CPython
makes it easy to write third-party module extension in C to be used in Python code. The
inverse is also possible: one can embed Python functionality in C code, using the Python/C
API [22].

2.1.1 Object Representation
CPython’s virtual machine is a simple stack machine, where the byte codes operate on a
stack of PyObject pointers [21].

At runtime, every Python object has a corresponding PyObject instance. A PyObject
contains a reference counter, used for garbage collecting, and a pointer to a PyTypeObject,
which is another PyObject that indicates the object’s type. In order for every value to be
treated as a PyObject, each built-in type is declared as a structure containing these two
fields, plus any additional fields specific to that type.

This means that everything is allocated on the heap, even basic types. To avoid relying
too much on expensive dynamic memory allocation, CPython enforces two strategies:

Only requests larger than 256 bytes are handled by malloc (the C standard allocator),
while smaller ones are handled by pre-allocated memory pools.
There is a pool for commonly used immutable objects (such as the integers from -5 to 256).
These are allocated only once, when the virtual machine is initialized. Each new reference
to one of these integers will point to the instance on the pool instead of allocating a new
one.

SLATE 2014

130 Implementing Python for DrRacket

2.1.2 Garbage Collection and Threading

Garbage collection in CPython is performed through reference counting. Whenever a new
Python object is allocated or whenever a new reference to it is made, its reference counter is
incremented. When a reference is no longer needed, the reference counter is decremented.
When the reference counter reaches zero, the object’s finalizer is called and the space is
reclaimed.

Reference counting, however, does not work well with reference cycles [24, ch. 3.1].
Consider the example of a list containing a reference to itself. When its last reference goes
out of scope, its counter is decremented, however the circular reference inside the list is
still present, so the reference counter will never reach zero and the list will not be garbage
collected, even though it is already unreachable.

Furthermore, these reference counters are not thread-safe [25]. If two threads would
attempt to increment an object’s reference counter simultaneously, it would be possible
for this counter to be erroneously incremented only once. To avoid this from happening,
CPython enforces a global interpreter lock (GIL), which prevents more than one thread
running interpreted code at the same time.

This is a severe limitation to the performance of threads on CPU-intensive tasks. In fact,
using threads will often yield a worse performance than using a sequential approach, even on
a multiple processor environment [1]. Therefore, the use of threads is only recommended for
I/O tasks [2, p. 444].

Note that the GIL is a feature of CPython and not of the Python language. This feature is
not present in other implementations such as Jython or IronPython, which will be described
in the following section.

2.2 Jython

Jython is another Python implementation, written in Java and first released in 2000. Similarly
to how CPython compiles Python source-code to bytecode that can be run on its virtual
machine, Jython compiles Python source-code to Java bytecode, which can then be run on
the Java Virtual Machine (JVM).

2.2.1 Implementation Differences

There are some aspects of Python’s semantics in which Jython’s implementation differs from
CPython’s [10]. Some of these are due to limitations imposed by the JVM, while others are
considered bugs in CPython and, thus, were implemented differently in Jython.

The standard library in Jython also suffers from minor differences from the one imple-
mented in CPython, as some of the C-based modules have been rewritten in Java.

2.2.2 Java Integration

Jython programs cannot use module extensions written for CPython, but they can import
Java classes, using the same syntax for importing Python modules.

There is work being done by a third-party [18] to integrate CPython module extensions
with Jython, through the use of the Python/C API. This would allow using NumPy and
SciPy with Jython, two very popular Python libraries which rely on CPython’s ability to
run module extensions written in C.

P. P. Ramos and A.M. Leitão 131

2.2.3 Performance
It is worth noting that garbage collection is performed by the JVM and does not suffer from
the issues with reference cycles that plague CPython [9, p. 57]. Furthermore, there is no
global interpreter lock, so threads can take advantage of multi-processor architectures for
CPU-intensive tasks [9, p. 417].

Performance-wise, Jython claims to be approximately as fast as CPython. Some libraries
are known to be slower because they are currently implemented in Python instead of Java
(in CPython these are written in C). Jython’s performance is also deeply tied to performance
gains in the Java Virtual Machine.

2.3 IronPython
IronPython, developed as a follow-up to Jython, is an implementation of Python for the
Common Language Infrastructure (CLI). It is written in C# and was first released in 2006.
It compiles Python source-code to CLI bytecode, which can be run on Microsoft’s .NET
framework or Mono (an open-source alternative implementation of the CLI).

IronPython provides support for importing .NET libraries and using them with Python
code [13]. As it happened with Jython, there is work being done by a third-party in order to
integrate CPython module extensions with IronPython [8].

As far as performance goes, IronPython claims to be 1.8 times faster than CPython
on pystone, a Python benchmark for showcasing Python’s features. Additionally, further
benchmarks demonstrate that IronPython is slower at allocating and garbage collecting
objects and running code with eval. On the other hand, it is faster at setting global variables
and calling functions [6].

2.4 PyPy
PyPy is yet another Python implementation, written in a restricted subset of Python,
RPython1. It was first released in 2007 and currently its main focus is on speed, claiming
to be 6.2 times faster than CPython in a geometric average of a comprehensive set of
benchmarks [17].

It supports all of the core language, most of the standard library and even some third
party libraries. Additionally, it features incomplete support for the Python/C API [16].

PyPy includes two very distinct modules: a Python interpreter and the RPython trans-
lation toolchain [15]. Like the implementations mentioned before, the interpreter converts
user’s Python source code into bytecode.

However, what distinguishes it from those other implementations is that this interpreter,
written in RPython, is in turn compiled by the RPython translation toolchain, effectively
converting Python code to a lower level platform (typically C, but the Java Virtual Machine
and Common Language Infrastructure are also supported).

The translation toolchain consists of a pipeline of transformations (flow analysis, annotator,
backend optimizations, among others), but what truly makes PyPy stand out as currently
the fastest Python implementation is its just-in-time compiler (JIT), which detects common
codepaths at runtime and compiles them to machine code, optimizing their speed.

1 RPython (Restricted Python) is a heavily restricted subset of Python, in order to allow static inference
of types. For instance, it does not allow altering the contents of a module, creating functions at runtime,
nor having a variable holding incompatible types.

SLATE 2014

132 Implementing Python for DrRacket

Table 1 Comparison between implementations.

Language(s)
written

Platform(s)
targetted

Speedup
(vs CPython)

Std. library
support

CPython C CPython’s VM 1× Full
Jython Java JVM ∼ 1× Most
IronPython C# CLI ∼ 1.8× Most
PyPy RPython C, JVM, CLI ∼ 6× Most
PLT Spy Scheme, C Scheme ∼ 0.001× Full

The JIT keeps a counter for every loop that is executed. When it exceeds a certain
threshold, that codepath is recorded and compiled to machine code. This means that the
JIT works better for programs without frequent changes in loop conditions.

2.5 PLT Spy

PLT Spy is an experimental Python implementation written in PLT Scheme and C, first
released in 2003. It parses and compiles Python source-code into equivalent PLT Scheme
code [12].

PLT Spy’s runtime library is written in C and interfaces with Scheme via the PLT
Scheme C API. It implements Python’s built-in types and operations by mapping them to
the CPython virtual machine, through the use of the Python/C API. This allows PLT Spy
to support every library that CPython supports (including NumPy and SciPy).

This extended support has a big trade-off in portability, though, as it led to a strong
dependence on the 2.3 version of the Python/C API library and does not seem to work
out-of-the-box with newer versions. More importantly, the repetitive use of Python/C
API calls and conversions between Python and Scheme types severely limited PLT Spy’s
performance. PLT Spy’s authors use anecdotal evidence to claim that it is around three
orders of magnitude slower than CPython.

2.6 Comparison

Table 1 displays a rough comparison between the implementations discussed above.
To sum up, PLT Spy can interface Python code with Scheme code and is the only

alternative implementation which can effortlessly support all of CPython’s standard library
and third-party modules extensions, through its use of the Python/C API. However, the
performance cost that results from the repeated conversion of data from Scheme’s internal
representation to CPython’s internal representation is unacceptable.

Furthermore, our implementation will require using Racket’s bytecode and tools in order
to support Rosetta’s modelling primitives (defined in Racket), therefore PyPy’s performance
strategy is not feasible for our problem.

On the other hand, Jython and IronPython show us that it is possible to implement
Python’s semantics over high-level languages, with very acceptable performances and still
provide means for importing that language’s functionality into Python programs. However,
Python’s standard library needs to be manually ported.

With this in mind, we will be presenting our proposed solution in the next section.

P. P. Ramos and A.M. Leitão 133

Figure 2 Dependencies between modules. The arrows indicate that a module uses functionality
that is defined on the module it points to.

3 Solution

Our proposed solution consists of two compilation phases:
1. Python source-code is compiled to Racket source-code;
2. Racket source-code is compiled to Racket bytecode.

In phase 1, the Python source code is parsed into a list of abstract syntax trees, which
are then expanded into a list of syntax objects containing equivalent Racket code.

In phase 2, the Racket source-code generated above is fed to a bytecode compiler which
performs a series of optimizations (including constant propagation, constant folding, in-lining,
and dead-code removal). This bytecode is interpreted on the Racket VM, where it may be
further optimized by a JIT compiler.

Note that phase 2 is automatically performed by the Racket implementation, therefore
our implementation effort relies only on a source-to-source compiler from Python to Racket.

3.1 General Architecture

Figure 2 summarises the dependencies between the different Racket modules of the proposed
solution. The next paragraphs provide a more detailed explanation of these modules.

3.1.1 Racket Interfacing

A Racket file usually starts with the line #lang <language> to indicate which language is
being used (in our case, it will be #lang python).

To define a language for the Racket platform, Racket requires only two files: one which
defines how source code compiles to Racket code, and another which defines the functions
and macros that make up the compiled code. These correspond, in our solution, to the
reader and python modules, respectively.

The python module simply provides all the bindings from the Racket language and the
bindings defined at the runtime module (which will be described at 3.1.3). The reader
module must provide:

SLATE 2014

134 Implementing Python for DrRacket

The read function, which takes a Racket input-port as an argument (this could be the
standard input, a file, a string, etc.) and return a list of s-expressions, which correspond
to the Racket code compiled from the input port;
The read-syntax function, which also takes an input-port as argument and returns a
list of syntax-objects, which correspond to the compiled Racket code.

Syntax-objects are Racket’s native representation for code. They abstract over s-
expressions, but they may also keep source location information (file, line number, column
number and span) and lexical binding information about said code. By keeping track of the
original position of each token during the parsing process and copying it to the compiled
syntax-objects, each compiled s-expression can be mapped back to the original Python
expression it corresponds to. This way, our implementation fully integrates with DrRacket’s
features such as signalling the line number where an error has occurred or tracking the
location of a debugging session on the source code.

3.1.2 Parse and Compile Modules
The lex+yacc module defines a set of Lex and Yacc rules for parsing Python code, using
the Lex/Yacc implementation provided by Racket’s parser-tools library. This outputs
a list of abstract syntax trees (ASTs), which are defined in the ast-node module. These
nodes are implemented as Racket objects. Each subclass of an AST node defines its own
to-racket method, responsible for the code generation. A call to to-racket works in a
top-down recursive manner, as each node will eventually call to-racket on its children.

The parse module simply defines a practical interface of functions for converting the
Python code from an input port into a list of ASTs, using the functionality from the lex+yacc
module.

In a similar way, the compile module defines a practical interface of functions for
converting lists of ASTs into syntax objects with the compiled code, by calling the to-racket
method on each AST.

3.1.3 Runtime Modules
The libpython module defines a foreign function interface to the functions provided by the
Python/C API. Its use will be explained in detail on the next section.

Compiled code contains references to Racket functions and macros, as well as some
additional functions which implement Python’s primitives. For instance, we define py-add
as the function which implements the semantics of Python’s + operator. These primitive
functions are defined in the runtime module.

3.2 Runtime Implementation using Racket’s Foreign Function Interface
For the runtime, we started by following a similar approach to PLT Spy, by mapping Python’s
data types and primitive functions to the Python/C API. The way we interact with this
API, however, is radically different.

On PLT Spy, this was done via the PLT Scheme C API, and therefore the runtime is
implemented in C. This entails converting Scheme values into Python objects and vice-versa
for each runtime call. Besides the performance issue (described on the Related Work section),
this method is cumbersome and lacks portability, since it requires compiling the runtime
with a platform-specific C compiler, and to do so each time the runtime is modified.

P. P. Ramos and A.M. Leitão 135

Instead, we used the Racket Foreign Function Interface (FFI) to directly interact with
the foreign data types created by the Python/C API, therefore our runtime is implemented
in Racket. These foreign functions are defined on the libpython modules, according to their
C signatures, and are called by the functions and macros defined on the runtime module.

The values passed around correspond to pointers to objects in CPython’s virtual machine,
but there is sometimes the need to convert them back to Racket data types, so they that can
be used in control flow forms like ifs and conds.

As with PLT Spy, this approach only requires implementing the Python language con-
structs, because the standard library and other libraries installed on CPython’s implementa-
tion are readily accessible.

Unfortunately, as we will show in the Performance section, the repetitive use of these
foreign functions introduces a huge overhead on our primitive operators, resulting in a very
slow implementation.

Additionally, objects allocated with the Python/C API must have their reference counters
explicitly decremented, or they will not be garbage collected. This can be solved by attaching a
finalizer to each FFI function that allocates a new Python object. This finalizer is responsible
for decrementing the object’s reference counter when Racket’s GC proves that there are no
more live references to the Python object. While this solves the garbage collection issue, it
entails having another layer of expansive FFI calls, which degrade the runtime performance.

For these reasons, we’ve tried a second approach, which is described in the following
section.

3.3 Runtime Implementation using Racket

Our second approach consists in implementing Python’s data model purely in Racket.
In Python, every object has an associated type-object (where every type-object’s type is

the type type-object). A type-object contains a hash table which maps operation names
(strings) to the respective functions that type supports (function pointers, in CPython).

As a practical example, in the expression obj1 + obj2, the behaviour of the plus operator
is determined at runtime, by computing obj1’s type-object and looking up the string __add__
in its hash table. This dynamism in Python allows objects to change behaviour during the
execution of a program, simply by adding, modifying of deleting entries from these hash
tables, but it also forces an interpreter to constantly lookup these behaviours, contributing
to Python’s slow performance when compared to other languages.

In CPython, an object’s type is stored at the PyObject structure. We can use the
same strategy in Racket, but there is a nicer alternative. In Racket, one can recognize a
value’s type through its predicate (number?, string?, etc.). A Python object’s type never
changes, so we can directly map basic Racket types into Python’s basic types and make their
types available through a pattern matching function, which returns the most appropriate
type-object, according to the predicates that value satisfies.

This way, we avoid the overhead from constantly wrapping and unwrapping frequently
used values from the structures that hold them and it also leads to a cleaner interoperability
between Racket and Python code, from the user’s perspective. Complex built-in types, such
as type-objects, are still implemented through Racket structures.

Comparing it to the FFI approach, this one entails implementing all of Python’s standard
library in Racket, but, on the other hand, it is much faster and provides reliable memory
management of Python’s objects, since it does not need to coordinate with another virtual
machine.

SLATE 2014

136 Implementing Python for DrRacket

3.4 Examples
In this section we provide some examples of the current state of the translation between
Python and Racket. Note that this is still a work in progress and, therefore, the compilation
results of these examples are likely to change in the future.

3.4.1 Fibonacci
Consider the following program in Racket which implements a naive algorithm for computing
the Fibonacci function:

1 (define (fib n)
2 (cond
3 [(= n 0) 0]
4 [(= n 1) 1]
5 [else (+ (fib (- n 1))
6 (fib (- n 2)))]))
7
8 (fib 30)

Its equivalent in Python would be:

1 def fib(n):
2 if n == 0: return 0
3 elif n == 1: return 1
4 else: return fib(n-1) + fib(n-2)
5
6 print fib(30)

Currently, this code is compiled to:

1 (define (:fib :n)
2 (cond
3 ((py-truth (py-eq :n 0)) 0)
4 ((py-truth (py-eq :n 1)) 1)
5 (else (py-add (py-call :fib (py-sub :n 1))
6 (py-call :fib (py-sub :n 2))))))
7
8 (py-print (py-call :fib 30))

Starting with line 1, the first thing one might notice is the colon prefixing the identifiers
fib and n. This has no syntactic meaning in Racket; it is simply a name mangling technique
to avoid replacing Racket’s bindings with bindings defined in Python. For example, one
might set a variable cond in Python, which would then be compiled to :cond and therefore
would not interfere with Racket’s built-in cond. This also prevents Racket bindings from
leaking into Python user code. For instance, the functions car and cdr will only be available
in Python if explicitly imported from Racket.

The functions and macros starting with the py- prefix are all defined on the runtime
module. The functions py-eq, py-add, and py-sub implement the semantics of the Python
operators ==, +, and -, respectively. The function py-truth takes a Python object as
argument and returns a Racket Boolean value, #t or #f, according to Python’s semantics for
Boolean values. This conversion is necessary because, in Racket, only #f is treated as false,
while, in Python, the Boolean value false, zero, the empty list and the empty dictionary,
among others, are all treated as false when used on the condition of an if, for or while

P. P. Ramos and A.M. Leitão 137

statement. Finally, py-call and py-print implement the semantics of function calling and
the print statement, respectively.

Implementing a runtime function such as py-add, with the FFI strategy, is literally
as simple as calling two functions from the foreign interface: one for getting the __add__
attribute from the first operand’s type-object and another to call it with the correct arguments.
With the Racket runtime strategy, this entails implementing the attribute referencing and
method calling semantics. Additionally, to fully cover the semantics of the plus operator,
we’ll have to implement the __add__ method for every built-in type that supports it.

The compilation process is independent of the runtime strategy used. Since literals values
are pre-computed at compile-time, the only difference in the compilation results are the
literals (using the FFI approach, the literals 0, 1, 2 and 30 would be foreign pointers to
corresponding CPython integer objects). This means that moving from the FFI to the Racket
strategy does not entail changing the compiler.

As a final remark for this example, notice that except for the added verboseness, the
original Racket code and the compiled code are essentially the same. This is relevant to
ensure that DrRacket/Rosetta users that program in Python get a coherent behaviour from
DrRacket’s step-by-step debugger.

3.4.2 Sieve of Eratosthenes
Consider now a Racket program which implements a variation of the sieve of Eratosthenes,
that counts the number of primes below a given number, as shown on listing 1. Its Python
equivalent could be implemented as presented on listing 2.

This program presents some other compilation challenges, in order to preserve Python’s
semantics for binding scopes and control flow.

First of all, in Python we can assign new local variables anywhere, as shown in line 2,
while in Racket they have to be declared, e.g., with a let form. In Python, only modules,
class definitions, function definitions and lambda define a new binding scope. Unlike such
languages as C and Java, compound statements (i.e. “blocks”) in Python do not define their
own scope. Therefore, a variable which is first assigned in a compound statement is also
visible outside of it.

This can be implemented by enclosing the body of a function definition inside a let form
containing all the referenced local variables. This way, Python assignments can be mapped
to set! forms. Global assignments follow a similar strategy: the variable is first “declared”
with a define form and then it can be set!.

Listing 1 Racket implementation for Sieve of Eratosthenes.
1 (define (sieve n)
2 (let ([primes (make-vector n #t)]
3 [counter 0])
4 (for ([i (in-range 2 n)])
5 (when (vector-ref primes i)
6 (set! counter (add1 counter))
7 (for ([j (in-range (* i i) n i)])
8 (vector-set! primes j #f))))
9 counter))

10
11 (sieve 10000000)

SLATE 2014

138 Implementing Python for DrRacket

Listing 2 Python implementation for Sieve of Eratosthenes.
1 def sieve(n):
2 primes = [True] * n
3 counter = 0
4 for i in range(2,n):
5 if primes[i]:
6 counter = counter + 1
7 for j in range(i*i, n, i):
8 primes[j] = False
9 return counter

10
11 print sieve(10000000)

As for Python’s for statements, Racket provides a for macro with similar semantics,
however Python’s for loop allows using break and continue statements to alter the control
flow inside the loop.

We implement it with our own py-for macro. It expands to a named let which updates
the control variables, evaluates the for’s body and recursively calls itself, repeating the cycle
with the next iteration. A continue statement is implemented via calling the named let
before the end of the body, thus starting a new iteration of the loop, while a break statement
is handled with escape continuations. Listing 3 shows the final program.

Listing 3 Sieve of Eratosthenes Python version implemented in Racket.
1 (define (:sieve :n)
2 (let ([:j (void)]
3 [:i (void)]
4 [:counter (void)]
5 [:primes (void)])
6 (begin
7 (set! :primes (py-mul (make-py-list :True) :n))
8 (set! :counter 0)
9 (py-for continue43341

10 [:i (py-call :range 2 :n)]
11 (cond
12 ((py-truth (py-index :primes :i))
13 (begin
14 (set! :counter (py-add :counter 1))
15 (py-for continue50281
16 [:j (py-call :range (py-mul :i :i) :n :i)]
17 (py-set-index :primes :j :False))))
18 (else py-None)))
19 :counter)))
20
21 (py-print (py-call :sieve 10000000))

3.5 Performance
In this section we discuss the performance of our implementation and we compare it to the
official Python implementation and to the semantically equivalent Racket code.

The charts on Figure 3 compare the running time of these examples for:

P. P. Ramos and A.M. Leitão 139

Figure 3 Benchmarks of the Fibonacci and Sieve of Eratosthenes examples.

Racket code running on Racket;
Python code running on CPython;
Compiled Python code running on Racket with the FFI runtime approach;
Compiled Python code running on Racket with the Racket runtime approach.

These benchmarks were performed on an Intel® Core™ i7 processor at 3.2GHz running
under Windows 7. The times below represent the minimum out of 3 samples.

It can be seen that with our first approach (runtime implemented with foreign functions
to CPython’s virtual machine), Python code running on Racket is currently about 20-30
times slower than the same Python code running on CPython. This is mainly due to the
overhead from the FFI calls, which is especially significant since simple operations like an
addition entail several FFI calls.

The times presented for this approach do not include the overhead from the finalizers,
which severely penalizes execution times. Benchmarks with these examples point to an
increase in execution times by a factor between 100% and 150%.

With our second approach (runtime implemented purely on Racket), the Fibonacci
example running on Racket is now faster than the same code running on CPython. This
can be attributed to Racket’s lighter function calls and more efficient primitive operators.
We have optimized the use of operators on commonly used types. Since most uses of the +
and - are for numbers, our implementation of these operators tests this case and dispatches
the corresponding Racket function for number addition and subtraction, instead of invoking
Python’s heavier method dispatching mechanism. This is a valid approach, because it is not
possible, in Python, to change the predefined semantics of the built-in types.

The Sieve of Eratosthenes example still runs slower than in CPython, but it’s performance
is quite acceptable for our current goals.

4 Conclusions

There is a need for an implementation of Python for the Rosetta community, and, more
specifically, for Racket users. This implementation must be able to interact with Racket
libraries and should be as close as possible to other state-of-the-art implementations in terms
of performance.

SLATE 2014

140 Implementing Python for DrRacket

Our solution follows a traditional compiler’s approach, as a pipeline of scanner, parser
and code generation. Python source-code is, thus, compiled to equivalent Racket source-code.
This Racket source-code is then handled by Racket’s bytecode compiler, JIT compiler and
interpreter.

We have presented two approaches for the runtime implementation. The first one makes
use of Racket’s Foreign Interface and the Python/C API handle Python objects in CPython’s
virtual machine. This allows our implementation to effortlessly support all of Python’s
standard library and even third-party libraries written in C. On the other hand, it suffers
from bad performance (at least one order of magnitude slower than CPython).

It is worth noting, however, that this approach can be used for quickly implementing
a runtime for other interpreted languages, provided that they have an API which allows
foreign function access to their functionality. Such languages include Ruby (using the Ruby
C API [19]), Lua (using the Lua C API [7]) and SQL (using the MySQL C API [26] or
PostgreSQL’s libpq [14]).

Implementing a language this way would just require building a parser and a compiler
which handles the program’s control flow, since the language’s data model and libraries
would be handled by the API.

Our second approach consists in implementing Python’s data model and functions in
Racket. This leads to a greater effort in order to implement all of Python’s standard library,
but allows for a better integration with Racket code, and a better performance, currently
standing at about 4 times slower than CPython.

We will be following our second approach, but we may offer support for accessing third-
party libraries and unimplemented standard library modules using the features from our first
approach.

Some of Python’s common expressions and control flow statements have been already
implemented, allowing for the successful compilation of two examples: the Fibonacci sequence
and an implementation of the sieve of Eratosthenes.

In the future, we plan on implementing the remaining Python features and work on the
integration between Python and Racket code.

Acknowledgements. This work was partially supported by Portuguese national funds
through FCT under contract Pest-OE/EEI/LA0021/2013 and by the Rosetta project under
contract PTDC/ATP-AQI/5224/2012.

References
1 David Beazley. Understanding the Python GIL. In PyCON Python Conference, Atlanta,

Georgia, 2010.
2 David M Beazley. Python Essential Reference. Addison-Wesley Professional, 2009.
3 Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shriram Krish-

namurthi, Paul Steckler, and Matthias Felleisen. DrScheme: A programming environment
for Scheme. Journal of functional programming, 12(2):159–182, 2002.

4 Robert Bruce Findler, Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi, and
Matthias Felleisen. DrScheme: A pedagogic programming environment for Scheme. In
Programming Languages: Implementations, Logics, and Programs, pages 369–388. Springer
Berlin Heidelberg, 1997.

5 Matthew Flatt and Robert Bruce Findler. The Racket Guide, 2013.
6 Jim Hugunin. IronPython: A fast Python implementation for .NET and Mono. In PyCON

2004 International Python Conference, volume 8, 2004.

P. P. Ramos and A.M. Leitão 141

7 Roberto Ierusalimschy. Programming in lua, chapter An Overview of the C API. Roberto
Ierusalimschy, 2006.

8 Ironclad – Resolver Systems. http://www.resolversystems.com/products/ironclad/.
[Online; retrieved on January 2014].

9 Josh Juneau, Jim Baker, Frank Wierzbicki, Leo Munoz Soto, and Victor Ng. The definitive
guide to Jython. Springer, 2010.

10 Differences between CPython and Jython. http://jython.sourceforge.net/archive/
21/docs/differences.html. [Online; retrieved on December 2013].

11 José Lopes and António Leitão. Portable generative design for CAD applications. In
Proceedings of the 31st annual conference of the Association for Computer Aided Design in
Architecture, pages 196–203, 2011.

12 Philippe Meunier and Daniel Silva. From Python to PLT Scheme. In Proceedings of the
Fourth Workshop on Scheme and Functional Programming, pages 24–29, 2003.

13 Microsoft Corporation. IronPython .NET Integration documentation. http://ironpython.
net/documentation/. [Online; retrieved on January 2014].

14 Bruce Momjian. PostgreSQL: introduction and concepts, chapter C Language Interface
(LIBPQ).

15 Benjamin Peterson. Pypy. The Architecture of Open Source Applications, 2:279–290.
16 PyPy compatibility. http://pypy.org/compat.html. [Online; retrieved on December

2013].
17 PyPy speed center. http://speed.pypy.org/. [Online; retrieved on December 2013].
18 Stefan Richthofer. JyNI – using native CPython-extensions in Jython. In EuroSciPi 2013,

Brussels, Belgium, 2013.
19 Muriel Salvan. The Ruby C API – basics. http://blog.x-aeon.com/2012/12/13/

the-ruby-c-api-basics/. [Online; retrieved on March 2014].
20 Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew Flatt, and Matthias

Felleisen. Languages as libraries. ACM SIGPLAN Notices, 46(6):132–141, 2011.
21 Peter Tröger. Python 2.5 virtual machine. http://www.troeger.eu/files/teaching/

pythonvm08.pdf, April 2008. [Lecture at Blekinge Institute of Technology].
22 Guido van Rossum and Fred L. Drake. Extending and embedding the Python interpreter.

Centrum voor Wiskunde en Informatica, 1995.
23 Guido van Rossum and Fred L. Drake. An introduction to Python. Network Theory Ltd.,

2003.
24 Guido van Rossum and Fred L. Drake. The Python Language Reference. Python Software

Foundation, 2010.
25 Guido van Rossum and Fred L. Drake Jr. Python/C API reference manual, chapter Thread

State and the Global Interpreter Lock. Python Software Foundation, 2002.
26 Michael Widenius and David Axmark. MySQL reference manual: documentation from the

source, chapter MySQL C API. O’Reilly Media, Inc., 2002.

SLATE 2014

http://www.resolversystems.com/products/ironclad/
http://jython.sourceforge.net/archive/21/docs/differences.html
http://jython.sourceforge.net/archive/21/docs/differences.html
http://ironpython.net/documentation/
http://ironpython.net/documentation/
http://pypy.org/compat.html
http://speed.pypy.org/
http://blog.x-aeon.com/2012/12/13/the-ruby-c-api-basics/
http://blog.x-aeon.com/2012/12/13/the-ruby-c-api-basics/
http://www.troeger.eu/files/teaching/pythonvm08.pdf
http://www.troeger.eu/files/teaching/pythonvm08.pdf

Plagiarism Detection:
A Tool Survey and Comparison
Vítor T. Martins, Daniela Fonte, Pedro Rangel Henriques, and
Daniela da Cruz

Centro de Ciências e Tecnologias da Computação (CCTC)
Departamento de Informática, Universidade do Minho
Gualtar, Portugal
{vtiagovm,danielamoraisfonte,pedrorangelhenriques,danieladacruz}@gmail.com

Abstract
We illustrate the state of the art in software plagiarism detection tools by comparing their features
and testing them against a wide range of source codes. The source codes were edited according
to several types of plagiarism to show the tools accuracy at detecting each type.

The decision to focus our research on plagiarism of programming languages is two fold: on
one hand, it is a challenging case-study since programming languages impose a structured writing
style; on the other hand, we are looking for the integration of such a tool in an Automatic-Grading
System (AGS) developed to support teachers in the context of Programming courses.

Besides the systematic characterisation of the underlying problem domain, the tools were
surveyed with the objective of identifying the most successful approach in order to design the
aimed plugin for our AGS.

1998 ACM Subject Classification I.5.4 Applications, Text processing

Keywords and phrases software, plagiarism, detection, comparison, test

Digital Object Identifier 10.4230/OASIcs.SLATE.2014.143

1 Introduction

Plagiarism is concerned with the use of work without crediting its author, including the
cases where someone uses previous code. It overrides copyrights in all the areas from arts
or literature to sciences, and it is from the old days a forensic subject. Plagiarism does not
only affect creativity or commercial businesses but also has negative effects in the academic
environment. If a student plagiarises, a teacher will be unable to properly grade his ability.

In an academic context, it is a problem that applies not only to text documents but to
source-code as well. Very often students answer the teacher assessment questions, submitting
plagiarised code. This is why teachers have a strong need to recognise plagiarism, even when
students try to dissimulate it. However, with a large number of documents, this becomes a
burdensome task that should be computer aided.

This paper is precisely concerned with this subject, discussing approaches and tools aimed
at supporting people on the detection of source code files that can be plagiarised.

Due to the complexity of the problem itself, it is often hard to create software that
accurately detects plagiarism, since there are many ways a programmer can alter a program
without changing its functionality. However, there are many programs for that purpose.

Some of them are off-line tools, like Sherlock [13, 11], YAP [22, 14, 11], Plaggie [1, 11],
SIM [10, 1, 11], Marble [11], and CPD [5] which, even though it was only made to detect
copies, is still a useful tool. There are also online tools like JPlag [16, 14, 7, 1, 11, 15] and
MOSS [17, 14, 7, 1, 11, 15], and even tool sets like CodeSuite [18].

© Vítor T. Martins, Daniela Fonte, Pedro Rangel Henriques, and Daniela da Cruz;
licensed under Creative Commons License CC-BY

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões; pp. 143–158

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2014.143
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

144 Plagiarism Detection: A Tool Survey and Comparison

The objective of this paper is to introduce and discuss existing tools in order to compare
their performance. As the tools that were analysed use distinct technological approaches, it
is important to choose the best candidate as to build the envisaged tool for our Automatic
Grading System (namely iQuimera, an AGS under construction in our research group – for
details, please see [8]) upon it.

The paper is organised in five sections. The state-of-the-art concerning source code
plagiarism detection tools is presented in Section 2. In that section, we start with some
basic concepts and we briefly discuss the major methodological approaches supporting the
tools. Then we define a criteria composed of eight characteristics that should be kept in
mind when studying each tool. This criteria enable us to create and present a comparative
table that allows a quick survey. After this, another table, comparing the performance of
the tools during the experimental study conducted, is shown and discussed presenting an
overview of the problem. Section 3 describes the experimental research done, focusing on
the source code files that were carefully prepared to test the tools exhaustively. Section 4
is devoted to the experimentation itself. For that, the tools are introduced in alphabetical
order, a short description is provided and the specific results for each test are presented in
tables. The conclusion and future work are presented in Section 5.

2 State of the Art

There are several techniques for the detection of plagiarism in source code. Their objective
is to stop unwarranted plagiarism of source code in academic and commercial environments.

If a student uses existing code, it must be in conformance with the teacher and the school
rules. The student might have to build software from the ground up, instead of using existing
source code or tools that could greatly reduce the effort required to produce it but, this will
allow a teacher to properly grade the student according to his knowledge and effort.

If a company uses existing source code, it may be breaking copyright laws and be subjected
to lawsuits because it does not have its owners consent.

This need led to the development of plagiarism detectors, this is, programs that take text
files (natural language documents, programs or program components) as input and output a
similarity measure that shows the likelihood of there being copied segments between them.
These outputs will usually come as a percentage.

2.1 Background
To understand the method used to create the tools and the offered functionality, it is necessary
to understand the basic concepts involved. The following is a list presenting relevant terms:

Token A word or group of characters, sometimes named n-gram where n denotes the number
of characters per token (as seen in [23]). Since white-spaces and newlines are usually
ignored, the input “while(true) {” could produce two 5-grams: “while(” and “true){”.

Tokenization The conversion of a natural text into a group of tokens, as defined above.
Hash A number computed from a sequence of characters, usually used to speed up comparis-

ons. For instance, if we use the ASCII1 values of each character we could turn the token
“word” into 444 (119 + 111 + 114 + 100).

Hashing The conversion of a sequence of tokens into their respective hash numbers.

1 American Standard Code for Information Interchange

V.T. Martins and D. Fonte and P. R. Henriques, and D. da Cruz 145

Fingerprint A group of characteristics that identify a program, much like physical fingerprints
are used to identify people. An example would be if we consider a fingerprint to be
composed by 3 hashes that are multiples of 4 (as seen on [23]).

Matching Algorithm The algorithm used to compare a pair of hashes, which allows the
detection of the similarity degree between them. The comparison is performed by verifying
if the fingerprints of each file are close, according to a pre-defined threshold. An example
is to use the sum of the differences (between hashes) as the matching algorithm and a
value of 10 as the threshold. In which case, taking a pair of files with the fingerprints:
[41,582,493] and [40,585,490], the program would match, as the sum of the differences is
9 (|41-40|+|582-585|+|493-490| = 1+3+3).

Structural information This is information from the structure of a programming language.
An example would be the concept of comments, conditional controls, among others.

The implementation of these concepts is always specific to each tool; since this process is
not usually explained, it can only be learnt by inspecting its source code.

2.2 Approaches
From our research, the following list was built detailing the several methodologies that were
used.

An attribute-based methodology, where metrics are computed from the source code and
used for the comparison. A simple example would be: using the size of the source code
(number of characters, words and lines) as an attribute to single out the source codes
that had a very different size. This methodology was mentioned by [20].
A token-based methodology, where the source code is tokenized and hashed, using those
hashes to create the fingerprints. This methodology was used by [21] and by [17].
A structure-based methodology, where the source code is abstracted to an Internal
intermediate Representation (IR), for example, an AST2 or a PDG3) and then this IR is
used for the comparison. This enables an accurate comparison. This methodology was
used by [2] and by [14].

These methodologies go from the least accuracy with high efficiency to the highest
accuracy with low efficiency.

Some examples of the metrics that could be used in an attribute-based methodology
would be: files size, number of variables, number of functions and number of classes, among
others. These metrics will usually be insufficient as students will usually solve the same
exercise, which would cause a lot of suspicion from the tool.

The token-based methodology came with an attempt to balance the accuracy and the
efficiency, often using RKS-GST4 [21] which is a modern string matching algorithm that uses
tokenization and hashing. To improve the results even further some tools mix some structure
dependent metrics and modifications such as removing comments (used by JPlag 4.3) or
sorting the order of the functions (used by Marble 4.4).

The structure-based approach uses abstractions that maintain the structure of the source
code. This makes the technique more dependent on the language but it will also make the
detection immune to several types of plagiarism such as, switching identifier names, switching
the positions of functions and others.

2 Abstract Syntax Tree
3 Program Dependency Graph
4 Running Karp-Rabin matching and Greedy String Tiling

SLATE 2014

146 Plagiarism Detection: A Tool Survey and Comparison

Figure 1 A timeline showing the years in which each tool was developed or referenced.

2.3 Existing Tools
We found several tools for the detection of software plagiarism throughout our research.
Some of those tools were downloaded and tested. Other tools, like Plague [19, 22, 13] and
GPlag [15, 3] were not taken into account since we could not access them.

A timeline was produced (see Figure 1), indicating the years when the tools were developed
or, at least mentioned in an article. More details about the analysed tools are presented in
Section 4.

2.3.1 Features Comparison
Inspired on [11], the following criteria were used to compare the tools:
1st) Supported languages: The languages supported by the tool.
2nd) Extendable: Whether an effort was made to make adding languages easier.
3rd) Quality of the results: If the results are descriptive enough to distinguish plagiary from

false positives.
4th) Interface: If the tool has a GUI5 or presents its results in a graphical manner.
5th) Exclusion of code: Whether the tool can ignore base code.
6th) Submission as groups of files: If the tool can consider a group of files as a submission.
7th) Local: If the tool can work without needing access to an external web service.
8th) Open source: If the source code was released under an open source license.

A table (see Table 1) was produced to report the criteria defined above. The values can
be 3(Yes), 7(No), a ? in the cases where we could not ascertain if the feature is present, or
a number in the case of supported languages.

Table 1 Comparison of the plagiarism detection tools.

Name 1 2 3 4 5 6 7 8
CodeMatch 36 7 3 3 3 7 3 7

CPD 6 3 7 3 ? ? 3 3

JPlag 6 7 3 3 3 3 7 7

Marble 5 3 3 7 3 ? 3 7

MOSS 25 7 3 3 3 3 7 7

Plaggie 1 ? ? 3 ? ? 3 3

Sherlock 1 7 7 7 7 7 3 ?
SIM 7 ? 3 7 7 7 3 ?
YAP 5 ? 3 7 3 ? 3 7

5 Graphical User Interface

V.T. Martins and D. Fonte and P. R. Henriques, and D. da Cruz 147

We can observe that both the CodeMatch and the MOSS tools support several languages,
which makes them the best choices when analysing languages that the other tools do not
support. However, others like CPD or Marble are easily extendable to cope with more
languages. Note that if the tools support natural language, they can detect plagiarism
between any text document but will not take advantage of any structural information.

Overall, we found that GUIs are unnecessary to give detailed output, so long as the tool
can produce descriptive results that indicate the exact lines of code that caused the suspicion.
This is observable with the use of Marble, SIM and YAP tools as they do not offer GUIs but
still have descriptive results. On the other hand, tools like Sherlock do not present enough
output information.

On academic environments, both the 5th and the 6th criteria are very important as they
allow teachers to filter unwanted source code from being used in the matches. This means
that tools like JPlag and MOSS allow for the proper filtering of the input source code.

As said in the introduction, the 7th criteria reveals that JPlag and MOSS are the only
tools dependent on online services as they are web tools.

In what concerns the availability of tools on open licenses, only CPD and Plaggie satisfy
that requirement. For those wanting to reuse or adapt the tools, the 7th and the 8th criteria
are important as the tool would need to have a license allowing its free use, and integration
would benefit from having the tool distributed alongside the application.

2.3.2 Results Comparison
In order to test each tool and compare the results, we needed to start from an original and
produce several files with different cases of plagiarism. To systematise the work, we felt
the need to identify different types of plagiarism. So we built the types list below based on
[13, 3, 6].

1st type of plagiarism This type of plagiarism is an exact copy of the original. It is the
simplest type of plagiarism as no modifications were done to hide it.

2nd type of plagiarism This type of plagiarism is when the comments are changed or removed.
It is the easiest modification as it has no risk of affecting the code. Note that most
plagiarism detectors either ignore comments or have an option to ignore them and will
not be diverted by this type of plagiarism. Of course, to do so the tools need the syntatic
information on how comments are defined in the language.

3rd type of plagiarism This type of plagiarism is done by changing every identifier such as
variable or function names.

4th type of plagiarism This type of plagiarism is when local variables are turned into global
ones, and vice versa.

5th type of plagiarism This type of plagiarism is when the operands in comparisons and
mathematical operations are changed (e.g. x < y to y >= x).

6th type of plagiarism This type of plagiarism is when variable types and control structures
are replaced with equivalents. Care has to be taken as to avoid breaking the code
functionality since the types will need to be converted to have the same behaviour.

7th type of plagiarism This type of plagiarism is when the order of statements (read lines)
is switched. This is a common type of plagiarism as one only needs to make sure that
the source code will keep the behaviour.

8th type of plagiarism This type of plagiarism is when groups of calls are turned into a
function call and vice versa.

SLATE 2014

148 Plagiarism Detection: A Tool Survey and Comparison

Figure 2 An overview of the results obtained.

The two types of plagiarism listed below were also referred in the cited lists. However,
we will not consider them as they depend entirely on human supervision.

Generating source-code by use of code-generating software.
Making a program from an existing program in a different language.

Figure 2 shows the results that were obtained from comparing several files (as detailed in
Section 3) and gives us an overview. The graphic gives a condensed overview of the results
achieved, where each number represents a type of plagiarism that was used on the files that
were compared. Each polygon has 5 triangles with each colour representing a tool. The
size of the triangles represents the similarity degree between the files in the X and Y axis.
While the graphic appears to be symmetric, the results for the MOSS and SIM tools are
asymmetrical in a few cases (as detailed in Section 4).

We can see that the 1st type of plagiarism (exact copy) was easily detected by all the
tools but the other types of plagiarism always had a big impact on some of the tools. Here
are the most noticeable:

MOSS has the most trouble with a lot of the types of plagiarism as it tries very hard to
avoid false-positives, thus discarding a lot of information.
Sherlock has a lot of trouble with the 2nd type of plagiarism (comments changed) as it
compares the entire source codes without ignoring the comments.
CodeMatch has the most trouble with the 3rd type of plagiarism (identifiers changed) as
its algorithms must make some sort of match between identifiers.

We can see that most tools have a hard time when comparing from the 6th to the 8th
types of plagiarism as they had a lot of small changes or movements of several blocks of
source code. These are the types of plagiarism that would be best detected with the use of
a structural methodology as, despite those changes to the structure, the context remains
intact.

V.T. Martins and D. Fonte and P. R. Henriques, and D. da Cruz 149

We can conclude that every tool has a weakness when it comes to certain types of
plagiarism but notice that none of the results are 0%, the triangle representing the match is
just so small that it is easy to miss. We also confirm that no type of plagiarism can fool all
the tools at the same time.

3 Strategy for Testing the Tools

To demonstrate the accuracy of the existing tools detecting the different cases of plagiarism,
two sample programs were collected and edited based on the types of plagiarism listed above.
As the selected tools are prepared to work with Java or C programs, the exercises were
written in both languages.

The following list of actions were performed to create the eight variants.
to produce the first case, it is a straightforward file copy operation.
to apply the second strategy, we simply removed the comments or changed their contents.
to create a third variant, we changed most variable and function identifiers into reasonable
replacements.
to produce a copy of the forth type, we moved a group of local variables into a global
scope and removed them from the function arguments. The type declaration was removed
but the initialisation was kept.
to obtain a file for the fifth type, we switched the orders of several comparisons and
attributions. For example, we replaced x+ = y − 5 by x+ = −5 + y.
to get a file for the sixth type, we replaced variable types such as int and char with float
and string, along with the necessary modifications to have them work the same way.
to create another copy according to the seventh type, we moved several statements, even
some which broke the behaviour (write after read) to consider cases were the plagiarist
was not careful.
to produce a file exhibiting the eighth type, we applied this type of plagiarism in the easy
(move entire functions) and the hard (move specific blocks of code in to a function) ways.

3.1 Source Code used in the Tests
In this subsection we give a brief description about the two sets of source files used in the
tests. Each set includes both the original source file and 8 variants, where each one had a
different type of plagiarism applied to it, according to the list above (see Section 2.3.2).

As all the files are based on the same original, from a theoretical point of view, every test
should return a match of 100%.

Source code samples were written in both Java and C languages. As the samples are
crucial for the assessment performed, we would like to show them here. Due to space
limitations, it is impossible to include the original programs here (or their variants); so, we
decided to make them available online, and just include in the paper a description of their
objective and size.

3.1.1 Program 1: Calculator
The first set is based on a program which goal is to implement a simple calculator with the
basic operations (addition, subtraction, division and multiplication) and a textual interface.

Only the Java version of the file was used to produce the results presented. The following
metrics characterise the original file:

SLATE 2014

150 Plagiarism Detection: A Tool Survey and Comparison

Number of lines: 56
Number of functions: 1
Number of variables: 4

The Java source code files are available online at
https://tinyurl.com/dopisiae/slate/source/calc_java.zip,
as well as the C source code files, at
https://tinyurl.com/dopisiae/slate/source/calc_c.zip.

3.1.2 Program 2: 21 Matches

The objective was to make an interactive implementation of the 21 matches game where,
starting with 21 matches, each player takes 1 to 4 matches until there are no more. The one
getting the last match will lose the game. The game can be played against another player or
against the computer.

Only the C version of the file was used to produce the results presented. The following
metrics characterise the original file:

Number of lines: 189
Number of functions: 4
Number of variables: 8

The C source code files are available online at
https://tinyurl.com/dopisiae/slate/source/21m_c.zip,
as well as the Java source code files, at
https://tinyurl.com/dopisiae/slate/source/21m_java.zip.

4 Tool Details and Test Results

Along Section 2, nine tools were identified (and ordered in a timeline) and they were
compared: CodeMatch, CPD, JPlag, Marble, MOSS, Plaggie, Sherlock, SIM, and YAP.
Aiming at providing a deeper knowledge about the tools explored, in this section they will be
introduced with some more detail and the output they produced when experimented against
the two test sets will be shown.

As described in SubSection 2.3.2, 8 types of plagiarism were considered. Two test sets
were created containing an original program file and 8 variant files, modified according to
the type of plagiarism.

We have produced tables from the results of each tool when matching each of the files
with the other 8. This gives us a look at the accuracy of their metrics for each type of
plagiarism. As stated earlier, from a theoretical point of view every test should return a
match of 100% so, the higher the results the higher the tools accuracy.

Note that, due to the 16 page constraint, we only show the full result tables for the
CodeMatch tool and trimmed the remaining result tables to their first line.

To compare the results pertaining to tables of the same tool, we used the following
algorithm: Given two tables, we subtract each value in the second table with the value in
the first table and add their results. As an example, consider the tables [4,3] and [2,1]. In
this case the formula is: (2-4)+(1-3), which is equal to -4. This allows us to see whether the
results increased or decreased from the first table to the second. We will refer to this metric
as the difference metric (DM). If there are several lines of results, we will use the average
which is calculated by dividing the sum of every line DM by the number of lines.

https://tinyurl.com/dopisiae/slate/source/calc_java.zip
https://tinyurl.com/dopisiae/slate/source/calc_c.zip
https://tinyurl.com/dopisiae/slate/source/21m_c.zip
https://tinyurl.com/dopisiae/slate/source/21m_java.zip

V.T. Martins and D. Fonte and P. R. Henriques, and D. da Cruz 151

Table 2 The results produced the CodeMatch tool for the Calculator set.

0 1 2 3 4 5 6 7 8
0 100 100 95 70 95 95 76 90 86
1 100 100 95 70 95 95 76 90 86
2 95 95 100 63 90 90 69 84 80
3 70 70 63 100 70 70 63 70 67
4 95 95 90 70 100 91 75 89 85
5 95 95 90 70 91 100 72 84 86
6 76 76 69 63 75 72 100 76 71
7 90 90 84 70 89 84 76 100 82
8 86 86 60 67 85 86 71 82 100

Note that, the DMs we show are from the full results. You can find all the results as
well as the DM calculations on the following link: https://tinyurl.com/dopisiae/slate/
index.html.

Since most tools only give a metric for each pair of files, most tables are symmetrical.
For the asymmetrical tables, the percentage must be read as the percentage of the line file
that matches the column file.

4.1 CodeMatch

CodeMatch [11] is a part of CodeSuite [18] and detects plagiarism in source code by using
algorithms to match statements, strings, instruction sequences and identifiers. CodeSuite is
a commercial tool that was made by SAFE6, which is housed at http://www.safe-corp.
biz/index.htm. It features several tools to measure and analyse source or executable code.

This tool is only available as an executable file (binary file) and only runs under Windows.
CodeMatch supports the following languages: ABAP, ASM-6502, ASM-65C02, ASM-

65816, ASM-M68k, BASIC, C, C++, C#, COBOL, Delphi, Flash ActionScript, Fortran,
FoxPro, Go, Java, JavaScript, LISP, LotusScript, MASM, MATLAB, Pascal, Perl, PHP,
PL/M, PowerBuilder, Prolog, Python, RealBasic, Ruby, Scala, SQL, TCL, Verilog, VHDL
and Visual Basic.

4.1.1 Results for the Calculator Code

CodeMatch returned good results (see Table 2) for the Calculator, Java source codes (see
Section 3.1.1). Note that the files were compared with themselves since CodeMatch compares
the files in two folders and the same folder was used. This is a moot point as those cases got
100% matches.

4.1.2 Results for the 21 Matches Code

The results (see Table 3) for the 21 Matches source code were similar to the previous (DM=-
15.56), except for the 3rd type of plagiarism (Identifiers changed). This is probably due to
the fact that the 21 Matches source codes have more identifiers than the Calculator ones.

6 Software Analysis and Forensic Engineering

SLATE 2014

https://tinyurl.com/dopisiae/slate/index.html
https://tinyurl.com/dopisiae/slate/index.html
http://www.safe-corp.biz/index.htm
http://www.safe-corp.biz/index.htm

152 Plagiarism Detection: A Tool Survey and Comparison

Table 3 The results produced by CodeMatch tool for the 21 Matches Code.

0 1 2 3 4 5 6 7 8
0 100 100 100 54 90 96 78 87 87
1 100 100 100 54 90 96 78 87 87
2 100 100 100 57 90 96 76 87 87
3 54 54 57 100 54 54 52 54 53
4 90 90 90 54 100 86 78 85 86
5 96 96 96 54 86 100 75 84 84
6 78 78 76 52 78 75 100 77 77
7 87 87 87 54 85 84 77 100 85
8 87 87 87 53 86 84 77 85 100

Table 4 The results produced by JPlag tool for the Calculator Code.

1 2 3 4 5 6 7 8
0 100 100 100 84.7 100 40.4 43.4 39.6

4.2 CPD

CPD [5] is a similarity detector that is part of PMD, a source code analyser that finds
inefficient or redundant code, and is housed at http://pmd.sourceforge.net/. It uses the
RKS-GST algorithm to find similar code.

It supports the following languages: C, C++, C#, Java, Ecmascript, Fortran, Java, JSP,
PHP and Ruby.

Since CPD only returns detailed results without a match percentage metric, we could not
produce the tables.

4.3 JPlag

JPlag [16, 14, 7, 1, 11, 15] takes the language structure into consideration, as opposed to
just comparing the bytes in the files. This makes it good for detecting plagiarism despite the
attempts of disguising it.

It supports the following languages: C, C++, C#, Java, Scheme and Natural language.
JPlag gives us results organised by the average and maximum similarities, without

repeated values. It produces an HTML file presenting the result and allows the user to view
the detailed comparison of what code is suspected to be plagiarism.

4.3.1 Results for the Calculator Code

As we can see (in Table 4), the results were good since there where a lot of exact matches
(100%), showing that JPlag was impervious to several types of plagiarism.

4.3.2 Results for the 21 Matches Code

JPlag was better (DM=114.49) at detecting the plagiarism for this set of source codes since
the results (see Table 5) are similar in relation to the exact matches and got better matches
on the harder cases like the 6th, 7th and 8th types of plagiarism.

http://pmd.sourceforge.net/

V.T. Martins and D. Fonte and P. R. Henriques, and D. da Cruz 153

Table 5 The results produced by JPlag tool for the 21 Matches Code.

1 2 3 4 5 6 7 8
0 100 100 100 93.7 100 62.8 70.5 75.6

Table 6 The results produced by Marble tool for the Calculator Code.

1 2 3 4 5 6 7 8
0 100 U 100 U 100 U 94 U 100 S 77 S 81 S 66 U

4.4 Marble

Marble [11], which is described in http://www.cs.uu.nl/research/techreps/aut/jur.
html, facilitates the addition of languages by using code normalisers to make tokens that are
independent of the language. A RKS-GST algorithm is then used to detect similarity among
those tokens.

It supports the following languages: Java, C#, Perl, PHP and XSLT.
The results are presented through a suspects.nf file which has several lines in the following

structure: “echo M1 S1 S2 M2 U/S && edit File 1 && edit File 2”. The M1 and M2
values indicate the match percentages, S1 and S2 give us the size of the matches and the
U/S flag indicates if the largest percentage was found before (U) or after (S) ordering the
methods.

Note that only the Calculator results are available since Marble does not support the C
language.

4.4.1 Results for the Calculator Code

As expected, a few source codes accuse the movement of methods (have an S flag). This
is verified in the 5th, 6th and 7th types of plagiarism that had operations, variables and
statements moved, respectively.

4.5 MOSS

MOSS [17, 14, 7, 1, 11, 15] automatically detects similarity between programs with a main
focus on detecting plagiarism in several languages that are used in programming classes. It
is provided as an Internet service that presents the results in HTML pages, reporting the
similarities found, as well as the code responsible. It can ignore base code that was provided
to the students and focuses on discarding information while retaining the critical parts, in
order to avoid false positives.

It supports the following languages: A8086 Assembly, Ada, C, C++, C#, Fortran, Haskell,
HCL2, Java, Javascript, Lisp, Matlab, ML, MIPS Assembly, Modula2, Pascal, Perl, Python,
Scheme, Spice, TCL, Verilog, VHDL and Visual Basic.

This tool gives us the number of lines matching between each pair of files and calculates
the match percentages by dividing it by the number of lines in the file. The algorithms used
were made to avoid false positives at the cost of getting lower percentages.

Its HTML interface was produced by the author of JPlag (Guido Malpohl) and, the
results come in both an overview and detailed forms.

SLATE 2014

http://www.cs.uu.nl/research/techreps/aut/jur.html
http://www.cs.uu.nl/research/techreps/aut/jur.html

154 Plagiarism Detection: A Tool Survey and Comparison

Table 7 The results produced by MOSS tool for the Calculator Code.

1 2 3 4 5 6 7 8
0 99 99 99 85 99 30 55 36

Table 8 The results produced by MOSS tool for the 21 Matches Code.

1 2 3 4 5 6 7 8
0 99 99 99 94 67 44 45 67

4.5.1 Results for the Calculator Code
As we can see in Table 7, the results are reasonable but the strategies used to avoid false
positives decreased the matches (ex.: 100% to 99%). We can also notice that some types of
plagiarism, namely the 6th, 7th and 8th had low matches due to their high complexity.

4.5.2 Results for the 21 Matches Code
As expected the increase in the size of the source codes translated into the variance of the
results (see Table 8) albeit the increases (DM=4.67) were rather small when compared to
other tools.

4.6 Plaggie
Plaggie [1, 11], which is housed at http://www.cs.hut.fi/Software/Plaggie/, detects
plagiarism in Java programming exercises. It was made for an academic environment where
there is a need to ignore base code. It only supports the Java language. As we were unable
to compile the tool, we can not present its results.

4.7 Sherlock
Sherlock [13, 11], which is housed at http://sydney.edu.au/engineering/it/~scilect/
sherlock/, detects plagiarism in documents through the comparison of fingerprints which,
as stated in the website, are a sequence of digital signatures. Those digital signatures are
simply a hash of (3, by default) words.

It allows for control over the threshold which hides the percentages with lower values, the
number of words per digital signature and the granularity of the comparison by use of the
respective arguments: -t, -n and -z. It supports the following language: Natural language.

Sherlock is an interesting case as its results are a list of sentences in a “File 1 and File 2 :
Match%” format. This format does not help the user find the highest matches, it simply
makes the results easier to post-process. Results were produced with all the combinations of
the settings from -n 1 to 4 and -z 0 to 5.

4.7.1 Results for the Calculator Code
With the default settings (equivalent to -n 3 -z 4), we can see that some of the results
(see Table 9) are good, mainly for the 1st (Unaltered copy), 4th (Scope changed) and
7th (Statements order switched) types of plagiarism. Seeing as Sherlock matches natural
language, the similarity values will subside due to textual changes and be mostly unaffected
by movements.

http://www.cs.hut.fi/Software/Plaggie/
http://sydney.edu.au/engineering/it/~scilect/sherlock/
http://sydney.edu.au/engineering/it/~scilect/sherlock/

V.T. Martins and D. Fonte and P. R. Henriques, and D. da Cruz 155

Table 9 The results produced by Sherlock tool for the Calculator Code.

1 2 3 4 5 6 7 8
0 100 62 44 100 62 25 100 45

Table 10 The results produced by Sherlock tool for the Calculator code with the -n 2 argument.

1 2 3 4 5 6 7 8
0 100 55 72 100 100 72 100 80

To demonstrate the effect of tweaking the -n and -z parameters, two more tables, Tables
10 and 11, are presented exhibiting the results of Sherlock when invoked with the arguments
“-n 2” and “-z 3” respectively.

Table 10 shows us that using the -n parameter can greatly improve (DM=198.78) the
results. This argument changes the number of words per digital signatures, Meaning that
with a smaller value, Sherlock will find plagiarism in smaller sections of source code. This
translates into better matches in small changes and source code movements, but worse
matches on longer modifications (as seen for the 2nd type of plagiarism).

The -z argument changes Sherlocks “granularity,” a parameter that serves to discard
part of the hash values. As seen on Table 11, Sherlock was more sensitive to changes which
resulted in an overall decrease (DM=-36).

Overall, we can see that Sherlock is a very specific tool and that further studies would
have to be made in order to ascertain the adequate parameters to use for specific situations.

4.7.2 Results for the 21 Matches Code

For the 21 Matches source codes, the results (see Table 12) seem more accurate (DM=146.44)
than the results for the Calculator source codes (see Table 9). This was likely due to the
increased size of the source codes.

4.8 SIM

SIM [10, 1, 11], which is housed at http://dickgrune.com/Programs/similarity_tester/,
is an efficient plagiarism detection tool which has a command line interface, like the Sherlock
tool. It uses a custom algorithm to find the longest common sub-string, which is order-
insensitive.

It supports the following languages: C, Java, Pascal, Modula-2, Lisp, Miranda and
Natural language.

SIM is an interesting tool. Despite not having a GUI, its results are quite detailed. The
-P argument can be used to report the results in a “File 1 consists for Match% of File 2
material” format, giving a quick rundown of the results. It has a few arguments that change
its behaviour; however, unlike Sherlock, its default values seem to work well for most cases
of plagiary.

4.8.1 Results for the Calculator Code

This tool is quite good with results showing exact matches for most types of plagiarism.

SLATE 2014

http://dickgrune.com/Programs/similarity_tester/

156 Plagiarism Detection: A Tool Survey and Comparison

Table 11 The results produced by Sherlock tool for the Calculator source code with the -z 3
argument.

1 2 3 4 5 6 7 8
0 100 31 41 88 76 42 88 41

Table 12 The results produced by Sherlock tool for the 21 Matches Code.

1 2 3 4 5 6 7 8
0 97 32 62 90 85 89 93 88

4.8.2 Results for the 21 Matches Code
On Table 14, we can see that it was harder to detect plagiarism in bigger source codes
(DM=-120.33), although it was beneficial in a specific case, the 4th type of plagiarism.

4.9 YAP
YAP7 [22, 14, 11], which is housed at http://www.pam1.bcs.uwa.edu.au/~michaelw/YAP.
html, is a tool that currently has 3 implementations, each using a fingerprinting methodology
with different algorithms. The implementations have a tokenizing and a similarity checking
phase and just change the second phase. The tool itself is an extension of Plague.
YAP1 The initial implementation was done as a Bourne-shell script and uses a lot of shell

utilities such as diff, thus being inefficient. It was presented by Wise [20].
YAP2 The second implementation was made as a Perl script and uses an external C

implementation of the Heckel [12] algorithm.
YAP3 The third and latest iteration uses the RKS-GST methodology.

The tools themselves are separate from the tokenizers but packaged together. These tools
are said to be viable at the detection of plagiarism on natural language, aside from their
supported languages.

It supports the following languages: Pascal, C and LISP.
We were unable to produce understandable results.

5 Conclusions

In this paper, plagiarism in software was introduced and characterised. Our purpose is to
build a tool that will detect source code plagiarism in academic environments, having in mind
that detecting every case is implausible. We hope that it will be able to produce accurate
results when faced with complex types of plagiarism, like switching statements and changing
variable types, and will be immune to the simpler types of plagiarism, such as modifying
comments and switching identifier names. One of the most difficult and challenging problem
in this context is the ability to distinguish between plagiarism and coincidence and we are
aware of the danger of false positives [4, 9]. However this is a topic that deserves further
investigation. To plan and support our working decisions, we devoted some months to the
research of the existing methodologies and tools, as related in this paper. The comparative
study involving nine tools that were available for download and were ready to run, gave us

7 Yet Another Plague

http://www.pam1.bcs.uwa.edu.au/~michaelw/YAP.html
http://www.pam1.bcs.uwa.edu.au/~michaelw/YAP.html

V.T. Martins and D. Fonte and P. R. Henriques, and D. da Cruz 157

Table 13 The results produced by SIM tool for the Calculator Code.

1 2 3 4 5 6 7 8
0 100 100 100 44 100 91 99 100

Table 14 The results produced by SIM tool for the 21 Matches Code.

1 2 3 4 5 6 7 8
0 100 100 100 97 72 75 75 88

the motivation to build a tool that adopts a structure based methodology with the AST as
the abstract structure. Although the existing tools do not detect accurately all the types of
plagiary identified, we found that most of them were easy to use with their default options
but Marble and YAP have special file structure requirements and Plaggie has to be compiled.
We found JPlags interface to be intuitive and offering a wide variety of options but, as it
is not local, we recommend SIM as a viable alternative. We would like to point out that
CodeSuite package offers a good number of tools for the detection of source code theft.
The next task will be to develop the prototype tool based on the chosen methodology, and
perform its evaluation in real case studies.

Acknowledgements. We give thanks to Dr. Jurriaan Hage for the copy of the Marble tool
and Bob Zeidman for the CodeSuite licenses.

This work is funded by National Funds through the FCT – Fundação para a Ciência
e a Tecnologia (Portuguese Foundation for Science and Technology) within project PEst-
OE/EEI/UI0752/2014.

References
1 Aleksi Ahtiainen, Sami Surakka, and Mikko Rahikainen. Plaggie: GNU-licensed source

code plagiarism detection engine for Java exercises. In Proceedings of 6th Koli Calling
Intern. Conference on Comp. Ed. Research, pages 141–142, New York, USA, 2006. ACM.

2 I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection using abstract
syntax trees. In Proceedings of IEEE ICSM 1998, pages 368–377, 1998.

3 Andrés M. Bejarano, Lucy E. García, and Eduardo E. Zurek. Detection of source code
similitude in academic environments. Computer Applic. in Engineering Education, 2013.

4 Miranda Chong and Lucia Specia. Linguistic and statistical traits characterising plagiarism.
In COLING 2012, pages 195–204, 2012.

5 Tom Copeland. Detecting duplicate code with PMD’s CPD, 2003.
6 G. Cosma and M. Joy. Towards a definition of source-code plagiarism. IEEE Trans. on

Educ., 51(2):195–200, May 2008.
7 Baojiang Cui, Jiansong Li, Tao Guo, Jianxin Wang, and Ding Ma. Code comparison system

based on abstract syntax tree. In 3rd IEEE IC-BNMT, pages 668–673, 2010.
8 Daniela Fonte, Ismael Vilas Boas, Daniela da Cruz, Alda Lopes Gançarski, and Pedro Ran-

gel Henriques. Program Analysis and Evaluation using Quimera. In ICEIS’2012, pages
209–219. INSTICC, June 2012.

9 Cristian Grozea and Marius Popescu. Who’s the thief? automatic detection of the direction
of plagiarism. In In CICLing, pages 700–710, 2010.

10 Dick Grune and Matty Huntjens. Het detecteren van kopieën bij informatica-practica.
Informatie, 31(11):864–867, 1989.

SLATE 2014

158 Plagiarism Detection: A Tool Survey and Comparison

11 Jurriaan Hage, Peter Rademaker, and Nike van Vugt. A comparison of plagiarism detection
tools. Utrecht University. Utrecht, The Netherlands, page 28, 2010.

12 Paul Heckel. A technique for isolating differences between files. Communications of the
ACM, 21(4):264–268, 1978.

13 Mike Joy and Michael Luck. Plagiarism in programming assignments. IEEE Trans. on
Educ., 42(2):129–133, May 1999.

14 Xiao Li and Xiao Jing Zhong. The source code plagiarism detection using AST. In Inter-
national Symposium IPTC, pages 406–408, 2010.

15 Chao Liu, Chen Chen, Jiawei Han, and Philip S. Yu. GPLAG: Detection of software plagi-
arism by program dependence graph analysis. In Proceedings of the 12th ACM SIGKDD’06,
pages 872–881. ACM Press, 2006.

16 Lutz Prechelt, Guido Malpohl, and Michael Phlippsen. JPlag: Finding plagiarisms among
a set of programs. Technical report, Fakultät für Informatik, Universität Karlsruhe, 2000.

17 Saul Schleimer. Winnowing: Local algorithms for document fingerprinting. In Proceedings
of the 2003 ACM SIGMOD, pages 76–85. ACM Press, 2003.

18 Ilana Shay, Nikolaus Baer, and Robert Zeidman. Measuring whitespace patterns as an
indication of plagiarism. In Proceedings of the ADFSL Conference, pages 63–72, 2010.

19 Geoff Whale. Software metrics and plagiarism detection. Journal of Systems and Software,
13(2):131–138, 1990. Special Issue on Using Software Metrics.

20 Michael J. Wise. Detection of similarities in student programs: YAP’ing may be preferable
to plague’ing. In ACM SIGCSE Bulletin, volume 24, pages 268–271. ACM, 1992.

21 Michael J. Wise. Running Karp-Rabin matching and greedy string tiling. Basser Dept. of
Computer Science, University of Sydney, Sydney, 1993.

22 Michael J. Wise. YAP3: Improved detection of similarities in computer program and other
texts. In SIGCSEB: SIGCSE Bulletin, pages 130–134. ACM Press, 1996.

23 Robert M. Zeidman. Software tool for detecting plagiarism in computer source code, 2003.

Target Code Selection by Tilling AST with the
Use of Tree Pattern Pushdown Automaton
Jan Janoušek and Jaroslav Málek

Department of Theoretical Computer Science
Faculty of Information Technologies
Czech Technical University in Prague
Technická 9, 160 00 Prague 6, Czech Republic
Jan.Janousek@fit.cvut.cz

Abstract
A new and simple method for target code selection by tilling an abstract syntax tree is presented.
As it is usual, tree patterns corresponding to target machine instructions are matched in the
abstract syntax tree. Matching tree patterns is performed with the use of tree pattern pushdown
automaton, which accepts all tree patterns matching the abstract syntax tree in the linear postfix
bar notation and represents a full index of the abstract syntax tree for tree patterns. The use
of the index allows to match patterns quickly, in time depending on the size of patterns and not
depending on the size of the tree. The selection of a particular target instruction corresponds to
a modification of the abstract syntax tree and also a corresponding incremental modification of
the index is performed. A reference to a fully functional prototype is provided.

1998 ACM Subject Classification D.3.4 Processors: Software, Programming languages, Code
Generation, Compilers

Keywords and phrases code generation, abstract syntax tree, indexing, tree pattern matching,
pushdown automata

Digital Object Identifier 10.4230/OASIcs.SLATE.2014.159

1 Introduction

A compiler backend transforms an intermediate code representation (IR), which is produced
by a compiler frontend, to a target code [1]. One of the most used type of the IR is an abstract
syntax tree (AST). The task of the target code selection from the AST can be performed by
tilling the AST by tree patterns that correspond to target machine code instructions. This
task is usually ambiguous and therefore often the best possible such tilling is to be found.
For this reason a cost function of the particular machine code instructions is used so that
the tilling with a minimal overall cost would be computed.

During the tilling of the AST tree pattern matching methods are used. For many linear
notations of trees it holds that the linear notation of a subtree is a substring of the linear
notation of the tree [12]. A tree pattern is a tree whose leaves can be labelled by a special
symbol S, which serves as a placeholder for any subtree. A tree pattern in a linear notation
corresponds to a substring of the linear notation of the tree, where the symbols S are replaced
with the linear notations of subtrees. Therefore, tree pattern matching is analogous to the
problem of matching patterns with specific gaps. See [2, 3, 8, 9, 12] for the basic tree pattern
matching methods.

Since the problem of tilling the AST is generally ambiguous and NP-hard, many heuristics
and methods are used for a “good” selection of particular instructions. Some of the methods
perform one pass of the AST, some others perform more passes of the AST. From another

© Jan Janoušek and Jaroslav Málek;
licensed under Creative Commons License CC-BY

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões; pp. 159–165

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2014.159
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

160 Target Code Selection by Tilling AST using Tree Pattern Pushdown Automaton

point of view, various models of computation are used for the description of target code
selection methods. A code selection method based on deterministic finite tree automata can
be found in [4], where the cost function is computed by an additional semantic evaluation.
On the other hand, [7, 10, 13] describe the code selection methods based on deterministic
pushdown automata performing the tree pattern matching, where the tree patterns are
represented by rules of a context-free grammar, and in this way generally ambiguous and
non-LR(0) context-free grammars are created. Consequently, the LR(0) parsers for those
grammars contain conflicts. In [7] these conflicts are resolved by some heuristics; in [10, 13] a
special construction of a deterministic parser is used, which corresponds to a determinization
of the above–mentioned LR(0) parser with the conflicts. We mention also a family of tools
BURG, IBURG, etc. (see [5, 6] for example), which use another model of computation,
so-called tree rewriting systems, for the tree pattern matching in the code selection problem.

In this paper a new and simple method for target code selection by tilling an abstract
syntax tree is presented. As it is usual, tree patterns corresponding to target machine
instructions are matched in the AST. Matching tree patterns is performed with the use of
tree pattern pushdown automaton, which accepts all tree patterns matching the abstract
syntax tree in the linear bar postfix notation and represents a full index of the abstract
syntax tree for tree patterns. Tree pattern pushdown automaton is described in details in
[12]. The use of the index allows to match patterns quickly, in time depending on the size
of patterns and not depending on the size of the tree. The selection of a particular target
instruction corresponds to a modification of the AST and also a corresponding incremental
modification of the tree pattern pushdown automaton is performed. Given an AST of size
n, the number of distinct tree patterns which match the AST is O(2n). For the sake of a
better space complexity we use the nondeterministic version of the tree pattern pushdown
automata. This is feasible and reasonable because tree patterns that correspond to target
instructions are not typically large, and the space complexity of the nondeterministic tree
pattern pushdown automaton is O(n). Experimental results of a fully functional prototype
can be found in [11].

The new contributions of this paper are:

The incremental modification of the tree pattern pushdown automaton for a specific
modification of the AST.
A simple use of the tree pattern pushdown automaton for the selection of target code,
using modification mentioned in the previous item.

The rest of the paper is organised as follows. The tree pattern pushdown automaton,
which is constructed for the AST, and its incremental modification are described in the
second section. The third section describes the selection of a target instruction by tilling the
AST. Experimental results of a fully functional prototype are presented in the fourth section.
The last section is the conclusion.

2 Tree Pattern Pushdown Automaton and its Incremental
Modification

Tree pattern pushdown automaton and its modification are demonstrated on a running
example. Fig. 1 shows a tree t1. Its linear postfix bar notation [12], for which the automaton
is constructed, is bar(t1) = [[a[[b[aab. The nondeterministic tree pattern pushdown automaton
is illustrated in Fig. 2. This automaton accepts all tree patterns which match the tree in the
postfix bar notation. In all figures of pushdown automata in this paper, the edges, which

J. Janoušek and J. Málek 161

b

a a

b a

Figure 1 Tree t1.

Figure 2 Tree pattern pushdown automaton for tree t1.

represent transitions, are labelled only by an input symbol that is read by the transition and
the pushdown operations are not illustrated. The pushdown operations ensure that a correct
(sub)tree is processed in its linear notation. The automaton is input-driven, which means
that each pushdown operation is unambiguously given by the input symbol. In our case,
reading bar symbol [pushes one symbol onto the pushdown store, whereas reading other
symbols pops one symbol from the pushdown store [12].

An example of tilling the AST by tree pattern [[b[aa in the postfix bar notation with a
modification to tree pattern [[ed in the postfix bar notation is demonstrated in Figs. 3, 4 and
5. The formal algorithm of this modification can be found in [11].

3 Target Code Selection by Tilling AST

As it is mentioned in the Introduction, the tilling AST by target instructions is an ambiguous
problem in general. The tree pattern pushdown automaton is used for computing a set of
possible instructions that can be selected. In [11] the instructions that are selected are simply
fixed from the set of all possibilities according to a cost function. We note that also other
heuristics for the selection from the set of possibilities can be considered.

Fig. 6 shows the AST for statement x[3] = temp*(temp+10).
The AST in Fig. 7 is after the selection the instruction store. The tree pattern pushdown

automaton is modified accordingly.
The AST in Fig. 8 is after the selection the instruction add. The tree pattern pushdown

automaton is modified accordingly.
The next instruction to be selected is load, which occurs twice in the AST. Both

occurrences are selected and the result is shown in Fig. 9.
The tilled AST is illustrated in Fig. 10. The tilling generates the following sequence of

instructions:

SLATE 2014

162 Target Code Selection by Tilling AST using Tree Pattern Pushdown Automaton

Figure 3 The selection of tree pattern with the modification of the AST and the corresponding
part of the pushdown automaton.

Figure 4 Part of the pushdown automaton to be modified.

Figure 5 The resulting pushdown automaton after the modification.

Figure 6 AST for statement x[3] = temp*(temp+10).

J. Janoušek and J. Málek 163

Figure 7 Tilling by tree pattern for instruction store.

Figure 8 Tilling by tree pattern for instruction add.

SLATE 2014

164 Target Code Selection by Tilling AST using Tree Pattern Pushdown Automaton

Figure 9 Tilling by tree pattern for instruction load.

Figure 10 Tilled AST.

J. Janoušek and J. Málek 165

ld %rd, $addr
ld %rd, *$addr
ld %rd, *$addr
add %rd, %rs1, #const
mult %rd, %rs1, %rs2
st #const(%ra), %rs

4 Conclusion

A new and simple method of the code generation by tilling the AST with the use and
incremental modification of the tree pattern pushdown automaton, which represents a full
index of the AST for tree patterns, has been presented. More details, a prototype and its
experimental results can be found in [11].

Acknowledgments. This work was partially supported by GAČR Grant No. GA13–03253S.

References
1 Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princi-

ples, Techniques, and Tools (2Nd Edition). Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2006.

2 P. Bille. Pattern Matching in Trees and Strings. PhD thesis, FIT University of Copenhagen,
Copenhagen, 2008.

3 David R. Chase. An improvement to bottom-up tree pattern matching. In ACM Symp.
POPL, pages 168–177, 1987.

4 Christian Ferdinand, Helmut Seidl, and Reinhard Wilhelm. Tree automata for code selec-
tion. Acta Inf., 31(8):741–760, 1994.

5 Christopher W. Fraser, David R. Hanson, and Todd A. Proebsting. Engineering a simple,
efficient code-generator generator. LOPLAS, 1(3):213–226, 1992.

6 Christopher W. Fraser, Robert R. Henry, and Todd A. Proebsting. Burg: fast optimal
instruction selection and tree parsing. SIGPLAN Notices, 27(4):68–76, 1992.

7 R. Steven Glanville and Susan L. Graham. A new method for compiler code generation. In
POPL, pages 231–240, 1978.

8 Christoph M. Hoffmann and Michael J. O’Donnell. Pattern matching in trees. J. ACM,
29(1):68–95, 1982.

9 Jan Lahoda and Jan Žďárek. Simple tree pattern matching for trees in the prefix bar
notation. Discrete Applied Mathematics, 163, Part 3:343–351, January 2014.

10 Maya Madhavan, Priti Shankar, Siddhartha Rai, and U. Ramakrishna. Extending graham-
glanville techniques for optimal code generation. ACM Trans. Program. Lang. Syst.,
22(6):973–1001, 2000.

11 J. Málek. Code generation with the use of an index of ast. FIT, Czech Technical University
in Prague, MSc thesis, In Czech, 2014.

12 Bořivoj Melichar, Jan Janoušek, and Tomáš Flouri. Arbology: trees and pushdown au-
tomata. Kybernetika, 48, No.3:402–428, 2012.

13 Priti Shankar, Amitrajan Gantait, A.R. Yuvaraj, and Maya Madhavan. A new algorithm
for linear regular tree pattern matching. Theor. Comput. Sci., 242(1-2):125–142, 2000.

SLATE 2014

Part V

Semantics in

Natural Language Processing

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Assigning Polarity Automatically to the Synsets of
a Wordnet-like Resource
Hugo Gonçalo Oliveira1, António Paulo Santos2, and Paulo Gomes3

1 CISUC, Department of Informatics Engineering
University of Coimbra, Portugal
hroliv@dei.uc.pt

2 GECAD, Institute of Engineering
Polytechnic of Porto, Portugal
pgsa@isep.ipp.pt

3 CISUC, Department of Informatics Engineering
University of Coimbra, Portugal
pgomes@dei.uc.pt

Abstract
This article describes work towards the automatic creation of a conceptual polarity lexicon for
Portuguese. For this purpose, we take advantage of a polarity lexicon based on single lemmas
to assign polarities to the synsets of a wordnet-like resource. We assume that each synset has
the polarity of the majority of its lemmas, given by the initial lexicon. After that, polarity is
propagated to other synsets, through different types of semantic relations. The relation types
used were selected after manual evaluation. The main result of this work is a lexicon with more
than 10,000 synsets with an assigned polarity, with accuracy of 70% or 79%, depending on the
human evaluator. For Portuguese, this is the first synset-based polarity lexicon we are aware of.
In addition to this contribution, the presented approach can be applied to create similar resources
for other languages.

1998 ACM Subject Classification I.2.7 Natural Language Processing

Keywords and phrases sentiment analysis, polarity, lexicon, wordnet, Portuguese

Digital Object Identifier 10.4230/OASIcs.SLATE.2014.169

1 Introduction

The World Wide Web has become an important resource for supporting decision making.
People often turn to this infrastructure to search for pieces of information that, hopefully, will
help them choose their next smartphone, a country to visit during the holidays or, sometimes,
even to decide on what party to vote in the next election. But it is a well-known fact that
a rational decision is highly limited both by the available information and by the available
time. So, as the Web keeps growing, the aforementioned procedure is losing efficiency.

Sentiment analysis (SA), or opinion mining (see [20] for an extensive survey), deals with
the computational treatment of opinions and sentiments in order to provide more efficient
decision making. Opinions given by an author towards a subject are typically classified
according to their polarity, which might be positive, negative and, sometimes, just neutral.
Many approaches to this topic rely on existing linguistic resources to predict the polarity of
a given piece of information. One of the main research lines in SA is thus the creation of
adequate sentiment resources, including annotated corpora and polarity lexicons.

Most polarity lexicons are structured in word lemmas, identified by their orthographical
form, and the typical polarity they express. However, natural language is ambiguous and

© Hugo Gonçalo Oliveira, António Paulo Santos, and Paulo Gomes;
licensed under Creative Commons License CC-BY

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões; pp. 169–184

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2014.169
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

170 Assigning Polarity Automatically to the Synsets of a Wordnet-like Resource

words have different meanings which, depending on the context, might lead to different
polarities for the same word. So, the previous representation fails to capture words with
senses with different polarities. This problem has been recognised and lead to the creation of
polarity lexicons based on concepts, materialised, for instance, by the attribution of polarities
to the synsets of a wordnet. For English, SentiWordNet [3] and Q-WordNet [1] include a
subset of Princeton WordNet [5] synsets and an automatically assigned polarity. Similarly to
most language resources, the manual creation of polarity lexicons involves time-consuming
human effort, which lead to the development of automatic tools for this task, either by
exploiting corpora or other resources, such as wordnets (see section 2).

A polarity resource based on synsets enables the combination of SA with word sense
disambiguation (WSD) techniques [19] to identify the polarity of words in context – WSD
algorithms based on the structure of a wordnet can be used to identify the synset corres-
ponding to a word meaning in context and then access a synset polarity lexicon to obtain
the transmitted polarity. In fact, the benefits of WSD to SA were emphasised by the
acknowledgement that a supervised sentiment classifier modeled on word senses performs
better than one based on word-based features, when classifying the polarity transmitted by
textual documents [2].

Given the importance of having such a resource, we set our goal to the automatic creation
of a synset-oriented polarity lexicon for Portuguese. Our effort towards this goal involved
the automatic assignment of polarities to the synsets of a Portuguese wordnet-like lexicon,
Onto.PT [7] – a resource currently in development, extracted automatically from textual
resources. Having our goal in mind, we describe a procedure with two steps: (i) one for initial
polarity assignment; (ii) and another for polarity propagation. Both steps are relatively
straightforward and can be applied to other languages, provided that there is a polarity
lexicon on the words of that language. Moreover, during this work, there was nothing like a
concept-oriented/synset-oriented polarity resource for Portuguese. Therefore, this work can
be viewed as an important contribution to the development of Portuguese SA. For the same
reason, we had to perform several manual evaluations, which we also describe.

In the proposed procedure, polarity is first assigned to synsets according to the polarity
of the words they contain. The main idea is that the synset polarity will be the same as
the typical polarity of the majority of its lemmas, when uncontextualised. Then, through
several iterations, polarity is propagated to synsets connected, by semantic relations, to the
previously polarised synsets.

After evaluating the results of this procedure manually, we concluded that the initial
polarity assignment is an effective way of moving from existing polarity information based
on lemmas, to polarity based on meanings, as the accuracy of this step is between 73%
or 86%, depending on the human evaluator. As for propagation, regarding that polarities
are not transmitted in the same way by all relation types, we conducted an experiment to
investigate which relations could be exploited for this task. We concluded that relations
between adjectives and qualities or states, as well as those between adjectives and adverbs,
tend to preserve the polarity. Furthermore, antonymy relations invert the propagated polarity.
Using only the best performing relations, polarity propagation is about 63% accurate. In
the end, a polarity lexicon with about 10,300 synsets is obtained, with an estimated global
accuracy between 70% and 79%.

This introduction is followed by section 2, where some related work is introduced, with
special focus on the automatic creation of polarity lexicons. Section 3 gives a general
presentation of our approach for assigning polarities to the synsets of a wordnet in two
automatic steps: initial assignment and polarity propagation. Section 4 describes the resources

H. Gonçalo Oliveira, A. P. Santos, and P. Gomes 171

used when following the proposed approach for Portuguese, Onto.PT and SentiLex-PT [24].
Section 5 reports on the results of applying the initial assignment on Onto.PT synsets,
including their evaluation. Following, section 6 reports on the results of applying polarity
propagation on Onto.PT, including the evaluation performed towards the selection of the
relation types to exploit. Before concluding, section 7 presents and discusses the overall
evaluation of the polarity lexicon generated with the proposed approach and using the
resources described earlier.

2 Related Work

In order to treat opinions computationally, in SA, sentiments are commonly converted to a
simpler “formal language”, such as the representation of polarity as numeric values. Polarity
lexicons, or sentiment lexicons, are lists of words (or conceptual representations) classified
according to their polarity, which may be positive, negative and, possibly, neutral. They
are typically used as external sources of knowledge in the automatic classification of textual
information, according to its polarity. Polarity lexicons are thus valuable resources for SA,
and it is no surprise that their creation is one of the main research lines in this area. There
are two main approaches for the automatic construction of polarity lexicons: (i) corpus-based;
and (ii) wordnet-based.

Corpus-based approaches (e.g. [9, 26, 14, 12]) explore the co-occurrence of words in large
collections of texts. Co-occurrence is explored using linguistic and statistical heuristics. For
instance, conjunctions (e.g. and, or, but) between adjectives provide indirect information
about their orientation [9] – while sequences like fair and legitimate and corrupt and brutal
have the same orientation and may co-occur in a corpus, the pairs fair and brutal and corrupt
and legitimate would be semantically anomalous. Other approaches compute the orientation
of sentences based on their association with positive (e.g. excellent, good) and negative (e.g.
poor, bad) references [26].

WordNet-based approaches (e.g. [16, 13, 23]) explore information provided by Princeton
WordNet [5], or similar resources, to generate polarity lexicons. Exploited information goes
from the semantic relations (e.g hypernymy, antonymy) connecting synsets, to textual glosses,
which are additional sources of related words.

As words have different meanings, the same word might have senses with different
polarities. Polarity lexicons structured in simple lemmas are thus impractical for most
applications. This problem has been recognised and lead to the creation of polarity lexicons
structured on concepts. For English, SentiWordNet [3] is an example of such a resource.
Each relevant WordNet synset is assigned three numerical scores indicative of how positive,
negative, and objective (neutral) is the sentiment it transmits. Synsets are classified after
combining the results of eight ternary classifiers. The classification score is proportional to
the number of classifiers that have assigned one of the three polarities.

Instead of relying on supervised classifiers, the creation of Q-WordNet [1] is based on an
unsupervised binary classifier that tries to link each synset to a positive or negative quality.
For this purpose, they start with the WordNet synsets that are in an attribute relation with
a sense of the word quality, which include the adjective synsets with senses of good, bad,
positive, negative, superior and inferior. Synsets that are accessible from the previous are
then polarised, according to their connection.

Synset-based polarity lexicons for other languages have also been created. Some are
based on the automatic translation of existing English resources, including SentiWordNet
(see [15, 17]). Of those, some start with a set of manually labelled synset seeds and propagate

SLATE 2014

172 Assigning Polarity Automatically to the Synsets of a Wordnet-like Resource

polarities to other synsets, through some of the semantic relations [17]. In addition to the
ideas developed in Q-WordNet, the authors of SentiWordNet have shown that a random-walk
model as the PageRank algorithm may be used for assigning polarities automatically to
synsets, and thus expand polarity lexicons [4]. For this purpose, WordNet is seen as a graph,
where synsets are nodes connected by relations <synset1 referred-by synset2>. PageRank
is ran twice: first, to obtain the positivity strength, only the positive synsets of SentiWordNet
have inital weights; then, the same is done for negative synsets.

For Portuguese, the field is growing and there have been a few attempts to create or
enrich polarity lexicons automatically. But so far, existing resources are structured in
words and not concepts. Exploratory work on the automatic construction of a word-based
polarity lexicon for Portuguese includes combining information from different sources [25],
propagating polarity through dictionary entries [21], and exploiting synonymy resources
for expanding a handcrafted polarity lexicon [24]. On the first [25], a polarity lexicon was
obtained after combining information from: (i) the application of Turney’s method [26] to
a Portuguese corpus of movie reviews; (ii) the application of Kamps’ method [13] to the
Portuguese thesaurus TeP [18]; (iii) the translation of Liu’s English Opinion Lexicon [11] to
Portuguese. On the second, starting with a small set of positive and negative seeds (about
10), textual patterns in the definitions of an electronic dictionary were exploited for polarity
propagation [21]. The third is JALC [24], an algorithm for the automatic expansion of a
handcrafted polarity lexicon of Portuguese, SentiLex-PT. Still, about three quarters of the
entries of SentiLex-PT are the result of manual labour. Another work [6] describes on the
manual creation of a polarity lexicon for Portuguese, though much smaller than SentiLex-PT,
based on the analysis of a corpus of book descriptions.

Our work combines several ideas from the aforementioned works. More precisely, it
assumes that all the words of a synset contribute to its overall polarity (as in [3]) and that
polarity is propagated through several semantic relations (as in [4, 1, 17, 21]).

3 Assigning Polarity to Wordnet Synsets

This section gives a general overview of our approach for assigning polarity to part of
the synsets of a wordnet. This can be achieved by following a straightforward automatic
procedure with two sequential steps, namely:

1. Initial polarity assignment, described in section 3.2;
2. Polarity propagation through semantic relations, described in section 3.3.

The initial assignment step can be used, for instance, to assign polarities to the synsets
of a simple thesaurus, containing just synsets and not synset links. On the other hand,
polarity propagation is made through semantic relations, and thus requires that the initially
polarised synsets are explicitly connected to other synsets, according to their meaning. Before
describing each step, in section 3.1 we refer the kind of pre-existing resources that are required
for applying this procedure and, at the same time, we introduce the notation used to describe
each step.

3.1 Set-up
The starting point of this procedure in an existing polarity reference R, and a word-
net with synsets W . R is a list of pairs (li, pol(li)) that assigns polarities to lemmas,
R = {< l1, pol(l1) >,< l2, pol(l2) >, ..., < ln, pol(ln) >}, n = |R|. The polarity of a lemma,
pol(li), denotes the sentiment typically expressed by the lemma, when alone, which can be

H. Gonçalo Oliveira, A. P. Santos, and P. Gomes 173

positive (+1), negative (-1) or neutral (0). This is usually the polarity of the most frequent
sense of the lemma, and the one that first comes to mind when in its presence.

A wordnet contains synsets and semantic relations. A synset S is a set of synonymous
lemmas li, S = {l1, l2, ..., lm}, m = |S|. This means there is a context where all the lemmas
of a synset have the same meaning and they can be seen as the possible lexicalisations of the
same natural language concept. Semantic relations have a defined type, RT , and connect
two synsets according to their meaning <Si RT Sj>,Si ∈W,Sj ∈W .

3.2 Initial Polarity Assignment
The initial assignment is based on the assumption that all the lemmas in a synset contribute
to its overall polarity, as in SentiWordNet. Even though some lemmas might have other
senses, we believe that the majority of lemmas in a positive synset will be labelled as such in
R. Likewise, negative synsets will have a majority of negative lemmas and neutral synsets
will contain mostly neutral lemmas.

For the initial assignment, each synset has a counter for each polarity value, respectively
c+, c− and c0, all initially set to 0. Then, for each lemma in a synset that is also in the
reference, li ∈ S ∧ li ∈ R, the polarity of the lemma according to R, pol(li), is summed to
the corresponding counter:

pol(li) > 0, c+ = c+ + 1
pol(li) < 0, c− = c− + 1
pol(li) = 0, c0 = c0 + 1

The overall synset polarity, Pol(S), will be positive (+), negative (-) or neutral (0), if
the counter with the highest value is c+, c− or c0 respectively. If there is a tie, the synset is
considered to transmit an ambiguous sentiment and will not have an assigned polarity. To
illustrate this step, take the following example:

Reference (R):
nice(+)
overnice(−)
squeamish(−)
prissy(−)

Synset (S):
{squeamish, prissy, overnice, nice, dainty}

Counters: c+ = 1, c− = 3, c0 = 0
max(cx) = c− =⇒ P ol(S) < 0

3.3 Polarity Propagation
The propagation step is based on the assumption that the polarity of related synsets tends
to related. Therefore, after the initial assignment, all synsets with an assigned polarity
can propagate it to their adjacent synsets. In other words, polarised synsets transmit their
polarity directly to related synsets, which are those directly connected by a semantic relation.

This might not be true for all types of relations. For instance, joy and sadness are both
emotions, meaning that <emotion hypernym-of joy> and <emotion hypernym-of sadness>.

SLATE 2014

174 Assigning Polarity Automatically to the Synsets of a Wordnet-like Resource

But emotion can have neutral polarity, while joy is definitely positive and sadness is negative.
Similar situations could happen for meronymy relations, as an object can have both “good” and
“bad” parts. In order to identify the relations that propagate polarity more consistently, and
could thus be exploited for automatic polarity propagation, we conducted the experimentation
described in section 6.1.

Propagation can go through several iterations and occur for both ways. Therefore, in
a relation between synsets Sa and Sb, <Sa RT Sb>, if Sa is polarised and Sb is not, the
polarity of Sa is propagated to Sb, as well as, if Sb is polarised and Sa is not, Sb propagates
its polarity to Sa, such that Pol(Sa) = Pol(Sb) or, depending on the relation, possibly
Pol(Sa) = −Pol(Sb). Take the following illustrative example, considering that similar-to is
a semantic relation that propagates the same polarity and antonym-of is a semantic relation
that propagates an inverted polarity.

Synsets:
S0 = {squeamish, prissy, overnice, nice, dainty}
S1 = {fastidious}
S2 = {unfastidious}

P ol(S0) < 0
<S0 similar-to S1> =⇒ P ol(S1) < 0
<S0 antonym-of S2> =⇒ P ol(S2) > 0

This process can occur for several iterations and synsets already polarised can be reached
again. But, as the accuracy in polarity attribution decreases for higher iterations, we decided
to keep only the polarity transmitted in the first iteration the synset is reached. Its polarity
does not change in further iterations. Still, if a synset is reached more than once in the same
iteration, we have used the three counters, in a similar fashion to the initial assignment. This
way, in the end of each iteration, the synset gets the polarity corresponding to the counter
with the highest value.

4 Used Resources

The automatic creation of a synset-based polarity lexicon for Portuguese relied on two existing
resources, both freely available from the Web. In this section, we present both of them,
namely: SentiLex-PT [24], a lemma-based polarity lexicon, and Onto.PT [7], a wordnet-like
lexical knowledge base.

4.1 SentiLex-PT
SentiLex-PT is a polarity lexicon for Portuguese, compiled from several publicly available
Portuguese resources. The sentiment entries of this lexicon are words, associated with their
morphological properties and predicted sentiment towards human subjects. SentiLex-PT is
especially suitable for opinion mining in Portuguese, particularly for detecting and classifying
sentiments and opinions targeting human entities.

We used SentiLex-PT021, the most recent version of this resource. It is available in
two files: (i) one where the word entries are inflected; (ii) and a “compressed” file where

1 Available from http://dmir.inesc-id.pt/project/SentiLex-PT_02

http://dmir.inesc-id.pt/project/SentiLex-PT_02

H. Gonçalo Oliveira, A. P. Santos, and P. Gomes 175

all entries are lemmatised. In this work, we used the second one, because Onto.PT also
contain lemmatised words. This lemma-oriented file covers 7,014 lemmas, of which 4,779 are
adjectives, 1,081 are nouns, 489 are verbs and 666 are idiomatic expressions.

Besides other properties, each entry of SentiLex-PT02 contains the polarity of the word,
which can be positive, neutral or negative, and also its kind of annotation, which is either
manual (5,473 lemmas) or automatic (1,541 lemmas). Manual polarity labels were given by a
linguist and automatic labels were assigned by the JALC algorithm, which its authors claim
to be 87% accurate [24]. Out of curiosity, the lemma-oriented file of SentiLex-PT02 contains
about three times more lemmas with negative polarity (4,596) than positive (1,548), and
just 860 lemmas have neutral polarity.

4.2 Onto.PT
Onto.PT is a lexical-semantic knowledge base for Portuguese, structured similarly to Princeton
WordNet [5]. As typical wordnets, Onto.PT tries to cover the whole language and not just
specific domains. It is also structured on synsets, which group synonymous word senses,
represented by lemmas, that may be seen as natural language concepts. For each of their
senses, polysemous words are included in a different synset. Synsets may be connected to
other synsets by means of semantic relations, which help describing possible interactions
between their meanings.

However, we refer to Onto.PT as a wordnet-like resource because, in opposition to
typical wordnets, it is not handcrafted, but created automatically, by exploiting Portuguese
dictionaries and thesauri. The construction of Onto.PT is briefly described in three steps,
that comprise the ECO approach [7]:

1. Regularities in the definitions of dictionaries are exploited for the extraction of instances
of semantic relations, connecting words, identified by their lemma.

2. If possible, each synonymy relation is attached to a synset in an existing Portuguese
thesaurus. TeP [18], an electronic thesaurus for Brazilian Portuguese, is used in this step.
Clusters are then identified in the set of unattached synonymy relations, and added as
new synsets.

3. Graph-based similarities are used to integrate the rest of the semantic relations automat-
ically. Each lemma argument of a relation is assigned to the most suitable synset. If
there are no synsets with the lemma, a new synset is created with that lemma.

Following this procedure, it is possible to have a larger resource without having to rely
on time-consuming manual work. This lead to other differences towards typical wordnets,
including more relation types covered. In Onto.PT, relations go from well-known hypernymy
and part-of, to relations established between words of different parts-of-speech (POS),
including, for instance, purpose-of, manner-of, or has-quality.

Onto.PT was released in 2012 and, as the result of an automatic approach, it is always
under development2. In this work, we have used version 0.3 of Onto.PT, which contains
160,791 unique lemmas, organised in 105,500 synsets – 60,197 nouns, 25,346 verbs, 17,961
adjectives and 1,996 adverb synsets – connected by 184,521 instances of semantic relations.

Other Portuguese wordnets, as MultiWordNet.PT3 or OpenWordNet.PT [22], would
not apply for this work because they are both smaller and cover mostly hypernymy and

2 Check http://ontopt.dei.uc.pt for updates and additional information on Onto.PT.
3 Check http://mwnpt.di.fc.ul.pt/ for additional information on MultiWordNet.PT.

SLATE 2014

http://ontopt.dei.uc.pt
http://mwnpt.di.fc.ul.pt/

176 Assigning Polarity Automatically to the Synsets of a Wordnet-like Resource

Table 1 Examples of synsets and their polarity in the initial assignment.

Synset Polarity
contente (+), alegre (+), satisfeito (+), radiante (+), feliz (+), ju-
biloso (+)

+

(content, cheerful, satisfied, radiant, happy, joyant)
verdadeiro (+), veraz (+), verídico (+), fidedigno (+), fiel (+), exacto +(true, truthful, veridical, reliable, faithful, exact)
esmorecido (-), débil (-), sumidiço, mortiço (-), fraco (-), apagado (-) -(faltering, feeble, dull, weak, out)
médio (0), mediano (0), medíocre (-), moderado (+) 0(average, median, mediocre, moderate)
severo (-), implacável, justiceiro (+), estrito, rigoroso (+), incomplacente,
inflexível (-)

null

(severe, implacable, justicer, strict, rigorous, austere, inflexible)

part-of relations. As discussed earlier, those are not the best suited for polarity propagation.
Moreover, MultiWordNet.PT is not free for research purposes and only covers noun synsets.

5 Results of Initial Assignment

The polarity assignment procedure, presented in section 3 was followed in the creation of a
synset-based polarity lexicon for Portuguese, using the resources described in section 4. We
recall that this approach encompasses two steps: initial polarity assignment and polarity
propagation. This section reports on the results of the first step, which consisted of assigning
a polarity to the synsets of Onto.PT, using SentiLex-PT as the polarity reference. Section 6
presents the results of the polarity propagation in Onto.PT.

5.1 Quantities and Examples
The initial polarity assignment was applied to Onto.PT, using the full SentiLex-PT as a
polarity reference. This resulted in 7,556 Onto.PT synsets with an assigned polarity, more
precisely: 1,875 positive, 4,792 negative and 889 neutral. Of those, 1,374 synsets included
both lemmas with positive and lemmas with negative polarities, but one of the three polarity
counters was higher than the others. An additional 424 synsets were considered to be
sentiment ambiguous. Table 1 shows examples of synsets, the polarity of their lemmas
according to SentiLex-PT, and their consequently assigned polarity. The few lemmas without
polarity are not covered by SentiLex-PT. Examples include synsets where all lemmas have
the same polarity, even though some are not in SentiLex-PT, synsets where the resulting
polarity is the most common, and a synset with ambiguous polarity (null).

5.2 Evaluation
In order to assess the results produced by the initial polarity assignment, we asked two
human judges, both native speakers of Portuguese, to independently classify a sample of 390
synsets according to their polarity. Their goal was to select the polarity that the concept
denoted by each synset transmits. All the synsets were randomly collected from the 7,556
synsets with polarities automatically assigned in this initial step, but the automatic polarity
was not shown to the judges. Also, all the synsets of the sample had more than one lemma.
First, this procedure is suited precisely for synsets with more than one lemma. Second,
assuming that the sentiment labels in SentiLex-PT are correct, there was no need to evaluate

H. Gonçalo Oliveira, A. P. Santos, and P. Gomes 177

Table 2 Evaluation of the initial assignment step.

Sample Reference Target P(+) P(-) P(0) P(all) Kappa
390 sets H1 Aut 0.92 0.88 0.38 0.86 0.73
390 sets H2 Aut 0.72 0.75 0.50 0.73 0.53
390 sets H1 H2 0.77 0.81 0.82 0.80 0.66

any of the 1,315 polarised synsets with only one lemma4.
We recall that each of the other synsets is a group of lemmas that, all together, denote

a concept. Therefore, even if there is one or more lemmas that, in different contexts, may
transmit different polarities, there should only be one meaning shared between all the lemmas
and, in this context, only one polarity common to all of them. This fact is important because
it minimises the ambiguity issues of polarity classification, as compared to the classification
of single lemmas, outside a context.

Concerning the illustration of the aforementioned phenomena, we first present two mean-
ings of the Portuguese word queda, which might either denote a downfall/tumble (negative)
or an ability/capacity (typically positive), respectively in the following synsets:

queda, tombo, trambolhão, choque, baque, boléu
queda, jeiteira, vocação, qualidade, aptidão, jeito, habilidade, capacidade

Similarly, in the following synsets, the adjective simples might respectively refer to
something simple/easy (typically positive) or an ignorant/uneducated (negative) person:

simples, fácil, desintrincado
simples, inculto, bronco, ignorante, burgesso, néscio, desiluminado

Table 2 presents the results of this evaluation. Besides the number of evaluated syn-
sets (Sample), ‘Reference’ indicates the reference set of polarised synsets, which can be
viewed as a golden set, while ‘Target’ is the evaluated set. In the later columns, ‘H1’ stands
for the first human judge, ‘H2’ for the second human and ‘Aut’ refers to the synsets with
polarities assigned automatically. In the same table, we provide the accuracy of our target
according to the reference, which is the proportion of matches per polarity value (P(+), P(-),
P(0)), the total accuracy (P(all)), and the agreement between the reference and the target,
expressed by the Cohen’s Kappa coefficient (Kappa). Although not common, this includes
the agreement between the judges annotation and the system.

Evaluation shows that the initial assignment is an adequate and straightforward approach
for moving from polarised lemmas to polarised synsets/meanings. Using the judge H1 as
reference, the accuracy of the initial polarity assignment is 86%, and it is 73% against judge
H2. Curiously, even though the agreement between the judges was good (0.66) [8], H1 had
higher agreement with the system than with H2.

Accuracy is always higher than 70% for positive and negative synsets, but it is lower
for the neutral synsets. Besides suggesting that it is not easy to identify objective/neutral
synsets automatically, this highlights the fact that it is not easy for humans as well. Due
to these problems, several works (e.g. [26, 23, 21]) just classify words as either positive or
negative. In fact, the difference of accuracy between the two annotators is explained by their

4 We did not consider the possibility that the sense of the lemma in the Onto.PT synset was different than
in SentiLex-PT. The main reason for this is that, in Onto.PT, single-lemma synsets are unique. In fact,
for rare situations, such as words with two completely different senses without synonyms, single-lemma
synsets might merge different senses.

SLATE 2014

178 Assigning Polarity Automatically to the Synsets of a Wordnet-like Resource

different sensibilities towards neutral synsets – the amount of synsets classified this way is
2.5 times higher for H2 than for H1. If neutral synsets were ignored, the accuracies would
actually be 97% and 96% respectively for H1 and H2, with κ = 0.96.

6 Results of Polarity Propagation

On the proposed approach, the second step for creating a synset-based polarity lexicon is
polarity propagation. However, before propagating polarities, blindly, through all types of
relations, we only selected the types which seemed adequate for propagation. Then, we
evaluated the result of their propagation in the first iteration, where four types of candidate
relations revealed to be inadequate for this task. Only the remaining five types were used for
propagation.

6.1 Candidate Relations
Regarding the analysis of several examples, as those in section 3.3, we decided not to use
hypernymy nor meronymy for polarity propagation. There are works [17] where hypernymy
is used for polarity propagation, but only when this relation is held between adjectives. This
is not the case for Onto.PT, where hypernymy only connects nouns. On the other hand, we
believed that several types of Onto.PT relations could transmit polarities more consistently,
namely:

Relations connecting an object or a process to a resulting/goal state or another object/pro-
cess (causation, producer, purpose);
Relations connecting properties, qualities or states with nouns or adjectives (refers-to,
has-quality, has-state);
Relations connecting nouns or adjectives with adverbs (manner).

Additionally, we believed that there were types of relations connecting positive with negative
synsets, which thus transmit an inverted polarity. In Onto.PT, two types of relations fit in
that group:

Those connecting synsets with an opposite meaning (antonymy, which, in Onto.PT 0.3,
only occurs between adjectives);
Relations connecting nouns or verbs with manners that do not characterise them (manner-
without).

For each of the aforementioned relation types, Table 3 presents an illustrative example,
together with the number of instances in Onto.PT 0.3.

6.2 Selection of the Adequate Relations
Instead of using all the selected relations in polarity propagation, once again, we asked two
human judges to independently classify the polarity of Onto.PT synsets of seven samples.
Each sample contained synsets connected by one of the seven relation types in Table 3, to
those polarised in the initial assignment. For evaluation purposes, the automatic results
of propagation were compared to the manual classifications. Table 4 shows the results of
this evaluation. The number of evaluated synsets differs according to the reference because,
when judges could not attribute a well-defined meaning to a synset, they did not classify it.
This happened because, although the judges were advised to look in online dictionaries for
unknown meanings, Onto.PT contains some unfrequent words, as well as unfrequent senses
of well-known words.

H. Gonçalo Oliveira, A. P. Santos, and P. Gomes 179

Table 3 Relations of Onto.PT, evaluated for propagation.

Has-quality: 2,219 instances
{inábil} → {desajeitamento,desjeito,inabilidade,desabilidade}

{unskilful} → {clumsiness,inability,lack_of_skill}

Has-state: 573 instances
{estável,permanente,efectivo} → {beatitude,paz,concordia,tranquilidade}

{stable,permanent} → {bliss,peace,tranquility}

Manner-of: 3,924 instances
{avidamente,vorazmente,sofregamente} → {sede,avidez,sofreguidão,avareza,cobiça,...}

{greedily} → {greed}

Antonym-of: 687 instances
{inconcludente,inconclusivo} → {liquidante,conclusivo,terminativo,terminante}

{inconclusive} → {conclusive,terminative}

Manner-without: 316 instances
{caladamente,silenciosamente,secretamente, ...} → {exposição,manifestação,declaração}

{quietly,silently,secretly} → {exposition,expression,declaration}

Causation-of: 12,148 instances
{causticar,cauterizar,calcinar,...} → {combustão,cremação,cauterização,calcinação,...}

{to_etch,to_cauterise} → {combustion,cauterization}

Producer-of: 2,335 instances
{destilação_de_petróleo} → {gasolina}

{oil_distillation} → {gasoline}

Purpose-of: 16,918 instances
{explorar_espaço} → {cosmonave,astronave,espaçonave,nave}

{to_explore_the_space} → {spacecraft,spaceship}

Refers-to: 37,491 instances
{caricaturesco,caricatural} → {caricatura,cartoon,cartum}

{caricatural} → {caricature,cartoon}

On the performed evaluation, depending on the relation, the judge’s agreement is between
moderate and good [8]. Yet, we believe that we can rely on these results to conjecture on
the adequacy of the Onto.PT relations for polarity propagation. As discussed earlier, the
task of classifying the polarity of synsets depends on the judge’s intuition. For instance, in
the previous evaluation, we noticed different sensibilities towards the classification of the
synsets as neutral. As for the actual evaluation results, Table 4 shows that manner-of and
manner-without were the best performing relation types, which indicates that means and
adjectives transmit their polarity to their corresponding adverbs. Not just these two, but
all five relation types with best accuracy denote a pattern, as they all connect at least one
adjective or adverb synset to another synset. Given that both adjectives and adverbs are
used as modifiers, they are often connected to qualities and thus to sentiment, which explains
this pattern. On the other hand, purpose-of and producer-of had the lowest accuracy. In fact,
purpose-of is not as semantically well-defined as the other relations because it can connect
very different things. To give an idea, it relates an action (verb), which can either be a
general purpose (e.g. to desinfect, to calculate, to censor, to dissociate) or just something
one can do with (e.g. to punish, to transport, to climb, to spend, to entertain), for instance,
an instrument (e.g. desinfectant, whip), a concrete object (e.g. van, stairs), an abstract
means (e.g. credit, calculation, satire), a human entity (e.g. clown), or a property (e.g.
dissociation). And we should recall that the same instrument/means can be used either for
positive or negative actions. As for the producer-of relation, most of its instances relate fruits
and vegetables with their trees, which are rarely related to sentiment.

SLATE 2014

180 Assigning Polarity Automatically to the Synsets of a Wordnet-like Resource

Table 4 Evaluation of different relations in the first propagation iteration.

Relation Sample Ref Target P(+) P(-) P(0) P(all) Kappa

Causation-of
99 sets H1 Aut 0.36 0.69 0.00 0.59 0.26
100 sets H2 Aut 0.63 0.42 0.00 0.56 0.26
99 sets H1 H2 0.66 0.80 0.50 0.68 0.45

Producer-of
79 sets H1 Aut 0.29 0.33 0.00 0.30 0.09
77 sets H2 Aut 0.29 0.43 0.00 0.36 0.14
77 sets H1 H2 0.73 0.75 0.93 0.84 0.73

Purpose-of
99 sets H1 Aut 0.29 0.23 0.83 0.29 0.12
98 sets H2 Aut 0.24 0.20 0.50 0.23 0.05
97 sets H1 H2 0.57 0.77 0.86 0.78 0.57

Refers-to
118 sets H1 Aut 0.37 0.54 0.33 0.48 0.17
119 sets H2 Aut 0.54 0.56 0.27 0.53 0.23
117 sets H1 H2 0.52 0.78 0.61 0.67 0.48

Has-quality
85 sets H1 Aut 0.85 0.81 0.17 0.78 0.60
85 sets H2 Aut 0.85 0.75 0.50 0.76 0.60
85 sets H1 H2 0.90 0.90 0.57 0.85 0.75

Has-state
60 sets H1 Aut 0.38 0.80 0.60 0.67 0.37
60 sets H2 Aut 0.50 0.77 0.40 0.67 0.38
60 sets H1 H2 0.43 0.86 0.60 0.72 0.48

Manner-of
90 sets H1 Aut 0.90 0.75 0.22 0.74 0.56
90 sets H2 Aut 0.83 0.75 0.00 0.70 0.48
90 sets H1 H2 0.88 0.84 0.29 0.81 0.67

Antonym-of
60 sets H1 Aut 0.52 0.79 0.43 0.62 0.42
60 sets H2 Aut 0.55 0.71 0.43 0.60 0.40
60 sets H1 H2 0.71 0.92 0.74 0.80 0.70

Manner 85 sets H1 Aut 0.62 0.82 0.00 0.74 0.51
without 85 sets H2 Aut 0.66 0.82 0.00 0.75 0.51

85 sets H1 H2 0.70 0.85 0.56 0.78 0.59

According to our interpretation, these results make sense, so we relied on them for
selecting the relations to use. This means that polarity was propagated only through the five
relation types with accuracy higher than 60%, namely: manner-of, has-quality, has-state,
antonymy and manner-without.

6.3 Polarity Propagation through Selected Relations
After selecting the adequate relation types, the polarities assigned in the first step were
propagated until every synset, connected directly or indirectly through one of the five selected
types, had been reached. The algorithm ran for eight iterations and then stopped, with 10,318
polarised synsets. This number is lower than if all the relations in Table 4 are used (43,468),
but we preferred to have a smaller but more reliable polarity lexicon. We can however, in
the future, generate larger polarity lexicons, in a trade-off for lower reliability.

Table 5 has two examples of polarity propagation from the initial assignment until
iteration 3, through different semantic relations. In the same table, ‘Iter’ is the iteration
number, or 0 for the initial assignment, and ‘Pol’ is the propagated polarity.

7 Overall Evaluation

In order to complement the evaluation of the generated lexicon, we performed one last
evaluation, where the polarity of 500 synsets, polarised in iterations 1 to 8, was compared,
once again, with the polarity given manually by two human judges. The results of this
evaluation are shown in Table 6, all together, and in Table 7, according to the iteration and
starting with the evaluation of the 390 synsets polarised in the initial assignment (same as
Table 2). As expected, accuracy becomes lower for higher iterations. The agreement becomes

H. Gonçalo Oliveira, A. P. Santos, and P. Gomes 181

Table 5 Examples of initial assignment (0) and propagation.

Iter Pol Propagation

0 - (adj) incorrigível (-), destravancado, irregenerável, indisciplinável, insubor-
dinável
(incorrigible (-), unregenerable, undisciplinable, rebellious)

1 -
Has-quality
→ (n) incorrigibilidade, irreparabilidade
(incorrigibility, irreparability)

2
-

Quality-of
→ (adj) irrecuperável, irremediável, incompensável, irreparável, insubstituível,
insuprível
(irrecoverable, irremediable, not_compensable, irreparable, irreplaceable)

3 -
Has-manner
→ (adv) irreparavelmente
(irreparably)

0 + (n) concordância, consentimento, autorização, beneplácito, tolerância (+),
permissão, licença
(agreement, consent, permission, tolerance (+))

1 +
Has-manner
→ (n) outorgadamente
(consentingly)

2 +
Manner-of
→ (adj) deferido, outorgado, concedido
(deferred, granted)

3 -
Antonym-of
→ (adj) impedido, tolhido, vedado, proscrito, negado, defeso, interdito, proibido,
inconcesso
(prevented, fenced, denied, forbidden, prohibited)

Table 6 Evaluation of iterations 1 to 8.

Sample Ref Target P(+) P(-) P(0) P(all) Kappa
500 sets H1 Aut 0.65 0.66 0.38 0.63 0.42
500 sets H2 Aut 0.68 0.65 0.42 0.64 0.43
500 sets H1 H2 0.75 0.84 0.62 0.75 0.62

lower as well for higher iterations. Nevertheless, until iteration 4, it is always higher than
0.54. These results also suggest that, for more reliable results, the algorithm should stop
before there are no more reachable synsets, for instance, in iteration 2, or maybe 4. Also in
Table 7, we present the combined accuracy for the whole lexicon, which is about 78.9% or
70% using H1 or H2 respectively as reference. This value considers the number of synsets
polarised in the initial step, polarised through propagation, and the accuracy of those steps.

For the analysis of these results, it is worth reminding that Onto.PT is a resource created
automatically and in development. Consequently, it is not 100% reliable. For instance, it
contains a few incorrect relations, which have a negative impact on the propagation results.
On the other hand, Onto.PT tends to keep growing and to improve its reliability, which will
consequently have a positive impact on future polarity lexicons generated by the proposed
approach. In fact, there are more recent version of this resource, released after 0.3.

8 Concluding Remarks

We have described an approach for moving from the polarity of single lemmas to the polarity
of concepts/meanings, represented as wordnet synsets. This kind of approach is an alternative
to tedious and time-consuming annotation tasks, performed by humans.

SLATE 2014

182 Assigning Polarity Automatically to the Synsets of a Wordnet-like Resource

Table 7 Evaluation and quantity of synsets according to iteration (0 to 5).

Iteration Synsets Sample Ref P(all) Kappa

0 7,556 390 H1 0.86 0.66H2 0.73
1 1,971 330 H1 0.71 0.63H2 0.72
2 549 112 H1 0.48 0.57H2 0.50
3 163 38 H1 0.45 0.55H2 0.34
4 56 15 H1 0.60 0.54H2 0.60
5 16 4 H1 0.25 0.00H2 0.00

...

Total 10,318 890 H1 0.79 0.65H2 0.70

The proposed approach is language independent, but we have applied it to a Portuguese
wordnet-like resource. Though relatively straightforward, the accuracy of the polarised
synsets confirms that this approach is quite solid. In its first step, we have shown that synsets
can be polarised according to the sum of the polarity of their lemmas alone, with accuracies
close to 90%. In the second step, polarities were propagated for several iterations, through a
set of selected relation types. For selecting the relations to use, we measured the accuracy of
different types for this task and observed that relations connecting adjectives or adverbs to
other synsets were more suitable for this. We also concluded that the accuracy of polarity
attribution decreased for higher iterations.

In the end, we obtained a polarity lexicon for Portuguese derived from Onto.PT, with
10,318 polarised synsets, and polarities between 70% and 79% accurate, depending on the
judge. As far as we know, while writing this paper, the resulting polarity lexicon was the first
synset-based resource of this kind targeting Portuguese. Though, very recently, we became
aware that, taking advantage of the alignment between OpenWordNet.PT and Princeton
WordNet, SentiWordNet polarities have been assigned to OpenWordNet.PT synsets [22].
Although this effort might suffer from issues regarding the translation of lexicons from one
language to another (different languages represent different socio-cultural realities, they do
not cover exactly the same part of the lexicon and, even where they seem to be common,
several concepts are lexicalised differently [10]), it is another relevant contribution for the
development of Portuguese SA applications. We should recall that, if combined with WSD
techniques, synset-based polarity lexicons will improve the attribution of a polarity to words
in context, and thus the polarity classification of various kinds of text. Therefore, following
the free availability of Onto.PT, the result of assigning polarities to a more recent version of
Onto.PT is available from this project’s website (http://ontopt.dei.uc.pt).

Even though the obtained results are interesting, additional work is needed, in order
to get a more reliable resource. Therefore, we end by leaving some lines for further work.
First, looking at the obtained results, it might be a good idea to decrement polarity strength
in each propagation iteration. This would enable the algorithm to stop either when there
are no more reachable synsets or when the propagated polarity is below some threshold.
Second, more than adequate relation types for polarity propagation, we believe that there
are combinations of types that lead to good polarity propagation, and combinations that
don’t. It would be interesting to learn these combinations, which can be seen as paths (e.g.
A hyponym-of B has-quality C), semi-automatically, by selecting paths between synsets with

http://ontopt.dei.uc.pt

H. Gonçalo Oliveira, A. P. Santos, and P. Gomes 183

correct polarities. Finally, we believe that polarity represented by three parameters (positive,
negative and neutral) is limitative and should be rethought. For instance, instead of being
represented by only one value, polarity can be represented by a real value from 0 to 1, or
by three parameters, respectively indicating the positive, negative and neutral strength, in
a similar fashion of what is done in SentiWordNet. This could be achieved by propagating
polarity using a method as PageRank, in a similar fashion to existing work for English [4]. If
the polarity values obtained this way are normalised, it will be possible to compare them to
the results obtained with the approach proposed in this article.

Acknowledgements. This work was supported by the iCIS project (CENTRO-07-ST24-
FEDER-002003), co-financed by QREN, in the scope of the Mais Centro Program and
European Union’s FEDER.

References
1 Rodrigo Agerri and Ana García-Serrano. Q-wordnet: Extracting polarity from WordNet

senses. In Proceedings of the 7th International Conference on Language Resources and
Evaluation, LREC 2010, La Valletta, Malta, 2010. ELRA.

2 A.R. Balamurali, Aditya Joshi, and Pushpak Bhattacharyya. Harnessing wordnet senses
for supervised sentiment classification. In Proceedings of the 2011 Conference on Empir-
ical Methods in Natural Language Processing, EMNLP 2011, pages 1081–1091, Edinburgh,
Scotland, UK, 2011. ACL Press.

3 Andrea Esuli and Fabrizio Sebastiani. SentiWordNet: A publicly available lexical resource
for opinion mining. In Proceedings of the 5th Conference on Language Resources and
Evaluation, LREC 2006, pages 417–422, 2006.

4 Andrea Esuli and Fabrizio Sebastiani. PageRanking WordNet synsets: An application to
opinion mining. In Proceedings of 45th Annual Meeting of the Association for Computational
Linguistics, ACL’07, pages 424–431, Prague, Czech Republic, 2007. ACL Press.

5 Christiane Fellbaum, editor. WordNet: an electronic lexical database (Language, Speech,
and Communication). The MIT Press, 1998.

6 Cláudia Freitas. Sobre a construcção de um léxico da afetividade para o processamento
computacional do português. Revista Brasileira de Linguística Aplicada, 13(4):1013–1059,
2013.

7 Hugo Gonçalo Oliveira and Paulo Gomes. ECO and Onto.PT: A flexible approach for
creating a Portuguese wordnet automatically. Language Resources and Evaluation, to be
published, 2013.

8 Annette M. Green. Kappa statistics for multiple raters using categorical classifications. In
Proceedings of the 22nd Annual Conference of SAS Users Group, San Diego, USA, 1997.

9 Vasileios Hatzivassiloglou and Kathleen R. Mckeown. Predicting the semantic orientation
of adjectives. In Proceedings of 35th Annual Meeting of the Association for Computational
Linguistics, ACL 1997, pages 174–181, Madrid, ES, 1997. ACL Press.

10 Graeme Hirst. Ontology and the lexicon. In Steffen Staab and Rudi Studer, editors,
Handbook on Ontologies, International Handbooks on Information Systems, pages 209–230.
Springer, 2004.

11 Minqing Hu and Bing Liu. Mining and summarizing customer reviews. In Proceedings
of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’04, pages 168–177, New York, NY, USA, 2004. ACM.

12 Nobuhiro Kaji and Masaru Kitsuregawa. Building lexicon for sentiment analysis from
massive collection of HTML documents. In Proceedings of the Joint Conference on Empir-

SLATE 2014

184 Assigning Polarity Automatically to the Synsets of a Wordnet-like Resource

ical Methods in Natural Language Processing and Computational Natural Language Learn-
ing, EMNLP-CoNLL 2007, pages 1075–1083, 2007.

13 Jaap Kamps, Robert J. Mokken, Maarten Marx, and Maarten de Rijke. Using WordNet
to measure semantic orientation of adjectives. In Proceedings of the 4th International
Conference on Language Resources and Evaluation, volume IV of LREC 2004, pages 1115–
1118, Paris, France, 2004. ELRA.

14 Hiroshi Kanayama and Tetsuya Nasukawa. Fully automatic lexicon expansion for domain-
oriented sentiment analysis. In Proceedings of the 2006 Conference on Empirical Methods
in Natural Language Processing, pages 355–363, Sydney, Australia, 2006. ACL Press.

15 Jungi Kim, Hun-Young Jung, Yeha Lee, and Yeha Lee. Conveying subjectivity of a lexicon
of one language into another using a bilingual dictionary and a link analysis algorithm.
International Journal of Computer Processing Of Languages, 22(02-03):205–218, 2009.

16 Soo-Min Kim and Eduard Hovy. Determining the sentiment of opinions. In Proceedings
of the 20th international conference on Computational Linguistics, COLING 2004, pages
1267–1373, Geneva, Switzerland, 2004. ACL Press.

17 Isa Maks and Piek Vossen. Different approaches to automatic polarity annotation at synset
level. In Proceedings of the 1st International Workshop on Lexical Resources, WoLeR’11,
Ljubljana, Slovenia, 2011.

18 Erick G. Maziero, Thiago A. S. Pardo, Ariani Di Felippo, and Bento C. Dias-da-Silva. A
base de dados lexical e a interface web do TeP 2.0 – Thesaurus Eletrônico para o Português
do Brasil. In VI Workshop em Tecnologia da Informação e da Linguagem Humana (TIL),
pages 390–392, 2008.

19 Roberto Navigli. Word sense disambiguation: A survey. ACM Computing Surveys, 41(2):1–
69, 2009.

20 Bo Pang and Lillian Lee. Opinion mining and sentiment analysis. Foundations and Trends
in Information Retrieval, 2(1-2):1–135, January 2008.

21 António Paulo-Santos, Hugo Gonçalo Oliveira, Carlos Ramos, and Nuno C. Marques. A
bootstrapping algorithm for learning the polarity of words. In Proceedings of Computational
Processing of the Portuguese Language – 10th International Conference (PROPOR 2012),
volume 7243 of LNCS, pages 229–234, Coimbra, Portugal., April 2012. Springer.

22 Alexandre Rademaker, Valeria De Paiva, Livy Maria Real Gerard de Melo, Coelho, and
Maira Gatti. Openwordnet-pt: A project report. In Proceedings of the 7th Global WordNet
Conference, GWC 2014, pages 383–390, Tartu, Estonia, jan 2014.

23 Delip Rao and Deepak Ravichandran. Semi-supervised polarity lexicon induction. In Pro-
ceedings of 12th Conference of the European Chapter of the Association for Computational
Linguistics, EACL 2009, pages 675–682, Athens, Greece, 2009. ACL Press.

24 Mário J. Silva, Paula Carvalho, and Luís Sarmento. Building a sentiment lexicon for social
judgement mining. In Proceedings of 10th International Conference on Computational
Processing of Portuguese, PROPOR 2012, LNCS/LNAI, Coimbra, Portugal, April 2012.
Springer.

25 Marlo Souza, Renata Vieira, Debora Busetti, Rove Chishman, and Isa Mara Alves. Con-
struction of a portuguese opinion lexicon from multiple resources. In Proceedings of 8th
Brazilian Symposium in Information and Human Language Technology, STIL 2011, Cuiabá,
Brazil, 2011.

26 Peter D. Turney. Thumbs up or thumbs down?: semantic orientation applied to unsuper-
vised classification of reviews. In Proceedings of the 40th Annual Meeting on Association
for Computational Linguistics, ACL 2002, pages 417–424, Philadelphia, PA, USA, 2002.
ACL Press.

Detecting a Tweet’s Topic within a Large Number
of Portuguese Twitter Trends
Hugo Rosa1, João Paulo Carvalho2, and Fernando Batista3

1 INESC-ID Lisboa
IST – Universidade de Lisboa, Portugal
hugohrosa@gmail.com

2 INESC-ID Lisboa
IST – Universidade de Lisboa, Portugal
joao.carvalho@inesc-id.pt

3 INESC-ID Lisboa
ISCTE-IUL, Lisboa, Portugal
fernando.batista@iscte.pt

Abstract
In this paper we propose to approach the subject of Twitter Topic Detection when in the presence
of a large number of trending topics. We use a new technique, called Twitter Topic Fuzzy Finger-
prints, and compare it with two popular text classification techniques, Support Vector Machines
(SVM) and k-Nearest Neighbours (kNN). Preliminary results show that it outperforms the other
two techniques, while still being much faster, which is an essential feature when processing large
volumes of streaming data. We focused on a data set of Portuguese language tweets and the
respective top trends as indicated by Twitter.

1998 ACM Subject Classification I.2.7 Natural Language Processing, H.2.8 Database Applica-
tions, I.5.4 Applications

Keywords and phrases topic detection, social networks data mining, Twitter, Portuguese lan-
guage

Digital Object Identifier 10.4230/OASIcs.SLATE.2014.185

1 Introduction

No one can deny the importance of public social networks in current modern world society.
From event advertising or idea dissemination, to commenting and analysis, social networks
have become the de facto means for individual opinion making and, consequently, one of
the main shapers of an individuals perception of society and the world that surrounds
him. The Arab Spring [10], the Indignant movement protest [16], or presidents tweeting
and posting messages on Facebook instead of using official public addressing are just a few
examples of how influential social networks have become. Nowadays important events are
often commented in social networks even before they become “public news”, and even news
agencies and networks had to adapt and start using social networks as sources of information.

Among public social networks, Twitter has become a major tool for sociological analysis.
However, in order to properly analyse Twitter data, it is necessary to filter which tweets are
relevant for a given subject or topic. This is not a trivial problem since there are currently
more than 340 millions of daily tweets covering thousands of different topics [9]. Twitter
already helps by providing a list of top trends [22] and the hashtag # mechanism: when
referring to a certain topic, users are encouraged to indicate it through the use of a hashtag,

© Hugo Rosa, João Paulo Carvalho, and Fernando Batista;
licensed under Creative Commons License CC-BY

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões; pp. 185–199

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2014.185
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

186 Detecting a Tweet’s Topic within a Large Number of Portuguese Twitter Trends

e.g., “#Obamacare has been approved!” indicates the topic of the tweet is Obamacare.
Websites such as #hastags.org make good use of this information to present Twitter trends,
e.g., http://www.hashtags.org/analytics/Obamacare/.

Other tools such as Twittermonitor [14] can also be used to obtain Twitter trends.
However not all tweets related to a given topic are hashtagged. In fact, only roughly 16%
of all tweets are hashtagged [15]. These numbers have been confirmed by our (assumedly)
small experiments. Therefore, in order to properly analyse a given topic, it is essential to
include the most of the remaining 84% of the untagged information.

This task, which we shall refer to as Tweet Topic Detection, involves deciding if a
given tweet is related to a given #hashtagged topic. Basically this can be categorized as
a classification problem, albeit one with some particular characteristics that need to be
addressed specifically: it is a text classification problem, with an unknown and large number
of categories, where the texts to be classified are very short texts (up to 140 characters), and
it is a problem that fits the Big Data paradigm due to the huge amounts of streaming data.

We distinguish between Topic Classification and Topic Detection. The former defines a
short and generic set of categories, ranging from politics to sports and the documents will
often belong to at least one of those categories. It is very rare that a tweet does not fit
into any topic. The latter takes on a more detailed approach, where an attempt is made to
determine the topic of the document, given a predetermined large set of possible topics. In
addition, the topics are so unique amongst themselves that there is a high probability that a
tweet without a hashtag may very well not belong to any of the current trends.

When considering this difference, the most similar works on Topic Detection within
Twitter are those related with emerging topics or trends, for example [14, 3, 11, 19]. In these
works the authors use a wide variety of techniques regarding text analysis to find the most
common related words and hence detect topics. In our work we already assume the existence
of trending topics and we aim at efficient detecting tweets that are related to them, despite
not being explicitly marked as so.

It is also possible to find several works regarding Topic Classification. In [13], an attempt
is made to classify Twitter Trending Topics into 18 broad categories, such as: sports, politics,
technology, etc, and their experiments on a database of randomly selected 768 trending topics
(over 18 classes) show that, using text-based and network-based classification modelling, a
classification accuracy up to 65% and 70% can be achieved, respectively. Another interesting
article, despite not on the theme of Topic Detection, demonstrates how to use Twitter to
automatically obtain breaking news from the tweets posted by Twitter users [20]. In 2009,
when Michael Jackson passed away, “the first tweet was posted 20 minutes after the 911
call, which was almost an hour before the conventional news media first reported on his
condition”. This further enforces the importance of automatically analysing the massive
amount of information on Twitter.

In what concerns text classification, K-Nearest Neighbours (kNN) and the Support Vector
Machine (SVM) are amongst the most widely used and best performing classifiers. In [23],
Yang and Liu, performed several tests in a controlled study and reported that SVM and
kNN are at least comparable to other well-known classification methods, including Neural
Networks and Naive Bayes, and that significantly outperform the other methods when the
number of positive training instances per category are small.

In this paper we propose a new approach to the subject of Twitter Topic Detection when
in the presence of a large number of Portuguese trending topics: the use of and adaptation
of the Fuzzy Fingerprints introduced in [8], associated with the use of Filtered Space Saving
algorithm [7][9] and the fuzzy based automatic error correction mechanism presented in

http://www.hashtags.org/analytics/Obamacare/

H. Rosa, J. P. Carvalho, and F. Batista 187

Am,n =

1 1 1 1 0 0 0 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 0 0

Figure 1 Binary Bag-of-Words Representation.

[2]. This work is integrated within the MISNIS framework, being developed with the goal
of Intelligent Mining of Public Social Networks’ Influence in Society [8]. We present some
preliminary results that show that the adapted Fuzzy Fingerprints outperform some of
the most commonly classifiers (SVM and kNN) when applied to this particular problem.
Additionally, in conjunction with the other techniques, the proposed Twitter topic detection
process has additional advantages over the existing methods. In particular, it is significantly
faster, and the resulting models are much smaller than SVMs.

The paper is organized as follows: First, we discuss several “Related Techniques” from
similar fields of study such as Text Categorization and Document Representation. Secondly,
we explain how our proposed method (Twitter Topic Fuzzy Fingerprints) works and how
it stems from the Author Fuzzy Fingerprint in [8]. Then, we present the characteristics of
the used data set and how evaluations were performed. Finally we evaluate the Twitter
Topic Fuzzy Fingerprints with our data set of Portuguese tweets and present the comparison
results to SVM and kNN.

2 Related Techniques

The goal of this work is essentially to automatically classify tweets into a set of trending
topics. This process is broadly known in Natural Language Processing (NLP) as Text
Categorization, and consists of finding the correct topic (or topics) for each document, given
a set of categories (subjects, topics) and a collection of text documents [5].

The text contained in each tweet is the most relevant source of information for classification.
However, text is an unstructured form of data that classifiers and learning algorithms cannot
directly process [5]. For that reason, our documents/tweets must be converted into a more
manageable form, during a preprocessing step.

2.1 Document Representation
One of the simplest and commonly used representation is the bag-of-words model. Frequently
used in NLP and Information Retrieval (IR), it consists of representing a document as a set
(bag) of its words, ignoring the syntax and even the word order, but keeping the frequency
of each word. It uses all words in a document as features. Thus, the dimension of the
feature space is equal to the number of different words in all documents [5]. This form of
representation can be illustrated with the following example:

John bought a car
I love driving my car
I love John

Based of these three texts, a dictionary of unique words can be constructed: {John,
bought, a, car, I, love, driving, my}. The text collection can then be represented as a binary
matrix, containing 8 columns, one per dictionary word, and 3 rows, one per text entry:

SLATE 2014

188 Detecting a Tweet’s Topic within a Large Number of Portuguese Twitter Trends

The matrix presented in Figure 1 indicates whether a given term exists in the document,
without detailing on its importance to the collection of documents. An extended repres-
entation is known as the TF-IDF scheme and combines the concept of the term frequency
with the inverse document frequency. The TF-IDF scheme is a scoring method that can tell
the importance of a word in a collection of documents, and can be calculated as a simple
multiplication:

tfidf = tf × idf . (1)

The concept of term frequency (tf) is simply the number of occurrences of the word in the
document. The more common the word, the higher the term frequency will be. On the other
hand, words that occur in few documents, are probably richer in details that could better
characterize the document. The inverse document frequency (idf) spans from the principle
that a word that occurs in many documents is not relevant in differing each document from
each other. idf can be obtained by dividing the total number of documents N by the number
of documents ni containing the term, and then taking the logarithm of that quotient, as
expressed in Eq. (2):

idf = log N
ni
. (2)

By combining the Eqs. (1) and (2), the TF-IDF of word in a document can be expressed
by Eq. (3):

tfidf i = tf × log N
ni
. (3)

As succinctly explained in [17], tfidf assigns a weight to a term in document that is:
1. highest when the term occurs many times within a small number of documents;
2. lower when the term occurs fewer times in a document, or occurs in many documents;
3. lowest when the term occurs in virtually all documents;

Different categorization methods can be applied to a structured document representation.
In general, categorization algorithms follow the following four steps [5]:
1. Decide the categories that will be used to classify the instances;
2. Provide a training set for each of the categories;
3. Decide on the features that represent each of the instances;
4. Choose the algorithm to be used for the categorization;

2.2 k-Nearest Neighbors Algorithm – kNN
The kNN is an example-based classifier. This means it will not “build explicit declarative
representations of categories, but instead rely on computing the similarity between the
document to be classified and the training documents” [5]. In this case, the training data
is simply the “storing of the representations of the training documents together with their
category labels”.

In order for kNN to “decide whether a document d belongs to a category c, kNN checks
whether the k training documents most similar to d belong to c. If the answer is positive for
a sufficiently large proportion of them, a positive decision is made.”

In Figure 2, there are 3 different categories: blue, orange and green. The yellow dot
represents the document to be categorized. If k = 1 (smaller circle), the document will look
for its closest neighbour and determine that it belongs to the blue category, therefore, it

H. Rosa, J. P. Carvalho, and F. Batista 189

Figure 2 Example of the K Nearest Neighbour Algorithm.

will be classified as blue. However, if k = 5, (larger circle), it will determine that 3 of its
neighbours belong to the orange category and 2 to the blue category. By a majority rule, the
document will be classified as orange.

An appropriate value of k is of the utmost importance. While k = 1 can be too simplistic,
as the decision is made according only to the nearest neighbour, a high value of k can have
too much noise in it and favour dominant categories. In fact, this algorithm is known to be
affected by noisy data.

The kNN is considered to be one of the simplest and best performing text classifiers,
whose main drawback is “the relatively high computational cost of classification – that is, for
each test document, its similarity to all of the training documents must be computed” [5]. In
kNN, “the training is fast, but classification is slow. Computing all the similarities between
a document that has not been categorized and a collection of documents, is slow” [12].

2.3 Support Vector Machines – SVM
A support vector machine (SVM) is a very fast and effective binary classifier. According to
[12] “every category has a separate classifier and documents are individually matched against
each category”. Given the vector space model in which this method operates, geometrically
speaking, [5] describes SVM as a “hyperplane in the feature space, separating the points that
represent the positive instances of the category from the points that represent the negative
instances. The classifying hyperplane is chosen during training as the unique hyperplane that
separates the known positive instances from the known negative instances with the maximal
margin”.

Consider Figure 3 as a two dimensional example of SVM. As one would expect, in this
scenario, the hyperplanes are lines. The figure reveals that the hyperplane H1 does not
separate the positive from the negative instances. H2 does, but it does not guarantee the
maximum distance between them. Finally, H3 offers the necessary solution. “It is interesting
to note that SVM hyperplanes are fully determined by a relatively small subset of the training
instances, which are called the support vectors” [5].

According to [12], SVM has at least three major differences with the previous categorization
method:

SLATE 2014

190 Detecting a Tweet’s Topic within a Large Number of Portuguese Twitter Trends

Figure 3 Two dimensional Support Vector Machine.

1. Not all training documents are used. The SVM function is built only by documents near
to the classification border;

2. An SVM can construct an irregular border to separate positive and negative training
documents;

3. Not all features (unique words) from training documents are necessary for classification;

SVM methods for text categorization have recently attracted some attention since they
are amongst the most accurate classifiers [12].

3 Twitter Topic Fuzzy Fingerprints

In this work we propose the use of an adaptation of the Fuzzy Fingerprints classification
method described in [8] to tackle the problem of Topic Detection in Twitter. In [8] the
authors approach the problem of text authorship by using the crime scene fingerprint analogy
to claim that a given text has its authors writing style embedded in it. If the fingerprint is
known, then it is possible to identify whether a text whose author is unknown, has a known
author’s fingerprint on it.

The algorithm itself works as following:

1. Gather the top-k word frequencies in all known texts of each known author;
2. Build the fingerprint by applying a fuzzifying function to the top-k list. The fuzzified

fingerprint is based on the word order and not on the frequency value;
3. Perform the same calculations for the text being identified and then compare the obtained

text fuzzy fingerprint with all available author fuzzy fingerprints. The most similar
fingerprint is chosen and the text is assigned to the fingerprint author;

The proposed fuzzy fingerprint method for Tweet Topic Detection, while similar in
intention and form, differs in a few crucial steps.

H. Rosa, J. P. Carvalho, and F. Batista 191

Listing 1 Pseudo-Code to explain data structure used.
createDataStructure (trainingSet , topTrends)

trendFP = Set of topicFingerprints ()
for tweet in trainingSet

tokens = tokenize (tweet)
kw = words in tokens and topTrends
for k in kw

for t in tokens
if t not in topTrends

trendFP {k}[t]++

First it is important to establish the parallel between the context of author ownership
and Tweet Topic Detection. Instead of author fingerprints, in this work we are looking to
obtain the fingerprints of hashtagged Twitter topics (#). Once we have a topics fingerprint
library, each unclassified tweet can be processed and compared to the fingerprints existing in
the topic library.

Secondly, different criteria were used in selecting the top-k words for the fingerprint.
While [8] uses word frequency as the main feature to create the top-k list, here we use an
adaptation of an Inverse Document Frequency technique, aiming reducing the importance of
frequent terms that are common across several topics, such as “follow”, “RT” and “like”.

Lastly, the similarity score differs from the original, based on the fact that tweets are, by
design, very short texts, while the original Fuzzy Fingerprint method was devised to classify
much longer texts (newspaper articles, books, etc. ranging from thousands to millions of
characters). Here we propose the use of a normalized score with values between 0 and 1,
where the lowest score indicates that the tweet in question is in no way similar to the topic
fingerprint, and the highest value indicates that the tweet is totally similar.

3.1 Building the Fingerprint Library
In order to build the fingerprint library, the proposed method goes over the training set,
which, in this situation, are tweets containing the Trending Topics of the day. For each tweet,
it acknowledges the existence of the # and adds each word in the tweet to a #topic table
alongside with its counter of occurrences. Only the top-k most frequent words are considered.
The algorithm presented in Figure 1 presents further details the this process.

The main difference between the original method and ours, is that due to the small size
of each tweet, its words should be as unique as possible in order to make the fingerprints
distinguishable amongst the various topics. Therefore, in addition to counting each word
occurrence, we also account for of its Inverse Topic Frequency (ITF), an adaptation of the
Inverse Document Frequency in Eq. (2), where N becomes the topic fingerprint library size
(i.e., the total number of topics), and ni becomes the number of #topics where the word is
present.

Table 1 shows an example of a possible top-k output produced by the algorithm Figure 1
for a fingerprint size k = 3, after going through a small training set. By multiplying the
occurrences of each word per topic with its ITF, we obtain the third column of Table 1. As
expected, the term “help”, which was the only one that occurred in more than one fingerprint,
got dropped to last position in the ranking of fingerprint words for the topic “#derek”.

After obtaining the top-k list for a given #topic, we take the same approach as the
original method, and use the membership Eq. (4) to build the fingerprint, where k is the size

SLATE 2014

192 Detecting a Tweet’s Topic within a Large Number of Portuguese Twitter Trends

Table 1 Fingerprint hash table before and after ITF.

Key Feature Counter Feature ITF
dead 4 dead 1.90

#michaeljackson rip 2 rip 0.95
sing 1 sing 0.48

earthquake 10 earthquake 4.77
#haiti rip 5 rip 1.43

help 1 help 0.17
show 8 show 3.81

#derek help 3 australia 0.95
australia 2 help 0.52

Figure 4 Fuzzyfing functions.

of the top-k fingerprint and i represents the membership index:

µab(i) =
{

1− (1− b) i
kb i < a

a(1− i−a
k−a)

k i ≥ a
(4)

Figure 4 shows the three membership functions that were considered and the impact
of the parameters a and b on it. Much like in the original method, Eq. (4) was the best
performing function and thus, the chosen one.

The fingerprint is a k sized bi-dimensional array containing in the first column the list
of the top-k words, and in the second column its membership value µab(i) obtained by the
application of Eq. (4).

3.2 Tweet-Topic Similarity Score
In the original method, Eq. (4), in order to check the authorship of a given text, a fingerprint
would be built for the document (using the procedure described above), and then the
document fingerprint would be compared with each fingerprint present in the library. Within
the Twitter context, such approach would not work due to the very small number of words

H. Rosa, J. P. Carvalho, and F. Batista 193

contained in one tweet – it simply does not make sense to count the number of individual
word occurrences. Therefore we developed a Tweet-Topic Similarity Score (T2S2) that tests
how much a tweet fits to a given topic. The T2S2 function, Eq. (5), provides a normalized
value ranging between 0 and 1, that takes into account the size of the (preprocessed) tweet
(i.e., its number of features):

T2S2(Φ, T) =

∑
v
µΦ(v) : v ∈ (Φ ∩ T)

j∑
i=0

µΦ(wi)
(5)

In (5) Φ is the #topic fingerprint, T is the set of words of the (preprocessed) tweet, µΦ(v)
is the membership degree of word v in the topic fingerprint, and j is the is the number of
features of the tweet. Essentially, T2S2 divides the sum of the membership values µΦ(v) of
every word v that is common between the tweet and the #topic fingerprint, by the sum of
the top j membership values in µP hi(wi) where w ∈ (Φ). Eq. 5 will tend to 1.0 when most
to all features of the tweet belong to the top words of the fingerprint, and tend to 0.0 when
none or very few features of the tweet belong to the bottom words of the fingerprint.

4 Twitter Data

Using Twitter’s developer tools [21], we extracted samples of the public data flowing through
Twitter by establishing a connection to a Twitter streaming endpoint. It is important to
note that, using the sample API, only 1% of the actual public tweets can be retrieved [4].
Using this method, we obtained just over 1.2 million Portuguese tweets, from March, 14th to
March 20th, 2014.

By executing Twitters DEV “GET Trends/place” method, one can obtain the top 10
trending topics of the moment in a given place. Using the WOEID (Where On Earth ID) for
Brazil and Portugal, we extracted the top trends on the 17th of March mid-afternoon, and
among them we selected two topics that seemed to have the most interesting content:

#AnittaNarizDeCapivara, regarding Anitta’s (Brazilian singer) new nose job which made
an impact during the annual award show “Melhores do Ano”;
#FicaVanessa, for people supporting Big Brother’s Brazil participant Vanessa who was
at risk of leaving the show;

Despite being top trends, we found that these hashtags only occurred 289 and 822 times
in our whole set of 1.2 million tweets. This can be explained by Twitter’s view on what
constitutes a trending topic.

According to [22], “Twitter Trends are automatically generated by an algorithm that
attempts to identify topics that are being talked about more right now than they were
previously. The Trends list is designed to help people discover the most breaking news from
across the world, in real-time. The Trends list captures the hottest emerging topics, not just
what is most popular. Put another way, Twitter favours novelty over popularity”.

4.1 Training Data Set
Even though we only used 2 topics for testing purposes (due to the difficulty in annotating a
high number of topics), the training set was built using 100 different topics created after the
most popular hashtags on the database. The training set is composed of over 600,000 tweets

SLATE 2014

194 Detecting a Tweet’s Topic within a Large Number of Portuguese Twitter Trends

in Portuguese language, where the most popular trend is #kca (18,000 tweets) and the rarer
is #1dnamix (139 tweets).

The fact that not all categories are trained with the same amount of samples makes for
what is known as an unbalanced dataset. In this case, it may happen that one single category
dominates the training set in such fashion, that some classifiers will incorrectly categorize
most of the test set as belonging to that one category.

4.2 Test Data Set
The test set was impartially built from uncategorized tweets belonging to the original set of
1.2 million documents.

Because of the TV broadcasting nature of the two target trends (#AnittaNarizDeCapivara
and #FicaVanessa), where the owners of the trends encourage its use and propagation, it
was very difficult to find many uncategorized tweets that clearly belonged to those topics.
Only 82 and 43 respectively were annotated, i.e., manually assigned to one of the two target
trends despite not the trend itself in the tweets’ text.

In order to increase the size of test set, a few more uncategorized tweets were added to it,
making for a total of 210 samples. Whilst still short, it provides a chance for our algorithm
to detect negative scenarios efficiently, since the added tweets belong to untrained top trends.

5 Evaluation Metrics

In this section, we take a look at the metrics used to determine how good or poorly a classifier
performs. Typically there are three key concepts: Precision, Recall and F-Measure.

Before the formulas are presented, it is important to grasp the statistical definitions that
constitute those formulas, within the scope of Twitter topic detection:
1. True Positive (TP): This means that a tweet belonging to a given topic, has been correctly

identified as belonging to that topic;
2. False Positive (FP): This means that a tweet that does not belong to a given topic, has

been incorrectly identified as belonging to that topic;
3. True Negative (TN): This means that a tweet that does not belong to a given topic, has

been correctly identified as not belonging to that topic;
4. False Negative (FN): This means that a tweet belonging to a given topic, has been

incorrectly identified as not belonging to that topic;
With this in mind, the definition of the metrics are:

Precision = #TP
#TP + #FP (6)

Recall = #TP
#TP + #FN (7)

F-Measure = 2× Precision × Recall
Precision + Recall (8)

6 Results

Here we compare the Twitter Topic Fuzzy Fingerprint method up against the two algorithms
we presented earlier: k-Nearest Neighbour (kNN) and Support Vector Machine (SVM). The

H. Rosa, J. P. Carvalho, and F. Batista 195

exact same training data sets and test data sets were used for all methods. Several test
scenarios were built to find each algorithm optimal performance setting.

6.1 Twitter Topic Fuzzy Fingerprint Performance
The following parameters were considered for the Twitter Topic Fuzzy Fingerprint:

1. k, size of the fuzzy fingerprint. Several increasing values were taken into to account, in
order to determine whether a higher or lower k value would provide better results;

2. stopwords. For each scenario, the results provided were measured with and without the
removal of stopwords. This aims to ascertain the true impact of the removal of stopwords.
The stopword list was provided by the Natural Language Toolkit, [1];

3. stemming. For each scenario, the option to return words in their stem form can be
either turned on or off. With this parameter, we aim to determine the impact of this
preprocessing technique towards getting better results.

4. minimum j sized words. For each scenario, different values of j were considered as being
the minimum size of the words to feature in the tweets’ list of terms. The purpose of this
variable, is to test how the removal of small words may help keep richer tokens and get
better results;

5. threshold value. It represents the T2S2 value from which our method will declare that a
certain tweet belongs to a given trend. For the purpose of this work, values of 0.5, 0.25,
0.15 and 0.10 were tested;

Through extensive testing, we found that the best results for the Twitter Topic Fuzzy
Fingerprints Algorithm were achieved when:

considering a low threshold value for acceptance of a tweet belonging to a topic (T2S2 =
0.10);
configuring a value of k = 40 for the size of the list of the fingerprint;
removing short words from the corpus, only keeping words with a minimum length of 4
characters(j = 4);
removing stopwords from the corpus;
not performing Stemming operations;

While the removal of stopwords provided better results (approximately 2%), the stemming
technique provided literally no improvement. A possible explanation for this, may derive
from the nature of language in Twitter itself. Since tweets are short in nature, words may
often occur in their stem form or in such fashion that a formal stemmer cannot process.
Twitter’s lingo is very unique due to the informal nature of social networking communication,
and a Stemming algorithm can only truly be effective with formal and well written texts.

Table 2 summarizes the algorithm’s performance. Regardless of the value of k, precision
values are always high, which indicates that False Positive scenarios are rare or non-existent.
However, recall is low for small values of k = [5; 10; 15] peaking at k = 40, when no False
Negative scenarios are identified.

A low recall is also a consequence of typically small T2S2 similarity values, which means
that Positive cases are not being identified because they were below the threshold= 0.10.
Consider the example of a preprocessed tweet with 8 features, two of which match a given
fingerprint: even if the matching words are the highest ranked membership terms, T2S2
would score approximately under 2

8 = 0.25.

SLATE 2014

196 Detecting a Tweet’s Topic within a Large Number of Portuguese Twitter Trends

Table 2 Twitter Topic Fuzzy Fingerprint Performance, with stopword removal but no stemming.

j k Precision Recall F-Measure
4 5 1.000 0.492 0.659
4 10 1.000 0.621 0.766
4 15 1.000 0.694 0.819
4 20 1.000 0.815 0.898
4 25 1.000 0.952 0.975
4 30 1.000 0.976 0.988
4 40 0.992 1.000 0.996
4 50 0.992 1.000 0.996
4 75 1.000 0.976 0.988
4 100 1.000 0.968 0.984
4 150 1.000 0.968 0.984
4 250 1.000 0.976 0.988
4 500 1.000 0.976 0.988

As k increases, either more matching words between the tweet features and the fingerprint
are found, or the same ranked words have a higher membership value which encourages a
better T2S2 score.

The best case scenario scores f-measure= 0.996, which, while extremely positive, is
suspicious due to the fact that the data set is short and possibly over trained. In [18],
the exact same Twitter Fuzzy Fingerprints method reached f-measure= 0.840 for a larger
multi-language data set and with more target top trends (35).

Here we tested for 2 target topics out of the possible 100 training trends. The purpose
behind this approach was to study how the Twitter Fuzzy Fingerprints method would behave
when approaching a larger and more realistic number of different possible trends, and to
study the impact of using the Inverse Topic Frequency (ITF) which should theoretically
improve the results with the increase in the number of topics. On the other hand, this
experiment also shows how the competing techniques are not as scalable: in [18], kNN also
performed poorly, but the SVM f-measure= 0.79 was very close to the one obtained using
the Twitter Fuzzy Fingerprints, albeit much less efficient in what concerns execution time.
Here the performance of the competing techniques degrade to the point of being unusable.

6.2 kNN and SVM Performance
In order to test kNN and SVM, stopwords were removed but stemming was not performed.
The final representation of either training and test set is a bag-of-words type, Figure 1, with
TF-IDF weighting, Eq. (3). The tests were performed using the WEKA framework [6].

kNN was executed with the k = [3, 5, 10, 30, 50] and, due to the limitations of WEKA,
the distance measure considered was the Euclidean distance as opposed to the more common
cosine similarity. Despite extensive testing and parameter tunning, the algorithm was
incapable of identifying a single True Positive case, i.e., precision= 0, recall= 0, f-measure= 0.
Instead, it classified all the samples as a part of the majority trained class #kca, which is
non-existent in the test set. In [18], when k = 5 , an f-measure= 0.445 could be achieved,
despite also being a consequence of classifying all test tweets in the majority class.

For SVM, a number of different parameters were tested and optimized, but [18] suggests
that the best performance was achieved using a linear kernel and a small soft-margin value:
C = 0.01, providing competitive results with the Twitter Fuzzy Fingerprints method.

For our test set of 210 Portuguese tweets, SVM behaved exactly as kNN did, i.e.,
precision= 0, recall= 0, f-measure= 0.

There are three possible explanations for such a poor performance. Firstly, this is a very

H. Rosa, J. P. Carvalho, and F. Batista 197

specific problem to which such broad and well known algorithms may not apply. Secondly is
the fact that there were so many different classes for either method to train. In addition,
the bag-of-words representation of the test data set was a very sparse matrix, with 210
documents (lines) and over 69000 unique features (columns). This would make these space-
vector oriented algorithms highly ineffective. Finally, there is the unbalanced nature of the
training data set, as explained by Zang and Inderjeet in [24]. When dealing with unbalanced
data sets, kNN completely ignores the minority classes and will often mistakenly classify a
tweet to the majority category.

6.3 Method Comparison
When comparing all 3 methods, it is evident that the Twitter Topic Fuzzy Fingerprint
algorithm outperforms both kNN and SVM, in this particular case.

Table 3 Execution Speed Comparison.

Method Preprocessing Build Model Evaluate
Fuzzy Fp 124.0s 0.02s

kNN > 1800s 0.02s 89.7s
SVM > 1800s > 14400s

kNN is a lazy algorithm, where all computation is deferred until classification, which
justifies that it takes so much longer evaluating such a small test data set. In what concerns to
SVM, a significant part of the time is attributed to creating the model after the preprocessing
stage. In our approach, building the model is just a linear function of the number of words
being considered for training.

Finally, the size of the model is also a significant issue, specially when one aims at
processing big quantities of data, in a distributed fashion. The fuzzy fingerprint model for a
given topic corresponds to a vector of k fixed elements, each one containing the value of a
feature (e.g. the word) and its score. Therefore it is fixed in size and corresponds to prunning
the list of relevant words at k.

7 Conclusions and Future work

We proposed a method for topic detection for micro bloging content, such as Twittter, when
in the presence of a large number of trending topics. This method, known as Twitter Topic
Fuzzy Fingerprints, outperforms two other commonly used algorithms, kNN and SVM.

Even when ignoring the obtained f-measure results, which can be biased by the size of
the test dataset, the proposed method still presents several advantages that make it an
undeniable alternative for on-the-fly, and possibly distributed, topic detection: 1) the size
of the resulting model is significantly smaller than SVM models, which is an important
issue to consider when performing distributed computation in different machines; 2) the
classification is significantly faster than the other two methods, making it an interesting
solution for on-the-fly processing of Big Data streams.

Since the annotated Portuguese data used in the paper is undeniably small, extended
manually annotated test sets must be created in a near future in order to further confirm
and validate the results here presented.

Acknowledgments. This work was supported by national funds through FCT Fundação
para a Ciência e a Tecnologia, under project PTDC/IVC-ESCT/4919/2012 and project
PEst-OE/EEI/LA0021/2013.

SLATE 2014

198 Detecting a Tweet’s Topic within a Large Number of Portuguese Twitter Trends

References

1 Steven Bird. NLTK: the natural language toolkit. In Proceedings of the COLING/ACL on
Interactive presentation sessions, COLING-ACL’06, pages 69–72, Stroudsburg, PA, USA,
2006. Association for Computational Linguistics.

2 J. P. Carvalho and L. Coheur. Introducing UWS – a fuzzy based word similarity function
with good discrimination capability: Preliminary results. In FUZZ-IEEE, pages 1–8, 2013.

3 Mario Cataldi, Luigi Di Caro, and Claudio Schifanella. Emerging topic detection on Twitter
based on temporal and social terms evaluation. In Proceedings of the Tenth International
Workshop on Multimedia Data Mining, MDMKDD’10, pages 4:1–4:10, New York, NY, USA,
2010. ACM.

4 Sunil D.M. et al. Twitter developers – limit on streaming tweets. https://dev.twitter.
com/discussions/6789. Accessed: 2014-03-28.

5 Ronen Feldman and James Sanger. Text Mining Handbook: Advanced Approaches in Ana-
lyzing Unstructured Data. Cambridge University Press, New York, NY, USA, 2006.

6 Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and
Ian H. Witten. The weka data mining software: An update. SIGKDD Explor. Newsl.,
11(1):10–18, November 2009.

7 N. Homem and J. P. Carvalho. Finding top-k elements in data streams. Inf. Sci.,
180(24):4958–4974, December 2010.

8 N. Homem and J. P. Carvalho. Authorship identification and author fuzzy fingerprints.
In 30th Annual Conference of the North American Fuzzy Information Processing Society,
NAFIPS2011, 2011.

9 N. Homem and J. P. Carvalho. Finding top-k elements in a time-sliding window. Evolving
Systems, 2(1):51–70, 2011.

10 Carol Huang. Facebook and Twitter key to Arab Spring uprisings: report. The
National, 6 June 2011. http://www.thenational.ae/news/uae-news/facebook-and-
twitter-key-to-arab-spring-uprisings-report.

11 Shiva Prasad Kasiviswanathan, Prem Melville, Arindam Banerjee, and Vikas Sindhwani.
Emerging topic detection using dictionary learning. In Proceedings of the 20th ACM Inter-
national Conference on Information and Knowledge Management, CIKM’11, pages 745–754,
New York, NY, USA, 2011. ACM.

12 Manu Konchady. Text Mining Application Programming. Charles River Media, 2006.
13 Kathy Lee, Diana Palsetia, Ramanathan Narayanan, Md. Mostofa Ali Patwary, Ankit

Agrawal, and Alok Choudhary. Twitter trending topic classification. In Proceedings of the
2011 IEEE 11th International Conference on Data Mining Workshops, ICDMW’11, pages
251–258, Washington, DC, USA, 2011. IEEE Computer Society.

14 Michael Mathioudakis and Nick Koudas. Twittermonitor: Trend detection over the twitter
stream. In Proceedings of the 2010 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD’10, pages 1155–1158, New York, NY, USA, 2010. ACM.

15 Allie Mazzia and James Juett. Suggesting hashtags on twitter. Master’s thesis, University
of Michigan, 2010.

16 El País. El 15-M sacude el sistema. http://politica.elpais.com/politica/2011/05/
21/actualidad/1305999838_462379.html, May 2011.

17 Anand Rajaraman, Juri Leskovec, and Jeffrey Ullman. Mining of Massive Datasets. Cam-
bridge University Press, 2011.

18 H. Rosa, J. P. Carvalho, and F. Batista. Twitter topic fuzzy fingerprints. IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE 2014), 2014.

19 Ankan Saha and Vikas Sindhwani. Learning evolving and emerging topics in social media:
A dynamic nmf approach with temporal regularization. In Proceedings of the Fifth ACM

https://dev.twitter.com/discussions/6789
https://dev.twitter.com/discussions/6789
http://politica.elpais.com/politica/2011/05/21/actualidad/1305999838_462379.html
http://politica.elpais.com/politica/2011/05/21/actualidad/1305999838_462379.html

H. Rosa, J. P. Carvalho, and F. Batista 199

International Conference on Web Search and Data Mining, WSDM’12, pages 693–702, New
York, NY, USA, 2012. ACM.

20 Jagan Sankaranarayanan, Hanan Samet, Benjamin E. Teitler, Michael D. Lieberman, and
Jon Sperling. Twitterstand: News in tweets. In Proceedings of the 17th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, GIS’09, pages
42–51, New York, NY, USA, 2009. ACM.

21 Twitter. Twitter developer tools. https://dev.twitter.com/. Accessed: 2014-03-28.
22 Twitter. To trend or not to trend... https://blog.twitter.com/2010/trend-or-not-

trend, 8 December 2010.
23 Yiming Yang and Xin Liu. A re-examination of text categorization methods. In Proceedings

of the 22Nd Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR’99, pages 42–49, New York, NY, USA, 1999. ACM.

24 J. Zhang and I. Mani. KNN Approach to Unbalanced Data Distributions: A Case Study
Involving Information Extraction. In Proceedings of the ICML’2003 Workshop on Learning
from Imbalanced Datasets, 2003.

SLATE 2014

https://dev.twitter.com/

Multiscale Parameter Tuning of a Semantic
Relatedness Algorithm
José Paulo Leal1 and Teresa Costa2

1 CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto
Porto, Portugal
zp@dcc.fc.up.pt

2 CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto
Porto, Portugal
teresa.costa@dcc.fc.up.pt

Abstract
The research presented in this paper builds on previous work that lead to the definition of

a family of semantic relatedness algorithms that compute a proximity given as input a pair of
concept labels. The algorithms depends on a semantic graph, provided as RDF data, and on a
particular set of weights assigned to the properties of RDF statements (types of arcs in the RDF
graph). The current research objective is to automatically tune the weights for a given graph in
order to increase the proximity quality. The quality of a semantic relatedness method is usually
measured against a benchmark data set. The results produced by the method are compared
with those on the benchmark using the Spearman’s rank coefficient. This methodology works
the other way round and uses this coefficient to tune the proximity weights. The tuning process
is controlled by a genetic algorithm using the Spearman’s rank coefficient as the fitness function.
The genetic algorithm has its own set of parameters which also need to be tuned. Bootstrapping
is based on a statistical method for generating samples that is used in this methodology to
enable a large number of repetitions of the genetic algorithm, exploring the results of alternative
parameter settings. This approach raises several technical challenges due to its computational
complexity. This paper provides details on the techniques used to speedup this process. The
proposed approach was validated with the WordNet 2.0 and the WordSim-353 data set. Several
ranges of parameters values were tested and the obtained results are better than the state of the
art methods for computing semantic relatedness using the WordNet 2.0, with the advantage of
not requiring any domain knowledge of the ontological graph.

1998 ACM Subject Classification E.1 Graphs and networks, G.2.2 Graph theory, Path and cir-
cuit problems, H.3.1 Content Analysis and Indexing, I.2.4 Knowledge Representation Formalisms
and Methods, Semantic networks, I.2.8 Problem Solving, Control Methods, and Search, Graph
and tree search strategies

Keywords and phrases semantic similarity, linked data, genetic algorithms, bootstrapping, Word-
Net

Digital Object Identifier 10.4230/OASIcs.SLATE.2014.201

1 Introduction

Consider a magazine, a pencil and a notepad. Of these three items which is the most related
pair? Is it magazine and pencil, pencil and notepad, or newspaper and notepad? People
living in more individualistic societies tend to find the magazine and the notepad more
related, since they are both made of sheets of paper; while people living in more collectivist
societies tend to find the pencil and the notepad more related, since they complement each

© José Paulo Leal and Teresa Costa;
licensed under Creative Commons License CC-BY

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões; pp. 201–213

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2014.201
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

202 Multiscale Parameter Tuning of a Semantic Relatedness Algorithm

other (a pencil writes on notepad) [7]. The differences are even more striking when people are
asked to assign a value to the relatedness [6]. These experiments reveal the lack of a standard
definition of relatedness and the difficulty to measure the relatedness of two concepts.

A standard approach to measure relatedness is to use an ontology [13]. An ontology
is a formal and explicit specification of the relationships between concepts. For instance,
a thesaurus is a kind of ontology specifying the relationships between words: synonymy
and antonymy, as well as hyponymy (words whose semantic field encloses other words, e.g.,
mammal has as hyponym horse) and hypernymy (words whose semantic field is enclosed in
other words, e.g, horse has a hypernym mammal).

This paper presents ongoing work aiming at the development of a new methodology to
determine the semantic relatedness between two concepts. This methodology is ontology
based, can be applied to an ontological graph, and does not require any knowledge of the
ontological domain. It uses a family of semantic relatedness algorithms based on the notion
of proximity [10]. An algorithm of this family is parametrized by a semantic graph and a
set of weights. The semantic graph is provided as RDF data, where the resources are the
graph nodes and the properties are the arcs. Each type of arc has a specific weight value.
Tuning these weights in order to improve the quality of the semantic relatedness is the current
objective of this research.

Other methods available in the literature [1, 11, 13] measure the quality of their algorithms
using as benchmark a standard data set [6]. The reference similarity of concept pairs is
the average similarity assigned by a group of persons. The relatedness computed with an
algorithm is compared against those of the benchmark using the Spearman’s rank order
correlation. The quality of an algorithm is as high as the value of this correlation.

A measure of quality is essential for using a genetic algorithm to tune weight values. In
this tuning approach, an assignment of values to weights is encoded as a set of genes of a
chromosome. New chromosomes are obtained by crossover and mutation of the chromosomes
from the previous generation and the best are selected using a fitness function plus randomness.
The fitness function receives as input a weight assignment and returns the Spearman’s rank
order correlation for a subset of benchmark data.

The genetic algorithm has in turn its own set of parameters that need to be tuned.
Bootstrapping is done through a statistical procedure that produces a large number of
samples that is used to explore the most promising settings of the genetic algorithm. The
best settings are finally used to run the genetic algorithm a large number of times with the
complete data set.

This methodology was validated with the ontology of WordNet 2.0 [5], using as benchmark
the WordSim-353 [6] data set. The obtained results were better than the best results available
on the literature for the same ontology and benchmark [13, 9].

Due to its computational complexity this tuning methodology raises several technical
challenges. Firstly, the semantic algorithms must collect a large number of paths connecting
each pair of labels in the graph. Secondly, in order to compute the Spearman’s rank order, the
semantic relatedness algorithm must be executed with several hundreds of pairs of concept
labels. Thirdly, the genetic algorithm must compute a correlation for each chromosome (a
set of weight assignments) in the genetic pool for hundreds of generations. And finally, the
evolution process of the genetic algorithm has to be repeated hundreds of times as part of
the bootstrapping method. This paper presents also approaches used to speedup the tuning
process.

The rest of the paper is organized as follows. The next section present the state of the art
on semantic relatedness. Section 3 describes the tuning methodology and Section 4 details

J. P. Leal and T. Costa 203

its implementation. The experimental results and their analysis can be found in Section 5.
Finally, Section 6 summarizes this work and identifies opportunities for further research.

2 Related Work

The problem of computing semantic relatedness can be approached in several ways. Most
approaches fall in one of two types: path methods, based on the topology of the relationships
between concepts; and content methods, based on the frequency of word occurrence in
corpora. In many cases the paths relating the concepts traverse an ontology. The research
described in this paper follows the ontological approach.

Some of the ontological methods use only the underlying taxonomy, for instance, the
taxonomy created by the is-a relationships, or the hypernymy and hyponymy relationships
of a thesaurus. An example of this kind of approach is the work of Mazuel and Sobouret [11].
Their approach measures the relatedness based on the taxonomical part of the ontology of
the WordNet and discards paths that are not “semantically correct” working only with a
subset of “semantically correct” paths. To measure the semantic distance this methodology
selects the best one from the subset.

Other ontological methods explore the full range of relationships in an ontology. An
example of this approach is the work of Hirst and St-Onge [8] that used the WordNet as a
knowledge source to create a lexical chainer (SIC). A lexical chain is a chain where words
are included if they have a cohesive relationship with another word already in the chain. In
this work they defined three types of relations: extra-strong, strong and medium-strong. The
weight of a relation is higher as stronger is the relationship between the words.

Some path approaches use also statistical concepts. J. Garcia and E. Mena [2] developed
a method that uses the Web as knowledge source, based on the Normalized Google Distance.
This approach uses the frequencies of concepts provided by search engines to define a new
semantic relatedness measure among ontology terms.

The work of Michael Strube and Simone Paolo Ponzetto [13] analyses several path and
content approaches to choose the best one. The approaches they analysed were assigned
to three categories: path, content and text overlap. The approaches in this last category
compute an overlap score by using stemming to explore related words.

Several of the mentioned approaches use the WordNet. The WordNet [5] is a large lexical
knowledge base of English words. It groups nouns, verbs, adjectives and adverbs into synsets
(sets of cognitive synonyms) that express distinct concepts. Synsets are interlinked by lexical
and conceptual-semantic relationships. This knowledge base is well-known and widely used
but lacks some specialized vocabularies and named entities, such as Diego Maradona or
Freddie Mercury. On the other hand, it is a comparatively small knowledge base and thus it
is ideal for the initial tests of a tuning methodology.

3 Multiscale Weight Tuning

This section is to describe an approach for tuning weights in a family of semantic relatedness
algorithms. The proposed approach for tuning weights operates at different scales. Although
each scale has its own distinctive features, there are self-similar patterns common to all
scales.

Consider a fractal as a metaphor. At each scale a fractal exhibits features that are found
also on other fractal dimensions. That is, if we zoom in (or zoom out) on a fractal we observe
a identical pattern. Mathematical fractals are exact and infinite repetitions of the same

SLATE 2014

204 Multiscale Parameter Tuning of a Semantic Relatedness Algorithm

pattern. Nonetheless, fractals observed in nature, such as shells, leaves or coastlines, exhibit
self-similar patterns that are neither infinite nor an exact repetition of other scales.

In this tuning approach, the common pattern is the concept of function, with input and
output values, and a set of parameters that can be tuned. At the lowest scale this function is
the semantic relatedness algorithm. It takes as input a pair of strings and produces a value
in the interval [0,1]. This function takes as parameters a semantic graph and a set of weights
that must be tuned.

Zooming out to the next scale there is a genetic algorithm. A genetic algorithm can be
seen as a function taking another function as input a fitness function and producing a result.
It has also its own set of parameters that need to be tuned: the number of generations, the
mutation rate, etc.. In this case the fitness function takes as input a set of weights and
computes the correlation between the relatedness obtained by the algorithm and the standard
benchmark. Hence, each application of a genetic algorithm (seen as a function) aggregates
thousands of applications of functions from the previous scale – the semantic relatedness
algorithm.

Continuing to zoom out to the next and final scale there is a statistical method, the
bootstrapping method. This method measures the accuracy of the results obtained by the
genetic algorithm with different parameter sets. It can also be seen as a function taking as
input genetic algorithms, the candidates for producing a weight tuning, and producing an
estimate of which is the best. Again, each application of the bootstrapping method (seen as
a function) aggregates thousands of applications of the of functions from the previous scale –
the genetic algorithm – since each candidate configuration set is repeated hundreds of times.

The following subsections detail each of these “fractal scales”. Each scale describes
the function that is used as input for its upper scale, identifying its parameters. At least
metaphorically, these functions can be seen as a self-similar pattern that is present in the
three different layers in which the proposed approach operates.

3.1 Proximity Measure Layer

The core of the methodology for calculate proximity between concepts is an algorithm to
compute semantic relatedness using ontological information in RDF graphs. It uses the
notion of proximity, rather than distance, as the underlying concept for computing semantic
relatedness between two nodes.

Concepts in ontological graphs are represented by nodes. Take for instance the music
domain. Singers, bands, music genres, instruments or virtually any concept related to music
is represented as nodes in an ontology. These nodes are related by properties, such as has
genre connecting singers to genres, and thus form a graph. This graph can be retrieved in
RDF format using the SPARQL endpoint of a knowledge base, such as DBpedia or Freebase.

The core idea of the research presented in this paper is to use the RDF graph to compute
the relatedness between nodes. Actually, the goal is the relatedness between terms, but
concept nodes of this graph typically have a label – a string representation or stringification –
that can be seen as a term.

At first sight relatedness may seem to be the inverse of the distance between nodes.
Two nodes far apart are unrelated and every node is totally (infinitely) related to itself.
Interpreting relatedness as a function of distance has an obvious advantage: computing
distances between nodes in a graph is a well studied problem with several known algorithms.
After assigning a weight to each arc one can compute the distance as the minimum length of
all the paths connecting the two nodes.

J. P. Leal and T. Costa 205

Band Musical Artist

Lady Gaga MadonnaQueen

Pop Rock

has g enre

hastyp e has typ e has typ e

AC/DC

Hard Rock

has typ e

has g enrehas g enrehas g enre

 Rock

sub g enre sub g enre

Figure 1 RDF graph for concepts in music domain.

On a closer inspection this interpretation of relatedness as the inverse of distance reveals
some problems. Consider the graph in Figure 1. Depending on the weight assigned to the
arcs formed by the properties has type and has genre, the distances between Lady Gaga,
Madonna and Queen are the same. If the has genre has less weight than has type, this
would mean that the band Queen is as related to Lady Gaga as Madonna, which obviously
should not be the case. On the other hand, if has type has less weight than has genre
then Queen is more related to AC/DC than to Lady Gaga or Madonna simply because they
are both bands, which also should not be the case.

In the semantic relatedness methodology proposed, we consider proximity rather than
distance as a measure of relatedness among nodes. By definition1, proximity is closeness;
the state of being near as in space, time, or relationship. Rather than focusing solely on
minimum path length, proximity balances also the number of existing paths between nodes.
As an example consider the proximity between two persons. More than resulting from a
single common interest, however strong, it results from a collection of common interests.

With this notion of proximity, Lady Gaga and Madonna are more related to each other
than with Queen since they have two different paths connecting each other, one through
Musical Artist and another Pop Rock. By the same token the band Queen is more related
to them than to the band AC/DC.

An algorithm to compute proximity must take into account the several paths connecting
two nodes and their weights. However, paths are made of several edges, and the weight of an
edge should contribute less to proximity as it is further away in the path. In fact, there must
be a limit in number of edges in a path, as RDF graphs are usually connected graphs.

The main issue with this definition of proximity2 is how to determine the weights of

1 https://en.wiktionary.org/wiki/proximity
2 See [10] for a detailed description of the algorithm.

SLATE 2014

206 Multiscale Parameter Tuning of a Semantic Relatedness Algorithm

transitions. The first attempt was to define these weights using domain knowledge. For
instance, when comparing musical performers one may consider that being associated with a
band or with another artist is more important than their musical genre, and that genre is
more important than their stylistics influences and even more important than instruments
they play.

This naïve approach to weight setting has several problems. Firstly, this kind of “informed
opinion” frequently has no evidence to support it, and sometimes is plainly wrong. How sure
can one be that stylistics influences should weight more than the genre in musical proximity?
Even if it is true sometimes, how can one be sure it is true in most cases? Secondly, this
approach is difficult to apply to a large ontology encompassing a broad range of domains. Is
a specialist required for every domain? How should an ontology be structured in domains?
What domain should be considered for concepts that fall in multiple domains? To be of
practical use, the weights of a proximity based semantic relatedness algorithm must be
automatically tuned.

3.2 Genetic Algorithm Layer
Genetic algorithms are a family of computational models that mimic the process of natural
selection in the evolution of the species. These algorithms use the concepts of variation,
differential reproduction and heredity to guide the co-evolution of a set of problem solutions.
This type of algorithm is frequently used to improve solutions of optimization problems [14].

There are two necessary conditions for using a genetic algorithm. Firstly, the different
candidate solutions must be representable as individuals (variation). This encoding of an
individual solution is sometimes called a chromosome which are a collection of genes that
characterize the solution. Secondly, it must be possible to compare a set of individuals,
decide which are the fittest and allow them to pass their genetic information to the next
generation (differential reproduction). Also, the representation of solutions as individuals
must allow their recombination with other solutions (heredity) so that favorable traits are
preferred over unfavorable ones as the population of solutions evolves.

A simple approach in the case of weight tuning is to consider as individual a vector of
weight values. This representation contrasts with the binary representations typically used
in genetic algorithms [4]. However it is closer to the domain and it can be processed more
efficiently with large number of weights.

Genetic algorithms introduce variance also by mutation. The are a number of mutation
operators, such as swap, scramble, insertion, that can be used on binary representations [4].
However, the approach taken to represent individuals in this methodology makes these kind
of mutations less interesting. Since weights are independent from each other, swapping values
among them is as likely to improve the solution as selecting a new random values. Hence,
the genetic algorithm created for tuning weights has a single kind of mutation: randomly
selecting a new value for a given “gene”.

The fitness function plays a decisive role in selecting the new generation of individuals,
created by crossover and mutation of their parents. The usual method for estimating the
quality of a semantic relatedness function is to compare it with a benchmark data set. The
benchmark data set contains pairs of words and their relatedness.

The Spearman’s rank order coefficient is commonly used to compare the relatedness
values in the benchmark data set with those produced by a semantic relatedness algorithm.
Rather than the simple correlation between the two data series, the Spearman’s rank order
sorts those data series and correlates their rank.

The genetic algorithm of this weight tuning methodology uses as fitness function the

J. P. Leal and T. Costa 207

Spearman’s rank order coefficient on benchmark data, using as input a vector of weight
values assigned to each arc type.

3.3 Bootstrap Layer
The genetic algorithm itself has a number of parameters that must be tuned. Generic
parameters of a genetic algorithm include the number of generations and the mutation rate.
In this particular case the range of values that may be assigned to weights must also be
considered.

Several approaches to tuning parameters of genetic algorithms have been proposed and
compared [12]. Although with different approaches, these methods highlight the advantage
of using automated parameter tuning over tuning based on expert “informed opinions”. In
many cases the best solution contradicts the expert best intuitions.

The proposed methodology relies on a single benchmark data set to compare alternative
weight attributions. To repeat a large number of experiments using the genetic algorithm to
co-evolve a set solutions one needs a larger test sample. Bootstrapping [3] is a statistical
method for assigning measures of accuracy to data samples, using simple techniques known
as resampling.

Resampling is applied to the original data set to build a collection of sample data sets.
Each sample data set has the same size as the original data set and is build from the same
elements. If the original data set has size n then n elements from that set are randomly
chosen to create the sample set. When an element is selected it is not removed from the
original data set. Hence, a particular element may occur repeatedly on the sample data set
while other may not occur at all.

The bootstrapping method is used for comparing different approaches. Each approach is
repeated a large number of times, typically 200, each time with a different sample set. Each
approach is summarized by a statistics, such as the mean or the third quartile. In the end,
these statistics are compared to select the most effective approach. Since the objective is to
select the approach that may lead to the highest Spearman’s coefficient, the third quartile is
specially relevant since it is a lower bound of the largest solutions.

In this tuning methodology, each approach corresponds to a particular setting of the
genetic algorithm. Candidate settings include values for parameters such as the number
of generations or the mutation rate. Another important parameter that is specific to this
methodology is the range of values that are used as possible values for weights. As these
values have to be enumerated, this methodology considers only integer values bellow a certain
threshold.

As the result of the bootstrapping method a particular setting of the genetic algorithm’s
parameters is selected. The final stage is to run the genetic algorithm with these settings,
using the full benchmark data set in the fitness function. The selected genetic algorithm is
repeated an even larger number of times, typically 1000, and the best result is selected as
weights for the relatedness algorithm.

4 Implementation

The methodology presented for parameter tuning has a high computational complexity. At
its core it has to find all paths connecting two concepts to compute a single proximity. To
test the quality of a vector of weights, the proximity has to be computed for each pair of
concepts in a benchmark data set. Bootstrapping repeats 200 times the genetic algorithm
for each setting, and this process is repeated for a large number of settings.

SLATE 2014

208 Multiscale Parameter Tuning of a Semantic Relatedness Algorithm

The strategy used for improving the efficiency of the methodology has three main
components: graph pre-processing (described in the Subsection 4.1), factorization of the
proximity algorithm and concurrent evaluation of the bootstrapping method (described in
the Subsection 4.2). The remainder of this section details each of these components.

4.1 Graph Pre-processing
The computation of the semantic proximity between two concepts depends on a data graph
search that finds all the paths that connect both concepts. The data graph search is
implemented in two different ways, supporting queries of remote and local data. The main
differences are the methods that retrieve the nodes with a specific label and the methods
used to retrieve the transitions from a node used by the semantic relatedness algorithm.

Remote data is usually retrieved from SPARQL endpoints. A SPARQL endpoint is
addressed by a URI to which SPARQL queries can be sent and which returns RDF as a
response. Paths are built from data collected from two SPARQL queries. The following
query retrieves the list of all nodes that have a given string as label. This query is executed
twice, one for each label. For each node retrieved with the previous SPARQL query another
SPARQL query is executed, as shown bellow, until the set of paths connecting both concepts
are finished.

The SPARQL approach raises a number of issues. Firstly, the endpoint or network
may be under maintenance or with performance problems. Secondly, some endpoints have
configuration problems and do not support queries with some operators, such as UNION. And
thirdly, the SPARQL queries can have performance issues, mainly when using operators such
as DISTINCT, and having a large amount of queries per proximity search can cause a huge
impact at the execution time.

In order to avoid those issues, this methodology also implements searches in local data.
Knowledge bases often provide dumps of their data. Local data are preprocessed RDF graphs
that are stored in the local file system, retrieved from those dumps. Graph pre-processing
begins with parsing the RDF data. RDF data can be retrieved in several formats, such
as Turtle, RDF/XML or N-Triples. To simplify this process, all RDF data is converted to
N-Triples, since this is the simplest RDF serialization.

This process takes some time to execute but it is only necessary to execute it once. Also,
the most used data is cached in memory which has a significant impact on performance.

The proximity algorithm is based on a previous definition [10]. This algorithm takes
two strings as labels and builds a set with all the paths that connect both concepts. In
this current implementation, there is a stemming process with labels aiming to increase the
meaning scope of each word.

The computation of the proximity of a single pair of concepts using the WordNet 2.0
SPARQL endpoint3 takes about 20 minutes. With the pre-processed graph4 that is executed
once and takes 30 minutes, the same computation takes about 6 seconds.

4.2 Other Optimizations
Traversing the graph searching for paths connecting two labels is the most frequently executed
part of this semantic relatedness methodology. Nevertheless, this procedure is almost the
same for each pair of concepts, varying only on the weights that are used for each arc type.

3 http://wordnet.rkbexplorer.com/sparql/
4 The tests were executed in a 8 core machine at 3.5 GHz and 16Gb of RAM

http://wordnet.rkbexplorer.com/sparql/

J. P. Leal and T. Costa 209

This computation is repeated many times since the exact same pair of concepts is used each
time that the genetic algorithm is run.

The solution found was to alter the proximity algorithm to compute the set of coefficients
that are multiplied to each weight. These coefficients are organized in a vector, using the
same order of the weight vector used in the genetic algorithm. Thus, computing the proximity
of a pair of concepts given a different weight vector is just the inner product of the weight
vector and the coefficient vector.

With this modification a single run of the genetic algorithm with 200 generations takes
less than a 1 minute and computing the coefficients for all the pairs takes about 30 minutes.

The final optimization was concurrent evaluation of the bootstrapping method. Each
of the settings can be processed independently, hence they could be assigned to a different
processor of a multi-core machine. Each run of the bootstrapping method takes about 200
minutes. It run 120 configurations that sequentially would take more than 16.5 days in about
2 days.

5 Validation

The validation of the proposed tuning approach consisted of tuning the weights of the
relatedness algorithm for WordNet 2.0. The tuning was performed in two rounds. In the first
round a large number of settings was explored to determine which were the most relevant. A
second round was then performed to explore new settings on those parameters that have
more impact on performance.

The tuning process uses as benchmark the WordSimilarity-353 data set [6]. It has 353
pairs of concepts with the mean of the relatedness values given by humans. Since WordNet
2.0 does not have all the words listed in this data set, the pairs with missing elements were
removed, creating a new data set with the non-missing pairs. In total 7 pairs were removed.

The bootstrapping process tests three parameters: weight values, mutation rate, and
number of generations. The weight values were divided in positive and mixed (positive and
negative) values; the positive values ranged in [0, n] with n ∈ N+ and n ≤ 10. The mixed
values ranged in [−n, n] for the same values of n. The mutation rate took values in the set
{0.3, 0.4, 0.5} values and the number of generations in {100, 200}. Permutating these values,
120 different sets of parameters were tested. Each set of parameters was executed 200 times
in the bootstrapping process. The results of those tests can be seen in the following graphs.
These graphs show the statistics of the correlation as function of a single variable: number
of weight values, mutation rate and number of generations.

Figure 2 shows how the correlation evolves with different amounts and ranges of distinct
weights. The correlation obtained when there are only positive values in the weight set is
much lower than when positive and negative weights are used. The positive values also
appear to reach a maximum value. However, the sets with positive and negative values do
not show that stabilization, becoming relevant more tests with a larger range of values.

The graph on the left of Figure 3 shows the impact of changing the mutation rate. Despite
the large overall variation, the mean and third quartile values are similar, showing that
variations in this parameter have a small impact on the tuning process. Still, the variation
of the maximums indicate the relevance of also testing lower mutation rates in the future.

The graph on the right of Figure 3 presents the variation of the number of generations.
As it occurs with the mutation rate, changes in the number of generations have no significant
impact in the correlation values.

After the first round, changes in range of weight values appear to have a higher impact

SLATE 2014

210 Multiscale Parameter Tuning of a Semantic Relatedness Algorithm

● ●

●
● ● ● ● ● ● ●

5 10 15 20

0.
00

0.
10

0.
20

0.
30

●

●

●
● ● ● ● ● ● ●

● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● negative 3rd quartile
negative mean
positive 3rd quartil
positive mean

Amount of weight values

S
pe

ar
m

an
's

 r
an

k
or

de
r

Figure 2 Graph of weights distribution.

M3=0.3 M4=0.4 M5=0.5

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4

Mutation Values

S
pe

ar
m

an
's

 r
an

k
or

de
r

G1=100 G2=200

−0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

Generation Values

S
pe

ar
m

an
's

 ra
nk

 o
rd

er

Figure 3 Distribution of different mutation rates (left) and number of generations (right).

●

●

●

●●
●●●●● ● ● ● ●

●
●

● ●
●

0 50 100 150 200

0.
22

0.
26

0.
30

●●

●

●●
●●●●●

●

●
● ● ●

●
● ● ●

negative 3rd quartile
negative mean

Amount of weight values

S
pe

ar
m

an
's

 r
an

k
or

de
r

Figure 4 Graph of weights distribution.

J. P. Leal and T. Costa 211

Table 1 Weight values obtained after tuning process.

Edge type Weight Edge type Weight
null 1 wn:classifiedByUsage 18
wn:memberMeronymOf −2 wn:tagCount 1
wn:participleOf −6 wn:sameVerbGroupAs −8
wn:antonymOf −5 wn:derivationallyRelated 0
wn:classifiedByTopic 19 wn:attribute −15
wn:partMeronymOf 19 wn:synsetId 18
wn:word 12 wn:seeAlso 6
wn:gloss 19 rdfs:type −2
wn:similarTo −19 entails −1
wn:containsWordSense 4 wn:classifiedByRegion −9
wn:causes −17 wn:adverbPertainsTo 12
wn:frame 7 wn:hyponymOf 9
wn:adjectivePertainsTo 3 wn:substanceMeronymOf 18

Table 2 Previous work with WordNet and WordSim-353.

Method Spearman’s rank order
Jarmasz (2003) 0.33 - 0.35
Strube and Ponzetto (2006) 0.36
Proposed method 0.41

in the correlation values, specially if they allow negative values, increasing the correlation as
the range size increases. New tests were needed to investigate for how long the correlation
continues to increase, if it converges to an asymptote, or if the correlation degrades after a
certain threshold.

A new round of tests was made to investigate these hypothesis. This time only positive
and negative values were used, with fixed values of mutation rate and number of generations.
These new configurations uses ranges from [−10× n, 10× n] with n ∈ N+ and n ≤ 10. The
mutation rate value was fixed at 0.4 and the number of generations was fixed at 200. The
results are displayed in Figure 4. The values obtained by increasing the range of values show
a maximum value at the range [-20,20]. Ranges with higher values seem to never exceed the
Spearman’s rank order obtained at that point, indicating that performance degrades after
this threshold.

Using the best configuration obtained by the bootstrap process the genetic algorithm was
executed 1000 times aiming to obtain the best correlation value and the related configuration.

The best Spearman’s rank order value obtained was 0.409 and the corresponding weight
set is listed in the Table 1. The edges with the prefix wn correspond to the WordNet 2.0
URI5 and the prefix rdfs to the RDF Schema URI6. The edge type null is the custom edge
created in the stemming process.

Table 2 compares the results obtained by tuning the edge weights without domain
knowledge with other methodologies.

5 http://www.w3.org/2006/03/wn/wn20/schema/
6 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

SLATE 2014

212 Multiscale Parameter Tuning of a Semantic Relatedness Algorithm

6 Conclusion

The major contribution of the research presented in this paper is a method for tuning
a relatedness algorithm to a particular ontological graph, without requiring any domain
knowledge on the graph itself. The results obtained with this approach for WordNet 2.0 are
better than the state of the art for the same graph. A number of solutions to speedup graph
processing and the evaluation of fitness functions are also relevant contributions.

The proposed tuning approach performs a multiscale parameter tuning of an ontology
based semantic relatedness algorithm. The main feature of the base algorithm is the fact
that it considers all paths in an ontological graph that connect two labels and computes the
contribution of each path as a function of its length and of the type of its arcs (properties).
The main issue of this algorithm is the selection of parameters (weight values for each type
of arc) that maximize the quality of the relatedness algorithm.

The quality of semantic relatedness algorithms is usually measured against a benchmark
data set. This data set consists of the relatedness of a set of words, defined as the mean of the
relatedness attributed by a group a persons. The quality of the algorithm is computed as the
Spearman’s rank correlation coefficient between the relatedness produced by the algorithm
and the relatedness given by the data set. By defining this correlation as a function of weight
assignments it is possible to frame the problem of maximizing the quality of the relatedness
algorithm as finding the maximum of a function.

Evolutionary algorithms in general, and genetic algorithm in particular, are popular
choices for improving the quality of solutions. Using a genetic algorithm it is possible to use
variation and selection to improve the Spearman’s coefficient. The proposed genetic algorithm
uses as chromosome a set of weights attributions. The range of values used in attributions,
as well as the number of generations and the mutation rate are in turn parameters that must
also be tuned.

The statistical method of bootstrapping was used to measure the accuracy of different
parameter settings. This method generates diversity by producing many sample data sets
from the original data set. Bootstrapping is used to compare the results of the genetic
algorithm with different settings. After selecting the best candidate parameters for the
genetic algorithm, this is rerun with the complete benchmark data set.

The proposed approach for tuning the parameters of the semantic relatedness algorithm
was validated with Wordnet 2.0. The tuning procedure was actually executed twice. In
the first run several parameters of the genetic algorithm were tested to conclude that the
range of weight values is the decisive parameter, in particular if it is allowed to contain
negative values. The variation of some of the parameters, such as mutation rate and number
of generations, had no impact on the quality. Based on these findings a second run of the
tuning procedure explored a wider range of values. It showed that quality improves with the
width of range values but also that a small degradation occurs after a certain threshold. The
genetic algorithm was finally repeated a large number of times with the settings selected by
this approach and the maximum Spearman’s correlation obtained is significantly higher than
the best result reported on the literature for the same graph.

The Wordnet 2.0 graph used for the evaluation is comparatively small. It has just 26
different types of properties and 464.795 nodes. The next step is to investigate how this
approach works with Wordnet 3.0 and with even larger graphs, such as the DBPedia or
Freebase. Apart from the challenges of dealing with such large graphs, it will be interesting
to compare the semantic relatedness potential of different graphs and try to combine them
to improve the accuracy of the semantic relatedness algorithm.

J. P. Leal and T. Costa 213

Acknowledgements. This work is financed by the ERDF – European Regional Development
Fund through the COMPETE Programme (operational programme for competitiveness) and
by National Funds through the FCT – Fundação para a Ciência e a Tecnologia (Portuguese
Foundation for Science and Technology) within project FCOMP-01-0124-FEDER-037281.
Project “NORTE-07-0124-FEDER-000059” is financed by the North Portugal Regional
Operational Programme (ON.2 – O Novo Norte), under the National Strategic Reference
Framework (NSRF), through the European Regional Development Fund (ERDF), and
by national funds, through the Portuguese funding agency, Fundação para a Ciência e a
Tecnologia (FCT). The authors would also like to thank Luis Torgo for his help in the use of
statistical methods.

References
1 Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana Kravalova, Marius Paşca, and Aitor

Soroa. A study on similarity and relatedness using distributional and wordnet-based ap-
proaches. In Proceedings of Human Language Technologies: The 2009 Annual Conference
of the North American Chapter of the Association for Computational Linguistics, pages
19–27. Association for Computational Linguistics, 2009.

2 Danushka Bollegala, Yutaka Matsuo, and Mitsuru Ishizuka. Measuring semantic similarity
between words using Web search engines. Proceedings of the 16th international conference
on World Wide Web, 7:757–766, 2007.

3 Bradley Efron and Robert J. Tibshirani. An introduction to the bootstrap, volume 57. CRC
press, 1994.

4 Agoston E. Eiben and James E. Smith. Introduction to evolutionary computing. Springer,
2003.

5 Christiane Fellbaum. WordNet. Wiley Online Library, 1999.
6 Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi Wolf-

man, and Eytan Ruppin. Placing search in context: The concept revisited. In Proceedings
of the 10th international conference on World Wide Web, pages 406–414. ACM, 2001.

7 Yuriy Gorodnichenko and Gerard Roland. Understanding the individualism-collectivism
cleavage and its effects: Lessons from cultural psychology. Institutions and Comparative
Economic Development, 150:213, 2012.

8 Graeme Hirst and David St-Onge. Lexical chains as representations of context for the
detection and correction of malapropisms. WordNet: An electronic lexical database, 305:305–
332, 1998.

9 Mario Jarmasz. Roget’s thesaurus as a lexical resource for natural language processing.
CoRR, abs/1204.0140, 2012.

10 José Paulo Leal. Using proximity to compute semantic relatedness in rdf graphs. Comput.
Sci. Inf. Syst., 10(4), 2013.

11 Laurent Mazuel and Nicolas Sabouret. Semantic relatedness measure using object proper-
ties in an ontology. In The Semantic Web-ISWC 2008, pages 681–694. Springer, 2008.

12 Selmar K. Smit and Agoston E. Eiben. Comparing parameter tuning methods for evolution-
ary algorithms. In Evolutionary Computation, 2009. CEC’09. IEEE Congress on, pages
399–406. IEEE, 2009.

13 Michael Strube and Simone Paolo Ponzetto. Wikirelate! computing semantic relatedness
using wikipedia. In AAAI, volume 6, pages 1419–1424, 2006.

14 Darrell Whitley. A genetic algorithm tutorial. Statistics and computing, 4(2):65–85, 1994.

SLATE 2014

Rocchio’s Model Based on Vector Space Basis
Change for Pseudo Relevance Feedback
Rabeb Mbarek1, Mohamed Tmar2, and Hawete Hattab3

1 Sfax University
Multimedia Information systems and Advanced Computing Laboratory
Sfax, Tunisia
rabeb.hattab@gmail.com

2 Sfax University
Multimedia Information systems and Advanced Computing Laboratory
Sfax, Tunisia
mohamedtmar@yahoo.fr

3 Umm Al-qura University, Department of Mathematics
Makkah, KSA
hshattab@uqu.edu.sa

Abstract
Rocchio’s relevance feedback model is a classic query expansion method and it has been shown to
be effective in boosting information retrieval performance. The main problem with this method
is that the relevant and the irrelevant documents overlap in the vector space because they often
share same terms (at least the terms of the query). With respect to the initial vector space basis
(index terms), it is difficult to select terms that separate relevant and irrelevant documents. The
Vector Space Basis Change is used to separate relevant and irrelevant documents without any
modification on the query term weights. In this paper, first, we study how to incorporate Vector
Space Basis Change into the Rocchio’s model. Second, we propose Rocchio’s models based on
Vector Space Basis Change, called VSBCRoc models. Experimental results on a TREC collection
show that our proposed models are effective.

1998 ACM Subject Classification H.3.3 Information Search and Retrieval

Keywords and phrases Rocchio model, vector space basis change, pseudo relevance feedback

Digital Object Identifier 10.4230/OASIcs.SLATE.2014.215

1 Introduction

In the Vector Space Model (VSM), each component of the vector represents a term in
the document [18] i.e. each component in the vector represents the weight of the term in
the document. The set of all index terms is called the original vector space basis. For
the most vector space based Information Retrieval (IR) and feedback models, the original
vector space basis generates documents and queries. Although several term weighting and
feedback methods have been proposed, only a few approaches [4, 11, 8, 9] consider that
changing the vector space basis from the original vector space basis into another basis is an
issue of investigation. The Vector Space Basis Change (VSBC) consists of using a transition
matrix1. By changing the vector space basis, each vector coordinate changes depending
on this matrix. If we change the basis, then the inner product changes and so the Cosine

1 The algebraic operator responsible for change of basis.

© Rabeb Mbarek, Mohamed Tmar, and Hawete Hattab;
licensed under Creative Commons License CC-BY

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões; pp. 215–224

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2014.215
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

216 Rocchio’s Model Based on Vector Space Basis Change

function behavior changes [10]. By the same Dice, Jaccard and Overlap functions behavior
changes.

Pseudo Relevance Feedback (PRF) is known as a useful method for enhancing retrieval
performance. It assumes that the top-ranked n documents (pseudo-documents) of the initial
retrieval are relevant and extracts expansion terms from them. PRF has been shown to be
effective in improving IR performance [2, 3, 6, 7, 13, 14, 16, 17, 19, 20, 21]. PRF can also fail
in some cases. For example, when some pseudo-documents contain terms of the irrelevant
contents, then these terms misguide the feedback models by importing noisy terms into the
queries. This could influence the retrieval performance in a negative way.

With respect to the original vector space basis, relevant and irrelevant documents share
some terms (at least the terms of the query which selected these documents). To avoid
this problem, it suffice to separate relevant and irrelevant documents. VSBC is an effective
method for the separation of relevant and irrelevant documents. This method has been
studied in the past few years [4, 11, 8, 9]. In [8, 9], the authors have been found a basis
which gathers the relevant documents and the irrelevant ones are kept away from the relevant
ones. These approaches have been evaluated on a Relevance Feedback (RF) framework.

Rocchio’s model [16] is a classic framework for implementing (pseudo) RF via improving
the query representation. It models a way of incorporating (pseudo) RF information into
the VSM in IR. In this paper, first, we study how to incorporate VSBC into the Rocchio’s
model. Second, we propose Rocchio’s models based on the VSBC, called VSBCRoc models.

This paper is organized as follows. section 2 presents the related work. Sections 3
describes our approach based on the VSBC. In Section 4, the experimental results are
presented and discussed. A direct comparison is made to compare VSBCRoc models with
the classical Rocchio’s model. Finally, we conclude our work with a brief conclusion and
future research directions in Section 5.

2 Related Work

The VSM [18] is adopted to rank the documents. This model showed good feedback per-
formance on most collections whereas the probabilistic model had problems with some col-
lections [5].

2.1 Vector Space Basis Change

The Latent Semantic Indexing (LSI) [4] exploits the hypothesis that the term-document fre-
quency matrix encloses information about the semantic relations between terms and between
documents. This technique is based on Singular Value Decomposition (SVD) aiming at
decomposing the matrix and disclosing the principal components used to represent fewer
independent concepts than many inter-dependent index terms. This method results on a
new vector space basis, with a lower dimension than the original one (all index terms), and
in which each component is a linear combination of the indexing terms.

When using a term to express a query or a document, the user gave to the term a
semantics which is different from the semantics of the same term used by another user or
by the same user in another place, time, need. In other words, the use of a term depends
on context. Therefore, context influences the selection of the terms, their semantics and
inter-relationships. A vector space basis models a document or query terms. The semantics
of a document or query term depends on context. A vector space basis can be derived from a
context. Therefore, a vector space basis of a vector space is the construct to model context.

R. Mbarek, M. Tmar, and H. Hattab 217

Also, change of context can be modeled by linear transformations from one base to another
which is a VSBC [10, 11].

Recently, Mbarek et al. [8, 9] developed a RF algorithms based on a vector space basis
change. These RF algorithms improve the results of known models (BM25 model, Rocchio
model). They built a basis which gives a better representation of documents. This basis
should minimize the sum (S1) of squared distances between each relevant document and gR

(gR is the centroïd of relevant documents) and should maximize the sum (S2) of squared
distances between each irrelevant document and gR. And so this basis should minimize the
quotient S1

S2
[8] and maximize the difference S2 − S1 [9].

2.2 Pseudo-Relevance Feedback
In IR, PRF via query expansion is referred to as the techniques that reformulate the original
query by adding new terms into the query, in order to achieve a better retrieval performance.
There are a large number of studies on the topic of PRF. Here we mainly review the work
about PRF which is the most related to our research. A classical RF technique was proposed
by Rocchio in 1971 for the Smart retrieval system [16]. It is a framework for implementing
(pseudo) RF via improving the query representation, in which a set of documents are utilized
as the feedback information. Unique terms in this set are ranked in descending order of their
tf ∗ idf weights. In the following decades, many other RF techniques and algorithms were
developed, mostly derived under Rocchio’s framework. A popular and successful automatic
PRF algorithm was proposed by [14] in the Okapi system; Amati et al. [1] proposed a query
expansion algorithm in his divergence from randomness retrieval framework; Carpineto et
al. [2] proposed to compute the weight of candidate expansion terms based on the diver-
gence between the probability distributions of terms in the top ranked documents and the
whole collection; Miao et al. [12] studied how to incorporate proximity information into the
Rocchio’s model, and proposed three proximity based Rocchio’s models.

In this paper, first, we will incorporate VSBC into the Rocchio’s model. Second, we
propose Rocchio’s models based on VSBC, called VSBCRoc models.

3 Rocchio’s Models based on Vector Space Basis Change

3.1 Rocchio’s Formula
Rocchio’s model [16] is a classic framework for implementing (pseudo) RF via improving
the query representation. It models a way of incorporating (pseudo) relevance feedback
information into the VSM in IR. In case of PRF, the Rocchio’s model (without considering
negative feedback documents) has the following steps:

All documents are ranked for the given query using a particular retrieval model. This
step is called initial retrieval, from which the |R| highest ranked documents are used as
the feedback set.
The representation of the query is finally refined by taking a linear combination of the ini-
tial query term vector with the feedback document vector, this initial formula is denoted
by VSBCRoc1:

VSBCRoc1 : Q1 = α ∗Q0 + β ∗
∑
d∈R

d

|R|
(1)

where Q0 represents the original query vector, Q1 represents the first iteration query
vector, d is the document weight vector, and α and β are tuning constants controlling how

SLATE 2014

218 Rocchio’s Model Based on Vector Space Basis Change

much we rely on the original query and the feedback information. In practice, we can always
fix α at 1, and only study β in order to get better performance.

3.2 Vector Space Basis Change
In [8, 9], the authors built a new vector space basis which separates relevant and irrelevant
documents without any modification on the query term weights. That is, this basis gathers
the relevant documents and the irrelevant ones are kept away from the relevant ones. It can
be viewed as a representation that keeps the relevant documents gathered to their centroïd
and the irrelevant ones far from it. Each document di is represented in a vector space
by di = (wi1, wi2, ...wiN)T where wij is the weight of term tj in document di and N is
the number of index terms2. As for us our approach is independent of the term weighting
method.

The Euclidian distance between documents di and dj is given by:

dist(di, dj) =

√√√√ N∑
k=1

(wik − wjk)2

=
√

(wi1 − wj1...wiN − wjN) · (wi1 − wj1...wiN − wjN)T

=
√

(di − dj)T · (di − dj) .

By changing the basis using a transition matrix M , the distance between 2 vectors d∗i
and d∗j which are respectively di and dj rewritten in the new basis is given by:

dist(d∗i , d∗j) = dist(M.di,M.dj)

=
√

(M.di −M.dj)T · (M.di −M.dj)

=
√

(di − dj)T ·MTM · (di − dj) .

The vector space basis which optimally separates relevant and irrelevant documents is
represented by a matrix M∗ called the optimal transition matrix. M∗ puts the relevant
documents gathered to their centroïd gR and the irrelevant documents far from it.

gR is done by:
gR = 1

|R|
∑
d∈R

d

where R is the set of relevant documents.
By the same, using a transition matrix M , we obtain:

M.gR = M · (1
|R|

∑
d∈R

d) = 1
|R|

∑
d∈R

M · d .

2 xT is the transpose of x

R. Mbarek, M. Tmar, and H. Hattab 219

The optimal matrix M∗ should minimize the sum of squared distances between each
relevant document and gR, i.e.:

M∗ = arg min
M∈Mn(R)

∑
d∈R

dist2(M · d,M · gR) (2)

= arg min
M∈Mn(R)

∑
d∈R

(Md−MgR)T · (Md−MgR)

= arg min
M∈Mn(R)

∑
d∈R

(d− gR)T ·MTM · (d− gR) .

By the same, the optimal matrix M∗ should maximize the sum of squared distances of
each irrelevant document and gR, which leads on the following:

M∗ = arg max
M∈Mn(R)

∑
d∈S

dist2(M · d,M · gR) (3)

= arg max
M∈Mn(R)

∑
d∈S

(Md−MgR)T · (Md−MgR)

= arg max
M∈Mn(R)

∑
d∈S

(d− gR)T ·MTM.(d− gR)

where S is the set of irrelevant documents.
In [8], the authors have been showed that the Equations 2 and 3 result on the following

single equation:

M∗ = arg min
M∈Mn(R)

∑
d∈R

(d− gR)T ·MTM · (d− gR) + α∑
d∈S

(d− gR)T ·MTM · (d− gR) + α
(4)

where α is real parameter close to 0.
And in [9], the authors have been showed that the Equations 2 and 3 result on the

following single equation:

M∗ = arg max
M∈Mn(R)

[
∑
d∈S

(d− gR)T ·MTM · (d− gR)−
∑
d∈R

(d− gR)T ·MTM · (d− gR)] . (5)

Let M∗1 be a solution of Equation 4 and M∗2 be a solution of Equation 5. These matrices
separate relevant and irrelevant documents. The proposed Rocchio’s models based on VSBC
are:

VSBCRoc2 : Q2 = Q0 + β ∗
∑
d∈R

M∗1 d

|R|
(6)

VSBCRoc3 : Q3 = Q0 + β ∗
∑
d∈R

M∗2 d

|R|
(7)

We remark that the initial Rocchio’s formula, VSBCRoc1 (Equation 1), corresponds to
incorporating the identity matrix3 (there is no basis change).

3 A square matrix with ones on the main diagonal and zeros elsewhere.

SLATE 2014

220 Rocchio’s Model Based on Vector Space Basis Change

4 Experiments

In this section we give the different experiments and results obtained to evaluate our ap-
proach. We describe the environnement of evaluation and the experimental conditions.

4.1 Environment

The test collection TREC-7 was used for the experiments in this article. Data was prepro-
cessed through stop-word removal and Porter’s stemming, and one–word terms were stored;
the initial rankings of documents (Baseline Model) were weighted by the BM25 formula
proposed in [15]. BM25 parameters are b = 0.5, k1 = 1.2, k2 = 0 and k3 = 8.

The initial query Q0 is made from the short topic description, and using it the top 1000
documents are retrieved from the collections (weighted α = 1).
R is the set of top ranking n documents, assumed to be relevant.
S is the set of retrieved documents 501− 1000, assumed to be irrelevant.

For the three approaches, the retrieved documents are ranked by the inner product done
by:

RSV (Qi, d) = QT
i · d 1 ≤ i ≤ 3 (8)

4.2 Results

To evaluate the performance we execute several runs using the topics provided by TREC.
In detail, the TREC-7 collection has 50 topics. Topics are structured in three fields: title,
description and narrative. To generate a query, the title of a topic was used, thus falling
into line with the common practice of TREC experiments; description and narrative were
not used.

We perform 100 runs by considering all possible combinations of the three parameters
involved in the three models. In particular, we take into account: n (the cardinality of R), m
(the number of expansion terms) and the parameter β (used for the linear combination): see
Equations 1, 6 and 7. We select different ranges for each parameter: n ranges in (1, 2, 3, 4, 5),
m ranges in (10, 20, 30, 50) and β ranges in (0.1, 0.2, 0.5, 1, 2).

We evaluate each run in terms of Mean Average Precision (MAP). The experiments and
the evaluations are articulated around the comparison between VSBCRoc1, VSBCRoc2 and
VSBCRoc3.

Figure 1 plots the MAP values for each run and approach: VSBCRoc1 is the original
Rocchio model, VSBCRoc2 and VSBCRoc3 are the new Rocchio models obtained by in-
corporating the VSBC strategy. These graphs highlights as the system performance vary
according to parameters changes. It is possible to note that:

VSBCRoc2 and VSBCRoc3 models have better performance than VSBCRoc1 model.
The MAP value of VSBCRoc1 is similar for β = 1 and β = 2 (the same remark for
VSBCRoc2 and VSBCRoc3).
The MAP values of VSBCRoc1, VSBCRoc2 and VSBCRoc3 increase if the number of
expansion terms increase.
The MAP values of VSBCRoc1 and VSBCRoc3 increase if the number of pseudo-
documents increase.

R. Mbarek, M. Tmar, and H. Hattab 221

Figure 1 Plot of MAP values on TREC-7.

For the VSBCRoc1, VSBCRoc2 and VSBCRoc3 models, the lowest MAP value is 0.2385,
0.2451 and 0.2503, respectively. This value occurs when only one relevant document and 10
expansion terms are involved. The highest MAP value for VSBCRoc1 is 0.2625, while for
VSBCRoc3 is 0.2913. Both values are obtained with 5 relevant documents and 50 expansion
terms. The highest MAP value for VSBCRoc2 is 0.2813. This value occurs when 4 relevant
documents and 50 expansion terms are involved.

4.3 Significance of Our Results
Statistical significance is the probability that an effect is not due to just chance. These tests
are based on a pre-specified low probability threshold called p-values. P-values are always
coupled to a significance level, usually at 0.05. Thus, if a p-value was found to be less than
0.05, then the result would be considered statistically significant. To study the statistical
significance of our result we use a free software environment, R, for statistical computing
and graphics4. Before applying the student’s t-test we compute a R data frame in which
each row has a measurement and a categorical system identifier.

Listing 1 t-test of significance of the difference of results of VSBCRoc1 and VSBCRoc2.
> MAP <-c (0.2385 ,0.2392 ,0.2401 ,... ,0.2685 ,0.2723 ,0.2722)
> Sys <-c(" VSBCRoc1 "," VSBCRoc1 "," VSBCRoc1 "," VSBCRoc1 " ,... ," VSBCRoc2 ",
" VSBCRoc2 "," VSBCRoc2 ")
> X<-data.frame(MAP=MAP ,Sys=Sys)
> X

MAP Sys
1 0.2385 VSBCRoc1
2 0.2392 VSBCRoc1
3 0.2401 VSBCRoc1
. . .
. . .
. . .

4 http://www.r-project.org/

SLATE 2014

http://www.r-project.org/

222 Rocchio’s Model Based on Vector Space Basis Change

100 0.2625 VSBCRoc1
101 0.2451 VSBCRoc2

. . .

. . .

. . .
198 0.2685 VSBCRoc2
199 0.2723 VSBCRoc2
200 0.2722 VSBCRoc2
> t.test(MAP ~ Sys , paired =T, data=X)

Paired t-test

data: MAP by Sys
t = -11.7418 , df = 99, p-value < 2.2e -16

Listing 2 t-test of significance of the difference of results of VSBCRoc1 and VSBCRoc3.
> MAP <-c (0.2385 ,0.2392 ,0.2401 ,... ,0.2851 ,0.2913 ,0.2913)
> Sys <-c(" VSBCRoc1 "," VSBCRoc1 "," VSBCRoc1 " ,... ," VSBCRoc3 ",
" VSBCRoc3 "," VSBCRoc3 ")
> X<-data.frame(MAP=MAP ,Sys=Sys)
> X

MAP Sys
1 0.2385 VSBCRoc1
2 0.2392 VSBCRoc1
3 0.2401 VSBCRoc1
. . .
. . .
. . .
100 0.2625 VSBCRoc1
101 0.2503 VSBCRoc3
. . .
. . .
. . .
198 0.2851 VSBCRoc3
199 0.2913 VSBCRoc3
200 0.2913 VSBCRoc3
> t.test(MAP ~ Sys , paired =T, data=X)

Paired t-test
data: MAP by Sys
t = -26.4026 , df = 99, p-value < 2.2e -16

Listing 3 t-test of significance of the difference of results of VSBCRoc2 and VSBCRoc3.
> MAP <-c (0.2451 ,0.2511 ,0.2572 ,... ,0.2851 ,0.2913 ,0.2913)
> Sys <-c(" VSBCRoc2 "," VSBCRoc2 "," VSBCRoc2 " ,... ," VSBCRoc3 ",
" VSBCRoc3 "," VSBCRoc3 ")
> X<-data.frame(MAP=MAP ,Sys=Sys)
> X

MAP Sys
1 0.2451 VSBCRoc2
2 0.2511 VSBCRoc2
3 0.2572 VSBCRoc2

R. Mbarek, M. Tmar, and H. Hattab 223

. . .

. . .

. . .
100 0.2722 VSBCRoc2
101 0.2503 VSBCRoc3
. . .
. . .
. . .
198 0.2851 VSBCRoc3
199 0.2913 VSBCRoc3
200 0.2913 VSBCRoc3
> t.test(MAP ~ Sys , paired =T, data=X)

Paired t-test
data: MAP by Sys
t = -8.6917 , df = 99, p-value = 7.741e -14

In listings 1, 2 and 3 we have the p-values < 0.05, then our results are statistical signi-
ficant.

5 Conclusion

The main problem with Rocchio’s approach is that the relevant and the irrelevant documents
overlap in the vector space because they often share same terms (at least those of the query).
Therefore it is difficult to select terms that separate relevant and irrelevant documents which
cause the query drift problem (Croft and Harper). To guide the RF process, the authors
of [8, 9] have been computed a vector space basis which gives a better representation of
the documents such that the relevant documents are gathered and the irrelevant ones are
kept away from the relevant documents. Vector space basis change discriminates irrelevant
documents from relevant ones, thus reducing the potential noise in the vector space after
produced by query expansion. The combinations of Rocchio’s models with vector space
basis change improve the results of classic Rocchio’s formula.

This paper reports about incorporating transition matrix (i.e. the algebraic operator
responsible for change of basis) into the classic Rocchio’s model. We intend to incorporate
other algebraic operator (like vector product) into the classic Rocchio’s model.

References
1 G. Amati. Probabilistic models for information retrieval based on divergence from random-

ness. PhD thesis, Department of Computing Science, University of Glasgow, 2003.
2 Claudio Carpineto, Renato de Mori, Giovanni Romano, and Brigitte Bigi. An information-

theoretic approach to automatic query expansion. ACM Trans. Inf. Syst., 19(1):1–27,
January 2001.

3 Kevyn Collins-Thompson. Reducing the risk of query expansion via robust constrained
optimization. In Proceedings of the 18th ACM Conference on Information and Knowledge
Management, CIKM’09, pages 837–846, New York, NY, USA, 2009. ACM.

4 Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and Richard
Harshman. Indexing by latent semantic analysis. Journal of the American Society for
Information Science, 41(6):391–407, 1990.

5 Donna Harman. Relevance feedback revisited. In Proceedings of the 15th Annual Inter-
national ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR’92, pages 1–10, New York, NY, USA, 1992. ACM.

SLATE 2014

224 Rocchio’s Model Based on Vector Space Basis Change

6 Xiangji Huang, Yan Rui Huang, Miao Wen, Aijun An, Yang Liu, and J. Poon. Applying
data mining to pseudo-relevance feedback for high performance text retrieval. In Data
Mining, 2006. ICDM’06. Sixth International Conference on, pages 295–306, Dec 2006.

7 Victor Lavrenko and W. Bruce Croft. Relevance based language models. In Proceedings of
the 24th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR’01, pages 120–127, New York, NY, USA, 2001. ACM.

8 Rabeb Mbarek and Mohamed Tmar. Relevance feedback method based on vector space
basis change. In Proceedings of the 19th International Conference on String Processing and
Information Retrieval, SPIRE’12, pages 342–347, Berlin, Heidelberg, 2012. Springer-Verlag.

9 Rabeb Mbarek, Mohamed Tmar, and Hawete Hattab. A new relevance feedback algorithm
based on vector space basis change. In Alexander Gelbukh, editor, Computational Linguist-
ics and Intelligent Text Processing, volume 8404 of Lecture Notes in Computer Science,
pages 355–366. Springer Berlin Heidelberg, 2014.

10 Massimo Melucci. Context modeling and discovery using vector space bases. In Proceedings
of the 14th ACM International Conference on Information and Knowledge Management,
CIKM’05, pages 808–815, New York, NY, USA, 2005. ACM.

11 Massimo Melucci. A basis for information retrieval in context. ACM Trans. Inf. Syst.,
26(3):14:1–14:41, June 2008.

12 Jun Miao, Jimmy Xiangji Huang, and Zheng Ye. Proximity-based rocchio’s model for
pseudo relevance. In Proceedings of the 35th International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR’12, pages 535–544, New York,
NY, USA, 2012. ACM.

13 Karthik Raman, Raghavendra Udupa, Pushpak Bhattacharya, and Abhijit Bhole. On
improving pseudo-relevance feedback using pseudo-irrelevant documents. In Proceedings of
the 32Nd European Conference on Advances in Information Retrieval, ECIR’2010, pages
573–576, Berlin, Heidelberg, 2010. Springer-Verlag.

14 Stephen E. Robertson, Steve Walker, Micheline Hancock-Beaulieu, Mike Gatford, and
A. Payne. Okapi at trec-4. In TREC, 1995.

15 Stephen E. Robertson, Steve Walker, Micheline Hancock-Beaulieu, Aarron Gull, and Mari-
anna Lau. Okapi at trec. In TREC, pages 21–30, 1992.

16 G. Salton. The SMART retrieval system: experiments in automatic document processing.
Prentice-Hall series in automatic computation. Prentice-Hall, 1971.

17 Gerard Salton and Chris Buckley. Improving retrieval performance by relevance feedback.
In Karen Sparck Jones and Peter Willett, editors, Readings in Information Retrieval, pages
355–364. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.

18 Cornelis Joost van Rijsbergen. The geometry of information retrieval. Cambridge Univer-
sity Press, 2004.

19 Ryen W. White and Gary Marchionini. Examining the effectiveness of real-time query
expansion. Inf. Process. Manage., 43(3):685–704, May 2007.

20 Jinxi Xu and W. Bruce Croft. Improving the effectiveness of information retrieval with
local context analysis. ACM Trans. Inf. Syst., 18(1):79–112, January 2000.

21 Chengxiang Zhai and John Lafferty. Model-based feedback in the language modeling ap-
proach to information retrieval. In Proceedings of the Tenth International Conference on
Information and Knowledge Management, CIKM’01, pages 403–410, New York, NY, USA,
2001. ACM.

Automatic Identification of Whole-Part Relations
in Portuguese
Ilia Markov1,3, Nuno Mamede2,3, and Jorge Baptista1,3

1 Universidade do Algarve/FCHS and CECL
Campus de Gambelas, 8005-139 Faro, Portugal
{jbaptis,a48654}@ualg.pt

2 Instituto Superior Técnico, Universidade de Lisboa
Av. Rovisco Pais, 1049-001 Lisboa, Portugal
Nuno.Mamede@ist.utl.pt

3 INESC-ID Lisboa/L2F – Spoken Language Lab
R. Alves Redol, 9, 1000-029 Lisboa, Portugal
{Nuno.Mamede,jbaptis,Ilia.Markov}@l2f.inesc-id.pt

Abstract
In this paper, we improve the extraction of semantic relations between textual elements as it is
currently performed by STRING, a hybrid statistical and rule-based Natural Language Processing
chain for Portuguese, by targeting whole-part relations (meronymy), that is, a semantic relation
between an entity that is perceived as a constituent part of another entity, or a member of a set.
In this case, we focus on the type of meronymy involving human entities and body-part nouns.

1998 ACM Subject Classification I.2.7 Natural Language Processing

Keywords and phrases whole-part relation, meronymy, body-part noun, disease noun, Por-
tuguese

Digital Object Identifier 10.4230/OASIcs.SLATE.2014.225

1 Introduction

Automatic identification of semantic relations is an important step in extracting meaning out
of texts, which may help several other Natural Language Processing (NLP) tasks, such as
Question Answering (QA), Text Summarization (TS), Machine Translation (IR), Information
Extraction (IE), Information Retrieval (IR) and others [9, 10, 15].

The goal of this work is to improve the extraction of semantic relations between textual
elements in STRING, a hybrid statistical and rule-based NLP chain for Portuguese1 [17].
At this time, only the first steps have been taken in the direction of semantic parsing. This
work will target whole-part relations (meronymy), that is, a semantic relation between an
entity that is perceived as a constituent part of another entity, or a member of a set. In this
case, we focus on the type of meronymy involving human entities and Nbp. This paper is
structured as follows: Section 2 briefly describes related work on whole-part dependencies
extraction, while Section 3 explains with some detail how this task was implemented in
STRING; Section 4 presents the evaluation procedure; and Section 5 draws the conclusions
from this work.

1 https://string.l2f.inesc-id.pt/ [last access: 04/05/2014].

© Ilia Markov, Nuno Mamede, and Jorge Baptista;
licensed under Creative Commons License CC-BY

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões; pp. 225–232

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2014.225
https://string.l2f.inesc-id.pt/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

226 Automatic Identification of Whole-Part Relations in Portuguese

2 Related Work

Meronymy is a complex relation that “should be treated as a collection of relations, not as a
single relation” [14]. In NLP, various information extraction techniques have been developed
in order to capture whole-part relations from texts.

Hearst [12] tried to find lexical correlates to the hyponymic relations (type-of relations)
by searching in unrestricted, domain-independent text for cases where known hyponyms
appear in proximity. The author proposed six lexico-syntactic patterns; he then tested the
patterns for validity, and used them to extract relations from a corpus. To validate his
acquisition method, the author compared the results of the algorithm with information found
in WordNet [5]. The author reports that when the set of 152 relations that fit the restrictions
of the experiment (both the hyponyms and the hypernyms are unmodified) was looked up in
WordNet: “180 out of the 226 unique words involved in the relations actually existed in the
hierarchy, and 61 out of the 106 feasible relations (i.e., relations in which both terms were
already registered in WordNet) were found.” [12, p. 544]. The author claims that he tried
applying the same technique to meronymy, but without great success.

Girju et al. [9, 10] present a supervised, domain independent approach for the automatic
detection of whole-part relations in text. The algorithm identifies lexico-syntactic patterns
that encode whole-part relations. The authors report an overall average precision of 80.95%
and recall of 75.91%. The authors also state that they came across a large number of
difficulties due to the highly ambiguous nature of syntactic constructions.

Van Hage et al. [11] developed a method for learning whole-part relations from vocabular-
ies and text sources. The authors reported that they were able to acquire 503 whole-part pairs
from the AGROVOC Thesaurus2 to learn 91 reliable whole-part patterns. They changed the
patterns’ part arguments with known entities to introduce web-search queries. Corresponding
whole entities were then extracted from documents in the query results, with a precision of
74%.

The Espresso algorithm [23] was developed in order to harvest semantic relations in a
text. The algorithm extracts surface patterns by connecting the seeds (tuples) in a given
corpus. The algorithm obtains a precision of 80% in learning whole-part relations from the
Acquaint (TREC-9) newswire text collection, with almost 6 million words.

Some work has already been done on building knowledge bases for Portuguese, most of
which include the concept of whole-part relations. These knowledge bases are often referred
to as lexical ontologies, because they have properties of a lexicon as well as properties of
an ontology [13, 26]. Well-known, existing lexical ontologies for Portuguese are Portuguese
WordNet.PT [18, 19], later extended to WordNet.PT Global (Rede Léxico-Conceptual
das Variedades do Português) [20]; MWN.PT-MultiWordNet of Portuguese3 [25]; PAPEL
(Palavras Associadas Porto Editora Linguateca)4 [22]; and Onto.PT5 [21]. Some of these
ontologies are not freely available for the general public, while others just provide the
definitions associated to each lexical entry without the information on whole-part relations.
Furthermore, the type of whole-part relation targeted in this work, involving any human
entity and its related Nbp, can not be adequately captured using those resources (or, at least,
only those resources)6.

2 http://www.fao.org/agrovoc [last access: 04.05.2014].
3 http://mwnpt.di.fc.ul.pt/ [last access: 04.05.2014].
4 http://www.linguateca.pt/PAPEL/ [last access: 04.05.2014].
5 http://ontopt.dei.uc.pt/ [last access: 04.05.2014].
6 Only after submission of this paper, we were alerted for the work of Cláudia de Freitas for annotating

http://www.fao.org/agrovoc
http://mwnpt.di.fc.ul.pt/
http://www.linguateca.pt/PAPEL/
http://ontopt.dei.uc.pt/

I. Markov, N. Mamede, and J. Baptista 227

Figure 1 STRING Architecture.

Attention was also paid to two well-known parsers of Portuguee, in order to discern how
did they handle the whole-part relations extraction: the PALAVRAS parser [2], consulted
using the Visual Interactive Syntax Learning (VISL) environment7, and LX Semantic Role
Labeller8 [3]. Judging from the available on-line versions/demos of these systems, apparently,
none of these parsers extracts whole-part relations, at least explicitly.

3 Whole-Part Dependency Extraction Module in STRING

3.1 STRING Overview
STRING [17] is a fully-fledged NLP chain that performs all the basic steps of natural language
processing (tokenization, sentence splitting, POS-tagging, POS-disambiguation and parsing)
for Portuguese texts. The architecture of STRING is given in Fig. 1.

STRING has a modular, pipe-line structure, where: (i) the preprocessing stage (tokeniza-
tion, sentence splitting, text normalization) and lexical analysis are performed by LexMan; (ii)
followed by RuDriCo, which applies disambiguation rules, handles contractions and several
special types of compound words; (iii) the MARv module then performs POS-disambiguation,
using HMM and the Viterbi algorithm; and, finally, (iv) the XIP parser (Xerox Incremental
Parser) [1] segments sentences into chunks (or elementary sentence constituents: NP, PP, etc.)
and extracts dependency relations among chunks’ heads (SUBJect, MODifier, etc.). XIP also
performs named entities recognition (NER). A set of post-parser modules have also been
developed to handle certain NLP tasks such as anaphora resolution, temporal expressions’
normalization and slot-filling. As part of the parsing process, XIP executes dependency rules.
Dependency rules extract different types of dependencies between nodes of the sentence
chunking tree, namely, the chunks’ heads. Dependencies can thus be viewed as equivalent
to (or representing) the syntactic relations holding between different elements in a sentence.
Some of the dependencies extracted by XIP represent rather complex relations, such as the
notion of subject (SUBJ) or direct object (CDIR), which imply a higher level of analysis of
a given sentence. Other dependencies are much simpler and sometimes quite straightfor-
ward, like the determinative dependency DETD, holding between an article and the noun it

the human body semantic features in the AC/DC corpora, so we did not considered it here; please refer
to: http://www.linguateca.pt/acesso/Esqueleto.pdf [last access: 04.05.2014].

7 http://beta.visl.sdu.dk/visl/pt/parsing/automatic/dependency.php [last access: 04.05.2014].
8 http://lxcenter.di.fc.ul.pt/services/en/LXSemanticRoleLabeller.html [last access: 04.05.2014].

SLATE 2014

http://www.linguateca.pt/acesso/Esqueleto.pdf
http://beta.visl.sdu.dk/visl/pt/parsing/automatic/dependency.php
http://lxcenter.di.fc.ul.pt/services/en/LXSemanticRoleLabeller.html

228 Automatic Identification of Whole-Part Relations in Portuguese

determines, e.g., o livro (the book) > DETD(livro,o). Some dependencies can also be seen
as auxiliary dependencies, and are required to build the more complex ones.

3.2 A Whole-Part Extraction Module in STRING
Next, we describe the way some of whole-part dependencies involving Nbp are extracted
in the Portuguese grammar for the XIP parser. To this end, a new module of the rule-
based grammar was built, which is the first step towards a meronymy extraction module
for Portuguese, and it contains most of the rules required for this work. Different typical,
syntactic-semantic situations targeted by the meronymy extraction module could be sketched
out, but for space limitations only the most simple will be presented here. Example (1)
is a simple case where there is a determinative PP complement de N (of N), so that the
meronymy is overtly expressed in the text:

(1) O Pedro partiu o braço do João (Pedro broke the arm of João)

The next rule captures the meronymy relation between João and braço (arm):
IF(MOD[POST](#2[UMB-Anatomical-human],#1[human]) & PREPD(#1,?[lemma:de]) &

CDIR[POST](#3,#2) & ~WHOLE-PART(#1,#2))
WHOLE-PART(#1,#2)

The rule itself reads as follows: first, the parser determines the existence of a [MOD]ifier
dependency, already calculated, between an Nbp (variable #2) and a human noun (variable
#1); this modifier must also be introduced by preposition de (of), which is expressed by
the dependency PREPD; then, a constraint is defined that the Nbp must be a direct object
(CDIR) of a given verb (variable #3); and, finally, that there is still no previously calculated
WHOLE-PART dependency between the Nbp and the human noun (variable #1); if all these
conditions are met, then, the parser builds the WHOLE-PART relation between the human
determinative complement and the Nbp. A similar rule is required for a dative complement,
as in sentence O Pedro partiu um braço ao João/O pedro partiu-lhe um braço (Pedro broke
him an arm).

Next, in example (2), we present the (apparently) more simple case of a sentence with
just a human subject and an Nbp direct object:

(2) O Pedro partiu um braço (Pedro broke an arm)

In Portuguese, in the absence of a determinative complement, a possessive determiner
or a dative complement (eventually reduced to a clitic dative pronoun), sentences like (2)
are preferably interpreted as holding a whole-part relation between the human subject and
the object Nbp. Thus, if there is a subject and a direct complement dependency holding
between a verb and a human, on one side, and the verb and an Nbp, respectively; and if no
WHOLE-PART dependency has yet been extracted for that Nbp, either for that human subject
or another element in the same sentence, then the WHOLE-PART dependency is extracted.

Another interesting case is the issue of ambiguity raised by idioms involving Nbp. As it is
well known, there are many frozen sentences (or idioms) that include Nbp. However, for the
overall meaning of these expressions, the whole-part relation is often irrelevant, as in the
next example:

(3) O Pedro perdeu a cabeça (lit: Pedro lost the [=his] head) (Pedro got mad)

The overall meaning of this expression has nothing to do with the Nbp, so that, even
though we may consider a whole-part relation between Pedro and cabeça (head), this has no
bearing on the semantic representation of the sentence, equivalent in (3) to ‘get mad’.

I. Markov, N. Mamede, and J. Baptista 229

The STRING strategy to deal with this situation is, first, to capture frozen or fixed
sentences, and then, after building all whole-part dependencies, exclude/remove only those
containing elements that were also involved in fixed sentences’ dependencies. In this way,
two general modules, for fixed sentences and whole-part relations, can be independently
built, while a simple “cleaning” rule removes the cases where meronymy relation is irrelevant
(ambiguous idioms, e.g. à cabeça (on/at the head), must be addressed in another way). Frozen
sentences are initially parsed as any ordinary sentence, and then the idiomatic expression is
captured by a special dependency (FIXED), which takes as its arguments the main lexical
items of the idiom. The number of arguments varies according to the type of idiom. In the
example (3) above, this corresponds to the dependency: FIXED(perdeu,cabeça), which is
captured by the following rule:

IF (VDOMAIN(?,#2[lemma:perder]) & CDIR[post](#2,#3[surface:cabeça])) FIXED(#2,#3)

This rule captures any VDOMAIN, that is, a verbal chain of auxiliaries and the main verb
whose lemma is perder (loose), and a post-positioned direct complement whose head is the
surface form cabeça (head). In order to capture the idioms involving Nbp, we built about 400
of such rules, from 10 formal classes of idioms.

4 Evaluation

The first fragment of the CETEMPúblico corpus [27] was used in order to extract sentences
that involve Nbp. This fragment of the corpus contains 14,715,055 tokens (147,567 types),
6,256,032 (147,511 different) simple words and 260,943 sentences. The existing STRING
lexicon of Nbp was adapted to be used within the UNITEX corpus processor [24] along with
the remaining available resources for European Portuguese, distributed with the system.

Using the Nbp (151 lemmas) dictionary 16,746 Nbp instances were extracted from the
corpus (excluding the ambiguous noun pelo (hair) or (by-the), which did not appeared as
an Nbp in this fragment). Some of these sentences were then excluded for they consisted
of incomplete utterances, or included more than one Nbp per sentence. A certain number
of particularly ambiguous Nbp; e.g., arcada (arcade), articulação (articulation), etc., which
showed little or no occurrence at all in the Nbp sense, were discarded from the extracted
sentences. Finally, the sentences that lacked a full stop were corrected, in order to prevent
errors from STRING’s sentence splitting module. In the end, a set of 12,659 sentences
with Nbp was retained for evaluation. Based distribution of the remaining 103 Nbp, a
random stratified sample of 1,000 sentences was selected, keeping the proportion of their
total frequency in the corpus. The output sentences were divided into 4 subsets of 225
sentences each. Each subset was then given to a different annotator, and a common set of
100 sentences was added to each subset in order to assess inter-annotator agreement. For
each sentence, the annotators were asked to append the whole-part dependency, as it was
previously defined in a set of guidelines, using the XIP format. For example, for (1) the
annotators would produce WHOLE-PART(João,braço).

From the 100 sentences that were annotated by all the participants in this process, we
calculated the Average Pairwise Percent Agreement, the Fleiss’ Kappa [6], and the Cohen’s
Kappa coefficient of inter-annotator agreement [4] using ReCal3: Reliability Calculator [8],
for 3 or more annotators.9 The four annotators achieved the following results. First, the

9 http://dfreelon.org/utils/recalfront/recal3/ [last access: 04.05.2014].

SLATE 2014

http://dfreelon.org/utils/recalfront/recal3/

230 Automatic Identification of Whole-Part Relations in Portuguese

Table 1 Average Pairwise Percent Agreement.

Average
pairwise
percent
agr.

Pairwise
pct. agr.
cols 1 & 4

Pairwise
pct. agr.
cols 1 & 3

Pairwise
pct. agr.
cols 1 & 2

Pairwise
pct. agr.
cols 2 & 4

Pairwise
pct. agr.
cols 2 & 3

Pairwise
pct. agr.
cols 3 & 4

85.031% 86.111% 90.741% 82.407% 81.481% 80.556% 88.889%

Table 2 Average Pairwise Cohen’s Kappa.

Average
pairwise

CK

Pairwise
CK

cols 1 & 4

Pairwise
CK

cols 1 & 3

Pairwise
CK

cols 1 & 2

Pairwise
CK

cols 2 & 4

Pairwise
CK

cols 2 & 3

Pairwise
CK

cols 3 & 4
0.629 0.65 0.757 0.59 0.558 0.518 0.699

Table 3 System’s performance for Nbp.

Number
of sentences TP TN FP FN Precision Recall F-measure Accuracy

100 8 73 7 14 0.53 0.36 0.43 0.79
900 73.5 673 55 118 0.57 0.38 0.46 0.81

Total: 81.5 746 62 132 0.57 0.38 0.46 0.81

Average Pairwise Percent Agreement, that is, the percentage of cases each pair of annotators
agreed with each other is shown in Table 1. The Average Pairwise Percent Agreement
is 85.031%, which is relatively high. Next, the Fleiss’ Kappa inter-annotator agreement
coefficient was calculated, and it equals 0.625; the observed agreement of 0.85 is higher
than expected agreement of 0.601, which we deem as a positive result. Finally, the Average
Pairwise Cohen’s Kappa is shown in Table 2. The Average Pairwise Cohen’s Kappa is
0.629. According to Landis and Koch [16] this figures correspond to the lower bound of
the “substantial” agreement; however, according to Fleiss [7], these results correspond to an
inter-annotator agreement halfway between “fair” and “good”.

In view of these results, we can assume as a reasonable expectation that the remaining,
independent and non-overlapping annotation of the corpus by the four annotators is sufficiently
consistent, and will use it for the evaluation of the system output.

The system performance was evaluated using the usual evaluation metrics of Precision,
Recall, F-measure, and Accuracy. The results are shown in Table 3, where TP=true-positives;
TN=true-negatives; FP=false-positives; FN=false-negatives. The number of instances (TP, TN,
FP and FN) is higher than the number of sentences, as one sentence may involve several
instances. The relative percentages of the TP, TN, FP and FN instances are similar between the
100 and the 900 set of sentences. This explains the similarity of the evaluation results and
seems to confirm our decision to use the remaining 900 sentences’ set as a golden standard
for the evaluation of the system’s output with enough confidence. The recall is relatively
small (0.38), which can be explained by the fact that in many sentences, the whole and
the part are not syntactically related and are quite far away from each other. Precision is
somewhat better (0.57). The accuracy is relatively high (0.81) since there is a large number
of true-negative cases.

I. Markov, N. Mamede, and J. Baptista 231

5 Conclusions

This paper addressed the problem of whole-part relations extraction involving human entities
and body-part nouns (Nbp) in Portuguese. A rule-based meronymy extraction module has
been built and integrated in the grammar of the STRING system. It contains 27 general
rules addressing the most relevant syntactic constructions triggering this type of meronymic
relations. A set of 400 rules had also been devised to prevent the whole-part relations being
extracted in the case the Nbp are elements of idiomatic expressions. From a relatively large
corpus, about 17 thousand sentences with Nbp were extracted. A stratified random sample
of 1,000 sentences was independently annotated by 4 Portuguese native speakers in order to
produce a golden standard and confront it against the system’s output. The results show
0.57 precision, 0.38 recall, 0.46 F-measure, and 0.81 accuracy. In future work, we intent
to improve recall by focusing on the false-negative cases already found, which shown that
several syntactic patterns have not been paid enough attention, such as coordination.

Acknowledgements. This work was supported by national funds through FCT – Fundação
para a Ciência e a Tecnologia, under project PEst-OE/EEI/LA0021/2013; and Erasmus
Mundus Action 2 2011-2574 Triple I – Integration, Interaction and Institutions.

We would like to thank the comments of the anonymous reviewers, which helped to
improve this paper.

References
1 S. Ait-Mokhtar, J. Chanod, and C. Roux. Robustness beyond shallowness: incremental

dependency parsing. Natural Language Engineering, 8(2/3):121–144, 2002.
2 E. Bick. The Parsing System "Palavras": Automatic Grammatical Analysis of Portuguese

in a Constraint Grammar Framework. PhD thesis, Aarhus Univ. Aarhus, Denmark: Aarhus
Univ. Press, 2000.

3 A. Branco and F. Costa. A Deep Linguistic Processing Grammar for Portuguese. In Pardo
et al., editor, Computational Processing of Portuguese, LNAI 6001, pages 86–89. Springer,
2010.

4 J. Cohen. A coefficient of agreement for nominal scales. Educational and Psychological
Measurement, 20(1):37–46, 1960.

5 C. Fellbaum. WordNet: An Electronic Lexical Database. MIT, Cambridge, 1998.
6 J. L. Fleiss. Measuring nominal scale agreement among many raters. Psych. Bull.,

76(5):378–382, 1971.
7 J. L. Fleiss. Statistical methods for rates and proportions (2nd ed.). New York: John Wiley,

1981.
8 D. Freelon. ReCal: Intercoder Reliability Calculation as a Web Service. Intl. J. of Internet

Science, 5(1):20–33, 2010.
9 R. Girju, A. Badulescu, and D. Moldovan. Learning Semantic Constraints for the Automatic

Discovery of Part-Whole Relations. In Proceedings of HLT-NAACL, volume 3, pages 80–87,
2003.

10 R. Girju, A. Badulescu, and D. Moldovan. Automatic discovery of part-whole relations.
Computational Linguistics, 21(1):83–135, 2006.

11 W. Van Hage, H. Kolb, and G. Schreiber. A method for learning part-whole relations. The
Semantic Web – ISWC 2006, LNAI/LNCS, 4273:723–725, 2006.

12 M. Hearst. Automatic acquisition of hyponyms from large text corpora. In Proceedings of
the 14th conf. on Computational linguistics, volume 2 of COLING 92, pages 539–545. ACL
Morristown, NJ, USA, 1992.

SLATE 2014

232 Automatic Identification of Whole-Part Relations in Portuguese

13 G. Hirst. Ontology and the lexicon. In S. Staab and R. Studer, editors, Handbook on
Ontologies, pages 209–230. Springer, 2004.

14 M. Iris, B. Litowitz, and M. Evens. Problems of the Part-Whole Relation. In M. Evens,
editor, Relational Models of the Lexicon: Representing Knowledge in Semantic Networks,
pages 261–288. Cambridge Univ. Press, 1988.

15 C. Khoo and J.-C. Na. Semantic Relations in Information Science. Annual Review of
Information Science and Technology, 40:157–229, 2006.

16 J.R. Landis and G.G. Koch. The measurement of observer agreement for categorical data.
Biometrics, 33(1):159–174, 1977.

17 N. Mamede, J. Baptista, C. Diniz, and V. Cabarrão. STRING: An Hybrid Statistical
and Rule-Based Natural Language Processing Chain for Portuguese. In Intl. Conf. on
Computational Processing of Portuguese (PROPOR 2012), volume Demo Session, Paper
available at http://www.propor2012.org/demos/DemoSTRING.pdf, 2012.

18 P. Marrafa. WordNet do Português: uma base de dados de conhecimento linguístico. Insti-
tuto Camões, 2001.

19 P. Marrafa. Portuguese WordNet: general architecture and internal semantic relations.
DELTA, 18:131–146, 2002.

20 P. Marrafa, R. Amaro, and S. Mendes. WordNet.PT Global – extending WordNet.PT to
Portuguese varieties. In Proceedings of the 1st Workshop on Algorithms and Resources
for Modelling of Dialects and Language Varieties, pages 70–74, Edinburgh, Scotland. ACL
Press, 2011.

21 H. Gonçalo Oliveira. Onto.PT: Towards the Automatic Construction of a Lexical Ontology
for Portuguese. PhD thesis, Univ. of Coimbra/FST, 2012.

22 H. Gonçalo Oliveira, P. Gomes, D. Santos, and N. Seco. PAPEL: A Dictionary-based
Lexical Ontology for Portuguese. In Computational Processing of the Portuguese Language,
8th Intl. Conf., Proceedings (PROPOR 2008), volume 5190, pages 31–40, Aveiro, Portugal.
Springer, 2008.

23 P. Pantel and M. Pennacchiotti. Espresso: Leveraging generic patterns for automatically
harvesting semantic relations. In Proceedings of Conf. on Computational Linguistics/ACL
(COLING/ACL-06), pages 113–120. Sydney, Australia, 2006.

24 S. Paumier. Unitex 3.1.beta, User Manual. Univ. Paris-Est Marne-la-Vallée, 2014.
25 E. Pianta, L. Bentivogli, and C. Girardi. MultiWordNet: developing an aligned multilingual

database. In 1st Intl. Conf. on Global WordNet, 2002.
26 L. Prévot, C.-R. Huang, N. Calzolari, A. Gangemi, A. Lenci, and A. Oltramari. Onto-

logy and the lexicon: a multi-disciplinary perspective (introduction). In C.-R. Huang,
N. Calzolari, A. Gangemi, A. Lenci, A. Oltramari, and L. Prévot, editors, Ontology and
the Lexicon: A Natural Language Processing Perspective, Studies in Natural Language
Processing, chapter 1, pages 3–24. Cambridge Univ. Press, 2010.

27 P. Rocha and D. Santos. CETEMPúblico: Um corpus de grandes dimensões de linguagem
jornalística portuguesa. In M.G. Nunes, editor, V Encontro para o processamento computa-
cional da língua portuguesa escrita e falada (PROPOR 2000), pages 131–140. São Paulo:
ICMC/USP, 2000.

Part VI

Natural Language Processing

Tools and Resources

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Automatic Detection of Proverbs and their
Variants
Amanda P. Rassi1,2, Jorge Baptista2, and Oto Vale1

1 Federal University of São Carlos-UFSCar
Rodovia Washington Luís, km 235 – SP-310. São Carlos – São Paulo – Brasil
CEP 13565-905
aprassi@ualg.pt,otovale@ufscar.br

2 University of Algarve-FSCH/CECL
Campus de Gambelas, 8005-139 Faro, Portugal
jbaptis@ualg.pt

Abstract
This article presents the task of automatic detection of proverbs in Brazilian Portuguese, from
the intersection of the regular syntactic structure of proverbs and their core elements. We created
finite-state automata that enabled us to look for these word combinations in running texts. The
rationale behind this method consists in the fact that although proverbs may have a normal
sentence structure and often a very commonly used lexicon, their specific word-combinations
may enables us to identify them and their variants irrespective of the syntactic or structural
changes the proverb may undergo. The goal of this task is to gather the largest number of
proverbs and their variants. The results showed precision 60.15%.

1998 ACM Subject Classification I.2.7 Natural Language Processing

Keywords and phrases Brazilian Portuguese, proverbs, syntactic structure, core element, vari-
ation

Digital Object Identifier 10.4230/OASIcs.SLATE.2014.235

1 Introduction

The existence of proverbial structures in texts, including journalistic texts, is indisputable [12],
which raises the problem of identifying them as a complex structure. The main problem
concerning the identification of proverbs is that they have the same syntactic structure and
the same words as ordinary, free sentences, however, they normally have a non compositional
meaning and must be recognized not as an ordinary string of words, but as a complex unit,
formed by several words, phrases and even multiple clauses. In this sense, proverbs resemble
multiword expressions (MWE), although some authors [13, p.53] consider them as a different
type of linguistic units as a quoted speech inside speech itself. In this paper, we adopt the
view that proverbs should be treated as MWE.

In general, automatic processing of idiomatic expressions, fixed expressions, semi-fixed
expressions, proverbs and other multiword expressions is still a hard task for Natural Language
Processing (NLP) [30]. Although there are many studies about the identification of multiword
expressions in NLP [20, 21, 23], it is still difficult to identify them automatically in natural
language texts [4, 5, 26].

In this paper we focus on the special case of proverbs in view of a double problem they
represent to NLP: the fact that proverbs accept both lexical and formal (structural) variation.
We aim at developing a method for automatic detection of proverbs and their variants, based

© Amanda P. Rassi, Jorge Baptista, and Oto Vale;
licensed under Creative Commons License CC-BY

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões; pp. 235–249

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2014.235
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

236 Automatic Detection of Proverbs and their Variants

on existing compilations of proverbs, by exploring the regular syntactic structures that most
proverbs present. These regularities led to a formal classification of proverbs, based on their
syntactic structure. Finite-state automata will be used to represent the regular patterns
found in these classes of proverbs. Results from the automatic identification of Brazilian
Portuguese proverbs from real texts are presented. This approach can be used in to two
main applications: for lexicographic work, in order to build more complete dictionaries, and
for Natural Language Processing, to improve linguistic resources, tools and applications, by
allowing systems to signal these micro-texts and a special type of discursive element.

2 Delimitation of the Object

Proverbs, parables, adages, aphorisms, maxims, and so on, these are all different terms used
to designate similar types of sentences. Though there are conceptual differences among
these terms, in practice, many authors ignore such distinctions and tend to group all these
linguistic expressions under the broad umbrella term of proverb. In this paper, we also
adopt such broad perspective and will consider proverbs as linguistic expressions forming
fixed word combinations, in spite of some (limited) lexical or structural variation, often
with a sentential status, that may even include subclauses, and whose global meaning is
often idiomatic. These micro-texts are usually generic statements, conveying a world view or
stating a moral judgement, an eternal truth, an ideal state of affairs.

We distinguish proverbs from fixed expressions/frozen sentences (or idioms, proper). In
idioms, the verb and one of its argument positions are frozen together, that is, they are
distributionally invariant, or the argument nouns can only vary within a small and closed
paradigm. Usually the subject of frozen sentences is distributionally free, and its selection
depends not just on the verb, but on the overall meaning of the combination of the verb and
its frozen arguments; i.e. Ana/Essa mesa não vale um tostão ‘Ana/This table is not worthy
a penny’. On the other hand, typically, proverbs are completely frozen sentences, where,
in spite of some (reduced) lexical variation and some (even more constraint) syntactical
paraphrasing, all the elements are fixed. In other words, proverbs have the subject position
necessarily filled by a fixed element [18, p.161], while the subject in fixed expressions usually
varies and may be defined intensionally, by distributional constraints.

The second property that distinguishes proverbs and fixed expressions is, according to [24],
that the proverbs “always have an autonomous semantic value in communicative terms,
unlike idioms that are only constituents of sentences and may never occur as a full sentence.”
In this sense, proverbs take place in whole sentences while fixed expressions only replace
phrases (nominal phrase, verbal phrase or prepositional phrase).

Although proverbs have syntactic structures similar to simple sentences, they can not be
recognized as common sentences, but must be understood as a single block, whose syntactic
slots should always be filled by specific lexical units. It means that proverbs are formed by
words and phrases like any other free sentences, but they must be understood as a complex
expression, a combination of words whose use is highly constraint.

When proverbs are introduced by an enunciative mark, such as como dizem ‘as they say’,
como dizia minha avó ‘as my grandmother used to say’, dizem por aí ‘people say/they say’,
costuma dizer-se ‘it is often said’, etc.; it is then easier to identify them because these type
of marks can be extensively described. However, there is often no mark at all introducing
proverbs in texts, which renders their spotting more difficult.

Finally, proverbs are prone to certain types of formal variation, particular ellipsis of one
of its clause-type components, and they often undergo stylistic reformulation, in order to
produce some perlocutionary effect. For example, a banking institution, in one advertisement

A.P. Rassi, J. Baptista, and O. Vale 237

of its products, recently “reinvented” the proverb Tempo é dinheiro ‘Time is money’ as
Tempo não é só dinheiro. É valor ‘Time is not just money. It is value’. This capacity of the
proverbs to be reinterpreted and reformulated, which some linguists called “défigement” or
“unfreezing” is an inherent part of the paremiologic dynamics in language.

3 Related Works

Most of the work done on Brazilian Portuguese proverbs adopt a didatic or pedagogic
approach, [14, 25, 31], or analyzes rhetorical relations between the clauses [15, 16, 17]. We
did not find any work that describes formally proverb structures in Portuguese or that tried
to identify them automatically in large corpus.

For European Portuguese, Lucília Chacoto developed many studies on proverbs, either
theoretical and practical works. The author compared Portuguese and Spanish proverbs
initiated by Quem/Quien ‘Who’ [6] and also analyzed comparative structures [7] which are
two of the structures we describe in this paper.

We can also cite works for other languages, like Lacavalla [22], who compared proverbs
initiating by Quand/Quando ‘When’ in Italian and French. The author uses local grammars
for searching the proverbs in both languages and describes the data in Lexicon-Grammar
Tables, analyzing all syntactic properties and distribution of those units. On the other hand,
Navarro Brotons [2] compared proverbs in Spanish and French. The author analyzed syntax,
semantics and translation of proverbs and their variants in both languages and also described
the data in Lexicon-Grammar tables.

We also cite the extensive work of Mirella Conenna [8, 9, 10, 11], who produced many
works about proverbs in French and Italian, comparing their structures in both languages,
classifying proverbs in syntactic tables, i.e. Lexicon-Grammar tables, and analyzing proverbs
and their variants in equivalence classes. In all those works, the author was concerned about
the formalization of the data for automatic identification and processing.

There are also some other publications about proverbs in Brazilian Portuguese, but they
do not present any systematic analysis. These include didactic materials used in schools,
dictionaries, glossaries, and lists of proverbs. Most of them are used in teaching/learning
Portuguese as second language or as didactic manuals.

For Brazilian Portuguese it is still necessary to describe formally syntactic structures
of the proverbs and their core elements, aiming to contributing for the construction of
lexicon-syntactic resources applicable in NLP.

4 Methods

In this section we present a methodology for automatic detection of proverbs and their variants,
tested on a Brazilian Portuguese corpus, which can be resumed in 6 steps: (i) creating a
database with proverbs searched in dictionaries and other lists; (ii) defining syntactic criteria
to organize the collected proverbs into formal classes; (iii) manually identifying the POS tags
of their elements; (iv) generating tables with the core elements derived from POS tagging;
(v) creating graphs with the basic structure for each class; and (vi) intersecting the graphs
with the tables of the proverbs’ core elements to produce finite-state transducers that will
enable us to identify such word combination in texts. After these steps, we could find other
proverbs and their semantic variations within the same syntactic structure.

We searched for the proverbs and their variants in PLN.BR Full corpus [3], which contains
103,080 texts, with 29,014,089 tokens, from Folha de São Paulo, a Brazilian newspaper, from
1994 to 2005.

SLATE 2014

238 Automatic Detection of Proverbs and their Variants

4.1 Collection of Proverbs
The first step for this work consists in creating a list of proverbs that will serve as input
seeds to recognize other proverbs and their variants in large corpora. Five different sources
were used: a list of proverbs in Wikipedia, three books with proverbs collections [29, 32, 34]
and a dictionary of proverbs [19].

Firstly, all the expressions collected in these sources were analyzed manually and many
were discarded as they were not considered as proverbs but consist mostly of idiomatic
expressions (or idioms), like (1), or aphorisms and maxims, as in (2):
(1) Matar dois coelhos com uma cajadada só

[to] kill two bunnies with just one thwack ‘kill two birds with a stone’
(2) Na natureza, nada se cria nada se perde, tudo se transforma

‘In Nature, nothing is created, nothing is lost, everything is transformed’
The idiom in (1) is a frozen sentence with a free subject slot and two frozen complements,

a direct object and an instrumental complement [1, 18, 35](class C1P2). On the other hand,
(2) is an aphorism or maxim, attributed to the chemist Lavoisier (1743-1794) about the
conservation of mass. In spite of its three-clause, parallelistic, proverb-like structure, and its
generic nature, the (known) authorship of the maxim lead us to discard it from our study.

After a substantial collection of over 3,502 proverbs (and their variants) has been gathered,
the variants of each proverb were grouped together and one of them was selected to be
considered as the entry of our lexicon (or its base-form), based on its frequency among the
sources consulted. Most differences between variants of the same proverb consist in the
variation of their grammatical elements, and the lexical choices for their core meaningful
words.

Finally, we tried to confirm whether these proverbs were (still) really in use in current
Brazilian Portuguese, checking them with 5 native speakers of Brazilian Portuguese from
different geographic regions.1 Some proverbs are only used in Portugal or in Portuguese-
speaking African countries, while others are very old and probably may not be in use
anymore.

From the original 3,502 proverbs (and their variants), a final list of 594 proverbs (types
or base-forms) was compiled.2

4.2 Classifying Proverbs and POS Tagging their Elements
The list of proverbs (base-forms) was then classified into formal classes. This classification
was based on the following criteria, applied in this order:
(i) the number of propositions (one, two, or three clauses or clause-like units);
(ii) coordination (in multiple-clause proverbs);
(iii) order of the main vs the subordinate clauses (in multiple-clause proverbs);
(iv) order of the constituents (in single-clause proverbs);
(v) impersonal constructions; and
(vi) obligatory negation.
Table 1 presents the current classification.

1 We consider that the sampling by region is not sufficient to confirm the presence or absence of proverbs,
and we would need to consult speakers from different genders, ages, social classes, education levels etc,
this is out of the main scope of this work.

2 The list of proverbs and their classification can be consulted at the first author profile in ResearchGate,
available in https://www.researchgate.net/project/PB-proverbs.

https://www.researchgate.net/project/PB-proverbs

A.P. Rassi, J. Baptista, and O. Vale 239

Table 1 Formal Classification of Brazilian Portuguese Proverbs.

Class Structure Example (approximate translation) Types
P1F1 Ø V w Não há crime sem lei 20

(impersonal) ‘There is no crime without law’
P1F2 N0 V cop Adj/N w A carne é fraca 53

‘The flesh is weak’
P1F3 N0 V w O hábito (não) faz o monge 80

‘The cloth (does not) make the monk’
P1F4 N0 Neg V w Burro velho não aprende línguas 53

‘Old donkey does not learn languages’
P1F5 P rep Ni N0 V w Para bom entendedor, meia palavra basta 45

(fronted prep. phrase) ‘For the one who understands, half word is enough’
P2F1 F1 Conjs-comp F2 Mais vale um pássaro na mão do que dois voando 39

(comparatives) ‘Beter is is a bird in the hand than two flying’
P2F2 F1 Conjc F2 A palavra é de prata e o silêncio é de ouro 71

(coordinated) ‘The word is silver and the silence is gold’
P2F3 N1, N2 Tal pai, tal filho 48

‘Like father, like son’
P2F4 Qu- F1 F2 Quem tem boca vai a Roma 90

(interrogative subclass) ‘Who has a mouth goes to Rome’
P2F5 F1 Conjs F2 Os amigos são muitos quando grande é a abastança 20

(subordinated) ‘Friends are many when abundance is great’
P2F6 Conjs F2, F1 Quando a esmola é demais, o santo desconfia 28

(fronted subord.) ‘When alms are too much, the saint gets suspicious’
P3 F1, F2, F3 Um é pouco, dois é bom, três é demais 47

‘One is little, two is good, three is too much’
Total 594

Some remarks on this classification are in order:
(i) impersonal constructions involve the verb haver ‘there be’ and ter ‘to have’ with

impersonal valency (the later only exists in Brazilian Portuguese);
(ii) sentences with copula verbs ser and estar ‘to be’ usually present an adjectival or

nominal predicate; these sometimes allow for mirror permutation (A carne é fraca =
fraca é carne3 ‘The flesh is weak’);

(iii) proverbs with obligatory negation usually involve negation adverbs, e.g. não ‘no/not’,
nunca ‘never’, jamais ‘never’, nem ‘nor’, etc.; negation has precedence over copula
verbs, so that proverbs with negated copula were included in this class;

(iv) single-clause proverbs with a fronted prepositional phrase do not admit the basic
word-order;

(v) comparative proverbs, including those with subordinate sub-clause, are a type of complex
sentences, though other types of comparative structures were also included in this class;

(vi) nominal propositions named N1, N2 (in P2F3 class) are treated as clausal propositions,
even if they may contain no verbs and only have a ‘clausal’ or ‘propositional content’.

3 http://rainhadocarmelo.blogspot.pt/2010_02_01_archive.html [2014-03-08 13:11]

SLATE 2014

http://rainhadocarmelo.blogspot.pt/2010_02_01_archive.html

240 Automatic Detection of Proverbs and their Variants

After classifying the proverbs, we manually annotated their elements for part-of-speech
(POS) tags. Since each class is syntactically homogeneous, it was then relatively simple
to organize the lexical items in a tabular format, so that the characteristic elements of
the proverbs may be aligned, and can easily be identified. For the noun phrases (NP),
either the subject (N0) or the complement (N1), the head noun (or pronoun) is determined,
and eventual determiners (Det) or modifiers (Mod) are tagged and distributed across the
corresponding columns. Eventual pre- or post-modifiers of verbs (Deus escreve direito por
linhas tortas ‘God writes straight with crooked lines’), including obligatory auxiliary verbs
(Não se entra em briga que não se pode ganhar ‘Do not enter into a fight you can not win’),
and other elements, such as the impersonal pronouns (Aqui se faz, aqui se paga ‘Here you do,
here you pay’)4, or obligatory negation (Quem não tem cão caça com gato ‘Who does not
have a dog hunts with a cat’) are also taken into consideration. Subordinative or coordinative
elements are also provided with an adequate slot. In this way, it is relatively simple to
automatically extract the core (or more representative) elements from each proverb, based
on the classes’ formal homogeneity.

4.3 Extracting Core Elements
In order to extract the core words in each proverb, we analyzed all cells in each table and
selected as core elements the most frequent grammatical classes in each syntactic position.
For example, in almost all classes5 the initial NP is necessarily filled by a noun or, in rare
cases, a pronoun. The noun can be accompany by determinants and/or adjectives and/or
other nominal adjuncts, but the only position that is fully filled by some element is the
column <N> either in the subject or in the complement position, so we selected the item
instantiated in column <N> as one of the core elements for identifying the proverb.

In all classes6, VP position is necessarily filled by a verb, so this is selected as a key
element in the constitution of the proverbs. Table 2 shows a sample of P1F3 class, in a
tabular format, indicating all columns7.

Depending on the formal class of the proverbs, so the core elements are defined. In
the case of class P1F2, the definitory elements are the heads of the subject and of the
predicative complement (noun or adjective) as well as the copula verb. In the case the head
in null (e.g. Os últimos serão os primeiros ‘The first shall be the last’) the determiner or an
adjective may be chosen instead. In comparative proverbs, there is often no main verb, so
the determiners 4.3 or the comparative conjunctions 4.3 must be selected, along with the
core nouns:
(3) Tal pai tal filho

‘Like father like son’
(4) Nem tanto ao mar nem tanto à terra

‘Not so much to sea not so much to ground’

4 In Portuguese, impersonal clitic pronoun -se imposes 3rd person-singular agreement to the verb, thus
being indistinguishable from passive-like pronominal constructions. Only some few clear-cut cases
of pronominal passives were found; e.g. Entre mortos e feridos salvaram-se todos ‘Among dead and
wounded all were saved’. Both strategies may be considered as a form of subject (agent) degenerescence,
hence contributing to the generic effect of the proverbs.

5 Exception done for class P1F1, which has no explicit subject (null subject).
6 Exception done for class P2F3, which is constituted by nominal phrases only, and has no verb.
7 In this table the headings are read as follows: Adj = Adjective, Adv = Adverb, Det = Determinant,

Indet_Pass = Pronominal passive-like construction, N = Noun, Prep = Preposition, V = Verb; the
words inside chevrons correspond to lemmas

A.P. Rassi, J. Baptista, and O. Vale 241

Table 2 Sample of class P1F3.

Pr
ov
er
b

Det$

Adj

N

Adj

Indet_Pass

V

Adv

Prep

Det

Adj

N

Adj

A"
ad
ve
rs
id
ad
e"
fa
z"
os
"h
er
ói
s

<o
>

6
<a
dv
er
sid

ad
e>

6
6

<f
az
er
>

6
6

<o
>

6
<h

er
ói
>

6
A"
am

bi
çã
o"
ce
ga
"a
"ra
zã
o

<o
>

6
<a
m
bi
çã
o>

6
6

<c
eg
ar
>

6
6

<o
>

6
<r
az
ão
>

6
A"
in
te
nç
ão
"fa
z"
o"
ag
ra
vo

<o
>

6
<i
nt
en

çã
o>

6
6

<f
az
er
>

6
6

<o
>

6
<a
gr
av
o>

6
A"
ju
st
iç
a"
co
m
eç
a"
em
"ca
sa

<o
>

6
<j
us
tiç
a>

6
6

<c
om

eç
ar
>

6
em

6
6

<c
as
a>

6
A"
oc
as
iã
o"
fa
z"
o"
la
dr
ão

<o
>

6
<o

ca
siã

o>
6

6
<f
az
er
>

6
6

<o
>

6
<l
ad
rã
o>

6
A"
un
iã
o"
fa
z"
a"
fo
rç
a

<o
>

6
<u

ni
ão
>

6
6

<f
az
er
>

6
6

<o
>

6
<f
or
ça
>

6
As
"a
pa
rê
nc
ia
s"e
ng
an
am

<o
>

6
<a
pa
rê
nc
ia
>

6
6

<e
ng
an
ar
>

6
6

6
6

6
6

As
"m
ás
"n
ot
ic
ia
s"c
he
ga
m
"d
ep
re
ss
a

<o
>

<m
au
>

<n
ot
íc
ia
>

6
6

<c
he

ga
r>

de
pr
es
sa

6
6

6
6

6
As
"p
ar
ed
es
"tê
m
"o
uv
id
os

<o
>

6
<p

ar
ed

e>
6

6
<t
er
>

6
6

6
6

<o
uv
id
o>

6
Bo
as
"co
nt
as
"fa
ze
m
"b
on
s"a
m
ig
os

6
<b

om
>

<c
on

ta
>

6
6

<f
az
er
>

6
6

6
<b

om
>

<a
m
ig
o>

6
De
us
"e
sc
re
ve
"ce
rt
o"
po
r"l
in
ha
s"t
or
ta
s

6
6

<d
eu

s>
6

6
<e
sc
re
ve
r>

ce
rt
o

po
r
6

6
<l
in
ha
>

<t
or
to
>

M
en
tir
a"
te
m
"p
er
na
"cu
rt
a

6
6

<m
en

tir
a>

6
6

<t
er
>

6
6

6
6

<p
er
na
>

<c
ur
to
>

M
ui
to
s"c
oz
in
he
ir
os
"e
st
ra
ga
m
"a
"so
pa

<m
ui
to
>

6
<c
oz
in
he

iro
>

6
6

<e
st
ra
ga
r>

6
6

<o
>

6
<s
op

a>
6

O"
ab
ism

o"
at
ra
i"o
"a
bi
sm
o

<o
>

6
<a
bi
sm

o>
6

6
<a
tr
ai
r>

6
6

<o
>

6
<a
bi
sm

o>
6

O"
há
bi
to
"fa
z"
o"
m
on
ge

<o
>

6
<h

áb
ito

>
6

6
<f
az
er
>

6
6

<o
>

6
<m

on
ge
>

6
O"
ju
st
o"
pa
ga
"p
el
o"
pe
ca
do
r

<o
>

6
<j
us
to
>

6
6

<p
ag
ar
>

6
po

r
<o

>
6

<p
ec
ad
or
>

6
O"
pe
ix
e"
se
"co
nh
ec
e"
pe
la
"b
oc
a

<o
>

6
<p

ei
xe
>

6
se

<c
on

he
ce
r>

6
po

r
<o

>
6

<b
oc
a>

6
Os
"fi
ns
"ju
st
ifi
ca
m
"o
s"m

ei
os

<o
>

6
<f
im

>
6

6
<j
us
tif
ic
ar
>

6
6

<o
>

6
<m

ei
o>

6
Ro
up
a"
su
ja
"se
"la
va
"e
m
"ca
sa

6
6

<r
ou

pa
>

<s
uj
o>

se
<l
av
ar
>

6
em

6
6

<c
as
a>

6

SLATE 2014

242 Automatic Detection of Proverbs and their Variants

Figure 1 Reference graph for class P2F4.

In the common cases where a lexical element of the proverb allows for variation, all the
variants are included in the corresponding slot. This is the case of the proverb Cachorro
mordido de cobra tem medo de linguiça ‘Dog bitten by a snake is afraid of sausage’ where
the second noun can be replaced by barbante ‘string’ and salsicha ‘sausage’; notice, however,
that the variation of grammatical elements 4.3 was ignored:8

(5) Cachorro (que foi + <E>) mordido (de + por) cobra tem medo até de (barbante +
salsicha + linguiça)
‘Dog (that was + <E>) bitten by a snake is afraid of (string + sausage + pork sausage)’

4.4 Creating and Applying the Graphs
Once the characteristic elements of each proverb have been identified, they were structured in
a tabular format, one table for each class (residual class “others” was not considered in this
paper). Then, using the Unitex 3.1.beta linguistic development platform [27, 28], we produce
a reference graph for each class. Fig. 1 illustrates the graph for class P2F4, corresponding to
proverbs with a fronted subordinated clause; e.g. Se queres conhecer o vilão, põe-lhe um pau
na mão ‘If you want to know a villain, put a stick in his hand’.

This graph reads as follows: the system explores systematically each line in the table of a
class core elements, replacing the variables @A, @B, etc, by the corresponding content of
columns A, B, etc. These input variables are then associated to output variables (in the
letters below the brackets) to be reused in the output. In this case, the graph delimits the
matched expression by brackets, and produced the content in a normalized form, introduced
by the idiom number (the table’s line number), represented by variable @%9. By intersecting
the reference graph with the corresponding table, the system generates one subgraph for
each line of the table, and a general result graph, containing all the subgraphs. The result
graph can then be used to find patterns in texts. Table 3 shows a sample of a concordance
of such matched strings from the PLN.Br corpus.

Each line in the table has been numbered. In this concordance, a small left context is
provided, followed by the number of the proverb type in the corresponding class, the actual
words in the corpus and the core words that the transducer detected; empty variables are
not represented (void commas).

The table presents two matches that are considered False Positives, in lines 16 and 17.
The proverb supposed to be found is Quem sabe faz ‘Who knows makes’, but the system
found, for example, a free sentence (line 16) and a verse of a brazilian song (line 17). It
is also remarkable the transformations (actualizations or adaptations) created by speakers.
The proverb we were looking for is Quem vê cara não vê coração ‘Who sees the face does not
see the heart’ as in line 22, but the speaker adapted the proverb to the context of smoking
and created Quem vê cara não vê pulmão ‘Who sees the face does not see the lung’, as

8 The items linked by “+” inside parentheses can comute in the given syntactic slot; the symbol <E>
represents the empty string.

9 The shadowed box Ins is a subgraph defining a window of 0 to 3 words and separators allowed between
the proverbs’ core elements.

A.P. Rassi, J. Baptista, and O. Vale 243

Table 3 Sample of a concordance of Class P2F4.

1 é o [0003barato que pode sair caro=barato, caro„,]
2 não [0006mata engorda=mata, engorda„,]
3 Quem [0015avisa amigo é=avisa, amigo„,]
4 Quem [0018 cala consente=cala, consente„,]
5 Quem [0019Canta Seus Males Espanta=Canta, Males, Espanta„]
6 e como [0020 casei e quero casa=casei, quero, casa„]
7 quem [0023 conta um conto aumenta um ponto=conta, conto, aumenta, ponto,]
8 quem [0028diz o que quer ouve o que não quer=diz, quer, ouve, quer,]
9 não [0042arrisca não só não petisca=arrisca, petisca„,]

10que não [0043 choram nem mamam=choram, mamam„,]
11 não [0044deve não teme=deve, teme„,]
12 Quem [0047 está dentro quer sair e quem está fora não=está, dentro, quer, sair,]
13 não [0050 sabe não ensina=sabe, ensina„,]
14 quem [0062pariu Mateus que o embale=pariu, Mateus, embale„]
15 quem [0064procura acha=procura, acha„,]
16 Quem [0068 sabe alguém faz uma experiência com isso=sabe, faz„,]
17 quem [0068 sabe faz a hora=sabe, faz„,]
18 Quem [0068Sabe Faz ao Vivo=Sabe, Faz„,]
19 Quem [0069 sabe sabe=sabe, sabe„,]
20 os que [0070 semeiam ventos colhem tempestades=semeiam, ventos, colhem, tempestades,]
21 "Quem [0079 tem pressa come cru=tem, pressa, come, cru,]
22 "quem [0085vê cara não vê coração=vê, cara, coração„]
23 quem [0085vê cara não vê pulmão=vê, cara, vê„]
24 Quem [0085vê cara vê muito mais do que coração=vê, cara, vê, coração,]
25 Quem [0086viver verá=viver, verá„,]

in line 23. In 24 the obligatory negation of the original proverb has been deleted and the
meaning actually inverted in a creative way.

In this way it was possible to find other variants of proverbs than those we had previously
collected (from books, dictionaries and the wikipedia) and find several instances of creative
reuse and transformations of proverbs for rethoric purposes.

5 Results and Discussion

Since, to our knowledge, there is no available corpus annotated with proverbs and similar
expressions, only precision was reported here.

From the previous list of 594 proverbs, 788 matches were found in the PLN.Br corpus,
from which 474 matches (60.15%) correspond to actual proverbs. We decided to search these
lexical units in journalistic corpus aiming to check if in the common language they also
appear. It has been proved [33] that literary corpora contain a large number of proverbs, but
the challenge is looking for them in non-literary texts. Table 4 shows the breakdown of these
results by class. In spite of the number of matches, only 137 types (different proverbs) were
found. The scarcity of the occurrence of proverbs in the corpus (1:36,820 words), as well
as its reduced variety (23% types) is most probably linked to the journalist nature of the
corpus.

In this respect, it is remarkable the number of instances retrieved from the data in class
P2F4 as well as its low precision (27.5%). This class includes only two lexical items, besides
the indefinite subject pronoun quem ‘who’, as in Quem cala consente ‘[he] who silence [gives

SLATE 2014

244 Automatic Detection of Proverbs and their Variants

Table 4 Results of automatic identification of proverbs by class.

Class Proverbs (types) Matches Types False-Positives
P1F1 20 15 4 2
P1F2 53 91 21 16
P1F3 80 153 24 55
P1F4 53 61 15 0
P1F5 45 63 5 6
P2F1 39 40 7 1
P2F2 71 14 3 9
P2F3 48 40 8 25
P2F4 90 276 37 200
P2F5 20 3 1 0
P2F6 28 1 1 0
P3 47 31 11 0
Total 594 788 137 314

his] consent’. Since these are very short proverbs, a window of 5 words between the core
elements may be inadequate.

We repeated the experiment without any insertion window, and captured 56 matches,
of which 26 were false positives. The local precision of the class P2F4 raised from 27.5%
to 53.57%. Considering the global precision (including all classes), global precision raised
from 60.15% to 73.35%. This may indicate that, depending of the syntactic structure of the
proverb, a more or less wide window between the core elements must be defined.

The system matched 137 different proverbs from the previous list with 594 entries,
and their distribution is presented in Fig. 2, below. Some few other proverbs have higher
frequencies but they were collapsed in Fig. 2 because they form a small number of proverbs
with relatively high frequency.10

The small number of different proverbs matched by the system (23% of the total types)
is probably due to the nature of the corpus. Some proverbs, as we will see below, have been
adapted and reconfigured to fit the discursive needs of the author.

10Namely, f=13, f=16, f=20, f=22, f=44, f=52, f=55 and f=88.

Figure 2 Distribution of proverbs in corpus PLN.Br Full.

A.P. Rassi, J. Baptista, and O. Vale 245

Figure 3 Graph with variants of the proverb Antes tarde do que nunca ‘Better later than never’.

The matches found allowed us to identify other variants of the same proverb that were
not in the initial list. For example, along the form Antes tarde do que nunca ‘Better later
than never’, the variants can be represented by the graph presented in Figure 3.

It was also possible to find proverbs that were not in the previous list. For example, we used
the structure [quem V V] [‘who V V’], which was searched in Unitex by the following regular
expression: quem (<MOT>+<E>)(<V:P3s>+<V:J3s>) (<MOT>+<E>) <V:P3s>. This
syntaxe means: pronoun quem followed by a verb in the third singular person of the verb in
simple present or simple past, which is followed by a verb in simple present in third singular
person; between these elements a single, facultative word could also appear. This regular
expression could be instantiated by Quem sabe faz ‘Who knows makes’ 5 and another similar
syntactic structure was found 5:
(6) Quem sabe faz

‘Who knows makes’
(7) Quem sabe faz ao vivo

‘Who knows makes it viva’
These are two different proverbs, not only variants, because their meanings are different,

so the task is also valid for searching more proverbs.
While the definition of the core elements is basically a lexical decision, the length of the

insertion window between them is a matter of empirical decision, and it can vary, as we have
seen, depending on the type of proverb involved. Several tests were conducted with insertion
windows of different lengths, and, in general, results fell rapidly when more than 5 words
could be inserted. The two examples 5–5, below, show 5 words between the core elements.
(8) o buraco [das negociações com o Congresso] é muito mais embaixo

‘the hole [in negotiations with Congress] is much more down’
(9) a justiça [que o brasileiro tanto almeja] começa dentro de casa

‘the justice [that the Brazilian so much craves] begins at home’
Another issue that had to be considered in the insertion window is the fluctuation of

punctuation marks. In Portuguese proverbs, the use of comma is not systematic, and in many
cases it can be considered to be optional. Particularly, in verse-like proverbs, with parallel
metric in each hemistich, an hyphen ‘–’ or even a slash ‘/’ can be found. The reference
graphs allow the facultative presence of punctuation between the core words of the proverb
so that both forms are retrieved; e.g. 5–5:
(10) Quem sai ao vento (,) perde o assento (comma facultative)

‘Who leaves to the the wind, loses the seat’
(11) Quando a esmola é demais (,) o santo desconfia (comma facultative)

‘When the alms are too much, the saint suspects’
The lemmatization of the core words also raises several interesting issues. Many words

were lemmatized aiming to identify all inflected forms of the verbs and the nouns, but for
proverbs with the structure [V Cop V], such as Recordar é viver ‘To remember is to live’,

SLATE 2014

246 Automatic Detection of Proverbs and their Variants

Amar é sofrer ‘To love is to suffer’, Querer é poder ‘To want is to be able’, among others,
only the infinitive can be used, so we decided that the surface form should appear in the
lexicon-grammar table.

Some proverbs admit transformations. For example, almost every proverb in class P1F2
allows the mirror permutation, which consists in reversing the order of constituents (subject
and predicative) around the copula verb ser ‘to be’; e.g. 5–5:
(12) O ataque é a melhor defesa [Mirror Perm.]= A melhor defesa é o ataque

‘The attack is the best defense = The best defense is the attack’
(13) A fome é o melhor tempero [Mirror Perm.]= O melhor tempero é a fome

‘Hunger is the best seasoning = The best seasoning is hunger’
The mirror permutation was only found in proverbs with a NP in the predicative position.

In the case of adjectival structures, as in the proverbs A carne é fraca ‘The flesh is weak’,
O amor é cego ‘Love is blind’ and Errar é humano ‘To make mistake is human’, this
transformation is more rarely observed, though it can still be found in the web, so we
extended it to the entire set of this class:

“Quão fraca é a carne humana!” 11;
“O que você quis dizer com “Eu não sabia o quão cego é o amor.”?” 12;
“Eu a amo, já relevei mtas coisas, mas humano é errar, burrice é repetir os erros.

Cansei.”13

Class P1F4 was distinguished from P1F2 and P1F3 because of the presence of an obligatory
negation element, such as não ‘not’, nunca ‘never’, jamais ‘never’, among others. However,
wordplay often involves the removal of this negation, to produce some type of effect. For
example, on par with the proverb Beleza não põe mesa ‘Beauty does not set the table’, an
affirmative variant 5 was found in the corpus :
(14) Como a maioria das outras entrevistadas, Astrid diz que beleza põe mesa, sim

‘Like most other interviewees, Astrid says that beauty does set the table, yes’
Naturally, the interpretation of this sentence implies the previous knowledge of the

negative form of the proverb. However, because of this creative re-use of the negative
structure, the negation element was not considered an obligatory core element of the proverb.

Class P2F2 consists of 71 proverbs, formed by two coordinated propositions. Many of
them result from the sum of two simple proverbs with one proposition each, e.g. the proverb 5
results from the combination of the proverbs 5 and 5, so it is considered a proverb and not
just a variant.
(15) Quem casa não pensa, quem pensa não casa

‘Who gets married doesn‘t think, who think doesn‘t get married’
(16) Quem casa não pensa

‘Who gets married doesn‘t think’
(17) Quem pensa não casa

‘Who think doesn‘t get married’
In these cases, in which a proverb is formed by two clauses, but also admits that only

one of the clauses be used independently, the proverb was inserted thrice: in P2F1 class or
in P2F2 (two clauses), and in P1F3 or P1F4 classes (single clause classes).

11 http://www.pastoralis.com.br/pastoralis/html/modules/newbb/ [2014/03/23]
12 http://m.fanfiction.com.br/reviews/historia/58620/capitulo/439083 [2014/03/23]
13 http://www.segredototal.com.br/de/homem/ [2014/03/23]

http://www.pastoralis.com.br/pastoralis/html/modules/newbb/
http://m.fanfiction.com.br/reviews/historia/58620/capitulo/439083
http://www.segredototal.com.br/de/homem/

A.P. Rassi, J. Baptista, and O. Vale 247

6 Final Remarks

In this paper we presented a methodology for detecting proverbs automatically in running
texts. Proverbs have a similar syntactic structure and contain the same lexicon as ordinary
free sentences, but they must be interpreted as a single unit of meaning. However, they often
lack the presence of introductory expressions, that signal them as quotations, or are recast
(and reshaped) in the ordinary stream of discourse, so it is necessary to recognize them in
texts as multiword meaning units at a sentential/clausal level.

The results of this study showed contributions both for theoretical linguistics and to
automatic text processing. As linguistic contributions, we emphasize:
(i) the formal (syntactic) classification of proverbs in 12 classes; this classification may

serve as a starting point for deeper analysis on each one of these proverbial structures,
as it has been done for the Spanish, French and Italian [2, 10, 11, 22];

(ii) the identification of the core elements of each proverb; the methodology presented to
extract keywords can be replicated for other different corpora in order to see if the
results are consistent across the different text types and domains;

(iii) the definition of an adequate extent of a window for insertions (words and punctuation),
which may vary depending on the formal class; and

(iv) the frequent occurrence of variation, including of transformational nature, such as the
mirror-permutation, and the zeroing of negation elements.

As contributions for automatic processing of texts in natural language, we highlight:
(i) the evaluation of the task, which showed 60.15% of precision with a 0-5 words window

and 73.35% when no insertion is allowed; and
(ii) the construction and application of reference graphs for automatic detection of the

proverbs and their variants in large corpus.
Naturally, much is still to be done.

Acknowledgements. This work was partially supported by national funds through FCT –
Fundação para a Ciência e a Tecnologia, under project PEst-OE/EEI/LA0021/2013 and by
Capes/PDSE under Process BEX 12751/13-8. We would like to thank the comments of the
anonymous reviewers, which helped to improve this paper.

References
1 Jorge Baptista, Anabela Correia, and Graça Fernandes. Léxico-gramática das frases fixas

do portugués europeo. Cadernos de Fraseoloxía Galega, pages 41–53, 2005.
2 María Lucía Navarro Brotons. Las paremias y sus variantes: análisis sintáctico, semántico

y traductológico español/francés. PhD thesis, Universidad de Alicante, Alicante, Spain,
2008.

3 M. Bruckschein, F. Muniz, J.G.C. Souza, J. T. Fuchs, K. Infante, M. Muniz, P.N. Gonçalez,
R. Vieira, and S.M. Aluisio. Anotação linguística em xml do corpus pln-br. Série de
relatórios do nilc, NILC – ICMC – USP, 2008.

4 Lars Bungum, Björn Gambäck, André Lynum, and Erwin Marsi. Improving word transla-
tion disambiguation by capturing multiword expressions with dictionaries. In Proceedings
of the 9th Workshop on Multiword Expression, pages 21–30, Atlanta, Georgia, USA, June
2013.

5 Helena M. Caseli, Carlos Ramisch, Maria das Graças Volpe Nunes, and Aline Villavicencio.
Alignment-based extraction of multiword expressions. Language Resources and Evaluation
– Special Issue on Multiword expression: hard going or plain sailing., pages 59–77, 2010.

SLATE 2014

248 Automatic Detection of Proverbs and their Variants

6 Lucília Chacoto. A sintaxe dos provérbios – as estruturas quem/quien en portugués e
español. Cadernos de Fraseoloxía Galega, pages 31–53, 2007.

7 Lucília Chacoto. Mais vale mais um gosto na vida que três vinténs na algibeira – las
estructuras comparativas en los proverbios portugueses. Aspectos formales y discursivos de
las expresiones fijas, pages 87–103, 2008.

8 Mirella Conenna. Acerca del tratamiento informático de los proverbios. Léxico y fraseología,
pages 197–204, 1998.

9 Mirella Conenna. Sur un lexique-grammaire comparé de proverbes – les expressions figées.
Langages, 90:99–116, 1998.

10 Mirella Conenna. Classement et traitement automatique des proverbes français et itali-
ens. Lexique, Syntaxe et Sémantique, Mélanges offerts à Gaston Gross à l’occasion de son
soixantième anniversaire, pages 285–294, 2000.

11 Mirella Conenna. Dictionnaire électronique de proverbes français et italiens. In Actes
du XXIIe Congrès International de Linguistique et de Philologie Romanes, pages 137–145,
Bruxelles, Juillet 2000.

12 Mirella Conenna. Principes d’analyse automatique des proverbes. Syntax, Lexis & Lexicon-
Grammar, Papers in honour of Maurice Gross, pages 91–103, 2004.

13 Paul Cook and Graeme Hirst. Automatically assessing whether a text is cliched, with
applications to literary analysis. In Valia Kordoni, Carlos Ramisch, and Aline Villavicencio,
editors, Proceedings of the 9th Workshop on Multiword Expression, pages 52–57, Atlanta,
Georgia, USA, June 2013. Association for Computational Linguistics.

14 Márcia de Carvalho Saliba. Unidades lexicais maiores que a palavra: descrição linguística,
considerações psicolinguísticas e implicações pedagógicas. Master’s thesis, Universidade
Federal do Paraná, Paraná, 2000.

15 Ana Clara Gonçalves Alves de Meira. Uma análise da articulação de cláusulas hipotáticas
adverbiais em provérbios do portugês brasileiro. In EDUFU, editor, Anais do SILEL,
volume 1, Uberlândia-UFMG, 2009.

16 Ana Clara Gonçalves Alves de Meira. A articulação de orações em provérbios do portugês
em uso: uma análise das relações retóricas. Master’s thesis, Universidade Federal de Minas
Gerais (UFMG), Belo Horizonte, 2011.

17 Glaucy Ramos Figueiredo. O gênero proverbial na imprensa: usos e funções retóricas. PhD
thesis, Universidade Federal de Pernambuco, Recife-PE, 2012.

18 Maurice Gross. Une classification des phrases figées du français. Révue Québécoise de
Linguistique, 11(2):151–185, 1982.

19 Raimundo Magalhães Jr. Dicionário brasileiro de provérbios, locuções e ditos curiosos: bem
como de curiosidades verbais, frases feitas, ditos históricos e citações literarias, de curso
corrente na língua falada e escrita. Documentário, Rio de Janeiro, 3 ed edition, 1974.

20 Valia Kordoni, Carlos Ramisch, and Aline Villavicencio, editors. Proceedings of the ACL
Workshop on Multiword Expressions: from Parsing and Generation to the Real World
(MWE 2011), Portland, OR, USA, June 2011.

21 Valia Kordoni, Carlos Ramisch, and Aline Villavicencio, editors. Proceedings of the 9th
Workshop on Multiword Expression, Atlanta, Georgia, USA, June 2013.

22 Cláudia B. Lacavalla. Lexique-grammaire des proverbes en Quand/Quando – Comparaison
français-italien et représentation par grammaires locales. PhD thesis, Universitá degli Studi
di Bari, Bari, Itália, 2007.

23 Éric Laporte, Preslav Nakov, Carlos Ramisch, and Aline Villavicencio, editors. Proceedings
of the COLING Workshop on Multiword Expressions: from Theory to Applications (MWE
2010), Beijing, China, August 2010.

24 Ana Cristina Macário Lopes. Texto Proverbial Português – Elementos para uma análise
semântica e pragmática. PhD thesis, Universidade de Coimbra, Coimbra, 1992.

A.P. Rassi, J. Baptista, and O. Vale 249

25 Maria Lucia Mexias-Simon. Para uma estrutura dos provérbios nas línguas românicas: uma
experiência. Mosaico – Revista Multidisciplinar de Humanidades, 2(2):59–74, 2011.

26 Martha Palmer. Complex predicates are multi-word expressions. In Proceedings of the 9th
Workshop on Multiword Expression, page 31, Atlanta, Georgia, USA, June 2013.

27 Sébastien Paumier. De la reconnaissance des formes linguistiques à l’analyse syntaxique.
PhD thesis, Université de Marne-la-Vallée, 2003.

28 Sébastien Paumier. Unitex 3.1 – Manuel d’Utilisation, last edition, 2013.
29 Ciça Alves Pinto. Livro dos provérbios, ditados, ditos populares e anexins. Senac, São

Paulo, 4 ed edition, 2003.
30 Ivan A. Sag, Timothy Baldwin, Francis Bond, Ann Copestake, and Dan Flickinger. Multi-

word expressions: A pain in the neck for NLP. In Proc. of the 3rd International Conference
on Intelligent Text Processing and Computational Linguistics (CICLing-2002), pages 1–15,
2001.

31 Ana Paula Gonçalves Santos. Análise da escolha lexical no estudo dos provérbios em LP.
In Anais do SIELP, Uberlândia-UFMG, 2012. EDUFU.

32 Martha Steinberg. 1001 provérbios em contraste: provérbios ingleses e brasileiros. Editora
Ática, São Paulo, 1985.

33 José Teixeira. Mecanismos metafóricos e mecanismos cognitivos: Provérbios e publicidade.
In Arco Libros, editor, Actas del VI Congreso de Lingüistica General, pages 2271–2280,
Madri, 2007.

34 Nelson Carlos Teixeira. O grande livro de provérbios. Leitura, Belo Horizonte, 1942.
35 Oto Araújo Vale. Expressões cristalizadas do português do Brasil: uma proposta de tipologia.

PhD thesis, Universidade Estadual Julio Mesquita Filho – UNESP, 2001.

SLATE 2014

Language Identification:
a Neural Network Approach
Alberto Simões1, José João Almeida2, and Simon D. Byers3

1 Centro de Estudos Humanísticos, Universidade do Minho
Braga, Portugal
ambs@ilch.uminho.pt

2 Departamento de Informática, Universidade do Minho
Braga, Portugal
jj@di.uminho.pt

3 AT&T Labs
Bedminster NJ, US
headers@gmail.com

Abstract
One of the first tasks when building a Natural Language application is the detection of the used
language in order to adapt the system to that language. This task has been addressed several
times. Nevertheless most of these attempts were performed a long time ago when the amount
of computer data and the computational power were limited. In this article we analyze and
explain the use of a neural network for language identification, where features can be extracted
automatically, and therefore, easy to adapt to new languages. In our experiments we got some
surprises, namely with the two Chinese variants, whose forced us for some language-dependent
tweaking of the neural network. At the end, the network had a precision of 95%, only failing for
the Portuguese language.

1998 ACM Subject Classification I.2.7 Natural Language Processing: Language models

Keywords and phrases language identification, neural networks, language models, trigrams

Digital Object Identifier 10.4230/OASIcs.SLATE.2014.251

1 Introduction

The problem of Language Identification has been addressed for a long time, usually as a
language model, that validates how likely a text is modeled by a specific language model [4].
This task can be considered the base when building a natural language processing stack of
tools, as before one can apply mostly any kind of language processing tool there is the need
to know the text language or, at least, the text alphabet. Only after that identification is
done we can apply a tool to the text being certain that it will know how to deal with the
characters, the words, or the syntax.

Following the idea presented in the previous paragraph, we can divide the task of identi-
fying a language in two main tasks: first, the alphabet identification (looking to which
characters1 are used) and second, the identification of the language itself.2

1 We are aware that the notion of character change with different alphabets. In this article we refer to
character as an entry in the Unicode table.

2 Here we are simplifying, as there are some languages that can be written in two different alphabets. In
this paper we will consider that each language has a preferred alphabet, and that is the one that will
be used.

© Alberto Simões, José João Almeida, and Simon D. Byers;
licensed under Creative Commons License CC-BY

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões; pp. 251–265

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2014.251
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

252 Language Identification: a Neural Network Approach

At first the identification of some languages can be seen as simple. If a human looks
to some Chinese text, he might notice that characters seem different from the ones used in
Korean or Japanese text. In the same manner, Hindi characters are not likely to be found
in other languages. The truth is that it is not as simple as it might seem, as for example,
Chinese, Korean and Japanese share a huge amount of characters.

For the next level there are yet more problems. Consider the large amount of languages
that share the Latin characters, and the amount of languages with the same origin, like
Portuguese, Galician or Spanish. It can get harder if one tries to distinguish between
language variants, like English from United States or United Kingdom.

In this paper we present a tool for learning language identification from tagged corpora
into a Neural Network. Although this idea is not new, previous work on this task was
published more than 20 years ago, and a lot has changed. Nowadays we have large quantities
of text, in most any language existing in the world, and enough computational power to train
a Neural Network is a relatively large amount of parameters. Also, and although we are not
using that knowledge, there are new studies on methods to train Deep Neural Networks [5, 1],
that we are interested to research about.

So, to start with, our main objective was to use a simple Neural Network implementation,
making it easy to implement a language identifier in any programming language given the
neural network parameters Θ. Then, as this approach is working, we intend to apply new
techniques, namely the referred deep neural networks.

At the moment, and as a proof of concept we developed the learning algorithm in Octave
(an open-source implementation of the well known MATLab software), and implemented
language identifiers in two different programming languages: Perl and Java.

First we will analyze the current language identification approaches, namely the ones
already using Neural Networks, and compare them with our approach. This will be discussed
in the next section.

The section 3 describes the entire process of training the Neural Network, starting with
the dataset preparation. Then, we will discuss how the features were chosen, and which were
used. Follows the description of the Neural Network architecture, and its implementation
details.

Section 4 will analyze how well the Neural Network performs in different kind of texts
and for different language pairs.

Finally, section 5 presents some conclusions regarding our work, and pointers in future
directions.

2 Language Identification Approaches

When looking up for works on language identification one might be surprised to find out that
most of the recent published work is devoted to spoken language identification. Although
the task might be similar, as the main algorithm would be to detect features most common
in some languages than in another, the fact is that the searched features are of different
kind. In this work we will focus only in the works devoted to identify languages on written
text.

In the other hand, there are not many publications on language identification on written
text. A reason for that might be the existence of two patents [9, 10], that explore the use
of trigrams or generically n-grams for language identification. It is always interesting that
some of these patents are granted when previous work like [6] already use this same kind
of approach but for sound. Also, one year later, Nakagawa et al. [8] published work on
language identification based on Hidden Markov Models that use n-grams as well.

A. Simões, J. J. Almeida, and S.D. Byers 253

In fact, Muthusamy already used neural networks for language identification. So, a
question arises: what does our work do that was not done before? First, his main task
was to identify language on spoken text. Other than that, in 1993 the amount of data
available in text format was quite smaller than the amount of texts available nowadays, and
the number of languages in which these texts exist is also very different. In another aspect,
the computational power also changed drastically. Muthusamy used at most 10 languages,
and not much more than 130 features, which were mostly chosen manually.

Our approach takes advantage of the amount of text available as well as the computa-
tional power to compute automatically what features to use. Our experiments gone up to
more than one thousands features, having the network to took less than one day to train
with a reasonable number of iterations.

3 Neural Network

Neural networks are being used for some time and their design and implementation for
standard situations is well known [3]. Most of the work using neural networks aims at the
classification of objects. In this case, the network works as a hypothesis function hΘ(X)
that, based on a set of matrices Θ previously computed on a training set, is able to classify
an object based on a set of features extracted from that object. So, in the case of language
identification, our training set is a set of texts manually classified in one language and an
algorithm to extract features from them. These features are them fed in the neural network
training algorithm that will compute the set of matrices Θ.

These matrices are then used to identify the language of new texts. For that, the features
X are extracted from the text to be classified, and the hypothesis function is called. The
resulting vector will include the probabilities of that text being identified as each one of the
trained languages.

This section describes the main approach used to train our neural network. First we will
discuss how the training texts were prepared. Follows the algorithm for extracting features
from the training dataset, and the details on the neural network, explaining the architecture
and the implementation details.

3.1 Dataset Corpora Preparation

In order to gather training data we used text from the TED conference website. This
resulted in a core corpus of 105 different languages and language variants. These texts had
very different sizes depending on the amount of data available in the TED website.

Given the technical nature of these texts, they include high proportion of technical
terms, company and product names, and person names which are not translated. We will
be referring to these as named entities [7], although some of them are not, at least in the
usual definition of the term. This type of linguistic units is present to a varying degree in
many language data sources.

This leads to the problem that text in a target language used for training might have
snippets of another language appearing in it. This is exacerbated in translated text and in
technical text. Also, in multilingual data on the same subject, particular word and character
level features may appear in many languages despite being unrepresentative of most of them.
When extracting n-grams, for example, it might happen that the most frequent are part of
these terms. The result are features that are not language discriminant, although of high
frequency.

SLATE 2014

254 Language Identification: a Neural Network Approach

In order to obtain clean training data we exploit the fact that the TED data form a
multilingual parallel corpus. In particular the initial source language is English in this case.
We extract the out-of-vocabulary words and some named entities from the English text using
the Hunspell3 spell checker and its default English dictionary. Note that we are extracting
named entities that contain non-words, like proper names or trade marks. These words
then, if they appear in the non-English tracks for that aligned text, should be removed due
to their potential foreign origin.

This process allows us to obtain cleaner training text, where words are more likely to be
purely of the tagged language. The drawback is that the resulting text no longer has correct
sentences. Nevertheless, if we compute only character n-grams (and not word n-grams) that
problem should not be relevant.

Finally, for the Portuguese language, we used the Lince [2] application in order to render
the texts compliant to the 1990 Portuguese orthography reform, recently implemented.
Given that this reform was established with the explicit goal of better unifying the or-
thography of the several variants of the Portuguese language worldwide, it is only natural
that, in spite of the remaining differences, it has brought closer together the orthographies
of European and Brazilian variants. Therefore, we might have considered Portuguese as an
unique language and probably should have selected texts from only one of these variants.
Nevertheless, we kept the two variants as distinct, and will discuss the obtained results later.

3.2 Feature Extraction
Our main goal, initially, was to use only n-gram features (namely trigrams) from the lan-
guages being used in the training process. Unfortunately, when using character trigrams, we
are working with word trigrams for the Asiatic languages, like Korean, Chinese or Japan-
ese, as each character represent (roughly) a word. This means that the amount of different
trigrams for these languages is huge. To solve this problem we might enlarge the number of
features extracted per language, thus making the training process prohibitive. Other option
would be to change the number of trigrams for those specific languages. At the end we de-
cided to create character dependent features (instead of some language-dependent features),
regarding the number of characters used in some alphabets.

Therefore, currently we have two different levels of features: one related with the charac-
ters that are used, and another with the character trigram frequency information. All these
features are extracted from 30 different texts for each one of the training languages.

Alphabet Features
As stated in the introduction, it is not possible to create an injective function from used
characters to the written language neither from the language to the used characters.

For the Latin alphabet alone there are dozens of languages. For the Chinese, Japanese
and Korean languages, they all use Chinese Kanji morphemic script, although Japanese
script is sillabary, not an alphabet, and Korean uses a proper alphabet (phonologically
based script). The situation gets worse when looking to the traditional and simplified
Chinese versions that share most of their characters.

To compute features related to the used characters, we defined 10 different classes Ci:

3 Details on the Hunspell spell checker and its dictionaries can be obtained from the project webpage at
http://hunspell.sourceforge.net/

http://hunspell.sourceforge.net/

A. Simões, J. J. Almeida, and S.D. Byers 255

1. Latin characters, only a-z, without diacritics;
2. Cyrillic characters, containing Unicode characters in the intervals 0x0410-0x042F and

0x0430-0x044F;
3. Hiragana and Katakana characters (used for Japanese), containing Unicode characters

between 0x3040-0x30FF
4. The Hangul characters (used for Korean), from the Unicode classes 0xAC00-0xD7AF,

0x1100-0x11FF, 0x3130-0x318F, 0xA960-0xA97F and 0xD7B0-0xD7FF;
5. Kanji characters (used in Japaneses, Korean and Chinese), from the Unicode class

0x4E00-0x9FAF;
6. Simplified Chinese characters, a list of 2877 characters, hand-curated and available on

GitHub4;
7. Traditional Chinese characters, a list of 2663 characters, hand-curated and also avail-

ablefrom GitHub;
8. Arabic characters (used in Persian, Urdu, and different varieties of the Arabic language),

in the Unicode class 0x0600-0x06FF;
9. Thai characters, for the Unicode class 0x0E00-0x0E7F;
10. Greek characters, in the Unicode classes 0x0370-0x03FF and 0x1F00-0x1FFF.

For the text segment being analyzed, the number of characters for each one of these
classes are counted, and the relative frequency computed. After some experiments, and
in order to reduce the entropy for the neural network, we decided to help by computing
discrete values. Therefore, before using these ten values in the neural network a small set
of rules make the values binary. When setting a class Ci, the result will have Ci = 1 and
Cj = 0,∀j 6= i.

Follows the list of rules used in this context:

set C1 ⇐ C1 > 0.20
set C2 ⇐ C2 > 0.40
set C3 ⇐ C3 > 0.20
set C4 ⇐ C4 > 0.20
set C6 ⇐ C5 > 0.30 ∧ C6 > C7

set C7 ⇐ C5 > 0.30 ∧ C6 < C7

set C8 ⇐ C8 > 0.20
set C9 ⇐ C9 > 0.20
set C10 ⇐ C10 > 0.20

These percentages were defined empirically. In fact, these rules are specially relevant for
the Japanese, Korean and Chinese languages. Note that the two complicate rules are used
to distinguish between the two Chinese variants. After running these rules, these features
are used directly in the neural network.

Trigram Features
Regarding language information, we chose to store information about character trigrams.
There are different reasons why we chose to use three characters:

4 Check https://github.com/jpatokal/script_detector

SLATE 2014

https://github.com/jpatokal/script_detector

256 Language Identification: a Neural Network Approach

Für mich war das eine neue Erkenntnis. Und ich denke, mit der Zeit, in den
kommenden Jahren, Wir haben Künstler, aber leider haben wir sie noch nicht
entdeckt. Der visuelle Ausdruck ist nur eine Form kultureller Integration.
Wir haben erkannt, dass seit kurzem immer mehr Leute

Figure 1 A sample text in the German language.

bigrams would be too small when comparing very close languages like Portuguese and
Spanish;
tetragrams would be too big for Asiatic languages, where some gliphs represent words
or morphemes;
punctuation and numbers were removed, and spaces normalized, meaning that trigrams
would be able to capture the end and beginning of two words that usually occur together,
as well as to capture single character words that appear surrounded by spaces.

This task was performed using the Perl module Text::Ngram5, which deals with the task
of cleaning the text, normalizing spaces and computing n-grams. The obtained counts were
then divided by the total number of trigrams found, thus computing their relative frequency.

As an example, Table 1 shows the result of computing trigrams on the text from Figure 1.

Table 1 Top 25 occurring trigrams from text shown in Figure 1.

en␣ 0.02299 er␣ 0.02682 ␣de 0.01533 abe 0.01533 der 0.01149
hab 0.01149 ich 0.01149 ir␣ 0.01149 it␣ 0.01149 r␣h 0.01149
␣wi 0.01149 ben 0.01149 ch␣ 0.01149 den 0.01149 wir 0.01149
␣ha 0.01149 ine 0.00766 ler 0.00766 lle 0.00766 n␣k 0.00766
mme 0.00766 ne␣ 0.00766 nnt 0.00766 r␣l 0.00766 r␣m 0.00766

Features Merging
Although the alphabet features is a limited list of ten different alphabets, there is the need
to merge the trigram features into just one list choosing only the more significant.

This process is performed in two stages, first for each language, then for the entire
training set:
1. For each of the 30 training texts from a specific language we compute the 20 trigrams

with higher frequency. The trigrams are then merged in an unique list that includes the
most occurring trigrams from all the training texts in a specific language. Next, this list
is reduced, preserving only the 20 trigrams that are present in most texts. Note that we
are not interested in their frequency in each training text, but how often they appear in
different texts.

2. Next, each group of 20 trigrams computed from a specific language are joined together
in a big list of features.

So, the complete features list F includes the alphabet features (Fa) and the trigrams
features (Ft): F = Fa ∪ Ft. With this feature list we can compute the training data, in the
form of a matrix. Each line of the matrix is the data collected from each one of the training

5 Available from https://metacpan.org/pod/Text::Ngram.

https://metacpan.org/pod/Text::Ngram

A. Simões, J. J. Almeida, and S.D. Byers 257

Table 2 Training data matrix.

Alphabet Features Trigram Features
Latin Greek Cyril. ␣pa ới␣ par nia ест ати ата

PT 1 0 0 0.0041 0 0.0038 0.0001 0 0 0
PT 1 0 0 0.0039 0 0.0036 0 0 0 0
RU 0 0 1 0 0 0 0 0.0020 0.0004 0.0003
RU 0 0 1 0 0 0 0 0.0026 0.0005 0.0002
UK 0 0 1 0 0 0 0 0.0003 0.0034 0.0001
UK 0 0 1 0 0 0 0 0.0003 0.0026 0.0001
VI 1 0 0 0 0.0028 0 0 0 0 0
VI 1 0 0 0 0.0029 0 0.0001 0 0 0

texts. Each column of the matrix corresponds to a different feature from F . Each cell of
the matrix stores the value of a specific feature in a specific training text. Table 2 shows an
excerpt from this matrix.

3.3 Network Architecture
A neural network is composed by a set of L layers, each one composed by a set or processing
units. A processing unit is denoted by a(l)

i where l is the layer where it belongs, and i its
order.

All units from a specific layer are connected to all units from the next layer. This
connection is controlled by a matrix Θ(l), for each layer l.

The first layer is known as the input layer. It has the same number of units as there are
features to be analyzed (in our experiment, 565 units). Whenever the network hypothesis
function is evaluated each cell a(1)

i is filled in with the values obtained by the features
observation.

The next layer, a(2)
i is computed using the previous layer and the matrix Θ(1), as will be

explained in the next section. This process is done for every layer l ≤ L.
The layer L is known as the output layer. There are as many units in this layer as the

number of classes K in which the network will classify objects. Therefore, if the network is
trained to detect 25 languages, then there are 25 units in the output layer. Each unit in the
output layer will, optimally, get a value that is either 1 or 0, meaning that the object is, or
is not, in the respective class. Usually, the result is a value in this range, that represent the
probability of the object to be of that specific class.

The other layers, 1 < l < L, are known as the hidden layers. There are as many hidden
layers as one might want, but there is at least one hidden layer. Adding new layers will
make the network return better results but it will take more time to train the network, and
take more time to run the network hypothesis function. For our experiments we used only
one hidden layer.

Regarding the number of units in the hidden layers, there are some rules of thumb: use
the same number of units in all hidden layers, and use at least the same number of units
as the maximum between the number of classes and the number of features. But there can
be up to three times that value. Given the high number of features we opted to keep that
same number of units in the hidden layer.

3.4 Training Details
This kind of neural network implementation is not complicated, but is susceptible to er-
rors. Our neural network was implemented using the more common definition of a neural
network [3].

SLATE 2014

258 Language Identification: a Neural Network Approach

565X

1X

2X

3X

4X

5X

6X

7X

1K

2K

3K

4K

5K

25K

Figure 2 Neural network architecture.

The implementation of the neural network was based on the logistic function defined
by g(z). This function range is [0, 1], and its result value can be considered a probability
measure. The logistic function is defined as:

g(z) = 1
1 + exp−z

Our neural network hypothesis function, hΘ(l)(X) is defined by two matrices, Θ(1) and
Θ(2). These matrices of weights are used to compute the network. The input values, obtained
by the computed features, are stored in the vector X. This vector is multiplied by the first
weight matrix, and the logistic function is applied to each value of the resulting vector. The
resulting vector is denoted as a(2) and corresponds to the values of the second layer of the
network (the hidden layer). It is then possible to multiply a(2) vector by the weights of Θ(2)

and, after applying the sigmoid function to each element of the resulting multiplication,
we obtain a(3). This is the output layer, and each value of this vector corresponds to the
probability of the document being analyzed to as being written in a specific language. This
algorithm is known by forward propagation and is defined by:

a(1) = x

for i = 2 to L,
a(i) = g

(
Θ(i−1)x

)
The main problem behind this implementation is how to obtain the weight values. For

that the usual methodology is to define a cost function and try to minimize it, that is,
finding the Θ values for which the hypothesis function has a smaller error for the training
set.

A. Simões, J. J. Almeida, and S.D. Byers 259

The cost function with regularization is defined as:6

J(Θ) =− 1
m

(
m∑

i=1

K∑
k=1

y
(i)
k log(hΘ(x(i)))k + (1− y(i)

k) log(1− (hΘ(x(i)))k)
)

+ λ

2m

L−1∑
l=1

sl∑
i=1

Sl+1∑
j=1

(
Θ(l)

j,i

)2
.

The regularization is controlled by the coefficient λ which can be used to tweak how the Θ
weights absolute value will increase. Although our implementation supports regularization
the experiments performed did not use any regularization (λ = 0).

The minimization of the cost function J(Θ) is computed by an algorithm known as
Gradient Descent. This algorithm uses the partial derivatives

∂

∂θ
(l)
i,j

J(Θ)

to compute the direction to use to obtain the function minimum. The algorithm continues
iterating until the difference between the obtained costs is very small, or until a limit number
of iterations it met.

Gradient Descent can be implemented using an algorithm known as Backwards Propaga-
tion to compute efficiently the partial derivatives. Our implementation runs a number of
iterations and save the Θ values. It is then possible to continue the training from those
values. In the future this will allow us to create a test set and stop training when it has a
sufficiently high precision. Nevertheless, at the moment we are performing tests with a fixed
number of iterations (check next section).

4 System Evaluation

Our experiment used 25 languages: Arabic (AR), Bulgarian (BG), German (DE), Modern
Greek (EL), Spanish (ES), Persian (FA), French (FR), Hebrew (HE), Hungarian (HU),
Italian (IT), Japanese (JA), Korean (KO), Dutch (NL), Polish (PL), Portuguese (PT),
Brazilian Portuguese (PT-BR), Romanian (RO), Russian (RU), Serbian (SR), Thai (TH),
Turkish (TR), Ukrainian (UK), Vietnamese (VI) and, Traditional and Simplified Chinese
(ZH-TW and ZH-CN).

The neural network was trained using these 25 languages and the corpora described in
section 3.1. The next subsection explains the creation and characterizes the test set for these
languages. Note that although the training corpora was cleaned, removing some words that
are not likely to be in that language, the test corpora is noisy (namely including some words
from other languages).

4.1 Test Set Characterization
For each language to be identified we collected 21 documents. Given we do not master all
these languages we had some difficulties on collecting documents for some languages. To
be sure of the languages of the test files we often resorted to other language identification
software. All the texts were collected from on-line newspapers. Therefore, the texts have

6 It goes beyond of focus of this article to discuss and explain what is the regularization and how it
works. The same is true regarding the Gradient Descent or the Backwards Propagation algorithms.

SLATE 2014

260 Language Identification: a Neural Network Approach

Table 3 Training and test set statistic for each language. Values are in number of Unicode
characters.

Training Set Test Set
Language Smaller Larger x̄ σ Smaller Larger x̄ σ

ar 871921 969387 907562 21392 863 4618 2366 1210
bg 988450 1087435 1027581 23663 660 2099 1091 378
de 588200 653508 618463 16475 677 3890 1554 842
el 773265 885770 841203 22653 550 3297 1590 705
es 578806 651240 617341 17637 897 3850 2342 935
fa 651807 766206 697212 28994 600 5221 1338 967
fr 639582 705675 673414 15377 936 4088 1879 689
he 806098 877218 836222 20545 559 3649 1586 878
hu 406271 454506 431797 13131 729 6045 2175 1356
it 588147 643252 616391 14348 1260 6607 2991 1370
ja 538033 606053 569956 18871 323 785 495 133
ko 737118 817651 773168 20550 530 1603 780 233
nl 533497 580313 557724 14033 552 1949 1115 381
pl 521184 591299 551259 17938 435 3092 1605 694

pt-br 596158 643215 617734 14028 920 3189 1953 589
pt 338272 378872 355800 10605 486 5875 2031 1169
ro 592714 650375 616051 15442 718 3254 1438 695
ru 1019789 1144200 1069884 31232 662 2470 1444 526
sr 349389 433221 379344 20560 834 6493 1813 1263
th 529484 601244 565082 18551 334 3242 1396 734
tr 494191 549998 524271 12774 332 5390 1559 1121
uk 370785 434683 395312 16641 299 15435 2430 3553
vi 470057 541930 510409 17246 680 6237 1555 1359

zh-cn 536438 595027 562728 14457 495 6331 1695 1559
zh-tw 514993 588860 542879 16000 270 1721 925 428

plenty of named entities (that our training corpus misses) and vary on size. In fact, in
some situations the news texts were not copied completely, in order to have smaller texts.
Unfortunately the task of collecting these texts was done ad-hoc, resulting in some very
different sizes for different languages. Check Table 3 for some more information on the
number of characters per test file.

Curiously, when building this test set we found some texts that were being wrongly
identified because we collected them in the wrong language. Although this fact is not
relevant, it was curious that a collected text in Catalan was identified as French. This
means that the neural network is able to detect languages by proximity.

4.2 Accuracy
Our first experiments did not include the alphabet features. Although it worked relatively
well for most languages, the trained neural network failed for the four Asiatic languages.
The main reason for that is the large proportion of characters that are shared among these
languages, while each one has a structurally different type of base script. This leads to a
large amount of different trigrams and therefore the neural network would need many more
features per language (or for these specific language).

A. Simões, J. J. Almeida, and S.D. Byers 261

Table 4 Accuracy on test set, when training with 1500 and 4000 iterations.

Language 1500 iters. 4000 iters. Comments
ar 100% 100%
bg 100% 100%
de 100% 100%
el 100% 100%
es 100% 100%
fa 100% 100%
fr 100% 100%
he 100% 100%
hu 100% 100%
it 100% 100%
ja 100% 100%
ko 100% 100%
nl 100% 100%
pl 100% 100%
pt 5% 52% wrongly classifies as pt-br

pt-br 100% 76% wrongly classifies as pt
ro 100% 100%
ru 100% 100%
sr 100% 100%
th 100% 100%
tr 100% 100%
uk 100% 100%
vi 100% 100%

zh-cn 100% 100%
zh-tw 100% 100%

After adding the alphabet features, we trained the neural network with two different
number of iterations: 1500, and 4000. Table 4 presents accuracy values for each language
when analyzing the test set. Globally, with 1500 iterations we were able to get 96% of
precision, and with 4000 iterations it gets up to 97%.

Looking to the results’ table one can see that the most problematic languages are the
two Portuguese variants, for which many texts are being attributed to the Brazilian variant.
This is probably the result from the 1990 orthographic reform, whose aim was, precisely, an
orthographic unification of the Portuguese language across its variants, just like the tests
demonstrate.

In order to compare our (bad) results we did some experiments with the Perl module
Lingua::Identify::Blacklists [11] that uses lists of words that are blacklisted for some
languages. The results for the Portuguese variants were 66% of accuracy for the European
variant, and 100% accuracy for the Brazilian language.

Looking to this module blacklists we found out that, more than identifying the variant,
the tool identifies the topic of the text. For example, the module states that if a text includes
the word “Brasília” (the capital of Brazil) or “Pará” (a state from Brazil), then the text
should be in the Brazilian variant. It happens in the inverse direction as well, with other
proper names, like “Madaíl” (a controversial person in the Portuguese soccer) or “Louçã”
(a left-wing deputy from the Portuguese parliament). Also, the module uses a list of words
that changed in the 1990 orthographic agreement, meaning that for new Portuguese texts
they are useless.

SLATE 2014

262 Language Identification: a Neural Network Approach

AR BG DE

EL ES FA

FR HE HU

IT JA KO

NL PL RO

SR TH RU

UK VI TR

Figure 3 Language identification distribution.

A. Simões, J. J. Almeida, and S.D. Byers 263

PT PT-BR

ZH-TW ZH-CN

Figure 4 Language identification distribution for the two Portuguese and Chinese variants.

A good way to evaluate and compare the results from this module and our neural network
would be the use of a good parallel corpus European/Brazilian Portuguese. This would allow
us to evaluate the language identification and not the topic identification.

4.3 Probability Distribution

For each language we chose randomly one of the test files, and computed the language
identification probabilities. Figure 3 show them for most languages.7 Although the graphs
are small and not readable, it is easy to notice that there is a big difference from the first
language identified (the correct one) and the second choice. From these twenty one graphs
the only relevant for analysis is the Bulgarian, which is very near Russian and Ukrainian.

Figure 4 presents the same graph for the remaining four languages, that include the two
Portuguese and the two Chinese variants. Note that, for the Chinese variants, the difference
from the first probability to the rest is very high. This is not a result of the trigrams
features, but the fact that our alphabet identifier is working well to differentiate the two
orthographies. Regarding the two Portuguese variants, it is clear the confusion between the
European and Brazilian variants, with probabilities around 45%.

5 Conclusions and Future Work

In this article we present a neural network that is able to identify languages with 96% or 97%
of accuracy, depending on the number of iterations performed during the training process.

7 Note that graphs are using an exponential y axis.

SLATE 2014

264 Language Identification: a Neural Network Approach

For that we used two kind of features: one related with the language alphabet, and another
related to the character trigrams with higher occurrence.

Given that we are able to use binary features to classify the alphabet (at the moment
we have ten binary features) and they are mutually exclusive, the neural network is able to
learn much faster to distinguish some collections of languages.

A problem with our approach is that it will perform badly on short snippets of text (like
instant messages or mobile messages), because of the low number of trigrams selected by
language. We are investigating how to deal with this problem without compromising the
time needed to train the neural network.

Regarding the problem with the Portuguese variant we are mostly convinced to merge
the two variants in a single one, given that with the so mentioned Orthographic Agreement
it does not make sense to keep distinguishing between the two.

On using a neural network, we should be reminded that the result is not deterministic:
the same number of iterations to train a network might yield different results, depending on
the values used to initialize the Θ matrices.

Future Work

The next (certain) steps on this project would be (and probably, in this order):
1. Remove the Brazilian Portuguese and/or merge it with the European Portuguese variant;
2. Add the English language, that was not included at first because of some technical

problems when preparing the training corpora;
3. Release the Perl and Java identification modules publicly;
4. Add more languages;
5. Go to point 3, and iterate.

Nevertheless, every time we train the neural network we find new experiments we would
like to perform. These steps are likely to be done, but in any order:

Try to reduce the number of trigrams per language and add some bigrams or one-grams.
These tests’ main rationale would be to reduce the number of features, as adding new
languages are likely to include more features and make the training process slower.
Compute distribution differences between near languages and, instead of using just the
more occurring trigrams, use those that are most distinctive;
In order to make the neural network smaller, train a different neural network for each
alphabet. This will allow modularization when making the language identifier available.
The user could then download only the modules relevant for her task.
Our experiments with more than 4000 iterations gave worst results than the ones presen-
ted here. This happens because the algorithm is not using any regularization, and there-
fore the neural network is being biased by the training data and is unable to generalize.
Further experiments are needed to study good values for the regularization coefficient.
Neural networks are known to have difficulties to scale. Nevertheless, recent work in
deep learning [5, 1], and deep neural networks might be relevant to analyze and use.

Acknowledgments. The authors would like to thank Catarina Sousa for the help compiling
the test dataset, and the three reviewers, Lluís Padró, António Teixeira and Jorge Baptista,
for their comments, insights and corrections.

A. Simões, J. J. Almeida, and S.D. Byers 265

References
1 Yoshua Bengio. Learning Deep Architectures for AI. Foundations and Trends® in Machine

Learning, 2(1):1–127, January 2009.
2 José Pedro Ferreira, António Lourinho, and Margarita Correia. Lince, an end user tool for

the implementation of the spelling reform of Portuguese. In Helena de Medeiros Caseli,
Aline Villavicencio, António J. S. Teixeira, and Fernando Perdigão, editors, Computational
Processing of the Portuguese Language - 10th International Conference (PROPOR), volume
7243 of Lecture Notes in Computer Science, pages 46–55. Springer, 2012.

3 Simon Haykin. Neural networks: a comprehensive foundation. Prentice Hall PTR, 1994.
4 Daniel Jurafsky and James H. Martin. Speech and Language Processing: An Introduction to

Natural Language Processing, Speech Recognition, and Computational Linguistics. Prentice-
Hall, second edition edition, 2009.

5 Hugo Larochelle, Yoshua Bengio, Jérôme Louradour, and Pascal Lamblin. Exploring
strategies for training deep neural networks. J. Mach. Learn. Res., 10:1–40, June 2009.

6 Yeshwant Kumar Muthusamy. A Segmental Approach to Automatic Language Identifica-
tion. PhD thesis, B. Tech., Jawaharlal Nehru Technological University, Hyderabad, India,
October 1993.

7 David Nadeau and Satoshi Sekine. A survey of named entity recognition and classification.
Lingvisticae Investigationes, 30(1):3–26, 2007.

8 Seiichi Nakagawa and Allan A. Reyes. An evaluation of language identification methods
based on HHMs. Studia Phonologica, 28:24–26, 1994.

9 John C. Schmitt. Trigram-based method of language identification. US Patent Number
5.062.143, February 1990.

10 Bruno M. Schulze. Automatic language identification using both n-grams and word inform-
ation. US Patent Number 6.167.369, December 1998.

11 Jörg Tiedemann and Nikola Ljubešić. Efficient discrimination between closely related lan-
guages. In Proceedings of COLING 2012, pages 2619–2634, Mumbai, India, December 2012.
The COLING 2012 Organizing Committee.

SLATE 2014

LemPORT: a High-Accuracy Cross-Platform
Lemmatizer for Portuguese
Ricardo Rodrigues, Hugo Gonçalo Oliveira, and Paulo Gomes

Centre for Informatics and Systems of the University of Coimbra
Pinhal de Marrocos, Coimbra, Portugal
{rmanuel,hroliv,pgomes}@dei.uc.pt

Abstract
Although lemmatization is a very common subtask in many natural language processing tasks,
there is a lack of available true cross-platform lemmatization tools specifically targeted for Por-
tuguese, namely for integration in projects developed in Java. To address this issue, we have
developed a lemmatizer, initially just for our own use, but which we have decided to make pub-
licly available. The lemmatizer, presented in this document, yields an overall accuracy over 98%
when compared against a manually revised corpus.

1998 ACM Subject Classification I.2.7 Natural Language Processing

Keywords and phrases lemmatization, normalization, rules, lexicon

Digital Object Identifier 10.4230/OASIcs.SLATE.2014.267

1 Introduction

Almost every task related to natural language processing (NLP) [10] must apply some kind
of text normalization. Texts must be split into sentences, and sentences into tokens (words
and punctuation). Words must also be further processed in order to facilitate their analysis:
for instance, when searching for specific words, as it happens in many information retrieval
systems (IR) [2], their inflections must also be considered in order to broaden the results.

The most common approaches for tackling this problem and collapsing morphological
variants of the same word are: (i) stemming, which essentially consists of stripping off word
endings; and (ii) lemmatization, where words with the same morphological root are identified,
despite their surface differences.

Stemming is easier and faster to implement, but discards potentially useful information,
by making it virtually impossible to distinguish a verb from a noun or an adjective in its
stemmed form. Moreover, the stem is not necessarily a recognizable dictionary word.

Lemmatization, in contrast, considers the syntactic category of words, presenting, for
instance, different lemmas for a noun or a verb (in the same word family). This nuance is
practically lost in English, where the same lemma can assume multiple syntactic categories,
but it is of paramount importance in romance languages, including Portuguese.

In the remaining sections of this document, we make a brief contextualization on lemmat-
ization and related work, then proceed to describe our method, followed by the evaluation
performed and results obtained, after what we end up drawing some conclusions and pointing
future paths for eventual improvement.

2 A Brief Contextualization

In some situations, lemmatization and stemming operate in a similar way: given a set of
affixes, for each word in a list (a phrase, a sentence or a text), check if the word ends with

© Ricardo Rodrigues, Hugo Gonçalo Oliveira, and Paulo Gomes;
licensed under Creative Commons License CC-BY

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões; pp. 267–274

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2014.267
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

268 LemPORT: a High-Accuracy Cross-Platform Lemmatizer for Portuguese

any of the affixes, and, if so, and apart from a few exceptions, remove the affix from the word.
The problem is that this process is sometimes not enough to retrieve the dictionary form of
a word, it is too disruptive and, in most cases, the stem is not the same as the lemma. Next,
we point out how lemmatization should perform, and discuss related work.

2.1 The Lemmatization Process
In order to retrieve the lemma of a word, it is sometimes enough to remove the word’s affix.
This typically happens in noun number normalization, which is the case of carros losing
the trailing s and becoming carro (cars → car). In other cases, such as in noun gender
normalization, it is necessary to replace the affix. For instance, the dictionary form of gata
(a female cat) is gato (a male cat), which requires replacing the feminine affix, a, for the
masculine affix, o. The same applies to verb normalization: for instance, the lemmatized
version of [eu] estudei ([I] studied) becomes [eu] estudar ([to] study), replacing
the verbal inflection affix with the associated conjugation infinitive affix (ar, er, or ir).

For Portuguese, lemmatization may include the following types of normalization: noun
(gender, number, augmentative and diminutive), adjective (gender, number, augmentative,
diminutive, and superlative), article (gender and number), pronoun (gender and number),
proposition (gender and number), adverb (manner) and verb (regular and irregular). Proper
nouns, numbers, interjections and conjunctions are usually ignored.

Determining what kind of normalization to apply depends on the syntactic category, or
part-of-speech (POS) tag, of each word. The task of identifying the POS tag of a word is out
of our scope, and we resort to a freely available solution: the OpenNLP Library1, by the
Apache Software Foundation, with some minor tweaks. So, a lemmatizer must take as input
both word and POS tag to produce the coveted lemma.

In theory, knowing the syntactic category of a word and the rules to normalize it,
lemmatization should be a straightforward process. In practice, although these rules cover
the vast majority of the cases in any given text, exceptions to these same rules defeat the
goal of reaching an accuracy close to 100%. Moreover, the exceptions usually happen to be
found in the oldest and most used lexemes of any lexicon. For instance, the verbs to be and
to have are highly irregular in every western language, including Portuguese and English.

The same happens in other syntactic categories, such as nouns. For instance, the singular
form of capitães (captains) is capitão (and not capitãe*). There are also cases where
the masculine form of a noun is quite different from the feminine version. And the most
problematic case is perhaps when a word is already in its dictionary form but appears to
be in an inflected form, when, in reality, it is not – as happens with farinha (flour), that
seems to be a diminutive (due to its ending in inha, the most common diminutive affix).

Most lemmatization tools use a rule system (covering the vast majority of cases for each
type of normalization), and specify exceptions to the rules, using, at some point, a lexicon
for validating the lemmas produced, or for extracting rules (and their exceptions).

2.2 Related Work
Even though most researchers on Portuguese NLP must use some sort of lemmatization
tool, those tools are hard to come by, at least as isolated lemmatizers, although there are
suites of tools, including morphological analyzers, that produce lemmas as a part of the

1 The OpenNLP toolkit can be found at https://opennlp.apache.org.

https://opennlp.apache.org

R. Rodrigues, H. Gonçalo Oliveira, and P. Gomes 269

outcome. While useful, these suites and morphological analyzers leave to the users the task
of post-processing the output in order to extract just the intended lemmas, imposing also
some restrictions on previous processing, as it usually has to be done using the same tools.

Three such tools are known to exist, targeting specifically Portuguese: jSpell,2 FreeLing,3
and LX-Suite.4 All have web interfaces, with jSpell and Freeling providing downloadable
versions and source code. Moreover, jSpell is available as C and Perl libraries, as well as a
MS Windows binary; and Freeling is available as a Debian package and also as a MS Windows
binary, in addition to an API in Java and another in Python, along with the native C++ API.

Both jSpell and Freeling start with a collection of lemmas and use rules to create (all)
inflections and derivations from those lemmas, alongside data such as number, syntactic
category, or person (in the case of verbs) [12, 5]. It is the output of that process that is
used to lemmatize words, matching them against the produced inflections and derivations,
retrieving the originating lemma.

Regarding LX-Suite, though only a description of a nominal lemmatizer [3] has been found,
which is believed to be the lemmatizer behind the LX-Suite [4] of NLP tools (belonging to the
LX-Center), it uses a lexicon for the purpose of retrieving exceptions to the lemmatization
rules: if the lexicon contains a word (therefore, a valid word) that would be processed by
the rules (but should not), it is marked as an exception and added to the exception list.
According to the authors, that lemmatizer achieved an accuracy of 97.87%, when tested
against a hand annotated corpus with 260,000 tokens.

For jSpell and Freeling, although evaluations for the morphological analyzers do exist, no
statement regarding specifically the accuracy of the respective lemmatizers was found.

3 Our Approach to Lemmatization

Our lemmatization method shares features with other approaches, such as the use of rules
and, more recently, a lexicon. The way these resources are combined leads to a high accuracy
value. In this section, we describe our method and its evolution.

3.1 The Use of Rules
In its earlier versions, our lemmatizer depended only on handmade rules and exceptions.
Each of the normalization steps included in the lemmatization process had an associated set
of rules. As such, there were rules for (and in this order):
1. manner (adverb) normalization;
2. number normalization;
3. superlative normalization;
4. augmentative normalization;
5. diminutive normalization;
6. gender normalization;
7. verb normalization (for regular and irregular verbs).

Each of these rules were associated to one or more POS tags. So, for instance, gender
normalization could be applied to nouns and also to adjectives, while superlative normalization
would only be applied to adjectives. The rules were defined by the target affix, the POS

2 jSpell is freely available from http://natura.di.uminho.pt/wiki/doku.php?id=ferramentas:jspell.
3 Freeling is freely available from http://nlp.lsi.upc.edu/freeling/.
4 The LX-Suite can be found at http://lxcenter.di.fc.ul.pt/services/en/LXServicesSuite.html.

SLATE 2014

http://natura.di.uminho.pt/wiki/doku.php?id=ferramentas:jspell
http://nlp.lsi.upc.edu/freeling/
http://lxcenter.di.fc.ul.pt/services/en/LXServicesSuite.html

270 LemPORT: a High-Accuracy Cross-Platform Lemmatizer for Portuguese

<replacement target="inha" tag="n|n-adj|adj" →
exceptions="azinha|...|farinha|...|sardinha|...|vizinha">a</replacement>

Figure 1 A rule for transforming a diminutive into its “normal” form.

<prefix>(a|ab|abs|...|sub|super|supra|...|vis).?\-?</prefix>
<suffix>[\wàáãâéêíóõôúç\-]*</sufix>
...
<replacement target="a[gj][aeiío]" tag="v|v-fin|v-ger|v-pcp|v-inf"> →
agir</replacement>

Figure 2 A rule for transforming a inflected verb into its infinitive form.

tags of the words they should be applied to, exceptions, and the replacement for the target
affix. All rules were declared in XML files, illustrated by the example in Fig. 1. That specific
rule would transform malinha (little briefcase) into mala, by replacing the affix inha
for the affix a, but would leave farinha untouched, as it is one of that rule’s exceptions.

Although the rules for all types of normalization shared the same general structure, the
rules regarding verbs were somewhat specific. (i) The rules for lemmatizing irregular verbs
consisted of all the possible conjugations of the Portuguese irregular verbs. It was simpler to
do this than to come up with rules that could address all existing variations. (ii) The rules
for the regular verbs used as target the stem of each verb, always ending in a consonant,
followed by the only vocals that could be appended to that specific stem (depending on the
conjugation the verb belongs to), ending with any sequence of letters. Small variations that
could occur – for instance, the substitution of a g for a j in the verb agir (to act) in some
of its inflections – were also considered. (iii) When the two previous types of rules failed to
be applied, a set of rules with verbal inflection affixes was used.

For this to be possible, regular expressions were used. Also, any of these rules could
accept a list of prefixes, to broaden the list of addressed verbs. An example of rules for
regular verbs is shown in Fig. 2, where it is also shown the list of prefixes that can be added
to a verb, and the ending (suffix) of all the verb rules.

Eventually, in the selection of the rule that would be applied to a word in a given step,
beyond its target and syntactic category, when more than one rule was eligible, the lengthier
one was chosen. The length of a rule was computed by a weighted sum of the number of
characters in the target, the exceptions and the POS tags, from a higher to a lower weight.

It is worth noticing that the rules are easily readable and customizable. Moreover, it
is possible to select which kind of normalization steps should be performed, by specifying
flags on the calls to the lemmatizer – when none is specified, it defaults to apply all the
normalization steps. Both of these features make our lemmatizer flexible and easy to adapt
to different situations and purposes.

3.2 The Addition of a Lexicon
The current version builds up on the previous (using rules), with the addition of a lexicon,
namely the “LABEL-LEX-sw” lexicon,5 version 4.1, produced by LabEL [7]. The specified
lexicon contains over 1,500,000 inflected forms, automatically generated from about 120,000
lemmas, characterized by morphological and categorical attributes.

5 The LABEL-LEX-sw lexicon is provided by LabEL, through http://label.ist.utl.pt.

http://label.ist.utl.pt

R. Rodrigues, H. Gonçalo Oliveira, and P. Gomes 271

gata,gato.N+z1:fs gatita,gato.N+z1:Dfs
gatas,gato.N+z1:fp gatitas,gato.N+z1:Dfp
gatinha,gato.N+z1:Dfs gatito,gato.N+z1:Dms
gatinhas,gato.N+z1:Dfp gatitos,gato.N+z1:Dmp
gatinho,gato.N+z1:Dms gato,gato.N+z1:ms
gatinhos,gato.N+z1:Dmp gatos,gato.N+z1:mp

Figure 3 An example of “LABEL-LEX-sw” lexicon entries.

Beyond using this lexicon for validating the lemmas produced by the lemmatizer, we have
used the fact that each entry of the lexicon contains the inflected form, lemma, syntactic
category, syntactic subcategory, and morphological attributes, that can be directly applied
in the lemmatization process. Fig. 3 shows an example of these entries.

Using this lexicon provided an easy way of retrieving the lemma of any word, given its
syntactic category. Also, the rules previously defined are now used only when a word is not
found in the lexicon, with one advantage: virtually all exceptions to the rules are already
present in the lexicon, so that the probability of a rule failing is extremely low. This comes
from the fact that the exceptions are usually found in extremely frequent, ancient, and well
known words of a lexicon, rather than in more recent, less used, or obscure words.

However, this does not mean that the lexicon could be used right out of the box. Some
issues had to be addressed: (i) a mapping between the syntactic categories present in the
lexicon and the ones used on the rest of the program (including the rules used in earlier
versions); (ii) excluding all pronoun and determiner lexicon entries, as they present disputable
normalization – for instance, tu (you) has eu (I) as its lemma; and (iii) making optional some
gender normalizations, such as presenting homem (man) as the lemma of mulher (woman).

When a word is shared by multiple lemmas, the lemma with the highest frequency is
selected. For this purpose, we used the frequency list of the combined lemmas present in all
the Portuguese corpora available through the AC/DC project [11].6

The only drawback of the method is the time it takes, even if only a couple of seconds,
to load the lexicon into memory. Other than that, it is quite performant, as the lexicon is
stored in a hash structure, that is known to be a fast method for storing and searching on
sets of elements. A lemma cache is also used, with each word that is found in the analysed
text to be stored together with is syntactic category (POS tag) and lemma, at run-time,
which avoids searching again the whole lexicon or selecting which rule to apply for a word
already processed. The cache is a particular improvement to performance speed because,
besides a set of words commonly used across different domains, texts on a specific topic tend
to have their own set of words that are used multiple times over and over again. The basic
structure of the currently used lemmatization algorithm is presented in Listing 1.

Regarding flexibilization, besides the customization of rules and selection of which
normalization steps to apply, the current version of the lemmatizer allows the option to add
new entries to a custom lexicon (if it fits best to do so in a lexicon, instead of specifying an
exception in the rules, or both).

6 The frequency lists of AC/DC are provided by Linguateca, through http://www.linguateca.pt/ACDC.

SLATE 2014

http://www.linguateca.pt/ACDC

272 LemPORT: a High-Accuracy Cross-Platform Lemmatizer for Portuguese

Listing 1 Overview of the lemmatization algorithm used.
load lexicon ;
load rules;

lemmatize (token , tag) {
if cache contains (token , tag) {

return lemma of (token , tag);
}
if lexicon contains (token , tag) {

add (token , tag) to cache;
return lemma of (token , tag);

}
lemma = token;
for each rule in (adverb , number , superlative , augmentative ,

diminutive , gender , verb) {
lemma = normalize (lemma , tag , rule);
if lexicon contains (lemma , tag) {

add (token , tag) to cache;
return lemma of (token , tag);

}
}
return lemma;

}

4 Evaluation and Results

For the lemmatizer evaluation, we have used Bosque 8.0, the last version of a manu-
ally revised part of the Floresta Sintática treebank [1], by Linguateca.7 Bosque contains
around 120,000 tokens with annotations at various syntactic levels, for the Portuguese portion,
and around 70,000 for the Brazilian portion.

Bosque was parsed in order to retrieve, for each word found in it, the inflected form, its
syntactic category and corresponding lemma. The inflected form and syntactic category were
fed to our lemmatizer, and the output was matched against the known lemma, as identified
in Bosque.

In Table 1 we can see the overall results using rules, the lexicon, and both rules and
lexicon (the current version of the lemmatizer), applied to the Portuguese and Brazilian
parts of Bosque, with the current version reaching an accuracy value over 98%. The same
table also presents the results broken down into three major syntactic categories: nouns,
adjectives, and verbs.

It is possible to notice that using the lexicon greatly improves the normalization of
adjectives (although other categories also benefit from it) against using only rules. However,
the lexicon only by itself does not cover all the cases either, as it is virtually impossible for
a lexicon, comprehensive as it may be, to cover all the lexemes, and associated syntactic
categories, in any language. For instance, past participles in the plural form are not
contemplated in the used lexicon – that may be one of the reasons rules perform better than
the lexicon on verbs, beyond having a more extensive verb list.

7 Floresta Sintática is freely available from http://www.linguateca.pt/floresta/BibliaFlorestal/
completa.html.

http://www.linguateca.pt/floresta/BibliaFlorestal/completa.html
http://www.linguateca.pt/floresta/BibliaFlorestal/completa.html

R. Rodrigues, H. Gonçalo Oliveira, and P. Gomes 273

Table 1 Overall and partial results in major categories.

Bosque Only Rules Only Lexicon Both Rules and Lexicon
Overall PT 97.76% 95.06% 98.62%
Overall BR 97.67% 95.16% 98.56%
Nouns PT 96.94% 98.05% 98.30%
Nouns BR 96.40% 96.67% 97.86%
Adjectives PT 90.10% 95.39% 98.19%
Adjectives BR 88.77% 91.70% 97.23%
Verbs PT 98.04% 88.78% 98.79%
Verbs BR 98.34% 89.59% 99.15%

Table 2 Errors and discrepancies identified in both the lemmatizer and Bosque.

Type Quantity Example (Form#POS:Bosque:LemPORT)
Incorrect categorization 1.25% Afeganistão#N:afeganistão:afeganisto*
Orthographic errors 3.75% ecxemplares*#N:exemplar:ecxemplar*
Both lemmas acceptable 2.50% cabine#N:cabine:cabina
LemPORT errors 43.75% presas#V-PCP:prender:presar
Bosque errors 48.75% pais#N:pais:pai

The accuracy could be even higher (probably slightly above 99%), as in a significant
amount of the faulty cases the problem may actually be found in the Bosque annotation.
In other discrepancies, different lemmas could be accepted, depending on the purpose. A
brief analysis of a random sample of 10% (160) of the cases where the lemmatizer produced
different lemmas on the Portuguese part of Bosque is presented in Table 2.

5 Conclusions and Future Work

We have presented a cross-platform lemmatization tool for Portuguese developed in Java
that, through the use of simple rules in conjugation with a comprehensive lexicon, is able to
have a very high overall accuracy, over 98%, making it suitable for use in many NLP tasks.
For instance, its earlier versions have been used in a question generation system [6], and in
the creation of the lexical-semantic resources CARTÃO [8] and Onto.PT [9]. We are also
currently using this lemmatizer in a question-answering system under development.

Although the margin for improvement is narrow, we still hope to improve the lemmatizer
by addressing some minor but troublesome issues, such as composed and hyphenated words,
as well as multiword expressions. We already partially tackle one of these issues, by splitting
the words at the hyphen, sharing the syntactic function. However, there are cases where
elements of composed and hyphenated words, when put apart, belong to different categories.

Other issues may include the processing of oblique cases in pronouns. Bosque presents
the oblique case and the pronoun that would be the corresponding lemma, but we usually
process the oblique cases prior in the tokenization process.

We also intend, in the near future, to compare the lemmatizer against jSpell and Freeling,
using the Bosque data as input, and processing the output of both tools in order to extract
only the lemmas.

In order to be used by other members of the community, the presented lemmatizer is freely
available from https://github.com/rikarudo/LemPORT, under the moniker “LemPORT”.

SLATE 2014

https://github.com/rikarudo/LemPORT

274 LemPORT: a High-Accuracy Cross-Platform Lemmatizer for Portuguese

Acknowledgements. This work was supported by the iCIS project (CENTRO-07-ST24-
FEDER-002003), co-financed by QREN, in the scope of the Mais Centro Program and
European Union’s FEDER.

References
1 Susana Afonso, Eckhard Bick, Renato Haber, and Diana Santos. “Floresta Sintá(c)tica”: a

Treebank for Portuguese. In Manuel González Rodríguez and Carmen Paz Suárez Araujo,
editors, Proceedings of LREC 2002, the Third International Conference on Language Re-
sources and Evaluation, pages 1698–1703, Paris, 2002. ELRA.

2 Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval. ACM
Press, New York, USA, 1999.

3 António Branco and João Silva. A Suite of Shallow Processing Tools for Portuguese: LX-
Suite. In EACL’06 Proceedings of the Eleventh Conference of the European Chapter of
the Association for Computational Linguistics: Posters & Demonstrations, pages 179–182,
Trento, Italy, 2006.

4 António Branco and João Silva. Very High Accuracy Rule-Based Nominal Lemmatiza-
tion with a Minimal Lexicon. In XXII Encontro Nacional da Associação Portuguesa de
Linguística, pages 169–181, 2007.

5 Xavier Carreras, Isaac Chao, Lluís Padró, and Muntsa Padró. FreeLing: An Open-Source
Suite of Language Analyzers. In Proceedings of the 4th International Conference on Lan-
guage Resources and Evaluation (LREC’04), pages 239–242, 2004.

6 Daniel Diéguez, Ricardo Rodrigues, and Paulo Gomes. Using CBR for Portuguese Question
Generation. In Proceedings of the 15th Portuguese Conference on Artificial Intelligence,
EPIA 2011, pages 328–341, Lisbon, Portugal, October 2011. APPIA.

7 Samuel Eleutério, Elisabete Marques Ranchhod, Cristina Mota, and Paula Carvalho. Di-
cionários Electrónicos do Português. Características e Aplicações. In Actas del VIII Sim-
posio Internacional de Comunicación Social, pages 636–642, 2003.

8 Hugo Gonçalo Oliveira, Leticia Antón Pérez, Hernâni Costa, and Paulo Gomes. Uma Rede
Léxico-Semântica de Grandes Dimensões para o Português, Extraída a partir de Dicionários
Electrónicos. Linguamática, 3(2):23–38, December 2011.

9 Hugo Gonçalo Oliveira and Paulo Gomes. ECO and Onto.PT: A Flexible Approach for
Creating a Portuguese Wordnet Automatically. Language Resources and Evaluation, to be
published (online September 2013), 2013.

10 Daniel Jurafsky and James H. Martin. Speech and Language Processing: An Introduction
to Natural Language Processing, Computational Linguistics and Speech Recognition. Pren-
tice Hall series in artificial intelligence. Prentice Hall, Pearson Education International,
Englewood Cliffs, NJ, 2nd edition, 2009.

11 Diana Santos and Eckhard Bick. Providing Internet Access to Portuguese Corpora: the
AC/DC Project. In Proceedings of 2nd International Conference on Language Resources
and Evaluation, LREC 2000, pages 205–210, 2000.

12 Alberto Manuel Simões and José João Almeida. jSpell.pm – UmMódulo de Análise Morfoló-
gica para Uso em Processamento de Linguagem Natural. In Actas da Associação Portuguesa
de Linguística, pages 485–495, 2001.

Expanding a Database of Portuguese Tweets
Gaspar Brogueira1, Fernando Batista1, João P. Carvalho2, and
Helena Moniz3

1 Laboratõrio de Sistemas de Língua Falada – INESC-ID, Lisboa, Portugal
ISCTE-IUL – Instituto Universitário de Lisboa, Lisboa, Portugal
gmrba@iscte.pt,fmmb@iscte.pt

2 Laboratõrio de Sistemas de Língua Falada – INESC-ID, Lisboa, Portugal
Instituto Superior Tẽcnico (IST), Lisboa, Portugal
joao.carvalho@inesc-id.pt

3 Laboratõrio de Sistemas de Língua Falada – INESC-ID, Lisboa, Portugal
FLUL/CLUL, Universidade de Lisboa, Lisboa, Portugal
helena.moniz@inesc-id.pt

Abstract
This paper describes an existing database of geolocated tweets that were produced in Portuguese
regions and proposes an approach to further expand it. The existing database covers eight
consecutive days of collected tweets, totaling about 300 thousand tweets, produced by about
11 thousand different users. A detailed analysis on the content of the messages suggests a
predominance of young authors that use Twitter as a way of reaching their colleagues with their
feelings, ideas and comments. In order to further characterize this community of young people,
we propose a method for retrieving additional tweets produced by the same set of authors already
in the database. Our goal is to further extend the knowledge about each user of this community,
making it possible to automatically characterize each user by the content he/she produces, cluster
users and open other possibilities in the scope of social analysis.

1998 ACM Subject Classification H.3.1 Content Analysis and Indexing: Linguistic processing

Keywords and phrases Twitter, corpus of Portuguese tweets, Twitter API, natural language
processing, text analysis

Digital Object Identifier 10.4230/OASIcs.SLATE.2014.275

1 Introduction

Twitter is one of the most widely used and well-known social networks worldwide. It allows for
rapid communication and experience sharing among its users by providing an infrastructure
for sending and receiving messages, containing 140 characters at most. About 646 million
users produce approximately 400 million tweets everyday [12, 5]. Twitter is a source of
information potentially useful for research in various fields, not only because of the amount of
information produced, but also because the access to the data is facilitated for the scientific
community by a number of APIs (Application Programming Interfaces).

This work aims at expanding a database of tweets that was collected over eight consec-
utive days, restricted to geolocated tweets produced in Portuguese regions, and written in
Portuguese. The existing data was retrieved using the statuses/filter API that allows to fetch
tweets with a low latency. The restriction to Portuguese regions was achieved by specifying
geographic coordinates that define a number of rectangles covering the mainland and also
the Portuguese archipelagos Azores and Madeira. The restriction to the Portuguese language
was achieved by using the “lang” attribute that is automatically assigned by Twitter. An

© Gaspar Brogueira, Fernando Batista, João P. Carvalho, and Helena Moniz;
licensed under Creative Commons License CC-BY

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, Josẽ Paulo Leal, and Alberto Simões; pp. 275–282

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2014.275
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

276 Expanding a Database of Portuguese Tweets

overview of the dataset suggests that collected tweets are mostly produced by young people
expressing very personal content, often describing family bonds and school activities and
concerns. Furthermore, from a preliminary inspection to our 8-day sample we can also say
that the data is fairly spontaneous, obviously coded in a written form.

This paper proposes a methodology that is now being used for expanding the database,
thus allowing to further characterize the involved community in detail. It is our believe that the
current database per se is an important resource to characterize part of the Portuguese Twitter
community. The database can be used in several perspectives, including: geolocated analysis
of users and content; characterization of the different Portuguese regions; age-identification
and characterization; sociolinguistic studies; sentiment analysis; and among others. Due to
their spontaneous nature, tweets may be eventually used for training spontaneous models for
Automatic Speech Recognition (ASR) to cover the absence of models trained specifically with
spontaneous data, since models are commonly trained on newspapers and broadcast news.
Therefore, future work will tackle the use of tweets to train language models and to evaluate
such models in different spontaneous speech domains. The extended version of the database
will provide additional data that can be used for extending tasks, such as better assessment
of age, twitter usage patterns over the time, vocabulary usage per author, amongst others.

This paper is organized as follows. Section 2 describes the related work in terms of twitter
data collections, specially targeting the Portuguese language. Section 3 describes the existing
corpus and presents a number of statistical elements concerning the tweet content. Section 4
proposes a methodology for extending the existing data and analyses the properties of the
recently appended data. Finally, 5 presents the conclusions and overviews future trends.

2 Related Work

Previous studies involving Portuguese tweets are still scarcely found in the Literature.
However, a considerable number of recent work have used Portuguese language Tweets in
Sentiment Analysis related tasks [11, 3, 4]. [11] uses a database of 1700 tweets to evaluate the
impact of different preprocessing techniques and negation modeling in the tweet sentiment
classification. [3] also focuses on Sentiment Analysis, adapting state of the art approaches to
Portuguese language. The author uses a collection of 300 thousand tweets, filtered according
to the presence of certain verbs, such as “sentir”/feel. Portuguese twitter data was also used
by [9] to predict Flu Incidence. In this recent study, the authors use about 14 million tweets
originated in Portugal, together with a search engine query logs to estimate the incidence
rate of influenza like illness in Portugal. Portuguese tweets are also currently being used for
Machine Translation tasks. For example, [6] provides a link to databases of parallel corpora
that also include Portuguese language1.

Finally, an architecture for automatic collecting tweets with a predefined delimited
geographic region is proposed by [7]. Their architecture uses a MySQL database for tweets
storage and a Twitter Streaming API for accessing and collecting an unlimited number of
tweets.

3 Data Analysis

The data here analyzed corresponds to an 8-day period and was collected between March 14th
and 21th 2014 [2]. The stream API statuses/filter was configured for retrieving geolocated

1 http://www.cs.cmu.edu/~lingwang/microtopia/

http://www.cs.cmu.edu/~lingwang/microtopia/

G. Brogueira, F. Batista, J. P. Carvalho, and H. Moniz 277

0" 500" 1000" 1500" 2000" 2500" 3000" 3500"

1"
[2..3]"
[4..7]"
[8..15]"

[16..31]"
[32..63]"

[64..127]"
[128..255]"
[256..511]"

[512..]"

Number'of'users'

nu
m
be

r'o
f't
w
ee
ts
'

Figure 1 Number of users that have produced a certain quantity of tweets.

0"

1"

2"

3"

4"

5"

6"

Fri"14" Sat"15" Sun"16" Mon"17" Tue"18" Wed"19" Thu"20" Fri"21"

Th
ou

sa
nd

s)

number"of"tweets"

Figure 2 Distribution of tweets by hour.

tweets produced in Portugal. A total of 307K tweets were collected, corresponding to a
daily average of about 48K tweets. The set of tweets being analyzed was produced by 11391
distinct users. Figure 1 represents the number of users that produced tweets in a given
interval. Most of the tweets are, in fact, produced by distinct users. However, more than half
of the users have produced more than one tweet during the period in analysis. The number of
tweets varies considerable per user, ranging from 1 to around 1100 tweets in an 8-day period.
This behavior justifies our approach described in Section 4 for extending our database, i.e.,
a deeper knowledge of each user allows for a more suitable analysis of inter-users’ traits.

The remainder of this section presents more detailed statistics concerning the number
of produced tweets and their temporal distribution, and then focuses on characterizing the
content of each tweet.

3.1 Temporal Distribution of the Collected Tweets
It is known that the number of produced tweets is not linear in time. Figure 2 presents
the activity by hour, depicting that during friday evenings the number of tweets is lower
than during the remainder of the evenings, suggesting that Twitter usage is mainly domestic
during the evenings, i.e., users do not usually tweet as much when going out with friends. In
fact, users are less active during the day. However 43% of all the user activity is performed
during that period which represents a considerable proportion. Taking that into account,
we have made attempts to further characterize this community of users. The content we
have observed suggested that tweets were mostly produced by teenagers. So, we have made
an attempt to characterize the involved community in terms of age, which is not a trivial
task because that information is not clearly provided within the tweet content. We have

SLATE 2014

278 Expanding a Database of Portuguese Tweets

0"

10"

20"

30"

40"

50"

60"

10" 12" 13" 14" 15" 16" 17" 18" 19" 20" 21" 22" 23" 24" 28" 29" 45" 65" 69" 77"

N
um

be
r'o

f'u
se
rs
'

Age'

Figure 3 Distribution of the users age.

found that the user description associated to each user sometimes contains that information
embedded in the text. Examples:

Paredes | 13 anos | Eminem
Ola tenho 14 anos e sõ sei dormir.
metro e meio de gente / 20 anos / ESTSP

In order to have an idea of the user age we have manually tagged about 265 users with
their potential age, based on their own description. The resultant information is depicted in
Figure 3, clearly revealing a predominance of teenagers and young adults, as expected by the
previous analysis performed on the content. The extended version of the database described
in Section 4 will provide additional data that can be used for better assessment of the age,
twitter usage patterns over time, vocabulary usage per author, and age stylistic effects.

3.2 Content Analysis
One of the most interesting Twitter particularities is the 140 characters message length limit,
leading to messages containing an expected low number of words. The data reveals a trend
in the increase of the number of words per message along the day. The maximum value is
attained around the hour of maximum Twitter activity.

Regarding tweets’ content, Table 1 shows the most frequent trigrams from the 8-days in
analysis. The trigrams’ frequency is a key-factor for the understanding of the lexical selection

Table 1 Top trigrams.

Trigrams Freq. Trigrams Freq. Trigrams Freq.
a minha mãe 1395 fim de semana 527 acho que vou 394
o meu pai 903 o que eu 459 que ẽ que 386
sei o que 746 todos os dias 450 a dizer que 382
o que ẽ 741 a minha vida 444 dia do pai 376
com a minha 704 que a minha 431 ẽ que eu 373
tudo o que 634 como ẽ que 428 ir para a 368
toda a gente 621 porque ẽ que 424 como Assunto do 353
com o meu 617 que o meu 415 e a minha 350
A minha mãe 601 tenho de ir 412 o meu irmão 345

G. Brogueira, F. Batista, J. P. Carvalho, and H. Moniz 279

Table 2 Top hashtags ordered by number of users that refer them.

Hashtag users Freq Hashtag users Freq
#lt 631 1555 #sun 79 97
#lrt 616 1403 #somosporto 69 171
#np 529 1882 #me 61 103
#twitteroff 238 439 #night 61 67
#portugal 185 377 #porto 61 105
#carregabenfica 175 617 #beach 56 66
#lisbon 125 249 #happy 56 68
#lisboa 110 231 #valetudo 55 89
#love 102 132 #sunset 54 57
#friends 94 132 #benfica 50 146
#selfie 90 98 #excluidadasociedade 50 58
#nw 83 116 #sad 48 57

used by tweeters. We can say that Portuguese tweets are mostly focused on personal messages
based on family bonds, as illustrated in the selection of words from the same semantic field
– “mãe”/mother; “pai”/father; “irmão”/brother; “irmã”/sister. Moreover, there is also a
semantic field associated with school, encompassing vocabulary such as “teste”/test; “a minha
turma”/my class; “aula”/lesson (not displayed in Table 1 for legibility issues), suggesting a
strong activity of teenagers/young adults.

Another lexical clue to the characterization of the personal component of the tweets is the
use of first person pronouns (subject “eu”/I; object “me”/me; and possessives “minha”/my;
“meu”/my). In what regards verbal forms, either than being inflected in the first person,
the selection of epistemic verbs (“sei”/know, “acho”/think) is a crucial indicator of the
way speakers communicate their doubts and certainties, mostly associated with values of
like/dislike. Clefts (“ẽ que”/it’s . . . that) are another very frequent structure selected by
tweeters. These structures are used to focus particular constituents, as an emphatic structure.

From the above set of lexical-syntactic options of the tweeters we are able to characterize
the 8-days sample tweets as very personal data, written in first person, communicating
believes and emotions.

In line with the personal trait of tweets is the use of emoticons, which are pictorial
representations associated with distinct emotions, allowing for the expression of feelings in
e-contexts. Even though some authors claim that emoticons are used mainly by teenagers
and young adults [1, 8] we feel that nowadays emoticons’ use is widespread among age groups
and no conclusions can be taken from this fact. Emoticons, such as :), :-), :3, ;), and :))
express joy, while emoticons such as :(, :$, :/, :((, :-(expressed sadness. The set of emoticons
found in our database is similar to the ones reported by [10] for English tweets.

Only a small number of tweets include hashtags (about 4.3%). This is a rather low
number when comparing to other Twitter data collections. [14] reports about 11% of tagged
tweets for Portuguese, which includes not only European Portuguese but also Brazilian
Portuguese. Moreover, Portuguese is one of the languages that uses fewer hashtags from the
8 languages analyzed. Finally, in a similar database of about 1.5 Million tweets written in
Portuguese (including all varieties of Portuguese), collected during the same time period
without restricting the location, and where most of the tweets are written in Brazilian
Portuguese, such value corresponds to 10.2%.

The top most frequent hashtags are expressed in Table 2 and include #lt (Last or Latest
Tweet), #lrt (Last or Latest retweet), #np (Now Playing) used whenever someone is listening

SLATE 2014

280 Expanding a Database of Portuguese Tweets

statuses/filter*
Streaming*API*

statuses/user_,meline*
REST*API*

European*Portuguese*
Tweets*Filter*

Raw*
Tweets*

Tweets*
Info*

!"

Users*
Info*

!"

Repeated*Tweets*
Filter*

Figure 4 Diagram of the proposed data collection infra-structure.

to a song and wants to share it, and #twitteroff (Enough tweets for today). Nevertheless,
we observed that the frequency of such hashtags was relatively low in the similar database
mentioned in the previous paragraph of 1.5 Million tweets. #tl (position 69), #lrt (position
146), #np (position 109), #twitterof (position 643).

Another interesting fact concerns the number of retweets (RT), which is very low in our
current database, corresponding to roughly 0.1% of the tweets. About 26% of the tweets
from the 1.5Million tweets previously mentioned database are retweets. Two possibilities
exist concerning this point. The first possibility is that geolocated tweets do not usually
include retweets. Another hypothesis is related with the fact that tweets from our database
are mostly personal are therefore not usually retweeted.

4 Database Expansion

Twitter APIs give free access to millions of tweets and can be classified into two broad
categories, according to their design and access methods. The streaming API provides a
continuous data flow of public tweets, where the data is continuously updated immediately
after a request until an interrupt request. The REST API is based on the concept of
Representational State Transfer APIs for web design permits to collect data for specific users.
These two APIs accept different parameters and are suitable for quite different purposes.
They are also equally restricted in terms of the type of data and the amount of data they
can provide, so that a straight use of the available APIs is often not enough to obtain the
required information. We propose a methodology that allows circumventing this restriction
for collecting and storing Portuguese tweets

The proposed methodology is illustrated in Figure 4 and provides a way of collecting
tweets produced in a given region and then expanding this initial set by collecting additional
tweets, produced by the same set of users. It comprises two stages: i) collect and filter
tweets containing geographic information, which are available through the streaming API
statuses/filter. Tweets are filtered by several rectangles, defined by coordinates, corresponding
to Portuguese regions, including the Portuguese archipelagos Azores and Madeira. At this
point, tweets must also meet the restriction of being written in Portuguese, which is performed
by checking the language attribute assigned by Twitter. For each successfully validated tweet,
the tweet user id is extracted and stored in a MySQL database together with other tweet
specific information, such as tweet id, and creation date; ii) for each of the stored user ids
use the REST API for retrieving user timelines, allowing to retrieve at most the last 3200
tweets of each user [13].

The second stage entirely depends on the information stored about users and tweets in
the first stage. However, the process of retrieving the latest tweets from a user timeline is
currently limited to 45 requests per hour, each one returning a maximum of 200 tweets from
that specific user. Consequently, fetching an entire user timeline may take 16 queries, which
are also limited to 180 per 15 minutes windows [5]. Concerning this process, a number of

G. Brogueira, F. Batista, J. P. Carvalho, and H. Moniz 281

680$

700$

720$

740$

760$

780$

>0$ >500$ >1000$ >1500$ >2000$ >2500$ >3000$

nu
m
be

r'o
f'u

se
rs
'

number'of'tweets'

Figure 5 Number of users for which more than a certain amount of tweets was retrieved.

0"

200"

400"

600"

800"

1000"

0"

200"

400"

600"

800"

1000"

1200"

nu
m
be

r'o
f'd

ay
s'

nu
m
be

r'o
f't
w
ee
ts
'

Retrieved"/meline"(in"days)" Number"of"tweets"in"the"collec/on"

Figure 6 Relation between the time period covered by the retrieved timeline and the activity of
a user during the 8-day period.

optimizations have been performed in order to avoid unnecessary queries. All information
is stored in a MongoDB database, especially suitable for storing unstructured information,
where duplicated entries are detected.

4.1 Analysis of the Recently Collected Data
By the time this document was written we had collected the user timeline of the 777 most
active users during the 8-day period. In average, we have retrieved about 3167 tweets per
user, totaling about 2.3 Million additional tweets. Figure 5 shows the number of users for
whom the number of retrieved tweets achieved a given threshold.

The time period covered by the retrieved timeline varies according to the user activity, as
expected. Therefore, the timeline of a very active user can go back as much as 8 days, while
the timeline for a less active user can go back more than 900 days. Figure 6 illustrates such
relation and supports the idea that more information about a less active user can nevertheless
be retrieved by using our proposed approach.

5 Conclusions and Future Work

The information produced by a community through a social network provides means to
characterize such community over a vast number of perspectives. The interactions between
the community members provide information that until now were very difficult to discover.
On Twitter, the interaction between users is carried out by small messages that can be used
to express everything, from personal feelings to serious news. We have described a database

SLATE 2014

282 Expanding a Database of Portuguese Tweets

of collected geolocated tweets produced in Portugal. Our current database, containing tweets
from 8 consecutive days aggregates about 300 thousand messages written in Portuguese and
produced in Portugal. We have characterized the collected data and we think it is a valuable
resource for studying part of the Portuguese community that is now using social networks.
We have found that such small community is mostly composed of young users who use this
social network to exchange personal messages. The paper describes a method for expanding
the database with related tweets, produced by the same community of users, by combining
different Twitter APIs. The proposed methodology is now being applied, and by now allowed
to collect 10 times more tweets than the original ones, corresponding to less than 10% of all
the users in the database.

In a near future, we expect to complete retrieve the user timeline of our existing users, in
order to further characterize the community of users. We also aim at studying different time
periods, such as vacations where scholar subjects would not be so frequent.

Acknowledgments. This work was supported by national funds through FCT – Fundação
para a Ciência e Tecnologia under projects PTDC/IVC-ESCT/4919/2012 (MISNIS) and
PEst-OE/EEI/LA0021/2013, and under Grant SFRH/BPD/95849/2013.

References
1 A. Brito. O discurso da afetividade e a linguagem dos emoticons. Revista Eletrônica de

Divulgação Científica em língua Portuguesa, Linguística e Literatura, 9, 2008.
2 G. Brogueira, F. Batista, J. P. Carvalho, and H. Moniz. Towards a characterization of

tweets geolocated in Portugal. In PROPOR 2014, 2014 (submitted).
3 Tiago Daniel Sá Cunha. Sentiment analysis on Twitter’s Portuguese language. Technical

report, Faculdade de Engenharia da Universidade do Porto, 2013.
4 Eduardo Santos Duarte. Sentiment analysis on Twitter for the Portuguese language. Mas-

ter’s thesis, Faculdade de Ciências e Tecnologia, UNL Lisboa, 2013.
5 Shamanth Kumar, Fred Morstatter, and Huan Liu. Twitter Data Analytics. Springer, New

York, NY, USA, 2013.
6 Wang Ling, Guang Xiang, Chris Dyer, Alan Black, and Isabel Trancoso. Microblogs as par-

allel corpora. In Proceedings of the 51st Annual Meeting on Association for Computational
Linguistics, ACL’13. Association for Computational Linguistics, 2013.

7 M. Oussalah, F. Bhat, K. Challis, and T. Schnier. A software architecture for twitter
collection, search and geolocation services. Knowledge-Based Systems, 37(0):105–120, 2013.

8 Yanghui Rao, Qing Li, Xudong Mao, and Liu Wenyin. Sentiment topic models for social
emotion mining. Information Sciences, 266(0):90–100, 2014.

9 José Carlos Santos and Sérgio Matos. Predicting flu incidence from Portuguese Tweets.
In Ignacio Rojas and Francisco M. Ortuño Guzman, editors, IWBBIO, pages 11–18. Copi-
centro Editorial, 2013.

10 Tyler Schnoebelen. Do you smile with your nose? Stylistic variation in Twitter emoticons.
Working Papers in Linguistics, 18(14), 2012.

11 Marlo Souza and Renata Vieira. Sentiment analysis on twitter data for portuguese language.
In Computational Processing of the Portuguese Language, volume 7243 of Lecture Notes in
Computer Science, pages 241–247. Springer Berlin Heidelberg, 2012.

12 Statistic Brain. Twitter statistics http://www.statisticbrain.com/twitter-statistics/,
2014.

13 Twitter. Documentation, https://dev.twitter.com/docs/, 2013.
14 Wouter Weerkamp, Simon Carter, and Manos Tsagkias. How people use twitter in different

languages. In Proceedings of the ACM WebSci’11, Koblenz, Germany, 2011.

http://www.statisticbrain.com/twitter-statistics/
https://dev.twitter.com/docs/

MLT-prealigner: a Tool for Multilingual Text
Alignment
Pedro Carvalho and José João Almeida

Departamento de Informática, Universidade do Minho
Braga, Portugal
{pedrocarvalho,jj}@di.uminho.pt

Abstract
Parallel text alignment is a key procedure in the automated translation area. A large number
of aligners have been presented along the years, but these require that the target resources
have been pre-prepared for alignment (either manually or automatically). It is rather normal to
encounter mixed language documents, that is, documents where the same information is written
in many languages (Ex: manuals of electronic devices, touristic information, PhD thesis with
dual language abstracts, etc).

In this article we present MLT-prealigner: a tool aimed at helping those that need to process
mixed texts in order to feed alignment tools and other related language systems.

1998 ACM Subject Classification I.7.2 Document Preparation

Keywords and phrases parallel corpora, multilingual text alignment, language detection, Perl,
automated translation

Digital Object Identifier 10.4230/OASIcs.SLATE.2014.283

1 Introduction

With the rising importance of multilingualism in language industries, parallel corpora, which
consists of source texts along with their translations into other languages, have become a key
resource on natural language processing and, in special, the translation area.

Parallel text alignment is a necessary step so that we can generate all sorts of data based
on these texts. Although we can easily find a number of tools that already tackle this subject
(like Hunalign [10] and Giza++ [5]), it is still rather difficult to automatically align texts in
two or more different languages when they are all contained in the same document.

While working on the Per-Fide project [1] we stumbled upon various sources where files
like the ones referred above were encountered and were considered useless unless some kind
of preprocessing was made on them. In many of these files the texts and their translations
where divided in similar fashion. That lead us to catalog a number of patterns that could be
easily found and dealt with. After this identification and cataloging process, we reached the
conclusion that a generic solution could be proposed to each and every one of these patterns.
That was the main motivation that lead to the creation of this tool.

MLT-prealigner is intended to be used as a preprocessor that can consume documents like
the ones referred above and render them usable by any classical aligner. It is intended to
separate these documents into multiple files and also to tag the output, according to their
language, paving the way for any further processing.

This tool was made to tackle the documents that follow the patterns that we will thereafter
present, and although it is not a one size fits all solution we think that it is a much needed
help to multilingual text alignment and to the translation area in particular.

© Pedro Carvalho and José João Almeida;
licensed under Creative Commons License CC-BY

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões; pp. 283–290

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2014.283
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

284 MLT-prealigner: a Tool for Multilingual Text Alignment

Outline. In the following pages we state the problem more clearly in Section 2. The tool’s
architecture will be presented in Section 3. Case Studies and results can be viewed in
Section 4. Finally a brief discussion will be made in Section 5.

2 Background

The problem of language identification has been address (with good results) in a large
number of articles and tools. However some specific problem constraints and details raise the
necessity of building new solutions or new variants. In this world we can find problems like:
(i) classification of small units (e.g. one line sentences); (ii) the use of minority, or poorly
covered, languages (e.g. Tetum and its variants); (iii) documents with (large amounts of)
language independent words (e.g. Entities, Person names, bibliography). This paper will
focus on a specific problem, multilingual documents.

When gathering resources for multilingual text alignment for our different projects,
documents with multiple translations contained in them were a common sight. Usually, these
documents followed certain patterns and it was easy to see that dealing with them was a
repetitive task. As such, these patterns were cataloged, and served as a starting point for
MLT-prealigner’s core idea. The most common patterns were:

Documents where the languages are all in sequential sections that do not intertwine
(example: abstracts in thesis, articles, etc.), but there is no clear separation point between
them. This pattern is called contiguous sections.

Figure 1 Contiguous sections in different languages pattern.

Documents where the languages are separated by clear markers. The two most common
markers were pages and paragraphs. So, we cataloged two cases, zipped pages and zipped
paragraphs.

Figure 2 Zipped paragraphs/pages pattern.

Documents where the languages are contained in columns, different languages in different
columns (we call this zipped columns).

Figure 3 Zipped columns pattern.

Some of these examples are discussed in Section 4.

P. Carvalho and J. J. Almeida 285

In the present, we have access to publicly available good quality language identifying
tools, such as: (i) command line tools that have a very good response for most cases, provided
they have a minimum document length (e.g. 15 words); (ii) web services (SOAP, REST)
such as Open Xerox [11]; (iii) libraries for all the popular programming languages, (e.g.
Lingual::Identify::CLD [9] for Perl); (iv) works like King et al. [4] presented promising
results on mixed-language documents.

Although we use generic tools (such as Lingua::Identify::CLD) to do some language
classification activities, we realized that it was useful to build a project-specific module in
order to have better control on the configuration details. That lead to the creation of our
tool, presented in the following section.

3 MLT-prealigner Architecture

We took a dictionary based approach using the Text::Aspell Perl module, and public
available dictionaries from the Aspell project and similar. Our intention was to create a tool
that was able not only able to separate languages that are within multilingual documents in
an automated manner (with a high level of precision), but also easily customizable, so that
the user has more control.

Problems regarding document format will be disregarded in this paper. We have built
some inside-solutions, but the focus of this paper will be upon the extracted text and its
manipulation. Experience showed that in some situations, it is useful to use this tool in
collaboration with cleaning tools (ex bookcleaner [7, 8]) to remove some document noise (ex:
page numbers, headers and footers, etc).

3.1 Work-flow
The process is sequential. Our input file passes first through our splitter component, which
divides the file’s content into smaller chunks and then redirect the file to the tagger component.
That component will analyze each chunk and try to identify which language it is written in,
it will then tag the chunk accordingly. The next step is creating the output files based on
the tagged chunks, that job is done by the unzipping component, which will create a new
file for every language that has been identified, pasting in it the chunks that belong to that
language.

Figure 4 MLT-prealigner’s work-flow.

3.2 Splitting
We observed that the splitting logic could be cataloged in two major families. Firstly we have
the case where just applying out splitting action would lead to an estimate of the languages
of our resulting chunks. Good examples for this kind of splitting are documents with zipped

SLATE 2014

286 MLT-prealigner: a Tool for Multilingual Text Alignment

Require: text chunk and dictionaries list
1: break the chunk in words
2: for all words do
3: for all dictionaries do
4: if word is contained in dictionary

then
5: increment dictionary’s counter
6: end if

7: end for
8: end for
9: if a dictionary has a definitive advantage

over the others then
10: return dictionary’s language
11: else
12: call tiebreaker algorithm
13: end if

Figure 5 Main algorithm for language detection.

pages or zipped columns, if we know beforehand that page 1 is written in language L1 and
page 2 is in language L2, then splitting both pages should be sufficient to extract both
translations. This means that in the next step of our work-flow only a language verification
is needed instead of trying to identify it from scratch. In these cases, usually, the separation
point between languages is very clear and should be used as our splitting target. Our second
splitting family is, naturally, the antitheses of our first case. In cases where there is no
possibility to estimate the languages of the resulting chunks (there is no clear separation
point between languages) then a more generic split has to be applied, and a full language
identification has to be made. At the moment, the splitting strategy is manually defined.

3.3 Language Detection and Tagging
MLT-prealigner uses a dictionary based approach to language detection. The main principle
is cross checking words against dictionaries; these dictionaries may be user defined and it
is possible to build a dictionary from a list of words, this case is very useful for minority
languages, like Tetum, where it is very difficult to obtain a robust spell-checker dictionary.
Our implementation of this component uses Text::Aspell [2] Perl module.

3.3.1 Main Algorithm for Language Detection
As said above, the main principle of the algorithm is cross checking words against dictionaries.
When a dictionary has a high enough number of words contained in it, it’s language will be
selected as the language of the chunk of text that is being processed. In the case that no
specific dictionary was able to breakthrough then another algorithm will be applied, to these
algorithms we gave the name Tiebreaker algorithms. At the time this article was written it
was still a bit unclear at which point we could safely say that a specific dictionary had broken
through, or even if this threshold should be user defined. A rough sketch of the algorithm is
presented in Figure 5.

3.3.2 Tiebreaker Algorithms
Because there is the possibility that the main algorithm may not be able to detect, with a
high degree of confidence, the language of all chunks of text, we had to envision certain ways
that we could do a deeper inspection of the text so that a decision could be reached. Several
tiebreaker algorithms were proposed and as we found out, the success percentage of these
algorithms directly depended on the language division pattern of the document that was
being processed. So one algorithm could be more suitable for one type of problem, but when
in another context another algorithm would be more suited for that specific problem. By

P. Carvalho and J. J. Almeida 287

Figure 6 Language scheme after the algorithm.

giving the user direct control on what tiebreaker algorithm to apply, we are also giving the
tool a new level of flexibility.

Neighborhood Algorithm. In certain patterns, the fact that a chunk of text is surrounded
by other chunks, that share the same language between them, is a clear indicator that
this chunk in itself may be written in that language as well. So if we can detect that the
immediate predecessor and successor of the chunk in question are both written in the same
language, then we assume that the chunk itself belongs to that language (Figure 6).

This type of reasoning is very successful in cases where we know before hand that different
languages won’t mix, instead there are specific sections for each language in the document
that is being processed. One such case will be addressed in Section 4.1.

Reversed Neighborhood Algorithm. Just as the name indicates, this algorithm is the exact
opposite of the former one. In cases where we previously know that the chunks of text will be
intercalated according to their language, we can detect that the immediate predecessor and
successor are of Language 1 and so the chunk of text that is being analyzed is of Language
2. This reasoning is suitable for cases like zipped paragraph. A case study that tackles this
pattern will be presented in Section 4.3.

Dimension Algorithm. In some cases it is expected that the resulting chunks in each
identified language do not vary a lot in size. To verify if this similarity in size between the
chunks is as expected a metric was defined. Considering σ as our size function.

max(σ(L1, L2)) ≥ min(σ(L1, L2)) × δ

where δ is the size coefficient that is defined as our threshold, for example, if δ = 2 then the
biggest chunk was expected to be, at most, twice as big as the smallest one.

This kind of reasoning can very well be applied in cases as zipped pages and zipped columns,
as long as the number of the target pages or columns is more or less equal. When the output
does not match the expected dimensions, then a finner analysis has to be made, this means
reducing the set of active languages and/or decreasing the size of the text chunks.

3.4 Output Generation
After the original text has been split and all the chunks tagged, the next step is to produce
the output files. MLT-prealigner allows for two types of output generation, the process that
we call unzipping and also the creation of a tagged file.

We call language unzipping to the creation a new output file for each language that
has been detected. The text chunks are distributed accordingly to the tag that has been
previously inserted.

SLATE 2014

288 MLT-prealigner: a Tool for Multilingual Text Alignment

The other type of output generation that is available is the creation of a file with all the
tagged chunks. This is specially useful when our aim is not text alignment in itself, instead
we may want to do another kind of processing, like obtaining statistics about the chunks. A
small example of one of this type of file can be seen below.

[en] The classic crown ethers are macrocyclic polyethers that contain between 3 and 20 oxygen
atoms, separated from each other by two or more carbon atoms. [/en]

[pt] Os éteres coroa clássicos são poliéteres macrocíclicos que contêm 3 a 20 átomos de oxigénio,
separados entre si por dois ou mais átomos de carbono. [/pt]

We ended up using this notation instead of XML due to potential problems that could
arise due to the appearance of nested XML tags inside our documents. To identify each
chunk we used the same nomenclature as the Aspell dictionaries. For instance, standard
Portuguese will be tagged with [pt_PT] and Brazilian Portuguese with [pt_BR]1.

4 Case-studies and Results

Because this tool was created pretty much out of necessity, as we encountered several text
alignment issues when trying to undertake certain projects, it seemed interesting and relevant
to present some of the problems we faced and were solved using MLT-prealigner. In the next
subsections we will discuss these problems and how we proceeded to solve them.

4.1 Abstracts of Rcaap Thesis

The Portuguese Open Access Scientific Repository (Rcaap)[6] is home to a large number of
academic thesis. This type of document usually has an abstract translated in one or more
languages. Knowing this, we undertook a small project with the intention of creating a
parallel text corpus based on the collection of abstracts available on the repository, which were
very rich in terms of technical terminology, however approximately 31% of these abstracts
were contained in single documents with all the translations mashed up together, one after
another, just as in Figure 1.

To be able to use these documents we had to find a way to split the chunks of text
according to its languages, originating a new document for each language detected, in the
case of the example above, 3 documents would be produced. The main barrier was to find
the separation point between languages so we could divide the text into multiple documents.

We chose to split the texts by sentence, and because we knew before hand that the
languages would come one after another, it seemed that this was a pattern suitable to use
the neighborhood algorithm as the tiebreaker.

We made a small analysis on the outputs, 50 random files were chosen, and realized
that 1043 sentences were processed and 13 of them were mistakenly tagged with the wrong
language, this gives us a 98.75% success percentage. A big part of those errors were due
to citations inside the text, very common in academic texts like this, where, for example,
the expression “et al”, which is very common in citations, would almost always make
MLT-prealigner think the sentence was in French.

1 The full list of dictionaries can be found in ftp://ftp.gnu.org/gnu/aspell/dict/0index.html

ftp://ftp.gnu.org/gnu/aspell/dict/0index.html

P. Carvalho and J. J. Almeida 289

4.2 Multilingual Manuals of Electrical Appliances
In this case-study we describe the separation of a set of PDF multilingual manuals of
electrical appliances of Teka2. In near 80% of the available manuals, we found several
different languages in the same PDF document. In some situations we had just partial
translations.

We noticed the existence of multilingual title-pages after processing the entire corpus.
Some problems were created by imperfect PDF to text conversion of texts that included
images and other non textual elements.

Observing just the Portuguese Spanish pair, we obtained 273 in each language of length
varying from 2 to 39 pages. After the alignment process, we obtained 43 alignments marked
as “bad-alignment” and 230 that passed the automatic quality check assessment of the
project.

4.3 PT-Tetum Bilingual Version of “O anjo de Timor”
In this case-study we discuss the separation of a bilingual text: “O anjo de Timor” [3]. The
book is a bilingual document (PT, Tetum). Tetum is a minority language, and therefore
not covered by Lingua::Identify::CLD [9], neither Aspell dictionaries. The multilingual
chunks were separated into paragraphs. Also, pages included headers and footers.

Figure 7 Example bilingual document.

4.4 Results
This tool is in a very preliminary phase, and so evidence of it’s utility is still scarce. However,
building on the aforementioned case studies, some results were calculated, and our first
results are very encouraging. At the moment this paper was written, unfortunately, results
on the Anjo de Timor case study were not calculated.

5 Conclusions

We believe that this tool will have a big impact in the gathering of new resources, a task
that is critical in multilingual text processing, especially in the translation area.

2 http://www.teka.com

SLATE 2014

http://www.teka.com

290 MLT-prealigner: a Tool for Multilingual Text Alignment

Table 1 Preliminary results.

Case-Study Dimension Precision
Rcaap 1043 sentences 98.75%
Teka (PT-ES) 2800 pages (very good lang detection 98%; some PDF problems)
Anjo de Timor to be calculated

As new patterns are identified, and new solutions are engineered to deal with them,
the tool will grow and become even more useful, that is why one of the main qualities of
MLT-prealigner is that it’s tiebreaker algorithms set is easily extensible.

We envision that the one of the next steps in the development of the tool will be to build
some kind of multilingual text classifier to automatically detect patterns.

Another key point of improvement, is alternating it’s dictionary based approach for
language detection with an approach based in Lingua::Identify::CLD. Because both
approaches have their pros and cons, we believe we may be able to take the best of both
worlds.

Finally, the possibility to create robust dictionaries for minority languages, based for
example on word lists, is something that should be a great asset to the translation area.

References
1 José João Almeida, Sílvia Araújo, Nuno Carvalho, Idalete Dias, Ana Oliveira, André San-

tos, and Alberto Simões. The Per-Fide corpus: A new resource for corpus-based termino-
logy, contrastive linguistics and translation studies. In Tony Berber Sardinha and Telma
São-Bento Ferreira, editors, Working with Portuguese Corpora, chapter 9, pages 177–200.
Bloomsbury Publishing, April 2014.

2 Kevin Atkinson. Aspell spell checker, 2011. http://aspell.net/.
3 Sophia de Mello Breyner Andresen. Anjo de Timor, Anju Timór nian. Instituto Camões,

2003. Bilingual edition Tetum-Portuguese, translated by J. Esperança and E. Araújo.
4 B. King and S. Abney. Labeling the languages of words in mixed-language documents using

weakly supervised methods. In NAACL-HLT, 2013.
5 F. J. Och and H. Ney. Improved statistical alignment models. In Proceedings of the 38th

Annual Meeting on Association for Computational Linguistics, pages 440–447. Association
for Computational Linguistics, 2000. Giza++.

6 Rcaap. Project Rcaap – repositório científico de acesso aberto de portugal. (home page),
FCT, 2010. http://www.rcaap.pt/.

7 André Santos and José João Almeida. Text::Perfide::BookCleaner, a perl module to clean
and normalize plain text books. In Actas del XXVII Congreso de la Sociedad Española
para el Procesamiento del Lenguaje Natural, 2011.

8 André Santos, José João Almeida, and Nuno Carvalho. Structural alignment of plain
text books. In Nicoletta Calzolari et al., editors, Proceedings of the Eight International
Conference on Language Resources and Evaluation (LREC’12), Istanbul, Turkey, may 2012.
European Language Resources Association (ELRA).

9 Alberto Simões and Google Chrome Team. Lingua::Identify::CLD – Perl interface
to Google Chrome Language Detection library, 2013. http://search.cpan.org/dist/
Lingua-Identify-CLD/.

10 D. Varga, P. Halácsy, A. Kornai, V. Nagy, L. Németh, and V. Trón. Parallel corpora for
medium density languages. Selected Papers from RANLP 2005, pages 590–596, 2005.

11 Xerox. Open xerox language identifier system, 2013. http://open.xerox.com/Services/
LanguageIdentifier.

http://aspell.net/
http://www.rcaap.pt/
http://search.cpan.org/dist/Lingua-Identify-CLD/
http://search.cpan.org/dist/Lingua-Identify-CLD/
http://open.xerox.com/Services/LanguageIdentifier
http://open.xerox.com/Services/LanguageIdentifier

	p000-p00-frontmatter
	Preface

	p001-part1-separator
	p003-p01-pereira
	Introduction
	Software Development based on Domain-Specific Languages
	DSL-oriented Process Models
	Domain Engineering Activities
	Language Design and Implementation Activities
	Application Development Activities

	Development Process Dynamics
	Some DSL-based Experiences

	Language-Oriented Architectures
	Anatomy of a LOA
	Language Implementation Tools as General-Purpose Development Tools
	Experiences with the LOA Approach

	Closing

	p013-p02-gamallo
	Introduction
	Basic Propositions
	Overview of Different OIE Systems
	Evaluation and Conclusions

	p017-part2-separator
	p019-p03-carvalho
	Introduction
	Conclave Architecture Overview
	Collecting Data
	Normalizing Information, Populating Ontologies
	Reasoning and Views

	Conclave Quick Tour
	Splitting Identifiers: Lingua-IdSplitter
	Creating Mappings: Conclave-Mapper

	Related Work
	Experimental Validations
	Splitting Evaluation
	Query Search Evaluation

	Conclusion

	p035-p04-porubaen
	Introduction
	Concern-oriented Source Code Projections
	How to Create Projection Specification
	Need of Annotations
	Configuration-based Projections
	Source Code Queries
	Summary

	Minesweeper Case Study
	Game State Semantic Concern
	Singleton Design Concern

	Prototype Implementation
	Expressing Concerns
	SSCE User Interface

	Experiment
	Experiment Setup
	Survey

	Related Work
	Conclusion

	p051-p05-pereira
	Introduction
	Contextualization: Program Comprehension
	DariusSDG: Architecture
	DariusSDG: Development
	Comments Analysis
	System Dependency Graph
	Integration

	Conclusion

	p059-part3-separator
	p061-p06-rodrigues
	Introduction
	Related Work
	Reconfiguration Model
	Coordination Protocols
	Coordination-based Reconfigurations

	ReCooPLa: Reconfiguration Language
	Overview
	The Language

	ReCooPLa: Language Compilation
	Reconfiguration Engine
	ReCooPLa Translation

	Example
	Conclusions and Future Work

	p077-p07-brito
	Introduction
	Workflow Description Language
	WDL Examples
	Conclusions

	p084-blank-page
	p085-p08-fonseca
	Introduction
	Related Work
	Onto2Gra: General Overview and Architecture
	Onto2OWL Module
	The Parser for OntoDL Files
	The OWL File Generator

	OWL2DSL Module
	Conclusion

	p093-p09-queiros
	Introduction
	Serialization Formats
	Textual Serialization
	Binary Serialization
	Selection of a Serialization Format

	Comparison and Benchmark of JSON Libraries
	Setup and Methodology
	Performance Benchmark

	Conclusions

	p101-p10-carvalho
	Introduction
	Running Example
	Related Work
	Island Grammars
	Fuzzy Grammar

	Our Approach
	Conclusion

	p109-part4-separator
	p111-p11-oliveira-e-silva
	Introduction
	Contributions
	Requirements
	Different Assertions
	Locality of Contracts
	Contracts are Part of the Interface
	Contracts are Inherited
	Documentation
	DbC Exceptions

	Systematic Approaches for Error Handling
	Typed Exceptions and try/catch Instruction
	DbC Error Handling

	Contract-Java
	Method Contracts
	Class Contracts
	Java Interfaces
	DbC Exceptions
	Enhanced Debugging in Contract-Java
	Fine-tuning

	Other Assertions
	Contract-Java Native Library
	Documentation

	Conclusion
	Future Developments

	p127-p12-ramos
	Introduction
	Related Work
	CPython
	Object Representation
	Garbage Collection and Threading

	Jython
	Implementation Differences
	Java Integration
	Performance

	IronPython
	PyPy
	PLT Spy
	Comparison

	Solution
	General Architecture
	Racket Interfacing
	Parse and Compile Modules
	Runtime Modules

	Runtime Implementation using Racket's Foreign Function Interface
	Runtime Implementation using Racket
	Examples
	Fibonacci
	Sieve of Eratosthenes

	Performance

	Conclusions

	p143-p13-martins
	Introduction
	State of the Art
	Background
	Approaches
	Existing Tools
	Features Comparison
	Results Comparison

	Strategy for Testing the Tools
	Source Code used in the Tests
	Program 1: Calculator
	Program 2: 21 Matches

	Tool Details and Test Results
	CodeMatch
	Results for the Calculator Code
	Results for the 21 Matches Code

	CPD
	JPlag
	Results for the Calculator Code
	Results for the 21 Matches Code

	Marble
	Results for the Calculator Code

	MOSS
	Results for the Calculator Code
	Results for the 21 Matches Code

	Plaggie
	Sherlock
	Results for the Calculator Code
	Results for the 21 Matches Code

	SIM
	Results for the Calculator Code
	Results for the 21 Matches Code

	YAP

	Conclusions

	p159-p14-janousek
	Introduction
	Tree Pattern Pushdown Automaton and its Incremental Modification
	Target Code Selection by Tilling AST
	Conclusion

	p166-blank-page
	p167-part5-separator
	p169-p15-goncalo-oliveira
	Introduction
	Related Work
	Assigning Polarity to Wordnet Synsets
	Set-up
	Initial Polarity Assignment
	Polarity Propagation

	Used Resources
	SentiLex-PT
	Onto.PT

	Results of Initial Assignment
	Quantities and Examples
	Evaluation

	Results of Polarity Propagation
	Candidate Relations
	Selection of the Adequate Relations
	Polarity Propagation through Selected Relations

	Overall Evaluation
	Concluding Remarks

	p185-p16-rosa
	Introduction
	Related Techniques
	Document Representation
	k-Nearest Neighbors Algorithm – kNN
	Support Vector Machines – SVM

	Twitter Topic Fuzzy Fingerprints
	Building the Fingerprint Library
	Tweet-Topic Similarity Score

	Twitter Data
	Training Data Set
	Test Data Set

	Evaluation Metrics
	Results
	Twitter Topic Fuzzy Fingerprint Performance
	kNN and SVM Performance
	Method Comparison

	Conclusions and Future work

	p200-blank-page
	p201-p17-leal
	Introduction
	Related Work
	Multiscale Weight Tuning
	Proximity Measure Layer
	Genetic Algorithm Layer
	Bootstrap Layer

	Implementation
	Graph Pre-processing
	Other Optimizations

	Validation
	Conclusion

	p214-blank-page
	p215-18-mbarek
	Introduction
	Related Work
	Vector Space Basis Change
	Pseudo-Relevance Feedback

	Rocchio's Models based on Vector Space Basis Change
	Rocchio's Formula
	Vector Space Basis Change

	Experiments
	Environment
	Results
	Significance of Our Results

	Conclusion

	p225-p19-markov
	Introduction
	Related Work
	Whole-Part Dependency Extraction Module in STRING
	STRING Overview
	A Whole-Part Extraction Module in STRING

	Evaluation
	Conclusions

	p233-part6-separator
	p235-p20-rassi
	Introduction
	Delimitation of the Object
	Related Works
	Methods
	Collection of Proverbs
	Classifying Proverbs and POS Tagging their Elements
	Extracting Core Elements
	Creating and Applying the Graphs

	Results and Discussion
	Final Remarks

	p251-p21-simoes
	Introduction
	Language Identification Approaches
	Neural Network
	Dataset Corpora Preparation
	Feature Extraction
	Network Architecture
	Training Details

	System Evaluation
	Test Set Characterization
	Accuracy
	Probability Distribution

	Conclusions and Future Work

	p266-blank-page
	p267-p22-rodrigues
	Introduction
	A Brief Contextualization
	The Lemmatization Process
	Related Work

	Our Approach to Lemmatization
	The Use of Rules
	The Addition of a Lexicon

	Evaluation and Results
	Conclusions and Future Work

	p275-p23-brogueira
	Introduction
	Related Work
	Data Analysis
	Temporal Distribution of the Collected Tweets
	Content Analysis

	Database Expansion
	Analysis of the Recently Collected Data

	Conclusions and Future Work

	p283-p24-carvalho
	Introduction
	Background
	MLT-prealigner Architecture
	Work-flow
	Splitting
	Language Detection and Tagging
	Main Algorithm for Language Detection
	Tiebreaker Algorithms

	Output Generation

	Case-studies and Results
	Abstracts of Rcaap Thesis
	Multilingual Manuals of Electrical Appliances
	PT-Tetum Bilingual Version of ``O anjo de Timor''
	Results

	Conclusions

