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Preface

This volume contains the papers presented at the First International Workshop on Rewriting
Techniques for Program Transformations and Evaluation (WPTE 2014) which was held on
July 13, 2014 in Vienna, Austria during the Vienna Summer of Logic 2014 (VSL 2014) as a
workshop of the Sixth Federated Logic Conference (FLoC 2014). WPTE 2014 was affiliated
with the 25th International Conference on Rewriting Techniques and Applications joined with
the 12th International Conference on Typed Lambda Calculi and Applications (RTA/TLCA
2014).

Scope of WPTE

Verification and validation of properties of programs, optimizing and compiling programs, and
generating programs can benefit from the application of rewriting techniques. Source-level
program transformations are used in compilation to simplify and optimize programs, in
code refactoring to improve the design of programs; and in software verification and code
validation, program transformations are used to translate and/or simplify programs into the
forms suitable for specific verification purposes or tests. Those program transformations can
be translations from one language into another one, transformations inside a single language,
or the change of the evaluation strategy within the same language.

Since rewriting techniques are of great help for studying correctness of program transform-
ations, translations and evaluation, the aim of WPTE is to bring together the researchers
working on program transformations, evaluation, and operationally based programming
language semantics, using rewriting methods, in order to share the techniques and recent
developments and to exchange ideas to encourage further activation of research in this area.

Topics in the scope of WPTE include the correctness of program transformations, op-
timizations and translations; program transformations for proving termination, confluence
and other properties; correctness of evaluation strategies; operational semantics of programs,
operationally-based program equivalences such as contextual equivalences and bisimulations;
cost-models for arguing about the optimizing power of transformations and the costs of eval-
uation; program transformations for verification and theorem proving purposes; translation,
simulation, equivalence of programs with different formalisms, and evaluation strategies; pro-
gram transformations for applying rewriting techniques to programs in specific programming
languages; program inversions and program synthesis.

WPTE 2014

For WPTE 2014 six regular research papers were accepted out of the submissions. Additionally
the program of WPTE contained the following talks on work in progress

Yuki Chiba: Verifying the Correctness of Tupling Transformations based on Conditional
Rewriting
Guillaume Madelaine, Cédric Lhoussaine and Joachim Niehren: Attractor Equivalence:
An Observational Semantics for Reaction Networks
Georg Moser and Michael Schaper: A Complexity Preserving Transformation from Jinja
Bytecode to Rewrite Systems

WPTE 2014 had two Program Chairs to allow submissions from the program committee
and also from the chairs. Each submission was reviewed by at least three members of the
1st International Workshop on Rewriting Techniques for Program Transformations and Evaluation (WPTE’14).
Editors: Manfred Schmidt-Schauß, Masahiko Sakai, David Sabel, and Yuki Chiba
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x Preface

Program Committee, with the help of two external reviewers. Reviewing of submissions
with a program chair as coauthor was handled by the respective other program chair. This
politics also permitted to cope with other conflicts of interest where a chair was involved.

Paper submission, reviewing, and the electronic meeting of the program committee used
the great EasyChair system of Andrei Voronkov, which was also indispensable for preparing
the WPTE program and collecting the papers for these proceedings. However, in its current
state, the conflicts of interest between a chair and a submission cannot be properly dealt
and are solved without EasyChair.

In addition to the contributed papers, the WPTE program contained an invited talk
by Andrew Gill with title “HERMIT: An Equational Reasoning Model to Implementation
Rewrite System for Haskell”.
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The Collection of all Abstracts of the Talks at
WPTE 2014

The aim of this chapter is to document all talks of the “First International Workshop on
Rewriting Techniques for Program Transformations and Evaluation” (WPTE 2014). Hence,
this collection contains all abstracts of talks held at WPTE 2014. The abstracts are ordered
alphabetically by author names. Further information and e.g. extended abstracts on the
talks on work in progress, can also be found on the handouts of the Vienna Summer of
Logic 2014 (VSL 2014) which were distributed on USB flash drives to all participants of VSL
2014. For a majority of the contributions the full versions of the papers are available in these
proceedings.

Verifying the Correctness of Tupling Transformations based on
Conditional Rewriting

Author: Yuki Chiba

Abstract:
Chiba et al. (2010) proposed a framework of program transformation by templates based
on term rewriting. Their framework can deal with tupling, which improves efficiency
of programs. Outputs of their framework, however, may not always be more efficient
than inputs. In this paper, we propose a technique to show the correctness of tupling
based on conditional term rewriting. We give an extended equational logic in order to
add conditional rules.

HERMIT: An Equational Reasoning Model to Implementation Rewrite
System for Haskell

Author: Andrew Gill

Abstract:
HERMIT is a rewrite system for Haskell. Haskell, a pure functional programming
language, is an ideal candidate for performing equational reasoning. Equational reasoning,
replacing equals with equals, is a tunneling mechanism between different, but equivalent,
programs. The ability to be agile in representation and implementation, but retain
equivalence, brings many benefits. Post-hoc optimization is one obvious application of
representation agility.
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xii The Collection of all Abstracts of the Talks at WPTE 2014

Notes on Structure-Preserving Transformations of Conditional Term
Rewrite Systems

Authors: Karl Gmeiner and Naoki Nishida

Abstract:
Transforming conditional term rewrite systems (CTRSs) into unconditional systems
(TRSs) is a common approach to analyze properties of CTRSs via the simpler framework of
unconditional rewriting. In the past many different transformations have been introduced
for this purpose. One class of transformations, so-called unravelings, have been analyzed
extensively in the past.
In this paper we provide an overview on another class of transformations that we call
structure-preserving transformations. In these transformations the structure of the
conditional rule, in particular their left-hand side is preserved in contrast to unravelings.
We provide an overview of transformations of this type and define a new transformation
that improves previous approaches.

Attractor Equivalence: An Observational Semantics for Reaction
Networks

Authors: Guillaume Madelaine, Cédric Lhoussaine and Joachim Niehren

Abstract:
We study observational semantics for networks of chemical reactions as used in systems
biology. Reaction networks without kinetic information, as we consider, can be identified
with Petri nets. We present a new observational semantics for reaction networks that we
call the attractor equivalence. The main idea of the attractor equivalence is to observe
reachable attractors and reachability of an attractor divergence in all possible contexts.
The attractor equivalence can support powerful simplifications for reaction networks
as we illustrate at the example of the Tet-On system. Alternative semantics based on
bisimulations or traces, in contrast, do not support all needed simplifications.

Verifying Optimizations for Concurrent Programs

Authors: William Mansky and Elsa L. Gunter

Abstract:
While program correctness for compiled languages depends fundamentally on compiler
correctness, compiler optimizations are not usually formally verified due to the effort
involved, particularly in the presence of concurrency. In this paper, we present a framework
for stating and reasoning about compiler optimizations and transformations on programs
in the presence of relaxed memory models. The core of the framework is the PTRANS
specification language, in which program transformations are expressed as rewrites on
control flow graphs with temporal logic side conditions. We demonstrate our technique
by verifying the correctness of a redundant store elimination optimization in a simple
LLVM-like intermediate language, relying on a theorem that allows us to lift single-thread
simulation relations to simulations on multithreaded programs.
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A Complexity Preserving Transformation from Jinja Bytecode to
Rewrite Systems

Authors: Georg Moser and Michael Schaper

Abstract:
We revisit known transformations from object-oriented bytecode programs to rewrite
systems from the viewpoint of runtime complexity. Suitably generalising the constructions
proposed in the literature, we define an alternative representation of Jinja bytecode (JBC)
executions as computation graphs from which we obtain a representation of JBC executions
as constrained rewrite systems. We show that the transformation is complexity preserving.
We restrict to non-recursive methods and make use of heap shape pre-analyses.

Inverse Unfold Problem and Its Heuristic Solving

Authors: Masanori Nagashima, Tomofumi Kato, Masahiko Sakai, and Naoki Nishida

Abstract:
Unfold/fold transformations have been widely studied in various programming paradigms
and are used in program transformations, theorem proving, and so on. This paper, by
using an example, show that restoring an one-step unfolding is not easy, i.e., a challenging
task, since some rules used by unfolding may be lost. We formalize this problem by
regarding one-step program transformation as a relation. Next we discuss some issues
on a specific framework, called pure-constructor systems, which constitute a subclass
of conditional term rewriting systems. We show that the inverse of T preserves rewrite
relations if T preserves rewrite relations and the signature. We propose a heuristic
procedure to solve the problem, and show its successful examples. We improve the
procedure, and show examples for which the improvement takes effect.

On Proving Soundness of the Computationally Equivalent
Transformation for Normal Conditional Term Rewriting Systems by
Using Unravelings

Authors: Naoki Nishida, Makishi Yanagisawa, and Karl Gmeiner

Abstract:
In this paper, we show that the SR transformation, a computationally equivalent trans-
formation proposed by Şerbănuţă and Roşu, is sound for weakly left-linear normal
conditional term rewriting systems (CTRS). Here, soundness for a CTRS means that
reduction of the transformed unconditional term rewriting system (TRS) creates no
undesired reduction for the CTRS. We first show that every reduction sequence of the
transformed TRS starting with a term corresponding to the one considered on the CTRS
is simulated by the reduction of the TRS obtained by the simultaneous unraveling. Then,
we use the fact that the unraveling is sound for weakly left-linear normal CTRSs.

WPTE’14
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Structural Rewriting in the π-Calculus

Author: David Sabel

Abstract:
We consider reduction in the synchronous π-calculus with replication, without sums. Usual
definitions of reduction in the π-calculus use a closure w.r.t. structural congruence of
processes. In this paper we operationalize structural congruence by providing a reduction
relation for pi-processes which also performs necessary structural conversions explicitly
by rewrite rules. As we show, a subset of structural congruence axioms is sufficient. We
show that our rewrite strategy is equivalent to the usual strategy including structural
congruence w.r.t. the observation of barbs and thus w.r.t. may- and should-testing
equivalence in the pi-calculus.

Contextual Equivalences in Call-by-Need and Call-By-Name
Polymorphically Typed Calculi (Preliminary Report)

Authors: Manfred Schmidt-Schauß and David Sabel

Abstract:
This paper presents a call-by-need polymorphically typed lambda-calculus with letrec,
case, constructors and seq. The typing of the calculus is modelled in a system-F style.
Contextual equivalence is used as semantics of expressions. We also define a call-by-name
variant without letrec. We adapt several tools and criteria for recognizing correct program
transformations to polymorphic typing, in particular an inductive applicative simulation.
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HERMIT: An Equational Reasoning Model to
Implementation Rewrite System for Haskell∗

Andrew Gill

Information Technology and Telecommunication Center
Department of Electrical Engineering and Computer Science
The University of Kansas, USA
andygill@ku.edu

Abstract
HERMIT is a rewrite system for Haskell. Haskell, a pure functional programming language, is
an ideal candidate for performing equational reasoning. Equational reasoning, replacing equals
with equals, is a tunneling mechanism between different, but equivalent, programs. The ability
to be agile in representation and implementation, but retain equivalence, brings many benefits.
Post-hoc optimization is one obvious application of representation agility.

What we want to explore is the mechanization of rewriting, inside real Haskell programs,
enabling the prototyping of new optimizations, the explicit use of types to direct transformations,
and perform larger data refinement tasks than are currently undertaken. Paper and pencil
program transformations have been published that improve performance in a principled way;
indeed some have turned the act of program transformation into an art form. But there is only
so far a sheet of paper and a pencil can take you. There are also source code development
environments that provide support for refactoring, such as HaRe. These work at the syntactical
level, and Haskell is a large and complex language. What we want is mechanization, for examples
that are currently undertaken by hand, and for examples that are challenging to perform using
current development environments.

In this talk, we overview HERMIT, the Haskell equational reasoning model to implementation
tunnel. HERMIT operates at the Glasgow Haskell compiler’s Core level, deep inside GHC, where
type information is easy to obtain, and the language being rewritten is smaller. HERMIT provides
three levels of support for transformation and prototyping: a strategic programming base with
many typed rewrite primitives, a simple shell that can used to interactively request rewrites
and explore transformation possibilities, and a batch language that can mechanize focused, and
optionally program specific, optimizations. We will demonstrate all three of these levels, and
show how they cooperate.

The explicit aim of the HERMIT project is to explore the worker/wrapper transformation
as a specific way of mechanizing data refinement. HERMIT has been successfully used on small
examples, efficient reverse, tupling-fib, and many other examples from the literature. We
will show two larger and more interesting examples of program transformation using HERMIT.
Specifically, we will show the mechanization of the making a century program refinement pearl,
originally by Richard Bird, and the exploration of datatype alternatives in Graham Hutton’s
implementation of John Conway’s Game of Life.

1998 ACM Subject Classification D.3.4 Translator writing systems and compiler generators

Keywords and phrases Program Transformation, Equational Reasoning, Optimization

Digital Object Identifier 10.4230/OASIcs.WPTE.2014.1

Category Invited Talk

∗ This material is based upon work supported by the National Science Foundation under Grant No. 1117569.

© Andrew Gill;
licensed under Creative Commons License CC-BY
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Notes on Structure-Preserving Transformations of
Conditional Term Rewrite Systems∗

Karl Gmeiner1 and Naoki Nishida2

1 Institute of Computer Science, UAS Technikum Wien
gmeiner@technikum-wien.at

2 Graduate School of Information Science, Nagoya University
nishida@is.nagoya-u.ac.jp

Abstract
Transforming conditional term rewrite systems (CTRSs) into unconditional systems (TRSs) is a
common approach to analyze properties of CTRSs via the simpler framework of unconditional
rewriting. In the past many different transformations have been introduced for this purpose.
One class of transformations, so-called unravelings, have been analyzed extensively in the past.

In this paper we provide an overview on another class of transformations that we call
structure-preserving transformations. In these transformations the structure of the conditional
rule, in particular their left-hand side is preserved in contrast to unravelings. We provide an
overview of transformations of this type and define a new transformation that improves previous
approaches.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases conditional term rewriting, unraveling, condition elimination

Digital Object Identifier 10.4230/OASIcs.WPTE.2014.3

Dedicated to the memory of Bernhard Gramlich

1 Introduction

Term rewriting is a widely accepted framework in computer science and has many applica-
tions. Conditional rewriting is an intuitive extension of term rewriting that appears naturally
in applications like functional programming.

Conditional term rewrite systems (CTRSs) resemble unconditional term rewrite systems
(TRSs), yet adding conditions to term rewriting has several drawbacks. From a theoretical
point of view, many criteria that hold for unconditional rewriting do not hold for CTRSs, and
many properties change their intuitive meaning. From a practical point of view conditional
rewriting is complex to implement.

Hence, many transformations have been defined that eliminate the conditions of CTRSs
and return unconditional TRSs (e.g. [2, 3, 8]). This way the well-understood framework
of unconditional rewriting can be adapted for conditional rewriting, hence giving a better
understanding on conditional rewriting and also from a practical point of view allowing us
to simulate conditional rewrite sequences.

∗ The research in this paper is partly supported by the Austrian Science Fund (FWF) international
project I963 and the Japan Society for the Promotion of Science (JSPS).
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4 Notes on Structure-Preserving Transformations of Conditional Term Rewrite Systems

We here provide an overview on a class of transformations that we refer to as structure-
preserving and explain similarities and differences to a well-analyzed class of transformations,
so-called unravelings. Definitions of structure-preserving derivations are usually complex
compared to the ones of unravelings and they are usually only defined for CTRSs without
extra variables. Therefore, we here also provide a definition of the transformation of [1] for
CTRSs with (deterministic) extra variables. Since the transformation of [1] returns good re-
sults only for constructor CTRSs we also formally define a transformation of non-constructor
CTRSs into constructor CTRSs. We will show that the combination of both transforma-
tion has better properties than other structure-preserving transformations. Proving further
properties of this transformation will be part of our future work.

2 Preliminaries, Notions and Notations

We assume basic knowledge of conditional term rewriting and follow the basic notions and
notations as they are defined in [13].

A conditional term rewrite system (CTRS) is a rewrite system that consists of conditional
rules l→ r ⇐ c. The condition c is usually a conjunction of equations s1 = t1, . . . , sk = tk.

There are different possible interpretations of equality in the conditions. CTRSs in which
equality is interpreted as joinability ↓ are join CTRSs. Here we mainly consider oriented
CTRSs, in which the conditions are interpreted as reducibility →∗.

In contrast to unconditional TRSs, CTRSs may contain extra variables. We will consider
CTRSs with extra variables that can be determined by rewrite steps (deterministic extra
variables). CTRSs with only deterministic extra variables are called deterministic CTRSs
(DCTRSs). Deterministic conditional rewrite rules l → r ⇐ s1 →∗ t1, . . . , sk →∗ tk satisfy
the condition Var(si) ⊆ Var(l, t1, ti−1) and Var(r) ⊆ Var(l, t1, . . . , tk).

A symbol f ∈ F in the signature of a CTRS (R,F) is a defined symbol (f ∈ D) if it is
the root symbol of the left-hand side of a rule in R. All non-defined symbols are constructor
symbols C. A term is a constructor term if it only contains function symbols of C and
variables. A CTRS is a constructor CTRS if the left-hand sides of all rules are of the shape
f(u1, . . . , un) where the arguments u1, . . . , un are constructor terms.

There are several classes of CTRSs depending on the distribution of extra variables.
A CTRS without extra variables is a 1-CTRS. If additionally the right-hand sides of the
conditions are irreducible ground terms it is a normal 1-CTRS.

In some cases we will use the notation −→X where X is a set of terms. −→X represents the
stream of variables in X in an unspecified but fixed order. Furthermore we will refer to rules
with f as the root symbol on the left-hand side as f -rules.

3 Transformations of CTRSs

3.1 Overview
In [9] a class of transformations is introduced, so-called unravelings, and several properties
are proved or disproved. There are some unravelings defined for some CTRSs (so-called
normal 1-CTRSs and join 1-CTRSs). In [10] and [13] an unraveling is presented for deter-
ministic CTRSs, a class of CTRSs that allows extra variables to a certain extend. This and
similar unravelings have been analyzed extensively in the past (e.g. [11, 5, 12, 6]).

In [16] another transformation is presented that does not match the class of unravelings.
This type of transformation is extended in [1, 14, 4].
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We refer to these transformations as structure-preserving transformations because in
contrast to unravelings these transformations do not encode the conditions in new function
symbols but instead they encode them in the left-hand side of conditional rules. Hence, the
original structure of terms is much better preserved. Such structure-preserving transforma-
tions have not been analyzed as much or consistently as unravelings.

In [15] a structure-preserving transformation is introduced for which “computational
equivalence” is proven. In [4] a framework is introduced that allows the description of
properties of unravelings and structure-preserving derivations consistently. Furthermore,
some theoretical and practical drawbacks of the transformation of [15] are pointed out and
another transformation is introduced that does not show these drawbacks, yet it is only
applicable for a smaller class of CTRSs.

3.2 Transformations for DCTRSs
In transformations for DCTRSs conditions are eliminated by splitting a conditional rule
into multiple unconditional rewrite rules in which the conditions are wrapped. The rule
that introduces the first conditional argument is the introduction rule. After a condition
has successfully been evaluated we switch to the next condition using a switch rule, or we
eliminate the conditional argument using an elimination rule.

T(l→ r ⇐ s1 →∗ t1, . . . , sk →∗ tk) =



l→ C1[s1] introduction rule
C1[t1]→ C2[s2] switch rules

...
... switch rules

Ck[tk]→ r elimination rule


3.3 Unravelings
The class of unravelings that was introduced in [9] contains transformations that keep the
original signature of the transformed system but add some new function symbols in which
the conditions are wrapped while being evaluated. For every conditional rule a new function
symbol is used.

I Example 1. Consider the following simple CTRS

R =
{
α : or(x, y)→ true ⇐ x→∗ true β : or(x, y)→ true ⇐ y →∗ true

}
Using the unraveling of [13] we obtain the following TRS

U(R) =
{

or(x, y)→ Uα1 (x, x, y) or(x, y)→ Uβ1 (y, x, y)

Uα1 (true, x, y)→ true Uβ1 (true, x, y)→ true

}

In order to simulate the conditional rewrite sequence or(true, false) →∗R true we first
apply the introduction rule of α and then the elimination rule:

or(true, false)→U(R) U
α
1 (true, true, false)→U(R) true

If we apply the introduction rule of β we obtain or(true, false)→U(R) U
β
1 (false, true, false)

where the latter term cannot be reduced any further.
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Observe that in the previous example the unraveled TRS is not confluent although the
original CTRS is confluent. If multiple conditional rules are applicable we must choose
one introduction rule that should be applied. The other conditional rule cannot be applied
then anymore. In [7] we introduced an unraveling that preserves confluence for some con-
fluent CTRSs (including the CTRS of the previous example), yet for overlapping CTRSs,
unravelings usually do not preserve confluence.

3.4 Structure-Preserving Transformations
Structure-preserving transformations stem from [16]. Further transformations of this class
were introduced in [1], [15] and [4].

In structure-preserving transformations no new defined symbols are added by the trans-
formation but instead additional conditional arguments are added to defined symbols but
increases their arity in order to wrap the conditions. Hence, we need to replace function
symbols in terms by the new function symbol. In order to translate terms from the original
CTRS into the transformed TRS we will use an initialization mapping φ. Such a mapping
is not needed in unravelings.

The additional argument in the defined function symbols contains the conditional argu-
ment. If the left-hand sides of multiple conditional rules are rooted by the same function
symbol, the root symbol contains one conditional argument for each condition. An unini-
tialized conditional argument is marked by the constant ⊥.

I Example 2. Consider the CTRS of Example 1:

R =
{
α : or(x, y)→ true ⇐ x→∗ true β : or(x, y)→ true ⇐ y →∗ true

}
The transformation of [1] (S in the following) increases the arity of or by two because

we need one conditional argument for each conditional rule. If a term matches the left-
hand side of a rule and the conditional argument is not initialized we can introduce the
conditional argument. The other conditional argument is preserved so that both conditions
can be evaluated in parallel.

S(R) =
{

or ′(x, y,⊥, z)→ or ′(x, y, x, z) or ′(x, y, z,⊥)→ or ′(x, y, z, y)
or ′(x, y, true, z)→ true or ′(x, y, z, true)→ true

}
In order to simulate the conditional rewrite sequence or(true, false)→∗R true we obtain

the correct normalform even if we apply the introduction rule of β first:

or ′(true, false,⊥,⊥)→T(R) or ′(true, false,⊥, false)
→T(R) or ′(true, false, true, false)→T(R) true

The advantage of structure-preserving transformations compared to unravelings is that
the conditions are encoded as decorators of the original terms. Hence, other rules remain
applicable even if we evaluate conditions.

Another benefit of this approach is that we can exploit parallelism in reductions. Failed
conditions do not block other derivations, in particular we can introduce other conditional
rules. While in the unravelings of [9] and [13] we need to make an assumption which
condition is satisfied already in the introduction step, we can postpone this decision in
structure-preserving transformations until we evaluated all possible conditions.

One drawback of this type of derivations is their more complex definition. While unrav-
elings have been defined for deterministic CTRSs, such a definition is only hinted in [15]
and [4] for structure-preserving transformations.
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4 Properties of Transformations

4.1 Soundness and Completeness
In order to prove properties of CTRSs by transforming them into unconditional TRSs we
need to show that the rewrite relation of the original CTRS is properly approximated by
the transformed TRS.

There are two main properties that we are interested in. Completeness means that a
rewrite sequence in the original CTRS corresponds to a rewrite sequence in the transformed
TRS. This property is usually satisfied and easy to prove.

The other direction, soundness, means that a rewrite sequence in the transformed system
corresponds to a rewrite sequence in the original system. This property is more difficult to
prove and usually not satisfied which has first been shown in [9]. In the past, unravelings
have been proven to be sound for many syntactic properties and strategies ([5][12][6]).

4.2 Unsoundness of Structure-Preserving Transformations
In order to preserve confluence in transformations structure-preserving transformations en-
code conditions in parallel if multiple rules share the same root symbol on their left-hand
side. Parallel evaluations of conditions of different rules allow us to postpone the decision
which conditional rule will ultimately be applied in the transformed TRS. Yet, this also al-
lows us to interleave multiple conditional rules by applying non-linear rules before applying
an elimination step. This in fact causes unsoundness, even for constructor normal 1-CTRSs
for which unravelings are known to be sound.

I Example 3. Consider the following overlay normal 1-CTRS

R =


a→ c
↗↘

a→ d

g(x, x)→ h(x, x)

f(x)→ C ⇐ x→∗ c
f(x)→ D ⇐ x→∗ d


f is the root symbol of the left-hand side of two conditional rules, hence we append to

conditional arguments to f -terms in the rewrite system and insert the conditional arguments:

S(R) =


a→ c
↗↘

a→ d

g(x, x)→ h(x, x)

f ′(x,⊥, z)→ f ′(x, x, z)
f ′(x, c, z)→ C

f ′(x, z,⊥)→ f ′(x, z, x)
f ′(x, z, d)→ D


In the original CTRS the term g(f(a), f(b)) rewrites to h(C,C) and h(D,D) but not to

h(C,D) because f(a) and f(b) do not have a common reduct that rewrites to both f(a) and
f(b).

The term g(f(a), f(b)) corresponds to the term g(f ′(a,⊥,⊥), f ′(b,⊥,⊥)) in T(R). Ob-
serve the following derivation in the transformed TRS:

g(f ′(a,⊥,⊥), f ′(b,⊥,⊥))→∗ g(f ′(a, a, a), f ′(b, b, b))→∗ g(f ′(c, c, d), f ′(c, c, d))
→∗ h(f ′(c, c, d), f ′(c, c, d))→ h(C, f ′(c, c, d))→ h(C,D)

Since this derivation is not possible in the original CTRS the transformation is unsound.
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In the previous example the term f ′(c, c, d) contains two conditional arguments and both
of them are satisfied. Therefore we can apply two elimination rules to this term. If we only
encoded one conditional argument this would not be possible. In fact, the unravelings of
[13] and also [11] are sound for this concrete example.

Therefore, soundness of unravelings do not imply soundness for structure-preserving
derivations.

5 Structure-Preserving Transformations for Non-Constructor CTRSs

The structure-preserving transformation of [1] S is unsound for many non-constructor CTRS:

I Example 4. Consider the following CTRS from [1]:

R =
{
f(g(x))→ x⇐ x→∗ s(0) g(s(x))→ g(x)

}
The CTRS is transformed into the following unconditional TRS:

S(R) =
{

f ′(g(x),⊥)→ f ′(g(x), x) g(s(x))→ g(x)
f ′(g(x), s(0))→ x

}

In R, f(g(s(0))) rewrites to s(0) because the condition is satisfied. It also rewrites to
f(g(0)) using the g-rule. The latter term is in normalform because the condition 0→∗ s(0)
is not satisfied.

In S(R), f(g(s(0))) corresponds to the term f ′(g(s(0)),⊥). We obtain the following
unsound derivation:

f ′(g(s(0)),⊥)→ f ′(g(s(0)), s(0))→ f ′(g(0), s(0))→ 0

In the previous example we obtain unsoundness because both the redex and the reduct
of the rewrite step f(g(s(0)))→ f(g(0)) match the left-hand side of the conditional rule, yet
the variable bindings cannot be reduced to each other. In unravelings this does not cause
soundness because the introduction step destroys the structure of the left-hand side of the
conditional rule and only keeps the variable bindings. In structure-preserving transforma-
tions the structure is preserved and hence it can be modified.

5.1 Transformation Ssr

In [15] a transformation is presented that extends the transformation S so that also overlap-
ping CTRSs can be transformed appropriately. The transformation adds a complex unary
operator that is propagated to outer positions and resets conditional arguments.

I Example 5 (Transformation of [15]). The transformation of [15] extends the transformation
of [1] by a unary function symbol { . } that creates a layer around contracted redexes. The
transformed TRS of the CTRS of Example 4 therefore contains the following rules:

R′1 =
{

f ′(g(x),⊥)→ f ′(g(x), {x}) g(s(x))→ {g(x)}
f ′(g(x), {s(0)})→ {x}

}

Now overlapping rewrite steps are blocked because of the new function symbol:

f ′(g(s(0)),⊥)→ f ′(g(s(0)), {s(0)})→ f ′({g(0)}, {s(0)})
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The new unary symbol is propagated to outer positions by adding one new rule for each
argument of each function symbol. Such propagation steps reset conditional arguments and
thereby avoid that outdated conditional arguments are used in elimination steps. Further-
more the new function symbol must be idempotent:

R′2 =
{
f ′({x}, z)→ {f ′(x,⊥)} g({x})→ {g(x)}

s({x})→ {s(x)} {{x}} → {x}

}

The transformed TRS then is Ssr(R) = R1 ∪R2.
The term f ′({g(0)}, {s(0)}) now can only be reduced by propagating the unary function

symbol to the root position which resets the conditional argument:

f ′({g(0)}, {s(0)})→ {f ′(g(0),⊥)} → {f ′(g(0), {0})}

The last term is irreducible.

5.2 Transformation Sgg

In [4] it is pointed out that the transformation of [15] has some disadvantages. Apart from
the complex definition of the new function symbol { . } it is also non-preserving for many
important syntactic properties like being non-overlapping, being a constructor system or
being an overlay system.

From a practical point of view the transformation resets conditional arguments too often.
The transformation of [4] tries to resolve these problems. Since the transformation of [4] is
very complex in its definition we here provide a simpler refinement.

The main idea of the transformation of [4] is to add information to subterms of redexes to
see whether an overlapping rewrite step was applied and the conditional argument should be
reset. For this purpose we increase the arity of all defined function symbols (instead of just
the root symbol) on the left-hand side of a conditional rule. While the root symbol encodes
the condition, defined symbols strictly below the root contain a check argument. If they are
uninitialized they contain ⊥. After the introduction step these additional check arguments
are marked with > to indicate that they were used in a conditional argument. In a rewrite
step, all these check arguments are reset to ⊥ to indicate that a conditional argument might
be outdated. An elimination step is only allowed if all check arguments contain >. For
the introduction step it is sufficient if the conditional argument or one check argument is
uninitialized. Therefore, one conditional rule might give rise to multiple introduction rules.

I Example 6. The left-hand side of the conditional rule of Example 4 contains the defined
symbol g that therefore is replaces by a new binary symbol g′ where the second argument
is a check argument. If the conditional argument or the check argument is uninitialized we
introduce the conditional argument.

Sgg(R) =
{
f ′(g′(x, z),⊥)→ f ′(g′((x,>)), 〈x〉) f ′(g′(x,>), 〈s(0)〉)→ x

f ′(g′(x,⊥), z)→ f ′(g(′(x,>)), 〈x〉) g′(s(x), z)→ g(x,⊥)

}

Now, f(g(s(0))) gives rise to the following derivation:

f ′(g′(s(0),⊥),⊥)→ f ′(g′(s(0),>), 〈s(0)〉)→ f ′(g′(0,⊥), 〈s(0)〉)→ f ′(g′(0,>), 〈0〉)

It is not possible to reproduce the unsound derivation of Example 4.
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In contrast to the transformation of [15] the transformation of [4] and also the refinement
that is sketched here preserves many properties like being a constructor system (for normal
1-CTRSs), yet does not return satisfying results in all cases. For non-left-linear confluent
CTRSs we might obtain non-confluence even if [15] returns a confluent CTRS. Furthermore,
in collapsing CTRSs we still might obtain unsoundness (see [4, Example 8]) even though
other transformations are sound.

6 New Transformation

The transformation of [1] is only applicable for constructor normal 1-CTRSs. The trans-
formation of [15] allows the transformation also of non-constructor normal 1-CTRSs, yet
it is syntactically complex. The transformation of [4] conservatively extends the transfor-
mation of [1], but its definition is complex and furthermore it is less powerful than the
transformation of [15].

In our new approach we therefore modularize the transformational approach and use a
transformation from non-constructor CTRSs into constructor CTRS before eliminating the
conditions. This way we only need to consider constructor CTRSs in our new transformation.

First we define the transformation from non-constructor CTRSs into constructor CTRSs.

I Definition 7 (transformation for non-constructor CTRSs). Let α : l → r ⇐ s1 →∗
t1, . . . , sk →∗ tk be a conditional rule, then cons is defined recursively as follows:

cons(α) =


cons(α′) where α′ = l[z]p → r ⇐ z →∗ l|p, s1 →∗ t1, . . . , sk →∗ tk,

z is a fresh new variable (z 6∈ Var(α)) and
l|p (p ∈ Pos(l) \ {ε}) is not a constructor term

α if l|p is a constructor terms for all p ∈ Pos(l) \ {ε}

The mapping cons is extended to CTRSs as follows: cons(R) =
⋃
α∈R cons(α).

I Example 8. Consider the CTRS of Example 4. The conditional rule α : f(g(x)) → x ⇐
x→∗ s(0) is not a constructor rule because g is a defined symbol.

Using cons, the g-subterm is replaced by the fresh new variable z and a condition z →∗
g(x) is added:

cons(α) = f(z)→ x⇐ z →∗ g(x), x→∗ s(0)

Observe that the rule α does not contain extra variables while cons(α) contains the
deterministic extra variable z.

If the left-hand side of a conditional rule contains multiple non-constructor terms as
subterms cons does not imply any order of subterms. Our theoretical results do not depend
on a specific order of positions, yet from a practical point of view choosing outer positions
over inner positions first leads to less conditions.

I Lemma 9. Let R be a deterministic CTRS. Then cons(R) is a constructor DCTRS.

Proof. Straightforward from the definition. J

I Lemma 10 (Completeness). Let R be a DCTRS and s, t ∈ T be two terms. Then s→R t

implies s→cons(R) t.
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Proof. In this case, the variable binding of the left-hand sides of the new conditions imme-
diately matches the right-hand sides. J

I Lemma 11 (Soundness). Let R be a DCTRS and s, t ∈ T be two terms. Then if s→cons(R)
t then also s→+

R t.

Proof. We can extract the rewrite sequences in the new conditions and insert them in the
replaced subterms. This is possible because all new variables are only used once. J

Next, we define the transformation for DCTRSs that conservatively extends the trans-
formation of [1].

In order to transform a CTRS we group conditional rules by the root symbol of their left-
hand side. We then transform these groups. In order to encode CTRSs with extra variables
we sequentially encode all conditions. If a conditional argument matches the right-hand
side of a condition, then we can apply a switch rule to evaluate the next condition. In this
switch rule we do not keep the evaluated conditional argument to avoid derivations similar
to the unsound derivation in Example 4 but instead encode variables that are needed on
the right-hand side of the conditional rule or in one of the following conditions. This set of
variables resembles the variables that are encoded in the optimized unraveling of [11], but
in our case we only need to encode extra variables because we preserve the left-hand side of
the conditional rule.

In order to further distinguish which condition is currently evaluated we also label the
tuples that contain the conditional argument and the bindings of extra variables.

I Definition 12 (structure-preserving transformation for sets of conditional rules). Let Rf be
a set of conditional rules such that the left-hand sides of all rules are rooted by the same
function symbol f with arity n.

Then, the mappings φRfX : T 7→ T ′ and φRf⊥ : T 7→ T ′ are defined as follows:

φ
Rf
⊥ (u) =


f ′(φRf⊥ (u1), . . . , φRf⊥ (un),

|Rf | times︷ ︸︸ ︷
⊥, . . . ,⊥) if u = f(u1, . . . , un)

g(φRf⊥ (u1), . . . , φRf⊥ (um)) if u = g(u1, . . . , um)
u if u is a variable

φ
Rf
X (u) =


f ′(φRfX1

(u1), . . . , φRfXn(un), z1, . . . , z|Rf |) if u = f(u1, . . . , un)
g(φRfY1

(u1), . . . , φRfYm(um)) if u = g(u1, . . . , um)
u if u is a variable

where
{
z1, . . . , z|Rf |

}
⊂ X, X1, . . . , Xn are pairwise distinct subsets of X \

{
z1, . . . , z|Rf |

}
and Y1, . . . , Ym are pairwise distinct subsets of X.

Let iα ∈ {1, . . . , |Rf |} be a unique index of the rule α in Rf . Then the transformed rules
Snew(α) of the rule α ∈ Rf are defined as follows:

Snew(α) =



l′[⊥]n+iα → l′[
〈
φ
Rf
⊥ (s1),−→Z1

〉
1
]n+iα

l′[
〈
φ
Rf
X1

(t1),−→Z1

〉
1
]n+iα → l′[

〈
φ
Rf
⊥ (s2),−→Z2

〉
2
]n+iα

...
...

l′[
〈
φ
Rf
Xk

(tk),−→Zk
〉
k
]n+iα → φ

Rf
⊥ (r)
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where l′ = φX(l), Zi =
⋃
Var(t1, . . . , ti−1) ∩ Var(ti, si+1, . . . , sk, tk, r) \ Var(l) is the set of

extra variables that are still required for the rule application, and X ∩ Var(α) = ∅ is an
infinite set of fresh variables.

The previous definition shows how to transform conditional rules and how to obtain
mappings to map the signature of terms to the transformed system. Since we will obtain
groups of unconditional rules with a different signature this way we need to provide a
mapping to adjust the signature of other rules.

I Definition 13 (adjusting signature). Let Rf be a set of f -rooted conditional rules. Let
β : l → r ⇐ s1 →∗ t1, . . . , sk →∗ tk be a rule that is not f -rooted such that all subterms of
l are constructor terms.

Then, φRf (β) is defined as follows

φRf (β) = φ
Rf
X0

(l)→ φ
Rf
⊥ (r)⇐ φ

Rf
⊥ (s1)→∗ φRfX1

(t1), . . . φRf⊥ (s1)→∗ φRfXk(tk)

where X0, . . . , Xk are infinite pairwise distinct sets of new variables (Var(β)∩
⋃k
i=0 Xi = ∅).

The final transformation itself groups rules by their root symbols and applies the trans-
formation of Definition 12 to them. Then, the signature is adjusted for all rules according
to the mappings φRf .

I Definition 14 (structure-preserving transformation for DCTRSs). Let R = (R,F) be a con-
structor DCTRS such that f1, . . . , fn are all defined symbols and Rfi contains all conditional
fi-rooted rules (i ∈ {1, . . . , n}). Let furthermore Ruc be all unconditional rules in R. Then
the transformation Snew is defined as follows:

Snew(R) = φRf1
(· · ·φRfn (Ruc) · · · ) ∪

n⋃
i=1

φRf1
(· · ·φRfi−1

(φRfi+1
(· · ·φRfn (Snew(Rfi) · · · )

I Example 15. Consider the following CTRS of Example 4:

R =
{
f(g(x))→ x⇐ x→∗ 0 g(s(x))→ g(x)

}
In order to apply the transformation Tnew we first must apply cons to transform R into

a constructor CTRS.

cons(R) =
{
f(z)→ x⇐ z →∗ g(x), x→∗ s(0) g(s(x))→ g(x)

}
Next, we transform the conditional f -rule and the unconditional g-rule:

Snew(Rf ) =
{
f ′(z,⊥)→ f ′(z, 〈z〉1) f ′(z, 〈g(x)〉1)→ f ′(z, 〈x, x〉2) f ′(z, 〈0, x〉2)→ x

}
φRf (Ruc) =

{
g(s(x))→ g(x)

}
Finally, we obtain Snew(R) by adjusting the signature in the transformed rules. Since

the symbol g is preserved this is equivalent to the union of both subsystems.

Snew(R) =
{
f ′(z,⊥)→ f ′(z, 〈z〉1) f ′(z, 〈g(x)〉1)→ f ′(z, 〈x〉2) f ′(z, 〈0〉2)→ x

g(s(x))→ g(x)

}
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This transformation does not require a resetting-mechanism like the transformation of
[15]. Furthermore it preserves the property of being a constructor system if the rhs’s of the
conditions are constructor terms, and being non-overlapping if the rhs’s of the conditions
are non-overlapping with the lhs’s of the rules. Compared to the transformation of [4] Snew
does not cause non-confluence in connection with non-left-linear rules or unsoundness in
connection with collapsing rules. Finally, our definition of Snew is the only formal definition
known to us of a structure-preserving transformation for deterministic CTRSs.

Our next goals will be to prove soundness properties, in particular to compare our
novel approach with recent properties of unravelings. Although it is known that structure-
preserving transformations are unsound for certain non-erasing CTRSs while some unravel-
ings are sound we hope to present some results in the near future that show a connection in
soundness results.

7 Conclusion

We have presented an overview of transformations that preserve the term structure of left-
hand sides of conditional rule. This class of transformations stems from [16]. We refer to
these transformations as structure preserving transformations.

The transformation of [1] (S) has nice properties for constructor normal 1-CTRSs. Yet
for non-constructor CTRSs we obtain undesirable properties. Therefore, some other trans-
formations were defined in the past that are based on this transformation but also return
appropriate transformed TRSs for non-constructor CTRSs.

The extension of [15] (Ssr) adds a complex resetting mechanism to S that has complex
syntactic properties. The drawbacks of this transformation are discussed in [4] where also
another transformation based on [1] is defined (Sgg) that has better syntactic properties
than Ssr. Since the original definition is very complex we here sketched a simpler refined
version.

The transformation Sgg also has undesirable properties for some collapsing CTRSs. Fur-
thermore none of these transformations is formally defined for deterministic CTRSs. There-
fore we here define a transformation for constructor DCTRSs that is similar to the one of
[1] but it uses a sequential encoding of conditions similar to unravelings for DCTRSs.

In order to also transform non-constructor CTRSs using this CTRS we also define a
transformation of non-constructor CTRSs into constructor DCTRSs. Combining these two
transformations we obtain a new approach that shows promising first results compared to
other structure preserving derivations.

In our future work we hope to provide more formal results and prove the usefulness of
our approach in automated confluence tests of CTRSs.

Acknowledgements. We are deeply grateful to the anonymous referees for their useful
comments.
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Abstract
While program correctness for compiled languages depends fundamentally on compiler correct-
ness, compiler optimizations are not usually formally verified due to the effort involved, partic-
ularly in the presence of concurrency. In this paper, we present a framework for stating and
reasoning about compiler optimizations and transformations on programs in the presence of re-
laxed memory models. The core of the framework is the PTRANS specification language, in
which program transformations are expressed as rewrites on control flow graphs with temporal
logic side conditions. We demonstrate our technique by verifying the correctness of a redund-
ant store elimination optimization in a simple LLVM-like intermediate language, relying on a
theorem that allows us to lift single-thread simulation relations to simulations on multithreaded
programs.
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1 Introduction

Program verification relies fundamentally on compiler correctness. Static analyses for safety
or correctness in compiled languages depend implicitly on the fidelity of the compiler to
some abstract semantics for the language, but real-world compilers rarely reflect these
theoretical semantics [17]. The optimization phase of compilation is particularly error-prone:
optimizations are often stated as complex algorithms on program code, with only informal
justifications of correctness based on an intuitive understanding of program semantics.
Formal methods researchers have devoted considerable effort to verifying these optimizations,
either on a program-by-program basis (the translation validation approach [13]), or by
general proof of correctness for all possible inputs (the approach taken, for instance, in
the CompCert verified C compiler [7]). The problem is only aggravated in the presence
of concurrency. Insufficiently analyzed optimizations may result in unreliable execution of
concurrent code; compiler writers may even end up having to limit the scope and complexity
of the optimizations they develop, in the absence of a method to demonstrate the safety of
their optimizations.

In this paper, we present a new methodology for stating and verifying the correctness of
compiler optimizations and transformations in the presence of concurrency, centered around a
domain-specific language for specifying optimizations as transformations on program graphs
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with temporal logic side conditions. This language, PTRANS, has been formalized in the
Isabelle proof assistant [12], so that optimizations expressed in PTRANS can be proved
correct with the assistance of state-of-the-art theorem-proving tools, as well as an executable
semantics allowing specifications to serve as optimization prototypes. As a proof of concept,
we use PTRANS to express and verify an optimization under several different concurrent
memory models. Ultimately, we hope that the approach outlined in this paper will assist both
formal verifiers and compiler writers in creating complex, concurrency-safe optimizations.

2 The PTRANS Specification Language

2.1 PTRANS: Adapting TRANS to Parallel Programs
The basic approach of the PTRANS specification language is that set out by Kalvala et al.
in TRANS [4]: optimizations are specified as rewrites on program code in the form of control
flow graphs (CFGs), with side conditions given in temporal logic. The syntax of PTRANS is
given by the following grammar:

A ::= add_edge(n, m, `) | remove_edge(n, m, `) | split_edge(n, m, `, p)
| replace n with p1, ..., pm

ϕ ::= true | p | ϕ ∧ ϕ | ¬ϕ | A ϕ U ϕ | E ϕ U ϕ | A ϕ B ϕ | E ϕ B ϕ | ∃x. ϕ

T ::= A1, ..., Am if ϕ | MATCH ϕ IN T | T THEN T | T � T | APPLY_ALL T

The atomic actions A include add_edge and remove_edge, which add and remove (`-labeled)
edges between the specified nodes; split_edge, which splits an edge between two nodes,
inserting a new node between them; and replace, which replaces the instruction at a given
node with a sequence of instructions, adding new nodes to contain the instructions if necessary.
Kalvala et al. have shown that a wide range of common program transformations can be
expressed using these basic rewrites. The arguments to the atomic actions represent nodes
and instructions in the program graph, but may contain metavariables that are instantiated
to program objects when the rewrites are applied.

At the top level, a transformation T is built out of conditional rewrites combined with
strategies. The term A1, ..., Am if ϕ is the basic pairing of one or more rewrites with a
first-order CTL side condition, which may include the forward until-operator U , its backward
counterpart B, and quantifiers over the metavariables appearing in its atomic predicates
p. The expression MATCH ϕ IN T provides an additional side condition for a set of
transformations, and also allows metavariables to be bound across multiple rewrites. The
THEN and � operators provide sequencing and (nondeterministic) choice respectively, and
APPLY_ALL T recursively applies T wherever possible until it is no longer applicable to
the graph under consideration.

2.2 Concurrent Control Flow Graphs
The TRANS-style approach depends fundamentally on a notion of control flow graph (CFG).
The atomic rewrites are rewrites on CFGs, and the CTL side conditions are evaluated on
paths through CFGs. Thus, we require a concurrent analogue to the CFG in order to extend
the approach to the concurrent setting. The particular model used here, adapted from the
work of Krinke [5], is the threaded control flow graph (tCFG). In our framework, a tCFG is
simply a collection of non-intersecting CFGs, one for each thread in a program. Formally:

I Definition 1. A CFG is a labeled directed graph (N, E, Start, Exit, L) where N is a set of
nodes, E ⊆ N × T ×N is a set of T -labeled edges (where T is given by the target language,
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but must contain the label seq), Start, Exit ∈ N are the distinguished Start and Exit nodes
of the graph, and L : N → I assigns a program instruction to each node, such that: Start
has no incoming edges, Exit has no outgoing edges, and the outgoing edges of each node
except Exit correspond properly to the instruction label at that node, where the required
correspondence is determined by the target language. A tCFG is a collection of disjoint
CFGs, one for each thread in the program being represented. If G is a tCFG and t is a
thread, we write Gt for the CFG of t in G.

Paths through a tCFG can then be defined as sequences of vectors of program points, one
per thread, and we can use CTL to state properties over tCFGs such as “no load occurs before
the following store”. The set of atomic predicates used in side conditions may depend on the
target language under consideration; here we present some of the fairly general predicates
used for our case study. These predicates break down into two types: those that depend on
the state (i.e., map from threads to program points) in which they are evaluated, and those
that do not (i.e., those that check some global property of the tCFG under consideration).
State-based predicates include:

nodet(n), which is true of a state q when qt = n.
stmtt(i), which is true of a state q when the instruction at q is i in Gt.
outt(ty, n′), which is true of a state q when qt has an outgoing edge to n′ with label ty in
Gt.

State-independent predicates include:

conlit(e), which is true when e represents a program constant.
varlit(e), which is true when e represents a program variable (in our case study, we further
distinguish between local (lvarlit) and global (gvarlit)).

Note that all of these predicates are purely syntactic static properties of tCFGs. This is
not a coincidence: PTRANS optimizations can be stated and executed independently of the
semantics of the target language, so that PTRANS may serve as a design tool even in the
absence of formal semantics for the target language. Although we may quantify over paths
in our side condition, these are paths through the syntax of a program as expressed in a
tCFG, rather than dynamic executions of the program. Of course, when reasoning about the
correctness of a transformation, we will need to relate these static properties to dynamic
properties of program executions.

We also provide several extended predicates that allow the integration of outside analyses
into CTL conditions. These predicates include:

cannot_aliast(e, e′), which is true of a state q when alias analysis can show that e and e′

are not pointers to the same location in t at q.
in_criticalt(e, x), which is true of a state q when mutex analysis can show that qt is part
of a critical section for e protecting the value of x.
protectedt(e, x), which is true when mutex analysis can show that the value of x is only
changed in critical sections for e.

We incorporate these analyses by providing an axiomatization of the properties of a correct
analysis (e.g., that if cannot_aliast(e, e′) holds then e and e′ do not point to the same
location in any execution), and use these axioms to construct proofs of correctness for an
optimization independently of the particular implementation of the analysis used to execute
the optimization. The semantics of PTRANS actions and strategies can then be taken
directly from our previous formalization of the TRANS system [11] to PTRANS. We have
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18 Verifying Optimizations for Concurrent Programs

also developed an execution engine for PTRANS in F#, using the Z3 SMT solver to find
solutions to the side conditions, so that we can test optimizations on actual CFGs before
engaging in the heavy-duty work of verification.

3 Concurrent Memory Models

In order to verify optimizations on a target language, we must first provide semantics for
that language – but before that, we must define our notion of concurrency. Our approach
is to give operational semantics to target languages over CFGs, and to parameterize those
definitions by a concurrent memory model. A concurrent memory model provides an answer
to the question, “what are the values that a memory read operation can read?” Almost every
processor architecture has its own answer to this question, and many have more than one.
Adding to the confusion, many of these models, including the one specified for LLVM [9],
are not operational; they are phrased as conditions on total executions, rather than as
properties that can be checked in individual steps of an operational semantics. As part of the
development of PTRANS, we have developed a general approach to specifying operational
concurrent memory models. Our memory models must support four functions:

can_read, the workhorse of the memory model, which returns the set of values that a
thread can see at a given memory location
free_set, which returns the set of locations that are free in the memory
start_mem, which gives a default initial memory
update_mem, which updates a memory with a set of memory operations performed by
various threads

We define three instances of this axiomatization for use in our example: sequential
consistency (SC), total store ordering (TSO), and partial store ordering (PSO). Sequential
consistency, the most intuitive memory model, requires that every execution observed
could have been produced by some total order on the memory operations in the execution.
Operationally, this can be modeled by requiring each read of a location to see the most recent
write to that location. We implement SC with a map from memory locations to values and a
straightforward implementation of the four required functions. The function can_read looks
up its target in the memory map; free_set returns the set of locations with no values in the
map; start_mem is the empty map; and update_mem applies the given memory operations
to the map, storing a new value on a write or arw, initializing the location with a starting
value on an alloc, and clearing the location on a free.

The TSO and PSO models are slightly more complex: they allow writes to be delayed
past other instructions (reads of other locations in TSO; reads and writes to other locations
in PSO), resulting in executions such as the one shown (in pseudocode) in Figure 1. Under
SC, if one of the read instructions returned 0 in an execution, then we would be forced to
conclude that the write instruction in the same thread executed before it, and so the other
read could only read a value of 1. Under TSO, however, the writes may be delayed past the

Start: `1 7→ 0 and `2 7→ 0
write `1 1 write `2 1
x := read `2 y := read `1

Result: x = 0 ∧ y = 0

Figure 1 Behavior forbidden by SC but allowed in TSO.
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reads, allowing both reads to return 0. As shown by Sindhu et al. [14], this behavior can be
modeled by associating a FIFO write buffer with each thread (or, for PSO, a write buffer
per memory location for each thread). When a write operation is performed, it is inserted
into the executing thread’s write buffer; at any point, the oldest write in any thread’s write
buffer may be written to the shared memory. A read operation first looks for the most recent
write to the location in the thread’s write buffer, and if none exists reads from the location
in the shared memory. In this model, atomic arw operations serve as memory fences: they
are not executed until the write buffer of the executing thread is cleared.

Some optimizations, particularly those that do not involve memory in any way, may be
proved correct independently of the memory model. However, one of the purposes of relaxed
memory models is to allow a wider range of optimizations, so we expect that most interesting
optimizations will depend on the memory model being used. In general, some memory models
are strictly more permissive than others – for instance, every execution produced under
SC can also be produced under TSO – but depending on our notion of correctness, it may
not follow that every valid SC optimization is also a valid TSO optimization, since an SC
optimization may rely on the correctness of, e.g., a locking mechanism that only functions
properly under SC.

4 MiniLLVM: A Sample Intermediate Language

In this section we present MiniLLVM, a language based on the LLVM intermediate lan-
guage [9], for use as a target for transformation. The syntax of MiniLLVM is defined as
follows:

expr ::= %x | @x | c type ::= int | type∗

instr ::= %x = op type expr , expr |%x = icmp cmp type expr , expr | br expr | br |
%x = call type (expr , ..., expr) | return expr | alloca %x type |
%x = load type∗ expr | store type expr , type∗ expr |
%x = cmpxchg type∗ expr , type expr , type expr | is_pointer expr

(Note that the *’s indicate not repetition but pointer types.) Because the targets of control-
flow instructions are implicit in the CFG, label arguments to br instructions and function
names in call instructions are omitted. We give semantics to the language by specifying a
labeled transition relation on program configurations. The single-thread semantics is given
by the transition relation G, t, m ` (p, env, st, al) a→ (p′, env′, st′, al ′) where G is the CFG
representing the thread, t is the thread name, m is the shared memory, p is a program point,
env is an environment giving values for thread-local variables, st is the call stack for the
thread, al is a record of the memory locations allocated by the thread, and a is the set of
memory operations performed by the thread. Memory operations are chosen from:

a ::= read t loc v | write t loc v | arw t loc v v | alloc t loc | free t loc

where arw represents an atomic read-and-write operation (as performed by the cmpxchg
instruction). Several of the semantic rules for MiniLLVM instructions are shown in Figure 2.
In the figure, Label G p indicates the instruction label assigned to node p in the CFG G, and
next ` p indicates the node reached along an outgoing `-labeled edge from p.

A concurrent configuration is a vector of configurations, one for each thread, paired with
a shared memory. The concurrent semantics of MiniLLVM is given by a single rule:

Gt, t, m ` statest
a→ (p′, env′, st′, al ′) update_mem m a m′

(states, m)→ (states(t 7→ (p′, env′, st′, al ′)), m′)

WPTE’14
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Label G p = (%x = op ty e1, e2) (e1 op e2, env) ⇓ v

G, t, m ` (p, env, st, al)→ (next seq p, env(x 7→ v), st, al)

Label G p = (br e) (e, env) ⇓ v v 6= 0
G, t, m ` (p, env, st, al)→ (next true p, env, st, al)

Label G p = (alloca %x ty) loc ∈ free_set m

G, t, m ` (p, env, st, al) alloc t loc−−−−−−→ (next seq p, env(x 7→ loc), st, al ∪ {loc})

Label G p = (store ty1 e1, ty2
∗ e2) (e1, env) ⇓ v (e2, env) ⇓ loc

G, t, m ` (p, env, st, al) write t loc v−−−−−−−−→ (next seq p, env, st, al)

Figure 2 Some single-thread transition rules for MiniLLVM.

In other words, we produce a concurrent step simply by selecting one thread to take a step,
and then updating the memory with the memory operations performed by that thread.

5 Verification

5.1 Defining Correctness
Before we can begin verifying an optimization, we must clearly state what it means for an
optimization to be correct. The semantics of a compiler transformation can be expressed
denotationally in terms of the program graphs that may be produced as a result of the
transformation on a given input graph. We can call a transformation T correct if, for any
graph G, any graph G′ output by applying T to G has some desired property relative to G.
We will use observational refinement [3] as our sense of correctness; in other words, we will
require that any observable behavior of G′ is also an observable behavior of G, implying that
T does not introduce any new behaviors. We will prove this refinement via simulation [2]:

I Definition 2. A simulation is a relation � on two labeled transition systems P and Q

such that for any states p, p′ of P and q of Q, for any label k, if p � q and p
k→P p′, then

∃q′. q
k→Q q′ and p′ � q′. By abuse of notation we write P � Q and say that Q simulates P .

The concurrent step relation of MiniLLVM as presented is unlabeled, but we can add labels
to indicate the portion of the program’s behavior that should be considered observable, which
will generally be some portion of the shared memory. For each optimization to be verified,
we will choose the maximum possible subset of shared memory as our observables, and state
a simulation relation that relates any transformed graph to its original input. (Note that
for more complex optimizations, more flexible relations such as weak (stuttering) simulation
may be required, but the overall structure of the proof will remain unchanged.)

While PTRANS is expressive enough to allow optimizations that transform multiple
threads simultaneously, many optimizations (especially concurrent retoolings of sequential
optimizations) only transform a single thread. The following theorem allows us to extend a
correct simulation relation on states in a single-thread CFG to one on entire tCFG states:

I Definition 3. Let the execution state of a multithreaded program with tCFG G be a pair
(states, m), where states is a vector of per-thread execution states and m is a shared memory.
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The lifting of a simulation relation � on single-threaded CFGs to concurrent execution states
relative to a thread t is defined by (states, m) d�et (states′, m′) , (statest, m) � (states′t, m′)
∧ ∀u 6= t. statesu = states′u.

I Theorem 4. Fix a memory model supporting the functions free_set, can_read, and
update_mem. Let G be a tCFG, t be a thread in G, and obs be the set of observable
memory locations. Suppose that � is a simulation relation such that G′t � Gt, G′u = Gu for
all u 6= t, and for all (s′, m′) � (s, m) the following hold:
1. free_set m = free_set m′

2. For any u 6= t, if u,Gu, m′ ` s1
a−→ s2, then can_read m u ` = can_read m′ u ` for every

location ` mentioned in an operation in a

3. For any u 6= t, if u,Gu, m ` s1
a−→ s2 and update_mem m′ a m′2 holds, then there exists

some m2 such that update_mem m a m2 holds, m2|obs = m′2|obs, and (s′, m′2) � (s, m2)
Then d�et is a simulation relation such that G′ d�et G.

While the exact conditions of the theorem are complicated, the intuition is straightforward:
if � is a simulation relation for Gt and G′t such that (s′, m′) � (s, m) implies that m and
m′ look the same to all threads u 6= t, and � is preserved by steps of threads other than
t, then d�et is a simulation relation for G and G′. This theorem allows us to break proofs
of correctness for transformations on multithreaded programs into two parts: correctness
of the simulation on the transformed thread, and validity of the relation with respect to
the remaining threads. Note that in the case in which the simulation relation requires that
m = m′, i.e., in which the optimization does not change the effects of Gt on shared memory,
most of these conditions are trivial. In optimizations that affect the shared memory, on the
other hand, the proof of the theorem’s premises will involve some effort.

5.2 Specifying an Optimization
In the following sections, we will show the use of PTRANS in verifying an optimization. The
candidate optimization is Redundant Store Elimination (RSE), which eliminates stores that
are always overwritten before they are used, as in Figure 3. Note that s is replaced by an
is_pointer instruction, rather than being eliminated entirely, to preserve failures: if e2 is
not pointer-valued at s the program will fail immediately, while eliminating s would allow
the program to run until reaching s′, potentially introducing new behavior.

In sequential code, the optimization is safe if, between the eliminated store s and the
following store s′, the location referred to by e2 is not read and the value of e2 is not changed.
In the concurrent case, the correctness condition is more complex, since changes to a memory
location can be observed by other threads. We will give a correct version of RSE for each of
our three memory models. We begin with the rewrite portion of the transformation, which is
the same in all cases, and the common portion of the side condition: the basic pattern that

Figure 3 Redundant Store Elimination.
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describes the node to be transformed, and a placeholder for the remaining conditions (note
that the condition is checked starting at the entry node of the tCFG):

replace n with is_pointer e2 if
EF nodet(n) ∧ stmtt(store ty1 e1, ty∗2 e2) ∧ ϕ

Now, for each memory model, we need only provide a condition ϕ that ensures that the
optimization is safe to perform. In general, this will be an “until”-property stating necessary
conditions on the nodes between n and the next store to e2.

Sequential consistency, the most restrictive of our three memory models, naturally has
the most restrictive side condition. There are two approaches to securing the optimization:
we could require that no memory operations occur between n and the following store, or we
could require that e2 be private to t. In this example we will take the second approach, using
an external mutual exclusion analysis to ensure that e2 is not exposed to other threads while t

is in the region between n and the following store to e2. Using the mutex predicates described
in Section 2.2 and a defined not_touchest predicate that checks that a given memory location
cannot be read or modified by t, the condition can be written as:

ϕSC , protected(x, e2) ∧ gvarlit(e2) ∧ ¬is(x, e2) ∧
A in_criticalt(x, e2) ∧ (nodet(n) ∨ not_touchest(e2))
U (in_criticalt(x, e2) ∧ ¬nodet(n) ∧ ∃ty′1, e′1, ty′2. stmtt(store ty′1e′1, ty′2 e2))

Next we will consider the appropriate side condition for the TSO memory model. Since
TSO allows writes to be delayed past certain other operations, in a program with a redundant
store, it is possible that the redundant store may be delayed until immediately before the
following store to e2. If this behavior is possible in the original program, then removing the
store will not introduce new behavior. Thus, our side condition need only characterize the
circumstances under which the store at n could have been delayed in the original program.
In TSO, a write can be delayed past reads to different locations, but not past writes or
atomic read-writes. Thus, the necessary side condition is as follows, where not_loads checks
that no load instructions read from a location and not_mods ensured that the value of an
expression is not changed:

ϕTSO , AXt(A not_modst(e2) ∧ not_loadst(e2) ∧
¬(∃x, ty1, e1, ty2, e′2, ty3, e3. stmtt(store ty1 e1, ty∗2 e′2) ∨
stmtt(%x = cmpxchg ty∗1 e1, ty2 e′2, ty3 e3))
U (¬nodet(n) ∧ ∃ty′1, e′1, ty′2. stmtt(store ty′1 e′1, ty′2 e2)))

where AXt is a derived temporal operator defined such that AXtϕ iff ϕ is true in every state
in which the thread t has advanced by one node (regardless of the behavior of other threads).
The fragment of the condition inside the AXt operator provides a useful characterization of the
nodes between n and the following store to e2; we will call it ϕ′TSO, where ϕTSO = AXt ϕ′TSO.
Note that ϕSC is also a reasonable side condition under TSO, and we could form a more
general optimization by using ϕSC ∨ ϕTSO as our side condition.

The relaxation of the PSO memory model is a more permissive version of that of TSO,
so we can obtain a side condition for it by relaxing the constraints of ϕTSO. A write in PSO
can be delayed past reads and writes to different locations, but not past operations on the
same location or atomic read-writes, so the corresponding side condition is:

ϕPSO , AXt(A not_modst(e2) ∧ not_touchest(e2) ∧
¬(∃x, ty1, e1, ty2, e′2, ty3, e3. stmtt(%x = cmpxchg ty∗1 e1, ty2 e′2, ty3 e3))
U (¬nodet(n) ∧ ∃ty′1, e′1, ty′2. stmtt(store ty′1e′1, ty′2 e2)))
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This condition is strictly weaker than ϕTSO, allowing the optimization to be applied to a
wider range of programs. As above, we also define ϕ′PSO such that ϕPSO = AXt ϕ′PSO for
use in our proofs of correctness.

5.3 Verification of RSE
We are now ready to demonstrate the correctness of MiniLLVM RSE in PTRANS. As laid out
in Section 5.1, we prove correctness by showing that for any transformed tCFG G′ produced
by applying the optimization to a graph G, there exists a simulation relation � such that
G′t � Gt, states related by � make the same values visible to threads other than t, and steps
by threads other than t preserve �. For each version of RSE, we will present such a relation
and sketch the proof of its correctness.

I Theorem 5. Let G′ be a tCFG in the output of RSE(ϕSC ) on a tCFG G, and ` be the
location targeted by the redundant store removed in G′. Let �SC be the relation such that
(s′, m′) �SC (s, m) iff

s = s′

either ` ∈ free_set m and ` ∈ free_set m′, or ` /∈ free_set m and ` /∈ free_set m′

either m = m′, or else ϕSC holds at the program point of s in G and m|` = m′|`.

Then d�SCet is a simulation relation such that G′ d�SCet G with all locations other than `

observable.

Proof. Consider two related states (s, m) of Gt and (s′, m′) of G′t. In case (1), the only
interesting case is the one in which s is at the transformed node n; in this case, G′t executes
the is_pointer instruction and Gt executes the store instruction. Since the side condition
of the RSE transformation is true on G, we know that ϕSC holds at n, and so �SC holds on
the resulting states. If, on the other hand, we are in case (2), then we know that ϕSC holds,
so s must be in the region between n and the next store to e2. If we have not yet reached the
next store to e2, then since �SC holds we know that it does not read or modify the memory
at `, and we can conclude that Gt and G′t execute the same instruction and arrive in new
configurations (s2, m2) and (s′2, m′2) such that m2 and m′2 differ only at ` and ϕSC still holds.
The guarantees of mutual exclusion ensure the separation of threads required by Theorem 4,
and we can conclude that d�SCet is a simulation relation showing the correctness of the SC
version of RSE. J

Recall that, while in SC the memory is simply a map m from locations to values, in
TSO and PSO it is a pair (m, b) of a shared memory and per-thread write buffers. Since the
correctness of our conditions under these models depends on our ability to delay stores until
they become redundant, we must have a notion of one buffer being a “redundant expansion”
of another.

I Definition 6. A write buffer is a queue of writes expressed as location-value pairs. A write
buffer b′ is a redundant expansion of b if b′ can be constructed from b by adding, in front of
each pair (`, v) in b, zero or more writes of other values to `. We will say that a collection
of write buffers c′ is a redundant expansion of a collection c when each write buffer c′t is a
redundant expansion of the corresponding write buffer ct.

Because the added writes appear immediately in front of other writes to the same location,
they can be immediately overwritten when the buffers are cleared, and are never read when
looking for the latest write to a location. This allows a redundant expansion of b to simulate
the behavior of b with regard to the memory-model functions.
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I Theorem 7. Let G′ be a tCFG in the output of RSE(ϕTSO) on a tCFG G. Let �TSO be
the relation such that (s′, (m′, b′)) �TSO (s, (m, b)) iff

s = s′, m = m′, and bu = b′u for all u 6= t, and
either (1) bt is a redundant expansion of b′t, or else (2) ϕ′TSO holds at the program point
of s in G, the store eliminated in G′ was to some expression e2, and there is a location `

such that e2 evaluates to ` in s, the last write in bt is a write to `, and the rest of bt is a
redundant expansion of b′t.

Then d�TSOet is a simulation relation such that G′ d�TSOet G with all locations observable.

Proof. By Theorem 4. Consider two related states (s, (m, b)) of Gt and (s′, (m′, b′)) of G′t. If
bt is a redundant expansion of b′t (case 1), then the only interesting case is the one in which
s is at the transformed node n; in this case, G′t executes the is_pointer instruction, and Gt

executes the store instruction, evaluating e2 to some location ` and adding a write to ` to
its buffer – thus the resulting buffer has the structure described in case (2). Since the side
condition of the RSE transformation is true on G, we know that ϕTSO = AXt ϕ′TSO holds at
n, and so �TSO holds on the resulting states. If, on the other hand, we are in case (2), s

must be in the region between n and the next store to e2. If s is at a store to e2 other than
n, then both G and G′ commit a write to `; since bt was a redundant expansion of b′t followed
by a write to `, this new write makes the last one redundant, and we are now in case (1). If
s is somewhere between n and the following store, then since ϕ′TSO holds we know that the
current instruction does not read the memory at ` and is neither a store nor a cmpxchg, so
we can conclude that Gt and G′t execute the same instruction with the same result, that the
instruction adds no new writes to t’s write buffer, and that the extra write to ` in bt is not
forced into main memory (as it would be by a cmpxchg instruction). Thus, case (2) of �TSO
still holds. Since the only difference in states allowed by �TSO is in the write buffer for t,
which is neither visible to nor affected by threads other than t, the separation of threads
required by Theorem 4 holds, and we can conclude that d�TSOet is a simulation relation
showing the correctness of the TSO version of RSE. J

I Theorem 8. Let G′ be a tCFG in the output of RSE(ϕPSO) on a tCFG G. Let �PSO be
the relation such that (s′, (m′, b′)) �PSO (s, (m, b)) iff

s = s′, m = m′, bu,` = b′u,` for all ` and all u 6= t, and
either (1) bt,` is a redundant expansion of b′t,` for all `, or else (2) ϕ′PSO holds at the
program point of s in G, the store eliminated in G′ was to some expression e2, and there is
a location ` such that e2 evaluates to ` in s, bt,` is a redundant expansion of b′t,` followed
by a write to `, and bt,`′ is a redundant expansion of b′t,`′ for all other locations `′.

Then d�PSOet is a simulation relation such that G′ d�PSOet G with all locations observable.

Proof. By Theorem 4. The proof is nearly identical to that of the TSO case. Since write
buffers are per-location, store instructions to locations other than ` may be executed between
the eliminated store and the following write to ` without changing the relationship between
bt,` and b′t,`, justifying the weaker side condition; otherwise, the proof proceeds entirely
analogously. J

In this manner, PTRANS allows us to express and verify optimizations under a variety of
memory models, sharing information between specifications and proofs of similar transforma-
tions. All of the above proofs have been carried out in full formal detail in the Isabelle proof
assistant, and can be found online at http://web.engr.illinois.edu/~mansky1/ptrans.

http://web.engr.illinois.edu/~mansky1/ptrans
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6 Conclusions and Related Work

In this paper we present the PTRANS specification language, in which optimizations are
expressed as conditional rewrites on program syntax, and show how it can be used to state and
verify compiler optimizations. We outline a method for stating and verifying optimizations
that transform a single thread in a multithreaded program, with some parts independent of
and others dependent on the memory model under consideration. We use this method to
verify a redundant store elimination optimization on an LLVM-based language under three
memory models, showing that the behaviors of every output program are possible behaviors
of the input program. In combination with the executable semantics for PTRANS, which
allows PTRANS specifications to serve as prototype optimizations [10], the methodology here
presented forms the basis of a new framework for specifying, testing, and verifying compiler
optimizations in the presence of concurrency.

Our work builds on the TRANS approach due to Kalvala et al. [4]. Among the tools that
build on this approach is the Cobalt specification system [6], which aims to automatically
prove the correctness of optimizations. This automation comes at the cost of expressiveness:
Cobalt is limited to a much smaller set of CTL side conditions than TRANS (or PTRANS)
in general. While interactive proofs require considerably more effort, using a standard
framework for proofs across different memory models and target languages can reduce the
burden by allowing common facts (about simulation, CTL over CFGs, etc.) to be proved
once and for all. To the best of our knowledge, neither Cobalt nor any other TRANS-style
work has yet addressed the problem of concurrency.

The most comprehensive compiler correctness effort to date is CompCertTSO [16], the
extension of CompCert [7] to the TSO memory model. CompCertTSO includes a range of veri-
fied optimizations on intermediate languages at various levels, as well as verified translations
between languages, while we have thus far only verified same-language transformations. Our
approach has the advantage of language- and memory-model independence; our framework
also allows us to separate out the correctness condition for a concurrent optimization into a
simulation relation on a single thread and side conditions on the remaining threads, while
the one concurrency-aware optimization verified in CompCertTSO involves a whole-program
simulation proof. Ševčík [15] has also verified various optimizations, including redundant
instruction eliminations, in a language-independent manner under data-race-free sequential
consistency, specifying optimizations directly as transformations on the executions traces of
programs (which may not directly correspond to modification of program code).

Burckhardt et al. [1] have developed a method of verifying optimizations under relaxed
memory models by specifying memory models as sets of rewrite rules on program traces and
optimizations as rewrites on local fragments of a program. Their proofs are fully automatic,
using the Z3 SMT solver to check that all traces allowed by a transformed program fragment
could be produced by applying the rewrite rules allowed by the memory model to the traces
of the original program. They rely on a denotational semantics for their target language that
gives the set of possible program traces for every program, and thus far have only verified
transformations on single instructions or pairs of immediately adjacent instructions (including
a simple RSE); their method does not obviously extend to transformations that require
analysis over fragments of the program graph of indefinite size (e.g., all the instructions
between one instruction and another).

Thus far, we have only verified optimizations that transform one thread at a time, assisted
by a theorem that allows us to lift single-thread simulation relations to simulations on
multithreaded CFGs. If we expand our scope to optimizations that transform multiple
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threads simultaneously (as might be done in some lock-related transformations), we may
require both an extended language of side conditions and more general proof techniques,
such as the rely-guarantee approach found in RGSim [8]. Similar approaches may help us
handle other models of parallel programming, such as fork-join parallelism.
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Abstract
Unfold/fold transformations have been widely studied in various programming paradigms and
are used in program transformations, theorem proving, and so on. This paper, by using an
example, show that restoring an one-step unfolding is not easy, i.e., a challenging task, since some
rules used by unfolding may be lost. We formalize this problem by regarding one-step program
transformation as a relation. Next we discuss some issues on a specific framework, called pure-
constructor systems, which constitute a subclass of conditional term rewriting systems. We show
that the inverse of T preserves rewrite relations if T preserves rewrite relations and the signature.
We propose a heuristic procedure to solve the problem, and show its successful examples. We
improve the procedure, and show examples for which the improvement takes effect.
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1 Introduction

Unfold/fold transformations have been widely studied on functional[6, 23], logic[11, 24, 25, 21,
22, 20] and constraint logic [12, 7, 4, 8] programs. They are used in program transformations,
theorem proving, and so on.

This paper proposes the inverse problem of one-step unfolding. Let’s see that the problem
is not trivial by an example in terms of term rewriting systems (TRSs). Both TRSs R1 and
R2, given as follows, define the same function mult that computes the multiplication of two
natural numbers:

R1 =
{

mult(0, y)→ 0,
mult(s(x), y)→ add(mult(x, y), y)

}
∪Radd, and

R2 =


mult(0, y)→ 0,
mult(s(0), y)→ add(0, y),
mult(s2(x), y)→ add(add(mult(x, y), y), y)

 ∪Radd,

where

Radd =
{

add(0, y)→ y,

add(s(x), y)→ s(add(x, y))

}
.

Here R2 is derived from R1 by unfolding mult(x, y) in the right-hand side of the second
rewrite rule in R1 by using the rules for mult in R1. On the other hand, however, it is
difficult to transform R2 into R1 in the reverse direction. One may think a folding operation

© Masanori Nagashima, Tomofumi Kato, Masahiko Sakai, and Naoki Nishida;
licensed under Creative Commons License CC-BY

1st International Workshop on Rewriting Techniques for Program Transformations and Evaluation (WPTE’14).
Editors: Manfred Schmidt-Schauß, Masahiko Sakai, David Sabel, and Yuki Chiba; pp. 27–38

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WPTE.2014.27
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


28 Inverse Unfold Problem and Its Heuristic Solving

is applicable for this purpose, but it is impossible because the second rewrite rule of R1 is
necessary for the folding, but is missing in R2.

This paper is organized as follows. First, we define the inverse problem of an one-step
program transformation in Section 3. In sessions that follow Section 3, we discuss some issues
on a specific framework, called pure-constructor system, used in our previous work [14] on a
determinization of conditional term rewriting systems. We targeted this framework because
of the firmness of the structure of the rules, i.e., every root position of left-hand sides in
the body or conditions of rewrite rules is a defined symbol, and all the other position have
no defined symbols even in right-hand sides. Remark that a deterministic pure-constructor
system is convertible to an equivalent TRS, vice versa. Nested defined symbols in a right-hand
side of a rule of a TRS are represented by a sequence of conditions.

In Section 4, we show that the inverse of an one-step transformation T preserves rewrite
relations if T preserves rewrite relations and their signatures. In Section 5, we propose a
heuristic procedure for this problem and show some examples. Overcoming failure examples,
we propose an advanced heuristic solving in Section 6 and demonstrate its effectiveness
for those examples. Finally, in Section 7, we show a motivated example induced from the
program inversion[10, 15, 16, 17, 18].

2 Preliminaries

In this section, we introduce notations used in this paper. We assume that the reader is
familiar with basic concepts of term rewriting [2, 19].

Let F be a signature, a finite set of function symbols accompanied with a mapping
arity which maps each function symbol f to a natural number arity(f). F is assumed to
be partitioned into two disjoint sets D of defined symbols and C of constructors, that is,
F = D ] C. Let V be a countably infinite set of variables such that F ∩ V = ∅. A function
symbol g ∈ F is called a constant if arity(g) = 0.

The set of terms over F and V is denoted by T (F ,V), the set of variables occurring at
least one of terms t1, . . . , tn by Var(t1, . . . , tn). A term t ∈ T (F , ∅) is called ground. The set
of all ground terms is denoted by T (F). A term t ∈ T (C,V) is called a constructor term. A
term of the form f(t1, . . . , tn) is called a pattern in T (F ,V) if f ∈ D and t1, . . . , tn ∈ T (C,V).
The root symbol of a term t is denoted by root(t).

Let � 6∈ F ∪V be a special constant, called a hole. A context is a term C ∈ T (F ∪{�},V)
with exactly one occurrence of �. We write C[t] for the term obtained from C by replacing
the occurrence of � in C with a term t.

A substitution is a function σ : V → T (F ,V) such that {x | σ(x) 6= x} is finite. The set
{x | σ(x) 6= x} is denoted by Dom(σ) and called the domain of σ. A substitution σ can be
extended to σ : T (F ,V)→ T (F ,V) in a natural way. We write tσ for σ(t). A substitution σ
is ground if xσ ∈ T (F) for all x ∈ Dom(σ). A substitution σ is a constructor substitution if
xσ ∈ T (C,V) for all x ∈ Dom(σ). The composition σθ of two substitutions σ and θ is defined
as x(σθ) = (xσ)θ.

An equation is a pair of terms s, t ∈ T (F ,V), which is denoted by s ∼ t. A substitution
σ is a unifier of a set E of equations if sσ = tσ for every s ∼ t ∈ E. E is said to be unifiable
if there is a unifier of E. A unifier σ of E is a most general unifier of E if for any unifier θ of
E, there exists a substitution δ such that θ = σδ. It is known that most general unifiers of
E are unique up to variable renaming. We use mgu(E) for the most general unifier of E.

An oriented conditional rewrite rule (rewrite rule, for short) is a formula in the form of
l → r ⇐ u1 → v1; · · · ;un → vn (n ≥ 0). l → r and u1 → v1; · · · ;un → vn are called the
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body part and the conditional part of the rule, respectively. Terms l and r are called the
left-hand side and the right-hand side of the rule, respectively. Each ui → vi (1 ≤ i ≤ n) is
called a condition of the rule. A rewrite rule whose conditional part is empty is called an
unconditional rule, denoted as l → r by omitting ⇐. The set of variables occurring in an
object o (e.g., a rewrite rule) is denoted by Var(o).

A condition u→ v is called a pattern condition if u is a pattern and v is a constructor
term. A rewrite rule l → r ⇐ c is called a pure-constructor rule if l is a pattern, r is
a constructor term, and the conditions of c are all pattern conditions. Note that pure-
constructor rules are also normal [5]. A rewrite rule l → r ⇐ c is said to be of type 3 [13]
if Var(r) ⊆ Var(l) ∪ Var(c). A conditional rewrite rule l → r ⇐ u1 → v1; · · · ;un → vn of
type 3 is called deterministic [9] if Var(ui) ⊆ Var(l, v1, . . . , vi−1) for all i (1 ≤ i ≤ n).

An oriented conditional term rewriting system (CTRS, for short) is a finite set R of
oriented conditional rewrite rules. A pure-constructor system is a CTRS whose rewrite rules
are all pure-constructor rewrite rules.1 A CTRS R is called deterministic if all rewrite rules
of R are deterministic.

I Example 2.1. CTRS Radd in Section 1 is convertible to the following equivalent and
deterministic pure-constructor system:

Radd =
{

add(0, y)→ y

add(s(x), y)→ s(z)⇐ add(x, y)→ z

}
.

We introduce a relational logic over T (F ,V). An atom is a pair of terms s and t, denoted
by s→ t. Formulas are atoms, existentially quantified formulas, conjunction of formulas and
implication of formulas. Satisfaction of a formula ϕ by a pair of a relation ⇀ on T (F ,V) and
a substitution σ : V → T (F ,V), denoted by 〈⇀,σ〉 |= ϕ, is inductively defined as follows:
〈⇀,σ〉 |= u→ v iff uσ ⇀ vσ,
〈⇀,σ〉 |= ϕ ∧ ϕ′ iff 〈⇀,σ〉 |= ϕ and 〈⇀,σ〉 |= ϕ′, and
〈⇀,σ〉 |= ϕ⇒ ϕ′ iff 〈⇀,σ〉 |= ϕ implies 〈⇀,σ〉 |= ϕ′.

Note that a sequence of conditions u1 → v1; · · · ;un → vn is regarded as conjunction
u1 → v1 ∧ · · · ∧ un → vn. The reflexive transitive closure of a relation ⇀ is denoted by ∗

⇀.
The k-level reduction −→(k)

R of R is inductively defined as follows:
−→(0)
R = ∅, and

−→(j)
R = −→(j−1)

R ∪ {(C[lσ], C[rσ]) | l→ r ⇐ c ∈ R, C ∈ T (F ∪ {�},V),
σ is a substitution, 〈 ∗−→(j−1)

R , σ〉 |= c} for j > 0 .
The reduction −→R is defined as

⋃
k≥0 −→

(k)
R .

The constructor-based reduction −→c R of a CTRS R [16] can be defined in the same way
as the ordinary reduction of a CTRS except that matching substitutions are restricted to
constructor substitutions. Note that −→c R ⊆ −→R.

3 Inverse Problem of Program Transformation

A program transformation is a procedure to generate another program from a given program
and its main purpose is to improve execution efficiency of programs. On the other hand, the
inverse of a program transformation is not a function, since program transformations are not
one-to-one in general. The notion of the inverse of a program transformation is captured as
an inverse image of a program under the transformation.

1 The class of pure-constructor systems is the same as the class of normalized TRSs in [1].
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Unfold:
R1 = R∪ {ρ : l→ r ⇐ c;u→ v; d}

R ∪ {lσ → rσ ⇐ cσ; c′σ; dσ | ρ′ : l′ → r′ ⇐ c′ ∈ R1,

Var(ρ) ∩ Var(ρ′) = ∅, σ = mgu({u ∼ l′, v ∼ r′})}

Fold: If ρ′ : l′ → r′ ⇐ c′ ∈ R,

R∪ {ρ : l→ r ⇐ c; c′σ; d}

R ∪ {l→ r ⇐ c; l′σ → r′σ; d}

Note that
1. transformations are performed by applying the transformation rules above in the direction

from top to bottom,
2. each substitution σ above is restricted to a constructor substitution,
3. each rewrite rule ρ′ above should be renamed so that Var(ρ) ∩ Var(ρ′) = ∅ holds, and
4. we sometimes say “Unfold ρ by ρ′” and “Fold ρ by ρ′” in applying the transformation rules

above.

Figure 1 Unfold/Fold Transformation Rules.

In this section, we formalize the inverse problem of an one-step program transformation
by regarding it as a relation over programs. For example, an one-step transformation T that
converts a program R1 into R2 is a relation T with R1 T R2.

The inverse problem of an one-step program transformation is formalized as follows.

I Definition 3.1. Given a transformation T and a program R1, the inverse T problem (T−1

problem) determines whether or not there exists a program R0 such that R0 T R1 holds. If
there exists such R0, we write R1 T

−1 R0, which means that transformation T−1 is equals
to inverse relation of T . R0 is called a solution of T−1 problem for R1.

4 Inverse Unfold Problem

In the rest of the paper, we focus on Unfold−1 problem, where we use Unfold/Fold trans-
formation rules [14] on deterministic pure-constructor CTRSs. The definitions of those
transformation rules are shown in Figure 1. Remark that a CTRS obtained by applying
Unfold is equivalent to the original one, but a CTRS obtained by applying Fold, which is a
derived rule of the one in [14], is not equivalent in general. More details on the correctness
of Unfold/Fold transformations on pure-constructor systems are discussed in [14].

We revisit the examples in Section 1. Rmult and Rmult1 in the following example are
pure-constructor CTRSs equivalent to R1 and R2 in Section 1, respectively.

I Example 4.1. We obtain a CTRS Rmult1 by applying Unfold rule to the second rewrite
rule of Rmult using its own two rewrite rules.

Rmult =
{

mult(0, y)→ 0
mult(s(x), y)→ v ⇐mult(x, y)→ z; add(z, y)→ v

}

Rmult1 =


mult(0, y)→ 0
mult(s(0), y)→ v ⇐add(0, y)→ v

mult(s2(x), y)→ v⇐mult(x, y)→ z; add(z, y)→ w; add(w, y)→ v
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Unfold−1 problem can be regarded as an instance of Definition 3.1 i.e. a decision problem
that determines, for a given CTRS R1, whether or not there exists a program R0, from
which R1 is obtained by Unfold rule (R0 Unfold R1).

I Example 4.2. A solution of Unfold−1 problem for CTRS Rmult1 is CTRS Rmult because
Rmult Unfold Rmult1 holds in Example 4.1.

Program transformations are usually demanded to preserve the meaning of programs.
In case of Example 4.1, the two functions mult defined in Rmult and Rmult1 are required to
derive the same normal forms if the same ground terms are given in the arguments. This
preservation property is known as the combination of properties Simulation soundness and
simulation completeness.

These properties for program transformation on pure-constructor systems are defined as
follows [14].

I Definition 4.3. A transformation T over CTRSs is simulation sound if and only if s ∗−→c R2
t

implies s ∗−→c R1
t for any CTRSs R1, R2 such that R1 T R2, and for any s, t ∈ T (DR1 ∪ C).

I Definition 4.4. A transformation T over CTRSs is simulation complete if and only
if s ∗−→c R1

t implies s ∗−→c R2
t for any CTRSs R1, R2 such that R1 T R2, and for any

s, t ∈ T (DR1 ∪ C).

In T−1 problem, even if transformation T is simulation sound and complete, T−1 is not
so in general. A sufficient condition for the simulation soundness and completeness of the
inverse problem is easily shown as follows.

I Theorem 4.5. If a transformation T is simulation sound and complete, and T introduce
no new defined symbol, T−1 is also simulation sound and complete.

Proof. Let R1, R2 be CTRSs such that R1 T
−1 R2. Suppose s, t ∈ T (DR1 ∪ C). By the

definition of T−1 problem, R2 T R1 holds. Since T introduce no new defined symbol, i.e.,
DR1 = DR2 , it follows that s, t ∈ T (DR2 ∪ C). Combined this with T ’s simulation soundness
and completeness, (s ∗−→c R1

t implies s ∗−→c R2
t) and (s ∗−→c R2

t implies s ∗−→c R1
t) hold. J

Unfold rule in Figure 1 is simulation sound and complete [14], and introduces no new
defined symbol. Thus, Theorem 4.5 derives the following corollary.

I Corollary 4.6. Unfold−1 is simulation sound and complete.

This corollary guarantees both CTRSs before and after Unfold−1 have the same rewrite
relation.

5 Heuristics for Solving Inverse Unfold Problem

We propose a heuristic procedure for solving Unfold−1 problems, which is shown in Figure 2.
In this procedure, we generate a divergent sequence of rewrite rules by applying Unfold/Fold
rules in Figure 1 from a given CTRS R1 (Step 1–4), generalize rules in the sequence by the
difference matching [3] (Step 5) to obtain a solution candidate CTRS R2 for the Unfold−1

problem. In Step 4 and 5, the simulation soundness and completeness are not necessarily
preserved. Therefore, Step 6 is necessary in order to confirm that the obtained CTRS R2 is
a solution, where R2 preserves the behavior of R1 by Corollary 4.6. Remark that in Step 2,
“Unfolding” (I)-labelled rule by (b0)-, (b1)- and (I)-labelled rules yields (Ib0)-, (Ib1)- and
(I2)-labelled rules, for example.
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Step 1 Give the labels (b0), (b1), . . . to each rule for a base case of the target function
in the given CTRS R1 in order of argument size. Similarly, give the label (I) to the
rule for the induction case.

Step 2 Unfold (In)-labelled1) rule by all rules including itself. Attach each resulted rule
the label obtained by concatenating the label of Unfolded rule and that of Unfolding
rule in this order.

Step 3 Again, do (Step 2) l times2).
Step 4 Fold each (Inbm)-labelled rule by (Inbm−1)-labelled rule in lexicographically

descending order of (n,m). In an exceptional case, each (Inb0)-labelled rule is
“Fold”ed by (In−1bmax(m))-labelled rule. The each label of generated rules is (Inbm)′,
respectively.

Step 5 Generalize rules in the divergent sequence generated in (Step 4) by the difference
matching [3] to obtain a solution candidate CTRS R2.

Step 6 If R2 Unfold R1 is satisfied, R2 is a solution of Unfold−1 problem for R1.

1) In denotes
n︷ ︸︸ ︷

I · · · I.
2) l is a given fixed number.

Figure 2 Heuristic procedure for Unfold−1 problem.

I Example 5.1. We solve Unfold−1 problem for Rmult1 in Example 4.1 by applying the
heuristic procedure in Figure 2.
Step 1: First, we give labels to rewrite rules in Rmult1.

Rmult1 =


mult(0, y)→ 0 (b0)
mult(s(0), y)→ v ⇐add(0, y)→ v (b1)
mult(s2(x), y)→ v⇐mult(x, y)→ z; add(z, y)→ w; add(w, y)→ v (I)


Step 2: Next, we “Unfold” (I)-labelled rule by (b0)-, (b1)- and (I)-labelled rules, which
yields the following CTRS Rmult2.

Rmult2 =



mult(0, y)→ 0 (b0)
mult(s(0), y)→ v ⇐add(0, y)→ v (b1)
mult(s2(0), y)→ v⇐add(0, y)→ w; add(w, y)→ v (Ib0)
mult(s3(0), y)→ v⇐add(0, y)→ w2; add(w2, y)→ w; add(w, y)→ v (Ib1)
mult(s4(x), y)→ v⇐mult(x, y)→ z;

add(z, y)→ w3; add(w3, y)→ w2;
add(w2, y)→ w; add(w, y)→ v (I2)


Step 3: Again, we “Unfold” (I2)-labelled rule in Rmult2 by the rules with the labels from
(b0) through (I2), which yields the following CTRS Rmult3.

Rmult3 =



mult(0, y)→ 0 (b0)
mult(s(0), y)→ v ⇐add(0, y)→ v (b1)
mult(s2(0), y)→ v⇐add(0, y)→ w; add(w, y)→ v (Ib0)
mult(s3(0), y)→ v⇐add(0, y)→ w2; add(w2, y)→ w; add(w, y)→ v (Ib1)
mult(s4(0), y)→ v⇐add(0, y)→ w3; · · · ; add(w, y)→ v (I2b0)
mult(s5(0), y)→ v⇐add(0, y)→ w4; · · · ; add(w, y)→ v (I2b1)
mult(s6(0), y)→ v⇐add(0, y)→ w5; · · · ; add(w, y)→ v (I3b0)
mult(s7(0), y)→ v⇐add(0, y)→ w6; · · · ; add(w, y)→ v (I3b1)
mult(s8(x), y)→ v⇐mult(x, y)→ z;

add(z, y)→ w7; · · · ; add(w, y)→ v (I4)
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Table 1 Examples of heuristic procedure in Figure 2.

Given CTRS Solution CTRS add(0, y)→ y

add(s(0), y)→ s(y)
add(s2(x), y)→ s2(z)⇐ add(x, y)→ z

 –
mult(0, y)→ 0
mult(s(0), y)→ v ⇐add(0, y)→ v

mult(s2(x), y)→ v⇐mult(x, y)→ z;
add(z, y)→ w;
add(w, y)→ v


 mult(0, y)→ 0

mult(s(x), y)→ v⇐mult(x, y)→ z;
add(z, y)→ v




rev([ ])→ [ ]
rev(x1 : [ ])→ zs⇐ app([ ], x1 : [ ])→ zs

rev(x1 : x2 : xs)→ zs

⇐ rev(xs)→ zs2;
app(zs2, x2 : [ ])→ zs1;
app(zs1, x1 : [ ])→ zs


rev([ ])→ [ ]

rev(x : xs)→ zs⇐rev(xs)→ zs1;
app(zs1, x : [ ])→ zs




frev([ ], ys)→ ys

frev(x : [ ], ys)→ x : ys
frev(x1 : x2 : xs, ys)→ zs

⇐ frev(xs, x2 : x1 : ys)→ zs

 –

Step 4: We “Fold” (I3b1)-labelled rule by (I3b0)-labelled rule, which yields a rule
“mult(s7(0), y)→ v ⇐ mult(s6(0), y)→ w, add(w, y)→ v”. Similarly, the rules with the labels
from (I3b0) through (Ib0) are “Folded” by the rules with the labels from (I2b1) through
(b1), respectively. We get the following CTRS Rmult3′ .

Rmult3′ =



mult(0, y)→ 0 (b0)
mult(s(0), y)→ v ⇐add(0, y)→ v (b1)
mult(s(s(0)), y)→ v ⇐mult(s(0), y)→ w; add(w, y)→ v (Ib0)′
mult(s(s2(0)), y)→ v⇐mult(s2(0), y)→ w; add(w, y)→ v (Ib1)′
mult(s(s3(0)), y)→ v⇐mult(s3(0), y)→ w; add(w, y)→ v (I2b0)′
mult(s(s4(0)), y)→ v⇐mult(s4(0), y)→ w; add(w, y)→ v (I2b1)′
mult(s(s5(0)), y)→ v⇐mult(s5(0), y)→ w; add(w, y)→ v (I3b0)′
mult(s(s6(0)), y)→ v⇐mult(s6(0), y)→ w; add(w, y)→ v (I3b1)′
mult(s8(x), y)→ v ⇐mult(x, y)→ z;

add(z, y)→ w7; · · · ; add(w, y)→ v (I4)


Step 5: Generalize the divergent rules in Rmult3′ with the labels from (Ib0)′ through
(I3b1)′ by the difference matching, which yields a rule “mult(s(x), y) → v ⇐ mult(x, y) →
w, add(w, y)→ v”. Now Rmult is obtained as a solution candidate of the Unfold−1 problem
for Rmult1.
Step 6: It is confirmed that Rmult Unfold Rmult1. Thus Rmult is certainly a solution.

Table 1 shows the results obtained by applying the procedure in Figure 2 by hand to four
problems: addition of two natural numbers, multiplication of two natural numbers, reverse
of a list and fast reverse of a list. Here, ‘–’ in the table shows that the procedure failed to
solve Unfold−1 for the problem.
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6 Heuristics Introducing Identity Function

Consider the first CTRS Radd1 in Table 1, for which the procedure in Section 5 fails.

Radd1 =


add(0, y)→ y

add(s(0), y)→ s(y)
add(s2(x), y)→ s2(z)⇐ add(x, y)→ z

 .

The following CTRS is obtained from Radd1 as an intermediate result by the heuristic
procedure in Figure 2; applying Step 1 to Step 3 (Step 3 twice):

R′ =



add(0, y)→ y (b0)
add(s(0), y)→ s(y) (b1)
add(s2(0), y)→ s2(y) (Ib0)
add(s3(0), y)→ s3(y) (Ib1)
add(s4(0), y)→ s4(y) (I2b0)
add(s5(0), y)→ s5(y) (I2b1)
add(s6(0), y)→ s6(y) (I3b0)
add(s7(0), y)→ s7(y) (I3b1)
add(s8(x), y)→ s8(z)⇐ add(x, y)→ z (I4)



.

Then any applications of Fold rule in Step 4 are impossible, because all rules with the labels
from (b0) through (I3b1) have no conditional part, which are necessary in applying Fold rule.
If the second rule of Radd1 were of the form

add(s(0), y)→ z ⇐ add(0, y)→ z,

then the transformation would be successful. Since the former is obtained by simplifying the
latter, this means that some necessary information in the conditional part may be lost by
a simplification. One possibility to avoid this issue is recovering the information from the
simpler rule such as the former. It is, however, difficult to find a clue. Instead of recovering
the conditional part directly, we adopt an alternative that inserts a condition with transparent
function id, which is identity function defined by

id(x)→ x.

We introduce a conditional part with the identity function to make each right-hand side of
body parts is a variable. The CTRS Radd1 is transformed into the following CTRS:

Radd1′ =


add(0, y)→ y

add(s(0), y)→ w ⇐id(s(y))→ w

add(s2(x), y)→ w⇐add(x, y)→ z; id(s(z))→ w1; id(s(w1))→ w

 .

This process is formalized as the following procedure.

I Procedure 6.1 (id attachment). The id-attached rule of a pure-constructor rule ρ : l →
r ⇐ c is constructed as follows.
1. If r 6∈ V, then convert ρ into ρ′ : l→ z ⇐ c; id(r)→ z. Otherwise, let ρ′ be ρ itself.
2. Replace a condition in ρ′ of the form id(g(t1, . . . , ti, . . . , tn))→ v such that ti 6∈ V with

id(ti)→ zi; id(g(t1, . . . , zi, . . . , tn))→ v
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Step 0 Apply Procedure 6.1 to each rule in the given CTRS R1.
Step 1 Give labels to each rule in the same way as Figure 2 (Step 1).
Step 2 Unfold rules in the same way as Figure 2 (Step 2). For each “Unfolded” rule,

apply Procedure 6.1 to the generated rule.
Step 3–6 Do each step in the same way as Figure 2.

Figure 3 Modified heuristic procedure for Unfold−1 problem.

3. Repeat 2 until it can not be applicable.
Note that variables z and zi above must be fresh.

Actually, this procedure must be applied after each Unfolding application during Step 2–3 in
Figure 2 because conditions of the generated rule may disappear by Unfolding. The modified
heuristics we propose is summarized in Figure 3.

I Example 6.2. We solve Unfold−1 problem for Radd1 applying the modified heuristic
procedure.
Step 0: As described above, we obtain Radd1′ by Step 0.
Step 1–3: As a result of Step 1–3, we obtain

Radd2 =



add(0, y)→ y (b0)
add(s(0), y)→ w ⇐ id(s(y))→ w (b1)
add(s2(0), y)→ w ⇐ id(s(y))→ w1; id(s(w1))→ w (Ib0)
add(s3(0), y)→ w ⇐ id(s(y))→ w2; id(s(w2))→ w1; id(s(w1))→ w (Ib1)
add(s4(0), y)→ w ⇐ id(s(y))→ w3; id(s(w3))→ w2; · · · ; id(s(w1))→ w (I2b0)
add(s5(0), y)→ w ⇐ id(s(y))→ w4; id(s(w4))→ w3; · · · ; id(s(w1))→ w (I2b1)
add(s6(0), y)→ w ⇐ id(s(y))→ w5; id(s(w5))→ w4; · · · ; id(s(w1))→ w (I3b0)
add(s7(0), y)→ w ⇐ id(s(y))→ w6; id(s(w6))→ w5; · · · ; id(s(w1))→ w (I3b1)
add(s8(x), y)→ w ⇐ add(x, y)→ z; id(s(z))→ w7; · · · ; id(s(w1))→ w; (I4)



.

Step 4: Fold transformations in Step 4 create the following rules.

Radd2′ =



add(0, y)→ y (b0)
add(s(0), y)→ w ⇐ id(s(y))→ w (b1)
add(s(s(0)), y)→ w ⇐ add(s(0), y)→ w1; id(s(w1))→ w (Ib0)′

add(s(s2(0)), y)→ w ⇐ add(s2(0), y)→ w1; id(s(w1))→ w; (Ib1)′

add(s(s3(0)), y)→ w ⇐ add(s3(0), y)→ w1; id(s(w1))→ w (I2b0)′

add(s(s4(0)), y)→ w ⇐ add(s4(0), y)→ w1; id(s(w1))→ w (I2b1)′

add(s(s5(0)), y)→ w ⇐ add(s5(0), y)→ w1; id(s(w1))→ w (I3b0)′

add(s(s6(0)), y)→ w ⇐ add(s6(0), y)→ w1; id(s(w1))→ w (I3b1)′

add(s8(x), y)→ w ⇐ add(x, y)→ z; id(s(z))→ w7; · · · ;
id(s(w1))→ w; (I4)



.

Step 5: Generalize the divergent rules in Radd2′ with the labels from (Ib0)′ through (I3b1)′ by
the difference matching, which yields a rule “add(s(x), y)→ w ⇐ add(x, y)→ w1; id(s(w1))→
w”, which is equal to “add(s(x), y)→ s(w1)⇐ add(x, y)→ w1”. So a solution candidate of
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Table 2 Examples of the modified heuristic procedure in Figure 3.

Given CTRS Solution CTRS add(0, y)→ y

add(s(0), y)→ s(y)
add(s2(x), y)→ s2(z)⇐ add(x, y)→ z


{

add(0, y)→ y

add(s(x), y)→ s(z)⇐ add(x, y)→ z

}


frev([ ], ys)→ ys

frev(x : [ ], ys)→ x : ys
frev(x1 : x2 : xs, ys)→ zs

⇐ frev(xs, x2 : x1 : ys)→ zs


frev([ ], ys)→ ys

frev(x : xs, ys)→ zs

⇐ frev(xs, x : ys)→ zs



Unfold−1 problem for Radd1 is

Radd =
{

add(0, y)→ y

add(s(x), y)→ s(z)⇐ add(x, y)→ z

}
.

Step 6: It is confirmed that Radd Unfold Radd1. Thus Radd is certainly a solution.

Table 2 shows the results by applying the modified heuristics to the failed problems in
Table 1.

7 Application

In this section, we show an example induced from the program inversion[10, 15, 16, 17, 18].
Consider the following TRS Rrev′ , which defines a fast reverse function of a list:

Rrev′ =


reverse(xs)→ frev(xs, [ ])
frev([ ], ys)→ ys

frev(x : [ ], ys)→ x : ys
frev(x1 : x2 : xs, ys)→ frev(xs, x2 : x1 : ys)

 .

Note that the definition of frev is convertible to an equivalent pure-constructor CTRS in the
second column of Table 2. For TRS Rrev′ , a program inversion tool repius 2 produces the
following CTRS:

Rinvrev′ =


inv-reverse(ys)→ tp1(xs)⇐ tinv-frev([ ], ys)→ tp2(xs, [ ]),
inv-reverse(x : ys)→ tp1(xs)⇐ tinv-frev(x : [ ], ys)→ tp2(xs, [ ]),
tinv-frev(xs, [ ])→ tp2(xs, [ ]),
tinv-frev(xs, x2 : x1 : ys)→ tinv-frev(x1 : x2 : xs, ys).

 ,

where tp1(·) and tp2(·, ·) are constructors introduced by repius for representing 1-tuple and
2-tuple, respectively. The function inv-reverse in Rinvrev′ works as the inversion of frev, but
non-determinacy in computation is necessary to obtain the expected results; the first rule
should be applied to an odd-length list and the second rule to even-length list.

Next, we consider the following definition of frev, which is the solution CTRS in Table 2.

Rrev =


reverse(xs)→ frev(xs, [ ]),
frev([ ], ys)→ ys,

frev(x : xs, ys)→ frev(xs, x : ys)

 .

2 http://www.trs.cm.is.nagoya-u.ac.jp/repius/

http://www.trs.cm.is.nagoya-u.ac.jp/repius/
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For this TRS, repius produces the following CTRS:

Rinvrev =


inv-reverse(ys)→ tp1(xs)⇐ tinv-frev([ ], ys)→ tp2(xs, [ ])
tinv-frev(xs, [ ])→ tp2(xs, [ ])
tinv-frev(xs, x : ys)→ tinv-frev(x : xs, ys)

 .

The CTRS Rinvrev is left-linear and non-overlapping and hence non-determinacy is not
necessary any more.

8 Conclusion

In this paper, we formalized the inverse problem of an one-step program transformation,
and focused on inverse Unfold problem, which is simulation sound and complete. For this
problem, we proposed a heuristic procedure and its improvement with the identity function.
Using these heuristics, we have also shown some successful examples and an application
example on program inversion.

As mentioned in Section 1, we used pure-constructor systems as a platform because of
the firmness of the structure of the rules. However, the heuristics proposed in this paper may
be modified for the general TRSs and unfoldings for them. Moreover, in that framework, id
symbol in Section 6 might not be necessary. It is also interesting to consider this issue.

We should address the following future tasks.
Target: So far, the scope of heuristic solvings in this paper is limited to functions whose

arguments consist of simple list-like data structures. Tree-like data structures and mutual
recursive functions will be considered as targets. We should open the class of CTRSs in
which our heuristics succeeds.

Completeness: We will find a subclass for which the heuristic procedure is complete; the
procedure can always find a solution if it exists.

Mechanization: In our heuristics, there are multiple choices which rules to be unfolded/folded.
Strategies to narrow down the options for automation is promising.

Acknowledgements. We would like to thank the anonymous referees for their corrections
and valuable comments.
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Abstract
In this paper, we show that the SR transformation, a computationally equivalent transforma-
tion proposed by Şerbănuţă and Roşu, is sound for weakly left-linear normal conditional term
rewriting systems (CTRS). Here, soundness for a CTRS means that reduction of the transformed
unconditional term rewriting system (TRS) creates no undesired reduction for the CTRS. We
first show that every reduction sequence of the transformed TRS starting with a term corres-
ponding to the one considered on the CTRS is simulated by the reduction of the TRS obtained
by the simultaneous unraveling. Then, we use the fact that the unraveling is sound for weakly
left-linear normal CTRSs.
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1 Introduction

Conditional term rewriting is known to be much more complicated than unconditional term
rewriting in the sense of analyzing properties, e.g., operational termination [14], conflu-
ence [23], reachability [5]. A popular approach to the analysis of conditional term rewriting
systems (CTRS) is to transform a CTRS into an unconditional term rewriting system (TRS)
that is an overapproximation of the CTRS in terms of reduction. This approach enables
us to use techniques for the analysis of TRSs, which are well investigated in the literature.
For example, if the transformed TRS is terminating, then the CTRS is operationally ter-
minating [4] — to prove termination of the transformed TRS, we can use many termination
proving techniques which have been well investigated for TRSs (cf. [19]). Another interesting
application of the approach is the analysis of (un)reachability on CTRSs, especially unreach-
ability for TRSs for, e.g., verifying cryptographic protocol [7]. Many techniques to construct
tree automata [3] for accepting all the reachable ground terms for given (a recognizable set
of) ground terms have been established (see, e.g., [12, 6, 24]), and thus, by transforming
CTRSs into TRSs, we can use such techniques for TRSs to analyze (un)reachablity.

∗ The research in this paper is partly supported by the Austrian Science Fund (FWF) international
project I963 and the Japan Society for the Promotion of Science (JSPS).

© Naoki Nishida, Makishi Yanagisawa, and Karl Gmeiner;
licensed under Creative Commons License CC-BY

1st International Workshop on Rewriting Techniques for Program Transformations and Evaluation (WPTE’14).
Editors: Manfred Schmidt-Schauß, Masahiko Sakai, David Sabel, and Yuki Chiba; pp. 39–50

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WPTE.2014.39
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


40 On Proving Soundness of the SR Transformation for Normal CTRSs

There are two approaches to transformations of CTRSs into TRSs: unravelings [15, 16]
proposed by Marchiori (see, e.g., [8, 17]), and a transformation [25] proposed by Viry (see,
e.g., [21, 8]).

Unravelings are transformations from a CTRS into a TRS over an extension of the
original signature for the CTRS. They are complete for (reduction of) the CTRS [15], i.e., for
every derivation of the CTRS, there exists a corresponding derivation of the unraveled TRS.
In this respect, the unraveled TRS is an overapproximation of the CTRS w.r.t. reduction, and
is useful for analyzing the properties of the CTRS, such as syntactic properties, modularity,
and operational termination, since TRSs are in general much easier to handle than CTRSs.

The latest transformation based on Viry’s approach is a computationally equivalent trans-
formation proposed by Şerbănuţă and Roşu [21, 22], called the SR transformation. This con-
verts a left-linear confluent normal CTRS into a TRS which is computationally equivalent
to the CTRS. This means that the converted TRS can be used to exactly simulate reduction
sequences of the CTRS to normal forms.

This paper aims at investigating sufficient conditions for soundness of the SR trans-
formation w.r.t. reduction. Neither any unraveling nor the SR transformation is sound for
(reduction of) all CTRSs. Here, soundness for a CTRS means that reduction of the con-
verted TRS creates no undesired reduction for the CTRS. Since soundness is one of the
most important properties for transformations of CTRSs, sufficient conditions for soundness
have been well investigated, especially for unravelings (see, e.g., [9, 17, 10]). For example,
the simultaneous unraveling [15], which is proposed by Marchiori (and then improved by
Ohlebusch [18]), is sound for weakly left-linear, confluent, non-erasing, or ground conditional
normal CTRSs [9].

As for unravelings, soundness of the SR transformation plays a very important role for,
e.g., computational equivalence. The main purpose of transformations along the Viry’s
approach is to use the soundly transformed TRS to simulate the reduction of the original
CTRS. The experimental results in [21] indicate that the rewriting engine using the soundly
transformed TRS is much more efficient than the one using the original left-linear confluent
CTRS. However, unlike unravelings, soundness conditions for the SR transformation have
not been investigated well, and the known conditions are left-linearity or confluence of
CTRSs [21, 22]. To get an efficient rewriting engine for CTRSs, soundness conditions for
the SR transformation are worth investigating.

To clarify the relationship between unravelings and the SR transformation in terms of
soundness, it has been shown that if the SR transformation is sound for a CTRS, then so is
the corresponding unraveling [17]. This is not so surprising since the SR transformation is
more powerful than unravelings in terms of evaluating conditions in parallel. For the same
reason, however, it is not so easy to prove the converse of the above claim — as shown later,
the converse does not hold for all normal CTRSs.

In this paper, we show that the SR transformation is sound for weakly left-linear normal
CTRSs. To this end, we first show that every reduction sequence of the transformed TRS
starting with a term corresponding to the one considered on the CTRS is simulated by the
reduction of the unraveled TRS obtained by the simultaneous unraveling [15, 18]. Then, we
use the fact that the unraveling is sound for weakly left-linear normal CTRSs. One of the
reasons why we take this approach is to avoid conditional rewriting in proofs for soundness.

As already described, unravelings are nice tools to analyze properties of CTRSs, and the
SR transformation is a nice tool to get a computationally equivalent TRS which provides
very efficient computation compared to the one on the original CTRS. For this reason,
we do not discuss the usefulness of our results for analyzing properties of CTRSs, and we
concentrate on soundness conditions of the SR transformation.
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This paper is organized as follows. In Section 2, we briefly recall basic notations of term
rewriting. In Section 3, we recall the notion of soundness, the simultaneous unraveling, and
the SR transformation for normal CTRSs. We will adopt a slightly different formulation of
the SR transformation from the original one [21], while the resulting TRSs are the same.
In Section 4, we show that the SR transformation is sound for weakly left-linear normal
CTRSs. In Section 5, we conclude this paper and describe future work on this research.

2 Preliminaries

In this section, we recall basic notions and notations of term rewriting [2, 19].
Throughout the paper, we use V as a countably infinite set of variables. Let F be a

signature, a finite set of function symbols each of which has its own fixed arity, and arityF (f)
be the arity of function symbol f. We often write f/n ∈ F instead of “f ∈ F and arityF (f)
= n”. The set of terms over F (⊆ F) and V (⊆ V) is denoted by T (F, V ), and the set of
variables appearing in any of the terms t1, . . . , tn is denoted by Var(t1, . . . , tn). A term t is
called ground if Var(t) = ∅. A term is called linear if any variable occurs in the term at
most once, and called linear w.r.t. a variable if the variable appears at most once in t. The
function symbol at the root position ε of term t is denoted by root(t). Given an n-hole
context C[ ] with parallel positions p1, . . . , pn, the notation C[t1, . . . , tn]p1,...,pn

represents
the term obtained by replacing hole � at position pi with term ti for all 1 ≤ i ≤ n. We
may omit the subscript “p1, . . . , pn” from C[. . .]p1,...,pn

. For positions p and p′ of a term, we
write p′ ≥ p if p is a prefix of p′ (i.e., there exists a sequence q such that pq = p′). Moreover,
we write p′ > p if p is a proper prefix of p′.

The domain and range of a substitution σ are denoted by Dom(σ) and Ran(σ), respect-
ively. We may denote σ by {x1 7→ t1, . . . , xn 7→ tn} if Dom(σ) = {x1, . . . , xn} and σ(xi) =
ti for all 1 ≤ i ≤ n. For F (⊆ F) and V (⊆ V), the set of substitutions that range over F
and V is denoted by Sub(F, V ): Sub(F, V ) = {σ | Ran(σ) ⊆ T (F, V )}. For a substitution σ
and a term t, the application σ(t) of σ to t is abbreviated to tσ, and tσ is called an instance
of t. Given a set X of variables, σ|X denotes the restricted substitution of σ w.r.t. X: σ|X
= {x 7→ xσ | x ∈ Dom(σ) ∩X}.

An (oriented) conditional rewrite rule over a signature F is a triple (l, r, c), denoted by
l → r ⇐ c, such that the left-hand side l is a non-variable term in T (F ,V), the right-hand
side r is a term in T (F ,V), and the conditional part c is a sequence s1 � t1; . . . ; sk � tk
of term pairs (k ≥ 0) where all of s1, t1, . . . , sk, tk are terms in T (F ,V). In particular, a
conditional rewrite rule is called unconditional if the conditional part is the empty sequence
(i.e., k = 0), and we may abbreviate it to l → r. We sometimes attach a unique label ρ to
the conditional rewrite rule l → r ⇐ c by denoting ρ : l → r ⇐ c, and we use the label to
refer to the rewrite rule.

An (oriented) conditional term rewriting system (CTRS) over a signature F is a set
of conditional rules over F . A CTRS is called an (unconditional) term rewriting system
(TRS) if every rule l → r ⇐ c in the CTRS is unconditional and satisfies Var(l) ⊇ Var(r).
The reduction relation of a CTRS R is defined as →R =

⋃
n≥0 →(n),R where →(0),R = ∅,

and →(i+1),R = {(C[lσ]p, C[rσ]p) | ρ : l → r ⇐ s1 � t1; . . . ; sk � tk ∈ R, s1σ →∗(i),R
t1σ, . . . , skσ →∗(i),R tkσ} for i ≥ 0. To specify the applied rule ρ and the position p

where ρ is applied, we may write →p,ρ or →p,R instead of →R. Moreover, we may write
→>ε,R instead of →p,R if p > ε. The parallel reduction ⇒R is defined as follows: ⇒R
= {(C[s1, . . . , sn]p1,...,pn

, C[t1, . . . , tn]p1,...,pn
) | s1 →R t1, . . . , sn →R tn}. To specify the

positions p1, . . . , pn in the definition, we may write⇒{p1,...,pn},R instead of⇒R, and we may
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write ⇒>ε,R instead of ⇒R if pi > ε for all 1 ≤ i ≤ n. We denote n-step parallel reduction
by ⇒n

R, and for m ≥ n, we may write ⇒≤mR instead of ⇒n
R.

A conditional rewrite rule l → r ⇐ c is called left-linear if l is linear, right-linear if r is
linear, non-erasing if Var(l) ⊆ Var(r), and ground conditional if c contains no variable. For
a syntactic property P of conditional rewrite rules, we say that a CTRS has the property P
if all of its rules have the property P, e.g., a CTRS is called left-linear if all of its rules are
left-linear.

A conditional rewrite rule ρ : l → r ⇐ s1 � t1; . . . ; sk � tk is called normal if
Var(s1, . . . , sk) ⊆ Var(l) and t1, . . . , tn are normal forms w.r.t. the underlying unconditional
system Ru = {l → r | l → r ⇐ c ∈ R}. A CTRS is called normal (or a normal CTRS) if
every rewrite rule of the CTRS is normal. Note that we consider 1-CTRSs (i.e., Var(l) ⊇
Var(r) for l→ r ⇐ c). A normal CTRS R is called weakly left-linear [9] if every conditional
rewrite rule having at least one condition is left-linear, and for every unconditional rule, any
non-linear variable in the left-hand side does not occur in the right-hand side.

Let R be a CTRS over a signature F . The sets of defined symbols and constructors of
R are denoted by DR and CR, respectively: DR = {root(l) | l → r ⇐ c ∈ R} and CR =
F \ DR. Terms in T (CR,V) are constructor terms of R. R is called a constructor system if
all proper subterms of the left-hand sides in R are constructor terms of R.

3 Transformations from Normal CTRSs into TRSs

In this section, we recall the notion of soundness, the simultaneous unraveling [19], the SR
transformation [21] for normal CTRSs.

We first show a general notion of soundness of completeness between two (C)TRSs
(see [8, 17]). Let R1 and R2 be (C)TRSs over signature F1 and F2, respectively, φ be
an initialization (total) mapping from T (F1,V) to T (F2,V), and ψ be a partial inverse of φ,
a backtranslation mapping from T (F2,V) to T (F1,V) such that ψ(φ(t1)) = t1 for any term
t1 ∈ T (F1,V). We say that
R2 is sound for (reduction of ) R1 w.r.t. (φ, ψ) if, for any term t1 ∈ T (F1,V) and for any
term t2 ∈ T (F2,V), φ(t1) →∗R2

t2 implies t1 →∗R1
ψ(t2) whenever ψ(t2) is defined, and

R2 is complete for (reduction of ) R1 w.r.t. (φ, ψ) if, for all terms t1, t′1 ∈ T (F1,V),
t1 →∗R1

t′1 implies φ(t1) →∗R2
φ(t1).

For the sake of readability, we restrict our interest to CTRSs, any rule of which has at
most one condition. Note that this is not a restriction on the results in this paper (see [21]).
We often denote a sequence ti, ti+1, . . . , tj of terms by ti..j . Moreover, for the application
of a mapping f to ti..j , we denote f(ti), . . . , f(tj) by f(ti..j), e.g., for a substitution θ, we
denote tiθ, . . . , tjθ by θ(ti..j).

3.1 Simultaneous Unraveling
The simultaneous unraveling for normal CTRSs, which is reformulated by Ohlebusch, is
defined as follows.

I Definition 1 (U [19]). Let R be a normal CTRS over a signature F . Then,

U(ρ : l→ r ⇐ s� t) = { l→ Uρ(s,x1..n), Uρ(t,x1..n)→ r }

where {x1, . . . , xn} = Var(l) and Uρ is a fresh n+ 1-ary function symbol, called a U symbol.
Note that for every unconditional rule l→ r ∈ R, U(l→ r) = {l→ r}. U is straightforwardly
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extended to normal CTRSs: U(R) =
⋃
ρ∈R U(ρ). We abuse U to represent the extended

signature of F : UR(F) = F ∪ {Uρ | ρ : l → r ⇐ s � t ∈ R}. We omit R from UR(F).
Note that U(R) is a TRS over U(F). We say that U (and also U(R)) is sound (complete)
for R if U(R) is sound (complete) for R w.r.t. (id, id), where id is the identity mapping
for T (F ,V).

Note that U is complete for all normal CTRSs [15, 18].

I Example 2. Consider the following normal CTRS, a simplified variant of the one in [21]:

R1 = { e(0)→ true, e(s(x))→ true⇐ e(x)� false, e(s(x))→ false⇐ e(x)� true }

R1 is unraveled to the following TRS:

U(R1) =
{

e(0)→ true, e(s(x))→ u1(e(x), x), u1(false, x)→ true,
e(s(x))→ u2(e(x), x), u2(true, x)→ false

}
U(R1) is not confluent, while R1 is confluent. This means that U does not always preserve
confluence of CTRSs. The reason why U loses confluence is that once we start evaluating
a condition, the expected goal for the condition is fixed and then we cannot cancel the
evaluation. This is illustrated in the derivation e(s(0))→U(R1) u1(e(0), 0)→U(R1) u1(true, 0).
To reduce e(s(0)) to false, we should have applied e(s(x))→ u2(e(x), x) ∈ U(R1) to the initial
term. However, we applied another wrong rule, u1 expects e(0) to be reduced to true (the
expected goal for u1 at this point), and we cannot redo applying the desired rule.

To simplify the discussion, we do not consider any optimization of unravelings (see e.g. [11]).
As shown in [15], U is not sound for every normal CTRS (see also [19, Example 7.2.14]).

For some classes of normal CTRSs, U is sound (cf. [9, 17]).

I Theorem 3 ([9]). U is sound for a normal CTRS satisfying at least one of the following:
weak left-linearity, confluence, non-erasingness, or ground conditional.

3.2 The SR Transformation
Next, we introduce the SR transformation and its properties. In the following, the word
“conditional rule” is used for representing rules having exactly one condition.

Before transforming a CTRS R, we first extend the signature of R as follows:
we leave constructors of R without any change,
the arity n of defined symbol f is extended to n+m where f has m conditional rules in
R, and we replace f by f with the arity n+m, and
a fresh constant ⊥ and a fresh unary symbol 〈·〉 are introduced.

We denote the extended signature by F : F = {c | c ∈ CR} ∪ {f | f ∈ DR} ∪ {⊥, 〈·〉}.
We introduce a mapping ext(·) to extend the arguments of defined symbols in a term as
follows: ext(x) = x for x ∈ V; ext(c(t1..n)) = c(ext(t1..n)) for c/n ∈ CR; ext(f(t1..n)) =
f(ext(t1..n), z1..m) for f/n ∈ DR, where f has m conditional rules in R, arityF (f) = n+m,
and z1, . . . , zm are fresh variables. The extended arguments of f are used for evaluating the
corresponding conditions, and the fresh constant ⊥ is introduced to the extended arguments
of defined symbols, which does not store any evaluation. To put ⊥ into the extended
arguments, we define a mapping (·)⊥ which puts ⊥ to all the extended arguments of defined
symbols, as follows: (x)⊥ = x for x ∈ V; (c(t1..n))⊥ = c((t1..n)⊥) for c ∈ CR; (f(t1..n,u1..m))⊥
= f((t1..n)⊥,⊥, . . . ,⊥) for f ∈ DR; (〈t〉)⊥ = 〈(t)⊥〉; (⊥)⊥ = ⊥. Note that in applying (·)⊥ to
reachable terms defined later, the case of applying (·)⊥ to ⊥ never happens. Now we define
a mapping · from T (F ,V) to T (F ,V) as t = (ext(t))⊥.

The SR transformation [21] is defined as follows.
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I Definition 4 (SR). Let f/n ∈ DR that has m conditional rules in R (i.e., f/(n+m) ∈ F).
Then, SR(f(w1..n)→r)={ f(ext(w1..n), z1..m)→〈r〉 } and, for the i-th conditional rule of f,

SR(f(w1..n)→ ri ⇐ si � ti) ={
f(w′

1..n, z1..i−1, ⊥, zi+1..m)→ f(w′
1..n, z1..i−1, 〈si〉, zi+1..m),

f(w′
1..n, z1..i−1, 〈ti〉, zi+1..m)→ 〈ri〉

}
where w′

1..n = ext(w1..n) and z1, . . . , zm are fresh variables. The set of auxiliary rules is
defined as follows:

Raux = { 〈〈x〉〉 → 〈x〉 } ∪ { c(x1..i−1, 〈xi〉,xi+1..n)→ 〈c(x1..n)〉 | c/n ∈ CR, 1 ≤ i ≤ n }
∪{ f(x1..i−1, 〈xi〉,xi+1..n, z1..m)→ 〈f(x1..n,⊥, . . . ,⊥)〉 | f/n ∈ DR, 1 ≤ i ≤ n }

where z1, . . . , zm are fresh variables. The transformation SR is defined as follows: SR(R) =⋃
ρ∈R SR(ρ) ∪Raux . Note that SR(R) is a TRS over F . Note also that Raux is linear. The

backtranslation mapping ·̂ for · is defined as follows: x̂ = x for x ∈ V; ĉ(t1..n) = c(t̂1..n)
for c/n ∈ CR; ̂f(t1..n,u1..m) = f(t̂1..n) for f/n ∈ DR; 〈̂t〉 = t̂; ⊥̂ = ⊥. Note that ·̂ is a total
function. A term t in T (F ,V) is called reachable if there exists a term s ∈ T (F ,V) such
that 〈s〉 →∗SR(R) t. We say that SR (and also SR(R)) is sound (complete) for R if SR(R) is
sound (complete) for R w.r.t. ( ·, ·̂ ).

Note that SR is complete for all CTRSs [21]. Note also that SR is not sound for all normal
CTRSs since for any normal CTRS R, SR(R) can simulate any reduction of U(R) [17] —
roughly speaking, any undesired derivation on U(R) holds on SR(R). It is clear that for
any reachable term t ∈ T (F ,V), any term t′ ∈ T (F ,V) with t →∗SR(R) t

′ is reachable.
To evaluate the condition of the i-th conditional rule f(w1..n) → ri ⇐ si � ti, the

i-th conditional rule is transformed into the two unconditional rules: the first one starts
to evaluate the condition (an instance of si), and the second examines whether the con-
dition holds. The first rule 〈〈x〉〉 → 〈x〉 in Raux removes the nest of 〈·〉, the second
rule c(x1..i−1, 〈xi〉,xi+1..n) → 〈c(x1..n)〉 is used for shifting 〈·〉 upward, and the third rule
f(x1..i−1, 〈xi〉,xi+1..n, z1..m)→ 〈f(x1..n,⊥, . . . ,⊥)〉 is used for both shifting 〈·〉 upward and
resetting the evaluation of conditions at the extended arguments of f. The unary symbol 〈·〉
and its rules in Raux are introduced to preserve confluence of normal CTRSs on reachable
terms (see [21] for the detail of the role of 〈·〉 and its rules).

I Example 5. Consider R1 in Example 2 again. R1 is transformed by SR as follows:

SR(R1) =


e(0, z1, z2)→ 〈true〉,

e(s(x),⊥, z2)→ e(s(x), 〈e(x,⊥,⊥)〉, z2), e(s(x), 〈false〉, z2)→ 〈true〉,
e(s(x), z1,⊥)→ e(s(x), z1, 〈e(x,⊥,⊥)〉), e(s(x), z1, 〈true〉)→ 〈false〉,

〈〈x〉〉 → 〈x〉, s(〈x〉)→ 〈s(x)〉, e(〈x〉, z1, z2)→ 〈e(x,⊥,⊥)〉


In contrast to U, SR preserves confluence of CTRSs as confluence on reachable terms, e.g.,
SR(R1) is confluent on reachable terms, while U(R1) is not. Note that SR(R1) is not
confluent. Let us consider the derivation starting from e(s(0)) in Example 2 again. The
corresponding derivation on SR(R1) is illustrated as follows:

e(s(0),⊥,⊥) →SR(R1) e(s(0), 〈e(0,⊥,⊥)〉,⊥) →∗SR(R1) e(s(0), 〈true〉,⊥)

Unlike the case of U(R1), we can apply the desired rule to the last term above:

· · · →SR(R1) e(s(0), 〈true〉, 〈e(0,⊥,⊥)〉) →∗SR(R1) e(s(0), 〈true〉, 〈true〉) →SR(R1) 〈false〉
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In the case of U, to reach false, we need to backtrack from the undesired normal form
u1(true, 0) (see Example 2), but in the case of SR, we do not have to backtrack — choosing
an arbitrary redex from reducible terms is sufficient to reach a desired normal form since
SR(R1) is confluent on reachable terms.

Finally, we recall some important properties of SR.

I Theorem 6 ([21]). SR is sound for left-linear or confluent 1 normal CTRSs.

I Theorem 7 ([17]). If SR is sound for a normal CTRS, then so is U.

4 Soundness of the SR Transformation for Weakly Left-linear CTRSs

In this section, by using U, we show that SR is sound for a weakly left-linear normal CTRS.
Before the discussion, we consider the role of (·)⊥ again. The mapping (·)⊥ puts ⊥ into

the extended arguments of defined symbols. We straightforwardly extend (·)⊥ to substitu-
tions: (θ)⊥ = {x 7→ (xθ)⊥ | x ∈ Dom(θ)} for a substitution θ such that Ran(θ) ⊆ T (F ,V).
The mapping (·)⊥ has the following properties which are trivial by definition.

I Proposition 8. Let R be a normal CTRS. Then, all of the following hold:
For any term s ∈ T (F ,V), s = (s)⊥.
For any term t ∈ T (F ,V), (tθ)⊥ = (t)⊥(θ)⊥ for any substitution θ ∈ Sub(F ,V) such
that tθ is reachable.

We may use Proposition 8 without notice.
To prove key claims (e.g., Lemma 13 shown later) related to the derivation 〈s〉 →∗SR(R) t,

the mappings · and ·̂ often prevent us from using induction because ·̂ removes all occurrences
of 〈·〉 from terms. For this reason, using the mapping (·)⊥ instead of 〈·〉 is a breakthrough
to prove our main theorem.

Next, we observe reduction sequences 〈s〉 →∗SR(R) t with s ∈ T (F ,V) and t ∈ T (F ,V).
The main feature of SR is to evaluate two or more conditions in parallel. However, to get
t̂, it suffices to evaluate successfully at most one condition in each parallel evaluation of
conditions. This means that every term appearing in 〈s〉 →∗SR(R) t, which is rooted by a
defined symbol f, is of the form f(t1..n,u1..m) where arityF (f) = n and at most one of
u1, . . . , um is rooted by 〈·〉 (i.e., others are ⊥). Such a term is the key idea of this paper, and
we say that the term has no parallel evaluation of conditions. For a term having no parallel
evaluation of conditions, we can uniquely determine the corresponding term over U(F): for
a term f(t1..n,u1..m), if all u1, . . . , um are ⊥, then the root is f, and otherwise, assuming
that ui is not ⊥ and the others are ⊥, then the root is Uf,i which is introduced for the i-th
conditional rule of f. This correspondence is illustrated in Figure 1. We first show how to
convert a reachable term in T (F ,V) to a term in T (U(F),V).

I Definition 9. Let R be a normal CTRS. Then, we define a mapping Φ from reachable
terms in T (F ,V) to T (U(F),V) as follows:

Φ(x) = x for x ∈ V,
Φ(c(t1..n)) = c(Φ(t1..n)) for c/n ∈ CR,
Φ(f(t1..n,⊥, . . . ,⊥)) = f(Φ(t1..n)) for f/n ∈ DR,

1 In [21], “ground confluence” is used instead of “confluence” since reduction sequences on ground terms
are considered. From the proofs in [21], we can consider “confluence” for the case that arbitrary
reduction sequences are considered.
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〈e(s(0), ⊥, ⊥)〉
��

〈e(s(0), ⊥, ⊥)〉
��

e(s(0))
��

〈e(s(0), ⊥, 〈e(0, ⊥, ⊥)〉)〉
��

〈e(s(0), ⊥, 〈e(0, ⊥, ⊥)〉)〉

2

��

u2(e(0), s(0))

��

〈e(s(0), 〈e(0, ⊥, ⊥)〉, 〈e(0, ⊥, ⊥)〉)〉
4��

〈e(s(0), 〈true〉, 〈true〉)〉
2��

〈e(s(0), ⊥, 〈true〉)〉
2��

u2(true, s(0))
��

〈false〉 〈false〉 false

(a) on SR(R1) (b) on SR(R1) with single evaluation (c) on U(R1)

Figure 1 The correspondence of derivations between SR(R1) and U(R1).

Φ(f(θ(ext(w1..n)),
i−1︷ ︸︸ ︷

⊥, . . . ,⊥, 〈ui〉,⊥, . . . ,⊥)) = Uf,i(Φ(ui),Φ(θ(x1..j))) for f/n ∈ DR,
where the i-th conditional rule of f is ρ : f(w1..n)→ ri ⇐ si � ti ∈ R, Uf,i(ti,x1..j)→ ri
∈ U(ρ) with Var(w1..n) = {x1..j}, Φ(θ(ext(wj))) is defined for all 1 ≤ j ≤ n, Φ(xθ) is
defined for any variable x ∈ Dom(θ), and Φ((〈si〉θ)⊥) →∗U(R) Φ((〈ui〉)⊥), and
Φ(〈t〉) = Φ(t).

We say that Φ(θ) is defined if Φ(xθ) is defined for any variable x ∈ Dom(θ), and we denote
by Φ(θ) the substitution {x 7→ Φ(xθ) | x ∈ Dom(θ)}.

Note that Φ is a partial mapping, and linearity is not important for Φ while w1, . . . , wn in
the proof of Lemma 13 are linear without any shared variable. By definition, it is clear that
Φ((t)⊥) = t̂ for a reachable term t ∈ T (F ,V). We will use this property without notice.

I Example 10. Consider U(R1) and SR(R1) in Examples 2 and 5, respectively, again.
We have that Φ(〈e(s(0),⊥,⊥)〉) = e(s(0)), Φ(〈e(s(0),⊥, 〈e(0,⊥,⊥)〉)〉) = u2(e(0), s(0)), and
Φ(〈e(s(0),⊥, 〈false〉)〉) = u2(false, s(0)). On the other hand, Φ is not defined for the term
〈e(s(0), 〈e(0,⊥,⊥)〉, 〈e(0,⊥,⊥)〉)〉 which contains two parallel evaluations of conditions.

Unfortunately, the above idea for the proof does not hold for all normal CTRSs.

I Example 11. Consider the following normal CTRS:

R2 =
{

f(x)→ x⇐ x� c, g(x, x)→ h(x, x), h(f(d), x)→ x,

a→ c, a→ d, b→ c, b→ d

}
R2 is transformed by U and SR, respectively, as follows:

U(R2) = { f(x)→ u3(x, x), u3(c, x)→ x, g(x, x)→ h(x, x), h(f(d), x)→ x, . . . }

SR(R2)=


f(x,⊥)→ f(x, 〈x〉), f(x, 〈c〉)→〈x〉, a→〈c〉, a→〈d〉,
g(x, x)→〈h(x, x)〉, h(f(d, z1), x)→〈x〉, b→〈c〉, b→〈d〉,
〈〈x〉〉→ 〈x〉, g(〈x〉, y)→〈g(x, y)〉, h(〈x〉, y)→〈h(x, y)〉,

f(〈x〉, z1)→〈f(x,⊥)〉, g(x, 〈y〉)→〈g(x, y)〉, h(x, 〈y〉)→〈h(x, y)〉


We have the following derivations:

〈g(f(a,⊥), f(b,⊥))〉 g(f(a), f(b))
→∗SR(R2) 〈g(f(〈d〉, 〈c〉), f(〈d〉, 〈c〉))〉 →∗U(R2) g(u3(c, d), u3(c, d))
→∗SR(R2) 〈f(〈d〉, 〈c〉)〉 →∗SR(R2) 〈d〉 6→U(R2) u3(c, d) →U(R2) d

Neither U(R2) nor R2 can simulate the derivation 〈g(f(a,⊥), f(b,⊥))〉 →∗SR(R2) 〈d〉, and
thus, SR is not sound for R2.
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As shown below, we only succeed in proving that the idea works for weakly left-linear
normal CTRSs. Weakly left-linear normal CTRSs have the following syntactic properties
with respect to SR, which are trivial by definition.

I Proposition 12. If R is weakly left-linear, then SR(R) is weakly left-linear, especially, for
transformed rewrite rules f(w′

1..n, z1..i−1,⊥, zi+1..m) → f(w′
1..n, z1..i−1, 〈si〉, zi+1..m) and

f(w′
1..n, z1..i−1, 〈ti〉, zi+1..m)→ 〈ri〉 in SR(f(w1..n)→ ri ⇐ si � ti),
w′1, . . . , w

′
n are linear without any shared variable, and

f(w′
1..n, z1..i−1, 〈ti〉, zi+1..m)→ 〈ri〉 is left-linear.

The following claim is an auxiliary lemma to show that U(R) can simulate every reduction
sequence of the form 〈s〉 →∗SR(R) t with s ∈ T (F ,V) and t ∈ T (F ,V).

I Lemma 13. Let R be a weakly left-linear normal CTRS, s be a term in T (F ,V), t be a
term in T (CR ∪ {〈·〉},V), and θ ∈ Sub(F ,V) with Dom(θ) ⊆ Var((t)⊥). If s ⇒k

SR(R) tθ (k
≥ 0) and Φ(s) is defined, then there exists a substitution θ′ ∈ Sub(F ,V) such that
Dom(θ′) = Dom(θ),
Φ(θ′) is defined,
for any variable x ∈ Dom(θ′), if t is linear w.r.t. x, then xθ′ ⇒≤kSR(R) xθ and Φ((xθ′)⊥)
→∗U(R) Φ((xθ)⊥), and otherwise, xθ′ = (xθ)⊥, and
Φ((s)⊥) →∗U(R) Φ((tθ′)⊥).

Proof. This lemma can be proved by induction on the lexicographic product (k, |s|) where
|s| denotes the size of s (see the appendix in a full version of this paper 2). J

Weak left-linearity is used skillfully in the proof of Lemma 13.
Next, we show that 〈s〉 →∗SR(R) t can be simulated by U(R).

I Theorem 14. Let R be a weakly left-linear normal CTRS, s be a term in T (F ,V), and t
be a term in T (F ,V). If 〈s〉 →∗SR(R) t, then s →∗U(R) t̂.

Proof. By definition, Φ((〈s〉)⊥) (= s) is defined, and thus, it follows from Lemma 13 that
Φ((〈s〉)⊥) →∗U(R) Φ((t)⊥). By definition, Φ((t)⊥) = t̂. Therefore, s →∗U(R) t̂. J

Theorem 14 does not hold for all normal CTRSs.

I Example 15. Consider the following normal CTRS which is not weakly left-linear:

R3 =
{

f(x)→ c⇐ x� c, f(x)→ d⇐ x� d, g(x, x)→ h(x, x),
a→ c, a→ d, b→ c, b→ d

}
R3 is transformed by U and SR, respectively, as follows:

U(R3) =
{

f(x)→ u5(x, x), f(x)→ u6(x, x), g(x, x) → h(x, x),
u5(c, x)→ c, u6(d, x)→ d, . . .

}

SR(R3)=


f(x,⊥, z2)→ f(x, 〈x〉, z2), f(x, z1,⊥)→ f(x, z1, 〈x〉), g(x, x)→ 〈h(x, x)〉,

f(x, 〈c〉, z2)→ 〈c〉, f(x, z1, 〈d〉)→ 〈d〉, a→ 〈c〉,
a→ 〈d〉, b→ 〈c〉, b→ 〈d〉,

〈〈x〉〉 → 〈x〉, h(〈x〉, y)→ 〈h(x, y)〉, h(x, 〈y〉)→ 〈h(x, y)〉,
f(〈x〉, z1, z2)→ 〈f(x,⊥,⊥)〉, g(〈x〉, y)→ 〈g(x, y)〉, g(x, 〈y〉)→ 〈g(x, y)〉


2 Available from http://www.trs.cm.is.nagoya-u.ac.jp/~nishida/wpte14/.
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We have the following derivations:

〈g(f(a,⊥,⊥), f(b,⊥,⊥))〉 g(f(a), f(b))
→∗SR(R3) 〈h(f(〈d〉, 〈c〉, 〈d〉), f(〈d〉, 〈c〉, 〈d〉))〉 →∗U(R3) h(u5(c, d), u5(c, d))
→SR(R3) 〈h(〈c〉, 〈d〉)〉 →∗SR(R3) 〈h(c, d)〉 6→U(R3) h(c, d)

The other normal forms of g(f(a), f(b)) on U(R3) are h(u5(c, c), u5(c, c)), h(u5(d, c), u5(d, c)),
and h(u5(d, d), u5(d, d)), but none of them corresponds to h(c, d). For this reason, the deriv-
ation on SR(R3) cannot be simulated by U(R3). The derivation g(f(a), f(b))→∗ h(c, d) does
not hold on R3, either, and thus, SR is not sound for R3. In addition, being a constructor
system is not sufficient for soundness of SR since R3 is a constructor system.

We show the main result obtained by Theorem 14.

I Theorem 16. SR is sound for weakly left-linear normal CTRS.

Proof. Let R be a weakly left-linear CTRS, s ∈ T (F ,V) and t ∈ T (F ,V). Suppose that
〈s〉 →∗SR(R) t. Then, it follows from Theorem 14 that s →∗U(R) t̂. Since t̂ ∈ T (F ,V) and U
is sound for R, we have that s →∗R t̂. Therefore, SR is sound for R. J

Theorem 16 does not hold for all normal CTRSs (see Examples 11 and 15).
Finally, we discuss the remaining soundness conditions of U: non-erasingness and ground-

ness of conditions. Non-erasingness of normal CTRSs is not sufficient for soundness since
R2 is non-erasing but SR is not sound for R2. Groundness of conditions is not sufficient for
soundness, either.

I Example 17. Consider the following ground-conditional normal CTRS, a variant of R3:

R4 =
{

f(a)→ c⇐ a� c, f(b)→ d⇐ b� d, g(x, x)→ h(x, x),
a→ c, a→ d, b→ c, b→ d

}
We have that g(f(a,⊥,⊥), f(b,⊥,⊥))→∗SR(R4) 〈h(c, d)〉, but g(f(a), f(b)) 6→∗R4

h(c, d). There-
fore, SR is not sound for R4.

5 Conclusion

In this paper, by using the soundness of U for weakly left-linear normal CTRSs, we showed
that the SR transformation is sound for weakly left-linear normal CTRSs. As far as we
know, this paper is the second work on comparing soundness of unravelings and the SR
transformation. The first one is a previous work [17] of the first author, in which the
converse of Theorem 7 was left as a conjecture. As a negative result, we showed that the
converse of Theorem 7 does not hold in general.

One may think that as the first step, we should have started with the transformation
proposed by Antoy et al [1], which is a variant of Viry’s transformation. As described
in [21], for constructor systems, the unary symbol introduced in the SR transformation
to wrap terms evaluating conditions is not necessary and then the SR transformation is
the same as the one in [1]. The transformation in [1] is sound for left-linear constructor
normal CTRSs, and is extended to the SR transformation in order to adapt it to arbitrary
normal CTRSs. This means that any result for the SR transformation can be adapted to the
transformation in [1]. Moreover, the SR transformation has been extended to syntactically
or strongly deterministic CTRSs [22], which we would like to deal with at the next step of
this research. For these reasons, we started with the SR transformation.



N. Nishida, M. Yanagisawa, and K. Gmeiner 49

Schernhammer and Gramlich showed in [20] that a particular context-sensitive condi-
tion [13] is sufficient for soundness of Ohlebusch’s unraveling [18], which is an improved
variant of Marchiori’s one. However, the context-sensitive condition is not sufficient for
preserving confluence of CTRSs. For this reason, not all the unraveled TRSs with the
context-sensitive condition are computationally equivalent to the original CTRSs, and in
this sense, the SR transformation is more useful than unravelings with the context-sensitive
condition. Moreover, the context-sensitive condition restricts the reduction to the context-
sensitive one. Due to this restriction, we did not use the context-sensitive condition in
proving the main result in this paper.

As future work, we will extend Theorem 14 to a pair of Ohlebusch’s unraveling [18]
and the SR transformation for syntactically or strongly deterministic CTRSs in order to
extend Theorem 16 to the SR transformation for the CTRSs. We did not discuss confluence
of normal CTRSs as a soundness condition since the SR transformation is known to be
sound for confluent normal CTRSs. However, for the extension to deterministic CTRSs, we
will adapt the proof technique in this paper to confluent normal CTRSs. Moreover, we will
investigate other soundness conditions of unravelings in order to make the SR transformation
applicable to more classes of CTRSs as a computationally equivalent transformation.

Acknowledgement. We are deeply grateful to the anonymous referees for their useful com-
ments to improve this paper. We would like to dedicate this paper to the memory of
Bernhard Gramlich who encouraged us to further research the soundness of unravelings.
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Abstract
We consider reduction in the synchronous π-calculus with replication, without sums. Usual
definitions of reduction in the π-calculus use a closure w.r.t. structural congruence of processes.
In this paper we operationalize structural congruence by providing a reduction relation for pi-
processes which also performs necessary structural conversions explicitly by rewrite rules. As we
show, a subset of structural congruence axioms is sufficient. We show that our rewrite strategy
is equivalent to the usual strategy including structural congruence w.r.t. the observation of barbs
and thus w.r.t. may- and should-testing equivalence in the pi-calculus.
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1 Introduction

The π-calculus [9, 8, 21] is a well-known core model for concurrent and mobile processes
with message passing. Its syntax includes parallel process-composition, named channels, and
input/output-capabilities on the channels. The data flow in programs of the π-calculus is
represented by communication between processes. Since links between processes can be sent
as messages, the induced network of processes behaves dynamically.

Even though the π-calculus has been investigated for several decades, its analysis is
still an active research topic. One reason is that variants of the π-calculus have a lot of
applications even outside the field of computer science. Examples are the Spi-calculus [1]
to reason about cryptographic protocols, the stochastic π-calculus [14] with applications in
molecular biology, and the use of the π-calculus to model business processes.

The operational behavior of π-processes is defined in terms of a reduction semantics
(and often extended by an action semantics, for semantic reasoning), which is built by a
single reduction rule for exchanging a message, and applying this reduction rule in so-called
reduction contexts. Additionally, a notion of structural congruence is used, which can be
applied to processes before and after the reduction step. Structural congruence allows
conversions like commuting the order of parallel processes, moving the scope of binders, etc.
Unfortunately the complexity of structural congruence is very high. Indeed in its original
formulation by Milner, it is even unknown whether structural congruence is decidable. A
recent result [22] shows that it is at least EXPSPACE-hard. For reasoning on reductions
and semantics of processes the implicit use of structural congruence is difficult and also
error-prone. This becomes even more difficult, when such proofs are automated. Hence,
in this paper we make the conversion w.r.t. structural congruence explicit by including the
congruence axioms as separate reduction rules in the reduction relation. Moreover, we also
simplify the conversion by dropping some rules, which are not necessary for defining the
reduction relation (but they may be used as program optimizations).
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Our main result is that the semantics of π-processes remains unchanged if our new
reduction relation replaces the original one. As semantics we use barbed may- and should-
testing equivalence [4] which holds for two processes if their input and output capabilities
coincide if the processes are plugged into any program context. This notion of process
equivalence is directly based on the reduction semantics and – unlike other process equivalences
– like bisimulation or barbed congruence (see e.g. [21]) – it is insensitive for reduction traces.
Hence barbed may- and should-testing equivalence can be viewed as the coarsest notion
of process equivalence which distinguishes obviously different processes (see [4] for a deep
analysis of the different notions of process equivalences and their relation).

Outline In Sect. 2 we recall the synchronous π-calculus and its reduction semantics which
includes structural congruence, and we define may- and should-testing equivalence. In Sect. 3
we introduce the simplified reduction semantics – called D-standard reduction – which makes
conversions w.r.t. structural congruence explicit. In Sect. 4 we show that may- and should-
testing equivalence remains unchanged if the D-standard reduction is used. We conclude in
Sect. 5.

2 The Synchronous π-Calculus with May- and Should-Testing

We consider the synchronous π-calculus with replication but without sums (and recursion).

I Definition 2.1 (Syntax of the π-Calculus). Let N be a countably infinite set of names.
Processes P and action prefixes π are defined by the following grammar, where x, y ∈ N :

P ::= π.P | P1 |||P2 | !P | 0 | νx.P
π ::= x(y) | x〈y〉

The prefix x(y) is called an input-prefix, and x〈y〉 is called an output-prefix.

Names are bound by the ν-binder (in νx.P name x is bound with scope P ) and by the
input-prefix (in x(y).P name y is bound with scope P ). This induces a notion of α-renaming
and α-equivalence as usual. We treat α-equivalent processes as equal. If necessary, we make
α-renaming explicit and denote α-equivalence by =α. We use fn(P ) (fn(π), resp.) for the
set of free names of process P (prefix π, resp.) and bn(P ) (bn(π), resp.) for the set of
bound names of process P (prefix π, resp.). Note that fn(x(y)) = {x}, fn(x〈y〉) = {x, y},
bn(x(y)) = {y}, and bn(x〈y〉) = ∅. We assume the distinct name convention, i.e. free names
are distinct from bound names and bound names are pairwise distinct.

A process x(y).P has the capability to receive some name z along the channel named x
and then behaves like P [z/y] where [z/y] is the capture free substitution of name y by name
z. A process x〈y〉.P has the capability to send a name y along the channel named x. The
silent process 0 has no capabilities to communicate. P1 |||P2 is the parallel composition of
processes P1 and P2. νz.P restricts the scope of the name z to process P . As a notation we
use νX .P abbreviating νx1. . . . .νxn.P . We also use set-notation for X and e.g. write x ∈ X
with its obvious meaning. !P is the replication of process P , i.e. it can be interpreted as
infinitely many copies of P running in parallel.

I Definition 2.2 (Contexts). A process context C ∈ C is a process with a hole [·] at process-
position, i.e. C ∈ C ::= [·] | π.C | C |||P | P |||C | !C | νx.C. For a context C and a process
P the construct C[P ] denotes the process where the hole of C is replaced by process P . For
contexts C1, C2 we say C1, C2 are prefix disjoint iff there does not exist a context C3 with
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C1 = C2[C3] or C2 = C1[C3]. For P = C[Q] the replication depth of Q in P w.r.t. C is the
number m of replications above Q which is exactly the number of contexts Ci of the form
! [·] if C = C1 . . . Cn where Ci are contexts of hole-depth 1.

I Definition 2.3 (Structural congruence ≡). Structural congruence ≡ is the smallest congru-
ence on processes satisfying the equations:

P ≡ Q, if P =α Q

P1 ||| (P2 |||P3) ≡ (P1 |||P2) |||P3
P1 |||P2 ≡ P2 |||P1
P ||| 0 ≡ P

νz.νw.P ≡ νw.νz.P

νz.0 ≡ 0
νz.(P1 |||P2) ≡ P1 ||| νz.P2, if z 6∈ fn(P1)

!P ≡ P ||| !P

It is unknown whether structural congruence of processes is decidable (see also [2, 3, 6]
for more discussion and further results), at least it is a very hard problem:

I Proposition 2.4 ([22, Corollary 4.4]). The decision problem whether for two π-processes
P ≡ Q holds is EXPSPACE-hard.

We define the usual reduction semantics of π-processes (see e.g. [21]) as a small-step
reduction relation. The only reduction rule is the rule (ia) for communication (interaction):

x(y).P |||x〈v〉.Q ia−→ P [v/y] |||Q

Reduction contexts D are process contexts where the hole is not below a replication or a
π-prefix, i.e. D ∈ D ::= [·] | D |||P | P |||D | νx.D where x ∈ N and where P is a process.

I Definition 2.5 (Standard Reduction, sr−→). With D,ia−−−→ we denote the closure of ia−→ w.r.t. re-
duction contexts, and a standard reduction sr−→ consists of applying a D,ia−−−→-reduction modulo
structural congruence, i.e.

P
ia−→ Q

D[P ] D,ia−−−→ D[Q]
where D ∈ D

P ≡ P ′ ∧ P ′
D,ia−−−→ Q′ ∧ Q′ ≡ Q

P
sr−→ Q

We use the following notation for unions of transformations, where a transformation is
some binary relation on processes (e.g. sr−→):

I Definition 2.6. For a transformation a−→ we define a,0−−→ := {(P, P ) | P is a process} and
a,i−−→ := {(P,Q) | P a−→ S ∧ S a,i−1−−−→ Q} for i > 0. Transitive and reflexive-transitive closure
are defined as a,+−−→ :=

⋃
i>0

a,i−−→, and a,∗−−→ :=
⋃
i≥0

a,i−−→. For a−→ and b−→ let a∨b−−→ := a−→∪ b−→.

I Example 2.7. An example for a sequence of standard reductions is

νx.(x〈w〉.0 |||x(y).z〈y〉.0) ||| ! z(u).0 sr−→ νx.(z〈w〉.0) ||| ! z(u).0 sr−→ ! z(u).0

Making the conversions w.r.t. ≡ more explicit we can write this as:

νx.(x〈w〉.0 |||x(y).z〈y〉.0) ||| ! z(u).0 ≡ νx.(x(y).z〈y〉.0 |||x〈w〉.0) ||| ! z(u).0
D,ia−−−→ νx.(z〈w〉.0 ||| 0) ||| ! z(u).0 ≡ νx.(z〈w〉.0) ||| ! z(u).0 ≡ νx.(z〈w〉.0 ||| ! z(u).0)
≡ νx.(z〈w〉.0 ||| (z(u).0 ||| ! z(u).0)) ≡ νx.((z(u).0 ||| z〈w〉.0) ||| ! z(u).0)

D,ia−−−→ νx.((0 ||| 0) ||| ! z(u).0) ≡ νx.(0 ||| ! z(u).0) ≡ νx.0 ||| ! z(u).0 ≡ 0 ||| ! z(u).0 ≡ ! z(u).0

WPTE’14
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The high complexity of deciding structural congruence justifies making structural conver-
sion visible during reduction. I.e., instead of using ≡ implicitly during reduction, it makes
sense to introduce the conversions as separate reduction rules. Moreover, not all axioms
of structural congruence are required to apply D,ia−−−→-steps, e.g. the axiom 0 |||P ≡ P is not
necessary, and also it is not necessary to apply the axioms below a replication or a π-prefix.
Before defining a modified reduction for the π-calculus (in Sect. 3) we define the semantics
of π-processes by a process equivalence. In the π-calculus several definitions and notions for
process equivalences exist. We choose the approach of testing the input and output capabil-
ities of processes in all contexts and also test whether the capability may or should occur.
This notion of may- and should-testing (sometimes also called must- or fair must testing,
see e.g. [11, 7, 4, 16]) is close to contextual equivalence [10, 13] in other program calculi
like the lambda calculus, but adapted to the concurrent setting (see e.g. [12, 17, 18, 19, 23]
for contextual equivalence with may- and should-semantics in extended concurrent lambda
calculi). A strong connection between may- and should-testing equivalence and a classic
notion of contextual equivalence (using a notion of success) for the π-calculus was shown in
[20]. May- and should-testing equivalence is a coarse notion of program equivalence equating
as much processes as possible, but discriminating obviously different processes.

Input and output capabilities are formalized by the notion of a barb:

I Definition 2.8 (Barb). A process P has a barb on input x (written as P �x) iff P can
receive a name on channel x, i.e. P = νX .(x(y).P ′ |||P ′′) where x 6∈ X , and P has a barb on
output x (written as P �x) iff P can emit a name on channel x, i.e. P = νX .(x〈y〉.P ′ |||P ′′)
where x 6∈ X . We write P ≡�x (P ≡�x, resp.) iff P ≡ P ′ and P ′ �x (P ′ �x, resp.).

As observations for process equivalence we will use on the one hand whether a process
may reduce to a process that has a barb, and on the other hand whether a process has the
ability to have a barb on every reduction path:

I Definition 2.9 (May-barb and Should-barb). For µ ∈ {x, x}, P may have a barb on µ

(written as P ↓µ) iff P
sr,∗−−→ Q ∧Q≡�µ, and P should have a barb on µ (written as P ⇓µ) iff

P
sr,∗−−→ P ′ =⇒ P ′ ↓µ. We write P ↑µ iff P ⇓µ does not hold, and P ⇑µ iff P ↓µ does not hold.

Note that P ↑µ equivalently means that P can reduce to a process that has no input (or
output, resp.) capabilities on the channel µ, i.e. P ↑µ holds iff P sr,∗−−→ P ′ and P ′⇑µ.

I Definition 2.10 (Barbed May- and Should-Testing Equivalence). Processes P and Q are
barbed testing equivalent (written P ∼ Q) iff P - Q∧Q - P , where - := -may ∩-should and

P -may Q iff ∀x ∈ N , µ ∈ {x, x}, C ∈ C: C[P ]↓µ =⇒ C[Q]↓µ
P -should Q iff ∀x ∈ N , µ ∈ {x, x}, C ∈ C: C[P ]⇓µ =⇒ C[Q]⇓µ

Our definition of barbed testing equivalence is given in a general form, since the may-
and should-behavior, all channel names, the input and output barbs, and also all channels
are separately considered. However, in the π-calculus the definition is equivalent to simpler
definitions. I.e., it is sufficient to observe the should-behavior only, and to observe input (or
output) channels exclusively, and to either observe a single channel name, or existentially
observing the barb capabilities (see [4] for the asynchronous π-calculus and [20] for the
synchronous variant used in this paper). However, since our results also apply for the general
definition, we refrain from working with the simpler definition.

As an easy result, we show that structural congruence preserves the semantics of processes:

I Proposition 2.11. If P ≡ Q then P ∼ Q.
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Proof. Let P ≡ Q, C be a context s.t. P ↓µ (P ↑µ, resp.), i.e. C[P ] sr,∗−−→ P ′ and P ′≡�µ (or
P ′ ⇑µ, resp.). Since ≡ is a congruence and included in sr−→, we have C[Q] ≡ C[P ] sr,∗−−→ P ′

and C[Q] sr,∗−−→ P ′ which shows C[Q] ↓µ (C[Q] ↑µ, resp.). Also C[Q] ↓µ =⇒ C[P ] ↓µ and
C[Q]↑µ =⇒ C[P ]↑µ hold by symmetry of ≡. Since S ↑µ ⇐⇒ ¬S⇓µ, this implies P ∼ Q. J

3 Structural Congruence as Rewriting

In this section we make the conversion w.r.t. structural equivalence explicit and also restrict
this conversion to reduction contexts. In the following definition the relation sca−−→ is the
reduction relation corresponding to structural congruence axioms applied in both directions.
However, the rewrite rules are a little bit more general than the congruence axioms, but not
more general than the structural congruence relation. The relation sc−→ is a restriction of
sca−−→, the replication axiom is only permitted in the expanding direction, and rules adding,
removing and moving down ν-binders as well as adding or removing the silent process are
not included. The removed rules can be seen as optimizations, i.e. removing “garbage”, but –
as we show – they are dispensable for reasoning about may- and should-testing equivalence.

I Definition 3.1 (Structural Reduction). The relation sc−→ is defined by the following rules:

(assocl) P1 ||| (P2 |||P3) sc−→ (P1 |||P2) |||P3

(assocr) (P1 |||P2) |||P3
sc−→ P1 ||| (P2 |||P3)

(commute) P1 |||P2
sc−→ P2 |||P1

(replunfold) !P sc−→ P ||| !P
(nuup) D[νz.P ] sc−→ νz.D[P ], if z 6∈ fn(D),

[·] 6= D ∈ D

The relation sca−−→ is defined by the rules:

P
sca−−→ Q if P sc−→ Q

(nuintro) P
sca−−→ νz.P if z 6∈ fn(P )

(nurem) νz.P
sca−−→ P if z 6∈ fn(P )

(nudown) νz.D[P ] sca−−→ D[νz.P ], if z 6∈ fn(D), [·] 6= D ∈ D

(replfold)P ||| !P sca−−→ !P
(intro0l) P

sca−−→ 0 |||P
(intro0r) P

sca−−→ P ||| 0
(rem0r) P ||| 0 sca−−→ P

The relations D,sc−−−→ and C,sca−−−→ are defined as:

P
sc−→ Q

D[P ] D,sc−−−→ D[Q]
where D ∈ D

P
sca−−→ Q

C[P ] C,sca−−−→ C[Q]
where C ∈ C

We sometimes add more information on the reduction arrow, and e.g. write D,sc,nuup,∗−−−−−−−−→
for a (maybe empty) finite sequence of D,sc−−−→-transformations which all apply the rule (nuup).

I Lemma 3.2. The relation C,sca,∗−−−−→ coincides with structural congruence, i.e. C,sca,∗−−−−→ = ≡.

Since C,sca,∗−−−−→ and ≡ coincide, we can replace ≡ in the definition of standard reduction:

I Corollary 3.3. P sr−→ Q iff P
C,sca,∗−−−−→ P ′ ∧ P ′

D,ia−−−→ Q′ ∧ Q′
C,sca,∗−−−−→ Q.

We define our new variant of standard reduction, called D-standard reduction, which
restricts the conversion w.r.t. structural congruence to D,sc−−−→-transformations:

I Definition 3.4 (D-Standard Reduction, dsr−−→). A D-standard reduction dsr−−→ applies the rule
(ia) in a reduction context D ∈ D modulo D,sc,∗−−−−→, i.e. :

P
D,sc,∗−−−−→ P ′ ∧ P ′

D,ia−−−→ Q′ ∧ Q′
D,sc,∗−−−−→ Q

P
dsr−−→ Q

WPTE’14
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I Example 3.5. We consider the same process as in Example 2.7.

νx.(x〈w〉.0 |||x(y).z〈y〉.0) ||| ! z(u).0 D,sc−−−→ νx.(x(y).z〈y〉.0 |||x〈w〉.0) ||| ! z(u).0
D,ia−−−→ νx.(z〈w〉.0 ||| 0) ||| ! z(u).0 D,sc,5−−−−→ νx.(0 ||| ((z〈w〉.0 ||| z(u).0) ||| ! z(u).0))
D,ia−−−→ νx.(0 ||| ((0 ||| 0) ||| ! z(u).0))

Note that D-standard reduction cannot remove the 0-components and the ν-binder.

Replacing standard reduction by D-standard reduction results in modified observation
predicates and a modified definition of may- and should-testing equivalence. However, we
will show that the modified equivalence coincides with the original one in Theorem 4.13.

I Definition 3.6. For µ ∈ {x, x}, P may have a barb w.r.t. dsr−−→ on x (written as P ↓D,µ) iff
P

dsr,∗−−−→ Q
D,sc,∗−−−−→ Q′ and Q′ �µ, and P should have a barb w.r.t. dsr−−→ on x (written as P ⇓D,µ)

iff for all processes P ′ such that P dsr,∗−−−→ P ′, also P ′ ↓D,µ holds. We write P ↑D,µ iff ¬(P ⇓D,µ)
holds and P ⇑D,µ iff ¬(P ↓D,µ) holds. Processes P and Q are barbed testing equivalent
w.r.t. dsr−−→ (written P ∼D Q) iff P -D Q ∧Q -D P , where -D := -D,may ∩-D,should and

P -D,may Q iff ∀x ∈ N , µ ∈ {x, x, C ∈ C}: C[P ]↓D,µ =⇒ C[Q]↓D,µ
P -D,should Q iff ∀x ∈ N , µ ∈ {x, x}, C ∈ C}: C[P ]⇓D,µ =⇒ C[Q]⇓D,µ

Note that P ↑D,µ is equivalent to: ∃Q : P dsr,∗−−−→ Q ∧Q⇑D,µ. Our main result will be that ∼
and ∼D coincide and thus D-standard reduction can be used for reasoning about process
equivalence. For showing ∼ = ∼D it is sufficient to prove that ↓µ =↓D,µ and⇓µ =⇓D,µ.

4 Relating Reduction Strategies

As a required notation we define conversions w.r.t. ≡ that are not included in D,sc−−−→:

I Definition 4.1 (Internal C,sca−−−→-Transformations, isca−−→). With isca−−→ we denote a C,sca−−−→
transformation that is not a D,sc−−−→ transformation, i.e. isca−−→ = C,sca−−−→ \ D,sc−−−→. With isca〈k〉−−−−→
we denote a isca−−→-transformation at replication depth k, i.e. k is the number of replications
above the redex of the isca−−→-transformation.

In the remainder of this section we establish our main result by showing that ∼ and ∼D
coincide. The proof is structured into three parts: in Sect. 4.1 we show that for a sequence
of standard reductions P sr,∗−−→ Q the internal conversions isca−−→ can be shifted to the right
resulting in a reduction P dsr,∗−−−→ Q′

isca,∗−−−−→ Q. In Sect. 4.2 we show that if a process has a
barb w.r.t. ≡, i.e. P ≡�µ, then we can remove internal conversions isca−−→ and thus P D,sc,∗−−−−→ P ′

s.t. P ′ �µ. In Sect. 4.3 we use the results of both previous sections to show ↓µ =↓D,µ and
⇓µ =⇓D,µ which implies the coincidence of ∼ and ∼D.

4.1 Shifting Internal Conversions to the End
In this section we show that for every standard reduction sequence P sr,∗−−→ Q, also a
D-standard reduction sequence followed by internal structural conversion steps exists,
i.e. P dsr,∗−−−→ Q′

isca,∗−−−−→ Q. The result is established by inspecting overlappings of the forms
P1

isca−−→ P2
D,sc−−−→ P3 and P1

isca−−→ P2
D,ia−−−→ P3, where in both cases the isca−−→-transformation

must be commuted with the other reduction or transformation.
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We will use so-called commuting diagrams as a notation, which are diagrams of the form
as shown on the right. Every arrow represents a transformation step or a sequence of steps
denoted by ∗ (0 or more steps) or + (1 or more steps) as part of the
label. Labels denote the used reduction rule, solid arrows mean given
transformations, dashed arrows are existentially quantified transformations.
If the label is id, then this means that processes are identical. Labels may

·
label3

��

label1// ·
label2
��

·
label4
// ·

include variables x, xi for the name of a used rule. These variables are meant universally
quantified for the diagram, i.e. all occurrences of x in one diagram can only be instantiated
with the same rule name x, and for diagrams with different variables (e.g. x1 and x2) any
variable can be instantiated with different (or equal) rule names. If not otherwise stated
x, x1, x2 may be instantiated with (assocl), (assocr), (commute), (nucomm), (nudownr),
(nuup), (replunfold), (replfold), (nuintro), (intro0l), (intro0r), (rem0r), or (nurem).

Inspecting all overlappings between a D,sc−−−→- and an isca−−→-step shows:

I Lemma 4.2. Given a sequence P1
isca−−→ P2

D,sc−−−→ P3, then the sequence can always be
commuted by one of the following diagrams:

·
isca〈k〉,x //

D,sc
��

·
D,sc
��

·
isca〈k〉,x

// ·

k ≥ 0

·
isca〈k〉,x //

D,sc
��

·
D,sc
��

·
isca〈k−1〉,x

// ·
isca〈k〉,x

// ·

k ≥ 1

·
isca〈k〉,x //

D,sc,+
��

·
D,sc
��

·
isca〈k〉,x

// ·

k ≥ 0

·
isca〈0〉,x //

id

·
D,sc
��
·

·
isca〈0〉,x1 //

isca〈0〉,x2 %%

·
D,sc
��
·

·

D,sc %%

isca〈0〉,x // ·
D,sc
��
·

Inspecting all overlappings between a D,ia−−−→- and an isca−−→-step

I Lemma 4.3. Given a sequence P1
isca−−→ P2

D,ia−−−→ P3, then the sequence can always be
commuted by one of the following diagrams:

·
isca〈k〉 //

D,ia
��

·
D,ia
��

·
isca〈k〉

// ·

k ≥ 0

·
isca〈0〉,x //

D,sc,+ ��

·

D,ia

��

·
D,ia ��
·
isca〈0〉,x

// ·

Using the diagrams of the two previous lemmas we are able to show that in a sr−→-reduction
sequence all isca−−→-steps can always be shifted to the right end.

I Proposition 4.4. Let P1
a1−→ P2

a2−→ . . .
an−1−−−→ Pn where every ai−→ is either an C,sca−−−→ or a

D,ia−−−→ transformation. Then there exists P1
b1−→ Q1

b2−→ . . .
bm−−→ Qm

isca,∗−−−−→ Pn where every bi−→
is either a D,ia−−−→ or a D,sc−−−→ transformation.

Proof. In the input sequence (and also intermediate sequences in the proof) we can switch
to the representation where ai−→ is either an isca〈k〉−−−−→ (for some k ≥ 0) or a D,ia−−−→, or a D,sc−−−→
transformation. We represent the two latter cases uniformly by D,sc∨ia−−−−−→ and thus only
have to deal with sequences consisting of isca〈k〉−−−−→- and D,sc∨ia−−−−−→-steps. The diagrams of
Lemmas 4.2 and 4.3 can be seen as rewriting rules on such sequences, where we also simplify
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the representation resulting in the rules:
isca〈k〉−−−−→ .

D,sc∨ia−−−−−→  
D,sc∨ia−−−−−→ .

isca〈k−1〉−−−−−−→ .
isca〈k〉−−−−→ for k ≥ 1 (1)

isca〈k〉−−−−→ .
D,sc∨ia−−−−−→  

D,sc∨ia,n−−−−−−→ .
isca〈k〉−−−−→ for k ≥ 0 and any n ≥ 1 (2)

isca〈0〉−−−−→ .
D,sc∨ia−−−−−→  ε (where ε represents the empty string) (3)

isca〈0〉−−−−→ .
D,sc∨ia−−−−−→  

isca〈0〉−−−−→ (4)
isca〈0〉−−−−→ .

D,sc∨ia−−−−−→  
D,sc∨ia−−−−−→ (5)

Let R = P1
a1−→ P2

a2−→ . . .
an−1−−−→ Pn. We define a measure µ(R) for those reduction sequences:

let P(R) be the longest prefix of R that has an D,sc∨ia−−−−−→-step as its last step, or the empty
sequence, if there is no D,sc∨ia−−−−−→-step in R. W.l.o.g. P(R) = P1

a1−→ P2
a2−→ . . .

aj−1−−−→ Pj . Now
the multiset µ(R) is constructed by inserting the pair #(Pi

isca〈k〉−−−−→ Pi+1) for every reduction
step Pi

isca〈k〉−−−−→ Pi+1 in P(R) (and inserting no pairs for steps Pi
D,sc∨ia−−−−−→ Pi+1), where

#(Pi
isca〈k〉−−−−→ Pi+1) =


(k,∞), if isca〈k〉−−−−→ is not the last isca−−→ reduction in P(R)
(k, d), otherwise, where d = j − i− 1 (i.e. d is the number of

reductions in P(R) that follow after Pi
isca〈k〉−−−−→ Pi+1)

We use the multiset ordering, where pairs are ordered lexicographically. The order-
ing is well-founded and if the multiset µ(R) is empty, then P(R) does not contain isca−−→-
transformations. We show the claim by induction on µ(R): If µ(R) is empty then P(R)
only contains D,sc∨ia−−−−−→-steps (or is empty). Hence R is of the right form and the claim
holds. For the induction step assume that µ(R) contains at least one pair, hence P(R) has
at least a subsequence isca−−→ D,sc∨ia−−−−−→. Let P(R) = P1

a1−→ . . .
ai−→ Pi

isca〈k〉−−−−→ Pi+1
D,sc∨ia−−−−−→

Pi+2
D,sc∨ia,m−−−−−−−→ Pi+2+m and R = P(R) isca,∗−−−−→ Pn. We apply one of the rewriting rules

derived from the diagrams to the subsequence Pi
isca〈k〉−−−−→ Pi+1

D,sc∨ia−−−−−→ Pi+2, Let R′ be the
sequence R after applying the rewrite rule. We inspect the cases for all five rules (1)–(5):

(1) R′=P1
a1−→ . . .

ai−→Pi
D,sc∨ia−−−−−→P ′

isca〈k−1〉−−−−−−→P ′′
isca〈k〉−−−−→Pi+2

D,sc∨ia,m−−−−−−−→Pi+2+m
isca,∗−−−−→ Pn.

For µ(R′) compared to µ(R) there are two possibilities:

If m = 0, then P(R′) = P1
a1−→ . . .

ai−→ Pi
D,sc∨ia−−−−−→ P ′ and a pair (k, 1) is removed and

perhaps some other pair (k,∞) is replaced by (k, d) for some d <∞.
If m > 0, then P(R′)=P1

a1−→ . . .
ai−→Pi

D,sc∨ia−−−−−→P ′
isca〈k−1〉−−−−−−→P ′′

isca〈k〉−−−−→Pi+2
D,sc∨ia,m−−−−−−−→

Pi+2+m and a pair (k,m+ 1) is replaced by two pairs (k,m) and (k − 1,∞).
In both cases µ(R′) < µ(R) and thus the induction hypothesis can be applied to R′.

(2) R′ = P1
a1−→ . . .

ai−→ Pi
D,sc∨ia,m′−−−−−−−→ P ′

isca〈k〉−−−−→ Pi+2
D,sc∨ia,m−−−−−−−→ Pi+2+m

isca,∗−−−−→ Pn where
m′ ≥ 1. For µ(R′) compared to µ(R) there are two possibilities:

If m = 0, then P(R′) = P1
a1−→ . . .

ai−→ Pi
D,sc∨ia,m′−−−−−−−→ P ′ and a pair (k, 1) is removed

and perhaps some other pair (k,∞) is replaced by (k, d) where d <∞.
If m > 0, then P(R′) =P1

a1−→ . . .
ai−→Pi

D,sc∨ia,m′−−−−−−−→P ′
isca〈k〉−−−−→Pi+2

D,sc∨ia,m−−−−−−−→Pi+2+m
and a pair (k,m+ 1) is replaced by (k,m).

In both cases µ(R′) < µ(R) and thus the induction hypothesis can be applied to R′.
(3) R′ = P1

a1−→ . . .
ai−→ Pi = Pi+2

D,sc∨ia,m−−−−−−−→ Pi+2+m
isca,∗−−−−→ Pn. For µ(R′) compared to

µ(R) there are two possibilities:
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If m = 0, then P(R′) is a prefix of P1
a1−→ . . .

ai−→ Pi and a pair (k, 1) is removed and
perhaps a pair (k,∞) is replaced by (k, d) where d <∞.
If m > 0, then P(R′) = P1

a1−→ . . .
ai−→ Pi = Pi+2

D,sc∨ia,m−−−−−−−→ Pi+2+m and a pair
(k,m+ 1) is removed, and perhaps a pair (k,∞) is replaced by (k, d) for some d <∞.

In both cases µ(R′) < µ(R) and thus the induction hypothesis can be applied to R′.
(4) R′ = P1

a1−→ . . .
ai−→ Pi

isca〈k〉−−−−→ Pi+2
D,sc∨ia,m−−−−−−−→ Pi+2+m

isca,∗−−−−→ Pn. For µ(R′) compared
to µ(R) there are two possibilities:

If m = 0, then P(R′) is a prefix of P1
a1−→ . . .

ai−→ Pi and a pair (k, 1) is removed and
perhaps some other pair (k,∞) is replaced by (k, d) where d <∞.
If m > 0, then P(R′) = P1

a1−→ . . .
ai−→ Pi

isca〈k〉−−−−→ Pi+2
D,sc∨ia,m−−−−−−−→ Pi+2+m and a pair

(k,m+ 1) is replaced by (k,m).

(5) R′ = P1
a1−→ . . .

ai−→ Pi
D,sc∨ia−−−−−→ Pi+2

D,sc∨ia,m−−−−−−−→ Pi+2+m
isca,∗−−−−→ Pn. For µ(R′) compared

to µ(R) there are two possibilities:

P(R′) is empty, since all aj−→-steps are D,sc∨ia−−−−−→-steps. Then R′ is of the right form.
P(R′) = P1

a1−→ . . .
ai−→ Pi

D,sc∨ia−−−−−→ Pi+2
D,sc∨ia,m−−−−−−−→ Pi+2+m. Then a pair (k,m) is

removed and another pair (k,∞) is replaced by a pair (k, d) where d <∞ (and d > m).
In this case µ(R′) < µ(R) and thus we can apply the induction hypothesis to R′. J

I Remark 4.5. Termination of the rewriting in the previous proof can also be shown
automatically by encoding the rules as an (extended) term rewriting system (TRS) and
then using a termination prover. Let K,N, and X be variables, S,Z be constructor symbols
encoding Peano-numbers, and isca, dscdia, and gen be defined function symbols. The
encoding of the rules (1)–(5) is straight-forward, except for rule (2) due to the constraint
n ≥ 1. It is encoded by three TRS-rules (2), (2’), (2”), where the first rule “guesses” the
number n, and the rules (2’) and (2”) generate the corresponding number of D,sc∨ia−−−−−→-steps:
isca(S(k), dscdia(X)) → dscdia(isca(K, isca(S(K), X))) (1)

isca(K, dscdia(X)) → gen(S(N), isca(K, X)) (2)
gen(S(N), X) → dscdia(gen(N, X)) (2′)

gen(Z, X) → X (2′′)

isca(Z, dscdia(X)) → X (3)
isca(Z, dscdia(X)) → isca(Z, X) (4)
isca(Z, dscdia(X)) → dscdia(Z, X) (5)

Thus the TRS has rules with free variables on the right hand side. However, the termination
prover AProVE [5] has shown innermost-termination of the TRS (which is sufficient), and
the certifier CeTA [24] has certified the termination proof1. A similar encoding approach
was already used for automating correctness proofs for program transformations in [15].

We conclude this subsection by showing that also the number of (ia)-reductions is
preserved by shifting internal transformations:

I Theorem 4.6. 1. If P dsr,n−−−→ Q then P sr,n−−→ Q. 2. If P sr,n−−→ Q then P dsr,n−−−→ Q′
isca,∗−−−−→ Q.

Proof. Part (1) holds, since every dsr−−→-step is also an sr−→-step. For part (2), let P =
P0

sr−→ P1 . . .
sr−→ Pn = Q. Corollary 3.3 shows that for ≤ i ≤ n − 1 Pi

sr−→ Pi+1 can
be written as Pi

C,sca,∗−−−−→ P ′i
D,ia−−−→ P ′′i

C,sca,∗−−−−→ Pi+1 for some processes P ′i , P ′′i and thus
P = P0

C,sca,∗−−−−→ P ′0
D,ia−−−→ P ′′0

C,sca,∗−−−−→ P1 . . . Pn−1
C,sca,∗−−−−→ P ′n−1

D,ia−−−→ P ′′n−1
C,sca,∗−−−−→ Pn = Q.

Proposition 4.4 shows that there exists a process Q′ s.t. P D,ia∨sc,∗−−−−−−→ Q′
isca,∗−−−−→ Q. The

1 the termination proof is available at http://www.ki.cs.uni-frankfurt.de/persons/sabel/picalc.html

WPTE’14

http://www.ki.cs.uni-frankfurt.de/persons/sabel/picalc.html


60 Structural Rewriting in the π-Calculus

construction in the proof of Proposition 4.4 together with the diagrams in Lemmas 4.2 and
4.3 imply that no D,ia−−−→ transformation is eliminated or introduced. Thus P D,ia∨sc,∗−−−−−−→ Q′

must contain exactly n D,ia−−−→-transformations and thus it is also a sequence P dsr,n−−−→ Q′. J

4.2 Removing Internal Conversions from Barbs

In this section we show that P ≡�µ also implies that P D,sc,∗−−−−→ P ′ s.t. P ′ �µ. Let F -contexts
be the class of contexts that do not have a hole below an input- or output prefix, i.e.

F ∈ F ::= [·] | !F | F |||P | P |||F | νx.F where x ∈ N and P is a process

We say that F ∈ F captures the name x ∈ N iff the hole of F is in scope of a restriction νx.

I Lemma 4.7. If P ≡ νX .(π.Q |||R), then there exists F ∈ F , a prefix π′, and process Q′,
s.t. P = F [π′.Q′] and fn(π) ∩ X = fn(π′) ∩ fn(P ).

Proof. Let P0
C,sca,n−−−−−→ Pn = νX .(π.Q |||R). We use induction on n. If n = 0 then the claim

holds, since νX .([·] |||R) is an F-context. If n > 0 let P0
C,sca−−−→ P1

C,sca,n−1−−−−−−→ νX .(π.Q |||R).
The induction hypothesis shows that P1 = F1[π1.Q1] s.t. fn(π) ∩ X = fn(π1) ∩ fn(P1).
Inspecting all possibilities for the step P0

C,sca−−−→ P1, shows that P0 = F0[π0.Q0] for some
F -context F0, and where π0 is π1 but perhaps with a renaming of variables due to α-renaming.
However, C,sca−−−→-transformation can neither capture free names nor move bound names out
of their scope, and thus the claim of the lemma holds. J

I Lemma 4.8. If P = F [π.Q] for some F ∈ F , prefix π, and process Q, then P
D,sc,∗−−−−→

νX .(π′.Q′ |||R) s.t. fn(π) ∩ fn(F [π.Q]) = fn(π′) ∩ X .

Proof. We use structural induction on F . If F is empty, then P is of the required form.

If F = F ′ |||R then by the induction hypothesis (and since [·] |||R is a D-context):
F ′[π.Q] |||R

D,sc,∗−−−−→ (νX .(π′.Q′ |||R′)) |||R s.t. fn(π) ∩ fn(F [π.Q]) = fn(π′) ∩ X . Suppose
X = {x1, . . . , xm} and let Y := {y1, . . . , ym} be fresh names, and [~y/~x] be the substitution
[y1/x1, . . . , ym/xm]. We can extend this reduction as follows: (νX .(π′.Q′ |||R′)) |||R

=α (νY.(π′[~y/~x].Q′[~y/~x] |||R′[~y/~x])) |||R
D,sc,nuup,∗−−−−−−−−→ (νY.((π′[~y/~x].Q′[~y/~x] |||R′[~y/~x]) |||R))

D,sc,assocr−−−−−−−→ (νY.(π′[~y/~x].Q′[~y/~x] ||| (R′[~y/~x] |||R))). Clearly, only bound names of π′ are
renamed and thus the condition on the names holds.
If F = R |||F ′ then the reasoning is analogous to the previous case.
If F = νx.(F ′) then by the induction hypothesis (F ′[π.Q]) D,sc,∗−−−−→ (νX .(π′.Q′ |||R′)) where
fn(π) ∩ fn(F ′[π.Q]) = fn(π′) ∩ X . The same reduction can be performed in the D-context
νx.([·]): νx.(F ′[π.Q]) D,sc,∗−−−−→ νx.(νX .(π′.Q′ |||R′)) and occurrences of x in π and π′ are
captured for both processes.
If F = !F ′ then by the induction hypothesis F ′[π.Q] D,sc,∗−−−−→ (νX .(π′.Q′ |||R′)) where
fn(π)∩fn(F ′[π.Q]) = fn(π′)∩X . Suppose that X = {x1, . . . , xm} and let Y = {y1, . . . , ym}
be fresh names, [~y/~x] be the substitution [y1/x1, . . . , ym/xm], and P0 be an α-renamed copy
of F ′[π.Q]. Then !F ′[π.Q] D,sc,replunfold−−−−−−−−−−→ F ′[π.Q] ||| !P0

D,sc,∗−−−−→ (νX .(π′.Q′ |||R′)) ||| !P0

=α (νY.(π′[~y/~x].Q′[~y/~x] |||R′[~y/~x])) ||| !P0
D,sc,nuup,∗−−−−−−−−→ νY.((π′[~y/~x].Q′[~y/~x] |||R′[~y/~x]) ||| !P0)

D,sc,assocr−−−−−−−→ νY.(π′[~y/~x].Q′[~y/~x] ||| (R′[~y/~x] ||| !P0)). The last process is of the required form
and free names of π′ remain free in π′[~y/~x]. J



D. Sabel 61

Combining Lemmas 4.7 and 4.8 results in:

I Theorem 4.9. If P ≡ νX .(π.Q |||R) then P
D,sc,∗−−−−→ νX ′.(π′.Q′ |||R′) s.t. fn(π) ∩ X =

fn(π′) ∩ X ′.

I Corollary 4.10. For all x ∈ N and µ ∈ {x, x}: P ≡�µ iff P
D,sc,∗−−−−→ Q and Q �µ.

Proof. This follows since D,sc,∗−−−−→ ⊂ ≡, and from Theorem 4.9. J

4.3 Coincidence of ∼ and ∼D

We now prove our main result, by first showing that the observation predicates ↓µ,⇓µ remain
unchanged if sr−→ is replaced by dsr−−→. This implies that ∼ = ∼D.

I Proposition 4.11. ↓µ = ↓D,µ.

Proof. We have to show two parts:

If P ↓D,µ, then P
dsr,n−−−→ Q

D,sc,∗−−−−→ Q′ and Q′ �µ. Theorem 4.6 shows that P sr,n−−→ Q and
Corollary 4.10 shows that Q≡�µ. Thus we have P ↓µ.
If P ↓µ then P sr,n−−→ Q∧Q≡�µ. Theorem 4.6 shows that P dsr,n−−−→ Q′

isca,∗−−−−→ Q, Lemma 3.2
implies that Q′≡�µ, and by Corollary 4.10 Q′ dsr,∗−−−→ Q′′ s.t. Q′′ �µ. This shows P ↓D,µ. J

I Proposition 4.12. ⇓µ = ⇓D,µ.

Proof. We show the converse, i.e. ↑µ = ↑D,µ. Proposition 4.11 already implies⇑µ =⇑D,µ.

Let P be a process with P ↑D,µ. Then P
dsr,n−−−→ Q and Q⇑D,µ. Theorem 4.6 shows that

P
sr,n−−→ Q. Since Q⇑D,µ ⇐⇒ Q⇑µ, this implies P ↑µ.

If P ↑µ, then P
sr,n−−→ Q and Q⇑µ. Theorem 4.6 shows that P dsr,n−−−→ Q′

isca,∗−−−−→ Q. This
also implies Q′ ≡ Q and thus Q′⇑µ. Since Q′⇑D,µ ⇐⇒ Q′⇑µ, this shows P ↑D,µ. J

The definitions of ∼ and ∼D only differ in the used observation predicates. In the two
previous propositions we have shown, that the observation predicates are identical, and thus:

I Theorem 4.13. ∼ = ∼D.

A consequence of the previous theorem and Proposition 2.11 is:

I Corollary 4.14. If P ≡ Q then P ∼D Q.

5 Conclusion

We have defined a reduction strategy for the synchronous π-calculus which makes conversions
w.r.t. structural congruence explicit by reduction rules, and uses a restricted set of those
conversions. We have shown that the new reduction strategy does not change the semantics
of processes w.r.t. may- and should-testing equivalence. For further research, we may use the
new reduction strategy for proving correctness of process transformations, e.g. automated
computation of overlappings between transformation steps and D-standard reductions. Also
extensions of the π-calculus, may be the topic of further research.
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Abstract
This paper presents a call-by-need polymorphically typed lambda-calculus with letrec, case, con-
structors and seq. The typing of the calculus is modelled in a system-F style. Contextual
equivalence is used as semantics of expressions. We also define a call-by-name variant without
letrec. We adapt several tools and criteria for recognizing correct program transformations to
polymorphic typing, in particular an inductive applicative simulation.
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mantics of Programming Languages, D.3.1 Formal Definitions and Theory

Keywords and phrases functional programming, polymorphic typing, contextual equivalence,
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1 Introduction

The goal of this paper is to present theoretical tools for recognizing correct program trans-
formation in polymorphically typed, lazy functional programming languages like Haskell [4].
The intention is to take care of all program constructs of Haskell with operational significance.
Thus the set of constructs like abstractions, applications, constructors, and case-expressions
has to be extended by seq, the sequential-evaluation operator available in Haskell.

Our notion of correctness is based on the contextual equivalence, which equates programs
if their termination behavior is identical if they are plugged in any surrounding larger program
(i.e. any program context). Early work on the semantics of call-by-need evaluation can
be found e.g. in [7]. Deep analyses of the contextual semantics of Haskell’s core-language
by investigating extended lambda-calculi were done e.g. in [8, 21, 20], but all these works
consider the untyped variant of the core language.

In untyped calculi all program contexts have to be considered for the contextual equivalence
while in typed calculi only typed programs are compared and only correctly typed contexts
have to be considered. Hence in the typed setting the set of testing contexts is a subset of the
used contexts in the untyped setting. Consequences are that correct program transformation
in the untyped calculi are also correct in the typed calculi (provided that the transformation
is type-preserving) and more importantly that typed calculi allow more correct program
transformations than untyped calculi since the set of contexts is smaller and thus the
contextual equivalence is less discriminating than in the untyped calculi.

Thus it is reasonable to also explore the semantics and the correctness of program
transformations of typed program calculi. There are also some investigations in calculi with
polymorphic types, letrec and seq [22] adapting parametricity to polymorphic calculi with
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Type variables: a ∈ A where A is the set of type variables
Term variables: x, xi ∈ X where X is the set of term variables
Types: τ ∈ Typ := a | (τ1 → τ2) | (K τ1 . . . τar(K))
Polymorphic types: ρ ∈ PTyp := τ | λa.ρ

Expressions: e ∈ ExprF := x : ρ | u | (e τ) | (e1 e2) | (c : τ e1 . . . ear(c))
| (seq e1 e2) | letrec x1 : ρ1 = e1, . . . , xn : ρn = en in e
| caseK e of (p1 -> e1) . . . (pn -> en)
where there is a pattern p for every constructor in DK

Polymorphic expressions: u ∈ PExprF := x : λa.ρ | λx : τ.e | (u τ) | Λa.u
Case-patterns: p := (c : τ x1 : τ1 . . . xar(c) : τar(c))

where xi are different term variables

Figure 1 Types and expressions of the language LF .

seq, but not analyzing program transformations in depth. System F polymorphic calculi
were first described in [3], are used in programming languages [10], and a variant of it is used
in a Haskell compiler [4, 23].

In this paper we focus our investigations on a polymorphically typed calculus and thus
we introduce a polymorphically typed lambda-calculus LF with letrec, case, constructors
and seq that models sharing on the expression level. The (predicative) polymorphism in the
calculus is modelled in a system-F style by type abstractions. Predicative typing shows up in
the formation rule for application, where the argument is not permitted to be polymorphic.
As a second calculus, we present a call-by-name calculus LP without letrec, together with a
fully abstract translation T : LF → LP . There are type-erasing translations into untyped
variants of the calculi (see [20]).

typed: LF
T //

ε
��

LP

εP
��

untyped: LLR in [20] Llcc in [20]

The results in this paper are: The correctness of a large set of program transformations in
LF and LP (see Corollary 4.5 and Proposition 5.3). By stand-alone proofs in the respective
calculi we obtain a context lemma in LF (Proposition 4.7); and a sound and complete
applicative simulation 4P in LP (Theorem 5.6), which implies a ciu-Theorem 5.9 as a
replacement for the context-lemma in LP . By analogy, and since the calculi are deterministic,
we obtain that the fixpoint operators for 4P are continuous, and so 4P = 4P,ω where the
latter is defined inductively (see Theorem 4.10). Using the fully abstract typed translation
T , the results in LP can be transferred to LF , using the methods on Q-similarity in [20].

2 Syntax of the Polymorphic Typed Call-By-Need Lambda Calculus

We define the polymorphically typed language LF which employs cyclic sharing using a letrec
[2] and is like a core-language of Haskell [4], and uses ideas of system-F polymorphism. The
syntax of types and expressions is shown in Fig. 1. There are two classes of types. Types
τ ∈ Typ are like extended monomorphic types, where type variables are allowed, but are
treated more or less as constants. Polymorphic types ρ ∈ PTyp allow to explicitly quantify
type variables by λ. Expressions are built from variables (which always occur with their
type), abstractions, applications, type abstractions and applications, seq-expressions to
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e : τ ′

(λx : τ.e) : τ → τ ′
e : ρ

Λa.e : λa.ρ

e : λa.ρ

(e τ) : ρ[τ/a]
e : τ1 → τ2 e′ : τ1

(e e′) : τ2

e1 : ρ1 . . . en : ρn e : ρ
(letrec x1 : ρ1 = e1, . . . , xn : ρn = en in e) : ρ

e1 : ρ e2 : ρ′

(seq e1 e2) : ρ′

e1 : τ1, . . . , en : τn τ = τ1 → . . .→ τn → τn+1
c : λa1, . . . , am.τ

′′ is the general type of c
there are τ ′1, . . . , τ ′m : τ ′′[τ ′1/a1, . . . , τ

′
m/am] = τ

(c : τ e1, . . . en) : τn+1

e : τ pi : τ ei : ρ
(caseK e of (p1 -> e1) . . . (pn -> en)) : ρ

Figure 2 Typing Rules for LF .

model strict evaluation, recursive letrec, constructor applications and case-expressions.
We assume that there are type-constructors K given with their respective arity, denoted
ar(K), similar as Haskell-style data- and type constructors (see [9]). We assume that the
constant type constructors Bool, Nat and the unary List are already defined. For every
type-constructor K of arity ar(K), there is a set DK 6= ∅ of data constructors, such that
K1 6= K2 =⇒ DK1 ∩ DK2 = ∅. Every (data) constructor c of K comes with a type
λa1, . . . , aar(K).τ1 → . . . → τar(c) → K a1 . . . aar(K). We assume that the following is
available: DBool = {True, False}, with True : Bool, False : Bool, DList = {Nil, Cons},
with Nil : λa.List a, Cons : λa.a→ List a→ List a, and DNat = {0, Succ}, where 0 : Nat
and Succ : Nat→ Nat.

The scoping is as expected: For expressions, λx, Λa, (p → . . .) open a scope, and
letrec opens a recursive scope. For types, λa opens a scope. Types of the expressions are
(generalized) monomorphic and the polymorphic aspect is the type computation via type
abstractions and beta-reduction for type applications. For the reduction, the idea is that
types could be omitted from reduction without any change in the operational reduction
sequence (see Sect. 4.1). The body u of a type abstractions Λa.u are syntactically restricted
(see Fig. 1), which implies that reduction cannot generate a letrec-expression as its body.
We will explain the reason for this restriction in Remark 3.5 below. Note that the syntax
permits a polymorphic non-termination expression (i.e. a “bot”).

I Example 2.1. An example is the polymorphic combinator K := Λa.Λb.λx : a.λy : b.x. It
is polymorphic in the type variables a, b.

I Remark 2.2. It is known that there is a practically problematic danger of growth of type
expressions during reduction, as reported in [23], but this could be defeated by using dags
for types. We could model this by a let for types, which, however, would lead to notational
overhead. So, for simplicity, we treat the types in a non-sharing way.

A generalized monomorphic type-system is used to to form correctly typed expressions
where λ is also permitted in the syntax of types. The typing rules are in Fig. 2. Typing the
polymorphic combinator K := Λa.Λb.λx : a.λy : b.x. results in λa.λb.a→ (b→ a).

I Definition 2.3 (Contexts). An LF -context C ∈ CtxtF is an LF -expression that has a single
occurrence of the hole [· : ρ] of (polymorphic) type ρ and is itself well-typed.

This represents contexts, where the hole maybe at polymorphic expressions.
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(e1 e2)sub∨top → (esub
1 e2)sub e1 6= Λa.e′

(letrec Env in e)top → (letrec Env in esub)sub

(letrec x = e,Env in C[xsub]) → (letrec x = esub,Env in C[xsub])
(letrec x = e1, y = C[xsub],Env in e2) → (letrec x = esub

1 , y = C[xsub],Env in e2)
(seq e1 e2)sub∨top → (seq esub

1 e2)sub

(case e of alts)sub∨top → (case esub of alts)sub

((Λa.u) τ)sub∨top → ((Λa.esub) τ)sub; then stop with success
(Λa.u)sub∨top → (Λa.usub)sub

sub ∨ top means label sub or top.

Figure 3 Searching the normal-order redex using labels.

3 Small-Step Operational Semantics of LF

A reduction step consists of: (1) finding a normal-order redex, then (2) applying a reduction
rule. Instead of defining step (1) by a syntactic definition reduction contexts – which is
notationally complex in LF (see e.g. [21] for a similar language), we define the search by a
labeling algorithm which uses two atomic labels sub, top, where top means the top-expression,
and sub means “subterm” (in a letrec-expression). For an expression e the labeling algorithm
starts with etop, where e has no further inner labels top or sub. Then the rules of Fig. 3 are
applied exhaustively. The role of top and sub is to prevent to label positions inside deep
letrec-expressions. The labeling algorithm fails, if a loop is detected, which happens if a
to-be-labeled position is already labeled sub, and otherwise, if no more rules are applicable
or if the labeling algorithm has to stop, it succeeds. If we apply the labeling algorithm to
contexts, then the contexts where the hole will be labeled with sub, or top are called the
reduction contexts. We denote reduction contexts with R. Note that for the ease of reading,
we omit the types of variables and constructors in the notation.

I Definition 3.1. Normal-order reduction rules are defined in Fig. 4, where we assume that
the labeling algorithm was used successfully before. Otherwise no normal-order reduction is
applicable. In the presentation of the rules we only present the to-be-reduced subexpression.
We also assume that the topmost redex according to the rule is the normal-order redex.

Note that the guiding principle in the cp-rules is to copy only values, i.e. polymorphic
abstractions or cv-expressions. It is easy to verify that normal-order reduction is unique.

I Definition 3.2. A cv-expression is an expression of the form (c x1 . . . xn) where c is a
constructor and xi are variables. A polymorphic abstraction is an expression of the form
Λa1, . . . ,Λan.u, where n ≥ 0 and u is an abstraction. Let W ∈ WCtxt denote contexts
according to the grammar W ∈ WCtxt ::= [·] | (letrec Env in [·]). A weak head normal
form (WHNF) is a polymorphic abstraction, or of the form W [w], where w is a constructor
application or an abstraction.

I Lemma 3.3. Reduction does not change the type of expressions.

I Example 3.4. As an example we reduce an expression including the polymorphic combin-
ator K := Λa.Λb.λx : a.λy : b.x. Applying it to the type Bool, the constant True of type
Bool and a type variable a′ is as follows: (Λa.Λb.λx : a, λy : b.x) Bool a′ True results after
three normal-order reductions in (letrec x : Bool = True in λy : a′.x).
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(lbeta) ((λx : τ.e1)sub e2)→ letrec x : τ = e1 in e2
(Lbeta) ((Λa.u)sub τ)→ u[τ/a]
(cp-in) letrec x = vsub,Env in C[xsub]→ letrec x = v,Env in C[v]

where v is a polymorphic abstraction, or a cv-expression
(cp-e) letrec x = vsub, y = C[xsub],Env in e

→ letrec x = v, y = C[v],Env in e
where v is a polymorphic abstraction, or a cv-expression

(cpcx-in) letrec x = (c : τ e1 . . . en)sub,Env in C[xsub]
→ letrec x = (c : τ x1 . . . xn), x1 : τ1 = e1, . . . , xn : τn = en,Env

in C[(c x1 . . . xn)] where the types τi are computed as the type of ei
(cpcx-e) letrec x = (c : τ e1 . . . en)sub, y = C[xsub],Env in e

→ letrec x = (c : τ e1 . . . en), x1 : τ1 = e1, . . . , xn : τn = en, y = C[(c x1 . . . xn)],
Env in e where the types τi are computed as the type of ei

(case) (case (c e1 . . . en)sub of . . . ((c y1 : τ1 . . . yn : τn) -> e) . . .)
→ letrec y1 : τ1 = e1, . . . , yn : τn = en in e

(case) (case csub of . . . (c -> e) . . .)→ e

(seq) (seq vsub e)→ e if v is a constructor application or a polymorphic abstraction
(llet-e) letrec Env1, x = (letrec Env2 in e1)sub in e2

→ letrec Env1,Env2, x = e1 in e2
(llet-in) letrec Env1 in (letrec Env2 in e)sub → letrec Env1,Env2 in e
(lapp) ((letrec Env in e1)sub e2)→ letrec Env in (e1 e2)
(lseq) (seq (letrec Env in e1)sub e2)→ letrec Env in (seq e1 e2)
(lcase) (case (letrec Env in e)sub of alts)→ letrec Env in (case e of alts)

Figure 4 Normal-order rules.

I Remark 3.5. On typed and untyped sharing: There is a constellation that has to be
excluded (by syntax): expressions of the form e = Λa1. . . . an.(letrec Env in t). The
technical problem is that the (cp)-rules want to copy these expressions. However, in the
untyped case, this is not possible, but instead a let-shifting can be done. In the typed case
the scoping of the types prevents this let-shifting, and so the expression is stuck: it cannot be
further reduced. Analyzing the usage at runtime of the expressions in the environment Env,
it turns out that it does not make sense to share them among differently typed copies, since
it is not type-safe. So the intention can only be to copy Env together with the abstraction.
But then the elements in Env are not really useful, since they must have all types. Due to
this conflict with the untyped reduction, the body e in Λa.e is syntactically restricted to
expressions u ∈ PExprF . I.e., letrec-expressions and also expressions which may reduce to
a letrec-expression (e.g. an application) are forbidden for e. If e is a variable, then it must
have a type of the form λ.ρ which again ensures that the variable cannot be replaced by
arbitrary expressions. For the same reasons, we also forbid constructors at the position for e
in Λa.e. Thus allowed expressions for e are type applications, abstractions and polymorphic
variables in Λ-bodies, which also enforces potential reductions in the body. We permit only
Λa1. . . . an.λ.x.e as proper polymorphic WHNFs.

3.1 Contextual Equivalence
In this section we define contextual equivalence for typed expressions. We introduce conver-
gence as the observable behavior of expressions. Expressions are contextually equivalent if
their convergence behavior is indistinguishable in all program contexts.
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I Definition 3.6. Let e ∈ LF . A normal order reduction sequence of e is called a (normal-
order) evaluation if the last term is a WHNF. We write e↓e′ (e converges) iff there is an
evaluation starting from e ending in WHNF e′ (we omit e′, if it is of no interest). Otherwise,
if there is no evaluation of e, we write e⇑.

I Definition 3.7 (Contextual Preorder and Equivalence). Contextual preorder ≤F and contex-
tual equivalence ∼F are defined for equally typed expressions. For e1, e2 of type ρ:

e1 ≤F e2 iff ∀C[· : ρ] : τ : If C[e1] and C[e2] are closed, then (C[e1]↓ =⇒ C[e2]↓)
e1 ∼F e2 iff e1 ≤F e2 ∧ e2 ≤F e1

Note that we are only interested in top-expressions of closed type. It is standard to show
that ≤F is a precongruence, i.e. a compatible partial order, and that ∼F is a congruence,
i.e. a compatible equivalence relation. Also, a progress lemma holds for closed expressions e:
If no reduction is possible, then e is a WHNF, or the search for a redex fails.

4 Correctness of Program Transformations and Translations

A typed program transformation P is a binary relation on LF -expressions, such that (e1, e2) ∈
P is only valid for well-formed e1, e2 of equal type. The restriction of P to a type ρ is denoted
with Pρ. A program transformation P is called correct iff for all ρ and all (e1, e2) ∈ Pρ,
the contextual equivalence relation e1 ∼F e2 holds. Analogously, for untyped programs, a
program transformation P is a binary relation on untyped expressions and it is correct if
P ⊆ ∼. Disproving the correctness of a (typed or untyped) program transformation is often
easy, since a counter example consisting of a program context which distinguishes two related
expressions by their convergence behavior is sufficient.

I Definition 4.1. Let L1, L2 be two (typed or untyped) calculi with a notion of expressions,
contexts, may-convergence ↓i, and contextual preorder ≤i. A translation ψ from calculus L1
in L2 (with equal set of types) mapping expressions to expressions and contexts into contexts
where types are retained and ψ([·]) = [·] is 1. convergence equivalent if e↓1 ⇐⇒ ψ(e)↓2;
2. compositional if ψ(C[e]) = ψ(C)[ψ(e)]; 3. adequate if ψ(e1) ≤2 ψ(e2) =⇒ e1 ≤1 e2;
and 4. fully abstract if ψ(e1) ≤2 ψ(e2) ⇐⇒ e1 ≤1 e2.

4.1 Importing Results from Untyped Calculi
The untyped language LLR has the same syntax as LF except that variables have no type,
and that type abstractions Λa.e and type applications (e τ) are not permitted. The normal
order reduction for LLR is defined as for LF where the rule (Lbeta) is not used. The semantics
of LLR was investigated e.g. in [20, 21].

I Definition 4.2. The translation ε translates LF -expressions into untyped expressions LLR
where we assume that the data types and the constructors are the same. It is defined as
ε(Λa.e) := ε(e), ε(e τ) := ε(e), and on the other constructs ε acts homomorphically, removing
type labels and types.

Since the untyped reduction is the same as the typed reduction if the types and (Lbeta)-
reductions are ignored, and since the untyped WHNFs are exactly the typed WHNFs with the
types removed, ε is convergence equivalent. Since it is also independent of the surrounding
context, it is also compositional:

I Lemma 4.3. The translation ε is convergence equivalent and compositional.
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(gc) (letrec x1 = e1, . . . , xn = en in e)→ e if no xi occurs free in e
(gc) (letrec x1 = e1, . . . , xn = en, y1 = e′1, . . . , ym = e′m in e)

→ (letrec y1 = e′1, . . . , ym = e′m in e) if no xi occurs free in e nor in any e′j
(gcp) (letrec x = e,Env in C[x])→ (letrec x = e,Env in C[e])
(gcp) (letrec x = e1, y = C[x],Env in e2)→ (letrec x = e1, y = C[e1],Env in e2)
(gcp) (letrec x = C[x],Env in e)→ (letrec x = C[C[x]],Env in e)

Figure 5 Further program transformations.

This implies that it is also adequate (see for example [17]).

I Corollary 4.4. The translation ε is adequate, which means that equivalences from LLR
also hold in LF .

Proving correctness of program transformations is in general a hard task, since all contexts
need to be taken into account. In e.g. [8, 21, 12] methods to prove correctness of program
transformations for untyped letrec calculi were developed. As a first step we will use the
result of [21] to lift untyped program equivalences into the typed calculus. In the calculus
introduced in [21] the normal order reduction is slightly different, but it is easy to show that
these differences do not change the convergence behavior of untyped expressions (a proof of
this coincidence for an extended calculus can be in [15], see also [20]). This implies that all
reduction rules of Fig. 4 and the optimizations garbage collection (gc) and general copying
(gcp) (see Fig.5) are correct program transformations for LF (for (gcp) see [16]).

I Corollary 4.5. The reductions rules from Figs. 4 and 5 are correct program transformations
in LF , and can be used in any context.

4.2 Context Lemma
For the context lemma we first define the ≤-relation for reduction contexts. A context lemma
for a similar polymorphic calculus with a (more complex) type labeling but without explicit
type abstractions and applications is in [15].

I Definition 4.6. For a polymorphic type ρ and e1, e2 of type ρ, let e1 ≤F,R e2 hold if for
all reduction contexts R[· : ρ] such that R[e1],R[e2] are closed: R[e1]↓ =⇒ R[e2]↓.

I Proposition 4.7 (Context Lemma for LF ). Let ρ be a polymorphic type and e1, e2 be of
type ρ. Then e1 ≤F,R e2 ⇐⇒ e1 ≤F e2.

The proof is standard, e.g. it follows the technique explained in [18]. However, the proof
technique relies on the proper use of sharing. For instance, the proof technique breaks down
in a call-by-name calculus (like LP in Sect. 5).

The context lemma 4.7 immediately implies:

I Corollary 4.8. If e1, e2 are closed expressions of equal type with e1⇑, e2⇑, then e1 ∼F e2.

4.3 Inductive Similarity For LF

As a further proof tool for showing contextual equivalences, we define an improved similarity
definition in LF , which is often superior to the context lemma.
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I Definition 4.9. We define 4ω :=
⋂
n≥0 4n where for n ≥ 0, 4n is defined on closed

LF -expressions e1, e2 of the same type as follows:

1. e1 40 e2 is always true.
2. e1 4n e2 for n > 0 holds if the following conditions hold:

a. if e1↓Λa.e′1, then e2↓Λa.e′2, and for all τ : e′1[τ/a] 4n−1 e
′
2[τ/a].

b. if e1↓W[λx : τ.e′1], then
e2↓W′[λx : τ.e′2] and for all closed e : τ : W[λx.e′1] e 4n−1 W′[λx.e′2] e.

c. if e1↓W[c e′1 . . . e′m], then e2↓W′[c e′′1 . . . e′′m] and for all i: W[e′i] 4n−1 W′[e′′i ].

The proof of soundness (and completeness) of inductive similarity w.r.t. contextual
preorder can be constructed similar to an analogous proof in the untyped case (see [20]). We
sketch the proof: The language LP is a polymorphically typed call-by-name lambda-calculus
with fixpoint combinators, but no letrec (see Sect. 5). In LP conincidence of contextual
preorder and inductive similarity can be shown by proving soundness and completeness of an
applicative similarity using Howe’s method (Theorem 5.6). Using some further arguments
which rely on the continuity of the fixpoint combinators show the coincidence of applicative
and inductive similarity (Theorem 5.8). Then a translation T : LF → LP is defined (below in
Sect. 5.2) which replaces letrec-expressions by fixpoint combinators. Since the translation
T is fully abstract and surjective on the equivalence classes of contextual equivalence,
Theorem 5.8 can be lifted into LF which shows the following theorem:

I Theorem 4.10. 4oω = ≤F
As a corollary we show that ε is not fully abstract.

I Proposition 4.11. The translation ε is not fully abstract.

Proof. In LF the expressions e1 = λx : Bool.caseBool x of (True ->x) (False ->x) and
e2 = λx : Bool.x are contextually equivalent. This follows by Theorem 4.10 and since the
possible arguments can be classified as equivalent to ⊥ (a nonterminating expression of type
Bool), True or False, and the result is equivalent or equal in all cases. However, ε(e1) and
ε(e2) are different in L, which can be seen by applying them to λx.x. J

As an example, we show the equivalence of other polymorphic expressions.

I Proposition 4.12. In the language LF the two expressions e1 = Λa.λx : (List a).x and
e2 = Λa.λx : (List a).case x of (Nil -> Nil) (Cons y1 y2 -> Cons y1 y2) of polymorphic
type λa.List a→ List a are contextually equivalent.

Proof. We use inductive similarity. Application to τ yields two monomorphic abstractions.
Further application can only be to arguments without WNHF, or with WHNF W[Nil]
or W[Cons e′1 e

′
2]. In all cases, the results are obviously contextually equivalent and thus

applicative similar. J

5 A Call-by-Name Polymorphic Lambda Calculus

We present a call-by-name polymorphic lambda calculus LP as a second calculus, with
built-in multi-fixpoint constructions Ψ for representing mutual recursive functions.

We argue that there is a fully abstract translation T from LF into the calculus LP . To
demonstrate the power, we show that there is a polymorphic applicative simulation in LP
that is useful for recognizing equivalences. The calculus LP is related to the lazy lambda
calculus [1], however LP is more expressive and typed.
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Polymorphic expressions: u ∈ PExprP ::= x : λa.ρ | λx : τ.e | (u τ) | Λa.u
Expressions: e, ei ∈ ExprP ::= x : ρ | u | (e τ) | (e1 e2) | (c : τ e1 . . . ear(c))

| (caseK e of alts) | (seq e1 e2) | Ψi,nx : ρ.e
Reduction contexts: RP ∈ RP ::= [·] | (RP e) | caseK RP of alts | seq RP e

Normal order reduction:
(rnbeta) RP [((λx.e1) e2)] P−→ RP [e1[e2/x]]
(rncase) RP [caseK (c e1 . . . ear(c)) of . . . ((c x1 . . . xar(c)) -> e) . . .)]

P−→ e[e1/x1, . . . , ear(c)/xar(c)]
(rnseq) RP [seq v e] P−→ RP [e], if v is an LP - WHNF.
(rntype) RP [(Λa.e) τ ] P−→ RP [e[τ/a]]
(rnfix) RP [Ψi,nx.e]

P−→ RP [(ei[Ψ1,nx.e/x1, . . . ,Ψn,nx.e/xn])]

Figure 6 Syntax and normal order reduction P−→ of LP .

5.1 The Calculus LP

I Definition 5.1. The calculus LP is defined as follows. The set ExprP of LP -expressions is
that of LF , where letrec is removed, see Fig.6. (Ψi,nx : ρ.e) is a family of multi-fixpoint-
operators, where 1 ≤ i ≤ n and where x means x1, . . . , xn, similarly for e.

The typing rules are according to Fig. 2 with the additional rule for the Ψ-operator:

for i = 1, . . . , n: ei : ρi, xi : ρi
(Ψi,nx : ρ.e) : ρi

WHNFs in LP are (polymorphic) abstractions Λa1. . . . .Λan.λx : ρ.e and constructor applica-
tions. In Fig. 6 the reduction rules and the normal order reduction P−→ for LP using reduction
contexts RP are given. The contextual preorder ≤P and contextual equality ∼P are defined
as above for the calculus LF , where convergence to LP -WHNFs and where holes in contexts
are permitted to have polymorphic type ρ, but the context itself must have plain type.

Note that our syntax permits a “polymorphic bot”: Ψ1,1 x:(λa.a).x. An example is poly-
morphic length of lists (type-labels in the notation are partially omitted):

length := (Ψ1,1len:List a→ Nat.Λa.λxs:List a.
case xs of (Nil -> 0) (Cons y ys -> Succ (len a ys)))

Our formulation is a bit more general than that in [10] for system F and ML, which
corresponds to Milner type checking, whereas our formulation permits differently typed
occurrences of a recursive polymorphic functions in its defining body, and so corresponds to
iterative (polymorphic) type checking.

5.2 On the Translation T : LF → LP

In order to define the typed translation T : LF → LP , we adapt the combined translation
from the untyped variant in [20].

I Definition 5.2. The translation T : LF → LP is defined as:
T (letrec x1 = e1; . . . , xn = en in e′) := T (e′)[(Ψ1,nx.f)/x1, . . . , (Ψn,nx.f)/xn] and where
fi = λx1, . . . xn.T (ei) for i = 1, . . . , n, and it is homomorphically on other constructs.
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I Proposition 5.3. The translation T : LF → LP is fully abstract and surjective on
contextual-equivalence classes.

Proof. This can be derived from the untyped version in [20]. J

For inheriting correct translations we again use a translation εP into an untyped call-by-
name calculus Llcc in [20] by forgetting the types (and allowing also untyped expressions),
and with εP (Ψ1,1x.s) = Y (εP (λx.s)), where Y is the untyped fixpoint combinator in Llcc.
Similarly, we can translate Ψi,n(. . .) using the multi fixpoint combinators in [20].

I Proposition 5.4. The translation εP : LP → Llcc is convergence equivalent and composi-
tional, hence adequate, but it is not fully abstract. The reduction rules of LP are correct.

Proof. Only the case of a type abstraction requires an extra argument. It is sufficient
that the contexts used for testing have the same type of the hole as the expressions. Then
adequacy of the translation εP can be used. J

5.3 Applicative Simulation in LP

In the following we use binary relations η on closed expressions (of the same type). We
need closing substitutions σ which are defined as mapping free variables (of plain type) to
closed expressions of the same type, and all type variables to plain types. This extension to
type variables is the key to apply applicative simulation also to polymorphic functions. The
open extension ηo of η is the relation on open expressions, where e1 η

o e2 is valid iff for all
substitutions σ where σ(e1), σ(e2) are closed, the relation σ(e1) η σ(e2) holds. We will also
use the restriction of a binary relation η to closed expressions which is denoted as ηc.

I Definition 5.5 (Applicative Similarity in LP ). Let η be a binary relation on closed LP -
expressions, where only expression of equal syntactic type can be related. Let FP be the
operator on relations on closed LP -expressions s.t. e1 FP(η) e2 holds iff

e1↓Pλx.e
′
1 =⇒

(
e2↓Pλx.e

′
2 and e′1 ηo e′2

)
e1↓P(c e′1 . . . e′n) =⇒

(
e2↓P(c e′′1 . . . e′′n) and the relation e′i η e′′i holds for all i

)
e1↓PΛa.e′1 =⇒

(
e2↓PΛa.e′2 and e′1 ηo e′2

)
Applicative similarity 4P is defined as the greatest fixpoint of the operator FP . Mutual

similarity 'P is defined as e1 'P e2 iff e1 4P e2 ∧ e2 4P e1.

Note that the operator FP is monotone, hence the greatest fixpoint 4P exists.
Howe’s method [5, 6] to show that 4P is a pre-congruence and equal to ≤cP can be applied

without unexpected changes, see also [11] and [20, Sect. 4.2] where the only extra feature is
the typing. For completeness, we show ≤cP ⊆ 4P by proving that contextual equivalence in
LP satisfies the fixpoint conditions of FP and then we use coinduction. By the properties of
4P this implies that ≤P ⊆ 4P also holds for open expressions.

I Theorem 5.6. ≤cP = 4P, and ≤P = 4oP.

Proof. Only the completeness part is missing. We have to analyze the three conditions of
Definition 5.5, where we use Proposition 5.4 several times.

1. If e1 ≤P e2, and e1↓Pλx : τ.e′1, then clearly e2↓Pλx : τ.e′2. Since beta-reduction is correct,
also for all closed expressions e : τ e1 e ≤P e2 e, since ≤P is a precongruence, and since
reduction sequences are correct w.r.t. ∼P ; thus e′1[e/x] ≤P e′2[e/x].
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2. If e1 ≤P e2 and e1↓P(c e′1 . . . e′n), then e2↓Pv2. Since ≤P is a precongruence, reduction
is correct, and using simple contexts like case [·] of ((c x1 . . . xn) -> True) . . . (p′ ->⊥)
and case [·] of ((c x1 . . . xn) ->xi) . . . (p′ ->⊥), we see that v2 is of the form (c e′′1 . . . e′′n),
where e′i ≤P e′′i for all i.

3. The last case is the type abstraction and type substitution. The same arguments as above
can be used, by plugging the expressions e1, e2 into a context ([·.] τ). J

5.4 Inductive Similarity For LP

We define the inductive version of applicative similarity in LP :

I Definition 5.7. We define 4P,ω :=
⋂
n≥0 4P,n where for n ≥ 0, 4P,n is defined on closed

LP -expressions e1, e2 of the same type as follows:

1. e1 4P,0 e2 is always true.
2. e1 4P,n e2 for n > 0 holds if the following conditions hold:

a. If e1↓Λa.e′1, then e2↓Λa.e′2, and for all τ : e′1[τ/a] 4P,n−1 e
′
2[τ/a].

b. if e1↓λx : τ.e′1 then e2↓λx : τ.e′2 and for all closed e : τ : e′1[e/x] 4P,n−1 e
′
2[e/x].

c. if e1↓(c e′1 . . . e′m) then e2↓(c e′′1 . . . e′′m) and for all i: e′i 4P,n−1 e
′′
i .

Proving continuity of the fixpoint operator of 4P as in (see [20]), we obtain:

I Theorem 5.8. 4oP,ω = ≤P

A corollary is a ciu-Theorem: Let e1 ≤ciu e2 for two LP -expressions e1, e2 of equal type
iff for all closed LP -reduction contexts RP , and all (well-typed) substitutions σ where σ(e1)
and σ(e2) are closed: RP [σ(e1)]↓ =⇒ RP [σ(e2)]↓.

I Theorem 5.9. ≤ciu = ≤P

Proof. We apply the knowledge about applicative simulation 4: If e1 4o e2, then for
all σ where σ(e1), σ(e2) are closed: σ(e1) 4 σ(e2). Since we already know that 4 is a
pre-congruence, we also obtain RP [σ(e1)] 4 RP [σ(e2)], and so RP [σ(e1)]↓ =⇒ RP [σ(e2)]↓.

We show that the ciu-relation implies 4o: For closed e1, e2 it holds: Since the calculus LP
is deterministic, it is sufficient to restrict the test to the contexts [·] e′1 . . . e′m for all m ≥ 0
and all closed e′i (see Theorem 5.8). So, if the ciu-condition for closed expressions holds, we
obtain e1 ≤P e2 and so e1 4 e2. The ciu-relation for non-closed e1, e2 is equivalent to the
open extension of 4, i.e., it implies e1 4o e2, and thus we have the equality: 4o = ≤ciu. J

6 Conclusion

Using a system-F-like extension of untyped extended lambda-calculi with case, constructors,
and seq, and call-by-need and call-byname variants, we present several tools for recognizing
correct transformations This could potentially be used in lazy functional programming
languages like Haskell.

Further research may be to investigate a polymorphic variant of (the non-deterministic
language) Concurrent Haskell with futures (CHF) [14, 13]. A non-deterministic extension of
LF and LP with amb appears unrealistic, since there are counterexamples for combinations
of letrec [19] and since call-by-name and call-need nondeterminism are very different.
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