
14th Workshop on Algorithmic
Approaches for Transportation
Modelling, Optimization, and
Systems

ATMOS’14, September 11th, 2014, Wrocław, Poland

Edited by

Stefan Funke and Matúš Mihalák

OASIcs – Vo l . 42 – ATMOS’14 www.dagstuh l .de/oas i c s

Editors
Stefan Funke Matúš Mihalák
Universität Stuttgart ETH Zurich
Stuttgart, Germany Zurich, Switzerland
funke@fmi.uni-stuttgart.de matus.mihalak@inf.ethz.ch

ACM Classification 1998
F.2 Analysis of Algorithms and Problem Complexity, G.1.6 Optimization, G.2.1 Combinatorics,
G.2.2 Graph Theory, G.2.3 Applications

ISBN 978-3-939897-75-0

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-75-0.

Publication date
September, 2014

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.ATMOS.2014.i

ISBN /978-3-939897-75-0 ISSN 2190-6807 http://www.dagstuhl.de/oasics

http://www.dagstuhl.de/dagpub/978-3-939897-75-0
http://www.dagstuhl.de/dagpub/978-3-939897-75-0
http://dnb.d-nb.de
http://dx.doi.org/10.4230/OASIcs.ATMOS.2014.i
http://www.dagstuhl.de/dagpub//978-3-939897-75-0
http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

iii

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 2190-6807

www.dagstuhl.de/oasics

ATMOS’14

http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

Contents

Preface
Stefan Funke and Matúš Mihalák . i

Delay-Robust Journeys in Timetable Networks with Minimum Expected Arrival Time
Julian Dibbelt, Ben Strasser, and Dorothea Wagner . 1

Shortest Path with Alternatives for Uniform Arrival Times: Algorithms and Experiments
Tim Nonner and Marco Laumanns . 15

Locating Battery Charging Stations to Facilitate Almost Shortest Paths
Esther M. Arkin, Paz Carmi, Matthew J. Katz, Joseph S. B. Mitchell, and
Michael Segal . 25

Online Train Shunting
Vianney Bœuf and Frédéric Meunier . 34

Engineering Graph-Based Models for Dynamic Timetable Information Systems
Alessio Cionini, Gianlorenzo D’Angelo, Mattia D’Emidio, Daniele Frigioni,
Kalliopi Giannakopoulou, Andreas Paraskevopoulos, and Christos Zaroliagis 46

Local Search for the Resource Constrained Assignment Problem
Markus Reuther . 62

A Coarse-To-Fine Approach to the Railway Rolling Stock Rotation Problem
Ralf Borndörfer, Markus Reuther, and Thomas Schlechte . 79

Mathematical programming models for scheduling locks in sequence
Ward Passchyn, Dirk Briskorn, and Frits C.R. Spieksma . 92

Simultaneous frequency and capacity setting for rapid transit systems with a competing
mode and capacity constraints

Alicia De-Los-Santos, Gilbert Laporte, Juan A. Mesa, and Federico Perea 107

Timing of Train Disposition: Towards Early Passenger Rerouting in Case of Delays
Martin Lemnian, Ralf Rückert, Steffen Rechner, Christoph Blendinger, and
Matthias Müller-Hannemann . 122

Speed-Consumption Tradeoff for Electric Vehicle Route Planning
Moritz Baum, Julian Dibbelt, Lorenz Hübschle-Schneider, Thomas Pajor, and
Dorothea Wagner . 138

14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’14).
Editors: Stefan Funke and Matúš Mihalák

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Preface

Running and optimizing transportation systems give rise to very complex and large-scale
optimization problems requiring innovative solution techniques and ideas from mathematical
optimization, theoretical computer science, and operations research. Since 2000, the series of
Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS)
workshops brings together researchers and practitioners who are interested in all aspects
of algorithmic methods and models for transportation optimization and provides a forum
for the exchange and dissemination of new ideas and techniques. The scope of ATMOS
comprises all modes of transportation.

The 14th ATMOS workshop (ATMOS’14) was held in connection with ALGO’14, hosted
by the University of Wrocław in Wrocław, Poland, on September 11, 2014. Topics of
interest for ATMOS’14 were all optimization problems for passenger and freight transport,
including, but not limited to, Demand Forecasting, Models for User Behavior, Design of
Pricing Systems, Infrastructure Planning, Multi-modal Transport Optimization, Mobile
Applications for Transport, Congestion Modeling and Reduction, Line Planning, Timetable
Generation, Routing and Platform Assignment, Vehicle Scheduling, Route Planning, Crew
and Duty Scheduling, Rostering, Delay Management, Routing in Road Networks, Traffic
Guidance. Of particular interest were papers applying and advancing the following techniques:
graph and network algorithms, combinatorial optimization, mathematical programming,
approximation algorithms, methods for the integration of planning stages, stochastic and
robust optimization, online and real-time algorithms, algorithmic game theory, heuristics for
real-world instances, simulation tools.

In response to the call for papers we received 26 submissions, all of which were reviewed
by at least three referees. The submissions were judged on originality, technical quality,
and relevance to the topics of the workshop. Based on the reviews, the program committee
selected the 11 papers which appear in this volume. Together, they quite impressively
demonstrate the range of applicability of algorithmic optimization to transportation problems
in a wide sense. In addition, Renato Werneck kindly agreed to complement the program
with an invited talk that was presented as a global key-note talk of ALGO’14.

We would like to thank the members of the Steering Committee of ATMOS for giving us
the opportunity to serve as Program Chairs of ATMOS’14, all the authors who submitted
papers, Renato Werneck for accepting our invitation to present an invited talk, the members
of the Program Committee and all the additional reviewers for their valuable work in selecting
the papers appearing in this volume, and the local organizers for hosting the workshop as
part of ALGO’14. We also acknowledge the use of the EasyChair system for the great help
in managing the submission and review processes, and Schloss Dagstuhl for publishing the
proceedings of ATMOS’14 in its OASIcs series.

For the second time in history of ATMOS, the program committee gave a Best-Paper
Award: The best paper of ATMOS’14 is "Online Train Shunting" by Vianney Bœuf and
Frédéric Meunier.

September, 2014
Stefan Funke

Matúš Mihalák

14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’14).
Editors: Stefan Funke and Matúš Mihalák

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Organization

Program Committee

Alberto Ceselli University of Milano, Italy
Stefan Funke (co-chair) University of Stuttgart, Germany
Marco Lübbecke RWTH Aachen, Germany
Juan Antonio Mesa University of Sevilla, Spain
Matuš Mihalák (co-chair) ETH Zurich, Switzerland
Matthias Müller-Hannemann University of Halle, Germany
Christian Reitwiessner TomTom NV, Germany
Marie Schmidt University Göttingen, Germany
Gabriele Di Stefano University of L’Aquila, Italy
Sabine Storandt University of Freiburg, Germany
Renato Werneck Microsoft Research, USA
Peter Widmayer ETH Zurich, Switzerland

Steering Commitee

Anita Schöbel Georg-August-Universität Göttingen, Germany
Alberto Marchetti-Spaccamela Università di Roma “La Sapienza”, Italy
Dorothea Wagner Karlsruhe Institute of Technology (KIT), Germany
Christos Zaroliagis University of Patras, Greece

List of Additional Reviewers

Kateřina Böhmová, Serafino Cicerone, Jochen Eisner, Mattia D’Emidio, Tobias Harks, Max
Klimm, Akaki Mamageishvili, Thomas Mendel, Alfredo Navarra, Tim Nonner, Christian
Puchert, Haroldo Gambini Santos, Jürgen Weber

Local Organizing Committee

Marcin Bieńkowski, Jarosław Byrka (co-chair), Agnieszka Faleńska, Tomasz Jurdziński,
Krzysztof Loryś, Leszek Pacholski (co-chair)

14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’14).
Editors: Stefan Funke and Matúš Mihalák

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Delay-Robust Journeys in Timetable Networks
with Minimum Expected Arrival Time∗

Julian Dibbelt, Ben Strasser, and Dorothea Wagner

Karlsruhe Institute of Technology
KIT - ITI Wagner - Box 6980, D-76128 Karlsruhe, Germany
{julian.dibbelt, strasser, dorothea.wagner}@kit.edu

Abstract
We study the problem of computing delay-robust routes in timetable networks. Instead of a
single path we compute a decision graph containing all stops and trains/vehicles that might be
relevant. Delays are formalized using a stochastic model. We show how to compute a decision
graph that minimizes the expected arrival time while bounding the latest arrival time over all
sub-paths. Finally we show how the information contained within a decision graph can compactly
be represented to the user. We experimentally evaluate our algorithms and show that the running
times allow for interactive usage on a realistic train network.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Algorithms, Optimization, Delay-Robustness, Route planning, Public
transportation

Digital Object Identifier 10.4230/OASIcs.ATMOS.2014.1

1 Introduction

In recent years there has been considerable progress in quickly computing optimal journeys
in public transportation networks. Unlike road networks, these networks are schedule-based,
that is, they (are supposed to) follow a timetable of planned vehicle departures and arrivals.
Optimality of journeys is typically based on earliest arrival time subject to other criteria
such as number of transfers, latest departure time, or price. See [1] for a recent overview.

In the real-world, however, the scheduled timetable is only worth so much, as train delays
occur. Besides prolonging the time spent traveling, delays might make planned transfers to
other vehicles impossible. Given todays widespread internet coverage and modern route
planning algorithm’s flexibility [2, 12, 6] with timetable updates, replanning these missed
transfers is not a problem. However, with limited transit service during, e.g., the evening
hours, the aggregated delay induced by missed transfers can be considerably more than the
original delay. In the worst case, the traveler has to spent the night in the middle of nowhere.

Therefore, it has been proposed to plan journeys already with possible delays in mind
[8, 11, 10]. A basic approach might just add sufficiently large buffer times to each transfer.
While likely to play out as planned, such journeys would often have unacceptably late arrival
times. Obviously, the user would want to also optimize for arrival time and number of
transfers, too. One approach to tackle this problem is to compute the set of Pareto-optimal
solutions. However, we observe that a single journey is often exclusively either fast or delay-

∗ Partial support by DFG grant WA654/16-2 and EU grant 288094 (eCOMPASS) and Google Focused
Research Award.

© Julian Dibbelt, Ben Strasser, and Dorothea Wagner;
licensed under Creative Commons License CC-BY

14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’14).
Editors: Stefan Funke and Matúš Mihalák; pp. 1–14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2014.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

2 Delay-Robust Journeys in Timetable Networks with Minimum Expected Arrival Time

resilient but not both. The Pareto set therefore often does not contain a single-path-journey
that is good with respect to all criteria simultaneously.

Hence, in this paper, we consider the problem of computing a travel plan (i.e., a collection
of journeys) that does not break if delays occur but is still fast overall. To that end, we
consider fast journeys but require that for every step of the plan there is always a backup, i.e.,
a viable alternative towards the target in case of missed transfers. We refer to such a plan
as delay-robust. Note that our intuition about delay-robustness goes beyond just avoiding
tight transfers. Tight transfers at a frequently serviced station might be unproblematic.
Conversely, a fastest (i.e. earliest arrival time) journey is not necessarily part of a good
plan, if it transfers at a stop where no good backup departs. Interestingly, our approach
also (implicitly) optimizes the number of transfers (as fewer transfers means fewer situations
for journeys to break), and if there are several stops at which the user can transfer between
two trains, it prefers to transfer at “larger” stations with more connecting trains (giving
more options in case something breaks).

We represent the computed plan in the form of a decision graph that tells for every
transfer how to continue in case of different delays (including no delay). While our primary
goal is to compute the travel plan in advance (so that the traveler might print it), please note
that this plan can easily be recomputed based on the current delay situation of the network
as our query times are well below a second and we do not employ heavy preprocessing.

In [7] we introduced the Connection Scan family of algorithms and very briefly described
the core idea of our approach to delay-robust routing. Since then we have extended the
approach significantly and present our newer results in this paper. Among the new contri-
butions are techniques to represent the decision graphs compactly and to reduce their size.
Our paper is structured as following: In Section 2 we give a brief overview over related work.
We then formally define in Section 3 what a timetable is. Using this terminology we describe
in Section 4 our delay model. In terms of this model we then define in Section 5 formally
what a decision graph and its expected arrival time is. We show some basic properties about
the problem of computing a decision graph with minimum expected arrival time and give an
optimal solution algorithm. We observe that in practice decision graphs can get large. We
therefore propose in Section 6 some strategies to reduce the amount of information presen-
ted to the user. Finally we present in Section 7 an experimental evaluation of the proposed
algorithms.

2 Related Work

There has been a lot of research in the area of train networks and delays and many of these
papers were published at past ATMOS conferences. In contrast to our algorithm most of
them compute single paths through the network instead of subgraphs containing all backups.
To make this distinction clear we refer to such paths as single-path-journeys. The authors
of [8] define the reliability of a single-path-journey and propose to optimize it in the Pareto-
sense with other criteria such as arrival time or the number of transfers. The availability
of backups is not considered. The authors of [5], based on delays occurred in the past,
search for a single-path-journey that would have provided close to optimal travel times in
every of the observed situations. The authors of [11] propose to first compute a set of safe
transfers (i.e. those that always work). They then develop algorithms to compute single-
path-journeys that arrive before a given latest arrival time and only use safe transfers or at
least minimize use of unsafe transfers. In [10], a robust primary journey is computed such
that for every transfer stop a good backup single-path-journey to the target exists. However,

J. Dibbelt, B. Strasser, and D. Wagner 3

the backups do not have their own backups. The approach optimizes the primary arrival
time subject to a maximum backup arrival time. The authors of [9] study the correlation
between real world public transit schedules in Rom and compare them against the single-
path-journeys computed by state-of-the-art route planners based on the scheduled timetable.
They observe a significant discrepancy and conclude that one should consider the availability
of good backups already at the planning stage. The authors of [2] examine delay-robustness
in a different context: Having computed a set of transfer patters on a scheduled timetable
in a urban setting, they show that single-path-journeys based on these patterns are still
nearly optimal even when introducing delays. The conclusion is that these sets are fairly
robust (i.e., the paths in the delayed timetable often use the same or similar patterns). In
[3] the authors propose to present to the user a small set of transfer patterns that cover most
optimal journeys. They show that in an urban setting few patterns are enough to cover most
single-path-journeys. In a different line of work, the authors of [4] investigate how a delay-
perturbed timetable will evolve over time using stochastic methods. Their study shows that
this is a computationally expensive task (running time in the seconds) if the delay model
accounts many real-world details. Using a model with such a degree of realism therefore
seems unfeasible for delay-robust route planning (requiring query times in the milliseconds).

3 Basics

Every random variable X in this work is denoted by capital letters, is continuous, non-
negative and has a maximum value maxX. We denote by P [X ≤ x] the probability that
the random variable is below some constant x and by E [X] the expected value of X.

A timetable is a triple (S, C, T) of stops S, (elementary) connections C and trips T . In
terms of these we define a set of rides R. A stop is a location where one may enter or exit a
train. A connection c ∈ C is a tuple (cdepstop, carrstop, cdeptime, carrtime, ctrip,Dc) representing
a train driving from a departure stop cdepstop to an arrival stop carrstop without intermediate
halt. It is scheduled to depart at departure time cdeptime and to arrive at arrival time carrtime.
We require that cdepstop 6= carrstop and cdeptime < carrtime, that is, connections do not form
self-loops and have strictly positive duration. If the train is not on time, it arrives with a
random non-negative delay Dc. For every connection there is a maximum delay max Dc. A
train typically operates several connections in succession, forming a trip. The unique trip
to which c belongs is ctrip ∈ T . For two successive connections c1 and c2 of a trip, we
require c1arrstop = c2depstop and c1arrtime ≤ c2deptime. A ride (center, cexit) is an ordered pair of
connections (i.e., center

deptime < cexit
deptime) within a trip (i.e., center

trip = cexit
trip). It represents the user

taking a train for several stops without exiting at intermediate stops. We denote by R the
set of all rides. Analogous to connections, we define for every r ∈ R: rdepstop = center

depstop,
rarrstop = cexit

arrstop, rdeptime = center
deptime, rarrtime = cexit

arrtime, rtrip = center
trip , and Dr = Dcexit .

A (s, τ, t)-journey is a sequence of rides r1 . . . rn. We refer to s as the source stop, to τ as
the source time and to t as the target stop. For every journey we require that ∀i : ri

arrstop =
ri+1
depstop, ∀i : ri

arrtime ≤ ri+1
deptime, s = r1

depstop, τ ≤ r1
deptime and t = rn

arrstop. A journey is
safe if ∀i : ri

arrtime + max Dri ≤ ri+1
deptime is fulfilled, i.e., even when the trains are delayed

no transfer can break. Analogous to connections and rides, we define jdepstop = r1
depstop,

jdeptime = r1
deptime, jarrstop = rn

arrstop, jarrtime = rn
arrtime, and Dj = Drn . The (s, τ, t)-earliest

(safe) arrival problem consists of finding a (safe) (s, τ, t)-journey j minimizing jarrtime. We
denote by ea(s, τ, t) and esa(s, τ, t), respectively, the arrival time of an optimal (safe) j.

ATMOS’14

4 Delay-Robust Journeys in Timetable Networks with Minimum Expected Arrival Time

3.1 Modeling Rational

Many publications on public transit networks consider timetables where a finite connection
set repeats, e.g., every day. As such these timetables are infinite and periodic. In contrast—
unless explicitly stated otherwise—we consider finite timetables. We choose this modeling as
most real world timetables do not repeat perfectly. However, we require that the timetable
in our system spans a sufficiently long period to answer all relevant queries. (Experiments
show that our approach scales to at least thirty days in a realistic setting.) Note that for
finite timetables there is naturally a latest connection.

We do not explicitly use minimum change times at stops but implicitly encode them
in Dc. It does not matter whether a train is always delayed by x minutes or whether the
user always needs x minutes to walk from platform to platform. Following most recent
papers on delay-robust timetable routing we omit footpaths from our model. Note that
omitting footpaths in an urban public transit network may be problematic. However this
abstraction is perfectly fine in a long-distant train setting, such as the one which we use in
our experiments. In Appendix A we sketch a way of incorporating them.

4 Delay Model

A crucial component of any delay-robust routing system is choosing against which types
of delays the system should be robust and how to model these delays. This choice has
deep implications throughout the whole system. While a too simplistic model does not yield
useful routes, a too complicated model makes routing algorithms too inefficient to be feasible
in practice. For the model chosen in [11] it is NP-hard to determine whether a transfer is
safe or not. Instead, we propose a simplified stochastic model where this is constant time.
While our model that does not cover every situation and is not delay-robust in every possible
scenario, it works well enough to give useful routes with backups.

The central simplification is that we assume that all random variables are independent.
Clearly, in reality this is not always the case. However, if delays between many trains
interact then the timetable perturbation must be significant. Train tracks blocked for an
extended period of time is a specific example of significant perturbation. As reaction to such
a perturbation even trains in the medium or distant future need to be rescheduled (or arrive
at least not on-time). The set of possible outcomes and the associated uncertainty is huge.
Accounting for every outcome seems infeasible to us. We argue that if the perturbation
is large then we can not account for all possible recovery scenarios in advance. Instead,
the user should replan his journey based on the actual situation. Furthermore, even if we
could account for all scenarios, we would still face the problem of explaining every possible
outcome to the user, which is a show-stopper in practice. Our model therefore only accounts
for small disturbances as we only intend to be robust against these.

Formally, our model contains one random variable Dc per connection c. This variable
indicates with which delay the train will arrive at carrstop. We assume that all connections
depart on time. This assumption does not induce a significant error because it roughly does
not matter whether the incoming or the outgoing train is delayed. Furthermore, we assume
that every connection c has a maximum delay, i.e., max Dc is a finite value. Finally, we
assume that all random variables are independent. Delays between trips are independent
because if they were not then the perturbation would be large. We can assume that delays
within a trip are independent: The typical user would not be willing to exit a trip at a stop
just to reenter it later on at a different stop.

J. Dibbelt, B. Strasser, and D. Wagner 5

The only remaining modeling issue is to define what distribution the random variables
Dc should have. An obvious choice is to estimate a distribution based on historic delay data.
However, this has two shortcomings: (i) it is hard to get access to delay data (we do not
have it), and (ii) you need to have records of many days with precisely the same planned
schedule. Suppose for example that the user is in the middle of his journey and a significant
perturbation occurs. The operator then adjusts the short-term timetable to reflect this and
the user wants to reroutes based on this adjusted data. With historic data this often is
not possible because this exact recovery scenario may never have occurred in the past and
almost certainly not often enough to extrapolate from the historic data.

0 10 20 30

0.0
0.2
0.4
0.6
0.8
1.0

x

P
[D

c
<

x
]

Figure 1 Plot showing
P [Dc ≤ x] in function of x for
m = 5 and d = 30.

For these reasons we propose to use synthetic delay
distributions that are only parametrized on the planned
timetable. We propose to add to each connection c a
synthetic delay variable Dc that depends on the minimum
change time m of carrstop and on a global1 maximum delay
parameter d. We define Dc as follows: ∀x ∈ (−∞, 0] :
P [Dc ≤ x] = 0, ∀x ∈ (0,m] : P [Dc ≤ x] = 2x

6m−3x , ∀x ∈
(m,m+d] : P [Dc ≤ x] = 31(x−m)+2d

30(x−m)+3d , and ∀x ∈ (m+d,∞) :
P [Dc ≤ x] = 1. The function is illustrated in Figure 1 and
the rational for our design is given in Appendix B.

5 Decision Graphs

In this section, we first formally define the decision graph and then discuss three problem
variants: (i) the unbounded, (ii) the bounded, and (iii) the α-bounded MEAT problems. The
first two are of more theoretical interest, whereas the third one has the highest practical
impact. We prove basic properties of the unbounded and bounded problems and show
a relation to the earliest safe arrival problem. Finally, we give an exact optimal-solution
algorithm for the unbounded problem on finite networks and show how it is adapted to solve
the bounded and the α-bounded problems.

5.1 Formal Definition
A (s, τ, t)-decision graph from source stop s to target stop t with the user departing at time τ
is a directed reflexive-loop-free multi-graph G = (V,A) whose vertices correspond to stops
(i.e., V ⊆ S) and whose arcs correspond to rides r (i.e., A ⊆ R) directed from rdepstop to
rarrstop. There may be several rides between a pair of stops, but they must be of part of
different trips and depart at different times. We formalize this as: ∀r1, r2 ∈ A : r1

deptime 6=
r2
deptime ∨ r1

depstop 6= r2
depstop. We require that the user must be able to reach every ride

and must always be able to get to the target. Formally, we require that for every r ∈ A
there exists a (s, τ, rdepstop)-journey j with jarrtime ≤ rdeptime to reach the ride, and a safe
(rarrstop, rarrtime +max Dr, t)-journey j′ to reach the target. To exclude decision graphs with
unreachable stops, we require that every stop in V except s and t have non-zero in- and out
degree. For simplicity, we further require that s 6= t.

We first recursively define the expected arrival time e(r) (short EAT) of a ride r ∈ A

and define in terms of e(r) the EAT e(G) of the whole decision graph G. If rarrstop = t, we
define e(r) = rarrtime +E [Dr]. Otherwise e(r) is defined in terms of other rides. Denote by

1 d is global since we lack per-train data. Our approach can be adjusted, if such data became available.

ATMOS’14

6 Delay-Robust Journeys in Timetable Networks with Minimum Expected Arrival Time

q1 . . . qn the sequence of rides ordered by departure time, departing at rarrstop after rarrtime,
i.e., every ride that the user could reach after r arrives. Denote by d1 . . . dn their departure
times and set d0 = rarrtime. We define e(r) =

∑
i∈{1...n} P [di−1 < Dr < di] · e(qi), i.e., the

average of the EATs of the connecting rides weighted by the transfer probability. Note
that this definition is well-defined because e(r) only depends on e(q) of rides with a later
departure time, i.e., rdeptime < qdeptime. Further notice that P [Dr < dn] = 1. Otherwise no
safe journey to the target would exist invalidating the decision graph.

We denote by Gfirst the ride r ∈ A with minimum rdeptime. This is the ride that the
user must initially take at s. We define the expected arrival time e(G) (short EAT) of
the decision graph G as e(Gfirst). Furthermore, the latest arrival time Gmaxarrtime is the
maximum rarrtime + max Dr over all r ∈ A. Note that by minimizing Gmaxarrtime we can
bound the worst case arrival time giving us some control over the arrival time variance.

The unbounded (s, τ, t)-minimum expected arrival time (short MEAT) problem consists
of computing a (s, τ, t)-decision graph G minimizing e(G). The bounded (s, τ, t)-MEAT
problem consists of computing a (s, τ, t)-decision graph G minimizing e(G) subject to a
minimum Gmaxarrtime. As a compromise between bounded and unbounded we further define
the α-bounded MEAT problem: We require that Gmaxarrtime − τ ≤ α (esa (s, τ, t)− τ), i.e.,
the maximum travel time must not be bigger than α times the delay-free optimum. Notice
that the bounded and 1-bounded MEAT problems are equivalent.

5.2 Decision Graph Existence
I Lemma 1. There is a (s, τ, t)-decision graph G iff there exists a safe (s, τ, t)-journey j.

Proof. By definition there must be a safe (Gfirst
arrstop, G

first
arrtime + max DGfirst , t)-journey j′.

Prefixing j′ with Gfirst yields j. Conversely, as the rides in the sequence of j already form
a (s, τ, t)-decision graph we have shown both directions. J

A direct consequence of this lemma is that the minimum Gmaxarrtime over all (s, τ, t)-decision
graphs G is equal to esa(s, τ, t). Using this observation we can reduce the bounded MEAT
problem to the unbounded MEAT problem. Formally stated:

I Lemma 2. An optimal solution G to the bounded (s, τ, t)-MEAT problem on timetable T
is an optimal solution to the unbounded (s, τ, t)-MEAT problem on a timetable T ′ where T ′
is obtained by removing all connections c with carrtime above the esa(s, τ, t).

Proof. There are two central observations needed for the proof: First, every (s, τ, t)-decision
graph on timetable T ′ is a (s, τ, t)-decision graph on the strictly larger timetable T . Second,
every safe (s, τ, t)-journey in T ′ is an earliest safe (s, τ, t)-journey in T . Suppose that a
(s, τ, t)-decision graph G′ on T ′ would exist with a suboptimal G′maxarrtime then there would
also exist a safe (s, τ, t)-journey j′ in T ′ with a suboptimal j′arrtime, which is not possible by
construction of T ′, which is a contradiction. J

Having shown how to explicitly bound Gmaxarrtime it is natural to ask what would happen
if we dropped this bound and solely minimized e(G). For this we consider the infinite
timetable Tp illustrated and defined in Figure 2. Notice that Tp is constructed such that it
does not matter whether the user arrives at a at moment 1 + 4N or at b at moment 3 + 4N
as the two states are completely symmetric with the stops a and b swapping roles. By
exploiting this symmetry we can reduce the set of possibly optimal (s, 0, t)-decision graphs
to 2 elements: the decision graph G1 that waits at a and never goes over b, and the decision
graph G2 that oscillates between a and b. The corresponding expected arrival times are

J. Dibbelt, B. Strasser, and D. Wagner 7

s

a b

t

0→1

1⇒2 3⇒4

2⇒3

4⇒5

Figure 2 A timetable Tp has 4 stops: s, a, b and t. The arrows denote connections. An arrow
annotated with its departure time and arrival time. A simple arrow (→) denotes a single non-
repeating connection. A double arrow (⇒) is repeated every 4 time units, i.e. 1⇒ 2 is a shorthand
for 1 + 4i → 2 + 4i for every i ∈ N. All connections are part of their own trip and have the same
delay variable D. We define P [D = 0] = p (with p 6= 0) and P [D < 1] = 1.

defined using e(G1) = p (2 + E [D]) + (1 − p) (7 + E [D]) and e(G2) = p (2 + E [D]) + (1 −
p)
(
3 + e(G2)

)
. The later equation can be resolved to e(G2) = E [D]− 1 + 3

p . We can solve
e(G1) < e(G2) in terms of p. The result is that G1 is better if p <

√
43−4
9 ≈ 0.28. If they

are equal then G1 and G2 are equivalent and otherwise G2 is better.
This has consequences even for timetables with a finite C. One could expect that to

compute a decision graph it is sufficient to look at a time-interval proportional to its expected
travel time: It seems reasonable that a connection scheduled to occur in ten years would not
be relevant for a decision graph departing today with an expected travel time of one hour.
However, this intuition is false in the worst case: Consider the finite sub-timetable T ′ of the
periodic timetable Tp that encompasses the first ten years (i.e., we “unroll” Tp for ten years).
For p>0.28, an optimal (s, 0, t)-decision graph will use all connections in T ′, including the
ones in ten years (as G2 would). Fortunately, the bounded MEAT problem does not suffer
from this weakness: No connection arriving after esa(s, 0, t) can be relevant. Therefore, even
on infinite networks the bounded MEAT problem always admits finite solutions.

5.3 Solving the Unbounded MEAT Problem
The unbounded MEAT problem can be solved to optimality on finite networks, and by ex-
tension also the α-bounded MEAT problem. Our algorithm is based on the Profile Connec-
tion Scan algorithm [7] and exploits three key insights: (i) Every optimal (s, τ, t)-decision
graph G = (V,A) contains for every ride r ∈ A an optimal (rdepstop, rdeptime, t)-decision
sub-graph, (ii) exchanging an optimal (rdepstop, rdeptime, t)-sub-graph of G with another op-
timal (rdepstop, rdeptime, t)-decision graph yields an optimal (s, τ, t)-decision graph, and (iii)
the first connection of all decision sub-graphs H of G have a later departure time, i.e.,
Gfirst

deptime ≤ Hfirst
deptime. Together these three ingredients give rise to a dynamic programming

algorithm. Denote for every c ∈ C an optimal (cdepstop, cdeptime, t)-decision graph by G(c)
subject to G(c)first

enter = c, i.e., the user must start his travel sitting in c. Further denote by
e(c) = e(G(c)) the EAT of G(c) if one exists and e(c) = ∞ otherwise. Our base algorithm
works in two phases: (i) Compute e(c) for all c ∈ C, (ii) extract a desired (s, τ, t)-decision
graph using the e(c). The actual algorithm used to solve the α-bounded problem variant
differs slightly and is detailed in Section 5.4.

5.3.1 Phase 1: Computing all Expected Arrival Times
The core idea consists of starting with the trivial sub-timetable with C = ∅ and then iter-
atively adding the connections ordered decreasing by departure time. When c is inserted

ATMOS’14

8 Delay-Robust Journeys in Timetable Networks with Minimum Expected Arrival Time

we compute e(c). Once all connections are inserted the phase is finished. During com-
putations we maintain two extra data structures: (i) for every trip h ∈ T we store the
best known EAT using h, i.e., q(h) = minctrip=h e(c), (ii) for every stop p ∈ S we store
the list of outgoing connections q (p, 1) , q (p, 2) . . . q (p, np) ordered increasing by departure
time for which G (q (p, i)) is an optimal (q (p, i)depstop , q (p, i)deptime , t)-decision graph (i.e.
the connections for which the restriction G (q (p, i))first

enter = q (p, i) can be dropped). We
refer to the lists of (ii) as profiles. Observe that an optimal (x, y, z)-decision graph is
also an optimal (x, y′, z)-decision graph for y′ ≤ y. We therefore know that the profiles
must be domination reduced, i.e., ∀p, i, j : i ≤ j ⇒ e(q(p, i)) ≤ e(q(p, j)). In terms
of these data structures we can describe the actual algorithm: Denote by c the connec-
tion being inserted. The data structures are correct for the sub-timetable without c. We
need to correct them to accommodate for c. As we insert connections decreasing by de-
parture time we know that c has a minimum cdeptime among all connections in the sub-
timetable at the moment c is inserted. As additionally cdeptime < carrtime must hold, we
know that if a decision graph G uses c then Gfirst

enter = c must hold. The user has three
options when c arrives. We calculate the EATs for all three and the minimum is the de-
sired e(c). The options are: (i) remain seated, (ii) arrive at the target stop t, and (iii) ar-
rive at carrstop and pick another train. The EAT for (i) is just q(ctrip). For (ii) the EAT
is carrtime + E [Dc] or ∞, depending on whether t = carrstop. For (iii) computing the EAT
is slightly more complex: If carrtime + max Dc > q (carrstop, np)deptime then no safe journey
to t exists and the EAT is ∞. Otherwise the EAT is

∑
i P [di−1 < Dc < di] e (q (carrstop, i))

where di is a shorthand for q (carrstop, i)deptimeand d0 is carrtime. After computing e(c)
we need to repair the q data structures to accommodate for c: the trips are fixed using
q(ctrip)← min {e(c), q(ctrip)} and we add c to cdepstop’s profile if it is not dominated, i.e., if
e(c) < e (q(cdepstop, 1)). If e(c) = e (q (cdepstop, 1)) then we may add it but do not have to.
If cdeptime = q (cdepstop, 1)deptime then the first profile element is replaced and otherwise the
profile list grows by one element.

5.3.2 Phase 2: Extracting Decision Graphs

We extract a (s, τ, t)-decision graph G = (V,A) by enumerating all rides in A. The stop
set V can then be inferred from A. At the core, our algorithm uses a min-priority queue
that contains connections ordered increasing by their departure time. Initially, we add the
earliest connection in the profile of s to the queue. While the queue is not empty we pop
the earliest connection c1 from it. Denote by c2 . . . cn all subsequent connections in the trip
c1trip. The desired ride r = (c1, ci) is given by the first i such that e(c1) 6= e(ci+1) (or i = n if
all are equal). We add r to G. If ci

arrstop 6= t we add the following connections to the queue:
(i) All connections in the profile of ci

arrstop departing between ci
arrtime and ci

arrtime +max Dci ,
and (ii) the first connection in the profile of ci

arrstop departing after ci
arrtime + max Dci .

5.3.3 Optimizations

Instead of storing the EAT for each connection we store the values inside of the stop profiles,
resulting in better memory locality. We further store the corresponding rides in the profiles
to avoid the iteration over the trip’s connections during the extraction. Recall that all
connections in a decision graph must be reachable. We exploit this by skipping connections c
for which cdeptime < ea(s, τ, cdepstop) instead of adding them to the network. We determine
this earliest arrival time by running a basic one-to-all Connection Scan.

J. Dibbelt, B. Strasser, and D. Wagner 9

Karlsruhe
9:01

Mannheim
9:24
9:31
10:06

Hannover
13:17
13:31
14:03

Berlin
14:16
15:07
15:53

(a) Expanded

Karlsruhe
9:01

Berlin

Mannheim
9:31
10:06

13:31-14:03
Hannover

(b) Compact

Figure 3 Decision graph representations from Karlsruhe at 9:00 to Berlin.

5.4 Solving the α-Bounded MEAT Problem

We assume that C is stored as an array ordered by departure time. To solve the α-bounded
(s, τ, t)-MEAT problem we perform the following steps: (i) run a binary search on C to
determine the earliest connection cfirst departing after τ , (ii) run a trip-aware one-to-one
Connection Scan from s to t that assumes all connections c are delayed by max Dc to
determine esa (s, τ, t) (iii) let τlast = τ + α · (esa (s, τ, t)− τ) and run a second binary search
on C to find the last connection clast departing before τlast, (iv) run a trip-unaware one-to-
all Connection Scan from s restricted to the connections from cfirst to clast to determine all
ea (s, τ, ·), (v) run Phase 1 of the base algorithm scanning the connections from clast to cfirst

skipping connections c for which carrtime > τlast or ea(s, τ, cdepstop) ≤ cdeptime does not hold,
and finally (vi) run Phase 2 of the base algorithm, i.e., extract the (s, τ, t)-decision graph.

6 Decision Graph Representation

In the previous section we described how to compute decision graphs. In practice this is not
enough and we must be able to represent the graph in a form that the user can effectively
comprehend. The main obstacle here is to prevent the user from being overwhelmed with
information. A secondary obstacle is how to actually layout the graph. In this section we
solely focus to reducing the amount of information. Producing actual layouts is still the
focus of ongoing research. The presented drawings were created by hand.

6.1 Expanded Decision Graph Representation

The expanded decision graph subdivides each node v into slots sv,1 . . . sv,n that correspond
to moments in time that an arc arrives or departs at v. The slots in each node are ordered
from top to bottom in chronological order. Each arc (u, v) connects the corresponding slots
su,i and sv,j . To determine his next train the user has to search for the box corresponding
to his current stop and pick the first departure slot after the current moment in time. The
arrows guide him to the box corresponding to his next stop. Figure 3a illustrates this.

6.2 Compact Decision Graph Representation

The scheduled arrival time of trains is an information contained in the expanded decision
graph that is not strictly necessary. (Besides being inaccurate because of delays.) To decide
on the next connecting train to take at a transfer stop, it suffices to know the available next
rides departing after “now”, that is, the actual arrival time at that stop.

The compact decision graph exploits this observation by removing the arrival time in-
formation from the representation. Each arc (u, v) connects the corresponding departure
slot su,i directly to the stop v instead of a slot. Time slots that only appear as arrival

ATMOS’14

10 Delay-Robust Journeys in Timetable Networks with Minimum Expected Arrival Time

slots are removed. If two outgoing arcs of a node u have the same destination and de-
part subsequently (as for high-frequency lines), they are grouped and only displayed once.
The compact decision graph is never larger than the expanded one and most of the time
significantly smaller. See Figure 3b for an example.

6.3 Relaxed Dominance
Decision graphs exist that contain rides that have near to no impact on the EAT. Removing
them increases the EAT by only a small amount, resulting in an almost optimal decision
graph that can be significantly smaller. To exploit this, we introduce a relaxation tuning
parameter β. EATs are regarded as equal if their difference is below β. We only add a
connection c to the profile q if e (c) ≤ e (q (cdepstop, 1))− β.

6.4 Displaying only the Relevant Subgraphs
In many scenarios we have a canvas of fixed size. If even the compact relaxed decision
graph is too large to fit, we can only draw parts of it. We observe that the decision graph
extraction phase does not rely on the actual distributions of the delay variables Dc but
only on max Dc. It extracts all connections departing in a certain interval I, plus the first
connection directly afterwards. Reducing the size of I reduces the number of rides displayed,
while still guaranteeing that backup rides exist (they just are not displayed). We refer to the
size of I as display window. Given an upper bound γ on the number of arcs in the compact
(or expanded) representation, we use a binary search to determine the maximum display
window and draw the corresponding subgraph. (Note that in the worst case the display
window has size 0. Then the decision graph degenerates to a single-path-journey.)

7 Experiments

Table 2 Instance Size.

#Stop 16 991
#Conn. 55 930 920
#Trip 3 965 040

For our experiments we used on a single core of a Xeon E5-2670
at 2.6 GHz, with 64 GiB of DDR3-1600 RAM, 20 MiB of L3
and 256 KiB of L2 cache and we used g++ 4.7.1 with -O3.

The timetable is based on the data of bahn.de during winter
2011/2012. We extracted every vehicle except for most buses2
as we mainly target train networks. We focus on long-distance
networks where delays have a significantly larger impact than
in high-frequent inner-city transit. We removed footpaths longer than 10min, connected
stops with a distance below 100m, and then contracted stops connected through footpaths
adjusting their minimum change times resulting in an instance without footpaths. We pick
the largest strongly connected component to make sure that there always exists a journey
(assuming enough days are considered). We extract one day of maximum operation (i.e.
extract everything regardless of the day of operation and remove exact duplicates). We then
replicated this day 30 times to have a timetable spanning about one month of operation.
The detailed sizes are in Table 2. We ran 10 000 random queries. Source and target stop
are picked uniformly at random. The source time is chosen within the first 24h. We filter
queries out that have an minimum delay-free travel time above 24h.

Our experimental results are presented in Table 1. The compact representation is smaller
by a factor of 2 in terms of arcs than the expanded one. As expected, a larger relaxation

2 Not having buses explains the significant instance size difference compared to [12].

bahn.de

J. Dibbelt, B. Strasser, and D. Wagner 11

Table 1 The time (in ms) needed to compute a decision graph and its size. Arcs is the number
of arcs in the compact representation. The number of rides corresponds to the number of arcs
in the expanded representation. The maximum delay parameter is set to 1h. We report average,
maximum and the 33%-, 66%- and 95%-quantiles.

Unbounded 2.0-Bounded 1.0-Bounded
T
im

e

St
op

s

R
id
es

A
rc
s

T
im

e

St
op

s

R
id
es

A
rc
s

T
im

e

St
op

s

R
id
es

A
rc
s

0m
in
-R

el
ax

Avg 6 452 12 98 42 138 12 87 35 26 9 45 19
33% 6 209 7 22 10 84 7 22 10 16 7 15 7
66% 7 407 13 70 31 162 13 69 31 27 10 40 19
95% 7 635 25 349 125 312 24 330 119 66 19 149 57
Max 7 805 280 35 450 28 848 817 173 5 540 4 703 288 38 1 607 366

1m
in
-R

el
ax

Avg 5 122 12 88 39 116 12 73 31 25 9 39 17
33% 4 628 8 26 12 75 8 25 12 16 6 14 7
66% 6 026 13 66 31 136 13 64 30 26 10 36 17
95% 6 368 24 284 110 249 24 257 100 64 18 123 52
Max 6 595 50 12 603 6 558 685 50 1 576 478 240 37 1 390 289

5m
in
-R

el
ax

Avg 4 180 11 66 33 100 11 51 25 24 9 29 15
33% 3 845 8 24 12 66 8 23 11 15 6 13 6
66% 4 808 13 53 26 115 12 51 25 25 10 30 15
95% 5 028 22 178 82 216 22 155 74 61 17 84 42
Max 5 159 54 6 640 3 220 553 54 760 285 196 34 590 183

parameter gives smaller graphs. Increasing the α-bound leads to larger graphs and running
times grow. The running times of unbounded queries are proportional to the timespan of
the timetable (i.e. 30 days). On the other hand, the running times of bounded queries
depend only on the maximum travel time of the journey. This explains the gap in running
time of two orders of magnitude. As the maximum values are significantly higher than the
95%-quantile we can conclude that the graphs are in most cases of manageable size with
a few outlines that distort the average values. Upon closer inspection we discover that
most outliers with large decision graphs connect remote rural areas, where even no “good”
delay-free journey exists. We can therefore not expect to find any form of robust travel plan.

In Figure 4 we evaluate the display window such that the extracted graphs have less
than 25 arcs in the compact representation. Recall that this modifies what is displayed to
the user. It is still guaranteed that backups exist. As the 1.0-bounded graphs are smaller
than 2.0-bounded graphs we can display more, explaining the larger display window. The
difference between 2.0-bounded graphs and unbounded graphs is small. A greater relaxation
parameter also reduces the graph size and thus allows for slightly larger display windows. If
there is no “good” way to travel the decision graphs degenerate to single-path-journeys.

8 Conclusion & Future Work

We studied variants of the MEAT-problem to compute decision graphs. Experimentally, we
determined that, while the resulting graphs are not tiny, they are sufficiently small to be
useful to the user. Running times are small enough to allow interactive usage. Possible direc-
tion for future work include: (i) incorporate trains that wait on other trains, (ii) explore the
feasibility of stochastic footpaths (note that Appendix A discusses deterministic footpaths),

ATMOS’14

12 Delay-Robust Journeys in Timetable Networks with Minimum Expected Arrival Time

0

25

50

75

100

125

0 2,500 5,000 7,500 10,000

relaxed = 5min

relaxed = 1min

relaxed = 0min

(a) 1.0-Bounded

0

25

50

75

100

125

0 2,500 5,000 7,500 10,000

relaxed = 5min

relaxed = 1min

relaxed = 0min

(b) 2.0-Bounded

0

25

50

75

100

125

0 2,500 5,000 7,500 10,000

relaxed = 5min

relaxed = 1min

relaxed = 0min

(c) Unbounded

Figure 4 Display windows in min (y-axis) for each of the 10 000 test queries (x-axis) ordered
increasingly. The maximum delay parameter is set to 2h.

and (iii) determine whether more sophisticated delay models can be solved efficiently.

Acknowledgment. We would like to thank Thomas Pajor for his valuable input.

9 Bibliography

References

1 Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller–Hannemann, Thomas
Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route planning in trans-
portation networks. Technical Report MSR-TR-2014-4, Microsoft Research, 2014.

2 Hannah Bast, Jonas Sternisko, and Sabine Storandt. Delay-robustness of transfer patterns
in public transportation route planning. In Proceedings of the 13th Workshop on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’13), Open-
Access Series in Informatics (OASIcs), pages 42–54, September 2013.

3 Hannah Bast and Sabine Storandt. Flow-based guidebook routing. In Proceedings of the
16th Meeting on Algorithm Engineering and Experiments (ALENEX’14), pages 155–165.
SIAM, 2014.

4 Annabell Berger, Andreas Gebhardt, Matthias Müller–Hannemann, and Martin Ostrowski.
Stochastic delay prediction in large train networks. In Proceedings of the 11th Workshop
on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (AT-
MOS’11), volume 20 of OpenAccess Series in Informatics (OASIcs), pages 100–111, 2011.

5 Kateřina Böhmová, Matúš Mihalák, Tobias Pröger, Rastislav Šrámek, and Peter Widmayer.
Robust routing in urban public transportation: How to find reliable journeys based on
past observations. In Proceedings of the 13th Workshop on Algorithmic Approaches for
Transportation Modelling, Optimization, and Systems (ATMOS’13), OpenAccess Series in
Informatics (OASIcs), pages 27–41, September 2013.

6 Daniel Delling, Thomas Pajor, and Renato F. Werneck. Round-based public transit rout-
ing. In Proceedings of the 14th Meeting on Algorithm Engineering and Experiments (ALE-
NEX’12), pages 130–140. SIAM, 2012.

7 Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Intriguingly simple and
fast transit routing. In Proceedings of the 12th International Symposium on Experimental
Algorithms (SEA’13), volume 7933 of Lecture Notes in Computer Science, pages 43–54.
Springer, 2013.

J. Dibbelt, B. Strasser, and D. Wagner 13

8 Yann Disser, Matthias Müller–Hannemann, and Mathias Schnee. Multi-criteria shortest
paths in time-dependent train networks. In Proceedings of the 7th Workshop on Experi-
mental Algorithms (WEA’08), volume 5038 of Lecture Notes in Computer Science, pages
347–361. Springer, June 2008.

9 Donatella Firmani, Giuseppe F. Italiano, Luigi Laura, and Federico Santaroni. Is time-
tabling routing always reliable for public transport? In Proceedings of the 13th Workshop
on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (AT-
MOS’13), OpenAccess Series in Informatics (OASIcs), pages 15–26, September 2013.

10 Marc Goerigk, Sascha Heße, Matthias Müller–Hannemann, and Marie Schmidt. Recover-
able robust timetable information. In Proceedings of the 13th Workshop on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’13), Open-
Access Series in Informatics (OASIcs), pages 1–14, September 2013.

11 Marc Goerigk, Martin Knoth, Matthias Müller–Hannemann, Marie Schmidt, and Anita
Schöbel. The price of robustness in timetable information. In Proceedings of the 11th Work-
shop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems
(ATMOS’11), volume 20 of OpenAccess Series in Informatics (OASIcs), pages 76–87, 2011.

12 Ben Strasser and Dorothea Wagner. Connection scan accelerated. In Proceedings of the
16th Meeting on Algorithm Engineering and Experiments (ALENEX’14), pages 125–137.
SIAM, 2014.

A Footpaths

In the paper we omitted footpaths from the model as nearly all related work on delay-
robust routing does so and because the timetable used in the experiments is still meaningful
without. Incorporating footpaths is not as straight-forward as it seems at first. The main
obstacle is finding a meaningful formalization. Depending on this formalization solving the
problem can be easy or hard from an algorithmic point of view.

In [7], we used a very simplistic model with the following assumptions: (i) footpaths are
always exact and never delayed, (ii) the user can use a footpath right after he exits a train,
and (iii) the user can use a footpath at the start and end of his journey. This model implies
that if the user walks from a stop p to a stop q and misses the train he wanted to get, then
he will wait at q for his next train and not try to walk back to p.

Assuming this model, our algorithm can be extended to incorporate footpaths as follow-
ing: Every time we add a non-dominated connection c with corresponding EAT τ to the
profile of stop p, we iterate over all footpaths from a stop q to p with duration d. We add
c also to q if τ − d is not dominated at q. This covers initial and intermediate footpaths.
Final footpaths need special attention. We incorporate them by maintaining an array A that
maps every stop ID onto the footpath distance to the target stop. Case ii in Phase 1 of the
algorithm, where the user arrives at the target, must be modified. We do not check whether
the current connection c arrives at the target stop t but we look up in A the distance from
carrstop to t.

B Rational For Synthetic Delays

It is important to realize that there are many different ways to come up with formulas for
synthetic delays. The lack of any effectively accessible ground truth makes any conclusive
experimental evaluation of their quality very difficult. The only real criteria that we have
is “intuitively reasonable”. The approach presented here is by no means the final answer to

ATMOS’14

14 Delay-Robust Journeys in Timetable Networks with Minimum Expected Arrival Time

the question of what is the best synthetic delay distribution. In this section we describe the
rational for our design decisions.

We define for every connection c its delay Dc by defining its cumulative distribution
function fm,d(x), where d is the maximum delay of c and m the minimum change time at
carrstop. Our delays do not depend on any other parameters than m and d. We have the
following hard requirements on fm,d resulting from our algorithm:

fm,d(x) is a probability, i.e., ∀x : 0 ≤ f(x) ≤ 1
fm,d(x) is a cumulative distribution function and therefore non-decreasing, i.e., ∀x :
f ′m,d(x) ≥ 0
max Dc should be m+ d, i.e., ∀x ≥ m+ d : f(x) = 1
Our model does not allow for trains that arrive too early, i.e.,∀x < 0 : f(x) = 0

These requirements already completely define what happens outside of x ∈ (0,m + d).
Because of the limitations of current hardware, we have two additional more fuzzy but
important requirements:

We need to evaluate fm,d(x) many times. The formula must therefore not be computa-
tionally expensive.
Our algorithm computes a lot of (fm,d(x1) + a1) · (fm,d(x2) + a2) · (fm,d(x3) + a3) · · ·
chains. The chain length reflects the number of rides in the longest journey considered
during the computations. As 64-bit-floating points only have a limited precision we must
make sure that order of magnitude of the various values of fm,d do not differ too much.
If they do differ a lot then the less likely journeys have no impact on the overall EAT
because their impact is rounded away.

Finally there are a couple of soft constraints coming from our intuition:
f(m) is the probability that everything works as scheduled without the slightest delay. In
practice this does happen and therefore this should have reasonable high probability. On
the other hand a too high f(m) can lead to problems with rounding. We set f(m) = 2

3
as we believe that it is a good compromise.
We want f to be continuous.
The maximum variation should be at x = m, i.e., f ′(m) should be the unique local
maximum of f ′.
Initially the function should grow slowly and then once x = m is reached the growth
should slow down. This can be formalized as f ′′(x) > 0 for x ∈ (0,m) and f ′′(x) < 0 for
x ∈ (m,m+ d).

We define f using two piece function f1 and f2. For these pieces we assume m = 5min and
d = 30min and scale them to accommodate for different values, as following:

fm,d(x) =

0 if x < 0
f1(5x

m) if 0 ≤ x ≤ m
f2

(
30(x−m)

d

)
if m < x < m+ d

1 if m+ d ≤ x

It remains to define f1 and f2. We started with a −1/x function and shifted and stretched
the function graphs until we ended up with something that looks “intuitively reasonable”.

f1(x) = 2x
3(10− x)

f2(x) = 31x+ 60
30(x+ 3)

The resulting function f fulfills all requirements and is illustrated in Figure 1.

Shortest Path with Alternatives for Uniform
Arrival Times: Algorithms and Experiments
Tim Nonner and Marco Laumanns

IBM Research
{tno, mlm}@zurich.ibm.com

Abstract
The Shortest Path with Alternatives (SPA) policy differs from classical shortest path routing
in the following way: instead of providing an exact list of means of transportation to follow,
this policy gives such a list for each stop, and the traveler is supposed to pick the first option
from this list when waiting at some stop. First, we show that an optimal policy of this type
can be computed in polynomial time for uniform arrival times under reasonable assumptions.
A similar result was so far only known for Poisson arrival times, which are less realistic for
frequency-based public transportation systems. Second, we experimentally evaluate such policies.
In this context, our main finding is that SPA policies are surprisingly competitive compared
to traditional shortest paths, and moreover yield a significant reduction of waiting times, and
therefore improvement of user experience, compared to similar greedy approaches. Specifically,
for roughly 25% of considered cases, we could decrease the expected waiting time by at least 20%.
To run our experiments, we also describe a tool-chain to derive the necessary information from
the popular GTFS-format, therefore allowing the application of SPA policies to a wide range of
public transportation systems.

1998 ACM Subject Classification G.2.2, G.1.6, F.2.2

Keywords and phrases Shortest Path, Stochastic Optimization, Public Transportation

Digital Object Identifier 10.4230/OASIcs.ATMOS.2014.15

1 Introduction

Despite the increasing availability of smartphones and real-time information, it is still a
common practice, especially in high-frequency public transportation systems, to simply wait
for the next arriving suitable bus (or other means of transportation like metros). This holds
especially for systems which do not provide exact time-table information, but manage buses
instead by the frequency they leave the terminal, e.g. the Dublin bus system1. In such a
situation, an experienced local traveler should be aware of alternative suitable buses in order
to minimize his waiting time by picking the first arriving one. Formally, such a selection
process requires to find a trade-off between minimizing the waiting time by selecting a large
set of alternatives, and minimizing the consequent travel time by selecting a small set of
alternatives with short travel time, in the extreme case the single alternative with shortest
travel time. Iterating this process through the whole network leads to an extension of
the classical Shortest Path Problem, called Shortest Path with Alternatives (SPA) Problem.
Datar and Ranade [6] observed that this extension can be solved efficiently in case of Poisson
arrival times (with exponentially distributed inter-arrival times) of buses, which makes it
practical even for large-scale public transportation systems. In contrast, Nonner showed that

1 http://www.dublinbus.ie/en/

© Tim Nonner and Marco Laumanns;
licensed under Creative Commons License CC-BY

14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’14).
Editors: Stefan Funke and Matúš Mihalák; pp. 15–24

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2014.15
http://www.dublinbus.ie/en/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

16 Shortest Path with Alternatives for Uniform Arrival Times

general arrival times result in an NP-hard problem [9], even for one-hop networks. Arguably,
for systems where buses run with a given frequency, uniform arrival times (with uniformly
distributed inter-arrival times) are the most suitable modelling choice, but they lack the
nice properties of a memoryless process. In fact, Boyan and Mitzenmacher [5] showed that
optimal policies for such a system have a more complicated structure, which might be hard
to communicate: in addition to a list of alternatives for each stop, they require additional
timing information for the bus picking process.

First, we show in this paper that an optimal SPA policy for uniform arrival times can be
efficiently computed subject to the constraint that it has the structure implied by Poisson
arrival times, thus giving a trade-off between providing a simple policy to execute and a
realistic time assessment. Second, we run several experiments to illustrate the benefits of
SPA policies. In fact, we are not aware of any such study, the only related experimental
evaluation was done in the context of data delivery in bus networks [1]. We are interested
in comparing the following policies: (P1) a classical single shortest path using an exact
timetable, (P2) a SPA policy using a post-processed timetable with frequency information,
but where we allow only a single alternative at each stop, and (P3) a SPA policy without
this restriction. Comparing policies (P1) and (P2) allows us to reason about how efficient
frequency based systems are compared to exact time-tables, and comparing policies (P2) and
(P3) gives insights in how much we are able to improve by allowing multiple alternatives
in such systems. Note that policy (P2) corresponds to a traveler who navigates greedily
through the system, waiting at each stop for the single bus with best combined waiting and
travel time.

To run our experiments, we build on the increasingly popular General Transit Format
Specification (GTFS)2, which allows us to collect timetable information of multiple Euro-
pean capitals34: Berlin, Budapest, Dublin, and Oslo. Interestingly, this format allows the
specification of frequencies, exactly the information needed for our study. However, probably
because the current shortest path computation methods do not benefit from this informa-
tion, it is hardly ever provided. Even public transportation systems like the one of Dublin,
which explicitly mention that their timetables should be interpreted as frequencies rather
than exact times, do not make use of this extension. To deal with this lack of available fre-
quency information, we derive it by counting runs-per-hour in standard time-tables, which
aligns with the implicit behavior of a sample traveler.

Our main conclusions are: (1) frequency-based systems are not much worse than exact
systems, at least on average, and (2) allowing multiple alternatives in a SPA policy provides
a significant improvement. Specifically, although the average improvement in total travel
time is relatively small, we could decrease the waiting time by at least 20% for roughly
25% of considered cases. Thus, policy (P3) is clearly superior to policy (P2). Hence, we
think that providing SPA policies would be a natural extension to any public transportation
planner. Another advantage of such policies is that they provide backup opportunities in
case there are disruptions in the timetable.

Outline. In Section 2, we formally introduce the SPA Problem and present an efficient
method to compute SPA policies for uniform arrival times subject to the constraint that the
policy has the simple prefix structure implied by Poisson arrival times. Since we could not

2 https://developers.google.com/transit/gtfs/
3 http://dublinked.com/datastore/datasets/dataset-254.php
4 http://www.gtfs-data-exchange.com/

https://developers.google.com/transit/gtfs/
http://dublinked.com/datastore/datasets/dataset-254.php
http://www.gtfs-data-exchange.com/

T. Nonner and M. Laumanns 17

find a counterexample during extensive experiments, we conjecture that an optimal SPA
policy for uniform arrival times satisfies this constraint anyway, but proving this is an open
problem. In Section 3, we introduce the popular GTFS-format and explain our approach
to derive frequency information from this format. Finally, in Section 4, we describe our
experiments, which are then discussed in Section 5.

Related work. Bertsekas and Tsitsiklis [4] discuss the problem of selecting a fixed probabil-
ity distribution over the outgoing arcs of each node in order to also minimize the expected
travel time. But since only a fixed distribution is selected at each node, this problem is
more related to the classical shortest path problem. Having different alternatives is also an
element in the recently introduced guidebook routing [3], but the focus is here to cover as
many optimal routes as possible with a few such guidebook routes. Also Dibbelt et al. [7]
consider the case of providing alternatives to recover from failed connections, but as for
guidebook routing, it is assumed that a fixed timetable is given (with some random delay on
top), whereas we assume from the beginning that stochastic frequencies are given as input.
However, we think that algorithms for SPA could be valuable fast heuristics for problems
with a fixed timetable and an additional random component. Another interesting problem
in the context of stochastic routing is to maximize the probability to arrive on time [8]. But
in contrast to SPA, only a single path is considered.

2 Algorithmic Approach

Consider the case of n buses labeled 1, 2, . . . , n in a one-hop network, that is, they all leave
the origin stop for the destination stop, possibly with different travel times and arrival
patterns at the origin stop. More specifically, let Ti be the (possibly random) travel time of
bus i, and let Ai be a random variable that describes the time until the next arrival of bus
i at the origin stop, which is the time we have to wait in order to board this bus. The goal
is now to select a fixed subset of alternatives σ ⊆ {1, 2, . . . , n} that minimize the expected
combined travel and waiting time subject to the assumption that the traveler will pick the
first arriving alternative.

If the Ai are Poisson then simple arithmetic shows that, for any set of alternatives σ,
the combined expected waiting and travel time is

1 +
∑
i∈σ

E[Ti]
E[Ai]∑

i∈σ
1

E[Ai]
. (1)

Using this, if we assume that the buses are ordered such that E [T1] ≤ E [T2] ≤ . . . ≤ E [Tn],
then an optimal solution σ∗ has the form 1, 2, . . . , s for some 1 ≤ s ≤ n [6, 9], we say that it
forms a prefix. Thus, there is only a linear number of possible optimal solutions, which can
hence be efficiently enumerated. Even if we add some cardinality constraint k on the size
of σ, there are still only O(n2) many solutions to enumerate [9]. By applying these facts
iteratively in a backward Dijkstra-scheme, it is then possible to compute an optimal SPA
policy for a network with an arbitrary number of hops in polynomial time, see [6, 9]. In
fact, a large part of the complexity of computing SPA policies is already contained in such
one-hop networks.

However, the term in (1) does not describe the combined waiting and travel time for
uniform arrival times. For instance, if all Ai are uniformly distributed in [0, 1] and all Ti are
0, then selecting imany buses results in a combined waiting and travel time of 1

i+1 . However,
since then E [Ai] = 1

2 , the term in (1) would yield 1
2i , which is a lower bound on the real

ATMOS’14

18 Shortest Path with Alternatives for Uniform Arrival Times

Figure 1 The functions 1
i+1 ≈ uniform (solid line), 1

2i
≈ Poisson (dotted line), and 1

i
≈ Poisson

with 2E [Ai] (dashed line).

cost. A better approximation for large i is 1
i , which we receive if we replace E [Ai] by 2E [Ai]

in term (1). Indeed, it has been shown in [9] that this is an arbitrary good approximation
for large i under reasonable assumptions, yielding a polynomial-time approximation scheme
(PTAS).

Figure 1 illustrates the values of these different objectives in such a simple scenario. This
picture shows that using Poisson arrival times as an approximation for uniform arrival times
might result in quite a large gap. Specifically, using 1

2i as an approximation is exact for
i = 1, but insufficient for large i. On the other hand, using 1

i is a good approximation for
large i, but insufficient for i = 1. A reasonable heuristic to cover this case is to use 1

2i for
i = 1 and 1

i otherwise, which still has a large gap for i = 2. Therefore, we decided not to
use a heuristic, but to exactly compute the waiting time for uniform arrival times. However,
to keep the space of possible policies small, we only consider solutions that form prefixes.
This is motivated by the fact that it might be hard to communicate to a traveler that he
should not pick a bus with a smaller travel time than a given one. Besides, we conjecture
that such policies are optimal for uniform arrival times as well.

We use Algorithm 1 to compute an optimal set of buses for uniform arrival times subject
to the constraint that they form a prefix. In this algorithm, we have two DP-arrays, Φ and
Π, which we will explain first. For each bus i, let li be the value such that Ai is uniformly
distributed in [1, li]. Consider then a prefix of buses 1, 2, . . . , i. Clearly, the earliest arriving
bus from this set will arrive before time lmin := min1≤j≤i lj . The goal is then to fill array
Π such that Π[i, j] is the probability that from the buses 1, 2, . . . , i exactly j many arrive

T. Nonner and M. Laumanns 19

before time lmin. Formally,

Π[i, j] =
∑
v

(
i∏

z=1
pvz
z

i∏
z=1

(1− pz)1−vz

)
,

where the sum is over all {0, 1}-vectors v of length i where exactly j entries are 1, and
pz = lmin

lz
is the probability that bus z arrives before time lmin. Let then Φ[i, j] be the

expected travel time conditioned on this event multiplied by j, thus

Φ[i, j] =
∑
v

(
i∏

z=1
pvz
z

i∏
z=1

(1− pz)1−vz

i∑
z=1

vzE [Tz]
)
.

Using inductive arguments, we see that Algorithm 1 fills these arrays. Now note that the
expected waiting time of the prefix of buses 1, 2, . . . , i is lmin

∑k
j=1

Π[i,j]
j+1 . On the other hand,

the expected travel time is
∑k
j=1

Φ[i,j]
j . Consequently, because of linearity of expectation,

the final value of rk is the total combined waiting and travel time when taking the first k
buses, which implies the correctness of the algorithm. The running time is clearly O(n3).
Note that n is at most the maximum number of buses that pass any stop, and therefore
cubic running time is feasible in practice.

I Algorithm 1. Input: Ti, li for 1 ≤ i ≤ n

for k in 1, . . . , n :

1. set all values in Φ and Π to 0.0 and set Π[0, 0] = 1.0
2. lmin = min1≤i≤k li
3. for i in 1, . . . , k :

a. p = lmin
li

b. for j in 1, . . . , i :
Π[i, j] = (1− p)Π[i− 1, j] + pΠ[i− 1, j − 1]
Φ[i, j] = (1− p)Φ[i− 1, j] +
p(Φ[i− 1, j − 1] + Π[i− 1, j − 1]E [Ti])

c. Π[i, 0] = 1.0−
∑n
j=1 Π[i, j]

4. rk =
∑k
j=1(lmin

Π[k,j]
1+j + Φ[k,j]

j)

return the prefix 1, 2, . . . , k that corresponds to the smallest rk

Observe that Algorithm 1 does not provide an individual probability for each bus to be
picked, which might be useful to analyze, for instance, the expected walking time, if each
choice would imply a different walking time later on. It is somewhat surprising that it is
possible to compute the combined waiting and travel time without getting this information
as a byproduct. To derive this information, we can use the following Algorithm 2, which
has again running time O(n3). The input value k∗ is the output of Algorithm 1, and the
DP-array Π has the same meaning as in Algorithm 1. There is an additional DP-array Ψ,
and this array is filled such that Ψ[i, j, z] denotes the probability that from the prefix of
buses 1, 2, . . . , i exactly j many arrive before time lmin and z is one of them. The output Pi
gives then the individual probability of a bus i to be picked as the first arriving one.

ATMOS’14

20 Shortest Path with Alternatives for Uniform Arrival Times

I Algorithm 2. Input: Ti, li for 1 ≤ i ≤ n and k∗

set all values in Ψ and Π to 0.0 and set Π[0, 0] = 1.0 and Ψ[0, 0, 0] = 1.0
lmin = min1≤i≤k∗ li
for i in 1, . . . , k∗ :

1. p = lmin
li

2. for j in 1, . . . , i :

a. Π[i, j] = (1− p)Π[i− 1, j] + pΠ[i− 1, j − 1]
b. Ψ[i, j, i] = pΠ[i− 1, j − 1]
c. for z in 1, . . . , i− 1 :

Ψ[i, j, z] = (1− p)Ψ[i− 1, j, z] + pΨ[i− 1, j − 1, z]

3. Π[i, 0] = 1.0−
∑n
j=1 Π[i, j]

for i in 1, . . . , k∗ : return Pi =
∑k∗

j=1
Ψ[k∗,j,i]

j

3 GTFS Data Model

The goal of this section is to prepare input data in a way such that the techniques for
uniform arrival times described in Section 2 can be applied. Specifically, we want to compute
frequencies of buses, which is motivated by the fact that if a bus runs every 10 minutes,
then a uniform arrival time in a 10 minutes interval is arguably the appropriate modeling
choice.

The GTFS5 format, formerly Google Transit Format Specification, allows the specifica-
tion of public transportation time-tables in csv-files. Its basic entities are trips (defined in
file trips.txt), which are described by a sequence of stop times, that is, combinations of stops
and times (defined in file stop_times.txt). Thus, a trip only describes a single journey of a
bus. It is important to note that there is no explicit grouping of trips into similar ones. One
option is the route specification, but different trips assigned to the same route might have a
different stop sequences. Another way is to associate trips with their corresponding shapes.
However, shapes are more intended to describe a possible visualization. Therefore, the only
way to logically group trips is to preprocess them into lines with a similar stop sequence and
route identifier. We do this in hourly buckets, and then, for simplicity, take the first trip in
any bucket as the one that defines the inter-stop travel times for the bucket. The number
of trips in one bucket or runs-per-hour (rph) is then used to compute their frequency, e.g.,
if there are 6 runs-per-hour, then we assume that a trip runs every 10 minutes. This trans-
lates into 10 headway minutes or 600 headway seconds in GTFS, and would correspond to
a waiting time uniformly distributed in interval [0, 600] in terms of seconds. The following
table gives an example of such a hourly bucket or frequency in file frequencies.txt.

trip_id start_time end_time headway_secs exact_times

freq_trip_0 08:00:00 08:59:59 600 0

Using this scheme, we can add frequencies to instances where such information is not
available, that is, we compute the additional file frequencies.txt. Note that this file is part

5 https://developers.google.com/transit/gtfs/

https://developers.google.com/transit/gtfs/

T. Nonner and M. Laumanns 21

Figure 2 Runs-per-hour histogram of Dublin.

of the specification of GTFS, but it is almost never provided. Table 1 shows the original
number of trips and the final number of frequencies for the considered instances.

Figure 2 shows a histogram of the average number of runs-per-hour in Dublin. Note that
there is a peak at 4 and 6, which corresponds to having a trip every 15 and 10 minutes,
respectively.

Clearly, more fine-grained methods could be applied to derive the necessary frequency
information, for instance to avoid having sharp borders between buckets. It is also reasonable
to only turn trips into frequencies if the number of runs-per-hour is above some threshold, say
3, but this would require some heuristic approach for mixing normal trips with frequencies
during the routing process. Therefore, to allow an easy reproduction of results, we decided
to use the presented basic method due to its simplicity.

4 Experiments and Results

First, since we are more interested in high-frequency inner-city traffic, we restrict the stops
to the more central ones. This is done via first computing the geographic center of all stops,
and then a function that indicates the decreasing density of stops when moving away from
this center. We finally limit the radius of stops to consider such that the density is at least
half the maximum density in the very center.

Second, on the remaining stops, we do a K-means clustering with K = 20, and from each
cluster, we pick the centroid as a sample. This gives a representative selection of 20 stops.
For instance, Figure 3 shows the inner-city of Dublin in dark grey with roughly labeled
centroids. Each experiment is then executed on all 380 origin-destination pairs from this
selection and every two hours between 8 o’clock and 18 o’clock to obtain averages of 2280
runs.

ATMOS’14

22 Shortest Path with Alternatives for Uniform Arrival Times

Table 1 Transformation of instances.

instance Berlin Budapest Dublin Oslo

planning date 10-06-11 14-09-12 19-11-12 06-12-13
#trips 45872 49905 7308 14200

#frequencies 20245 11554 3319 6353
#rph (average) 2.27 4.32 2.2 2.24

Table 2 Experimental results.

Berlin Budapest Dublin Oslo

travel (P1) 49.01 53.04 45.47 34.11
travel (P2) 49.22 50.45 44.41 36.58
travel (P3) 47.52 49.42 43.06 35.1

walk (P1) 8.35 13.23 10.04 7.35
walk (P2) 6.14 11.27 9.39 8.07
walk (P3) 6.05 10.57 8.5 8.09

wait (P1) 9.23 8.04 6.44 11.05
wait (P2) 13.12 9.43 11.49 16.38
wait (P3) 11.59 9.0 10.3 14.52

%trav. impr. 3.2 2.1 3.7 4.6
%trav. impr. (25%) 5.1 3.4 5.8 7.7
%wait impr. 5.8 2.3 7.6 8.2
%wait impr. (25%) 18.4 15.7 22.6 20.4

Other assumptions are: (1) we use the euclidean distance (on the earth surface) to
approximate walking times between stops with walking speed 4km per hour, (2) we assume
that we are allowed to switch buses at most three times, and (3) we assume that the traveler is
aware of arriving buses at other stops within 50 meters, and hence we can select alternatives
within this tolerance.

We consider three policies: (P1) an exact shortest path using the original GTFS-instance,
(P2) a shortest path with alternatives using the derived GTFS-instance with frequencies
where we allow only a single alternative at each stop, (P3) a shortest path with alternatives
with an arbitrary number of alternatives at each stop.

We list our experimental results in Table 2. First, we give the average total travel times
in minutes for the different policies, and then the respective walking and waiting times.
Afterwards, we compare policies (P2) and (P3) in the second block. Rows %trav. impr.
and %wait impr. give the average percentage of travel and waiting time improvement when
allowing an arbitrary number of alternatives, respectively, and rows %trav. impr. (25%)
and %wait impr. (25%) give the minimum travel and waiting time improvement in the top
25%-quantile.

T. Nonner and M. Laumanns 23

Figure 3 Origin-destination selection for Dublin.

5 Conclusion

We find that there are no large differences in travel times of all three policies, which is due
to the fact that the travel time is dominated by the time spend in buses or walking, which
are physical constraints that we cannot improve. It is interesting that policy (P1) does not
clearly dominate the other policies.

Of course, policy (P1) is applied to the original GTFS-instance and hence gives exact
routes, whereas policies (P2) and (P3) use the postprocessed GTFS-instance with frequen-
cies, and therefore give policies with random travel time. Hence, this comparison should be
considered as a high-level indicative study. However, in terms of total resources (buses) in
the public transportation system, both sides are equal, only the latter case is stochastic.

As expected, the major difference between the three policies are the waiting times. Here
we see that policy (P2) is strictly worse than policy (P1), it almost doubles the waiting time
in some cases. However, a significant part of this waiting time increase can be absorbed by
allowing more alternatives with policy (P3). More specifically, the benefit of allowing more
alternatives is listed in the second block. We see again that the influence on the total travel
time is relatively small, but around 25% of considered cases allow a reduction of waiting
time of at least 20%.

We implemented our algorithms in C++ using the standard library and ran them on
a single core of an Intel i5-2540M CPU with 2.60GHz and 8GB RAM. The shortest path

ATMOS’14

24 Shortest Path with Alternatives for Uniform Arrival Times

Table 3 Running times.

Berlin Budapest Dublin Oslo

(P1) 363 217 131 24
(P2) 613 314 472 72
(P3) 594 323 520 80

procedure is implemented using a standard Dijkstra-scheme. For the SPA policies, we im-
plement the recurrence relation in this scheme using the algorithms described in Section 2,
which gives additional overhead. On the other hand, we consider smaller instances in this
case because of the clustering of trips into frequencies as described in Section 3. Table 3 lists
the average running times in milliseconds for the different instances and policies. Note that
the additional overhead due to the more involved recurrence relation is counterbalanced in
a large part by using smaller instances. This shows that SPA policies can be practically
computed even in interactive applications.

All our implementations build on a standard Dijkstra-scheme and do not further optimize
this procedure. Therefore, many of the techniques used to speed-up this scheme could be
used to derive faster running times, see for instance [2] for a comprehensive overview.

References
1 Utku Günay Acer, Paolo Giaccone, David Hay, Giovanni Neglia, and Saed Tarapiah. Timely

data delivery in a realistic bus network. IEEE Transactions on Vehicular Technology,
61(3):1251–1265, 2012.

2 Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann, Thomas
Pajor, Peter Sanders, Dorothea Wagner, and Renato Werneck. Route planning in trans-
portation networks. Technical Report MSR-TR-2014-4, Microsoft Research, January 2014.

3 Hannah Bast and Sabine Storandt. Flow-based guidebook routing. In Proceedings of the
16th Workshop on Algorithm Engineering and Experiments (ALENEX’14), pages 155–165,
2014.

4 Dimitri P. Bertsekas and John N. Tsitsiklis. An analysis of stochastic shortest path prob-
lems. Math. Oper. Res., 16:580–595, August 1991.

5 Justin Boyan and Michael Mitzenmacher. Improved results for route planning in stochastic
transportation. In Proceedings of the 12th annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’01), pages 895–902, 2001.

6 Mayur Datar and Abhiram G. Ranade. Commuting with delay prone buses. In Proceedings
of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’00), pages 22–
29, 2000.

7 Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Intriguingly simple and
fast transit routing. In Proceedings of the 12th International Symposium on Experimental
Algorithms (SEA’13), pages 43–54, 2013.

8 Evdokia Nikolova, Jonathan A Kelner, Matthew Brand, and Michael Mitzenmacher.
Stochastic shortest paths via quasi-convex maximization. In Proceedings of the 14th Annual
European Symposium on Algorithms (ESA’06), pages 552–563. Springer, 2006.

9 Tim Nonner. Polynomial-time approximation schemes for shortest path with alternatives.
In Proceedings of the 20th Annual European Symposium on Algorithms (ESA’12), pages
755–765, 2012.

Locating Battery Charging Stations to Facilitate
Almost Shortest Paths∗

Esther M. Arkin1, Paz Carmi2, Matthew J. Katz2, Joseph S. B.
Mitchell1, and Michael Segal3

1 Department of Applied Mathematics and Statistics
Stony Brook University, USA
{estie,jsbm}@ams.stonybrook.edu

2 Department of Computer Science
Ben-Gurion University, Israel
{carmip,matya}@cs.bgu.ac.il

3 Department of Communication Systems Engineering, Ben-Gurion University,
Israel
segal@bgu.ac.il

Abstract
We study a facility location problem motivated by requirements pertaining to the distribution
of charging stations for electric vehicles: Place a minimum number of battery charging stations
at a subset of nodes of a network, so that battery-powered electric vehicles will be able to move
between destinations using “t-spanning” routes, of lengths within a factor t > 1 of the length
of a shortest path, while having sufficient charging stations along the way. We give constant-
factor approximation algorithms for minimizing the number of charging stations, subject to the
t-spanning constraint. We study two versions of the problem, one in which the stations are
required to support a single ride (to a single destination), and one in which the stations are to
support multiple rides through a sequence of destinations, where the destinations are revealed
one at a time.

1998 ACM Subject Classification G.2.2 Graph Theory: Network Problems; F.2.2 Nonnumerical
Algorithms and Problems: Geometrical problems and computations

Keywords and phrases approximation algorithms; geometric spanners; transportation networks

Digital Object Identifier 10.4230/OASIcs.ATMOS.2014.25

1 Introduction

Network optimization problems ask us to construct “good” networks subject to various
constraints and objectives. There is always a trade-off between the cost of the network and
its functionality. For example, in the problem of computing an optimal spanning subgraph,
there is a trade-off between the objectives of having a low cost network in terms of the number
or weight of the edges and the preservation of shortest path distance in the subgraph, when
compared to shortest path distance in the full graph. Specifically, given an edge-weighted

∗ E. Arkin, P. Carmi, M. Katz and J. Mitchell are partially supported by grant 2010074 from the United
States – Israel Binational Science Foundation. E. Arkin and J. Mitchell are partially supported by NSF
(CCF-1018388). P. Carmi is partially supported by grant 680/11 from the Israel Science Foundation.
M. Katz is partially supported by grant 1045/10 from the Israel Science Foundation. M. Segal is
partially supported by General Motors Inc., by the Israeli Ministry of Defense and by an EPSRC grant
from the United Kingdom Research Council.

© Esther M. Arkin, Paz Carmi, Matthew J. Katz, Joseph S. B. Mitchell, and Michael Segal;
licensed under Creative Commons License CC-BY

14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’14).
Editors: Stefan Funke and Matúš Mihalák; pp. 25–33

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2014.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

26 Locating Battery Charging Stations to Facilitate Almost Shortest Paths

graph G = (V,E) and a real number t ≥ 1, a t-spanner of G is a spanning subgraph G′

with the property that for each edge {x, y} in G, there exists a path between x and y in G′
whose weight is no more than t times the weight of the edge {x, y}. Such a path is said to
be a t-spanning path.

Constructing good spanners arises in transportation network design, since it is important
for networks of roads or rails to provide efficient routes between pairs of locations, thereby
minimizing the total travel time for cars and trains while minimizing environmental impact
in terms of energy consumption and air pollution. Environmental awareness has prompted
the demand for “green energy” approaches to transportation, industrial production, and
daily life. A key component of such approaches to the transportation sector is the use of
electric and hybrid automobiles and trucks, in place of vehicles that require the combustion
of fossil fuels.

In this paper we address spanner optimization problems that are motivated by the need
for infrastructure in support of electric vehicles. Instead of measuring cost in terms of the
number or weight of edges, we consider a cost in terms of the number of nodes selected.
Specifically, we consider the problem of placing a minimum number of battery charging
stations at a subset of nodes of a network, so that battery-powered electric vehicles will be
able to move between destinations using routes that are provably close to being shortest
paths, while having sufficient charging stations along the way.

We use a simple model of motion in which we assume distances between pairs of points
is measured by (or approximated by) Euclidean (L2) distance. However, our methods can
be applied to other metric spaces, such as the L1 distance (measuring “Manhattan” driving
distances in a regular grid of streets) or more general road networks.

1.1 Related work
A variant of our (basic) problem has been studied by Storandt and Funke [11]. On the one
hand, they studied the problem in a more general setting, where the underlying network
is modeled by a weighted directed graph, but, on the other hand, they require only the
existence of a path between any pair of destinations (in either one or both directions), while
we require the existence of a light (i.e., short) path between any pair of destinations.

The battery charging station location problem (when requiring only the existence of a
path) is closely related to the problem of computing a connected dominating set. Let L > 0
be the distance that the vehicle can travel without recharging its battery when starting with
a full battery. Given a set P of points in the plane, let G be the graph over P in which
there is an edge between p, q ∈ P if and only if |pq| ≤ L, and assume that G is connected.
Then a minimum Connected Dominated Set (CDS) of G corresponds to a minimum set of
battery charging stations in G, and vice versa.

The problem of finding a minimum CDS in a unit disk graph has been shown to be
NP-complete [3]. Marathe et al. [8] present a 10-approximation centralized algorithm for
this problem. Cheng et al. [2] present a polynomial-time approximation scheme that guar-
antees an approximation factor of (1 + 1/s) with running time of nO((s log s)2). In addition,
the distributed construction of a small CDS has attracted significant attention. The first
such algorithm due to Wan et al. [13] has an approximation factor of 8 and running time
O(n). However, the analysis of [13] ignores delays incurred by interference (in the con-
text of wireless networks). An algorithm given in [10] computes, with high probability, an
O(1)-approximation in O(n log2 n) time and explicitly handles interference. This algorithm
is based on a distance-2-coloring (D2-coloring), where no two nodes at 2-hop distance can
have the same color. Funke et al. [4] improved the approximation ratio to 6.91. Subsequently,

E. Arkin et al. 27

the approximation ratio was further improved in [5,7,14,15], and it currently stands at 6 [12].
In short, without the additional requirement that there exist a t-spanning path between

any two destinations, the problem is a well studied problem with good approximation results.
There are numerous papers dealing with geometric spanners; see the book by Narasimhan

and Smid [9] for an extensive survey. However, the constructions that are most relevant to
the construction described in this paper are those that use cones, e.g., the Yao-graph [16], the
θ-graph [6], and the stable roommates spanner [1]. The main idea in these constructions is to
partition the plane around each input point into k equal-angle cones, and to pick a “closest”
point in each of these cones, where the definition of “closest” varies in each construction.

1.2 Definitions and results
Let P be a set of n points (locations) in the plane, and let L be the distance that the vehicle
can travel without recharging its battery when starting with a full battery. Without loss of
generality we assume that L = 1. For r > 0, denote by UDGr(P) the graph whose vertices
are the points of P and there exists an edge between two vertices if and only if the Euclidean
distance between their corresponding points is at most r. Let G = UDG1(P), i.e., G is the
Unit Disk Graph induced by P . We assume that G is connected, since, otherwise, there is
no solution to our problem.

For a subset Q ⊆ P , we denote by GQ the graph G, such that the battery charging
stations are located at the vertices corresponding to the points of Q. Let πGQ

(p, q) =≺ p =
p1, . . . , pk = q � be a path between p and q in GQ. We say that πGQ

(p, q) is legal if and
only if the following two conditions are satisfied: (i) pi ∈ Q, 1 < i < k, and (ii) |pipi+1| ≤ 1,
1 ≤ i ≤ k − 1. Let δGQ

(p, q) represent a legal shortest path between p and q in GQ; its
length is denoted by |δGQ

(p, q)|. If such a path does not exist, then |δGQ
(p, q)| = ∞. We

are ready to state the two main problems that are studied in this paper, where BCS stands
for Battery Charging Station. We believe that the second one models reality quite well.

BCS Location Problem (single ride). Given a set P of points in the plane and a constant
t > 1. Locate as few battery charging stations as possible at points of P , such that, for any
two points p, q ∈ P , |δGQ

(p, q)| ≤ t · |δGP
(p, q)|, where Q is the subset of points of P at which

battery charging stations have been located. In other words, find a minimum cardinality
subset Q ⊆ P , such that, if one places battery charging stations at the points of Q, then,
for any two points p, q ∈ P , the distance that a vehicle at p (with a fully charged battery)
would have to travel in order to reach q is not much longer than the distance it would travel
if there were a battery charging station at each point of P . We are assuming that whenever
the vehicle passes through a battery charging station its battery is recharged.

BCS Location Problem (multiple rides). Given a set P of points in the plane and a
constant t > 1. Find a minimum cardinality subset Q ⊆ P , such that, if one places battery
charging stations at the points of Q, then the following requirement is satisfied. Let p be
any starting point and let σ = (p = q0, q1, . . . , ql) be a sequence of destinations in P , where
destination qi, 1 ≤ i ≤ l, is revealed only once destination qi−1 has been reached. Then,
for any 1 ≤ i ≤ l, given the next destination qi, one can compute a path π̂GQ

(qi−1, qi)
(in GQ) from qi−1 to qi, such that Σij=1|π̂GQ

(qj−1, qj)| ≤ t · Σij=1δGP
(qj−1, qj). Or, in

words, the total distance traveled so far, where the destinations are given one by one and
the battery is recharged only at points of Q is not much longer than the distance traveled
so far, where there is a battery charging station at each point of P . We are assuming
that at the beginning (when the vehicle is at the starting point p), the vehicle’s battery is

ATMOS’14

28 Locating Battery Charging Stations to Facilitate Almost Shortest Paths

θ

r 2r1− 2r

p

a

b

Cp

Figure 1 Locating battery charging stations for cone Cp, where p ∈ MIS . The regions Cp ∩
(D1+r(p) \D1−r(p)) and Dr(p) are in gray, and |ab| ≤ 1.

fully charged, but afterwards it is recharged only when the vehicle passes through a battery
charging station.

Let m be the size of an optimal solution to the weaker version of the single ride problem,
where one needs to locate as few charging stations as possible, so that for any two points
in P there is a legal path between them (but not necessarily a legal t-spanning path). We
show how to compute a subset Q ⊆ P , which will be used for both our problems. We then
prove that |Q| = O(m), immediately implying that Q is a constant-factor approximation of
the optimal solutions for these problems. After computing Q, we describe how given a pair
of points, in the single ride version, or the next destination, in the multiple rides version,
to compute a legal path in GQ such that the appropriate length requirement is satisfied.
Finally, we show that Q can be computed in O(n logn) time.

2 Single ride

Let r = r(t) < 1 be some constant dependent on t that will be specified later. We begin
by finding a maximal independent set, MIS , in UDGr(P) and locating battery charging
stations at the vertices of MIS . This does not yet guarantee that there exists a t-spanning
path between any two points as required, so we need to locate additional stations. We shall
denote the disk of radius ρ centered at point p by Dρ(p). Let θ be an angle such that 2π

θ is
an integer and sin θ

2 ≤
r
2 . Set k = 2π

θ . For each point p ∈ MIS , partition the plane into k
cones with apex p and angle θ. Now, for each of p’s cones, Cp, if there exist a pair of points
a ∈ P ∩Cp ∩ (D1+r(p) \D1−r(p)) and b ∈ P ∩Dr(p) such that |ab| ≤ 1, then locate battery
charging stations at a and b for one such pair; see Figure 1.

The following observation follows from the requirement sin θ
2 ≤

r
2 .

I Observation 1. For any two points x and y in Cp ∩ (D1+r(p) \ D1−r(p)), it holds that
|xy| ≤ 3r.

Let Q be the set of points where battery charging stations have been located. We prove
that (in GQ) there exists a t-spanning path between any two points.

I Theorem 2. For any p, q ∈ P , |δGQ
(p, q)| ≤ t · |δGP

(p, q).

Proof. If |pq| ≤ 1, then |δGQ
(p, q)| = |pq| = |δGP

(p, q)|. Thus, we assume that |pq| > 1. Let
δGP

(p, q) be ≺ p = p1, p2, . . . , pk−1, pk = q �, where k > 2 (since |pq| > 1). For each p ∈ P ,
let p′ denote a point in Q (possibly p itself) such that |pp′| ≤ r. Such a point always exists
since otherwise we can add p to MIS ⊆ Q.

E. Arkin et al. 29

I Observation 3. (i) |p′ipi+1| ≤ 1 + r, and (ii) if |p′ip′i+1| > 1, then |p′ipi+1| > 1− r.

Proof. By the triangle inequality, we obtain the upper bound |p′ipi+1| ≤ |p′ipi|+ |pipi+1| ≤
1 + r.

By the triangle inequality, we have |p′ip′i+1| ≤ |p′ipi+1| + |pi+1p
′
i+1| ≤ |p′ipi+1| + r, or

|p′ipi+1| ≥ |p′ip′i+1| − r. And since |p′ip′i+1| > 1, we obtain the lower bound. J

Now, we build a legal path πGQ
(p, q) from p to q in GQ. The path πGQ

(p, q) starts at
p = p1, ends at q = pk, and visits points p′1, p′2, . . . , p′k.

For each i, 1 ≤ i ≤ k − 1, we distinguish between two cases, according to the distance
|p′ip′i+1|:

Case (1): |p′
ip′

i+1| ≤ 1. Then, the path πGQ
(p, q) visits point p′i+1 immediately after point

p′i. The length of this direct (legal) path from p′i to p′i+1 is

|p′ip′i+1| ≤ |p′ipi|+ |pipi+1|+ |pi+1p
′
i+1| ≤ |pipi+1|+ 2r.

Case (2): |p′
ip′

i+1| > 1. Let Cp′
i
be the cone with apex p′i that contains pi+1 and proceed

as follows. By Observation 3, we have pi+1 ∈ (Cp′
i
∩ (D1+r(p′i) \D1−r(p′i))). Moreover,

pi ∈ Dr(p′i) and |pipi+1| ≤ 1. Thus, Q includes battery charging stations at points a and
b such that a ∈ Cp′

i
∩ (D1+r(p′i) \ D1−r(p′i)) and b ∈ Dr(p′i). (Possibly a = pi+1, and

possibly b = p′i.) Therefore, our constructed legal path from p′i to p′i+1 is defined to be
≺ p′i, b, a, p′i+1 �.
The length of our constructed path ≺ p′i, b, a, p′i+1 � is

|p′ib|+ |ba|+ |ap′i+1| ≤ |p′ib|+ |ba|+ |api+1|+ |pi+1p
′
i+1| ≤ r + 1 + 3r + r = 1 + 5r,

where the inequality |api+1| ≤ 3r follows from Observation 1. Since we are assuming
that |p′ip′i+1| > 1, and we know that |p′ip′i+1| ≤ |pipi+1|+ 2r, we get that

|pipi+1| ≥ |p′ip′i+1| − 2r > 1− 2r,

implying that the length of our constructed path ≺ p′i, b, a, p′i+1 � is

|p′ib|+ |ba|+ |ap′i+1| ≤ 1 + 5r ≤ |pipi+1|+ 7r.

Thus, in both cases, the length of our constructed legal path from p′i to p′i+1 is at most
|pipi+1| + 7r. Thus, the length, |πGQ

(p′i, p′i+2)|, of our constructed path from p′i to p′i+2 is,
for any 1 ≤ i ≤ k − 2, at most |pipi+1|+ |pi+1pi+2|+ 14r, implying the following bound on
the dilation:

|πGQ
(p′i, p′i+2)|

|pipi+1|+ |pi+1pi+2|
≤ |pipi+1|+ |pi+1pi+2|+ 14r

|pipi+1|+ |pi+1pi+2|
≤ 1 + 14r

|pipi+2|
< 1 + 14r.

The last inequality above comes from the optimality of the path δGP
(p, q), which implies

that for each i, 1 ≤ i ≤ k − 2, |pipi+2| > 1 (otherwise the path would go directly from pi to
pi+2).

Overall, then, considering the partition of δGP
(p, q) into the subpaths δGP

(pi, pi+2),
for i = 1, 3, 5, . . ., and comparing to the lengths |πGQ

(p′i, p′i+2)| of each of the associated
constructed subpaths, we get an overall dilation factor of at most 1 + 14r (assuming k is
odd). Finally, taking into account the case where k is even and the initial and final steps
from p1 to p′1 and from p′k to pk, we get a bound of 1 + 18r on the dilation factor. Thus, we
pick r = (t− 1)/18.

J

ATMOS’14

30 Locating Battery Charging Stations to Facilitate Almost Shortest Paths

Let OPT be an optimal solution to the weaker version of the problem, where one needs
to locate as few charging stations as possible, so that for any two points in P there is a
legal path between them (but not necessarily a legal t-spanning path). Moreover, denote
by MIS(UDGr(P)) and MCDS(UDGr(P)) a maximal independent set and a minimum
connected dominating set of UDGr(P), respectively.

I Theorem 4. The number of battery charging stations in our solution is bounded by a
constant times |OPT |, i.e., |Q| = O(|OPT |).

Proof. Observe first that OPT is a connected dominating set of UDG1(P) and therefore
|OPT | ≥ |MCDS(UDG1(P))|. It is well known that |MIS(UDG1(P))| = O(|MCDS(UDG1(P))|);
actually, |MIS(UDG1(P))| ≤ 3.8|MCDS(UDG1(P))| + 1.2, see [15]. We conclude that
|MIS(UDG1(P))| = O(|OPT |). On the other hand, the number of battery charging sta-
tions that we locate is |Q| = O(1

t−1 |MIS(UDGr(P))|) = O(1
r2(t−1) |MIS(UDG1(P))|) =

O(1
(t−1)3 |OPT |). J

3 Multiple rides

In this section we extend the basic version of the problem considered in the previous section
to a more general and more realistic setting. In the general version, we are given a sequence
of points (i.e., destinations), rather than a single destination, and we need to visit them one
after the other. However, the points are given to us one at time; that is, the next destination
is given to us only when the current destination has been reached. Moreover, in contrast
with the basic version, we cannot assume that the vehicle’s battery is fully charged at the
beginning of the i’th trip (except for the first trip); rather, its battery level depends on
the distance traveled from the last charging station visited. Under these more general and
natural conditions, we would like to achieve similar goals.

More precisely, let P be a set of points in the plane and let t > 1 be a constant. We
wish to find a minimum cardinality subset Q ⊆ P , such that, if one places battery charging
stations at the points of Q, then the following requirement is satisfied. Let p be any starting
point and let σ = (p = q0, q1, . . . , ql) be a sequence of destinations in P , where destination qi,
1 ≤ i ≤ l, is revealed only once destination qi−1 has been reached. Then, for any 1 ≤ i ≤ l,
given the next destination qi, one can compute a path π̂GQ

(qi−1, qi) (in GQ) from qi−1 to
qi, such that Σij=1|π̂GQ

(qj−1, qj)| ≤ t · Σij=1δGP
(qj−1, qj). Or, in words, the total distance

traveled so far, where the destinations are given one by one and the battery is recharged
only at points of Q is not much longer than the distance traveled so far, where there is a
battery charging station at each point of P . We are assuming that at the beginning (when
the vehicle is at the starting point p), the vehicle’s battery is fully charged, but afterwards
it is recharged only when the vehicle passes through a battery charging station.

We prove below that the set Q, computed in the previous section, is also suitable for
the general version. That is, by placing charging stations at the points of Q, we are able to
satisfy the requirement concerning the distance traveled so far. Notice that, by using the
same set Q as in the previous section, the requirement concerning the size of Q is already
satisfied (i.e., |Q| is bounded by some constant times |OPT |), since the size of an optimal
solution to the multiple ride version is clearly at least the size of an optimal solution to the
single ride version.

I Theorem 5. For any 1 ≤ i ≤ l, given the next destination qi, one can compute a path
π̂GQ

(qi−1, qi) (in GQ) from qi−1 to qi, such that Σij=1|π̂GQ
(qj−1, qj)| ≤ t ·Σij=1δGP

(qj−1, qj).

E. Arkin et al. 31

Proof. Given the next destination qi, the general idea is to use the path computed in the
previous section, unless this means that the car reaches qi with battery level less than r.
More precisely, if |qi−1qi| ≤ 1− 2r, then depending on whether we can reach qi with battery
level at least r or not, we drive directly from qi−1 to qi, or drive from qi−1 to qi via q′i−1,
where q′i−1 denotes a point in Q such that |qi−1q

′
i−1| ≤ r. Notice that assuming the battery

level at the beginning of the journey is at least r, the vehicle will complete the journey and
reach qi with battery level at least r.

Now, consider the case where |qi−1qi| > 1 − 2r, and let δGP
(qi−1, qi) be ≺ qi−1 =

p1, p2, . . . , pk−1, pk = qi �, where k ≥ 2. (Notice that here, unlike in the previous section,
it is possible that k = 2.) In this case we drive along the path πGQ

(p1, pk), defined in the
previous section. This path starts at p1, ends at pk, and visits points p′1, . . . , p′k. Again,
assuming the battery level at the beginning of the journey is at least r and recalling that
|p1p

′
1| ≤ r, the car will complete the journey, i.e., reach pk. Moreover, since |p′kpk| ≤ r, the

battery level at the end of the journey is at least 1− r ≥ r.
We denote the constructed path from qi−1 to qi by π̂GQ

(qi−1, qi). It remains to prove
that for a sufficiently small constant r, Σij=1|π̂GQ

(qj−1, qj)| ≤ t ·Σij=1δGP
(qj−1, qj). We say

that path π̂GQ
(qj−1, qj) is short, for 1 ≤ j ≤ i, if |qj−1qj | ≤ 1− 2r; otherwise it is long. By

the analysis of the previous section, we know that for any 1 ≤ j ≤ i, if π̂GQ
(qj−1, qj) is long,

then its dilation factor is bounded by 1 + 18r.
We partition the sequence of paths π̂GQ

(q0, q1), . . . , π̂GQ
(qi−1, qi) into maximal sub-

sequences, such that in each subsequence either all paths are short or all paths are long.
Consider a subsequence Π of the former kind and let qmin be the starting point of the first
path in Π and let qmax be the ending point of the last path in Π. Since all the paths in
Π are short, we know that the length of the shortest path in GP starting at qmin, passing
through qmin +1, . . . , qmax−1, and ending at qmax is simply x =

∑max−1
j=min |qjqj+1|. Therefore

the number of detours (to a charging station) that Π makes is at most d x
1−2r e. Notice that

if Π is the whole sequence π̂GQ
(q0, q1), . . . , π̂GQ

(qi−1, qi), then, if x ≤ 1−r, then the dilation
factor of Π is 1, and otherwise, it is less than

x+ 2rb x
1−2r c

x
≤ 1 + 2r

1− 2r = 1
1− 2r .

If Π is not the whole sequence, then each subsequence of short paths is followed and/or
preceded by a subsequence of long paths. We thus charge the first detour in each subsequence
of short paths to one of its adjacent subsequences. This increases the bound on the dilation
factor of a subsequence of long paths to 1 + 22r, and allows us to bound the dilation factor
of a subsequence of short paths by 1

1−2r . Since r ≤ 1/3, the dilation factor of the whole
sequence is bounded by 1 + 22r, and by fixing r ≤ t−1

22 , the requirement concerning the
distance traveled so far is satisfied. J

4 Running time

In this section we show how to compute in O(n logn) time the set Q of points at which we
locate battery charging stations. Recall that we first compute a maximal independent set,
MIS , in UDGr(P). This can be done in O(n logn) time. (E.g., select a point p ∈ P that has
not been considered yet, and compute the distance between p and each of the O(1) points of
MIS lying in the axis-parallel square of edge length 2r around p. If for each of these points
the distance is greater than r, then add p to MIS . Move to the next unconsidered point in
P .) Now, for each p ∈ MIS , we need to consider the set Ap ⊆ P of points in the annulus
centered at p with radii 1− r and 1 + r, and partition it into k subsets, corresponding to the

ATMOS’14

32 Locating Battery Charging Stations to Facilitate Almost Shortest Paths

k cones with apex p. For each such subset Aip, we need to find a pair a ∈ Aip and b ∈ Dr(p),
such that |ab| ≤ 1 (if such a pair exists). However, we cannot afford to preprocess P for
annulus reporting queries. Instead, we proceed as follows. We preprocess P for axis-parallel
square reporting queries. Given a point p ∈ MIS , we perform a query with the axis-parallel
square of edge length 2(1 + r) centered at p. Let Sp be the query’s output. Now, for each
point q ∈ Sp, we check whether its distance from p is within the range [1 − r, 1 + r], and,
if yes, we add it to the subset Aip to which it belongs. Similarly, we perform a reporting
query with the square of edge length 2r centered at p. For each point in the query’s output,
we check whether it lies in Dr(p) or not. We now have the sets P ∩Dr(p) and A1

p, . . . , A
k
p.

Next, we construct the Voronoi diagram of the set P ∩Dr(p) and preprocess it for efficient
point location queries. It remains to find the pairs {a, b}, for each of the sets A1

p, . . . , A
k
p.

Consider the set A1
p. For each point q ∈ A1

p, we find its nearest neighbor in P ∩Dr(p), until
we encounter a pair whose corresponding distance is at most 1 (or we have finished checking
all points in A1

p). We now move to the next set A2
p, etc.

We prove that the total running time of the algorithm described above for computing Q
is only O(n logn), assuming of course that r is a constant. Notice first that if we apply the
algorithm to a single point p ∈ MIS , then the running time is clearly O(|Sp| log |Sp|). We
now prove that each point q ∈ P belongs to at most some constant number (dependent on
r) of the sets Sp, where p ∈ MIS .
I Claim 6. Let q ∈ P . Then q belongs to at most O(1/r2) sets Sp, where p ∈ MIS .

Proof. Notice that if we draw a disk of radius r/2 around each of the points in MIS , then
the resulting disks are pairwise disjoint. Now, q ∈ Sp, for p ∈ MIS , if and only if p is in the
square of edge length 2(1 + r) centered at q. However, the observation above implies that
the number of points of MIS in the square around q is only O(1/r2). J

The following theorem summarizes the main result of this section.

I Theorem 7. The set Q can be computed in O((1/r2)n logn) time.

I Remark. A more complex algorithm gives a better bound in which 1/r2 is replaced by
1/r. However, since r is a constant, we preferred to describe the simpler algorithm.

References
1 Prosenjit Bose, Paz Carmi, Lilach Chaitman-Yerushalmi, Sébastien Collette, Matthew J.

Katz, and Stefan Langerman. Stable roommates spanner. Computational Geometry,
46(2):120–130, 2013.

2 Xiuzhen Cheng, Xiao Huang, Deying Li, Weili Wu, and Ding-Zhu Du. A polynomial-
time approximation scheme for the minimum-connected dominating set in ad hoc wireless
networks. Networks, 42(4):202–208, 2003.

3 Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs. Discrete
Mathematics, 86(1–3):165–177, 1990.

4 Stefan Funke, Alexander Kesselman, Ulrich Meyer, and Michael Segal. A simple improved
distributed algorithm for minimum cds in unit disk graphs. ACM Trans. Sen. Netw.,
2(3):444–453, 2006.

5 Xiaofeng Gao, Yuexuan Wang, Xianyue Li, and Weili Wu. Analysis on theoretical bounds
for approximating dominating set problems. Discrete Mathematics, Algorithms and Ap-
plications, 1(1):71–84, 2009.

6 J. Mark Keil and Carl A. Gutwin. Classes of graphs which approximate the complete
euclidean graph. Discrete & Computational Geometry, 7(1):13–28, 1992.

E. Arkin et al. 33

7 Minming Li, Peng-Jun Wan, and Frances Yao. Tighter approximation bounds for min-
imum CDS in wireless ad hoc networks. In International Symposium on Algorithms and
Computation (ISAAC), pages 699–709. 2009.

8 M. V. Marathe, H. Breu, H. B. Hunt, S. S. Ravi, and D. J. Rosenkrantz. Simple heuristics
for unit disk graphs. Networks, 25(2):59–68, 1995.

9 Giri Narasimhan and Michiel Smid. Geometric spanner networks. Cambridge University
Press, 2007.

10 Srinivasan Parthasarathy and Rajiv Gandhi. Distributed algorithms for coloring and dom-
ination in wireless ad hoc networks. In IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS), pages 447–459. 2005.

11 Sabine Storandt and Stefan Funke. Enabling e-mobility: Facility location for battery
loading stations. In 27th Conference on Artificial Intelligence (AAAI), 2013.

12 Alireza Vahdatpour, Foad Dabiri, Maryam Moazeni, and Majid Sarrafzadeh. Theoretical
bound and practical analysis of connected dominating set in ad hoc and sensor networks.
In 22nd International Symposium on Distributed Computing (DISC), pages 481–495, 2008.

13 Peng-Jun Wan, K.M. Alzoubi, and O. Frieder. Distributed construction of connected dom-
inating set in wireless ad hoc networks. In 21st IEEE International Conference on Computer
Communications (INFOCOM), volume 3, pages 1597–1604, 2002.

14 Peng-Jun Wan, Lixin Wang, and F. Yao. Two-phased approximation algorithms for min-
imum CDS in wireless ad hoc networks. In 28th International Conference on Distributed
Computing Systems (ICDCS), pages 337–344, 2008.

15 Weili Wu, Hongwei Du, Xiaohua Jia, Yingshu Li, and Scott C.-H. Huang. Minimum
connected dominating sets and maximal independent sets in unit disk graphs. Theoretical
Computer Science, 352(1–3):1–7, 2006.

16 Andrew Chi-Chih Yao. On constructing minimum spanning trees in k-dimensional spaces
and related problems. SIAM Journal on Computing, 11(4):721–736, 1982.

ATMOS’14

Online Train Shunting
Vianney Bœuf and Frédéric Meunier

Université Paris Est, CERMICS
6-8 avenue Blaise Pascal, Cité Descartes, 77455 Marne-la-Vallée, Cedex 2, France
vianney.boeuf@polytechnique.org, frederic.meunier@enpc.fr

Abstract
At the occasion of ATMOS 2012, Tim Nonner and Alexander Souza defined a new train shunting
problem that can roughly be described as follows. We are given a train visiting stations in a
given order and cars located at some source stations. Each car has a target station. During the
trip of the train, the cars are added to the train at their source stations and removed from it at
their target stations. An addition or a removal of a car in the strict interior of the train incurs a
cost higher than when the operation is performed at the end of the train. The problem consists
in minimizing the total cost, and thus, at each source station of a car, the position the car takes
in the train must be carefully decided.

Among other results, Nonner and Souza showed that this problem is polynomially solvable
by reducing the problem to the computation of a minimum independent set in a bipartite graph.
They worked in the offline setting, i.e. the sources and the targets of all cars are known before
the trip of the train starts. We study the online version of the problem, in which cars become
known at their source stations. We derive a 2-competitive algorithm and prove than no better
ratios are achievable. Other related questions are also addressed.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.1.6 Optim-
ization, G.2.1 Combinatorics

Keywords and phrases Bipartite graph, competitive analysis, online algorithm, train shunting
problem, vertex cover

Digital Object Identifier 10.4230/OASIcs.ATMOS.2014.34

1 Introduction

1.1 Context

The Train Shunting Problem, defined by Tim Nonner and Alexander Souza at the
occasion of ATMOS 2012 [11], was motivated by concrete problems met by Deutsche Bahn
AG. The problem goes as follows. We are given a set of cars and a set of stations. Each car
has a source station and a target station. A locomotive visits the stations according to a
predefined order. Once the locomotive passes the source station of a car, this latter is added
to the train, and once the locomotive passes its target station, it is removed from the train.
Adding or removing a car at the end of the train incurs a cost assumed to be smaller than
the cost of adding or removing a car in the interior of the train. Hence, once a car has to
be added to the train, a decision must be taken regarding the position it will take in the
train. The objective of the Train Shunting Problem consists in minimizing the total
cost. Nonner and Souza proved that this problem is polynomially solvable by a reduction to
the problem of finding a maximum-weight independent set in a bipartite graph. They also
propose some extensions they prove to be polynomially solvable as well, with the help of
dynamic programming.

© Vianney Bœuf and Frédéric Meunier;
licensed under Creative Commons License CC-BY

14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’14).
Editors: Stefan Funke and Matúš Mihalák; pp. 34–45

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2014.34
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

V. Bœuf and F. Meunier 35

The main assumption they made is that the number of cars, their sources, and their
targets are known before solving the problem. However, due to random events and to new
demands that can occur during the trip of the locomotive, we expect to face a dynamic part
in concrete applications, requiring online decisions. This paper aims to make a step in this
direction by defining and studying an online version of the Train Shunting Problem.

1.2 Model
The stations are numbered 1, 2, . . . and visited in this order. We denote the set of cars by
J = [n] (throughout the paper, the set {1, 2, . . . , a} is denoted [a]). The source station of a
car j is denoted sj and its target station is denoted tj . If a car j is added to or removed
from the exact end of the train, then an outer operation of cost cj is performed. If a car j is
added to or removed from the true interior of the train, then an inner operation of cost c′j is
performed, with c′j > cj . An event is a source or a target station. Nonner and Souza proved
that we can assume that at each station exactly one operation is performed (Lemma 5 in
their paper): when several operations must be performed at the same station, we can split
the station into as many copies as there are operations to perform and easily order them in a
way minimizing the total cost (and which does not depend on future cars). We make the
same assumption throughout the paper.

A train configuration is a sequence of distinct cars, corresponding to the sequence of cars
in the train. A sequence (Ci)i=1,...,m of train configurations is feasible if for each station i the
train configuration Ci is a sequence of cars involving only cars j such that sj ≤ i < tj and the
common cars of Ci and Ci+1 occur in the same order in both configurations. Such a sequence
encodes a feasible solution of the Train Shunting Problem: under the assumption made
above, Ci and Ci+1 differs only by one car, and the corresponding operation is completely
determined. The cost of a sequence (Ci)i=1,...,m is the sum of the costs of these operations.

The problem can be formalized as follows.

Train Shunting Problem

Input. A number m of stations; a set J = [n] of cars; for each car j, two costs cj < c′j and
a source-target pair of stations (sj , tj) with 1 ≤ sj < tj ≤ m.

Output. A feasible sequence of train configurations (Ci)i=1,...,m.

Measure. The cost of (Ci)i=1,...,m.

Nonner and Souza proved that a solution of minimal cost can be computed in polynomial
time and explained its relation with independence set problems in bipartite graphs. While
they worked in the more traditional offline framework, we focus in this work on online
algorithms.

An online algorithm for this problem is an algorithm which computes Ci without taking
into account the cars j such that sj > i. However, at station i, the algorithm can use the
information regarding the target station of a car j when sj ≤ i, even if tj > i. We require
moreover that the online algorithms do not know the number of cars in advance.

Let A be an online algorithm. Denote by SOL(I) the value of the solution it returns
when applied on an input I, and denote by OPT (I) the optimal value of the instance. A is
c-competitive for c ≥ 1 if for some real number b, we have

SOL(I) ≤ c ·OPT (I) + b

for all instances I.

ATMOS’14

36 Online Train Shunting

1.3 Results
Our main results are the existence of a 2-competitive online algorithm (Theorem 11) and the
proof that there is no better competitive ratio (Proposition 12). The core of our 2-competitive
algorithm consists in providing a 2-competitive algorithm for the Vertex Cover Problem
in some special-purpose bipartite graph. While it is known that there is no competitive
algorithms with fixed ratio for the general Vertex Cover Problem in bipartite graphs,
see [6], our study provides a family of restricted but not artificial instances for which there is
such an algorithm. The precise statement of these results, their proofs, and some related
results are given in Section 3. They are based on some properties of vertex covers in bipartite
graphs presented and proved in Section 2.

Section 4 is devoted to a slight relaxation of the problem. Suppose that we are now
allowed to postpone inner operations, by letting cars at the end of the train for some while
before moving them to the interior of the train. Since such an inner operation is decided
when more information is available, we can expect to have in this case a better competitive
ratio. We prove that actually no online algorithms of this type can achieve a ratio smaller
than 4/3. We leave as an open question the existence of an online algorithm achieving this
ratio.

1.4 Related works
Many papers are already devoted to shunting for freight trains. To the best of our knowledge,
except the one introduced by Nonner and Souza, all shunting problems consider the case
when the cars are collected by a train, and then lead to a shunting yard where they are
rearranged in one or several trains. This yard plays the role of a hub from which the cars
starts their final trip to their destinations. Overviews of problems and practices can be found
in [3, 9]. Problems and methods aiming at direct applications are proposed in [2, 4, 10, 12].
When there are only two incoming tracks, the system is often based on a hump. Some papers
have considered this special case, which provides nice combinatorial problems, see [1, 5, 7].

Other related references can be found in the corresponding section in the paper by Nonner
and Souza.

2 Vertex covers in bipartite graphs with positive weights

Let G = (V,E) be a bipartite graph with colour classes S and T . A vertex cover of G is a
subset K ⊆ V such that any edge in E has at least one endpoint in K. A vertex cover is
minimal if it is minimal for inclusion.

Dulmage and Mendelsohn [8] proved several properties on minimal-cardinality vertex
covers in bipartite graphs, especially that they form a lattice. We extend some of their results
to the weighted case. We assume from now on that a weight-function w : V → Q+ is given
with w(v) > 0 for all v ∈ V . As often in combinatorial optimization, given X ⊆ V , we use
w(X) to denote

∑
v∈X w(v).

A vertex cover is minimum if it is of minimal weight. Note that since all weights are
positive, a minimum vertex cover is minimal.

I Proposition 1. Two minimum vertex covers having the same intersection with S are equal.

Proof. Let K and K ′ be two such vertex covers. If T ∩K = ∅, then K = K ′. Suppose that
T ∩K 6= ∅ and let v ∈ T ∩K. Since K is minimal, there exists u ∈ S \K such that uv ∈ E.
We have S \K = S \K ′. Since K ′ is a vertex cover, the edge uv requires v to be in T ∩K ′.
Thus T ∩K ⊆ T ∩K ′. The reverse inclusion is obtained by exchanging K and K ′. J

V. Bœuf and F. Meunier 37

In our 2-competitive algorithm described in Section 3, some minimum vertex covers play
a special role.

I Proposition 2. There exists a unique minimum vertex cover K such that any other
minimum vertex cover K satisfies S ∩ K ⊆ S ∩ K. Moreover, this vertex cover can be
computed in polynomial time.

Proof. Let K and K ′ be two minimum vertex covers. Denote by X (resp. X ′) the subset
S ∩K (resp. S ∩K ′) and by Y (resp. Y ′) the subset T ∩K (resp. T ∩K ′). We claim that
(X ∪X ′) ∪ (Y ∩ Y ′) is also a minimum vertex cover.

Indeed, first note that (X∩X ′)∪(Y ∪Y ′) is a vertex cover. Thus w(X∩X ′)+w(Y ∪Y ′) ≥
w(X)+w(Y), which implies that w(Y ′\Y) ≥ w(X\X ′). Second, note that (X∪X ′)∪(Y ∩Y ′)
is a vertex cover. Its weight is w(X∪X ′)+w(Y ∩Y ′) = w(X ′)+w(Y ′)+w(X\X ′)−w(Y ′\Y).
Using the inequality that has just been proved, we get w(X∪X ′)+w(Y ∩Y ′) ≤ w(X ′)+w(Y ′),
which means that (X ∪X ′) ∪ (Y ∩ Y ′) is a minimum vertex cover.

Thus the sets S ∩K where K is a minimum vertex cover are stable by union, which leads
to the existence of K. Proposition 1 ensures then the uniqueness of K.

It remains to prove the statement about the polynomiality of the computation. K is the
minimum vertex cover that has the largest number of vertices in S. By simply subtracting a
small quantity δ to all weights in S, we reduce the problem of finding K to a minimum vertex
cover problem in a bipartite graph, which is polynomially solvable (see [13] for instance).
Any δ smaller than 1

|V |M is suitable, where M is such that Mw(v) ∈ Z+ for all v ∈ V (such
an M is polynomially computable). J

Such a vertex cover K is source-optimal (it is our terminology). Note that without the
condition w(v) > 0 for all v, the proposition would not hold. The next proposition shows
that while the source-optimal vertex cover is maximal on the source side, it is minimal on
the target side.

I Proposition 3. Let K be the source-optimal vertex cover. Any other minimum vertex
cover K satisfies T ∩K ⊆ T ∩K.

Proof. If T ∩ K = ∅, then the inclusion is obviously satisfied. Suppose that T ∩ K 6= ∅
and let v ∈ T ∩K. Let K be any minimum vertex cover. Since K is minimal, there exists
u ∈ S \K such that uv ∈ E. Since K is source-optimal, we have S \K ⊆ S \K. Since K is
a vertex cover, the edge uv requires v to be in T ∩K. J

3 Competitive algorithms

3.1 Preliminaries
A pair of cars (k, `) is overlapping if sk < s` < tk < t`. It is non-overlapping otherwise.
Nonner and Souza introduced the constraint graph G = (V,E), which encodes the overlaps of
an instance. It is defined as follows. Its vertex set is

⋃
j∈J{sj , tj}. The edges are the s`tk with

(k, `) being overlapping. The graph G is bipartite with the set of sources S = {sj : j ∈ J} as
one of its colour class and the set of targets T = {tj : j ∈ J} as the other colour class.

I Proposition 4 (Nonner and Souza [11]). In a feasible solution, the events having inner
operations form a vertex cover of G.

I Proposition 5 (Nonner and Souza [11]). Let K be a minimal vertex cover in G. Then there
exists a feasible solution whose inner operations are performed precisely on the events in K.
Moreover, K being given, this solution can be computed in O(n2).

ATMOS’14

38 Online Train Shunting

Nonner and Souza actually formulated and proved these propositions with outer operations
instead of inner operations and independent sets instead of vertex covers, but since they are
complement of each others, it is an equivalent point of view.

Defining w(sj) = w(tj) = c′j − cj , the total cost of a feasible solution is w(K) + 2
∑

j∈J cj ,
where K is the vertex cover provided by Proposition 4. The total cost is thus minimum when
w(K) is minimum. For positive weights on the vertices, a minimum vertex cover is minimal.
Since a minimum vertex cover in a bipartite graph can be computed in polynomial time, the
two propositions show that the optimal solution of the Train Shunting Problem can be
computed in polynomial time in the offline setting.

Let us see how we can adapt these considerations in an online context. To ease the
discussion, we assume without loss of generality that sj < sk if j < k: the cars are ordered by
their source stations (recall that we have assumed that at each station exactly one operation
is performed).

We define Gj = (Vj , Ej) to be the constraint graph limited to the cars k ∈ [j]:

Vj =
⋃

k∈[j]

{sk, tk} and Ej = {s`tk : k, ` ∈ [j] and (k, `) is overlapping}.

Note that Gj is a bipartite graph and that Gn = G, where G is still the constraint graph of the
full input. Moreover, Gj is an induced subgraph of Gj+1: we have Vj+1 = Vj ∪ {sj+1, tj+1}
and Ej+1 = Ej ∪ δ(sj+1), where δ(sj+1) is the set of edges incident to sj+1 in G. Using
Proposition 4, we can see that a feasible solution induces a chain K1 ⊆ K2 ⊆ · · · ⊆ Kn where
Kj is a vertex cover of Gj . Indeed, we can for instance set Kj to be the events subject to
inner operations up to station tj .

A counterpart of Proposition 5 is also true, see Proposition 6 below: a chain K1 ⊆ · · · ⊆
Kn, where Kj is a vertex cover of Gj satisfying some condition to be detailed below, provides
the inner operations of some feasible solution. However, this is not a direct consequence of
Proposition 5 – the inner operations programmed up to station sj must be compatible with
the inner operations programmed up to station sj−1 – and deserves a proof. By N(sj), we
denote the set of neighbours of sj , i.e. the set of vertices v of G such that sjv is an edge of
G. Note that it is also the set of neighbours of sj in Gj . By N [sj], we denote the closed
neighbourhood of sj , i.e. the set N(sj) ∪ {sj}.

I Proposition 6. Let K1 ⊆ · · · ⊆ Kn be such that each Kj is a vertex cover of Gj satisfying
N [sj] \Kj 6= ∅. Then there exists a feasible solution such that
• the sources sj subject to inner operations are exactly those sj such that sj ∈ Kj, and
• the targets tj subject to inner operations are such that tj ∈ Kn.
Moreover, we can decide in polynomial time the position each car j must take in the train
using K1, . . . ,Kj.

In Proposition 6, we have a stronger statement for the sources than for the targets.
Anyway, the proposition ensures that we can build a feasible solution online, and allows to
bound from above its cost: w(Kn) + 2

∑
j∈J cj is an upper bound on the cost of this feasible

solution.
To prove Proposition 6, we mimic the proof of Theorem 2 in [11] but several difficulties

related to the online aspect arise. We assume given a chain of vertex covers K1 ⊆ · · · ⊆ Kn

such that each Kj is a vertex cover of Gj satisfying N [sj] \Kj 6= ∅.
For each j ∈ J , we define a directed graph Hj = ([j], Aj), whose vertices are the integers

from 1 to j (the cars up to j). The arcs are defined as follows. For a car k ≤ j and an event
e such that sk < e < tk, with e ∈ {s`, t`} and ` ≤ j, the arc (k, `) is in Aj if e /∈ Kmax(k,`).

V. Bœuf and F. Meunier 39

The definition of the graph Hj resembles the definition of the graph H of the original proof,
but is not completely identical. Note that the sequence of graphs Hj is increasing, Aj ⊆ Aj+1
for all 1 ≤ j ≤ n− 1, and that all arcs in Aj+1 \Aj are incident to j + 1.

I Lemma 7. The graph Hj is acyclic.

Proof. Suppose for a contradiction that there is a directed cycle C = (k1, . . . , kr) in Hj . We
choose C with the minimum number of arcs. Note that we have anyway r ≥ 2. Without loss
of generality, we assume that k1 is the smallest integer on C.

The arc (kr, k1) exists in Hj , thus skr
< tk1 < tkr

and tk1 /∈ Kkr
. As sk1 < skr

, the pair
(k1, kr) is overlapping and Gkr

contains the edge skr
tk1 . Necessarily, skr

∈ Kkr
. Consider

now the arc (kr−1, kr). We prove that skr−1 ∈ Kkr−1 , that tkr /∈ Kkr , and that (kr, kr−1) is
overlapping.

Suppose first that skr−1 < skr
. We necessarily have skr−1 < tkr

< tkr−1 and tkr
/∈ Kkr

because skr
∈ Kkr

. (Note that it implies that r ≥ 3.) Thus skr−1 < tk1 < tkr−1 , and there
should be an arc (kr−1, k1) in Hj since tk1 /∈ Kkr−1 (otherwise we would have tk1 ∈ Kkr

,
in this case kr being larger than kr−1). Such an arc would contradict the minimality of C.
Hence skr−1 > skr

and Kkr
⊆ Kkr−1 . We have skr−1 < tkr

< tkr−1 and tkr
/∈ Kkr−1 and the

pair (kr, kr−1) is overlapping. There is therefore an edge skr−1tkr in Gkr−1 , which implies
that skr−1 ∈ Kkr−1 as required. We also have tkr

/∈ Kkr
since in this case Kkr

⊆ Kkr−1 .
Repeating the argument along the same lines, we get then that skr−i

∈ Kkr−i
, that

tkr−i+1 /∈ Kkr−i+1 , and that (kr−i+1, kr−i) is overlapping for all i ∈ [r − 1]. In particular, for
i = r − 1, we get that sk2 < sk1 , which is a contradiction. J

Since Hj is acyclic, we can define a partial order on [j]: we set k �j ` if there is a directed
path from k to ` in Hj . Since the sequence (Aj) is increasing, k �j ` implies k �j′ ` for all
j′ ≥ j. The converse is actually true.

I Lemma 8. Let k and ` be two integers in [j]. If k and ` are incomparable for �j, they
are incomparable for all �j′ with j′ ≥ j.

Proof. Assume for sake of a contradiction that k and ` are incomparable for �j but not for
some �j′ with j′ > j. We choose j′ as small as possible with this property. Without loss
of generality, we assume that k �j′ `. It means that there is an elementary path from k

to ` in Hj′ that goes through j′ (because of the minimality of j′). Moreover, it means also
that the two neighbours of j′ on this path are incomparable in Hj′−1: if there were a path
between these two neighbours, it would either contradict the acyclicity of Hj′ (Lemma 7), or
the minimality of j′ (the integers k and ` would already have been comparable for Hj′−1),
depending on the direction of the path. The two neighbours of j′ are thus incomparable for
�j′−1 and comparable for �j′ , and they would also contradict the statement of the lemma
we want to prove. We can thus assume without loss of generality that k and ` are the two
neighbours of j′ and that the arcs (k, j′) and (j′, `) exist in Aj′ .

By definition of Aj′ , we have sk < e < tk, with e ∈ {sj′ , tj′} and e /∈ Kj′ , and sj′ < f < tj′ ,
with f ∈ {s`, t`} and f /∈ Kj′ . Since s` < sj′ , we necessarily have f = t`, and (`, j′) is
overlapping. It implies that sj′ ∈ Kj′ , and thus e = tj′ . Therefore, we have sk < t` < tk
with t` /∈ Kj′ , which implies that the arc (k, `) exists in Aj′ , and thus already in Aj . It is in
contradiction with the fact that k and ` are incomparable. J

We are now in position to prove Proposition 6.

ATMOS’14

40 Online Train Shunting

Proof of Proposition 6. We build a sequence of total orders (�tot
j)j∈J , the order �tot

j being
defined on [j] and being compatible with the partial order �j defined above. We build this
sequence so that if k �tot

j ` for k, ` ∈ [j], then k �tot
j′ ` for all j′ ≥ j.

When j = 1, the definition is trivial. Suppose that �tot
j is defined for some j. We explain

how to build �tot
j+1. We consider the tournament induced by �tot

j on [j]. (Recall that a
tournament in graph theory is obtained by giving an orientation to each edge of a complete
graph). The tournament is acyclic. We add a vertex j + 1 to this tournament, as well as
all arcs (k, j + 1) with k �j+1 j + 1 and all arcs (j + 1, k) with j + 1 �j+1 k. Let D′j+1
be this new graph. We claim that D′j+1 is acyclic. Indeed, suppose for a contradiction
that it contains a directed cycle. It necessary goes through j + 1. The two neighbours of
j + 1 on this cycle are comparable according to �j+1. According to Lemma 8, they are
already comparable for �j . As it has been noticed right before the statement of Lemma 8,
these two neighbours should then be ordered in a same way by �j and by �j+1, which is
in contradiction with the acyclicity of the tournament. We can thus complete D′j+1 into
an acyclic tournament, which provides the total order �tot

j+1. To conclude this part of the
proof, note that �tot

j+1 is compatible with �j+1: it is compatible with �j and thus with �j+1
(Lemma 8) for the elements in [j]; since all arcs (k, j + 1) with k �j+1 j + 1 and all arcs
(j + 1, k) with j + 1 �j+1 k are present in D′j+1, the order �tot

j+1 is compatible with �j+1 on
all elements of [j + 1].

Note that this construction is polynomially computable.
We say that a car j is active at station i if sj ≤ i < tj . Now, we define the following

sequence (C̃i) of train configurations: C̃i is the sequence of active cars at station i ordered
from right to left according to �tot

j(i), where j(i) = max{j : sj ≤ i}. We assume that the
end of the train is at the left-most position, the right-most position being the one of the
locomotive. Note that in particular we have the maximal element for the total order at the
end of the train and that the first car after the locomotive is the minimal element for the
total order.

The sequence (C̃i) is feasible: the common cars in C̃i and C̃i+1 occur in the same order
because j(i+ 1) ∈ {j(i), j(i) + 1} and in any case �tot

j(i) and �tot
j(i+1) are compatible. Note

that the operation to perform at station i, and in particular the exact position the car must
take in the train in case i is a source station, can be done in polynomial time using �tot

j(i).
We prove now that sj ∈ Kj if and only if sj is subject to an inner operation in the

sequence (C̃i). Suppose first that sj ∈ Kj . Since, N [sj] \ Kj 6= ∅, there is a car k < j

such that (k, j) is overlapping and tk /∈ Kj . We have thus an arc (j, k) in Hj . Therefore, j
precedes k in �tot

j , which means that j cannot be at the end of the train when the train
leaves station sj . Suppose now that sj /∈ Kj and let k be any active car at station sj distinct
from j. We have sk < sj < tk and thus the arc (k, j) exists in Hj . Since it holds for any
such k, the car j is the maximal element for �tot

j on the subset of active cars and is at the
end of the train when the train leaves sj : the car j has incurred an outer operation.

Finally, we prove that if tj is subject to an inner operation, then tj ∈ Kn. Suppose that
tj /∈ Kn. For any active car k at station tj , i.e. any car such that sk < tj < tk, we have
tj /∈ Kmax(k,j). There is thus an arc (k, j) in Hmax(k,j). Thus at tj , the car j is located at
the end of the train and is subject to an outer operation. J

We end the section with a lemma that will be useful in the next section. It explains how
the source-optimal vertex covers of the sequence of graphs (Gj) are related. For each j, we
denote by Kj the source-optimal vertex cover of Gj .

V. Bœuf and F. Meunier 41

I Lemma 9. For each j ≥ 2, we have T ∩Kj−1 ⊆ T ∩Kj and exactly one of the following
relations is satisfied:
• Kj = Kj−1 ∪ {sj}.
• S ∩Kj−1 ⊇ S ∩Kj.

Proof. Suppose first that sj ∈ Kj . The set Kj \ {sj} is a vertex cover of Gj−1, and
thus w(Kj) − w(sj) ≥ w(Kj−1). The set Kj−1 ∪ {sj} is a vertex cover of Gj , and thus
w(Kj)−w(sj) ≤ w(Kj−1). Combining both inequalities shows that Kj \ {sj} is a minimum
vertex cover of Gj−1 and that Kj−1 ∪ {sj} is a minimum vertex cover of Gj . The vertex
cover Kj−1 being source-optimal, we have S ∩ Kj−1 ⊇ S ∩ (Kj \ {sj}), which implies
S ∩ (Kj−1 ∪ {sj}) ⊇ S ∩ Kj . The vertex cover Kj being source-optimal, we have Kj =
Kj−1∪{sj} by uniqueness of the source-optimal vertex cover, and we have T ∩Kj−1 ⊆ T ∩Kj .

Suppose then that sj /∈ Kj . Let Xk = S ∩ Kk and Yk = T ∩ Kk. The set (Xj−1 ∩
Xj) ∪ (Yj−1 ∪ Yj) is a vertex cover of Gj . Indeed, an edge skt` in Ej with t` /∈ Yj−1 ∪ Yj is
such that sk ∈ Xj because Kj is a vertex cover of Gj , and also such that k 6= j because
we supposed sj /∈ Kj ; it implies that skt` is in Ej−1 as well and that sk ∈ Xj−1. Thus,
w(Xj−1∩Xj)+w(Yj−1∪Yj) ≥ w(Kj), which implies that w(Xj \Xj−1) ≤ w(Yj−1\Yj). Since
w(Xj−1∪Xj)+w(Yj−1∩Yj) = w(Kj−1)−w(Yj−1 \Yj)+w(Xj \Xj−1), the latter inequality
shows that w(Xj−1 ∪Xj) + w(Yj−1 ∩ Yj) ≤ w(Kj−1). The set (Xj−1 ∪Xj) ∪ (Yj−1 ∩ Yj) is
a vertex cover of Gj−1, and thus is a minimum vertex cover of Gj−1. The set Kj−1 being
source-optimal, we get Xj−1 ∪Xj ⊆ Xj−1, which implies S ∩Kj−1 ⊇ S ∩Kj . Moreover,
Proposition 3 implies that Yj−1 ⊆ Yj−1 ∩ Yj , i.e. T ∩Kj−1 ⊆ T ∩Kj . J

3.2 A 2-competitive algorithm
We present in this section an online algorithm with a 2-competitive ratio. Roughly speaking,
the algorithm goes as follows. At each source station, it checks with the help of a computation
of a source-optimal vertex cover whether there is an optimal schedule for the whole known
instance in which this source station is subject to an inner operation. If it is the case, the car
is added at an inner position determined with the help of Proposition 6. Otherwise, the car
is added to the end of the train. In a sense, the algorithm tries to make the inner operations
as soon as possible without worsen the quality of the solution.

The online algorithm goes precisely as follows.
Start with an empty graph G0 and an empty set K̃0; when the train arrives at station sj ,

build Gj as described in Section 3.1, compute a source-optimal vertex cover Kj of Gj for
the weight function w, define K̃j = K̃j−1 ∪Kj .

In other words, the set K̃j is equal to
⋃j

k=1 Kk. We are going to prove that the sequence
of the K̃j satisfies the condition of Proposition 6 and thus the algorithm computes a feasible
solution performing an inner operation at station sj if and only if sj ∈ Kj .

I Proposition 10. Each K̃j is a vertex cover of Gj satisfying N [sj] \ K̃j 6= ∅ and we have
the following chain: K̃1 ⊆ · · · ⊆ K̃n.

Proof. The fact that K̃j is a vertex cover and the inclusion K̃j−1 ⊆ K̃j are obvious.
Suppose that N(sj) ⊆ K̃j . Then necessarily, the elements in N(sj) belong to the union of

some T ∩Kk with k ≤ j. Lemma 9 implies that actually N(sj) ⊆ Kj . Since Kj is minimal,
we have sj /∈ Kj , and thus sj /∈ K̃j . J

Proposition 6 and Proposition 10 show that the online algorithm described above computes
a feasible solution to the Train Shunting Problem. It is polynomial according to

ATMOS’14

42 Online Train Shunting

Proposition 2. We have thus the following theorem, the calculation of the competitive ratio
being done in the proof.

I Theorem 11. There is a polynomial 2-competitive online algorithm for the Train Shunt-
ing Problem.

Proof. The preceding discussion shows that the online algorithm described above is polyno-
mial and computes a feasible solution. It remains to evaluate its competitive ratio. The cost of
the solution computed by the online algorithm is bounded from above by w(K̃n) + 2

∑
j∈J cj

because of Proposition 6. The set Kn is a minimum vertex cover of G = Gn. According to
Nonner-Souza’s result (see discussion in Section 3.1), the optimum of the Train Shunting
Problem is w(Kn) + 2

∑
j∈J cj . The proof strategy consists in bounding w(K̃n) from above

using w(Kn). We set K0 = ∅.
K̃n can also be written Kn ∪

(⋃
j∈J Kj−1 \Kj

)
, and hence

w(S ∩ K̃n) ≤ w(S ∩Kn) +
∑
j∈J

w(S ∩ (Kj−1 \Kj)).

Since Kj contains a vertex cover of Gj−1, we have w(Kj−1) ≤ w(Kj). According to Lemma 9,
we know that T ∩Kj−1 ⊆ T ∩Kj and that if S ∩ (Kj−1 \Kj) 6= ∅, then S ∩Kj−1 ⊇ S ∩Kj .
Therefore w(S ∩ (Kj−1 \Kj)) ≤ w(T ∩Kj)− w(T ∩Kj−1). Hence

w(S ∩ K̃n) ≤ w(S ∩Kn) +
∑
j∈J

(w(T ∩Kj)− w(T ∩Kj−1)).

Therefore w(S ∩ K̃n) ≤ w(S ∩Kn) + w(T ∩Kn) and w(S ∩ K̃n) ≤ w(Kn).
On the other hand, we have w(T ∩ K̃n) = w(T ∩Kn) again because of Lemma 9. Thus

w(T ∩ K̃n) ≤ w(Kn).
The two inequalities lead to w(K̃n) ≤ 2w(Kn). Our algorithm provides thus a solution

of cost bounded from above by w(K̃n) + 2
∑

j∈J cj ≤ 2(w(Kn) + 2
∑

j∈J cj). J

I Remark. No algorithms computing Kj in linear time are known up to now. However,
if cj = 0 and c′j = 1 for all j, it is possible to compute Kj in O(|Ej |) by maintaining a
maximum-cardinality matching of Gj along the algorithm. Nevertheless, we do not know
whether a similar idea can be extended to the case with general costs.

3.3 Lower bound on the competitive ratio
I Proposition 12. No online algorithms computing a solution to the Train Shunting
Problem can have a competitive ratio smaller than 2.

Proof. LetA be an online algorithm computing a solution to the Train Shunting Problem.
The proof consists in describing for any integer q, an instance with at most 3q cars for which
SOL ≥ (2− 1/q) ·OPT , where SOL is the value of the solution computed by A, and OPT is
the optimum. The instance is built dynamically as follows, taking into account the decisions
of A.

All costs cj are set to 0 and all costs c′j are set to 1. For j = 1, . . . , q, define sj = j and
tj = 4q − j + 1. Set sq+1 = q + 1 and tq+1 = 6q. Then, from j = q + 1, we repeat the
following loop:

If the operation performed by A at station j is an outer operation or if j = 3q, then stop.
Otherwise, set j ← j + 1; define sj = j and tj = 7q − j + 1.

V. Bœuf and F. Meunier 43

Denote by r the number of times the loop has been repeated. We have

SOL ≥
{
r + q − 1 if r ≤ 2q − 1
2q if r = 2q.

Indeed, if r ≤ 2q − 1, the r repetitions of the loop correspond to r − 1 inner operations. The
car q + r is added to the end of the train and implies q inner operations to remove from the
train the cars indexed from 1 to q. If r = 2q, no cars between q and 3q − 1 are added to the
end of the train and their addition to the train provides 2q inner operations.

We have OPT = min(q, r). This can be seen by considering the constraint graph of the
instance and by computing a minimum vertex cover of it, see Section 3.1.

If r = 2q, we have SOL/OPT ≥ 2. If q ≤ r ≤ 2q − 1, we have SOL/OPT ≥ 2− 1/q. If
r ≤ q − 1, we have SOL/OPT ≥ 2. J

There are two natural algorithms we can also think of. Unfortunately, they do not even
enjoy a fixed competitive ratio.

The first consists in always introducing the cars at the end of the train. In this case, the
competitive ratio can be arbitrarily large, as shown by the following example. Consider the
instance with sj = j and tj = 2n− j for j = 1, . . . , n− 1, and sn = n and tn = 2n. Take as
costs cj = 0 and c′j = 1 for all j. It is easy to check that the total cost is then n− 1 when
that algorithm is applied, while the optimal cost is 1.

The second algorithm consists in building a sequence of vertex covers, similarly as for the
algorithm of Section 3.2.

Start with an empty graph G0 and an empty set K̃0; when the train arrives at station sj ,
build Gj as described in Section 3.1, compute a vertex cover K̃j of Gj of minimal cost such
that K̃j−1 ⊆ K̃j .

This algorithm can be considered as natural since computing K̃j amounts to choose
K̃j among K̃j−1 ∪ {sj} and K̃j−1 ∪ N(sj), the solution being the one of minimal cost.
Proposition 6 shows that we build in this way a feasible solution. It means that we always
choose an operation that is locally the best solution.

The following example shows that this algorithm can also have an arbitrarily large
competitive ratio. Consider the instance with sj = j for j = 1, . . . , n, t1 = n+ 2, t2 = n+ 1,
and tj = 2n− j + 3 otherwise. Set the costs to be cj = 0 and c′j = 1 for all j. It is easy to
check that the total cost is then n− 3 when this algorithm is applied, while the optimal cost
is 2.

4 Postponing inner operations

Suppose that we modify the Train Shunting Problem in the following sense: at any
station, a car at the end of the train can be moved to the interior and such an operation can
be repeated several times at a same station. The cost of such an operation is assumed to
remain the same, namely c′j for car j.

It does not change the optimal solution of an instance. Indeed, suppose that we have an
optimal solution such that a car j is added to the train at the station sj , and moved to the
interior from the end of the train at some station i ≥ sj . Then the solution consisting in
inserting the car j directly at some inner position so that the train configuration will be the
same at station i will not be of larger cost.

Hence, from an offline point of view, this new possibility does not reduce the best cost
that can be achieved. However, we do not know whether the conclusion is identical in the

ATMOS’14

44 Online Train Shunting

online setting. We were however able to prove the following result, which leaves some hope
for a better ratio.

I Proposition 13. No online algorithms computing a solution to the Train Shunting
Problem in this modified setting can achieve a competitive ratio smaller than 4/3.

Proof. Let A be an online algorithm computing a solution to the Train Shunting Problem
with this additional possibility. Consider the instance where the first five cars are such that

(s1, t1) = (1, 11), (s2, t2) = (2, 10), (s3, t3) = (3, 6), (s4, t4) = (4, 16), (s5, t5) = (5, 15).

Then, if A has chosen an inner removal for car 3, then stop. Otherwise, three cars 6, 7, and
8 are added to the instance with

(s6, t6) = (7, 14), (s7, t7) = (8, 13), (s8, t8) = (9, 12).

If the car 3 is in the interior of the train when it leaves station 5, then the total cost
achieved by the algorithm is 3 at best: the car 3 will be subject to an inner operation, and
the instance reduced to cars 1, 2, 4, and 5 has an optimal cost of 2.

If the car 3 is at the end the train when it leaves station 5, then the cars 4 and 5 have
been added or moved to the interior of the train, and the instance reduced to the cars 1, 2,
3, 6, 7, and 8 has an optimal cost of 2, which gives in total a cost of 4. So, the total cost
achieved by the algorithm is 4 at best, while the optimum is 3. J

References
1 Katharina Beygang, Florian Dahms, and Sven O. Krumke. Train marshalling problem:

Algorithms and bounds. Technical report, 2010.
2 Markus Bohlin, Florian Dahms, Holger Flier, and Sara Gestrelius. Optimal freight

train classification using column generation. In Proceedings of the 12th workshop on
Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (AT-
MOS’12), volume 25, pages 10–22, 2012.

3 Nils Boysen, Malte Fliedner, Florian Jaehn, and Erwin Pesch. Shunting yard operations:
Theoretical aspects and applications. European Journal of Operational Research, 220:1–14,
2012.

4 Alberto Ceselli, Michael Gatto, Marco E. Lübbecke, Marc Nunkesser, and Heiko Schilling.
Optimizing the cargo express service of Swiss federal railways. Transportation Science,
42:450–465, 2008.

5 Elias Dahlhaus, Peter Horák, Mirka Miller, and Joseph F. Ryan. The train marshalling
problem. Discrete Applied Mathematics, 103:41–54, 2000.

6 Marc Demange and Vangelis T. Paschos. On-line vertex-covering. Theoretical Computer
Science, 332:83–108, 2005.

7 Gabriele Di Stefano and Magnus Love Koci. A graph theoretical approach to the shunting
problem. Electronic Notes in Theoretical Computer Science, 92:16–33, 2004.

8 Andrew L. Dulmage and Nathan S. Mendelsohn. Coverings of bipartite graphs. Canadian
Journal of Mathematics, 10:517–534, 1958.

9 Michael Gatto, Jens Maue, Matús Mihalák, and Peter Widmayer. Robust and Online Large-
Scale Optimization, chapter Shunting for dummies: An introductory algorithmic survey,
pages 310–337. Springer, 2009.

10 Riko Jacob, Peter Marton, Jens Maue, and Marc Nunkesser. Multistage methods for freight
train classification. Networks, 57:87–105, 2011.

V. Bœuf and F. Meunier 45

11 Tim Nonner and Alexander Souza. Optimal algorithms for train shunting and relaxed
list update problems. In Proceedings of the 12th workshop on Algorithmic Approaches
for Transportation Modelling, Optimization, and Systems (ATMOS’12), volume 25, pages
97–107, 2012.

12 Marc Nunkesser, Michael Gatto, and Riko Jacob. Optimization of a railway hub-and-spoke
system: routing and shunting. In Proceedings of WEA 2005, 2005.

13 Alexandrer Schrijver. Combinatorial Optimization. Springer, 2003.

ATMOS’14

Engineering Graph-Based Models for Dynamic
Timetable Information Systems∗

Alessio Cionini1, Gianlorenzo D’Angelo2, Mattia D’Emidio1,
Daniele Frigioni1, Kalliopi Giannakopoulou3,4, Andreas
Paraskevopoulos3,4, and Christos Zaroliagis3,4

1 Department of Information Engineering, Computer Science and Mathematics,
University of L’Aquila, Italy.
alessio.cionini@gmail.com, {mattia.demidio, daniele.frigioni}@univaq.it

2 Gran Sasso Science Institute (GSSI), L’Aquila, Italy.
gianlorenzo.dangelo@gssi.infn.it

3 Computer Technology Institute and Press “Diophantus”, Patras, Greece.
4 Department of Computer Engineering and Informatics, University of Patras,

26504 Patras, Greece. {gianakok,paraskevop,zaro}@ceid.upatras.gr

Abstract
Many efforts have been done in the last years to model public transport timetables in order to
find optimal routes. The proposed models can be classified into two types: those representing the
timetable as an array, and those representing it as a graph. The array-based models have been
shown to be very effective in terms of query time, while the graph-based models usually answer
queries by computing shortest paths, and hence they are suitable to be used in combination with
speed-up techniques developed for road networks.

In this paper, we focus on the dynamic behavior of graph-based models considering the case
where transportation systems are subject to delays with respect to the given timetable. We
make three contributions: (i) we give a simplified and optimized update routine for the well-
known time-expanded model along with an engineered query algorithm; (ii) we propose a new
graph-based model tailored for handling dynamic updates; (iii) we assess the effectiveness of
the proposed models and algorithms by an experimental study, which shows that both models
require negligible update time and a query time which is comparable to that required by some
array-based models.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G2.2.2 Graph
Theory, G.4 Mathematical Software

Keywords and phrases Timetabling, dynamic updates, queries, shortest paths

Digital Object Identifier 10.4230/OASIcs.ATMOS.2014.46

1 Introduction

Computing the best route in a public transportation system is a problem faced by everybody
who ever traveled. Nowadays, public transportation companies have on-line journey planners
which are able to answer to queries like “What is the best route from some station A to
some other station B if I want to depart at time t?”. Usually the best route is the one

∗ Research partially supported by the Italian Ministry of University and Research under Research Grants
2010N5K7EB PRIN 2010 (ARS TechnoMedia) and 2012C4E3KT PRIN 2012 (AMANDA), as well as
by EU FP7/2007-2013 under grant agreements no. 288094 (eCOMPASS), no. 609026 (MOVESMART),
and no. 621133 (HoPE).

© Alessio Cionini et al.;
licensed under Creative Commons License CC-BY

14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’14).
Editors: Stefan Funke and Matúš Mihalák; pp. 46–61

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2014.46
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

A. Cionini et al. 47

that minimizes the traveling time (earliest arrival time problem), or the number of times
that a passenger has to move from one train to another one (minimum number of transfers
problem), or both the previous objective function (multi-criteria problem). The input of
such problems is given by a timetable which consists of a set of stations (e.g. train stations,
bus stops, etc.), a set of vehicles (trains, buses, etc.), and a set of elementary connections
representing a vehicle that connects two stations without stops in between. All the above
optimization problems exist in two flavors: the basic and the realistic one [26]. The latter
introduces some additional constraints to take into account the time required by a passenger
for moving from one vehicle to another one within a station (transfer time). In this paper
we focus only on realistic models.

The models proposed in the literature to solve such problems can be broadly classified
into two categories: those representing the timetable as an array, and those representing
it as a graph [2]. Two of the most successful examples of the array-based model are the
Connection Scan Algorithm (CSA) [15] and the Round-bAsed Public Transit Optimized
Router (RAPTOR) [13]. CSA exploits the acyclic nature of some timetables to solve the
earliest arrival problem. In CSA all the elementary connections of a timetable are stored in a
single array which is scanned only once for each query. In RAPTOR the timetable is stored
as a set of arrays of trips and routes which are used by a dynamic programming algorithm to
solve the multi-criteria problem. The graph-based models store the timetable as a suitable
graph and execute a shortest path algorithm to compute an optimal route. There exist
two main approaches: the time-expanded and the time-dependent model [26]. The former
model explicitly represents each time event (departure or arrival) in the timetable as a node.
The arcs represent elementary connections between two events or waiting within stations,
and their weights usually represent the time difference between the corresponding events.
The latter model represents each station as a node and there is an arc between two nodes if
there exists at least one elementary connection between the two stations represented by such
nodes. The weight of an arc is time-dependent, i.e., it is a function that depends on the time
at which a particular arc is scanned during the shortest path search. The time-expanded
model produces a graph with a larger number of nodes and arcs and thus larger query times.
A variant of the realistic time-expanded model having a smaller number of nodes and arcs
(the so called reduced time-expanded model) has been proposed in [26].

From experimental results, it turns out that the approaches based on array representa-
tion are faster than those based on graphs [2, 13, 15]. Nevertheless, during the last years,
a great research effort has been devoted to devise many so-called speed-up techniques which
heuristically speed up the Dijkstra’s algorithm for shortest paths (see [2, 4]). These tech-
niques are mainly focused on finding optimal routes on road networks where they exhibit a
huge speed-up factor over the basic Dijkstra’s algorithm. Therefore, a promising approach
could be that of adapting the speed-up techniques devised for road networks to timetable
graphs [5, 12]. Following this direction, a modification of the realistic time-expanded model
has been proposed and shown to harmonize well with several known speed-up techniques [12].
However, the graph models are not suitable to incorporate dynamic changes in the timetable.
In fact, if the time duration of some connections changes (due to, e.g., the delay of a train),
the graphs do not properly represent the modified timetable and hence the computed route
could be not optimal or even not feasible. As an example, in a case study for the public
transport system of Rome it has been shown that exploiting the published timetable does
not lead to optimal or nearly-optimal routes [18]. Updating the graphs according to the
modification in the timetable is time-consuming and in many cases it requires topological
changes of the graph (i.e., arc or node additions and deletions) [11]. Moreover, the above

ATMOS’14

48 Engineering Graph-Based Models for Dynamic Timetable Information Systems

mentioned speed-up techniques are not able to handle possible changes in the timetable.
This is due to the fact that most of them are based on the pre-computation of additional in-
formation that are later exploited to answer queries. When a timetable modification occurs,
the preprocessed information are no longer reliable and must be re-computed from-scratch,
usually requiring a long computational time. Of particular impact are again the topological
changes in the graph. The dynamic behavior of Transfer Patterns, a speed-up technique
specifically developed for public transformation system [1], has been studied in [3]. It is
shown that without performing the preprocessing from-scratch that technique gives optimal
results for the vast majority (but not for all) of the queries. An online problem where delays
are continuously reported to the journey planner has been studied in [25]. Regarding array-
based models, RAPTOR is able to handle dynamic changes of the timetable since it is not
based on preprocessing. Moreover, some dynamic speed-up techniques have been proposed
for road networks which allow to handle dynamic updates [6, 9, 10, 14, 16, 28, 29].

This work aims at improving the performance of graph-based models under dynamic
changes in timetable information systems. Our contributions are threefold.

First, we focus on the realistic and reduced time-expanded models by providing a sim-
plified and optimized version of the update routine of [11]. This new routine is used in
combination with the dynamic graph structure of [24] which is able to efficiently handle
topological changes. Furthermore, we heuristically improve the query algorithm for the
time-expanded models, which significantly improves its query time.

Second, we propose a new graph-based model for representing timetable information,
called dynamic timetable model (dynTM), that reduces the number of changes needed in
the graph as a consequence of a timetable modification. Model dynTM does not require
any topological change and updates only few arc weights. At the same time, dynTM is
not based on time-dependent arc-weights, thus allowing to easily incorporate realistic con-
straints. Moreover, dynTM produces a smaller number of nodes and arcs compared to the
realistic and the reduced time-expanded models [26], and therefore, a smaller query time.

Both the above models are based on graph representations and therefore they are suitable
for combination and adaptation with known speed-up techniques. To demonstrate this fact,
we show how to adapt the unidirectional ALT algorithm [20] to such models. We have
chosen ALT since it supports dynamic changes [10] and since a careful implementation of it
can boost its performance [17].

Third, we conducted a comparative experimental study of all these implementations on
several long-distance and local European public transportation timetables. Regarding the
update time our study shows that both models require negligible update time after the
occurrence of a delay (order of microseconds). In particular, the time required by dynTM
is always the smallest one. Regarding the query time, the heuristic query algorithm for
the reduced time-expanded model combined with ALT outperforms the other methods and
needs a computational time that is comparable to that required by some array-based models.
Finally the experiments confirm that the space required by dynTM is smaller than that
required by the other models. Table 1 reports indicative results w.r.t. update time, query
time, and graph size achieved with the local public transportation system of London made
of about 14M of elementary connections. More results are presented in Section 6.

2 Preliminaries

A timetable consists of data concerning: stations, trains (or other means of transportation)
connecting stations, and departure and arrival times of trains at stations. More formally,

A. Cionini et al. 49

Table 1 Results for the public transportation system of London (14M elementary connections).

Time-exp. Time-exp. Time-exp. dynTM dynTM
(basic) (heuristic) (heuristic+ALT) (with ALT)

query (ms) 331.07 31.52 9.41 51.54 12.75
update (µs) 477.23 271.46
graph size n = 28M , m = 55M n = 14M , m = 42M

a timetable T is defined by a triple T = (Z,B, C), where Z is a set of trains, B is a set of
stations, and C is a set of elementary connections whose elements are 5-tuples of the form
c = (Z, Sd, Sa, td, ta). Such a tuple is interpreted as train Z ∈ Z leaves station Sd ∈ B at
time td, and the immediately next stop of train Z is station Sa ∈ B at time ta. If x denotes
a tuple’s field, then the notation x(c) specifies the value of x in the elementary connection
c (e.g., td(c) denotes the departure time in c). The departure and arrival times td(c) and
ta(c) of an elementary connection c within a day are integers in the interval {0, 1, . . . , 1439}
representing time in minutes after midnight. We assume that |C| ≥ max{|B|, |Z|}, as we do
not consider trains and stations that do not take part to any connection.

Given two time instants t1, t2, we denote by ∆(t1, t2) the time that passes between
them, assuming that t2 occurs after t1, i.e ∆(t1, t2) = t2 − t1(mod 1440). The length of an
elementary connection c, denoted by ∆(c), is the time that passes between the departure and
the arrival times of c assuming that c lasts for less than 24 hours, i.e ∆(c) = ∆(td(c), ta(c)).

Given an elementary connection c1 arriving at station S and an elementary connection
c2 departing from the same station S, if Z(c1) 6= Z(c2), it is possible to transfer from
Z(c1) to Z(c2) only if the time between the arrival and the departure at station S is larger
than or equal to a given, minimum transfer time, denoted by transfer(S). We assume
that transfer(S) < 1440, for each S ∈ B. An itinerary in a timetable T is a sequence of
elementary connections P = (c1, c2, . . . , ck) such that, for each i = 2, 3, . . . , k, Sa(ci−1) =
Sd(ci) and

∆(ta(ci−1), td(ci)) ≥
{

0 if Z(ci−1) = Z(ci)
transfer(Sa(ci−1)) otherwise.

We say that the itinerary starts from station Sd(c1) at time td(c1) and arrives at station
Sa(ck) at time ta(ck). The length ∆(P) of an itinerary P is given by the sum of the lengths
of its elementary connections, ∆(P) =

∑k
i=1 ∆(ci).

A timetable query is defined by a triple (S, T, tS) where S ∈ B is a departure station,
T ∈ B is an arrival station and tS is a minimum departure time. There are two natural
optimization criteria that are used to answer to a timetable query. They consist in finding
an itinerary from S to T which starts at a time after tS with either the minimum arrival
time or the minimum number of train transfers. Such two criteria define the following two
optimization problems ([26]):

The Earliest Arrival Problem (EAP) is the problem of finding an itinerary from S to T
which starts at a time after tS and has the minimum length. We assume that ∆(P) <
1440 for any minimum-length itinerary P .
The Minimum Number of Transfers Problem (MNTP) is the problem of finding an itin-
erary from S to T which starts at a time after tS and has as few transfers from a train
to another one as possible.

3 The Realistic Time-Expanded Model

In the realistic time-expanded model [26] a timetable is modeled as a directed graph, the
realistic time-expanded graph, as follows: for each elementary connection one departure and

ATMOS’14

50 Engineering Graph-Based Models for Dynamic Timetable Information Systems

10

15

26

30

10

15

25

20

33

37

26

40

50

5

8

5

10

6

7

13

7

1405

1416

5

3

32

15
45

7

13

10

5

14

10

6

4
10

15

25

32

45

8

26

40

50

0

0

0

0

0

0

0

0

5

8

5

3

6

15

2

3

Station B Station C Station A

6 5

Figure 1 Arrival, transfer, and departure nodes are drawn in blue, gray and yellow, respectively.
Connection and arrival-departure arcs are drawn in blue and green, respectively. Arcs with at least
one transfer node endpoint are drawn in black. The minimum transfer time is 5 mins.

one arrival node are created and a connection arc is inserted between them. For each
departure event, one transfer node is created which connects to the respective departure
node by a transfer-departure arc having weight 0. This is done to model transfers within
stations. Given a node u, t(u) denotes the time-stamp of u with respect to the original
timetable. To ensure a minimum transfer time at a station S, an arrival-transfer arc from
each arrival node u is inserted to the smallest (considering time) transfer node v such that
∆(t(u), t(v)) ≥ transfer(S).

To ensure the possibility to stay in the same train when passing through a station,
an additional arrival-departure arc is created which connects the arrival node with the
appropriate departure node belonging to this same train. Further, to allow transfers to
an arbitrary train, transfer nodes are ordered non-decreasing. Two adjacent nodes (w.r.t.
the order) are connected by an arc from the smaller to the bigger (in terms of time) node.
To allow transfers over midnight, an overnight-arc from the biggest to the smallest node is
created. For each arc e = (u, v) in the time-expanded graph the weight w(e) is defined as the
time difference ∆(t(u), t(v)). Hence, for each path from a node u to another node v in the
graph, the sum of the arc weights along the path is equal to the time difference ∆(t(u), t(v)).
Storing this graph requires O(|C|) space, as it has n = 3|C| nodes and 4|C| ≤ m ≤ 5|C| arcs.
Figure 1 shows a realistic time-expanded graph.

Given a realistic time-expanded graph G = (V,E) and a timetable query (S, T, tS), the
earliest arrival problem can be solved in the realistic time-expanded graph by finding a
shortest path from s to t, where s is the transfer node with the smallest time-stamp within
S such that t(s) ≥ tS (or, if no such node exists, s is the node among the transfer nodes of
S such that t(s) is minimum), and t is an arrival node within T with minimum distance to
s (i.e. the first node of T extracted from the Dijkstra’s queue).

The realistic time-expanded graph can be used to solve also MNTP. In fact, it is enough
to modify the weight function of the graph by setting a weight of 1 to any arc that models
a transfer in a station and a weight of 0 to any other arc. In particular, the weights of all
the incoming arcs of transfer nodes which come from an arrival node are set to 1.

4 The Reduced Time-Expanded Model

In order to decrease the graph size, we adopted an approach introduced in [26] called reduced
(realistic) time-expanded model and removed the transfer nodes and the transfer-departure

A. Cionini et al. 51

10

15

26

30

10

15

25 33

37

26

40

50

5

8

5

10

5

8

5

6

7

13

1405

1416

5

32

13

15
45

7

13

10

5

14

10

6

3

6

15

2

3
4

6

Station B Station C Station A

7

11
5

20

Figure 2 Arrival nodes are drawn in blue while departure nodes, ordered by departure time, are
drawn in yellow. Arrival nodes are now connected directly to departure nodes.

arcs. Departure nodes are merged with their corresponding transfer nodes, and arrival
nodes are connected directly to departure nodes. Also arrival-departure arcs of the original
realistic time-expanded graph connect now arrival nodes of neighboring stations such that
they belong to the same train route. This results in a reduction in the graph size of |C|
nodes and |C| arcs, and therefore in a shorter traversal time within the graph. Figure 2
shows the reduced time-expanded graph corresponding to the realistic time-expanded graph
of Figure 1.

Timetable queries. We propose a variant of the Dijkstra’s algorithm which exploits the
model structure and some restrictions to reduce the query time. In our implementation we
have adopted the following approaches.

In order to reduce the size of the priority queue of the Dijkstra’s algorithm, we insert in
it only arrival nodes. This can be beneficial because the computation cost of the algorithm
depends mostly from the priority queue updates and these in turn from queue size. To
preserve the correctness of the algorithm, only for the case of departure nodes, we extent
the arc relaxation depth to 2. That is, if during an arc relaxation, the head of the arc
is a departure node and its distance label is updated, we also relax its outgoing arcs by
exploiting a suitably defined acyclic component between neighboring stations (for example,
in Figure 2, the subgraph induced by arrival node 7 and departure nodes 15, 25, 32 in
station B and arrival nodes 20, 33, 37 in station C). In order to reduce the search space, we
also restrict the node exploration criteria. In more detail, taking as a reference the source
station sS , we keep track of the earliest arrival time to the currently reached stations by the
algorithm. In general, between two adjacent connected stations, sA and sB there may be
many multiple routes, at different departure times from sA. The purpose is to exclude, from
early on, the non-optimal ones. To achieve this, we can exploit that the departure nodes
are sorted by increasing time. Therefore, from this point onwards, we can skip the successor
departure nodes with departure time higher than the reached minimum arrival time to sB

plus (as offset for the realistic model case) the transit time of sB . Obviously, the skipped
departure nodes cannot provide an earliest arrival time to sB . These approaches can be
even independent or compatible with other speed-up techniques (such as ALT).

ATMOS’14

52 Engineering Graph-Based Models for Dynamic Timetable Information Systems

10

26

30

25

32

33

37

40

5

7

9

6

27

1405

5

13

3

10

7

15

6

6

23

35

15

10

5

5

5

8

10

45

15

40

46

50

5

1430

3

6

5

2

4

26

Station B Station C Station A

15

11
4

Figure 3 The arcs, departure and arrival nodes of the delayed train that need to be updated are
drawn in red. The delay is 20 mins.

Handling delays. A simple approach for handling delays in the time-expanded model was
proposed in [11]. When a train is delayed, the arcs of the time-expanded model within the
affected stations have to be updated. The update routine consists of three steps: (i) Update
the weight of the connection arc corresponding to the incoming delayed train. (ii) Update
the weights of arrival-transfer and transfer-departure arcs at all subsequent stations through
which the delayed train passes. (iii) Check for every updated arrival-transfer arc whether
the update still yields valid transfer times, i.e., the arc weight is still bigger than the transfer
time for this station; if not, then the arc has to be re-wired.

In this work, we have engineered, simplified, and optimized the above update routine
for the case of the reduced time-expanded graph, as follows. When an update is performed,
we reorder the departure nodes, in ascending order of (departure) time. Depending on the
magnitude of the delay, there can be at least one arrival node that should be linked with a
new earliest departure node. This requires a modification on the topology of the realistic
time-expanded graph, in order to remain valid. The affected arcs are those having tail
the delayed arrival node, head the delayed departure node (if the train continues its travel
to another station) and head the new successor departure node of the delayed departure
node. To maintain the invariant of keeping the departure nodes ordered according to time,
we have to move the delayed departure node in its proper position (in a way similar to
moving a node from one location to another in a linked list), and then we only need to link
the arrival tail nodes with the proper earlier departure nodes so that transfer times within
the station are respected. Alongside we update the arcs with the new correct weights.
This operation requires only changing the node pointers of the arcs and the weights, which
minimizes the update cost, and in contrast to the original approach it keeps the number
of the arcs constant. The only disadvantage is that the departure nodes may now be not
optimally sorted within the memory blocks and hence deteriorate the locality of references.
In order to reduce the consequent impact on the performance of the query time, we initially
group and pack together in memory all the departure nodes for each station. Preliminary
experiments showed that the new (simplified and optimized) routine is at least 50% faster
than the original one. Figure 3 illustrates the execution of the aforementioned algorithm,
on the reduced time-expanded graph of Figure 2, in case of a 20 minutes delay.

A. Cionini et al. 53

 SB

10

15

25

26

50

40

∞

∞

∞

5

8

5

∞

∞

∞
32

11

∞

45

∞

SC

3

6

2

15

5

3

11

Station B Station C Station A

4

Figure 4 Switch nodes are drawn in blue while departure nodes, ordered by arrival time, are
drawn in yellow. Inside each departure node the departure time of the corresponding elementary
connection is reported. Connection arcs are drawn in blue, switch arcs are drawn in black while
train arcs are drawn in green.

5 The Dynamic Timetable Model

In this section, we describe our new approach, called dynamic timetable model (dynTM for
short), to solve the EAP and the MNTP problems.

Timetable model Given T = (Z,B, C), we define a directed graph G = (V,E) called
dynamic timetable graph and a weight function w : E → N as follows.

For each station S in B, a node sS , called switch node of S, is added to V ;
For each elementary connection c = (Z, Sd, Sa, td, ta) ∈ C a node dc, called departure
node of c, is added to V and an arc (dc, sSa

) of c, called connection arc, connecting dc

to the switch node sSa
of Sa is added to E;

For each elementary connection c = (Z, Sd, Sa, td, ta) ∈ C an arc (sSd
, dc), called switch

arc, connecting the switch node sSd
of the departure station Sd to the departure node

dc of c is added to E;
For each train Z ∈ Z which travels through the itinerary (c1, c2, . . . , ck), an arc, called
train arc, connecting the departure node dci

of ci with the departure node dci+1 of ci+1
is added to E, for each i = 1, 2, . . . , k − 1.

For each connection arc (dc, sSa
), w(dc, sSa

) = ∆(ta(c), td(c)). For each train arc (dci
, dci+1),

w(dci
, dci+1) = ∆(td(ci), td(ci+1)). The weight of each switch arc is set to a default infinity

value. Moreover, for each switch node sS , we maintain the station S it is associated with
and for each departure node dc, we maintain the departure time td(c) and the train Z(c)
of connection c which dc is associated with. Figure 4 shows the dynamic timetable graph
corresponding to the realistic time-expanded graph of Figure 1.

The graph is stored by using a forward-star representation where, for each switch node
sS , the switch arcs (sS , dc) outgoing from sS are sorted according to the arrival time ta(c)
of the elementary connection c associated with node dc, in non-decreasing order.

The above data structure requires O(|C|) space as it needs to store a graph with n =
|B| + |C| nodes and m ≤ 3|C| arcs. The additional information requires O(|B|) space for
the station stored at each switch node and O(|C|) space for the information stored at each
departure node. We recall that |C| ≥ max{|B|, |Z|}.

ATMOS’14

54 Engineering Graph-Based Models for Dynamic Timetable Information Systems

Timetable queries. An EAP query (S, T, tS) is answered by executing a modified Dijkstra’s
algorithm in G starting from the switch node sS of S.

We use a vector of flags DS for each switch node sS . The size of DS is given by the
number of stations S′ such that there exists an elementary connection departing from S and
arriving at S′. We denote the element of DS associated to S′ as DS [S′]. Initially, all the
flags of DS are set to false, for each S ∈ B.

When a switch node sA is inserted or decreased in the Dijkstra’s queue during a relaxation
step, the algorithm maintains, along with the distance to sA, also the connection c′ such
that the arc (dc′ , sA) is the one that has been relaxed. We assume that the switch node sS

of the departure station S is inserted in the queue at the initialization step with distance 0
and connection c′ such that td(c′) + w(dc′ , sS) = tS . Moreover we set transfer(S) = 0.

Let us consider the time when a switch node sA, associated with station A ∈ B, is
extracted from the Dijkstra’s queue. Let dist(sS , sA) be the distance from sS to sA extracted
from the queue and let c′ be the elementary connection associated with dist(sS , sA). The
value of dist(sS , sA) corresponds to the minimum time required to reach station A from
station S, departing at time tS . The algorithm first computes the value x = td(c′) +
w(dc′ , sA)(mod 1440), which represents the arrival time of connection c′. Then, for each
switch arc (sA, dc) (i.e. for each elementary connection c such that Sd(c) = A), it compares
x with td(c) and enables the arc (sA, dc) if DS [Sa(c)] = false and

∆(x, td(c)) = td(c)− x(mod 1440) ≥
{

0 if Z(c) = Z(c′)
transfer(A) otherwise. (1)

The arc (sA, dc) is enabled by setting w(sA, dc) to ∆(x, td(c)).
The switch arcs (sA, dc) are scanned according to their ordering in the forward star

representation (that is according to the arrival time ta(c)), starting from the first arc such
that td(c) ≥ x. If (sA, dc) is the first arc to be enabled w.r.t. some station S′ = Sa(c) (i.e.
the one with the smallest arrival time), then the value of DA[S′] is set to true when the
first arc (sA, dc′) such that Sa(c′) = S′ and ∆(ta(c), ta(c′))(mod 1440) > transfer(S′) is
scanned. The time instants ta(c) and ta(c′) can be computed by using the value of x, td(c)
and td(c′) and the arc weights. The scanning of switch arcs of a station A is stopped when
the vector DA has only true elements and the Dijkstra’s search is then pruned.

Therefore, if two switch arcs (sA, dc1) and (sA, dc2) (corresponding to two elementary
connections c1 and c2) lead to the same station B, fulfill Inequality 1, and have two arrival
times that differ for a value greater than transfer(B), then only the one with smallest
arrival time is enabled. In other words, if x ≤ min{td(c1), td(c2)} and ta(c1) < ta(c2) +
transfer(B)(mod 1440), then w(sA, dc1) = td(c1) − x and w(sA, dc2) = ∞ ties are broken
arbitrarily. If we assume that ta(c2) is the smallest arrival time that fulfills the above
condition, then the value of DA[B] is set to true when arc (sA, dc2) is scanned.

Note that, the above behavior is performed also for the switch node sS of the departure
station S, given the initialization values of the queue. The Dijkstra’s search is stopped as
soon as the switch node sT associated to the arrival station T is extracted from the queue
and the arrival time tT is given by dist(sS , sT).

The proof of the following theorem will be given in the full paper.

I Theorem 1. The modified Dijkstra’s algorithm solves EAP in O(|C| log |C|) time.

An MNTP query (S, T, tS) can be solved similarly to an EAP one. The only differences
are: (i) We do not use vector D and then all the switch arcs that satisfy transfer time

A. Cionini et al. 55

 SB

10

25

32

46

50

40

∞

∞

∞

8

5

5

∞

∞
35

11

∞

45

∞

SC

3

6

2

15

5

23 ∞

Station B Station C Station A

31

4

Figure 5 A delay of 20 minutes induces two arc weight changes and the update of the time
associated to the corresponding departure nodes (red nodes).

constraints (Inequality 1) are enabled and (ii) when a switch node sA is extracted from the
queue with associated connection c′, the weight of each switch arc (sA, dc) is set to 0, if
Z(c) = Z(c′), and to 1 otherwise.

Handling delays. Let us assume that we are given a timetable T represented as above and
a delay occurs on a connection c. The delay is modelled as an increase of d minutes on
the arrival time, t′a(c) = ta(c) + d(mod 1440). The timetable is then updated according to
some specific policy which depends on the network infrastructure. The obtained timetable
is called disposition timetable T ′ and it differs from T for the arrival and departure times of
the trains that depend on Z(c) in T (see e.g. [7, 8, 19, 23, 27] for examples of policies used
to update a timetable).

In our model, it is enough to update the time associated to the departure node dc′ , the
weight of the connection arc (dc′ , Sa(c′)), and the weight of the train arc (dc′ , dc′′), for each
connection c′ that changed from T to T ′. This can be done in linear time by performing a
graph search onG starting from the departure node dc associated with c. In the case thatG is
used to answer to EAP queries some further computation is needed as the array representing
the arcs must be sorted according to the new values of the arrival times. This can be done
in O(|C| log |C|) time as, if mi denotes the number of nodes outgoing from each switch
node si, then

∑
i∈Bmi ≤ m and hence the overall time is given by O(

∑
i∈Bmi log(mi)) =

O(logm
∑

i∈Bmi) = O(m logm) = O(|C| log |C|). Hence, the overall time needed to update
the timetable is O(|C|) in the case that the model is exploited to answer to MNTP queries,
and O(|C| log |C|) in the case that it is exploited for EAP queries. We remark that this is an
upper bound which is far from being realistic as the stations that change some time references
are much less than |B|, especially thanks to robust design of timetables [7, 8, 19, 23, 27].
Figure 5 shows how dynTM handles a delay on the dynamic timetable graph of Figure 4.

In the experimental section, we assume that the policy adopted is that no train waits for
a delayed one. Therefore, the only time references which are updated are those regarding
the departure times of Z(c). Moreover, we assume that the policy does not take into account
any possible slack times and hence the time references are updated by adding d(mod 1440).

Comparison with the time-expanded models. In this section, we compare dynTM with
the realistic and the reduced time-expanded models.

ATMOS’14

56 Engineering Graph-Based Models for Dynamic Timetable Information Systems

First, in case of delays, the time-expanded models require, after a reordering of the
arrival, departure, and transit nodes, also an update (insertion/deletion) of arcs of the graph
(see e.g. [11]). This behavior could imply a large computational time which depends on the
way the graph is stored. On the contrary, dynTM is able to keep updated its data structure
in case of delays in almost linear time and without any change in the graph topology. In
fact, a delay in the timetable induces few arc weight changes and the update of the time
associated to the corresponding departure nodes. Note that, this last operation can require,
in some cases, a reordering step in the departure nodes of the stations involved by the change
with respect to new arrival times.

Second, although dynTM and the two time-expanded models asymptotically require the
same space complexity, the graph in the new model has a smaller number of nodes and
arcs. In fact, the realistic time-expanded model requires 3|C| nodes and at least 4|C| arcs,
the reduced time-expanded model requires 2|C| nodes and at least 3|C| arcs, while dynTM
requires |B|+ |C| nodes and at most 3|C| arcs (we recall that |C| ≥ |B|). On the other hand,
Dijkstra’s algorithm executed in dynTM must perform the additional step of enabling arcs
and computing the weights of the switch arcs.

Adapting to speed-up techniques. As already mentioned, one of the advantages of graph-
based models for timetable information systems over the faster array-based ones is that the
former models can exploit the so-called speed-up techniques for shortest path developed
during the last years. Indeed, many of such techniques can be easily adapted to be used in
combination with dynTM and thus improve the query time. To motivate this statement,
in the following we show how to adapt one of the simplest speed-up techniques (namely
ALT [20]) to dynTM. The idea behind the ALT algorithm is to direct the Dijkstra’s search
towards the target t of the query by adding a feasible potential to the priority of each node
in the queue. In ALT, the feasible potentials are computed as follows. Given a set of
nodes L ⊆ V called landmarks, the feasible potential of a node u ∈ V towards a target
t is computed as πt(u) = max`∈L max{d(u, `) − d(t, `); d(`, t) − d(`, u)}. By the triangle
inequality follows that πt(u) is a lower bound to the distance d(u, t) and this is enough to
prove the correctness of the shortest path algorithm (see [20] for more details).

The adaptation of ALT to the time-expanded models is pretty easy, and several variants
have already been proposed, e.g. in [12].

In our approach, we select as landmarks the switch nodes, each of which represents the
arrival node group of a station. Therefore the lower bound distance, dist(sA, sB), between
two switch nodes, sA and sB , denotes the minimum travel time, from any arrival node of
station A to any arrival node of station B. These lower bound distances can be computed
during the preprocessing phase by running single-source queries from each switch node. The
tightest lower bounds, with this method, can be obtained by storing all pair station distances
O(|B|2). This makes sense particularly when the stations are relatively few in number.

We also used ALT along with the restricted node exploration, described in Section 4, for
both the reduced time-expanded graphs and dynTM. The contribution of ALT is that of
making the goal-directed search pulling faster towards the target station. The contribution
of node pruning, instead, is that of removing several non-optimal arrivals between adjacent
stations. The combination of the approaches reduces much more the search space size and
leads to a more efficient algorithm.

A. Cionini et al. 57

Table 2 Tested timetables and sizes of the corresponding graphs; orig = original, red = reduced.

type T |B| |C|
TE (orig) TE (red) DynTM

|V| |E| |V| |E| |V| |E|

train
efz 2 198 41 613 124 839 208 065 83 226 159 290 43 811 124 839
d0i 6 493 428 982 1 286 946 2 144 910 857 964 1 668 171 435 475 1 286 946
eur 7 786 596 129 1 788 387 2 912 210 1 192 258 2 316 081 603 915 1 719 952

bus
bts 716 12 689 38 067 63 445 25 378 49 862 13 405 38 067
ks 1 865 44 744 134 232 223 720 89 488 175 536 46 609 134 232
bvb 2 874 292 542 877 626 1 462 710 585 084 1 154 792 295 416 877 626

mixed Berlin 6 113 3 887 965 11 663 895 19 439 825 4 085 900 6 128 800 2 044 637 4 586 247
London 11 561 13 995 098 41 985 294 69 599 780 27 990 196 55 604 682 14 006 659 41 609 584

6 Experimental Analysis

In this section we report the results of our experimental study. Our experiments have been
performed on a workstation equipped with an Intel Quad-core i5-2500K 3.30GHz CPU and
12GB of main memory, and our implementations were done in C++ (gcc compiler v4.6.3 with
optimization level O4).

Input data and parameters. As input data to our experiments we used 3 train and bus
timetables from a large data set provided by HaCon [21] for scientific use. We also used
two different source timetable data sets in General Transit Feed (GTFS) format, containing
various means of transportation. We built, for each timetable T , a realistic time-expanded,
a reduced time-expanded, and a dynamic timetable graph. For representing the graphs,
we used a packed memory graph [24] for the time-expanded graphs, and a forward-star
representation for the dynamic timetable graph. We used a binary heap when a priority
queue was needed.

In Table 2 detailed information about the timetables and the corresponding graphs are
reported. In particular, we report, for each timetable, the number of stations and the
number of elementary connections between stations, the number of nodes and arcs of the
corresponding graph for each model. Table 2 confirms the analysis reported in Sections 4
and 5, regarding the sizes of the models. In fact, for each timetable T = (Z,B, C), we notice
that the number of nodes is exactly 3|C|, 2|C|, and |B| + |C| while the number of arcs is
always smaller than 5|C|, 4|C|, and 3|C| for the realistic, the reduced time-expanded, and
dynTM models, respectively.

Timetable queries. In order to test the performance of the three models, we carried out,
for each timetable, EAP queries and evaluated the time required for answering them. For
each timetable, we generated 1, 000 EAP queries between pairs of stations, randomly chosen
with uniform probability distribution, and measured the time for executing, on each type
of graph, the corresponding modified Dijkstra’s algorithm. The used algorithms in the
experiments are a) D: the proposed Dijkstra’s algorithm variant and b) ALT: uni-directed
ALT, both of them combined with the restricted node exploration technique.

The results of our experiments are summarized in Table 3. Since in [26] it has been shown
that the reduced model is always better than the realistic model, in this table we report
only the results on the reduced time-expanded model and dynTM. In particular, we report
the average computational time per query for train, bus and mixed instances, respectively.
We omit results concerning MNTP queries as they lead to similar analysis.

Our experiments show that: (i) combining ALT with the restricted node exploration

ATMOS’14

58 Engineering Graph-Based Models for Dynamic Timetable Information Systems

leads to a significant speed-up in query time; (ii) dynTM query time is comparable to that
of the reduced time-expanded model. Moreover, in [26] it has been shown that queries on
time-dependent graphs are faster than those on time-expanded graphs by a small constant
factor in the realistic setting. It follows that dynTM query time is also comparable to that of
the time-dependent model. Our experiments also show that the query time of both reduced
time-expanded model and dynTM is comparable to that of array-based approaches. In fact,
for example, the query time of CSA is 2 ms on an instance of London with around 5 millions
connections [2], while the query time of reduced time-expanded model and dynTM is 9.41 ms
and 12.75 ms, respectively, on an instance of London with almost 14 millions connections.

Notice that, the overhead w.r.t. query time of dynTM is due to the fact that there are
no separated arrival to departure arcs. Taking as reference the start time within the station,
in order to take the next valid departure times after start time, there is a need for looking
up many departure nodes, in non-increasing order of departure time. This makes each step
of algorithms more expensive than its reduced time-expanded graph variant. Therefore, the
arrival node contraction results in this disadvantage.

Timetable updates. As described in Section 5, our new model is able to efficiently handle
dynamic updates to the timetable. Hence, in order to evaluate the performance of the
updating algorithm, we performed a set of experiments as follows: for each timetable, we
randomly selected 1,000 elementary connections and, for each elementary connection, we
randomly generated a delay affecting the corresponding train or bus, chosen with uniform
probability distribution between 1 and 360 minutes. For each change in the timetable, we
ran the algorithm for updating the dynamic timetable graph and measured the average
computational time and the number of arcs affected by the change, that is the number of
arcs associated to the same train or bus which has experienced the delay. For the reduced
time-expanded model we used the engineered, simplified and optimized version of the update
algorithm in [11], presented in Section 4.

The experimental results are shown in Table 3. In this case dynTM outperforms the
reduced time-expanded model w.r.t. the update time. The results confirm that the upper
bound given in Section 5 for the computational time of the updating algorithm is really far
from being realistic, thus making dynTM suitable to be used in practice. In fact, even in
the biggest network (London), the updating algorithm requires 271.46 µs. Moreover, only
few arc weights need to be changed in the original graph to keep the EAP queries correct,
on average 9.1 in train timetables and 13.5 in bus timetables. This is due to the fact that
the number of stations where something changes, as a consequence of a delay, is small with
respect to the size of the whole set |B|.

7 Conclusions

In this paper we studied graph-based models for timetable information systems which are
able to handle dynamic updates and experimentally showed their effectiveness in terms of
both query and update times.

We have shown that graph-based models can be combined with known speed-up tech-
niques developed for road networks, by implementing ALT and showing its effectiveness.
Therefore, a possible future work is that of combining other known speed-up techniques to
the tested graph-based models. In this regards, the most promising ones are those based on
Arc-flags [22] as they can be combined with ALT [12] and support dynamic updates [9]. Fur-
thermore, the efficient implementation of ALT given in [17] would further improve the query

A. Cionini et al. 59

Table 3 Comparison between reduced time-expanded graphs and dynamic timetable graphs with
respect to average query time, average update time and affected arcs, respectively.

type T
query (ms) update (µs)

TE (red) dynTM TE (red) dynTM
ALT D ALT D time arcs time arcs

train
efz 0.43 0.97 0.97 1.27 25.31 30.9 2.25 7.2
d0i 1.53 6.35 3.76 8.94 40.32 32.2 7.17 7.6
eur 1.69 7.66 3.71 9.74 43.10 33.5 8.07 9.1

bus
bts 0.17 0.28 0.29 0.43 34.47 37.7 2.19 8.8
ks 0.67 1.34 0.78 1.36 39.49 53.8 3.04 11.1
bvb 1.56 2.67 2.92 3.89 95.98 63.5 15.17 13.5

mixed Berlin 9.90 21.67 13.17 37.85 194.54 61.6 80.23 9.9
London 9.41 31.52 12.75 51.54 477.23 130.4 271.46 29.0

time. Given these combinations, it would be also interesting to experimentally compare the
models studied in this paper with both array-based and time-dependent approaches.

We focused on the earliest arrival problem to demonstrate the potential of the graph
based models. Therefore, another possible future work could be that of tackling the multi-
criteria problem.

In addition, we plan to extend the study by: (i) analyzing different types of timetable
modifications corresponding to different policies for delay management; (ii) taking into ac-
count possible slack/buffer times in the timetable; (iii) considering footpaths between sta-
tions in dynTM. To this regard, we believe that footpaths can be easily incorporated to our
graph based models in an efficient way.

References
1 Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Harrelson, Veselin

Raychev, and Fabien Viger. Fast routing in very large public transportation networks using
transfer patterns. In 18th Annual European Symposium on Algorithms (ESA 2010), volume
6346 of LNCS, pages 290–301. Springer, 2010.

2 Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Mueller-Hannemann, Thomas
Pajor, Peter Sanders, Dorothea Wagner, and Renato Werneck. Route planning in trans-
portation networks. Technical Report MSR-TR-2014-4, Microsoft Research, 2014.

3 Hannah Bast, Jonas Sternisko, and Sabine Storandt. Delay-Robustness of Transfer Pat-
terns in Public Transportation Route Planning. In 13th Work. on Algorithmic Approaches
for Transportation Modelling, Optimization, and Systems (ATMOS), pages 42–54. Schloss
Dagstuhl, 2013.

4 Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Dominik Schultes,
and Dorothea Wagner. Combining hierarchical and goal-directed speed-up techniques for
dijkstra’s algorithm. ACM J. Exp. Alg., 15:Article 2.3, 2010.

5 Reinhard Bauer, Daniel Delling, and Dorothea Wagner. Experimental study of speed up
techniques for timetable information systems. Networks, 57(1):38–52, 2011.

6 F. Bruera, S. Cicerone, G. D’Angelo, G. Di Stefano, and D. Frigioni. Dynamic multi-level
overlay graphs for shortest paths. Math. Comp. Sc., 1(4):709–736, 2008.

7 Serafino Cicerone, Gianlorenzo D’Angelo, Gabriele Di Stefano, Daniele Frigioni, and Al-
fredo Navarra. Recoverable robust timetabling for single delay: Complexity and polynomial
algorithms for special cases. Journal of Combinatorial Optimization, 18(3):229–257, 2009.

ATMOS’14

60 Engineering Graph-Based Models for Dynamic Timetable Information Systems

8 Serafino Cicerone, Gianlorenzo D’Angelo, Gabriele Di Stefano, Daniele Frigioni, Alfredo
Navarra, Michael Schachtebeck, and Anita Schöbel. Recoverable robustness in shunting
and timetabling. In Robust and Online Large-Scale Opt., volume 5868 of LNCS, pages
28–60. Springer, 2009.

9 Gianlorenzo D’Angelo, Mattia D’Emidio, and Daniele Frigioni. Fully dynamic update of
arc-flags. Networks, 63(3):243–259, 2014.

10 D. Delling and D. Wagner. Landmark-based routing in dynamic graphs. In 6th Work. on
Experimental Algorithms, LNCS, pages 52–65. Springer, 2007.

11 Daniel Delling, Kalliopi Giannakopoulou, Dorothea Wagner, and Christos Zaroliagis.
Timetable Information Updating in Case of Delays: Modeling Issues. Technical Report
ARRIVAL-TR-0133, ARRIVAL Project, 2008.

12 Daniel Delling, Thomas Pajor, and Dorothea Wagner. Engineering time-expanded graphs
for faster timetable information. In Robust and Online Large-Scale Optimization, volume
5868 of LNCS, pages 182–206. Springer, 2009.

13 Daniel Delling, Thomas Pajor, and Renato F. Werneck. Round-Based Public Transit Rout-
ing, pages 130–140. SIAM, 2012.

14 Daniel Delling and Renato F. Werneck. Faster customization of road networks. In 12th
Symp. Exp. Alg. (SEA), volume 7933 of LNCS, pages 30–42. Springer, 2013.

15 Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Intriguingly simple
and fast transit routing. In 12th Symp. Exp. Alg. (SEA), volume 7933 of LNCS, pages
43–54. Springer, 2013.

16 Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Customizable contraction hierarchies.
In 13th Int. Symp. on Exp. Alg. (SEA), volume 8504 of LNCS, pages 271–282. Springer,
2014.

17 Alexandros Efentakis and Dieter Pfoser. Optimizing landmark-based routing and prepro-
cessing. In 6th ACM SIGSPATIAL Int. Work. on Computational Transp. Science. ACM,
2013.

18 Donatella Firmani, Giuseppe F. Italiano, Luigi Laura, and Federico Santaroni. Is Time-
tabling Routing Always Reliable for Public Transport? In 13th Work. on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems (ATMOS), pages
15–26. Schloss Dagstuhl, 2013.

19 Matteo Fischetti, Domenico Salvagnin, and Arrigo Zanette. Fast approaches to improve
the robustness of a railway timetable. Transportation Science, 43(3):321–335, 2009.

20 A. Goldberg and C. Harrelson. Computing the shortest path: A* search meets graph theory.
In ACM-SIAM Symposium on Discrete Algorithms (SODA05), pages 156–165. SIAM, 2005.

21 HaCon - Ingenieurgesellschaft mbH. http://www.hacon.de, 2008.
22 U. Lauther. An extremely fast, exact algorithm for finding shortest paths. Static Networks

with Geographical Background, 22:219–230, 2004.
23 Christian Liebchen, Michael Schachtebeck, Anita Schöbel, Sebastian Stiller, and André

Prigge. Computing delay resistant railway timetables. Computers & OR, 37(5):857–868,
2010.

24 Georgia Mali, Panagiotis Michail, Andreas Paraskevopoulos, and Christos Zaroliagis. A
new dynamic graph structure for large-scale transportation networks. In 8th Int. Conf. on
Algorithms and Complexity (CIAC), volume 7878 of LNCS, pages 312–323. Springer, 2013.

25 Matthias Müller-Hannemann and Mathias Schnee. Efficient timetable information in the
presence of delays. In Robust and Online Large-Scale Optimization, volume 5868 of LNCS,
pages 249–272. Springer Berlin Heidelberg, 2009.

26 Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Efficient models
for timetable information in public transportation systems. ACM J Exp Alg, 12(2.4):1–39,
2008.

http://www.hacon.de

A. Cionini et al. 61

27 Michael Schachtebeck and Anita Schöbel. To wait or not to wait - and who goes first?
delay management with priority decisions. Transportation Sc., 44(3):307–321, 2010.

28 D. Schultes and P. Sanders. Dynamic highway-node routing. In 6th Workshop on Experi-
mental Algorithms (WEA), LNCS, pages 66–79. Springer, 2007.

29 Dorothea Wagner, Thomas Willhalm, and Christos D. Zaroliagis. Geometric containers for
efficient shortest-path computation. ACM J. Exp. Alg., 10(1.3):1–30, 2005.

ATMOS’14

Local Search for the Resource Constrained
Assignment Problem
Markus Reuther

Zuse Institute Berlin
Takustrasse 7, 14195 Berlin, Germany
reuther@zib.de

Abstract
The resource constrained assignment problem (RCAP) is to find a minimal cost cycle partition
in a directed graph such that a resource constraint is fulfilled. The RCAP has its roots in an
application that deals with the covering of a railway timetable by rolling stock vehicles. Here, the
resource constraint corresponds to maintenance constraints for rail vehicles. Moreover, the RCAP
generalizes several variants of vehicle routing problems. We contribute a local search algorithm
for this problem that is derived from an exact algorithm which is similar to the Hungarian
method for the standard assignment problem. Our algorithm can be summarized as a k-OPT
heuristic, exchanging k arcs of an alternating cycle of the incumbent solution in each improvement
step. The alternating cycles are found by dual arguments from linear programming. We present
computational results for instances from our railway application at Deutsche Bahn Fernverkehr
AG as well as for instances of the vehicle routing problem from the literature.

1998 ACM Subject Classification G.1.6 Optimization

Keywords and phrases Assignment Problem, Local Search, Rolling Stock Rotation Problem,
Vehicle Routing Problem

Digital Object Identifier 10.4230/OASIcs.ATMOS.2014.62

1 Introduction

Let D = (V,A) be a directed graph and let c : A 7→ Q+ be a cost function. Generally
speaking, the resource constrained assignment problem (RCAP) is to find a cost minimal
cycle partition in G such that a resource constraint is fulfilled. The RCAP generalizes several
variants of the Vehicle Routing Problem (VRP) [20], e.g., the capacitated vehicle routing
problem (CVRP) and the asymmetric traveling salesman problem (ATSP). Moreover, the
RCAP is a specialization of the rolling stock rotation problem (RSRP) [18].

The ATSP can be formulated as: Find a cost minimal cost partition of G in cycles
with the additional side constraint that there is no sub-tour. We handle the no sub-tour
constraint as resource constraint, i.e., the traveling salesman has to collect a flower at each
city, he can load at most |V | − 1 flowers and he has to drop the flowers at some special depot
node. This modeling idea is already used in mixed integer programming formulations for the
symmetric TSP [13]. For vehicle routing problems the resource constraint appears as the
maximal vehicle capacity, while the distance between two successive maintenance inspections
is constrained for rolling stock rotations.

For similar problems that consider an acyclic graph a method of choice is column generation
with dynamic programming. For the resource constrained shortest path problem in acyclic
graphs there exist a huge variety of powerful pseudo-polynomial time algorithms [5]. For
problems with cyclic graphs one has to deal with node repetitions in dynamic programming

© Markus Reuther;
licensed under Creative Commons License CC-BY

14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’14).
Editors: Stefan Funke and Matúš Mihalák; pp. 62–78

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2014.62
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

M. Reuther 63

approaches which is a rather hard task. By today, there is no method of choice to tackle
these resource constraints in graphs that contain cycles, see [15].

Almost all algorithms for instances of the VRP, ATSP, or RSRP take use of some kind
of local search procedures. They are either used as working horse to prune the search
space within exact algorithms or as standalone algorithms. Local search algorithms can be
distinguished between those that make use of linear programs and others which do not.

Mixed integer programming (MIP) based local search heuristics like RENS [2], RINS [4],
local branching [6], and crossover [19] restrict the original problem to a much smaller MIP by
introducing bound changes and additional constraints. The remaining problems are solved
by using the linear relaxation as pruning argument. Apart from such methods there exist a
huge set of combinatorial motivated local search algorithms. They are designed to take use of
one or more elementary local move operations and to quickly explore a large neighborhood.
The papers [12], [10], and [3] are classical seminal references in the case of the TSP, ATSP,
and VRP.

A powerful method that integrates linear programming arguments and local move opera-
tions is the modulo network simplex method for the periodic event scheduling problem [14].
This algorithm can be summarized as a local search procedure that improves the current
incumbent solution by move operations emerged from a modified network simplex algorithm.
We follow this line by using [1] as basis for a linear programming guided heuristic for the
RCAP. In [1] there is described an exact method to solve the assignment problem. This
algorithm is similar to the famous Hungarian method. The most important difference is that a
perfect matching, i.e, a feasible primal incumbent solution is always at hand. The incumbent
solution is iteratively improved by applying cycles that alternate between arcs to delete and
arcs to add. Our idea is to use the alternating cycles emerged from this algorithm for an
improvement heuristic for the RCAP. Using alternating cycles as neighborhood structure
has been extensively studied in the literature. In particular a local search algorithm, namely
the Lin-Kernighan [12] heuristic for the symmetric traveling salesman problem, which is still
the best performing heuristic for the symmetric TSP. The main difference to our approach
is that we find the alternating cycles by arguments from linear programming. Thus, the
definition of predefined neighborhood graphs to derive candidate lists is not necessary by
using our approach.

The paper is organized as follows. In Section 2 we formally introduce the RCAP. We give
a detailed description of the method proposed in [1] in Section 3. Section 4 explains our
heuristic extension for which we give computational results in the last section.

2 The Resource Constrained Assignment Problem

Let D = (V,A) be a directed graph and let c : A 7→ Q be some objective function. We assume
that a dedicated event is performed at each arc of D. Further, we introduce a resource
function r : A 7→ Q+ ×Q+ that assigns a pair of rational numbers (r1

a, r
2
a) stating a resource

consumption before and after the event on an arc and we define ra := r1
a + r2

a. We distinguish
replenishment events from other events and call arcs with replenishment events replenishment
arcs. Let B ∈ Q+ be a resource constraint. We call a cycle C ⊆ A feasible cycle if one of the
following two conditions is fulfilled:

1.
∑

a∈C ra = 0 or
2. at least one arc of C is a replenishment arc and for all paths P = (ã, a1, ..., am, â) of C

such that ã and â are replenishment arcs and a1, ..., am are not replenishment arcs, the
inequality r2

ã +
∑m

i=1 rai
+ r1

â ≤ B is fulfilled.

ATMOS’14

64 Local Search for the RCAP

I Definition 1 (Resource Constrained Assignment Problem (RCAP)). Given a directed Graph
D = (V,A), a resource function r, an objective function c, and a resource constraint B. The
RCAP is to find a partition of the nodes of D into a set of feasible cycles that minimizes c.

W.l.o.g. we assume that G is complete. Graphs that are not complete can be made
complete by introducing arcs which sufficient high cost. We also assume that G does not
contain multiple arcs between two nodes.

The RCAP is a specialization of the rolling stock rotation problem [18] and has its roots in
it. In rolling stock rotation planning the resource constraint models for example a maintenance
constraint for rail vehicles, e.g., refueling. To model time or distance consumptions directly
before or after replenishment events at the arc a ∈ A one can use the pair (r1

a, r
2
a).

As already explained, the RCAP generalizes the symmetric and asymmetric traveling
salesman problem. In the ATSP example from Section 1 all in the depot node ingoing arcs
would perform the replenishment event “drop the flowers” and all other arcs the event “take
the flower of the last city”.

Moreover, variants for the vehicle routing problems can also be seen as instances of the
RCAP. For example, the capacitated vehicle routing problem (CVRP) [3] is to find a minimal
set of cycles, namely tours, in a complete undirected graph G = (V ∪ {d}, E) with node
demands rv ∈ Q for all v ∈ V such that each node of V is covered exactly once by one cycle,
each cycle covers d exactly once,

∑
v∈V ∩C rv ≤ B holds for each cycle C of the solution, and

the solution minimizes some linear objective function c : E 7→ Q. For the CVRP the minimal
number of tours t can be computed by t =

⌈(∑
v∈V

rv

)
/B

⌉
for many instances. An instance

of the CVRP can be modeled as an instance of the RCAP by introducing t copies of d, using
the resource function of the outgoing arcs of a node to model the demand of the node, and
declaring the outgoing or incoming arcs of the depot as replenishment arcs.

We use the proposed transformations for the TSP, ATSP, and CVRP for our computational
results and moreover they show that the RCAP is a NP-hard combinatorial optimization
problem.

Let RCAP’ be the problem if we relax the resource constraint in the RCAP with the
graph D = (V,A), i.e., if all ra = 0. The standard assignment problem (AP) [11] is to find
a cost minimal perfect matching in a complete bipartite undirected graph G = (T ∪H,E)
with T ∩H = ∅ for some linear objective function.

The following lemma motivates the name Resource Constrained Assignment Problem.

I Lemma 2. The RCAP’ is equivalent to the standard assignment problem.

Proof. Let t : V 7→ T and h : V 7→ H be two bijective functions. An arc a = (u, v) ∈ A
with u, v ∈ V of D can be bijectively transformed to an edge e = {t(u), h(v)} of G such that
c(a) = c(e). Therefore any solution A0 ⊆ A of the RCAP’ can be uniquely transformed to a
solution E0 ⊆ E of the AP and vice versa. J

In the remaining part of the paper we assume that a node of V is associated with a tail
and a head node of T and H as it was introduced in the proof of 2. Since edges in G and arcs
in D have a one-to-one correspondence, we identify arcs of the directed graph D = (V,A)
for the RCAP and edges of the undirected graph G = (T ∪H,E) for the AP. We either use
D = (V,A) or G = (T ∪H,A) as notation for the considered graphs depending on what is
appropriate.

M. Reuther 65

u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

switch arcs in G
→

u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

Figure 1 Alternating cycle.

3 A Primal Hungarian Method

The algorithm proposed in [1], that we call call Primal Hungarian Method in this paper, is
the basis for our approach. We will introduce this algorithm in this section.

Let G = (T ∪H,A) be a complete bipartite graph with |T | = |H| and c : A 7→ Q. Further
let xa be a binary decision variable that is equal to one if a belongs to a solution and zero
otherwise. Further, let πt

u be a free dual variable for each tail node u ∈ T and let πh
v be a

free dual variable for each head node v ∈ H. We denote the set of incoming and outgoing
arcs of v ∈ V by δ+(v) := {a ∈ A | a = (u, v)} and δ−(v) := {a ∈ A | a = (v, w)}, respectively.
The standard assignment problem can be formulated by the following dual linear programs:

(P) min
∑

a∈A caxa

s.t.
∑

a∈δ+(v) xa = 1, ∀v ∈ T∑
a∈δ−(v) xa = 1, ∀v ∈ H

xa ≥ 0, ∀a ∈ A

(D) max
∑

u∈T π
t
u +

∑
v∈H π

h
v

s.t. πtu + πhv ≤ ca, ∀a = (u, v) ∈ A

πtu ∈ Q, ∀u ∈ T
πhv ∈ Q, ∀v ∈ H.

In each basic solution of (P) the x-variables are all binary and thus the integrality constraints
for them can be relaxed if one solves (P) with a simplex method. Let da := ca − πt

u − πh
v

be the reduced cost of the arc a = (u, v) ∈ A. By the strong duality theorem the x- and
π-variables have optimal value if and only if they are feasible for (P) and (D) and the reduced
cost or the x-variable is zero for each arc:

xa · da = 0, ∀a ∈ A. (1)

The famous Hungarian method [11] can be summarized as follows. Start with a feasible
solution for (D) and choose an initial (possibly empty) matching in G with corresponding
x-variables for (P) such that (1) is fulfilled. In each iteration of the (dual) Hungarian
method the current matching is extended by preserving (1) and dual feasibility as long as
the matching becomes perfect. That is, the method provides dual feasibility at every stage
of the algorithm and can therefore be seen as a dual method.

In the primal Hungarian method the linear programs (P) and (D) change their roles. It
starts with a perfect matching in G and a configuration of the π-variables that must not be
feasible for (D) but have to satisfy (1). In each iteration of the primal Hungarian method
the perfect matching in G is improved as long as all arcs have positive reduced cost, i.e., the
π-variables provide dual feasibility. The same distinction for the (dual) and primal Hungarian
method holds for the primal and dual simplex algorithm.

ATMOS’14

66 Local Search for the RCAP

The improvements found by the primal Hungarian method have a dedicated structure.
Given a perfect matching M ⊆ A, an alternating cycle is a cycle in the underlying undirected
graph of G that alternates between arcs of M and A\M . Figure 1 illustrates this definition.
On the left there is a bipartite graph with five nodes. The perfect matching is represented by
the black arcs. The dashed arcs do not belong to the matching but to the alternating cycle
which is blue. It is easy to see, that if we delete all arcs of the matching that are contained
in the alternating cycle and add all dashed arcs we get another perfect matching which is
illustrated on the right of Figure 1.

Listing 1 describes the general flow of the method. We start with an arbitrary perfect
matching in G and initialize the dual variables as shown in Listing 2. It is easy to see, that (1)
is fulfilled through this initialization.

Listing 1 Primal Hungarian Method
1 primalHungarianMethod ()
2 {
3 find initial perfect matching ;
4 initializeDuals ();
5 for(a? ∈ {a ∈ A | da < 0}) // pricing loop
6 {
7 if(findAlternatingCycle (a?)) { applyAlternatingCycle (a?); }
8 }
9 }

Suppose that we have found an arc a? ∈ A with negative reduced cost, i.e., da < 0 during
the pricing loop. An iteration of the Primal Hungarian Method is a single call to the function
described in Listing 3 with a? as argument. If this function returns true, an alternating
cycle that leads to an improvement has been found. If it returns false the dual variables
have been modified such that da? ≥ 0.

Listing 2 Initialization of dual variables
1 initializeDuals ()
2 {
3 for(v ∈ H)
4 {
5 u := tail(v); // tail of v in current matching
6 πtu := c(u,v);
7 πhv := 0;
8 }
9 }

We start in line 5 at the tail node of a? and do a breath-first-search (BFS) in (the
underlying undirected graph of) G. Whenever a tail or head node has been processed during
this BFS, we label these nodes with the predecessor nodes, see Listing 4. The BFS is applied
to the equality set A0 = {a ∈ A | da = 0} restricted to all tail and head nodes that have not
become labeled yet, see lines 8 to 16.

If we could not reach the tail of a? we modify the dual variables. We can choose any
ε ∈ Q and increase the dual variables of all tail nodes that have an outgoing arc in A0 if we
simultaneously decrease the duals of all heads that have an incoming arc in A0 by ε. By such
a modification (1) is clearly preserved because for all a = (u, v) ∈ A with xa = 1 we either
decrease the dual for u and increase the dual for v by the same value or we do not modify
both duals. Hence, da = 0 for all a ∈ A with xa = 1.

To ensure that the method terminates, we choose ε as small as possible but positive, see

M. Reuther 67

lines 18 to 21. This choice ensures for the new reduced cost d′a of an arc a ∈ A:

da ≥ 0 ⇒ d′a ≥ 0. (no cycling)

Listing 3 Search for an alternating cycle
1 boolean findAlternatingCycle (a? = (u?, v?) ∈ A)
2 {
3 Lv? := u?; // set label of head node v?

4 Q := {tail(v?)}; // start BFS with tail of v? in current matching
5
6 while(da? < 0)
7 {
8 while (Q 6= ∅)
9 {

10 choose u ∈ Q;
11 Q := Q\{u};
12 for((u, v) ∈ {a = (u, v) ∈ A | v is not labeled, da = 0})
13 {
14 if(isAlternatingCycle ((u, v), u?)) { return true; }
15 }
16 }
17
18 J := {a = (u, v) ∈ A |u is labeled, v is not labeled, da ≥ 0};
19
20 if(J 6= ∅) { ε := min{da | a ∈ J}; }
21 else { ε := −da? ; }
22
23 for(u ∈ {u ∈ T |u is labeled}) { πtu := πtu + ε; }
24 for(v ∈ {v ∈ H | v is labeled}) { πhv := πhv − ε; }
25
26 J := {a = (u, v) ∈ A |u is labeled, v is not labeled, da = 0};
27
28 for(v ∈ {v ∈ H | ∃ a = (u, v) ∈ J})
29 {
30 choose a = (u, v) ∈ J;
31 if(isAlternatingCycle ((u, v), u?)) { return true; }
32 }
33 }
34
35 return false;
36 }

Thus, once an arc a ∈ A has positive reduced cost, a will not get negative reduced cost again.
Due to the choice of ε we either extended A0 such that we can still hope to reach the tail of
a? by continuing the BFS in lines 26 to 32 or we modified the dual variables such that

da? < 0 ⇒ d′a? ≥ 0. (dual improvement)

We stop the BFS if we reach the tail node u? of a?. The alternating cycle C ∈ A is defined
by the (predecessor-) labels and alternates between arcs of the current incumbent matching
and arcs of the equality set plus a?. The function applyAlternatingCycle() could be
implemented as follows: Set xa = 0 for all arcs a ∈ A of the alternating cycle with xa = 1 in
the current matching and set xa = 1 for the other arcs a ∈ A of the alternating cycle with
xa = 0 in the current primal solution. All new arcs a ∈ A of the alternating cycle were chosen

ATMOS’14

68 Local Search for the RCAP

v1

v3 v2

v4

v5

switch arcs in D
→

v1

v3 v2

v4

v5

Figure 2 k-OPT move defined by an alternating cycle

such that da = 0 but not da? . To ensure (1) also for a? we finalize the improvement by setting
πh

v? := πh
v? − da? . An alternative for this is to call the function initializeDuals() after

each primal improvement.
Listing 4 Check for an alternating cycle

1 boolean isAlternatingCycle ((u, v) ∈ A, u? ∈ T)
2 {
3 w := tail(v); // tail of v in current matching
4 Q := Q ∪ {w};
5
6 Lw := v; // set label of tail node w

7 Lv := u; // set label of head node v

8
9 if(w == u?) { return true; }

10 else { return false; }
11 }

Let M ⊆ A be a perfect matching and M ′ ⊆ A be the resulting perfect matching if we
apply the alternating cycle C that has been found for a? ∈ A with da? < 0. We have an
improvement of the objective function, i.e., c(M ′)− c(M) < 0 because we can subtract all
dual variables associated with nodes covered by C on both sides of the inequality and get
d(M ′)− d(M) < 0. All arcs of M and M ′ have zero reduced cost except for a?:

c(M ′)− c(M) = d(M ′)− d(M) = da? < 0. (primal improvement)

The presented explanation, in particular (primal improvement), (dual improvement), and
(no cycling) prove the correctness of the primal Hungarian method.

4 A Primal Hungarian heuristic for the RCAP

Given a set of arcs A′, an operation that deletes k arcs from A′ and simultaneously adds k
new arcs to A′ is known as a k-opt move in the literature. Almost all combinatorial motivated
local search algorithms are based on dedicated k-opt moves. For example the k-opt algorithm
for the TSP over the undirected graph G = (V,E) checks an incumbent Hamiltonian tour
T ⊆ E if there exist any two subsets K ⊂ E and X ⊂ T with |K| = k and |X| = k such that
(T\X)∪K is an improved tour. A special class of k-opt moves are the sequential k-opt moves
that are characterized by a cycle that alternates between arcs to delete and new arcs. Indeed,
the most successful heuristics for the TSP are based mainly on sequential k-opt moves, [8].

If we compute an optimal partition of cycles in the graph D = (V,A) with objective
function c : A 7→ Q+ by the primal Hungarian method we observe that this algorithm
performs sequential k-opt moves. This is illustrated in Figure 2 which shows the equivalent

M. Reuther 69

operation in D defined by the alternating cycle in G. The nodes ui (vi) in Figure 1 appear
as tail (head) node of vi in Figure 2.

I Lemma 3. Consider an instance of the RCAP with relaxed resource constraint. Given a
cycle partition C in D = (V,A) and c : A 7→ Q+. There is always a sequence of m ≤ |V |
sequential k-OPT moves such that the sequence of cycle partitions C1, . . . , Cm that result
from applying the k-OPT moves fulfills c(C1) > . . . > c(Cm) and Cm is optimal w.r.t. c.

Proof. The primal Hungarian method produces a sequence of sequential k-OPT moves. J

Clearly, Lemma 3 does not provide a deep new insight, but it emphasizes an important
fact. Since the objective value decreases by applying the k-OPT moves, the method does
not suffer from degeneracy. Note that Lemma 3 does not hold for the TSP, e.g., the so
called quad-change with k = 4 can not be decomposed into sequential k-opt moves [12]. The
primal Hungarian method can be seen as an exact local search procedure for the assignment
problem since a feasible primal solution is always at hand. In the case of the RCAP clearly
not all sequential k-opt moves found by the primal Hungarian method lead to a feasible
solution. Our idea is to use the moves as a suggestion and to only apply (parts of) those
moves that lead to a feasible improved solution of the RCAP. Listing 5 describes our heuristic
algorithm that runs in the local search loop while(isLocalOptimal() == false); after
initializing an initial matching and dual solution as described in Listing 2. In lines 5 to 9
we do the same as in the unconstrained case described in Section 3. Note that each arc
with negative reduced cost potentially leads to an alternating cycle. Thus, we test every arc
to prove local optimality. The main difference to the exact algorithm for the AP is, that
we do not directly apply each alternating cycle found, but check the feasibility w.r.t. the
resource constraint before. In our implementation we restrict to only those alternating cycles
exchanging at most 20 arcs to provide computational tractability. To avoid cycling of the
algorithm we have to disable arcs that were already tried as it is described in Listing 5.

Listing 5 Prove local optimality
1 bool isLocalOptimal ()
2 {
3 do
4 {
5 for(a? ∈ {a ∈ A | da < 0, a is enabled}) // pricing loop
6 {
7 if(findAlternatingCycle (a?))
8 {
9 if(tryAlternatingCycle (a?))

10 {
11 enable all a ∈ A;
12 return false;
13 }
14 disable a?;
15 }
16 }
17 } while(orthogonalizeDuals ());
18
19 return true;
20 }

We apply the sequential k-opt moves found by the primal Hungarian method as follows.
Let a+

1 = (u1, v2) be an arc that is not contained in the current matching. Further, let

ATMOS’14

70 Local Search for the RCAP

(1.) (2.) (3.)

Figure 3 Flip operations

a−1 = (u1, v1) be the arc outgoing from u1 and let a−2 = (u2, v2) be the arc incoming in v2
w.r.t. the current matching. If we decide to insert a+

1 in the current matching we have
to delete a−1 and a−2 at least and the least onerous operation to close the matching is to
insert the closing arc a+

1 = (u2, v1). We call this 2-opt move defined by the alternating cycle
C = {a+

1 , a
−
1 , a

+
2 , a

−
2 } flip(a

+
1). Figure 3 illustrates the possible operations performed by a

flip. The red arcs are the ones that we delete and the blue arcs are the ones that we add. In
Sub-figures (1.) and (2.) the only two possibilities that arise if we exchange two arcs are
shown: We either merge two cycles to a new one or split on cycle into two new cycles. The
third sub-figure shows the relation to the usual 2-OPT move for the symmetric TSP. In fact,
the usual 2-OPT move exchanges more that two arcs: It also inverts a segment of the current
Hamiltonian cycle which is clearly very different to the modifications performed by a flip.

In our data structure for the current matching, the flip operation has complexity O(|V |),
because in the latter we take use of a function of the data structure that evaluates if the
current matching is feasible w.r.t. the resource constraint or not. To provide such a function
one needs to known if two nodes are in the same cycle or not and thus we always have to do
bookkeeping for the cycles of the nodes at least.

Let C = {a+
1 , a

−
1 , . . . , a

+
n , a

−
n } ⊆ A be the alternating cycle found in Listing 5 where a+

i

and a−i are the arcs to add and the arcs to delete, respectively. We can apply n − 1 flip
operations to obtain the result defined by C, independent w.r.t. the order. This is true,
because after applying n− 1 the matching clearly contains n− 1 of the a+

i arcs and each flip
inserts a closing arc that is deleted by another flip since C is an alternating cycle. Thus, the
matching must contain also the last of the n a+

i arcs. Otherwise it is not a matching what is
the case after apply a set of flip operations. We use this property in the following way.

We do two search strategies, namely a greedy strategy and an “anti-greedy” strategy, in
the function tryAlternatingCycle(). One search strategy consists of n− 1 flips applied to
the current matching. In the greedy strategy we always apply that move that leads to the
best objective function value, while in the anti-greedy search strategy we always apply that
move that leads to the worse objective function value. Finally we continue with the best
feasible matching that appeared during the two search strategies. Note that this procedure
can also lead to non-sequential k-opt moves since it happens that we “only” apply m < n− 1
flips which increases the local search neighborhood.

The algorithm described in Listing 5 restricted to lines 5 to 16 results in a locally optimal
solution. In the literature there are many methods known to escape from local optima. The
outer loop in Listing 5 has also this purpose. But differently to known methods we alter the
dual solution to increase the neighborhood rather then modifying the primal solution. An
observation is that we can initialize the dual variables in the function initializeDuals()
arbitrarily:

I Lemma 4. Let M ⊆ A be perfect matching in the bipartite graph G = (T ∪H,A) with

M. Reuther 71

c : A 7→ Q. There are |M | dual variables that can be chosen arbitrarily to be used as valid
starting point for the primal Hungarian method.

Proof. For each a = (u, v) ∈M we either chose πt
u or πh

v arbitrarily and set the other such
that ca = πt

u + πh
v . In this way, the reduced cost of all a ∈ M are zero and (1) is fulfilled.

Thus, these dual variables are a valid starting point for the primal Hungarian method. J

Listing 6 Compute new dual variables
1 bool orthogonalizeDuals ()
2 {
3 if(|B| == |V |) { return false; }
4
5 J := {i |Bi,1 6= 0}; // non -zero indices in first dual vector
6
7 if(J == ∅) { return false; }
8
9 k := min{i | i ∈ J}+ |B| − 1) mod |V |;

10 b := ek; // b ∈ Q|V | is initialized as unit vector ek ∈ Q|V |

11
12 for(a ∈ B) { b := b− ak

<a,a>
a; } // Gram - Schmidt orthogonalization

13
14 B := B ∪ {b}; // append column b to matrix B

15
16 for(v ∈ H) // set new dual variables
17 {
18 u := tail(v); // tail of v in current matching
19 πtu := bv;
20 πhv := c(u,v) − πtv;
21 }
22 return true;
23 }

Lemma 4 provides the insight that we can chose an unlimited number of dual solution
vectors as starting point. Our idea to diversify the search w.r.t. the dual solution is described
in Listing 6. Before the algorithm starts we initialize the |T |×1 matrix B, i.e., B consists of a
single column vector. This column vector is defined by the values of all πt dual variables that
were chosen in the function described in Listing 2. The matrix B is iteratively extended to
an orthogonal basis of the vector space Q|T | by a standard Gram-Schmidt process. Note that
we can not find such a basis if all arcs of the initial matching have zero costs, because then
the first column in B is the zero vector. But this is a rather rare case. After each extension
of B which is done in the outer loop in Listing 5 we try to find and apply sequential k-opt
moves w.r.t. the new dual solution. Our hope associated with this Gram-Schmidt strategy is
that we consider enough different dual starting points to search a reasonable neighborhood.
The “enough different” is claimed to be fulfilled by |T | orthogonal vectors. Also a randomly
initialized dual starting point could be considered but our approach has the benefit of being
deterministic: Two independent calls to the algorithm produce exactly the same result.

5 Computational results

All our computations were performed on computers with an Intel(R) Xeon(R) CPU X5672
with 3.20GHz, 12MB cache, and 48GB of RAM in single thread mode. In Table 1 we tested
our primal Hungarian heuristic from Section 4 for 15 RCAP instances that are specializations

ATMOS’14

72 Local Search for the RCAP

of the rolling stock rotation problem (RSRP) [18]. The interpretation of the RCAP in rolling
stock rotation planning is to cover a given set of timetabled passenger trips (which are
represented by the nodes of the RCAP graph) by a set of cycles, called vehicle rotations.
The resource constraint appears as a limit on the driven distance between two consecutive
maintenance services. These maintenance services are performed between the operation
of two trips, i.e., on the arcs of the RCAP graph. The main objective is to minimize the
number of vehicles and number of deadhead trips (needed to overcome different arrival and
departure locations between two trips). Our instances for the RCAP coming from the RSRP
are associated with three timetables (indicated by the number of nodes in column three) for
different upper bounds of a dedicated maintenance constraint denoted in column two.

Table 1 Results for RCAP instances from Rolling Stock Rotation Planning.

instance B [km] |V | c? gap time
RCAP_01 1000 617 - - -
RCAP_02 2000 617 320230 26.03 3069.6
RCAP_03 4000 617 244968 2.38 311.7
RCAP_04 6000 617 241001 0.24 420.3
RCAP_05 8000 617 235585 0.01 238.3
RCAP_06 1000 97 - - -
RCAP_07 2000 97 99704 21.89 1.7
RCAP_08 4000 97 78935 0.00 1.7
RCAP_09 6000 97 78935 0.00 0.9
RCAP_10 8000 97 78935 0.00 17.2
RCAP_11 1000 310 - - -
RCAP_12 2000 310 73321282 27.27 1230.8
RCAP_13 4000 310 53615075 10.92 47.9
RCAP_14 6000 310 52283288 9.99 25.0
RCAP_15 8000 310 47335343 0.00 11.1

Clearly, the rolling stock rotation Problem [18] consists of many more aspects as vehicle
composition, regularity, and infrastructure capacity. We observed that the maintenance
constraints in this applications are the ones that the most increase the complexity. The
results provided in Table 1 provide an insight for practitioners: They show how the cost for
operating a timetable might increase by decreasing the limit for the maintenance constraint.
Given an instance of RCAP we compute the local optimal solution with objective value
c? (which is positive for all instances) as well as the optimal solution of the assignment
relaxation which provides a lower bound c̃ for a RCAP instance. Using this we are able to
compute a worst case optimality gap as (c?−c̃)

c? ∗ 100 in percent. The time for computing the
local optimal solution is given in the last column in seconds. In the industrial application
RCAP_05, RCAP_10, and RCAP_15 are the ones of interest. For those instances we obtained
very good results w.r.t. the gap and running time. For the other instances, the results w.r.t.
the primal solutions found are as expected from an applied point of view. For seven instances
we could produce a worst case gap below three percent within seven minutes at most. For
the instances with the smallest resource constraint we could not find any feasible solution.

Since the RCAP generalizes the traveling salesman and capacitated vehicle routing
problem we also made experiments for those instances taken from the literature [16, 17].
We present results for all ATSP instances from [17] and TSP instances with less than 500

M. Reuther 73

Table 2 Summary for VRP instances.

type number of instances arithmethic mean shifted geometric mean
ATSP 19 1.70 1.21
CVRP 107 5.09 3.81
TSP 64 2.60 1.97
all 190 3.91 2.78

nodes. From [16] we consider all CVRP instances from the test sets A, B, E, F, G, M, P,
and V except for six instances (e.g., ulysses-n22-k4) for which we could not reproduce
the claimed optimal objective value based on the solutions provided in the library. Table 2
summarizes the results in Table 3. Let {g1, . . . , gn} be the values in column bk gap of Table 3.
The third column denotes

∑n

i=1
gi

n and the fourth column denotes n
√∏n

i=1 (gi + 1)− 1 for
all instances of a dedicated type. Almost all of these instances are much harder constrained
than the RCAP instances from rolling stock rotation planning, which is indicated by the
column lb gap. But for the ATSP, TSP, and also for some CVRP instances we obtained
rather good results. Nevertheless, in comparison to other more problem specific heuristics for
those instances from the literature as described in [7, 9] our heuristic is not quite competitive
w.r.t. solution quality and running time.

In summary our primal Hungarian heuristic is an efficient method to compute high-quality
solutions for RCAP instances that are not too hard constrained w.r.t. the assignment bound.

Table 3 in the appendix reports computational results of the primal Hungarian heuristic
for 190 instances from the literature. Column |V | denotes the number of nodes w.r.t. the
corresponding RCAP instance. Let b ∈ Q be the best known objective value for a dedicated
instance, let c̃ be the objective value of the initial solution used for the primal Hungarian
heuristic, let l be the objective value of an optimal solution to the underlying assignment
problem, and let c? be the objective value of the local optimal solution. Column initial gap
denotes c̃−b

b · 100, column lb gap b−l
b · 100, and column bk gap denotes c?−b

b · 100. The running
time is reported in the last column in seconds.

References

1 M. L. Balinski and R. E. Gomory. A primal method for the assignment and transportation
problems. Management Science, 10(3):578–593, 1964.

2 Timo Berthold. Rens – the optimal rounding. Technical Report 12-17, ZIB, Takustr.7,
14195 Berlin, 2012.

3 G. Clarke and J. W. Wright. Scheduling of vehicles from a central depot to a number of
delivery points. Operations Research, 12(4):568–581, 1964.

4 Emilie Danna, Edward Rothberg, and Claude Le Pape. Exploring relaxation induced
neighborhoods to improve mip solutions. Mathematical Programming, 102(1):71–90, 2005.

5 I. Dumitrescu. Constrained Path and Cycle Problems. University of Melbourne, Department
of Mathematics and Statistics, 2002.

6 Matteo Fischetti and Andrea Lodi. Local branching. Mathematical Programming, 98(1-
3):23–47, 2003.

7 Chris Groër, Bruce Golden, and Edward Wasil. A library of local search heuristics for the
vehicle routing problem. Mathematical Programming Computation, 2(2):79—-101, 2010.

8 Keld Helsgaun. An effective implementation of k-opt moves for the linkernighan tsp heur-
istic. Technical report, Roskilde University, 2006.

ATMOS’14

74 Local Search for the RCAP

9 Keld Helsgaun. General k-opt submoves for the Lin–Kernighan TSP heuristic. Mathemat-
ical Programming Computation, 1(2-3):119—-163, 2009.

10 Paris-C. Kanellakis and Christos H. Papadimitriou. Local search for the asymmetric trav-
eling salesman problem. Operations Research, 28(5):1086–1099, 1980.

11 H. W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2(1-2):83–97, 1955.

12 S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-salesman
problem. Operations Research, 21(2):498–516, 1973.

13 C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer programming formulation of traveling
salesman problems. J. ACM, 7(4):326–329, October 1960.

14 Karl Nachtigall and Jens Opitz. Solving Periodic Timetable Optimisation Problems by
Modulo Simplex Calculations. In ATMOS’08, volume 9 of OpenAccess Series in Informatics
(OASIcs), Dagstuhl, Germany, 2008. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

15 Luigi Di Puglia Pugliese and Francesca Guerriero. A survey of resource constrained shortest
path problems: Exact solution approaches. Networks, 62(3):183–200, 2013.

16 T. Ralphs. Branch cut and price resource web (http://www.branchandcut.org), June 2014.
17 G. Reinelt. TSPLIB - A T.S.P. Library. Technical Report 250, Universität Augsburg,

Institut für Mathematik, Augsburg, 1990.
18 Markus Reuther, Ralf Borndörfer, Thomas Schlechte, and Steffen Weider. Integrated optim-

ization of rolling stock rotations for intercity railways. In Proceedings of RailCopenhagen,
Copenhagen, Denmark, May 2013.

19 Edward Rothberg. An evolutionary algorithm for polishing mixed integer programming
solutions. INFORMS Journal on Computing, 19(4):534–541, 2007.

20 Paolo Toth and Daniele Vigo, editors. The Vehicle Routing Problem. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2001.

A Results for VRP instances

Table 3 Results for VRP instances.

instance type |V | initial gap best known lb gap bk gap time
br17 ATSP 17 76.65 39.00 100.00 0.00 20.7
ft53 ATSP 53 50.52 6905.00 15.48 1.60 49.9
ft70 ATSP 70 31.04 38673.00 2.17 0.38 462.0
ftv170 ATSP 171 61.45 2755.00 7.78 3.43 200.2
ftv33 ATSP 34 42.56 1286.00 13.69 6.34 574.6
ftv35 ATSP 36 40.44 1473.00 12.59 6.77 576.4
ftv38 ATSP 39 38.90 1530.00 6.14 0.13 549.1
ftv44 ATSP 45 39.77 1613.00 6.92 1.29 553.9
ftv47 ATSP 48 58.59 1776.00 7.35 0.39 536.2
ftv55 ATSP 56 59.54 1608.00 11.96 1.35 15.9
ftv64 ATSP 65 61.55 1839.00 7.27 0.92 17.3
ftv70 ATSP 71 59.84 1950.00 10.85 1.56 226.2
kro124p ATSP 100 82.71 36230.00 8.18 2.10 276.8
p43 ATSP 43 8.77 5620.00 97.37 0.11 29.5
rbg323 ATSP 323 79.37 1326.00 1.78 1.78 33.2
rbg358 ATSP 358 83.58 1163.00 0.60 0.60 48.6
rbg403 ATSP 403 69.02 2465.00 0.40 0.40 619.8
rbg443 ATSP 443 68.80 2720.00 0.15 0.15 674.5

Continued on next page

M. Reuther 75

Table 3 – continued from previous page
instance type |V | initial gap best known lb gap bk gap time
ry48p ATSP 48 73.42 14422.00 15.74 2.91 29.3
A-n32-k5 CVRP 36 57.69 784.00 35.58 5.77 454.4
A-n33-k5 CVRP 37 55.79 661.00 36.76 0.00 32.1
A-n33-k6 CVRP 38 50.53 742.00 36.83 0.27 472.3
A-n34-k5 CVRP 38 55.44 778.00 41.00 9.11 39.1
A-n36-k5 CVRP 40 58.17 799.00 40.38 4.54 607.6
A-n37-k5 CVRP 41 61.88 669.00 28.16 2.90 183.8
A-n37-k6 CVRP 42 52.09 949.00 47.20 3.46 413.9
A-n38-k5 CVRP 42 58.64 730.00 47.78 7.48 34.7
A-n39-k5 CVRP 43 56.46 822.00 41.46 7.64 636.2
A-n39-k6 CVRP 44 60.35 831.00 40.28 3.26 620.0
A-n44-k6 CVRP 49 58.61 937.00 31.61 0.95 620.6
A-n45-k6 CVRP 50 60.44 944.00 44.94 12.35 49.8
A-n45-k7 CVRP 51 49.16 1146.00 43.26 5.21 585.2
A-n46-k7 CVRP 52 59.41 914.00 41.17 6.16 59.5
A-n48-k7 CVRP 54 56.87 1073.00 40.07 4.03 82.5
A-n53-k7 CVRP 59 62.52 1010.00 41.56 4.81 189.4
A-n54-k7 CVRP 60 55.75 1167.00 56.67 12.52 525.8
A-n55-k9 CVRP 63 62.18 1073.00 39.87 0.74 453.9
A-n60-k9 CVRP 68 58.30 1354.00 57.57 7.64 617.2
A-n61-k9 CVRP 69 65.34 1034.00 47.80 10.79 122.5
A-n62-k8 CVRP 69 67.66 1288.00 50.95 5.99 884.7
A-n63-k10 CVRP 72 57.98 1314.00 53.45 7.46 691.3
A-n63-k9 CVRP 71 55.00 1616.00 53.32 9.77 982.2
A-n64-k9 CVRP 72 55.75 1401.00 43.88 5.27 823.1
A-n65-k9 CVRP 73 68.36 1174.00 39.97 4.63 585.6
A-n69-k9 CVRP 77 68.57 1159.00 39.54 4.53 221.7
A-n80-k10 CVRP 89 63.68 1763.00 44.97 6.07 946.0
att-n48-k4 CVRP 51 73.90 40002.00 26.98 1.67 49.4
bayg-n29-k4 CVRP 32 56.10 2050.00 17.91 0.24 433.9
bays-n29-k5 CVRP 33 43.40 2963.00 25.99 0.13 27.1
B-n31-k5 CVRP 35 50.44 672.00 31.39 1.90 552.9
B-n34-k5 CVRP 38 59.71 788.00 33.83 1.62 28.8
B-n35-k5 CVRP 39 59.64 955.00 38.94 2.65 263.7
B-n38-k6 CVRP 43 56.37 805.00 45.41 2.78 610.0
B-n39-k5 CVRP 43 75.23 549.00 53.83 2.14 613.2
B-n41-k6 CVRP 46 64.10 829.00 65.20 8.70 629.6
B-n43-k6 CVRP 48 59.16 742.00 53.26 1.20 45.9
B-n44-k7 CVRP 50 61.42 909.00 63.71 5.21 99.5
B-n45-k5 CVRP 49 66.14 751.00 46.86 1.70 647.2
B-n45-k6 CVRP 50 62.87 678.00 44.09 2.31 685.2
B-n50-k7 CVRP 56 69.51 741.00 34.82 0.00 241.4
B-n50-k8 CVRP 57 48.39 1312.00 57.54 2.60 94.7
B-n51-k7 CVRP 57 66.49 1032.00 42.71 9.31 77.8
B-n52-k7 CVRP 58 68.94 747.00 61.85 1.06 81.9
B-n56-k7 CVRP 62 78.10 707.00 64.11 3.15 339.3
B-n57-k7 CVRP 63 65.98 1153.00 73.49 22.41 786.9
B-n57-k9 CVRP 65 53.42 1598.00 37.16 4.99 813.1

Continued on next page

ATMOS’14

76 Local Search for the RCAP

Table 3 – continued from previous page
instance type |V | initial gap best known lb gap bk gap time
B-n63-k10 CVRP 72 64.43 1496.00 60.46 6.56 162.8
B-n64-k9 CVRP 72 70.05 861.00 55.11 16.16 969.7
B-n66-k9 CVRP 74 60.18 1316.00 60.29 5.32 211.8
B-n67-k10 CVRP 76 68.86 1032.00 46.04 4.97 193.3
B-n68-k9 CVRP 76 62.27 1272.00 59.55 7.29 447.5
B-n78-k10 CVRP 87 67.58 1221.00 62.34 3.40 1014.2
dantzig-n42-k4 CVRP 45 5.93 1142.00 50.55 3.79 594.8
E-n101-k14 CVRP 114 69.14 1071.00 31.39 5.31 260.4
E-n101-k8 CVRP 108 75.95 817.00 23.12 4.11 598.8
E-n13-k4 CVRP 16 39.61 247.00 10.93 0.00 390.9
E-n22-k4 CVRP 25 55.52 375.00 30.13 0.00 19.5
E-n23-k3 CVRP 25 53.59 569.00 21.58 0.18 174.6
E-n30-k3 CVRP 32 64.75 534.00 41.73 1.84 642.8
E-n31-k7 CVRP 37 73.02 379.00 29.17 12.27 289.7
E-n33-k4 CVRP 36 39.32 835.00 29.43 1.30 39.0
E-n51-k5 CVRP 55 67.15 521.00 25.88 8.27 614.6
E-n76-k10 CVRP 85 61.68 830.00 34.49 7.05 329.7
E-n76-k14 CVRP 89 57.90 1021.00 39.68 7.94 974.5
E-n76-k7 CVRP 82 70.75 682.00 24.40 3.26 104.8
E-n76-k8 CVRP 83 69.09 735.00 29.05 4.67 132.2
F-n135-k7 CVRP 141 81.21 1162.00 57.00 9.64 1682.6
F-n45-k4 CVRP 48 67.39 724.00 42.76 0.14 62.0
F-n72-k4 CVRP 75 76.81 237.00 34.27 4.44 60.7
fri-n26-k3 CVRP 28 21.79 1353.00 18.94 1.81 605.4
G-n262-k25 CVRP 286 76.79 6119.00 52.90 2.24 26665.4
gr-n17-k3 CVRP 19 46.76 2685.00 30.18 2.61 578.4
gr-n21-k3 CVRP 23 45.30 3704.00 33.76 8.59 583.9
gr-n24-k4 CVRP 27 42.20 2053.00 31.09 3.89 28.6
gr-n48-k3 CVRP 50 69.42 5985.00 27.97 3.25 647.9
hk-n48-k4 CVRP 51 70.14 14749.00 28.31 3.55 81.0
M-n101-k10 CVRP 110 60.69 820.00 39.15 8.28 923.6
M-n121-k7 CVRP 127 68.17 1034.00 68.64 18.33 1615.0
M-n151-k12 CVRP 162 78.10 1053.00 35.46 2.50 1822.5
M-n200-k17 CVRP 215 78.05 1373.00 46.53 10.14 4711.9
P-n101-k4 CVRP 104 74.91 681.00 16.71 4.35 184.1
P-n16-k8 CVRP 23 10.00 450.00 16.70 2.39 587.9
P-n19-k2 CVRP 20 44.36 212.00 25.23 4.50 583.3
P-n20-k2 CVRP 21 49.41 216.00 19.82 2.70 173.3
P-n21-k2 CVRP 22 53.42 211.00 18.48 0.00 18.9
P-n22-k2 CVRP 23 52.53 216.00 19.00 2.26 615.3
P-n22-k8 CVRP 29 22.29 603.00 43.88 6.51 23.8
P-n23-k8 CVRP 30 30.12 529.00 45.81 13.14 517.9
P-n40-k5 CVRP 44 64.36 458.00 20.04 2.35 386.0
P-n45-k5 CVRP 49 66.02 510.00 20.77 1.92 33.1
P-n50-k10 CVRP 59 56.66 696.00 32.39 6.07 60.6
P-n50-k7 CVRP 56 64.28 554.00 22.52 1.77 656.3
P-n50-k8 CVRP 57 56.75 631.00 33.62 8.55 132.8
P-n51-k10 CVRP 60 45.11 741.00 33.89 5.61 711.8

Continued on next page

M. Reuther 77

Table 3 – continued from previous page
instance type |V | initial gap best known lb gap bk gap time
P-n55-k10 CVRP 64 58.98 694.00 26.97 2.53 589.1
P-n55-k15 CVRP 69 40.31 989.00 51.52 25.08 648.7
P-n55-k7 CVRP 61 63.14 568.00 23.49 4.70 51.3
P-n55-k8 CVRP - - 588.00 - - -
P-n60-k10 CVRP 69 60.82 744.00 30.07 2.75 142.0
P-n60-k15 CVRP 74 50.66 968.00 33.73 3.97 208.4
P-n65-k10 CVRP 74 59.51 792.00 29.94 6.27 163.3
P-n70-k10 CVRP 79 62.39 827.00 32.38 5.38 903.8
P-n76-k4 CVRP 79 74.06 593.00 23.82 9.47 537.0
P-n76-k5 CVRP 80 69.88 627.00 20.96 2.64 648.6
swiss-n42-k5 CVRP 46 49.33 1668.00 32.89 2.74 52.4
ulysses-n16-k3 CVRP 19 48.94 7965.00 19.25 3.21 22.6
ulysses-n22-k4 CVRP 25 41.15 9179.00 35.00 1.95 250.3
a280 TSP 280 8.16 2579.00 9.01 3.15 528.6
att48 TSP 48 78.68 10628.00 22.19 1.88 502.1
bayg29 TSP 29 65.19 1610.00 10.56 0.00 21.3
bays29 TSP 29 64.88 2020.00 12.67 0.00 485.6
berlin52 TSP 52 66.03 7542.00 22.33 6.83 41.9
bier127 TSP 127 69.98 118282.00 20.42 1.75 538.3
brazil58 TSP 58 80.35 25395.00 35.68 1.39 60.4
brg180 TSP 180 98.36 1950.00 100.00 6.70 44.7
burma14 TSP 14 27.16 3323.00 17.33 0.00 596.1
ch130 TSP 130 87.22 6110.00 29.28 1.37 732.7
ch150 TSP 150 87.64 6528.00 16.72 2.19 718.8
d198 TSP 198 29.86 15780.00 33.65 1.29 2121.2
d493 TSP 493 69.17 35002.00 15.55 2.40 3148.9
eil101 TSP 101 69.50 629.00 11.47 2.48 649.6
eil51 TSP 51 67.43 426.00 13.36 1.84 40.6
eil76 TSP 76 72.68 538.00 12.79 3.06 570.2
fl417 TSP 417 78.61 11861.00 40.56 5.01 5234.5
fri26 TSP 26 17.81 937.00 11.10 0.00 548.6
gil262 TSP 262 90.96 2378.00 21.93 3.41 1486.6
gr120 TSP 120 86.12 6942.00 16.38 1.01 714.2
gr137 TSP 137 28.07 69853.00 19.88 1.91 386.0
gr17 TSP 17 55.84 2085.00 20.96 0.24 566.7
gr202 TSP 202 30.94 40160.00 15.18 1.45 525.4
gr21 TSP 21 59.11 2707.00 10.60 0.00 14.2
gr229 TSP 229 25.15 134602.00 20.58 2.89 1012.7
gr24 TSP 24 62.98 1272.00 17.68 0.47 17.1
gr431 TSP 431 26.45 171414.00 21.21 5.81 4779.5
gr48 TSP 48 74.56 5046.00 19.49 1.77 29.8
gr96 TSP 96 31.85 55209.00 18.57 2.06 679.2
hk48 TSP 48 76.21 11461.00 17.91 4.68 603.4
kroA100 TSP 100 88.88 21282.00 20.04 0.41 660.4
kroA150 TSP 150 90.79 26524.00 21.77 3.56 928.9
kroA200 TSP 200 92.15 29368.00 24.04 3.41 2166.7
kroB100 TSP 100 85.91 22141.00 25.32 1.53 426.0
kroB150 TSP 150 90.44 26130.00 23.59 2.53 871.3

Continued on next page

ATMOS’14

78 Local Search for the RCAP

Table 3 – continued from previous page
instance type |V | initial gap best known lb gap bk gap time
kroB200 TSP 200 91.01 29437.00 21.36 1.11 890.6
kroC100 TSP 100 88.69 20749.00 23.12 4.69 253.1
kroD100 TSP 100 87.55 21294.00 23.07 0.96 703.9
kroE100 TSP 100 88.28 22068.00 26.39 2.65 273.7
lin105 TSP 105 60.58 14379.00 40.33 4.19 603.3
lin318 TSP 318 64.94 42029.00 37.66 3.98 1851.2
pcb442 TSP 442 77.07 50778.00 9.15 1.49 1455.4
pr107 TSP 107 29.40 44303.00 51.04 10.40 1352.8
pr124 TSP 124 40.34 59030.00 39.17 7.75 828.7
pr136 TSP 136 66.28 96772.00 14.08 2.81 931.7
pr144 TSP 144 37.41 58537.00 68.96 9.18 1806.2
pr152 TSP 152 54.23 73682.00 42.80 2.09 2768.0
pr226 TSP 226 27.21 80369.00 39.28 2.28 1457.4
pr264 TSP 264 36.99 49135.00 37.08 6.38 4250.4
pr299 TSP 299 42.29 48191.00 20.35 3.75 641.9
pr439 TSP 439 60.38 107217.00 31.70 4.76 3022.6
pr76 TSP 76 28.27 108159.00 30.33 2.28 667.1
rat195 TSP 195 42.36 2323.00 12.42 2.88 1027.7
rat99 TSP 99 42.98 1211.00 15.05 5.54 592.5
rd100 TSP 100 84.36 7910.00 18.68 1.93 402.6
rd400 TSP 400 92.91 15281.00 21.06 2.40 3393.9
si175 TSP 175 18.79 21407.00 5.84 0.42 968.1
st70 TSP 70 80.21 675.00 24.45 1.75 49.4
swiss42 TSP 42 55.08 1273.00 20.74 0.00 334.5
ts225 TSP 225 54.20 126643.00 9.78 1.16 929.5
tsp225 TSP 225 62.16 3916.00 12.72 0.00 329.4
u159 TSP 159 3.00 42080.00 17.66 0.00 104.5
ulysses16 TSP 16 29.03 6859.00 18.46 0.09 94.5
ulysses22 TSP 22 42.51 7013.00 25.33 0.99 493.1

A Coarse-To-Fine Approach to the Railway Rolling
Stock Rotation Problem∗

Ralf Borndörfer, Markus Reuther, and Thomas Schlechte

Zuse Institute Berlin
Takustrasse 7, 14195 Berlin, Germany
reuther@zib.de

Abstract
We propose a new coarse-to-fine approach to solve certain linear programs by column generation.
The problems that we address contain layers corresponding to different levels of detail, i.e., coarse
layers as well as fine layers. These layers are utilized to design efficient pricing rules. In a nutshell,
the method shifts the pricing of a fine linear program to a coarse counterpart. In this way, major
decisions are taken in the coarse layer, while minor details are tackled within the fine layer.
We elucidate our methodology by an application to a complex railway rolling stock rotation
problem. We provide comprehensive computational results that demonstrate the benefit of this
new technique for the solution of large scale problems.

1998 ACM Subject Classification G.1.6 Optimization

Keywords and phrases column generation, coarse-to-fine approach, multi-layer approach, rolling
stock rotation problem

Digital Object Identifier 10.4230/OASIcs.ATMOS.2014.79

1 Introduction

This paper is motivated by an application in railway optimization, namely the rolling stock
rotation problem (RSRP). This problem consists of several “layers” that address different
levels of detail. The major decisions of the RSRP deal with covering timetabled trips by
rolling stock rotations. This is a coarse layer of the problem. At the same time minor
decisions, for example, about the detailed arrival of a multi-traction vehicle composition at
some station, must be considered for technical reasons. This defines a fine layer. Suppose
there is a solution for the coarse layer that has been found by ignoring the details of the fine
layer. Then it is often possible to extend this coarse solution to a solution for the fine layer,
but not always. In this situation one can try to refine the coarse model locally at the critical
parts. This leads to an iterative refinement approach with a model that mixes coarse and
fine parts and is therefore difficult to handle. The idea of this paper is different. We propose
to work with a version of the fine model that is restricted to a small subset of variables. This
restricted model is iteratively extended using information from the coarse model. In other
words, the coarse model is used to identify the relevant parts of the fine model, (hopefully)
focusing the attention exactly to where it is needed.

Technically, the variable selection process is handled by column generation. Our idea is
to work with two linear programs (LPs), one for the coarse and one for the fine layer. The
coarse LP is constructed by aggregating suitable rows of the fine LP and sometimes turns out
to be a combinatorial optimization problem of low complexity, e.g., a network flow problem.

∗ This work was partially supported by DB Fernverkehr AG.

© Ralf Borndörfer, Markus Reuther, and Thomas Schlechte;
licensed under Creative Commons License CC-BY

14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’14).
Editors: Stefan Funke and Matúš Mihalák; pp. 79–91

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2014.79
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

80 A Coarse-To-Fine Approach to the RSRP

Variables for the fine LP are generated using the coarse LP until convergence. This method
aims at a rapid solution progress and at a complete elimination of stalling and tailing-off
effects that are due to the fine layer.

Row aggregation techniques for column generation algorithms are a topical research area.
Elhallaoui et al. [3] present a multi-phase dynamic constraint aggregation approach to solve
large scale set partitioning type models. Desrosiers and Lübbecke [2] use row aggregation to
utilize degeneracy in linear programming to improve the convergence characteristics of column
generation algorithms. Coarse-to-fine ideas have also been studied to solve optimization
problems on graphs. Raphael [6] describes an algorithm for solving a dynamic program (DP)
on a large graph corresponding to a state space. A sequence of coarse DPs is solved, and
the level of detail in the fine DP increases gradually. Schlechte et al. [10] used a two level
micro-macro approach to solve railway track allocation models. An exact iterative graph
aggregation procedure for solving network design problems is considered in Bärmann [1]. For
a survey on aggregation and disaggregation techniques for optimization problems, see Rogers
et al. [9].

In contrast to our approach, all these methods mix the coarse and the fine layer within
one model, while our approach separates the coarse and the fine layer. This approach turns
out to be easier. Of course, the layers have to be defined in a meaningful way and the success
of the method depends on the quality of the layering. While we offer no general theory how
to do this, in many applications the layers are evident, e.g., for the RSRP. These are the
applications that we have in mind. We remark that a somehow similar idea of separated
layers is used by multi-grid methods to solve linear equation systems, see [11]. Here, the
preconditioner plays the role of the coarse layer which improves the tractability of the fine
layer.

The paper is organized as follows. In Section 2 we describe our general coarse-to-fine
column generation approach for linear programming. Section 3 introduces the RSRP applic-
ation. Three layers for the RSRP that are motivated by combinatorial vehicle composition
requirements for rolling stock are introduced and motivated in Section 4. We present in
Section 5 our instantiation of the coarse-to-fine method for the RSRP. Finally, we provide
comprehensive computational results for real-world instances of the RSRP given by our
industrial partner DB Fernverkehr AG. We assume that the reader is familiar with column
generation methods for linear programming, see [5] for an introduction.

2 A Coarse-To-Fine Approach to Column Generation

Given index sets I = {1, . . . ,m} and J = {1, . . . , n}, a matrix A ∈ RI×J , and vectors b ∈ RI

and c ∈ RJ , consider a linear program {A, b, c}(J)

min cTx

(MP)(J) s.t. Ax = b

x ∈ RJ
+,

max bTπ

and its dual s.t. ATπ ≤ c
π ∈ RI .

We call (MP) = (MP)(J) the master LP. If |J | is very large, the column generation
algorithm (CGA) is the method of choice to solve the master problem. By using the CGA
one restricts J to a sub-set J ′ ⊆ J of columns to solve the restricted master problem (RMP).
We assume xi to be zero for i ∈ J \ J ′. In each iteration of the CGA we try to price columns
(i.e., to find at least one column that is added to (RMP)) j ∈ J \ J ′ by solving the pricing
problem. The pricing problem is to solve c := min {cj − πTaj | j ∈ J} where aj ∈ Rm is the
column vector of A for column j ∈ J and cj ∈ R is the objective coefficient for column j. If
c ≥ 0 we have a proof that an optimal solution x∗ for (MP)(J ′) is also an optimal solution

R. Borndörfer, M. Reuther, and T. Schlechte 81

for (MP)(J). Otherwise, we select a set of columns J∗ ⊆ J such that at least one j ∈ J∗ has
negative reduced cost dj := cj − πTaj , add the columns associated with J∗ to (RMP), and
continue with re-optimizing (RMP).

We are free in selecting columns for the set J∗ by a column selection rule as long as at
least one element of J∗ has negative reduced cost. But, it is obvious that a better column
selection rule improves the efficiency of the CGA. In particular, it can be beneficial to add
also columns with positive reduced cost as we will see. We address applications where J is
enumerated to check every j ∈ J whether dj is negative, e.g., the simplex method. We call
this enumeration pricing loop. For a survey on column generation techniques see [5].

Our main idea is to introduce layers (precise definition follows) that are utilized to
improve two aspects of the column generation method. The first one is to speed-up the
pricing loop in each iteration of the CGA. The second one is to refine the column selection
rule. The latter, aims at reducing the total number of iterations performed by the column
generation algorithm and to reduce the total number of columns generated.

We restrict our considerations for general linear programs to two layers, namely the coarse
layer and the fine layer. The fine layer is equal to (RMP). The coarse layer appears by the
following considerations.

Let [·] : I 7→ [I] be a coarsening projection that maps the index set I of the equations
of (MP) to a smaller coarse index set [I] of size |[I]| ≤ |I|. We use this notation because
[·] induces an equivalence relation on the row indices I, namely, i ∼ j ⇐⇒ [i] = [j]. Let
v ∈ RI be a (column) vector with index set I, let vi be the element of v with index i ∈ I,
and let τ(v, i) be the cardinality of the set {vk 6= 0 | [k] = [i]}, i.e., τ(v, i) is the number of
non-zero coefficients in v supported by rows equivalent to row i. We define [v] ∈ R[I] to be
the coarse vector or coarsening of v using coarse coefficients

[v][i] := ([v][i]1, [v][i]2) := (min {vk | k ∈ I : [k] = [i]},max {vl | l ∈ I : [l] = [i]}) · τ(v, i).

Note that [v][i] is a pair of numbers, namely, the minimal and the maximal coefficient in the set
of rows equivalent to row i, multiplied by the number of non-zeros. Let ([A·j])j=1,...,|J| be the
bimatrix of coarse column vectors of A. Typically, this bimatrix contains identical columns
caused by the coarsening projection, see Example 3. We chose exactly one representative for
a set of identical columns and denote the resulting bimatrix by [A] with columns [J]. Further,
we define the coarse objective coefficient [cj] := mini∈J{ci | [i] = [j]} for column j ∈ J .

Let π ∈ RI be an optimal dual solution vector of (MP) and let aj , j ∈ J , be a column
vector with objective coefficient cj . For ease of notation, the coarse reduced cost [d] is defined
via coefficients [dj] := [cj]− [π]T · [aj], j ∈ J , where we define the multiplication of pairs as
(a1, b1) · (a2, b2) := max {a1b1, a1b2, a2b1, a2b2} for two pairs (a1, a2) ∈ R2 and (b1, b2) ∈ R2.
Note that the coarse reduced cost is not the coarsening of the reduced cost vector d. The
coarse reduction of the master (MP) is

(R) min [d]Tx s.t.[A]x[=][b], x ∈ R[J]
+ ,

where we define

[A]x[=][b] :⇔ [b][i]1 ≤
∑
j∈J

[A·j][i]2xj ,
∑
j∈J

[A·j][i]1xj ≤ [b][i]2 ∀[i] ∈ [I].

That is, the coarse reduction (R) approximates every equation of the master LP by two
extreme case constraints arising from the minimum and maximum coefficients in equivalent
rows. Note that the objective function of the coarse reduction is to minimize [d] (and not c);
the reason for this will become clear in the sequel. Let R? ⊆ [J] be all coarse columns that

ATMOS’14

82 A Coarse-To-Fine Approach to the RSRP

Algorithm 1: Coarse-To-Fine column generation iteration for linear programs.
Data: (RMP) given by {A, b, c} and coarsening projection [·]
Result: a set of columns J∗ to be added to (RMP)

1 compute optimal solution of (RMP) with optimal dual solution vector π∗ ∈ Rm;
2 compute coarse dual solution vector [π∗] defined by [·];
3 compute [J∗] := {[j] ∈ [J] | [dj] < 0} ; /* pricing loop in coarse layer */
4 compute J? ⊆ {j ∈ J | [j] ∈ [J∗], dj < 0};
5 compute optimal solution of (R) and R?;
6 compute J? := J? ∪ {j ∈ J | [j] ∈ R?} ; /* column selection rule */

have a non-zero primal solution value in the optimal solution of the coarse reduction (R).
We also address the coarse reduction as coarse LP and the master LP as fine LP.

The polytope associated with (MP)(J) is denoted by P(MP)(J). Coarsening has the
following simple but important properties.

I Lemma 1. The coarse polytope associated with (R) includes the fine polytope associated
with (MP), i.e., P(R) ⊇ P(MP).

Proof. Every row in (R) is a relaxation of an original row of (MP). J

I Lemma 2. The coarse reduced cost can be used to underestimates the reduced cost, i.e.,

[dj] = [cj]− [π]T · [aj] ≤ cj − πT · aj = dj .

Proof. By definition we have [cj] ≤ cj and each summand in πT · aj is overestimated by a
summand of [π]T · [aj]. J

Lemma 1 shows that the coarse reduction (R) provides an approximation of the fine
master LP which has fewer rows and thus is probably easier to solve. We want to take
advantage of this approximation in a column generation algorithm (CGA) for the fine master
LP by shifting the pricing loop to the coarse reduction. A naive way to do this is to solve
the coarse reduction by a CGA in a first step, producing a set of columns J? ⊆ J , and then
to solve the fine master LP in a second step, starting from the restriction (MP)(J?) to the
set of columns J?. However, this simplistic procedure is unlikely to work well because of
a lack of information exchange between the coarse and the fine linear programs. Also the
quality of the polyhedral approximation of the coarse reduction is unclear.

Lemma 2 proposes an alternative to simply price in the coarse reduction using the
coarsened reduced cost from the fine master LP. This generic idea is formalized in Algorithm 1
that illustrates one iteration within a CGA.

The coarse-to-fine column generation algorithm solves the fine master LP by a CGA that
iterates though a coarse-to-fine pricing loop. In this loop an optimal dual solution (step 2)
of the restricted fine master LP is computed and coarsened. Afterwards, we compute the
coarse reduced cost in the coarse layer that defines the set J∗ of coarse columns with negative
coarse reduced cost and select some of them in step 4. By Lemma 2 we can not miss any
columns in the fine layer with negative reduced cost. That shows that the preselection by J∗
is exact. There is one more ingredient that is crucial for the performance of our coarse-to-fine
approach, namely, a column selection rule to restrict the set of coarsely priced columns. We
propose to compute a reasonable combination of (hopefully) improving columns by solving
the coarse reduction in step 5 and 6. Using the coarse reduced cost as an objective aims at a

R. Borndörfer, M. Reuther, and T. Schlechte 83

“good combination” of improving columns of negative reduced cost and further columns of
positive reduced cost that are “necessary” to complete the construction of the solution. This
iteration is performed until convergence. This is the general method that we propose. It
works particularly well when the coarse reduction turns out to be a simple combinatorial
optimization problem such as a network flow problem. We will discuss an example of this
type in the context of our RSRP application in Section 4.

I Example 3. Consider the following matrix and coarsening projection:

A =
(

1 0 0 −4
0 1 2 0

)
and [i] :=

⌊
i

2

⌋
.

Then we have [A] = ((0, 1) (0, 2) (−4, 0)).

Example 3 shows that coarsening typically produces many identical columns, in particular,
for matrices arising from combinatorial optimization problems. As defined, identical columns
are reduced, keeping only the copy with the smallest objective coefficient. This a desirable
effect that can produce a substantial speed-up of the coarse-to-fine pricing loop.

3 The Rolling Stock Rotation Problem

In this section we consider the Rolling Stock Rotation Problem (RSRP) and state a hypergraph
based integer programming formulation, see [7]. We apply the ideas of Section 2 to the
LP-relaxation of this formulation. We focus here on the main modeling ideas and refer
the reader to our paper [7] for technical details including the treatment of maintenance
and capacity constraints. The extension of the following problem description and model to
include maintenance constraints is straight forward and does not affect the content nor the
contribution of the paper.

We consider a cyclic planning horizon of one standard week. The set of timetabled
passenger trips is denoted by T . Let V be a set of nodes representing timetabled departures
and arrivals of vehicles operating passenger trips of T , let A ⊆ V × V be a set of directed
standard arcs, and H ⊆ 2A a set of hyperarcs. Thus, a hyperarc h ∈ H is a set of standard
arcs. The RSRP hypergraph is denoted by G = (V,A,H). The hyperarc h ∈ H covers t ∈ T
if each standard arc a ∈ h represents an arc between the departure and arrival of t. We define
the set of all hyperarcs that cover t ∈ T by H(t) ⊆ H. By defining hyperarcs appropriately,
vehicle composition rules and regularity aspects can be directly handled by our model. We
define sets of hyperarcs coming into and going out of v ∈ V in the RSRP hypergraph G

as H(v)in := {h ∈ H | ∃ a ∈ h : a = (u, v)} and H(v)out := {h ∈ H | ∃ a ∈ h : a = (v, w)},
respectively.

The RSRP is to find a cost minimal set of hyperarcs H0 ⊆ H such that each timetabled
trip t ∈ T is covered by exactly one hyperarc h ∈ H0 and

⋃
h∈H0

h ⊆ A is a set of rotations,
i.e., a packing of cycles (each node is covered at most once).

Using a binary decision variable for each hyperarc, the RSRP can be stated as an integer
program as follows:

ATMOS’14

84 A Coarse-To-Fine Approach to the RSRP

min
∑
h∈H

chxh, (MP)∑
h∈H(t)

xh = 1 ∀t ∈ H, (1)

∑
h∈H(v)in

xh =
∑

h∈H(v)out

xh ∀v ∈ V, (2)

xh ∈ {0, 1} ∀h ∈ H. (3)

The objective function of model (MP) minimizes the total cost of the chosen hyperarcs.
For each trip t ∈ T the covering constraints (1) assign one hyperarc of H(t) to t. The
equations (2) are flow conservation constraints for each node v ∈ V that define a set of cycles
of arcs of A. Finally, (3) states the integrality constraints for our decision variables.

The RSRP is NP-hard, even without maintenance and base constraints and if con-
straints (1) are trivially fulfilled, i.e., |H(t)| = 1 for all trips t ∈ T , see [4].

4 Three Layers for the RSRP

The mixed integer programming formulation for the RSRP defined in Section 3 only depends
on a hypergraph and a cost function. It is therefore natural to define the layers to be used in
our coarse-to-fine approach as projections of node sets. Such projections induce hypergraphs
themselves. The layers, namely, a composition layer G = (V,A,H), a configuration layer
[G] = ([V], [A], [H]), and a vehicle layer [[G]] = ([[V]], [[A]]), are motivated by our application
at Deutsche Bahn Fernverkehr AG. In this application the RSRP must be solved for the
composition layer, but many technical rules only apply to the configuration layer, which is
much smaller w.r.t. the size of the set of hyperarcs. In addition, we define a vehicle layer to
set up a super-coarse RSRP that provides a reasonable description of the major problem
characteristics (i.e., the total number of rolling stock vehicles used in a solution) and that is
solvable in polynomial time. We discuss in the following the detailed combinatorial aspects
of vehicle composition that motivate our layers.

A fleet is a basic type of rail vehicles. For example, the slightly more than 220 Intercity-
Express rail vehicles of Deutsche Bahn Fernverkehr AG are partitioned into several structurally
identical sets of vehicles named fleets. Let F be the set of fleets.

An orientation is an element of the set O = {Tick, Tack}. Orientation describes the two
options of how vehicles can be placed on a railway track. At Deutsche Bahn Fernverkehr AG
this is distinguished by the position of the first class carriage of the vehicle w.r.t. the driving
direction. Tick (Tack) means that the first class carriage is located at the head (tail) of the
vehicle w.r.t. the driving direction.

A (vehicle) composition c of size n ∈ N+ is an n-tuple of the form

c = ((f1, o1), (f2, o2), ..., (fn, on)) ∈ (F ×O)n.

A sub-index p ∈ {1, . . . , n} of c is called a position of an individual vehicle in a vehicle
composition. In rolling stock rotation planning, a vehicle composition has to be chosen for
each departure of a timetabled trip.

For example, if we consider the set of fleets F = {Red,Blue} we get the following vehicle
compositions of size one: (Red, T ick), (Red, Tack), (Blue, T ick), (Blue, Tack). Figure 1
illustrates the 16 possibilities for such vehicle compositions of size two. The fleet Red is

R. Borndörfer, M. Reuther, and T. Schlechte 85

Ë Ê Ë Ê Ë Ê ËÊ ËÊ Ë Ê ËÊ ËÊ

Ë Ê Ë Ê Ë Ê ËÊ ËÊ Ë Ê ËÊ ËÊ

Ë Ê Ë Ê Ë Ê ËÊ ËÊ Ë Ê ËÊ ËÊ

Ë Ê Ë Ê Ë Ê ËÊ ËÊ Ë Ê ËÊ ËÊ

Figure 1 Vehicle compositions of size two for two fleets. The trees indicate the driving directions.

position 1

position 2

position 3

position 1

position 2

position 3

position 1

position 2

position 3

position 1

position 2

position 3

position 1

position 2

position 3

position 1

position 2

position 3

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

Tick

Tack

fl
ee
t
A

fl
ee
t
A

fl
ee
t
B

v
eh

icle
A
1

v
eh

icle
A
2

v
eh

icle
B

co
n
fi
g
u
ra
ti
o
n

{A
,
A

,
B

} co
n
fi
g
u
ra
tio

n
{
A

,
A

,
B

}

tr
ip

1

trip
2

Figure 2 Possible hyperarcs for vehicle compositions of two trips operated with vehicle configura-
tion {A,A,B}.

represented by the red vehicle, while the blue vehicles represent the fleet Blue. Each gray
vehicle has orientation Tack and each white vehicle has orientation Tick w.r.t. the driving
direction indicated by the blue tree.

A (vehicle) configuration is a multiset of fleets. We say that the configuration k is realized
by the vehicle composition c = ((f1, o1), (f2, o2), ..., (fn, on)) if k = {f1, ..., fn}, i.e., if the
multi-set of fleets used in the composition c is equal to the configuration k. In the above
example the configurations {Red}, {Blue}, {Red,Red}, {Red,Blue}, and {Blue,Blue} are
realized by the 20 compositions.

We define an event as a triple e = ({d, a}, t, p) defining the departure (d) or the arrival
(a) of an individual vehicle at position p ∈ N+ in a vehicle composition operating trip t ∈ T .

We define the composition layer as the hypergraph G = (V,A,H); here, each hyperarc
h ∈ H identifies a vehicle composition, as shown in Figure 2. A node v ∈ V is a four-tuple
v = (e, k, f, o) defining an event e, the vehicle configuration k, the fleet f , and an orientation
o ∈ O.

A discussion of the detailed reasons for defining the composition layer on the proposed
form is out of the scope of this paper. It relies on experience of how the arising requirements
in rotation planning for rolling stock can be handled.

ATMOS’14

86 A Coarse-To-Fine Approach to the RSRP

Consider the following projections:

[v] := (e, k) for v = (e, k, f, o) ∈ V,

[a] := ([v], [w]) for a = (v, w) ∈ A,

[h] := {[a] | a ∈ h} for h ∈ H,

[V] := {[v] | v ∈ V }, [A] := {[a] | a ∈ A}, and [H] := {[h] |h ∈ H}.

Given a composition layer with G = (V,A,H), we define the configuration layer as the
hypergraph [G] := ([V], [A], [H]). The projection omits the orientation and the fleet and
therefore the hyperarcs of [H] can be interpreted as connections of timetabled trips with
vehicle configurations.

Consider the following further projections:

[[v]] := e for [v] = (e, k) ∈ [V],

[[a]] := ([v], [w]) for a = (v, w) ∈ A,

[[V]] := {[v] | v ∈ V }, and [[A]] := {[a] | a ∈ A}.

For the sake of a uniform notation, we also define a set of hyperarcs [[H]] as follows. Let
t ∈ T and let [H](t) be the set of hyperarcs that cover t in [G]. We define h(t) := {[[a]] ∈
[[A]] | ∃[h] ∈ [H](t) : [a] ∈ [h]} as the unique hyperarc that covers t in the vehicle layer.
Finally, we denote by [[H]] :=

⋃
t∈T h(t) ∪ {{[[a]]} | [[a]] ∈ [[A]]}) the set of unique hyperarcs

that cover the trips combined with all standard directed arcs of [[A]] denoted as hyperarcs.
Given a configuration layer with [G] = ([V], [A], [H]), we define the vehicle layer as

[[G]] := ([[V]], [[A]]); note that [[G]] is a standard directed graph. Moreover, the coarse
reduction w.r.t. the vehicle layer [[G]] is solvable in polynomial time. In fact, each timetabled
trip is uniquely covered by the hyperarcs of [[H]]. Therefore, constraints (1) are trivially
fulfilled. The remaining problem is defined by the flow conservation constraints (2) and the
integrality constraints (3) for a standard directed graph, i.e., this problem is a standard
network flow problem. In our application the total number of rail vehicles used is of major
importance. In our computations, we observed that it can be approximated reasonably well
by considering only the RSRP on the vehicle layer.

With respect to the applicatiom, our layers are motivated as follows. Rail vehicles are
not very flexible w.r.t. shunting operations, e.g., it is difficult to change the orientation.
In addition, there are technical constraints stipulating dedicated orientations at locations.
One reason for these constraints are the indicator tables that are used in Germany at
passenger platforms; they show the position and orientation of individual carriages to provide
informations w.r.t. seat reservations to the passengers. Those tables can not be changed easily
in operation. Hence, these tables imply a lot of constraints w.r.t. position and orientation
of individual vehicles within vehicle compositions. Moreover, some vehicle compositions
are forbidden. For a dedicated fleet f the single vehicle composition ((f, Tack), (f, T ick))
results in a reduction of the maximal speed to 80 km/h. Because of these (and many other)
detailed technical requirements we need to consider the composition layer in our application.

Nevertheless, the concept of vehicle configurations plays an essential role in our application.
Most of the time-dependent constraints, e.g., the minimal time needed for cleaning or refueling,
refer “only” to the configuration layer, i.e., they are independent of the concrete vehicle
composition that is realized.

R. Borndörfer, M. Reuther, and T. Schlechte 87

Algorithm 2: Coarse-To-Fine column generation iteration for the RSRP.
Data: (RMP) given by (MP) from Section 4 for G = (V,A,H),

G = (V,A,H) as composition layer,
[G] = ([V], [A], [H]) as configuration layer, and

[[G]] = ([[V]], [[A]], [[H]]) as vehicle layer

Result: a set of hyperarcs H∗ ⊆ H\H to be added to (RMP)

1 set H∗ := ∅;
2 compute optimal solution of (RMP) with optimal dual solution vector π∗ ∈ Rm;
3 compute [π∗] defined by model (MP) for [G];
4 compute [d] as reduced cost defined by model (MP) for [G] and [π∗];

/* PRICE by enumeration in COMPOSITION LAYER and */
/* PRUNE enumeration by [d] of CONFIGURATION LAYER */

5 foreach v ∈ V do
6 compute h1, h2, . . . , hn, . . . , h|H(v)out| such that dhi ≤ dhj < 0 for i < j < n;
7 set H∗ := H∗ ∪

{
h1, . . . , hd 3√ne

}
;

/* PRICE by solving the flow problem in VEHICLE LAYER */
8 set (FP) as flow problem defined by model (MP) for [[G]] = ([[V]], [[A]], [[H]]) with
objective function

[[c]] : [[A]] 7→ R : [[c]]([[a]]) := min
{

[dh]
|h|

∣∣∣∣ [a] ∈ [h] ∈ [H]
}

9 compute optimal solution [[A]]∗ ⊆ [[A]] of (FP);
10 set H∗ := H∗ ∪

{
h ∈ H | ∃a ∈ h : [[a]] ∈ [[A]]∗

}
;

To compare the size of the composition and configuration layer we consider a vehicle
configuration k that consists of the fleets {f1, ..., fl} ⊆ F such that fleet fi appears mi ∈ N+
times in k. Let C be the set of all possible vehicle compositions that realize k. Each
composition of c ∈ C must be of size n :=

∑l
i=1 mi. We have 2n possibilities of different

combinations of orientations in C. Furthermore, we have n! possible permutations of fleets.
A fleet that appears m times reduces this number by m! equal permutations. In summary
we have |C| = 2n · n!/(

∏n

i=1
mi!). For one fleet we have |C| = 4, for two different fleets we

get |C| = 8, for three different fleets we get |C| = 48. Hence, the cardinality of the set of
hyperarcs in the composition layer G is exponential in the size of the set of hyperarcs in the
configuration layer.

5 Application and Computational Study

We study the integer programming formulation for the RSRP of Section 3 as a prototype
application for our coarse-to-fine approach proposed in Section 2 using the three layers
introduced in Section 4.

Algorithm 2 summarizes our specialization of the general coarse-to-fine method for the
RSRP. We are given a restricted master problem (RMP) that only includes columns for
a sub-set H of hyperarcs that are already priced. The set H∗ of new hyperarc variables

ATMOS’14

88 A Coarse-To-Fine Approach to the RSRP

is found by two strategies. First, we enumerate hyperarcs of the composition layer with
negative reduced cost. If a node has n outgoing hyperarcs with negative reduced cost we
add the d 3

√
ne “best” ones to H∗, see line 7. This enumeration, i.e., the pricing loop, is

performed by using a pruning strategy, i.e., we only have to consider hyperarcs h ∈ H of the
composition layer that have negative reduced cost [dh] (denoting the reduced cost of the
column that corresponds to h in model (MP)) in the configuration layer, see Lemma 2. The
second strategy is to solve the flow problem (see Section 4) defined by the vehicle layer and
the objective function [[c]] (line 8 of Algorithm 2). This is a canonical way to approximate the
reduced cost of the configuration layer to be used in the vehicle layer. We add all hyperarcs
to H∗ that correspond to an arc of the optimal solution of the flow problem, see line 10 of
Algorithm 2. This strategy is our interpretation of the coarse reduction (R) introduced in
Section 2 for the RSRP and acts as an efficient column selection strategy.

In our computational study we ”only“ focus on the linear relaxation of model (MP) to
highlight the impact of the coarse-to-fine feature. The interior point solver (without crossover)
of the commercial software Cplex 12.1 is used to solve the linear programs arising during
our CGA. All our computations were performed on computers with an Intel(R) Xeon(R)
CPU X5672 with 3.20GHz, 12MB cache, and 48GB of RAM in single thread mode. We
remark that we could have reported results for the algorithm proposed in [7] to generate
integer feasible solutions for the RSRP as well, because our method clearly also applies to
integer programming. This algorithm, however, is not completely exact. Therefore, the effect
of our approach can become blurred.

A notable implementation detail is how we handle the hypergraphs. We only store the
hypergraph associated with the configuration layer in memory. Given a hyperarc [h] ∈ [H] we
can enumerate all fine hyperarcs that map to [h] by an iterator routine for the composition
layer on the stack of the computer program. This can be seen as a dynamic graph generation
approach, since by using our pruning strategy we do not have to handle or enumerate
the whole fine hypergraph at any time (but we do this once to count the total number of
hyperarcs).

We run four different algorithmic variants for each instance of our test set to show the
relevance of all algorithmic ingredients we introduced:

Variant 1: The first variant is exactly as described in Algorithm 2.
Variant 2: This variant is defined by Algorithm 2 excluding lines 8 to 10, i.e., we omit

our column selection strategy.
Variant 3: This variant is defined by lines 5 to 7 Algorithm 2 without our column

selection strategy and without our pruning strategy by [d].
Variant 4: We solve the RSRP for the composition layer from scratch, i.e., without any

column generation.
Table 1 reports major characteristics of the considered instances of the RSRP, namely the

number |T | of trips to cover, the number |V | of nodes, and the number |H| of hyperarcs for 14
of our 147 test instances for the RSRP. These instances were chosen to form a representative
test set; the remaining results can be found in the Appendix of the corresponding technical
report [8]. The columns of Table 2 in the appendix denote the number of columns, rows, and
non-zeros that were generated as well as the maximal memory usage in Megabytes, that was
allocated by the executing process of the algorithm. The last two columns report the running
time of the algorithm and the time to resolve the generated model from scratch (which is
essential when the algorithm is used within an integer programming method). The rows
of Table 2 in the appendix correspond to each run of the four variants for a single RSRP
instance in the canonical order (the first row corresponds to variant 1 for RSRP_010, the last
one to variant 4 for RSRP_140). A row showing no results indicates an ”out of memory“-run.

R. Borndörfer, M. Reuther, and T. Schlechte 89

Table 1 Characteristics of instances.

instance |T | |V | |H|
RSRP_010 884 1768 6508938
RSRP_020 277 1464 390110
RSRP_030 310 620 805482
RSRP_040 2030 4910 8464864
RSRP_050 1126 4696 20963280
RSRP_060 174 898 271794
RSRP_070 277 1443 377056
RSRP_080 4216 13354 25521577
RSRP_090 277 1464 1347270
RSRP_100 1126 4696 19234364
RSRP_110 73 146 21796
RSRP_120 1033 3106 8407556
RSRP_130 1488 2976 11670716
RSRP_140 987 16790 75274348

Our results show that the running time of our algorithm, namely variant 1, is competitive
with the running time of variant 4. Moreover, the size of the generated model, i.e., the set
of generated columns indicated by column 2 to 5 is dramatically reduced by variant 1 in
comparison to variant 4. The most drastic improvement was achieved for the resolving time
(that is equal to the solving time for variant 4), since an integer programming algorithm
often resolves the linear program that is slightly changed by perturbation (for heuristics)
and branching.

The results for variant 2 and variant 3 demonstrate that each of our two additional layers
for the RSRP is needed to be competitive to a ”from scratch“ approach if we only restrict to
the linear programming relaxation. Nevertheless, some of the instances, e.g., RSRP_140 with
more than 7 · 107 hyperarcs could only be solved using the new technique.

Acknowledgments. We want to thank three anonymous referees for improving this paper
by their valuable comments.

References
1 Andreas Bärmann, Frauke Liers, Alexander Martin, Maximilian Merkert, Christoph

Thurner, and Dieter Weninger. Solving network design problems via iterative aggregation.
Technical report, Department Mathematik, 2013.

2 Jacques Desrosiers, Jean Bertrand Gauthier, and Marco E. Lübbecke. Row-reduced column
generation for degenerate master problems. European Journal of Operational Research,
236(2):453 – 460, 2014.

3 Issmail Elhallaoui, Abdelmoutalib Metrane, François Soumis, and Guy Desaulniers. Multi-
phase dynamic constraint aggregation for set partitioning type problems. Mathematical
Programming, 123(2):345–370, 2010.

4 Olga Heismann. The Hypergraph Assignment Problem. PhD thesis, Technische Universität
Berlin, 2014.

5 M.E. Lübbecke and J. Desrosiers. Selected topics in column generation. Oper. Res.,
53(6):1007–1023, 2005.

ATMOS’14

90 A Coarse-To-Fine Approach to the RSRP

6 C. Raphael. Coarse-to-fine dynamic programming. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 23(12):1379–1390, 2001.

7 Markus Reuther, Ralf Borndoerfer, Thomas Schlechte, and Steffen Weider. Integrated
optimization of rolling stock rotations for intercity railways. In Proceedings of the 5th
International Seminar on Railway Operations Modelling and Analysis (RailCopenhagen),
Copenhagen, Denmark, May 2013.

8 Markus Reuther, Ralf Borndörfer, and Thomas Schlechte. A coarse-to-fine approach to
the railway rolling stock rotation problem. Technical Report 14-26, ZIB, Takustr.7, 14195
Berlin, 2014.

9 David F. Rogers, Robert D. Plante, Richard T. Wong, and James R. Evans. Aggregation
and disaggregation techniques and methodology in optimization. Operations Research,
39(4):553–582, 1991.

10 Thomas Schlechte, Ralf Borndörfer, Berkan Erol, Thomas Graffagnino, and Elmar Swarat.
Micro-Macro Transformation of Railway Networks. Journal of Rail Transport Planning &
Management, 1(1):38–48, 2011.

11 J. Tang, S. MacLachlan, R. Nabben, and C. Vuik. A comparison of two-level preconditioners
based on multigrid and deflation. SIAM Journal on Matrix Analysis and Applications,
31(4):1715–1739, 2010.

A Computational results

Table 2 Computational results (time format is dd:hh:mm:ss).

instance columns rows non-zeros memory time resolving time
RSRP_010 309538 42208 1691612 1032 00:00:23:56 00:00:01:06
RSRP_010 1451027 151613 7917223 2869 00:04:51:01 00:00:04:02
RSRP_010 1451027 151613 7917223 2849 00:05:29:36 00:00:03:30
RSRP_010 7272961 767255 41617693 9354 00:00:16:51
RSRP_020 49359 3245 170109 96 00:00:00:56 00:00:00:01
RSRP_020 129539 3245 394285 185 00:00:02:25 00:00:00:03
RSRP_020 129539 3245 394285 188 00:00:03:19 00:00:00:02
RSRP_020 391991 3245 1170461 380 00:00:00:38
RSRP_030 86385 12523 485291 188 00:00:02:57 00:00:00:04
RSRP_030 266931 29065 1493851 542 00:00:21:05 00:00:00:17
RSRP_030 266931 29065 1493851 515 00:00:24:13 00:00:00:16
RSRP_030 901805 97443 5265727 1223 00:00:01:34
RSRP_040 412359 13080 1433948 995 00:00:08:21 00:00:00:32
RSRP_040 1648117 13080 5449094 2212 00:01:05:24 00:00:01:08
RSRP_040 1648117 13080 5449094 2258 00:01:35:45 00:00:01:11
RSRP_040 8473291 13080 26999090 7321 00:00:07:07
RSRP_050 1002933 180804 7369383 2605 00:05:25:32 00:00:13:56
RSRP_050 2981197 440050 21510641 6561 01:19:15:26 00:00:43:16
RSRP_050 3232294 463437 23487090 7263 02:00:47:44 00:00:42:45
RSRP_050 - - - - - -
RSRP_060 46462 9000 239702 110 00:00:01:40 00:00:00:03
RSRP_060 116000 15810 579422 208 00:00:04:08 00:00:00:06
RSRP_060 116000 15810 579422 213 00:00:04:43 00:00:00:06

Continued on next page

R. Borndörfer, M. Reuther, and T. Schlechte 91

Table 2 – continued from previous page
instance columns rows non-zeros memory time resolving time
RSRP_060 305740 35630 1521254 421 00:00:00:48
RSRP_070 48698 3364 168309 98 00:00:01:01 00:00:00:01
RSRP_070 119940 3364 364469 183 00:00:02:23 00:00:00:03
RSRP_070 121100 3364 370291 185 00:00:03:23 00:00:00:02
RSRP_070 379026 3364 1133345 386 00:00:00:40
RSRP_080 1303150 34288 4305082 2838 00:01:01:08 00:00:03:19
RSRP_080 3910682 34288 12948542 5716 00:05:27:09 00:00:06:13
RSRP_080 3910682 34288 12948542 5687 00:07:48:10 00:00:05:54
RSRP_080 - - - - - -
RSRP_090 121974 26232 943030 302 00:00:09:43 00:00:00:25
RSRP_090 380082 55912 2951626 775 00:00:46:06 00:00:01:11
RSRP_090 380082 55912 2951626 754 00:00:52:15 00:00:01:02
RSRP_090 1525138 181872 12410680 2307 00:00:05:08
RSRP_100 749426 91325 4988934 1876 00:03:03:44 00:00:07:01
RSRP_100 2819827 255646 18306921 5801 01:04:35:17 00:00:28:35
RSRP_100 2717973 248122 17483355 5735 01:05:01:23 00:00:22:33
RSRP_100 20680283 1454616 140691067 26817 00:03:15:58
RSRP_110 7284 366 25694 67 00:00:00:39 00:00:00:00
RSRP_110 13046 366 43554 67 00:00:00:42 00:00:00:00
RSRP_110 13046 366 43554 67 00:00:00:34 00:00:00:00
RSRP_110 22050 366 81276 67 00:00:00:38
RSRP_120 491219 76767 2754706 1058 00:00:40:04 00:00:02:23
RSRP_120 1079795 144509 5931178 2251 00:03:01:27 00:00:04:44
RSRP_120 1079795 144509 5931178 2208 00:03:21:02 00:00:04:25
RSRP_120 9414973 1012971 46583640 11235 00:00:36:03
RSRP_130 753109 131693 5721831 1921 00:01:08:04 00:00:03:27
RSRP_130 2348603 329385 17919703 5024 00:11:58:58 00:00:13:14
RSRP_130 2348603 329385 17919703 5032 00:12:41:50 00:00:13:00
RSRP_130 13556953 1894535 104249717 19983 00:01:02:15
RSRP_140 3639659 103609 31758855 8721 01:17:04:26 00:02:50:51
RSRP_140 - - - - - -
RSRP_140 - - - - - -
RSRP_140 - - - - - -

ATMOS’14

Mathematical programming models for scheduling
locks in sequence
Ward Passchyn1, Dirk Briskorn2, and Frits C.R. Spieksma1

1 KU Leuven
2 Bergische Universität Wuppertal

Abstract
We investigate the scheduling of series of consecutive locks. This setting occurs naturally along
canals and waterways. We describe a problem that generalizes different models that have been
studied in literature. Our contribution is to (i) provide two distinct mathematical programming
formulations, and compare them empirically, (ii) show how these models allow for minimizing
emission by having the speed of a ship as a decision variable, (iii) to compare, on realistic
instances, the optimum solution found by solving the models with the outcome of a decentralized
heuristic.

1998 ACM Subject Classification G.2.1 [Discrete Mathematics]: Combinatorics, G.2.3 [Discrete
Mathematics]: Applications

Keywords and phrases Mixed Integer Programming, Inland Waterways, Lock Scheduling

Digital Object Identifier 10.4230/OASIcs.ATMOS.2014.92

1 Introduction

On many inland waterways, locks are required to ensure a suitable water level for navigation.
Typically, and notably when the waterway traffic density is high, locks act as bottlenecks,
introducing waiting time for ships that pass through these canals and waterways. We consider
here the setting where a series of consecutive locks is arranged in a sequence along a canal.
In this problem setting, ships travel in both directions and each lock acts as a single server
which handles both the upstream and the downstream traffic. Lock operations must alternate
between upwards (downstream to upstream) and downwards (upstream to downstream)
movements. Results on scheduling a single lock in order to minimize ship waiting times exist
in the literature. One goal of this work is to investigate the performance gain that results
from centralizing the decision-making for the sequence of locks, and coordinating the lock
movements so that ships move more fluently through the system. Indeed, if each of the
locks schedules its movements separately, some flexibility may be lost in obtaining a globally
optimal solution e.g. when waiting time at one of the locks cannot be avoided, it may be
beneficial for a ship to incur this waiting time as early as possible in order to improve the
performance of the subsequent locks. In a centralized approach, we can avoid this problem
by incorporating the decisions of each individual lock in obtaining a global schedule that
minimizes the total waiting time over the entire length of the canal.

Section 2 provides a brief overview of related literature and known results. We also
cover some literature as context for the problem, e.g. fuel consumption and greenhouse gas
emissions, since our models have the speed of a ship as a decision variable. A formal definition
of the problem is given in section 3. We aim to provide a general problem description which
may be easily extended by incorporating case-specific constraints or alternative objective
functions. For this general problem setting, we propose two integer programming models

© Ward Passchyn, Dirk Briskorn, and Frits C.R. Spieksma;
licensed under Creative Commons License CC-BY

14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’14).
Editors: Stefan Funke and Matúš Mihalák; pp. 92–106

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2014.92
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

W. Passchyn, D. Briskorn, and F. C. R. Spieksma 93

(section 4). Next, we outline a heuristic which uses the solution procedure for a single lock
as a building block. The heuristic combines the decentralized decision-making procedures
for the individual locks along the canal into a global schedule that serves each of the ships.
Finally, section 6 covers some computational experiments to investigate the performance of
the different exact methods, as well as the difference in solution quality when compared to
the decentralized heuristic.

2 Related literature

Applying optimization techniques in the context of scheduling locks is not new in literature.
An early example is the case of the Welland Canal in North America, which allows ships to
bypass the Niagara Falls. The St. Lawrence Seaway Authority, which maintains the canal,
faced increasing congestion at the locks along the canal. In [6], an integer programming
model for this situation is described. The authors also discuss a dynamic programming
model for scheduling the operations of a single lock, and extend this model to a heuristic
that yields an operating schedule for the series of locks along the Welland Canal.

Due to the computational effort involved, a majority of works in the literature restricts
the attention to simulation models and heuristic solutions. In [8], for example, simulation
models are used in order to aid policy decisions to reduce congestion on the Upper Mississippi
River. Different ship sequencing policies for the Mississippi river are also evaluated in [10].
A notable difference between the Mississippi River and the problem setting considered here
is that barges on the Mississippi River are typically not handled in batches and may even
require more than one lockage due to their length exceeding the lock capacity.

A different approach is proposed in [2], where the waiting time at a single lock is minimized
while allowing a batch of multiple ships to be grouped together and processed in a single
lockage. The authors cover a number of problem extensions to the initial problem setting
and perform some computational tests to investigate the performance of heuristics. In [11],
an integer programming model is presented that minimizes the waiting time for ships at a
single lock, which may consist of parallel chambers, including the aspect of placing the ships
inside the chambers. A model for traffic optimization, including the sequencing of ships and
scheduling locks, has also been proposed for the Kiel canal, connecting the Baltic Sea to the
North Sea [3]. An implementation for a lock scheduling heuristic, including ship placement
and parallel chambers, is available online [5]. The importance of an efficient lock operating
strategy is also noted in [1], where lock scheduling decisions strongly affect the simulated
waiting time and efficient decision rules for lock operating are suggested as future work.

Results on obtaining optimum solutions to a system of multiple locks as a whole, are more
scarce in the literature. The potential of a centralized approach to scheduling has, however,
recently attracted more attention in the field. The Dutch waterway management organization
Rijkswaterstaat, for example, is shifting its focus from decentralized lock operations towards
the fluent operation of certain ‘corridors’ as a whole [4].

A different objective could be to minimize the fuel consumption for ships passing through
the waterway system. While the fuel consumption may be an important economical factor
for ship operators, the related emission of greenhouse gases may also be a an optimization
criterion for governments or waterway organizations. In recent years, the operational speed
of intercontinental container ships has decreased to improve fuel efficiency, a practice referred
to as ‘slow steaming’. On inland waterways however, ships are likely to incur waiting time
near bottlenecks such as locks. This provides ships with the opportunity of decreasing their
maximal speed on each of the sections along the canal while their total time spent inside the

ATMOS’14

94 Mathematical programming models for scheduling locks in sequence

X X

X X

X

Lock 1

Lock 2

time

position 1

position 2

position 0

Figure 1 Illustration of a problem instance with L = 2, S = 5, and a feasible solution. Time
passes from left to right.

canal remains the same. A model for the time-varying vehicle routing problem is proposed
in [7], where the goal is to minimize the greenhouse gas emissions, which can be directly
related to the vehicle speed. On inland waterways, the strategy of reducing ship speed to
avoid idle time was considered in [9] and is reported to yield significant economic benefits.

3 Problem definition

We give here a formal statement of the problem we are considering. For clarity of presentation,
all known parameters are represented in uppercase, decision variables in lowercase, and sets
in calligraphic script. Given is a series of L consecutive locks, for example, along a canal.
We refer to them using the set L = {1, . . . , L}. Over time, S ships arrive at either end of
the canal. The set S = {1, . . . , S} allows us to uniquely identify these ships. Each of the
ships travels to the end of the canal opposite to its arrival. As a consequence, a ship either
arrives on the downstream side of lock 1 and must pass each of the locks 1, . . . , L in order,
or a ship arrives at lock L and must pass all locks in the order L, . . . , 1. Each lock ` ∈ L
has a strictly positive lockage time P`, which is the time needed for a lock to change its
position and to allow ships to leave and enter as needed. We assume that the lockage time is
independent of the number of ships in the lock and their direction of travel. Locks also have
a positive capacity C` which gives, for all ` ∈ L, an upper bound on the number of ships
that can simultaneously be present in lock `. We do not assume an initial position for the
locks, i.e. each lock may start at either its upstream or downstream position. The locks are
separated by a section of canal with length S` with ` ∈ L\ {L}, where S` equals the distance
between locks ` and ` + 1. Each ship s ∈ S may travel at an arbitrary speed contained in the
interval [V min

s , V max
s]. While the ships can travel at a different speed on different sections of

the canal, we assume that each ship maintains a constant speed within each section. Each
ship s ∈ S may also have an imposed deadline Ds, before which it must have left the last
lock that it needs to pass. In what follows, we assume that all arrival times and positions
are known.

We can graphically represent an instance to this problem as depicted in Figure 1. The
tilted lines correspond to a set of possible movements for each of the locks. A feasible solution
is a schedule specifying the time when each of the ships is moved by each of the locks so that
all ships arrive at their destination. Any feasible solution can thus also be easily visualized.
It must hold that, for any lock, the lock’s movements alternate between the upwards and
downwards direction, and none of the lock’s movements overlap. In the schedule depicted in
Figure 1, once a ship is in a given position, it may enter the next lockage in its direction of
travel.

W. Passchyn, D. Briskorn, and F. C. R. Spieksma 95

Table 1 Summary of notation.

L = {1,. . . , L} the set of all locks,
S = {1,. . . , S} the set of all arriving ships,
U the set of all ships arriving on the upstream side,
D the set of all ships arriving on the downstream side,

P` (` ∈ L) the processing time, i.e. lockage time, for lock `,
C` (` ∈ L) the lock capacity for lock `,
S` (` ∈ L \ {L}) the length of the canal section separating lock ` and ` + 1,
As (s ∈ S) the arrival time of ship s,
V min

s (s ∈ S) the minimum speed attainable by ship s,
V max

s (s ∈ S) the maximum speed attainable by ship s,
Ds (s ∈ S) the deadline for ship s.

The goal is to find a solution which performs best with respect to some predetermined
objective function. A relevant measure is to minimize the total flow time

∑
s∈S Fs =∑

s∈S cs −As, where cs equals the completion time of ship s.
A different objective function concerns the emission of greenhouse gases, which is closely

related to the fuel consumption, and depends on the ship’s speed. We assume that we have a
known emission function E(v) which expresses the emission of pollutants, in tons per km, as
a function of the ship speed v for v > 0. Note that this function E depends on many factors
and is generally non-linear. Let vs,p denote the speed of ship s along segment p. The total
emission of greenhouse gases Etot can then be computed as follows:

Etot =
∑
s∈S

∑
`∈L\{L}

S`E(vs,`).

A similar approach can be applied in order to minimize fuel consumption, which may be
more desirable from the shipper’s point of view. The problem parameters are summarized in
table 1.

4 Exact solutions

We introduce here two distinct integer programming models that find an optimal solution
to the general problem described above. While both models solve the same problem, their
different formulations have advantages as well as disadvantages with regards to computation
time. For both models, we also introduce valid inequalities that tighten the LP relaxation
and may thus speed up the process of finding an optimal solution. For a comparison of the
difference in performance between the formulations and their extensions, we refer to section
6.1.

To state the travel time, which appears in the constraints of both models, as a linear
expression of the variables, we introduce the variables v̄s,p, which equal the reciprocal of
vs,p. The travel time for ship s along section p then equals v̄s,pSp. To characterize the
emissions, we can compute the function Ē(v̄), which expresses the emissions as a function of
the reciprocal of ship speed.

Note that even with Sp and vs,p integral, the travel time for some sections may be
fractional. From a practical point of view, however, it might not make sense to schedule lock

ATMOS’14

96 Mathematical programming models for scheduling locks in sequence

movements with a higher precision than the unit in which the arrival times are expressed, e.g.
minutes. The time-indexed model described below allows lockages to start only at integral
moments in time, whereas the second model allows arbitrary starting times for the lock
movements.

4.1 MIP 1: Time-indexed formulation
The first model introduces a variable for each moment in time when a lockage may start. For
this, we introduce the set T = {0, . . . , T} with all integral moments in time where a lockage
may start. We have T as an upper bound on the latest starting time.

In addition to the variables v̄s,` introduced above, we define the following binary decision
variables: For each s ∈ S, ` ∈ L, t ∈ T , let

xs,`,t =
{

1 if, at time t, lock ` starts a lockage with ship s inside the lock,
0 otherwise.

We state below the time-indexed mixed integer programming model as a whole, before
discussing the different equations separately:

Minimize
∑
s∈S

(
cs −As

)
or Minimize

∑
s∈S

∑
`∈L\{L}

S`Ē(v̄s,`) (1)

Subject to:

Ds−P1∑
t=As

xs,`,t = 1 ∀s ∈ U , ` ∈ L (2)

Ds−PL∑
t=As

xs,`,t = 1 ∀s ∈ D, ` ∈ L (3)

cs =
∑
t∈T

(
t xs,1,t + P1

)
∀s ∈ U (4)

cs =
∑
t∈T

(
t xs,L,t + PL

)
∀s ∈ D (5)

∑
t∈T

(t xs,`,t)−
∑
t∈T

(t xs,`+1,t) ≥ P`+1 + v̄s,`S` ∀s ∈ U,∀` ∈ L \ {L} (6)∑
t∈T

(t xs,`,t)−
∑
t∈T

(t xs,`−1,t) ≥ P`−1 + v̄s,`−1S`−1 ∀s ∈ D,∀` ∈ L \ {1} (7)

xs1,`,t +
t+P`−1∑

τ=t−P`+1
xs2,`,τ ≤ 1 ∀` ∈ L, s1 ∈ U , s2 ∈ D, t ∈ T (8)

xs1,`,t +
t−1∑

τ=t−2P`+1
xs2,`,τ +

t+2P`−1∑
τ=t+1

xs2,`,τ ≤ 1 ∀` ∈ L, s1 ∈ U , s2 ∈ U , t ∈ T (9)

xs1,`,t +
t−1∑

τ=t−2P`+1
xs2,`,τ +

t+2P`−1∑
τ=t+1

xs2,`,τ ≤ 1 ∀` ∈ L, s1 ∈ D, s2 ∈ D, t ∈ T (10)

W. Passchyn, D. Briskorn, and F. C. R. Spieksma 97

s1

s2

Figure 2 For any s1 and s2 travelling in opposite directions, ship s2 cannot start a movement in
the indicated interval if the x variable for s1 equals one.

s1s2 s2

Figure 3 For any s1 and s2 travelling in the same direction, ship s2 cannot start a movement in
the indicated intervals if the x variable for s1 equals one.

∑
s∈S

xs,`,t ≤ C` ∀` ∈ L, t ∈ T (11)

1
V max
s

≤ v̄s,` ≤
1

V min
s

∀s ∈ S, ` ∈ L \ {L} (12)

xs,`,t ∈ {0, 1} ∀s ∈ S, ` ∈ L, t ∈ T (13)

For a schedule to be feasible, each ship should pass each of the locks and on time to meet
its deadline, as imposed by inequalities (2) and (3). Further, all locks must be passed in the
correct order, i.e. a ship must arrive at a lock before it can enter that lock. We achieve this
by imposing constraints (6)-(7).

Additionally, a lockage can only start when the lock is in the appropriate position and
not currently moving, i.e. lockages of the same lock should not overlap in time. We impose
this by adding the constraints (8)-(10). Figures 2 and 3 give a visual representation of the
overlap constraints. Note that constraints (9) and (10), which concern ships on the same
side of a lock, allow multiple ships to be handled at the same time.

Finally, the lock capacity and domain restrictions are straightforward to impose by
constraints (11)-(12).

We point out that this model contains O(SLT) binary variables, O(SL) real variables,
and O(S2LT) constraints. We refer to Appendix A.1 for an overview of valid inequalities to
improve the time-indexed model (1)-(13).

4.2 MIP 2: Lockage-based formulation
A notable disadvantage to the time-indexed model is that the number of (binary) variables
grows as the time horizon increases. For a small discretization step or when arrival times are
large, the value for the upper bound T and thus the number of variables, and the computation
time to find an optimal solution, may grow prohibitively large. We introduce an alternative
formulation that does not use a time index for the variables, and instead numbers the possible
lockages. It is clear that for each lock, the number of lockages in an optimal solution need

ATMOS’14

98 Mathematical programming models for scheduling locks in sequence

not be greater than 2S. At most we may have one lockage for each of the ships, followed by
an empty lockage to switch back to the appropriate position for the next ship. We define the
setM = {1, . . . , 2S} to identify the different lock movements. Each lock movement must
also be assigned a specific starting time. Note that the number of variables does not increase
with T .

In addition to v̄s,p and cs, we introduce the following decision variables:

zs,`,m =
{

1 if ship s is handled by the m’th lock movement of lock `,
0 otherwise.

t`,m equals the starting time of the m’th lockage of lock `.

The model is as follows:

Minimize
∑
s∈S

(
cs −As

)
or Minimize

∑
s∈S

∑
`∈L\{L}

S`Ē(v̄s,`) (14)

Subject to:

Ds ≥ cs ≥ t1,m + P1 − T (1− zs,1,m) ∀s ∈ U , m ∈M (15)
Ds ≥ cs ≥ tL,m + PL − T (1− zs,L,m) ∀s ∈ D, m ∈M (16)∑
m∈M

zs,`,m = 1 ∀s ∈ S, ` ∈ L (17)

t`,m ≥ t`,m−1 + P` ∀` ∈ L, m ∈M \ {1} (18)

zs1,`,m + zs2,`,m ≤ 1 ∀s1 ∈ U , s2 ∈ D, ` ∈ L, m ∈M (19)
zs1,`,m−1 + zs2,`,m ≤ 1 ∀s1, s2 ∈ U , ` ∈ L, m ∈M \ {1} (20)
zs1,`,m−1 + zs2,`,m ≤ 1 ∀s1, s2 ∈ D, ` ∈ L, m ∈M \ {1} (21)

tL,m ≥ zs,L,mAs ∀s ∈ U , m ∈M (22)
t1,m ≥ zs,1,mAs ∀s ∈ D, m ∈M (23)

t`,m1 ≥ t`+1,m2 + P`+1 + v̄s,`S` − T (2− zs,`,m1 − zs,`+1,m2) ∀s∈U,`∈L\{L},
m1,m2∈M (24)

t`,m1 ≥ t`−1,m2 + P`−1 + v̄s,`−1S`−1 − T (2− zs,`,m1 − zs,`−1,m2) ∀s∈D,`∈L\{1},
m1,m2∈M (25)

∑
s∈S

zs,`,m ≤ C` ∀` ∈ L, m ∈M (26)

1
V max
s

≤ v̄s,` ≤
1

V min
s

∀s ∈ S, ` ∈ L \ {L} (27)

zs,`,m ∈ {0, 1} ∀s ∈ S, ` ∈ L, m ∈M (28)
t`,m ∈ R+ ∀` ∈ L, m ∈M (29)
cs ∈ R+ ∀s ∈ S (30)

Inequalities (15) and (16) ensure that the completion time of each ship, used in the
objective function, is consistent with the timing of the last lockage the ship passes through
and enforce the deadlines for each ship. Constraint (17) guarantees that each ship passes

W. Passchyn, D. Briskorn, and F. C. R. Spieksma 99

through each of the locks. Constraint (18) imposes an order on the lockages for each of the
locks, and ensures that they do not overlap in time.

The next set of inequalities, (19)-(21), ensures that a lockage can only handle ships in a
single direction with each lockage, and that no two consecutive lockages carry ships in the
same direction. Note that because the only way to characterize the direction of a lockage
is to consider the direction of ships inside the lockage, the direction of lockages need not
necessarily alternate when empty lockages are present. Using these constraints, however,
the model does guarantee that all non-empty lockages satisfy all requirements for a feasible
solution.

Obviously, the locks should be passed in the correct order. This is imposed by specifying
that the waiting time each ship incurs at each position must be non-negative. Constraints
(22) and (23) ensure this for the outer positions where the arrival times are known, whereas
constraints (24) and (25) do the same for the middle positions.

Again, the capacity constraint (26) and the domain restrictions for the variables are
straightforward to specify.

The lockage-based model involves O(S2L) binary variables, O(SL) real variables, and
O(S3L) constraints. We refer to Appendix A.2 for an overview of several valid inequalities
for the lockage-based model (14)-(30).

5 Decentralized heuristic

In order to estimate the potential improvement in performance of a centralized schedule over
decentralized schedules, we describe here a heuristic procedure that computes a solution
schedule based on decentralized decision-making by operators of the individual locks. In
what follows, we restrict the problem by assuming that all ships are identical and travel at a
known speed. Our goal is to minimize the total flow time. In [2], an efficient procedure is
introduced to determine the optimal schedule for a single lock. We will use this procedure on
each of the locks separately to obtain a schedule for the sequential system. We are however
facing the problem that, with the locks arranged in sequence, the arrival times of ships at a
lock are determined by the schedule of any locks that the ships must pass first. Thus, not all
arrival times at each of the locks are known initially.

We resolve this problem by iteratively scheduling each of the single locks for those arrival
times that are known. We then update arrival information for the following iterations and
repeat the process until the solution has converged. A solution has converged when the
arrival times computed in the current iteration are equal to the arrival times of the previous
iteration, for each lock. An outline of this procedure in pseudo-code is given in table 1, where
SLS(U, D) represents the single lock solver procedure which returns a solution to the single
lock problem given a set of upstream arrival U and downstream arrivals D, and fu (fd) is
a function that computes the upstream (downstream) arrival times at a lock given from a
given schedule at the previous lock. The input for this procedure consists of the reciprocal of
the common ship speed, section lengths, and sets with all arrival times of ships travelling
upstream, as well as downstream, at the lock where they enter the system. These sets of
arrival times will be denoted by UL

1 and D1
1 respectively.

Consider for a moment that we have only two locks. We start by scheduling the first lock
while only considering those ships for which the arrival time is known. Next, we schedule
the second lock, including only the initially available arrival information. After obtaining
a schedule for the second lock, we update the arrival times at each of the locks based on
the individual schedules for both locks, adjusted with the appropriate lockage duration and

ATMOS’14

100 Mathematical programming models for scheduling locks in sequence

Algorithm 1 Pseudo-code algorithm for the decentralized heuristic
Input: UL

1 , DL
1 , S` (` ∈ L \ {L}), v̄

i=1
repeat

UL
i+1 = UL

i

D1
i+1 = D1

i

for ` ∈ L \ {1}
U `−1

i+1 = fu(SLS(U `
i , D`

i)) + v̄S`−1

end for
for ` ∈ L \ {L}

D`+1
i+1 = fd(SLS(U `

i , D`
i)) + v̄S`

end for
i = i + 1

until U l
i = U `

i−1 AND D`
i = D`

i−1 for all ` ∈ L, OR i = 10L

travel times. We now recalculate the individual schedule for each of the locks and keep
repeating this procedure until the solution has reached convergence.

Note that this procedure does not correspond entirely to the decisions made in practice.
Because the arrival times are obtained from previous iterations, each lock operator thus
implicitly takes future decisions of neighbouring locks into account. Since this information is
not available in practice, we may expect the iterative procedure to perform better than a
typical decentralized solution in practice.

We should also note that there is no guarantee that the procedure converges for every
input. In fact, it is possible to construct an instance so that the algorithm cycles infinitely
between two solutions. For this reason we add an upper bound on the number of iterations
to ensure that the algorithm terminates.

6 Computational study

In this section, we perform some computational tests to analyze the performance of centralized
schedules, as well as looking into the performance of the different solution procedures. We
first investigate how the valid inequalities described in the appendix impact the LP-relaxation
and the solution time. We then apply both the centralized and decentralized procedures to a
set of problem instances representative for a real-world setting and estimate the potential
gain in performance.

6.1 Comparison of the MIP-models
We implement the different model formulations with the flow time objective in CPLEX
(version 12.5.1) and investigate their performance. We generate instances with 3 locks in
sequence, each with a capacity of 3. We perform these experiments once for 50 randomly
generated instances with a time horizon of 48 units, an expected time between arrivals of 4,
and a lockage time of 3. For simplicity, the distance between the locks is considered to be
zero. We then multiply all arrival times, the time horizon, and the lockage time for these
instances by 10 and repeat the experiments. The first set of instances can thus be considered
to have a large unit of time, while the second experiment models the same instances with a
time unit that is 10 times smaller. We report the average performance for each of the models
in Tables 2 and 3. The time-indexed and lockage-based models are denoted with TI and

W. Passchyn, D. Briskorn, and F. C. R. Spieksma 101

Table 2 Averaged model performance for the different MIP models, large time units.

instances solved to optimality within 600s

TI TI+ LB LB+
50 50 4 13

average computation time [s] (unsolved=600s)

TI TI+ LB LB+
12.8 11.8 558.2 466.9

average relative optimality gap

TI TI+ LB LB+
0 % 0 % 1189 % 641 %

average best int to optimum ratio

TI TI+ LB LB+
100 % 100 % 121 % 150 %

LB respectively. A ‘+’ denotes that the valid inequalities discussed in the appendix have
been applied. In addition to the valid inequalities, we reduce the search space for each of
the 4 models by adding constraints that enforce that ships travelling in the same direction
are handled on a first-come first-served basis. We limit the computation time to 10 minutes
per instance. The reported optimality gap is expressed relative to the best known optimal
solution. Because the optimum value for an instance in the second experiment is necessarily
equal to 10 times the optimum value of the corresponding instance in the first experiment, we
can also express the ratio of the best found integral solution to the known optimum solution.

For the instances with small time units, neither the TI nor the TI+ model found solutions.
Due to the large number of variables and constraints as a result of the large time horizon,
even the pre-processing for the time-indexed models was impossible. A large difference in
performance thus immediately shows for both model types, depending on the number of
variables. As may be expected, the TI and TI+ models perform poorly when the unit of time
is small and, consequently, the number of time variables is relatively large. When this is the
case, the LB+ model obtains an optimal solution much faster. However, when the number of
variables is limited, the TI and TI+ models significantly outperform the lockage-based models.
An explanation for this can be found in constraints (15)-(16) and (24)-(25), which are of the
big-M type. As a consequence, the lower bound obtained from the LP-relaxation is low, which
significantly slows down exact procedures through branch-and-bound or branch-and-cut, such
as employed by CPLEX. This is reflected in the large optimality gaps for the lockage-based
models. While the lockage-based models allow the modelling of instances with large time
horizons, proving optimality becomes difficult. Increasing the time limit per instance to
30 minutes indicated only marginal improvement to the found integral solutions, while only
a few additional instances could be proved optimal. It can also be noted that while the LB+
model can prove optimality faster than the LB model, the latter seems to provide better
integral solutions for the instances that cannot be solved within the time limit.

ATMOS’14

102 Mathematical programming models for scheduling locks in sequence

Table 3 Averaged model performance for the different MIP models, small time units.

instances solved to optimality within 600s

TI TI+ LB LB+
0 0 4 13

average computation time [s] (unsolved=600s)

TI TI+ LB LB+
600.0 600.0 560.3 467.0

average relative optimality gap

TI TI+ LB LB+
- - 1137 % 602 %

average best int to optimum ratio

TI TI+ LB LB+
- - 126 % 172 %

6.2 Comparing centralized and decentralized schedules

In order to estimate the potential benefit of centralizing decision-making, we simulate a
centralized as well as a decentralized approach for instances reflecting a realistic problem
setting. We generate instances resembling a real-world scenario based on the layout of the
Bocholt-Herentals canal in Belgium. The canal is in CEMT class II, and allows ships up to
600 tonnes. It connects to the economically important Albert Canal, and thus to the ports
of Antwerp and Liège. Specifically, we focus on three locks between Mol and Dessel, over
a total length of 6.2km. The primary reason for selecting this canal segment is that each
of the locks consists of a single chamber. Our problem, as defined in section 3, thus closely
resembles the setting on this canal segment. Arrival times are generated randomly, with
times between arrivals drawn from a geometric distribution to ensure a memoryless arrival
process where the arrival times for ships are independent. Our time horizon is 480 minutes,
with an expected time between ship arrivals of 30 minutes. Ships arrive on either end of the
canal with equal probability. Each lock is assumed to have a capacity of 3, and a lockage
time of 30 minutes. We minimize the sum of flow times over all ships. To reduce the search
space, we again enforce that all ships travelling in the same direction must be handled on a
first-come first-served basis. The solution time for each instance is limited to 30 minutes.
The averaged results over 10 instances are presented in Table 4. On using the LB+ model,
we observe that a loose upper bound on the number of lockages results in excessively long
computation times and low-quality solutions. We impose a limit of S on the number of
lockages to improve the values of the found integral solutions. To distinguish this procedure
from the LB+ model, we represent it by LB*. The heuristic that repeatedly iterates over
single lock instances, as described in Section 5, is denoted by RISL. Table 4 provides an
overview of the results, from which an average performance gain of 62.7% can be estimated.
This gain comes at the cost of a significant increase in the required computational effort.

W. Passchyn, D. Briskorn, and F. C. R. Spieksma 103

Table 4 Results for the LB+ model.

Total waiting time [min]

LB* RISL relative gain
698 1465 52 %
359 1301 72 %
498 1062 53 %
507 1235 59 %
380 1046 64 %
446 1035 57 %
256 918 72 %
87 678 87 %
1377 2384 42 %
529 1644 68 %

Average computation time [s]

LB* RISL
1630.0 0.3

7 Conclusion and future work

In this work, we formulated the general problem of scheduling a system of locks arranged in
a sequence. We described two mixed integer programming models which solve the problem
to optimality. Both models can be easily extended to include additional constraints or
alternative objective functions such as minimizing the total greenhouse gas emissions, as
opposed to the total flow time. An example of a further generalization of the problem would
be to attribute different priorities to the ships, and to add weights to the objective function
accordingly.

Computational testing confirms that the TI model performs well when the unit of time
is chosen sufficiently large. When the unit of time is small, the required computation time
for the TI model quickly increases, whereas the LB model suffers significantly less from this
drawback. The LB model, however, performs significantly worse than the TI model for the
instances with a limited number of time variables.

A different extension with practical relevance that was not discussed here is the setting
where ships may enter or leave the system in between the locks. With some additional notation
and minor modifications, this may be easily added to the models. Further investigation into
variants of this problem, such as those including greenhouse gas emissions, is ongoing.

References

1 A. Caris, G. Janssens, and C. Macharis. A simulation approach to the analysis of intermodal
freight transport networks. In ESM’2007 Proceedings. EUROSIS, 2007.

2 S. Coene, W. Passchyn, F.C.R. Spieksma, G. Vanden Berghe, D. Briskorn, and J.L. Hurink.
The lockmaster’s problem. under review, 2013.

3 E. Günther, M. E. Lübbecke, and R. H. Möhring. Ship Traffic Optimization for the Kiel
Canal. In TRISTAN VII Book of Extended Abstracts, 2010.

ATMOS’14

104 Mathematical programming models for scheduling locks in sequence

s2

s1

Figure 4 For any s1 and s2 travelling in opposite directions, the indicated intervals cannot both
contain a starting lockage with the respective ships inside.

s1s2 s2

Figure 5 For any s1 and s2 travelling in the same direction, the indicated intervals cannot both
contain a starting lockage with the respective ships inside.

4 M. Kunst. Organisation of vessel traffic management centres of the future. In Smart Rivers
Conference 2013 Abstract Booklet, Liege, Belgium, 2013.

5 M. Luy. Ship lock scheduling. http://sourceforge.net/projects/lockscheduling/,
November 2012.

6 E.R. Petersen and A.J. Taylor. An optimal scheduling system for the Welland Canal.
Transportation Science, 22:173–185, august 1988.

7 J. Qian and R. Eglese. Finding least fuel emission paths in a network with time-varying
speeds. Networks, 63(1):96–106, 2014.

8 L. D. Smith, D. C. Sweeney, and J. F. Campbell. Simulation of alternative approaches to
relieving congestion at locks in a river transportation system. Journal of the Operational
Research Society, 60:519–533, 2009.

9 C. Ting and P. Schonfeld. Effects of speed control on tow travel costs. Journal of waterway,
port, coastal, and ocean engineering, 125(4):203–206, 1999.

10 C. Ting and P. Schonfeld. Control alternatives at a waterway lock. Journal of waterway,
port, coastal, and ocean engineering, 127(2):89–96, 2001.

11 J. Verstichel, P. De Causmaecker, and G. Vanden Berghe. The Lock Scheduling Problem.
PhD thesis, KU Leuven, 2013.

A Appendix

A.1 Valid inequalities for the time-indexed model
In the time-indexed model, the constraints that avoid overlap of the lockages contain a single
variable xs1,`,t for ship s1, and a sum over a time interval for ship s2. A generalization of these
constraints is possible by summing over an interval for both ships s1 and s2. Graphically, we
can represent these constraints as shown in Figures 4 and 5.

For ships s1 and s2 travelling in opposite directions, we constrain the movement of s2
between the latest possible starting time before the start of the interval with s1 and the
earliest possible starting time later than the end of the interval with s1. We can use a similar
approach when s1 and s2 are travelling in the same direction. When expressing these new
constraints in mathematical notation, we slightly abuse notation and implicitly assume that

http://sourceforge.net/projects/lockscheduling/

W. Passchyn, D. Briskorn, and F. C. R. Spieksma 105

we do not sum over xs,`,t where t /∈ T to avoid formulating similar constraints where the
intervals would extend beyond the instance time horizon. The expression for these constraints
is then as follows:

t+p∑
τ=t

xs1,`,τ +
t+P`−1∑

τ=t+p−P`+1
xs2,`,τ ≤ 1

∀` ∈ L, s1 ∈ D, s2 ∈ U , t ∈ T , p ∈ {0, . . . , 2P` − 2} (31)
t+p∑
τ=t

xs1,`,τ +
t+P`−1∑

τ=t−P`+p+1
xs2,`,τ ≤ 1

∀` ∈ L, s1 ∈ U , s2 ∈ D, t ∈ T , p ∈ {0, . . . , 2P` − 2} (32)
t+p∑
τ=t

xs1,`,τ +
t+2P`−1∑
τ=t+p+1

xs2,`,τ +
t+p+2P`∑
τ=t+2P`

xs1,`,τ ≤ 1

∀` ∈ L, s1 ∈ U , s2 ∈ U , t ∈ T , p ∈ {0, . . . , 2P` − 1} (33)
t+p∑
τ=t

xs1,`,τ +
t+2P`−1∑
τ=t+p+1

xs2,`,τ +
t+p+2P`∑
τ=t+2P`

xs1,`,τ ≤ 1

∀` ∈ L, s1 ∈ D, s2 ∈ D, t ∈ T , p ∈ {0, . . . , 2P` − 1} (34)

Note that for p = 0, constraints (32)-(34) imply constraints (8)-(10) of the original IP model.
While constraint (32) suffices to prevent overlap of alternating lock movements, we also
repeat this constraint for ships moving from downstream to upstream to cut away additional
LP-solutions. A tighter LP relaxation can thus be obtained by replacing constraints (8)-(10)
by constraints (31)-(34).

A.2 Performance improvement for the lockage-based model

In the lockage-based formulation, the number of variables is largely determined by an upper
bound M on the number of lock movements. Obtaining a lower value for M could thus
significantly improve the performance of the model. We can use the value T that was
introduced in the time-index model, i.e. an upper bound on the starting time of the latest
non-empty lockage, to obtain a different bound on the number of lockages. Because we may
disregard all solutions where a non-empty lockage starts later than T , it follows that each
lock ` ∈ L can perform at most bT/(2P`)c + 1 lockages before violating this requirement.
We can thus define an M` = min(2S, bT/(2P`)c+ 1) for each lock ` ∈ L and define for each
` a setM` = {1, . . . , M`} identifying the different lock movements.

An additional way to further reduce the number of variables is to replace constraints
(19)-(21). In the LP-relaxation of the model, fractions of ships may be contained in a lockage.
Because lockages must alternate direction, we can impose that either all even-numbered
lockages contain only ships in U and all odd-numbered lockages contain only ships in D, or
vice versa. We can do this by enforcing all ships in U and D to be restricted to even and odd
numbered lockages respectively, while allowing for an additional empty lockage that ends at
time t = 0. In effect, fixing these variables to zero means eliminating about half the number
of zs,l,m variables at the cost of increasing M` by one and some adjustments to inequalities
(22) and (23) discussed below. We can remove constraints (19)-(21) from the formulation

ATMOS’14

106 Mathematical programming models for scheduling locks in sequence

after removing the appropriate variables or enforcing the following equalities:

zs,`,m = 0 ∀s ∈ U , ` ∈ L, m ∈M∪ {M` + 1} : m is even (35)
zs,`,m = 0 ∀s ∈ D, ` ∈ L, m ∈M∪ {M` + 1} : m is odd (36)

Some care must be taken to allow the first lockages at locks 1 and L to start at time −2P1
and −2PL. Constraints (22) and (23) imply non-negative starting times for all lockages. We
can substitute the following for these two constraints:

t1,m ≥ zs,1,m(As + P1)− P1 ∀s ∈ D, m ∈M (37)
tL,m ≥ zs,L,m(As + PL)− PL ∀s ∈ U , m ∈M (38)

In addition to these changes, we can note that the lockage based model allows for
any number of empty lockages provided that enough time is available to avoid them from
overlapping. It is trivial to argue however, that two consecutive empty movements can be
removed from any schedule without affecting the solution value. We can thus prune away all
solution where two empty lockages are followed by a nonempty lockage. Note that because
the number of nonempty lockages in the optimal solution is not known, it is possible however
for two or more lockages to be empty if all subsequent lockages are also empty. We can
impose this by introducing the following constraints:∑

s∈S

(
zs,`,m + zs,`,m−1

)
≥ 1

S

∑
s∈S

µ∈M:µ>m

zs,`,µ ∀` ∈ L, m ∈M (39)

The impact on performance of these model adjustments, for both formulations, are
discussed in section 6.1.

Simultaneous frequency and capacity setting for
rapid transit systems with a competing mode and
capacity constraints
Alicia De-Los-Santos1, Gilbert Laporte2, Juan A. Mesa1, and
Federico Perea3

1 Departamento de Matemática Aplicada II,
Universidad de Sevilla, Spain
aliciasantos@us.es, jmesa@us.es

2 CIRRELT and Canada Research Chair in Distribution Management
HEC Montreal, Canada
gilbert.laporte@cirrelt.ca

3 Departamento de Estadística e Investigación Operativa Aplicadas y Calidad,
Universitat Politecnica de Valencia, Spain
perea@eio.upv.es

Abstract
The railway planning problem consists of several consecutive phases: network design, line plan-
ning, timetabling, personnel assignment and rolling stocks planning. In this paper we will focus
on the line planning process. Traditionally, the line planning problem consists of determining a
set of lines and their frequencies optimizing a certain objective. In this work we will focus on
the line planning problem context taking into account aspects related to rolling stock and crew
operating costs. We assume that the number of possible vehicles is limited, that is, the problem
that we are considering is a capacitated problem and the line network can be a crowding net-
work. The main novelty in this paper is the consideration of the size of vehicles and frequencies
as variables as well as the inclusion of a congestion function measuring the level of in-vehicle
crowding. Concretely, we present the problem and an algorithm to solve it, which are tested via
a computational experience.

1998 ACM Subject Classification G.2.2 Network problems

Keywords and phrases Line planning, railway, capacity, frequency, congestion

Digital Object Identifier 10.4230/OASIcs.ATMOS.2014.107

1 Introduction

Rapid transit planning can be divided into several consecutive phases, namely: network
design, line planning, timetabling and vehicle and crew scheduling (see [13]). The second of
these phases is the focus of this paper: line planning. We therefore assume that the network
infrastructure (tracks and stations) as well as its associated lines are already given.

A line is characterized by several aspects: two different terminal stations, a sequence of
intermediate stops, its frequency, and the vehicle capacity. The traditional line planning
problem consists of finding a set of lines (a line plan) from a line pool and their frequencies
providing a good service according to a certain objective, which is usually oriented towards
the passengers or the operator. As in the rapid transit network design problems, the models
can be classified into several categories depending on the point of view that is considered.

© Alicia de los Santos, Gilbert Laporte, Juan A. Mesa, and Federico Perea;
licensed under Creative Commons License CC-BY

14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’14).
Editors: Stefan Funke and Matúš Mihalák; pp. 107–121

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2014.107
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

108 Simultaneous frequency and capacity problem

A classification of these models is presented in [21]. The author distinguishes between
passenger oriented models and cost oriented models.

The common objective in cost oriented models is to minimize the costs related to the
train operations. In [4] a mathematical programming model which minimizes the operating
costs was defined. The cost structure includes fixed costs per carriage and hour, variable
costs per carriage and kilometer and variable costs per train and kilometer. The problem
consists of determining the lines from a line pool and their frequencies as well as the type
of train operating a line and the number of carriages for each train. The passengers are
assigned a priori by a modal split procedure to different types of trains. By means of binary
variables representing whether a line ` is served by trains of type t with c carriages, a
nonlinear programming model is formulated. Some techniques to make the problem more
tractable are applied. A branch-and-cut approach based on the models of [4] is presented in
[11]. [12] extends this model to the multi-type case in which not all trains need to stop at all
stations. The authors first present a model to solve the problem of deciding for each line its
frequency and the number of carriages per train. They define a set of possible combinations
of lines, frequencies and capacities. Each element of this set is formed by a triple of the form
(line, frequency and capacity). The only decision variable is a binary variable representing
whether a triple is selected or not. They extend the model by considering different types of
trains (regional, intercity and interregional). This problem is modeled as a multi-commodity
flow problem.

On the other hand, passenger oriented models ensure a minimum level of quality for
the passengers. One of most common objectives in the literature of passenger oriented
models is to maximize the number of direct trips, see [2] and [3], which can be argued
because this objective does not take travel times into account, and therefore it may yield
solutions with few transfers but with too long travel times. In other papers such as [22], the
objective function considered is the total travel time of all passengers, which is computed
using a penalty for each transfer representing the inconvenience for the passengers. They
define a graph structure named Change&Go graph to model the line planning problem.
The problem consists of finding a set of lines and a path for each origin-destination pair,
respecting a budget on the operating costs.

Our paper focusses on the line planning problem context taking into account aspects
related to rolling stock and personnel costs. The problem consists of maximizing the net
profit of a line plan by selecting its frequency as well as the train size of each line, assuming
that all passengers preferring to travel in the Rapid Transit System (RTS) can be transpor-
ted. So, we simultaneously determine the frequency and the number of carriages of the RTS
trains considering at the same time, in-vehicle crowding. We assume that passengers choose
their routes and their transport mode according to traveling times, which are affected by
the selected frequencies and train sizes.

Our model is different from those in [4] and [12] because: the latter papers do not
consider an alternative mode competing with the rapid transit transport, and we do present
a model integrating the traffic assignment procedure in the optimization process and they
model the problem from the operator’s perspective considering different train types. So,
another relevant aspect in our model is the objective function considered. Thanks to the
incorporation of a logit function, the level of demand will depend on the quality of the
services offered. This fact, together with the assumption that all passengers willing to travel
in the RTS have to be transported, make that the model is community oriented. The
component according to the operator not only expresses operating costs but also personnel
and investment costs. This problem has a limitation on the number of carriages and the

A. De-Los-Santos, G. Laporte, J. A. Mesa, and F. Perea 109

RTS can become a congested network. Thus, a congestion function measuring the level of
in-vehicle crowding is introduced in the model.

The remainder of the paper is structured as follows. In Section 2 we describe the problem,
the needed data and notations as well as the objective function. An algorithm for solving the
proposed problem is described in Section 3. The results of our computational experiments
are shown in Appendix A.

2 The problem

We now formally describe the Simultaneous Frequency and Capacity Problem (SFCP), which
consists of maximizing the net profit of a line plan by selecting the frequency and the train
size of each line, assuming that all passengers willing to travel in the RTS can be transported.
A maximum allowed capacity and frequency for each line makes that the network can become
congested if a sufficiently high number of passengers want to travel in the RTS. We introduce
the crowding effect by means of a congestion function which depends on the load on each
arc. This function assigns a time penalty on each congested arc, therefore modifying the
problem instance. The crowding effect is assumed to be the in-vehicle crowding. Thus, we
want to remark that solutions in which the platform crowding appears are not taken into
account.

2.1 Data and notation
The SFCP takes the following input data:

We assume the existence of a set of stations, N = {i1, . . . , in} and a set of lines L =
{`1, . . . , `|L|} in the RTS. For the sake of readability we will identify a station with its
subindex whenever this creates no confusion.
Let n` be the number of stations of line `. Each line ` ∈ L consists of a subset of pairs
of stations of N whose associated (directed) arcs form two-paths. In other words, ` =
{(i1, i2), (i2, i3), . . . , (in`−1, in`

)} in such a way that i1, in`
are the terminal stations of the

line, and that {i1, i2, i3, . . . , in`
} and {in`

, in`−1, . . . , i1} are paths in the network. Each
couple of arcs (ij1 , ij2) and (ij2 , ij1) can be replaced by an edge (undirected) {ij1 , ij2}.
We define the set of edges E of the network as the union of all edges of all lines. In
order to compute traffic flows we need the set of (directed) arcs associated with E. We
therefore define A as the set of (directed) arcs of the network. Note that E = {{i, j} :
(i, j) ∈ A, i < j}. Let ((N,E),L) be a RTS line network describing the RTS system.
Let dij = dji be the length of edge {i, j} ∈ E. The parameter dij can also represent the
time needed to traverse edge {i, j} by considering a parameter λ, which represents the
average distance traveled by a train in one hour (commercial speed). We consider the
same value of λ for all trains.
Let ν` be the cycle time of line `, that is, the time necessary for a train of line ` to go
from the initial station to the final station and returning back. Note that ν` = 2 · len`/λ,
where len` is the length of line `.
An undirected graph GE′ = G(N,E′), which represents the competing (private car, bus,
etc.) mode network is introduced. The nodes are assumed to be coincident with those
of the rapid transit mode: they could represent origin or destination of the aggregated
demands; however, edges are possibly different. For each edge {i, j} ∈ E′, let d′ij be the
traversing time of such link by the competing mode.
Let W = {w1, . . . , w|W |} ⊆ N × N be a set of ordered origin-destination (OD) pairs,
w = (ws, wt). For each OD pair w ∈ W , gw is the expected number of passengers per

ATMOS’14

110 Simultaneous frequency and capacity problem

hour for an average day and uALTw is the travel time using the alternative mode of OD
pair w, respectively.

With respect to costs, we distinguish three types: related to the operation, the personnel
and the investment.

Concerning rolling stock, we define a cost for operating one locomotive per unit of length
cloc as well as a cost representing operating cost of one carriage ccarr per length unit.
Both parameters include running costs such as fuel or energy consumption. These terms
can be easily adapted to another type of rolling stock.
Related to the personnel costs, a cost ccrew per train and year is given.
For the rolling stock acquisition, we consider two costs: the purchase price of the neces-
sary locomotives Iloc per train and the purchase price of one carriage Icarr.
Concerning capacity, let Θ be the carriage capacity measured in number of passengers
seating and standing. We consider a minimum number δmin of carriages and a maximum
number δmax of carriages that can be included in a train. The capacity associated to
a train is the maximum number of passengers that it can transport at any given time.
More precisely, the capacity of a train of a line ` is equal to the capacity of a carriage (Θ)
times the number of carriages forming the train (δ`). The carriage capacity is defined
as the nominal capacity or crush capacity ([18], [14]) which includes both seating and
standing.
We consider a fixed finite set of possible frequencies F for lines of the RTS. We assume
that the frequency of each line takes values between a minimum and maximum frequency
in order to guarantee a certain level of service in the network.
To be more precise, not all feasible frequency values between this minimum and maximum
can be considered. Note that in real systems the frequencies have to produce a regular
timetable. To take this requirement into account, we describe the set of ordered possible
frequencies as F = {φ1, φ2, . . . , φ|F|}, where each φq ∈ N, 1 ≤ q ≤ |F| and |F| ≥ 2.
Let ρ be the total number of hours that a train is operating per year and let η be the
fare per trip (including the passenger subsidy) which is the same for all trips regardless
of their length/duration. A parameter needed to compute the transfer time is uci, which
represents the time spent between platforms at station i.
We define a parameter σ in order to allow solutions that exceed the capacity by a small
number of passengers.

2.2 Variables and objective function

The following variables are needed to describe our model.
ψ` ∈ F is the frequency of line ` (number of services per hour). A service is defined as
the trains with the same route and stop stations.
δ` ∈ {δmin, . . . , δmax} represents the number of carriages used by trains of line `.
uRTSw > 0 is the travel time of pair w using the RTS network.
fRTSw ∈ [0, 1] is the proportion of OD pair w using the RTS network.
f̃w`ij = 1 if the OD pair w traverses arc (i, j) ∈ A using line `, 0 otherwise.
f̃w``

′

i = 1 if demand of pair w transfers in station i from line ` to line `′, 0 otherwise.
κ`ij =

∑
w∈W gwf

RTS
w f̃w`ij ≥ 0 is the number of passengers traversing arc (i, j) of ` per

hour.
Nb` = Θδ`ψ` is the maximum number of passengers who can travel on line ` per hour.

A. De-Los-Santos, G. Laporte, J. A. Mesa, and F. Perea 111

As mentioned before, we consider the existence of public economic support for the op-
eration of the RTS during a certain planning horizon. This assumption is very common
in the rapid transit networks around the world. Usually, governments provide subsidies on
the basis of the number of passengers or passenger-kilometer in order to guarantee certain
positive margin to companies exploiting the transportation system.

The objective function considered is the net profit of the rapid transit network ([15], [8]).
This profit is expressed as the difference between revenue and total cost in terms of monetary
units over a planning horizon. The total revenue for the ρ̂ years is computed as the number of
passengers who use the RTS during the planning horizon, times η (defined as the passenger
fare plus the passenger subsidy), which is the same for all passengers independently of the
length of their trips. So, the revenue is mathematically expressed as

zREV = ηρρ̂
∑
w∈W

gwf
RTS
w . (1)

The operation cost of a network is expressed by means of a fixed cost zFOC and a variable
cost zV OC . The fixed operating cost includes maintenance costs and overheads. The fixed
operating cost depends on the infrastructure. This term does not affect the objective function
and is not considered, see [8]. The variable operating cost zV OC over the planning horizon
is defined as the sum of the crew operating cost zCrOC and the rolling stock cost zRSOC .

The crew operating cost zCrOC includes the crew cost induced by the operation of all
trains in the time horizon ρ̂. This cost is affected by the required fleet size B`. The required
fleet for each line ` can be defined by means of the product of its frequency and its cycle
time ν` as follows:

B` = dψ`ν`e = d2ψ` · len`/λe,

where d·e is the ceiling of a number. Thus, the crew operating cost in the planning horizon
is

zCrOC = ρ̂ · ccrew
∑
`∈L

B`. (2)

The rolling stock operation cost of a train in one hour is defined as the distance λ traveled
by the train, times the cost of moving the train with δ` carriages and which is approximated
by cloc + ccarrδ` ([10]). Therefore, the rolling stock operation cost in the whole planning
horizon zRSOC is

zRSOC = ρ̂ρ
∑
`∈L

B`λ(cloc + ccarrδ`), (3)

and the variable operating cost in the planning horizon is zV OC = zRSOC + zCrOC .

The fleet investment cost for each train is the cost of purchasing the locomotives and the
carriages. Therefore, the fleet acquisition cost of all trains zFAC is computed as

zFAC =
∑
`∈L

B`(Iloc + Icarr · δ`). (4)

So, the net profit associated to the rapid transit network is

zNET = zREV − (zV OC + zFAC). (5)

ATMOS’14

112 Simultaneous frequency and capacity problem

2.3 Crowding
An interesting aspect to take into consideration in this problem is the crowding levels as a
consequence of assuming a limited capacity. In overcrowding situations, many passengers
choose an alternative path or a different transportation mode. So, congestion not only
causes an increase in the traveler’s disutility, but also a revenue loss to operators. The load
factor %`ij is defined as the ratio κ`ij/Nb`. Observe that if %`ij ≤ 1, the arc (i, j) ∈ ` is
not affected by the congestion. Therefore, if the train capacity of a line ` is not enough to
transport all passengers traveling inside `, the rapid transit network can become a congested
network. In recent research, the load factor is introduced to estimate the crowding levels.
There exists four crowding types: in-vehicle crowding, platform crowding, excessive waiting
time and increased dwell time. We will concentrate on the analysis of in-vehicle crowding
effects, which can be defined by means of crowding penalties. This term can be expressed in
three possible ways: time multiplier, the monetary value per time unit, and the monetary
value per trip. We will use the time multiplier in our problem. Since each transport mode
is different, it is not possible to define a general crowding function valid for all transport
modes. [6] proposed an exponential function for the crowding penalty in the context of
railway system using a load factor. This crowding function is expressed as

CF (%`ij) = 1 + ς1
1 + exp(ς2(1− %`ij))

+ ς3 exp(ς4(%`ij − ς5)), (6)

where all parameters are positive values and ς1 and ς3 should be calibrated. The last para-
meter ς5 > 1 is the threshold from which the passengers start to perceive overcrowding (the
crowding penalty can grow exponentially). Note that this function reflects the inconveni-
ence associated with in-vehicle crowding. Observe that if the load factor %`ij ≤ 1, CF (%`ij)
is approximately one; the second term in Equation (6) is approximately zero for a proper
value of parameter ς2 and the third term ς3 exp(ς4(%`ij − ς5)) is close to zero (recall %`ij < ς5).
Similarly, when the load factor 1 ≤ %`ij ≤ ς5, in-vehicle crowding starts influencing the time
of arc (i, j) ∈ `. The penalty impact will depend on the ς2 parameter.

Due to the fact that we are only including in-vehicle crowding effects, solutions whose
load factor is greater than the parameter σ are not allowed. Observe that if %`ij > σ,
penalties according to the excess waiting time, platform crowding and increased dwell time
would have to be included in the model.

We consider d̄`ij = CF (%`ij) · dij as the perceived time to traverse arc (i, j) of ` using the
rapid transit system. As commented before, if the arc (i, j) ∈ ` is not congested, d̄`ij ' dij .
The average travel time associated to the OD pair w using the rapid transit network under
crowding can be explicitly defined as follows:

uRTSw =
∑
`∈L

∑
j:{ws,j}∈`

60f̃w`wsj

2ψ`
+ (60/λ)

∑
`∈L

(
∑
{i,j}∈`

f̃w`ij d̄
`
ij)

+
∑
`∈L

∑
`′:`′ 6=`

∑
i∈`∩`′

f̃w``
′

i (60
2ψ`′

+ uci), w = (ws, wt) ∈W.
(7)

The first term in (7) is the waiting time at the origin station, which is also assumed to be
half of time between services of this line. The second term represents the in-vehicle time
which can be affected by congestion. Finally, the third term is the transfers time.

Another variable that can be explicitly defined is the assignment fRTSw of demand to
the RTS system. As mentioned, we assume the number of passengers who use a transport
system varies depending on the provided service. More specifically, the proportion of an OD

A. De-Los-Santos, G. Laporte, J. A. Mesa, and F. Perea 113

pair using each mode may be different depending on the characteristics of the RTS to be
designed and on the competing transport mode. Therefore, the demand is split between the
RTS and the alternative mode according to the generalized cost of each mode. The modal
split is modeled by using logit type functions, see [19], as opposed to binary variables which
are used in very complex problems. In [20] the route decisions are integrated in the line
planning problem. To this end, the authors consider a Change&Go on which, a modified
Dijkstra algorithm is applied and adapted to compute shortest paths of origin-destination
pairs.

In order to define the logit function, we need two positive real parameters α and β for
each transport mode. The parameter α simulates the market share for each mode and β

weights the importance of each mode, see [17]. We consider, αRTS for the RTS mode and
αALT in the alternative mode. In order to express the same importance to both modes,
the parameter β is independent of the mode as in [9]. Let us denote α = αALT − αRTS .
Therefore, the proportion of the OD pair w using the RTS mode is

fRTSw = 1
1 + e(α−β(uALT

w −uw)) , w ∈W. (8)

The logit model estimates the proportion of users assigned to each mode for each origin-
destination pair in a continuous way. Note that this proportion depends on the travel time
in each transport mode, which is modified if the congestion function is activated. Concretely,
the congestion effect influences the travel time of each path, and, therefore, the number of
passengers in the RTS. The passengers’ behavior is different in congestion presence and, as
a consequence, it is different for each instance. It can be observed that the penalization
process stops when the network is not congested or a fixed point is found. In other words,
passengers take a different path or mode and an equilibrium is searched (all passengers can
be transported). The solution reflects not only the number of carriages and frequencies, but
also a medium-term analysis of the passenger’s behavior under congestion.

This problem can be extended to situations where the excess waiting time is taken
into account, e.g. platform crowding. This term affects passengers waiting for next train
if the first train was full and they were left behind, therefore increasing waiting time and
discomfort to travel. [18] presented a formal definition of this type of crowding in the context
of bus transport. They expressed the waiting time by means of headway and crowding level.
However, the inclusion of excess waiting time effects in our model is not immediate. To
this end, the travel time of all passengers waiting for next train is increased according to an
additional time which depends on the frequency of the congested line. Rerouting passengers
is very complicated because the passengers affected by the excessive waiting time have
different travel time than the rest of passengers and, as a consequence, a different instance
associated. So, the initial instance is divided into two different instances: one associated
to in-vehicle crowding and the other one, related to excessive waiting time. Analogously,
the origin-destination matrix is divided into two matrixes: one containing the passenger
associated to the in-vehicle crowding and other one, according to the excessive waiting time.
The crowding phenomenon is also treated as the congestion effect at train stations; the
access/egress to/from the station, on platforms (see [7]) and on the increased dwell times as
[16].

The following section is devoted to introducing an algorithm to solve our problem.

3 An algorithm

In this section we introduce two algorithms that solve our problem: one with the nominal

ATMOS’14

114 Simultaneous frequency and capacity problem

Algorithm 1: The algorithm for the rapid transit network frequency and capacity
setting problem under congestion with nominal capacity.

Data: A line network (S,L), a set of possible frequencies and a minimum and
maximum capacity

1 for each possible combination of frequencies and carriages do
2 Loop III: Check capacity constraint
3 for each line ` do
4 Find the arc (i, j) ∈ ` with maximum load %`ij ;
5 if 1 < %`ij ≤ σ then
6 penalize the traverse time of each arc by means of CF -function;
7 go Loop IV;
8 end
9 end

10 Compute the profit;
11 end

Result: The solution with the maximum profit.

capacity and other one with number of seats. Each of them consists of analyzing each
possible frequency (number of services per hour for each line) and each number of vehicles
(number of carriages per train of each line). The idea is to iteratively check all possible
combinations of frequencies and carriages. Once the frequencies and carriages have been
set, the shortest path that takes into account transfer and waiting times on the rapid transit
network for each OD pair can easily be calculated by a modified Dijkstra algorithm. From
these shortest paths we compute the number of passengers traveling on each line and arc.
At this point, the capacity constraint is checked on the arc with maximum load. If there
exists a congested arc, the penalization process is activated. The travel time to traverse
each arc is increased by means of its corresponding penalty. Once the penalization process
is finished, the rerouting process is activated. To this end, the shortest path taking into
account transfer and waiting times on the RTS for each OD pair is recalculated and the
capacity constraint is rechecked and so on. Due to the travel time increase, the number of
passengers on congested arcs is smaller than the previous iteration. Some passengers will
take an alternative path or an alternative transport mode. This procedure breaks when the
congestion ends or when a fixed point is found. Algorithm 1 shows the pseudocode to solve
the SFCP with nominal capacity and Algorithm 3 is the pseudocode to solve the SFCP
with the number of seats on each carriage. For the congestion with the seat capacity, the
in-vehicle crowding is activated when the load factor reaches 140% or standing density is
over four passengers per square meter (see [8]).

4 Conclusions

We have introduced a problem in the line planning context, in which the number of carriages
is also a decision variable. Concretely, the problem consists of selecting, for each line, the
number of services per hour and the number of train carriages in presence of a competing
transportation mode. We have assumed that all passengers that want to use the RTS have
a service and a certain net benefit is maximized. To this end, we have incorporated a long
term public economic support for the operating and acquisition rolling stock. This problem
can lead to congested networks since the maximum number of possible carriages is bounded.

A. De-Los-Santos, G. Laporte, J. A. Mesa, and F. Perea 115

Algorithm 2: Testing the fixed point.
Data: A line network (S,L)

1 Loop IV: Check fixed point
2 if the number of iterations is equal to one then
3 (Spre,Lpre)=(S,L);
4 else
5 if the network (S,L) is the same than (Spre,Lpre) then
6 break;
7 else
8 (Spre,Lpre)=(S,L);
9 go Loop III;

10 end
11 end

Result: A network.

The input data in the computational experiments has been based on real data in order to
calibrate all parameters that appear in our problem. Moreover, we have randomly generated
instances for different types of networks. The algorithm defined in Section 3 has been tested
on small networks showing the effect of the congestion on the solutions. The congestion
impact has been analyzed by means of a congestion function which measures the level of
in-vehicle crowding. A total of 200 experiments were carried out in our analysis. From
the results obtained, we observe that the profit is economically more interesting when the
network is not congested (according to the randomly generated instances we have solved). In
other words, the demand is sensitive to congestion and it is more profitable to add carriages
than to lose passengers.

This problem can easily be extended to the case of a set of possible lines (a line pool)
analyzing iteratively all combinations of lines. For each possible set of lines, the problem is
reduced to our problem.

The proposed algorithm has to solve an underlying unconstrained non-linear optimization
problem, and therefore the obtained solution is not guaranteed to be optimal. A potential
line of research will be to check wether or not this algorithm is exact, that is, whether or
not the solution returned is optimal.

Due to the complexity of the problem, and the fact that the proposed algorithm is only
suitable for small-medium sized instances, future research will focus on heuristic approaches.

Another way of completing this research will be about existence and uniqueness of pas-
senger flow equilibria and, if so, on the question whether the algorithm proposed converges
to them.

Acknowledgements This research work was partially supported Ministerio de Economía
y Competitividad (Spain)/FEDER under grant MTM2012-37048, by Junta de Andalucía
(Spain)/FEDER under excellence projects P09-TEP-5022 and P10-FQM-5849 and by the
Canadian Natural Sciences and Engineering Research Council under grant 39682-10.

References

1 A. Alfieri., R. Groot, L. Kroon and A. Schrijver. Efficient Circulation of Railway Rolling
Stock. Transportation Science, 40:(3)378–391, 2006.

ATMOS’14

116 Simultaneous frequency and capacity problem

Algorithm 3: The algorithm for the rapid transit network frequency and capacity
setting problem under congestion with seat capacity.

Data: A line network (S,L), a set of possible frequencies and a minimum and
maximum capacity

1 for each possible combination of frequencies and carriages do
2 Loop III: Check the capacity constraint
3 for each line ` do
4 Find the arc (i, j) ∈ ` with maximum load %`ij ;
5 Let %̂`ij be the load with the nominal capacity;
6 if %`ij > 1.4 and %̂`ij ≤ σ then
7 penalize the traverse time of each arc by means of CF -function;
8 go Loop IV;
9 end

10 end
11 Compute the profit;
12 end

Result: The solution with the maximum profit.

2 M.R. Bussieck. Optimal Line Plans in Public Rail Transport. Ph.D. Technical University
Braunschweig, 1998.

3 M.R. Bussieck, P. Kreuzer, and U.T. Zimmermann. Optimal lines for railway systems.
European Journal of Operational Research, 96:54–63, 1997.

4 M. T. Claessens, N. M. van Dijk, and P. J. Zwaneveld. Cost optimal allocation of rail
passenger lines. European Journal of Operational Research, 110(3):474–489, 1998.

5 J.-F. Cordeau, F. Soumis, and J. Desrosiers. A Benders decomposition approach for the
locomotive and car assignment Problem. Transportation Science, 34(2):133–149, 2000.

6 A. De Palma, M. Kilani, and S. Proost. The localization and pricing of mass transit stations.
2010. In Proceedings of the 12th World Conference on Transport Research Society.

7 N. Douglas and G. Karpouzis. Estimating the cost to passengers of station crowding. 2005.
In 28th Australasian Transport Research Forum (ATRF).

8 Q. Feifei. Investigating the in-vehicle crowding cost functions for public transit modes.
Mathematical Problems in Engineering, 2014:13, 2014.

9 R. García, A. Garzón-Astolfi, A. Marín, J.A. Mesa, and F.A. Ortega. Analysis of the
parameters of transfers in rapid transit network design. In L. G. Kroon and R. H. Möhring,
editors, 5th Workshop on Algorithmic Methods and Models for Optimization of Railways,
Schloss Dagstuhl, Germany, 2006.

10 A. García, and M.P. Martín. Diseño de los vehículos ferroviarios para la mejora de su
eficiencia energética. In Monografías ElecRail, volume 6, 2012.

11 J.-W. Goossens, S van Hoesel, and L. Kroon. A branch-and-cut approach for solving railway
line-planning problems. Transportation Science, 38:379–393, 2004.

12 J.-W. Goossens, S. van Hoesel, and L. Kroon. On solving multi-type railway line planning
problems. European Journal of Operational Research, 168(2):403–424, 2006.

13 V. Guihaire and J.K. Hao. Transit network design and scheduling: A global review. Trans-
portation Research Part A: Policy and Practice, 42(10):1251–1273, 2008.

14 S. Jara-Díaz and A. Gschwender. Towards a general microeconomic model for the operation
of public transport. Transport Reviews, 23(4):453–469, 2003.

A. De-Los-Santos, G. Laporte, J. A. Mesa, and F. Perea 117

15 Z.-C. Li, W. H. K. Lam, S. C. Wong, and A. Sumalee. Design of a rail transit line for
profit maximization in a linear transportation corridor. Transportation Research Part E:
Logistics and Transportation Review, 48(1):50–70, 2011.

16 T. Lin and N.H.M. Wilson. Dwell time relationships for light rail systems. Transportation
Research Record, 1361:287–295, 1992.

17 A. Marín and R. García-Ródenas. Location of infrastructure in urban railway networks.
Computers & Operations Research, 36(5):1461–1477, 2009.

18 R.H. Oldfield and P.H. Bly. An analytic investigation of optimal bus size. Transportation
Research Part B, 22(5):319–337, 1988.

19 J.D. Ortúzar and L.G. Willumsem. Modelling Transport. Wiley, Chichester, 1990.
20 M. Schmidt and A. Schöbel. The complexity of integrating routing decisions in public

transportation models. In T. Erlebach and M.E. Lübbecke, editors, ATMOS10, volume 14
of OASICS, pages 156–169. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany,
2010.

21 A. Schöbel. Line planning in public transportation: models and methods. OR Spectrum,
34(3):491–510, 2011.

22 A. Schöbel and S. Scholl. Line planning with minimal traveling time. In L. Kroon and
R.H. Möhring, editors, 5th Workshop on Algorithmic Methods and Models for Optimization
of Railways, ATMOS 2005, Dagstuhl, Germany, 2006. Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany.

A Computational experiments

All the calculations in this section were performed with a Java code in a computer with 8 GB
of RAM memory and 2.8 CPU Ghz. In order to evaluate the performance of our algorithm,
we have used several instances of networks (see A.1).

There are no previously reported solutions for the proposed problem as far as we know.
We have performed tests to asses the impact of the congestion on the networks 6× 2, 7× 3
and 8 × 3. To this end, we have gradually increased the number of carriages and we have
found a solution to the problem with our algorithm (see Algorithm 1). The results of these
experiments are available from the authors. We noted that, when the maximum number
of carriages is small, the optimal solution has high frequencies in order to transport all
passengers. This is due to the problem definition: we have imposed that all passengers
willing to travel in the RTS have to be transported.

A key factor to solve this problem was the introduction of the congested function defined
in Section 2.3, which is based on in-vehicle crowding.

In the next section, we introduce all parameters needed to carry out the experiments
as well as the considered networks. In order to keep the paper within the 15-page limit,
detailed results of the experiments and other parameters of the problem such as number of
possible trips in each instance have been omitted, but are available from the authors upon
request.

A.1 Parameter setting
In Table 1 we report the values considered for the parameters of our algorithm. The data
reported in this table are based on the specific train model Civia, usually used for regional
railway passengers transportation in Spain by the National Spanish Railways Service Oper-
ator (RENFE). One important characteristic of Civia trains is that the number of carriages
can be adapted to the demand. Each Civia train contains two electric automotives (one at

ATMOS’14

118 Simultaneous frequency and capacity problem

Table 1 Model parameters for SFCP.

Parameters

Name Description Value
ρ̂ years to recover the purchase 20
ρ number of operative hours per year 6935
cloc costs for operating one locomotive per kilometer [e/km] 34
ccarr operating cost of a carriage per kilometer [e/km] 2
ccrew per crew and year for each train [e/ year] 75 · 103

Iloc purchase cost of one locomotive in e 2.5 · 106

Icarr purchase cost of one carriage in e 0.9 · 106

Θ capacity of each carriage (number of passengers) 2 · 102

λ average commercial speed in [km /h] 30
γ maximum number of lines traversing an edge 4

ψmin minimum frequency of each line 3
ψmax maximum frequency of each line 20
ψ` possible values {3,4,5,6,10,12,15,20}

1 3 5 6

2

4

The lines are defined as:
red line `1 = {1, 3, 5, 6} and
blue line `2 = {2, 3, 4}.

Figure 1 Representation of 6 × 2-configuration.

each end) and a variable number of passenger carriages. Each automotive or carriage has a
maximum capacity of 200 passengers. In our experimentation, we will assume that the train
is composed by only one electric locomotive (for traction purposes and null capacity) and
several passengers carriages (which cannot move without a locomotive) as in [5] and [1]. The
purchase price of rolling stock used in this experimentation is also based on the real data of
Civia trains. The price of ticket and subvention considered in our experimentation, have been
taken from the newspaper (http://www.20minutos.es/noticia/2028399/0/madrid/empresas-
privadas/metro-ligero/).

In the experiments we have considered five network topologies. The first one is defined
by six nodes, five edges and two lines as follows The second one is a star network with six
nodes and three lines.

The following network is defined by eight nodes, nine edges and three lines. For each
configuration, we have randomly generated 10 different instances for the OD-matrix and
length data. To this end, the number of passengers of each OD pair w, was obtained
according to the product of two parameters. The first one was randomly set in the interval
[5,15] by using a uniform distribution, whereas the other one was set in a different interval
for each configuration. Concretely, for the 6 × 2-network, the interval considered was set
as [65,77], generating around 20.000 passengers at each instance of such configuration. For

A. De-Los-Santos, G. Laporte, J. A. Mesa, and F. Perea 119

1 4 7

2

5

6

3

The lines are defined as:
blue line `1 = {2, 4, 5}, red line
`2 = {1, 4, 7} and green line
`3 = {3, 4, 6}.

Figure 2 Representation of 7 × 3-configuration.

1 3

4 6 82

5 7

The lines are defined as:
red line `1 = {1, 3, 4, 6, 8},
blue line `2 = {2, 4, 5, 7} and
green line `3 = {4, 6, 8}.

Figure 3 Representation of 8 × 3-configuration.

7× 3 and 8× 3-networks, the number of passengers was approximately 30.000 passengers at
each case and the parameters were defined in the intervals [68, 80] and [51, 59], respectively.
The parameter for the 20 × 6-configuration was set to 16 for all instances and [23, 25] for
the 15× 5-configuration.

To define each arc length, the coordinates of each station were set randomly by means
of an uniform distribution. So, the arc length at each instance is different since each arc
connects to different stations.

For the experiments, the travel times ualtw by the alternative mode, were obtained by
means of the Euclidean distance and a speed of 20 km/h, whereas, the travel times in the
RTS were obtained according to in-vehicle travel time, waiting and transfer times. The
waiting time was supposed to be half of the corresponding time between services of lines
at the origin station, whereas, the transfer time was assumed to be half time between
two consecutive services at the line to transfer. We assume two possible values for the σ
parameter: 1.1 and 1.2. So, for σ = 1.1, if the number of passengers traveling inside each
line is 10% higher than its capacity, the solution is taken into account.

A.2 Computational experiments for our problem
To evaluate the performance of our algorithm, we have adapted the crowding function defined
in Section 2.3 to our problem. Concretely, the crowding penalty was mathematically defined
for the nominal capacity as

CF (x) = 1 + 0.8
1 + exp(2 ∗ (1− x)) + 0.01 exp(3 ∗ (x− 1.3)). (9)

The following figures show a representation of the crowding functions above defined.
In order to evaluate the impact of the in-vehicle crowding on the solution of our problem,

we have gradually increased the maximum number of carriages in our experimentation.
Moreover, we have analyzed the solutions obtained at the uncapacitated case (an unlimited
number of carriages) when the in-vehicle crowding is introduced.

ATMOS’14

120 Simultaneous frequency and capacity problem

0 1 2 3

2

4

6

8

load

C
on

ge
st
ed

fu
nc
tio

n

load penalty
1.08 1.44
1.05 1.42
1.01 1.41

Figure 4 In-vehicle crowding function.

The parameter σ considered here was fixed to 1.1, which implies that if the number of
passengers of each line is 10% higher than its capacity, the solution is taken into account.
A total of 200 experiments of the 6× 2, 7× 3 and 8× 3-configuration were tested. For 6× 2
configuration our algorithm was able to obtain a solution in a very small CPU time (3 to 6
seconds). However, on larger instances, the algorithm took too long (in some instances over
an hour). It is difficult, if not impossible, to conduct experiments over real instances, which
indicates the need of applying heuristic strategies to solve the problem.

A.2.1 6 × 2-configuration

We have analyzed the solutions when the parameter δmax is less than or equal to 8. For
δmax ≤ 4, the problem is always infeasible. For δmax > 4, most cases are feasible and the
optimal solutions are not affected by congestion (see the seven column). This fact indicates
the maximum number of carriages is a sufficient number in order to transport all passengers
willing to use the RTS. The average CPU time is 6.15 seconds when δmax = 8.

A.2.2 7 × 3-configuration

For δmax ≤ 2, the optimal solutions have high frequencies in order to transport all passen-
gers. From the results we observed that the number of trains decreases when the maximum
number of carriages increases. The profit starts to be economically interesting when the
number of carriages is greater than two for some instances and it is greater than three for
some others. The most cases, the optimal solution corresponds to a non-congested network.
It is interesting to note that for δmax = 6 only two instances yield the same solution. This
fact indicates the in-vehicle crowding directly affects the solutions. Indeed, the optimal solu-
tions for the uncapacitated case are affected by the in-vehicle crowding when the congestion
is introduced in our problem. For instance, we could observe that the optimal solution for
one instance of the capacitated case has one more carriage than the solution to the unca-
pacitated case. In other words, when the congestion is taken into account, the passenger’s

A. De-Los-Santos, G. Laporte, J. A. Mesa, and F. Perea 121

1 2 3 4 5 6 7 10

109.6

109.8

1010

instances

eu
ro
s

First scenario

uncapacitated
capacitated

uncapacitated with congestion

Figure 5 Profit for 7×3-configuration. Optimal solution for uncapacitated problem, capacitated
problem and the uncongestion optimal solution with the congestion effect.

behavior changes, and it is economically more interesting to add a carriage than to lose
passengers.

A.2.3 8 × 3-configuration
The results obtained reveal that, for most cases, the system becomes productive from three
carriages on. In 7× 3-configuration, the frequencies are high when the capacities are small,
in order to transport all passengers willing to travel on the RTS. The average CPU time
for δmax = 1 is 1.36 seconds whereas for δmax = 6 is 823. The optimal solutions for
uncapacitated case are affected by the in-vehicle crowding at the capacitated case, as shown
in in our experiments.

ATMOS’14

Timing of Train Disposition: Towards Early
Passenger Rerouting in Case of Delays ∗

Martin Lemnian1, Ralf Rückert1, Steffen Rechner1, Christoph
Blendinger2, and Matthias Müller-Hannemann1

1 Institut für Informatik
Martin-Luther-Universität Halle-Wittenberg, Germany
{mlemnian,muellerh,rechner,rueckert}@informatik.uni-halle.de

2 DB Mobility Logistics AG, Jürgen-Ponto-Platz 1, 60329 Frankfurt am Main,
Germany, Christoph.Blendinger@deutschebahn.com

Abstract
Passenger-friendly train disposition is a challenging, highly complex online optimization problem
with uncertain and incomplete information about future delays. In this paper we focus on the
timing within the disposition process. We introduce three different classification schemes to
predict as early as possible the status of a transfer: whether it will almost surely break, is so
critically delayed that it requires manual disposition, or can be regarded as only slightly uncertain
or as being safe. The three approaches use lower bounds on travel times, historical distributions
of delay data, and fuzzy logic, respectively. In experiments with real delay data we achieve an
excellent classification rate. Furthermore, using realistic passenger flows we observe that there is
a significant potential to reduce the passenger delay if an early rerouting strategy is applied.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems; G.2.2 Graph
Theory (Graph algorithms; Network problems)

Keywords and phrases train delays, event-activity model, timing of decisions, passenger flows,
passenger rerouting

Digital Object Identifier 10.4230/OASIcs.ATMOS.2014.122

1 Introduction

Disruptions and delays frequently occur in public transport for various reasons. For pas-
sengers with planned transfers this means that there is a relatively high risk to miss some
transfer. Train disposition in case of disruptions is therefore a research theme of high im-
portance. It is about a complex online optimization problem where we are given a massive
stream of messages about delays, cancellations, extra trains and the like. The task of dis-
position is the real-time reaction to unexpected events with the goal to minimize negative
effects. Depending on the type of conflicts to solve and dispositional actions one distin-
guishes between timetable adjustment to the current operational conditions (often called
delay management), rolling stock rescheduling and crew rescheduling [17]. Here we focus on
timetable adjustment (“to wait or not to wait” [1]) and the crucial questions: When should
we decide which transfers are to be maintained and what is the effect on passengers?

∗ partially supported by grant MU 1482/4-3 within the DFG program SPP 1307 Algorithm Engineering
and Deutsche Bahn AG.

© Martin Lemnian, Ralf Rückert, Steffen Rechner, Christoph Blendinger, Matthias Müller-Hannemann;
licensed under Creative Commons License CC-BY

14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’14).
Editors: Stefan Funke and Matúš Mihalák; pp. 122–137

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2014.122
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

M. Lemnian, R. Rückert, S. Rechner, C. Blendinger, and M. Müller-Hannemann 123

Passenger-oriented disposition. Passenger-oriented disposition as introduced by Berger
et al. [4] requires precise knowledge about the travel routes of passengers, ideally the exact
travel plans of all passengers. In this work we continue in this spirit and assume that for
each passenger the planned travel connection is known. The union of all travel connections
and their multiplicities yields what we call a passenger flow. In today’s daily operations
only partial information is available for dispatchers. We envision that this will change in
the future. Since almost all tickets are sold electronically, a majority of planned connections
could be available through the vending systems. A considerable fraction of passengers travels
with travel passes allowing unlimited travel within a given time period and region. Such
passengers may either register deliberately their travel plans in order to get assistance in case
of delays, or staff on train collects this information when checking tickets. For the purpose
of disposition anonymity can be ensured since no personal information is required to take a
decision. We just need some way to inform passengers about new travel recommendations.
For experiments in this paper, we use detailed realistic passenger flow data provided by
Deutsche Bahn AG.

Disposition has to consider several, partially conflicting goals. Examples of possible op-
timization goals are to minimize the total passenger delay, cost of compensations (payments
for taxis, hotels, or travel vouchers), total number of missed transfers, additional operational
costs, or loss of reputation of the operating company. Even if complete information about the
current operational situation is available, the prediction of the further development of delays
is fairly difficult since (1) additional delays (secondary delays) can be induced, for example,
by headway conditions, tight track capacities, and restrictions of the network topology, and
(2) available buffer times can be used to some extent to reduce given delays. Berger et
al. [5] presented a stochastic model to predict event time distributions in an online scenario.
Recently, Kecman and Goverde [19] developed a microscopic, fine-grained model for train
event time prediction.

Related Work. There is a rich literature on delay management. Based on so-called event-
activity networks, there are various formulations as integer linear programming problems
[28, 29, 30]. The computational complexity of delay management turned out to be NP-hard
even under simplifying assumptions [14, 15]. While early formulations of delay management
ignored track capacities, more elaborated models take them into account [25]. A typical
assumption is that all train lines operate periodically, and that passengers who miss a
connection wait for the next one in the next period. Delay management with rerouting
of passengers has been considered by [12, 13, 27]. A major deficiency of all these delay
management models is, however, that they assume that at some point in time full knowledge
about all future delays and their exact sizes becomes available. Cicerone et al. [9] take the
viewpoint of robust optimization and try to find waiting decisions which are robust against
future delays. Various other approaches use online algorithms for train disposition [2, 3, 6, 16,
20, 21]. Biederbick and Suhl use agent-based simulation for passenger-oriented disposition
[7, 8]. Waiting policies in a stochastic context are considered in [1]. Online optimization of
a single line has been examined by [3, 21]. D’Ariano (and co-authors) use local rerouting
and speed adjustments to solve track occupation conflicts [10, 11]. A detailed and quite
realistic framework for train disposition has been developed within the DisKon project [26].
Another prototypal tool for timetable adjustment is ANDI/L which uses heuristics to reduce
the search space in order to meet online capabilities [22]. Up to now, optimizing approaches
for short-term train disposition are not used in daily operations (see, for example, [18]).

ATMOS’14

124 Timing of Train Disposition: Towards Early Passenger Rerouting in Case of Delays

Uncertainty and timing of decisions. Timing when to take dispositional decisions has been
neglected to a large extent. Recall that classical delay management takes a static viewpoint.
It is assumed that the whole delay scenario (i.e. the size of the delay of all activities) becomes
known at a certain point in time. In contrast, in online management decisions are usually
taken greedily when new information about delays arrives. However, the analysis of historical
delay data clearly shows a high volatility of the available data. Prediction algorithms of how
delays evolve over time are facing a considerable amount of uncertainty. In particular, it is
difficult to predict whether a planned transfer can be maintained or not. For the benefit
of shorter travel times, train schedules are designed to realize relatively short buffer times
for transfers. The downside of this optimization is that many transfers are so tight that it
becomes hard to predict whether they will break or not.

Goals and contribution. With this study we want to work towards a better understanding
of the timing dimension of waiting decisions. Since the realization of decisions takes some
time (train staff and staff at the station have to be informed; new travel recommendations
have to be communicated to passengers), the time window for taking any decision closes
about 15 minutes before the actions must be realized. In current practice there seems to be
a tendency to decide as late as possible (based on interviews with experienced practitioners
from Deutsche Bahn AG). In general, there is a trade-off: the longer we wait, the more
accurate information will be available, but the earlier we decide, the larger is the range of
alternatives. Clearly, having a larger set of alternatives is beneficial for all those passengers
who have to change their travel route. Thus, the challenging task is to find an appropriate
timing of decisions. We here aim at a refinement of the decision process which takes the
temporal dimension into account. Important use cases are

large delays of a single train
unavailability of a track segment for a certain time period.

In both cases passengers may take advantage of a timely detection of problems, the earlier
the better. We study the following questions:
1. How early can we predict that a planned transfer will break? And if we do so, how

reliable are our recommendations?
2. How early should we inform passengers? Should we do it immediately, or should we wait

with final recommendations in light of uncertain information?
3. How many passengers can take advantage of early rerouting recommendations?
We propose several approaches and evaluate them with experiments based on realistic pas-
senger flows and historical delay data.

Overview. The remainder of this work is structured as follows. In Section 2, we explain
in detail the train disposition framework. Afterwards, in Section 3 we introduce several
methods for the classification of transfers with respect to the likelihood that they can be
realized. We describe our experiments and report computational results in Section 4. Finally,
we summarize our findings and give remarks on possible future research.

2 Train Disposition Framework

2.1 Event-Activity Networks and Passenger Flows
To model railway traffic, we use a so-called event-activity network N = (V,A) which is a
directed, acyclic graph with vertex set V and arc set A. Each departure and arrival event
of some train is modeled by a vertex v ∈ V and is equipped with a number of attributes:

M. Lemnian, R. Rückert, S. Rechner, C. Blendinger, and M. Müller-Hannemann 125

its event type type (either departure dep or arrival arr), an identifier for the corresponding
train trainID, the type of the train trainType, the station s where the event takes place,
the originally planned scheduled event time tsched, a predicted realization time tpred, and
the actual realization time tact (as soon as available). Times are usually given in minutes
after some point of reference.

An arc models a precedence relation between events. We distinguish between different
types of arcs (“activities”): driving arcs Adrive, modeling the driving of a specific train be-
tween two stations without intermediate stop, waiting arcs Await, modeling a train standing
at a platform, and transfer arcs Atransfer, modeling the possibility for passengers to change
between two trains. The planned duration of driving and waiting activities is implicitly given
by the time difference between the scheduled event times of the corresponding events. Each
activity a ∈ A has a lower bound `a specifying its minimum duration. The lower bound
gives the minimum travel time between two stops of the corresponding train type under
optimal driving conditions for driving activities. For a waiting arc a ∈ Await, the value of
`a represents the minimum dwell time which is assumed to be necessary for boarding and
deboarding of passengers. For a transfer activity a ∈ Atransfer, the lower bound `a denotes
the minimum time a passenger needs to change from a feeder train to a connecting train.

For ease of exposition, we here use a path formulation of passenger flows. Associated
with each passenger p is a path Pp in the event-activity network N = (V,A). Such a path
always represents the current passenger’s route, initially the planned connection, and later,
whenever updates occur, the new route. We use an additional layer of data structures to
represent passenger flows on top of the event-activity network.

2.2 Prediction of Event Times and Delay Propagation
Whenever new information about realized event times or delays becomes available, it must be
propagated through the network. To partially automize the train disposition process, train
operators often apply standard waiting time rules: Given a number wta ∈ N0 for a transfer
activity a ∈ Atransfer, the connection shall be maintained if the departing train has to wait at
most wta minutes compared to its original schedule. In addition, a dispatcher may manually
overwrite this value in order to keep a connection. Note that a departure event w may have
several incoming transfer arcs. By w.tmaxwait := max{w.tsched+wta | a = (v, w) ∈ Atransfer}
we denote the maximum waiting time induced by any delayed feeder train of w.

We here assume that a permanently running process updates predictions of future event
times with respect to standard waiting time rules. This process is fairly complicated and can
be done at different levels of sophistication, with macroscopic [24] or microscopic models [19],
or with stochastic distributions [5]. In order to be consistent, predicted event times shall
satisfy the following constraints:

w.tpred ≥ v.tpred + `a for all a = (v, w) ∈ Adrive ∪ Await, (1)

which means that minimum driving times and minimum dwell times are respected, and

w.tpred ≥ v.tpred + `a for all a = (v, w) ∈ Atransfer

with w.tsched < v.tpred + `a ≤ w.tsched + wta (2)

which ensure that a connecting train waits for its feeder trains at least as long as the
standard waiting time rules specify. Moreover, we require that no train may depart before
its scheduled event time, i. e. v.tpred ≥ v.tsched for all v ∈ V with v.type = dep.

With respect to realized event times, a transfer a = (v, w) ∈ Atransfer is maintained if
w.tact ≥ v.tact + `a; otherwise, we say that the transfer has been broken.

ATMOS’14

126 Timing of Train Disposition: Towards Early Passenger Rerouting in Case of Delays

delay propagation

Classification
of transfers

Stream of messages
(realized event times,
current delays, etc.)

breaks
transfer

Rerouting of

Dispatcher

if non−waiting

passengers

Simulation of
waiting/non−waiting

decisions

decides

critical transfers

update

Prediction of
event times/

Figure 1 Schematic sketch of the train disposition process.

A fairly simple and in practice often used way to implement delay propagation is based
on the following rules: (a) the current delay is not reduced on driving arcs, (b) on a waiting
arc a = (v, w), the slack slack(a) = w.tsched−v.tsched−`a given by the difference of planned
and minimum dwell time is fully used to reduce delays, and (c) standard waiting time rules
are applied on transfer arcs. The latter means that the predicted departure time w.tpred of
a departure event w is set as the maximum of three values: w.tsched (its scheduled departure
time), u.tpred + `(u,w) where (u,w) denotes the waiting arc before the departure event w (if
it exists), and max{v.tpred + `a} where the maximum is taken over a = (v, w) ∈ Atransfer
with v.tpred+ `a ≤ w.tsched+wta, the delay propagated through transfer arcs. In this paper
we use this propagation scheme for our experiments.

2.3 Train Disposition

Next, we give a very brief high-level description of the train disposition process, see Fig. 1 and
also [4]. Periodically, say every minute or every 30 seconds, we obtain from an external source
the latest information about realized event times, current delays, train cancellations, extra
trains, and the like. All these messages are parsed and taken to update the predictions of
event times. Then, the predicted event times are used to classify which transfers potentially
require dispositional actions (for details see the following section). In general, we obtain a
set Awatch of transfer arcs which have to be “watched”. Now several strategies are possible
how and when to handle each of these transfers. For example, a simple strategy could be
to order the transfer arcs by the time for which the departing trains is originally scheduled
and to decide what to do a fixed amount of time, say 20 minutes, before the event occurs.

Here, we propose a more flexible scheme. With each transfer arc in a ∈ Awatch we
associate a decision time a.tdec which denotes when the decision about this case shall be
obtained. We use a priority queue with the decision times a.tdec as keys to obtain the
order by which all cases are handled. Roughly speaking, decision times are chosen by
importance (how many passengers are involved) and criticality (how likely is it that the
transfer breaks). The crucial idea is that the “clearly broken cases”, i. e. those where the
feeder train is so severely delayed that maintaining certain connections is unreasonable or
operationally infeasible, shall be handled immediately. In such cases we instantly try to
reroute all passengers which currently have planned to use a transfer that will break. If we

M. Lemnian, R. Rückert, S. Rechner, C. Blendinger, and M. Müller-Hannemann 127

0
5

10
15

20
25

minutes before departure

de
la

y
in

 m
in

−120 −100 −80 −60 −40 −20 0

CRITICAL

UNCERTAIN

BREAK

SAFE slack for change

waiting time

Figure 2 Delays fluctuate over time. The figure sketches exemplarily the development of the
delay in minutes of a single feeder train, two hours before the departure of a connecting train of
a planned transfer. Depending on the size of the delay and the potential to regain, the transfer is
classified as “SAFE”, “UNCERTAIN”, “CRITICAL” or “BREAK”.

succeed, we can eliminate the corresponding transfer arc from Awatch. All remaining transfer
arcs are periodically reclassified. For critical cases where the feeding train is delayed by so
much that the standard waiting time rules do not apply anymore, but maintaining the
transfer is still an option, the alternatives “waiting” or “not waiting” have to be evaluated
with respect to the effect on the passenger flow. To this end, for each considered alternative
the disposition module tentatively first computes new event time predictions, and second
updates the passenger flow. Flow updates are necessary if a transfer arc breaks which carries
non-zero flow in the given scenario. In such a case all passengers on such a transfer arc have
to be rerouted, that means, a new train connection has to be computed for each passenger.

The hypothetical change of flow can be evaluated in terms of one or several objectives (for
example, total passenger delay in minutes). The dispatcher then has to decide between the
given alternatives. Whenever a final disposition decision is taken, it must be implemented.
Within our framework each decision requires to update event times and passenger flows.

3 Classification of Transfers

In this section we propose classification schemes for transfers. The goal is to classify each
transfer as early as possible, i. e., to determine whether it will be maintained or will break,
see Fig. 2. The semantics of the classes used by our classification are as follows.

SAFE — the transfer seems to be safe. A transfer is regarded as safe if the slack time
for the transfer is positive, i. e. the connecting train will be reached unless unexpected
delay of the feeder train occurs.
UNCERTAIN — the transfer is uncertain but likely to hold. In this case the feeder
train is delayed, but by applying the standard waiting time rule, this transfer will be
maintained.
CRITICAL — the transfer is likely to break unless an explicit waiting decision is
taken. Here the delay of the feeder train is so large that the desired transfer can only be
maintained if the dispatcher decides that the transfer will be maintained, the standard
waiting time rule is not sufficient.
BREAK — the transfer will break. Even under best conditions, the delayed feeder
train will arrive too late to reach the connecting train (which itself may be delayed).
The delay is so large that waiting of the connecting train is no feasible option, or is even
meaningless if the feeder train has been cancelled. Whether waiting has to be considered
as a feasible option may depend on whether passengers have reasonable alternatives, in

ATMOS’14

128 Timing of Train Disposition: Towards Early Passenger Rerouting in Case of Delays

particular in the late evening. This classification assumes that the connecting train will
not be (further) delayed in the future.

The focus of our classification algorithms is on identifying breaking transfers as early as
possible. We develop three different classification schemes.

3.1 Classification by Lower Bounds
The rationale behind this classification scheme is a conservative view, that is, we primarily
want to detect those cases where the transfer is going to break. For each travel arc, we use
historical data to derive lower bounds for the travel time. If no historical data is available we
assume that the minimum travel time is 7% lower than the scheduled travel time. Current
delays are propagated with respect to these lower bounds. For each arrival event arr ∈ V
we so obtain a lower bound arr.tlb on its realization time.

For a transfer arc a = (arr, dep) ∈ Atransfer, we classify it as BREAK if arr.tlb + `a >

max{dep.tpred, dep.tsched + wta} + δ. The parameter δ > 0 specifies a “safety margin” by
which the classification can be tuned towards a conservative classification by increasing its
value. Such an arc is classified as SAFE, if arr.tpred + `a ≤ dep.tpred. It is classified as
UNCERTAIN if it is not SAFE but arr.tpred + `a ≤ dep.tsched +wta. In all remaining cases
it is regarded as CRITICAL.

3.2 Classification by Transfer Probabilities
Again we make heavily use of historical data to derive for each transfer arc a probabil-
ity distribution for its realizability. For a train of type trainType which is now delayed
by d minutes, and a time horizon of h minutes we have an empirical density function
f trainType,h,d∆ : Z 7→ [0, 1] for the probability that the current delay will change by x minutes
in h minutes from now. For example, f ICE,30,5

∆ (2) gives the probability that an ICE with
a current delay of five minutes will have an additional delay of two minutes half an hour
later. Note that these probabilities only depend on the type of a train but not on its specific
route. With the help of this function we can derive the probability that a future event v for
this train will occur at time t = v.tsched + d+ x, where d+ x ≥ 0 holds. Namely, we define

f trainType,h,d : Z 7→ [0, 1] , with f trainType,h,d(t) = f trainType,h,d∆ (x), x ∈ Z.

Hence, we can compute the distribution of departure and arrival times for all future events
with respect to the current delay scenario.

For a future transfer arc a = (arr, dep) ∈ Atransfer we further derive the probability
distribution that the transfer will be maintained as follows. As before denote by `a the
minimum transfer time and by dep.tmaxwait the maximum waiting time of the departing
train. Thus, unless the departing train itself is delayed, it will wait at most until tmax =
dep.tmaxwait. The probability p that a transfer will be maintained if the feeder train arrives
before tmax is

p =
tmax−`a∑
t=0

farr.trainType,arr.h,arr.d(t).

The probability that a transfer will be maintained after tmax depends on the distribution of
the departing train as well. In this case

p =
∞∑

t1=tmax−`a+1

∞∑
t2=t1+`a

farr.trainType,arr.h,arr.d(t1) · fdep.trainType,dep.h,dep.d(t2),

M. Lemnian, R. Rückert, S. Rechner, C. Blendinger, and M. Müller-Hannemann 129

Table 1 Classification rules based on transfer probability p.

class rule
SAFE p ≥ 0.96

UNCERTAIN 0.60 ≤ p < 0.96
CRITICAL 0.05 ≤ p < 0.60
BREAK p < 0.05

Table 2 Fuzzy inference rules.

current delay regain potential transfer
on time SAFE

small delay possible SAFE
small delay impossible UNCERTAIN
strong delay possible CRITICAL
strong delay impossible BREAK

where arr.h and dep.h denote the current time horizon for the arrival event arr and the
departure event dep, and where arr.d and dep.d denote the current delays of the arriving
and departing train, respectively. The resulting probability value p is used to classify the
transfer according to empirically chosen thresholds given in Table 1. Note that transfer
probabilities as described, but with different thresholds are used by Deutsche Bahn AG for
online timetable information.

3.3 Classification by Fuzzy Logic
To classify a transfer with respect to uncertainty, we use a classifier based on fuzzy logic.
We consider three linguistic variables for the transfer’s arrival event:

the current delay with possible values on time, small delay and strong delay,
the regain potential with possible values possible and impossible,
the state of a transfer with values SAFE, UNCERTAIN, CRITICAL, and BREAK.

Figure 3 shows for an arrival event arr how the variables arr.tlb are fuzzified into linguistic
variables current delay and regain potential with certainty pd and pr, respectively. We use
the interference rules shown in Table 2 to determine the state of a transfer. The lines of the
table are to be read as

IF current delay=. . . AND regain potential = . . . THEN transfer=. . . .
We use the maximum of pd and pr to compute the certainty pt of a transfer.

In the sequel, we consider the classification by lower bounds as our STANDARD classi-
fication scheme (justified by the experiments below), and call the classification by transfer
probabilities simply STOCHASTIC, and the one based on fuzzy logic FUZZY.

4 Experimental Results

4.1 Test Instances, Environment and Software
The basis for our computational study is the German train schedule of 2013 and histori-
cal process data from 2011-2013. The schedule contains 36,772 trains, 8,592 stations and
the corresponding event activity network consists of about 2 million events. Process data
(realized event times, new delays, etc) have an average volume of about 1.6 GiB per day

ATMOS’14

130 Timing of Train Disposition: Towards Early Passenger Rerouting in Case of Delays

arr.tsched dep.tsched

−`a

dep.tsched

−`a+δ
dep.tmaxwait

−`a+δ

arr.tpred

pd

0

1
on time small delay strong delay

current delay

arr.tsched dep.tmaxwait

−`a+δ

arr.tlb

pr

0

1
possible impossible

regain potential

Figure 3 Fuzzification of the two variables current delay and regain potential for a transfer arc
a = (arr, dep).

0.
00

0.
05

0.
10

0.
15

minutes before departure

fr
ac

tio
ns

 o
f c

la
ss

es

−180 −150 −120 −90 −60 −30 0

SAFE
UNCERTAIN
CRITICAL
BREAK

(a) STANDARD

0.
00

0.
05

0.
10

0.
15

minutes before departure

fr
ac

tio
ns

 o
f c

la
ss

es

−180 −150 −120 −90 −60 −30 0

SAFE
UNCERTAIN
CRITICAL
BREAK

(b) STOCHASTIC

0.
00

0.
05

0.
10

0.
15

minutes before departure

fr
ac

tio
ns

 o
f c

la
ss

es

−180 −150 −120 −90 −60 −30 0

SAFE
UNCERTAIN
CRITICAL
BREAK

(c) FUZZY

Figure 4 Classification of transfers by the three methods: Distribution of the four classes.

(compressed XML-files). Realistic passenger flows have been provided by Deutsche Bahn
AG for several test days in 2013. These flows are derived from about 2.9 million passengers
and their travel connections per day; the passengers travel on roughly 400 000 different
routes, with an average travel time of 119 minutes and .73 transfers on average.

All experiments were run on a PC (Intel(R) Xeon(R), 2.93GHz, 8MB L3-cache, 48GB
main memory under Ubuntu Linux version 12.04 LTS). Our code is written in C++ and has
been compiled with g++ 4.8.1. It is an extension of the train disposition system described
in [4] and has been developed on top of MOTIS (multi-objective travel information system)
using its capability of searching optimal travel routes [23] and online delay propagation [24].
If a passenger has to be rerouted, we compute a fastest alternative connection with the
fewest number of transfers. Since our code is a mere prototype and efficiency is not the
topic of this paper, we do not report running times. We simply remark that the achieved
running times are fast enough to apply our approach in an online scenario.

4.2 Experiments

Experiment 1: Evaluation of classification schemes. How good is the predictive power
of the information of current delays for the feasibility of transfers x minutes in advance?
In particular, how early are we able to identify breaking transfers and how reliable is our
classification?

M. Lemnian, R. Rückert, S. Rechner, C. Blendinger, and M. Müller-Hannemann 131

1
2

5
10

20
50

10
0

minutes before departure

nu
m

be
r

of
 c

la
ss

ifi
ca

tio
ns

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●
●

● ●

●
●

● ●
●

●

●

● ● ●
● ●

●
●

●

−180 −150 −120 −90 −60 −30

●

STANDARD
STOCHASTIC
FUZZY

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

minutes before departure

qu
al

ity
 o

f c
la

ss
ifi

ca
tio

n

● ● ● ● ● ●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

−180 −150 −120 −90 −60 −30

●

STANDARD
STOCHASTIC
FUZZY

Figure 5 Number of cases (note the logarithmic scale) and accuracy of the classification schemes
for class BREAK. Classifications are grouped into bins of 5-minute intervals.

To study these questions, we recorded for each classified transfer its corresponding state
from the first point in time when it has been classified as non-safe (by default, we consider
all planned transfers as SAFE) until its realization. The parameter δ used by STANDARD
and FUZZY has been set to the value 4. Fig. 4 shows the fraction of the four classes within
the last three hours before realization. Whether a transfer has been maintained or not,
has been evaluated with respect to realized event times. The false negative rate of our
classification schemes is very small. For example, only 0.96% of transfers are classified as
SAFE by STANDARD, but eventually break. Since new delays may occur spontaneously,
such misclassifications are almost unavoidable.

Fig. 5 shows the quality of the three classification schemes with respect to false positives,
i. e. cases where the classification predicts BREAK but the transfer is eventually maintained.
The x-axis represents the time before the scheduled event time, while the y-axis displays the
fraction of cases with a correct classification. The overall best classification rate is obtained
by STANDARD, but the two other methods also work quite well. The lower accuracy of
STOCHASTIC may be explained by the lack of route-specific probability distributions.

We observe a trade-off between accuracy and number of detected cases of type BREAK.
High accuracy is important since one has to avoid rerouting passengers without any need.
On the other hand, the potential of early rerouting can only be used if cases of type BREAK
are detected. While STANDARD is the most conservative method with an excellent clas-
sification rate, it detects the overall smallest number of cases of type BREAK. Transfers
classified as CRITICAL may break or may be maintained by disposition. Fig. 6 shows the
number of cases where critical transfers (classified by STANDARD) break or are maintained.
Since the information whether a transfer breaks is not directly available to us, we take as
a proxy the following condition. We consider a transfer as maintained due to an explicit
waiting decision if the departing train departs later as scheduled, but would have already
been available on time. It turns out that a high fraction of transfers classified as CRITI-
CAL eventually breaks (see Fig. 6). If early rerouting is beneficial to passengers — which
we study in the second experiment —, then this finding suggests to decide about critical
transfers as early as possible.

ATMOS’14

132 Timing of Train Disposition: Towards Early Passenger Rerouting in Case of Delays

0
50

10
0

15
0

20
0

25
0

30
0

critical transfers

minutes before departure

nu
m

be
r

of
 c

as
es

−180 −150 −120 −90 −60 −30 −10

●
● ●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

MAINTAINED
BROKEN

Figure 6 Critical transfers (as classified by STANDARD), where we distinguish a posteriori
between maintained and broken transfers.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

broken transfers

time of day

qu
al

ity
 o

f c
la

ss
ifi

ca
tio

n

4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 24:00

0
14

28
42

56
70

nu
m

be
r

of
 c

la
ss

ifi
ca

tio
ns

Figure 7 Accuracy of the STANDARD classification of events of type BREAK.

Fig. 7 provides a closer look at the error rate of the STANDARD classification for events
of type BREAK on September 13, 2013. In particular, we are interested in the question
whether the classification rate depends on the time where the broken event occurs. To
exclude the effect that some transfers are manually dispatched, we here plot the remaining
error rate that we obtain if we remove such cases. In the peak time between 6:00 a.m. and
10 p.m., the accuracy of the STANDARD classification is 98.9%, it slightly degrades during
the night where it becomes 95.7% on average. Further analysis is required to understand
why the classification rate is time-dependent.

Experiment 2: Potential of early rerouting. What is the benefit of an early rerouting
strategy for the passengers?

To answer this question, we have set up the following simulation experiment. Given a
realistic passenger flow for some specific traffic day, we first select the 1000 most important
transfers, where importance of a transfer is just the number of passengers who plan to use

M. Lemnian, R. Rückert, S. Rechner, C. Blendinger, and M. Müller-Hannemann 133

180 120 60 30

average arrival delay per passenger with a broken transfer

av
er

ag
e

ar
riv

al
 d

el
ay

 (
m

in
ut

es
)

50
55

60
65

70
75

∞

Figure 8 Average arrival delay at the destination if a planned transfer breaks. Rerouting is
applied either immediately (denoted by ∞) or (at most) 180, 120, 60, or 30 minutes before the
planned departure of the broken transfer.

180 120 60 30

average arrival delay per passenger with a broken transfer

av
er

ag
e

ar
riv

al
 d

el
ay

 (
m

in
ut

es
)

50
55

60
65

70
75

∞ 180 120 60 30

average arrival delay per passenger with a broken transfer

av
er

ag
e

ar
riv

al
 d

el
ay

 (
m

in
ut

es
)

50
55

60
65

70
75

∞

Figure 9 Experiment 2, further test days: April 16 (left) and September 12 (right), 2013. Average
arrival delay at the destination if a planned transfer breaks. Rerouting is applied either immediately
(denoted by∞) or (at most) 180, 120, 60, or 30 minutes before the planned departure of the broken
transfer.

it. For each selected transfer we introduce a single artificial delay, chosen large enough
that this transfer breaks. Then, for each case we run several alternative strategies. The
first alternative immediately reroutes all passengers who have planned to use the selected
transfer when the delay information becomes available. The other alternatives wait with
the rerouting until x minutes (or less) before the event takes place, where we use x ∈
{30, 60, 120, 180}. In all cases we measure the final delay of passengers at their destination.
Fig. 8 shows exemplarily for one specific day (September 13, 2013), that the average delay
is increasing the longer we wait with rerouting. The best average value of 54 minutes is
obtained when rerouting is applied immediately, while waiting until 30 minutes before the
planned departure of the connecting train leads to an average delay of 66 minutes. While
the average delay values depend on the chosen day, the clear trend is confirmed for other test
days, too (Fig. 9): the earlier we are able to reroute, the more beneficial it is for passengers.

On an ordinary test day with real delays (September 13, 2013) more than 20,000 pas-
sengers have been rerouted due to transfers classified as BREAK. Again we applied the
strategies described above: Either we reroute passengers immediately (denoted by ∞) or

ATMOS’14

134 Timing of Train Disposition: Towards Early Passenger Rerouting in Case of Delays

180 120 60 30

0
50

10
0

15
0

20
0

25
0

30
0

35
0

m
in

ut
es

 b
ef

or
e

de
pa

rt
ur

e

∞

Figure 10 Rerouting is applied either immediately (denoted by ∞) or (at most) 180, 120, 60,
or 30 minutes before the planned departure of the broken transfer. For each strategy, the box-
plots show the distributions of the moment in time before the planned departure where rerouting
is applied for real delay data on September 13, 2013.

(at most) 180, 120, 60, or 30 minutes before the planned departure of a transfer that has
been classified as BREAK. For this scenario we observed only relatively small average sav-
ings in travel time for the rerouted passengers. Therefore, we evaluated how many minutes
in advance the corresponding strategy has actually done the rerouting operations. Fig. 10
shows the corresponding distributions for each strategy as box plots (showing quantiles and
outliers). We observe that for all strategies, more than 75% of all reroutings have been ap-
plied within the last 50 minutes before the planned transfer. It means that for the majority
of passengers all strategies do essentially the same. This at least partially explains why the
average savings in travel time by early rerouting (the average taken over all rerouted pas-
sengers) is small. About 1300 passengers can be rerouted at least 120 minutes in advance.
Hence, several hundreds of passengers have the chance to profit from early rerouting.

5 Conclusion and Further Research

Timing of decisions is an important challenging aspect of train disposition. This study can
be seen as a first step towards rethinking the disposition process. Our computational results
suggest that rerouting of passengers should be applied as soon as possible whenever qualified
information that a transfer is going to break or that a train is cancelled becomes available.

In this study, we assume for simplicity that in case of severe delays passengers can be
rerouted without any restriction. In practice, there are some legal issues with respect to
rerouting of passengers. Namely, booked tickets may be only valid for the reserved train or
for a subset of train classes.

Another important aspect neglected in this study concerns train capacities. We simply
reroute passengers to the quickest connection towards their destination. This may be prob-

M. Lemnian, R. Rückert, S. Rechner, C. Blendinger, and M. Müller-Hannemann 135

lematic in case of already crowded trains. We clearly should avoid to reroute passengers to
overfull trains whenever possible. From an algorithmic point of view, capacity-aware rerout-
ing can be achieved with network flow techniques. Moreover, one may consider reliability
as a further criterion for the search of alternative routes. Finally, we plan to improve the
classification methods by adapting them further to specific train routes and time of the day.

Acknowledgements. The authors have to thank Deutsche Bahn AG for supporting this
research and providing test data for scientific use. Our thanks also go to the group of Karsten
Weihe and Mathias Schnee at Technische Universität Darmstadt for sharing their code of
MOTIS with us.

References

1 L. Anderegg, P. Penna, and P. Widmayer. Online train disposition: to wait or not to
wait? ATMOS’02, ICALP 2002 Satellite Workshop on Algorithmic Methods and Models
for Optimization of Railways, Electronic Notes in Theoretical Computer Science, 66(6),
2002.

2 R. Bauer and A. Schöbel. Rules of thumb — practical online strategies for delay manage-
ment. Technical report, NAM Report, Göttingen, 2012.

3 M. Bender, S. Büttner, and S.O. Krumke. Online delay management on a single train line:
beyond competitive analysis. Public Transport, 5:243–266, 2013.

4 A. Berger, C. Blaar, A. Gebhardt, M. Müller-Hannemann, and M. Schnee. Passenger flow-
oriented train disposition. In C. Demetrescu and M. M. Halldórsson, editors, Proceedings of
the 19th Annual European Symposium on Algorithms (ESA), volume 6942 of Lecture Notes
in Computer Science, pages 227–238. Springer, 2011.

5 A. Berger, A. Gebhardt, M. Müller-Hannemann, and M. Ostrowski. Stochastic delay predic-
tion in large train networks. In 11th Workshop on Algorithmic Approaches for Transporta-
tion Modelling, Optimization, and Systems (ATMOS), volume 20 of OpenAccess Series in
Informatics (OASIcs), pages 100–111. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2011.

6 A. Berger, R. Hoffmann, U. Lorenz, and S. Stiller. Online railway delay management:
Hardness, simulation and computation. Simulation, 87(7):616–629, 2011.

7 C. Biederbick. Computergestützte Disposition im schienengebundenen Personentransport:
ein kundenorientierter Ansatz. PhD thesis, Universität Paderborn, 2006.

8 C. Biederbick and L. Suhl. Decision support tools for customer-oriented dispatching. In
F. Geraets, L.G. Kroon, A. Schoebel, D. Wagner, and C. Zaroliagis, editors, Algorithmic
Methods for Railway Optimization, volume 4359 of Lecture Notes in Computer Science,
pages 171–183. Springer, 2007.

9 S. Cicerone, G. Di Stefano, M. Schachtebeck, and A. Schöbel. Multi-stage recovery robust-
ness for optimization problems: A new concept for planning under disturbances. Informa-
tion Sciences, 190:107–126, 2012.

10 A. D’Ariano. Improving Real-Time Train Dispatching: Models, Algorithms and Applica-
tions. PhD thesis, Technische Universiteit Delft, 2008.

11 A. D’Ariano, F. Corman, D. Pacciarelli, and M. Pranzo. Reordering and local rerouting
strategies to manage train traffic in real time. Transportation Science, 42(4):405–419, 2008.

12 T. Dollevoet and D. Huisman. Fast heuristics for delay management with passen-
ger rerouting. Public Transport, 2013. http://link.springer.com/article/10.1007%
2Fs12469-013-0076-6#page-1.

ATMOS’14

http://link.springer.com/article/10.1007%2Fs12469-013-0076-6#page-1
http://link.springer.com/article/10.1007%2Fs12469-013-0076-6#page-1

136 Timing of Train Disposition: Towards Early Passenger Rerouting in Case of Delays

13 T. Dollevoet, D. Huisman, M. Schmidt, and A. Schöbel. Delay management with re-routing
of passengers. In J. Clausen and G. Di Stefano, editors, 9th Workshop on Algorithmic Ap-
proaches for Transportation Modelling, Optimization, and Systems (ATMOS), OpenAccess
Series in Informatics (OASIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2009.

14 M. Gatto, B. Glaus, R. Jacob, L. Peeters, and P. Widmayer. Railway delay management:
Exploring its algorithmic complexity. In T. Hagerup and J. Katajainen, editors, Proceedings
of 9th Scandinavian Workshop on Algorithm Theory (SWAT), volume 3111 of Lecture Notes
in Computer Science, pages 199–211. Springer, 2004.

15 M. Gatto, R. Jacob, L. Peeters, and A. Schöbel. The computational complexity of delay
management. In D. Kratsch, editor, Graph-Theoretic Concepts in Computer Science: 31st
International Workshop (WG 2005), volume 3787 of Lecture Notes in Computer Science.
Springer, 2005.

16 M. Gatto, R. Jacob, L. Peeters, and P. Widmayer. On-line delay management on a single
train line. In F. Geraets, L.G. Kroon, A. Schoebel, D. Wagner, and C. Zaroliagis, editors,
Algorithmic Methods for Railway Optimization, volume 4359 of Lecture Notes in Computer
Science, pages 306–320. Springer, 2007.

17 J. Jespersen-Groth, D. Potthoff, J. Clausen, D. Huisman, L.G. Kroon, G. Maróti, and M.N.
Nielsen. Disruption management in passenger railway transportation. In R. Ahuja, R.-H.
Möhring, and C. Zaroliagis, editors, Robust and Online Large-Scale Optimization, volume
5868 of Lecture Notes in Computer Science, pages 399–421. Springer, Heidelberg, 2009.

18 P. Kecman, F. Corman, A. D’Ariano, and R. Goverde. Rescheduling models for railway
traffic management in large-scale networks. Public Transport, 5:95–123, 2013.

19 P. Kecman and R. M. P. Goverde. Adaptive, data-driven, online prediction of train event
times. In 16th IEEE Annual Conference on Intelligent Transportation Systems (ITCS
2013), 2013.

20 N. Kliewer and L. Suhl. A note on the online nature of the railway delay management
problem. Networks, 57:28–37, 2011.

21 S.O. Krumke, C. Thielen, and C. Zeck. Extensions to online delay management on a single
train line: new bounds for delay minimization and profit maximization. Mathematical
Methods of Operations Research, 74(1):53–75, 2011.

22 S. Kurby. Makroskopisches Echtzeitdispositionsmodell zur Lösung von Anschlusskonflik-
ten im Eisenbahnbetrieb. PhD thesis, Fakultät Verkehrswissenschaften “Friedrich List”,
Technische Universität Dresden, 2012.

23 M. Müller-Hannemann and M. Schnee. Finding all attractive train connections by multi-
criteria Pareto search. In F. Geraets, L. Kroon, A. Schoebel, D. Wagner, and C. Zaroliagis,
editors, Proceedings of the 4th Dagstuhl conference on algorithmic approaches for trans-
portation modelling, optimization, and systems (ATMOS), volume 4359 of Lecture Notes
in Computer Science, pages 246–263. Springer Verlag, 2007.

24 M. Müller-Hannemann and M. Schnee. Efficient timetable information in the presence of
delays. In R. Ahuja, R.-H. Möhring, and C. Zaroliagis, editors, Robust and Online Large-
Scale Optimization, volume 5868 of Lecture Notes in Computer Science, pages 249–272.
Springer, 2009.

25 M. Schachtebeck and A. Schöbel. To wait or not to wait and who goes first? Delay
management with priority decisions. Transportation Science, 44(3):307–321, 2010.

26 T. Schaer, J. Jacobs, S. Scholl, S. Kurby, A. Schöbel, S. Güttler, and N. Bissantz. DisKon —
Laborversion eines flexiblen, modularen und automatischen Dispositionsassistenzsystems.
Eisenbahntechnische Rundschau (ETR), 45:809–821, 2005.

27 M. Schmidt. Simultaneous optimization of delay management decisions and passenger
routes. Public Transport, 5:125–147, 2013.

M. Lemnian, R. Rückert, S. Rechner, C. Blendinger, and M. Müller-Hannemann 137

28 A. Schöbel. A model for the delay management problem based on mixed-integer program-
ming. Electronic Notes in Theoretical Computer Science, 50(1), 2001.

29 A. Schöbel. Customer-oriented optimization in public transportation. Springer, Berlin,
2006.

30 A. Schöbel. Integer programming approaches for solving the delay management problem.
In F. Geraets, L. Kroon, A. Schoebel, D. Wagner, and C. Zaroliagis, editors, Algorithmic
Methods for Railway Optimization, volume 4359 of Lecture Notes in Computer Science,
pages 145–170. Springer, 2007.

ATMOS’14

Speed-Consumption Tradeoff for Electric Vehicle
Route Planning∗

Moritz Baum1, Julian Dibbelt1, Lorenz Hübschle-Schneider2,
Thomas Pajor3, and Dorothea Wagner1

1 Department of Informatics, Karlsruhe Institute of Technology (KIT)
76128 Karlsruhe, Germany
firstname.lastname@kit.edu

2 Department of Computer Science, University of Leicester
Leicester LE1 7RH, United Kingdom
lorenz@4z2.de

3 Microsoft Research, Mountain View, CA 94043, USA
tpajor@microsoft.com

Abstract
We study the problem of computing routes for electric vehicles (EVs) in road networks. Since their
battery capacity is limited, and consumed energy per distance increases with velocity, driving
the fastest route is often not desirable and may even be infeasible. On the other hand, the
energy-optimal route may be too conservative in that it contains unnecessary detours or simply
takes too long. In this work, we propose to use multicriteria optimization to obtain Pareto sets
of routes that trade energy consumption for speed. In particular, we exploit the fact that the
same road segment can be driven at different speeds within reasonable intervals. As a result, we
are able to provide routes with low energy consumption that still follow major roads, such as
freeways. Unfortunately, the size of the resulting Pareto sets can be too large to be practical.
We therefore also propose several nontrivial techniques that can be applied on-line at query time
in order to speed up computation and filter insignificant solutions from the Pareto sets. Our
extensive experimental study, which uses a real-world energy consumption model, reveals that
we are able to compute diverse sets of alternative routes on continental networks that closely
resemble the exact Pareto set in just under a second—several orders of magnitude faster than
the exhaustive algorithm.

1998 ACM Subject Classification G.2.2 Graph Theory, G.2.3 Applications

Keywords and phrases electric vehicles, shortest paths, route planning, bicriteria optimization,
algorithm engineering

Digital Object Identifier 10.4230/OASIcs.ATMOS.2014.138

1 Introduction

Personal electromobility has gained substantial momentum in recent years, which demands
for novel route planning algorithms, considering factors such as speed and terrain. Although
the past decade has seen a great amount of research conducted in the area of route planning
in general, most of it shares one trait, though, and that is a focus on conventional vehicles

∗ Support by DFG grant WA 654/16-1, by the EU FP7/2007-2013 under grant agreement no. 609026
(project MOVESMART), and by the Federal Ministry of Economics and Technology under grant
no. 01ME12013 (project iZeus). This work was done while the third and fourth authors were at
Karlsruhe Institute of Technology. It is based on a Bachelor thesis of the third author [18].

© Moritz Baum, Julian Dibbelt, Lorenz Hübschle-Schneider, Thomas Pajor, and Dorothea Wagner;
licensed under Creative Commons License CC-BY

14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’14).
Editors: Stefan Funke and Matúš Mihalák; pp. 138–151

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2014.138
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

M. Baum, J. Dibbelt, L. Hübschle-Schneider, T. Pajor, and D. Wagner 139

using internal combustion engines. With electric vehicles, however, new factors become
important that must be considered when planning routes: Battery capacity and thus cruising
range are severely limited, while driving down-hill and breaking allow for recuperation of
energy. Charging is a time-consuming process and therefore not viable en route. It turns out
that traditional route planning techniques do not suffice, and new approaches are required.

A recent algorithmic survey for route planning in road networks is given by Bast et al. [2].
While many of the methods optimize a single criterion (typically travel time), some also
extend to multiple criteria by utilizing multi-dimensional vertex labels that represent sets of
Pareto-optimal paths [15, 21]. While theoretically hard [13], in some transportation networks
this problem may actually be “feasible in practice” [22]. For general networks, the recent
NAMOA* algorithm is an extension of A* search [16] to the multicriteria case [20], where
vertex potentials help reducing the number of label scans. This approach was also applied to
road networks [19] and later parallelized [24, 10]. For the case that the metric is a linear
combination of two or more criteria, practical algorithms are available as well [14, 12].

For electric vehicles, most papers have focused on the integration of battery capacity
constraints and negative edge weights (a result of recuperation) into classical single-criterion
route planning algorithms optimizing energy consumption [9, 23, 4]. However, such routes
may have disproportionate detours: driving slower saves energy at the cost of greatly longer
travel time. Storandt [25] therefore optimizes energy consumption, but bounding the amount
by which travel time may increase. Instead, we would like to present users a reasonably-sized
set of routes that differently trade energy consumption and driving time, enabling them to
adequately pick the one most suitable to them. Moreover, all known approaches assume
a fixed driving speed per road segment, neglecting attractive solutions that still use major
roads (such as freeways) but save energy by actually driving below the posted speed limits.

In this work, we compute comprehensive sets of routes that reasonably trade speed and
energy consumption. Not only do we consider travel time and energy consumption as criteria,
but also explore the possibility of driving the same road segment at different speeds (within
reasonable bounds). Even though this extended scenario greatly increases query complexity,
we demonstrate that it is practically possible to compute such routes for electric vehicles on
large road networks. Applying several nontrivial improvements at query time, we reduce
the (empirical) running time of our algorithm by several orders of magnitude (still computing
full Pareto sets). Adding heuristic filtering techniques, we further reduce running times to
750ms for continental road networks and a realistic electric vehicle model.

The paper is structured as follows. Section 2 provides necessary foundations. Section 3
describes our basic approach to compute the full set of Pareto-optimal paths. It also describes
extensions that improve the algorithm’s running time while retaining correctness. Section 4
introduces heuristic approaches, which aim to reduce the size of the Pareto sets by keeping
only the most significant solutions. An experimental evaluation of all presented techniques is
given in Section 5, while Section 6 concludes with final remarks.

2 Preliminaries

We consider directed, weighted (multi-)graphs G = (V,E) where E ⊆ V × V is a multiset of
edges (i. e., there is a mapping m : E → N denoting the multiplicity of each edge). In other
words, parallel edges are allowed. We call u the tail and v the head of an edge (u, v), and
vertices are neighbors if they are connected by an edge. Moreover, a weight function ω : E → Z
assigns weights to every edge inG. An s–t-path inG is a sequence Ps,t = [s = v1, v2 . . . , vk = t]
of vertices, such that (vi, vi+1) ∈ E for 1 ≤ i ≤ k− 1. If s = t, we call Ps,t a cycle. A path is

ATMOS’14

140 Speed-Consumption Tradeoff for Electric Vehicle Route Planning

s

t

−2

4

−1

bmin

c

rmax
b

γb(P)

M

M
0

∞

bmin

c
rmax

Figure 1 Left: An s–t-path P with edge weights −2, 4, −1. Right: The cost γb(P) of traversing P
subject to the battery’s state of charge b at the source vertex s. A state of charge below bmin is not
sufficient to reach t, i. e., γb(P) = ∞. In case b exceeds M − |rmax|, the overcharging constraint
limits recuperation on the first edge, which leads to a higher total cost γb(P). This typical shape of
the cost profile was first observed in Eisner et al. [9]. The cost of any (feasible, nonnegative) path is
within the shaded area.

called simple if it contains no cycles. The weight (or cost) ω(Ps,t) =
∑k−1
i=1 ω(vi, vi+1, i) of a

path Ps,t is the sum of its edge weights. A potential function φ : V → R on the vertices is
called feasible, if ω(u, v)− φ(u) + φ(v) ≥ 0 for all e ∈ E. Any feasible potential induces a
graph G′ of nonnegative reduced edge weights by shifting the weight of every edge e = (u, v),
setting ω′(e) = ω(u, v)− φ(u) + φ(v). This definition extends to paths canonically.

Dijkstra’s algorithm [7] is a well-known approach to solve the shortest path problem on
weighted graphs in (almost) linear time. It maintains (scalar) distance labels d(·) for each
vertex, initially set to 0 for the source vertex s and ∞ otherwise. In each iteration, the
algorithm extracts a vertex u with minimum d(u) from a priority queue (initialized with s).
It then scans all edges (u, v): if d(u) + ω(u, v) improves d(v), it updates d(v) accordingly
and adds (or updates) v in the priority queue. If all edge weights are nonnegative, Dijkstra’s
algorithm has the label-setting property: Once a vertex v has been extracted from the queue,
the distance label d(v) is final and corresponds to the shortest path distance to v. The actual
path can be retrieved by maintaining parent pointers during the algorithm.

In this work, we consider graphs representing road networks with two associated weight
functions on the edges: travel time τ and energy consumption γ. Specific travel time
and energy consumption values are denoted by x and y, respectively. We say that a
tuple d1 = (x1, y1) dominates a tuple d2 = (x2, y2) if d1 is smaller in both criteria than d2
and strictly better in at least one. A set D of tuples is called a Pareto set if there are no two
tuples d1, d2 ∈ D such that d1 dominates d2. Similarly, a path Ps,t is called nondominated, if
no other path exists that dominates Ps,t with respect to τ(Ps,t) and γ(Ps,t). The bicriteria
shortest-path (BSP) algorithm [15, 21] is a natural extension of Dijkstra’s algorithm to
the bicriteria setting. Instead of scalar values, the label sets D(·) of a vertex may hold an
arbitrary number of labels (x, y). The algorithm starts with empty label sets, adding the
label (0, 0) to D(s). Then, it works along the lines of Dijkstra’s algorithm, but propagating
labels instead of label sets: In each step, it extracts the label d with smallest associated key
from a priority queue, scanning all corresponding outgoing edges (u, v). For each, it generates
a new label d′ by adding the costs of (u, v) to d. If d′ is not dominated by any label in D(v),
it adds d′ to D(v), removing any dominated labels (by d′) in D(v) on the fly. If edge weights
of G are nonnegative, and the priority of labels in the queue is a linear combination of their
costs, the algorithm is label-setting, that is, once a label has been extracted from the queue,
it cannot be dominated anymore.

M. Baum, J. Dibbelt, L. Hübschle-Schneider, T. Pajor, and D. Wagner 141

As mentioned before, recuperation of energy may lead to negative γ-values on some edges.
(Note that cycles with negative weight are physically ruled out.) While in this setting the BSP
algorithm is still correct, it loses its label-setting property. Also, since the battery has a
limited capacity M (which cannot be exceeded), we must take additional battery constraints
into account: for an s–t path Ps,t to be feasible, the battery’s state of charge, denoted b,
has to remain within the interval [0,M] at every vertex along Ps,t. Battery constraints
can be satisfied by additional checks during the query with negligible overhead; see [9, 4].
Figure 1 shows how consumed energy along a path is influenced by battery constraints. For
a study of different strategies to cope with negative edge weights in the context of electric
vehicle routing, see Artmeier et al. [1]. They conclude that for metrics representing energy
consumption, a label-correcting variant of Dijkstra’s algorithm outperforms the Bellman-Ford
algorithm [5] in practice (despite its exponential theoretical worst-case running time).

3 Problem Statement and Basic Approach

Traditional route planning algorithms compute routes on a model that assumes a fixed travel
speed on each road segment of the network, usually reflected by the posted speed limit
including (typical or historic) traffic conditions. Therefore, optimizing energy consumption
in this model will likely result in unattractive routes that follow slow roads in order to save
energy. On the other hand, energy could also be saved by following fast roads but driving
below the speed limit: The onboard navigation system could instruct the user about the
recommended speed in order to meet a certain total energy consumption goal.

In our model we define with each edge of the graph an interval of minimum and maximum
speeds, given by the input. Thereby, we only consider a limited number of discrete speed
values in the interval (typically in 10 kph steps) in order to make it easy for the driver to
comply with them. Hence, given the road network, we create a multigraph G = (V,E),
in which each road segment of the input is added to E as many times (weighted with
appropriate τ and γ values) as there are possible speeds to traverse it. Now, given vertices
s and t, our goal is to compute the full Pareto set of all nondominated paths from s to t.
Note that besides providing alternative routes, we can also use this Pareto set to derive
constrained paths, such as the one with minimal travel time subject to energy consumption at
most c (for some c ∈ [0,M]). In what follows, we present our basic algorithm for computing
full Pareto sets, and then describe several improvements that help reducing the query time.

Basic Approach. To solve the problem, we can immediately use the BSP algorithm (cf. Sec-
tion 2) on the multigraph G. Recall however, that because the graph may contain negative
edge weights (due to recuperation), the algorithm is not label-setting. By these means we
cannot use target pruning: a label that is dominated by the current (tentative) target label
set may still belong to a Pareto-optimal path with a suffix containing negative consumption
values. However, as negative cycles are ruled out, we can safely use a technique called hopping
reduction [8]: after extracting a label (x, y) and before scanning an edge (u, v), we check
whether v is the predecessor on the current path to u. If this is the case, traversing this edge
provably cannot improve the label set at v. We can thus discard it.

Label-Setting Property. Next, we describe a way to obtain feasible vertex potential func-
tions. These will help to make the algorithm label-setting, which, in turn, enables target
pruning. While any feasible (cf. Section 2) potential for the energy consumption function
γ would be sufficient to achieve our goal, we present a potential function that addition-

ATMOS’14

142 Speed-Consumption Tradeoff for Electric Vehicle Route Planning

ally helps guide the search toward the target, similarly to A∗-search [16]. Building upon
a technique by Tung and Chew [26], we compute the potential by running two Dijkstra
queries prior to the BSP algorithm. Both queries work on the reverse graph (i. e., the input
graph with all edges reversed), starting from the target vertex t. The first uses the (scalar)
edge consumption values and computes labels dγ(·) at all vertices. Note that this query is
actually label-correcting. We prune the search whenever a label exceeds the battery capacity,
however, for correctness we must ignore the overcharging constraint (thereby obtaining lower
bounds on consumption). The second query uses travel times to compute labels dτ (·), and is
restricted to those vertices in G that have been reached by the first query. Since both queries
optimize a single criterion within a limited range around t, their running time is negligible
compared to the subsequent BSP query.

Given the labels of both queries, we obtain at every vertex v potentials φτ (v) = dτ (v) for
travel time, and φγ(v) = dγ(v) for energy consumption. Since the potentials constitute lower
bounds on both costs from v to t, feasibility directly follows from the triangle inequality. We
now make the BSP query label-setting by adjusting the key of labels (x, y) in the priority
queue to be a linear combination of the reduced costs (of its corresponding path) according
to our potentials φτ and φγ . The following Theorem 1 formally proves that this is indeed
sufficient to make the algorithm label-setting.

I Theorem 1. For a label (x, y) at vertex v, let the priority queue key be defined as λ(x+
φτ (v)) + µ(y + φγ(v)) (with λ, µ ∈ R≥0). Then the BSP algorithm is label-setting.

Proof. Assume to the contrary, that a label (x, y) at a vertex v is dominated at some
point after being extracted from the queue. Since (reduced) weights are positive, keys of
subsequently extracted labels have increasing keys. Hence, the label is dominated after
extracting a label (x′, y′) (at some neighbor u of v) with greater or equal key. Without loss
of generality, let λ = 1, then we have

x′ + φτ (u) + µ(y′ + φγ(u)) ≥ x+ φτ (v) + µ(y + φγ(v)). (1)

On the other hand, after scanning an outgoing edge (u, v), the label (x, y) is dominated,
i. e., x′ + τ(u, v) ≤ x and y′ + γ(u, v) ≤ y (and in at least one case, equality must not hold).
However, due to feasibility of the potential, we know that τ(u, v) ≥ φτ (u)− φτ (u) holds for
travel time. Plugging this bound into the domination condition (and proceeding analogously
for consumption) yields

x′ + φτ (u) ≤ x+ φτ (v) and (2)
y′ + φγ(u) ≤ y + φγ(v). (3)

However, demanding that inequality holds in Equations (2) or (3) immediately contradicts
Equation (1). This completes the proof. J

Target Pruning. Potentials enable target pruning as follows. Whenever the algorithm is
about to add a label (x, y) to a label set at vertex v, it first checks if the label (x+ φτ (v), y+
φγ(v)) is dominated by any label of the target’s label set D(t). In this case, it discards (x, y):
the distances φτ (v) = dτ (v) and φγ(v) = dγ(v) yield lower bounds on the cost of any path
from v to t, hence, (x, y) cannot be part of the Pareto-optimal solution at t.

We can further exploit the two performed extra queries to strengthen our target pruning.
As we already computed the fastest paths from reachable vertices to t (in the second query),
we may quickly compute the energy consumption ymax of the fastest s–t path by traversing

M. Baum, J. Dibbelt, L. Hübschle-Schneider, T. Pajor, and D. Wagner 143

its edges, applying battery constraints accordingly. We then add a “virtual” solution (0, ymax)
to D(t), which is only used for target pruning in the subsequent BSP algorithm. (Note that
no label dominated by (0, ymax) can be part of a Pareto-optimal solution.) The same cannot
be done for the energy-optimal path as easily, since the lower bounds from the first query
are not tight; in fact, battery constraints may not only imply a different consumption along
the path, but even render it infeasible.

Contracting Vertices with Two Neighbors. Adding parallel edges to the graph may greatly
increase the number of Pareto optimal solutions. This becomes particularly evident for
long sequences of vertices with parallel edges: Assume a chain of n vertices, each connected
to its (at most) two neighbors by k edges. At every vertex u, the BSP algorithm scans k
edges (u, v) for each label in the label set D(u), each possibly creating a new label at v. Thus,
in the worst case we get Θ(kn) nondominated labels at the last vertex of the chain. Indeed,
by these means the sizes of the Pareto sets depend on the level of detail present in the model
of the road network, rather than its structure. Also, requiring users to frequently adjust their
driving speed on long road segments is unreasonable. We therefore contract (some) of these
vertices. More precisely, we remove v from the graph and for each pair of edges e1 = (u, v)
and e2 = (v, w), we add (u,w) to E, iff the driving speeds of e1 and e2 coincide. By these
means, the number of edges can only decrease. Note that we do not contract vertices that
represent intersections, or at which the road category or speed limit changes (see Section 5).

Subgraph Extraction. We can improve locality of the BSP algorithm as follows. After
running the two initial Dijkstra searches, we extract the (comparatively small) induced
subgraph of the reachable vertices. More precisely, we run Dijkstra’s algorithm from s, using
a linear combination of the reduced weights for every edge (u, v), i. e., λ(τ(u, v)− φτ (u) +
φτ (v)) + µ(γ(u, v) − φγ(u) + φγ(v)). Thereby, whenever we extract a vertex, it (and its
incident edges) are immediately added to a search graph G′. Also, we prune at vertices at
which the lower bound on consumption (induced by φγ(·)) exceeds that of the (previously
computed) fastest route. As a result, the graph G′ is small and its vertices are arranged in
Dijkstra rank order. This greatly improves spatial locality of the subsequent BSP query,
which we now run on G′ instead of G.

4 Heuristic Improvements

All aforementioned techniques preserve the correctness of the algorithm, i. e., they compute
full Pareto sets. However, label set sizes still grow quickly with distance from s (exponentially
in the worst case). Therefore, computing the full Pareto set is prohibitive for long-range
queries. In what follows, we present several heuristic techniques that aim to reduce label set
sizes by discarding labels at certain points during the query. Though we drop exactness, our
experimental evaluation (cf. Section 5) shows that they still provide high-quality solutions
while greatly improving performance. We present three independent techniques in turn,
which can be combined to improve running time further.

Early Aborting. When extracting a label d at some vertex u and scanning parallel edges
with head vertex v, we abort the scan at the first (newly generated) label that is dominated
by the label set at v, i. e., no more edges with head v are scanned for the label d. The
intuition of this early aborting technique is that, locally, the tentative labels created by

ATMOS’14

144 Speed-Consumption Tradeoff for Electric Vehicle Route Planning

parallel edges usually differ only slightly, and the effect on solution quality is little. Despite
the simplicity of this method, its impact on running time is notable (see Section 5).

Relaxing Dominance. A common technique to heuristically reduce the size of large Pareto
sets is to relax dominance. For an overview of common notions of relaxed dominance and an
experimental comparison, see Batista et al. [3]. In this work, we consider ε-dominance: For
given nonnegative values ετ and εγ , a label (x′, y′) ε-dominates a label (x, y) iff (x′−ετ , y′−εγ)
dominates (x, y). Applying this rule, new labels (x, y) are added to an existing label set only
if they are not ε-dominated by any of its labels. In other words, we add the label (x, y) only
if it yields a significant improvement. The input parameters ετ and εγ control the amount
by which dominance is relaxed.

Label-Discarding Techniques. The next strategy to reduce label set sizes periodically
discards insignificant labels from the label sets simultaneously at all vertices of the graph.
However, arbitrarily removing labels may lead to infinite loops in the algorithm. Hence, we
first establish a sufficient condition that guarantees algorithm termination. We then present
two discarding techniques, which obey the termination condition.

To see why removing labels can cause infinite loops, consider the following simple example.
Take two adjacent vertices u and v with label sets D(u) = {(x, y)} and D(v) = ∅. Scanning
the label (x, y) will generate a new label (x′, y′) at D(v). If the label (x, y) is cleared
before (x′, y′) is scanned, the algorithm will reinsert a new label (x′′, y′′) into D(u). Now,
clearing D(v) will exactly recreate the initial configuration, potentially causing an infinite
loop in the algorithm.

We now show that we can remedy this issue and, more generally, always guarantee
algorithm termination, if the lexicographically smallest label is kept in each label set during
the discarding process.

I Theorem 2. If the graph contains no negative edge weights, all cycles in the graph have
positive weights, and, for each label set, the (lexicographically) smallest label is never discarded,
the BSP algorithm terminates.

Proof. We show that after a finite number of extractions, the queue of the BSP algorithm
is empty, thus, implying algorithm termination. Recall that the queue operates on single
labels, and each label corresponds to a distinct path in the graph. Also, since new labels
are created by appending edges to existing paths, every distinct path in the graph (more
precisely, the label representing it) is added to the queue at most once. To prove the claim,
it suffices to show that the number of distinct inserted paths is finite.

If discarding is not applied, only labels representing simple paths are inserted into the
queue; labels of paths containing cycles are always dominated by those representing the same
path, but excluding all cycles. In this case termination follows immediately, since there is
only a finite number of simple paths in the graph. With discarding applied, however, we can
no longer guarantee that a label in the queue corresponds to a simple path, e. g., if the label
representing its simple subpath has been removed previously.

However, we show that for every label, the (reduced) cost (of both τ and γ) of its path is
bounded. Recall that the lexicographically smallest label is never discarded from a label set.
Consider an arbitrary (nonempty) label set D(v), and let k(v) denote the key of its smallest
label. At some point (after a finite number of extractions), the minimum key in the queue
exceeds k(v). This is because keys of inserted labels increase due to nonnegative reduced
edge weights and strictly positive cycles, while k(v) can only decrease. Let d(v) denote the

M. Baum, J. Dibbelt, L. Hübschle-Schneider, T. Pajor, and D. Wagner 145

smallest label in D(v) at this point. This label can only be removed from the label set D(v) if
it is dominated. Hence, after a finite number of extractions, no labels representing s–v-paths
dominated by d(v) are added to D(v). Therefore, every label must have bounded costs.

It remains to show that the number of paths that are not dominated by d(v) is finite.
This, however, is easy to see, since every path in the graph is composed of a simple path and
an arbitrary numbers of cycles attached to it. As every cycle has strictly positive weight, only
a finite number of cycles can be added to a simple path before it is dominated by d(v). J

Next, we present two approaches for periodically discarding labels. Both are applied
every k iterations of the algorithm (where k is a tuning parameter), removing insignificant
labels from all label sets that have been modified since the previous discarding procedure.

The first method attempts to identify clusters of labels, from which it deletes all but a small
number of “representative” ones. We implement this method by using DBSCAN (Density-
Based Spatial Clustering of Applications with Noise), a known approach for clustering [11].
In general it takes as input a set of points (of some metric space) and two parameters: a
threshold distance ε and a minimum neighborhood size k. Initially, each point is its own
cluster and marked unvisited. While there are unvisited points, the algorithm picks one
and checks whether its number of neighbors (i. e., points at distance at most ε) is at least k.
In this case, the algorithm joins the clusters of the point and its neighbors, recursing on
each newly-added neighbor. In our implementation, we use the Euclidean distance according
to (scaled) energy consumption and travel time as metric. For each cluster, we keep every
i-th label, including the smallest and largest ones (wrt. lexicographic order; i being a tuning
parameter). The running time of the algorithm is in O(n logn) [11], and it requires dynamic
data structures, such as a queue of unvisited neighbors when growing clusters. Also, labels
are discarded from clusters based on lexicographic order, rather than a quality measure.

Next, we propose delta discarding, which aims at discarding labels based on relative quality
measures. For a given label set it scans labels (x, y) in ascending order, comparing each with
its (lexicographic) predecessor (xpre, ypre). It does so by evaluating the differences ∆x =
|x− xpre| and ∆y = |y − ypre|. If both are sufficiently small, we discard one label. Assume,
without loss of generality, that y < ypre (hence, x > xpre). To decide which label to discard,
we consider the ratio ∆c/∆t. If it is below a predefined threshold, i. e., little overhead in
consumption achieves a high gain in travel time, we discard (x, y), as (xpre, ypre) provides
the better tradeoff. Otherwise, we discard (xpre, ypre). Note that this algorithm sweeps over
the label set only once (presuming it is sorted), with little computational overhead per label.

5 Experiments

We implemented all algorithms in C++, using clang++ 3.4.1 (flags -O3) as compiler, run on
one core of a dual 8-core Intel Xeon E5-2670 processor clocked at 2.6 GHz with 64 GiB of
DDR3-1600 RAM, 20 MiB of L3 and 256 KiB of L2 cache.

Input Data. Our experiments are based on road network data which is kindly provided
by PTV AG for scientific use. Elevation information stems from the Shuttle Radar To-
pography Mission (SRTM) data version 4.1, freely available from the CGIAR Consortium
for Spatial Information.1 It covers large parts of the world with a resolution of three arc
seconds (≈ 90 meters at the equator). We delete areas from the graph for which elevation

1 http://srtm.csi.cgiar.org/

ATMOS’14

http://srtm.csi.cgiar.org/

146 Speed-Consumption Tradeoff for Electric Vehicle Route Planning

Table 1 Evaluating our exact BSP algorithm. We use a battery capacity of 4 kWh on 100 random
queries. The columns PE (parallel edges), A* (goal-directed search), TP (target pruning), and
HR (hopping reduction) indicate whether the respective improvement is enabled (•) or not (◦).

improvements subgraph extr. BSP algorithm

PE A* TP HR #vert. time [ms] # extr. # comp. # sol. time [ms] spdup

◦ ◦ ◦ ◦ 9524 206.7 277 k 16M 18 151 —
• ◦ ◦ ◦ 9524 220.2 13 218 k 152 132M 1 300 261 641 1.0
• • ◦ ◦ 1921 221.9 2 558 k 5 310M 1 300 12 648 20.7
• • • ◦ 1921 222.0 197 k 593M 1 300 710 368.5
• • • • 1921 222.1 197 k 593M 1 300 700 373.8

information was missing in the data (removing large parts of Scandinavia). Also, we do not
consider private roads and ferries, as we have no energy consumption values available for
those. For all edges in the input graph, we define an interval of admissible driving speeds
depending on the speed limit and the road type. We bound the minimum admissible speed
such that traffic flow is still maintained and also by a threshold below which no more energy
is saved. For example, we set the minimum speed on motorways to 90 kph. Within these
speed intervals, we add parallel edges for every step of 10 kph. We then contract vertices
with two neighbors subject to the following conditions. First, their number of incoming and
outgoing edges needs to be identical. Second, all edges must share the same road category,
with corresponding consumption values having the same sign (note that this is a necessary
condition to retain correctness in the presence of battery constraints). From this graph we
extract the largest strongly connected component for our experiments. It has 19,046,204
vertices and 66,297,320 edges (44,675,948 unique edges). About 11% of the edges have a
negative consumption value.

The energy consumption data originates from PHEM (Passenger Car and Heavy Duty
Emission Model) [17], developed by the Graz University of Technology. PHEM is a microscale
emission model based on backwards longitudinal dynamics simulations. Among others, it
contains electric vehicle energy consumption values for a large variety of traffic situations,
road categories, speed limits, and slopes. We carefully map these values to our network
by measuring the similarity of road segments from the PTV data and the parameters of
PHEM. The vehicle chosen for our experiments is a Peugeot iOn, for which highly detailed
consumption data is available in PHEM. Its battery capacity is 16 kWh.

Evaluating the Exact Algorithm. The first experiment considers the performance of our
exact BSP algorithm and its improvements from Section 3. Here, we use a smaller battery
capacity of 4 kWh, since running times for 16 kWh are in the order of hours (for plain BSP). For
each variant, we evaluate (the same) 100 queries with source and target vertices s, t selected
uniformly at random. We pick s and t such that t is always reachable from s (otherwise,
the first Dijkstra query during initialization would quickly determine that the target is
unreachable). For all queries, we assume that the vehicle battery is fully charged (thereby
maximizing range). Based on preliminary experiments, we solely use the energy consumption
value of labels as key in the priority queue, which turned out as fastest.

Table 1 reports figures for several variants of BSP, each computing the full Pareto set.
We indicate whether the following improvements are active (•) or not (◦): goal-directed
search (A*), target pruning (TP) and hopping reduction (HR). The table also reports the

M. Baum, J. Dibbelt, L. Hübschle-Schneider, T. Pajor, and D. Wagner 147

average time to extract the subgraph and its size (#vert.), the average number of queue
extractions (# extr.), the average number of label comparisons during BSP (#comp.), the
average size of the Pareto set at t (# sol.), the running time, and the speedup (spdup). In
addition, the first (PE disabled) row shows BSP for the case that no parallel edges are added
to the graph, i. e., the driving speed on each road segment is fixed to the speed limit.

We observe that adding parallel edges greatly increases the number of nondominated
solutions and, hence, query complexity. This justifies our approach: Many viable solutions
are not captured when fixed speeds on the edges are presumed. Subgraph extraction takes
around 220ms on average, resulting in a search graph containing 1921 vertices (9524 vertices
without A*, as no pruning is applied during subgraph extraction in this case). Making the
algorithm label-setting (A* enabled), improves the average running time by an order of
magnitude and greatly decreases the number of extracted vertices and label comparisons.
Adding target pruning, further accelerates the algorithm by another order of magnitude. On
the other hand, hopping reduction turns out to be of little benefit. Since our implementation
quickly detects dominated labels (by maintaining sorted label sets), hopping reduction saves
only few label comparisons at the additional cost of checking the label’s parent pointer.
Summarizing, we observe that already for such short-range queries (the battery charge is
only 4 kWh), the exact Pareto sets contain over a thousand solutions on average, justifying
the use of our heuristics.

Evaluating the Heuristics. This experiment uses a battery capacity of 16 kWh and evaluates
the impact of the heuristics from Section 4. Before discussing performance, we define their
parameters (a detailed evaluation of the parameters follows later) and explain how we evaluate
the quality of the obtained solutions.

Regarding ε-dominance, we set ετ = 1.6 s and εγ = 4.0Wh. Recall that this indicates
the minimum cost by which two routes have to differ in order to be included in a solution.
For DBSCAN, initial experiments showed that requiring two points within a neighborhood
of 1000 units works well for most queries. A unit is either 1mWh (energy consumption)
or 0.4ms (travel time). Recall that we use Euclidean distance according to these units as
metric. For each cluster, we keep the (lexicographically) first and last label together with
every fifth label of the cluster. Finally, for delta discarding, we set a difference of 1.0 s (time)
and 3.0Wh (energy consumption) as similarity criteria. We set the threshold that determines
which labels to keep to 2.5Wh/s (9 kW). Both discarding techniques are applied every 28 queue
extractions (set to 210 if discarding is combined with another heuristic).

Regarding solution quality, we use two measures. The first considers how well the solution
of a heuristic covers the optimal paths (of the exact algorithm). The second measure evaluates
the relative error in travel time and energy consumption for the Pareto set.

For coverage we compare the set of nondominated paths Pheu from a heuristic to the
exact Pareto set Popt from the the exhaustive BSP algorithm at t. We do so by first
determining, for each path Pi ∈ Pheu, its most similar path P ′i ∈ Popt according to the
weighted (by geographical length len) Sørensen-Dice index [6], which is defined for paths P1, P2
as d(P1, P2) = 2 len(P1 ∩ P2)/(lenP1 + lenP2). The similarity of Pheu and Popt is then the
accumulated similarity of each previously matched pair Pi, P ′i , that is, d(Pheu,Popt) =
2

∑
i len(Pi ∩ P ′i)/

∑
i(len(Pi) + len(P ′i)). Note that d ∈ [0, 1] (larger values are better).

To measure relative errors of Pareto sets, we use the S-metric [27]: Given a Pereto set P ,
consider the rectangles Ri enclosed by each point Pi ∈ P and a fixed reference point P ∗.
We set P ∗ = (tmax,M), where tmax is the (maximum) travel time of the energy-optimal
path and M the battery capacity. (Note that the rectangle enclosed by the points (0,−M)

ATMOS’14

148 Speed-Consumption Tradeoff for Electric Vehicle Route Planning

Table 2 Evaluating our heuristics on 100 random queries with a battery capacity of 16 kWh.
Columns EA (early aborting), DB (DBSCAN), ∆ (delta discarding), εD (ε-dominance) indicate
whether a technique is used (•) or not (◦). We always enable all improvements from Table 1.

heuristics query performance solution quality

EA DB ∆ εD #extr. # comp. # sol. time [ms] cov. [%] err. [%]

◦ ◦ ◦ ◦ 32 697 k 487 054M 11 867 808 993 100.0 0.00
• ◦ ◦ ◦ 21 056 k 170 843M 7 664 295 974 99.6 0.13
◦ • ◦ ◦ 10 617 k 139 539M 9 871 413 169 97.4 0.76
• • ◦ ◦ 9 823 k 66 229M 6 159 220 198 97.9 0.72
◦ ◦ • ◦ 722 k 2 243M 1 964 3 106 97.5 0.82
• ◦ • ◦ 618 k 949M 1 474 1 898 98.0 0.75
◦ ◦ ◦ • 995 k 315M 333 1 618 99.2 0.35
• ◦ ◦ • 703 k 158M 248 1 149 96.3 1.93
◦ ◦ • • 294 k 60M 227 750 97.6 0.79
• ◦ • • 215 k 23M 140 644 95.1 2.45

and P ∗ bounds the objective space.) Then, the S-metric S(P) is defined as the area of
⋃
iRi,

i. e., the size of the set of points dominated by P , and the relative error of a Pareto set Pheu
is 1− S(Pheu)/S(Popt). Note that relative errors are in [0, 1], and smaller values are better.

Table 2 reports results on 100 random queries for a vehicle with a battery capacity
of 16 kWh. Regarding query performance, the table reports the average number of queue
extractions (# extr.), the average number of label comparisons (# comp.), the average number
of solutions (# sol.), and the average running time (which includes initialization). Regarding
quality, the table reports the average path coverage (cov.) and the relative error of the
Pareto set (err.). Extracting the subgraph takes under 500ms (marking 33 580 vertices on
average). We see that early aborting yields a speedup of more than two compared to the
basic approach, with only little loss in quality. On the other hand, DBSCAN has similar
running times, but with significantly lower quality in both dimensions. Delta discarding
and ε-dominance yield even faster queries, achieving speedups by more than two orders of
magnitude. However, ε-dominance computes solutions of higher quality with much smaller
Pareto sets. Note that the error of suboptimal solutions for ε-dominance is actually bounded
by ε. We also evaluate the combination of several heuristics. Early aborting improves
running times of the discarding techniques by up to a factor 1.9 with negligible effect on
solution quality. The fastest combination is delta discarding with ε-dominance, yielding
query times of under 800ms. Note that in this case, the initialization phase (Dijkstra runs
and subgraph extraction) become the major bottleneck. All aforementioned combinations
produce solutions of excellent quality, covering more than 97.5% of all Pareto-optimal paths
with an average relative error below 1%. On the other hand, early aborting increases the
error significantly (to up to 2.45%), if it is combined with ε-dominance. We conclude, that
using delta discarding with ε-dominance, we are able to provide solutions of very good quality
in well under a second.

Finally, Figure 2 evaluates different parameters for the heuristics from Table 2. It plots
the relative error of the solution subject to the running time of the algorithm. Labels at
points of discarding techniques depict the (base-2) logarithm of the discarding frequency.
Labels at points of ε-dominance depict a factor ε, such that ετ = ε · 0.4 s and εγ = ε · 1.0 kWh.
The discarding frequency for combinations that include ε-dominance is always 210, as this

M. Baum, J. Dibbelt, L. Hübschle-Schneider, T. Pajor, and D. Wagner 149

1 10 1000.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

query time [s]

re
la
tiv

e
er
ro
r
[%

]
baseline with EA
∆-disc. with EA
DBSCAN with EA
ε-dom. with EA
ε-dom., ∆-disc. with EA

8
10 12

14 16
18

8

10
12

14
16

18

8

10

8

10

1
4

10

1

4

10

14

10
1

4

10

Figure 2 Error subject to query time for the heuristic approaches for different parameter choices,
indicated by labels at points of the plot. They represent the (base-2) logarithm of discarding
frequency for discarding techniques, and a parameter ε with ετ = ε · 0.4 s and εγ = ε · 1.0 kWh for
ε-dominance and combinations of ε-dominance and discarding (discarding frequency was fixed to 210

in this case). Note that the point corresponding to the baseline algorithm is not contained in the
plot (as it is beyond the visible region).

slightly outperforms other frequencies. The plot indicates that ε-dominance provides the
best quality. Also, by varying the dominance parameters, we can easily trade query time
and solution quality. Combining ε-dominance with delta discarding provides even faster
queries with smaller error (for similar query times). Considering delta discarding on the
other hand, early aborting greatly improves running time, with little impact on solution
quality. Moreover, we can reduce the discarding frequency in order to decrease errors (at the
cost of additional running time).

6 Conclusion

This paper dealt with computing sets of routes for electric vehicles that trade travel time
and energy consumption via Pareto optimization. In the process, we are—to the best of our
knowledge—the first to explicitly consider driving road segments at different speeds (below
the limit) in order to save energy. Since by that the number of solutions increases significantly,
we also proposed several improvements and heuristics, which (in their combination) accelerate
query times (for the 16 kWh battery) from hours to just under a second with very little error
in solution quality. This makes our approach practical, e. g., for onboard navigation systems.

ATMOS’14

150 Speed-Consumption Tradeoff for Electric Vehicle Route Planning

Future work includes preprocessing for further speedup, enabling real-time applications.
We are also interested in incorporating turn costs. This would make the routes more realistic,
possibly even eliminating some insignificant Pareto-optimal solutions with tiny detours.

References
1 Andreas Artmeier, Julian Haselmayr, Martin Leucker, and Martin Sachenbacher. The

Shortest Path Problem Revisited: Optimal Routing for Electric Vehicles. In Proceedings
of the 33rd Annual German Conference on Advances in Artificial Intelligence, volume 6359
of Lecture Notes in Computer Science, pages 309–316. Springer, 2010.

2 Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller–Hannemann, Thomas
Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route Planning in
Transportation Networks. Technical Report MSR-TR-2014-4, Microsoft Research, 2014.

3 Lucas S. Batista, Felipe Campelo, Frederico G. Guimarães, and Jaime A. Ramírez. A
Comparison of Dominance Criteria in Many-Objective Optimization Problems. In IEEE
Congress on Evolutionary Computation, pages 2359–2366. IEEE, 2011.

4 Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. Energy-Optimal
Routes for Electric Vehicles. In Proceedings of the 21st ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pages 54–63. ACM Press,
2013.

5 Richard Bellman. On a Routing Problem. Quarterly of Applied Mathematics, 16:87–90,
1958.

6 Lee R. Dice. Measures of the Amount of Ecologic Association between Species. Ecology,
26(3):297–302, 1945.

7 Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1:269–271, 1959.

8 Yann Disser, Matthias Müller–Hannemann, and Mathias Schnee. Multi-Criteria Shortest
Paths in Time-Dependent Train Networks. In Proceedings of the 7th Workshop on Exper-
imental Algorithms (WEA’08), volume 5038 of Lecture Notes in Computer Science, pages
347–361. Springer, 2008.

9 Jochen Eisner, Stefan Funke, and Sabine Storandt. Optimal Route Planning for Electric
Vehicles in Large Network. In Proceedings of the 25th AAAI Conference on Artificial
Intelligence. AAAI Press, 2011.

10 Stephan Erb, Moritz Kobitzsch, and Peter Sanders. Parallel Bi-objective Shortest Paths
Using Weight-Balanced B-trees with Bulk Updates. In Proceedings of the 13th Interna-
tional Symposium on Experimental Algorithms (SEA’14), volume 8504 of Lecture Notes in
Computer Science, pages 111–122. Springer, 2014.

11 Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A Density-Based Algo-
rithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the
2nd International Conference on Knowledge Discovery and Data Mining (KDD’96), pages
226–231. AAAI Press, 1996.

12 Stefan Funke and Sabine Storandt. Polynomial-Time Construction of Contraction Hier-
archies for Multi-criteria Objectives. In Proceedings of the 15th Meeting on Algorithm
Engineering and Experiments (ALENEX’13), pages 31–54. SIAM, 2013.

13 Michael R. Garey and David S. Johnson. Computers and Intractability. A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, 1979.

14 Robert Geisberger, Moritz Kobitzsch, and Peter Sanders. Route Planning with Flexible
Objective Functions. In Proceedings of the 12th Workshop on Algorithm Engineering and
Experiments (ALENEX’10), pages 124–137. SIAM, 2010.

15 Pierre Hansen. Bricriteria Path Problems. In Multiple Criteria Decision Making – Theory
and Application –, pages 109–127. Springer, 1979.

M. Baum, J. Dibbelt, L. Hübschle-Schneider, T. Pajor, and D. Wagner 151

16 Peter E. Hart, Nils Nilsson, and Bertram Raphael. A Formal Basis for the Heuristic Deter-
mination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics,
4:100–107, 1968.

17 Stefan Hausberger, Martin Rexeis, Michael Zallinger, and Raphael Luz. Emission Factors
from the Model PHEM for the HBEFA Version 3. Technical Report I-20/2009, University
of Technology, Graz, 2009.

18 Lorenz Hübschle-Schneider. Speed-Consumption Trade-Off for Electric Vehicle Routing.
Bachelor thesis, Karlsruhe Institute of Technology, 2013.

19 Enrique Machuca and Lawrence Mandow. Multiobjective Heuristic Search in Road Maps.
Expert Systems with Applications, 39(7):6435–6445, 2012.

20 Lawrence Mandow and José-Luis Pérez-de-la-Cruz. Multiobjective A* Search with Consis-
tent Heuristics. Journal of the ACM, 57(5):27:1–27:24, 2010.

21 Ernesto Queiros Martins. On a Multicriteria Shortest Path Problem. European Journal of
Operational Research, 26(3):236–245, 1984.

22 Matthias Müller–Hannemann and Karsten Weihe. Pareto Shortest Paths is Often Feasible
in Practice. In Proceedings of the 5th International Workshop on Algorithm Engineering
(WAE’01), volume 2141 of Lecture Notes in Computer Science, pages 185–197. Springer,
2001.

23 Martin Sachenbacher, Martin Leucker, Andreas Artmeier, and Julian Haselmayr. Efficient
Energy-Optimal Routing for Electric Vehicles. In Proceedings of the 25th AAAI Conference
on Artificial Intelligence. AAAI Press, 2011.

24 Peter Sanders and Lawrence Mandow. Parallel Label-Setting Multi-Objective Shortest
Path Search. In Proceedings of the 27th International Parallel and Distributed Processing
Symposium (IPDPS’13), pages 215–224. IEEE Computer Society, 2013.

25 Sabine Storandt. Quick and Energy-Efficient Routes: Computing Constrained Shortest
Paths for Electric Vehicles. In Proceedings of the 5th ACM SIGSPATIAL International
Workshop on Computational Transportation Science, pages 20–25. ACM Press, 2012.

26 Chi Tung Tung and Kim Lin Chew. A multicriteria Pareto-optimal path algorithm. Euro-
pean Journal of Operational Research, 62(2):203–209, 1992.

27 Eckart Zitzler and Lothar Thiele. Multiobjective Evolutionary Algorithms: A Compar-
ative Case Study and the Strength Pareto Approach. Evolutionary Computation, IEEE
Transactions on, 3(4):257–271, 1999.

ATMOS’14

	p000-00-frontmatter
	Preface
	Orga

	p001-01-dibbelt
	Introduction
	Related Work
	Basics
	Modeling Rational

	Delay Model
	Decision Graphs
	Formal Definition
	Decision Graph Existence
	Solving the Unbounded MEAT Problem
	Phase 1: Computing all Expected Arrival Times
	Phase 2: Extracting Decision Graphs
	Optimizations

	Solving the -Bounded MEAT Problem

	Decision Graph Representation
	Expanded Decision Graph Representation
	Compact Decision Graph Representation
	Relaxed Dominance
	Displaying only the Relevant Subgraphs

	Experiments
	Conclusion & Future Work
	Bibliography
	Footpaths
	Rational For Synthetic Delays

	p015-02-nonner
	Introduction
	Algorithmic Approach
	GTFS Data Model
	Experiments and Results
	Conclusion

	p025-03-arkin
	Introduction
	Related work
	Definitions and results

	Single ride
	Multiple rides
	Running time

	p034-04-boeuf
	Introduction
	Context
	Model
	Results
	Related works

	Vertex covers in bipartite graphs with positive weights
	Competitive algorithms
	Preliminaries
	A 2-competitive algorithm
	Lower bound on the competitive ratio

	Postponing inner operations

	p046-05-cionini
	Introduction
	Preliminaries
	The Realistic Time-Expanded Model
	The Reduced Time-Expanded Model
	The Dynamic Timetable Model
	Experimental Analysis
	Conclusions

	p062-06-reuther
	Introduction
	The Resource Constrained Assignment Problem
	A Primal Hungarian Method
	A Primal Hungarian heuristic for the RCAP
	Computational results
	Results for VRP instances

	p079-07-borndoerfer
	Introduction
	A Coarse-To-Fine Approach to Column Generation
	The Rolling Stock Rotation Problem
	Three Layers for the RSRP
	Application and Computational Study
	Computational results

	p092-08-passchyn
	Introduction
	Related literature
	Problem definition
	Exact solutions
	MIP 1: Time-indexed formulation
	MIP 2: Lockage-based formulation

	Decentralized heuristic
	Computational study
	Comparison of the MIP-models
	Comparing centralized and decentralized schedules

	Conclusion and future work
	Appendix
	Valid inequalities for the time-indexed model
	Performance improvement for the lockage-based model

	p107-09-de-los-santos
	Introduction
	The problem
	Data and notation
	Variables and objective function
	Crowding

	An algorithm
	Conclusions
	Computational experiments
	Parameter setting
	Computational experiments for our problem
	62-configuration
	73-configuration
	83-configuration

	p122-10-lemnian
	Introduction
	Train Disposition Framework
	Event-Activity Networks and Passenger Flows
	Prediction of Event Times and Delay Propagation
	Train Disposition

	Classification of Transfers
	Classification by Lower Bounds
	Classification by Transfer Probabilities
	Classification by Fuzzy Logic

	Experimental Results
	Test Instances, Environment and Software
	Experiments

	Conclusion and Further Research

	p138-11-baum
	Introduction
	Preliminaries
	Problem Statement and Basic Approach
	Heuristic Improvements
	Experiments
	Conclusion

	Blank Page
	Binder1.pdf
	p000-00-frontmatter
	Preface
	Orga

	p001-01-dibbelt
	Introduction
	Related Work
	Basics
	Modeling Rational

	Delay Model
	Decision Graphs
	Formal Definition
	Decision Graph Existence
	Solving the Unbounded MEAT Problem
	Phase 1: Computing all Expected Arrival Times
	Phase 2: Extracting Decision Graphs
	Optimizations

	Solving the -Bounded MEAT Problem

	Decision Graph Representation
	Expanded Decision Graph Representation
	Compact Decision Graph Representation
	Relaxed Dominance
	Displaying only the Relevant Subgraphs

	Experiments
	Conclusion & Future Work
	Bibliography
	Footpaths
	Rational For Synthetic Delays

	p015-02-nonner
	Introduction
	Algorithmic Approach
	GTFS Data Model
	Experiments and Results
	Conclusion

	p025-03-arkin
	Introduction
	Related work
	Definitions and results

	Single ride
	Multiple rides
	Running time

	p034-04-boeuf
	Introduction
	Context
	Model
	Results
	Related works

	Vertex covers in bipartite graphs with positive weights
	Competitive algorithms
	Preliminaries
	A 2-competitive algorithm
	Lower bound on the competitive ratio

	Postponing inner operations

	p046-05-cionini
	Introduction
	Preliminaries
	The Realistic Time-Expanded Model
	The Reduced Time-Expanded Model
	The Dynamic Timetable Model
	Experimental Analysis
	Conclusions

	p062-06-reuther
	Introduction
	The Resource Constrained Assignment Problem
	A Primal Hungarian Method
	A Primal Hungarian heuristic for the RCAP
	Computational results
	Results for VRP instances

	p079-07-borndoerfer
	Introduction
	A Coarse-To-Fine Approach to Column Generation
	The Rolling Stock Rotation Problem
	Three Layers for the RSRP
	Application and Computational Study
	Computational results

	p092-08-passchyn
	Introduction
	Related literature
	Problem definition
	Exact solutions
	MIP 1: Time-indexed formulation
	MIP 2: Lockage-based formulation

	Decentralized heuristic
	Computational study
	Comparison of the MIP-models
	Comparing centralized and decentralized schedules

	Conclusion and future work
	Appendix
	Valid inequalities for the time-indexed model
	Performance improvement for the lockage-based model

	p107-09-de-los-santos
	Introduction
	The problem
	Data and notation
	Variables and objective function
	Crowding

	An algorithm
	Conclusions
	Computational experiments
	Parameter setting
	Computational experiments for our problem
	62-configuration
	73-configuration
	83-configuration

	p122-10-lemnian
	Introduction
	Train Disposition Framework
	Event-Activity Networks and Passenger Flows
	Prediction of Event Times and Delay Propagation
	Train Disposition

	Classification of Transfers
	Classification by Lower Bounds
	Classification by Transfer Probabilities
	Classification by Fuzzy Logic

	Experimental Results
	Test Instances, Environment and Software
	Experiments

	Conclusion and Further Research

	p138-11-baum
	Introduction
	Preliminaries
	Problem Statement and Basic Approach
	Heuristic Improvements
	Experiments
	Conclusion

