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Preface

This volume contains the proceedings of the 2nd International Workshop on Synthesis of
Complex Parameters (SynCoP’15). The workshop was held in London, UK on April 11th,
2015, as a satellite event of the 18th European Joint Conferences on Theory and Practice of
Software (ETAPS’15).

SynCoP aims at bringing together researchers working on verification and parameter
synthesis for systems with discrete or continuous parameters, in which the parameters
influence the behavior of the system in ways that are complex and difficult to predict.
Such problems may arise for real-time, hybrid or probabilistic systems in a large variety of
application domains. The parameters can be continuous (e.g., timing, probabilities, costs)
or discrete (e.g., number of processes). The goal can be to identify suitable parameters to
achieve desired behavior, or to verify the behavior for a given range of parameter values.

The scientific subject of the workshop covers (but is not limited to) the following areas:

parameter synthesis,
parametric model checking,
regular model checking,
robustness analysis,
parametric logics, decidability and complexity issues,
formalisms such as parametric timed and hybrid automata, parametric time(d) Petri
nets, parametric probabilistic (timed) automata, parametric Markov Decision Processes,
networks of identical processes,
interactions between discrete and continuous parameters,
applications to major areas of computer science and control engineering.

Program

This volume contains nine contributions: two invited talks, six regular papers and three
abstracts of informal presentations. The two invited talks are:

Cut-offs in Parameterized Verification (Parosh Abdulla)
Parameter synthesis for probabilistic real-time systems (Marta Kwiatkowska)

Each regular paper was reviewed by at least three different reviewers. The six accepted
papers are:

Consistency for Parametric Interval Markov Chains (Benoît Delahaye)
Guaranteed control of switched control systems using model order reduction and state-
space bisection (Adrien Le Coënt, Florian De Vuyst, Christian Rey, Ludovic Chamoin
and Laurent Fribourg)
Game-based Synthesis of Distributed Controllers for Sampled Switched Systems (Laurent
Fribourg, Ulrich Kühne and Nicolas Markey)
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viii Preface

Parameter and Controller Synthesis for Markov Chains with Actions and State Labels
(Bharath Siva Kumar Tati and Markus Siegle)
Parametric Verification of Weighted Systems (Peter Christoffersen, Mikkel Hansen, Anders
Mariegaard, Julian T. Ringsmose, Kim G. Larsen and Radu Mardare)
Tuning PI controller in nonlinear uncertain closed-loop systems with interval analysis
(Julien Alexandre Dit Sandretto, Alexandre Chapoutot and Olivier Mullier)

Furthermore, three informal presentations were made at the workshop:

Discrete Parameters in Petri Nets (Nicolas David, Claude Jard, Didier Lime, and Olivier
H. Roux)
Enhanced Distributed Behavioral Cartography of Timed Automata (Étienne André,
Camille Coti and Hoang Gia Nguyen)
Parameter Synthesis with IC3 (Alessandro Cimatti, Alberto Griggio, Sergio Mover and
Stefano Tonetta)

Support and Acknowledgement

SynCoP 2015 was partially supported by the ANR (Agence Nationale de la Recherche)
research project ANR-14-CE28-0002 PACS (Parametric Analyses of Concurrent Systems),
with the additional support of Université Paris 13 (Villetaneuse, France) and Verimag
(Grenoble, France). We would like to thank these various entities for their generous financial
and organizational support.

We thank the two invited speakers for their presence and their interesting presentations,
the authors for their contributions, the program committee members for reviewing and
selecting the papers, and Paulo Oliva from the ETAPS organizing committee for its support.

Finally, we would like to thank the editorial board of the OASIcs proceedings.

In Villetaneuse and Grenoble,

Étienne André and Goran Frehse
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View Abstraction – A Tutorial∗

Parosh A. Abdulla1, Fréderic Haziza2, and Lukáš Holík3

1 Uppsala University
parosh@it.uu.se

2 Uppsala University
frederic.haziza@it.uu.se

3 Brno University of Technology
holik@fit.vutbr.cz

Abstract
We consider parameterized verification, i.e., proving correctness of a system with an unbounded
number of processes. We describe the method of view abstraction whose aim is to provide a small
model property, i.e., showing correctness by only inspecting instances of the system consisting
of a small fixed number of processes. We illustrate the method through an application to the
classical Burns’ mutual exclusion protocol.

1998 ACM Subject Classification D.2.4 Software/Program Verification, F.3.1 Specifying and
Verifying and Reasoning about Programs

Keywords and phrases program verification, model checking, parameterized systems

Digital Object Identifier 10.4230/OASIcs.SynCoP.2015.1

Category Invited Paper

1 Introduction

The behavior of many types of systems can be described using one or more parameters such
as the number of processes, or the sizes of the data structures that the system uses. The
goal of parameterized verification is to prove (or refute) the correctness of the system for
all values of the parameters. There are numerous applications where parameterized systems
arise naturally:

Number of processes. In a mutual exclusion protocol, an arbitrary number of processes
may participate in a given session of the protocol. In a cache coherence protocol, an
arbitrary number of threads may share a cache line. In a Petri net, there is no bound on
the number of tokens that are generated during a run of the net.
Sizes of data structures. The behaviors of recursive programs can be captured using
unbounded stacks [18]. Data link protocols can be modeled by processes communicating
through unbounded FIFO queues [8]. The latter have also recently been used to encode
the behavior of programs running on weak memory models such tso, pso, and power
[12, 2, 28].
Multiple parameters. Timed Petri Nets (TPN) [10] extend the model of Petri nets by
equipping each token with a real-valued clock. A TPN induces a system that is infinite
in two dimensions. More precisely, a run of a TPN may generate an unbounded number

∗ This work was partially supported by upmarc, The Uppsala Programming for Multicore Architectures
Research Center.
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2 View Abstraction – A Tutorial

of tokens each of which is a real-valued clock. The implementations of concurrent stacks,
queues, and sets are infinite in three dimensions [5]. First, an unbounded number of
threads may operate on the data structure. Furthermore, there is no bound on the size
of the data structure. Finally, the values stored inside the data structure are usually
fetched from an infinite domain such as the set of integers.

In this tutorial, we concentrate on systems where the parameterization arises due to the
number of processes. This class of systems can itself be divided into several subclasses
depending on the following three parameters.

Processes. The processes may be finite-state or infinite-state. Even in the case of finite-
state processes, the state space of the system is unbounded. This is true since the state
space contains all states we get as we vary the parameter (size of the system). The
individual processes may be infinite-state since they may operate on variables ranging
over infinite domains (e.g., the natural numbers). In such a case we get a state space
that is infinite in two dimensions.
Topology. On the one hand, the system may consist of a set of processes without any
structure. On the other hand, the system topology may have a certain pattern. For
instance, the processes may be organized as a linear array. Then, a process may refer to
its left/right neighbors, or to all the processes to its left/right. The processes may also
be organized in a ring, tree, or a general graph.
Communication Primitives. A simple form of communication is when two processes per-
form a rendezvous which involves both processes changing state simultaneously. Another
form of communication is through shared variables that can be read from and written
to by all/some processes in the system. We may have broadcast transitions where an
arbitrary number of processes change state simultaneously. Furthermore, the transitions
of a process may be conditioned by global conditions. An example of a (universal) global
condition, in a system with linear topology, is that “all processes to the left of a given
process i should satisfy a property φ”. In this case, process i is allowed to perform the
transition only in the case where all processes with indices j < i satisfy φ.

In this paper, we consider a class of systems where we have finite-state processes that are
organized in a linear array. The processes communicate through global transitions. For such
systems, we consider the verification of safety properties. Intuitively, a safety property states
that nothing bad will happen during the execution of the system. For a a mutual exclusion
protocol, a typical safety property is that no two processes should be in their critical sections
at the same time. Checking a given safety property reduces to checking the reachability of
a set of bad configurations, namely those that violate the property.

The work of this tutorial is based on the ideas presented in [4] that introduces view
abstraction. View abstraction is inspired by strong empirical evidence that parameterized
systems often enjoy a small model property. More precisely, it analyzes only a small number
of processes (rather than the whole family) and shows that this is sufficient to capture the
(un)reachability of bad configurations. On the one hand, bad configurations can often be
characterized by minimal conditions that are possible to specify through a fixed number of
witness processes. For instance, in a mutual exclusion protocol, a bad configuration contains
two processes in their critical sections; and in a cache coherence protocol, a bad configuration
contains two cache lines in their exclusive states. In both cases, having the two witnesses is
sufficient to make the configuration bad (regardless of the actual size of the configuration).
On the other hand, it is usually the case that such bad patterns (if existing) appear already
in small instances of the system. View abstraction shows also that it is often the case that
correctness can be established by only inspecting a small number of processes. We illustrate
the method through an application to the classical Burns’ mutual exclusion protocol.
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Figure 1 A process in Burns’ Protocol.

Related Work.

Regular model checking [24, 15] performs parameterized verification by encoding the set of
configurations using finite-state automata. The method has been augmented with techniques
such as widening [13, 29], abstraction [14], and acceleration [9]. All these works rely on
computing the transitive closure of transducers or on iterating them on regular languages.

There are numerous techniques less general than regular model checking, but that are
lighter and more dedicated to the problem of parameterized verification. The idea of counter
abstraction is to keep track of the number of processes which satisfy a certain property [22,
16, 17, 27]. In general, counter abstraction is designed for systems with unstructured or
clique architectures, but may be used for systems with other topologies too.

Several works reduce parameterized verification to the verification of finite-state models.
Among these, the invisible invariants method [11, 26] and the work of [25] exploit cut-off
properties to check invariants for mutual exclusion protocols.

Monotonic abstraction [6, 7, 30] combines regular model checking with abstraction in
order to produce systems that have monotonic behaviors wrt. a well quasi-ordering on the
state-space. The method of [21, 20] and its reformulated, generic version of [19] come
with a complete method for well-quasi ordered systems which is an alternative to backward
reachability analysis based on a forward exploration.

Parameterized systems whose behaviors are conditioned by time or data constraints are
described in [3, 1].

2 Model

We consider parameterized systems where the processes are modeled as finite-state auto-
mata arranged in a linear array. The processes may perform local or global (existential or
universal) transitions. We illustrate our model through the classical Burns’ protocol.

2.1 Processes
A process in Burns’ protocol, depicted in Fig. 1, is defined by a finite-state automaton. The
automaton has six states, namely , , , , , and . The process starts its execution
form the initial state , and tries to reach its critical section . The automaton contains
three types of transitions. From the state , the process can perform the local transition
t1 in which it changes state to regardless of the states of the other processes. From
the state , the process can perform the existential global transition t7 in which it changes
state to provided that there exists a process to its left (and hence the notation ∃L) whose
state is either , , or . From the state , the process can also perform the universal

SynCoP’15



4 View Abstraction – A Tutorial

Figure 2 Parameterized Burns’ Protocol.

Figure 3 A configuration.

t3

Figure 4 A local transition.

global transition t2 in which it changes state to provided that the states of all processes
to its left (and hence the notation ∀L) are either , , or . A process starts its execution
from (state) and can immediately cross to . At it looks left and performs a test
where it checks whether all processes to its left are in one of the states , , or . If the
test succeeds it crosses to ; otherwise it goes back to the initial state . Form it can
perform a local transition and move to . At , the process looks left again and performs
the same test as before. If successful, it will now move to . At , the process now looks
right, and checks whether all processes to its right are in one of the states , , or . If
the test succeeds it crosses to its critical section , from which it can go back to the initial
state .

The parameterized version of Burns’ protocol (Fig. 2) consists of an arbitrary number of
processes. The goal is to show that if we start from a configuration where all the processes
are in state then it is not possible to reach a configuration where two or more processes
are in state .

2.2 Transition System
We define the transition system induced by the parameterized version of Burns’ protocol.
More precisely, we define the set of configurations and the transition relation.

A configuration gives the states of the processes in a given instance of the system. A
configuration in Burns’ protocol is depicted in Fig. 3, corresponding to an instance of the
system with four processes that are in states , , , and respectively. Notice that the
set of configurations is infinite since there is no bound of the number of processes.

The transition relation is induced on the set of configurations by the above mentioned
three types of transitions. When performing a transition, a process, called the active process
changes state while the other processes remain passive (although their states may help
enable/disable the move of the active process).

Fig. 4 depicts a local transition, where the active process performs t3 and changes state
from to while the states of the other processes remain unchanged.

An existential global transition is shown in Fig. 5. Here, the active process performs t7
and changes state from to . The transition is enabled since there is a witness in state

(marked by a green arrow). On the other hand, in Fig. 6, the transition is not enabled
since there is no witness with the appropriate state to the left of the active process.

A universal global transition is shown in Fig. 7. The active process performs t5 and
changes state from to . The transition is enabled since all processes to the right of the
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t7

Figure 5 An existential transition.

t7

Figure 6 A disabled existential transition.

t5

Figure 7 A universal transition.

t5

Figure 8 A disabled universal transition.

active process (marked by green arrows) are in one of the states , , or , as required
by the condition of the transition. In Fig. 8, the same transition is not enabled since there
is one process in state to the right of the active process (thus violating the condition of
the transition).

For a configuration c, we use post(c) to be the set of configurations that we can reach
from c through the application of a single transition.

2.3 Safety Properties
Checking a safety property amount to checking whether an instance of the system, starting
from an initial configuration, can reach a bad configuration through repeated applications of
the post operator.

In Burns’ protocol, an initial configuration (Fig. 9) contains only processes in the state
. The set Init of initial configurations is infinite since there is one initial configuration

for each size of the system. the set Init can be characterized by a (very simple) regular
expression, namely

( )+
, i.e., one or more processes in state .

A bad configuration (Fig. 10) is one which contains two or more processes in their
critical sections (in state ). This set Bad of bad configurations is also infinite. The set Bad
upward closed wrt. the subword relation. Here, we say that a configuration c1 is subword of a
configuration c2 if c1 occurs (not necessarily contiguously) in c2. Obviously if a configuration
contains at least two processes in state then any larger configuration (wrt. the subword
relation) will also contain at least two processes in state , and hence belongs to the set
of bad configurations. In fact, the set Bad is often characterized by its (finite) set Badmin
of minimal elements. In the case of Burns’ protocol, Badmin is the singleton containing the

configuration .
Mutual exclusion is a safety property. Checking it amounts to checking whether there is

a sequence of transition that leads from an initial configuration to a bad configuration.

SynCoP’15



6 View Abstraction – A Tutorial

Init1

Init2

Init3

Init4

Init5

•
•
•

Figure 9 The set of initial configurations.

•
•
•

Figure 10 Examples of bad configura-
tions.

3 Verification

We describe a scheme that allows to carry out parameterized verification automatically. The
scheme consists of two procedures that can be performed in parallel, independently of each
other. The first procedure is an under-approximation of the set of reachable configurations
that is performed in the concrete domain. The second procedure is an over-approximation
that is based on view abstraction. Both procedures are parameterized by a natural number
k ≥ 1 that defines the degree of the precision of the approximation.

3.1 Under-approximation
For a given k ∈ N, we perform reachability analysis on the set of configurations of size
k (Fig. 11). We start from the initial configuration of size k and generate all reachable
configurations Rk of size k. This amounts to performing standard reachability analysis on
a finite-state system since there are only finitely many configurations of size k. We can
inspect Rk and search for bad configurations. We start from k = 1, and increase the value
of k successively. If there is a bad configuration (of some size k) that is reachable, then it
will be detected by the under-approximation procedure when inspecting Rk. Consequently,
if the system does not satisfy the safety property then this will be reported by the under-
approximation procedure. However, the procedure is not able to prove correctness of the
system, since this would require computing Rk for all k ∈ N.

3.2 Over-approximation
The over-approximation procedure is based on an abstract interpretation scheme, called view
abstraction, that is parameterized by a natural number k ∈ N. The concrete domain consists
of the configurations of the system, while the abstract domain consists of objects that we
call views. As we shall see below, each view is a subword of a configuration. We define an
abstraction function αk, a concretization function γk, and an abstract post operator Apostk,
all of which are parameterized by k.

For a configuration c, the abstraction αk(c) is the set of views (subwords of c) of size up
to k (Fig. 12). For a set C of configurations, we define αk(C) := ∪c∈Cαk(c). Consider a set
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Figure 11 The under-approximation procedure.

of views of size up to k such that X is downward closed, i.e., if X contains a view x then
each subword of x is also included in X. We define the concretization γk(X) of X to be the
set of configurations c such that that αk(c) ⊆ X, i.e. all members of the the abstraction of
c are included in X (see Fig. 13.) Notice that, even for a finite set X and for a fixed k ∈ N,
the set γk(X) is in general infinite (as is the case with γ2(X) in Fig. 13).

For k ∈ N, we define the abstract post operator Apost such that for a set of views
of size up to k, we have Apostk(X) := αk(post(γk(X))). In other words, we first take the
concretization ofX, then apply the concrete post operator, and finally take the abstraction of
the result. We will preform reachability analysis on the set of views using a fixpoint iteration,
parameterized with k ∈ N. More precisely, we define the set Vk := µX.αk(Init)∪Apostk(X).
Before we describe how we compute Vk, we will give two of its properties (illustrated in
Fig. 14). Let R be the set of reachable configurations. First, the concretization of Vk is an
over-approximation of R, i.e., R ⊆ γk(Vk) for all k ∈ N. Furthermore, the precision of the
abstraction increases with k in the sense that γk+1(Vk+1) ⊆ γk(Vk) for all k ∈ N. We use
these two properties to define the following scheme for proving correctness of the system.
Suppose that the system is correct, i.e., R ∩ Bad = ∅. We consider the sequence of sets
γ1(V1) ⊇ γ2(V2) ⊇ γ3(V3) ⊇ · · · . We start with γ1(V1) and check whether γ1(V1) ∩ Bad = ∅.
If the answer is positive then we know that the system is correct (since R ⊆ γk(Vk) and
hence R∩Bad = ∅.) On the other hand, if γ1(V1)∩Bad 6= ∅ (which is the case in Fig.14) then
we are not sure whether R ∩ Bad 6= ∅ holds or not. Therefore, we increase k and repeat the
procedure for γ2(V2). In Fig. 14, the intersection γ2(V2)∩ Bad is still not empty. Therefore,
we increase k yet again. The procedure will terminate if and when we reach a k where
γk(Vk) ∩ Bad = ∅. In Fig. 14 such a k exists and k = 3.

Computing Apostk(X) efficiently is not straightforward. The reason is that the set γk(X)
is in general infinite even if the set of views X is finite. We solve this problem by showing
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c

α2(c)

configuration

views

Figure 12 A configuration and its α2-abstraction.

•
•
•

X

γ2(X)

views

configurations

Figure 13 Concretization of a set of views.

that we only need to perform a simpler operation Apostk+1
k (X). For 1 ≤ ` ≤ k, we define

Apost`
k(X) := αk(post(γ`

k(X))), where γ`
k(X) is the subset of γk(X) containing only views

of size up to `. Notice that for any ` (and in particular for ` = k+ 1), the set γ`
k(X) is finite

and (easily) computable. We will illustrate why Apostk(X) = Apostk+1
k (X) through the

following example which shows a part of computing Apost2(X). Assume that X contains

(among others) the views , , and . We first compute the set γ3
2(X),

i.e., we include all members of the concretization of X of size up to 3. For instance, the

configuration is a member of γ3
2(X). Then, we apply the concrete post operator

post on the set γ3
2(X). In particular we apply post on the configuration . For

instance, if the active process is then transition t8 is enabled due to the existence of
the witness to the left of the active process. As a result, we obtain the configuration

. Finally, we apply the abstraction α2, obtaining, among others, the new views

and . In particular, the latter view was obtained from the view which
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γ1(V1)

γ2(V2)

γ3(V3)

RBad

Figure 14 Abstract Analysis.

was part of X, through applying the transition t8. There are two interesting aspects of this
transition to observe. First, the transition needed the witness which was not part of the
original view. Second, the witness consists of a single process. Thus, in order to derive the

new view we needed to add one extra process in order to accommodate the witness.
This explains the reason why we need to consider concrete configurations of larger sizes than
the views (to ensure the inclusion the witnesses), but also the reason why we need to only
consider configurations whose sizes are larger by one (since witnesses are of size one).

3.3 Scheme
Our verification scheme consists of performing a number of iterations, where each iteration
corresponds to a particular value of k ∈ N (Fig. 15). We start with k = 1. During each
iteration, we run the under- and over-approximation procedures for the given value of k. If
the under-approximation procedure is conclusive, i.e., Rk ∩ Bad 6= ∅ then we terminate and
declare the system unsafe. Otherwise, we run the over-approximation procedure to compute
Vk. If this is conclusive, i.e., Vk ∩ Bad = ∅ then we terminate and declare the system
safe. Notice that if either of the two procedures is conclusive then the current k is a cut-
off point beyond which we need not continue (since we have either concluded correctness
or incorrectness of the system). If none of the procedures is conclusive, we increase the
precision, by increasing the value of k, and perform the next iteration.

We show how to perform each operation that is required for implement the scheme.
Checking whether Rk∩Bad 6= ∅. As mentioned above, computing Rk amount to perform-
ing reachability analysis on a finite-state system. Furthermore, to check Rk ∩ Bad 6= ∅
we need only to consider elements of Bad whose sizes are up to k. The latter is finite and
easily computable since Bad is upward closed. Thus, we need to consider the intersection
of two finite sets.
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Rk ∩ Bad 6= ∅ unsafeyes

Vk := µX.αk(X) ∪ Apostk(Vk)
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Figure 15 Abstract Analysis.

Computing Vk. We can compute the fixpoint as follows.
Since the set of initial configurations Init is regular, computing αk(Init), for any
k ∈ N, amounts to generating the subwords of members of Init of size up to k. This
is a task that can accomplished using simple automata operations.
As mentioned above, for a given set of viewsX, we need only to compute Apostk+1

k (X)
rather than Apostk(X). The former can be computed as follows: (i) we compute the
finite set of configurations C := γk+1

k (X) by matching the different members of X. (ii)
We compute the set C ′ := post(C) by applying the transition relation on C. Notice
that C ′ is finite. (iii) We compute the finite set of views V ′ := αk(C ′) which amounts
to computing the abstraction of a finite set.

Checking whether Vk ∩ Bad = ∅. This amounts to checking whether there is a minimal
configuration c in Bad (i.e., c ∈ Badmin) such that αk(c) ⊆ Vk. Recall that Badmin is
finite and given, and hence we can perform the test by systematically going through all
members of Badmin.

4 Application

We illustrate the verification scheme by applying it to Burns’ protocol.

Iteration 1: Under-Approximation.

We start from the initial configuration of size one. The set R1 of reachable configurations
of size one can be shown to contain all configurations of size one. However, none of these
configurations belongs to Bad since each member of Bad contains at least two processes (in
state ). Hence, the under-approximation scheme is inconclusive for k = 1.
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Iteration 1: Over-approximation.

The set α1(Init) contains a single view, namely . This will be added to V1. In order
to compute the fixpoint, we apply Apost2

1 repeatedly. Let us consider its first application.

The set γ2
1 contains the two configurations and . Applying post to these two

configurations gives the configurations , , and . Applying α2 on the derived

set of configurations gives the set containing the two views and that will now be
added to V1. Applying Apost2

1 repeatedly in this manner will yield the set of all views of
size one. Applying γ2 to this set gives the set of all configurations, and in particular this set
will intersect with the set Bad. Therefore, the over-approximation scheme is inconclusive for
k = 1.

Iteration 2: Under-Approximation.

We start from the initial configuration of size two. The set R2 of reachable config-
urations of size two can be computed using finite-state reachability analysis. We leave the
computation of the set (as an easy exercise) to the reader. None of the configurations in R2
belongs to Bad, and hence, the under-approximation scheme is inconclusive also for k = 2.

Iteration 2: Over-approximation.

The set α2(Init) contains the two views and . Thus, these views will be added
to V2. In order to compute the fixpoint, we apply Apost3

2 repeatedly. Let us consider its first

application. The set γ3
2 contains the configurations , , and . Applying

post to these three configurations gives the configurations , , , ,

, and . Applying α2 to the derived set of configurations gives the set

containing the views , , , , and . Applying Apost3
2 repeatedly

will yield the set of all views of size two except the views and . In particular,
the absence of the second view implies that applying γ2 gives a set of configurations that
does not intersect with the set Bad. This means that we can terminate and conclude that
the system is safe. Notice that the cut-off point for Burns’ protocol is k = 2.

5 Completeness

We will give examples of systems for which our method is complete (for which the scheme
is guaranteed to terminate). First, we give the definitions of upward and downward closed
sets, and then give a sufficient condition that guarantees termination. Finally, we describe
a class of systems, namely monotonic systems, that satisfy the condition.

5.1 Downward and Upward Closed Sets
Let � be the subword relation on configurations. The relation � is a well quasi-ordering [23]:
for any infinite sequence c0, c1, c2, . . . of configurations, there are i < j such that ci � cj . A
set D of configurations is said to be downward closed if c1 ∈ D and c2 � c1 implies c2 ∈ D. A
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set U of configurations is said to be upward closed if c1 ∈ U and c1 � c2 implies c2 ∈ U . For
a set C of configurations, we define C ↑:= {c2 | ∃c1 ∈ C. c1 � c2} to be the upward closure of
C. Let min(C) be the set of minimal elements of C. The set min(C) is always finite. Notice
that, for an upward closed set U , we have that U ↑= U , and that U can be characterized by
its minimal elements in the sense that U = min(U) ↑. For instance, the set Bad in Burns’

protocol is upward closed, and min(Bad) is a singleton containing the configuration .
Observe that the complement ¬D of a downward closed set D is upward closed, and vice
versa.

5.2 Sufficient Condition
Let D be a set of configuration. We say that D is a good downward closed invariant if
it satisfies the following conditions: (i) downward closed: D is downward closed; and (ii)
invariant: D is inductive, i.e., D contains the set Init of initial configuration, and D is
closed under the application of the transition relation (for any c ∈ D, a transition from c

leads to a configuration inside D again.) (iii) good: D∩Bad = ∅. If D satisfies conditions (i)
and (ii) then we can show that there is a k such that γk(Vk) ⊆ D. In fact, we can define k to
be the size of a largest configuration in min(¬D), i.e., the size of a largest configuration in
the minimal set of configurations in the complement of D. Recall that ¬D is upward closed.
If D also satisfies condition (iii) then the over-approximation procedure is guaranteed to
terminate. More precisely, D ∩ Bad = ∅ implies that γk(Vk) ∩ Bad = ∅, which means that
the procedure declares correctness of the system at step k (if not earlier). As a side remark,
notice also that if the set R of reachable configurations is downward closed then γk(Vk) = R

for some k (we know from the previous section that R ⊆ γk(Vk) for all k.)
We will motivate that if R is downward closed then our procedure is guaranteed to

terminate implying its completeness. We consider two cases. If R∩ Bad 6= ∅, then there is a
k such that Rk∩Bad 6= ∅ and the under-approximation procedure declares the system unsafe
during the kth iteration. If R ∩ Bad 6= ∅ then since R is an invariant, i.e., it satisfies the
conditions (i), (ii), and (iii), and hence the over-approximation procedure will terminate.

In the case of Burns’ protocol, the set R is characterized by the regular expression(
+ + + +

)∗
·
(

+ ε
)
·
(

+ + +
)∗

. Our method will not
compute this regular expression explicitly. However, the language of the expression is

downward-closed and is equal to the set ¬
{

,
}
↑. The size of the largest

elements in the set of minimal configurations is equal to 2, which explains why the over-
approximation procedure terminates at k = 2 for Burns’ protocol.

5.3 Monotonic Systems
A system is said to be monotonic if, for all configurations c1, c2, c3, whenever c2 ∈ post(c1)
and c1 � c3 then there is a configurations c4 such that c2 � c4 and c4 ∈ post(c3). In other
words, the relation � is a simulation wrt. the transition relation. For monotonic systems,
it is the case that R ∩ Bad = ∅ iff R ↓ ∩Bad = ∅. This follows from the assumption that
Bad is an upward closed set. Therefore, taking the downward closure of the set of reachable
configurations does not cause any imprecision. This means that we can work with a new
transition relation in which we allow the system to be lossy: a configuration may, at any
point of time, lose an arbitrary number of processes. The new transition relation will reach
Bad if and only if the old one does. Furthermore, the new set of reachable configurations is
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downward closed which means that our procedure is guaranteed to terminate. In fact, there
is a wide class of systems that induce transition relations that are monotonic with respect
to a well quasi-ordering. Our scheme is complete for such systems. Examples include lossy
channel systems [8], Petri nets (our procedure solves the coverability problem for them),
timed Petri nets [10], etc.

6 Conclusion

We have presented a method for automatic verification of parameterized systems. The
method proves or refutes whether a given safety property is satisfied by only inspecting
small instances of the system. More precisely, we run two procedures in parallel. The
first computes the (finite) set of reachable configurations of size up k for some natural
number k. The second procedure carries out an abstract interpretation scheme, called view
abstraction, in which precision is defined (and can be increased) using a natural number k.
The latter is guaranteed to terminate in case there is a good invariant that is downward
closed. This implies that the whole method is guaranteed to terminate in case the set of
reachable configurations is downward closed and hence that termination is guaranteed in
case the transition relation is monotonic on the set of configurations.

The framework can be extended in a straightforward manner to other types of topologies
such as multisets, rings, and trees, and also extended to the case where global transitions
are not assumed to happen atomically [4].
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Abstract
The parameter synthesis problem aims to find parameter valuations that guarantee that a given
objective is satisfied for a parametric model. Applications range from automated model repair
to optimisation. This lecture will focus on models with probability and real-time and give an
overview of recent results concerning parameter synthesis from quantitative temporal logic ob-
jectives. Existing algorithmic approaches and experimental results will be discussed, and future
research challenges outlined.

This lecture is based on [2, 1, 3].
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Abstract
Interval Markov Chains (IMCs) are the base of a classic probabilistic specification theory by
Larsen and Jonsson in 1991. They are also a popular abstraction for probabilistic systems. In
this paper we introduce and study an extension of Interval Markov Chains with parametric
intervals. In particular, we investigate the consistency problem for such models and propose an
efficient solution for the subclass of parametric IMCs with local parameters only. We also show
that this problem is still decidable for parametric IMCs with global parameters, although more
complex in this case.
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1 Introduction

Interval Markov Chains (IMCs for short) extend Markov Chains, by allowing to specify
intervals of possible probabilities on state transitions instead of precise probabilities. IMCs
have been introduced by Larsen and Jonsson [16] as a specification formalism—a basis
for a stepwise-refinement-like modeling method, where initial designs are very abstract
and underspecified, and then they are made continuously more precise, until they are
concrete. Unlike richer specification models such as Constraint Markov Chains [6] or Abstract
Probabilistic Automata [9], IMCs are difficult to use for compositional specification due to
lack of basic modeling operators. Nevertheless, IMCs have been intensively used in order
to model real-life systems in domains such as systems biology, security or communication
protocols [2, 12, 5, 19, 11].

The extension of Markov Chains into Interval Markov chains was motivated by the fact
that, when modelling real-life systems, the actual exact value of transition probabilities may
not be known precisely. Indeed, in most cases, these values are measured from observations
or experiments which are subject to imprecision. In this case, using intervals of probabilities
that take into account the precision of the measures makes more sense than using an arbitrary
but precise value. We now take this reasoning a step further.

Complex systems are most often built by assembling multiple components. Assume that
one of these components may fail with a given probability that depends on the quality of
the materials involved in its fabrication. In practice, a prototype of the component is built
and the failure probability of this component is measured by experiment with a certain
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imprecision. This failure probability and the subsequent imprecision are then taken into
account in the model of the system by using an interval of probability. When one analyzes
this model, every result will depend on the failure rate of this component, which itself depends
on the choice of the quality of materials. If the conclusions of the analysis are that the failure
probability is too high for the whole system to be viable, then a new prototype of the failing
component is built using different materials and the modeling and analysis phase starts over.
This process is repeated until a satisfactory failing component is identified.

Instead of using this “trial and error” methodology, we propose a new extension of Interval
Markov Chains that allows using parameters in the definition of intervals of probability. In
our example, the failure probability of the failing component is clearly a parameter of the
system. The developer is interested in whether there exists a maximal value of this probability
that will ensure that the whole system is satisfactory. When this value is identified, one can
choose the materials of the failing component accordingly in order to produce a prototype
with a lower maximal failing probability.

Therefore, we introduce in this paper the new formalism called parametric Interval
Markov Chains (pIMCs), which extends IMCs by allowing the use of parameters as lower or
upper endpoints of probability intervals. We also show that the problem of deciding whether
a given pIMC is consistent (i.e. admits a valid implementation) is decidable and propose
algorithms in order to solve this problem. In particular, we identify a subclass of pIMCs –
local pIMCs – for which an efficient algorithm is proposed. In the rest of the paper, we limit
ourselves to closed intervals. Nevertheless, all the results we propose can be extended with
minor modifications to open/semi-open intervals whose lower/upper endpoints contain linear
combinations of parameters and constants.

Related work. To the best of our knowledge, there is no existing work on parametric
probabilistic specification theories as such, where parameters range over probability values.
Still, classes of systems where parameters give some latitude on probability distributions, such
as parametric Markov models [17] have been studied in the literature [18, 13]. The activity
in this domain has yielded decidability results [15], parametric probabilistic model-checking
algorithms [8] and even tools [14]. Continuous-time parametric and probabilistic models
have also been considered in some very restricted settings [7]. Networks of probabilistic
processes where the number of processes is a parameter have also been studied in [3, 4], and
probabilistic timed automata with parameters in clock constraints and invariants have been
studied in [1].

The paper proceeds as follows. In Section 2, we begin by introducing concepts and
notations that will be used throughout the paper. Section 3 introduces the new formalism of
parametric Interval Markov Chains, studies their relations to (Interval) Markov Chains and
discusses what we call the range of parameters. In Section 4, we present original solutions to
the consistency problem for IMCs and pIMCs. Finally, Section 5 concludes the paper and
discusses future work.

2 Background

Throughout the paper, we use the notion of parameters. A parameter p ∈ P is a variable
ranging through the interval [0, 1]. A valuation for P is a function ψ : P → [0, 1] that
associates values with each parameter in P . We write Int[0,1](P ) for the set of all closed
intervals of the form [x, y] with x, y ∈ [0, 1] ∪ P . When P = ∅, we write Int[0,1] = Int[0,1](∅)
to denote closed intervals with real-valued endpoints. Given an interval I of the form
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I = [a, b], Low(I) and Up(I) respectively denote the lower and upper endpoints of I, i.e. a
and b. Given an interval I = [a, b] ∈ Int[0,1], we say that I is well-formed whenever a ≤ b.
In the following, we abuse notations and write ∅ for the empty interval, meaning any not
well-formed interval. Given a finite set S, we write Dist(S) for the set of distributions over
S, i.e. the set of functions ρ : S → [0, 1] such that

∑
s∈S ρ(s) = 1. In the rest of the paper,

we assume that all the states in our structures are equipped with labels taken from a fixed
set of atomic propositions A. A state-labelling function over S is thus a function V : S → 2A
that assigns to each state a set of labels from A.

We recall the notion of Markov Chains (MCs), that will act as models for (parametric)
IMCs. An example of a Markov Chain is given in Figure 1a.

I Definition 1 (Markov Chain). A Markov Chain is a tuple M = (S, s0,M,A, V ), where
S is a finite set of states containing the initial state s0, A is a set of atomic propositions,
V : S → 2A is a labeling function, andM : S×S → [0, 1] is a probabilistic transition function
such that ∀s ∈ S,

∑
t∈SM(s, t) = 1.

We now recall the notion of Interval Markov Chain (IMC), adapted from [10]. IMCs are
a specification formalism that allows one to represent an infinite set of MCs. Roughly, IMCs
extend MCs by replacing exact probability values on transitions with intervals of allowed
probability values. An example of an IMC is given in Figure 1b.

I Definition 2 (Interval Markov Chain [10]). An Interval Markov Chain (IMC) is a tuple
I = (S, s0, ϕ,A, V ), where S, s0, A and V are as for MCs, and ϕ : S × S → Int[0,1] is a
transition constraint that associates with each potential transition an interval of probabilities.

The following definition recalls the notion of satisfaction introduced in [10]. Satisfaction
(also called implementation in some cases) allows to characterize the set of MCs represented
by a given IMC specification. Crucially, satisfaction abstracts from the syntactic structure
of transitions in IMCs: a single transition in the implementation MC can contribute to
satisfaction of more than one transition in the specification IMC, by distributing its probability
mass against several transitions. Similarly many MC transitions can contribute to satisfaction
of just one specification transition.

I Definition 3 (Satisfaction Relation [10]). Let I = (S, s0, ϕ,A, V
I) be an IMC andM =

(T, t0,M,A, VM ) be a MC. A relation R ⊆ T × S is a satisfaction relation if whenever tRs,
1. the valuations of s and t agree: VM (t) = V I(s),
2. there exists a function δ : T → (S → [0, 1]) such that

a. for all t′ ∈ T such that M(t, t′) > 0, δ(t′) is a distribution on S,
b. for all s′ ∈ S, we have (

∑
t′∈T M(t, t′) · δ(t′)(s′)) ∈ ϕ(s, s′), and

c. for all t′ ∈ T and s′ ∈ S, if δ(t′)(s′) > 0, then (t′, s′) ∈ R.
We say that M satisfies I (written M |= I) iff there exists a satisfaction relation
containing (t0, s0).

The set of MCs satisfying a given IMC I is written [[I]]. Formally, [[I]] = {M | M |= I}.
In the rest of the paper, we write ⊥ for the empty IMC, i.e.⊥ = (∅, ∅, ∅, A, ∅). By construction,
we have [[⊥]] = ∅.

The notion of satisfaction between the MC M from Figure 1a and the IMC I from
Figure 1b is illustrated in Figure 1c.
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Figure 1 Markov Chain, Interval Markov Chain and satisfaction relation [10].

3 Parametric Interval Markov Chains

In this section, we propose a new formalism, called parametric Interval Markov Chains
(pIMC) that extends IMCs by allowing parameters as the lower/upper endpoints of the
transition intervals. We start by giving the main definitions of pIMCs and their relations
with IMCs and MCs, and then distinguish two subclasses of interest of pIMCs: local and
global pIMCs.

3.1 pIMCs and their relations to IMCs/MCs
We now propose an extension of IMCs that allows using parameters in the definition of
intervals.

I Definition 4 (Parametric Interval Markov Chain). A parametric Interval Markov Chain
(pIMC) is a tuple IP = (S, s0, ϕP , A, V, P ), where S, s0, A and V or as for IMCs, P is a set
of variables (parameters) ranging over [0, 1] and ϕP : S × S → Int[0,1](P ) associates to each
potential transition a (parametric) interval.

In the following, we abuse notations and also write ⊥ for the empty pIMC, i.e. ⊥ =
(∅, ∅, ∅, A, ∅, ∅).

Roughly, an instance of a pIMC IP is a pair (I, ψ), where I is an IMC that respects the
structure and labels of IP and such that its transition constraint is the instantiation of ϕP
according to the valuation for the parameters ψ.

I Definition 5 (Instance of a pIMC). An instance of pIMC IP = (S, s0, ϕP , A, V, P ) is a pair
(I, ψ) (written (I, ψ) ` IP ), where I = (S, s0, ϕ,A, V ) is an IMC respecting the structure
and labels of IP , ψ : P → [0, 1] is a valuation for the parameters, and ϕ ≡ ϕP [p← ψ(p)].

We sometimes write I `ψ IP instead of (I, ψ) ` IP and say that I is an instance of IP
through ψ. We say that I is an instance of IP , written I ` IP , whenever there exists a
valuation ψ such that I `ψ IP .

A MCM = (T, t0,M,A, VM ) implements pIMC IP , writtenM |= IP , iff there exists
an instance I of IP such thatM |= I. We write [[IP ]] for the set of MCs implementing IP .

I Example 6. Consider pIMC IP given in the left of Figure 2. IP represents a family
of dispensable probabilistic beverage machines (dpbm) that have a probability greater or
equal to 0.5 of delivering tea and a probability lower or equal to 0.5 of delivering coffee. In
addition, we use parameter p to model the fact that the machine can fail to deliver anything
with probability at most p. The value of p depends on the quality of a potentially failing
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Figure 2 pIMC IP (left) with one of its instances I (middle) and an implementation M (right).

component. The IMC I given in the middle of Figure 2 depicts the family of dpbm for
which the potentially failing component has a maximal failure probability of 0.1. Finally,
MCM given in the right of Figure 2 depicts a given dpbm of this family, where the actual
probabilities of delivering tea and coffee are fixed to 0.5 and 0.5 respectively, and where the
potentially failing component does not fail.

As for IMCs, one question of interest for pIMCs is to decide whether they admit at
least one implementation – the so-called consistency problem. Given the definition of
implementation, deciding whether a pIMC is consistent amounts to verifying whether it
admits at least one instance that is itself consistent. Nevertheless, we will see in Section 4,
that in the case of local pIMCs, consistency can be decided using a polynomial algorithm on
the pIMC itself without having to go through any of its instances.

3.2 Local VS Global Parameters
We now propose two subclasses that distinguish different trends in the use of parameters
throughout a given structure. Parameters can be used at two different levels in a given pIMC:
either in a local fashion – reflecting small tuning artifacts in a model; or in a global fashion –
reflecting potential design choices. In the following, we formally define these subclasses.

Local parameters. Parameters are said to be local if they only appear in transition probab-
ilities outgoing from a unique state. In this sense they reflect small tuning artifacts because
of their small impact on the structure of the pIMC. The pIMC IP in Figure 2 illustrates this
notion: in IP , parameter p is local as it only appears in transitions outgoing from a single
state (State 1). In essence, p models the failure probability of a single component, only used
once in pIMC IP .

We write Range(p) for the range of a given parameter p, i.e. the set of states s such
that p is either the lower or the upper endpoint of the probability interval associated with
an outgoing transition of s. Formally, given pIMC IP = (S, s0, ϕP , A, V, P ), RangeIP (p) =
{s ∈ S | ∃s′ ∈ S s.t. p ∈ Low(ϕP (s, s′)) ∪ Up(ϕP (s, s′))}. When clear from the context, we
write Range(p) instead of RangeIP (p). We say that a parameter p ∈ P is local in IP iff
|Range(p)| ≤ 1. A pIMC IP = (S, s0, ϕP , A, V, P ) is local iff all its parameters are local.

Since all parameters are local in local pIMCs, it is very easy to check whether the outgoing
transitions of a given state are consistent in the sense that it is possible to find out easily
whether there exist values of the parameters such that the outgoing intervals of a given state
are not empty.

Global parameters. Parameters are global if they are not local, i.e. if they appear in the
outgoing probability intervals of at least two states.

SynCoP’15



22 Consistency for Parametric Interval Markov Chains

Formally, we say that parameter p ∈ P is global in IP iff |RangeIP (p)| > 1. We say
that pIMC IP = (S, s0, ϕP , A, V, P ) is global iff at least one of its parameters is global.
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I Example 7. pIMC IP2 from Figure 3 depicts a family of beverage
machines in which all modules use the same potentially failing
component. The maximal probability of failure of this component is
modeled using a parameter p. This parameter is global in IP2 as it
appears in the outgoing transitions of several states (States 1, 2, 4).
In IP2 , the choice of a value for p has more impact on the potential
behaviors of the global pIMC than in the case of pIMC IP from
Figure 2, where parameter p was only local.

In the case of global pIMCs, checking whether the outgoing transitions of a given state
are consistent becomes more tricky, since the potential values of the parameters may be
subject to constraints coming from other states.

4 Consistency

As said in Section 3, one question of interest given a pIMC IP is to decide whether it admits
at least one instance that itself admits at least one implementation. This is what we call the
consistency problem. In this section, we start by recalling the consistency problem in the
case of IMCs and solutions to this problem that have been proposed in the literature. We
propose an alternative solution to the consistency problem for IMCs and then extend it to
the case of local pIMCs. Finally, we show that the problem is more complex in the case of
pIMCs with global parameters.

4.1 Consistency of IMCs
The consistency problem for IMCs has already been studied in the literature [10] and it has
been proven that it is decidable and can be solved in polynomial time. We first recall one of
the existing algorithms and then propose an alternative, more direct solution.

In [10], the consistency problem for IMCs has been considered as a special case of
the common implementation problem, which consists in deciding, given a finite number
of IMCs, whether there exists at least one implementation satisfying them all. One can
solve the consistency problem for a given IMC I by deciding whether I admits a common
implementation with itself. The proposed solution to the consistency problem is based on
the notion of consistency relation, also introduced in [10]. It is shown that an IMC I is
consistent iff there exists a consistency relation between I and itself, which can be decided
in polynomial time.

As explained in [10], a consistency relation allows one state of a given IMC to contribute
to the consistency of other states. Although this was justified by the fact that satisfaction
abstracts from the structure of transitions in IMCs, we show in the following theorem that
whenever an IMC is consistent, it admits one implementation with the same structure. As a
consequence, one transition in this implementation only contributes to satisfying the exact
same transition in the specification IMC, which will allow us to avoid the use of consistency
relations in the rest of the paper.

I Theorem 8. An IMC I = (S, s0, ϕ,A, V ) is consistent iff it admits an implementation
of the form M = (S, s0,M,A, V ) where, for all reachable state s in M, it holds that
M(s, s′) ∈ ϕ(s, s′) for all s′.
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Proof. Let I = (S, s0, ϕ,A, V ) be an IMC. One direction of this theorem is trivial: if I
admits an implementation of the formM = (S, s0,M,A, V ) where, for all reachable state
s inM, it holds that M(s, s′) ∈ ϕ(s, s′) for all s′, then I is consistent. We now prove the
other direction.

Assume that I is consistent and letM′ = (T, t0,M ′, A, V ′) be a MC such thatM′ |= I
with satisfaction relation R. FromM′, we build a new implementation of I of the desired
form. Let f : S → T be a function that associates to each state of I one of the states inM′
contributing to its satisfaction, if any. Formally, f is such that for all s ∈ S, if f(s) is defined,
then (f(s), s) ∈ R. Let δ(f(s),s) be the function given by R (item 2 of Definition 3). We now
define the desired implementationM = (S, s0,M,A, V ). Let S′ = {s ∈ S | ∃t ∈ T, (t, s) ∈ R}
and M(s, s′) =

∑
t∈T δf(s),s(t)(s′) ·M ′(f(s), t) if s ∈ S′ and 0 otherwise.

We observe that, by definition of R we have M(s, s′) ∈ ϕ(s, s′) for all (s, s′) ∈ S′ × S.
Moreover, wheneverM(s, s′) > 0, there exists at least one state t ∈ T such that δf(s),s(t)(s′) >
0 and M ′(f(s), t) > 0. Therefore, by definition of δ, we have (t, s′) ∈ R and thus s′ ∈ S′. It
thus follows that only states from S′ can be reachable inM.

Consider the identity relation R′ over S′ and let (s, s) ∈ R′. Let δ′ : S → (S → [0, 1]) be
such that δ′(s′)(s′′) = 1 whenever s′ ∈ S′ and s′′ = s′, and 0 otherwise.

Let s′ ∈ S be such that M(s, s′) > 0. By construction, we have s′ ∈ S′ and thus δ′(s′) is
a distribution on S.
Let s′ ∈ S and consider

∑
s′′∈SM(s, s′′) · δ(s′′)(s′).

If s′ /∈ S′, then
∑
s′′∈SM(s, s′′) · δ′(s′′)(s′) = 0 and we know by R that 0 ∈ ϕ(s, s′)

(because there is no t ∈ T such that δ(t)(s′) > 0).
Otherwise, we have

∑
s′′∈SM(s, s′′) · δ′(s′′)(s′) = M(s, s′) ∈ ϕ(s, s′)

For all s′, s′′ ∈ S such that δ′(s′)(s′′) > 0, we have s′ = s′′ and s′ ∈ S′, therefore
(s′, s′′) ∈ R′.

We conclude that R′ is a satisfaction relation betweenM and I. Moreover, we know by
construction that (t0, s0) ∈ R, thus s0 ∈ S′. J

The fact that a consistent IMC necessarily admits an implementation with the same
structure implies that using a cross-product such as introduced in the notion of consistency
relation in order to prove consistency is not necessary. Therefore, one does not need to search
for local inconsistencies in S × S, as is done in [10], but only needs to check and avoid local
inconsistencies on S.

We thus propose an alternative solution to the consistency problem for IMCs. Our solution
is based on the notion of pruning. The aim of pruning is to detect and remove from a given
structure all the states that cannot contribute to any of its implementations. Such states are
called inconsistent. The algorithm we propose will follow the same principle: it will detect
and propagate local inconsistencies (i.e. states whose transition intervals cannot be satisfied)
through the state-space of the IMC until either the initial state is locally inconsistent – the
IMC is thus inconsistent – or only consistent states are reachable, implying that the IMC is
consistent. Because of Theorem 8, an implementation of the original IMC I can be directly
derived from its pruned version.

A pruning algorithm was also proposed in [10], but it was based on the notion of
consistency relation, therefore using the cross-products we are trying to avoid. In [10], a
quadratic number of iterations is needed in order to build the consistency relation, each
iteration being itself quadratic in the number of states. A linear number of iterations is then
needed in order to prune the consistency relation. In contrast, the algorithm we propose in
the following only needs a linear number of iterations, each iteration being linear itself.
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The pruning operator we propose is based on the notion of local state-consistency.

I Definition 9. Given an IMC I = (S, s0, ϕ,A, V ), a state s ∈ S is locally consistent if there
exists a distribution ρ ∈ Dist(S) such that for all s′ ∈ S, ρ(s′) ∈ ϕ(s, s′).

Being able to check whether a given state in an IMC is locally consistent is thus of
paramount importance. Fortunately, this can be done quite easily: checking whether a state
is locally consistent amounts to solving a set of linear inequations. Indeed, assuming that
S = {s0, s1, . . . sn}, checking whether si ∈ S is consistent amounts to deciding whether the
following system of inequations admits a solution.

∃x0, . . . xn, x0 + . . .+ xn = 1 ∧ x0 ∈ ϕ(si, s0) ∧ . . . ∧ xn ∈ ϕ(si, sn)

In fact, one does not need to solve the system in order to decide whether it admits a
solution. If ϕ contains intervals that are not well-formed, then si is trivially inconsistent.
Otherwise, assuming all the intervals in ϕ are well-formed, then one only needs to check
whether the sum of all lower endpoints is below 1 and whether the sum of all upper endpoints
is above 1.

I Proposition 10. Given an IMC I = (S, s0, ϕ,A, V
I), a state s ∈ S is locally consistent

iff ϕ(s, s′) is well-formed for all s′, and
∑
s′∈S Low(ϕ(s, s′)) ≤ 1 ≤

∑
s′∈S Up(ϕ(s, s′)).

Checking whether a state is locally consistent can thus be done in linear time. Once
locally inconsistent states have been identified, they will be made unreachable in I by
iterating the following pruning operator β. In the following, we say that a state s of IMC
I = (S, s0, ϕ,A, V

I) is inconsistent iff there is no implementation of I in which s is satisfied.
In practice, s is inconsistent iff it is locally inconsistent or there are transitions with non-zero
probability leading from s to another inconsistent state s′, i.e. such that 0 /∈ ϕ(s, s′). In
order to keep track of inconsistent states that have already been processed, we equip IMCs
with a marking function λ : S → {0, 1}. States s such that λ(s) = 1 are inconsistent states
that have already been identified and made unreachable in a previous iteration of β. The
notion of satisfaction is not impacted by this marking function.

I Definition 11 (Pruning operator β for IMCs). Let I = (S, s0, ϕ,A, V, λ) be an IMC. The
pruning operator β is defined as follows. Let λ0(S) = {s ∈ S | λ(s) = 0}.
1. If λ0(S) does not contain any locally inconsistent state or if I = ⊥, then β(I) = I.
2. Else, if s0 is locally inconsistent, then β(I) = ⊥.
3. Otherwise, let si ∈ λ0(S) be a new locally inconsistent state in I. We then define β(I) =

(S, s0, ϕ
′, A, V, λ′), with λ′(si) = 1 and λ′(s) = λ(s) for all s 6= si, ϕ′(s, s′) = ϕ(s, s′) if

s′ 6= si, and

ϕ′(s, si) =


ϕ(s, si) if λ(s) = 1
[0, 0] if λ(s) = 0 and 0 ∈ ϕ(s, si)
∅ otherwise

As seen in the above definition, the pruning operator does not remove inconsistent states
but makes them unreachable. When 0 is an allowed probability for incoming transitions, β
enforces this choice by modifying the subsequent intervals to [0, 0]. When 0 is not allowed,
then the only possibility is to modify the interval probabilities to ∅, which propagates local
inconsistency to predecessors. The first application of β should always be done with an
empty marking function, i.e. assigning 0 to all states.

Since pruning potentially propagates local inconsistencies to predecessor states, the
pruning operator β has to be applied iteratively until it converges to a fixpoint. The IMC
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obtained in this fixpoint is either ⊥ or an IMC with no reachable locally inconsistent states
(item 1 of Definition 11 above). Since at least one inconsistent state is detected and made
unreachable at each iteration (items 2 and 3 of Definition 11), the number of iterations
needed in order to converge is bounded by |S|. The complexity of applying pruning to I
until it converges is thus polynomial. The result of this iteration on IMC I is written β∗(I)
in the rest of the document.

I Theorem 12. For all IMC I = (S, s0, ϕ,A, V ) and marking function λ such that λ(s) = 0
for all s ∈ S, it holds that [[β∗((S, s0, ϕ,A, V, λ))]] = [[I]].

Proof. Let I = (S, s0, ϕ,A, V ) be an IMC and let λ be a Marking function such that λ(s) = 0
for all s ∈ S. Let I ′ = (S, s0, ϕ

′, A, V, λ′) = βn((S, s0, ϕ,A, V, λ)) for some n ∈ N. We show
that for all MCM, we haveM |= I ′ ⇐⇒ M |= β(I ′).

If {s ∈ S | λ′(s) = 0} does not contain any inconsistent state or if s0 is inconsistent, then
the result is trivial. We thus assume that an inconsistent state si ∈ {s ∈ S | λ′(s) = 0} is
found and made unreachable by β.

We start by observing that, by construction, all states s ∈ S such that λ′(s) = 1 are such
that for all s′ ∈ S with λ(s′) = 0, we have either ϕ′(s′, s) = [0, 0] or ϕ′(s′, s) = ∅.

⇒ Let M = (T, t0,M,A, VM ) be a MC such that M |= I ′. Let R be the associated
satisfaction relation. We show that R is still a satisfaction relation betweenM and β(I ′) =
(S, s0, ϕ

′′, A, V, λ′′). Let (t, s) ∈ R.
1. Since β has no effect on valuations, we still have VM (t) = V (s).
2. Let δ : T → (S → [0, 1]) be the function given by R. By construction, it holds that

a. for all t′ ∈ T such that M(t, t′) > 0, δ(t′) is a distribution on S,
b. for all s′ ∈ S, we have (

∑
t′∈T M(t, t′) · δ(t′)(s′)) ∈ ϕ′(s, s′), and

c. for all t′ ∈ T and s′ ∈ S, if δ(t′)(s′) > 0, then (t′, s′) ∈ R.

Items 2.a. and 2.c. are not impacted by β. We now show that Item 2.b. still holds.
For all s′ ∈ S such that s′ 6= si, we have ϕ′′(s, s′) = ϕ′(s, s′) and Item 2.b. still holds.

Furthermore, since si is inconsistent in I ′, we necessarily have that for all t′ ∈ T , (t′, si) /∈ R,
and thus δ(t′)(si) = 0. Therefore, we have (

∑
t′∈T M(t, t′) · δ(t′)(si)) = 0.

If s is such that 0 ∈ ϕ′(s, si), then we still have 0 ∈ ϕ′′(s, si) since ϕ′′(s, si) is either
ϕ′(s, si) or [0, 0].
Otherwise, if 0 /∈ ϕ′(s, si), then we have (

∑
t′∈T M(t, t′) · δ(t′)(s′)) /∈ ϕ′(s, s′), which is a

contradiction w.r.t. the definition of R. As a consequence, there exists no t ∈ T such
that (t, s) ∈ R and the modification of ϕ′(s, si) into ϕ′′(s, si) = ∅ has no consequence on
Item 2.b.

Finally, R is still a satisfaction relation betweenM and β(I ′) and thereforeM |= β(I ′).

⇐ LetM = (T, t0,M,A, VM ) be a MC such thatM |= β(I ′) = (S, s0, ϕ
′′, A, V, λ′′). Let

R be the associated satisfaction relation. We show that R is also a satisfaction relation
between M and I ′. Let (t, s) ∈ R and let δ : T → (S → [0, 1]) be the function given by
R. As above, β has no effect on valuations and on Items 2.a. and 2.c. of the definition of a
satisfaction relation. We show that Item 2.b. also holds betweenM and I ′.

For all s′ ∈ S such that s′ 6= si, we have ϕ′′(s, s′) = ϕ′(s, s′) and Item 2.b. trivially holds.
Furthermore, since si is inconsistent in I, it is also inconsistent in I ′. As a consequence, we
necessarily have that for all t′ ∈ T , (t′, si) /∈ R, and thus δ(t′)(si) = 0. Therefore, we have
(
∑
t′∈T M(t, t′) · δ(t′)(si)) = 0.
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(c) β2(I) = β∗(I).

Figure 4 Iterative application of the pruning operator β to IMC I until convergence.

If s is such that 0 ∈ ϕ′(s, si), then (
∑
t′∈T M(t, t′) · δ(t′)(si)) ∈ ϕ′(s, si) and Item 2.b.

holds.
Otherwise, if 0 /∈ ϕ′(s, si), then we have ϕ′′(s, si) = ∅. As a consequence (

∑
t′∈T M(t, t′) ·

δ(t′)(si)) /∈ ϕ′′(s, si), which is a contradiction. Therefore, there exists no t ∈ T such that
(t, s) ∈ R and 0 /∈ ϕ′(s, si).

Finally, R is also a satisfaction relation betweenM and I ′ and thereforeM |= I ′.
J

I Example 13. Figure 4 illustrates the iteration of pruning operator β on an IMC. Consider
IMC I from Figure 4a. Applying β on I consists in two steps: (1) searching for a locally
inconsistent state in I, and (2) modifying I in order to make the selected locally inconsistent
state unreachable. At first, the only locally inconsistent state in I is State 5. As a consequence,
applying β will either reduce all incoming interval transition probabilities to [0, 0] when 0 is
already allowed or to ∅ when this is not the case. The only incoming transition for State
5 is equipped with interval [0.5, 1], therefore it is replaced with ∅. β(I) is then depicted in
Figure 4b. In the second iteration of β, State 3 is identified as locally inconsistent because
it has an outgoing transition equipped with ∅. State 3 only has one incoming transition,
which is equipped with interval [0, 0.5]. Since this interval contains 0, it is replaced with
[0, 0]. β2(I) is represented in Figure 4c. Since β2(I) does not contain any reachable locally
inconsistent state, the fixed point is reached and β∗(I) = β2(I).

4.2 Consistency of pIMCs
We now move to the setting of pIMCs. Recall that a pIMC IP is consistent iff it admits at
least one consistent instance, i.e. ∃I,∃M | M |= I and I ` IP .

As we will see later, the difficulty of deciding whether a given pIMC IP is consistent
highly depends on the nature of the parameters in IP . This is due to the fact that the
notion of local state-consistency only makes sense for states whose transition probability
intervals only contain local parameters. Indeed, in the case of global parameters, the local
consistency of one state might be incompatible with the local consistency of another due to
the incompatible choice of parameter valuations. In the following, we propose an intuitive
and efficient solution for deciding whether a local pIMC is consistent. We then show that
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Figure 5 Global pIMC IP with global parameter p (left) and one of its implementations (right).

consistency is also decidable in the case of global parameters although the algorithm we
propose is more complex.

I Example 14. Consider pIMC IP given on the left of Figure 5. Parameter p in IP is global
as it affects outgoing transitions of States 1, 2 and 3. If one is checking local state-consistency,
it looks like all states in IP are locally consistent. Indeed, outgoing transitions of State 1
can be satisfied with p = 0; outgoing transitions of State 2 can be satisfied with p = 0; and
outgoing transitions of State 3 can be satisfied with p = 1. From a purely local point of
view, it thus seems that IP is consistent. However, it also appears that State 2 requires
that p ≤ 0.4 while State 3 requires that p ≥ 0.5. One could therefore conclude that IP is
inconsistent. Despite of this fact, we claim that IP is consistent: if p is set to 0, then we
can reduce the transition interval from State 1 to State 3 to [0, 0], which makes State 3
unreachable. Therefore, one no longer needs to have p ≥ 0.5 and a correct implementation of
IP can be found. Such an implementation is Given on the right of Figure 5.

Consistency of local pIMCs. In order to check consistency of local pIMCs, a similar
algorithm to the one used for checking consistency of IMCs can be used. In fact, due to
Theorem 8, one does not need to consider particular instances of IP in order to find out
whether IP is consistent: since all instances of IP share the same structure, IP will be
consistent iff there exists an implementation that shares this structure. Since the notion
of local state-consistency makes sense in the case of local pIMCs, we adapt the pruning
algorithm presented in Section 4.1 to local pIMCs.

Let IP = (S, s0, ϕP , A, V, P ) be a local pIMC and let s ∈ S. We write param(s) = {p ∈
P | Range(p) = {s}} for the set of parameters appearing in the outgoing transition intervals
of s. We then say that s is locally consistent iff there exists a valuation ψ over param(s) and
a distribution ρ ∈ Dist(S) such that for all s′ ∈ S, ρ(s′) ∈ ϕP (s, s′)[p← ψ(p)]. Recall that
the only parameters potentially appearing in ϕP (s, s′) are necessarily from param(s).

In a similar fashion to the case of IMCs, local consistency of state si ∈ S can be reduced to
checking whether a system of inequations admits a solution. In order to facilitate presentation,
we assume that S = {s1, . . . , sn} and we use the parameters in param(si) as variables taking
values in [0, 1]. The system is then as follows:∑n

j=1 Low(ϕP (si, sj)) ≤ 1 ∧
∑n
j=1 Up(ϕP (si, sj)) ≥ 1 ∧ Low(ϕP (si, s1)) ≤ Up(ϕP (si, s2))

∧ . . . ∧ Low(ϕP (si, sn)) ≤ Up(ϕP (si, sn))

In this system, the first two inequations reflect the definition of local state-consistency
while the other inequations ensure that all the intervals expressed using parameters are
well-formed. In the case of IMCs, we were able to remove this check by assuming beforehand
that our IMCs were well-formed. In the case of pIMCs, we cannot assume the same as
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28 Consistency for Parametric Interval Markov Chains

well-formedness will depend on the actual value given to parameters. Nevertheless, solving
such a system of inequations can be done in polynomial time w.r.t. |S| and |P |.

We now propose a pruning algorithm for local pIMCs based on the notion of local
state-consistency. The outline of this algorithm is similar to the algorithm for IMCs, and
only the modification of interval probabilities following the discovery of a new locally
inconsistent state si is slightly modified: We start by identifying the set of parameters
appearing as the lower bound of a transition interval leading to si and then enforce the
value of these parameters to be 0 in order to be able to make si unreachable. Formally, we
write enforce(si) = {p ∈ P | ∃s ∈ S, p = Low(ϕP (s, si))} for this set of parameters. As for
IMCs, we use a marking function λ : S → {0, 1} in order to keep track of locally inconsistent
states that have already been processed. The notions of instantiation and satisfaction are
not impacted by this marking function.

I Definition 15 (Pruning operator β for pIMCs). Let IP = (S, s0, ϕP , A, V, P, λ) be a pIMC.
The pruning operator β for pIMCs is defined as follows. Let λ0(S) = {s ∈ S | λ(s) = 0}.
1. If λ0(S) does not contain any locally inconsistent state or if IP = ⊥ then β(IP ) = (IP ).
2. Else, if s0 is locally inconsistent, then β(IP ) = ⊥.
3. Otherwise, let si ∈ λ0(S) be a new locally inconsistent state in IP . We then define

β(IP ) = (S, s0, ϕ
′
P , A, V, P, λ

′), with λ′(si) = 1 and λ′(s) = λ(s) for all s 6= si, ϕ′P (s, s′) =
ϕP (s, s′)[enforce(si)← 0] if s′ 6= si, and

ϕ′P (s, si) =


ϕP (s, si)[enforce(si)← 0] if λ(s) = 1
[0, 0] if λ(s) = 0 and ϕP (s, si)[enforce(si)← 0] = [0, .]
∅ otherwise

As for IMCs, the pruning operator β for pIMCs propagates local inconsistencies to
predecessor states. Therefore, β has to be applied iteratively until a fixpoint if reached. The
pIMC obtained in this fixpoint is either ⊥ or a pIMC with no reachable locally inconsistent
state (item 1 of Definition 15). Since at least one inconsistent state is identified and made
unreachable at each iteration (items 2 and 3 of Definition 15), the number of iterations
needed in order to converge is bounded by |S|. Therefore, the complexity of applying pruning
to a given local pIMC until convergence is polynomial in |S| and |P |. The result of this
iteration on pIMC IP is written β∗(IP ).

I Example 16. Figure 6 illustrates the pruning operator for local pIMCs. Consider local
pIMC IP given in the left of Figure 6. We start by searching for locally inconsistent states
in IP : State 3 is chosen. The first application of pruning operator β will therefore try to
make State 3 unreachable by forcing all incoming transition intervals to [0, 0]. This can only
be done if either 0 is already the lower bound of the incoming interval or if a parameter p
is the lower bound of the incoming interval and p can be forced to 0 throughout the whole
pIMC. In IP , State 3 only has one incoming transition, which is equipped with interval [p, 1].
Parameter p is thus forced to 0 in all other transitions and the incoming interval to State 3
is reduced to [0, 0]. The result β(IP ) is given in the right of Figure 6. Since there are no
more locally inconsistent states in β(IP ), we have β∗(IP ) = β(IP ).

We now show that the result of iterating β on a given pIMC IP is a pIMC with the same
set of implementations as IP .

I Theorem 17. For all local pIMC IP = (S, s0, ϕP , A, V, P ) and marking function λ

such that λ(s) = 0 for all s ∈ S, it holds that for all MC M, M |= IP iff M |=
β∗((S, s0, ϕP , A, V, P, λ)).
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Figure 6 Iterative application of the pruning operator to pIMC IP (left) until convergence
(right).

Proof. Let IP = (S, s0, ϕP , A, V, P ) be a local pIMC and let λ be a marking function such
that λ(s) = 0 for all s ∈ S. Let IP ′ = (S, s0, ϕ

′
P , A, V, P, λ

′) = βn((S, s0, ϕP , A, V, P, λ)) for
some n ∈ N. We show that for all MCM, we haveM |= IP ′ ⇐⇒ M |= β(IP ′).

If {s ∈ S | λ′(s) = 0} does not contain any locally inconsistent state or if s0 is locally
inconsistent, then the result is trivial. We thus assume that a locally inconsistent state
si ∈ {s ∈ S | λ′(s) = 0} is found and made unreachable by β.

We start by observing that, by construction, all states s ∈ S such that λ′(s) = 1 are such
that for all s′ ∈ S with λ(s′) = 0, we have either ϕ′P (s′, s) = [0, 0] or ϕ′P (s′, s) = ∅.

⇒ Let I = (S, s0, ϕ,A, V, P ) be an IMC and let ψ : P → [0, 1] be a valuation for the
parameters such that I `ψ IP

′. LetM = (T, t0,M,A, VM ) be a MC such that M |= I with
satisfaction relation R ⊆ T × S. We show that there exists an IMC I ′ such that M |= I ′
and I ′ ` β(IP ′).

The proof proceeds in two steps: we first build the IMC I ′ and show that I ′ ` β(IP ′)
and then show thatM |= I ′.

Let ψ′ : P → [0, 1] be a new valuation for the parameters such that ψ′(p) = 0 if
p ∈ enforce(si) and ψ′(p) = ψ(p) otherwise. Let I ′ = (S, s0, ϕ

′, A, V, P ) be such that
ϕ′(s, s′) = ϕP (s, s′)[p ← ψ′(p)] if s′ 6= si or if λ(s) = 1, ϕ′(s, si) = [0, 0] if λ(s) = 0 and
ϕP (s, si)[enforce(si)← 0] = [0, .], and ϕ′(s, si) = ∅ otherwise. By construction, it follows
that I ′ `ψ′ β(IP ′).

We now show that R is a satisfaction relation betweenM and I ′. Let (t, s) ∈ R.

1. Since β has no effect on valuations, we have VM (t) = V (s).
2. Let δ be the function given in item 2 of Definition 3. By construction, it holds that

a. for all t′ ∈ T such that M(t, t′) > 0, δ(t′) is a distribution on S,
b. for all s′ ∈ S, we have (

∑
t′∈T M(t, t′) · δ(t′)(s′)) ∈ ϕ(s, s′), and

c. for all t′ ∈ T and s′ ∈ S, if δ(t′)(s′) > 0, then (t′, s′) ∈ R.

Items 2.a. and 2.c. are not impacted by β. We now show that item 2.b. still holds when
considering ϕ′ instead of ϕ.

Remark that since si is locally inconsistent in I ′, we necessarily have that for all t′ ∈ T ,
(t′, si) /∈ R and therefore δ(t′)(si) = 0. Let s′ ∈ S and consider ϕ′(s, s′).

If s′ 6= si, we have ϕ′(s, s′) = ϕP (s, s′)[p← ψ′(p)]. If ϕP (s, s′) = [x, y] with x ∈ [0, 1]∪P
and y ∈ [0, 1] ∪ (P \ enforce(si)), then either ϕ′(s, s′) = ϕ(s, s′) or ϕ(s, s′) ⊆ ϕ′(s, s′)
and therefore (

∑
t′∈T M(t, t′) · δ(t′)(s′)) ∈ ϕ′(s, s′). The only difficulty appears when

y = p ∈ enforce(si). In this case, there must exist s′′ ∈ S such that ϕP (s′′, si) = [p, .].
Moreover, since IP is local, we must have s = s′′. By R, we know that (

∑
t′∈T M(t, t′) ·
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δ(t′)(si)) ∈ ϕ(s, si). Since δ(t′)(si) = 0 for all t′ ∈ T , we have that 0 ∈ ϕ(s, si) = [ψ(p), .],
thus ψ(p) = ψ′(p) = 0 and ϕ′(s, s′) = ϕ(s, s′). As a consequence, item 2.b. still holds.
If s′ = si, then since si is inconsistent, we have

∑
t′∈T M(t, t′) · δ(t′)(si) = 0 ∈ ϕ(s, si).

As a consequence, we necessarily have ϕ(s, si) = [0, .] and thus ϕP (s, si)[enforce(si)←
0] = [0, .]. Therefore, by construction, we still have 0 ∈ ϕ′(s, si) and item 2.b. holds.

Finally, R is still a satisfaction relation betweenM and I ′ and thereforeM |= I ′.

⇐ The proof of ⇐ is straightforward with symmetric arguments. J

Consistency of global pIMCs. Unfortunately, the pruning algorithm we propose above
cannot be ported to the setting of global pIMCs. Indeed, as illustrated in Example 14, the
notion of local state consistency does not make sense in this setting, as restrictions on the
values of parameters given by the local consistency of a given state can impact the local
consistency of another. Nevertheless, consistency of global pIMCs is decidable: one can
derive another, more complex, pruning algorithm from the one proposed in Definition 15.
Since this algorithm is not optimal and only serves to prove decidability, we only present the
outline of the algorithm without going into too much details.

Since fixing the value of given parameters may impact several states, we propose to
group states that share given parameters and check inter-consistency of this group of states
instead of local consistency of all states taken separately. We thus define groups of states
that share parameters and propose a system of inequations that will decide whether this
group of states is inter-consistent. Formally, given global pIMC IP = (S, s0, ϕP , A, V, P )
and states s1, s2 ∈ S, we say that s1 and s2 are inter-dependent, written s1 ↔ s2 iff either
param(s1) ∩ param(s2) 6= ∅ or there exists s3 such that s1 ↔ s3 and s3 ↔ s2. The groups of
states we consider for the new notion of inter-consistency will thus be equivalence classes
under ↔.

Given such an equivalence class s, we say that s is inter-consistent iff the system of
inequations consisting of all inequations for local consistency of all states in s admits a
solution. When s is not inter-consistent, the pruning algorithm will nondeterministically
choose one of the states in s, try to make it unreachable as in Definition 15 and mark it.
From this point, if pruning goes on until IP is proven consistent, then we can conclude
positively. However, if the initial state is ultimately proven inconsistent, then we cannot
conclude and the algorithm will backtrack and try making another state from s unreachable
instead until all possible combinations of states in s have been considered. Only then can we
conclude that IP is inconsistent. Since there are only finitely many combinations of states
in S, the algorithm will ultimately converge and allow deciding whether global pIMC IP is
consistent.

5 Concluding remarks

In this paper, we have introduced the new formalism of parametric Interval Markov Chains,
that extends Interval Markov Chains by allowing the use of parameters as lower or upper
bounds to the interval probabilities of transitions. We have also shown that the consistency
problem is decidable for pIMCs and proposed an efficient algorithm for checking consistency
of pIMCs with local parameters only. While we limit ourselves to intervals where parameters
can only appear as lower or upper bound, our work can be directly extended to intervals with
linear expressions over parameters and constants. In fact, this change does not impact any of
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the proposed solutions for local or global pIMCs : the systems of inequations we propose for
deciding local or inter-consistency and the subsequent pruning algorithms remain unchanged.

The first direction for future work is to design better-suited algorithms for solving the
consistency problem in the case of global pIMCs. Our second direction for future work is
to consider other problems of interest for pIMCs, e.g. parameter synthesis with respect to
some optimality criterion such as reachability. Finally, as has been argued in the literature,
IMCs are quite limited as a specification theory as they are not closed under compositional
operators such as parallel composition or conjunction. Therefore, we plan to extend our
reasoning to more expressive specification theories such as Constraint Markov Chains [6] or
Abstract Probabilistic Automata [9].
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Abstract
This paper considers discrete-time linear systems controlled by a quantized law, i.e., a piecewise
constant time function taking a finite set of values. We show how to generate the control by, first,
applying model reduction to the original system, then using a “state-space bisection” method for
synthesizing a control at the reduced-order level, and finally computing an upper bound to the
deviations between the controlled output trajectories of the reduced-order model and those of
the original model. The effectiveness of our approach is illustrated on several examples of the
literature.
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1 Introduction

We are focusing here on switched control systems, a class of hybrid systems recently used
with success in various domains such as automotive industry and power electronics. Several
strategies have been developped to design control laws for such systems; we use here the
invariance analysis [9, 8, 10]. The associated algorithms are very expensive and require a
limited state space dimension; we thus use a model order reduction in order to synthesize
a controller at the reduced-order level. Two methods are proposed to apply the controller
to the full-order system. Offline and online controls are enabled, and the computation of
upper bounds of the error induced by the reduction allowed to guarantee the effectiveness
of the controller.
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Comparison with related work. Model order reduction techniques for hybrid or switched
systems are classically used in numerical simulation in order to construct at the reduced
level trajectories which cannot be computed directly at the original level due to complexity
and large size dimension [3].

Han and Krogh make use of model reduction in order to perform set-based reachability
analysis [16]. They do not construct isolated trajectories issued from isolated points, but
(an overapproximation of) the infinite set of trajectories issued from a dense set of initial
points. This allows them to perform formal verification of properties such as safety. In both
approaches, the control is given as an input of the problem. In contrast here, the control is
synthesized using set-based methods in order to achieve by construction properties such as
convergence and stability.

The problem of control synthesis for hybrid and switched systems has been widely stud-
ied and various tools exist. The Multi-Parametric Toolbox (MPT 3.0 [17]) for example
solves optimal control problems using operations on polytopes. Most approaches make use
of Lyapunov or the so-called “multiple Lyapunov functions” to solve the problem of con-
trol synthesis for switched systems - see for example [24]. The approximate bisimulation
approach abstracts switched systems under the form of a discrete model [14, 12] under cer-
tain Lyapunov-based stability conditions. The latter approach has been implemented in
PESSOA [18] and CoSyMA [20]. The approach used in this paper avoids using Lyapunov
functions and relies on the notion of “(controlled) invariant” [7].

Plan. In Section 2, we give some preliminaries about linear controlled systems and reach-
ability sets. In Section 3, we recall the principles of the state-space bisection method. In
Section 4, we explain how to construct a reduced model, apply the state-space bisection
method at this level, and compute upper bounds to the error induced at the original level.
In Section 5, we propose two methods of control synthesis allowing to synthesize (either
offline or online) a controller at the reduced-order level and apply it to the full-order system.
In Section 6, we apply our approach to several examples of the literature. We conclude in
Section 7.

2 Background

We consider a class of control systems composed of a plant and a controller defined as
follows. The plant is a discrete-time linear time invariant (DLTI) system Σ defined by (see
[4, 24] for more information on DLTI and sampled switched systems):

Σ :
{
x(t+ τ) = Adx(t) +Bdu(t),
y(t) = Cdx(t). (1)

Here, the state x is an n-vector, the control input u a p-vector, the output y an m-vector,
and Ad an n×n-matrix, Bd an n×p-matrix, Cd a m×n matrix. The real positive constant
τ is the time sampling parameter. All the coefficients are reals. The system Σ is obtained
from the temporal discretization of the continuous linear time invariant (LTI) system:{

ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t),

with

Ad = eAτ , Bd =
∫ τ

0
eA(τ−t)Bdt, Cd = C.
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We consider here the case of a quantized control (see, e.g. [22]). This means that the
control law u ≡ u(·) is a piecewise constant function that changes its value at each sampling
time 0, τ, 2τ, . . . Furthermore, u can take only a finite number of vector values. We denote
by U the finite set of values taken by u, every element of U is called a mode. The problem of
(discretized) quantized control is to find a state-dependent law u(t) which, at every sampling
time, finds the element of U that allows to achieve a given goal, such as the stabilization
around an objective point yobj . Actually, the stabilization of such systems cannot be perfect
[22], and we thus look for practical stability: we do not look for an equilibrium point yobj ,
but only for a neighborhood of yobj in which we confine the system. We note that the
controller in the above model implements a state feedback law and has only discrete-state
dynamics.

The entries of the problem are the following:
1. a subset Rx ⊂ Rn of the state space, called interest set,
2. a subset Ry ⊂ Rm of the output space, called objective set.
The objective is to find a law u(·) which, for any initial state x0 ∈ Rx, stabilizes the output y
in the set Ry.

Remark: In [10], we have proposed a procedure, called state-space bisection procedure1, in
order to achieve a similar goal. The context was simpler since we considered there only
the state equation x(t + τ) = Adx(t) + Bdu(t) without the output equation y(t) = Cdx(t).
Here, the stabilization problem is naturally extended to take into account the output y(t).
Note that even if the initial state x0 belongs to Rx, the corresponding output y0 does not
necessarily belong to Ry.

The state-space bisection procedure being subject to the so-called curse of dimension-
ality, it will be applied here to a reduced order model Σ̂ of dimension nr < n in order to
stabilize its output in the objective set Ry. We will show that the control law synthesized
on the reduced system Σ̂ still stabilizes the output of the original system Σ with a toler-
ance ε > 0. We now introduce some notations required to explain the state-space bisection
procedure.

Some notations. We will use x(t, x, u) to denote the point reached by Σ at time t under
mode u ∈ U from the initial condition x. This gives a transition relation →τ

u defined for x
and x′ in Rn by: x →τ

u x
′ iff x(τ, x, u) = x′. Given a set X ⊂ Rn, we define the successor

set of a set X ⊂ Rn of states under mode u as:

Postu(X) = {x′ | x→τ
u x
′ for some x ∈ X}.

The set Postu(X) is then the result of the affine transformation AdX + Bdu. Likewise, we
define the output successor set of a set X ⊂ Rn of states under mode u as:

Postu,C(X) = {Cx′ | x→τ
u x
′ for some x ∈ X}.

An input pattern named Pat is defined as a finite sequence of modes. A k-pattern is an
input pattern of length at most k. The successor set of X ⊂ Rn using Pat ≡ (u1 · · ·uk) is
defined by

PostPat(X) = {x′ | x→τ
u1
· · · →τ

uk
x′, x ∈ X}.

1 In [9, 8, 10], this method was called “state-space decomposition”, but we use here “state-space bisection”
in order to avoid ambiguity with model reduction methods.
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The mapping PostPat is itself an affine transformation. The output successor set of X ⊂ Rn
using Pat ≡ (u1 · · ·uk) is defined by

PostPat,C(X) = {Cx′ | x→τ
u1
· · · →τ

uk
x′, x ∈ X}.

Given an input pattern Pat of the form (u1 · · ·um), and a set X ⊂ Rn, the unfolding of
X via Pat, denoted by Unf Pat(X), is the set

⋃m
i=0Xi with:

X0 = X,
Xi+1 = Postui+1(Xi), for all 0 ≤ i ≤ m− 1.

The unfolding thus corresponds to the set of all the intermediate states produced when
applying the input pattern Pat to the states of X.

3 Control Synthesis by State-Space Bisection

We now explain the method that we are going to use in order to find a control law u that
stabilizes the state x of the system Σ into a given zone Rx ⊂ Rn [10], and makes the output y
reach a given zone Ry ⊂ Rn.

3.1 x-stabilization and y-convergence requirements
Given an interest set Rx and an objective set Ry, we can define the notion of “x-stabilization”
and “y-convergence” in this context as follows.

I Definition 1. Given a system Σ, a set Rx subset of Rn, a set Ry subset of Rm, and a
positive integer k, an x-stabilizing and y-convergent control for (Rx, Ry, k) with respect to Σ
is a function that associates to each x ∈ Rx a k-pattern Pat such that:

PostPat({x}) ⊆ Rx,
PostPat,C({x}) ⊆ Ry.

Note that we use the term “y-convergence” because the output corresponding to the
initial state can possibly be outside Ry, whereas the initial state necessarily belongs to Rx.
Given a system Σ, an x-stabilizing and y-convergent control guarantees that all the traject-
ories starting at Rx return to Rx within k steps and that the output is sent into Ry. In order
to find an x-stabilizing and y-convergent control, we can adapt the method of “state-space
bisection” introduced in [8].

I Definition 2. Given a system Σ, two sets Rx and Ry respectively subsets of Rn and Rm,
and a positive integer k, a successful decomposition of (Rx, Ry, k) w.r.t. Σ is a set ∆ of the
form {Vi, Pati}i∈I , where I is a finite set of indices, every Vi is a subset of Rx, and every
Pati is a k-pattern such that:
(a)

⋃
i∈I Vi = Rx,

(b) for all i ∈ I: PostPati(Vi) ⊆ Rx,
(c) for all i ∈ I: PostPati,C(Vi) ⊆ Ry.

Remark: Note that in pratice, the condition PostPati,C(Vi) ⊆ Ry is verified by verify-
ing that the bounding box of PostPati,C(Vi) (that is the smallest square box containing
PostPati,C(Vi)) belongs to Ry. All the set-based operations are carried out with zonotopes.
See [1] for the computation of the bounding box of a zonotope and operations realized on
zonotopes.

A successful decomposition ∆ = {(Vi, Pati)}i∈I naturally induces a state-dependent con-
trol on Rx. The control induced by ∆ is defined as follows: consider an initial point x0
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of Rx; we know that x0 ∈ Vi for some i ∈ I (since Rx =
⋃
i∈I Vi). One thus applies Pati

to x0, which gives a new state x1 that belongs itself to Rx, and the associated output be-
longs to Ry (since PostPati(Vi) ⊆ Rx and PostPati,C(Vi) ⊆ Ry). The process can then be
repeated on x1, and so on iteratively. Obviously, the induced control is an x-stabilizing and
y-convergent control for (Rx, Ry, k). Formally, we have:
I Proposition 1. Suppose that ∆ is a successful decomposition of (Rx, Ry, k) w.r.t. Σ. Then
the control induced by ∆ is an x-stabilizing and y-convergent control for (Rx, Ry, k) w.r.t.
Σ.

The problem of finding an x-stabilizing and y-convergent controller thus reduces to the
problem of finding a successful decomposition. The latter problem can be solved by using
the method of state-space bisection [8], as explained below.

3.2 Bisection method
We give here a simple algorithm, adapted from [8], called Bisection algorithm. Given two
sets Rx and Ry, and a positive integer k, the algorithm, when it succeeds, provides for a
successful decomposition ∆ of (Rx, Ry, k) w.r.t. Σ of the form {Vi, Pati}i∈I . The input sets
Rx andRy are given under the form of boxes of Rn and Rm (i.e., cartesian products of n closed
intervals for Rx, and cartesian products of m closed intervals for Ry). The subsets Vi, i ∈ I,
of Rx are boxes that are obtained by repeated bisection. At the beginning, the Bisection
procedure calls sub-procedure Find_Pattern in order to get a k-pattern Pat such that
PostPat(Rx) ⊆ Rx and PostPat,C(Rx) ⊆ Ry. If it succeeds, then it is done. Otherwise, it
divides Rx into 2n sub-boxes V1, . . . , V2n of equal size. If for each Vi, Find_Pattern gets
a k-pattern Pati such that PostPati(Vi) ⊆ Rx and PostPati,C(Vi) ⊆ Ry, it is done. If,
for some Vj , no such input pattern exists, the procedure is recursively applied to Vj . It
ends with success when a successful decomposition of (Rx, Ry, k) is found, or failure when
the maximal degree d of bisection is reached. The algorithmic form of the procedure is
given in Algorithms 1 and 2. The main procedure Bisection(W,Rx, Ry, D,K) is called with
Rx as input value for W , d for input value for D, and k as input value for K; it returns
either 〈{(Vi, Pati)}i, T rue〉 with

⋃
i Vi = W ,

⋃
i PostPati(Vi) ⊆ Rx,

⋃
i PostPati,C(Vi) ⊆ Ry

when it succeeds, or 〈_, False〉 when it fails. Procedure Find_Pattern(W ,Rx,Ry,K) looks
for a K-pattern Pat for which PostPat(W ) ⊆ Rx and PostPat,C(W ) ⊆ Ry : it selects all
the K-patterns by increasing length order until either it finds such an input pattern Pat

(output: 〈Pat, True〉), or none exists (output: 〈_, False〉). The correctness of the procedure
is stated as follows.

I Theorem 3. If Bisection(Rx,Rx,Ry,d,k) returns 〈∆, T rue〉, then ∆ is a successful decom-
position of (Rx, Ry, k) w.r.t. Σ.

In [8], we have developed a tool that implements the Bisection procedure, using zonotopes
(see [13]); it is written in Octave [21].

4 Model Order Reduction

Actually, because of the computational cost of the bisection procedure, the application
of the bisection method at the full-order level n becomes rapidly intractable (typically for
n ≥ 15). Therefore, it is interesting to apply projection-basedmodel order reduction methods
(see [3]), then construct decompositions (hence control laws) at the reduced state level of
dimension nr < n rather than at the full-order state level of dimension n. For many
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38 Guaranteed control of switched control systems using MOR and bisection

Algorithm 1: Bisection(W,Rx, Ry, D,K).
/* with additional input εx for online version */

Input: A box W , a box Rx, a box Ry, a degree D of bisection, a length K of input
pattern

Output: 〈{(Vi, Pati)}i, T rue〉 with
⋃
i Vi = W ,

⋃
i PostPati(Vi) ⊆ Rx and⋃

i PostPati,C(Vi) ⊆ Ry, or 〈_, False〉
1 (Pat, b) := Find_Pattern(W,Rx, Ry,K)
2 if b = True then
3 return 〈{(W,Pat)}, T rue〉
4 else
5 if D = 0 then
6 return 〈_, False〉
7 else
8 Divide equally W into (W1, . . . ,W2n)
9 for i = 1 . . . 2n do

10 (∆i, bi) := Bisection(Wi,Rx,Ry,D − 1,K)
11 return (

⋃
i=1...2n ∆i,

∧
i=1...2n bi)

applications and engineering problems, it is observed that the systems can be reduced while
being accurate enough. This is due to the underlying regularity of the solutions or, in other
words, to the low dimension of the actual trajectory submanifold.

Given a full-order system Σ, an interest set Rx ⊂ Rn and an objective set Ry ⊂ Rm, we
will construct a reduced-order system Σ̂ using a projection π of Rn to Rnr . If π ∈ Rn×n
is a projection, it verifies π2 = π, and π can be written as π = πLπR, where πL ∈ Rn×nr ,
πR ∈ Rnr×n and nr = rank(π). The DLTI system Σ̂ is defined by the matrices Âd, B̂d, Ĉd,
and can be written:

Σ̂ :
{
x̂(t+ τ) = Âdx̂(t) + B̂du(t),
yr(t) = Ĉdx̂(t),

with

Âd = eÂτ , B̂d =
∫ τ

0
eÂ(τ−t)B̂dt, Ĉd = Ĉ.

The matrices Â, B̂ and Ĉ are defined as follows:

Â = πRAπL, B̂ = πRB, Ĉ = CπL.

Here, x̂ is an nr-vector, u a p-vector, yr anm-vector, and Âd an nr×nr-matrix, B̂d an nr×p-
matrix, Ĉd a m × nr matrix. The reduced system is obtained with the change of variable:
x̂ = πRx. Accordingly, R̂x = πRRx ⊂ Rnr is the projection of Rx. The objective set Ry
is kept unchanged. Using the method described in Section 3, one generates a successful
decomposition ∆̂ of (R̂x, Ry, k) w.r.t. Σ̂ for some given k. This leads to a reduced-order
control u∆̂. By Theorem 3, u∆̂ sends the output yr in Ry. When this control is applied
to the full-order system Σ, this leads to a trajectory y(t). The difference between the two
trajectories y(t) and yr(t) will be denoted by e(t). An upper bound of ‖e(t)‖ will be computed
in order to assess the deviation from Ry. We will denote by εjy an upper bound of this error
for t = jτ , and we will denote by ε∞y the maximum value of this bound: ε∞y = supj≥0 εy(jτ)
(see Appendix for the calculation of these bounds).



A. Le Coënt, F. de Vuyst, C. Rey, L. Chamoin, and L. Fribourg 39

Algorithm 2: Find_Pattern(W,Rx, Ry,K).
/* with additional input εx for online version */

Input: A box W , a box Rx, a box Ry, a length K of input pattern
Output: 〈Pat, True〉 with ,PostPat(W ) ⊆ Rx,PostPat,C(W ) ⊆ Ry and

UnfPat(W ) ⊆ S, or 〈_, False〉 when no input pattern maps W into Rx and
CW into Ry

1 for i = 1 . . .K do
2 Π := set of input patterns of length i
3 while Π is non empty do
4 Select Pat in Π
5 Π := Π \ {Pat}
6 if PostPat(W ) ⊆ Rx and PostPat,C(W ) ⊆ Ry /* condition modified for online

version */ then
7 return 〈Pat, True〉

8 return 〈_, False〉

5 Reduced Order Control

In this section, we first explain the procedure of control synthesis, then we propose a method
to guarantee that the obtained controller sends the output of the full-order system in Ry
with a tolerance ε∞y .

5.1 Guaranteed offline control

Suppose that we are given a system Σ, an interest set Rx, and an objective set Ry. The
procedure first consists in reducing the system Σ of order n to a system Σ̂ of order nr < n

(see section 4). Here, the classical method of balanced truncation [5, 2, 19, 6] is used to
construct π.

We apply the state-space bisection procedure to the reduced-order system Σ̂, we obtain
a successful decomposition ∆̂ of (R̂x, Ry, k) w.r.t. Σ̂. Therefore, the procedure returns a
successful decomposition ∆̂ of the form {V̂i, Pati}i∈I such that:
1. I is a finite set of indices,
2. every V̂i (i ∈ I) is an interval product of dimension nr such that

⋃
i∈I V̂i = R̂x,

3. every Pati (i ∈ I) is a k-pattern such that for all i ∈ I: PostPati(V̂i) ⊆ R̂x and
PostPati,Ĉ(V̂i) ⊆ Ry.

The successful decomposition ∆̂ induces a control u∆̂ on R̂x. This control u∆̂ is x̂-
stabilizing and yr-convergent for (R̂x, Ry, k) w.r.t. Σ̂. Let x0 be an initial condition in Rx.
Let x̂0 = πRx0 be its projection belonging to R̂x, x̂0 = πRx0 is the initial condition for the
reduced system Σ̂: x̂0 belongs to V̂i0 for some i0 ∈ I; thus, after applying Pati0 , the system
is led to a state x̂1; x̂1 belongs to V̂i1 for some i1 ∈ I; and iteratively, we build, from an
initial state x̂0, a sequence of states x̂1, x̂2, . . . obtained by application of the sequence of
k-patterns Pati0 , Pati1 , . . . (steps (1), (2) and (3) of Figure 1).

The sequence of k-patterns is computed for the reduced system Σ̂, but it can be applied
to the full-order system Σ: we build, from an initial point x0, a sequence of points x1, x2,. . .
by application of the k-patterns Pati0 ,Pati1 ,. . . (steps (4), (5) and (6) of Figure 1). For
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Figure 1 Diagram of the offline procedure for a simulation of length 3.

all x0 ∈ Rx and for all t ≥ 0, the error ‖y(x0, u, t) − yr(πRx0, u, t)‖ is bounded by ε∞y , as
defined in Appendix). This leads to the following proposition:
I Proposition 2. Let us consider a DLTI system Σ, an interest set Rx, and an objective
set Ry. Let Σ̂ be the projection by balanced truncation of Σ. Let ∆̂ be a successful
decomposition of (R̂x,Ry,k) w.r.t. Σ̂. Then, for all x0 ∈ Rx, the induced control u∆̂ applied
to the full-order system Σ in x0 is such that for all j > 0, the output of the full-order system
y(t) returns to Ry + ε∞y after at most k τ -steps.

Here, Ry + ε∞y denotes the set containing Ry with a margin of ε∞y . More precisely,
if Ry is an interval product of the form [a1, b1] × · · · × [am, bm], then Ry + ε∞y is defined
by [a1 − ε∞y , b1 + ε∞y ]× · · · × [am − ε∞y , bm + ε∞y ].

Remark: Here, we ensure that y(x0, u, t) is in Ry + ε∞y at the end of every input pattern,
but an easy improvement is to ensure that y(x0, u, t) stays in a given safety set Sy ⊃ Ry at
every step of time τ . Indeed, as explained in [8], we can ensure that the unfolding of the
output trajectory stays in Sy. In order to guarantee that y(x0, u, t) stays in Sy, we just have
to make sure that yr(πRx0, u, t) stays in the reduced safety set Sy − ε∞y . We thus have to
add the condition: “and Unf Pat(CW ) ⊂ Sy − ε∞y ” in the line 6 of Algorithm 2.

5.2 Guaranteed Online control
Up to this point, the procedure of control synthesis consists in computing a complete se-
quence of input patterns on the reduced order model Σ̂ for a given initial state x0, and
applying the input pattern sequence to the full-order model Σ. The control law is thus com-
puted offline. However, using the bisection method applied to the reduced system Σ̂, we can
use the decomposition ∆̂ online as follows: Let x0 be the initial state in Rx and x̂0 = πRx0
its projection belonging to R̂x (step (1) of Figure 2); x̂0 belongs to V̂i0 for some i0 ∈ I;
we can thus apply the associated input pattern Pati0 to the full-order system Σ, which
yields a state x1 = PostPati0

(x0) (step (2) of Figure 2); the corresponding output is sent to
y1 = PostPati0 ,C

(x0) ∈ Ry + ε`0
y ; in order to continue to step (3), we have to guarantee that

πRPostPati(x) belongs to R̂x for all x ∈ Rx and for all i ∈ I. As explained below, this is pos-
sible using the computation of an upper bound to the error ‖πRPostPati(x)−PostPati(πRx)‖
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Figure 2 Diagram of the online procedure for a simulation of length 3.

and a reinforcement of the procedure for taking into account this error.
Let εjx be an upper bound to ‖πRPostPat(x) − PostPat(πRx)‖, j being the length of

the input pattern Pat (see Appendix for the calculation of this bound). We modify the
Algorithms 1 and 2 by adding a new input εx = (ε1

x, . . . , ε
k
x), k being the maximal length of

the input patterns. With such an additional input, we define an ε-decomposition as follows:

I Definition 4. Given a system Σ, two sets Rx and Ry respectively subsets of Rn and
Rm, a positive integer k, and a vector of errors εx = (ε1

x, . . . , ε
k
x), an ε-decomposition of

(Rx, Ry, k, εx) w.r.t. Σ is a set ∆ of the form {Vi, Pati}i∈I , where I is a finite set of indices,
every Vi is a subset of Rx, and every Pati is a k-pattern such that:
(a’)

⋃
i∈I Vi = Rx,

(b’) for all i ∈ I: PostPati(Vi) ⊆ Rx − ε
|Pati|
x ,

(c’) for all i ∈ I: PostPati,C(Vi) ⊆ Ry.

Note that condition (b’) is a strenghtening of condition (b) of definition 2. Accordingly,
line 6 of Algorithm 2 is modified as follows:

6 if PostPat(W ) ⊆ Rx − εix and PostPat,C(W ) ⊆ Ry then

The computation of an ε-decomposition with the modified algorithms enables to guarantee
that the projection πRx of the full-order system state always stays in R̂x. We can thus
perform the online control as follows:

Since PostPati0
(V̂i0) ⊆ R̂x − ε`0

x and πRx0 ∈ V̂i0 , we have PostPati0
(πRx0) ∈ R̂x − ε`0

x ;
thus πRx1 = πRPostPati0

(x0) belongs to R̂x, because ε`0
x is a bound of the maximal distance

between PostPati0
(πRx0) and πRPostPati0

(x0); since πRx1 belongs to R̂x, it belongs to Vi1
for some i1 ∈ I; we can thus compute the input pattern Pati1 , and we can thus reapply the
procedure and compute an input pattern sequence Pati0 ,Pati1 ,. . .

We finally have the proposition:
I Proposition 3. Let us consider a DLTI system Σ, an interest set Rx, and an objective
set Ry. Let Σ̂ be the projection by balanced truncation of Σ. Let ∆̂ = {V̂i, Pati}i∈I be an
ε-decomposition for (R̂x,Ry,k,εx) w.r.t. Σ̂, εx being defined as above. Then:

∀x ∈ Rx,∃i ∈ I : πRPostPati(x) ∈ R̂x ∧ PostPati,C(x) ∈ Ry + ε|Pati|y .
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Figure 3 The 11-order distillation column system.

Using the decomposition ∆̂, we can perform an online control as explained above. We
have:
I Proposition 4. Let us consider a DLTI system Σ, an interest set Rx, and an objective
set Ry. Let Σ̂ be the projection by balanced truncation of Σ. Let ∆̂ be a ε-decomposition
for (R̂x,Ry,k,εx) w.r.t. Σ̂. Then, for all x0 ∈ Rx, the induced online control u∆̂ yields an
output sequence of points y1,y2,. . . which belong to Ry + ε`0

y ,Ry + ε`1
y ,. . . where `0, `1, . . .

are the lengths of the input patterns successively applied.
The advantage of such an online control is that the estimated errors ε`0

y ,ε`1
y ,. . . are

dynamically computed, and are smaller than the static bound ε∞y used in the offline control.
The price to be paid is the strenghtening of the x̂-stabilization condition (b’) of definition 4.

6 Case Studies

6.1 Distillation Column
We consider a linearized model of a distillation column system [25] written under the form
of a DLTI system (1). The state x = (x1, x2, . . . , x11)> of the system is of dimension 11:
x1, x2, . . . , x10 correspond to the composition of the most volatile component in the different
stages of the column, and x11 corresponds to the pressure at the top of the column. The
perturbation of input feed ω is neglected. The control variable u ∈ U = {0, 1} corresponds
to the state turned on (1) or turned off (0) of the reheater. The output y is of dimension 1
and corresponds to the composition of the most volatile component in the bottom product.
The system is reduced from n = 11 to nr = 2. The sampling time is set to τ = 100 s.

The matrices A,B, and C are the following:

A = 10−2 ×


−1.4 −0.43 0 0 0 0 0 0 0 0 0
0.95 −1.38 0.46 0 0 0 0 0 0 0 0.05

0 0.95 −1.41 0.63 0 0 0 0 0 0 0.02
0 0 0.95 −1.58 1.1 0 0 0 0 0 0
0 0 0 0.95 −3.12 1.5 0 0 0 0 0
0 0 0 0 2.02 −3.52 2.2 0 0 0 0
0 0 0 0 0 2.02 −4.22 2.8 0 0 0
0 0 0 0 0 0 2.02 −4.82 3.7 0 0.02
0 0 0 0 0 0 0 2.02 −5.72 4.2 0.05

2.55 0 0 0 0 0 0 0 0 2.55 −1.85

 ,
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Figure 4 Simulation of y(t) = Cx(t) and yr(t) = Ĉx̂(t) from the initial condition x0 = (0.55)11.
Left: guaranteed offline control; right: guaranteed online control.

B = [ 0 0 0 0 0.01 0 0 0 0 0 0 ]T and C = [ 0 0 0 0 0 0 0 0 0 0.01 0 ]T .

The interest set is Rx = [0, 1]11. The objective set is Ry = [0.0015, 0.0025]. The two
methods presented in this paper give the results of Figure 4. The circles in the simula-
tions correspond to the end of input patterns. The simulations have been performed with
MINIMATOR (an Octave code available at https://bitbucket.org/alecoent/minimator_red)
on a 2.80 GHz Intel Core i7-4810MQ CPU with 8 GB of memory. The offline and online
methods led to the same decomposition because of the contractive behaviour of the system.
The decompositions were obtained in 106 seconds.

Figure 4 shows simulations of the offline and online methods. The initial point x0 =
(0.55)11 is in Rx. Note that the corresponding output y0 = Cx0 = 5.5×10−3 lies outside Ry.
For the offline method (on the left), the output yr of the reduced system (continuous blue)
is sent into Ry (dashed blue), and the output y of the full-order system (continuous red) is
sent in Ry + ε∞y (dashed red). For the online method (on the right), the output yr of the
reduced system (continuous blue) is sent into Ry (dashed blue), and the output y of the
full-order system (continuous red) is sent in Ry + ε`i

y (dashed red).
Both methods are thus efficient, the offline method is guaranteed but implies a relatively

pessimistic tolerance. The online method is very efficient and the tolerances are much more
satisfying. A shift can however appear between the full-order model and the reduced order
model, this is an unavoidable consequence of the fact that the reduced order model does not
represent the dynamic of the model as accurately as the full-order model.

6.2 Square Plate
We consider here the problem of controlling the central node temperature of a metal square
plate discretized by finite elements. This example is taken from [15]. The square plate is
subject to the heat equation: ∂T

∂t
(x, t) − α2∆T (x, t) = 0. After discretization, the system

is written under the form of a DLTI system (1). The plate is insulated along three edges,
the right edge is open. The left half of the bottom edge is connected to a heat source. The
exterior temperature is set to 0 °C, the temperature of the heat source is either 0 °C (mode 0)
or 1 °C (mode 1). The heat transfers with the exterior and the heat source are modelled by
a convective transfer. The full-order system state corresponds to the nodal temperatures.
The output is the temperature of the central node. The system is reduced from n = 897
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Figure 5 Geometry of the square plate (left) and decomposition of R̂x = πRRx in the plane
(x̂1, x̂2) with the offline procedure (right).

Figure 6 Simulation of y(t) = Cx(t) and yr(t) = Ĉx̂(t) from the initial condition x0 = (0)897.
Left: guaranteed offline control; right: guaranteed online control.

to nr = 2. The interest set is Rx = [0, 0.15]897, the objective set Ry = [0.06, 0.09]. The
sampling time is set to τ = 8 s. The geometry of the system and the decomposition obtained
with the offline procedure are given in Figure 5. The decompositions were obtained in 5
seconds. Simulations of the offline and online methods are given in Figure 6. We notice
that the trajectory y (resp. yr) exceeds the objective set Ry (resp. Ry + ε`i

y ) during the
application of the second pattern, yet the markers corresponding to the end of input patterns
do belong to objective sets.

7 Final Remarks

Two methods have been proposed to synthesize controllers for switched control systems using
model order reduction and the state-space bisection procedure. An offline and an online use
are enabled, both uses are efficient but they present different advantages. The offline method
allows to obtain the same behaviour as the reduced-order model, but the associated bound
is more pessimistic, and the controller has to be computed before the use of the real system.
The online method leads to less pessimistic bounds but implies a behaviour slightly different
from the reduced-order model, and the limit cycles may be different from those computed
on the reduced system. The behaviour of the full-order system is thus less known, but its
use can be performed in real time.
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There are still some open questions associated to the methods proposed here. During
a real online use, only the output y of the system Σ is known, this implies that a recon-
struction of the reduced state x̂ has to be performed online, either by reconstructing the
full-order state x and projecting it, or by reconstructing directly the projected state. Until
now, the reconstruction is supposed exact. Our future work will be devoted to the online
reconstruction of x̂, and this will be done with the use of extended Kalman filters [23, 11].
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A Appendix: Model order reduction and error bounding

A.1 Error bounding for the output trajectory
Here, a scalar a posteriori error bound for e is given (adapted from [16]). An upper bound
of the Euclidean norm of the error over all possible initial conditions and controls can be
formalized as the solution of the following optimal control problem:

εy(t) = sup
u∈U,x0∈Rx

‖e(x0, u, t)‖ = sup
u∈U,x0∈Rx

‖y(x0, u, t)− yr(πRx0, u, t)‖

Since the full-order and reduced systems are linear, the error bound can be estimated
as εy(t) ≤ εx0=0(t) + εu=0(t) where εx0=0

y is the error of the zero-state response, given
by

εx0=0
y (t) = max

u∈U
‖u‖ · ‖e(x0 = 0, u, t)‖ = max

u∈U
‖u‖ · ‖y(x0 = 0, u, t)− yr(x0 = 0, u, t)‖, (2)

and εu=0
y is the error of the zero-input response, given by

εu=0
y (t) = sup

x0∈Rx

‖e(x0, u = 0, t)‖ = sup
x∈Rx

‖y(x0, u = 0, t)− yr(πRx0, u = 0, t)‖. (3)

Using some algebraic manipulations, one can find a precise bound for εx0=0
y and εu=0

y

(see [16]). We have:

εjy = εy(jτ) = ‖u(·)‖[0,jτ ]
∞

∫ jτ

0
‖
[
C −Ĉ

] [ etA

etÂ

] [
B

B̂

]
‖dt +

sup
x0∈Rx

‖
[
C −Ĉ

] [ ejτA

ejτÂ

] [
x0
πRx0

]
‖. (4)

The bound ε∞y = supj≥0 εy(jτ) is computable when the modulus of the eigenvalues of eτA

and eτÂ is strictly inferior to one, which we suppose here.

A.2 Error bounding for the state trajectory
We recall and introduce some notations, j being the length of the input pattern Pat tested
by the bisection method:

PostPat(x) = ejτAx+
∫ jτ

0
eA(jτ−t)Bu(t)dt,

PostPat(πRx) = ejτÂπRx+
∫ jτ

0
eÂ(jτ−t)B̂u(t)dt,

Using an approach similar to the construction of the bounds (2) and (3), we obtain the
following bound, which depends on the length j of the input pattern Pat:

‖πRPostPat(x)− PostPat(πRx)‖ ≤ εjx, (5)

with

εjx = ‖u(·)‖[0,jτ ]
∞

∫ jτ

0
‖
[
πR −Inr

] [ etA

etÂ

] [
B

B̂

]
‖dt +

sup
x0∈Rx

‖
[
πR −Inr

] [ ejτA

ejτÂ

] [
x0
πRx0

]
‖. (6)
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Abstract
Switched systems are a convenient formalism for modeling physical processes interacting

with a digital controller. Unfortunately, the formalism does not capture the distributed nature
encountered e.g. in cyber-physical systems, which are organized as networks of elements inter-
acting with local controllers. Most current methods for control synthesis can only produce a
centralized controller, which is assumed to have complete knowledge of all the component states
and can interact with all of them. In this paper, we consider a centralized-controller synthesis
technique based on state-space decomposition, and use a game-based approach to extend it to a
distributed framework.
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Keywords and phrases cyber-physical systems, controller synthesis, games, robustness, partial
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1 Introduction

Hybrid systems are a powerful formalism for modeling and reasoning about cyber-physical
systems. They mix the continuous and discrete natures of the evolution of computerized
systems. Switched systems are a special kind of hybrid systems, with restricted discrete
behaviours: those systems only have finitely many different modes of (continuous) evolution,
with isolated switches between modes. Such systems provide a good balance between
expressiveness and controllability, and are thus in widespread use in large branches of
industry such as power electronics and automotive control.

The control law for a switched system defines the way of selecting the modes during the
run of the system. Controllability is the problem of (automatically) synthezing a control
law in order to satisfy a desired property, such as safety (maintaining the variables within a
given zone) or stabilisation (confinement of the variables in a close neighborhood around an
objective point) [6].

In [12], a solution is proposed in order to achieve practical stabilization of discrete-time
switched systems. It is based on the repeated bisection of the region of interest surrounding the
objective point. Each resulting tile of the bisection is to be associated with a sequence of modes
(or pattern) that should map the tile inside the zone of interest. Upon success, this naturally
induces a control law that becomes cyclic and stabilizes the system along a corresponding
limit cycle. However, the decomposition method is proposed in a centralized framework, and
assumes that the state of the global system is entirely known. In practice, many industrial
systems, such as cyber-physical systems, are implemented in a distributed manner, using
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actuators that are locally controlled. Furthermore, these controllers cannot observe the full
state of the system, but have only access to the partial information conveyed by local sensors.

In the distributed context, the local controllers can be seen as players: each player has
to achieve a local objective of stabilization. A sufficient condition of global stabilization is
obtained when the strategy of any player meets its local objective whatever the strategy
of the others. We will adopt this game-oriented view and modify the basic decomposition
procedure in order to account for local controllability and partial observability.

Related work. The model of hybrid automata [16] has proven very powerful for combining
discrete models issued from software and continuous models issued from the physical world.
The topic of synthesizing controllers that, by construction, enforce properties such as safety
or reachability, has soon attracted a lot of attention. In [3], a generic methodology is given for
constructing safety controllers using iterative computation of reachable states in a backward
manner. An alternative approach is proposed in [27], using a game-theoretic formulation
and theory of optimal control.

Among hybrid automata, timed automata are a very useful class of models where all the
state variables correspond to symbolic clocks evolving uniformly at the same rate [1]. In [7],
an efficient control synthesis method has been proposed, extending an algorithm for solving
games for finite-state systems [19]. It has been implemented in tool UPPAAL-Tiga and
applied to industrial case studies [8].

As mentioned above, switched systems constitute another important subclass of hybrid
systems well-suited to the modeling of many engineered systems. For this class of systems,
a paradigm based on approximate bisimulation [25, 14, 15] allows to construct an approx-
imately equivalent discrete model. The original control-synthesis problem can thus be solved
at a discrete level, which amounts to computing winning strategies in parity games [23].

Most of the work on controller synthesis in the framework of hybrid systems has focused
to the centralized framework. An exception is [20], which gives a methodology based on
optimal theory in a multi-agent setting where the agents try to make optimum use of a
common resource.

2 Background

2.1 Sampled Switched Systems and Decomposition Method
A switched system is a digital quantized control system that consists of a finite family of
continuous subsystems, together with a rule that controls the switching between subsystems.
Formally, a switched system over a set Var of variables can be described by

a differential equation of the form ẋ = fσ(x), where {fu | u ∈ U} is a family of sufficiently
regular functions from RVar to RVar that is parametrized by some finite index set U , called
the set of modes,
and a piecewise-constant function σ : [0,∞)→ U , called switching rule [18].

We assume that the system variables have no discrete jump, i.e. the solution x(·) is everywhere
continuous. We assume furthermore here that all the individual subsystems are affine, so
we obtain an affine switched system of the form ẋ = Aσx+Bσ. Finally, we suppose that σ
changes its values periodically, at times k · τ , where τ ∈ R>0 and k ranges over N. We say
that such switched systems are sampled. We regard these systems as discrete-time systems,
observing the state of the system only at the switching instants k · τ . The integration of
the continuous equation for mode u during τ still yields an affine equation of the form
x(t+ τ) = Âux(t) + B̂u.
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In [12], a procedure was designed in order to synthesize a state-dependent control rule
that makes all the (discrete-time) trajectories starting from a given set R ⊆ RVar repeatedly
return to R (the set R is refered to as the target set hereafter). In our setting, we require that
each variable v ∈ Var has its own target zone Rv, so that R =

∏
v∈Var Rv is a rectangular set.

The method consists in decomposing R by iterative bisection until (possibly) finding, for
each resulting tile, a corresponding pattern (i.e., a sequence of modes) that maps it into R.
This guarantees that, starting from any tile W of R, the application of the corresponding
pattern π yields a trajectory that ends within R. The crux of the method relies on a simple
procedure that, given a tile W , enumerates by increasing length all the patterns, using
all possible combinations of modes, until one of them, say π, maps W into R (or until we
have exhausted the whole set of patterns up to a given length, in which case the system is
declared uncontrollable for the given length). Formally, we write Postπ(W ) ⊆ R where Postπ
corresponds to the successive application of each mode composing the pattern π (note that
Postπ is an affine transformation, because each mode is affine). When such a π exists, we say
that the tile W is successful.

Each global decomposition ∆ of R can be written under the form (Wi, πi)i∈I where
I is a finite set of indices, Wi is a tile, and πi a pattern, such that

⋃
i∈IWi = R, and

Postπi
(Wi) ⊆ R. For any such decomposition, one can then define an operator Post∆ as

Post∆(X) =
⋃
i∈I Postπi

(X∩Wi), for anyX ⊆ R. Our method aims to find a decomposition ∆
of R such that Post∆(R) ⊆ R.

All along the computation of ∆, it may reveal useful to ensure not only that the
trajectories return to R after application of each pattern π of the decomposition, but also
that the intermediate points of trajectories, obtained after application of each single mode
composing π, be confined into a given rectangular set S ⊆ RVar containing R. Such a set S
is called safety set. In order to achieve this additional objective, we strengthen the condition
for being successful by requiring the existence of a pattern satisfying:

Postπ(W ) ⊆ R and Intermπ(W ) ⊆ S (1)

where Intermπ refers to the union of all the intermediate sets obtained by the application of
the successive prefixes of π. Again, upon success, the resulting decomposition ∆ enforces

Post∆(R) ⊆ R and Interm∆(R) ⊆ S, (2)

where Interm∆ is defined by Interm∆(X) =
⋃
i∈I Intermπi

(X ∩Wi) for all X ⊆ R. In other
terms, it corresponds to a controller enforcing that the global system never leaves the safety
zone S, and repeatedly visits the target zone R.

The decomposition method has been implemented in the tool Minimator [21]. This tool
makes use of zonotopes [17], and has been written in Octave [22]. At the top-level, the
procedure Decomposition recursively bisects the target set R until, for each tile, a pattern has
been found. It calls the procedure Find_Pattern, which implements the search for a correct
pattern for a given tile W of the current decomposition. Upon success, the tool constructs a
successful decomposition ∆. The tool has been used on various case studies [11, 13].

I Example 1. In this paper, we consider as a running example a two-room house equipped
with a heating system (a more refined example is described in Section 4). There are heat
exchanges between the rooms (characterized by parameters αi,j), and heat losses to the
outside (with parameters αe,i), as schematically depicted on Fig. 1.

Each heater has two modes (on and off). When turned on, a heater immediately gets hot
(to temperature Tf ) and heats the room with heat transfer coefficient αf . The system has
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αe1 αe2α21 α12

Te Tf Tf

T1 T2
αf αf

Figure 1 Two-room heating system.
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Figure 2 Two valid global controllers for Example 1.

two variables T1 and T2, which correspond to the temperatures in rooms 1 and 2. Writing
X = (T1;T2)T for the global state of the system, and writing u1 and u2 for the modes of the
corresponding heaters (assuming u1 and u2 belong to {0, 1}), we get the following equation1
representing the evolution of the temperatures:

Ẋ = f(u1
u2)(X) =

(
−αe1 − α21 α21

α12 −αe2 − α12

)
·X +

(
u1αfTf + αe1Te
u2αfTf + αe2Te

)
The objective of our controller is to try to maintain the temperatures in both rooms

within a comfort zone R = [20; 22] × [20; 22], and to ensure that both values never leave
the safety zone S = [19; 23]× [19; 23]. Using Minimator, we are able to compute a correct
controller for this problem, as depicted in Fig. 2. In fact, the two controllers in the figure
represent different trade-offs: The left controller has four different tiles with patterns of
length 1, while the controller on the right hand side uses a single uniform pattern of length 5.

2.2 Game-based controller synthesis
Games provide another approach to controller synthesis: in that setting, the controller is seen
as one protagonist, playing against other components of the system. A strategy for a player
in such a game dictates how the corresponding component must behave, and her winning
condition represents the conditions under which the component is said to behave properly.

There is a huge literature on game-based techniques for synthesis [26, 2]. A very large part
of these work considers two-player zero-sum games: zero-sum games are purely antagonist
games, where the objectives of the two players are opposite. This setting corresponds to
worst-case controller synthesis: the controller must behave correctly whatever the other
players do. Winning strategies then correspond to correct controllers, ensuring correct

1 For this example, we use Te = 10, Tf = 50, αe1 = 0.005, αe2 = 0.0033, αf = 0.0083, α12 = α21 = 0.05
and τ = 5.
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behavior against any behavior of the environment. In various settings, notably for finite-state
systems and ω-regular winning conditions, winning strategies can be computed.

Non-zero-sum games have been considered less intensively: in non-zero-sum games, the
objectives are not opposite, and the players may then be interested in cooperating. Such games
can be used to reason about the synthesis of distributed systems, where several components
have their own objectives. In this setting however, winning strategies need not exist (and they
would not take into account the possible cooperation between components). Instead, various
notions of equilibria can be defined and studied, including the most famous Nash equilibrium.
Several results exist in this setting; for instance, the existence of pure-strategy Nash equilibria
is in general decidable in finite-state games with ω-regular objectives [5], but their existence
is undecidable when considering randomized strategies.

An interesting feature of game-based controller synthesis is the ability to take partial
observability into account. Indeed, in most applications (and especially for distributed
control), the components are not able to observe the exact state of the whole system. In the
game-based model, this can be taken into account in the definition of strategies, requiring
them to return the same action for any two situations that are observationally equivalent.

Partial observation can be dealt with when considering zero-sum games with ω-regular
objectives [24, 9], but it makes the problem undecidable in more complex settings [10, 4].

3 Distributed control of sampled switched systems

The invariant-based approach to controller synthesis (depicted in Section 2.1) generates a
centralized controller, that is, a unique global strategy for the whole system, selecting a global
mode u at each time interval τ . This approach assumes full control and full observability of
the whole system. This is due to the structure of the synthesized control algorithm, where
the mode switching depends on the local tile to which the system state belongs. Furthermore,
we assume that at any switching instant, the controller can choose an arbitrary u from the
set of modes U . In many applications, these assumptions are not realistic or would result in
an overly complex communication and control infrastructure.

In our running example of a heating system, the controller computed in Example 1 using
Minimator selects the mode of the thermostats in both rooms, based on the global state of
the system. Such a centralized controller might be fragile, in the sense that it is only (or at
least was only proven) correct in the case where both thermostats obey the controller strategy.
If for some reason the mode selected in one of the rooms is not the expected one (imprecision
of the temperature sensor) or is not applied correctly (failure of some component), we have
no guarantee about the behavior of the rest of the system.

We address these problems by combining the invariant analysis implemented in Minim-
ator with a game-based view, in order to generate (whenever possible) individual controllers
that are correct even if the other components of the system do not behave as expected (but still
achieve their objectives2), hence adding robustness to the whole system. This approach still
assumes full observation of the system, and requires some technical restrictions that we explain
below. We will then propose a second approach, which assumes partial observation of the
system, ending up with robust and fully distributed controllers. Notice that both approaches
mainly amount to modifying the notion of being successful for a tile of the decomposition.

2 Notice that if we do not require the other components to meet their obligations, there is no way of
ending up in the target set R.
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Figure 3 Finding successful patterns.

Figure 3 illustrates the difference between our approach and the classical approach of Min-
imator. The left-hand part of the figure represents the behavior of Minimator: it looks for
a pattern (of length 2 in this example) that maps the current set of the decomposition into R
(represented in green), and such that at all intermediary steps remain in S (in orange). In this
example, a valid pattern is 〈( 0

1 ), ( 1
0 )〉, since the corresponding branch ends up in a green state

(representing R) and visits an orange state (corresponding to S) at the intermediate position.
The right-hand part depicts what our algorithm does for checking if pattern π = 〈0, 1〉

is correct: it has to check that, for any completions of the pattern π with modes for the
other components, the image of the original set by this completion is in R, and that it is
in S at all intermediary steps. The pattern 〈0, 1〉 is then a correct pattern here, as all the
completions lead to green configurations (meaning that the taregt zone of the considered
player is reached), while all intermediary configurations are orange (corresponding to states
in the safety set of the considered player).

3.1 Problem Statement
Consider a sampled switched system as defined in Section 2.1. Distributed control of such
a system involving m agents is based on m sets of local modes Up, with 1 ≤ p ≤ m, which
are related to the global modes U by means of a function γ : U1 × . . . × Um → U . In its
most simple form, this setting can be implemented by considering that U =

∏
1≤p≤m Ui, and

that γ(u1, ..., um) = (u1, ..., um). Since each of the agents has only limited control over the
system’s behavior, we define local objectives that need to be fulfilled. In this work, we only
consider projections on sub-spaces of the problem domain. For this purpose, we assume that
the set Var of variables is divided among the players: Var =

⋃
1≤p≤mGp. We write Γp for

the set RGp of valuations of the variables of agent p. We denote the projection of X on the
dimensions in Γp by X ↓ Γp. Each agent p then has to take care of the variables in their set Gp,
maintaining them in S ↓ Γp and visiting R ↓ Γp infinitely often. Notice that since R is a
rectangular set, and since for each variable in Var is in some Gp, the following holds: whenever
a set X satisfies (X ↓ Γp) ∈ (R ↓ Γp) for all 1 ≤ p ≤ m, then X ⊆ R. The same holds of S.

3.2 Robust Local Control with Global Observation
In this first approach, the control will be localized, while each controller still has the ability to
measure the global system state. A straightforward solution would be the simple decomposition
of a standard controller: this boils down to synthesizing a global controller using the approach
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of [12], which gives a decomposition and global patterns for each tile of this decomposition.
Then each pattern can be projected into m local patterns. Since all agents are acting
simultaneously, this results again in a valid controller.

As already explained, this results in a very fragile solution: each controller depends on
all other agents in the system. If one agent deviates from this strategy, no guarantees can be
made on the global and local objectives (even if the new strategy of the deviating agent is a
valid one). A central goal in the synthesis of distributed control is robustness: each agent
should be able to enforce its own local objective, regardless (to a certain extent) of what the
other agents are doing. Thus, we assume that each agent has no knowledge of the strategies
of the other agents.

In order to test if a local pattern π is robust, we need to take into account any possible be-
havior of all other agents. For this purpose, the notion of completion of a local pattern is used:

I Definition 1. Given a player p and a local mode u ∈ Up, the completion of u is defined as

Complp(u) = {w ∈ U | ∃u1, ..., um s.t. ui ∈ Ui, up = u, and w = γ(u1, . . . , um)}

This notion can easily be extended to patterns. Given a local pattern π ∈ U+
p with |π| = k,

it is completed to the set of global patterns

Complp(π) = {φ ∈ Uk | ∀1 ≤ j ≤ k. φj ∈ Complp(πj)}.

In fact, computing the completion of a local pattern naturally corresponds to exploring
a game tree, as explained in the previous section. The leaf nodes of the tree in Fig. 3b
correspond to the completion of the local pattern 〈0, 1〉 of Player 1. Now, using this definition,
we can state what it means for a local pattern π to be robust for a tile W :

I Definition 2. Player p has a robust strategy for a tile W ⊆ R if there exists a pattern π ∈
U+
p such that, for all global patterns ψ ∈ Complp(π), the following holds:

1. Postψ(W ) ↓ Γp ⊆ R ↓ Γp,
2. Intermψ(W ) ↓ Γp ⊆ S ↓ Γp.
We then say that a tile W is successful if all the agents have a robust strategy for W .

A procedure to compute a robust pattern is shown in Algorithm 1. It can be used to
compute a distributed control of a sampled switched system based on the basic procedure
from [12]. In Algorithm 1, the outer loop searches for a tuple of patterns of uniform length `.
It does so by enumerating all valid local patterns and checking them for robustness. The pro-
cedure terminates successfully if for all agents, a robust pattern of some uniform length `
has been found. In order to find a successful decomposition, Algorithm 1 is embedded in the
top-level procedure Decomposition, which upon success returns a decomposition (Wi)i∈I
of R and, for each i ∈ I and each 1 ≤ p ≤ m, a pattern πpi . Due to space limitations, this
procedure is not shown here, and we refer to [12] for more details.

The fact that we are searching for patterns with uniform length needs to be explained. If
we consider the resulting distributed control system in action, then each agent will behave as
follows: at some time instant t, it will measure the global system state X ∈ R. According to
its local control table and to the tile containing X, each agent will select a pattern of some
length `. After ` · τ time units, this procedure will be repeated. Now, due to the robustness
property of each local control, it is guaranteed that the resulting global system state at t+ ` ·τ
will again be in R, hence in some tile W of the decomposition, and thus each agent will
find a suitable entry in its control table. However, consider a situation where some agent p
would play a pattern π of length `′ < ` (say). Then, after `′ · τ time units, when agent p
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Algorithm 1: Find_Pattern_Simul(W,R, S,K,m, (Γp)p).
Input: Sets W ,R,S; maximum length K; number of players m; sub-spaces (Γp)p
Output: Patterns (π1, . . . , πm) of uniform length, where each pattern πp robustly

satisfies the objective of agent p, or ⊥ if no such patterns exist
1 for ` = 1 . . .K do
2 for p = 1 . . .m do
3 Π := U `p; // set of local patterns of length `

4 πp := ⊥;
5 for π ∈ Π do
6 Ψ := Complp(π); // set of global completions of π

7 for ψ ∈ Ψ do
8 if Postψ(W ) ↓ Γp * R ↓ Γp then next π;
9 if Intermψ(W ) ↓ Γp * S ↓ Γp then next π;

10 πp := π; break; // valid pattern for agent p

11 if πp = ⊥ then next `; // no pattern of length ` for agent p

12 return (π1, . . . , πm);
13 return ⊥;

measures the system state again in order to find the next pattern to play, it may happen that
X ∈ S \R, since the other agents have not finished applying their patterns. Thus, agent p
would not be able to choose a new pattern, because the control is limited to R.

Overall, Algorithm 1 computes local patterns that are successful in the sense of Def. 2.
Regarding the global controller obtained by this approach, we can definitely assert that it
is correct (in the sense of Equation (2)): indeed, the individual patterns computed by our
algorithm above can be combined (as they have the same length), and the global pattern
obviously satisfies Equation (1), by construction. Given our construction, we would like
to assert that each individual pattern is correct against any deviation of the other agents.
However, for the same reasons as above, this is only correct w.r.t deviations that use the
same pattern lengths, and as long as they achieve their objectives:

I Proposition 3. Assume that our procedure returns a successful decomposition ∆ =
(Wi, (πpi )1≤p≤m)i∈I of R. Then

for any agent p, for any i ∈ I, any X ∈Wi, and any completed pattern φ ∈ Complp(π
p
i ),

it holds

Postφ(X) ↓ Γp ∈ R ↓ Γp Intermφ(X) ↓ Γp ⊆ S ↓ Γp

for any i ∈ I and any X ∈Wi, for the pattern φ obtained by combining the patterns πpi
of all the agents (which is a valid completion of each individual patterns, as they all have
the same length), it holds

Postφ(X) ∈ R Intermφ(X) ⊆ S.

Finally,

Post∆(R) ⊆ R Interm∆(R) ⊆ S.
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Figure 4 Distributed robust controllers for Example 1 for Players 1 (left) and 2 (right).

I Example 1 (Contd). Consider again the heated rooms from Example 1. A distributed
control could be synthesized by separating the problem into a two-player game: the first player
controls variable u1, and has G1 = {T1}; the second player controls u2, and his objective
is on G2 = {T2}. Possible controllers computed by our algorithm are shown in Fig. 4.

3.3 Local Observation
We now extend the above approach to local observation. We assume that each agent can
only observe a dedicated sub-space, and can make his decisions only on the basis of this local
observations. Compared to the previous approach, this will have two advantages:

each agent measures only a sub-space, which is more realistic in many cases and allows
for simpler (low-dimensional) controllers;
as a side effect, the patterns can now be desynchronized (and have different lengths),
which allows for more admissible controllers.

Some changes are necessary with respect to Algorithm 1. First of all, the local observations
allow us to decouple the computation of valid patterns and the decomposition of the target
set R: instead of one common decomposition for all m agents, the procedure will compute,
for each agent, a successful decomposition of its observed space. In each run, the target set R
will only be decomposed along the observed dimensions, according to the following definition:

I Definition 4. Given a variable w ∈ Var and a rectangular set R ⊆ RVar, writing R(v) =
[av, bv] for all v ∈ Var, the split of R along variable w is the set SplitRw (R) = {Rleft, Rright},
where

Rleft(v) =
{

[av, bv] if v 6= w

[av, av+bv

2 ] otherwise
Rright(v) =

{
[av, bv] if v 6= w

[av+bv

2 , bv] otherwise

This notion is easily extended to a set of variables V ⊆ Var, resulting in a set SplitRV (R) of
2|V | boxes covering R.

For each agent p, we define its set Op ⊆ Var of observed variables. We require that
the set Op of observed variables be included in his set Gp of variables defining
his objective: for all 1 ≤ p ≤ m, we must have Op ⊆ Gp. This condition is needed for
the correctness of our procedure: as we explain below, this is precisely the condition that
allows us to drop the uniform-length requirement. We write Ωp for the set ROp . We also
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Figure 5 The set RelaxΩ1 (W ) (hatched area), where agent 1 observes only variable x.

write Ωp̄ = RVar\Op . As previously, we write X ↓ Ωp for the projection of the set X on Ωp.
Our algorithm will precisely try to compute a successful decomposition of R ↓ Ωp. In order
to reconstruct the set of possible states that correspond to a given observation, we define the
converse of the projection on Ωp, as follows:

I Definition 5. Consider a tile W ⊆ R ↓ Ωp observed by an agent p. Its relaxation is the set

RelaxΩp
(W ) = W × (S ↓ Ωp̄).

The above definition is visualized in Fig. 5. By relaxing all non-observed dimensions to
the invariant set S, we guarantee that the local controller can start a new pattern even if one
or several of the other agents have not finished their current pattern (provided their patterns
enforce their safety constraints). With these modifications, the patterns that we are looking
for can be characterized as follows:

I Definition 6. Agent p has a strongly-robust strategy for a tile W ⊆ R ↓ Ωp if there exists
a pattern π ∈ U+

p such that, for all global patterns ψ ∈ Complp(π), the following holds:
1. Postψ(RelaxΩp

(W )) ↓ Γp ⊆ R ↓ Γp,
2. Intermψ(RelaxΩp

(W )) ↓ Γp ⊆ S ↓ Γp.
In this setting, we say that a tile W is successful if all the agents have a strongly robust
strategy for W .

The procedure for finding a strongly-robust pattern for some tile W and agent p is shown
in Algorithm 2. The top-level procedure, which computes a successful decomposition of a
tileW for some agent p, is shown in Algorithm 3. It tries to find a pattern for the whole tileW
by calling Find_Pattern_Local. If no such pattern can be found, it recurses by splitting the
tile W wrt. the observed dimensions. When invoked at some level D of decomposition, the
next finer decomposition is called with level D − 1, and the recursion stops as soon as the
finest decomposition has been reached at D = 0 without finding a valid pattern. Computing
local controllers for m agents boils down to calling Decomposition(R,R, S,K,D, p,Γp) for
each agent p ∈ {1, ...,m}.

In comparison to the strategy described in the previous section, we can establish stronger
guarantees for the overall system’s robustness, while slightly relaxing the guarantees wrt. to
the target set. Each agent p only measures variables in Op, while guaranteeing the local
objective that the system will return to the projection of R on the variables in Gp. Since
Op ⊆ Gp, the subsequent measure of the variables in Op will be in R ↓ Ωp. The only
assumption on the other dimensions is their continuous containment inside S. Thus, the
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Algorithm 2: Find_Pattern_Local(W,R, S,K, p,Γp,Ωp).
Input: Sets W ,R,S; maximum length K; agent p; sub-spaces Γp, Ωp
Output: Pattern π robustly satisfying objective of agent p; ⊥ if no such pattern exists

1 W ′ := RelaxΩp
(W,S)

2 for ` = 1 . . .K do
3 Π := U `p; // set of local patterns of length `

4 for π ∈ Π do
5 Ψ := Complp(π); // set of global completions of π

6 for ψ ∈ Ψ do
7 if Postψ(W ′) ↓ Γp * R ↓ Γp then next π ;
8 if Intermψ(W ′) ↓ Γp * S ↓ Γp then next π ;
9 return π;

10 return ⊥;

global control resulting from the cooperation of the local controllers will remain valid even if
any of the controllers are replaced by any strategy that guarantees containment in S.

On the other hand, since the patterns of the distributed controllers can now be played
in a decoupled manner, we can no longer guarantee that the global state will return to R.
However, a slightly weaker property can be established for each infinite run of the global
control system: for each player p, the local objective—the state viewed in the player’s
sub-space returns to the projection of R—will hold infinitely often.

I Proposition 7. Assume that our procedure returns successful decompositions ∆p =
(W p

i , π
p
i )i∈Ip

of R ↓ Ωp, for each agent p. Then
for any agent p, for any i ∈ Ip, any X ∈ RelaxΩp

(W p
i ), and any completed pattern

φ ∈ Complp(π
p
i ), it holds

Postφ(X) ↓ Γp ∈ R ↓ Γp Intermφ(X) ↓ Γp ⊆ S ↓ Γp

fix an agent p, an index i ∈ Ip, and some state X ∈ RelaxΩp
(W p

ip
). We define the tree Tp,X

inductively as follows:
its root is labelled with X, and with the (non-empty) pattern πpi ;
pick a node n with no descendant in the currently-constructed tree; assume that it is
labelled with some state Y , and with some non-empty pattern ρ = u · ρ′, where u is
the first mode of ρ. We then extend the tree by adding sons to n as follows: for each
completion w of u, we add a son mw. We label mw with Z = Postw(Y ). We also label
it with a pattern, selected as follows:
∗ if Z /∈ S, we label mw with the empty pattern ε;
∗ if Z ∈ S and ρ′ is not empty, mw is labelled with ρ′;
∗ if Z ∈ S and ρ′ is empty, and if Z ↓ Ωp ⊆ W p

j for some j ∈ Ip, then we label mw

with πpj ;
∗ finally, if Z ∈ S and ρ′ is empty, but Z ↓ Ωp 6⊆ R ↓ Ωp, mw is labelled with the

empty pattern ε.
We claim that this tree is infinite (i.e., it contains infinite branches), and any infinite
branch visits only states in S, and it visits R ↓ Γp infinitely many times.

Proof. The first claim is straightforward. The second claim can be proven by noticing that
when ρ′ becomes empty, agent p has completed his pattern, and provided that the other agents
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Algorithm 3: Decomposition(W,R, S,K,D, p,Γp,Ωp).
Input: Sets W ,R,S; maximum length K; depth D; agent p; sub-spaces Γp, Ωp
Output: Successful decomposition ∆, or ⊥ if no such decomposition exists

1 π := Find_Pattern_Local(W,R, S,K, p,Γp,Ωp);
2 if π 6= ⊥ then
3 return (W,π);
4 else
5 if D = 0 then
6 return ⊥; // finest decomposition reached
7 else
8 Dec := SplitΓp

(W ); ∆ := ∅; // decompose and recursive call
9 for V ∈ Dec do

10 ∆V = Decomposition(W,R, S,K,D − 1, p,Γp,Ωp);
11 if ∆V = ⊥ then return ⊥ ;
12 else ∆ := ∆ ∪∆V ;
13 return ∆;

have maintained their variables in their safety sets, the corresponding state Z is in S and
is such that Z ↓ Γp ⊆ R ↓ Γp. Since Op ⊆ Gp, it follows3 that Z ↓ Ωp ⊆ R ↓ Ωp, so that the
node mw will be labelled with a non-empty pattern, and the construction can continue. J

In the end, let ∆ = (Wi, (πpi )1≤p≤m)i∈I be the decomposition obtained by merging the
individual decompositions (∆p)1≤p≤m. From Prop. 7, we deduce that if all the agents follow
the strategy given by decomposition ∆, then the outcome from any state X will be infinite,
it will visit only safe states in S, and each individual target set R ↓ Γp will be visited infinitely
many times. Again notice that since patterns may have incompatible lengths, we cannot
ensure that R itself is visited infinitely many times.

I Example 1 (Contd). We consider our example of the heating system in this setting of
local observation, with Op = Gp for 1 ≤ p ≤ 2. The controllers obtained in this setting are
depicted on Fig. 6.

4 A more realistic case study

The distributed local controllers obtained for our running example (Fig 6) are very simple:
following the natural intuition, their strategy amounts to turning the heater on when the
temperature is too low, using only patterns of length one. The only interesting information
we get is the exact temperature at which we should turn the heater on or off. In this section,
we develop this example a bit further, by assuming that the heaters are reacting slowly.

I Example 2. Consider a water underfloor heating system: hot water circulates in pipes
under the floor, and the controller can open or close the valves. Hot water will first heat the
floor, which then in turn transfers heat to the room. The heaters will start to heat up to

3 If some variable v were in Op but not in Gp (then it would be in Gp′ for another agent p′), we would
need that agents p and p′ play patterns of the same length, in order to ensure Z ↓ Ωp ⊆ R ↓ Ωp when
agent p terminates his pattern.
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Figure 6 Local controllers for Example 1 for Players 1 (left) and 2 (right).

temperature Tf when switched on. The state X = (H1, T1, H2, T2)T of this model is formed
by the temperatures of the two rooms (T1, T2) and the heaters (H1, H2). The dynamics of
the model can be described4 by the equation Ẋ = A(u1

u2)X +B(u1
u2) with

A(u1
u2) =


−β1 − u1αf β1 0 0

γ1 −αe1 − γ1 − α21 0 α21
0 0 −β2 − u2αf β2
0 α12 γ2 −αe2 − γ2 − α12

 B(u1
u2) =


u1αfTf
αe1Te
u2αfTf
αe2Te


where u1, u2 ∈ {0, 1} indicate the state of the heaters (0 = off, 1 = on). By discretization
with sample time τ , we obtain a switched system X(t+ τ) = Âu ·X(t) + B̂u.

The global objective of a controller is to keep both rooms at a temperature between 20°
and 22°, and the heaters in the comfort zone between 20° and 30°. There are safety margins
for the room temperature of 1°. The heaters should not be colder that 15° and should not
exceed the maximum of 40°. In other words, the target set is given by R = ([20, 30]×[20, 22])2,
while the safety set is given by S = ([15, 40]× [19, 23])2. Obviously, R ⊆ S.

In order to construct a distributed control for the two rooms, the global state space
is projected to the respective dimensions G1 = O1 = {H1, T1} for the first room and
G2 = O2 = {H2, T2} for the second room. For all experiments, we used a maximum pattern
length of K = 6 and a maximum decomposition depth of D = 3.

The original implementation of Minimator computes a global controller with a decom-
position into 16 tiles (corresponding to a single split in all four dimensions) and patterns of
up to three steps. The computation time is 10.45 s, where most of the time is spent on the
(failing) attempt to find a single pattern for the whole target set. The approach described in
Section 3.2 results in two controllers of similar complexity: 16 tiles with pattern length up
to 3. The computation time is slightly higher (13.43 s) due to the more complex exploration
of the completed local patterns. Finally, using the approach based on local observations
described in Section 3.3, we obtain two simple controllers, each with four (2-dimensional)
tiles, as shown in Fig. 8. The computation time was 27.75 s.

4 For this example, we use the following parameters: Te = 10, Tf = 40, αe1 = 0.005, αe2 = 0.0033,
αf = 0.12, α12 = α21 = 0.006, β1 = β2 = 0.083, γ1 = γ2 = 0.0083, and τ = 5.
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Figure 7 Two-room water underfloor heating system.
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Figure 8 Local controllers for 4-dimensional case study (left: Player 1; right: Player 2).

5 Conclusion

We proposed an extension of the decomposition method for the control of sampled switched
systems. The improvement is two-fold: first, we synthesize robust, distributed controllers,
which are able to cope with changes in the behaviors of the other controllers of the system;
second, our approach can deal with partially observable systems, where controllers may only
observe (and base their decisions on) part of the system.

This works opens many directions for future research: following classical results in game
theory, it would be natural to make the controller reconstruct information about the global
state of the system from the evolution of the variables it can observe. This would require that
we introduce memory in our strategies, and seems to be more than a simple extension of our
current approach. Another relevant direction would be to try to use the same controller (with
partial observation) in all the rooms. This would preserve the partial-observation part of our
present approach, but would drop the robustness aspect as the controllers would certainly
make use of the fact that all components follow the same strategy. Finally, we would like to
extend our approach with costs, in order to look for cheap controllers. Notice that just consid-
ering the cheapest pattern would only optimize “locally”, while it might be more profitable to
take a more expensive pattern in order to reach a zone from which control might be cheaper.
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Abstract
This paper introduces a novel approach for synthesizing parameters and controllers for Markov
Chains with Actions and State Labels (ASMC). Requirements which are to be met by the con-
trolled system are specified as formulas of asCSL, which is a powerful temporal logic for char-
acterizing both state properties and action sequences of a labeled Markov chain. The paper
proposes two separate – but related – algorithms for untimed until type and untimed general
asCSL formulas. In the former case, a set of transition rates and a common rate reduction factor
are determined. In the latter case, a controller which is to be composed in parallel with the given
ASMC is synthesized. Both algorithms are based on some rather simple heuristics.

1998 ACM Subject Classification C.4 Performance of Systems, D.2.4 Software/Program Veri-
fication (Model checking), G.3 Probability and Statistics (Markov processes)

Keywords and phrases Markov chains with actions and state labels, parameter synthesis, con-
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1 Introduction

Markov chains are widely used to model systems with stochastic behavior and to analyze their
quantitative properties such as performance (e.g. utilization, throughput or response time)
or dependability (e.g. availability or mean time to failure). Models are usually obtained by
transforming from high-level descriptions such as Petri nets or process algebraic descriptions
etc. into low-level Markov chains. ASMCs are continuous-time Markov chains extended
with actions and state labels. To specify requirements of ASMCs, the temporal logic asCSL
[3], which is an extension of CSL [1, 4], has been developed. In particular, asCSL makes it
possible to specify complex path-based behavior with the help of regular expressions over
state properties and action labels. The process of model checking ASMCs is explained in [3].

The topic of this paper is how to create a controller (also called a supervisor) that controls
a given ASMC (also called plant) such that it will satisfy the given path-based requirements
specified in asCSL. To this aim, we first study the special case of untimed until-type formulas
and then proceed to general untimed path-based requirements. In the former case, we
propose an algorithm for parameter synthesis which determines a subset of the ASMC’s
transitions and a common factor by which those transition rates are to be reduced. In the
latter case, a controller is synthesized via a product automaton construction borrowed from
the asCSL model checking algorithm where, again, rate reduction plays an important part in
this construction. Composing the controller in parallel with the original plant will ensure
that the requirement is satisfied. It is important to note that the controller will not only
change a set of transition rates, but also potentially change the structural behavior of the
plant. We have made the deliberate decision to work with rate reduction factors (as opposed
to rate acceleration), since we advocate that it is in general possible to slow down a process
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(e.g. by reducing the speed of a machine or the capacity of a server), whereas speeding up
a process may not be possible, since this would require additional resources. The present
paper only considers the controller synthesis problem for untimed asCSL properties, i.e. here
we do not consider time-bounded or time-interval-bounded requirements.

Related work: As early as 1993, Lawford and Wonham described an algorithm for
synthesizing probabilistic supervisors for a class of probabilistic discrete event systems where
a subset of the events is controllable [13], initiating a strand of research that is still active
today (see e.g. [14]). The related area of model checking parametric Markov chains has been
studied for more than a decade [6]. Some of that work is devoted to the problem of how to
deal with the growing symbolic size of the rational functions obtained for the reachability
probabilities of interest. This was addressed in [8] for Markovian models with rewards and
nondeterminism, and associated tools have been provided [7]. Some approaches for rate
parameter synthesis use a discretization of one-dimensional or multi-dimensional parameter
ranges over a grid, together with refinement and/or sampling techniques [9]. The recent
paper [15] synthesizes rate parameters such that either a given CSL time-bounded property
should hold or that the probability of satisfaction is maximized. Their algorithms rely on
uniformization combined with the computation of lower and upper bounds as described in
[5], and also use parameter range refinement and sampling.

Our approach described in this paper is different in that we do not work with parametric
Markov chains, but with Markov chains whose rates are given as constant values. Our
problem then is to determine a subset of the transition rates to be modified, and a common
reduction factor for those rates, such that a given requirement will be satisfied. In this paper,
we consider only untimed requirements, but we deal with the full generality of asCSL-type
path properties (without nested probabilistic path operators). This requires the synthesis of
a controller which is to be composed in parallel with the given plant, thereby adapting the
plant’s behavior according to the requirement, possibly also changing its structural behavior.

The rest of the paper is organized as follows: Sec. 2 introduces the fundamental concepts
used in this paper. Sec. 3 explains the algorithm to synthesize parameters for untimed
until-type formulas, Sec. 4 explains the algorithm to synthesize both parameters and a
controller for general untimed asCSL formulas, and Sec. 5 concludes the paper.

2 Preliminaries

This section explains the fundamental concepts used in rest of the paper. A Markov chain
with state labels and actions (ASMC) is defined as follows [3]:

I Definition 2.1 (ASMC). An ASMCM is a tuple (S,Σ, R, L) where
S is a finite set of states
Σ is the set of action labels over transitions
R : S × Σ× S 7→ R≥0, is the transition function
L : S → 2AP is a state labeling function, where AP is a finite set of atomic propositions

A finite untimed path σ in an ASMCM is a finite sequence σ = [(s0, a0), (s1, a1), · · · ,
(sn−1, an−1), sn] ∈ (S × Σ)∗ × S and with Paths(s) we denote the set of all finite paths
originating from state s. Probabilities are assigned to sets of finite paths by the usual cylinder
set construction on sets of infinite paths. An ASMC without action labels is called a state-
labeled CTMC. So, the underlying CTMC for an ASMC is given by the tuple (S,R′, L), which
is a result of removing the action labels and accumulating the rates of parallel transitions,
i.e., R′(s, s′) =

∑
a∈ΣR(s, a, s′). In order to specify user requirements and characterize
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execution paths of ASMCs, we use the logic asCSL [3] (without time bounds and without the
steady-state operator), which is an extension of the purely state-based logic CSL (continuous
stochastic logic) [4].

I Definition 2.2 (State formulas of asCSL). The grammar for untimed asCSL state formulas
is given as:

Φ ::= q | ¬Φ | Φ ∨ Φ | P∼b(α)

where q ∈ AP is an atomic proposition, ¬ denotes negation, ∨ denotes disjunction, b ∈ (0, 1)
denotes a probability value, ∼ ∈ {<,≤, >,≥} a comparison operator and α is a program as
defined in Def 2.3. P∼b(α) asserts that the probability measure of the set of paths satisfying
α meets the bound given by ∼ b. The program α specifies the property for finite paths.

Remark 1. In contrast to [3], this paper considers probability bounds b ∈ (0, 1) instead of
b ∈ [0, 1], since the approach presented here does not aim to turn a non-zero probability into
zero, or to turn a probability smaller than one into one. Thus, we do not treat requirements
of the form P≤0(α) or P≥1(α), and for similar reasons we also do not treat requirements of
the form P>0(α) or P<1(α).

I Definition 2.3 (Program). asCSL-programs are defined by the following grammar:

α ::= ε | (φ, b) | α;α | α ∪ α | α∗

Formally, programs are regular expressions over the alphabet Ω = Φ×
(
Σ ∪ {

√
}
)

={
(φ, b) | φ ∈ Φ ∧ b ∈

(
Σ ∪ {

√
}
)}

. The operator ; denotes sequential composition, ∪ denotes
alternative choice, and ∗ denotes Kleene star. Intuitively, program (φ, b) means that the
current state s should satisfy φ, and then the next action taken along the path should be b.
If b ∈ Σ, an outgoing b-transition has to be taken, and if b =

√
(pseudo-action

√
/∈ Σ), no

transition is taken. The full formal semantics of asCSL is given in [3].
Untimed asCSL is an extension of untimed CSL, so every CSL formula can be expressed

in asCSL. The syntax and semantics of untimed Until formulas are as explained in [4]. For
our purpose we consider only the Until operator, because the parameter synthesis for the
Next operator follows trivially from the algorithm for the Until operator. For the sake of
completeness we provide the semantics of CSL until-type path formulas.

I Definition 2.4 (Untimed Until). The satisfaction relation |= for untimed Until path formulas
is defined as:

σ |= Φ1 U Φ2 iff ∃k ≥ 0 : σ[k] |= Φ2 ∧ ∀(0 ≤ i < k) : σ[i] |= Φ1

where Φ1,Φ2 are state formulas, and σ[k] denotes the k-th state on path σ.

From here on, untimed Until is simply called Until. Any CSL untimed Until property can
be expressed in asCSL as Φ1 U Φ2 = (Φ1,Σ)∗; (Φ2,

√
), which follows from Prop. 12 in [3].

Let Sat(Φ) denote the set of states fulfilling state formula Φ. Partitioning of the ASMC
state space is required to accomplish the process of parameter and controller synthesis. In
particular, during the synthesis procedure, our attention will be on the states of the so-called
transit class. This motivates the following definition:

I Definition 2.5 (Partitioning of ASMC). Given an ASMCM and an asCSL requirement
Φ = P∼b(α), the states with:

Pr(s, α) = 0 are placed in invalid class

SynCoP’15



66 Parameter and Controller Synthesis for ASMCs

0 < Pr(s, α) < 1 are placed into transit class and
Pr(s, α) = 1 are placed into target class

where, Pr(s, α) is defined as the probability measure of the set of paths Pr(s, α) = Pr(σ ∈
Paths(s) | σ |= α).

in the given state formula, ∼ and b have no influence on the partitioning of these three
classes. Furthermore, for an ASMCM and a state formula Φ, we introduce the following
satisfaction relation:

M |=transit Φ⇐⇒ ∀s ∈ transit : s |= Φ

So, the given user requirement Φ is said to be satisfied by ASMCM, iff all the states of
the transit class satisfy Φ. The reason for this viewpoint is as motivated in Remark 1.

After controller synthesis, in order to satisfy the user requirement, parallel composition of
the plant and the controller is necessary (see Sec. 4). Therefore we now provide a definition
for parallel composition of ASMCs. Note that different stochastic process algebras possess
different semantics for parallel composition [10]. For our purpose, in case of synchronization
the resulting rate of two actions with rates λ and µ shall be determined by their product
λ · µ (where, in practice, one of the two factors is either equal to one or a slowdown factor
0 < k ≤ 1).

I Definition 2.6 (Parallel composition in ASMCs). The parallel composition of two ASMCs
P and Q is defined by the following rules (analogous to [2, 12]):

P
a,λ−−→ P ′, Q

a,µ−−→ Q′

P ‖Σsyn Q
a,λ·µ−−−→ P ′ ‖Σsyn Q′

(a ∈ Σsyn)

and
P

a,λ−−→ P ′

P ‖Σsyn Q
a,λ−−→ P ′ ‖Σsyn Q

(a 6∈ Σsyn)

and a third rule, symmetric to the second one, where Q makes a move while P remains
stable. In these rules, a ∈ Σsyn ⊆ Σ is a synchronizing action, and λ, µ are the transition
rates. The labeling of a state (pi, qj) in the product ASMC is defined to be the union of the
labellings of pi and qj .

When we employ parallel composition in Sec. 4, one process will be the plant P, the
other process will be the controller C, the set of synchronizing actions Σsyn will be equal to
the action set ΣC of the controller, and all rates of the controller will be either equal to one
or equal to a common reduction factor k, with 0 < k ≤ 1.

3 Parameter Synthesis for “Until”-type requirements

For until-type requirements, the ASMC parameter synthesis problem is intuitively explained
as computing a reduction factor k for a subset of the transition rates in the original plant, so
as to modify some reachability probabilities as needed. We will start with a simple example.

3.1 Example
This example considers a gas tank with an automatic filling pump, which can be turned off
or on based on the levels of the tank.
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Figure 1 Tank P shown as an ASMC with respective accumulated rate matrix.

3.1.1 Unrestricted plant P
Fig. 1 shows the gas tank P modeled as an ASMC along with the respective transition rates.
Nodes represent different states of the tank and edges represent transitions between states.
Initially, the gas tank can be in any state. Empty and Full represent different levels of the
tank, and level Empty is further divided into Green, Yellow, Red for easy level reading. Note
that the action labeling of transitions is irrelevant for this section.

The user requirement on P is given as an untimed Until formula Φ,

Φ = P≤0.7 (ϕ),where ϕ = Empty U Full (1)

which checks whether the probability to reach a Full state from an Empty state, possibly via
intermediate Empty states is at most 0.7. By using the PRISM tool [11], we computed the
probabilities of the states in ASMC P to be

Pr(P1, ϕ) = p15 = 0 < 0.7 (2)
Pr(P2, ϕ) = p25 = 0.69473 < 0.7 (3)
Pr(P3, ϕ) = p35 = 0.80589 > 0.7 (4)
Pr(P4, ϕ) = p45 = 0.90294 > 0.7 (5)
Pr(P5, ϕ) = p55 = 1 (6)

where pi5 = Prob(to reach state P5 from state Pi via a satisfying path) and Sat(Φ) = {P1, P2}.
According to Definition 2.5, invalid = {P1}, target = {P5} and transit = {P2, P3, P4}. From
the above equations, we know state P2 already satisfies Φ, whereas P3 and P4 do not. Hence,
parameter synthesis is required on P. This is done by reducing some of the transition rates
in P by a factor of k. To determine k, we create a reduced automaton G.

3.1.2 Obtain the reduced automaton G from P
Fig. 2 shows the ASMC G, which has been partitioned according to the definition 2.5. The
difference of G and P lies in making the invalid and target classes absorbing in G. According
to the heuristics explained in Sec. 3.2.3, in R′G the rates of the transitions leading from the
transit class towards the target class should be reduced by the factor k. The satisfying range
of k between 0 and 1 should be obtained, such that the probabilities p35 and p45 fall below
0.7 as required by equation (1).

SynCoP’15
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Figure 2 Reduced automaton G of P, and its rate matrix R′
G.

3.1.3 System of equations from G
For each state Gi in transit class, we now construct a new equation (depending on k) for the
probability pi5. In our example, equations for p25, p35 and p45 are obtained from the reduced
automaton G in Fig. 2 as follows:

p25 = 1.25
1.45 × p35 (7)

p35 = 3.5
k × 2.5 + 5.3 × p25 + 1.5

k × 2.5 + 5.3 × p45 + k × 2.5
k × 2.5 + 5.3 (8)

p45 = 3.5
k × 3.5 + 3.5 × p35 + k × 3.5

k × 3.5 + 3.5 (9)

According to equation (1), the following constraints need to be met:

0 < k ≤ 1 0 ≤ p25 ≤ 0.7 0 ≤ p35 ≤ 0.7 0 ≤ p45 ≤ 0.7

Upon solving the system of equations in (7),(8),(9) along with the constraints, we obtain the
satisfying range of k to be 0 < k ≤ 0.326244. Thus, the solution of the parameter synthesis
problem consists of changing P by multiplying the transition rates from P3 to P5 and from
P4 to P5 by such a factor of k. We now proceed to the general algorithm and heuristics
required to solve the parameter synthesis problem.

3.2 General Algorithm
We assume that the original plant is defined as an ASMC, P=(SP ,ΣP , R

′
P , LP ), and the

user requirement is specified by Φ = P∼b(Φ1 U Φ2). Algorithm 1 shows the procedure of how
to determine the set of transition rates to be reduced and how to synthesize the reduction
factor k. For the algorithm to deliver the correct result, the user-given Until formula should
not contain nested probabilistic formulas. Note that this algorithm provides a simple way to
control a plant according to the user requirement, but other, more distinguished, approaches
would be also possible (see Sec. 5).

3.2.1 Generating the reduced automaton G
The first step towards solving the parameter synthesis problem is to create a reduced
automaton G from P.
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Algorithm 1 Parameter synthesis algorithm for untimed Until formulas.
Input: Plant P expressed as ASMC and requirement Φ = P∼b(Φ1 U Φ2)
Output: Set of transitions to be modified and the values of reduction factor k
if transit = ∅ then quit . No states whose probabilities can be modified
else

if P |=transit Φ then quit . No need of par-synthesis, since req. is already fulfilled
else

Construct G = (SG,ΣG, R′G, LG) . Refer Sec. 3.2.1
Find set of trans. rates T to be reduced and reduction factor k . Refer Sec. 3.2.2
Change P to Pmod by reducing the rates of T by factor k

end if
end if

I Definition 3.1 (Reduced automaton G). The reduced automaton G is defined as a tuple
(SG,ΣG, R′G, LG) where:

SG = SP
ΣG = ΣP
Partitioning of P is done according to Def. 2.5
R′G = R′P \ {(s, a, s′) | s /∈ target ∨ s /∈ invalid}
LG = LP

As explained in Algorithm 1, G is created only if transit 6= ∅ and P 6|=transit Φ. Once G
has been constructed according to Def. 3.1, some rates of R′G need to be chosen for synthesis
based upon some heuristics (sec 3.2.3) on the given property Φ.

3.2.2 Obtain k from G
Parameter synthesis is based upon some rules as follows:
1. Transition rates in R′G cannot exceed the original rates in R′P and cannot be made zero.
2. Some transition rates in R′G will be reduced by a common factor k (where 0 < k ≤ 1),

to make sure that the probability during model checking will satisfy the bound given in
Φ. The set of transition rates to be multiplied with k is determined according to the
heuristics explained in Sec. 3.2.3.

3. Create a system of (rational polynomial) equations for model checking. There is one
equation for each state from transit class, representing its probability to reach the target
class via a satisfying path.

4. Impose the constraints on probabilities according to the given Φ.
5. Solve these equations and constraints for the probabilities, and the resultant k leads to a

model that satisfies the user requirement.

3.2.3 Heuristics on G
In R′G, some of the rates need to be reduced by a common factor k, such that G satisfies
the requirement Φ. The following heuristics are applied to modify the rates. If in the given
formula Φ
1. the probability bound is a lower bound, i.e. P≥b(ϕ) or P>b(ϕ), then the rates of all

transitions leading from class transit to class invalid should be multiplied by the reduction
factor k,

SynCoP’15
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2. or, if the probability bound is an upper bound, i.e. P≤b(ϕ) or P<b(ϕ), then the rates
of all transitions leading from class transit to class target should be multiplied by the
reduction factor k.

These heuristics determine the set of transition rates to be reduced, and the common
reduction factor k (0 < k ≤ 1) can then be found by solving the set of equations with the
imposed constraints.

I Theorem 3.2. Assume that transit 6= ∅. Then the set of constrained equations constructed
according to the heuristics in Sec. 3.2.3 will always have a solution.

Proof. For the reduction factor k it holds that 0 < k ≤ 1. This means that one can make
the chosen set of transition rates arbitrarily close to zero (without completely disabling the
transition). The heuristics distinguishes three classes transit, target and invalid, of which
the latter two classes are absorbing. The target and the invalid class are reachable from the
transit class by definition. Hence, the uniform reduction of rates between two classes will
make the transitions between the other two classes more likely and this will always lead to a
solution. J

We end this section by characterizing the relation between the ASMC P and its reduced
automaton G. If G satisfies Φ, that implies that the modified version of P will also satisfy Φ,
because of the fact that G focuses only on transit class of P. This is stated by the following
Theorem.

I Theorem 3.3. For any ASMC P and its reduced automaton G, and for any untimed
until-type formula Φ without nested probabilistic path operators, it holds that

G |=trans Φ =⇒ Pmod |=trans Φ

where Pmod is the modified version of P by applying the reduction factor k to the selected
transitions.

Proof. The proof follows directly from the construction of G and from the semantics of
until-type formulas. J

4 Controller synthesis for untimed asCSL requirements

Having seen the procedure to synthesize parameters for until-type requirements, we now
propose an algorithm to synthesize a controller for general untimed asCSL formulas. Given
a plant P and a user requirement in the form of an asCSL formula, we propose a novel
approach to synthesize a controller C, which is another ASMC to be composed in parallel
with the plant. Controller synthesis will also involve the synthesis of parameters as a subtask.
To better understand the synthesis procedure, we again start this section with an example,
followed by the general algorithm.

4.1 Example
Fig. 3 shows a plant modeled as an ASMC P. The states can have atomic propositions, but
they are not relevant for this example. The transitions shown among the states are labeled
with the actions followed by their respective rates. The plant consists of 4 states and has the
ability to start in any state.
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Figure 3 ASMC of plant P.
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Figure 4 NPA Zα for the given asCSL pro-
gram α.

Assume that we wish to ensure that in P, once action b1 has taken place, it will be
followed by action c1 with high probability, and the same for actions b2 and c2. For this
criterion, the asCSL user requirement is given as follows,

Φ = P>0.5(α) (10)

where, α is the following asCSL program:

α = ((tt, a) ∪ (tt, c1) ∪ (tt, c2) ∪ (tt, d))∗;
((

(tt, b1); (tt, c1)
)
∪
(
(tt, b2); (tt, c2)

))
(11)

Formula Φ states that the probability to take action bi followed by ci, where i ∈ {1, 2},
should be greater than 0.5, and tt stands for true. The first part of α (covered by the Kleene
star), states that the initial behavior before either action b1 or b2 occur can be arbitrary.
For model checking ASMCs against an asCSL requirement, a NPA Zα (non-deterministic
program automaton) is constructed from the program α. The automaton Zα for the given
α is shown in Fig. 4, and it happens to be deterministic for this example. According to
the asCSL model checking algorithm [3], we now construct the product automaton Q for
P and Zα. Fig. 5 shows this product automaton Q, with the accepting state Q8 and the
absorbing fail state Q7. For model checking we considered the rates in P to be α = 2,
β1 = 4, β2 = 6, γ1 = 6, γ2 = 4 and δ = 3. Model checking the product automaton (with
PRISM [11]) gave that the probability of P satisfying the given Φ is 0.48 (the same for all
states in P), which is a violation of our requirement in equation (10). Hence, we need to
synthesize a controller. A controller has the ability to modify both the transition rates and
also the structural behavior of an ASMC, which is achieved by using parameter synthesis and
controller synthesis respectively. For parameter synthesis, we need to construct a blueprint
automaton B (similar to the purpose of G in Sec. 3) from the product automaton Q, which is
useful for applying heuristics and also to synthesize the controller. Hence, the name blueprint
automaton.

4.1.1 Blueprint automaton B for this example
In the product automaton Q, partitioning of the state space is performed according to the
Def. 2.5, with ϕ = tt U target. Furthermore, states starting from the initial state of Zα are
exclusively placed into set initial. The division of the state space is as below,
1. target class contains all states where Pr{q, ϕ} = 1, i.e. state Q8,
2. invalid class contains those states where Pr{q, ϕ} = 0 , i.e. state Q7,
3. transit class contains the states where 0 < Pr{q, ϕ} < 1, i.e. states Q1, Q2, Q3, Q4, Q5

and Q6.
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4. initial set contains only those states which start from the initial states of Zα, i.e. states
Q1, Q2, Q3 and Q4.

Note that the initial set is not disjoint from the other classes (e.g. some initial states can
be invalid or transit). The reason for this classification is to identify those states which
should satisfy the probability bound given in Φ (10). Fig. 6 shows the classes of B obtained
from Q. From the automaton B, some of the rates are then chosen for parameter synthesis
using heuristics (Sec. 4.2.2). In order to increase the probability from 0.48 to above 0.5 as
in the given Φ, the rates leaving from transit to invalid class are considered for parameter
synthesis. The aim now is to find a suitable value k (0 < k ≤ 1) as the common reduction
factor for these rates. According to the model checking algorithm for asCSL [3], in the
product automaton we only check for ϕ = tt U target formula. As we will see later, to make
P satisfy Φ, it is sufficient if only the states in the initial set of B satisfy Φ, but the states
Q1, Q2, Q3 will not affect the probability as they have single outgoing transition. Hence, only
state Q4 needs to be considered. The probability is computed using the equations below.

Pr(Q4, ϕ) = p48 = β1

β1 + β2
× γ1

γ1 + k × γ2
+ β2

β1 + β2
× γ2

k × γ1 + γ2
(12)

with constraints: 0 < k ≤ 1 0.5 < p48 ≤ 1 (13)

Solving this constrained quadratic inequality for p48 yields k to be (0 < k < 0.92). Hence
any k value from this range satisfies the user given Φ.

4.1.2 Creating controller C for P
The controller will restrict the behavior of the plant according to the user requirements.
We create a controller C, such that (P ‖ΣC C) |=init ∩ transit (P∼b(α)). Hereby, the notation
|=init ∩ transit (P∼b(α)) means that those states s = (Si, Cj) of P ‖ΣC C, where 0 < Pr(s, ϕ) <
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Algorithm 2 Controller synthesis algorithm for general untimed asCSL formulas.
Input: Plant P modeled as ASMC and an untimed asCSL specification Φ = P∼p(α)
Output: Controller C such that (P‖ΣCC) |=init ∩ transit Φ
Construct product automaton Q from P and Zα as in [3] and classify its states
Let ϕ = (tt U target)
if transit = ∅ then quit . No states whose probabilities can be modified
else

if ∀s ∈ transit ∩ initial : s |= Φ then quit . No need of contr. synthesis
else

Construct B = (SB,ΣB, RB, LB) from Q . Refer Sec. 4.2.1
From B, find set of trans. to be modified and the red. factor k . Refer Sec. 4.2.1
Modify the absorbing states in B and multiply the selected rates with k
The result is controller C

end if
end if

1 and Cj contains an initial state of Zα will satisfy Φ. We use B as a blueprint for the
controller, but in order to make its behavior non-blocking we make all the absorbing states
of B non-absorbing as follows:

The absorbing states (S4, ∅) and (S4, Z4) are removed and all the transitions leading
to them are diverted to the state (S4, Z1), because when the plant P has reached state
S4 and whether or not the previous trajectory has satisfied the asCSL program α, the
controlling needs to start again from the initial state of Zα.
The rates which we obtained by parameter synthesis are replaced by the reduction factor
k and the rest of the rates are intentionally set to 1.

Fig. 7 shows the controller C created for the plant P. The transition rates obtained
via parameter synthesis from the states C5 and C6 to C2 are multiplied by the reduction
factor k, and the rest of the rates are unchanged, hence the multiplication factor is 1. We
already obtained the value of k. When the parallel composition is performed between the
original plant P and the controller C, synchronizing over all the actions in ΣC as per the
ASMC parallel composition rules (Def. 2.6), the resultant product automaton satisfies the
user requirement Φ. The result of parallel composition of plant P and the controller C is
shown in Fig. 8.

4.2 General Algorithm for parameter synthesis for untimed asCSL
In Algorithm 1, we explained the general procedure to synthesize the parameters for until type
requirements. Now we give an algorithm to synthesize a controller for general untimed asCSL
requirements (which also includes parameter synthesis). A prerequisite for the algorithm
to work correctly is that the asCSL program α should not contain any nested probabilistic
formulas.

4.2.1 Blueprint automaton B
The blueprint automaton B is based on the product automaton Q of the plant P and Zα.

I Definition 4.1 (Blueprint automaton B). The blueprint automaton B is obtained from the
product automaton Q, along with the following modifications:
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In Q, partitioning of state space is done according to Def. 2.5 for ϕ = tt U target.
Once the partitioning is done, a new set called initial is identified which contains all the
states starting from the initial states of NPA Zα.
Some transition rates of Q are multiplied by the reduction factor k as per the heuristics
in Sec. 4.2.2.

From the resultant automaton B, a set of equations is created, taking into account Th. 27 in
[3] which states that for an ASMC P and an asCSL-program α it holds that

ProbP(s, α) = ProbP×Zα(〈s, Z0〉, tt U target)

where s is a state in P and Z0 is the set of initial states of NPA Zα. From this theorem
it follows that for an ASMC P to satisfy the probability bound in the asCSL formula Φ,
it suffices to make the states of the form 〈s, Z0〉 in the product automaton Q satisfy the
probability bound. Therefore, we construct one equation for each state in transit ∩ initial,
representing its probability to reach the target class via a satisfying path. Solving these
equations yields the value of k.

4.2.2 Heuristics on B
The heuristics on B are similar to those of G (Sec. 3.2.3). It applies between the classes
transit, invalid and target, as the new set initial will not play any role in heuristics.

4.2.3 Controller C
The controller is derived from the blueprint automaton B, but to make the controller non-
blocking, all absorbing states in B should be made non-absorbing (by redirecting their
incoming transitions). The controller C is thus obtained by modifying B as follows:
1. Replace all the states from the invalid class of the form (Si, ∅) with states of the kind

(Si, Z0), where Z0 is the set of starting states of the automaton Zα.
2. All the states from the target class like (Si, Zj) (Zj is a set containing an accepting state

of Zα) are replaced with (Si, Z0).

5 Conclusion

For a given ASMC model (the plant) and an asCSL path-based requirement, we have studied
the problem of controlling the plant in such a way that its states will satisfy the requirement,
wherever possible at all. Satisfaction can be achieved by either a reduction of a subset of the
plant’s transition rates, or by parallel composition with a controller. We have presented two
algorithms: Algorithm 1 performs parameter synthesis for untimed until-type requirements,
and Algorithm 2 extends this concept to controller synthesis for general untimed asCSL
formulas.

In this paper, we have restricted our attention to requirements without nested probabilistic
path operators. Such nesting requires special care, since changing some parameters in order
to satisfy an inner probabilistic path formula can have either a positive or an adverse
effect on the satisfiability of the enclosing formula. As a simple example, the strategy to
maximize the satisfaction set of P≥b1(Φ1 U P≥b2(Φ2 U Φ3)) will not be the same as for
P≤b1(Φ1 U P≥b2(Φ2 U Φ3)), since in the latter case the set of states satisfying the overall
formula will be larger if fewer states satisfy the inner formula. We intend to elaborate on
this in a forthcoming paper.
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The paper has presented feasible solutions, but did not address the question of optimality.
Solutions which are “better” in some sense could be obtained by applying more complex
heuristics than the ones described in this paper, for instance by allowing non-uniform
reduction factors or by also reducing some rates within the class transit. However, how do
characterize the optimal solution and how to obtain it is future work. Another important
issue for future work is the control problem for time-bounded problems which will involve the
computation of transient state probabilities with the method of uniformization.

Acknowledgments. We would like to thank the anonymous reviewers for their valuable
constructive feedback and also our colleague Alexander Gouberman for his suggestions.
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Abstract
This paper addresses the problem of parametric model checking for weighted transition systems.
We consider transition systems labelled with linear equations over a set of parameters and we
use them to provide semantics for a parametric version of weighted CTL where the until and
next operators are themselves indexed with linear equations. The parameters change the model-
checking problem into a problem of computing a linear system of inequalities that characterizes
the parameters that guarantee the satisfiability. To address this problem, we use parametric
dependency graphs (PDGs) and we propose a global update function that yields an assignment
to each node in a PDG. For an iterative application of the function, we prove that a fixed point
assignment to PDG nodes exists and the set of assignments constitutes a well-quasi ordering,
thus ensuring that the fixed point assignment can be found after finitely many iterations. To
demonstrate the utility of our technique, we have implemented a prototype tool that computes
the constraints on parameters for model checking problems.
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1 Introduction

Specification and modelling formalisms that address non-functional properties of embedded
and distributed systems have been intensively studied in the last decades. In particular the
modelling formalism of timed automata [3] has established itself as a very useful formalism
for expressing and analysing timing constraints of systems with respect to timed logics
such as TCTL [2] and MTL [20]. This has naturally sparked interest for formal verification
of functionality, and model checking techniques have often been used. However, timing
constraints are not the only non-functional properties of interest in applications. Often
modelling resources that can be consumed and must be monitored during the evolution
of a system, such as energy, is an important issue in applications. This initially led to
weighted extensions of timed automata [7, 5] and more recently to energy automata [9]. Such
formalisms are typically abstracted as weighted transition systems, which are transition
systems having the transition labelled by real numbers (or vectors of reals) that represent
the resource consumption; and weighted versions of temporal logics are used to encode and
verify logical properties.

In this paper we consider a parametric extension of the concept of weighted transition
system by allowing the transition labels to be not only numbers, but also linear equations over
a given set of parameters. Similarly, a parametric version of weighted CTL is defined, where
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Figure 1 ModelMex for the robotic vacuum cleaner example.

the temporal operators are themselves indexed with linear equations representing upper
bounds for the computation traces. In this context, we address the problem of parametric
model checking: given a parametric model and a parametric logical property, compute a
linear system of inequalities that describe the possible values of the parameters that will
guarantee that the model satisfies the property.

As an example, consider a robotic vacuum cleaner. We want to know whether, in a given
situation, our robot can reach and clean a dirty room within some time frame. While we
know how many rooms there are, we do not have full knowledge of the time spent by the
robot from room to room and neither do we know how long time a room takes to clean. The
knowledge of the problem can be represented graphically as depicted in Figure 1, where
the parameters p, q represent our lack of knowledge. We want to check whether the robot
can finish the job under some linear constraints over the parameters. This is the kind of
problems we aim to address and solve in this paper.

The main contribution of this work, is the definition of a global function which iteratively
computes a fixed point on the so-called parametric dependency graphs (PDGs). The PDGs in
this paper are structures that handle parametric quantitative properties in a manner inspired
by the Symbolic Dependency Graphs proposed in [19]. We use PDGs to represent problems
by stating the dependencies between a given problem and its sub-problems along with their
parametric quantitative constraints on the solution to the problem. We use Tarski’s Fixed
Point Theorem [24] to show that a fixed point exists. In this regard, we also prove that it
can be reached in a finite number of steps using Dickson’s Lemma [13] for well-quasi orders.
Using these results, we show how to build PDGs for encoding of model checking, where
parameters exist on both model and formula. Parametric model checking then entails finding
constraints on parameter interpretation that makes a property satisfied. In some cases the
constraints may be either trivially satisfied or not satisfiable, making it possible to give an
yes/no answer. However, in the general case the answer is the set of parameter constraints
obtained as a system of linear inequalities. Our technique can be further used to solve related
issues such as bisimulation checking for parametric models ([10]).

In addition to the theoretical work of this paper, we have implemented a prototype
tool (PVTool) that computes the fixed point for verification of parametric properties on
parametric models. The input for the tool is a model that may have parametric weights on
transitions, together with a state and a formula. Outputted is then a derivation of the exact
constraints for interpretations of the parameters in the model and formula for the property
to be satisfied by the model. Finally, we have conducted a series of preliminary performance
experiments using the tool.
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Related Work. In recent years, various extensions to modeling formalisms and logics have
been developed. In [23], a Parametric Kripke Structure and parametric CTL is presented
along with algorithms computing constraints on parameters that must be satisfied for a
parametric formula to be satisfied in a state. This inspired the authors of this paper to
study the behavior of parametric weighted transition systems in [8] where various notions of
bisimulation on parametric systems are discussed. In the world of automata, [4] proposes
an extension to Timed Automata with parametric guards and invariant called Parametric
Timed Automata. For parameter synthesis [6] uses an inverse method relying on an initial
good parameter valuation for each parameter used to compute a constraint on parameters.
It is then shown that if some parameter valuation satisfies the constraint, the system is
behaviorally equivalent (identical traces) to the system under the initial valuation. This
method is in contrast to traditional methods such as [15] based on Counterexample Guided
Abstraction Refinement (CEGAR, [12]) where the goal is to avoid a set of bad states given
beforehand. Tool support for various formalisms have also been developed. In [16], parameter
synthesis of Linear Hybrid Automata in HyTech is discussed and [18] provides an extension
to UPPAAL (see [21]) capable of generating parameter constraints that are necessary and
sufficient for a reachability or invariant property to hold for Linear Parametric Timed
Automata. Related to our work is also [19] where Dependency Graphs, introduced by Liu
and Smolka (see [22]), are extended to Symbolic Dependency Graphs suitable for model
checking using Weighted CTL and Weighted Kripke Structures. They compute a fixed point
on assignments to nodes, being simply the cost of satisfying a formula in the weighted setting.
We extend this to the parametric setting where we guarantee termination by exploiting that
assignments can be interpreted as a well-quasi ordering. Refer to [14, 1] for a discussion of
well-quasi orders for termination of algorithms operating on infinite structures.

2 Parametric Weighted Models and Logic

We now introduce various concepts used throughout this paper. We let Q denote either
universal- or existential-quantification, i.e. Q ∈ {A,E}. Furthermore, we let min{∅} =∞
and max{∅} = 0 and denote the set of natural numbers, including zero, by N.

A Parametric Weighted Transition System (PTS) is an extension of weighted transition
systems with linear expressions of parameters as labels on the transitions. From here on,
P denotes a fixed finite set of parameters. E is the set of all linear expressions on the form∑
xipi + y where xi, y ∈ N and pi ∈ P for any i ∈ N.
Finally, PTS label states with a set of atomic propositions from the fixed finite set AP.
We now proceed by formally defining a PTS:

I Definition 1. A Parametric Weighted Transition System (PTS)M is a triple

M = (M,→, `), where

M is a finite non-empty set of states.
→ ⊆M × E ×M is the transition relation.
` : M −→ 2AP is a labeling function mapping states in M to a set of atomic propositions

Whenever (m, e,m′) ∈ → we use the shorthand notation m
e−→m′. We will use M to

denote the set of all PTSs.
A run ρ in a PTS M = (M,−→, `) is a possibly infinite sequence ρ = m0e1m1e2m2...

where ∀i ∈ N,mi ∈ M and for i > 0, ei ∈ E we have mi−1
ei−→ mi. A run is maximal if

it is infinite or the last state in the run has no outgoing transitions. Runs(m) denotes all

SynCoP’15



80 Parametric Verification of Weighted Systems

maximal runs ρ starting from m and Runs(M) denote all maximal runs inM. ρ(i) denotes
the state of ρ with index i. Finally |ρ| denotes the length of a run ρ given by the number of
states. Runs over PTSs accumulate sums of linear expressions from the transitions in the
run. Given a position j ∈ N in a run ρ, let ρ(j) = mj . The accumulated weight, AWρ(j), of
ρ at position j is then defined by AWρ(j) =

∑j
i=1 ei if j > 0 and AWρ(j) = 0 if j = 0. We

denote by out(m) the set of all expression-successor pairs of outgoing transitions from m.
The notion of interpretations, presented next, was first introduced in [8]. We will briefly

explain the concept of interpretations; for further discussions, see [8]. Interpretations on the
set of parameters is a mapping of each parameter to a natural number. As in [8], we will first
define the simplest form of interpretations, namely the interpretation directly on parameters.

I Definition 2. i : P −→ N is a function mapping each parameter to a natural number.

We denote the set of all interpretations by I.
Interpretations are extended to the domain E , by letting for an arbitrary x ∈ N, i(x) = x

and by requiring that i preserves polynomial structures, i.e., for arbitrary p1, ..., pk ∈ P and
x1, ...xk+1 ∈ N:

i(x1p1 + ...+ xkpk + xk+1) = x1i(p1) + ...+ xki(pk) + xk+1

To reason about parametric properties of PTS, we define a parametric extension of
Weighted Computation Tree Logic (WTL) called Parametric Temporal Logic (PTL) and give
a satisfiability relation of formulae w.r.t. PTS. Interpretations are used to interpret both
formulae bounds and PTS edge expressions.

I Definition 3. The set of PTL state formulae are given by the abstract syntax:

Φ,Ψ ::= > | ⊥ | a | Φ ∧Ψ | Φ ∨Ψ | Eϕ | Aϕ

and the set of PTL path formulae are given by the abstract syntax:

ϕ ::= X≤eΦ | ΦU≤eΨ
where a ∈ AP and e ∈ E .

Whether a PTL formula is satisfied by a state m or a run ρ of some PTS M with an
interpretation i, is given by the satisfiability relation |=i. We denote this byM,m |=i Φ and
M, ρ |=i ϕ, respectively.

I Definition 4. Given a PTL formula, a PTS M = (M,−→, `), a state m ∈ M or a run
ρ ∈ Runs(M) and an interpretation i ∈ I, the satisfiability relation |=i is inductively defined
as:

M,m |=i > always
M,m |=i ⊥ never
M,m |=i a iff a ∈ `(m)
M,m |=i Φ ∧Ψ iff M,m |=i Φ andM,m |=i Ψ
M,m |=i Φ ∨Ψ iff M,m |=i Φ orM,m |=i Ψ
M,m |=i Eϕ iff there exists ρ ∈ Runs(m), such thatM, ρ |=i ϕ

M,m |=i Aϕ iff for all ρ ∈ Runs(m), it is the case thatM, ρ |=i ϕ

M, ρ |=i X≤eΦ iff |ρ| > 0, i (AWρ(1)) ≤ i(e) andM, ρ(1) |=i Φ
M, ρ |=i ΦU≤eΨ iff there exists j ∈ N s.t. M, ρ(j) |=i Ψ where i (AWρ(j)) ≤ i(e)

andM, ρ(j′) |=i Φ for all j ∈ N, j′ < j
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3 Analysis of Parametric Properties

In this section we present a global method for analysis of various parametric problems using
fixed point computations on Parametric Dependency Graphs (PDG). In this work we show
how to abstract model checking problems into finding minimal fixed point assignments on
PDGs specifically built for model checking. Refer to the technical report [10] for missing
proofs.

3.1 Fixed Point Computations on Parametric Dependency Graphs
As presented in [19], Symbolic Dependency Graphs (SDG) can be used as an abstraction of
problems with quantitative dependencies. We give a parametric extension to SDGs called
Parametric Dependency Graph (PDG). This section will introduce PDGs in a general and
formal fashion without context. Intuition and example of application is given in Section 3.2,
where we show how to encode the model checking problem.

As the name suggests, Dependency Graphs encode dependencies. These dependencies
may arise from the optimal substructure of a given problem. We encode this through the
notion of hyper-edges with multiple targets, one for each dependency. In the most general
sense the notion of a cover-edge states an upper bound constraint for the cost of some
sub-property to be true, where cost is encoded as expression weights on the hyper-edges.

I Definition 5. A Parametric Dependency Graph (PDG) is a tuple G = (N,H,C), where:
N is a finite set of nodes,
H ⊆ N × 2E×N is a finite set of hyper-edges.
C ⊆ N × E ×N is a finite set of cover-edges.

Whenever (n, T ) ∈ H we refer to n as the source node and T as the target-set. For each
n′ ∈ T we refer to n′ as a target node, or simply target. We will use n e

99Kn′ whenever
(n, e, n′) ∈ C.

The set of all PDGs will be denoted by G. We will now proceed to define assignments
which are used to encode the parametric cost for reaching a truth value in PDGs and note
that the assignments form a complete lattice.

I Definition 6. Given a PDG G = (N,H,C), an assignment

A : N −→ (I −→ N ∪ {∞})

on G is a mapping from each node n ∈ N to a function that, given a parameter interpretation,
yields a natural number or ∞.

We denote the set of all assignments A. The partial ordering over A is defined as follows:

I Definition 7. (A,v) is a poset such that for A1, A2 ∈ A:

A1 v A2 iff ∀n ∈ N ∀i ∈ I : A1(n)(i) ≥ A2(n)(i)

(A,v) is clearly a complete lattice with A0 and A∞ as top and bottom element, respectively.
Let A0 denote the assignment that maps to each node a function that assigns the value

0 regardless of parameter interpretations, i.e. ∀n ∈ N ∀i ∈ I : A0(n)(i) = 0. Similarly
A∞ denotes the assignment that maps to each node a function that assigns the value ∞
regardless of parameter interpretations.

Generally when computing assignments, we use ∞ to represent negative results (infinite
cost) and 0 (no cost) to represent positive results. As usual, when computing a minimal
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fixed point, we start from the bottom element, A∞ and similarly from the top element, A0,
for maximal fixed points.

We are now ready to define the global update function, which applied iteratively, updates
PDG node assignments. Note that this function only considers PDG where for any node
there is at most one outgoing cover-edge. This is not a limitation for this work as we only
consider problems where one cover-edge is sufficient and one can easily extend the function
to consider multiple cover-edges while preserving all results.

I Definition 8. Given a PDG G = (N,H,C), F : A −→ A is a function that, given an
assignment A on G, produces a new assignment on G for any n ∈ N, i ∈ I, as follows:

F (A)(n)(i) =



{
0 if A(n′)(i) ≤ i(e)
∞ otherwise

if n e
99Kn′

min
(n,T )∈H

{ max
(e,n′)∈T

{A(n′)(i) + i(e)}} otherwise

We use F i(A) to denote i repeated applications of the function F on A, i.e
F i(A) = F (F i−1(. . .F 1(A))) for i > 0 and F 0(A) = A.

To show that F has a minimal fixed point, we observe by case inspection of Definition 8
that F is monotone with respect to the complete lattice (A,v) as stated by the following
lemma.

I Lemma 9. The update function F is monotone on the complete lattice (A,v).

By Tarski’s Fixed Point Theorem, we can conclude that F has a minimal and maximal
fixed point. The assignment corresponding to these fixed points are denoted by Amin and
Amax. We now proceed to show that Amin corresponds to F i(A) for some i ∈ N, ensuring
that the minimal fixed point is computable in a finite number of steps. The key to this is
the notion of well-quasi orders [14].

In general, assignments are functions that, given a node and an interpretation, compute
a number. As our function is monotone w.r.t. v we know that the sequence of assignments
computed by our function, given an interpretation, is decreasing for any node. We can
therefore pick any interpretation and interpret an assignment A as a tuple (x0, x1, . . . , xk)
where k + 1 is the number of nodes in the PDG and xi ∈ N ∪ {∞} for all 0 ≤ i ≤ k. Each
iteration can then be interpreted as a function computing the next tuple in a (possibly)
infinite sequence of tuples. Let the set of all such tuples be denoted by AT and let ATi ∈ AT

denote the tuple computed by the i’th iteration and ≤ the component-wise ordering of tuples
in AT .

As ((N ∪ {∞}),≤) is a well-quasi order, we can use [17] (Theorem 2.3) saying that the
Cartesian product of a finite number of well-quasi-ordered spaces is well-quasi-ordered, to
state the following lemma.

I Lemma 10. (AT ,≤) is a well-quasi-order.

By the well quasi-ordering of (AT ,≤), we can now state that the fixed point computation
ends in a finite number of steps, when applied iteratively on the bottom element A∞.

I Theorem 11. There exists a natural number i such that Amin = F i(A∞).

A similar result for the maximal fixed point does not exist. Consider a PDG consisting
of only one node with a non-zero self loop. In this case, the next assignment is the old one
plus the loop expression weight, thereby never reaching a fixed point.

I Lemma 12. There exists a PDG such that Amax 6= F i(A0) for any i ∈ N.
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3.2 Parametric Dependency Graphs For Model Checking
The verification of PTL properties differs from the usual notion of model checking in that
it may not always be possible to give a Boolean answer. Instead we seek constraints on
parameter interpretations that makes a PTL formula satisfiable by a given PTS state.

The construction rules in Figure 2 define the PDG construction for model checking.
As PDGs in this context are used to encode constraints on satisfiability of PTL formulae,

they are constructed over a PTS modelM, a state m in the model and a PTL formula Φ.
Each node n ∈ N of a PDG G will be a pair 〈m,Φ〉, where Φ is interpreted as a formula
that may be satisfied in state m. A node n therefore represents M,m |=i Φ. We notice
that the problem may depend on sub-formulae of Φ and successors of m. We therefore use
hyper-edges to connect the root 〈m,Φ〉 to nodes representing these dependencies. For PTL
path formulae we encode the parametric upper bounds as cover-edges in the PDG.

It should be clear from the PDG construction that by applying the update function F

on an assignment to the PDG, any node that has an outgoing hyper-edge with an empty
target set, i.e. nodes representingM,m |=i > orM,m |=i a where a ∈ `(m), gets the value
min{max{∅}} = 0 thus representing satisfiability whereas nodes with no outgoing edges gets
the value min{∅} =∞ thus representing non-satisfiability. This shows the intuition behind
the semantics of the values, that 0 represents satisfiability and ∞ represents non-satisfiability.
In the context of model checking we compute a minimal fixed point, meaning that we start
from the bottom element, A∞.

We now state the correctness theorem of the developed model-checking algorithm. The
proof follows the correctness proof in [19], as models and formulae can be converted to
a non-parametric setting using an interpretation. We denote by B(M,m,Φ) the PDG
constructed by the rules in Figure 2 for the model checking problemM,m |=i Φ.

I Theorem 13 (Correctness of Model-Checking Algorithm). Let M = (M,→, `) be a PTS,
m ∈ M a state, i ∈ I an interpretation and let G = B(M,m,Φ) = (N,H,C) where
〈m,Φ〉 ∈ N . Then

M,m |=i Φ iff Amin(〈m,Φ〉)(i) = 0

The following example shows the construction of a PDG given a PTL formula and a PTS
model and the application of Theorem 13 to derive parameter constraints.

I Example 14. Given the PTSM (Figure 3) and the formula

Φex = EbU≤5(a ∧ EX≤7+qb),

we now apply the construction rules in Figure 2 to encode the queryM,m |=i Φex as the
PDG G in Figure 4.

By repeated application of the monotone function F , we arrive at a fixed point after 7
iterations. Using the correctness theorem (and a few trivial simplifications) we get the exact
constraints i(p) ≤ 7 + i(q) and i(q) ≤ 5 for i to be a valid interpretation. A quick look at
the PTS should convince the reader of the correctness of these constraints.

4 Prototype Tool (PVTool)

We now present a proof of concept tool (PVTool [11]), being entirely web-based, for verification
of parametric properties using the technique developed in this work. In Section 1, Figure 1
we presented an example of a parametric system which depicts a robotic vacuum cleaner.
We now want to verify whether or not the cleaner can move from the starting location to
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〈m,>〉

∅
(a) True.

〈m,⊥〉
(b) False.

〈m, a〉

∅
(c) a ∈ `(m).

〈m, a〉
(d) a 6∈ `(m).

〈m,Φ ∧Ψ〉

〈m,Φ〉 〈m,Ψ〉
(e) Conjunction.

〈m,Φ ∨Ψ〉

〈m,Φ〉 〈m,Ψ〉
(f) Disjunction.

〈m,QX≤eΦ〉

〈m,QXΦ〉

e

(g) Cover case for
the next operator.

〈m,QΦU≤eΨ〉

〈m,QΦUΨ〉

e

(h) Cover case for
the until operator.

〈m,EXΦ〉

· · · · · · · · ·〈m1,Φ〉 〈mk,Φ〉

e1 ek

(i) Existential next.

〈m,AXΦ〉

· · · · · · · · ·〈m1,Φ〉 〈mk,Φ〉

e1 ek

(j) Universal next.

〈m,EΦUΨ〉

〈m,Ψ〉

〈m,Φ〉

〈m1, EΦUΨ〉

〈mk, EΦUΨ〉

··
··
··
··
··
··

e1

ek

(k) Existential until.

〈m,AΦUΨ〉

〈m,Ψ〉

〈m,Φ〉

〈m1, AΦUΨ〉

〈mk, AΦUΨ〉
··
··
··
··
··
··e1

ek

(l) Universal until.

Figure 2 Let {(e1, m1), (e2, m2) . . . (ek, mk)} ∈ out(m) and Q ∈ {A, E}.

one of the next rooms within 10 minutes units and clean it within 20 minutes. This question
can be stated as follows:

Mex, charger1 |=i EX≤10[A dirty U≤20 clean]

In the online PVTool we can now construct a model of the vacuum cleaner problem and
state the PTL query and in return get the parameter constraints for the property to be
satisfied in the model as depicted in Figure 5. We will briefly explain the model syntax used
in the tool. The line “charger1 := {clean, ready} <p>room1 + <2>room2;” declares a
state with the symbolic name charger1 and two atomic propositions: clean and ready. The
state has two outgoing transitions; one going to the state room1 with the weight p and one
going to the state room2 with the weight 2. Subsequent lines declare states in a similar
manner. The formulae syntax is almost identical to the syntax used in the paper, with
the exceptions that all sub-formulae must be enclosed in square brackets, bounds on path
formulae must be enclosed on curly brackets and we do not write the ≤ sign. A thorough
explanation of the syntax can be found on PVTool’s web page.

To examine performance of the implementation we experiment with models that have
a variable number of states. All experiments use models with a structure similar to the
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m

{b}

m′

{a}

q

p

3

Figure 3 PTSM. `(m) = b, `(m′) = a.

〈m,EbU≤5[a ∧ EX≤7+qb]〉1

〈m,EbU [a ∧ EX≤7+qb]〉2

〈m′, EbU [a ∧ EX≤7+qb]〉 3〈m, a ∧ EX≤7+qb〉10

〈m,EX≤7+qb〉12〈m, a〉11 〈m′, a ∧ EX≤7+qb〉4

〈m,EXb〉13 〈m′, EX≤7+qb〉5 〈m′, a〉 6

∅

〈m′, EXb〉7

〈m, b〉 8

∅

〈m′, b〉9

5

q

3

p

7 + q

q
7 + q

p

Figure 4 PDG G.

model depicted in Figure 1. We simply change the amount of rooms and intermediate “clean”
states. For all experiments we use the PTL query

Mex, charger1 |=i E [A dirty U≤s clean] U≤r done

Refer to Figure 6 to see the performance results. Memory and time consumption increase
exponentially in the number of PTS states, reflecting the exponential increase in number of
possible paths when scaling the PTS.

5 Conclusion and Future Work

We have defined a variant of Weighted CTL which uses parametric linear expressions as
upper bounds on transition weights to allow reasoning about unknown behavior. We call this
logic Parametric Temporal Logic (PTL). The semantics of PTL is defined for Parametric
Weighted Transition Systems (PTS) that allow parametric linear expressions as weights on
transitions.

For encoding of parametric propositional dependencies we present Parametric Dependency
Graphs (PDGs). We associate to each node in a PDG a parametric cost and demonstrate
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Figure 5 Screen shot of verification of PTL property on the model in Figure 1 using PVTool.

PTS sts PDG nds Iter. Mem (kB) Time (s)
7 41 9 1,004 0.0015
13 77 13 1,504 0.017
19 113 17 3,808 0.19
25 149 21 14,264 2.5
31 185 25 60,548 35
34 221 29 263,832 781

Figure 6 Experiments on a 4 core Intel Xeon E3-1245 v2 3.4 GHz processor with 16 GB RAM.

that a maximal and minimal fixed point on these costs exists. We also show that the minimal
fixed point can always be computed in a finite number of steps. Furthermore we show that
deciding model checking PTS with PTL properties corresponds to finding the minimal fixed
point in a PDG abstraction of model checking problems.

For verification of PTL properties on PTS we have implemented a model checking tool,
PVTool ([11]) - available online, in which it is possible to define a PTS, give a PTL formula
and get as output the constraints on parameters for a state in the PTS to satisfy the formula.
In this context, preliminary experiments were made using an easily scalable PTS model to
assess memory and time consumption which scaled exponentially in the size of the PTS, as
expected.

As extension on this work, we propose to further look into other methods for updates on
assignments to PDG nodes. In [19], the authors present a local fixed point algorithm for
dependency graphs. If something similar can be done in the parametric setting we expect
significant performance improvements. It would also be interesting to investigate whether a
complete characterisation of PDGs for which the maximal fixed point can be computed in
a finite number of steps, can be made. Finally one could look for new or existing problem



Peter Christoffersen et. al. 87

domains where our method can be applied. A first step in this direction was done in the
draft [10], for a variant of bisimilarity checking.
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A Fixed point computation results

In this appendix we show the fixed point computation from Example 14 in Table 1. For
readability we have taken the liberty of simplifying the assignments based on properties of
expressions and min /max functions valid under any interpretation of parameters. If any
assignment to a node does not change (modulus our simplification rules) during the entire
computation, we have omitted the node from the table. Let A(n) be the assignment to some
node n and e ∈ E an expression.

max{∅} = min{0, . . .} = 0
min{∅} = max{∞, . . .} =∞+A(n) = e+∞ =∞
0 +A(n) = A(n)
e+ 0 = e

Min/max of a single element is the element itself

Finally, let F i(n) be a shorthand for F i(A∞)(n). Using the correctness theorem we
can now derive constraints that must be satisfied by an interpretation i for M,m |=i

EbU≤5[a ∧ EX≤7+qb] to be true. From our simplified assignments it is easy to see that the
constraints for F 7(1)(i) = F 8(1)(i) = 0 given some interpretation i must be i(p) ≤ 7 + i(q)
and i(q) ≤ 5.
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Abstract
The tuning of a PI controller is usually done through simulation, except for few classes of problems,
e.g., linear systems. With a new approach for validated integration allowing us to simulate
dynamical systems with uncertain parameters, we are able to design guaranteed PI controllers.
In practical, we propose a new method to identify the parameters of a PI controller for non-
linear plants with bounded uncertain parameters using tools from interval analysis and validated
simulation. This work relies on interval computation and guaranteed numerical integration of
ordinary differential equations based on Runge-Kutta methods. Our method is applied to the
well-known cruise-control problem, under a simplified linear version and with the aerodynamic
force taken into account leading to a non-linear formulation.
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1 Introduction

Recently [2], we developed a new tool for validated simulation [17, 6, 14, 15] of Ordinary
Differential Equations (ODE). This tool, by using affine arithmetic [9], is able to handle
ODEs with uncertain (and bounded) parameters. This new capability allows us to simu-
late a dynamical system controlled by a proportional integral (PI), whose parameters Kp

(proportional gain), Ki (integral gain) are not well-known. The direct advantage is to use
the simulation process to validate or reject some parameter values. This approach is, in
philosophy, similar to Ziegler–Nichols approach [20]. Another method, the model of Broida
[7], is also based on identification of parameters but works only for a linear problem in
open loop. All the existing methods are empirical and do not provide any guarantee on the
behavior of the system, and cannot consider uncertainties on the physical part. Interval
analysis is often used in applications like robust control [13]. Indeed, the methods provided
by the interval formalization are able to consider any kind of bounded uncertainties, manage
with non-linear models and offer a guarantee on the numerical computation.
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Until now, to the best of our knowledge, interval analysis for robust control only considers
linear systems [19, 4]. Indeed for this class of problems, robust control problem is cast into a
problem of stability and performance based on the characteristic polynomial associated to
the transfer function of the closed-loop system. Unfortunately, for non-linear closed-loop
systems this approach is no longer possible.

The paper is organized as followed. Main interval analysis tools are recalled in Section 2.
The tuning algorithm is presented in Section 3 including also a remainder of the PI controller
theory. Some experimental results are presented in Section 4 before concluding in Section 5.

2 Interval analysis tools

We recall in this section the main tools coming from interval analysis and particularly affine
arithmetic to tighten the issue of interval arithmetic used in our work.

2.1 Interval arithmetic
The simplest and most common way to represent and manipulate sets of values is interval
arithmetic [16]. An interval [xi] = [xi, xi] defines the set of reals xi such that xi ≤ xi ≤ xi. IR
denotes the set of all intervals. The size or the width of [xi] is denoted by w([xi]) = xi − xi.

Interval arithmetic [16] extends to IR elementary functions over R. For instance, the
interval sum (i.e., [x1] + [x2] = [x1 + x2, x1 + x2]) encloses the image of the sum function
over its arguments, and this enclosing property basically defines what is called an interval
extension or an inclusion function.

I Definition 1 (Extension of a function to IR). Consider a function f : Rn → R, then
[f ] :IRn → IR is said to be an extension of f to intervals if

∀[x] ∈ IRn, [f ]([x]) ⊇ {f(x), x ∈ [x]} .

2.2 Affine arithmetic
Interval arithmetic provides a good solution to manage with uncertainties. Nevertheless, this
representation usually produces too much over-approximated results in particular because of
the dependency problem. An iterative scheme, such as a mathematical series or an integration
scheme, leads typically to a dependency problem: each step depends on the previous ones.

I Example 2. Consider the ordinary differential equation ẋ(t) = −x solved with the Euler’s
method with an initial value ranging in the interval [0, 1] and with a step-size of h = 0.5.
For one step of integration, we have to compute with interval arithmetic the expression
e = x+h× (−x) which produces as a result the interval [−0.5, 1]. Rewriting the expression e
such that e′ = x(1−h), we obtain the interval [0, 0.5] which is the exact result. Unfortunately,
we cannot in general rewrite expressions with only one occurrence of each variable. More
generally, it can be shown that for most integration schemes the width of the result can only
grow if we interpret sets of values as intervals [18]. �

To avoid this problem we use an improvement over interval arithmetic named affine
arithmetic [9] which can track linear correlation between program variables. A set of values
is represented by an affine form x̂, i.e., a formal expression of the form x̂ = α0 +

∑n
i=1 αiεi

where the coefficients αi are real numbers, α0 being called the center of the affine form,
αi, i > 1, are called partial deviations and the εi, called noise symbols, are independent
components of the total uncertainty on x̂ with unknown values ranging over the interval



J. Alexandre dit Sandretto, A. Chapoutot, and O. Mullier 93

[−1, 1]. Obviously, an interval a = [a1, a2] can be seen as the affine form x̂ = α0 + α1ε with
α0 = (a1 + a2)/2 and α1 = (a2 − a1)/2.

Affine arithmetic extends usual operations on real numbers in the expected way. For
instance, the affine combination of two affine forms x̂ = α0+

∑n
i=1 αiεi and ŷ = β0+

∑n
i=1 βiεi

with a, b, c ∈ R, is an affine form given by

ax̂± bŷ + c = (aα0 ± bβ0 + c) +
n∑
i=1

(aαi ± bβi)εi . (1)

However, unlike the addition, non linear operations create new noise symbols. Multiplication
for example can be defined by

x̂× ŷ = α0α1 +
n∑
i=1

(αiβ0 +α0βi)εi+νεn+1 with ν =
(

n∑
i=1
|αi|

)
×

(
n∑
i=1
|βi|

)
. (2)

Operations as sin or exp are translated into affine forms with Chebyshev polynomials [9].
For practical details on soundness w.r.t. floating-point computations and the performance of
this arithmetic w.r.t. the number of noise symbols see [5].

I Example 3. Consider again e = x+h×(−x) with h = 0.5 and x = [0, 1] which is associated
to the affine form x̂ = 0.5 + 0.5ε1. Evaluating e with affine arithmetic without rewriting the
expression, we obtain [0, 0.5] as a result. �

Note that the set-based evaluation of an expression only consists in substituting all the
mathematical operators, like + or sin, by their counterpart in affine arithmetic. We denote
by Aff(e) the evaluation of the expression e using affine arithmetic.

2.3 Guaranteed numerical integration with Runge-Kutta methods
In this section, we recall our previous work [5] on which the extension in [2] is based on.

I Definition 4 (Initial Value Problem (IVP)). Consider an Ordinary Differential Equation
(ODE) with a given initial condition

ẏ(t) = f (t, y(t), d) with y(0) ∈ Y0, (3)

with f : R× Rn × Rm → Rn assumed to be continuous in t and d and globally Lipschitz in
y. We assume that parameters d are constant and bounded. An IVP consists in finding a
function y(t) described by the ODE for all d and satisfying the initial condition.

A numerical integration method computes a sequence of approximations (tn, yn) of the
solution y(t; y0) of the IVP defined in Equation (3) such that yn ≈ y(tn; yn−1).

The simplest method is Euler’s method in which ti+1 = ti + h for some step-size h
and yi+1 = yi + h × f(ti, yi, d); so the derivative of y at time ti, f(ti, yi, d), is used as an
approximation of the derivative on the whole time interval to perform a linear interpolation.
This method is very simple and fast, but requires small step-sizes. More advanced methods
coming from the Runge-Kutta family use a few intermediate computations to improve the
approximation of the derivative. The general form of an explicit s-stage Runge-Kutta formula,
that is using s evaluations of f , is

yn+1 = yn + h

s∑
i=1

biki , (4a)

k1 = f
(
tn, yn, d

)
, ki = f

(
tn + cih, yn + h

i−1∑
j=1

aijkj , d
)
, i = 2, 3, . . . , s . (4b)
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The coefficients ci, aij and bi fully characterize the method. To make Runge-Kutta validated,
the challenging question is how to compute a bound on the distance between the true solution
and the numerical solution, defined by y(tn; yn−1)− yn. This distance is associated to the
local truncation error (LTE) of the numerical method.

To bound the LTE, we rely on order condition [12] respected by all Runge-Kutta methods.
This condition states that a method of this family is of order p iff the p+ 1 first coefficients of
the Taylor expansion of the solution and the Taylor expansion of the numerical methods are
equal. In consequence, LTE is proportional to the Lagrange remainders of Taylor expansions.
In previous work [5], LTE is defined by

y(tn; yn−1)− yn = hp+1

(p+ 1)!

(
f (p) (ξ, y(ξ; yn−1, d))− dp+1φ

dtp+1 (η)
)

ξ ∈]tk, tk+1[ and η ∈]tn, tn+1[ . (5)

The function f (n) stands for the n-th derivative of function f w.r.t. time t that is dnf
dtn and

h = tn+1−tn is the step-size. The function φ : R→ Rn is defined by φ(t) = yn+h
∑s
i=1 biki(t)

where ki(t) are defined as Equation (4b).
The challenge to make Runge-Kutta integration schemes safe w.r.t. the true solution of

IVP is then to compute a bound of the result of Equation (5). In other words we have to
bound the value of f (p) (ξ, y(ξ; yn−1), d) and the value of d

p+1φ
dtp+1 (η). The latter expression is

straightforward to bound because the function φ only depends on the value of the step-size
h, and so does its (p+ 1)-th derivative. The bound is then obtain using the affine arithmetic.

However, the expression f (p) (ξ, y(ξ; yn−1), d) is not so easy to bound as it requires
to evaluate f for a particular value of the IVP solution y(ξ; yn−1) at an unknown time
ξ ∈]tn, tn+1[. The solution used is the same as the one found in [17, 6] and it requires to
bound the solution of IVP on the interval [tn, tn+1]. This bound is usually computed using
the Banach’s fixpoint theorem applied with the Picard-Lindelöf operator, see [17]. This
operator is used to compute an enclosure of the solution [ỹ] of IVP over a time interval
[tn, tn+1], that is for all t ∈ [tn, tn+1], y(t; yn−1) ∈ [ỹ]. We can hence bound f (p) substituting
y(ξ; yn−1) by [ỹ].

The main drawback of the previous approach is that implicit Runge-Kutta methods cannot
be validated because φ is defined implicitly as a function of ki. Implicit Runge-Kutta methods
are important to deal with stiff ordinary differential equations and they have very good
stability properties that make them suitable for validated numerical integration. Moreover,
as function φ is defined over f then dp+1φ

dtp+1 involves time derivatives of f . Hence computing
separately dp+1φ

dtp+1 and f (p), without taking into account shared intermediate computation,
increases the simulation time. In [2], we define a new formula for LTE for any Runge-Kutta
methods based on Fréchet derivatives, see [8] for more details. The new result in [2] is the
definition of new validated numerical integration methods based on implicit Runge-Kutta
methods.

I Example 5. Here we present an example coming from the System 61 in the Vericomp
database [3], which is defined by:

 ẋ0
ẋ1
ẋ2

 =

 1
x2

1
6x

3
1 − x1 + 2 sin (d · x0)

 (6)

with d = [2.78, 2.79] and the initial condition is x0(0) = x1(0) = x2(0) = 0. Using
our guaranteed integration method to compute the value of x(10), we obtain x(10) =
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Figure 1 Complete simulation of System 61, see Eq. (6), in the Vericomp database over the time
interval [0, 10].

([10, 10], [−1.6338, 1.69346], [−1.55541, 1.4243])T , with 4 rejected Picard-Lindelöf and 196
accepted ones. The minimum step-size is hmin = 0.00636859 and the maximum step-size
hmax = 0.070553. Finally the maximum truncature error of the method is 8.9278 × 10−8.
Figure 1 presents the complete simulation of Equation (6). �

2.4 Paving
We call paving of a set S ⊂ Rn the list of non-overlapping1 boxes [xi] with a non null width,
such that each boxes [xi] ⊂ S [13]. This tool can be used to describe a set, by a list of inner
boxes ([xi] ⊂ S), the outer boxes ([xi] 6⊂ S) and the frontier, i.e. a list of boxes for which we
cannot conclude of the membership to S in an acceptable computation time. For example, if
the set S describes a ring such as S = {(x, y) | x2 + y2 ∈ [1, 2]}, the paving of S in the box
[−2, 2]× [−2, 2] gives the Figure 2.

3 Validated tuning method for PI controllers

3.1 PID controllers
PID controllers are widely used in industrial setting for integrating processes (see, e.g., this
survey [10]). Therefore many techniques for their design and tuning have been proposed. In
the next section we deal with the design of guaranteed PID controllers.

I Definition 6. A proportional-integral-derivative controller (PID), see [1] for more details,
is represented by a tuple of tuning parameters (Kp,Ki,Kd) ∈ R3 designed to compute an
error value

e(t) = r(t)− y(t) (7)

with r(t) a desired setpoint and y(t) a measured process. The general mathematical descrip-
tion of PID is

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

d

dt
e(t) (8)

1 This is true in Rn but no longer stands with a floating point representation due to rounding preserving
over approximations.
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Figure 2 Paving of x2 + y2 ∈ [1, 2], in blue boxes included in S and in red boxes which do not
intersect S.

where τ is the integration variable, u(t) is the input signal of the plant model, the controller
parameters are the proportional gain (Kp), the integral gain (Ki), and the derivative gain
(Kd).

The choice of the tuple (Kp,Ki,Kd) is directed by the desire of obtaining a trade-off
between fast response (convergence to the desired value) and good stability (no unbounded
oscillation) of the control system.

3.2 Contribution
For our methods we restrict ourselves to the case where the derivative of the error is not
taken into account. In this case we want to compute the set of validated PI parameters
(Kp,Ki) ∈ [P ]× [I] for a given control system. A dynamical system controlled by a PI can
be written as

ẏ(t) = f(y,Kp,Ki, r), (9)

with r the constant setpoint. Our method then consists on the computation of a paving of
the set of validated PI parameters. For that, we simulate the dynamical system controlled
by a PI whose parameters are in an interval. A PI controller defined by (Kp,Ki) is validated
if it satisfies{

y(tend) ∈ [r − α%, r + α%], 100 > α > 0 (the desired setpoint is reached);
ẏ(tend) ∈ [−ε, ε], ε > 0 (the system reached the stability zone).

(10)

Algorithm 1 describes the computation of the paving of validated PI controllers. It
produces two stacks of guaranteed boxes, the one of the accepted parameters and the one
of the rejected parameters using a branch algorithm. For a given box [x] of PI controller
parameters, if the constraints defined in Equation (10) are satisfied then [x] is put in the
stack of guaranteed boxes, otherwise if the diameter of [x] is greater than a given tolerance,
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Algorithm 1 Compute the paving of PI parameters.
Require: Stack = ∅, Stackaccepted = ∅, Stackrejected = ∅, [x]0 = ([P ], [I])
Push [x]0 in Stack
while Stack 6= ∅ do
Pop a [x] from Stack

Compute y(tend), ẏ(tend) using validated simulation of controlled plant with [x]
if (y(tend) ∈ [r − α%, r + α%]) && (ẏ(tend) ∈ [−ε, ε]) then
Push [x] in Stackaccepted

else if (width([x]) > tol) && (y(tend) 3 setpoint) then
([x]left, [x]right) = Bisect([x])
Push [x]left in Stack
Push [x]right in Stack

else if width([x]) > tol then
Push [x] in Stackrejected

else
[x] forgotten (cannot conclude)

end if
end while

[x] is split into two boxes that are to be treated in the same way [x] was. If [x] does not meet
the tolerance, it is rejected.

4 Experiments

In this section, we apply our PI tuning tool on the classic problem of cruise control. Our
algorithm is developed with the IBEX library2. We developed a validated IVP solver inside
this library, which will be released soon. This solver is the main brick of a quite classical
branch and prune algorithm, already available in the library.

4.1 Modeling of the cruise-controller

To demonstrate the computation of PI controller parameters, our method is applied to the
problem of automatic cruise control of a vehicle. The goal of this control is to maintain a
constant vehicle speed despite external disturbances, such as change in wind or road grade.
Action on the throttle has to be made if the vehicle speed is not the desired one.

4.1.1 In simplified form

The first considered example is the modeling of the cruise-controller with a simplified form
of the vehicle dynamics. The vehicle to be controlled has a mass m, a velocity v, and is
acted by a control force u representing the force generated at the road/tire interface. It is
assumed that control on u can be done directly, that neglects the dynamics of the powertrain,
tires, etc. In this simplified form is also considered that the resisting forces bv of the rolling
resistance and wind drag vary linearly with v and act in the opposite direction of the vehicle’s

2 IBEX is a C++ library for constraint processing based on interval arithmetic: http://www.ibex-lib.org/.
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motion. The vehicle system is described by mv̇ + bv = u which can be rewritten as the ODE

v̇ = (u− bv)
m

The setpoint vset on the speed is defined and corresponds to the particular velocity we
want for the vehicle. So the error e(t) = vset − v and the force needed to make the vehicle go
with a velocity in vset is given by the PI

u = Kp(vset − v) +Ki

∫
(vset − v)ds,

and then the controlled ODE is

v̇ =
(Kp(vset − v) +Ki

∫
(vset − v)dt− bv)

m
. (11)

Let interr =
∫

(vset − v)dt then ODE in Equation (11) can be written as the system
v̇ = (Kp(vset − v) +Kiinterr − bv)

m
dinterr
dt

= vset − v

4.1.2 With aerodynamic force
The case where aerodynamic force is not neglected is also considered here. Air particles flow
over the hood of the vehicle causing the aerodynamic drag which can be modeled by

Fdrag = (1/2)ρCdAv2

where ρ is the density of air, CdA is the coefficient of drag for the vehicle times the reference
area, and v is the velocity of the vehicle. Here the density of the air is considered equal to
1.2041 kg/m3 obtained with a temperature of 20◦C and an atmospheric pressure of 101kPa.
The consideration of aerodynamic drag leads to a non-linear differential system

v̇ = (kp(vset − v) + kiinterr − bv − (1/2)ρCdAv2)
m

dinterr
dt

= vset − v

4.2 Results of paving of PI parameters
Results on the application of our method on the previously described problem are now
discussed. The values taken into account for the problem are m ∈ [990, 1010], vset = 10,
v0 = 0,b = 50, tend = 10, α = 2% and ε = 0.2, (1/2)ρCdA = 0.4, PI0 = ([1, 4000], [1, 120]),
tol = 1.

Simulation with interval parameters.

Firstly, to validate our simulation tool, we integrate the dynamical system with the simplified
form of the vehicle dynamics with interval parameters for the PI controller. We start a
simulation with Kp = [900, 950] and Ki = [35, 45], from t = 0 to t = 15. The result is shown
in Figure 3. On this figure, we can see the boxes computed by each steps of integration, and
that a part of them cross the limit at t = 10. It means that some of the parameters are not
satisfying for the purpose. During the paving computation, the interval parameters would be
split and two new simulations would start.
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Figure 3 Simulation of the cruise-controller with linear dynamics and interval PI parameters.

Figure 4 Paving of PI parameters for the linear (on the left) and non-linear (on the right)
cruise-controller – in blue accepted and in red rejected.

Complete paving.

Figure 4 presents the result of paving for the guaranteed PI parameters for the linear and
non linear modeling of the automatic cruise controller.

4.3 Response of controller along time
To verify our results, we plot the response of the cruise controller along time, that is to say
the validated simulation of speed of the vehicle from 0 to 40 seconds. We recall that the
setpoint is 10km/h and that we would like to attain this value at 10s. Figure 5 gathers the
responses for the linear model of the cruise controller, with a validated set of parameters (a),
a rejected set of parameters (b) and a set of parameters found in the literature [11] (c). The
results of our tool clearly match the constraints for setpoint and stability. The latter set of
parameters, if it is correct for an infinite time, does not lead to the setpoint at an acceptable
response time.

Figure 6 gathers the responses for the non linear model of the cruise controller (considering
the aerodynamic force), with a validated set of parameters (a), a rejected set of parameters (b)
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(a) (b)

(c)

Figure 5 Response of controller for linear plant with parameters validated (Kp = 1400 and
Ki = 35, in (a)), rejected (Kp = 900 and Ki = 40, in (b)) and from literature [11] (Kp = 600 and
Ki = 1, in (c)) – in blue the guaranteed response, in red the supervision of the objective, and in
black the deadline.

and a set of parameters found in the literature [11] (c). This set coming from an optimization
process of a PID which leads to Kd = 0. The results of our tool clearly match the constraints
for setpoint and stability. For the set of parameters coming from literature (c), the response
is correct in term of objective, but this set of parameters leads to a large overshoot, and a
strong instability. We can conclude from these results and the current literature that our
tool can provide guarantees on sets of parameter for a controller of a non-linear system.

5 Conclusion

We presented a new method for the tuning of PI controllers. Our approach is based on the
guaranteed simulation of controlled systems and on the paving of the Kp and Ki parameter
space. We can then guarantee a set of parameters for which the response validates two
conditions: reach the setpoint and reach the stability zone after a given time lapse. Our tool
used to simulate the plant allowing us to perform non-linear integration, we applied it to
the non-linear cruise controller. Our results are compared with some values found in the
literature and lead to think that our approach is promising. This work may be improved in
many ways. We can extend the kind of properties a PI controller must satisfy as a maximum
overshoot. Moreover, we will consider PID controllers in the future.
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(a) (b)

(c)

Figure 6 Response of controller for non-linear plant with parameters validated (Kp = 1400 and
Ki = 35, in (a)), rejected (Kp = 900 and Ki = 40, in (b)) and from literature [11] ( Kp = 232.58
and Ki = 1000 in (c)) – in blue the guaranteed response, in red the supervision of the objective, and
in black the deadline.
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Abstract
Parametric timed automata (PTA) [1] allow the specification and verification of timed systems

incompletely specified, or featuring timing constants that may change either in the design phase,
or at runtime.

The behavioral cartography of PTA (BC) [4] relies on the idea of covering a bounded para-
meter domain with tiles, i.e., parts of the parameter domain in which the discrete behavior is
uniform. This is achieved by iterating the inverse method (IM) [2] on the (yet uncovered) integer
parameter valuations (“points”) of the bounded parametric domain: given a reference point, IM
generalizes the behavior corresponding to this point by synthesizing a constraint containing other
(integer and real-valued) points with the same discrete behavior. Then, given a linear time prop-
erty, it is easy to partition the parametric domain into a subset of “good” tiles and a subset of
“bad” ones (which correspond to good and bad behaviors).

Useful applications of BC include the optimization of timing constants, and the measure of
the system robustness (values around the reference parameters) w.r.t. the untimed language. In
practice, a parameter domain with a large number of integer points will require a long time to
compute BC. To alleviate that, our goal is to take advantage of powerful distributed architectures.

Distributing BC is theoretically easy, since it is trivial that two executions of IM from two
different points can be performed on two different nodes. However, distributing it efficiently is
challenging. For example, calling two executions of IM from two contiguous integer points has a
large probability to yield the same tile in both cases, resulting in a loss of time for one of the two
nodes. Thus, the critical question is how to distribute efficiently the point on which to call IM.

In a previous work [3], a master-worker scheme is proposed, where the master assigns points
to each worker process, which is called a point-based distribution scheme. In this point-based
distribution scheme, choosing the point distribution approach on the master side is the key point
that will decide the algorithm performance. Since the master has no ability to foresee the tiles
on cartography (the “shape” of a cartography is unknown in general), two or more processes can
receive close points, that then yield the same result, leading to a loss of efficiency. Besides that,
two or more tiles can overlap each other; hence, the question is whether we stop an going process
starting from a point that is already covered by another tile. Finally, a very large parameter
domain (with many integer points) can cause a bottleneck phenomenon on the master side since
many worker processes ask for point, while the master is busy to find uncovered points.

From the previous problems, we proposed an enhanced master-worker distributed algorithm,
based on a domain decomposition scheme. The main idea is that the master splits the parameter
domain into subdomains, and assigns them to the workers. Then workers will work on their own
set of points, hence reducing the probability of choosing close points since the workers work as far
as possible from each other. Then, when a worker finishes the coverage of its subdomain, it asks
the master for a new subdomain: the master splits a slow worker’s subdomain into two parts,
and sends it to the fast worker. Furthermore, we used a heuristic approach to decide whether to
stop a process working on a point that has been covered by a tile of another worker. In all our
experiments, our enhanced distributed algorithm outperforms previous algorithms.
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Abstract
Parametric systems arise in many application domains, from real-time systems to software to
cyber-physical systems. Parameters are fundamental to model unknown quantities at design
time and allow a designer to explore different instantiation of the system (i.e. every parameter
valuation induces a different system), during the early development phases.

A key challenge is to automatically synthesize all the parameter valuations for which the
system satisfies some properties. In this talk we focus on the parameter synthesis problem for
infinite-state transition systems and invariant properties. We describe the synthesis algorithm
ParamIC3 [1], which is based on IC3, one of the major recent breakthroughs in SAT-based model
checking, and lately extended to the SMT case.

The algorithm follows a general approach that first builds the set of “bad” parameter valu-
ations and then obtain the set of “good” valuations by complement. The approach enumerates
the counterexamples that violate the property, extracting from each counterexample a region of
bad parameter valuations, existentially quantifying the state variables.

ParamIC3 follows the same principles, but it overcomes some limitations of the previous
approach by exploiting the IC3 features. First, IC3 may find a set of counterexamples so, . . . , sk,
where each state in si is guaranteed to reach some of the bad states in sk in k − i steps; this
is exploited to apply the expensive quantifier elimination on shortest, and thus more amenable,
counterexamples. Second, the internal structure of IC3 allows our extension to be integrated in a
fully incremental fashion, never restarting the search from scratch to find a new counterexample.

While various approaches already solve the parameter synthesis problem for several kind
of systems, like infinite-state transition systems, timed and hybrid automata, the advantages
ParamIC3 are that: it synthesizes an optimal region of parameters, it avoids computing the
whole set of the reachable states, it is incremental and applies quantifier elimination only to
small formulas.

We present the results of an experimental evaluation performed on benchmarks from the timed
and hybrid systems domain. We compared the approach with similar SMT-based techniques and
with techniques based on the computation of the reachable states. The results show the potential
of our approach.
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