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Preface

Welcome to the Sixth Workshop on Computational Models of Narrative. This year finds us
co-located with the Third Annual Conference of Advanced in Cognitive Systems (CogSys
2015). This association made it appropriate to have a special focus on the intersection of
cognitive systems and narrative. This intersection is rich and broad, covering the gamut from
psychological and cognitive impact of narratives to our ability to model narrative responses
computationally. Papers contributed to this volume tackle questions of narrative analysis
in the domains of medical information and journalism, and of various story generation
systems and frameworks. They look to extend prior paradigms, in one case connecting event
segmentation theory to the computational modeling of narrative, and in another, proposing
a model for synthesizing temporal, ontological, and psychological aspects of story. And they
report on experiments such as the application of syntactic and semantic feature detection to
the exploration of higher-level storytelling tropes such as romantic love and animacy.

Interest in and submissions to the CMN workshop remain robust. This year we received
22 submissions; of these 6 were declined. In keeping with our goal of inclusiveness, 16 papers
were accepted, some on condition of revision. None of these revised papers were declined
after revision, although one paper was withdrawn. Including one additional keynote abstract
brings the total number of published works in this proceedings to 16. Over seven years,
six meetings, and five volumes of proceedings, the CMN workshop series has published 118
works. This sustained pace demonstrates the consistent relevance of the workshop series and
its contributions to the field.

Last year, in an effort to ensure the longevity and continued vitality of the workshop
series, a transition period began from Mark Finlayson being the primary steward to a more
formal organizational structure. A steering committee is being established comprised of
former organizers and co-organizers of the workshop. We began a ’staged’ organization
arrangement, where those who volunteer to be lead organizer of the workshop in year X are
co-organizing the workshop in year X-1. This arrangement led to this year’s workshop being
organized by the committee of Mark Finlayson, Ben Miller, Remi Ronfard, and Antonio
Lieto. This structure has helped the new organizers learn the ropes and lent continuity to
the series.

We are also please to announce the winner of our best paper award. The award and
a $250 check goes to Mr. Folgert Karsdrop for his paper “Animacy Detection in Stories”,
co-authored with Marten van der Meulen, Theo Meder, and Antal van den Bosch.

Many thanks to our generous sponsors without whom this year’s workshop would not have
been possible: The Georgia Institute of Technology has graciously provided the workshop
venue, and supplemental funding was provided by the Department of English and the Creative
Media Industries Institute at Georgia State University.

Mark Finlayson & Ben Miller
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Tell Me a Story: Toward More Expressive and
Coherent Computational Narratives
Janet H. Murray

Georgia Tech
Atlanta, GA, U.S.A
jmurray@gatech.edu

Abstract
Since narrative is a foundational framework for the on-going co-evolution of human cognition
and culture, the advent of computation as a new medium for representing narratives offers the
promise of ratcheting up human understanding and expressive power, just as previous media of
representation like language and writing have done. But digital representation often produces
artifacts that are story-like but not really stories, leaving open the question of how we can make
use of computational models of narrative to expand our capacity for shared meaning-making. I
will address this problem by looking at the complementary strengths and weaknesses of simu-
lation making, game design, and storytelling as cultural abstraction systems, and suggest some
directions for incorporating richer story structures into research on computational narratives.
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From Episodic Memory to Narrative in a
Cognitive Architecture
Tory S. Anderson

Georgia Institute of Technology
North Avenue, Atlanta, GA 30332, USA
torys.anderson@gatech.edu

Abstract
Human experiences are stored in episodic memory and are the basis for developing semantic
narrative structures and many of the narratives we continually compose. Episodic memory has
only recently been recognized as a necessary module in general cognitive architectures and little
work has been done to examine how the data stored by these modules may be formulated as
narrative structures. This paper regards episodic memory as fundamental to narrative intelligence
and considers the gap between simple episodic memory representations and narrative structures,
and proposes an approach to generating basic narratives from episodic sequences. An approach
is outlined considering the Soar general cognitive architecture and Zacks’ Event Segmentation
Theory.

1998 ACM Subject Classification I.2.0 Cognitive Simulation, J.4 Psychology, J.5 Literature

Keywords and phrases Narrative, Episodic Memory, Cognitive Architecture, Event Segmenta-
tion

Digital Object Identifier 10.4230/OASIcs.CMN.2015.2

1 Introduction

Since Tulving’s pioneering work on episodic memory [33] it has become apparent that any
general model of human cognition must account for memory for temporally and causally
situated data just as well as memory for the general facts of semantic memory. It has been
observed that we perform extensive narrative sense-making over the data we experience
in an effort to gather meaning from our raw experiences [9]; this activity is central to our
lives. This ability to cast our experience in narrative terms has been referred to as narrative
intelligence [20, 3] and develops through our formative years. Sharing features of both
narrative comprehension and narrative generation, narrative intelligence is important to our
planning, social interaction, and coping with challenges [23]. This has led to a surge of interest
in narrative processes for artificial intelligence [20]; nonetheless, cognitive architectures aimed
at modeling human intelligence have been slow to implement support for episodic memory
and have as-yet showed few signs of approaching narrative cognition.

1.1 Narrative Intelligence, Comprehension, and Generation
Mateas’ definition of narrative intelligence has already been invoked as a guiding concept: the
ability to cast our experience in narrative terms. We are here concerned with this sophisticated
process, which simultaneously draws from and defies frameworks that attempt to delineate
story comprehension from story generation. The input to our model is a stream of experiential
data; the process of parsing and selecting from this data, for which Event Segmentation
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T. S. Anderson 3

Figure 1 Baddeley’s revised working memory model, including the episodic buffer [2].

Theory (EST) will be applied, can be seen as narrative comprehension insomuch as top-
down processing occurs to recognize matching narrative patterns. Inasmuch as bottom-up
processing is performed upon the received data, a process central to the gating mechanisms of
EST, it is similar to some plan-based narrative generation systems which receive a repertoire
of actions and use that repertoire to generate a sequence of states as a narrative (e.g. [29]).
This reciprocation between narrative comprehension and narrative generation bears striking
similarity to the driving tension of cognitive narrative pointed out by Ochs and Capps in
their landmark study of personal narratives, described as “the oscillation between narrators’
yearning for coherence of life experience and their yearning for authenticity” [23, p. 24]. For
cognitive narrative the distinction between narrative comprehension and narrative generation,
principle to some notions of intelligence for narrative [17], may need reevaluation.

Importantly, while the joint pair of narrative comprehension and generation are of major
relevance to this paper, the distinct process of story telling, by which narratives are prepared
and committed via some media for purposes that include communication, falls beyond our
consideration of cognitive narrative and can be regarded as an activity occurring subsequent
to (and using the products of) the processes here proposed.

2 Memory, Segmentation, and Narrative

Narrative exists in the human mind as a particularly important form of mental technology.
It’s utilization includes experiential sense-making, imputing of causality, categorization and
evaluation of events, complex communication, and planning [10]. Narrative cognition is
inextricably involved with human memory, particularly the episodic and semantic long-
term memory systems. Semantic memory supplies the scripts, schemas, and genres by
which top-down processes influence narrative cognition [32, 27], and so plays a vital role
in mature narrative intelligence. Evidence from developing narrative intelligence within
children suggests that the acquisition of these semantic structures is one of the significant
forms of progress as children grow [34][23, ch. 2]. However, the same evidence indicates
that however poor, some degree of narrative ability precedes the significant acquisition of
semantic narrative structures and that one of the functions of increasing experience is the
construction of the scripts and schema that will allow for improved top-down contributions
to narrative intelligence. This suggests that narrative intelligence may begin with episodic
memory before being augmented with contributions from semantic memory.

CMN’15



4 From Episodic Memory to Narrative in a Cognitive Architecture

Episodic memory is the system responsible for storage of both personal experiences
and any other time-situated events attended to second-hand, for example through media
or personally communicated stories. It is also implicated for prospective memory used to
consider the future [31]. As a distinct memory system it was first proposed by Endel Tulving
in 1972 [33]; since that time it has been widely researched. Of particular note is work
by Baddeley, who augmented his 1970 model of working memory with an episodic buffer
(Figure 1). This episodic buffer was proposed for use in short-term memory complementary
to the conventionally understood episodic long-term memory [2]. The role of Baddeley’s
short-term episodic buffer is as a holding area for retrieved episodes to be integrated cross-
modally with data from other sources, such as perception or semantic processing. From a
narrative perspective, this may be where stories are constructed through blending with other
elements in working and semantic memory, and is likely where narratives are manipulated
for many of the afore-mentioned functions of narrative cognition.

The term “episode” excites a notion of scene, events, and change that would seem naturally
compatible with most definitions of narrative. However, event recognition itself is an ongoing
challenge in computer science. In practice, implementations of episodic memory usually
operate as the storage and chronological indexing of system states. In essence, these systems
take a snapshot of each state and give it a time label. While narratively intelligent humans
are capable of looking at a photo (e.g. of a sport scene) and reconstructing a narrative
situation to describe the events surrounding the scene, for these computational systems there
has been no obvious way to produce from a life-long sequence of such snapshots a discrete
set of narratives.

2.1 Event Segmentation Theory
Event Segmentation Theory (EST) [35, 13, 27] suggests an approach to the problem of
dividing a non-delineated sequence of states into events that could become the constituents of
narratives. In humans, event segmentation is an ongoing process occurring simultaneously at
multiple time/action granularities. According to EST, event segmentation occurs as an effect
of ongoing perceptual prediction. During the process of perception two structures participate
in parsing the situation and forming predictions: long-term knowledge is brought to bear in
the form of event schemata, which are similar to Schanks’ and Abelson’s scripts [32] and
represent the way actions or events normally unfold in similar situations; and working-memory
is brought to bear by event models, which are an interpretation of the specific situation
at hand. In addition, behavioral models may be used so that predictions can be made
based on the presumed goals of the actors in a situation, and world models that account for
physical expectations (e.g. the trajectory of an object in free motion). The interplay between
the semantic and episodic long-term memory systems in this process is cyclical: semantic
memory provides the structures and models to help make episodes from experience, while
these episodes are committed to episodic memory where, over time, they help distill further
knowledge of semantic structures.

As perception occurs, the mind selects from its knowledge of usual event schemas and
uses assumptions about the goals and processes at work in the attended situation to generate
expectations of what will happen next. As long as these predictions are mostly fulfilled, the
current event model is assumed to continue and no segmentation occurs. However, when
the predictions are wrong by some margin of significance, the current event is considered
to end and a new event begin in the process of selecting or generating a new event model.
These explanations of event segmentation have been supported by evidence from studies
of segmentation of event boundaries in written and video narratives [35]. Narratives are
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Figure 2 The Soar cognitive architecture [14].

constructed as segmentation occurs at broader granularities over episodic memory, to the
point of eventually contributing to production of the life-long autobiographical memories
that “make up our own personal narrative of who we are and what we have experienced” [27,
ch. 8].

3 An Approach with the Soar Cognitive Architecture

Although it has been explored in a neural network framework [28], EST has yet to be applied
in a symbolic architecture. Soar [15] (see Figure 2) is a general cognitive architecture with
development overseen by John Laird and is one of the most popular cognitive architectures
in current use, with deployments ranging from robotic intelligence to complex battlefield
simulation to military training of human soldiers. In addition to an AI system, Soar represents
a theory of general human cognition [22]. Soar is a rule-based system in which perception is
represented as a graph structure in either working memory or long-term memory. Soar is
also agent-based, meaning that instances of Soar run as individual agents independent of,
but often interacting with, each other. A given application can call upon large numbers of
Soar agents, each running as its own process with its own long-term memory and working
memory systems. Soar agents make decisions based on the matching of rules, which depend
on the agent’s perception of the current state of the world and of its personal state. As a
symbolic architecture Soar is well-suited to capturing top-down information such as explicit
scripts or subjects of high-level complexity like narrative, whereas it can be difficult to obtain
narrative training sets that are both suitably representative and sufficiently sizable for the
needs of connectionist models.

Soar’s episodic memory modules (epmem) depicted in the top right corner of Figure 2
were added relatively recently and are our central focus. Soar’s epmem works by storing
snapshots of the working memory state (i.e. the Soar agent’s awareness) at each time step,

CMN’15



6 From Episodic Memory to Narrative in a Cognitive Architecture

attaching to each snapshot a unique index representing the time of the memory. Once Soar
has recalled an episodic memory it is possible to increment forward or backward through the
neighboring episodes. Retrieval of episodic memory occurs as queries are issued searching for
matching or partially matching features in the graph-structure knowledge representation.
Results are given a match score based on how much of the query-graph matches the graphs
in an episode, and the best match is returned.

The aim of this project is to outline the addition of rudimentary narrative intelligence
within the Soar theory of cognition; we propose to start with narrative intelligence on the
most basic of levels, not aspiring beyond child-level narrative intelligence at this point. With
this starting point groundwork is laid for future work refining the model.

The implementation proposed proceeds as follows: Soar provides sensory input which is
represented in working memory and stored over time as episodes in epmem. These provide
the information stream required by EST to make the predictions that result in discrete
events. These events are the building blocks of narratives.

3.1 Predictions
At the heart of EST is the making of predictions, which may receive input from a variety
of sources including scripts and schema, behavioral character models, genre expectations,
and other inputs from semantic memory. As has been previously mentioned the resources
available for these processes develops with the experience of the agent. As this exploration
considers naive agents with a minimum of prior knowledge it is desirable to have universal
heuristics that can form the basis for prediction across domains. Making the simplification
that a world consists of agentive and non-agentive components we consider two heuristics.
Both of these stand to be superseded as knowledge is gained by the agent.

The heuristic of inertia pertains to non-agentive components of the world, such as spatial
configurations. The agent may predict that its environment will continue to exhibit the same
features that it now exhibits.

The heuristic of auto-simulation applies to agentive components of the world and takes
one of the simplest approaches to a theory of mind by assuming that a perceived agent will
act in the same way as the perceiver.

Simplistic as they are, these heuristics provide a ground case to create predictions in any
situation, the violation of which delineates the events necessary to form narratives. The
result is a stream of events that is, in the worst case of a rapidly and inscrutably changing
environment, identical to epmem. With any stability of environment or shared rationality of
the agents the product will be an abstraction over the episodes.

3.2 Linking events into narratives
Many definitions of narrative allow for single-event narratives, as when a toddler recalls
repeatedly that today “I fell down.” Such interpretation draws no distinction between event
and narrative, a point of ambiguity further promulgated by Zacks’ explanations of EST. The
distinction here proposed is not one of structure but of function. EST provides events as a
natural kind by which we perceive the world, just as we discern discrete objects. According
to EST this perception can occur reflexively. Narrative – particularly personal narrative –
is, on the contrary, deliberate and negotiated, the product of an ongoing decision-making
process [23] that grows more sophisticated as the narrator matures [4].

Because the aim of this paper is to suggest a means for narrative intelligence that can
serve as a (child-like) basis for future work, it is sufficient to allow for single-event narratives
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while admitting that among the most prominent future work will be the reasoning processes
by which more sophisticated narratives can be created from the events produced by EST.
These narratives will develop alongside the addition of semantic-memory narrative structures
that will influence the top-down processing of EST.

3.3 Considering a Domain: Eaters
While Soar applications are fully capable of recording the richness of real-world perception
(e.g. in robotic applications), generating the events with EST which are requisite for narrative
generation requires that the system be capable of making useful predictions, which in turn
requires rules capturing the complexity of the domain. Games make useful simplified
domains. Currently, Soar comes with several game domains that can make testing-grounds
for introductory exploration of this approach; we take as an example the Eaters domain [21].

The Eaters game is a two-dimensional Pacman-like game in which one or more colorful
“eaters” navigate within a randomly generated maze with the goal of achieving the high score
by consuming food pellets of lesser or greater point-values. The eaters are capable of two
types of action: moving one space at a time in any of the four cardinal directions, which type
of movement has no cost, or jumping up to two squares away, which costs the equivalent of a
lesser food pellet. By jumping, an Eater can pass over an obstacle but never consumes food
over which it has jumped. When eaters collide, they are each randomly transported elsewhere
in the world and their scores are averaged with each other. Each Eater agent has a limited
range of vision and discovers the world as it moves. This feature of partial-observability
is desirable for mechanisms that rely upon prediction, as does an EST-based approach to
narrative intelligence.

3.3.1 Heuristic Prediction in Eaters
Even within so simple a domain as Eaters prediction is still possible and interesting. Because
of the partially-observed nature of the domain a natural opportunity for prediction is in
world-state itself; for this the heuristic of inertia applies. It happens in Eaters that in
randomly generated maps pellets of the same type continue in vertical rows, and that walls
may turn but never stagger (do not proceed diagonally or in stair-case formations). The
heuristic of inertia means that if the agent has a normal food pellet in front of it as it moves
forward, it will predict there to be another food pellet in front after it moves; if not, an
event is produced segmenting experience from the previous “normal pellet above” sequence of
events. Later reasoning could use this event as a cue to infer that another agent has traversed
this path. Likewise, once another Eater has been sighted by an aggressive agent, the heuristic
of auto-simulation may come in to play to expect the other Eater to approach. If this doesn’t
occur, the event might be used in future reflection for the altering of expectations about the
unseen portions of the map, or about the schema (“aggressive”) of the other agent.

3.3.2 Top-down Narrative Structures in Eaters
A variety of narrative structures could readily be encoded into semantic memory to influence
understanding in Eaters. Some such influences could directly influence the production rules
applied in Soar by altering the event model being applied. Different event models could
include a model for exploration which might apply the afore-mentioned heuristics; prediction
error could cue changing to hunting models in which expectations are drawn from heuristics
that anticipate perceptual changes that indicate passage of another Eater (e.g. following a
trail and expecting pellets to be absent as the trail continues).
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3.3.3 Eaters’ Narratives
The store of events produced by EST includes segments indicating such things as when
a trail of pellets concluded at a wall, or when another eater became visible. In addition
to the consideration of these individual events as comprising narratives in their own right,
sequences of these events become candidates to be narratives that should be regarded as
on a higher hierarchical level than are individual events. Once again the role of top-down
structures is important to this production of more complex narratives: as purported by
Zacks [35], the changing of event models represents, itself, a key event (e.g. when the agent
switches from an exploration model to a hunting model). While the brief model that has
been laid out is capable of providing a simple set of event-narratives, these narratives stand
to become increasingly interesting and useful as mechanisms for learning semantic structures
are introduced.

One of the key features of perception, and hence EST, is the hierarchical nature of
perception. Simplified domains like Eaters offer data at a relatively shallow level of abstraction;
one way of achieving hierarchical levels of events – and hence higher-level narratives – is
by reflection upon episodic memory, by which process broader narrative structures can be
applied and recognized. Continuing the Eaters example, reviewing epmem (which contains
copies of each state of working memory) can make a place for the application of meta-
heuristics, like expecting the heuristic of inertia to apply (say) 70% of the time. This
mechanism of heuristics over epmem sequences (rather than singular working memory state)
is both naturally precedented by the concept of narrative intelligence, which implies extended
temporal breadth, and significant for establishing the recursive nature of narrative.

4 Discussion and Conclusions

The approach to narrative intelligence proposed in this thesis is a preliminary one; it is child-
level at best, and awaits further contributions to realize crucial narrative-learning methods
that will provide narrative structures, schema, and semantic memory components that are
crucial to the next stages of narrative cognition. Such structures proposed by researchers
like Propp form the basis of modern narratology and continue to be explored [25, 6, 5].
This model does, however, provide a base-level account for the development of personal
narratives from experience. The contribution of this work is to take steps toward a theory
of cognitive narrative that bridges the gap between perception and narrative cognition and
is, therefore, a comprehensive starting-point for agentive systems. However child-like (even
toddler-like) these minimal narratives may be at the start, the function that can provide them
will meet needs of both quality and quantity. A system that is able to continually produce
narratives from its experiences has the potential to offer the sort of statistical data valuable
for categorization and norm detection, both considered some of the fundamental purposes of
cognitive narrative in humans [8]. It also offers a promising starting-place for automated
generation of scripts within a domain, which could be a useful complement to crowd-sourced
script generation that can be costly and unpredictable [18]. Together, these capabilities may
serve in support of advanced cognition like goal-based reasoning [30], whereby consideration
of narrative schema could provide resources for adaptation or change of goals in dynamic
scenarios.

A major question highlighted by the Eaters example with primary relevance to a system’s
episodic memory has to do with the timing of experiential reflection and personal narrative
generation. Although the Eaters example suggests narratives being produced concurrently
with perception, much more truthful to work like Ochs’ and Capps’[23] is narrative generation
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that occurs as reflection upon the contents of memory. Indeed, multiple revisits to whatever
primitive narratives are produced around perception time will be essential to acquiring higher
narrative forms.

Regardless of the episodic memory implementation, a system that produces experiential
narratives will also capture qualities of coherence that are desirable in a narrative system.
Insofar as narrative is defined as being concerned with having a “continuant subject,” [17]
experiential narratives minimally satisfy that by providing the experiencer as subject. This
fact is not insignificant for applications in Human-Computer Interactions, Expressive AI,
or Affective Computing, where “self” for continuity of subject may provide resources for
desirable development of personality and style within an agent [12] and ultimately for the
development of life story [27].

An event/prediction-based model of cognitive narrative also extends an invitation to
insights from the dramatic arts, whose perspective of narrative as affective is highly relevant
to the predictions of EST in response to suspense [24], some of which have already applied
Soar [19, 11].

A concluding line of work worth mentioning would be observer-systems which would
consider primarily other agents as the subject of their predictions and narratives. Such
systems would enhance the quality of the narratives generated by developing narratives based
on human or expert-system performance and would be important steps toward tasks such as
automated sports commentary [1], summarization [26, 16], and theory of mind [7]. One of the
severe challenges facing the development of effective observer systems is having an approach
to narrative intelligence that can be generalized across domains. The development of general
story-generation algorithms suitable for general cognitive architectures is one strategy for
approaching such useful systems; hopefully the approach discussed here is a step in that
direction.

Eventually narrative intelligence will be an instrument for general intelligence, at which
time we could expect that agents with greater narrative intelligence would have a competitive
advantage in games like Eaters. As an introductory exploration, the chief product of the
approach proposed are the narratives themselves, preliminary to more advanced functions of
intelligence.

References

1 Nicholas D Allen, John R Templon, Patrick Summerhays McNally, Larry Birnbaum, and
Kristian J Hammond. Statsmonkey: A data-driven sports narrative writer. In AAAI Fall
Symposium: Computational Models of Narrative, 2010.

2 Alan Baddeley. The episodic buffer: a new component of working memory? Trends in
Cognitive Sciences, 4(11):417–423, 2000.

3 David Blair and Tom Meyer. Tools for an interactive virtual cinema. In Creating Person-
alities for Synthetic Actors, pages 83–91. Springer, 1997.

4 Gilbert J. Botvin and Brian Sutton-Smith. The development of structural complexity in
children’s fantasy narratives. Developmental Psychology, 13(4):377–388, 1977.

5 Mark Alan Finlayson. Learning narrative morphologies from annotated folktales. In Pro-
ceedings of the 1st International Workshop on Automated Motif Discovery in Cultural Her-
itage and Scientific Communication Texts, 2010.

6 Pablo Gervás. Propp’s Morphology of the Folk Tale as a Grammar for Generation. In
Mark A. Finlayson, Bernhard Fisseni, Benedikt Löwe, and Jan Christoph Meister, editors,
2013 Workshop on Computational Models of Narrative, volume 32 of OpenAccess Series in

CMN’15



10 From Episodic Memory to Narrative in a Cognitive Architecture

Informatics (OASIcs), pages 106–122, Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

7 Andrew Gordon. The theory of mind in strategy representations. In 24th Annual Meeting
of the Cognitive Science Society, 2002.

8 David Herman. How stories make us smarter. narrative theory and cognitive semiotics.
Recherches en communication, 19(19):133–154, 2003.

9 David Herman. Storytelling and the sciences of mind: Cognitive narratology, discursive
psychology, and narratives in face-to-face interaction. Narrative, 15(3):306–334, 2007.

10 David Herman. Storytelling and the Sciences of Mind. MIT Press, 2013.
11 Mikhail Jacob, Alexander Zook, and Brian Magerko. Viewpoints ai: Procedurally repre-

senting and reasoning about gestures. In Proceedings of the 6th Digital Games Research
Association Conference, Atlanta, Georgia, 2013.

12 Nicola King. Memory, narrative, identity. Remembering the Self Edinburgh University
Press, Edinburgh, 2000.

13 Christopher A. Kurby and Jeffrey M. Zacks. Segmentation in the perception and memory
of events. Trends in Cognitive Sciences, 12(2):72–79, 2008.

14 John E. Laird. Extending the soar cognitive architecture. Frontiers in Artificial Intelligence
and Applications, 171:224, 2008.

15 John E. Laird. The Soar Cognitive Architecture. MIT Press, Cambridge, MA, USA, 2012.
16 Wendy G Lehnert. Plot units: A narrative summarization strategy. Strategies for natural

language processing, pages 375–412, 1982.
17 Boyang Li. Learning Knowledge To Support Domain-Independent Narrative Intelligence.

PhD thesis, Georgia Institute of Technology, 2015.
18 Boyang Li, Stephen Lee-Urban, Darren Scott Appling, and Mark O Riedl. Crowdsourcing

narrative intelligence. Advances in Cognitive Systems, 2:25–42, 2012.
19 Brian Magerko and John E. Laird. Mediating the tension between plot and interaction.

Ann Arbor, 1001:48109–2110, 2005.
20 Michael Mateas and Phoebe Sengers. Narrative intelligence. In Proceedings AAAI Fall

Symposium on Narrative Intelligence, pages 1–10, 1999.
21 Shelley Nason and John E Laird. Soar-rl: Integrating reinforcement learning with soar.

Cognitive Systems Research, 6(1):51–59, 2005.
22 Allen Newell. Unified Theories of Cognition (William James Lectures). Harvard University

Press, 1994.
23 Elinor Ochs and Lisa Capps. Living Narrative: Creating Lives in Everyday Storytelling.

Harvard University Press, 2009.
24 Brian O’Neill. A computational model of suspense for the augmentation of intelligent story

generation. PhD thesis, Georgia Institute of Technology, 2013.
25 Vladimir Propp. Morphology of the Folktale, volume 9. American Folklore Society, 1958.
26 Dragomir R Radev, Eduard Hovy, and Kathleen McKeown. Introduction to the special

issue on summarization. Computational linguistics, 28(4):399–408, 2002.
27 G.A. Radvansky and J.M. Zacks. Event Cognition. Oxford University Press, 2014.
28 Jeremy R Reynolds, Jeffrey M Zacks, and Todd S Braver. A computational model of event

segmentation from perceptual prediction. Cognitive Science, 31(4):613–643, 2007.
29 Mark O Riedl and R Michael Young. Narrative planning: balancing plot and character.

Journal of Artificial Intelligence Research, 39(1):217–268, 2010.
30 M. Roberts, S. Vattam, D.W. Aha, M. Wilson, T. Apker, and B. Auslander. Iterative

goal refinement for robotics. In A. Finzi and A. Orlandini, editors, Planning and Robotics:
Papers from the ICAPS Workshop, page to appear. Portsmouth, NH: AAAI Press, 2014.

31 Daniel L. Schacter, Donna Rose Addis, and Randy L. Buckner. Remembering the past to
imagine the future: the prospective brain. Nat Rev Neurosci, 8(9):657–661, 09 2007.



T. S. Anderson 11

32 Roger C Schank and Robert Abelson. Scripts, goals, plans, and understanding. Hillsdale,
NJ: Erlbaum, 1977.

33 E. Tulving. Organization of memory. Academic Press, New York, NY, 1972.
34 Gillian Wigglesworth. Children’s individual approaches to the organization of narrative.

Journal of Child Language, 24(02):279–309, 1997.
35 Jeffrey M Zacks, Nicole K Speer, Khena M Swallow, Todd S Braver, and Jeremy R Reynolds.

Event perception: a mind-brain perspective. Psychological bulletin, 133(2):273, 2007.

CMN’15



Optimal Eventfulness of Narratives
Fritz Breithaupt1, Eleanor Brower2, and Sarah Whaley2

1 Indiana University, Dept. of Germanic Studies
2 Indiana University, Hutton Honors College

Abstract
This study examines whether there is an optimal degree of eventfulness of short narratives. We ask
whether there is a specific degree of eventfulness (unexpectedness) that makes them “stick” better
than other stories so that they are maintained more faithfully in serial reproduction (telephone
games). The result is: probably not. The finding is that there is an impressive correlation of
eventfulness rankings of original stories and resulting retellings in serial reproduction, despite
the change of many other story elements and almost regardless of low or high eventfulness. Put
more simply, people remember and retell “eventfulness” accurately, even when the actual events
and circumstances of a story are changed.
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1 Introduction

One of the most central questions of narrative and its cognitive functions is the question
of the event. It is hard to imagine narratives without events. There is, however, large
disagreement as to what constitutes an event. Are small textual units of actions equal to
“events”? Or is an event something larger that occurs in the mind of the recipients who react
to a story? In the former case, the event would be a small unit, element, or building block in
a sequence of events. In the latter case, events provide the center of gravity that hold all
other elements together, like a sun and its planets.

There is certainly space for definitions of events on several levels [6]. Still, in this article
we want to explore the second idea that events provide the central point around which entire
stories are constructed. However, not every event is able to “tie the knot” equally well. If
events have the capacity to tie together larger stories and texts, the question is how one can
determine which features make certain events more successful than others in doing so.

To determine the success of narratives, we measure the stability or absence of stability of
narratives in conditions of retelling. We define a successfully eventful narrative as narrative
that maintains its eventfulness relatively unchanged after retellings.

In this study, we focus on one aspect of eventfulness only, namely its degree of unexpected-
ness or surprise. Of course, eventfulness encompasses dimensions other than unexpectedness,
including relevance, persistence, irreversibility and non-iterativity [13]. Nevertheless, we
argue that unexpectedness is a central dimension of eventfulness. In contrast to other aspects
of eventfulness, unexpectedness corresponds to a specific experience by recipients. Recipients
know when they are surprised, but are less prone to directly experience and report relevance,
persistence, irreversibility and non-iterativity, expect in cases when these are strikingly absent.
Our study will examine how precisely people reproduce different degrees of unexpectedness
when retelling stories.
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Figure 1 Linear and bounded serial iteration of narratives.

We distinguish two processes or strategies of retelling. In the first process, the story
appears as a string of elements with one leading to the next. Retelling means to reconstruct
this linear flow of small events from one to the next. Omissions, errors, and transformations
occur on the local level, but can affect entire strings that fork off from the original track.
In the second process, the narrative is constructed around a core idea. Retelling a story
around such a core event means to construct (and invent) all surrounding elements of an
event, such as the conditions that lead to the event and the characters. Omissions, errors,
and inventions would occur as a consequence of the genetic construction of elements one
could expect around the central event. We call these two approaches linear and bounded
iterations (Figure 1).

In linear iteration, each element (a, b, c, d, e) would be treated equally and could
disappear or change without necessarily affecting the other elements. In bounded iteration,
all elements only matter inasmuch as they lead to the constriction of the core event (E1) or
can be deduced from the retold event (E2). Elements that are not well connected to the core
event are likely to disappear.

It is likely that human retelling uses a combination of both strategies. A one-sided use of
linear iteration would likely result in enumerations of seemingly redundant or meaningless
elements. A one-sided use of bounded iteration would likely leave out many details and
descriptions and thus be impoverished.

In this study, we measure the presence of events and thus bounded iteration after several
retellings indirectly by degrees of eventfulness (unexpectedness/surprise). In general, linear
and bounded iteration can be measured by means of comparing general survival rate of all
story elements on the one hand and those story elements directly related to the events on the

CMN’15



14 Optimal Eventfulness of Narratives

other hand. Such a comparison has to take evolutions (changes) of all elements and events
into account as well.

A mid-level approach that connects aspects of both strategies can be found in Propp’s
famous analysis of Russian magic fairytales [10, 3]. Propp’s single elements of stories tend to
cluster in specific orders or sequences that come closer to bounded narratives. In a similar
way Fisseni and Löwe describe super-events that connect sub-events [4].

Logics of linear iteration are somewhat better understood and simpler to describe.
However, bounded iteration and the construction of core events is less clearly understood,
though much debated [8, 2, 12, 9, 11, 5].

Jerome Bruner articulates the duality between linearity and boundedness of narratives
in an elegant way: “What is a narrative? . . . A narrative involves a sequence of events.
The sequence carries the meaning . . . But not every sequence of events is worth recounting.
Narrative is discourse, and the prime rule of discourse is that there be a reason for it that
distinguishes it from silence. Narrative . . . tells about something unexpected, or something
that one’s auditor has reason to doubt. The “point” of the narrative is to resolve the
unexpected, to settle the auditor’s doubt, or in some manner to redress or explicate the
“imbalance” that prompted the telling of the story in the first place. A story, then, has two
sides to it: a sequence of events, and an implied evaluation of the events recounted” (Bruner,
1996: 121) [2].

Bruner does not consider any string of events a narrative, but instead requires that it
contain something unexpected or unresolved that focuses our interest. Narratives do not
simply list, contain, represent, or express events, but also produce doubt, surprise, suspense,
and curiosity in recipients, and this is an essential part of the event, perhaps the event itself.

In this article, we examine whether there is an optimal level of eventfulness that makes a
narrative cognitively intelligible, allows for successful recall, and thus permits for coherent
retellings. Put simply, is there an optimal level of eventfulness that makes a story stick?

1.1 Optimal eventfulness and serial reproduction
Previously, [9] suggested that stories with minimally counter-intuitive narratives seem to
be favored by memory and be cognitively optimal. [9] distinguish intuitive, minimally
counterintuitive, and maximally counterintuitive stories on the basis of the mixture of fully
intuitive events (corresponding to experience and ontological expectations of the world) and
counterintuitive events (not corresponding to experience and ontological expectations of the
world). They record how trained experts and a participant group of students rate the number
of intuitive and counterintuitive events within a range of well-known and not well-known
Grimm fairytales. With this approach they establish there is a sweet spot of just a few
but not too many counterintuitive events in those stories that have been culturally most
successfully (the best-known Grimm fairytales). These successful stories, it turns out, contain
a mix of intuitive and just a few counterintuitive events that mark them as “minimally
counterintuitive.”

The study by [9] only tangentially deals with issues of story-worlds and genre specific
expectations. Fairytales are among the most stylized and culturally coded forms of narrative
and may thus be exactly the worst candidate for an examination of narrative in general. It
is tricky to imagine how people rate the intuitiveness of events within a fairytale that is
clearly marked as a fairytale. Godmothers granting wishes magically to good girls may be
quite “intuitive” within fairytales and for people growing up with Disney. However, other
participants may mark such a godmother as unlikely and counterintuitive. The forced choice
between intuitive and counterintuitive events also may establish, more than anything, the
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ambiguity of participants having to decide which frame of reference to use: the typical
fairytale story-world or the so-called real world.

Nevertheless, the study provides an interesting glimpse into optimal eventfulness of stories.
The results by [9] are flanked by a set of studies by Barrett and Nyhof (2001) [1]. Barret and
Nyhof used serial reproduction (telephone games) to retell stories. The finding of their studies
is that intuitive events that are not bizarre tend to disappear more often than counterintuitive
events or intuitive but bizarre events.

Based on [9] and [1], it seems reasonable to speculate that high or midlevel eventfulness
is favored for memory and recall in retelling conditions. Hence, we decided to study whether
we can establish a more specific level of optimal eventfulness that distinguishes not only
between two or three categories, but provides a graded scale.

Accordingly, we established varied levels of eventfulness within the same framing story
from very low eventfulness to very high eventfulness. We expected that some of the story
versions would survive the retellings better than others and we reasoned that such survival
would indicate optimal eventfulness. [9] found that in short-term recall, maximally coun-
terintuitive event sequences were preserved best, while in long-term recall the minimally
counterintuitive event sequences were preserved best. Given this distinction between min-
imally counterintuitive and maximally counterintuitive events, we expected to see some
preference for the highly eventful stories since our retelling task was immediate (short-term
recall). (We should note again that [9] defined maximally counterintuitive stories as stories
with a high concentration of counterintuitive events; as far as we can see, their scale only
used a binary distinction between intuitive and counterintuitive single events).

In contrast to these studies, we decided to focus on single-event mini stories. Single-event
stories seem better suited to study eventfulness than multiple event stories since multiple
event stories may simply cluster events too thickly. Even so, each event may in itself be
optimally eventful if it did not stand in too close a proximity to the other events.

We selected stories in which a character is facing a challenging situation. The challenging
situation gets resolved by means of events. In this sense, the events serve as connector
between challenge and solution. More specifically, the events provide the transition from a
state A (challenge) to a state B (solution), from problem to solution, or before and after
in line with Hamilton & Breithaupt [5]. Within this story design of an event as connector,
eventfulness as surprise can be isolated and formalized by the degree of predictability: The
event conforms more or less to typical occurrences within the situation and represents a
more or less predictable solution to the challenge. In this story design, the other aspects of
eventfulness ([13], see above) are not significant. All events are equally relevant since they
solve the challenge (relevance criterion), while persistence, irreversibility, non-iterativity, and
genre do not play a strong role due to the brevity of short stories. (An additional aspect of
the eventfulness of these stories could be called consistence, as fitting within a single set of
event borders [11]).

1.2 Method

1.2.1 Participants
Our participants were found on Amazon Mechanical Turk. We set the Mechanical Turk
filter for participants of at least 18 years of age and who were in the United States. Each
participant received three different stories of a randomized variation in a randomized order
for retelling. Retelling was immediate after each story variation the participant read. Each
story branch was retold for three retellings or generations. Each first retelling was routed
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to just one second reteller and then to a single third reteller. We set filters so that each
participant could only participate once in the entire study at any stage.

1.2.2 Materials
We generated a set of three short stories and built seven variations of the key event for
each story. These events varied from very minimally eventful (intuitive) to highly eventful
(counterintuitive).

The stories were each 3–7 sentences long. Each included a character who found himself
or herself in a challenging situation. The opening of the story outlined the situation and the
final clause pointed to the solving of the problem or the end of the situation. An example is
a “shy” boy who has a crush on a girl, but is too shy to ask her out. Another example is a
daughter who has an argument with her mother and runs out of the house into the forest.
At the end, the shy boy asks the girl whether she would go on a date with him, and the
daughter has built up enough resolve to confront her mother.

For each story, we generated sets of interchangeable middle sentences of varied eventfulness.
These middle parts established a transition from the problem or challenge to the ending
solution. For example, in the story with the shy boy, we created a range of events that
establish how he accidentally meets her under specific circumstances. This could be standing
next to her in a line or saving her from a car accident. In pretesting, we asked participants
to rank and rate these variations in terms of eventfulness. From the set of variations, we
selected seven for each story that in pre-testing appeared to provide a graded variety of
eventfulness from very low to very high.

In the basic stories below, XXX marks the part that varies between the versions. The
seven versions with a code name (such as “Jason A”) and the corresponding severity ranking
in brackets (such as “[2.85]”) are added behind. The severity rankings given are the median
values by participants.

1. Jason liked a girl in his class. He was very shy, however, and was too afraid to talk to
her. One day, XXX. He mumbled that she looked nice and asked her if she would like to
eat lunch with him.
– they were standing next to each other in a line (Jason A [2.2])
– as he was walking down the hallway he saw the girl and noticed that they had on the

same outfit (Jason B [2.95])
– as he was doodling in class, she caught him drawing a perfect likeness of her (Jason C

[3.85])
– as he was walking in front of her desk, he tripped on his shoelaces and fell right in

front of her (Jason D [3.85])
– he decided that to overcome his fear of talking to her he needed to assume an alternate

identity. He dressed up as superhero and walked over to where she was sitting (Jason
E [5.2])

– as he was sitting in the classroom, he piled a bunch of different fruits on top of his
head and danced over to the girl, while singing her name (Jason F [5.6])

– as he was walking behind her on the crosswalk to school, he noticed that a car was
coming very fast towards them. He quickly ran and pushed her out of the way into
safety (Jason G [6])

2. Sarah had a fight with her mother. She ran out of the house. She decided to go into the
woods. In the woods, XXX. That made her feel better and gave her the confidence to
talk to her mother again. After that, she went back home and apologized.
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– she read a book (Sarah A [0.75])
– she stomped around angrily and hit a tree (Sarah B [2.4]).
– she caught a strange looking snake (Sarah C [3.6])
– she dove into the pond and swam around with all her clothes on (Sarah D [4.8])
– she made a fire and burnt everything her mother had ever given her (Sarah E [5.2])
– she found an old racecar that worked and drove it at high speed into a tree (Sarah F

[5.6])
– she built a tree house and collected food for a month to stay there (Sarah G [6.1])

3. Robert sat down in class to take his final exam. He knew the exam would be difficult, but
he was shocked to see how hard it was. He may not have studied enough, but this exam
was simply not fair and he started sweating. With an hour left, he asked for a bathroom
break and left the room. In the bathroom, XXX. Then he returned to the testing room
to complete the exam.
– he splashed his face with water (Robert A [0.15])
– he gave himself a pep talk while washing his hands and loudly sang his favorite song

regardless of the other people hearing him (Robert B [2.1])
– he pulled out his phone and searched the Internet for a couple exam questions (Robert

C [3.45])
– a man he did not know gave him the textbook for his class with all relevant pages for

the final marked (Robert D [5.1])
– he did sprints in front of the stalls to get his brain going. While running, he hit his

head on a door, but instead of confusing him, it seemed to cause everything to make
sense. (Robert E [5.6])

– he loudly asked the exam question to the mirror and a voice gave him the answer
(Robert F [6.6])

– he found an envelope with his name on it. Inside was the answer key, signed “with
love” from his teacher (Robert G [6.7])

1.2.3 Procedure
We asked participants on Amazon’s Mechanical Turk to retell the stories in their own words.
We used a variation of instructions from Kashima 2000 [7] that stress that participants should
retell stories in their “own words.”

The quality of retelling was high. From the selection of retellings discussed in this study,
we only disqualified a single retelling on the ground that it was too elaborate (it appeared
that the participant wanted to show his or her qualities as writer to embellish a short text
into a full page).

Once we received the third retelling, we routed these retellings to (different) participants
on Mechanical Turk to evaluate the eventfulness of these stories. Each participant received
20 of the retellings, fully randomized, and was asked to rate the eventfulness on a scale from
0 to 7. We used a slider that also showed the numeric number with one decimal number
after the period, such as 5.1. In the instructions, we defined eventfulness as follows:

“A story that is eventful usually contains elements that are surprising or unexpected. In
a story that is not eventful, things occur as expected with little or no surprise.”

On each screen with a retelling, we also gave the following instructions:
“Please evaluate the eventfulness of the story below from 1–7. 1 would be least eventful;

7 most eventful/surprising. You can use each rating as many times as you feel necessary. If
there is no event at all, please mark it as 0.”
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Figure 2 Eventfulness of original and third retellings. The x-axis lists the code names of individual
stories. These stories are ordered by eventfulness of the source stories. For example, the source
story “Jason C" was rated as less eventful than “Jason D”. The y-axis represents the average ratings
of eventfulness from 0–7. The chart shows the correlation of source story and the resulting third
retelling.

We also used the same approach and instructions to establish the eventfulness of our
original or source stories in all variations. Participants who rated the source stories only
evaluated source stories in randomized order. Each source story variation received an average
of 18 rankings, while the participant retellings received an average of 9 rankings each.

For our calculation of results, we used the median readings of the source stories and
compared them with the rankings from the third retellings. For the ranking of the retellings,
we established the median value for each individual third retelling and then calculated the
median of all individual third-generation retellings that resulted from one story variation.
Using the median value is the standard procedure in cases where equidistance between
numbers cannot be established. Median values are also less sensitive to outliers than average
values, given that a small number of participants may have given random rankings. (Average
values, however, returned similar results).

For this present study, we used a set of stories that resulted in a combined 367 third
retellings based on the 21 original story variations. That is, the total number of retellings
considered here is 1101 (367 first iteration, 367 second iteration, and 367 third iteration).
There were between 13 and 24 third generation retellings for each source story (such as
“Jason A”). The eventfulness rankings of the third generation stories used a total of 3, 375
participant scores.

In the story variations, we decided not to control strictly for length, but instead measure
and compare length of different variations. The results of our study focus on eventfulness
readings (eventfulness, variance, lengths).
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1.3 Results
Three generations of retellings bring about many severe changes in narratives. Typically,
the length of stories dropped by around 50%. Much detail disappeared or was radically
transformed, as we will indicate below.

Given the wide range of changes, the core finding of this study is even more astonishing.
We found a strong correlation between eventfulness rankings of original stories and third
retellings, see Figure 2.

Below are the median ranking values of all story variations.

Jason A Jason B Jason C Jason D Jason E Jason F Jason G
Original 2.2 2.95 3.85 3.85 5.2 5.6 6

3rd retelling 1.8 2.3 2.1 3.275 3.9 4.2 5.2

Sarah A Sarah B Sarah C Sarah D Sarah E Sarah F Sarah G
Original 0.75 2.4 3.6 4.8 5.2 5.6 6.1

3rd retelling 2.2 2.5 3.275 3.9 5 5.65 4.55

Robert A Robert B Robert C Robert D Robert E Robert F Robert G
Original 0.15 2.1 3.45 5.1 5.6 6.6 6.7

3rd retelling 1.4 1.375 2.2 4.425 4.175 5 4.8

The results indicate that the eventfulness of a narrative is highly salient for comprehension
and retelling, even when many other elements are strongly transformed or dropped at an
overall rate of around 50%. The overall correlation coefficient (r) is 0.897659424, thus
indicating a strong overall correlation. (Our question of interest is the correlation between
source stories and retold versions, hence a non-significant t-test would not allow us to rule
out that there is no significant difference).

Furthermore, the results indicate that there is not simply one optimal eventfulness level.
Rather, it seems people pay close attention to a given eventfulness level in a story, and
preserve and reproduce it accurately, for the most part, even while all other elements are in
flux.

The starting hypothesis of a “sweet spot” of optimal eventfulness was not verified. Instead,
we noted a strong attentiveness to specific levels of eventfulness.

Only at the extremes of very low and very high eventfulness, below 2 and above 5, do
the data suggest a tendency in the retellings to move toward the middle. The ratings of
our original stories included extreme ratings of 0.25 and 6.7 for specific stories whereas the
ratings after the retelling move closer to the 1.5 to 5.5 eventfulness rating segment.

Based on our original hypothesis, we also speculated that we would find longer lengths
of stories to be of an optimal level of eventfulness. This was not the case. The length of
third retellings was not correlated with eventfulness, but weakly correlated with the length
of the original story, see Figure 4. Correlation values varied for the stories (Jason -0.23;
Sarah -0.013; Robert 0.746). The shrinkage was above 50% for the Jason and Robert stories,
whereas it was less than 50% for Sarah stories, the shortest original story.

Another predictor we speculated about was story variation. We speculated that some
story variations would show a larger variance of eventfulness readings of the individual
branches in the third retelling. Again, this was not the case. The variance of eventfulness of
individual retelling branches was similar at the extreme ends and the middle ground of the
eventfulness scale.

In a future study with more experiments, we will report on full preservation of all elements
of the stories. At this point, we should report the high degree of change between original
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Figure 3 Overall correlation of source stories and 3rd retelling. The x-axis represents the median
eventfulness by the source stories prior to retelling. The y-axis represents the median eventfulness of
the third retellings.

Figure 4 Length correlations between original stories and third retellings, measured in characters.
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story and third retelling. As an example, consider one story variation of the shy boy. It
started with this text:

“Jason liked a girl in his class. He was very shy, however, and was too afraid to talk to
her. One day, as he was sitting in the classroom, he piled a bunch of different fruits on top of
his head and danced over to the girl, while singing her name. He mumbled that she looked
nice and asked her if she would like to eat lunch with him.”

After three retellings, it turned into the following in one of its many branches:
“John fancied a girl in his class. His way to get her attention was to wear a fruit hat and

dance his way to her. Mumbling and fumffering, he complimented her appearance and asked
for a dance.” (J197)

Here, it is interesting to note that the emphasized characteristic of Jason-John as “very
shy” disappears, whereas the oddity of his behavior finds a correlate in the neologism
“fumffering” (or perhaps from Yiddish funfer, meaning to stutter). Obviously, the original
story included the counterintuitive element that a shy boy would do this. Many retellings
adjusted this tension by either eliminating the feature of shyness or by dropping details of
Jason’s odd performance.

This individual string from shy Jason to John the dancer also illustrates a case in point
for the bounded iteration (Figure 1). Linear iteration would have preserved something of the
string with the starting proposition (a boy named Jason is shy), the middle action (“one
day, . . . he piled fruit on his head. . . ”) and the conclusion (he asks her for a lunch date).
Instead, the core event around which the retelling is built is the dancing performance of a
boy to get the attention of a girl. In classic bounded iteration fashion, other elements are
built to fit this middle event, including: he fancied her (beginning) and asked her for a dance
(conclusion).

2 Discussion

Our findings suggest that human recipients and retellers of narratives are highly sensitive to
specific levels of eventfulness. The specific sensitivity of recognizing and reproducing specific
levels of eventfulness accurately allows single-event narratives to maintain eventfulness over
multiple generations of retelling. Hence, instead of a single level of optimal eventfulness of
narratives, we argue for a broad-range sensitivity of eventfulness of narratives.

Our findings do not dispute that there may be some bias toward some optimal mid-level
eventfulness in the cases of multiple events [9, 1]. However, in the condition of single-event
retelling, we found much more evidence for an accurate representation of given eventfulness
levels. It is possible that the discrepancy of our study and these other studies is a result
of changed experimental design. Other studies used multiple-event retellings whereas we
focused on single-event retelling. Based on our findings, the more remarkable finding is not
the somewhat weaker correlation of very low and very high eventful narratives, but rather
the remarkable overall consistency.

Given the impressive degree of correlation between original story eventfulness and third-
retelling eventfulness paired with changes of all other story elements, we also suggest that
the study supports the idea that narrative retelling makes strong use of bounded iteration.
Bounded iteration is a retelling based on the construction of super-events that tie many
elements of a given story together. In the process of retelling, the new story is built around
and in accordance with the constructed event.

We are currently in the process of validating these findings with different experimental
settings and with similar experiments using longer stories. The preliminary findings of the
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retellings of longer stories are quite encouraging. In the longer stories (12 sentences), the
preservation of eventfulness after three retellings is even stronger than in the case of the short
stories from this study, while the preservation of the actual events is significantly lower. The
preliminary findings strongly support the above finding that eventfulness is better preserved
than the actual event.

These findings have significant consequences for generation and comprehension of nar-
ratives. They also suggest that we as recipients pay close attention to the eventfulness of
narratives. Retelling does not simply preserve semantic or plot-related qualities of narratives,
but includes affective dimensions, such as surprise. The degree of eventfulness is linked to
expectation and probability. There may be two forces at work here simultaneously that each
point in a different direction. One is curiosity. We may constantly look out for something
unexpected, unresolved, or surprising. The other force is doubt. When we receive a story,
we may constantly monitor its trustworthiness and flag the surprising stories as suspicious.
Taken together, this leaves us in a position of having to pay close attention to both the most
ordinary account and the most stunning and tall story.
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Abstract
Modeling the effect of context on interpretation, for the purposes of building intelligent systems,
has been a long-standing problem: qualities of logic can restrict accurate contextual interpret-
ation, even when there is only one context to consider. Stories offer a range of structures that
could extend formal theories of context, indicating how arrays of inferred contexts are able to
knit together, making an ontological reference that is specific to the particular set of circum-
stances embodied in the tale. This derived ontology shifts as the text unfolds, enabling constant
revision and the emergence of unexpected meanings. The described approach employs dynamic
knowledge representation techniques to model how these structures are built and changed. Two
new operators have been designed for this purpose: governance and causal conceptual agents. As
an example, a few lines from the story Red Riding Hood As a Dictator Would Tell It are used
to demonstrate how a story interpretive framework can be continually re-made, in a way that
produces unexpected interpretations of terms.
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1 Narrative and Formal Models of Context

1.1 Introduction
It is difficult for humans to make accurate interpretations across changing contexts, let alone
for machines to do so. Bruner observes that for logic, the “world remains invariant” [4, p. 50],
and Devlin explains how logical qualities can restrict accurate contextual interpretation, even
when there is only one context to consider [11]. This research examines how the structures of
stories enable multiple contexts to be managed, proposing two mechanisms (governance and
causal conceptual agency) to account for key aspects of the process. Systematic diagrams
represent the formal model [8] and display the mechanisms in animated form [7]. In this
paper, a few pivotal frames are provided to indicate their characteristics.

The original aim of this work was to inform the design of a computerized system for
intelligence analysis, that captured the way subjective (non-logical) perspectives evolve as
they influence each other, rather than how explicit facts add up [6]. Progress has been made
towards that system, which is still in development. Its formalisms are not covered here,
except to allude to the general mathematical choices made. Instead this paper presents a
model of some of the cognitive semantic dynamisms involved in understanding real-world
fiction. A companion paper reports on details of the implementation [15].

At the core of this paper are two mechanisms designed for that project: governance and
causal conceptual agency. These operators sit within a description of conceptual integration
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that is philosophically similar to established approaches in Discourse Processes, such as
Kintsch’s Construction-Integration Model, in which top-down and bottom-up inferences
negotiate [29]. Like that work, this model assumes that the text constrains and informs the
memory-based inferences that support reasoning about it. However, this approach departs
from previous models in that it is drawn from the issues concerning the composition of
compelling fiction. It began with a fiction writer’s question: how does a reader anticipate
the end of a story she or he cannot predict?

In order to render this artistic concern in the very different field of knowledge represent-
ation, a survey of approaches was made, to identify gaps in current models of conceptual
structure [8]. Within that domain, the focus was ontological interoperability, which has
some known, long-standing problems [40]. One of these issues is directly relevant to the
phenomenon of interest: it is difficult to design a system that can automatically bridge
incompatible conceptual networks, such as the kind that exist in different knowledge bases.
One ontology cannot evolve into another, so that non-logical structures emerge that seem
like a natural evolution. I use this problem to frame how stories enable progressive reasoning
in ways that differ from current formal models of contextual interpretation.

To clarify this phenomenon, consider the title and first lines of the following story:

Red Riding Hood as a Dictator Would Tell It
Once upon a time, there was a poor, weak wolf. It was gentle and kindly
and had a heart of gold [49, p. 230].

Reading from the first phrase, Red Riding Hood, to the last phrase heart of gold, the
reader is led through several different states of expectation regarding themes and events:
from a fairytale scenario, to the anticipation of humor and irony mixed with that fairytale
scenario (when addition of the dictator is mentioned), and then to the unexpected focus on
the wolf with gentle qualities. In order to maintain sense as these expectations shift, some
conceptual structures remain stable while others alter. How does this dynamism occur? This
paper will outline the way conceptual structure can be built, integrated and revised through
mechanisms central to fiction writing.

The resulting model is represented using animations that use conventions of knowledge
representation, and extended with approaches such as those of Fauconnier and Turner [13],
and Holyoak and Thagard [24] to include dynamism. An animated version of this example
can be found online [7]. Figure 1 is a screenshot from this animation, which depicts some of
the inferences involved in interpreting the example.

As an introduction, simply notice the bands running across the frame of Figure 2; there
are two groups: those at the top, which represent general knowledge structures, and those at
the bottom, which represent new, emerging interpretive structure. Connections are woven
between them as the text progresses. Governance, a new operator, is one of the facilitators
of this movement. In Figure 1, a governing node is indicated by the color blue, with lines
indicating the direction of effect. Causal concept agents are collected in the third situation
band from the bottom, fulfilling criteria that will be described in a moment. These new
features record the stages of the shift from the general (top) to the specific (bottom), where
the new derived ontology is built and changed.

A story’s ability to adjust its own frame of reference could offer fresh insight into managing
conceptual conflict in systems such as knowledge bases. It could also address the “significant
gap” in research on narrative inference identified by Arthur Graesser, who asks “how does
the point of a story systematically emerge from the configuration of important goals, actions,
obstacles, conflicts, and resolutions expressed in the plot?” [16, p. 239]. This paper proposes
that part of the answer can be found in the mechanisms used by a story to handle incompatible
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Figure 1 Conceptual structure built by the title of Red Riding Hood as a Dictator Would Tell It
weaves aspects of general inferences (top) into a new, derived interpretive structure (bottom).

conceptual structures. It will indicate how new referential structure is progressively derived,
enabling changes in the interpretation of the terms it supports. Sowa states that a dynamic
notion of ontology such as this is needed, to reflect the way the meaning of a word “is
unstable and dynamically evolving as it is used in different contexts” [41, p. 245]. This work
models some of the structures used by a story to achieve this.

2 Composing the Problem

2.1 Ontology in knowledge bases and stories
The first departure from current literature is the units considered to be fundamental to stories.
Formal analyses of narrative often revolve around events and characters in the storyworld
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[46, 35, 23], and while these aspects are important, and can be entailed in the abstractions I
use, they are not the focus. Instead, this work concerns how stories build and transform the
conceptual structure used to make inferences during its own interpretation. I refer to this
framework as a derived ontology [15].

A derived ontology is the story’s reference framework, one that contains the operating
parameters of the story itself, including causal information that enables a reader to understand
not only what is happening, but what can happen. It includes but goes beyond the notions
of suyet or discours [26], because it entails non-explicit inferences along with the explicit
textual devices, and zooms into the granularity of how such structure is built and changed at
a conceptual level, so some ideas are deliberately rendered as more important than others.
The term derived ontology captures these qualities and also indicates fundamental similarities
with the computer science notion of ontology. The two instances differ in a few important
ways, however.

The term ontology was first used in philosophy by Aristotle to refer to the study of being
[34, p. 3], and has since been adapted to serve computer science. Here, an ontology is a
frame of reference that accounts for a certain view of the world [34, p. 3], and this is also my
definition in relation to stories. In both cases, an ontology provides the reference framework
used to define terms, similar to a built-in dictionary. It is a “systematic account” of the
entities assumed to exist in a domain of interest, as well as the relationships between them
[19]. Both stories and knowledge bases can be seen as interpretive machines, in the sense
that each relies on an ontology (or something like it) to churn out interpretation. In both
stories and knowledge base design, ontology is the reference framework used to make accurate
interpretations.

These similarities can lead to confusion regarding the differences. The first distinction
concerns generality versus specificity. In computer science, even though an ontology can
manifest in a range of different forms [38, p. vi], the common denominator is that it is a
static corpus of general reference terms, which have a formal expression [37, p. 61][38, p. vi].
The more this kind of ontology is tailored to a particular domain, the less compatible it will
be with those in other systems, a quality termed heterogeneous [1, p. 190],[48, p. 164]. In
practical terms, this makes a formal ontology similar to a context, because the more specific
it is, the more it will be limited to that particular circumstance, and its information less easy
to preserve as it is carried to other instances. For this reason, the terms in formal ontologies
are chosen to have as “much generality as possible to ensure reusability” [38, p. v]. In this
work, systems such as this are thus referred to as a general ontologies.

A story does use general references such as this, but then goes further. It draws on
numerous general references, and then manipulates elements from them, adding structure
until the resulting interpretive framework is unique to the tale. This is a novel contribution
of this research: identifying the way that stories construct a new, refined reference situation.

Interestingly, the new derived reference will contain some non-logical structure that does
not exist in its sources. To a reader of narrative, these concepts might seem unexpected and
be less easy to predict [4, p. 12]. There are numerous ways the notion unexpected can be
defined, it is framed here in relation to paradigms of general assumed knowledge, such as that
found in a general ontology. An unexpected conceptual structure is one that is incompatible
with commonly known assumption: the sort of structure embodied in a general ontology.
The importance of such digression in narrative has been noted across Narratology [23, 3],
Discourse Processes [47], and Narrative Psychology [5, 44]. My definition of unexpected
includes the way a breach in assumed knowledge can be disruptive, in the manner of Kuhn’s
“anomaly” which provokes transformation of scientific paradigms [30, p. 6].
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Such breach is significant due to the different way systems of logic and story handle
anomalous information. In prescriptive logical systems, problems arise when general ontologies
encounter unexpected information, and these are so common that a number of approaches
have emerged to address them [32]. Most involve some sort of standardisation of terms
to eliminate conflict between conceptual structures [38, p. 5]. John Sowa states, “Any
incompleteness, distortions, or restrictions in the framework of categories must inevitably
omit the generality of every program or database that uses those categories” [40, p. 51].
However, such limits and distortions are an integral aspect of a story’s ability to make sense,
and then re-make that sense differently.

Stories can handle unexpected information due to mechanisms that manage the barriers
of context. A context is defined as a limited characterization of reality, which is specific
to the peculiarities of a particular circumstance, and contains elements that could not be
found easily in other situations. It is information that “is embedded in a specific domain
or situation” [39, p. 51], in such a way that information from outside that context might
be anomalous. Due to our use of Keith Devlin’s formal system, Layered Formalism and
Zooming (LFZ) [11], we refer to a context as a situation when it takes the form of a discrete
conceptual structure. This kind of situation has features in common with a heterogeneous
ontology, in that its limits can make it difficult to preserve information when it is transferred.
In knowledge base design, this can cause problems when different systems try to interact.
This is usually addressed through the creation of a large, comprehensive ontology in which
all reference frameworks can be situated [32] or the standardization of divergent conceptual
structure so that it does not lead to “inconsistent interpretations and uses of knowledge” [20,
pp. 381-382]. By contrast, stories leverage such inconsistencies to emulate the flux of the
open, real world. Rather than being supported by a single general ontology, or eliminating
incompatible ideas, a story’s reference framework enables numerous, limited and diverse
conceptual networks to temporarily agree, before changing to accommodate the next chunk
of text.

A final area of potential confusion between ontology in the two fields concerns their
relationship to logic. In computer-orientated methods, the semantic aspect of the ontology is
usually managed by logical rules [40, p. 12], [22, p.30]. In the fictional instance, semantics are
structured according to the associative priorities of the story. This structure might contain
logical elements, but will also contain many that are not – as Bruner notes, story and logical
structures are different modes of thought, “irreducible to one another” [4, p. 11]. When
text is interpreted in computer science, the semantic and logical aspects of an ontology are
usually the same entity, whereas my model separates them. In the design of a knowledge
base, a possible way to handle this would be to build three levels: 1) the semantics of the
story ontology, which is structured according to the relations expressed by the story and its
reference frameworks; 2) the constructive processes that underpin formation of the story
ontology; 3) the logical formalisms that make it computational [15]. Only the first two levels
are explored here.

3 Supporting Literature

Modeling contextual inference in unfolding narrative involves several fields, so the supporting
literature was drawn from a range of research areas. The following emerged as pertinent:
narratological studies on the progressive effects of an unfolding story [44, 27], theories of
narrative inference [18, 45, 17], theories of context interpretation and inference [2, 36, 11],
current approaches to conceptual integration in knowledge systems [41, 1, 32], and formalisms
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that concern the representation of narrative conceptual structure [24, 13], as well as their
transformation [42, 30]. Of these, a few theories were fundamental to this research.

Foremost was the work of Keith Devlin, whose development of situation theory provided
a philosophical foundation and a possible formal framework for its realization. His extension
of situation theory, Layered Formalism and Zooming (LFZ), is a formal means of expressing
the limits of context and the transfer information between them [10]. Devlin’s work was
extended by our collaborator Goranson to include the narrative properties described here
[15]. Devlin’s foundations allows for more robust formal methods to be employed in this
work.

Discourse Processes was also important, to show how specifics at the perceptive level
trigger and restrict generic knowledge inferences [29, p. 125]. Like Kintsch’s Construction
Integration (CI) model, this work describes continuous conceptual retrieval and adjustment,
where only a few nodes actively contribute to the meaning of a node, yet can be easily expanded
due to a persistent connection with larger memory structures [28, p. 74]. Although memory
and explanation-based processes [21] could both be read into this work, my abstractions
are different, so forms of retrieval such as this will manifest and be triggered in relation to
different factors. The key difference is ontological conflict; when these models account for
contradictions in text [21, p. 244][28, p. 181], they are referring to factual inconsistencies
rather than shifts in fundamental definitions of terms. Due to this, and the narrative
mechanisms needed to manage it, my expression of these processes differs.

This approach also diverges from Narratology, which usually considers events and char-
acters to be the main features [43, 27, 35, 46]. Michael Toolan examines how text can
retroactively attribute importance to particular events, making them cohere in ways that
were “unforeseen but foreseeable” [43, p. 215]. In a more formal approach that also focuses
on events, Tom Trabasso diagrams the causal dependence of actions in narrative [46, 33],
and collaborates with Graesser to consider the forms of inference that produce them [17].
In these cases, the focus on events and activities in the storyworld overlooks a key feature
of unfolding narrative: the way the incremental nature of reading can radically change
the interpretation of its terms. Cognitive scientist Paul Thagard has argued that further
attention to progressive revision is needed to explain “why some revisions are harder to
make than others and why some revisions have more global effects” [42, p. 20]. Thagard’s
diagrams of conceptual change thus provided insights about how contexts evolve [42].

To capture the finer operations of story inference, this approach also draws from Fauconnier
and Turner’s models of conceptual blending, in which one analogical space supplies conceptual
structure, while another is projected into it, making its structures interpretively dominant
[13, p. 321]. Fauconnier and Turner do not model the dynamics in the case of an unfolding
narrative, however. This means their analogical structure can rest on a fixed general ontology,
and the modifications of one situation towards another can be accounted for switching
complementary nodes on and off [13, p. 321], rather than the imposition of one structure
onto another, so that new structures are formed.

From this survey, several properties of inference in stories emerged as being potentially
useful additions to computational models.

4 A Model of Contextual Reinterpretation

Several new mechanisms enable the integration and shift of multiple contexts. Following is
an overview of that process, along with a summary of its taxonomic elements.

As a story unfolds, it provokes:
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Figure 2 Example of layout, with general and interpretive situations grouped together.

1. Multiple, limited inferences which each exhibit properties of context that can make
their structures incompatible. These inferences can be connected by

2. Causal Conceptual Agents, which contain new structure capable of bridging incom-
patible inferences. Those new relationships are recorded in a

3. Meta-situation, in which the ontological structures supporting the various inferences
are organized in relation to each other: an ontology of ontologies. This arrangement
follows relationships of

4. Governance, which enables situations to impose their structures on each other to modify
the terms of one network towards another. Altogether, this produces a new reference
framework.

Together, these structures form a derived ontology. A summary of the graphical method
follows.

In Figure 2, bands are grouped at the top and bottom of the diagram. These are all
situations, but the two groups do not perform the same role. Their division represents
complementary aspects of interpretation: at the top are situations drawn from general
ontologies (the Ontology Space), while at the bottom, the agent network is recorded (the
Interpretation Space). The incoming text of the story appears across the middle, so that
operators can easily weave structure outwards from it, across the two domains.

The following operators build structure over this framework:
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Name / Function Representation Graphic

Incoming Text Token
Rectangular box with incom-
ing text inside

Node
Rounded box with concepts in-
side

Link Line

Situation Encircling box

Pusher Hammer shape

Puller Suction shape

Funnel Open V shape
Dot Dot

Dot (suspended situation) Dot with white center

Wedge
Black triangle, pointing in dir-
ection of connection

Of these taxonomic items, the first three (Incoming Text Token, Nodes, Links) are
common to conventional methods of knowledge representation. The next three operators
(Situation, Pusher, Puller) are new, and capture the behavior of conceptual situations.
The first is an encircling box that groups entities to show how their combined structure
operates as a single functional unit. The pusher and puller depict the dynamic extraction of
subset reference situations.

The Funnel instigates change, and as such, is the central structure-building device in this
model. In terms of narrative apprehension, it represents an associative connection between
actual text and the inferences it provokes. In the graphical depiction, it behaves like a moving
arrow, drawing a link between any two objects and creating an attachment between them.
Contact with a funnel can change the position and arrangement of concepts, leaving behind
an association between the areas of transference. That persistent connection is demonstrated
by a grey line. Dots and wedges are superficial indicators that make it easier to decipher the
graphical depictions. Dots show where a line starts and ends, like an anchor. Wedges show
the direction in which a connection is made, if it is difficult to discern.

There are also eight key states. A state indicates what sort of influence a taxonomic
element has over its surrounding objects. In order to record the simultaneous development
of many elements, states are represented by colors, and can apply to all graphical objects.
The colors are not intrinsic to the process being represented, but the differentiation between
kinds of activity is important. The states are:

Neutral (white)
Suspended (encircled by a dotted line)

Persistent (grey)

Activation (light yellow)

Association-Forming (orange)

Conflict (red)

Transformative (purple)

Governing (blue)
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Neutral (black on white) indicates that the object exists. A dotted black line indicates
suspension, which means the object tentatively exists. A node is registered as tentative
when an inference is made that could be salient, but is not yet confirmed (suspension is
another novel feature). Grey signifies that an object has been built and is now inactive
but persistent. Yellow signals the activation of an existing object. Orange can associate
objects. Red indicates a conflict between associations. At the far end of the spectrum, purple
signifies the resolution of conflict, while blue indicates governance. Both can modify existing
structures.

This architecture was used to map the title and first lines of the story Red Riding Hood
as a Dictator Would Tell It [49] (see above for these lines of text). The story is narrated
from the perspective of a sensitive wolf that complains about being persecuted by a girl and
her grandmother [49, p. 230]. He explains that one day he wandered into the old lady”s
home and was so startled by her that he was forced to eat her. The full story can be found
in The Trials and Tribulations of Little Red Riding Hood [49]. The animated analysis of
these lines can be found online [7].

4.1 Multiple, limited inferences
My example begins when the title Red Riding Hood as a Dictator Would Tell It is apprehended.
In discourse process models, comprehension begins with a trigger that calls up memory
structures [21]; here, such information is drawn from a form of general cultural memory
instead. The distinction reflects the phenomenon of interest: part of the skill of professional
writing is to judge which inferences can reasonably be assumed of any reader, based on what
sort of information is generally known, and what is not. This general knowledge is akin to
Arthur Graesser’s “generic knowledge structures” [17], and is also similar to the artificial
intelligence notion of “common ground”[9, p. 320], where the assumed shared knowledge is
the kind a writer can expect of fiction readers they have never met: an example is the kind
of information contained in Wikipedia. For ease of reference, that assumed mass audience is
referred to as the reader, and the shared general cultural memory is collected in the global
ontology.

In knowledge base design, commonly known examples that might populate the global
ontology could include Cyc, WordNet [40, p. 412] or the coming standard that will enable the
semantic web [25, pp. 58-59]. Whether for humans, my model, or a computer implementation,
this is only the starting point of interpretation, the place from which most foundational
reference situations are drawn. Graphically, I depict this collection as a single situation band,
running across the top of the frame.

When the first phrase is apprehended, “Red Riding Hood”, an inferred cluster of terms
associated with the fairytale Red Riding Hood is extracted from the global ontology. A phrase
such as this only activates a limited selection of terms from a general reference framework -
this was observed by Kintsch [28, p. 74]. Graesser has referred to a partial inference such as
this as a subset of generic knowledge [17, p. 374], and I develop the idea further, to emphasize
its properties of context. For example, Red Riding Hood is supported by limited conceptual
networks regarding the fairytale, and few others. The notion of dictator is supported by a few
inferences regarding political control and self-aggrandisement. If the supporting ontologies of
these terms do not accommodate each other, it might be difficult to relate them on any level.
The story will show how they can be linked in this particular circumstance, by adding new
structure.

In the graphical example, the extraction of a subset situation occurs when a situation
band titled “Red Riding Hood” is pulled out of the global ontology and its dictionary, and

CMN’15



32 The Evolution of Interpretive Contexts in Stories

rests beneath them, to serve as the first point of reference for further text. The dictionary
provides simple dictionary definitions for individual words, whereas the global ontology
provides higher-level common knowledge, such as the associations commonly related to the
phrase “Red Riding Hood”. The subset titled “Red Riding Hood” is now characterized in
terms of the network of terms it contains (I refer to this overall characterization as a scope).
In this case, the scope concerns the fairytale Red Riding Hood. The graphical node bears this
title, standing in for the terms related to it.

When the term “dictator”, is apprehended, it is tested against the “Red Riding Hood”
situation, and no exact match of terms are found. Another subset must be extracted from
the global ontology, to support it. Finally, with the phrase “would tell it”, a third round
of inferencing is provoked. This time, a subset that supports the meta-fictional idea of a
“narrator” is extracted. In Figure 1, these subset inferences are depicted as three situation
bands, each layered under the next.

When the “Meta Story” situation becomes activated, possible connections become available
between the Red Riding Hood and Dictator inferences. Nefarious qualities of the dictator
might connect with the role of narrator, after more information is gathered. Perhaps the
fairytale plot will feature events from World War II. The focus of this story, both explicitly
and implicitly, concerns the bridging of two incompatible situations, but more information is
needed to understand how. To confirm which elements will be used and connected, another
feature is needed: conceptual agents.

4.2 Causal conceptual agents
Causality is famously difficult to quantify, and the survey of causal philosophy conducted in
relation to agency in narrative is covered elsewhere (see [8]). From that literature, Einhorn
and Hogarth’s Judging Probable Cause was foundational, for the way it describes how causal
agency emerges in relation to a contextual field of reference [12, p. 5]. In narrative-related
theory, it is common to conceive of agents as characters, and causality as a counterfactual
dependence of actions or events (see literature review, above, especially [46]). However, in
this work, agency occurs in the context of differing ontological structures. The focus is
therefore an aspect of causality more salient to poetics: where causality in story is not a chain
of dependence, but a domain of transitions that fit. In this framework, agency is conceptual
structure that is able to act on one ontological structure so that it turns into another.

Einhorn and Hogarth’s description of causal agency is embodied in two parameters:
Foreground (causal agents) and Background (causal fields). These characteristics replaced
the single focal situation in Devlin’s formal model of contextual interpretation, LFZ, which
provided a logical foundation for the formal expression of this work. Graphically, these
parameters are represented as horizontal situation bands that run along the bottom of
the page (Figure 2). The foreground band contains nodes that have been identified as
conceptual agents, because they exhibit new linking structure. A graphical example in
Figure 1, above, would be the node “Narrator might be a dictator”. The central band in
this cluster, thematic interpretation, records the most dominant of these, to indicate the
overall themes of the story. The bottom-most situation band, background, is composed of
nodes that stand in for each inferred reference situation. I refer to these as ambassadors,
which will be discussed in the next section.

Agents emerge from the field by virtue of their novel structure (that is, novel compared
with what already exists in the reference situations). Their degree of agency is determined by
their novelty, as well as how much conceptual structure they are able to link. For example,
when the “Meta Story” situation is applied to the whole field, the “Red Riding Hood” and



B. Cardier 33

“Dictator” subsets are cast as separate yet “parallel” situations, ones that will be compared
as part of the storytelling. This parallel quality is indicated by the text, with the linking
phrase “as a . . . would tell it” but does not exist in any of the subset reference ontologies
in isolation. The notion has been derived in relation to their combination. In this case,
the node “parallel stories” is an agent because it connects all three subset situations with
structure that is novel (compared with what exists in the subset reference situations).

In the implementation, new and transformative structure is informed by Michael Leyton’s
work on geometric transformation, which illustrates how the evolving topological structures
can indicate causal connection [31, p. 3]. When represented as a conceptual network, an
ontology endows a story’s semantic perspective with structure. When the system searches
for structure that will enable transitions between incompatible conceptual structures, it will
use semantically-guided topologies to reason about it [14]. Logically, this is expressed as a
two-sorted logic, where the second sort uses categoric arrows to reason over situations. This
allows semantic-free representation of situations, including those whose explicit facts are
unknown.

Causal conceptual agents emerge in relation to the background context being established
by the text. In order to examine how that background is composed, let us turn to the
meta-situation.

4.3 The Background : contextualizing contexts
The meta-situation is like an orrery, in the sense that its tokens stand in for a more complex
system. Here, in microcosm, relationships between general reference frameworks are built
and changed. This miniature is established through gradual honing: general reference
frameworks become subsets, which in turn are abstracted as individual nodes, which I refer
to as ambassadors. Ambassador nodes contain only the most essential elements of the sources
from which they were drawn, and are arranged in the meta-situation. Kitsch remarks on the
way activated nodes concern only the few elements of general knowledge that are relevant
[28, p. 74]; this idea goes further to note how these fragments are positioned in relation to
each other by the story. As the text progresses, these tokens are manipulated to reflect the
structural priorities of the tale. They carry the relevant aspects of their sources, but have the
advantage of being composed of limited conceptual networks, rather than massive general
ontologies (although they remain persistently connected to each other), and so are easier to
manipulate and modify.

The arrangement of ambassadors, in the form of a meta-situation, serves as an ongoing
reference for the incoming text. Agency is relative to a causal field [12, p. 6], and the meta-
situation serves as that field. It informs and situates the emerging agents. In implementation,
the system will identify nodes as ambassadors for the Background situation band if they
represent a subset of a reference situation but contain no new structure. Their purpose is to
record how the text is building relationships between the reference situations, including which
are dominant (dominance will be discussed in a moment). Due to the way the meta-situation
shifts as the text progresses, it enables the same word to be interpreted differently as the
story unfolds.

Consider the interpretation of “wolf” that would be inferred at different stages of the
example story. By itself, the word wolf might be defined as a wild woodland creature with
some doglike qualities, and a system using a single ontology would then use this definition as
the basis of a composition of facts. In narrative, when the first phrase of the title is parsed,
“Red Riding Hood” a quick contextualization occurs: any wolf mentioned at this point would
be subject to the terms of the “Red Riding Hood” situation, which would produce the
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Figure 3 Looking up a word when a single general ontology is the reference.

definition that the wolf is a predatorial character who plans to eat a little girl, perhaps with
sexual menace. Below are two illustrations by a collaborator to contrast two different ways
“wolf” can be interpreted in this situation [14]. Figure 3 shows the look up when there is a
single ontology. Figure shows how the subset situation Red Riding Hood could impose its
structure to create a more nuanced definition of wolf.

In Figure 3, the definition of ’wolf’ is always the same; Figure 4 shows a system in which
the terms used to interpret a word can shift with every subset added. The second instance
reflects this research, to imitate the way story comprehension can involve many subsets,
acting simultaneously.

In Red Riding Hood as a Dictator Would Tell It, the nuance does not stop there. The
newly defined fairytale ’wolf’ is then redefined by the dictator’s situation, so that it becomes
a character in a story (with predatorial menace) which is of interest to a dictator. By the end
of the sentence “It was gentle and kindly and had a heart of gold” [49], the wolf is a dictator,
who is narrating the story, and endowed with the dictatorly quality of perverting the truth.

The meta-situation makes co-operation between inferences possible because it records
the relationship between them. The variety of means by which this occurs is a large topic of
enquiry in itself, and is the subject of ongoing investigation. The basic foundation includes
the dynamic that when situations relate to each other, they follow properties of governance.

4.4 Governance
The term governance refers to a form of structural imposition. As many inferred situations
might compete to have their structures used by the story, a method is needed to designate
which take priority; governance fulfills this role. But it is not simply a prioritization method.
It also accounts for the adjustments that conceptual structures can perform on each other,
modifying conceptual structures so they can connect. In the graphical method, governance
is indicated by the color blue (see Figure 1). When one node governs another, the governing
node flashes blue and connects to it, and its effect is recorded in the addition or alteration of
structure.

Governance can operate at a range of degrees. Its most far-reaching form is demonstrated
by the final version of the derived ontology. When a story reaches its end, the final version of
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Figure 4 Looking up wolf when each subset reference has different parameters.

the derived ontology acts on the entire tale, retroactively imparting its associative priorities
on all previous structures. This can result in major, meaning-altering revisions of the entire
network.

In its most local form, governance can act through an individual word, such as the way
“wolf” can be considered in relation to the phrase “there was a poor, weak wolf.” Here, the
words “poor” and “weak” are interpreted on the terms of the governing word, “wolf”. Their
associative range thus conforms to a scope of qualities appropriate to a fairytale wolf.

Between these two extremes is the most frequently used governance operation. Every
time a text chunk appears, a subset situation is used to interpret it. This subset governs the
incoming text chunk, in order to provide source structure for that interpretation.

The notion of governance is novel, but is informed by Paul Thagard’s research on
conceptual change. In Conceptual Revolutions, Thagard discusses the transition between
two competing theories of combustion, which share the common concept “wood burns” [42,
p. 105]. This common node operates as a limited point of attachment between the two
incompatible paradigms, and in Thagard’s diagrams, acts as a pivot between them.

In narrative, a conceptual agent performs this pivotal role. As the old conceptual
framework turns into a new one, the pivot pulls the old structure onto new terms. In a
story, there are numerous pivotal points such as this, acting in concert to indicate how one
temporarily fixed point can become the next, until the end. Some conceptual structure
remain stable while others change. Interpretation can thus evolve and yet comprehension
persists, with each temporarily stable point helping to carry the reader to the end.

In a practical sense, governance modifications can occur in numerous ways: one situation
might surrender to the associative priorities of the other, or some of its terms might be
bent in order to connect to it. The kinds of modification, and under what circumstances
they activate, requires further work. More investigation is also required in relation to other
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aspects of the model: more examples are needed, to explore and refine the taxonomy. In
terms of the graphical expression, a richer representation is required for the structure of
ambassadors, so it is easier to assess the way they bridge, overlap or conflict with each other.
These issues are the subject of ongoing work and collaboration.

In the meantime, this model offers two novel mechanisms towards the issue of bridging
incompatible contexts in computable models. It describes how causal conceptual agents
use principles of governance to build unexpected conceptual structures. Their dynamic
connections thread the narrative transitions together, enabling a reader to track how the
themes and central ideas in a story evolve. At each step, the interpretation of the terms of
the story alters, as the inferred situations adjust their relationship with each other.

5 Conclusion

This paper presents a novel system to model how narratives manipulate meaning in dynamic
and complex ways. Four features of evolving interpretation in stories were identified.

As a tale unfolds, it provokes multiple inferences which have properties of contextual
limitation. These are connected together by conceptual agents, which emerge when different
subset situations are applied to incoming text, in such a way that new structure emerges.
In order to determine how their differing reference networks should relate, principles of
governance organize and modify tokens drawn from them. This creates a meta-situation,
in which tokens of the supporting ontological structures are prioritized and arranged, shifting
as the story unfolds. Overall, this constructs a new reference framework, one that is a
derivation of the general reference frameworks used, and is specific to a particular set of
circumstances embodied by the tale.

These factors combine to give a sense that the interpretative framework of the story
is evolving. Narrative mechanisms such as this could offer new insight into problems of
interoperability found in knowledge base design. Further study will be pursued to further
refine the details of how this process occurs, and shed further light on how an assumed reader
is able to anticipate structures they cannot predict.
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Abstract
This paper describes Structured Stories, a platform for producing and consuming journalism
as structured narratives based on instantiations of event frames. The event frames are defined
using FrameNet and are instantiated as structured events using references to nodes in various
knowledge graphs. Structured narratives with recursive, fractal and network characteristics are
then assembled from these structured events. The approach requires the direct reporting of
journalistic events into structure by untrained reporters, and utilizes a simplified sequential user
interface to achieve this. A prototype has been built and published, and is being applied to the
reporting of local government journalism to explore editorial aspects of the approach.
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1 Introduction

Journalism has historically been produced, distributed and consumed within the context
of loosely-defined supra-document products such as edited newspapers and magazines.
These products provide not merely collections of discrete text articles, but also larger-
scale informal narrative functions across articles, such as story continuity, consistency of
voice, de-duplication, indicators of importance, variance in detail, loose organization of
sub-narratives, etc. They are often perceived by their producers and by their consumers to
be conveyers of coherent supra-document narratives [3].

More recently, due to technological disruption, the economic basis of these products has
started to break down, or ’unbundle’, and they are increasingly being replaced by digital
streams of isolated text documents, often clustered and ranked using topic models and
named entity references. This unbundling has had negative consequences for professional
journalism producers, for whom the economic and competitive advantages of supra-document
journalism products have been replaced by intense article-to-article competition. It has also
had some negative consequences for journalism consumers, who have gained access to far
greater quantities of text articles but who have simultaneously lost the large-scale organizing
and narrative functions that supra-document journalism products provided.

Computational models of narrative may offer an alternative form of supra-document
journalism product that could resolve some of the consequences of unbundling for producers
and consumers of journalism, and that may be sustainable in the current economic and
technological environment. Considerable work has been performed on this, most often focused
on extracting structured storylines from vast corpora of text articles using supervised and semi-
supervised natural language processing techniques that are trained on small sets of documents
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carefully annotated using various annotation schemes – an approach that is exemplified by
the ongoing EU NewsReader project [12]. These automated story understanding systems
must directly confront the complexity of natural language, albeit via machine learning, and
remain dependent on sources of high-quality natural language text articles that are under
severe and increasing economic threat.

Alternative approaches that provide mechanisms for the direct creation and maintenance
of structured narratives as journalistic artifacts have not been widely explored in recent years,
perhaps because the structures used by earlier direct-entry narrative modeling systems, such
as the scripts of Ableson and Schank [1] and even the sketchy scripts of DeJong [5], have
been formal, complex and therefore difficult to apply in a production journalism environment.
The more recent availability of new networked knowledge management technologies does not
appear to have been applied to new attempts at direct-entry narrative modeling beyond a
few examples such the BBC storyline ontology [11] and Facebook’s custom stories [9].

Structured Stories is an attempt to build and test a platform for supra-document journ-
alism products using event and narrative data structures. The approach does not attempt
a formal representation of events and narratives equivalent to that expressible in natural
language, but instead provides a ’computational pidgin’ for narrative somewhat similar to
that proposed by Margaret Masterman and Martin Kay for machine translation in 1960 [10].
Events within Structured Stories are considered to be discrete things in the world, in the
Davidson sense [4], and not linguistic artifacts originating in text. The arrangement of these
events into narrative structures seeks to align with human narrative cognition concerning
the relative importance of events and the encapsulation of detail within narratives.

The Structured Stories platform was designed and built during late 2013 and 2014,
and has been implemented as a cloud-hosted and API-accessible database of event and
narrative information. It is currently being populated with structured narratives in the local
government domain, and is consumable in five languages.

2 Description of the Platform

The building blocks of Structured Stories are event frames, which are abstractions of discrete
journalistic events and are defined as subsets of FrameNet semantic frames [2]. Event frames
are light-weight and flexible and are gathered into a searchable library that can grow to
many tens of thousands of frames. Each event frame contains a set of type-constrained
event roles that are referenced to semantic roles within the parent semantic frame, and a
set of natural language phrases that are centered on a verb lexical unit from the semantic
frame and that express event-level context. Although rooted in the semantic formalism of
FrameNet, these contextual phrases characterize event frames as editorial artifacts, and not
as formal structures. As editorial artifacts they are therefore relatively simple and flexible,
and are intended to be created, managed and used by journalists for journalistic purposes.

Listing 1 Event frame – simplified structure for a 2-role event frame
Event frame ID
FrameNet frame ID
Role1 ( Event Frame Role , FrameNet Role , allowed type )
Role 2 ( Event Frame Role , FrameNet Role , allowed type )
Phrase 1 ( Journalistic Phrase , Verb Lexical Unit )

Discrete journalistic events are represented within the platform as structured events. Each
structured event is defined by an event frame, and each of the event roles from the defining
event frame is assigned a typed reference to a Uniform Resource Identifier (URI) – typically
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an entry in a knowledge graph. These URIs are constrained by type and the platform
recognizes seven top-level types: characters, entities, locations, information artifacts, other
events, narratives and constants. The knowledge graphs used include Freebase, WikiData
and Facebook, and the event type and narrative type are referenced to structured events
and structured narratives within the Structured Stories database. Structured events are
also associated with various discourse elements, including natural language bullet points,
summaries describing the event, images illustrating the event, etc., and events are also linked
by cause and effect relationships.

Listing 2 Structured Event – simplified structure
Event ID
Event frame ID
Time ( reference time , temporal granularity , temporal duration )
Role references :

Characters ( event frame roles , knowledge graph IDs )
Entities / concepts (event frame roles , knowledge graph IDs)
Locations (event frame roles , knowledge graph IDs)
Information artifacts (event frame roles , local references )
Reference Events (event frame roles , event IDs)
Referenced Stories (event frame roles , story IDs)
Constants (event frame roles , local references )

Discourse elements (text summary , image , audio , video , etc .)
Causal relationships ( causing event IDs , cause types)

The platform represents narrative structures as ordered collections of references to
structured events, with each reference carrying information about the function of the event
within the structured narrative. The relative importance of the event within the structured
narrative is represented, and the encapsulation of detail about the event is captured using
references to other structured narratives. This fractal-like [6] and recursive structuring enables
single structured narratives of many tens of thousands of discrete events to be represented
coherently and explored with a few clicks. The narrative structure also enables linkages
between structured narratives using common events, common characters, common locations
and several other factors, enabling very large-scale narrative networks to be assembled and
navigated.

Listing 3 Structured Narrative – simplified structure
Story ID
Story events

( Event ID , Importance Value , Subnarrative Story ID )
( Event ID , Importance Value , Subnarrative Story ID )
( Event ID , Importance Value , Subnarrative Story ID )

...

These event and narrative structures enable an array of features that facilitate the
consumption of journalism. The presentation of narratives can be extensively controlled,
enabling the use of different kinds of discourse elements to provide different media experiences
of the narrative. The use of structured narratives appears to substantially improve the
consumption efficiency of narratives compared with consumption from documents by providing
explicit control of detail, access to sub-narratives and navigation of the narrative network.
Source documents and related documents are linked from individual structured events and
are therefore easily findable within the narrative structure. Text discourse elements can be
translated at the event level using machine translation or single-sentence human translation
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– a much easier task than the translation of large multi-sentence narratives within text
documents. The basis of structured narratives as a permanent and cumulative data store
enables the publishing of journalism as a ’pull’ (user decides) model rather than as a ’push’
(publisher decides) model. Individual events are published as URIs and might therefore be
used in mashups or in fact-checking applications, and explicit querying of the event and story
database using knowledge graph references, semantic frame references and other structural
elements is straightforward. Even reasoning on structured narratives may be possible.

The technical implementation of the prototype platform is centered on a RESTful API,
powered by a Node.JS server application. The databases are hosted on Amazon AWS EC2
and S3, and combine Redis, a file system and a graph database. The front-end application is
based on the AngularJS application framework.

3 Discussion

Significant uncertainty exists regarding the ease with which untrained users can create and
edit structured events and structured narratives within the platform, and also regarding their
motivation to do so. Exploring this uncertainty is one of the primary goals for the project
and has driven the design of several features within the platform.

The approach seeks to provide sufficient expressive power in its representation of events
and narratives to be useful for journalism, but simultaneously seeks to be simple enough
to enable easy use by untrained users – typically professional and citizen journalists. This
’goldilocks’ goal has been addressed through the light-weight and flexible nature of the event
frames, and through a sequential user interface technique that has been shown to enable the
entry of individual events by an untrained reporter within 20 seconds.

The approach seeks to deliberately manage the risk of combinatorial explosion in the
number of event frames in multiple ways. There is a deep design assumption that the
distribution of the use of event frames for journalism will follow a scale-free power law [7],
and therefore that the combination of a library of ‘head’ event frames, a fast method for
creating new ‘tail’ event frames, and a fast search mechanism for finding event frames will
enable frame numbers to be manageable. The risks of combinatorial explosion in editorial
tasks, such as event frame de-duplication, are higher but are partly reduced by the use of
FrameNet as a semantic foundation.

The near-term challenge of motivating participation by reporters during experimentation
will be initially addressed by employing a small number of reporters to add structured
events and assemble structured narratives in small domains with strong journalistic needs –
specifically local government journalism in selected cities. In the medium term motivation
will likely depend on the prospect of a sustainable economic rebundling of journalism as
structured narrative products and on civic motivation by citizen journalists. In the long term
motivating participation by reporters would depend on the efficacy of structured narratives
as a mechanism for accumulating journalism and for distributing that journalism via novel
products. There are also many additional significant uncertainties regarding the utility of
the approach to consumers of journalism, upon which the motivation for participation by
producers will ultimately depend.

4 Next Steps

The prototype of the Structured Stories platform is currently being populated with structured
events and structured narratives relating to local government news stories in Los Angeles.
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The next step for the project will focus on evaluating the feasibility of event and narrative
entry and maintenance by untrained reporters, and on defining and evaluating editorial
processes to facilitate the management of journalistic quality within structured narratives.
This evaluation will occur concurrently with a major reporting project focused on local
government in New York City, which will be undertaken during the summer of 2015. If
reporting and editing prove feasible then a deep evaluation of the consumption side of the
approach, using the captured structured narratives and an iOS app, will be attempted.

Regardless of the results of this testing the Structured Stories project should generate a
dataset of hand-curated journalistic news events referenced to FrameNet frames and semantic
roles, populated by knowledge graph references and linked to text articles that describe
those news events. This dataset may be useful as a training set for supervised machine
learning projects. Conversely, there are opportunities to use machine learning techniques
such a relation extraction and frame parsing to facilitate capture of structured events into
the platform. The Structured Stories approach to modeling narrative structure is therefore
an alternative to, and also a complement to, the supervised machine learning approach.

Several extensions to the Structured Stories platform are anticipated, and include the
addition of sources of event semantics beyond FrameNet (including VerbNet, PropBank
and possibly the NewsReader Events and Situations Ontology), the inclusion of additional
discourse elements at the structured event level (including audio, video and comics), and
the possible extension of discourse elements to individual roles within the structured events.
Improvements to the event reporting workflow, possibly including semi-automation of the
workflow using the EVITA system [8] and various TF-IDF document clustering techniques
such as the Associated Press Overview system will be explored following the assessment of
reporting and editing using the prototype platform.

The Structured Stories prototype is publicly available at http://www.structuredstories.
org.
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Abstract
We present a novel representation of narratives at the story level called Impulse. It combines a
temporal representation of a story’s actions and events with a representation of the mental models
of the story’s characters into a cohesive, logic-based language. We show the expressiveness of this
approach by encoding a story fragment, and compare it to other formal story representations in
terms of representational dimensions. We also acknowledge the computational complexity of our
approach and argue that a restricted subset still provides a high degree of expressive power.
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1 Introduction

Narrative is used across cultures to convey both fictional and non-fictional stories. This
ubiquity has led to narrative research in many fields, from narrative theory to linguistics to
cognitive psychology to AI. Within AI, research ranges from understanding and reasoning
about existing narratives to generating new ones. In this field, the division narratologists
make between story and discourse is often used [3]. The story consists of the events that
happen in the story world while the discourse describes how these events are told. For
example, a story may consist of a murder, an investigation and an arrest, in that order, but
a movie rendition may start with the investigation and end with a flashback to the murder
to “reveal” the murderer, i.e. the order the events are shown differs from the order in which
they actually happened.

We propose a representation for the story level of a narrative called Impulse. In addition
to the representation of core story elements such as events and actors, it also provides means
to encode information that is not essential to the story but may be relevant for reasoning
about possible discourses. Furthermore, Impulse allows complex reasoning about the story
itself. We will show how this reasoning can be used to derive explanations for characters’
actions or beliefs. We claim that Impulse provides a strong basis for building systems to
computationally reason over stories, for story understanding, analysis, as well as for discourse
generation.

∗ This material is based upon work supported in whole or in part with funding from the Laboratory for
Analytic Sciences (LAS). Any opinions, findings, conclusions, or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the LAS and/or any
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2 Related Work

Due to the wide variety of research interests of scholars building computational models
of story, there is also a variety of representations, each highlighting different aspects of a
story. Elson and McKeown [5] describe a system for encoding stories in graphs, designed to
allow structural comparison between different narratives. A tool allows for easy encoding,
annotation and comparison of stories, but it lacks rich formal inference rules.

Some story generation systems also produce stories in a representation that is suitable for
further processing. For example, partial-order causal link planning with intentions (IPOCL)
has been described as a generative approach for stories by Riedl and Young [13], as an
improvement over their previous work with POCL plans [12]. An IPOCL plan consists of
steps, that are linked to other steps with causal and temporal links, and frames of commitment
that represent character intentions. The model of time in the plan is necessarily simple, to
keep the planning process computationally feasible. Furthermore, there is no representation
for character beliefs. Very closely related to planning is Martens et al.’s [9] use of Linear
Logic to generate stories, but their representation does not include time or actors’ mental
models either.

Ontologies are also often used to represent stories, for example in the Drammar model
[8]. Drammar provides an operationalization of a Belief, Desire, Intention (BDI) model
represented as an ontology. Swartjes and Theune [14] have elaborated on an earlier version
of this ontology by incorporating Trabasso et al.’s General Transition Network [16]. However,
these approaches only consider relative ordering of steps. Swartjes and Theune also reiterate
the point made by Tuffield et al. [17] that formal characterization of story generation
systems’ outputs is still lacking. In particular, when the story is to be presented to an
audience by a discourse generator, representing exact timing information is crucial. The
discourse generator Darshak, for example, uses a representation of time, based on the planning
algorithm DPOCLT, for precisely that reason [7]. When using external data sources, such
as video games, precise timing information is available, but if this knowledge can not be
represented, it would be lost and could not be reasoned about.

Allen and Ferguson’s representation of actions and events in interval temporal logic (ITL)
allows complex reasoning over time [2], and remedies shortcomings of the situation calculus
[10], like the frame problem. It is based on predicate logic, uses intervals as its representation
of time, and includes actions as first-class objects. The representation already allows rich
reasoning about the story content and deduction of new facts, but does not contain any
model of the actors’ mental models. On the other hand, Cohen and Levesque’s [4] BDI
model, which is also based on predicate logic, allow the representation of, and reasoning
about, actors’ mental models that would allow inferences about characters’ motivations, but
does not include a representation of time. We present a novel representation of narratives at
the story level, called Impulse, that combines ITL with a BDI model to improve upon the
limitations of these representations.

3 Representation

Impulse is based on ITL, a representation based on predicate logic, and augments it with a
BDI model of actors. We will first describe the temporal representation we use and how it
can be reasoned about. Then we will discuss how time can be added to predicate logic, and
how to represent actions and objects in a story, closely following ITL. We then discuss the
integration of BDI models with this temporal representation.
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Table 1 Allen’s interval relations and their representation in Impulse.

Name Allen Definition Notation
Equal t1 = t2 start(t1) = start(t2) ∧ end(t1) = end(t2) t1 = t2

Before t1 < t2 end(t1) < start(t2) t1 ≺ t2

Meets t1 m t2 end(t1) = start(t2) t1 : t2

During t1 d t2 start(t1) > start(t2) ∧ end(t1) < end(t2) t1 @ t2

Starts t1 s t2 start(t1) = start(t2) ∧ end(t1) < end(t2) t1 / t2

Finishes t1 f t2 start(t1) > start(t2) ∧ end(t1) = end(t2) t1 I t2

Overlaps t1 o t2 start(t1) < start(t2) < end(t1) < end(t2) t1  t2

3.1 Representation of time
Impulse uses intervals as its unit of time. Conceptually, an interval t is a non-empty “stretch”
of time, with a start and an end, denoted by start(t) and end(t), respectively. We will denote
the set of all possible intervals with T , called the time basis. Two intervals can be in one of
13 different relations to one another, called Allen’s interval relations [1]. Table 1 gives an
overview of 7 of them with the notation used in Impulse, where the missing 6 are simply the
inverses of all but the equality relation.

I Definition 1. Multiple basic interval relations can be combined into a set {R1, . . . , Rn},
where each of the Ri is one of Allen’s 13 interval relations. Then t1{R1, . . . , Rn}t2 ⇔
t1R1t2 ∨ · · · ∨ t1Rnt2.

One important complex relation is the subinterval relation:

I Definition 2. An interval t1 is a subinterval of an interval t2, written t1 v t2, iff the two
intervals are the same, or t1 is during, starts or finishes t2, i.e. t1 v t2 ⇔ t1{@, =, /,I}t2.

3.2 Temporal and atemporal predicates and functions
To make the step from predicate logic to one based on time, predicates and functions can now
have an additional “time” parameter over which they hold. We call predicates and functions
with this parameter temporal and those without atemporal. For example at(John, Library, t)
means “John was at the Library for the interval t”, and at is a temporal predicate. We use
the same concepts of strong and weak negation as Allen and Ferguson:

I Definition 3. The strong negation of a temporal predicate P over an interval t,
written ¬P (p1, . . . , pn, t) states that the predicate is false during any subinterval of t, i.e.

¬P (p1, . . . , pn, t)⇔ ¬∃t1 ∈ T t1 v t ∧ P (p1, . . . , pn, t1) .

I Definition 4. The weak negation of a temporal predicate P over an interval t,
written ∼ P (p1, . . . , pn, t) states that the predicate is false during some subinterval of t, i.e.

∼ P (p1, . . . , pn, t)⇔ ¬∀t1 ∈ T t1 v t→ P (p1, . . . , pn, t1) .

Furthermore, we require all predicates used in Impulse formulas to be homogeneous.

I Definition 5. A predicate is called homogeneous iff it being true over some interval t

implies that it is also true over every subinterval of t, i.e.

∀t1 ∈ T P (p1, . . . , pn, t) ∧ t1 v t→ P (p1, . . . , pn, t1) .
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Temporal functions present another challenge, as they may change value over time, leading
to situations where their value may be undefined, i.e. functions are partial with respect to
time. For example, if f(t1) = a and f(t2) = b, the value of f(t3), with t1 v t3 ∧ t2 v t3, is
undefined. Using an undefined value in any way will propagate that value, and any predicate
on an undefined parameter does not hold.

3.3 Representation of objects and actions
Objects in Impulse are objects in the predicate logic sense, representing concrete and abstract
entities in the story world and being uniquely identified by name. All objects in the story
are collected in a set O, of which arbitrary subsets can be defined to be used by formulas.
Two of these subsets, A ⊆ O and L ⊆ O, represent the actors and locations in the story
respectively, and have to be defined for all stories. These subsets provide a “type system” for
the objects, allowing sentences to refer to objects of specific types. For example, a sentence
could say that all locations are cold, without saying anything about other objects.

Similar to objects, actions are elements of a set called Actions, with a subset defined for
each different action type. For example, there could be a move-action set, which is a subset
of Actions, containing all possible move-actions. Normally, we will not be concerned with all
possible actions, but only with those that actually happened or could have happened in a
particular story. What determines the uniqueness of each action are its properties:

I Definition 6. A property p of an action type Y ⊆ Actions is an atemporal function
p : Y 7→ O.

For example, an action of type openDoor may have a property door : openDoor 7→ Doors
that refers to the door being opened by a specific action of the action type openDoor .
Additionally, properties of temporal values are also supported:

I Definition 7. A time interval property q of an action type Y ⊆ Actions is a function
q : Y 7→ T .

To distinguish between actions that actually happens in the story and those that are only
part of the reasoning process of some character, a predicate occurs is introduced.

I Definition 8. The atemporal predicate occurs(e) holds if and only if e is an action that
actually happens in the story.

An action will typically have some predicates associated with it that have to hold for the
action to be possible, and other predicates that describe the effect of the execution of that
action. Like ITL, Impulse uses Skolem functions called pren and effn on actions to describe
the duration of their preconditions and effects. Suppose we have an action “open the door”,
then its effect can be encoded as ∀s ∈ openDoor ∃t1, t2 occurs(s) ∧ closed(door(s), t1) →
open(door(s), t2). However, this leaves us with the existentially quantified variables t1 and
t2 that depend on the story, i.e. when the openDoor action happens, and when the door was
previously closed. Allen and Ferguson argue that the sentence ∀s ∈ openDoor occurs(s) ∧
closed(door(s), pre1(s))→ open(door(s), eff1(s)) is equivalent to the preceding encoding, but
now the intervals depend on the action instantiation directly, and we can now also refer to
them in formulas.

3.4 Actors’ mental models
Impulse uses a simplified representation of actors’ mental models, in the form of a BDI
representation. This has previously been used for narrative representation [11]. It allows
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us to represent character beliefs, which are important to reason about disparity between
their views of the world, and - when used with a discourse realizer - with the audiences view
of the world as well as their desires and intentions which are important to reason about
how to deduce and convey character motivations. While this model does not capture every
aspect of character’s mental models (e.g., emotional state), we argue that a limitation of the
representation is essential to allow inferences to be made in a reasonable manner, and that a
BDI model provides sufficient details to reason about a story for discourse generation. It
is also possible to extend this mental model representation for specific applications, or to
represent emotional states as predicates in the existing Impulse formalism.

Because of our representation of time, the modal operators for belief, desire and intention
had to be modified to include a temporal parameter as well:

I Definition 9. Ba(t)Φ, Da(t)Φ and Ia(t)Φ, with a ∈ A an actor, t a time interval over S

and Φ an arbitrary Impulse formula represents that actor a believes, desires or intents the
formula Φ, respectively.

Note that the temporal parameter actually belongs to the modal operator. Φ will contain
its own temporal information. This allows us to represent complex relations like “From 8AM
to 10AM John believed that dinner would be served from 7PM to 8PM, but then someone
told him that it was actually served from 6PM to 7PM, so he revised his belief”.

The only property Impulse enforces on beliefs, desires and intentions is homogeneity:

I Definition 10. Beliefs, Desires and Intentions are homogeneous, with respect to time, i.e.
∀t ∀t1 (Ba/Da/Ia(t)Φ ∧ t1 v t)⇒ Ba/Da/Ia(t1)Φ.

Other properties often encountered in BDI models can be defined as needed. For example,
one may want to define that beliefs are always consistent:

I Definition 11. ∀t : Ba(t)Φ⇒ ¬Ba(t)¬Φ, for any Impulse formula Φ.

3.5 Story representation
A complete story consists of:

a time basis T , which is a set of intervals,
an object hierarchy, with O the set of all objects and a definition of subsets thereof,
an action hierarchy, with Actions the set of all actions and a definition of subsets thereof,
a set of action properties P , as functions mapping from actions to objects or intervals,
a set of actions Σ that occur in the story. This means s ∈ Σ⇔ occurs(s),
a set of Impulse sentences Ψ

With this representation, a deduction system can reason about the story by applying logical
operations on the sentences in Ψ and deriving new facts. Alternatively, an explanation
system could remove steps from Σ or add new ones and then reason about “what would
have happened”. A discourse generation system, on the other hand, can reason about which
information has to be presented to the audience, and which one can be deduced. Depending
on what should be conveyed, it may also decide to show or not show the duration of actions.

4 Evaluation

4.1 Example
The example presented here is a shortened version of a scene from the movie “The Lord of
the Rings: The Fellowship of the Ring”, based on the book of the same name [15]. In the
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movie, Isildur, the king of men, comes into possession of a magical ring. One of his allies,
the elf Elrond, knowing that the Ring is “evil”, advises him to destroy it, but the Ring has
too much influence over its bearer. In the movie, this leads Elrond to conclude that men are
weak. For space reasons, we omit many of the movie’s actions and only present the most
important ones.

As a time basis, we use intervals over the natural numbers, so T ⊆ N× N, and denote
“the interval starting at (and including) a and ending at (and not including) b” with ta b. The
objects in the story include Elrond, Isildur and Ring, so O = {Elrond, Isildur , Ring, Aragorn,

Éowyn, . . .}, the set of actors is A = {Elrond, Isildur , Ring, Aragorn, Éowyn} ⊆ O and the
set of locations L = {} ⊆ O. We also define a set Humanoid = {Elrond, Isildur , Aragorn,

Éowyn} used to prevent the Ring from actively doing anything, and a set men = {Isildur ,

Aragorn, Éowyn, . . .} containing all the human actors1. The Ring plays a special role in the
story, so the function bearer(t) is used to keep track of who is the Ring-bearer at any given
time. We have three action types:

get represents an actor getting the Ring. It has the associated property actor : get 7→
Humanoid, and a single effect duration eff1 : get 7→ T

tellToDestroy represents an actor telling another one to destroy the Ring. It has the proper-
ties actor : tellToDestroy 7→ Humanoid, recipient : tellToDestroy 7→ A, one precondition
duration pre1 : tellToDestroy 7→ T and two effect durations: eff1, eff2 : tellToDestroy 7→ T

succumb represents an actor succumbing to the will of the ring, it has one property
actor : succumb 7→ Humanoid and two effect durations eff1, eff2 : succumb 7→ T

Note how tellToDestroy can only be performed by a Humanoid, but the recipient may be
any actor. So, in theory, an actor could tell the Ring to destroy itself. These actions don’t
actually “do” anything, though, so we need to define what happens when they occur in a
story:
1. ∀s ∈ get occurs(s)→ bearer(eff1(s)) = actor(s)
2. ∀s ∈ tellToDestroy occurs(s) ∧ allies(actor(s), recipient(s), pre1(s))→

Drecipient(s)(eff1(s)) destroyed(Ring, eff2(s))
3. ∀s ∈ succumb occurs(s) ∧ bearer(pre1(s)) = actor(s)→

Iactor(s)(eff1(s))¬ destroyed(Ring, eff2(s))

The other Impulse sentences representing the story are:
4. allies(Isildur , Elrond, t1 10)
5. ∀t ∈ T ∀a, b ∈ A allies(a, b, t)→ allies(b, a, t)
6. ∀t DRing(t)¬destroyed(Ring, t)
7. ∀t DElrond(t) destroyed(Ring, t)
8. ∀t ∈ T BElrond(t) weak(Isildur , t)→ ∀m ∈ men BElrond(t) weak(m, t)
9. ∀t ∈ T DRing(t)Φ→ Dbearer(t)(t)Φ
10. ∀t ∈ T t1 ∈ T, ∀a ∈ A, Da(t)Φ ∧Da(t)¬Φ ∧DElrond(t)Φ ∧ Ia(t)¬Φ ∧ t : t1 →

BElrond(t1) weak(a, t1)

All these sentences form the set Ψ. Additionally, we have to state which actions actually
occur in the story, and the values of their properties, i.e. the contents of Σ:

s1 ∈ get with actor(s1) = Isildur , time(s1) = t1 2, eff1(s1) = t2 5
s2 ∈ tellToDestroy with actor(s2) = Elrond, time(s2) = t2 3, recipient(s2) = Isildur ,
pre1(s2) = t1 2, eff1(s2) = t3 5
s3 ∈ succumb with actor(s3) = Isildur , time(s3) = t3 4, pre1(s3) = t2 3, eff1(s3) = t4 5,
eff2(s3) = t4 10

1 As in the movie, we use “men” to refer to “the race of men”, i.e. humans, rather than “males”.
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Table 2 Comparison of the expressiveness of Impulse and other story representations.

Story aspect IPOCL ITL BDI SIG Drammar Impulse

Temporal representation Limiteda Rich None Limiteda None Rich
Beliefs None None Rich Rich Rich Rich
Desires None None Rich Rich Rich Rich
Intentions Limited b None Rich Limitedc Rich Rich
Alternate timelines None Richd None Rich None Richd

Formal semantics Rich Rich Rich Limitede Rich Rich

a Relative order and instantaneous steps; DPOCLT has durations but only simple interval relations
b Intentions are used to justify why actions are taken, but no further reasoning is done on them
c Story Intention Graphs only have “goals”, and no strong distinction between “desires” and “intentions”
d Alternate/imagined timelines can be represented by sequences of actions that did not occur
e Story Intention Graphs allow comparison of stories, but there are no formal inference rules

Together, the time interval, object hierarchy, action hierarchy, action properties, sentences
and occurring actions form the “story”. We can now derive additional information about it:

11. allies(Elrond, Isildur , t1 2) (from 4 and 5, and homogeneity of predicates)
12. bearer( t2 5) = Isildur (from 1 and s1 ∈ get)
13. DIsildur( t3 5) destroyed(Ring, t3 5) (from 2, 11 and s2 ∈ tellToDestroy)
14. DIsildur( t3 5)¬ destroyed(Ring, t3 5) (from 6, 9 and 12)
15. IIsildur( t4 5)¬destroyed(Ring, t4 10) (from 3, 12 and s3 ∈ succumb)
16. BElrond( t4 10) weak(Isildur , t4 10) (from 7, 10, 13, 14, 15 and homogeneity of desire)
17. ∀m ∈ men BElrond( t4 10) weak(m, t4 10) (from 8 and 15)

We thus conclude that Elrond believes men to be weak. In the movie, this is conveyed as
a flashback. With Impulse, a discourse generator could reason about the story to generate
such a scene, or a story authoring tool could be used to explore what changes would prevent
this belief from forming, e.g. an alternative story in which Elrond believes in the strength of
men.

4.2 Expressive power
As the example above demonstrates, Impulse allows for rich reasoning about facts in the
story and the mental models of the actors. Table 2 shows a comparison between Impulse
and other story representations discussed in section 2 in terms of which aspects of the story
they can represent. As can be seen in this table, other representations are more limited in
their representation of time or actors’ mental models when compared to Impulse.

4.3 Usage
The expressive power of Impulse comes with a price: computational complexity and even
decidability. Since Impulse is an extension of predicate logic, which is already undecidable
in the general case [18] and computationally expensive in many others, using it as-is is not
feasible. However, just like Horn clauses [6] are a subset of predicate logic that allows a more
efficient reasoning process while still providing expressiveness, subsets of Impulse can be
identified for similar uses. We propose to limit all sentences to two forms:

Facts are single predicates without any connectives, but with optional quantifiers, e.g.
∀t DRing(t)¬destroyed(Ring, t)
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Rules2 consist of a single implication, where both the antecedent and the consequent
consisted of “and”-connected facts, also with quantifiers, e.g.
∀t ∈ T ∀a, b ∈ A allies(a, b, t)→ allies(b, a, t)

Limiting the sentences to these two forms allows us to use a slightly modified variant
of forward chaining, that accounts for the temporal aspect of the logic, as a more efficient
method for deriving new information. As the Lord of the Rings example demonstrates, these
two forms are sufficient to represent and reason about a complex narrative.

Since Impulse is designed for story representation rather than for generation, data must
be acquired and encoded in Impulse somehow. There are several ways this can happen. One
approach is to use a story encoded in another representation, for example as an IPOCL plan,
and translate it to Impulse. Then this story could be annotated manually or automatically
to make use of Impulse’s richer representation of time and actors’ mental models, for
example by using a scheduler, or doing intention recognition. Another rich data source for
content describable in Impulse are log files of video games. They often contain very detailed
information about the states of the world and which actions are performed by actors over
time, as well as having detailed and formal rules for the effects of their actions. A discourse
generator could use this information to provide e.g. a summary of the game in an engaging
way.

5 Conclusion

We presented Impulse, an expressive logical representation for stories that incorporates
representations of time and actors’ mental models of the world. It draws from Allen and
Ferguson’s work on Interval Temporal Logic and combines it with a BDI model, which is
modified to also account for time. We demonstrated how this approach can be used to model
a simple story fragment and reason about its actors’ mental models. We then compared the
expressive power of our representation to that of other approaches. We also acknowledged
the computational complexity of the reasoning process on our representation, and how it can
be limited for some particular use cases. We argue that one such restriction yields an efficient,
yet expressive deduction scheme. An actual implementation of this deduction system is
currently being worked on.

While we claim that this representation could be used in a discourse generator, a tighter
integration and a representation of the discourse itself still remains as future work.
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Abstract
Computational generation of literary artifacts very often resorts to template-like schemas that
can be instantiated into complex structures. With this view in mind, the present paper reviews a
number of existing attempts to provide an elementary set of patterns for basic plots. An attempt
is made to formulate these descriptions of possible plots in terms of character functions, an
abstraction of plot-bearing elements of a story originally formulated by Vladimir Propp. These
character functions act as the building blocks of the Propper system, an existing framework for
computational story generation. The paper explores the set of extensions required to the original
set of character functions to allow for a basic representation of the analysed schemata, and a
solution for automatic generation of stories based on this formulation of the narrative schemas.
This solution uncovers important insights on the relative expressive power of the representation
of narrative in terms of character functions, and their impact on the generative potential of the
framework is discussed.
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1 Introduction

Computational generation of literary artifacts very often resorts to template-like schemas
that can be instantiated into complex structures. This approach has been addressed in the
story generation field as a number of computational systems following a grammar-based
design [9, 6, 5].

With this view in mind, the present paper reviews a number of existing attempts to
provide an elementary set of patterns for basic plots. None of these attempts have been
accepted as generally valid. To a large extent, they rely on oversimplification – reducing plot
to a very abstract outline that conforms to a great number of story but characterises none of
them –, or they focus on particular aspects of a given story – to the detriment of others – so
it can be reduced to a schema that matches a larger number of stories. Such characteristics
may play against the usefulness of any particular one of them as single framework for the
description or classification of stories. However, considered as a whole, they can be understood
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Table 1 The Seven Basic Plots as described by Booker.

Overcoming the Monster hero sets out to confront a monster and eventually defeats it
Rags to Riches hero starts from humble beginnings and eventually achieves

happiness
The Quest hero sets out to fulfill a quest
Voyage and Return hero sets out on a journey and returns having matured in the

process
Comedy initial confusion involving love relationships is eventually re-

solved happily
Tragedy traces the fall from grace of a particular character to a tragic

ending
Rebirth main character almost falls from grace but repents at the last

minute

as a basic abstract vocabulary to describe different plots. In the context of automated story
generation, such a vocabulary would be very useful in at least two different senses:

it may provide an agreed vocabulary for describing what type of story is desired, e.g. “a
vengeance story” or “a quest story”
it may provide a basic skeleton that the desired story should satisfy, regardless of any
additional complexity that may be introduced to enrich it

In order to address needs of this kind, the present paper attempts to formulate these
descriptions of possible plots in terms of schemas that may be used to drive the Propper
system, an existing framework for computational story generation. The paper also explores
the set of extensions required to the original set of character functions to allow for a basic
representation of the analysed schemata. This is intended as a proof of concept to test the
initial hypothesis of the usefulness of such schemas in the context of story generation. The
Propper system [3, 4] is a computational implementation of the procedure for generating
stories described by Vladimir Propp [8] as a possible use of his classic formalization of the
morphology of the folk tale.

Once the various descriptions for plot are available as schemas that can be used to drive
the Propper system, the impact of using them instead of - or as well as - the original canonical
sequence for folk tales is discussed in terms of whether it expands the generative potential of
the Propper system.

2 Review of Previous Work

This section reviews some of the existing proposals for the schematisation of possible story
plots, the Proppian morphology of a folk tale, and the Propper system for story generation.
Later sections bring these ingredients together to propose a computational model of narrative
that can consider input in terms of the reviewed plot schemas and produces matching stories.

2.1 Some Existing Descriptions of Schemas for Plot
Christopher Booker [2] proposes that there are seven basic plots such that all possible stories
can be seen as instantiations of these. The seven plot in question are described briefly in
Table 1. These descriptions attempt to capture the basic outline for purposes of reference,
more detailed descriptions follow below.
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Table 2 20 Master Plots as presented by Tobias.

Quest hero sets out to fulfill a quest
Adventure much like a Quest but with less focus on a particular goal and

more action
Pursuit hero is pursued and eventually manages to escape
Rescue hero rescues a victim imprisoned by a villain
Escape like Rescue but the protagonist is the victim and eventually

escapes by his own means
Revenge protagonist sets out to avenge a villainy
The Riddle involves solving a riddle (reader should try to solve it before the

protagonist)
Rivalry a protagonist and an antagonist of balanced power clash, prot-

agonist wins
Underdog as in Rivalry but protagonist is at disadvantage and wins through

tenacity
Temptation maps the fight of protagonist against temptation, from initial

fall to eventual success
Metamorphosis protagonist suffers a curse that transforms him into a beast, but

love releases him eventually
Transformation faced with a crisis, protagonist suffers transformation with im-

portant effects (usually at a price)
Maturation tracks immature character through challenging incidents to

maturity (usually achieved at a price)
Love maps the progress of a love relation from initial obstacles to

final fulfillment (if test passed)
Forbidden Love as in Love but around an unconventional love relation (usually

adultery) which ends badly
Sacrifice tracks transformation of main character from low to high moral

state, leading to a final sacrifice
Discovery protagonist discovers himself
Wretched Excess traces psychological decline of a character based on a character

flaw
Ascension protagonist faces a moral dilemma and undergoes ups and down

till he reaches success
Descension as in Ascension but followed to final disaster

An important point to note is that these plots are not mutually exclusive. Any given
narrative may combine several of them into its overall structure, with some of these subplots
possibly focusing on different characters.

Tobias [10] proposes the existence of 20 master plots. His book is more oriented towards
instruction on how to build instances of these plots. A relevant insight presented here is that
plots can be divided into plots of the body – involving mainly action – and plots of the mind
– involving psychological development of the characters. Brief descriptions of these 20 master
plots are provided for reference in Table 2.

The 20 plots by Tobias are even more difficult to keep separate from one another in
practical terms. In terms of actual events in the narrative, quests or adventures are very
likely to include elements of pursuit, rescue, escape, rivalry, revenge, temptation, sacrifice,
or some character being an underdog at some stage. In terms of character development,
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they may also include transformation, maturation, or discovery. Much the same may be said
about love stories. Our understanding it that a plot is considered to satisfy one of these
labels only if the label is applicable to the main structure of the plot.

Georges Polti [7] proposed 36 dramatic situations, following Gozzi’s assertion that there
can only be thirty six tragic situations. These situations are briefly described for reference in
Table 3, although Polti divides each of them into a series of classes and sub-classes that are
further described or exemplified in the referenced book.

These 36 situations can be combined in the same story, since they must be understood as
an outcome of previous events in the story, when the intervening characters come together
and the main character in the situation must face a decision to be made, a change to be
suffered or an obstacle to be overcome.

2.2 Proppian Morphology of a Story
At the start of the 20th century, Vladimir Propp [8] identified a set of regularities in a subset
of the corpus of Russian folk tales collected by Afanasiev [1]. These regularities he formulated
in terms of character functions, understood as acts of the character, defined from the point
of view of their significance for the course of the action. Character functions are so named
because, in Propp’s understanding, they represent a certain contribution to the development
of the narrative by a given character. According to Propp, for the given set of tales, the
number of such functions was limited, the sequence of functions was always identical, and all
these fairy tales could be considered instances of a single structure.

The set of character functions includes a number of elements that account for a journey,
a number of elements that detail the involvement of the villain – including the villainy itself,
some possible elaborations on the struggle between hero and villain, and a resolution –, a
number of elements that describe the dispatching of the hero, a number of elements that
describe the acquisition of a magical agent by the hero, and a number of elements concerned
with the progressive unveiling of the hero’s role in opposition to a false hero.

It is less well known that Propp provides in his book a very clear description of how his
morphology could be used for story generation.

2.3 The Propper System
The Propper system developed by Gervás [3] constitutes a computational implementation
of a story generator initially based on Propp’s description of how his morphology might be
used to generate stories.

It relies on the following specific representations for the concepts involved:
a character function, a label for a particular type of acts involving certain named roles
for the characters in the story, defined from the point of view of their significance for the
course of the action
a sequence of character functions chosen as backbone for a given story
possible instantiations of a character function in terms of specific story actions, involving
a number of predicates describing events with the use of variables that represent the set
of characters involved in the action

Based on these representations the Propper system defines a procedure that first chooses
a sequence of character functions to act as abstract narrative structure to drive the process,
and then progressively selects instantiations of these character functions in terms of story
actions to produce a conceptual representation – in terms of an ordered sequence of predicates
– of a valid story.
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Table 3 The 36 dramatic situations as described by Polti.

Supplication power in authority must choose between a persecutor
and a suppliant

Deliverance protector comes to the rescue of the distressed
Crime Pursued by Vengeance avenger executes a vengeance on a criminal
Vengeance taken for kindred
upon kindred

avenger and the criminal are kin

Pursuit hero is pursued by an abstract peril or punishment
Disaster a power is defeated by an enemy or catastrophe
Falling Prey to Cruelty of Mis-
fortune

hero suffers a cruel master or misfortune

Revolt hero is a conspirator that intrigues against a tyrant
Daring Enterprise hero attempts to recover an object or person from an

adversary
Abduction hero rescues an abducted victim from its abductor
The Enigma a combat of the intelligence to find a person or object
Obtaining aim to be achieved through eloquence and diplomacy
Enmity of Kinsmen kinsmen transform love into (usually) mutual hatred
Rivalry of Kinsmen a desired person causes a kinsman to hate another
Murderous Adultery a betrayed husband or wife kills one or both adulterers
Madness a madman slays, injures or brings disgrace onto a victim
Fatal Imprudence imprudence or curiosity as the cause of a loss
Involuntary Crimes of Love character unknowingly commits adultery or incest
Slaying of a Kinsman Unrecog-
nized

unrecognized victim is slain by a kinsman

Self-Sacrifice for an Ideal hero sacrifices life, love or well-being to a cause
Self-Sacrifice for Kindred hero makes sacrifices for happiness of a relative
All Sacrificed for Passion character makes sacrifices for a vice or passion
Necessity of Sacrificing Loved
Ones

hero sacrifices a loved one for a necessity or vow

Rivalry of Superior and Inferior two masculine or feminine rivals with different rank
Adultery a deceived husband or wife
Crimes of Love a lover and beloved incur in questionable acts
Discovery of the Dishonor of a
Loved One

a character discovers the shame of a loved one

Obstacles to Love marriage prevented by social norms
An Enemy Loved one of two lovers is hated by kinsmen of the other
Ambition character tries to obtain a good guarded by an ad-

versary
Conflict with a God a mortal struggles with a deity
Mistaken Jealousy a character is jealous of another
Erroneous Judgement any kind of mistaken judgement
Remorse a culprit suffers remorse for a crime or love fault
Recovery of a Lost One a hero struggles to find a lost, loved one
Loss of Loved Ones a character witnesses the death of a loved one
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Table 4 Set of character functions employed as canonical sequence.

test by donor difficult task
hero reaction branding
acquisition magical agent victory
villainy / lack task resolved
hero dispatched trigger resolved
begin counteraction return
acquisition magical agent hero pursued
departure rescue from pursuit
test by donor unrecognised arrival
hero reaction unfounded claims
acquisition magical agent false hero exposed
transfer transfiguration
trigger resolved branding
unrecognised arrival villain punished
unfounded claims hero marries
struggle

To fulfill Propp’s description of the morphology of a folk tale, the sequence of character
functions that acts as backbone for a story has to be a subset of the character functions
listed by Propp, appearing in a relative order that conforms with a given canonical sequence.
The actual set of character functions employed as canonical sequence is given in Table 4.
Character functions are presented in two columns by their abbreviated name. A key point
in the canonical sequence is the villainy / lack pair of character functions written in bold.
These differ from all the others in that only one of them is ever included in any single story,
and all stories must contain either one or the other.

From a given sequence of character functions, the system defines a fabula, a sequence
of states that contain a chain of story actions – which are instances of those character
functions. A story action involves a set of preconditions – predicates that must be present
in the context for continuity to exist –, and a set of postconditions – predicates that will
be used to extend the context if the action is added to it. Each story action is linked to its
context of occurrence by having its preconditions satisfied by the preceding state. The initial
state by default incorporates all predicates of the first action, and each valid action added to
the fabula generates a new state that incorporates all predicates of the previous state, plus
the predicates of the new action. To evaluate whether the preconditions of a story action are
satisfied by the context, they are unified with the set of predicates that hold in that state.

The revised version described in [4] describes extensions to the original constructive
procedure that take into account the possibility of dependencies between character functions
– such as for instance, a kidnapping having to be resolved by the release of the victim – and
the need for the last character function in the sequence for a story to be a valid ending for it.

3 Describing Existing Schemas for Plots in Terms of Proppian
Character Functions

We want to attempt to unify the material reviewed in Section 2 into a single representation
that is compatible with the existing framework of the Propper system. As the Propper
system is driven by Proppian character functions, we will consider whether the schemas
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arising from the approaches reviewed can be described as sequences of character functions as
described by Propp, and what extensions might be required for a better fit.

3.1 Establishing a Common Vocabulary from the Set of Taxonomies
The different sets of plots reviewed in Section 2.1 show a certain overlap in some cases (both
Booker and Tobias include a plot based on a quest, for instance). Where they differ, it would
be ideal to establish some way in which the elements in one set might be related to elements
in the other, either as more specialised or more abstract versions.

When trying to cross-relate these various taxonomies with one another, it becomes
apparent that they are formulated at different levels of abstraction, and focused on different
aspects of the plot. This makes it difficult to find a clear correlation between them. However,
for the purposes of our paper – which aims at making it possible to rely on these descriptions
to specify desired stories and/or drive the process of their construction – it becomes important
to be able to understand how elements from these descriptions might combine or interact.

In that sense, a number of patterns can be identified. Tobias’ and Booker’s plots can be
related as follows:

Tobias’ plots of Temptation, Metamorphosis, Transformation, Maturation and Discovery
could fit Booker’s description of Rebirth plots.
Tobias’ plots of Pursuit, Rescue, Escape, Rivalry, Underdog, Revenge, Sacrifice might be
employed to articulate what Booker describes as an Overcoming the Monster plot.
Tobias’ Love plot correlates nicely with Booker’s Comedy plot.
Tobias’ plots of Wretched Excess, Descension, Forbidden Love, and, possibly, Sacrifice
might fit Booker’s Tragedy plot.
Tobias plot of Ascension fits Booker’s Rags to Riches plot.
Tobias’ plots of Transformation, Maturation and Discovery could apply as descriptions
of character development implicit in Booker’s description of Quest, Voyage and Return,
Rags to Riches and Rebirth plots.

Polti’s dramatic situations are not presented as candidates for complete plots, but rather
as situations with dramatic potential that may arise within a given plot. In this sense, they
are easier to place with respect to the other two proposals considered in this paper. In a
sense, they constitute a finer grained vocabulary for describing plot elements that may occur
in larger plot structures. For this reason, some of them show a surprising match with those
plots of Tobias’ that we have described as elements sometimes used as ingredients being
expanded into full independent plots, such as Pursuit – which appears in both Tobias’ and
Polti’s lists –, or Deliverance in Polti closely matching Rescue in Tobias.

For this set of situations, the task to be considered becomes more to identify where in
the more elaborate structures these situations appear.

3.1.1 Paraphrasing Plot Options in Terms of Character Functions
Booker’s set of seven plots can be easily paraphrased in terms of Proppian character functions.
One such paraphrase of them is given in Table 5. There are some differences. Where Propp
considers a fixed sequence of character functions from which a selection can be picked out,
Booker’s descriptions differ in at least two ways. First, they sometimes allow for more
than one possible relative ordering between some of the elements included. In the table,
this has been represented by placing between brackets those elements that may occur in
interchangeable order or that are optional. Second, Booker’s descriptions include a certain
possibility of some subsequences reoccurring repeatedly over the same plot. In the table,
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Table 5 Paraphrases of Booker’s 7 basic plots in terms of Proppian character functions.

Overcoming the Monster (villainy*, MONSTERS*), struggle, victory, villain punished,
hero marries

Rags to Riches lack, departure, transfiguration, hero marries
The Quest (hero dispatched, difficult task), departure, (MONSTERS*,

HELPER*), task resolved
Voyage and Return departure, ((difficult task, task resolved), (MONSTERS*,

HELPER*)), return
Comedy lack, (transfiguration, unrecognised arrival), (difficult task, task

resolved)*, (hero recognised), transfiguration, hero marries
Tragedy (villainy*, MONSTERS*), struggle, victory, villain punished
Rebirth (villainy*, MONSTERS*), repentance, repentance rewarded

such subsequences have been replaced with labels in capital letters that have been defined
separately. It may pay to abstract them into higher order labels that can appear within more
structured sequences. They correspond to:

MONSTERS: struggle, hero pursued, (victory, rescue from pursuit)

TESTERS: test by donor, hero reaction, acquisition magical agent

Where certain character functions (or labels for subsequences) can occur more than once
according to Booker, these have been marked with an asterisk *. The case of Tragedy and
Rebirth is strikingly different. Both can indeed be phrased in terms of Proppian character
functions as shown in the table. However, this requires a slight revision of the Proppian
concept of character function. Proppian character functions assume a fixed set of roles,
namely a hero, a villain and some auxiliary characters such as dispatcher, a donor, a helper...
But in Proppian functions, the protagonist of the story is assumed to be always the hero.
In the case of Booker’s Tragedy and Rebirth, the paraphrase works only if the protagonist
is considered to be the villain. This implies that the Tragedy plot would correspond to an
instance of the Overcoming the Monster plot but told from the point of view of the villain.
It is important to note that the occurrence of the victory character function now implies that
the protagonist is defeated, which is contrary to Propp’s original interpretation. The Rebirth
plot requires a more elaborate reworking to be phrased in terms of Proppian functions,
because it involves a particular turn in the story that was not originally contemplated by
Propp. This is the point in the narrative where the villain sees the light, repents, and redeems
himself. New character functions would need to be introduced to cover this process, as it
plays a fundamental role in such stories that would definitely need capturing. We refer to
these character functions as repentance and repentance rewarded, and we include them as
such in the table.

The Comedy plot requires a special analysis. It may be phrased in terms of Proppian
functions, in as much as it starts from an initial lack – though specifically related to love, lack
of a love partner, lack of attention from the chosen partner, or lack of permission to marry
the chosen partner –, it involves solving a difficult task – related to the corresponding lack –,
and it ends with the hero marrying. However, the description of this plot provided by Booker
addresses the corresponding story at a level of detail that cannot be covered appropriately
with Proppian functions, at least in the sense that these had been defined within the Propper
system. To deal with this case, we would need a system with the following features:
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Table 6 Paraphrases of the Elementary Plots of Tobias’ in terms of Proppian character functions.

Pursuit hero pursued, rescue from pursuit
Rescue villainy, trigger resolved
Escape villainy, trigger resolved [protagonist is victim, not hero!]
Revenge villainy, villain punished
The Riddle difficult task, task resolved
Rivalry struggle, victory
Underdog struggle, victory [protagonist at disadvantage]

the ability to explicitly represent the gender of characters1, as the core of the plot revolves
around love relations between characters
the ability to represent shifts in affinity between characters and to have these shifts arising
from and triggering events in the narrative
the ability to consider a number of interwoven subplots focused on different characters

Such features are beyond the scope of the present paper but they will be considered for
future work. Nevertheless, a basic sketch of the Comedy plot in terms of Proppian functions
has been provided for completeness.

According to Booker’s description of his plots, the paraphrases given in Table 5 constitute
a sketch of the main events that characterise each of the plots. The fleshing out of these
plots into specific actual stories may involve combining more than one plot, in which case
the corresponding sequences of character functions may intermingle as different narrative
threads. When such task is attempted computationally, some means must be provided for
keeping track of which characters play which roles in which of these threads, and whether
any given character can play different roles in different threads. This is beyond the scope of
the present paper and it is currently left for future work.

As discussed in Section 3.1, the elements described by Tobias amongst his 20 master
plots operate at a slightly different level of abstraction from those used by Booker. In a
certain sense, they correspond to focusing the plot of a complete story on particular types of
situation that were occurring as parts of the plots considered previously. The correspondences
already established between Booker’s and Tobias’ plots introduce a change in the overall
task definition. Given that many of the plot descriptions given by Tobias can be seen as
specific instances of Booker’s plots, it is less useful to paraphrase them in terms of Proppian
functions – the paraphrase already given for the corresponding Booker plot might be used in
each case – and it becomes more interesting to consider how the different instantiations that
Tobias provides might be differentiated from one another in terms of a Proppian description
(or what extensions of the Proppian implementation might be required to consider these
plots).

Tobias’ plots of Pursuit, Rescue, Escape, Rivalry, Underdog, Revenge, Sacrifice can be
represented as more specific plots that focus on parts of the sequences of character functions
used to describe Booker’s plots. A tentative paraphrasing for them is presented in Table 6.

The Quest and Adventure plots can be seen as similar to Booker’s The Quest and Voyage
and Return. Tobias’ Love plot has been linked to Booker’s Comedy plot, and so it is subject

1 Although in current times it might have been more politically correct to phrase this in terms of sexual
preferences, we have opted in this desiderata for a more classical approach to character pairings in terms
of gender. This might be revised in future work to allow for more generic and politically correct story
telling capabilities.
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to the same considerations described earlier for that one. The Ascension plot can be mapped
to the Rags to Riches plot.

The remaining plots described by Tobias can be grouped into a set of instantiations of the
two Booker plots already described that presented significant differences with the Proppian
schema: Tragedy and Rebirth.

Forbidden Love is related to Comedy/Love plots in that its main ingredient is a love
relationship, and it differs from them in two ways: the love relation in question is one against
convention, and it ends badly. As before, this may be implemented using the same set of
characters and actions as for comedy, but making the protagonists a pair of characters that
do not get paired off in the end. This is similar to the opposition between Overcoming the
Monster and Tragedy. In a sense, one could say that Tobias is enriching the set of plots by
considering a plot based on love but which can end badly, whereas Booker only considers
plots on love that end well.

In a similar opposition, the Descension and Wretched Excess plots could be seen as dark
counterparts to the Rags to Riches/Ascension type of plot. These may be paraphrased in
terms of Proppian functions by inverting the order in which the functions in the sequence for
Rags to Riches occur. However, better results might be obtained if specific character functions
are defined to represent: an initial positive situation for the character – corresponding to
a positive version of lack –, a character function to discover events in which the fortune of
the protagonist suffers, and a final negative situation. This suggests that a reworking of the
set of character functions might benefit from a little generalization, so that both positive
and negative situations can be described, and events that cause transitions in both positive
and negative directions can be represented. Then the opposing pairs of plots may all be
represented based on these. The original set of character functions defined by Propp covers
only part of this spectrum – it includes no character function for a positive initial situation –
and relies on very specific solutions for some particular areas – it links very tightly the final
positive situation of the hero with either marriage or coronation, for instance. An effort to
broaden this set of character functions would greatly improve the range of possible stories
that can be generated. As this requires a heavy effort of knowledge engineering of system
resources it is postponed for future work.

Differences between Descension and Wretched Excess can be identified in terms of one
being more concerned with material situation of the protagonist, and the other with his/her
psychological decline. In marking this difference, Tobias shows a concern with an aspect
of plots that had not been considered by either Propp or Booker: the difference between
physical and psychological characterization.

The set of plots proposed by Tobias shows an increase in number partly because it distin-
guishes a number of plots that are based on psychological development of their protagonists –
what he describes as plots of the mind – beyond those considered by Propp – which centre
almost exclusively on what Tobias calls plots of the body. These plots of the mind are the
Temptation, Transformation, Maturation and Discovery plots. The Metamorphosis plot
combines such a psychological ingredient with a physical change. In terms of Booker’s classi-
fication, most of these qualify as Rebirth plots, as they involve a change of the protagonist
during the development of the plot. In a certain sense, the Sacrifice plot also includes a
similar turning point related to psychological issues, though in this case the change also
translates into a physical sacrifice. The differences between the various plots arise from these
slight differences in the relative importance of the material and the psychological aspects, or
in the specific type of change that the protagonist is subjected to – as described reasonably
well by the names of these plots.
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Again, the representation of the psychological evolution of characters is beyond the
current capabilities of the Propper system, and discussion of an appropriate extension beyond
the scope of the present paper, but it will be considered as future work.

With respect to Polti’s dramatic situations, these are not so much patterns for complete
plots but rather building blocks that may be employed in the construction of plots. In this
sense, they are closer to being descriptions of actions of the characters that are significant for
the course of the action, which is what Propp’s character functions are intended to be. For
this reason, when establishing a correspondence that might lead to a common vocabulary for
plot descriptions, it would be more useful to consider Polti’s dramatic situations as alternative
abstractions, closely related to Proppian character functions. A possible alignment between
Polti’s dramatic situations and Propp’s character functions (or groups thereof) is shown
in Table 7. The material is presented according to the following criteria. For each line of
the table, the first column indicates a character function or a group of character functions
that might be considered to correlate in some way with the dramatic situations listed in
the second column. The third column is used to indicate specific characteristics that the
instantiations of the character functions given in the first column would need to satisfy to
properly represent the dramatic situation given in the second column. The bottom half of the
table shows dramatic situations that have no direct match to Proppian character functions.
For these, it may be worth considering the introduction of specific character functions.

3.2 Extending the Propper System for Schema-Driven Generation
Once a common vocabulary has been agreed that includes elements from the various tax-
onomies, the Propper system has been extended to take advantage of it.

This implies two basic extensions beyond the previous versions of the system:
it must accept input in the form of elements from this vocabulary to drive the story that
is to be constructed
it must be capable of producing stories that match the corresponding description

The first extension has been achieved by means of a preprocessing module that, given the
name of a given narrative schema, builds a sequence of character functions based on resources
along the lines of the tables presented in Section 3.1.1. To build a proof of concept, the
complexities of repetition and alternative ordering have not been considered and the initial
version focuses on simple instantiations of the more generic sequences. These sequences can
now be used as input to the stage of fabula generation of the Propper system, which searches
for appropriate instantiations of these character functions in terms of story actions that link
into a coherent whole that can be recognisable as a story.

The second extension has proven to be more difficult, but it has also uncovered a number
of important insights on the advantages and disadvantages of Propp’s framework as a
computational model of narrative. Additionally, this effort has prompted a number of
improvements that have allowed the system to go beyond Propp’s original formulation.

The first insight relates to the fact that most of the sequences required to implement the
set of narrative schemas reviewed were already included in the canonical sequence proposed
by Propp. This must be considered an important merit of Propp’s framework as it implies
that the method for story generation outlined by Propp – in terms of selecting character
functions from his canonical sequence and instantiating them – would in theory be capable
of producing instances of most of the narrative schemas reviewed. The difficulty would lie in
how to inform the choices at each point. This is part of the problem that the rest of this
section attempts to address.
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Table 7 Alligment of Polti’s 36 Dramatic Situations with Proppian character functions.

lack Ambition
Recovery of a Lost One
Loss of Loved Ones

lack Disaster
villainy Falling Prey to Cruelty of Misfortune

Madness
Fatal Imprudence
Involuntary Crimes of Love
Slaying of a Kinsman Unrecognized
Adultery (love)
Crimes of Love (love)
Discovery of the Dishonor of a Loved One

trigger resolved Deliverance
rescue from pursuit
victory Crime Pursued by Vengeance
villain punished Vengeance taken for kindred upon kindred
trigger resolved
hero pursued Pursuit
struggle Enmity of Kinsmen (psychological)

Rivalry of Kinsmen
Rivalry of Superior and Inferior

trigger resolved Abduction
Murderous Adultery

test by donor Daring Enterprise
hero reaction The Enigma (temptation or a riddle)
acquisition Obtaining
/
difficult task
task resolved

Self-Sacrificing for an Ideal (sacrifice)
Self-Sacrifice for Kindred (sacrifice)
All Sacrificed for Passion (sacrifice)
Necessity of Sacrificing Loved Ones (sacrifice)
Obstacles to Love (love)
An Enemy Loved (love)
Mistaken Jealousy (psychological)
Erroneous Judgement (psychological)
Remorse (psychological)
Supplication
Revolt
Conflict with a God
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The second insight concerns the fact that the set of story actions developed to cover the
Proppian character functions includes a broad range of possible story actions to instantiate
each character function. However, in many cases the specific instances of character function
occurring in the context of one of these more specific narrative schemas need to be restricted
to a subset of the complete range of possible story actions. For instance, when the character
function for lack occurs at the beginning of a Rags to Riches schema it works better if
instantiated with story actions concerned with hardship or poverty rather than desire for
wondrous magical objects, whereas both occur in the context of Proppian tales. When
the same character function occurs at the beginning of a Comedy plot, it only works if
instantiated with story actions concerned with lack of a love partner, or lack of permission
to marry. To address this issue, the module of the Propper system concerned with retrieving
possible story actions to instantiate a given character function has been refined to take into
account what particular narrative schema is being considered in each case. The knowledge of
which story actions are suitable to instantiate which character functions under particular
narrative schemas has been encoded explicitly in resources local to these modules. A similar
mechanism may be applied to address the more detailed specific instantiation of character
functions required to generate instances of Tobias’s plots and/or Polti’s dramatic situations,
as described above.

A third important insight arose from the observation that, whereas the Proppian morpho-
logy takes for granted that the protagonist of the stories is always the hero, some of the set of
narrative schemas considered focused on the villain as protagonist. Namely, Booker’s schemas
for Tragedy and Rebirth, and those of Tobias’s plots that in the analysis in Section 3.1 have
been associated to these two. This presents no problem to our endeavour in as much as the
conceptual representation of a story as currently produced by the Propper system is agnostic
as to who is the protagonist. This will become apparent in the examples presented later in
the paper. This issue of who the protagonist is would have to be taken into account in future
work, once the problem of rendering these conceptual representations of stories as text is
addressed.

A fourth insight focused on the fact that to obtain sequences of character functions that
matched as closely as possible the descriptions of the narrative schemas, certain character
functions (or subsequences thereof) might need to occur more than once. This presented
problems because not all instances of the available story actions allowed this. For instance,
some of the story actions for the victory character function allowed the villain to survive
the encounter – thereby being available for a second struggle later in the story –, whereas
others ended more radically with his demise. This restriction was particularly important
to distinguish between the two types of schema where the villain acts as protagonist of the
story: instances of the Rebirth narrative schema require the villain to repent at some point in
the story and undergo a radical change for good, whereas instances of Tragedy may well end
in his utter destruction. From a computational point of view, it required a solution capable
of discerning which particular story actions could be used to instantiate a character function
at what points of the story. The process for selecting story actions was refined further to
take into consideration the relative position of each character function within the narrative
schema being considered.

The observed possibility of repeating and combining certain subsequences of character
functions to make up more complex schemas led to a fifth insight concerning Propp’s
morphology. Although the canonical sequence of character functions as described by Propp
includes a certain redundancy to allow character functions (or small subsequences of them) to
occur at more than one point in the overall narrative arch, the morphology as formalised is too
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Table 8 An example story for the Overcoming the Monster narrative schema.

0 character id810
0 torment_at_night id810 id811
0 victim id811
0 character id811
0 misbehaved id810
1 runs_away id811
1 pursues id810 id811
1 demands id810 id811
2 hides id316 id811
2 escapes id811
3 weight_contest id811 id810
3 confrontation id811 id810
4 heavier id811
5 punished id810
5 shot id810
6 marries id811
6 acceeds_to throne id811

rigid to capture appropriately the broad range of narrative schemas that have been reviewed.
Propp’s insistence that the character functions in his morphology need be considered in
a specific order introduces a restriction that reduces the expressive power that it might
otherwise have had. This is particularly relevant given that the set of narrative schemas
reviewed is by definition a subset of all the possible ones. For this reason, we intend to
address as future work alternative possible means of combining these sequences of character
functions into complex narrative schemas.

3.3 Examples of Constructed Stories Matching Given Narrative
Schemas

Although it would be impossible to include in this paper examples of stories to match all
the various narrative schemas reviewed, an effort has been made to cover instances of at
least the seven basic plots described by Booker. As the other narratives schemas or dramatic
situations have been related back to these seven in the sections above, this should be seen as
an indication of the potential of the approach.

The task of extending the knowledge resources of the system to cover the full set of
schemas would be significant. The original knowledge engineering effort for the first version of
the Propper system, as reported in [3], demonstrated this task to be an important bottleneck
for the development of this type of system. As a proof of concept, a basic initial version of the
desired approach has been implemented based on the existing resources in terms of related
sets of character functions and story action resources. The two new character functions
repentance and repentance rewarded and a small set of possible instantations of them as story
actions have been added. The stories that result from this effort are reported below.

Table 8 presents an example of story corresponding to the Overcoming the Monster
narrative schema. This particular story has the peculiarity that the system has picked the
victim of the initial villainy as the hero of the story.

Table 9 presents an example of story corresponding to the Rags to Riches narrative
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Table 9 An example story for the Rags to Riches narrative schema.

0 character id301
0 lack id301 money
1 sets_out id301
2 builds id301 palace
2 new_physical_appearance id301
3 marries id301

Table 10 An example story for the Comedy narrative schema.

0 character id298
0 lack id298 bride
1 puts_on id298 garment
1 deceiving_appearance id298
2 arrives id298 id719
2 location id719
2 disguised id298
2 unrecognised id298
3 sets id157 id298
3 character id157
3 involves difficult_task hiding
4 solve id298 difficult_task
4 before dead_line
5 recognised id298
6 puts_on id298 garment
6 new_physical_appearance id298
7 betrothed id298

schema. This story is indicative of how the simplest structure that conforms to one of these
schemas may be insufficient to hold the reader’s interest and fleshing out with additional
narrative elements may be required.

Table 10 presents an example of story corresponding to the Comedy narrative schema.
As indicated above, this is intended only as a baseline. Quality would improve significantly
once the complexities outlined earlier as required for Comedy are addressed.

Table 11 presents an example of story corresponding to the Tragedy narrative schema. It
is important to note that in this story the protagonist must be considered to be character
id775, who plays the role of the villain.

Table 12 present an example of story corresponding to the Rebirth narrative schema.
Again, the protagonist of this story is character id805.

The stories for narrative schemas corresponding to The Quest and Voyage and Return as
described rely heavily on a combination of a number of incidents. As a result, they turned
out to be overlong to be reported within the size limitations of the paper, but the system
has been extended to be able to produce them. They also suffer from the rigid sequencing of
the various elements involved (struggles with villains, chases, task to solve, encounters with
magical helpers). The more flexible solution for the relative ordering of these elements that
is being considered as future work would result in better stories.
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Table 11 An example story for the Tragedy narrative schema.

0 character id775
0 substitute id775 id776 id777
0 victim id776
0 character id776
0 bad id777
0 misbehaved id775
1 runs_away id776
1 pursues id775 id776
1 demands id775 id776
2 throws id776 id310
2 turns_into id310 id312
2 obstacle id312
2 escapes id776
3 weight_contest id776 id775
3 confrontation id776 id775
4 heavier id776
5 punished id775
5 shot id775

Table 12 An example story for the Rebirth narrative schema.

0 character id805
0 try_to_eat id805 id806
0 victim id806
0 character id806
0 misbehaved id805
1 runs_away id806
1 pursues id805 id806
1 demands id805 id806
2 turns_into id806 id314
2 unrecognisable id314
2 escapes id806
3 play id806 id805 cards
3 confrontation id806 id805
4 wins id806
5 repents id805
6 acceeds_to throne id805
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4 Discusion

The extensions that have been required to enable the representation of existing plot schemas
as paraphrases in terms of Proppian character functions arose from one of two possible
situations:

the plots in question violated one of Propp’s basic premises (which basically involve the
protagonist being the hero and the tale having a happy ending)
the set of character functions did not allow a direct representation of some complication
in the plot

The first situation has been easily resolved by allowing the story generation to consider
stories that violate Propp’s premises. Once the roles in the story have been decoupled from
the choice of protagonist, the existing set of character functions allows representation of
different stories simply by shifting the protagonism to characters that do not succeed in the
end. These have always existed as antagonists, and they can now become protagonists of
tragic stories.

The second situation has consequences at two different levels. First, the Proppian set
of character functions did not contemplate complications like fluctuating love relations or
psychological development of characters. The multiplication of the number of possible
schemas for plot arise from the consideration of instances of particular subsequences that
present specific characteristics related to these features not contemplated by Propp. Some of
these complications required a significant overhaul of the expressive power of the underlying
computational system and can only be considered as further work.

Yet other complications would require only a dual process of generalization/instantiation
of the character functions in the existing set to cover the missing features. Propp’s set of
character functions was developed for a very specific set of folk tales and it was not intended
to be generalizaded beyond it. The concept of character function itself, in contrast, was
defined as a generic tool for the analysis of narrative.

An extended set of character functions, satisfying Propp’s requirements on the definition
of a character function but covering the range of basic complications outlined in the present
paper would be significant contribution to the field of narrative generation. The set of
character functions developed by Propp has been tested repeatedly as a possible resource on
which to base generic story telling system and has been found wanting [11]. The proposed
extension might help to reduce the shortcomings perceived and increase the expressive
potential of system based on a character function representation.

A further extension being contemplated as future work concerns the need for a flexible
mechanism for combining meaningful sequences of character functions into larger narrative
units, which would allow the system to capture more faithfully a larger set of the reviewed
narrative schemas. A grammar-based solution such as the one outlined in [3] is being
considered as a possible solution.

5 Conclusions

A number of existing descriptions of plot has been reviewed, and the resulting analises
have been correlated to distill a basic vocabulary of narrative schemas. These narrative
schemas have been paraphrased in terms of sequences of character functions as described in
Propp’s morphology. This has allowed the extension of an existing story generation system
to generate output stories corresponding to the desired narrative schemas.
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Important insights on the expressive power of Propp’s morphology, and some discussion
of its limitations as a generic story generation framework have been outlined. Limitations of
Propp’s morphology have been identified at three different levels. First, the sequencing and
ordering of plot bearing elements/character functions as determined by Propp’s formalism
is too rigid to capture the flexibility of plots beyond Russian folk tales. Second, the set of
abstractions for plot bearing elements/character functions would need to be extend, both
with new elements and with additional annotations to existing ones, for instance regarding
issues like gender of the characters, whether they survive the event, or whether the outcome
is positive or negative for them. Third, an additional level of information concerning affinities
between characters and/or psychological characteristics of the characters may need to be
considered for dealing with Comedy plots as described by Booker or plots of the mind as
described by Tobias.

The work reported in the paper is preliminary and ongoing, and several avenues of future
work have been described. Some of these hold significant potential for improving both the
quality of the resulting stories and the value of the proposed solution as a computational
model of narrative.
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Abstract
Intelligent storytelling systems either formalize specific narrative structures proposed by narra-
tologists (such as Propp and Bremond), or are founded on formal representations from artifi-
cial intelligence (such as plan structures from classical planning). This disparity in underlying
knowledge representations leads to a lack of common evaluation metrics across story generation
systems, particularly around the creativity aspect of generators. This paper takes Skald, a re-
construction of the Minstrel creative story generation system, and maps the representation to a
formal narrative representation of Story Intention Graphs (SIG) proposed by Elson et al. This
mapping facilitates the opportunity to expand the creative space of stories generated through
imaginative recall in Minstrel while maintaining narrative complexity. We show that there is
promise in using the SIG as an intermediate representation that is useful for evaluation of story
generation systems.
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1 Introduction

Storytelling and creativity are key aspects of human cognition. While much work has been
done on computational narrative generation, the focus of this research in recent years has
been more toward generation of coherent sequences of events. Minstrel, one of the earliest
story generators, utilized a case-based reasoning approach to incorporate a model of human
creativity [17]. In this paper, we extend a contemporary rational reconstruction of Minstrel
called Skald [16] by organizing and labeling story events. We then present a mapping
between the underlying story representation in Skald to the Story Intention Graph (SIG)
formalism proposed recently by [4], which is rooted in story understanding. This mapping
and extensions to Skald allow us to identify areas of research that are unexplored both in
terms of storytelling and creative systems.

Minstrel relies heavily on a library of cases, and employs a boredom mechanic which,
although designed to generate more interesting results, quickly exhausts its library of reference
stories. Considerable manual authoring is thus required as part of the original Minstrel
system. There is also, notably, no reliable bridge towards a natural language generation
system for a generic Minstrel-like program. As such, current attempts to expand the creative
power of Minstrel produce graphs, rather than text which reads like a natural story [16].
Finally, it is difficult to compare storytelling systems like Minstrel with each other, because
there is no definitive standard designed to assess the quality or scope of generated creative
content. Here, we propose that a semantic representation system – the Story Intention Graph
(SIG) model [4] – be used as a formalized standard of narrative meaning and comprehension.
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With the adoption of this standard, generated narrative content, such as that composed by
Minstrel, can be more easily analyzed, upgraded, and rewritten as natural text.

The SIG formalism provides several affordances that improve the richness of representation
of stories beyond the parameterized case frames of situations. First, it is based on a rich
model of internal states of agents involved in the narrative using a theory of mind approach.
This approach maintains local coherence for characters while ensuring global coherence of
the overall narrative. Second, it has a notion of a plot unit but at a richer level of semantic
interconnections across plot units. Finally, the SIG representation provides a way to detect
and reason analogies through metrics derived from the encodings. This is an important
affordance, particularly for CBR-based generation systems.

The overall contributions of this work are two-fold. The primary contribution is the
implementation of the SIG formalism in a case-based story generation system. The secondary
contribution is the implementation of extensions to Minstrel’s generation process in terms of
event ordering and using a richer story representation to increase the expressive range of
creative stories generated by the system.

2 Related Work

One of the first automated storytelling systems known was a murder mystery generator called
Novel Writer [9]. The domain of generated stories for Novel Writer was very small: only one
type of story was generated, and always involved a murderer, a motive, and someone who
revealed the murderer. Further, the Novel Writer ruleset was highly constraining – allowing,
for instance, only four possible motives for murder – and prevented the overall system from
reaching a high level of creativity and expression.

Several years later, a system called TALE-SPIN [10] took a character-driven approach
to story generation. In TALE-SPIN, multiple characters could develop plans to pursue
individual-level goals. Additionally, characters had personalities and dynamic relationships
with each other. Although revolutionary in terms of its character planning system, TALE-
SPIN was criticized for not providing a model for the author’s creative process and goals.

The AUTHOR program [3] was created for precisely this purpose. AUTHOR generated
stories by simulating the intentions of a human author and striving to satisfy them. However,
AUTHOR was designed with the underlying assumption that all generated narrative sequences
must conform to a strict ruleset detailing story parameters and narrative structure. Within
the AUTHOR system, then, there is not much freedom in terms of computational creativity.

The focus of modern systems is specifically on generation of plot structures (in plan-based
approaches), drama management for sequencing predefined beat structures, or manipulating
surface level discourse elements like language and visuals. The goal in these systems is either
coherence of stories or management of player experience. While outputs of these generators
do qualify as being creative, it is difficult to evaluate the systems in terms of creativity due to
the variety of underlying representations and lack of an explicit model of creativity. Detailed
review of modern storytelling systems is outside the scope of this paper as the primary focus
is a discussion of creativity within a rational reconstruction of the classic story generation
system.

3 Research Foundation

3.1 Minstrel, a Case-Based Reasoning Approach
Turner created the Minstrel [17] story generation system that takes a case-based reasoning
approach to creative authoring of stories. Minstrel is a LISP program that simulates the
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Table 1 A quantitative comparison between Minstrel Remixed and Skald. By using weighted
TRAM searching and a modified boredom algorithm, Skald optimized TRAM results in terms of
speed and retrieval quality.

Measure Minstrel Remixed Skald
TRAM search failure rate 19% 3.5%
Average number of TRAMs tried per search 58 16
Average number of TRAMs used when no direct match found 2.4 1.4

actions of a human author in order to produce stories. In particular, Minstrel models the
human creative process by transforming memories of known events (case base) to formulate
new scenarios via generalization and adaptation (referred to as imaginative recall in the
original Minstrel description). Story elements are defined by schemas (case frames) and
stored in a searchable database, and creating small changes in these schemas results in new
stories.

To create new stories from prior examples, Minstrel relies on twenty-five heuristics called
TRAMs (’Transform-Recall-Adapt Methods’). As an example, Minstrel contains a default
TRAM called ’Standard-Problem-Solving’ which simply looks for a pre-existing solution in
memory. If no solution exists, the TRAM fails. The TRAM also fails if any found solutions
have already been used, because such solutions are deemed ’boring’ by the Minstrel system.
Whenever a given TRAM fails, the problem must be transformed and Minstrel must look for
a case that best matches the newly transformed problem.

3.2 Skald: Improving Minstrel’s imaginative recall system
Skald[15] was developed to make the Minstrel system more robust and useful as a general-
purpose story generator. While Minstrel applied TRAMs randomly, Skald employs a weighted
TRAM searching algorithm which gives preferences to TRAMs that best match the original
query. This technique reduces the search space, resulting in faster and higher quality
generations (refer to Table 1). Skald also modifies Minstrel’s boredom algorithm by only
fractionally decrementing boredom signature values, enabling signatures to refresh over time
and be reused in later stories. Although more ’interesting’ stories are not forcibly produced
as quickly as they would be in Minstrel, this technique traverses through the story library
more slowly and makes more efficient use of the searchable domain. More stories can thus be
produced with less manually-authored templates.

In Skald, groups of symbols, the most basic story elements, are grouped into frames.
Frames may contain empty or unknown symbols (refer to Table 2). Groups of frames form
an output story graph. Story characters have mental target objectives called goals, physical
actions called acts, and states, which are results of action. Similar to Minstrel, Skald retrieves
and executes author-level plans (ALPs) as part of the story generation process. Ultimately,
the system constructs a connected graph with story frames as nodes, as depicted in Table 2.
Most commonly, these frames are a trio consisting of a goal which plans an act, which, in
turn, intends a state to occur, and wherein the state ultimately achieves the goal. Many of
the narratives that Skald generates are formed by combining and connecting similar frame
trios.

Despite being an adaptation of the original Minstrel system, Skald follows the same
core ideas of simulating the human authoring process. For this reason, Skald is a suitable
creative narrative generator to formalize with SIGs because it represents a valid model
of computational creativity and is openly available for development. We claim that SIGs
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Table 2 An example narrative generated by Skald (’Story A’). The story frames have been
manually ordered and translated into natural text for readability. Each frame is composed of symbols,
which may be empty, unknown, or contain a specified value.

Natural Language Equivalent Story Frame
Frederick, the knight, did not want to be
injured.

stayhealthy -> (goal) Map(
actor -> Frederick(Knight),
object -> Frederick(Knight),
scale -> <empty slot>,
to -> <empty slot>,
type -> “Healthy”,
value -> <empty slot>)

But Fafnir, a dragon, hated Frederick. hates -> (state) Map(
actor -> Fafnir(Dragon),
object -> <empty slot>,
scale -> “Strong”,
to -> Frederick(Knight),
type -> “Affect”,
value -> “Negative”)

So, Fafnir wanted to injure him. wantinjure -> (goal) Map(
actor -> Fafnir(Dragon),
object -> Frederick(Knight),
scale -> <empty slot>,
to -> <empty slot>,
type -> “C-Health”,
value -> “Injured”)

He fought Frederick by blowing a magical
flame at him.

attack -> (act) Map(
actor -> Fafnir(Dragon),
from -> <empty slot>,
object -> Flame(Magic),
to -> Frederick(Knight),
type -> “Fight”)

Frederick was injured by the flame. His
plan to stay healthy had been thwarted
by Fafnir the Dragon.

injured -> (state) Map(
actor -> Frederick(Knight),
object -> <empty slot>,
scale -> <empty slot>,
to -> <empty slot>,
type -> “Health”,
value -> “Injured”)

are appropriate for three reasons, namely, they (1) provide a formal representation that
can facilitate comparison between story generators beyond Skald, (2) are a bridge towards
improved natural language generation in Skald and other generators, (3) expand the library
of Skald without additional manual authoring.

3.3 The Story Intention Graph as a Formalism for Imaginative Recall
The SIG model provides formal, concise, and expressive [5] representations for computer-
generated narratives. A shared, growing corpus of over one hundred encodings is currently
available to describe and investigate narrative structures. By translating stories into SIG
encodings, we have a means of expressing the diversity of structures and relationships that
can be created by automated narrative generators. The discourse relations defined by SIGs

CMN’15



76 Imaginative Recall with Story Intention Graphs

Figure 1 Block diagram of a Skald-to-SIG conversion system.

are useful in corpus annotation as well as algorithmic treatment, particularly related to
analogical reasoning. A key aspect of case-based reasoning systems is the distance function
used to identify similar cases during the recall phase. Current CBR-based story generators
take a parameterized generalization of situations and compute a direct frame comparison
to recall cases. To scale such a representation requires significant addition of semantic
information to case frames, including a richer distance function to find appropriate cases from
the library. Further, the transformation processes mostly generalize at the level of a single
parameter’s domain constraints. It has been shown [4] that the SIG formalism outperforms
other representations in finding not only analogical stories individually, but also analogical
sub-sets through a comparison on isomorphic sub-graphs to common SIG patterns.

The SIG model is an encoding of narrative that forms a semantic network. Such networks
are commonly utilized in cognitive psychology for narrative comprehension studies with
humans [7]. In plan-based narrative generation systems, such encodings are used within
representations of plan operators and heuristic functions to search for stories [2, 1, 12]. In
work related to common sense reasoning from narratives, the predominant representation has
been first-order logic [8, 11]. Recent work on statistical mining of narratives [6, 14] strives to
find narrative patterns from large web-corpora. Rishes et al. have proposed an automatic
method for converting between the Story Intention Graph (SIG) representation to a natural
language generator such as PERSONAGE [13].

The process that Skald undergoes is analogous to that of a human storyteller, in that
the system considers and modifies past story examples. However, Skald generates a graph
representing a bare plotline as its output, and this representation is insufficient for more
rich and complex narratives. Thus far, SIGs have only been applied as an analytical tool on
pre-written stories with simple plot structures and character attributes. However, SIGs have
the potential to express a richer set of stories when combined with a sufficiently creative
generator. Once a narrative is represented in terms of SIGs, we can then transform the story
with these SIG representations to result in creative retellings.

4 Translating Generated Plotlines into SIGs

We have developed a system that takes in Skald story data as input and produces SIG
encodings. Figure 1 shows a block diagram that details the main steps of the procedure, and
the following sections will describe each component of the system in detail.

4.1 Event Ordering
Skald generates a story graph without always indicating the ordering of frames. While not
every narrative generation system may require event ordering, we included a module for this
purpose so that any story generated by Skald will be told in the proper sequence.
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Table 3 An example that demonstrates how frames from Story A are sorted by the EOM.

Sorting Step Order of Events
1 t1: attack -intends- injured,

t2: hates -motivates- wantinjure,
t3: injured -thwarts- stayhealthy,
t4: wantinjure -plans- attack

2 t1: attack -intends- injured,
t2: injured -thwarts- stayhealthy,
t3: hates -motivates- wantinjure,
t4: wantinjure -plans- attack

3 t1: hates -motivates- wantinjure,
t2: wantinjure -plans- attack,
t3: attack -intends- injured,
t4: injured -thwarts- stayhealthy

4 t1: hates -motivates- wantinjure,
t2: wantinjure -plans- attack,
t3: attack -intends- injured,
t4: injured -thwarts- stayhealthy

5 t1: hates -motivates- wantinjure,
t2: wantinjure -plans- attack,
t3: attack -intends- injured,
t4: injured -thwarts- stayhealthy

While frames generated by the original Skald system are not ordered in the natural
language telling, their implied ordering may be discerned by examining the graph connections
between events. We define a frame pairing as a set of two frames generated by Skald, wherein
one directly connects to the second. For instance, Fafnir attacking Frederick in Story A is
connected to his intention to injure him by an intends link. In this example, the attacking
action intends the injured state, and attack and injured are a pair.

The Event-Ordering Module (EOM) works as follows: for each frame-consequence pairing,
search for the given consequence in the remaining events. If the frame is found, swap the
found frame to directly follow the current pairing; then, continue reading through the list. If
the frame is not found, move the lines succeeding the current line to the head of the list of
frame-consequence pairings; then, begin reading again from the beginning. If not found last,
the frame with a consequence matching the final frame is tagged so the module does not
check the final two pairings, which should be already sorted.

4.2 Node Construction

In accordance with Elson [4], the Node Constructor (NC) unit categorizes each story element
as a Proposition (P), Goal (G), or Belief (B) node. Skald already labels frames as states,
goals, and actions, which simplifies the conversion process. Every element of the output
graph must then be translated into a discourse relation and annotated with the correct
agents, objects, and any other related entities as defined by Elson [4]. Because Beliefs and
Goals are frames containing content, they are labeled and filled with one or more Interpretive
Proposition (I) relations. In Skald, the affectual impact of a P node or actualized I node is
merely implied with frame-consequence pairings and whether goals are achieved. To create a
proper SIG encoding, Affectual (A) nodes are created for each character of the story.
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Table 4 An example narrative generated by Skald (’Story A’). The story events have been
manually ordered and translated into natural text for readability.

Order (t) Node Links
1 P: injured(Frederick, False) actualizes (t2)
2 G (Frederick):

injured(Frederick, False)
provides for A: Frederick

3 G (Fafnir):
harm(Fafnir, Frederick)

provides for A: Fafnir;
damages A: Frederick

4 P: attack(Fafnir, Frederick) actualizes (t3)
5 P: injured(Frederick, True) ceases (t2)

4.3 Chain Construction
Once all nodes are established, they must be linked to complete the SIG encoding process.
This process is ensured by the Chain Constructor (CC) module, which reviews the given
frame-consequence pairings to make decisions about how P and I nodes (including Goals
and Beliefs) are linked. For instance, consider the original pairing of ’wantinjure -plans-
attack’ in Story A. In this case, wantinjure is classified as a Goal, and attack is known
to be a P node that takes place in at t=4. Fafnir deciding to attack Frederick, then, at
least attempts to cause the state of Frederick becoming injured. The attack also intends
and results in Frederick becoming injured at t=5, which thwarts his plan to stay healthy.
Consequently, a ceases link is established between Frederick’s goal to stay healthy, and the
P node representing the attack in the story. Notably, the previous attempt to cause link is
changed to become actualizes, as Fafnir succeeded in his goal of injuring Frederick.

The system connects each I node to corresponding A nodes by considering the effects of
that I on each agent’s goals. If a goal is met for an agent when an I node is carried out, a
provides-for link is established between an agent and that node. Conversely, a damages link
is created when the current I node thwarts an agent’s goal. If any A nodes contain no links
by the end of the chain construction process, they are removed from the final graph.

4.4 Output Visualization
At present, our system outputs text that describes a graph structure representing the SIG
encodings; Table 4 conveys this information. An example of how this graph would be
represented using Story A and Elson’s timeline format is shown in Figure 2, while a second
story (Story B) is shown in Figure 3.

5 Perspectives and Future Work

By providing Skald with a SIG case library and specifying rules for SIG-based transformations,
we can apply the TRAM procedure to the SIGs themselves. For instance, Story A matches
the ’Goal (Desire to Harm)’ SIG pattern. By instructing Skald to examine the underlying
components of the SIG, and searching for similar patterns, the elements of the original story
are then adapted for use in a new SIG template. Thus, when transforming Story A, multiple
new stories should be produced. For instance, our modified version of Skald could use a
GeneralizeLink TRAM template to recognize that the actualizes link at t4 can be replaced
with an attempt to cause link. An actualizes link is then created between t4 and a new I
node which represents the opposite of the injures action (’heals’). Based on the original
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Figure 2 A visual example of the completed SIG encoding for Story A. Story A ultimately follows
the ’Goal (Desire to Harm)’ SIG pattern.

Figure 3 A SIG encoding derived from a second story generated by Skald (“Story B”). Story B
includes nested goals and follows the ’Hidden Agenda’ pattern. In Story B, a witch named Alva
wants to kill King Mason by giving him poisoned food. Mason is hungry, and so accepts the food.
Both Alva and Mason’s goals are achieved; however, Mason dies by the end of the story.

narrative constraints, the system understands that Frederick being healed is consistent with
his goals and thwarts Fafnir’s goals, leading to the appropriate connections between the A
nodes. The final state, Frederick not being injured, is updated based on the new I node.
However, because this state was already a part of the timeline (t1), the final state is removed
from the graph, and Frederick’s goal by the end of the story is achieved. The resulting story
follows the ’Unintended Aid’ SIG pattern (Figure 4).

6 Conclusion

We have prepared Skald for improved natural language generation by (1) ordering the frames
it produces in graph form, and (2) encoding the story events with story intention graphs.
Further, we have extended Skald as a creative system by adding SIGs as a second means of
transforming generated stories. Rather than having independent architectures with distinct
ways of implementing narrative structure, we can generate more complex stories by working
from the SIG specification directly. Output text of other generators may be re-encoded as
SIGs, thus enabling comparison between different story generation systems.
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Figure 4 The visual SIG encoding for Story A, when transformed by a modified version of Skald.

The SIG representation, and others like it, enable the expansion of surface realization as
an expressive medium. This is true even when the general plots are predictable, implying
that stories may be improved even with the same knowledge structures. Future research
should work towards quantifying this improvement, as well as to further increase the creative
capacity of narrative systems. Future research could also work towards applying the SIG
translation process to creative narrative generators beyond Skald, and analyzing variations
in the types and diversity of SIG encodings they are able to produce.
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Abstract
This paper presents a linguistically uninformed computational model for animacy classification.
The model makes use of word n-grams in combination with lower dimensional word embedding
representations that are learned from a web-scale corpus. We compare the model to a number of
linguistically informed models that use features such as dependency tags and show competitive
results. We apply our animacy classifier to a large collection of Dutch folktales to obtain a list
of all characters in the stories. We then draw a semantic map of all automatically extracted
characters which provides a unique entrance point to the collection.
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1 Introduction

For almost all species in the world, the capacity to distinguish animate objects from inanimate
objects is essential to their survival. Those objects could be prey, for example, or predators,
or mates. The fundamental nature that the distinction between animate and inanimate has
for humans is reflected in the fact that this division is acquired very early in life: children of
less than six months old are well able to distinguish the two categories from one another [16].
Moreover, recent brain research shows that the distinction appears in the organization of the
brain (e.g. [8]). For some researchers, this provides evidence for the idea that the division
between animate and inanimate is an innate part of how we see the world.

Although animacy may be a scalar rather than a strictly categorical distinction (see e.g.
the animacy hierarchy in [4] and research such as [25]), the animate/inanimate distinction
is traditionally taken as binary with regard to lexical items: something is either animate
(e.g. a human) or not (e.g. a chair). This standpoint has been challenged, however, by
researchers from different fields. Firstly, it has long been established in linguistic typology
that not all languages award animacy to the same entities in different grammatical categories.
As [4] notes, many languages, such as, for example, English, distinguish between human
and not-human in the choice of pronouns; other languages, such as Russian, distinguish
between animate (entailing humans and animals) versus non-animate (entailing everything
else) in their interrogative pronouns. This indicates different subdivisions of animacy in the
respective languages. Secondly, philosophers such as Daniel Dennett support the view that
animacy and aliveness are to be treated as epistemological stances rather than fixed states in
the world: not ineffable qualia but behavioral capacity defines our stance towards objects [6].
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In other words, depending on whether people think that an object is animate, they utilize
different cognitive strategies to explain and predict the actions of those objects. Finally,
evidence from psycholinguistic research has accumulated to support this view of animacy as
a cognitive viewpoint rather than an extra-perceptive absolute. Nieuwland & Berkum [15]
for example show that college student test subjects readily accept animate behavior from
inanimate objects within the proper contexts, and Vogels et al. [9] moreover emphasize the
relation between animacy and motion, showing that factors such as self-propelment play a
crucial role in recognizing or awarding animacy to certain objects. This is exemplified in the
opening of this well-known story:1

A farmer bought a pancake on the market. Once he got home, the farmer was
hungry and began to bake the pancake. The farmer tried one of his skillful flipping
techniques, but he failed and the pancake fell on the ground. Coincidentally, the door
of the kitchen was open and the pancake rolled out to the field, as hard as he could. . .

Although initially, based on their knowledge of the world, readers will regard the pancake
as inanimate, the self-propelled motion verb ‘rolled’ initiates our shift towards an animate
interpretation of the pancake. As readers (or listeners) of a story, we choose to view
participating objects at varying levels of abstraction in order to predict their behavior.
Dennett [6] defines three levels of abstraction: (1) the physical stance, (2) the design stance
and (3) the intentional stance. The physical stance deals with predictions about objects given
their physical properties. The design stance deals with concepts such as purpose, function or
design. The intentional stance is concerned with belief, thinking and intentions. These are all
cognitive strategies we use to predict and explain the actions of objects in our environment.
Interestingly, in the process of reading the opening of the story about the fleeing pancake,
readers and listeners experience the transition from one strategy to the next quite clearly.
Initially, the pancake is interpreted from a physical stance, or perhaps the more abstract
design stance in terms of the purpose (i.e. to stave off hunger). It is only at the last adverbial
phrase ‘as hard as he could’ that we start to wonder whether we should adopt to the yet
more abstract intentional stance and consider the pancake to be a rational agent.

Given the fundamental nature of the distinction between animate and inanimate, it is
perhaps not too surprising that it has proven to be useful in a variety of natural language
processing tasks dealing with e.g. anaphora resolution and dependency parsing [18, 11, 22].
Existing methods for the automatic labeling of text for animacy are usually rule-based,
machine-learning-based, or a hybrid of these methods. Common to most approaches is the
fact that they make use of semantic lexicons with information about animacy, as well as
syntactic cues in a text. Both feature types are relatively costly to obtain as they require
lexical resources or syntactic parsing systems, which, with the exception of a few languages,
are not readily available.

In this paper we present a new linguistically uninformed model to automatically label
texts for animacy. We show that we can do away with features that require syntactic parsing
or semantic lexicons while still yielding competitive performance. We focus on labeling
animacy in stories because stories pose some particularly interesting problems to automatic
systems of animacy recognition. As the example of the fleeing pancake already illustrated, in
stories any entity may at some point exhibit animate behavior, even when they are inanimate
in the ‘real’ world. Another example is the Sorcerer’s Apprentice sequence in Walt Disney’s

1 http://www.verhalenbank.nl/items/show/9636
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famous Fantasia, in which brooms display the ability to collect buckets of water. Such
examples, where pancakes, brooms and other entities act as animate beings, make a clear
case for developing dynamic, data driven systems that do not rely too much on static and
fixed world knowledge, but rather on immediate context.

The remainder of this paper is structured as follows. We will start with a short overview
of existing techniques for automatically labeling animacy in texts, including the definitions of
animacy used in these papers (§2). After a description of the corpus used in our study and
how the annotations of the corpus have been established (§3), we will give an account of our
computational models in Section 4. We report on the empirical results in Section 5. Next,
we provide an evaluation on a larger dataset, while also showing a real-world application
of our animacy detection system (§6). The final section offers our conclusions and possible
directions for future research.

2 Previous Work

A handful of papers deal with automatic animacy detection. Most approaches make use of
rule-based systems or machine learning systems with morphological and syntactic features.
[7] present a rule-based system that makes use of the lexical-semantic database WordNet.
They label each synset in WordNet for animacy. Using a variety of rules to detect the head
of an NP, they use the fraction of synsets in which a particular noun occurs to arrive at
a classification for animacy. [17] extend their previous algorithm by first determining the
animacy of senses from WordNet on the basis of an annotated corpus. They then apply
a k-nearest neighbor classifier using a number of lexical and syntactic features alongside
features derived from WordNet to arrive at a final animacy classification.

[19, 20, 21] present a number of animacy classifiers that make use of syntactic and
morphological features. These features include the frequency of analysis of the noun as
‘subject’ or ‘object’, the frequency of the occurrence of a noun in a passive by-phrase, and the
frequency of the noun as a subject followed by either animate personal pronouns or inanimate
personal pronouns. These features are then aggregated for each lemma after which a machine
learning system (decision tree or k-nearest neighbor classifier) is trained. A similar approach
is presented in [3]. In this study a Maximum Entropy classifier is trained on the basis of
three feature types: (1) bag-of-words with and without their corresponding Part-of-Speech
tags, (2) internal syntactic features such as the syntactic head and (3) external syntactic
features that describe the dependency relation of a noun to a verb (i.e. subject relation,
object relation etc.) This is the only study that makes use of a corpus fully labeled for
animacy. In an approach partially related to animacy detection, [10] attempt to extract the
cast (i.e. all characters) from a story. Similar to [3] they rely on dependency tags to extract
the subjects of direct and indirect speech.

[1] present a model that attempts to generalize the animacy information in a lexical-
semantic database of Dutch by augmenting ‘non-ambiguous’ animate entries with contextual
information from a large treebank of Dutch. They apply a k-nearest neighbor algorithm with
distributional lexical features that aim to capture the association between a verb or adjective
and a particular noun. The idea is that nouns that occur in similar contexts as animate
nouns are more likely to be animate than nouns that occur more frequently in contexts
similar to inanimate nouns.

[14] present an approach that combines a number of animacy classifiers in a voting scheme
and aims at an interpretable and correctable model of animacy classification. A variety
of classifiers is used, such as the WordNet-based approach of [7], named entity recognition
systems, and dictionary sources.
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The approaches mentioned above present us with a number of problems. First, nearly all
of them rely heavily on costly, linguistically informed features derived from lexical-semantic
databases or syntactic parsing. For most languages in the world, however, we cannot
rely on these resources, either because they do not exist, or because their performance is
insufficient. Second, animacy detection is often seen as a useful feature for a range of natural
language processing techniques, such as anaphora resolution and syntactic parsing. The
mutual dependence between these techniques and animacy detection, however, is in fact a
chicken-and-egg situation.

Another major problem with the approaches above is, as said earlier, that they are
lemma-based, which means that the models are generally insensitive to different usages
of a word in particular contexts. In other words, in most of the literature on automatic
animacy detection, a static, binary distinction is made between animate and inanimate. [3]
for example, define objects as animate if they are alive and have the ability to move under
their own will. [18] define animacy in the context of anaphora resolution: something is
animate “if its referent can also be referred to using one of the pronouns he, she, him, her,
his, hers, himself, herself, or a combination of such pronouns (e.g. his/her)”. However, as
was explained above, these definitions are not necessarily in line with current linguistic and
neurological research [15]. Similarly, they are not particularly applicable to the rich and
wondrous entities that live in the realm of stories. As was shown above, although a pancake
is typically not an animate entity, its animacy depends on the story in which it appears,
and even within the story the animacy may change. To accommodate this possibility, we
therefore choose to define animacy in terms of Dennett’s intentional stance, which is more
dynamic, and which ultimately comes down to the question whether “you decide to treat the
object whose behavior is to be predicted as a rational agent” [6, pp. 17]. Our system for
animacy detection therefore needs to be dynamic, data driven, and token-based. It may to
some extent rely, but cannot rely too heavily, on static world knowledge.

3 Data, Annotation and Preprocessing

To develop this dynamic data-driven system we use a corpus of Dutch folktales. As argued
in the introduction, our reason to use folktales is that, as [9] note, ‘In cartoons or fairy tales
[. . . ] inanimate entities or animals are often anthropomorphized’, which means that the
material could yield interesting cases of unexpected animacy, as is the case with the pancake
in The fleeing pancake and the broomsticks in Fantasia.

Our initial corpus consists of 74 Dutch stories from the collection Volkssprookjes uit
Nederland en Vlaanderen, compiled by [27]. The collection is composed of Dutch and
Flemish retellings of popular and widespread stories, including such tales as The Bremen
Town Musicians (ATU 130) 2 and The Table, the Ass, and the Stick (ATU 563), as well as
lesser-known stories such as The Singing Bone (ATU 780) and Cock, Hen, Duck, Pin, and
Needle on a Journey (ATU 210). This last story is again a clear example where otherwise
inanimate objects are animated, as it concerns the adventures of several household items,
such as a pin, a hackle, an egg, and a whetstone. A digital version of the collection is available
in the Dutch Folktale Database from the Meertens Institute (corpus SINVSUNV.20E).3
Using a single collection for our corpus presents us with a helpful homogeneity with regard

2 The ATU numbers refer to the classificatory system for folklore tales, as designed by Aarne, Uther and
Thompson [28].

3 See http://www.verhalenbank.nl
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to the editor, length of the stories, and language use, as well as exhibiting some content-wise
diversity among the collection, which contains fairytales and legends.

All together, the corpus consists of 74,504 words, from 5,549 unique words. Using the
annotation tool brat (brat rapid annotation tool), an online environment for collaborative
editing4, two annotators labeled words for animacy, within the context of the story.5 All
unlabeled words were implicitly considered to be inanimate. The following sentence provides
an example annotation.

(1) Jij
animate

smid,
animate

jij
animate

bent de sterkste; hou je
animate

vast aan de bovenste

takken, en dan ga jij
animate

kleermaker
animate

aan zijn
animate

benen hangen en zo gaan

we
animate

maar door

‘You, blacksmith, you are the strongest; hold on to the upper branches and then, you,
tailor, will grab his legs and so we go on. . . ’

Because we interpreted animacy within the context of the story, the same lexical item
could be labeled differently in different stories. For example, in the above-mentioned example
of the pancake, which occurs in SINVS076 in our corpus, the pancake is tagged consistently
as ‘animate’. In another story, SINVS042, where at one point a soldier is baking pancakes,
the pancakes do not act, and are thus not labeled as ‘animate’. The following sentences show
how this was employed in practice.

(2) Terwijl hij
animate

de pannekoek bakte, keek hij
animate

naar het ding, dat uit de

schouw gevallen was

‘While he was baking the pancake, he looked at the thing, which had fallen from the
hearth. . . ’

(3) Toevallig stond de deur van de keuken open en de pannekoek
animate

rolde naar buiten,

het veld in, zo hard hij
animate

maar kon.

‘Coincidentally the door of the kitchen was open and the pancake rolled outside, into
the field, as fast as it could’

This annotation resulted in 11,542 animate tokens of 743 word types, while implicitly
yielding 62,926 inanimate tokens from 5,011 unique inanimate words. Because of our context-
dependent approach, some words, such as pancake and egg, occurred in both animate types as
inanimate types, because they were labeled as both animate and inanimate in some cases in
our corpus. It is telling that of the animate tokens 4,627 (40%) were nouns and proper nouns,
while only 6,878 of the inanimate tokens (11%) are nouns. This shows that being a noun is
already somewhat of an indication for animacy. After tokenization with the tokenization
module of the Python software package Pattern [5] we fed all stories to the state of the art

4 http://brat.nlplab.org
5 On the basis of five stories that were annotated by both annotators we computed an inter-annotator
agreement score (Cohen’s Kappa) of K = 0.95.

http://brat.nlplab.org


F. Karsdorp, M. van der Meulen, T. Meder, and A. van den Bosch 87

syntactic parser for Dutch, Alpino [2]. From the resulting syntactic parses, we extracted the
features for the linguistically informed models, see Section 4.3.

4 Experimental Setup

This section describes our experimental setup including the features used, the machine
learning models we applied, and our methods of evaluation.6.

4.1 Task description
We formulate the problem of animacy detection as a classification problem where the goal is
to assign a label at word level, rather than at lemma level. This label indicates whether the
word is classified as animate or inanimate.

4.2 Evaluation
Inanimate words far outnumber animate words in our collection (see §3). Reporting accuracy
scores would therefore provide skewed results, favoring the majority category. The relative
rarity of animate words makes evaluation measures such as the well-known F1-score more
appropriate. For this reason, we report on the precision, recall and F1-score [30] of both
classes for all experiments. Also, while in most of the literature on animacy detection results
are only presented for the classification of nouns or noun phrases, we will, while reporting on
nouns and noun phrases as well, additionally report on the results for all words in a text.

In real-world applications an animacy detection system will most likely be faced with
completely new texts instead of single words. It is therefore important to construct a training
and test procedure in such a way that it mimics this situation as closely as possible. If we
would, for example, make a random split of 80% of the data for training and 20% for testing
on the word level, we run the risk of mixing training data with test data, thereby making it
too easy for a system to rely on words it has seen from the same text. [3] fall into this trap
by making a random split in their data on the sentence level. In such a setup, it is highly
likely that sentences from the same document are present in both the training data and the
test data, making their evaluation unrealistic. To circumvent this problem, we split the data
at the story level. We make use of 10-fold cross-validation. We shuffle all stories, partition
them in ten portions of equal size. In ten iterations, each partition acts as a test set, and the
other nine partitions are concatenated to form the training set.

4.3 Features
We explore a range of different features and feature combinations including lexical features,
morphological features, syntactic features, and semantic features.

4.3.1 Lexical features
We take a sliding-window approach where for each focus word (i.e. the word for which we
want to predict whether it is animate or not) we extract both n words to the left and n

words to the right, as well as the focus word itself. In all experiments we set n to 3. In

6 The data set and the code to perform the experiments are available from https://fbkarsdorp.github.
io/animacy-detection
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addition to the word forms, for each word in a window we also extract its lemma as provided
by the output of the syntactic parser Alpino.

4.3.2 Morphological Features
For each word we extract its part-of-speech tag. For reasons of comparability we choose
to use the tags as provided by Alpino, instead of a more specialized part-of-speech tagger.
Again, we take a sliding window approach and extract the part-of-speech tags for three words
left and right of the focus word, as well as the tag of the focus word itself.

4.3.3 Syntactic Features
We extract the dependency tag for each word and its n = 3 neighbors to the right and to the
left as provided by the syntactic parser Alpino. Animate entities tend to take the position
of subject or object in a sentence which is why this feature is expected and has proven to
perform rather well.

4.3.4 Semantic Features
The most innovative feature we have included in our model is concerned with semantic
similarity. In his Philophische Untersuchungen Wittgenstein already suggests that “Die
Bedeutung eines Wortes ist sein Gebrauch in der Sprache”7 (PI 43). This is reflected
by the well-known insight in computational linguistics that the meaning of words can be
approximated by comparing the linguistic contexts in which words appear. In other words:
words that often co-appear with the same set of words, will have a more similar meaning.
Recently, there has been a lot of interest in procedures that can automatically induce so-called
‘word embeddings’ from large, unannotated collections of texts (e.g. [13, 24]). These models
typically attempt to learn vector representation with less dimensions than the vocabulary
size for each word in the vocabulary which captures the typical co-occurrence patterns of a
word in the corpus. The similarity between words can then be approximated by applying
similarity metrics, such as the cosine metric, to these vectors of word embeddings.

We have trained word embeddings with 300 dimensions using the popular skip-gram
architecture [13] on the Dutch corpus of COW (COrpora from the Web). COW is a collection
of linguistically processed web corpora for English, Dutch, Spanish, French, Swedish and
German [26]. The 2014 Dutch corpus contains 6.8 billion word tokens. The idea behind
using the word embeddings is that similarities between animate words can be estimated by
inspecting the context in which they occur. From this follows, for example, that the word
embeddings of an animate word are more similar to those of other animate words, as opposed
to the embeddings of inanimate words.

To give an illustration of this idea, in Figure 1 we depict a two-dimensional Principle
Component Analysis (PCA) projection of the 300 dimensional word embedding vectors
for a number of typically animate and typically inanimate words. The horizontal gray
line in the plot illustrates the separability of the animate and inanimate words in the first
dimension of the PCA projection. It is interesting to observe that ghost is the one closest to
all other inanimate entities. Likewise, words such as castle, house or car are often used in
figurative language (metonymy), for example to refer to the people owning or living in the
castle. Perhaps this ambiguous animacy position is responsible for their position in the first
dimension close to real animate entities.

7 The meaning of a word is its use in the language.
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Figure 1 Two-dimensional PCA projection of the 300 dimensional word embedding vectors for a
number of animate and inanimate words. The horizontal line illustrates the separability between
the two classes in the first dimension.

4.4 Models
We employ a Maximum Entropy classifier with L2 regularization as implemented in [23]. In
all experiments, we set the regularization strength parameter C to 1.

We compare nine models in which we make use of different feature combinations: (1)
words, (2) words and Part-of-Speech tags, (3) words, Part-of-Speech tags and lemmata, (4)
words, Part-of-Speech tags, lemmata and dependency tags, (5) word embeddings and (6-9)
the features in model 1 to 4 with word embeddings.

Although our background corpus is sufficiently large to cover most words in an unseen
text, there will always be rare words for which we do not have learned word embeddings.
Therefore, in order to effectively make use of the word embedding vectors, we need a way
to deal with out-of-vocabulary items. We adopt a simple strategy where we make use of a
primary classifier and a back-off classifier. For models 6 to 9, we augment each word with
its corresponding 300 dimension word embeddings vector. In the case of out-of-vocabulary
words, we resort to a back-off model that contains all features except the word embeddings.
For example, a model that makes use of words and word embeddings, will make a prediction
on the basis of the word features alone. In case of the model that solely uses the embeddings
(model 5), the back-off classifier is a majority-vote classifier, which classifies unseen words as
inanimate.

5 Results

In Table 1 we present the results for all nine models on the complete data set. For each
model we report the precision, recall and F1-score for the animate words and the inanimate
words.

CMN’15
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Table 1 Precision, Recall and F 1-score for animate and inanimate classes per feature setting for
all words.

inanimate animate

P R F1 P R F1

embeddings 0.98 0.99 0.98 0.93 0.89 0.91
word 0.96 0.99 0.98 0.94 0.78 0.85
word + embeddings 0.98 0.99 0.98 0.94 0.90 0.91
word + PoS 0.97 0.99 0.98 0.94 0.86 0.89
word + PoS + embeddings 0.98 0.99 0.99 0.94 0.91 0.93
word + PoS + lemma 0.97 0.99 0.98 0.94 0.86 0.90
word + PoS + lemma + embeddings 0.98 0.99 0.99 0.94 0.91 0.93
word + PoS + lemma + dep 0.97 0.99 0.98 0.94 0.86 0.90
word + PoS + lemma + dep + embeddings 0.98 0.99 0.99 0.94 0.92 0.93

All models perform well on classifying inanimate words. However, since this is the
majority class, it is more interesting to compare the performance of the models on the
animate instances. It is interesting to observe that the ‘simple’ n-gram word model already
performs rather well. Adding more features, such as Part-of-Speech or lemmata, has a
consistently positive impact on the recall of the model, while leaving the precision untouched.
As can be observed from the table, employing the rather expensive dependency features
shows barely any improvement.

The model that only uses word embedding features is one of the best performing models.
This is a context-insensitive model that operates on the level of the vocabulary, which means
that it will predict the same outcome for each token of a particular word type. The high
precision and high recall show us that this model has acquired knowledge about which
words typically group with animate words and which with inanimate words. However, the
models that combine the word embeddings with the context sensitive features, such as word
n-grams or Part-of-Speech tags, attain higher levels of precision than the context-insensitive
model. The best performance is achieved by the model that combines the word features,
Part-of-Speech tags and the word embeddings. This model has an F1-score of 0.93 on
animate words and 0.99 on inanimate words. Adding more features does not result in any
more performance gain.

Table 2 zooms in on how well nouns and names are classified. The best performance is
again achieved by the model that combines the word features with the part-of-speech tags
and word embeddings, resulting in an F1-score of 0.92 for animate instances and 0.95 for
inanimate instances. The relatively lower score for the inanimate class can be explained by
the fact that relatively easy instances, such as function words, which are never animate, are
not included in the score now.

6 A Semantic Map of Animate Entities in the Dutch Folktale
Database

Our approach to animacy classification appears to be successful. In this section we employ
our classification system to extract all animate entities from unannotated folktales from the
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Table 2 Precision, Recall, and F 1 score for animate and inanimate classes per feature settings
for all words tagged as noun.

inanimate animate

P R F1 P R F1

embeddings 0.90 0.96 0.92 0.93 0.85 0.89
word 0.78 0.98 0.87 0.96 0.60 0.74
word + embeddings 0.90 0.97 0.93 0.95 0.85 0.90
word + PoS 0.86 0.96 0.90 0.93 0.78 0.84
word + PoS + embeddings 0.93 0.96 0.95 0.95 0.90 0.92
word + PoS + lemma 0.87 0.96 0.91 0.94 0.80 0.86
word + PoS + lemma + embeddings 0.93 0.96 0.94 0.95 0.89 0.92
word + PoS + lemma + dep 0.87 0.96 0.91 0.93 0.80 0.86
word + PoS + lemma + dep + embeddings 0.93 0.96 0.95 0.95 0.90 0.92

Dutch Folktale Database, all of which were not used in the previous experiment.8 The reason
for this is twofold. First, it allows us to further our evaluation of the classifier. In a classical
evaluation setup – as with our approach – it is general practice to train a computational
system on some training data. The performance of the system is then evaluated on a held-out
test set. Our annotated corpus contains a reasonably diverse set of stories in terms of
genre, yet it is fairly small and rather homogeneous in style. Even though we performed a
cross-validation experiment, there is a chance of ‘overfitting’ to the style of the subset of
folktales we trained on. The second reason for applying the classifier to such a large collection
is to enrich the collection with a character-based information layer, allowing researchers to
browse the collection in new ways.

6.1 Data
For our evaluation we make use of a sub-collection of folktales from the Dutch Folktale
Database. The complete collection consists of about 42,000 folktales [12], and contains
stories from various genres (e.g. fairytales, legends, urban legends, jokes, personal narratives)
in standard Dutch and Frisian, as well as in a number of dialectal variants. Every entry
in the database contains meta-data about the story, including language, collector, place
and date of narration, keywords, names, and sub-genre. For our paper we make use of
a sub-collection comprising 16,294 stories written in standard Dutch. The distribution of
genres in the subcollection is the following: urban legends (n = 2, 795), legends (n = 299),
jokes (n = 3, 986), personal narratives (n = 693), riddles (n = 1, 626), sagas (n = 6, 045) and
fairy tales (n = 832). We evaluate a random sample of this sub-collection (n = 212) in which
this genre distribution is taken into account.

6.2 Evaluation
Our definition of animacy allows us to utilize our animacy detection system to extract all
characters from a story in a similar vein as [10]. The system labels each noun and name
in a text for animacy. After removing duplicate words, this produces a set of words that

8 http://www.verhalenbank.nl
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Figure 2 Precision-Recall Curves and Mean Average Precision scores per genre.

comprises the cast of a story. Without gold standard annotations, however, we can only
evaluate these character sets for precision and not for recall. An alternative approach is to
produce a ranking of all words in a story where the goal is to allocate the highest ranks to
animate entities. This allows us to evaluate individual rankings using Average Precision
which computes the average over precision scores at increasing points of recall. We compute
the Average Precision as follows:

AP =
∑n

k=1(P (k) × rel(k))
number of relevant items (1)

where k is the position in the ranked list of n retrieved items. P (k) represents the precision
at k and rel(k) = 1 if the item at k is relevant, rel(k) = 0 otherwise.

Per genre, a Mean Average Precision (MAP) can be computed as the normal average of
the AP values of all instances within the genre.

Naturally, with this evaluation method, we still need to manually evaluate the rankings.
By using a rank cutoff and evaluating a sample of all automatically annotated stories, we
reduce the costly manual labor to a minimum. We order all nouns and names in a story
using the output of the probabilistic decision function of the Maximum Entropy classifier.
After removing duplicate words, this produces a final ranking. The rankings are evaluated
with a rank cutoff at 50.

6.3 Results
We present the results in Figure 2 in which we show the Precision-Recall curve as well
as the Mean Average Precision (MAP) score for each genre. The Precision-Recall curve
is obtained from computing precision-recall pairs for different probability thresholds. The
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Figure 3 Visualization of characters in the Dutch Folktale Database based on their embeddings
using t-SNE.
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system performs well, especially on fairytales (MAP= 0.97) and jokes (MAP= 0.94).9 The
lowest performance is measured on riddles (MAP= 0.85). This lower score is partly due to the
system’s inability to position the word blondje (‘dumb blond’ with a pejorative connotation)
high up the ranking.

6.4 A Semantic Map of Characters

The word embeddings that we used as features for our animacy classifier can be employed
to describe the similarities and dissimilarities between the extracted animate entities. In
Figure 3 we present a two-dimensional semantic map that depicts the (dis)similarities between
all extracted animate entities.10 The dimension reduction was performed using t-Distributed
Stochastic Neighbor Embedding (t-SNE) [29]. The coloring of the nodes was obtained by
applying a k-Means cluster analysis (k=8) to the word embeddings.

The map discloses a rich diversity of animate entities grouped into semantically coherent
clusters. The pink cluster on the far left represents a grouping of all kinds of animals. Note
that within this cluster there exist many subtle sub-clusters describing more specific positions
in the animal taxonomy, e.g. birds and livestock, marine life, and insects. The central
green cluster is occupied by characters of different professions. There is a large number
of characters from the hospitality industry, such as waiter and cook, as well as from the
transport sector, such as chauffeur and train conductor. One of the interesting groupings is
located at the very bottom of the map. This cluster describes magical, supernatural and
Christian characters (henceforth supernatural cluster). In Figure 4 we provide a detailed
view of this cluster.

The supernatural cluster is noteworthy because it is, like the animal cluster, highly
structured. Several clear hierarchically ordered clusters are discernible in Figure 4, with
several subgroups emerging. The lower right hand corner for example entails religious or
even Christian professions, such as ‘bishops’ and ‘vicar’. From there, a link is made via
‘catholics’ and ‘protestants’ to the more general ‘believers’ and ‘followers’. This mini-node
bifurcates into two different nodes. Firstly, in the middle-right, a cluster is found containing
words designating followers of different religions, such as ‘Jew’ and ‘Muslim’, which branches
of to the top right node, which is a ‘religious fringe’ node, containing ‘cult’, ‘satanist’ and
‘Freemasons’. It is interesting that ‘wicca’, which might be expected to be clustered in this
node, as it also represents an organized semi-religious group, is clustered rather with ‘magic’
and ‘witchcraft’ in the upper-left ‘magic’ cluster.

The other cluster connected to the ‘believers’ and ‘followers’-mini node is structurally
complex, starting with such terms as ‘people’ and ‘believers’, but also containing, strikingly,
‘Allah’. Taking into account that the Christian term ‘lord’ is clustered elsewhere, with
adjectives such as ‘compassion’ and ‘glory’, but also with ‘persecutors’, this means that
the two deities are embedded very differently. The cluster then continues through ‘Satan’
and ‘Lucifer’ to ‘angels’ and ‘guardian angels’. These words form again a bridge towards
more esoteric creatures, such as ‘nature spirits’, culminating in the far left ‘martians’ and
‘superman’. This cluster is connected to the upper left hand cluster, which contains traditional
magical creatures such as ‘werewolves’ and ‘dragons’.

9 A MAP of 0.97 means that on average, nearly all actual cast members of a folktale are ranked on top,
with the first case of a non-animate entity entering the ranking at about rank 5 or 6 on average.

10Readers are invited to view an interactive version of the map at the following address: http://
fbkarsdorp.github.io/animacy-detection/.

http://fbkarsdorp.github.io/animacy-detection/
http://fbkarsdorp.github.io/animacy-detection/
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Figure 4 Detailed view of the ‘Supernatural’ cluster.

In summary, the semantic map makes a case for the successfulness of our approach.
The word embeddings combined with the strength of t-SNE to position the characters on a
two-dimensional map, yield a powerful representation. The above description is only part of
the extremely rich network of associations this semantic map displays.

7 Concluding Remarks

The approach taken in this paper to create a model for animacy classification using lin-
guistically uninformed features proves to be successful. We compared the performance of
linguistically informed models (using features such as Part-of-Speech and dependency tags)
to models that make use of lower-dimensional representations of the data. With the exception
of the model that solely makes use of these representations, all models benefit from adding
these features. The model that requires the least linguistic information (word n-grams plus
word embeddings) outperforms all linguistically informed models (without embeddings). The
best results are reported by the model that combines word n-grams with Part-of-Speech
n-grams and word embeddings.

We have the following recommendation for future research. Natural language processing
models such as co-reference resolution or linguistic parsing could benefit from a module that
filters animate from inanimate candidate words. Since these models typically depend on
linguistic features, it is important that additional features, such as animacy, are not dependent
on these features as well. Our linguistically uninformed model for animacy detection provides
such an independent module.

The digitalization of large-scale cultural heritage collections such as the Dutch Folktale
Database is often accompanied with traditional (text-based) search engines. We hope that
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our example of a semantic map of characters inspires researchers to disclose such collections
in different and innovative ways.
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Abstract
We report on building a computational model of romantic relationships in a corpus of historical
literary texts. We frame this task as a ranking problem in which, for a given character, we try
to assign the highest rank to the character with whom (s)he is most likely to be romantically
involved. As data we use a publicly available corpus of French 17th and 18th century plays
(http://www.theatre-classique.fr/) which is well suited for this type of analysis because of
the rich markup it provides (e.g. indications of characters speaking). We focus on distributional,
so-called second-order features, which capture how speakers are contextually embedded in the
texts. At a mean reciprocal rate (MRR) of 0.9 and MRR@1 of 0.81, our results are encouraging,
suggesting that this approach might be successfully extended to other forms of social interactions
in literature, such as antagonism or social power relations.
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Keywords and phrases French drama, social relations, neural network, representation learning
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1 Introduction

Scholarship on literary texts has been among the seminal humanistic disciplines to engage
with computational approaches [17], with e.g. Burrows’s well-known study of Jane Austen’s
novels [6]. Burrows – and many others after him – have drawn attention to the potential of
computational text analysis as a viable methodological complement to established, ‘manual’
approaches in literary criticism and narratological analysis. The social relations between
Austen’s characters, for instance, appeared to be reflected in their language use. In general,
this kind of research has raised the question of the extent to which literary concepts can be
formally modeled. In this paper, we focus on the linguistic aspects of romantic relationships
in literary texts. We explore how this particular kind of social relationship can be modeled.
We frame this research question as a ‘matchmaking task’: given a speaker, we try to assign
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the highest rank to the speaker with whom (s)he is most likely to be romantically involved
on the basis of linguistic features.

The relationship between fictional characters in literary works can be viewed as a social
network, the computational analysis of which has been steadily gaining popularity in recent
years [15, 22]. When applied to literary fiction such as novels or plays, network analysis can
yield insight into character relations in individual literary works or, more interestingly, reveal
patterns and structure with regard to character networks in large collections of works. In this
study, we analyze a collection of French plays from the 17th and 18th centuries. Relations
between speakers are a central concern in research about dramatic works (see e.g. [19]),
and love relationships are a type of speaker relation present in virtually any play from the
period studied here. A basic assumption underlying our research is that love relationships in
fiction are not only a matter of psychology, but are also a textual phenomenon which can be
derived from the language used by speakers in a play. As a consequence, this study focuses
on developing new methods for the formal modeling of love relationships in dramatic works
based on speakers’ linguistic behavior.

Among earlier work in this field is Moretti’s essay ‘Network Theory, Plot analysis’
[14], in which the author draws on network theory to discuss the network of characters in
Shakepeare’s Hamlet, reminiscent of Knuth’s classic network dataset [11] representing co-
appearance patterns of characters in Victor Hugo’s Les MisÃ©rables. A series of publications
in the field of computational linguistics have further advanced a similar line of research in
recent years, including social network analyses of e.g. nineteenth-century fiction [9]; Alice
in Wonderland [1, 2], topic-model based approaches [7] and authorship attribution based
on network features of novels [4]. A popularizing analysis of Marvel graphic novels has
been presented in [3]. Few studies have explicitly focused on the formal modeling of love
relationships in literary texts. Nevertheless, a number of inspiring studies have studied other
sorts of specific social interactions e.g. friend-or-foe relationships [20] or antagonism (‘good
guy’ vs ‘bad guy’) often in combination with methodologies from distributional semantics
[5, 16].

This paper is structured as follows. We begin with a description of the French plays we
used in Section 2. We then proceed with the methodology in Section 3 in which we discuss
the task description, our evaluation method, the computational system and the features we
used. Section 4 discusses the results of our study after which in Section 5 we conclude with
some final remarks and starting points for further research.

2 The Data

The data for this study comes from the Théatre classique collection of French drama [10]. The
collection contains 720 plays first published between 1610 and 1802, amounting to around
9.3 million word tokens. The plays vary in genre (with 340 comedies, 189 tragedies and 191
other sub-genres) and form (with 441 plays written in verse and 209 in prose only). The
vast majority of plays have either one or five acts and 20–35 scenes. The plays are available
as highly structured XML data encoded according to the guidelines of the Text Encoding
Initiative (TEI P5) [8].1 Each play’s structure, in terms of acts and scenes, the cast members
(henceforth, speakers) present in each scene, and their speeches, has been encoded in this
markup. In addition, the XML files include detailed metadata about many of the roughly
6,500 speakers in the plays. In particular, the speakers’ gender as well as their status with

1 http://www.tei-c.org/release/doc/tei-p5-doc/en/html/DR.html
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regard to love relationships have in many cases been explicitly encoded in the cast list, or
can be inferred from the description of speakers in the cast list, as in the following example
from Molière’s Le Dépit Amoureux:

<castList>
<castItem><role id="ERASTE" civil=’M’ type="H" statut=’aristocrate’ age=’A’

stat_amour=’amoureux’>\’{E}RASTE</role>, amant de Lucile.</castItem>
<castItem><role id="LUCILE" civil=’F’ type="H" statut=’aristocrate’ age=’A’

stat_amour=’n\’{e}ant’>LUCILE</role>, fille d’Albert.</castItem>
[...]
</castList>

For the analyses presented here, we only used plays in which either such explicit annotation
is available, or where it was possible to extract such information from the text provided in
the cast list. Depending on the information available, we marked love relationships as either
reciprocal or unidirectional. We extracted 295 love relationships from 200 different plays, of
which only 90 could be assumed to be reciprocal. We created two datasets: one containing
the 90 reciprocal relations, and one containing all 295 relationships, including all cases of
unrequited love. We report results on both datasets.

3 Methods

Task Description. We cast our matchmaking problem as a ranking problem. Given a query
speaker sq from a particular play, the system should return a ranking of all other speakers in
that play. The goal is to produce a ranking in which the highest rank is allocated to the true
lover sj . Framing our task as a ranking problem allows us to inspect the relation between a
target speaker and the second-ranked speaker, who may be a contestant of the first-ranked
speaker.

Learning to Rank. Learning to Rank is a supervised machine learning task which is to
learn a ranking from observed data. Learning to Rank offers a simple, yet effective way to
include heterogeneous features in one model. We make use of the sofia-ml toolkit [18] with
the pegasos learning algorithm and the regularization parameter at its default value (λ = 0.1).
As the algorithm randomly presents samples to the ranker, each run could produce slightly
different results. All scores reported in this study are obtained by running the algorithm ten
times with different random seeds, and taking the average over the results.

Evaluation. We test the performance of our system by means of leave-one-lover-out cross-
validation. The training and test data are constructed in such a way that the query speaker
sq is only present in the test data and no relations to sq are included in the training data.
We evaluate our approach by means of the evaluation metric Mean Reciprocal Rank (MRR)
[21] which computes the reciprocal of the rank at which the first relevant speaker (the true
lover) was retrieved. MRR is a natural choice for our problem since in general, each speaker
is at most in love with one other person. To evaluate the accuracy of the model we compute
the MRR with a rank cutoff at 1.

3.1 Features
For each speaker in a play, we extract a vector containing the features described below. We
scale each feature x within each query to the range 0 ≤ x ≤ 1.
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Figure 1 Graphical illustration of the Speaker Vector Model. In the model, each speaker has a
unique vector representation (here milie in red). The speaker vector is activated each time a speaker
generates an utterance.

3.1.1 Speaker Vectors
The first two features aim to capture information about the relationship between two
speakers on the basis of their distributional semantics. For each speaker we want to learn a
representation that aims to capture their semantic behavioral properties, such as the topics
they speak of or the people they speak or think of. The approach we take to learn such
representations is inspired by the recently proposed Paragraph Vector model [12]. This model
is a shallow neural network that aims to learn dense, fixed-length semantic representations
for arbitrarily long pieces of text. In the model, each paragraph (or any other chosen text
unit, e.g. sentences or complete documents) is mapped to a unique vector of n dimensions.
The words in the paragraphs are also mapped to a vector. However, these vectors are shared
across word tokens, hence are not unique. The model initializes all vectors randomly. It
then attempts to update the values along the dimensions by continuously predicting the
next word in a particular context on the basis of these vectors. All vectors are trained using
stochastic gradient descent. The dimensions (parameters) are updated by back-propagating
the gradient through the network.

Our model learns dense representations not for individual paragraphs but for speakers.
It does so in much the same way as the Paragraph Vector model, the only difference being
that whereas the paragraphs in the original model are represented by a unique vector, a
paragraph in our Speaker Vector model is mapped to the vector that belongs to the speaker
of that paragraph. Figure 1 provides a graphical illustration of the model. The vector in
red represents the vector of the speaker ï¿œÉmilie. Together with the context vectors for
un, amour and trop the model attempts to predict the word fatal. The speaker vector of a
speaker is activated during each utterance of that speaker and is used to predict each word
in that utterance.

F1. Speaker Similarity For each candidate lover s ∈ S, where S is the set of candidate
lovers in a play, we compute the cosine similarity between its vector representation and
the vector representation of a query speaker sq, sq 6∈ S. The idea behind this feature
is that we expect two lovers to speak of similar topics in similar ways, which should be
reflected in their vector representations. To illustrate this point, in Figure 2a we present
a two-dimensional reproduction of the speaker vectors in Pierre Corneille’s comedy Le
Menteur from 1644. The dimension reduction was generated through principal component
analysis (PCA). The two lovers Alcippe and Clarice are placed adjacent to each other,
reflecting the similarity of their vector representations. Interestingly, Alcippe’s main
contestant Dorante, the liar of the play’s title, is close by. With some imagination, the
plot visually expresses their contest around their object of desire, Clarice. To investigate

CMN’15
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(a) 2-dimensional PCA projection of the speaker
vectors in Pierre Corneille’s Le Menteur. The two
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to each other, reflecting the similarity of their
vector representations.
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(b) Interaction network of Florame in Pierre
Corneille’s La Suivante. Florame predominantly
interacts with two other speakers (depicted by
the edge weight) of which Daphnis is his true
love. Interestingly, Florame also often interacts
with Theante who also is in love with Daphnis.

Figure 2 Visualization of features F1. and F5.

the overall effect of being a couple on the similarity between two speakers, we computed
the pairwise cosine similarity between all lover and non-lover pairs within the same play.
According to a two-sample Kolmogorov-Smirnov (KS) test, the two cosine similarity
distributions differ significantly (p < 0.0005).

F2. Analogous Lovers The relation between Clarice and Alcippe can be described by their
displacement vector D: D(Clarice,Alcippe) = sClarice − sAlcippe, where sClarice is the
vector representation of Clarice and Alcippe is represented by sAlcippe. We can use this
relation as a reference point to other possible relations between speakers. The similarity
between a pair of displacement vectors, each describing a particular relation, should
reflect the similarity between these relations. Given the relation between e.g. Clarice and
Alcippe, we can compare other relations between speakers to this relation. Relations that
are similar to that of Clarice and Alcippe are assumed to be romantic relationships. An
illustrative example is the relation between Rosidor and Caliste from Pierre Corneille’s
highly complex early tragi-comedy Clitandre, first performed in 1630. Of all relations
between Rosidor and any other speaker in the play, the one with Caliste is the one that is
most similar to the relation between Clarice and Alcippe. We use this information in the
following way. For each candidate lover s ∈ S and a query speaker sq, we compute the
cosine similarity between the displacement vector D(s, sq) and the displacement vectors
of all known lover couples. The maximum similarity between D(s, sq) and any other
pair is used as the feature value. To assess the overall similarity between couples versus
non-couples, we computed the maximum similarity between the displacement vectors
of lover pairs to all other lover pairs and all non-lovers to all lover pairs. Again, the
similarity distributions are significantly different (KS: p < 0.0005).

3.1.2 Word Vectors
Speaker vectors aim to capture topical properties of speakers. The similarity between two
speaker vectors reflects the extent to which the two speakers speak of similar topics. Lovers
also tend to speak about each other and often third parties talk about a couple. Speaker
vectors do not necessarily capture this information, because most text in plays is in direct
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speech in which speakers refer to themselves by means of pronouns. To model the textual
proximity of speakers we construct a version of the corpus in which each first person pronoun
(je, me, moi, mon, ma) has been replaced by the unique ID of the speaker it refers to.
Because speakers with the same name act in different plays, we also replace all proper
names with the same unique ID. Essentially, this procedure is a cheap method to resolve
co-references. We train word vectors on these adapted texts with 200 dimensions using the
skip-gram and CBOW architecture [13].

F3. Word Similarity Similar to F1., for each candidate lover s ∈ S we compute the cosine
similarity between his/her word vector representation and the word vector representation
of a query speaker sq, sq 6∈ S. On average, lovers have a cosine similarity of 0.58 while
the mean cosine similarity between non-lovers is 0.34. As with the previous features, the
similarity distributions are significantly different (KS: p < 0.0005).

F4. Word Analogy In a similar way as F2., we compute the maximum cosine similarity
between the displacement vector D(s, sq) for candidate lover s and query speaker sq and
the displacement vectors of all known love couples. (KS: p < 0.005)

3.1.3 Physical Co-occurrence Features
The speaker vectors capture topical similarities and co-occurrence features present in the
text. Not necessarily do these features reflect the physical co-occurrence of two speakers,
for instance in a particular scene. The following two features aim to capture the physical
co-occurrence of speakers. The idea behind these features is that two speakers are more
likely to be in a love relationship if they meet more often.

F5. Interaction Frequency The first physical co-occurrence feature estimates the frequency
of interaction between two speakers. Speaker si is in interaction with sj if an utterance
of si is preceded or followed by an utterance of sj . For each speaker we compute
the normalized count of how often (s)he interacts with another speaker. The result
can be described as a network for each speaker in which weighted edges between two
speakers are created if they interact. Edge weights are determined by the frequency
with which the speakers interact. Figure 2b provides a graphical illustration of this
feature in which we show the interaction network of Florame from Pierre Corneille’s
five-act comedy La Suivante, first performed in 1634. Florame predominantly interacts
with two other speakers (depicted by the edge thickness) of which Daphnis is his lover.
Interestingly, Florame also often interacts with Theante who is also in love with Daphnis.
The overall interaction frequency distribution differences between couples and non-couples
is significant (KS: p < 0.0001).

F6. Scene Co-occurrence The second physical co-occurrence feature is similar to F5. Here
we construct a co-occurrence network for each speaker in a play in which edges between
speakers are created if they appear in the same scene. The distribution differences between
couples and non-couples are again significant (KS: p < 0.0001).

3.1.4 Meta Features
The XML-formatted versions of our plays provide rich metadata. One of the annotated
features is the gender for each speaker. Given the dominance of heterosexual relationships
in 17th and 18th century plays, we can apply an a priori filter on possible lover candidates
on the basis of gender. To allow our system to be employed for different corpora that show
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Table 1 Feature performance investigation. The first four columns provide the performance of
the system with (individual) features on the full data set and the reciprocal data set. The last four
columns show the performance of the system after removing the features mentioned.

feature with feature without feature

Reciprocal Full Reciprocal Full

MRR @1 MRR @1 MRR @1 MRR @1

F1. Speaker Similarity 0.51 0.29 0.51 0.28 0.89 0.79 0.86 0.74
F2. Analogous Lovers 0.41 0.18 0.48 0.27 0.87 0.76 0.86 0.74
F3. Word Similarity 0.74 0.59 0.73 0.56 0.77 0.60 0.79 0.64
F4. Word Analogy 0.45 0.24 0.41 0.22 0.88 0.77 0.86 0.74
F5. Interaction Frequency 0.53 0.28 0.55 0.32 0.88 0.78 0.87 0.77
F6. Scene Co-occurrence 0.53 0.32 0.51 0.28 0.87 0.74 0.87 0.75
F7. Gender 0.29 0.07 0.37 0.12 0.71 0.50 0.71 0.52

F1. – F7. 0.9 0.81 0.87 0.75 –

more variability in terms of the nature of relationships, we encode the gender of speakers as
a feature.

F7. Gender For each combination of candidate lover s ∈ S and the query speaker sq, we
compare their gender, where a gender difference is represented by a value 1 and gender
identity by 0.

4 Results

Our Learning to Rank system shows promising results. The system achieves a Mean
Reciprocal Rank of 0.9 on the dataset containing solely reciprocal love relationships and 0.87
on the full dataset. The MRR@1 (or accuracy) of the model on the reciprocal relationships
is 0.81 and 0.75 on the full data set.

We performed an additional experiment in which for each feature we train our system
using only that feature. The features in a Learning to Rank system can interact with each
other in non-linear ways, implying that features that appear to have little effect in isolation
may contribute strongly to the overall performance in combination with other features. We
therefore also performed an ablation experiment in which for each feature we trained a
system on the basis of all features except that feature. In Table 1 we present the results of
the experiment that measures the performance of individual features (first four columns) and
the results for the ablation experiment (last four columns).

In both the full data set and the data set containing solely reciprocal love relationships,
the Word Similarity feature (F3.) is the best individually performing feature. The physical
co-occurrence features (F4. and F5.) come next, followed by the Speaker Similarity feature
(F1.) and the analogy-based features (F2. and F4.) The low performance of the gender
feature is no surprise because it selects a number of speakers yet is unable to discriminate
between them. In contrast, in the ablation experiment gender has the biggest contribution
to the performance. Without the gender feature, the MRR drops from 0.9 to 0.71.2

2 Note that this score is even lower than the score obtained by the Word Similarity alone. This suggests
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Figure 3 The effect of cumulatively adding features. We start with a random ranking (no features)
and then continuously add more features. The plot visualizes how Le Doux, the lover of Suzanne in
Beaunoir’s Le Sculpteur gradually rises to the first position.

The gender feature acts as a sort of funnel that makes a pre-selection among possible love
candidates. Given this pre-selection, the system makes a decision on the basis of the other
features. To illustrate this process, we provide in Figure 3 the different rankings produced
by the system for one speaker, Suzanne from Madame de Beaunoir’s two-act prose comedy
Le Sculpteur first performed in 1784. We start with a random ranking. The next ranking is
based solely on the gender feature and puts all male speakers in the highest positions. As we
add more features, Suzanne’s lover Le Doux slowly rises to higher positions and takes over
the first position from BÃ©carre when we add feature F5. Interaction Frequency.

5 Conclusions

The system for identifying romantic relationships in drama texts introduced here proves to be
successful. We have shown that on the basis of textual and structural distributional properties
of speakers in French drama texts we are able to confidently extract love relationships between
speakers from the texts. These distributional properties function best in combination with
knowledge about the gender of two speakers. Since knowledge about the gender of a potential
couple is so important to our model and because we rely on manual annotations of this
feature, the first point of future research should be the automatic classification of speaker
gender. Next, we believe that our approach might be a fruitful starting point for modeling
other relationships, such as well-know relations from structuralist analyses of drama, such as
the triangle of protagonist, helper and antagonist [19].

One important limitation of the present setup is that the system can naively assume that
all analyzed speakers are at least involved in one romantic relationship. The task is thus to
identify, for a given speaker, the correct lover among a set of candidates. A more general,
yet also more demanding task would be to predict for any given character, whether (s)he
is romantically involved at all with another character. The distinction between both tasks
is reminiscent of the difference between authorship attribution and authorship verification.
With the former, resembling a police line-up, the system can assume that the correct author
is present among the candidates. In the verification setup, however, the correct author is

that there are some interactions between features that actually harm the overall performance. We plan
to investigate this in future work.
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not necessarily included among the candidates. In future research, we hope to be able to
generalize our model in this respect.

Our method could more generally serve as a heuristic tool for the exploration of large
literary corpora and the serendipitous discovery of unsuspected speaker relations. Its ranking
fosters investigations, for example, into what types of relations there are between the target
speaker and the second-ranked speaker, who may for instance be a rival or a family member
of the first-ranked speaker. More generally, our method is relevant in the context of increasing
amounts of literary texts becoming available through large-scale digitization of our cultural
heritage. Such textual data does not usually contain the rich annotations our data contains,
and manually adding it is labor-intensive. Automatically extracting fundamental speaker
relationships from raw text versions of plays helps gain a hermeneutically valuable access to
such ever larger amounts of textual data.
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Abstract
The mental models of experts can be encoded in computational cognitive models that can support
the functioning of intelligent agents. This paper compares human mental models to computa-
tional cognitive models, and explores the extent to which the latter can be acquired automatic-
ally from published sources via automatic learning by reading. It suggests that although model
components can be automatically learned, published sources lack sufficient information for the
compilation of fully specified models that can support sophisticated agent capabilities, such as
physiological simulation and reasoning. Such models require hypotheses and educated guessing
about unattested phenomena, which can be provided only by humans and are best recorded us-
ing knowledge engineering strategies. This work merges past work on cognitive modeling, agent
simulation, learning by reading, and narrative structure, and draws examples from the domain
of clinical medicine.

1998 ACM Subject Classification I.6 Simulation and Modeling

Keywords and phrases cognitive modeling, simulation, clinical medicine, learning by reading

Digital Object Identifier 10.4230/OASIcs.CMN.2015.108

1 Introduction

New scientific findings are being published much faster than domain experts can read or
developers of intelligent systems can integrate. One way to address this information onslaught
is through automation: by configuring intelligent agents that engage in lifelong learning by
reading. Ideally, such agents will initially be endowed with a cognitive model corresponding to
the models held by domain experts; then, as the agents read new texts, they will compare the
information reported in those texts to the current state of their cognitive model, incorporating
time-stamped, source-stamped updates into the model. Agents thus modified will not only
themselves show increasingly sophisticated behavior, they will be able to pass on this learning
to both people and intelligent systems via updating applications. Although a human-quality
realization of this vision is not achievable overnight, learning by reading is realistic and can
be pursued in a way that offers benefits in the near-, mid- and long-terms.
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In this paper, we explore the nature of computational cognitive models that are sufficient
to support the physiological and cognitive simulation of human-like intelligent agents, as
developed for a prototype virtual patient application. We describe how these models, like
the human mental models that underlie them, are comprised of a data-attested sketch filled
in by clinical reasoning and educated guessing. We show how automatic learning by reading
has the potential to automate the acquisition and updating of the data-attested portions, but
argue that the backbones of the models – which derive of largely unwritten human expertise
– are still best crafted manually.

The clinical models of diseases to be discussed here have features both of scripts (in the
Schankian sense [28]) and of narratives, which informs how we approach the task of learning
by reading.

Like scripts, the models record typical sequences of events and the objects that participate
in them. They also allow for extensive individualization of the dynamically simulated cases
based on two factors: (1) the physiological, psychological, emotional and circumstantial
features of each virtual patient instance, and (2) the “moves” of the virtual patient and the
clinician with respect to diagnosis, treatment and patient lifestyle, which can be undertaken
at any point in the patient’s simulated life. While selecting individualizing features for each
virtual patient leads to some aspects of determinism in the simulation, much of the simulation
is open-ended because the moves of the live clinician interacting with the virtual patient are
not known beforehand and can fundamentally change patient outcome.

Like narratives, clinical disease models involve a non-trivial – in fact, sometimes life-
and-death – plot. Ideally, the patient and clinician cooperate to cure the patient, but
conflict can also occur: e.g., the virtual patient can choose to lie to the doctor to cover up
non-compliance with a treatment protocol, or it can refuse medical intervention due to its
personality traits or phobias [14]. Although, from a developer’s point of view, such behavior
is expected (the virtual patient will have been endowed with personality traits giving rise to
this behavior), from the point of view of a system user, such outcomes are expected to be
viewed as unexpected plot elements.

At the junction of script and narrative are two additional features of our clinicial disease
models. First, the models include attested but atypical – i.e., story-worthy – events. In fact,
one of the motivating factors in developing this virtual-patient-oriented clinician training
system was to expose medical trainees to the broadest possible set of disease manifestations
during a temporally compact training experience. The second script-narrative bridge derives
from the constant influx of newly reported medical knowledge that must be incorporated
into the models. Such new findings, which are often reported in case studies, are similar
to the unexpected plot twists of narratives which, once encountered, must be recorded as
modifications to scripts.

Our goal of learning by reading involves the automatic detection of such new information,
particularly from case studies, and its seamless incorporation into the core disease models. An
enabling factor is the canonical plot-like structure of case studies, which provide summarized
background knowledge supplemented by the plot twist of an unexpected patient experience.

The work reported here dovetails with several programs of research and development. Our
focus on the medical domain reverberates with Sileno et al.’s [29] focus on the legal domain,
and they, like us, seek to ultimately support automatic knowledge acquisition from narrative;
however, whereas our work involves a formal knowledge base, language processing, and agent
simulation, Sileno et al.’s contribution is at a more theoretical level. O’Neill and Riedl [27]
and Finlayson [4] both present methods of generating narrative structures using a manually
annotated corpus as input. Whereas O’Neill and Riedl do not commit to any particular
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knowledge representation formalism, Finlayson does, and uses it in the implementation of
his Analogical Story Merging algorithm. Lieto and Damiano [6] discuss methods of detecting
minimally different roles of participants in a narrative, such as hero vs. antihero. This
aligns in spirit with our goal of detecting minimal differences between our disease models
and the minimally different information presented in medical case studies. In terms of the
ontologically-grounded modeling of complex events, the work of Schank and Abelson [28]
was an early influence for the Theory of Ontological Semantics [21] that underpins the work
reported here.

The paper is organized as follows. Section 2 sets the stage with an overview of the
prototype medical teaching application – Maryland Virtual Patient (MVP) – that gave rise
to our methodology of cognitive modeling. Section 3 draws a four-way comparison between
human mental models, manually compiled cognitive models, the model components that
can be semi-automatically elicited from human experts, and the model components that
can be extracted from texts. Based on this comparison, we suggest a practical balance of
effort between manual, semi-automatic and automatic knowledge acquisition strategies in
support of agent configuration. Section 4 provides an overview of computational cognitive
modeling in the OntoAgent environment, including excerpts from a disease model that
successfully supported agent simulation in the MVP application. Section 5 describes how
model components can be learned from texts, particularly by exploiting the predictable
structure of genres such as case studies and disease overviews. Section 6 concludes the paper
with the broader implications of this program of R&D.

2 The Maryland Virtual Patient (MVP) Application

Our modeling strategy developed during work on the prototype Maryland Virtual Patient
(MVP) clinician training application [8] [9] [10] [13] [14] [22] [25] [26]. MVP is an agent-
oriented system for automating certain facets of medical education and certification. It
includes a network of human and software agents, at whose core is a virtual patient – a
knowledge-based model of a person suffering from one or more diseases. The virtual patient is
a “double agent” in that it displays both physiological and cognitive function. Physiologically,
it undergoes both normal and pathological processes in response to internal and external
stimuli, and shows realistic responses both to expected and to unexpected interventions; so
if a trainee launches an inappropriate (unexpected) treatment, the patient’s state will not
improve and may even deteriorate, in which case the trainee must attempt to recover from his
mistake.1 Cognitively, the virtual patient experiences symptoms, has lifestyle preferences, can
communicate with the human user in natural language, has memories of language interactions
and simulated experiences, and can make decisions based on its knowledge of the world, its
physical, mental and emotional states, and its current goals and plans. An optional tutoring
agent provides advice and feedback to the trainee during the simulation.

Development of MVP follows the demand-side approach, meaning that it seeks to address
a problem (detailed in [30]) that needs a solution rather than a problem that can be easily
solved using standard methods (the supply-side approach). The specific problem MVP
addresses is that medical educators, current training literature and pedagogical practice
cannot provide medical students with adequately broad and varied training in cognitive
analysis and problem solving. MVP seeks to permit trainees to diagnose and treat a large

1 Compare this dynamic behavior with the static options in educationally-oriented branching scenarios
that have also been called “virtual patients”.
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number of patient cases in a short amount of time, with the expectation that training results
would mirror those of the SHERLOCK II electronic troubleshooting system for F16 aircraft
of the US Air Force: participants using SHERLOCK II are reported to have learned more in
20 hours of tutoring than in 4 years of field experience [2].

Although many different paradigms of research and development involve entities called
“virtual patients” (defined as mannekins, live actors, or branching scenarios), only MVP
involves a knowledge environment that can support the approach to automatic lifelong
learning described here. Key to this knowledge environment is reuse of the same knowledge
representation language and static knowledge resources to support the wide range of agent
functionalities described above [15]. Our prototype system has demonstrated that this
AI-oriented, knowledge-based approach goes beyond theoretical status: we have worked out
the details of knowledge representation and processing in implementations using realistic
subject matter.

3 The Nature of Models

In this section we consider, in turn, human mental models, manually crafted computational
cognitive models that seek to encode them, and the extent to which semi-automatic and
automatic knowledge acquisition methods can realistically contribute to the computational
modeling enterprise.2

Human mental models. Human mental models develop from a combination of experience,
reading facts and stories, being told facts and stories, hypothesizing, reasoning, and even
misrembering and forgetting. Although this wealth of contributors seems obvious, it is brought
into relief when, as a non-specialist, one attempts to build a comprehensive computational
model using only one of these sources as input: published texts. When working on modeling
diseases and clinicial practices for MVP, the insufficiency of a “text-only” approach was
immediately evident. Some gaps in knowledge represent facts that are actually not known
because they are never measured: e.g., the physiological manifestations of the pre-clinical
(non-symptomatic) stage of a disease. Other gaps reflect information that is not published in
the literature for a given disease because it represents a broader generalization: e.g., a large
tumor begins as a small tumor. Still other gaps reflect details that are not needed clinically
(and are probably not known) but must be asserted if a realistic end-to-end simulation is
to be implemented: e.g., does medication M, which ultimately cures disease D, improve
property values at a steady rate or according to some non-linear function? The point is that
humans somehow fill in these gaps sufficiently – albeit with a certain degree of uncertainty –
to permit them to practice medicine effectively; and if they can do it, so must intelligent
agents tasked with carrying out tasks requiring human-level reasoning.

Manually compiled, computational cognitive models. To develop computational cognitive
models that were sufficient to support realistic patient simulations in MVP, a knowledge
engineer led physican-informants through the process of distilling their extensive and tightly
coupled physiological and clinical knowledge into the most relevant subset and expressing it
in the most concrete terms. Not infrequently, specialists were also called upon to hypothesize
about the unknowable, such as the preclinical stage of a disease and the values of physiological
properties between the times when tests are run to measure them. Such hypotheses are

2 See [5] for relevant discussion of manual vs. semi-automatic ontology development.
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by nature somewhat vague, and could differ from expert to expert. However, rather than
permit this imprecision to grind agent building to a halt, we proceed in the same way as
live clinicians – and, presumably, any domain experts – do: by configuring a model that is
reasonable and useful, with no claims that it is the only model possible or that it precisely
replicates human functioning (cf. [1] for a discussion of modeling in the philosophy of science).

Decisions regarding what to include in our models derived from five desiderata: (1) that the
models support realistic, interactive simulations; (2) that they not be unnecessarily detailed –
i.e., if a detail would not be manifest in simulation (e.g., the firing of individual nerves), it
was not included; (3) that they be easily updated to reflect new research findings; (4) that
they be inspectable and explanatory, to support the pedagogical goals of the environment;
and (5) that they be incorporated into an ontologically-grounded knowledge enviroment that
supports all functionalities of all agents.

Taking these desiderata into account, and working within the OntoAgent cognitive
architecture [15], we model diseases using an inventory of salient parameters whose values
change over time in response to both internal stimuli (i.e., what the body does) and external
stimuli (i.e., what the patient, doctor or outside world does). The selection of parameters
to be included in a disease model is guided by practical considerations. Parameters are
included because (a) they can be measured by tests, (b) they can be affected by medications
or treatments, and/or (c) they are central to a physician’s mental model of the disease. In
addition to using parameters that directly reflect medically attestable properties, we also
include abstract parameters that foster the formulation of a compact, comprehensible model
(see Section 4 for examples).3 Such features are particularly important at this stage of the
discussion because they reflect the creative, unattested, aspect of computational modeling
that naturally lies beyond automatic knowledge extraction methods since the information
cannot be found explicitly in texts.

However, even if human reasoning is needed to build the more creative, hypothesis-driven
aspects of computational models, the more concrete aspects can be aquired in semi-automatic
and automatic ways, and it is to those that we now turn.

Semi-automatically acquirable model components. Since the collaboration between know-
ledge engineers and specialists is labor-intensive, the question arises, To what extent can
automation foster the process? One way in which we experimented with reducing labor
was by configuring a prototype knowledge elicitation system, called OntoElicit, to guide
specialists through the process of independently recording “the basics” as preparation for
work with a knowledge engineer [24]. The output of this work would then serve as input to
the collaborative effort.

OntoElicit asks a domain expert to divide the given disease into conceptual stages
correlating with important events. (The most obvious example of disease staging involves
cancer, with its well-known stages 1 through 4; however, not all diseases are described in
the literature as having a fixed inventory of stages.) Next, the system leads the expert
through the process of providing – in a semi-formal way, guided by templates – details about
disease progression, diagnosis and treatment. For example, when describing physiology and
symptoms, the expert provides the inventory of properties that change over time, their start
value before the disease begins and their expected values at end of each conceptual stage.
Most values are recorded as a range of values covering different individual patients in the

3 These features can be likened to the inclusion of intermediate categories in ontologies: although one
does not typical talk about wheeled-air-vechiles, this can be an appropriate node in an ontology.
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population along with a default representing the most typical value. When describing test
results, the expert indicates (a) which physiological properties are measured by each test,
(b) any results that cannot be directly measured from the physiological model – e.g., visual
findings by the administrator of the test, and (c) a “specialist’s interpretation” of what
the test results returned at that stage would indicate –e.g., “Suggestive of disease X.” For
interventions (medications, lifestyle changes, surgery, etc.), the expert indicates (a) which
properties and/or symptoms are affected by the intervention, (b) the possible outcomes of
the intervention, (c) possible side effects, and (d) if known, the percentage of the population
expected to have each outcome and side effect. And for diagnosis and treatment, the expert
provides fillers for ontological properties such as sufficient-grounds-to-suspect (the
given disease), sufficient-grounds-to-diagnose and sufficient-grounds-to-treat.

As mentioned earlier, the information acquired through OntoElicit is better described as
model components than full models, since (a) some of the conceptual glue needed to hold
the model together – most notably, causal chains – is absent and (b) the information is not
written in the ontological metalanguage. However, the elicited information does include
many aspects of a human mental model that would not be found in published sources, such
as hypotheses about stage-by-stage disease progression despite the likely absence of actual
attested property values for all stages. For this reason, the results of OntoElicit lie somewhere
between a formal computational model and what we can expect to find in published sources.

Model components acquirable by agent reading. Published reports in the field of medi-
cine typically contain only what is attested, making them insufficient as the sole source
of knowledge for a comprehensive computational model. We might think of a complete
computational model as a picture covered by a clear stencil whose holes represent model
components that can be learned from the literature. As described in Section 5, the automatic
learning of model components can be used either to update existing models or as the building
blocks for more comprehensive, manually acquired models.

4 Modeling in OntoAgent

In the OntoAgent knowledge environment, disease models are recorded as complex events in
the ontology. The ontology is a formal model of the world that is organized as a multiple-
inheritance hierarchical collection of frames headed by concepts (objects and events) that
are named using language-independent labels [7] [15] [21]. It currently contains approximately
9,000 concepts. The objects and events are described using properties, both attributes
and relations. The properties themselves are primitives, i.e., their meaning is understood
to be grounded in the real world without the need for further ontological decomposition. A
short excerpt from the frame for the ontological concept surgery (which actually contains
over a dozen more properties) is shown in Listing 1.

One of the properties not shown in this excerpt is the one that is key to modeling complex
events: has-event-as-part. The filler of this slot is an event script of the type introduced by
Schank and Abelson [28]. Scripts represent typical sequences of events and their causal and
temporal relationships. In other words, they encode how individual events hold well-defined
places in routine, typical sequences of events that happen in the world, with a well-specified
set of objects filling different roles throughout that sequence. Scripts require expressive
means not provided in the simple slot-facet-filler formalism shown in Listing 1, and are
recorded in a sister knowledge base. Scripts both drive agent simulation and support agent
reasoning. For example, the script that describes a disease (its causes, variable paths of
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Listing 1 Excerpt from the concept surgery in the OntoAgent ontology.
SURGERY

IS -A (value MEDICAL - PROCEDURE )
AGENT ( default SURGEON ) (sem PHYSICIAN ) (relaxable -to HUMAN)
THEME ( default MEDICAL - PATIENT ) (sem ANIMAL )
LOCATION ( default OPERATING -ROOM) (sem MEDICAL - BUILDING )

(relaxable -to PLACE)
INSTRUMENT ( default SURGICAL - INSTRUMENT )
DURATION (sem .5 - 8 (MEASURED -IN HOUR ))

progression across patients, potential responses to interventions, etc.) permits (a) simulation
of the disease in virtual patients, (b) reasoning about disease processes by the virtual medical
tutor and (c) natural language dialog about the disease, since semantically-oriented natural
language processing requires real-world knowledge support [21]. In short, a theoretically and
practically motivated aspect of knowledge acquisition in OntoAgent is that knowledge, once
recorded, should enable the maximum number of functionalities in the maximum number of
agents [15].

For reasons of space, this discussion will focus primarily on the modeling of disease
processes themselves, without as much detail about the modeling of interventions, clinical
decision-making, agent decision-making, simulated agentive action, or any of the other
necessary functionalities of agents, which are all handled in a corresponding way, as reported
in the references cited earlier. It is important to understand the nature of the disease
models in order to appreciate why they serve as a useful knowledge substrate for automatic
knowledge acquisition from text. For this reason, we present select excerpts from our model
for gastroesophageal reflux disease (GERD) by way of illustration.

4.1 An Excerpt from the Model for GERD

Gastroesophageal reflux disease, or GERD, can be defined as any symptomatic clinical
condition that results from the reflux of stomach or duodenal contents into the esophagus.
In laymen’s terms, acidic stomach contents backwash from the stomach into the esophagus
because the sphincter between the two – called the lower esophageal sphincter (LES) – is not
functioning properly. The two sphincter abnormalities that give rise to GERD are abnormally
low basal pressure of the LES (< 10 mmHg), or an abnormally large number or duration of
so-called transient relaxations of the LES. Both of these lead to an increase in acid exposure
to the lining of the esophagus. Clinically speaking, it does not matter which LES abnormality
gives rise to excessive acid exposure, what matters is the amount of time per day this occurs.
We record this feature as the variable “total time in acid reflux”, or ttar.

Although ttar earns its place in the model as the variable that holds the results of the
test called pH monitoring, it does not conveniently capture – for physicians or knowledge
engineers – relative GERD severity. For that we introduced the abstract variable gerd-level.
The values for gerd-level conveniently correlate with LES pressure as follows. If GERD is
caused by a hypotensive LES, then gerd-level equals LES pressure. If GERD is caused
by excessive transient relaxations, then the gerd-level reflects the same amount of acid
exposure as would have been caused by the given LES pressure. So a gerd-level of 5 can
indicate an LES pressure of 5 mmHg or a number/duration of transient relaxations per day
that would expose the esophagus to that same amount of acid. Key aspects of the model
then orient around gerd-level (rather than LES pressure, transient relaxations, or ttar):
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Table 1 Sample GERD levels and their associated total time in acid reflux (ttar) per day. It
also shows the baseline duration of each conceptual stage of the disease due to that ttar, with more
acid exposure leading to faster disease progression.

GERD level ttar in hrs. per day Stage duration in days
10 less than 1.2 a non-disease state
8 1.92 160
5 3.12 110
3 4.08 60

e.g., gerd-level is used to determine the pace of disease progression, with lower numbers
reflecting more acid exposure and faster disease progression.

The stages of GERD are listed below. Each stage can be the end stage for some patients;
that is, some lucky patients, even if left untreated, will never experience more than an inflamed
esophagus, whereas others will end up with esophageal cancer. There is a bifurcation in
disease path for patients experiencing late-stage disease, for reasons that are unknown.

Preclinical: non-symptomatic inflammation of the esophagus.
Inflammation: more severe inflammation of the esophagus, the beginning of symptoms.
Erosion: one or more erosions occur in the esophageal lining.
Ulcer: one or more erosions have progressed to the depth of an ulcer.
Post-ulcer path 1. Barrett’s metaplasia: a premalignant condition; progresses to cancer
(an additional stage) in some patients.
Post-ulcer path 2. Peptic stricture: an abnormal narrowing of the esophagus due to
changes in tissue caused by chronic overexposure to gastric acid; does not lead to cancer.

The ontological scripts that support each stage of simulation include the basic physiological
property changes, responses to interventions (if administered), and the effects of lifestyle
choices. Sparing the reader the LISP code in which scripts are written, here is an example, in
plain English, of how GERD progresses in an untreated patient who is predisposed to having
erosion as the end stage of disease. During preclinical-gerd, the value of the property
preclinical-irritation-percentage (an abstract property whose domain is mucosa-
of-esophagus) increases from 0 to 100. When the value of preclinical-irritation-
percentage reaches 100, the script for the preclinical-gerd is is unasserted, with the
simultaneous assertion of the inflammation-stage script. During the inflammation-
stage, the mucosal layer of the esophageal lining (recorded as the property mucosal-depth
applied to the object esophageal-mucosa) is eroded, going from a depth of 1 mm. to 0
mm. over the duration of the stage. When mucosal-depth reaches 0 mm., the script for
the inflammation-stage is unasserted, with the simultaneous assertion of the script for
the erosion-stage. At the start of the erosion-stage, between 1 and 3 erosion objects
are created whose depth increases from .0001 mm. upon instantiation to .5 mm. by the end
of the stage, resulting in a decrease in submucosal-depth from 3 mm. to 2.5 mm. When
submucosal-depth has reached 2.5 mm., the erosion-stage script remains in a holding
pattern since the patient we are describing does not have a predisposition to ulcer.

Over the course of each stage, property values are interpolated using a linear function,
though other functions could be used if they were found to produce more lifelike simula-
tions. So, halfway through preclinical-gerd, the patient’s preclinical-irritation-
percentage will be 50, and three quarters of the way through that stage it will be 75.
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The length of each stage depends upon the patient’s total time in acid reflux (cf. Table 1):
e.g., a patient with a gerd-level of 8 will have a total time in acid reflux of 1.92 hours a
day and each stage will last 160 days.

Some lifestyle habits, such as consuming caffeine, mints and fatty foods, increase gerd-
level manifestation in some patients. In the model, if a patient is susceptible to GERD-
influencing lifestyle habits and is engaging in those habits in simulation, then the effective
gerd-level reduces by one. This results in an increase in acid exposure and a speeding
up of each stage of the disease. If the patient is not actively engaging in the habit – e.g.,
after following the advice of a doctor to stop drinking caffeine – the gerd-level returns to
its basic level. This is just one example of the utility of introducing the abstract property
gerd-level into the model.

Let us now turn to two aspects of patient differentiation that highlight some more complex
aspects of modeling: modeling why patients have different end stages of the disease, and
modeling partial responses to medications. It is worth mentioning that we did not undertake
either of these aspects of modeling in our initial model of GERD (published in [9]). The fact
that we could seamlessly incorporate these enhancements, without perturbation to the base
model, is evidence of the inherent extensibility of the models developed using this modeling
strategy.

Modeling different end stages of disease across patients. It is unknown why patients
have different end stages of GERD if the disease is left untreated. However, physicians
can and do hypothesize about the reasons for cross-patient differentiation, which could
include genetic, environmental, physiological and even emotional factors.4 To capture some
practically and pedagogically useful hypotheses, we introduced three abstract parameters
into the model:

mucosal-resistance reflects the hypothesis that patients differ with respect to the
degree to which the mucosal lining of the esophagus protects the esophageal tissue from
acid exposure and fosters the healing of damaged tissue. A higher value on the abstract
(0-1) scale of mucosal-resistance is better for the patient.
modified-ttar combines mucosal-resistance with the baseline ttar to capture
the hypothesis that a strong mucosal lining can functionally decrease the effect of acid
exposure. For example, patients with an average mucosal-resistance will have the
stage durations shown in Table 1 above. Patients with an above-average mucosal-
resistance will have a lower modified-ttar: e.g., if a patient’s ttar is 3.12 hours,
but the patient has a mucosal resistance of 1.2, we model that as an modified-ttar
of 2.5 hours (3.12 multiplied by .8), and the disease progresses correspondingly slower.
By contrast, if the patient’s ttar is 3.12 hours but it has a mucosal-resistance of .8,
then the modified-ttar is 3.75 hours (3.12 multiplied by 1.2), and disease progression
is correspondingly faster.
disease-advancing-modified-ttar is the total time in acid reflux required for the
disease to manifest at the given stage. This variable permits us to indicate the end stage
of a patient’s disease in a more explanatory way that by simply asserting it. That is, for
each patient, we assert how much acid exposure is necessary to make the disease progress
into each stage, as shown in Table 2. If the acid exposure is not sufficient to support
disease progression into a given stage (as shown by the italicized cells), the patient’s

4 For a medical description of the emotional effects on GERD, see [20]. For our incorporation of these
factors into the clinical model, see [17].
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Table 2 The first column indicates the patient’s actual total time in acid reflux per day. The
cells in the remaining columns indicate the total time in acid reflux needed for GERD to advance in
that stage. Cells in italics show that the disease will not advance to this stage unless the patient’s
modified-ttar changes – which could occur, e.g., if the patient took certain types of medications,
changed its lifestyle habits or had certain kinds of surgery.

Patient Modified-ttar Preclin. Inflamm. Erosion Ulcer Pep.Strict.
John 1.92 1.92 1.92 2.3 2.5 3.12
Fred 2.8 1.92 1.92 2 2.7 3.12
Harry 4.08 1.92 1.92 3 3.5 4.0

Table 3 Effects of medications on modified-ttar. The resulting modified-ttar is written in
brackets.

Patient Modified-ttar H2 blocker reduction PPI once daily PPI twice daily
John 1.92 .5 [1.42] 1.25 [.67] 1.5 [.42]
Fred 2.8 .3 [2.5] 1[1.8] 2.25 [.55]
Harry 4.08 .1 [3.98] .8 [3.28] 2.2 [1.88]

disease will hit its end stage. For example, John is a patient whose disease will not
progress past the Inflammation stage, even if left untreated, because his modified-ttar
is not high enough to support the erosion stage of GERD. Fred’s disease will advance
into the ulcer stage, and Harry’s disease will advance to peptic stricture.

Modeling Complete and Partial Responses to Medication. In order to capture complete
and partial responses to medications, medication effects are modeled as decreases in modified-
ttar, as shown in Table 3.

The table indicates the decrease in acid exposure caused by each medication for each
patient, along with the resulting modified-ttar. So, for each day that John takes an H2
blocker, his modified-ttar will be 1.42, which is not a disease state. If he already has the
disease, healing will occur. The other, stronger, medication regimens will also be effective for
him. For Fred, the H2 blocker is not sufficient to promote complete healing (it brings the
modified-ttar down to 2.5), but it would be sufficient to not permit his disease to progress
to the ulcer stage; or, if Fred were already in the ulcer stage, the ulcers would heal to the more
benign level of erosions. If Fred took a PPI once or twice daily, his modified-ttar would
be < 1.92, meaning that his esophagus would heal completely. For Harry, the H2 blocker
would not help at all – he would still progress right through the stricture stage. Taking a
PPI once a day would heal ulcers and block late stages of disease. Taking a PPI twice a day
would heal the disease completely, unless Harry had already experienced a stricture: there is
no non-operative cure for a peptic stricture, a detail we will not pursue at length here but
that is covered in the model (the stricture object generated by the simulation remains a
part of the patient’s anatomy).

In sum, the physiologically-grounded parameter mucosal-resistance permits each
patient’s end stage of disease progression to be calculated rather than asserted; and the
parameters modified-ttar and disease-advancing-modified-ttar permit us to model
full and partial efficacy of medications. As additional objective evidence becomes available
through experimentation, the actual numerical values of these features can be modified
accordingly.

Given models like this, the system need not exhaustively list all permutations of paths a
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trainee could take when diagnosing and treating a virtual patient, or all responses of the
virtual patient to interventions. Instead, the system relies on these ontologically-grounded
descriptions of basic physiology, disease processes, and effects of treatments and their
interactions, so that the state of an MVP at any given time is dynamically computed by the
system’s reasoning module. Similarly, any of the tests available in the system can be run at
any time, as they measure physiological properties of the patient as it lives its simulated life.

Let us conclude this section by returning to the question of how closely simulation-
supporting computational models like these align with what is available in the published
literature. The most striking difference is that much of our computational model is neither
directly attested nor attestable, there being no widescale monitoring of people’s physiology
on a daily basis over the course of years. So, even those properties that are in principle
measurable (such as ttar and submucosal-depth) are only a starting point for a picture
that must be largely filled in by educated guesses. This is in addition to properties that are
not currently measurable (such as preclinical-irritation-percentage) and properties
that are introduced in order to capture specialists’ generalizations about phenomena (e.g.,
gerd-level). The fact that clinicians’ mental models are largely comprised of evidence-
supported educated guesses does not impede effective clinical practice, but it does represent
a divergence from the small subset of actually attested information in the literature. So, the
question becomes, to what extent can we learn aspects of such models from texts?

5 Learning Model Components from Texts

The answer is that we can learn from texts model components, defined as ontologically-
grounded property-value pairs that direcly contribute to full computational models. Learnable
features have the following properties:

They are straightforward and concrete, such as les-pressure (measurable by a test) or
sensitivity-to-caffeine (knowable based on patient reports); they are not abstract
modeling properties (modified-ttar, mucosal-resistance), which will have no precise
equivalents in published texts.
They are known to be changeable over time, based on our ontological knowledge of the
domain. For example, since we know that new medications and tests are constantly being
invented, we know that the properties treated-by-medication and established-by-
test must have an open-ended inventory of values. By contrast, we do not expect the
need to change the fact that heartburn can be a symptom of GERD, or that heartburn-
severity is modeled as having values on the abstract scale (0-1).
(For knowledge involving causal chains only) If a sequence of events is modeled temporally
rather than causally (using what we call “clinical knowledge bridges”), these can be
automatically replaced by attested causal chains. However, if the model already records
casual chains, their modification is likely to be too complex to be learned automatically
without inadvertently perturbing the model.

Table 4 shows some examples of properties (associated with their respective concepts)
whose values we believe can be learned from the literature.

The fillers for each property are formal, ontologically-grounded knowledge structures,
which are produced during the automatic analysis of text by the OntoSem language processor.
For example, all of the following text strings, and many more, will result in text meaning
representations that permit the system to insert proton-pump-inhibitor as the value for
the property has-treatment of the concept gastroesophageal-reflux-disease:
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Table 4 Examples of properties, associated with their respective concepts, whose values can be
learned from the literature.

Concept Properties
disease has-event-as-part, affects-body-part, caused-by,

has-symptoms, has-diagnostic-test, has-treatment
diagnostic-test measures-property, normal-result, abnormal-result,

side-effects, pain-induced
medical-treatment has-event-as-part, efficacy, has-risks, pain-induced

a proton pump inhibitor treats <can treat, can be used to treat, can be prescribed to
treat, is often prescribed to treat> GERD
GERD is <can be> treated by <cured by> (taking) a proton pump inhibitor
doctors <your doctor may> recommend <prescribe> (taking) a proton pump inhibitor
patients may <can, may be advised to> take a proton pump inhibitor

Establishing the functional equivalence of these strings is not done by listing; instead, it is
done by combining our general approach to natural language understanding with algorithms
for paraphrase detection ([11, 12]) and ontologically-grounded reasoning.

Let us consider just three examples of how natural language analysis supports the
knowledge extraction process we are describing. Assume we are seeking to automatically
learn or verify the veracity of the previously discussed fact “gastroesophageal-reflux-
disease (has-treatment proton-pump-inhibitor)”. As we said, all of the inputs above
provide this information, albeit some more directly than others. The input GERD is
treated by a proton pump inhibitor perfectly matches the lexical sense for the verb treat
that is defined by the structure “disease is treated by medication”, and the analyzer
generates exactly the text meaning representation we are seeking: gastroesophageal-
reflux-disease (has-treatment proton-pump-inhibitor). In other cases, the basic text
meaning representation includes additional “benign” information, which does not affect the
truth value of the main proposition: e.g., the potential modality scoping over the proposition
GERD can be treated by a proton pump inhibitor does not affect the truth value of the main
proposition, which is the same as before and matches the expectation we seek to fill. In
still other cases, the meaning we are looking for must be inferred from what is actually
written. For example, the input Your doctor may recommend a proton pump inhibitor does
not explicitly say that a proton pump inhibitor treats GERD, but it implies this based on
the general ontological knowledge that a precondition for a physician advising a patient
to take a medication is (disease (has-treatment medication)). Because the system
has access to this ontological knowledge, it can make the needed inference and fill in our
slot as before. It should be noted that these types of reasoning rules are not spontaneously
generated – they must be recorded, like any other knowledge. However, once recorded, they
can be used for any applicable reasoning need of the agent.

When investigating what information could be extracted from medical texts, we focused on
two genres that offer different opportunities for knowledge extraction: case studies and disease
overviews. Like narratives, both of these have largely predictable content and structure,
which should support the automatic identification of disease model component information.

Case studies do not present all disease mechanics. Instead, they typically begin with
a broad overview of the disease to serve as a reminder to readers who are expected to be
familiar with “the script”. Then they focus on a single new or unexpected aspect of the
disease as manifest in one or a small number of patients (cf. the story-worthy aspects of
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Table 5 Application for updating clinicians from case studies.

Case study: “Meditation as medication for GERD”
Author: Dr. J. Physician
Date: Jan. 11, 2018
Therapies for GERD
Mild: lifestyle modifications, H2 blocker, PPI QD, MEDITATION-new
Severe: PPI BID

narratives). For example, [3] is a case study that reports that a mother and daughter both
suffer from the same rare disease, achalasia, and suggests that this case supports previous
hypotheses of a genetic influence on disease occurrence. The new findings are typically
repeated in the Abstract, Case Report, and Discussion sections, offering useful redundancy
to improve system confidence.

The system can automatically compare the information in a case study with the ontolo-
gically grounded computational model as follows. First it can semantically analyze the case
study, focusing on the TMR chunks representing the types of learnable property values listed
above. (This focusing means that the system need not achieve a perfect analysis of every
aspect of the text: it knows what it is looking for.) Then, it can compare the learned property
values with the the values in the model. Continuing with our example of mother-daughter
achalasia, our current model of achalasia has no filler for the value of caused-by since, when
we developed the model, the cause was not definitively known (it still is not; the genetic
influence remains to be validated). Automatically filling an empty slot with a new filler can
be carried out directly, with no extensive reasoning necessary. However, the nature of that
slot filler must be understood: it represents an instance, not a generic ontological fact. The
system has two sources of evidence that this information is an instance: (1) the individuals
spoken about are instances, so the features applied to them are also instances (compare this
with assertions about about generic people or generic you); (2) the genre of case study sets
up the expectation that reported information will be at the level of instance.

We believe it would be useful to configure an application that would alert clinicians to
new findings in a “snaphot” formalism like that shown in Table 5. This presentation style
encapsulates the expectations that: (a) clinicians know, without explanation, that one of
the ontological properties of diseases is that they might have effective therapies; (b) when
providing new information, it is useful to provide old information as the backdrop, with a
clear indication of whether the new information adds to or overwrites the old information;
(c) clinicians understand that information provided in case studies represents instances and
not cross-the-boards generalizations; (d) modern-day users understand that entities can be
clicked on for more information (e.g., which lifestyle modifications are being referred to), (e)
terseness is appreciated by busy people operating within their realm of specialization.

Let us turn now to the other genre from which model information can be extracted:
disease overviews. They typically present a stable inventory of properties of interest, often
even introduced by subheadings, such as causes of the disease, risk factors, physiological
manifestations, symptoms, applicable tests and procedures, and so on. Not surprisingly,
these categories align well with the knowledge elements we seek to extract from texts, shown
in Table 4. The natural language processing of disease overviews would proceed as described
above. However, we envision applications for this processing to be somewhat different. For
example, an application could respond to a clinician’s request for a thumbnail sketch of a
disease by reading overviews, populating the inventory of key property values, and presenting
them in a semi-formal manner, such a list of concept-property-value triples.
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6 Discussion

This paper has presented a combination of work completed and work in the planning stages.
The knowledge substrate and language processing capabilities are quite advanced, whereas
the approach to mining new information from text is algorithmic.5

We present this work now as a contribution to a discussion that is key to computational
narrative and agent building overall: to what extent can agents in principle learn models
from text? And, if not full models, what can they learn through lifelong learning by reading?

In this paper we have suggested that although full models cannot be learned (they are
largely unattested and rely centrally on educated guessing) certain model components can be
automatically learned even in the near term, using currently available language processing
technologies and achievable types of machine reasoning. This is a revolutionary idea,
considering that we are talking about learning ontologically-grounded knowledge structures
rather than extracting uninterpreted natural language strings from text.

If, by contrast, we want intelligent agents to learn full models from texts, then domain
experts will need to write down fully specified mental models – an interesting prospect,
particularly as it requires experts to boldly hypothesize about the unknown in the same way
as they did to engineer the disease models for MVP. In short, modeling – be it recorded
using an ontological metalanguage or a natural language like English – involves theorizing
in an uncertain data space, something that is done as a matter of course in daily clinical
practice but is not typically converted into published form. However, the potential rewards
of fully specified (albeit with an understood tolerance for imprecision) models are tantelizing.
Consider just a short excerpt from a committee report that lays out desiderata for virtual
patient systems:

“The clinician interacts with models and abstractions of the patient that place
the raw data in context... These virtual patient models are the computational
counterparts of the clinician’s conceptual model of a patient... [The data] depict and
simulate a theory about interactions going on in the patient and enable patient-specific
parameterization... They build on submodels of biological and physiological systems...”
[30].

Capabilities such as these directly motivate the need for inspectable, model-based artificial
intelligence, not only in virtual patient applications but far beyond. It is our hope that
the research reported here contributes to this vision, offering evidence of how component
problems can be solved over time if we soberly analyze the necessary collaboration between
human knowledge engineering and the potential for automatic agent learning.
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Abstract
Automated cross-document comparison of narrative facilitates co-reference and event similarity
identification in the retellings of stories from different perspectives. With attention to these
outcomes, we introduce a method for the unsupervised generation and comparison of graph
representations of narrative texts. Composed of the entity-entity relations that appear in the
events of a narrative, these graphs are represented by adjacency matrices populated with text
extracted using various natural language processing tools. Graph similarity analysis techniques
are then used to measure the similarity of events and the similarity of character function between
stories. Designed as an automated process, our first application of this method is against a
test corpus of 10 variations of the Aarne-Thompson type 333 story, “Little Red Riding Hood.”
Preliminary experiments correctly co-referenced differently named entities from story variations
and indicated the relative similarity of events in different iterations of the tale despite their order
differences. Though promising, this work in progress also indicated some incorrect correlations
between dissimilar entities.
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1 Introduction

Building parse tree representations of sentence-level grammars and comparing those repre-
sentations to assess grammatical similarity has been an achieved goal of natural language
processing (NLP), at least in English, since the development of the Penn Treebank and
the success of statistical parsers in the mid-1990s [19]. Adapting this kind of parse tree
comparison approach to higher-level analyses such as cross-document comparison of narrative
similarity, however, remains an open challenge. The goal of this preliminary research is to
advance our prior work in narrative information extraction [22] and visualization [28] for
narrative similarity assessment, event alignment, and cross-document coreference using a
graph comparison approach. Our method uses matrix representations of the graphs where
each node is an entity, each edge is a relation, and each matrix represents one “event” as
denoted by the language processing tool EVITA [26]. For this study, an entity is either a
character, a location, or an organization.

Humanities scholars focus on broad problematics such as semantics, representation, nar-
rative: problematics that frequently bridge, fracture, and co-referentially scatter throughout
documents and corpora. Discourse analysis [14] and TextTiling [13] are two methods used to
circumvent sentential boundaries by segmenting documents into blocks according to inferred
characteristics of speaker, function, or character frequency change boundaries. As with topic

© Ben Miller, Ayush Shrestha, Jennifer Olive, and Shakthidhar Gopavaram;
licensed under Creative Commons License CC-BY

6th Workshop on Computational Models of Narrative (CMN’15).
Editors: Mark A. Finlayson, Ben Miller, Antonio Lieto, and Remi Ronfard; pp. 124–132

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.CMN.2015.124
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


B. Miller, A. Shrestha, J. Olive, and S. Gopavaram 125

modeling methods like latent semantic analysis [8], these blocks facilitate comparisons of
macro-level structures. These segmentation methods might produce blocks roughly equivalent
to scenes. However, they rely on string and semantic vectors and have no particular sensitivity
to features key for the structural analysis of narrative. Our research instead expands on graph
comparison methods, which can more readily be made sensitive to narratological features such
as events. Comparison of narrative graphs facilitates 1) alignment of event descriptions across
narratives, 2) cross-document co-reference, and 3) the testing of structuralist narratological
schema. To preliminarily test one and two, we implemented a method as described below.

Structural analyses of narrative successfully identified elements significant for the composi-
tion and study of narrative. Russian formalists such as Propp [25] and later work by Genette
[11], Bal [1], and others yielded many complementary top-down models for deconstructing
narratives. These schema generally distinguish between fabula and discourse: events to be
narrated and the nature of that narration, respectively. Discourse order is the relationship
between the temporality of events and their representation as part of a narrative [11]. This
structural perspective serves humanists well when analyzing single narratives or small corpora
but is highly subject to interpretation, and therefore operationalizes poorly. Computational
models developed from formalist approaches have been the subject of compelling experiments.
Like work by Finlayson on analogical story merging [9] and Fisseni on story comparison
[10], our work presents a bottom-up method reliant on top-down narratological schema.
Unlike theirs, our work focuses on unsupervised cross-document comparison of events and
characters.

This method facilitates cross-document narrative analysis by indicating the similarity of a
character’s relationships across different tellings of a particular story and by allowing for the
comparison of event language. Although much work remains and the anaphora resolution
task was manually verified, this method would work with larger corpora as extraction, lookup,
and comparison operate in an unsupervised manner.

2 Method

Comparison of events across documents relies on the production of structured representations
of events. In the case of this study, that structure is a matrix of entity-entity relations for
each event. Generalizing the specific language of a story is necessary as abstracted language
facilitates comparison. This study used event hypernym sequences to generalize from the
specific language of a given event. After identifying language features that are indicative of
events, identifying the entities present in that event, and finding the hypernym of the lexical
feature identified as the verb or state of the event, matrices were produced. Some language
features indicative of events include finite clauses, event-referring nouns, and nominalized
noun phrases [26]. Comparison via a neighborhood similarity function provided our primary
comparison method to highlight event and character similarities.

2.1 Extraction
Events were automatically marked in the narratives using the Events in Text Analyzer
(EVITA). EVITA uses statistical and linguistic approaches to identify and classify the
language denoting orderable dynamic and stative situations [18]. EVITA’s overall accuracy
in event recognition was found by [18] to be 80.12%F_{β} = 1 over TimeBank, with 74.03%
precision and 87.31% recall. [18] summarizes evaluations of related work in automatic event
detection, including TimeML [5], STEP [3], and event recognition using a multiclass classifier
[20]. Their summary findings showed that EVITA either outperformed or was competitive
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Table 1 Adjacency matrix created from one version of “Little Red Riding Hood". An edge (in
the graph) or 1 (in the adjacency matrix) between two entities signify that these entities interacted
within the given set of events.

lrrh wolf grandmother woodcutters forest gm_house
lrrh 1 0 0 1 1 0
wolf 0 1 0 0 1 0
grandmother 0 0 1 0 0 0
woodcutter 1 0 0 0 1 0
forest 1 1 0 1 0 0
gm_house 0 0 0 0 0 1

with other automated solutions. A more robust theoretical model for what constitutes an
event is being developed for implementation by the NewsReader project in [31].

EVITA sequentially numbers events. That sequence must stand in for discourse order
because fiction frequently lacks the dates and timestamps necessary to identify story order.
They features are also necessary for discrete temporal language taggers like SUTime [7] and
GUTime [32]. Entity extraction and anaphora resolution was accomplished using the Stanford
Named Entity Recognizer (NER) followed by manual verification; entity classification was
not relevant for this method as all three types of NE were identically represented in the
matrices.

2.2 Graph Creation
Given an extracted set of events from a document, E1 to En, we first divide them into k
subsets ordered according to the story time. Event subsets can be defined in various ways:
by manual adudication according to various criteria, or automatically by document section,
by prevalent entities, by location shifts, or by prevalent event types. For this experiment, we
ran the process two with manually defined event subsets based on location shifts, and with
no event subsets.The number of events is determined by the event analyzer. The number of
subsets is variable but currently must match from story to story. All entities (characters
and locations) associated with the events are listed on a per-event basis. Each version of
the story included a subset of some version of Little Red Riding Hood, mother, home, wolf,
grandmother, woodcutters, forest, and grandmother’s house as key entities.

Following this process, we create a graph with these entities for every event subset. We
begin by treating each entity as a vertex and adding an edge between verticies if both are
present in the same event within an event subset. An adjacency matrix representation of
a subset is shown in Table 1. In this subset of events, Little Red Riding Hood and the
woodcutters are present in the forest in a particular event (the value is 1). In the same
subset, the wolf is also in the forest. However, the wolf does not meet Little Red Riding
Hood in any of the events in this subset, thereby resulting in no edge between them (the
value is 0).

2.3 Similarity Analysis
Many domain-specific algorithms to compute similarity have been developed. Most are
based on neighborhood analysis. Considering the problem of narrative frame alignment in
this context treats a narrative as a directed graph; each event leads to the next and each
set of events constitutes a group or neighborhood. That perspective allows for event or
story analogy to be considered using the more robust methods applied to network similarity
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problems. In this paper, we propose our own similarity analysis method inspired by the work
of Blondel et al [4].

Given a document, A, let p be the total number of entities in the document. If the
set of events in this document are divided into k parts, we can represent the events in the
document as a 3D matrix: Ap,p,k. The number of parts is some number equal to or less than
the total number of event segments. Let Bq,q,r be another document with q entities and
r parts. Likewise, the number of parts is some number equal to or less than the number
of events in that story. We compare each adjacency matrix in A with the corresponding
adjacency matrix in B. In cases where k 6= r, we reduce to zero and pad the smaller matrix
to the bigger size. For each adjacency matrix, as in the hyperlink-induced topic seach (HITS)
inspired algorithm [15] proposed by [16], we compute

X ← BXAT +BTXA (1)

and normalize X after each iteration. HITS was developed to facilitate search on the web
by assessing the authority and role of nodes in large graphs; [16] extended that algorithm
to the problem of identifying topological similarities in large, sparse, isomorphic graphs.
That structure corresponds to the graphs that result from our event and entity extraction
processes. The even iterations converge to a final similarity matrix. To simplify and speed up
this process, we use the Kronecker product and the vec(.) operator. This process results in

x← (A
⊗

B +AT
⊗

BT )x (2)

where x = vec(X). This set of equations give a similarity score frame per scene (part), which
is then aggregated to produce a final similarity score between the stories.

3 Preliminary Experiment

For the purposes of testing our methodology, we selected 10 of the 58 known iterations
[29] of the Aarne-Thompson type 333 story (ATU333), “Little Red Riding Hood.” Those
10 iterations are from [12, 33, 27, 21, 24, 2, 30, 6]. This corpus of 10 was compiled and
selected to represent the canonical versions of the ATU333 story and significant variations
from that story (e.g., where the wolf was the hero). The purpose of compiling and using this
corpus was to begin our testing with a story featuring a high degree of narrative overlap.
That overlap let us test the method on fine-grain distinctions between re-tellings. While
our method benefits from such homogeneous narrative content, we believe that analyses of
other narrative corpora with overlapping sets of events would be equally viable because of
the highly granular event segmentation, the hypernym language abstraction procedure, and
the binning of entity classifications into a single entity category.

1, 384 events were extracted via this method across 10 story versions. Numbering 8,450
tokens, including titles and authorship information, the overall density of extracted events to
tokens is high. Contrasted to event detection methods reliant on temporal expressions such
as SUTime, which only identified two events in the corpus, this density of event detection
provides a good basis on which to compare narrative structure. Generalizing event keywords
from specific tokens to hypernyms of those tokens (e.g., event 41 from [6]: “armed” lemmatized
to “arm” of which the hypernym found via WordNet [23] is “supply”) preserves the function
of each event within the story but allows for storytelling variation. The current method
for finding the hypernym looks for agreement across all results returned by WordNet. In
the case of disagreement, the hypernym most frequently returned is selected; in the case of
a tie, the first hypernym is used. The automatically produced matrices for this work are
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exemplified by Table 2. The stack corresponds to the “Oh, grandmother, what big ears you
have!” to “[a]nd with that he jumped out of bed, jumped on top of poor Little Red Cap,
and ate her up” sequence from [17].

Table 2 shows six layers from the 3D event matrix stack. The current language processing
pipeline finds the events hypernyms but does not use them to assess narrative similarity.
Results of functions (1) and (2) on the adjacency matrices are exemplified below in Table 3.
Column headings correspond to entities from [12] for event 3, and row headers correspond to
entities from [17] for event 4.

Table 3 shows that the measure of similarity between Little Red Riding Hood (“lrrh”)
and Little Red Cap (“lrc”) is 0.32. Although low, that score was calculated only based on
entity-entity connections and the sequence of those connections. When examined on the
basis of an individual event, of which [17] contains 122, the correlations are unremarkable.
Effectively, the wolf could be seen as similar to Rotkäppchen as to the woods. It is only
when aggregates of events are compared that the method begins to correctly indicate entity
similarities across documents.

Table 4 shows the potential for this method to align characters from different versions
based upon their position within the story. It presents the similarity comparison for all events
across two iterations of the story, summing all event matrices for two variations. Version 1
occupies the columns (Little Red Riding Hood, Wolf, Grandmother, Woodcutters, Home,
Forest, and Old Woman’s House) and version 2 the rows (Little Red Cap, Wolf, Grandmother,
Huntsman, Home, Woods, Grandmother’s House). Name independent character similarity is
demonstrated by the 0.94 correspondence between the two wolves.

The event matrix suggests that certain characters function dissimilarly between variations:
most notably, Grandmother. The corresponding value between the Grandmother characters
is only 0.31, suggesting that they share some event associations but not as many as are held
by other cross-document pairings. That assessment is accurate as, in version 1, the story
concludes upon the wolf’s consumption of both Little Red Riding Hood and Grandmother.
In version 2, both survive to boil a second hungry wolf. Table 5 compares version 2 and
version 6, a more modern iteration, showing promising albeit imperfect results.

In Table 5, we see the method correctly correlate two principal characters in the story, a
process we refer to as alignment. It also suggests strong correlations between each of those two
characters and their respective wolves. However, for many of the other principal characters,
it is not the highest similarity score that suggests correct character alignment, but rather
the second highest similarity. The wolf in version 6 is seen as 0.86 similar to Rotkäppchen
but only 0.62 similar to the wolf from version 2. Other less well-documented characters
simply do not seem to show up frequently enough to be susceptible to alignment. One
takeaway from this preliminary work is that it may only be a viable method for characters
that frequently appear in stories. Another compelling way to read this table, however, is to
compare the similarity of two characters from two different works against each other. For
example, version 6’s Little Golden Hat is seen as more similar to both the wolf and the woods
than her counterpart, Rotkäppchen. That way of reading the results of our method suggests
that we can both identify which characters are most similar between two versions of a story
and compare the varying similarity of a character between versions of a story.

4 Conclusion and further work

This preliminary work resulted in a viable method for narrative alignment and for the
cross-document coreference of characters bearing different names but similar story functions.
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Table 2 Six matrix layers from 3d stack of event matrices.

Event LRRH Grandmother Wolf
106 – undergo Bed 1 1 1
107 – perceive Bed 1 1 1
108 – undergo Bed 1 1 1
109 – seize Bed 1 1 1
110 – undergo Bed 1 1 1
111 – consume Bed 1 1 1

Table 3 Character similarity across “Little Red Riding Hood” and “Rotkäppchen”.

LRRH Wolf Grandmother Woodcutters Home Woods OWH
LRC .32 .25 0 .25 0 .32 0
Wolf .32 .25 0 .25 0 .32 0
Grandmother 0 0 0 0 0 0 0
Huntsman 0 0 0 0 0 0 0
Home 0 0 0 0 0 0 0
Forest .32 .25 0 .25 0 .32 0
Grandmother’s 0 0 0 0 0 0 0

Table 4 Character similarity across all events for “Little Red Riding Hood” and “Rotkäppchen”.

LRRH Wolf Grandmother Woodcutters Home Forest OWH
LRC .67 .76 .31 .14 .14 .48 .37
Wolf .79 .94 .42 .14 .14 .56 .5
Grandmother .35 .47 .31 0 0 .16 .37
Huntsman .23 .28 .18 0 0 0 .26
Home 0 0 0 0 0 0 0
Woods .48 .53 .16 .14 .14 .48 .16
Grandmother’s .39 .52 .34 0 0 .16 .42

Table 5 Character similarity across all events for “Little Golden Hat" and “Rotkäppchen".

LGH Mother Grandmother Wolf Wood Grandmother’s Woodcutters
LRC 1.00 0.06 0.45 0.86 0.06 0.24 0.10
Mother 0.04 0.01 0.07 0.03 0.00 0.03 0.00
Grandmother 0.61 0.09 0.32 0.55 0.07 0.12 0.01
Wolf 0.79 0.05 0.21 0.62 0.05 0.23 0.01
Woods 0.21 0.03 0.06 0.13 0.04 0.05 0.01
Grandmother’s 0.05 0.00 0.12 0.04 0.01 0.04 0.00
Huntsman 0.10 0.00 0.00 0.09 0.00 0.00 0.00
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Story function is being used here principally to describe the social function of a character or
location relative to other characters and locations. It was determined by segmenting the story
into a series of events, then identifying character-character and character-location relations
and the order of those relations. The event segmentation, relation extraction, and matrix
comparison methods are implemented and tested. The hypernym extension of our method
will divide the event hypernyms into overlapping three-window sequences of two-to-four
terms each corresponding to past, present, and future states. Those sequences will be used as
weighting functions on the Kronecker product for the cross-document comparison of narrative
frame similarity. For example, the entity relationships in the matrix representing a sequence
of three events in document A and the entity relationships in the matrix representing a
sequence of three events in document B will be factored against each other with the relative
similarity multiplied by the similarity score of the hypernym sequence. Three identical terms
in each window frame of past, present, and future will score as a 1. No common hypernyms
across that frame would score a 0. Our current method describes narrative similarity as
a proxy for character relation similarity; this extension will enrich that description. Next
stages for this research include refining the comparison algorithm, applying it to a corpus
of dissimilar narratives, implementing the role of the hypernym in event comparisons, and
assessing the method’s ability to cluster stories by narrative similarity.
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Abstract
The hypothesis according to which narrative is not only a prominent form of human communic-
ation but also a fundamental way to represent knowledge and to structure the mind has been
limitedly but increasingly discussed for the last 40 years. However, in the realm of Artificial
Intelligence, it did not lead to an elaborate model of knowledge representation, beyond scripts
and cases. In this paper, we attempt to go further by identifying three differentiating features of
narratives that may inspire novel forms of knowledge representation: transformation, conflict and
unactualized events. In particular, these three features open the way for knowledge representation
formalisms that take greater account of the co-existence of intertwined conflicting representations,
with various validities and validity domains, beyond a purely factual representation of the world.
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1 The narrative hypothesis in cognition

Cognitive science and narrative theory have developed separately, with limited dialogue
between the 1950s and the 1990s, as illustrated by the absence of the entry “narrative” in
the MIT Encyclopedia of the Cognitive Sciences [10]. These two large domains have both
emerged from the need to combine various points of views from distinct disciplines with the
goal of studying cognition and narrative respectively. Whereas cognitive science has covered
psychology, neuroscience, epistemology, computer science and linguistics, narratology has
covered literature studies, anthropology, sociology and linguistics.

However, from the 1990s the two “interdisciplines” have initiated a dialogue, in which
two symmetrical directions of influence can be observed [10, 27]: How cognitive science could
provide relevant models of narrative, in terms of reader’s modeling (cf. cognitive narratology);
and how narrative could provide relevant models of cognition, in terms of interpreting the
world and reasoning about it. The focus of this article will be put on the latter, that is, the
processing of information in narrative terms.

There has been extensive research on text comprehension, focusing on how a text, often
a narrative text, is processed and represented as a mental structure. Such models include
hierarchical decomposition via grammars [17, 36], a configuration of plot units – small
patterns of affective states – [16], causal network [37], and many others. This body of
research has focused exclusively on structures that represent a narrative discourse provided
as a text.

In contrast, J. Bruner has significantly broadened the scope of narrative in his influential
article: “The narrative construction of reality” [6]. In this paper, Bruner argues that in

© Nicolas Szilas;
licensed under Creative Commons License CC-BY

6th Workshop on Computational Models of Narrative (CMN’15).
Editors: Mark A. Finlayson, Ben Miller, Antonio Lieto, and Remi Ronfard; pp. 133–141

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.CMN.2015.133
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


134 Towards Narrative-Based Knowledge Representation in Cognitive Systems

order to make sense of human interaction, our mind needs to be narratively structured:
“we organize our experience and our memory of human happenings mainly in the form of
narrative”. For Bruner, narrative is not discussed as a prominent universal form of human
communication but as a form of knowledge representation for a large class of situations in
the world, not just storytelling situations per se. In this vein, D. Herman states in his search
for a “Story Logic” within the human mind: “narrative constitutes a logic in its own right,
providing human beings with one of their primary resources for organizing and comprehending
experience” [11]. However, in the rest of the discussion, Herman tends to step back to the
understanding of narrative discourse, as does his subsequent book entitled “Story Logic” [11].
R. Schank adopts a wider scope when stating that “stories about one’s experiences, and the
experiences of others, are the fundamental constituents of human memory, knowledge, and
social communication” [29], in the sense that any experience would be coded as stories, not
as facts. We concern with such a larger view stating that narrative is a logic for structuring
the experience in general, not just story-like inputs. In other words, from our point of
view, it is worth studying whether a non-narrative text or a non-narrative experience is
still processed in a narrative way. If a cognitive system such as the human mind tends to
construct a narrative from any real-life experience, then the story structures evoked above
in the domain of narrative text comprehension would be candidate for a general knowledge
representation approach in cognition. Finally, while Bruner appears to focus on the “messy
domain of human interaction”, we propose to discard such a restriction and claim that
narrative is a way to understand a still larger class of phenomena. In particular, by the effect
of personification, many objects and events can be attributed two fundamental properties of
narrative: character and intention [26]. Importantly, a narrative-based representation is not
static but possibly ongoing long after the exposure of stimuli, in an attempt to reconstruct
one or more representations that fit the experience.

In the rest of the paper, we call the hypothesis that narrative should be used to interpret
a large class of real-world happenings the narrative hypothesis. This hypothesis is
speculative and has been criticized by M.-L. Ryan [27]. However, we are not convinced by
her demonstration, because it postulates that narrative is the result of various abilities such
as experiencing emotions, having a sense of chronological ordering, being able to infer causal
relations. However, the narrative hypothesis states that these abilities do not come first but
with narrative, as it will be detailed below. Based on the narrative hypothesis, we form two
research questions:
1. Has the narrative hypothesis been used in the field of Artificial Intelligence (AI)?
2. If not, or not much, how and for what purpose should we use it?
Through these questions we tend to explore that if AI manages to draw valuable computational
techniques from the narrative hypothesis then this hypothesis will acquire some validity and
make narrative studies a genuine contributor to cognitive science.

2 AI for Narrative, Narrative for AI

In the field of AI, we are interested in the domain of Knowledge Representation (KR). Our
question in this context is: Is there a KR technology that is based on the narrative hypothesis?
R. Davis his colleagues [8] consider five different roles for any knowledge representation: 1)
as a surrogate, 2) as a set of ontological commitments, 3) as a tool of reasoning, 4) as a
medium for efficient computation and 5) as a medium of human expression. Therefore, our
question is: Is there a KR that has, as a fundamental way to view the world, the narrative
hypothesis (ontological commitment)?
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A large variety of KR approaches have been proposed in cognitive science: rules, frames,
scripts [28], semantic nets, cases, conceptual graphs [31], etc.. Two of them have been found
to share similarities with the narrative hypothesis: scripts and cases. As KR, scripts and
cases contrast with logic-based approaches in the sense that they no longer consider reasoning
solely as logic deduction process, but also as storage of stereotypical situations that embed a
known solution. For scripts, this situation includes “a predetermined stereotyped sequence
of actions” [28], which resembles a story. Schank and Abelson propose that our memory
is constituted of many of these scripts. They guide our understanding of both narrative
text and real-world events, by being first recognized as appropriate and then used (after
possible adaptation) in the current situation. For cases, what is stored is not necessary a
story-like structure as for scripts, but a problem-solution couple that corresponds to a case
that has been successfully solved previously. Contrary to scripts, cases have been widely
used in the field of AI to solve a large range of problems. However, scripts and cases cover
minimally the notion of narrative. As Schank and Abelson state, “a script is, in effect, a
very boring little story” [28]. Scripts share with narrative the idea of temporal succession
and character, but the former lack many other features such as intention (stored outside the
script), emotion, conflict, evaluation, and closure. In that sense, they do not constitute the
narrative construction of reality called by Bruner [6]. Besides, there has been a significant
increase in computational models of narrative research in the field of Interactive Storytelling
since the late 1990’s. With the goal of generating narratives (in various media including 3D
worlds) or driving narrratively the experience in an interactive narrative such as an adventure
video game, this field has produced a wide range of narrative models based on various
narrative principles: Aristotelian/Freytagian tension curve [18], characters’ intentions [2, 7],
characters’ emotions [2], audience’s emotional response [32, 41], dilemma [3, 34], conflict
[33, 40], causality [22, 24], etc. Although these models of narrative were not conceived as
models of cognition, we raise the question whether some of them, once adapted, could play
such a role.

In the rest of the paper, we will explore this possibility by first defining more precisely the
requirements for a narrative-based KR and then by proposing some routes for such a model.

3 From knowledge to stories . . . or reverse!

Before studying the requirements for a narrative-based KR, it is necessary to precise our
viewpoint regarding the positioning of narrative in terms of level of processing. From a
cognitive perspective, the ability to process narratives has often been considered as a high
level feature of cognition. For example, in early structuralist narratology, narrative goes
“beyond the sentence” and constitutes a “large sentence” [4], which implicitly means that
one needs to be able to make and understand sentences (covered by the field of linguistics)
before being able to make and understand narratives. In a totally different narratological
tradition, Labov and Waletzky [14], studying oral narratives, define narrative as “one method
for recapitulating past experience by matching a verbal sequence of clauses to the sequence
of events which actually occurred”. This definition presupposes that the events must initially
happen and be stored before being later processed narratively, which is in contrast with the
above-mentioned narrative hypothesis stating that narrative is the way the events are encoded.
Finally, the question raised by the present conference “Can narrative be subsumed by current
models of higher-level cognition, or does it require new approaches?” has positioned narrative
as a higher-level cognitive phenomenon. We challenge this position in suggesting that, as a
hypothesis, narrative should be a basic and primitive way to process and store information.
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While one tends to see narrative as made of characters, goals, values, etc., we suggest that
the latter elements may be build as an outcome of a more fundamental and narrative-based
representation. As Schank and Abelson put it in a somewhat extreme statement: “We propose
that there is no factual knowledge as such in memory” [29]. This primacy of narrative is
consistent with B. Victorri’s views on the relation between linguistics and narrative [38]. He
claims that language would be the result of narrative, making it possible for human beings
to survive by recalling a past experience, which is contrary to the linguistics’ point of view –
narrative is considered to be a by-product of language and language is used to give true/false
statements about the world. It is naturally out of the scope of this research to discuss such a
hypothesis, but it illustrates that the “natural” ordering of things – first we represent objects
and their relation and second we make a story out of it – may be an illusion.

From a computational point of view, AI comes from logic and symbolic reasoning. This
has been intensively challenged by connectionism who raised the question on how these
symbols appeared in the human mind with an emphasis on learning by the adjustment of
continuously-valued units [30]. In our case, the logico-symbolic is criticized in a less radical
way: we suppose that there exists an intermediate narrative representation between a simple
episodic memory and higher-level symbols. In other words, instead of storing “the glass is on
the table” that can be represented by various KR approaches, we would store a narrative
representation stemming from the experience of putting a glass on a table and observing
with surprise that it did not fall. Compared to Schank and Abelson position however, we are
not claiming that “The mind can be seen as a collection of stories, collections of experiences
one has already had” [29] because this intermediate narrative KR may be (and certainly is)
an abstraction of these stories. This narrative representation may be closer to recent work
on counterfactual reasoning [20]. In addition, it would be interconnected with other forms of
representation, forming a hybrid representation/system, a known research domain in AI.

Back to interactive storytelling research, the absence of such an intermediate KR may
explain why “Early on, artificial intelligence researchers showed that enormously complex
linguistic and cognitive operations are required to generate or comprehend even the most
minimal stories.” [11, p. 1]. AI researchers may simply have used the wrong tools to generate
stories in attempting to reconstitute them from symbolic factual descriptions of the world’s
entities, while they may have been advantageously described via on a more suited KR.

4 Narrative Features for KR

4.1 Approach
While we have identified the lack of a KR corresponding to the narrative hypothesis, the
question of the utility of such a KR must be raised. In terms of the above-mentioned five
roles identified by Davis and colleagues [8], two roles are missing: as a tool of reasoning and
as a medium for efficient computation. That is, one needs to identify, from a computational
point of view, which advantages would bring a narrative representation of the world. In
the following parts, instead of proposing a fully specified KR approach, we investigate
which narrative-specific feature of narrative could be used for building a narrative-based
KR. J. Bruner argues that memory is structured narratively and enumerates ten features
of narrative that he judges as particularly relevant to examine “how [narrative] operates
as an instrument of mind in the construction of reality” [6]. D. Hermann, in his quest for
“narrative as an instrument of mind” identifies “five ways stories scaffold intelligent behaviors”
[12]: chunking experience, imputing causal relations, problem raising/solving, sequencing
actions, distributing intelligence. Our approach is slightly different because we want to push
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the narrative hypothesis further by targeting a specific and useful form of KR. Therefore
we need to identify more precise narrative features. For instance, chunking experience and
imputing causal relation are not specific to narrative. Similarly, sequencing of actions is not
sufficient to characterize narrative, if we admit, with J.-M. Adam that a cooking recipe is not
a story [1]. We are focusing in the following on three essential narrative features in hoping
that they are the differentiating bedrocks for a future narrative-based KR.

4.2 Narrative transformation and Knowledge Acquisition
One of the fundamental characteristics of narrative is the transformation that underlies any
story. Transformation is part of several definitions of narrative [1, 26]. This transformation
concerns the heroes of the story and more importantly it concerns the audience as well.
From the pragmatics’ viewpoint, narrative is a form of discourse that carries a message from
the author to the audience [1]. Experiencing a narrative is a form of knowledge acquisition,
which is based on various strategies that include storage of story events in the episodic
memory, transmission of factual information regarding the world (the fictional world is never
totally disconnected from the real world), transmission of a moral viewpoint through the
story’s value system [13]. Therefore, a cognitive system using a narrative-based KR does
not store knowledge solely as a static representation but as the transformation that leads
to that knowledge. This is a fundamental change compared to traditional KR that aims at
representing the world in a static and unambiguous manner. Conversely, relating a given
knowledge to a past and possibly erroneous knowledge is in line with the constructivist
epistemology. The constructivist epistemology states that if older knowledge may be false
compared to newer knowledge, it is still valid and useful in restricted domains of validity –
the classical example in the history of science being the Newtonian mechanics, invalidated
by the theory of relativity, but still useful in everyday calculation. A narrative-based KR
would be able to relate different pieces of knowledge, by linking newly acquired knowledge
and previous knowledge that it is supposed to supersede. From an AI perspective, such a
KR would allow not only to keep and use knowledge that is generally wrong but applicable
within its domain of validity, but also to identify the domains of validity and invalidity via
the stories attached to the successively acquired knowledge. This is related to the notion of
context.

4.3 Dramatic conflict and cognitive conflict
Around the term “conflict”, there is a striking similarity, at least in terminology, between
narrative (drama in particular) and learning. In dramaturgy, conflict is recognized as a
key mechanism of drama1, a principle largely used within the screenwriting community,
via the motto “All drama is conflict” [9, p. 24]. It is a term with a broad meaning, that
may include antagonism between characters, physical (or external) obstacles, and internal
dilemma [15, 19]. In constructivist learning theory, cognitive conflict plays a key role in
bringing a learning subject to change his/her internal representation in order to accommodate
new information from the world [21]. Cognitive conflict is an incompatibility between the
subject’s representations and new facts. The subject may reject the new fact because of
the conflict or search for a new representation that would integrate the fact. Based on an
analogy between these two conflicts, how could a narrative view on KR provide a suited

1 This principle is sometimes wrongly attributed to Aristotle, but it rather seems to emerge in the XIXth
century.
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model for knowledge acquisition? There is no straightforward answer since the notion of
conflict in narrative can be interpreted in various ways when it comes to implement it in a
computational model [32, 39]. We will offer an initial level of answer with consideration of
the following stereotypical proto-story: In a certain situation, character C wants to reach a
goal G by attempting an action A that, according to his current knowledge, must lead to G.
However, without any external intervention, action A leads to another situation and G is not
reached. C is puzzled and looks for an explanation that he find later in the story. This story
embeds an obstacle, a typical dramatic element that is a sort of dramatic conflict, maybe
not the most interesting, and generates an emotional response: the surprise of the character
as well as his disappointment, both leading to an emotional response of the audience, via the
mechanism of empathy [35]. While this story falls below the sophistication of many simple
stories, it is still more narrative than scripts as described above, since it embeds conflict and
emotion. Furthermore, this story tells how certain knowledge has proven wrong and how it
could be replaced by a new knowledge. A narrative-based KR could store the fundamental
conflict of the above story within the acquired knowledge. Then, not only, as we discussed
above, would the knowledge be supplemented with the previous knowledge it supersedes, but
also would it embed the elements that characterize a conflicting situation between knowledge
and the emotional valence attached to that situation. What is embedded is not the story
itself (the sequence), but an abstraction that codes the core conflictual elements in the story.
Such abstractions have been proposed in interactive storytelling research [3, 32, 5].

4.4 The disnarrated, the unactualized and the hypothetical reasoning
Because narrative is often defined as telling events that have certain characteristics, a
dimension of narrative is often neglected: events that do not occur in the fabula or events
that are not narrated, G. Prince called the latter the disnarrated [23]. It covers many types
of events: ellipses, events that by their nature are difficult to tell [23], hypothetical events
in possible worlds [25], counterfactual events, etc. In the above-mentioned epistemological
point of view, some unactualized events correspond to what could have occurred if a given
knowledge were true, while it did not occur because this knowledge was not true in this
context. This is illustrated for example in the following excerpt: “The slightest breeze
that ruffles the surface of the water makes you bow your heads, while I, the mighty Oak,
stand upright and firm before the howling tempest.”2. The following of the story proves this
affirmation wrong. The disnarrated events and the unactualized events correspond in fact to
an essential feature of the hypothetico-deductive scientific methodology: elaborating of an
experimental setting where two results could occur with one validating the hypothesis and
thus promoting a new knowledge and the other invalidating the hypothesis and leading to
a status-quo. In the above proto-story, the unreached goal G is disnarrated or narrated in
a conditional mode – the consequences of its reaching do not occur – but it is still part of
the story. Therefore, this suggests that a narrative-based KR would naturally and natively
include the disnarrated and unactualized events. For example, the knowledge formulated
as a fact by “The earth is round” can be narratively represented by “A person travels
straightforward to reach the end of the earth, but he does not reach this end. He finally
reaches his starting point”. Another example, the fact “birds fly with their wing” may be
narratively represented by a story with a farmer clipping the wings of his chicken (although
this example is misleading, since chicken cannot really fly). This is not a common way to

2 From the Aesop’s fable “The Oak and the Reeds”.
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represent knowledge in AI, but in addition to be more psychologically plausible, it may prove
useful in knowledge-based systems to provide explanation of the outputs.

5 Conclusion, future work

Following the studies of J. Bruner, R. Schank and D. Hermann, we have explored how
narrative could be viewed as a fundamental way to represent knowledge. Our goal is to go
further in designing and implementing a computational model of narrative, not for processing
narratives (generation or analysis) but to represent knowledge in a much broader scope. While
this ambitious goal has not been reached yet, our intention with this contribution was first to
identify it and present it to the research community, as a new direction in AI within the broad
umbrella of Cognitive Science. In the spirit of the latter, two main directions of research
could be followed. The first direction consists in validating a narrative-based KR model via
psychological experimentation. This involves inventing an experimental protocol showing
that non-narrative information is stored in a narrative manner, rather than as declarative
knowledge. By “in a narrative manner”, one needs to understand more than “sequentially” or
“procedurally”: typical narrative elements such as conflict, suspense, evaluation need to be
there. The second direction consists in designing and implementing a computational model
of KR that is different and, for some purposes, more powerful than existing KR approaches.
We have not yet identified what task such a KR model should help to accomplish, which
constitutes a future challenge of this research. In terms of computational model, it may be an
extension of Case-Based Reasoning, where “correct” cases and “incorrect” cases would co-exist
in a conflictual manner; Or it may be an advanced explanation system for a knowledge base;
Or it may be a hybrid system, combining a rule-based system with a narrative-based system,
each with its own inference mechanism. The complexity and richness of narrative may open
many fresh directions in AI, revigorating the dialog between computational intelligence and
human intelligence, in the tradition of Cognitive Science.
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Abstract
A narrative world can be viewed as a form of society in which characters follow a set of social
norms whose collective function is to guide the characters through (the creation of) a story arc
and reach some conclusion. By modelling the rules of a narrative using norms, we can govern the
actions of agents that act out the characters in a story. Agents are given sets of permitted actions
and obligations to fulfil based on their and the story’s current situation. However, the decision to
conform to these expectations is ultimately left to the agent. This means that the characters have
control over fine-grained elements of the story, resulting in a more flexible and dynamic narrative
experience. This would allow the creator of an interactive narrative to specify only the general
structure of a story, leaving the details to the agents. We illustrate a particular realisation of
this vision using a formalization of Propp’s morphology in a normative social framework, with
belief-desire-intention agents playing the characters.
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1 Introduction

A satisfying narrative must be more than just a series of interactions between character agents.
There is a need for some underlying structure to these interactions. Additionally, agents are
not a natural way to model events such as off-screen occurrences or scene introductions from
a narrator.

Simulating a narrative using intelligent agents as characters offers many advantages. Each
agent can be programmed to behave in certain idiosyncratic ways, based on a psychological
or behavioural model. A common approach to add narrative structure to an agent-based
simulation is to implement a drama manager, as in Mateas and Sterns’ Façade [9].

This presents a problem: if the agents are being governed by a drama manager, to what
extent are they autonomous? Do they still have some degree of ‘free will’ to carry out their
own individual actions, in accordance with their personalities?

Other approaches to balancing authorial control with player or character agency include
the use of director agents [8], reincorporation of player actions back into the narrative [15]
and mediation to prevent narrative-breaking actions [12].

In this paper we present an approach to regulating narrative structure while still allowing
agents some degree of autonomy. The narrative world is described and managed using an
institutional model.
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An institutional model can be thought of as a model of society. By specifying a set of
social norms, certain agent behaviours can be encouraged or discouraged according to the
needs of that society. Institutions have been used to simulate the workings of auctions [3],
vehicle convoys [1] and crowd movement [7]. All these applications are similar in that they
all involve intelligent agents working together in a social environment.

The advantages of using institutions to govern agents’ behaviours is that they still allow
the agents some autonomy in their actions. The rules of a society are implied, and while
adherence to these rules is encouraged, it is possible for them to be broken (often incurring a
penalty). This makes them ideal for regimenting the actions of characters in a narrative. In
order to have a narrative that is satisfying and consistent with a certain story world, some
kind of structure is needed. However, if this narrative is to be interactive, the characters
within the narrative need some degree of freedom in their actions. They need the ability to
bend or break the rules of the storyworld at times, in order to surprise the player. Institutions
make this possible for the agents to do. However, as with breaking the rules of any society,
diverging from the norm may bring penalties and hardship upon the deviating agent.

In order to describe a narrative using an institution, we use Vladimir Propp’s formalism
of Russian folktales, from “The Morphology of the Folktale” [10].

2 Propp’s Morphology of the Folktale

Propp’s seminal work “The Morphology of the Folktale” [10], though first published in
1928, is still a widely-used formalism for researchers and game designers looking to generate
narratives procedurally. Propp identifies recurring characters and motifs in Russian folklore,
distilling them down to a concise syntax with which to describe stories.

In this formalism, characters have roles, such as hero, villain, dispatcher, false hero, and
more. Characters performing a certain role are able to perform a subset of story functions,
which are actions that make the narrative progress. For example, the dispatcher might send
the hero on a quest, or the victim may issue an interdiction to the villain, which is then
violated.

Propp defines a total of 31 distinct story functions, some of which can have subtle
variations from story to story. Each function is given a number and symbol in order to create
a succinct way of describing entire stories. Examples of such functions are:

One of the members of a family absents himself from home: absentation.
An interdiction is addressed to the hero: interdiction.
The victim submits to deception and thereby unwittingly helps his enemy: complicity.
The villain causes harm or injury to a member of the family: villainy.

Each of these functions can vary to a great degree. For example, the villainy function
can be realised as one of 19 distinct forms of villainous deed, including the villain abducts a
person, the villain seizes the daylight, and the villain makes a threat of cannibalism.

These functions are enacted by characters following certain roles. Each role (or dramatis
personae in Propp’s definition) has a sphere of action consisting of the functions that they
are able to perform at any point in the story. Propp defines seven roles that have distict
spheres of action: villain, donor, helper, princess, dispatcher, hero, and false hero.

In a typical story, one story function will follow another as the tale progresses in a
sequential series of cause and effect. However, Propp’s formalism also allows for simultaneous
story functions to occur at once.

CMN’15



144 Governing Narrative Events With Institutional Norms

2.1 Example: A Punch and Judy show
Consider the classic British-Italian “Punch and Judy” puppet show often seen at English
seaside resorts. The “Punch and Judy” world is a very simple and consistent narrative
domain, in which simplistic characters act out predictable sequences of events. The key
features of a Punch and Judy show include:

The show is introduced by a clown named “Joey”.
Punch beats and kills his child, and then his wife Judy.
There is a scene where Punch chases a monkey or cat.
A policeman tries to arrest Punch, but is instead killed by him.
Joey asks Punch to look after some sausages in one scene. Shortly after Joey leaves, a
crocodile appears and eats them.
Punch, the lead character, beats and kills almost every other character by the end of
each scene. Only Joey and sometimes the monkey or cat avoid this fate.
The show sometimes ends with an encounter between Punch and the Devil, which Punch
wins.

Despite this harrowing combination of narrative elements, Punch and Judy is considered
a farce due to the over-the-top violence and simplicity of its world. It is usually performed
as a puppet show for children, who are encouraged to cheer or boo the puppets.

The common elements of Punch and Judy are easily described in terms of Propp’s story
functions. Using the example where Joey asks Punch to guard some sausages, the appropriate
story functions are:
1. Joey tells Punch to look after the sausages (interdiction).
2. Joey has some reservations, but decides to trust Punch (complicity).
3. Joey gives the sausages to Punch (provision or receipt of a magical agent).
4. Joey leaves the stage (absentation).
5. A crocodile enters the stage and eats the sausages (violation).
6. Punch fights with the crocodile (struggle).
7. Joey returns to find that the sausages are gone (return).

In order to better model the Punch and Judy world in terms of Propp functions, we have
allowed some flexibility of the roles that each agent assumes. At points Punch is the hero,
at other times he is the villain. Sometimes Joey is the hero, but he can also be a donor (a
character who gives an object to the hero). The crocodile is a villain, but other characters
are all certainly victims (since they are all obliged to be killed by Punch as part of the Punch
and Judy story world).

One novel aspect of managing these Propp functions with an institutional model is that
the agents’ roles can be flexible. If the audience cheers on Judy as she hits Punch, why not
fulfil their desires and make her the hero, and Punch the victim? This is what we aim to
achieve with our approach: a story world where certain rules do hold, but are flexible enough
to be broken if the player or audience wills it.

3 Institutions for narrative regulation

3.1 Institutions and norms
Early examples of institutional models suggest their application to the regulation of systems
involving multiple actors. Noriega’s “fish market” thesis describes the application of an
agent-mediated institution for regulating a fish market auction scenario [3], checking the
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validity of agent actions and addressing the issue of agent accountability in an auction
environment. Rodriguez [13], and later Vázquez-Salceda [16], refine and extend Noriega’s
implementation of agent-mediated institutions.

However, it is Cliffe’s approach of using Answer Set Programming (ASP) to specify
institutions that we use here [4]. We define an institution in terms of deontic logic, specifying
the permissions and obligations that act upon agents at any particular point in the story.

This approach alone is not enough, however. In order to effectively model a narrative
using an institution and ASP, we must use a formalism for narrative that specifies which
events and actions occur at certain points in the narrative. We achieve this by translating
Propp’s formalism of Russian folktales [10] into actions that agents are permitted or obliged
to perform.

3.2 Describing institutions with deontic logic
We describe our institution using deontic logic, defining our model in terms of fluents, events,
powers, permissions and obligations.

3.2.1 Fluents
Fluents are properties that may or may not hold true at some instant in time. Institutional
events are able to initiate or terminate fluents at points in time. A fluent could describe
whether a character is currently on stage, the current scene of a story, or whether or not the
character is happy at that moment in time.

Domain fluents (D) describe domain-specific properties that can hold at a certain point
in time. In the Punch and Judy domain, these can be whether or not an agent is on stage,
or their role in the narrative (equation 1).

Institutional fluents consist of institutional powers, permissions and obligations.

D = {onstage, hero, villain, victim, donor, item} (1)

An institutional power (W) describes whether or an agent, and by extension the action
they have taken, has the authority to meaningfully generate an institutional event. Using
Propp as an example, a violated interdiction can only occur after an interdiction has taken
place. Therefore, the institution would not be empowered to generate a violated interdiction
institutional event if the prior interdiction has not yet taken place.

Institutional powers describe what events the institution is capable of bringing about. As
institutional events represent Propp’s story functions in our model, the institution should
only be capable of generating events if they fit in the right place in the narrative. For
example, a violation can take place only after an interdiction event has occurred. Punch
can only violate Joey’s request to guard the sausages after the request itself has happened.
Equation 2 shows a list of possible empowerments, essentially a list of institutional events.

W = {pow(introduction), pow(interdiction), pow(give), pow(absentation),

pow(violation), pow(return)} (2)

Permissions (P) are external actions that agents are permitted to do at a certain instant in
time. These can be thought of as the set of socially permitted actions available to an agent.
While it is possible for an agent to perform other actions, societal norms usually prevent
them from doing so.

For example, it would not make sense in the world of Punch and Judy if Punch were to
give the sausages to the Policeman. It is always Joey who gives the sausages to Punch. Also,
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it would be strange if Joey were to do this in the middle of a scene where Punch and Judy
are arguing. We make sure agents’ actions are governed so as to allow them only a certain
subset of permitted actions at any one time. Equation 3 shows a list of permission fluents.

P = {perm(leavestage), perm(enterstage), perm(die), perm(kill),

perm(hit), perm(give), perm(fight)} (3)

Obligations (O) are actions that agents should do before a certain deadline. If the action
is not performed in time, a violation event is triggered, which may result in a penalty being
incurred. While an agent may be obliged to perform an action, it is entirely their choice
whether or not they actually do so. They must weigh up whether or not pursuing other
courses of action is worth suffering the penalty that an unfulfilled obligation brings.

Anybody who has seen a Punch and Judy show knows that at some point Joey tells
Punch to guard some sausages, before disappearing offstage. Joey’s departure is modelled
in the institution as the absentation event. It could be said that Joey has an obligation to
leave the stage as part of the absentation event, otherwise the story function is violated.
Equation 4 shows how this would be described in the institution.

O = {obl(leavestage, absentation, viol(absentation))} (4)

3.2.2 Events
Cliffe’s model specifies three types of event: external events (or ‘observed events’, Eobs),
institutional events (Einstevent) and violation events (Eviol). External events are observed to
have happened in the agents’ environment, which can generate institutional events which act
only within the institional model, initiating or terminating fluents, permissions, obligations or
institutional powers. An external event could be an agent leaving the stage, an agent hitting
another, or an agent dying. Internal events include narrative events such as scene changes,
or the triggering of Propp story functions such as absentation or interdiction (described in
Section 2).

Violation events occur when an agent has failed to fulfil an obligation before the specified
deadline. These can be implemented in the form of a penalty, by decreasing an agent’s health,
for example.

Eobs = {startshow, leavestage, enterstage, die, give,

harmed, hit, fight, kill, escape} (5)
Einstact = {introduction, interdiction, give, absentation,

violation, return, struggle, defeat, complicity,

victory, escape} (6)
Eviol = {viol(introduction), viol(interdiction), viol(give),

viol(absentation), viol(violation), viol(return),

viol(struggle), viol(defeat), viol(complicity)

viol(victory), viol(escape)} (7)

3.2.3 Event Generation and Consequences
An event generation function, G, describes how events (usually external) can generate
other (usually institutional) events. For example, if an agent leaves the stage while the
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G(X , E) :〈∅, tellprotect(donor, villain, item)〉 → {interdiction} (8)
〈{interdiction}, agree(villain))〉 → {complicity} (9)
〈∅, give(donor, villain, item))〉 → {receipt} (10)
〈{interdiction}, leavestage(donor)〉 → {absentation} (11)
〈{interdiction}, harmed(item)〉 → {violation} (12)
〈{interdiction, absentation}, enterstage(donor), onstage(villain)〉

→ {return} (13)
〈∅, hit(donor, villain)〉 → {struggle} (14)

C↑(X , E) :〈∅, receipt〉
→ {perm(leavestage(donor))} (15)

〈{active(interdiction)}, violation〉
→ {perm(enterstage(dispatcher))} (16)

〈{active(absentation), active(violation)}, return〉
→ {perm(hit(donor, villain))} (17)

C↓(X , E) :〈∅, interdiction〉
→ {perm(give(donor, villain, item))} (18)

〈{active(interdiction)}, absentation〉
→ {perm(leavestage(donor))} (19)

〈{active(interdiction)}, violation〉
→ {active(interdiction)} (20)

〈{active(absentation), active(violation)}, return〉
→ {active(absentation)} (21)

Figure 1 Generation and consequence rules for Punch and Judy.

interdiction event holds, they trigger the leavestage event. This combination generates the
absentation institutional event (equation 11).

Event generation functions follow a 〈preconditions〉 → {postconditions} format,
where the preconditions are a set of fluents that hold at that time and an event that has
occurred, and the postconditions are the events that are generated. They are generally used
to generate internal, institutional events from external events.

Consider the Punch and Judy scenario described in Section 2.1. There are seven institu-
tional events (story functions) that occur during this scene: interdiction, complicity, receipt
(from Propp’s receipt of a magical agent) absentation, violation, struggle, return. These
institutional events are all generated by external events. The interdiction is generated when
Joey tells Punch to protect the sausages. Punch agreeing amounts to complicity. Joey gives
punch the sausages (receipt), then leaves the stage (absentation). The crocodile eating the
sausages is a violation of Punch’s oath, the agents fight (struggle), then Joey enters the stage
again (return).
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It is desirable that these story function occur in this sequence in order for a satisfying
narrative to emerge. Agents may decide to perform actions that diverge from this set of
events, but the institution is guiding them towards the most fitting outcome for a Punch and
Judy world. For this reason, a currently active story function can be the precondition for
event generation. For example, the receipt event may only be triggered if an agent externally
performs a give action and if the complicity event currently holds (equation 10). Examples
of event generation function for this scenario, complete with preconditions, are listed in
equations 8 to 14 in Figure 1.

Consequences consist of fluents, permissions and obligations that are initiated (C↑)
or terminated (C↓) by institutional events. For example, the institutional event give could
initiate the donor agent’s permission to leave the stage, triggering the absentation event
(equation 11). When the interdiction event is currently active and a violation event occurs,
the interdiction event is terminated (20). Equations 15 to 21 in Figure 1 describe the
initiation and termination of fluents in the Punch and Judy sausages scenario detailed in
Section 2.1.

4 Regimenting agent actions with institutions

4.1 Institutions and multi-agent systems
Belief-Desire-Intention (BDI) agents’ behaviour can be governed by running an institution
manager in their environment, observing all agent actions and events. Given a set of observed
events over time, such a manager can infer what permissions, obligations and institutitional
powers hold at any given time.

The institution manager updates each agents’ percepts to change their permissions and
obligations. At each instant in time, the institution manager works out what an agent is
permitted or obliged to do, then updates the agent’s percepts (beliefs about the environment)
with the set of permissions and obligations that hold at that time. It is up to the agent
whether or not they act on these percepts.

As part of the BDI architecture of agents, an agent has beliefs about themselves, other
agents and their environment. They also have goals that they desire to carry out (desires)
and goals they intend to carry out next or are carrying out (intentions). The permissions
and obligations that an agent receives from the institution manager only affect their beliefs:
they believe that the norms of their world put certain expectations on them. These beliefs
may or may not affect the plans that the agent desires or intends to carry out.

4.2 Describing institutions with InstAL and ASP
Answer Set Programming (ASP) [2] is a method of programming by specifying the require-
ments that a solution must fulfil. A specification of the constraints and rules of a problem
are written and then queried, producing solutions in the form of answer sets.

Each line of an ASP program is a rule, which is a constraint that narrows down the set
of solutions when queried. Rules consist of two parts: a head literal (l) and a body (B),
separated with a left arrow: l← B. If every literal in the body evaluates to true, then the
head literal is also true.

Specifying our institution in ASP allows us to reason about the effects of events occuring
over time. Given an institutional model and a sequence of events as input, the output would
be the set of norms in the form of permissions and obligations that hold at certain instants
in time.
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To describe our institutional model, we use InstAL [4], a domain specific language for
describing institutions that compiles to AnsProlog, a declarative programming language
for Answer Set Programming (ASP) [2]. instAL’s semantics are based upon the Situation
Calculus [11] and the Event Calculus [6]. It is used to describe how external events generate
institutional events, which can then initiate or terminate fluents that hold at certain instants
in time. These fluents can include the permissions and obligations that describe what an
agent is permitted or obligated to do at specific points in time.

Returning to the scenario in Section 2.1, if an agent with the role of donor leaves the
stage, it generates the absentation Propp story function in the institution:

1 leaveStage (X) generates intAbsentation (X) if role(X, dispatcher ),
activeTrope ( interdiction );

The absentation institutional event gives the crocodile permission to enter the stage if
there are any sausages on the stage. It also terminates the permission of the absented agent
to leave the stage, as they have already done so:

1 intAbsentation (X) initiates perm( enterStage (croc)) if objStage ( sausages )
;

2 intAbsentation (X) terminates onStage (X), perm( leaveStage (X));

InstAL rules like those shown above are compiled into AnsProlog ASP rules describing
which fluents hold at certain points in time. Once the InstAL model is compiled to AnsProlog,
we use the clingo answer set solver [5] to ground the logical variables, and ‘solve’ queries by
finding all permissions and obligations that apply to any agents, given a sequence of events
as the query input. The agents’ percepts are then updated with their permitted and obliged
actions from that moment in time onwards.

Listing 1 shows how the sausages scenario would be described in ASP, for the first two
events of the scene. Starting with an initial set of fluents that hold at t0, only fluents that
have been initiated and not terminated hold at the next instant.

Listing 1 Sausages scenario in ASP
1 holdsat (perm( tellprotect (dispatcher , villain , item), t0).
2 occurred ( tellprotect (dispatcher , villain , item), t0).
3 initiated ( active ( interdiction ), t1).
4 initiated (perm(give(donor , villain , item)), t1).
5 terminated ( tellprotect (dispatcher , villain , item), t1).
6 holdsat (perm(give(donor , villain , item)), t1).
7 holdsat ( active ( interdiction ), t1).
8 occurred (give(donor , villain , item), t1).
9 initiated ( active ( receipt ), t2).

10 initiated (perm( leavestage (donor)), t2).
11 terminated (perm(give(donor , villain , item)), t2).
12 holdsat ( active ( interdiction ), t2).
13 holdsat ( active ( receipt ), t2).
14 holdsat (perm( leavestage (donor)), t2).

4.3 Adding agent percepts from ASP solutions
With every event that occurs in the narrative, a query consisting of all events so far is sent
to the solver. Its output tells us what permissions and obligations hold for certain agents at
the next instant. These permissions and obligations are added to the agents’ belief bases as
percepts. The agents’ plans are carried out based on these permissions and obligations.

For example, in the scene where Joey gives the sausages to Punch, Punch may see that he
has permission to eat the sausages, drop them, fight the crocodile, run away (leave the stage)
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or shout for help at the crocodile or audience. His obligation for the scene, in accordance
with the Punch and Judy narrative world, is to either eat the sausages himself, or let the
crocodile sausages. This ends Propp’s interdiction story function with a violation function.
Note that his obligation is not to guard the sausages as asked to by Joey. While Joey’s
entrustment of the sausages is an obligation of sorts, Punch’s only true obligations are to the
narrative.

We have a prototype system where the agents choose their actions based on their emotional
state. Before carrying out a potentially narrative-altering plan, each agent appeals to the
audience for encouragement. They do this by turning to the audience and announcing their
intentions. The audience then cheers or boos the character, which affects their emotional
state, which is based on Russell’s [14] circumplex model of emotion. In this model, a person’s
emotion is determined by three variables: Valence (positivity), Arousal and Dominance.

Depending on the action planned, a cheer or boo from the audience will raise or lower an
agent’s valence, arousal or dominance level. This changes the agents’ motivation to select a
certain permitted action to carry out as part of their plan.

In the above example, a depressed Punch may decide to violate his obligations by not
eating the sausages and instead leave the stage with them. Alternatively, a furious Punch
would viciously attack the crocodile, not allowing him to eat the sausages. This also violates
the norms of the narrative world. However, for most emotional states the norms are observed
by either Punch eating the sausages or letting the crocodile eat them.

5 Conclusion

With our approach to interactive narrative generation, we regiment the rules of the story
domain using an institutional model. This model describes what each agent is permitted
and obliged to do at any point in the story. Institutional regimentation of agents acting
out a story using story-world norms allows much more flexibility than if the world’s rules
were strictly enforced. The deontic language of permissions and obligations allows the agents
to act out small details of the narrative, while guiding them into an underlying narrative
structure.
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Abstract
The temporal order in which story events are presented in discourse can greatly impact how
readers experience narrative; however, it remains unclear how narrative systems can leverage
temporal order to affect comprehension and experience. We define structural properties of dis-
course which provide a basis for computational narratologists to reason about good timing, such
as when readers learn about event relationships.
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1 Introduction

Narratologists frequently recognize that the temporal order in which story events are presented
can greatly impact how readers comprehend narrative [6, 3, 1]. For example, readers usually
notice when events are not presented in a possible storyworld chronology (e.g. flashbacks).
Moreover, psychologists show that rearranging the order of events, while still presenting events
in a possible storyworld chronology, affects how readers interpret narrative [13, 15, 14, 7].
Storytelling decisions about when readers should learn about event relationships have not
received the same level of attention by narratologists compared to devices like flashback or
flashforward. Computational narratologists interested in accounting for storytelling decisions
about timing may benefit from encoding the relationship between temporal order of events
in discourse presentation and comprehension in readers.

Our position is motivated by psychology research which demonstrates that rearranging
events, while still presenting them in a possible storyworld chronology, affects how readers
understand discourse. Consider an important event that has multiple relevant outcomes in a
story. The order that readers learn about the outcomes can affect whether each outcome is
interpreted as a direct result versus a side effect of the important event [13, 8]. Similarly,
consider a situation where multiple antecedent events must occur for an outcome to occur.
When readers think counterfactually about the outcome, research shows that readers are
biased by temporal order when attributing causal responsibility to antecedent events and do
not consider all antecedents equally [15, 9, 14, 7]. We believe these kinds of situations are
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opportunities for storytellers to use good timing in nonlinear stories, but further evaluation
is needed to predict more precisely how temporal order affects narrative experience.

Previous approaches for modeling narrative discourse presentation have not encoded
in a general way how presentation ordering can affect inferences made by readers during
comprehension. Computational models of reader comprehension used in narrative systems
[10, 4, 11] simulate human reasoning to make decisions about narrative discourse presentation.
These reader models are limited because they lack a simple underlying characterization of the
ways that timing affects the reader’s experience of the story. We believe that reader models
can more accurately model narrative experiences like suspense and surprise by encoding the
way reader comprehension is biased by temporal order.

In the work presented, we formally define structural properties of discourse which provide
a basis for computational narratologists to reason about good timing in narrative discourse.
This model clearly distinguishes the causal structure of story which drives comprehension
[16, 5, 12] from the temporal properties of discourse. We believe that a formal approach
that delineates causal structure from temporal discourse structure would greatly benefit
experiment design investigating the role of timing on comprehension. If the effects of timing
on comprehension were better understood, narrative analysis and generation systems could
then account for good timing in an actionable way to interpret and produce interesting
narrative experiences.

2 Story Structure

A conjunction of function-free ground literals is used to represent the state of the world,
describing what is true and false in the story world. The initial state of the world contains
the propositions that are initially true. Other states are established as the result of an event.

I Definition 1 (Event). An event is a tuple 〈P, E, V 〉 where P is a set of preconditions
(literals that must be true before the event can be executed), E is a set of effects, literals
made true by the event’s execution, and V is a label which distinguishes the event.

I Definition 2 (Causal Link). A causal link between two events s and t, denoted s
p−→ t

indicates that s is an event which has effect p that enables a precondition p of event t. Event
s is the antecedent, t is the consequent, and s and t are causal partners.

I Definition 3 (Ordering Constraint). An ordering constraint of two events s and t denoted
s ≺ t indicates that event s is necessarily ordered before event t.

Constraints are transitive: if s ≺ k and k ≺ t, then s ≺ t.

I Definition 4 (Story Plan). A story plan Φ is a tuple 〈S, O, L〉 where S is a set of events,
O is a set of ordering constraints over events in S, and L is a set of causal links over events
in S.

A story plan is complete if and only if every precondition of every event is satisfied (by
other events or by the initial state) and it is not possible that an event can occur between
causal partners that reverses the effect of the antecedent enabling the consequent.

Figure 1 shows an example story plan which models a simplified sequence of events in the
film Indiana Jones and the Raiders of the Lost Ark. Initially, Indiana Jones (IJ) and a Nazi
(N) are fighting over a headpiece medallion (medal) which is embedded with the location of
the Ark. During the fight, the medal is set on fire and becomes burning hot. The Nazi picks
up the medal and his hand is burned, resulting in two outcomes. The first outcome is that
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BURNS HAND(N)

DROPS(N) ESCAPES(IJ) TRAVELS(IJ)

REALIZES(N) DIGS(N)

imprint(N)

inPain(N)

has(N,medal)

¬has(N,medal) knows(IJ,Ark)

knows(N,Ark)

Figure 1 An example highly-simplified story plan of the Indiana Jones story. Ordering constraints
are denoted by directed edges, with labeled edges indicating causal links.

the Nazi is in pain, causing him to drop the medal which enables Indiana Jones to escape
with it and then travel to the Ark location. The second outcome is that the Nazi has the
location from the medal imprinted into his hand. When he realizes this, he uses the location
to choose a digging site.

3 Presentation Structure

The presentation of a story is a story plan where events are mapped to a total ordering in a
sequential discourse structure.

I Definition 5 (Presentation). A presentation Ψ is a tuple 〈Φ, T 〉 where Φ = 〈S, O, L〉 is a
story plan and T is a bijection function T : S → [1, ..., n] with n = |S| mapping events in S

to a total ordering in N.

A presentation 〈Φ, T 〉 is complete if and only if the story plan Φ is complete and if
∀u, v ∈ S, u ≺ v ∈ O =⇒ T (u) < T (v).

I Definition 6 (Temporal Adjacency). An event u is temporally adjacent to a causal partner
v in a presentation Ψ if and only if |T (u)− T (v)| = 1.

I Definition 7 (Intervening Discourse Event). An event v is an intervening discourse event
(IDE) for causal link s

p−→ t in a presentation Ψ = 〈Φ, T 〉 where Φ = 〈S, O, L〉 if and only if
v, s, t ∈ S, s

p−→ t ∈ L, and T (s) < T (v) < T (t).

I Definition 8 (Temporal Separation). An event u is temporally separated by separation size
k from a causal partner v in a presentation Ψ = 〈〈S, O, L〉, T 〉 if and only if the number of
IDEs for u

p−→ v is greater than k where u, v ∈ S and u
p−→ v ∈ L.

For simplicity, we do not encode differences between intervening discourse events such
as the dimension of the situation [18, 2, 12], and therefore consider all events as equally
weighted transitions of the world state.

In Figure 2, we show two presentations of the story plan from Figure 1. In Presentation
A, a sequence resembling the order in the film, the events of Indiana Jones escaping with
the medal (event 3) and traveling (event 4) are IDEs for causal link burns hand imprint−−−−−→
realizes. When these causal partners (events 1 and 5) are temporally separated, the
consequent (event 5) may not be anticipated and perhaps will surprise the reader. However,
in Presentation B, the same events burns hand and realizes are temporally adjacent
(events 1 and 2). This changes how the reader interprets the subsequent events, perhaps now
anticipating that Indiana Jones will run into the Nazis at the Ark location.
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The Indiana Jones Story
Init. The medallion is imprinted with the location of the Ark. The medallion is burning hot.
Presentation A. 1. The Nazi grabs the hot medallion and his hand is severely burned. 2. In
pain, the Nazi drops the medallion. 3. Indiana Jones takes the medallion and escapes. 4.
Indiana Jones travels to the destination indicated on the medallion. 5. The Nazi realizes the
location from the medallion is imprinted onto his hand. 6. The Nazis dig for the Ark
Presentation B. 1. The Nazi grabs the hot medallion and his hand is severely burned. 2.
The Nazi realizes the location is imprinted onto his hand. 3. In pain, the Nazi drops the
medallion. 4. Indiana Jones takes the medallion and escapes. 5. Indiana Jones travels to the
destination indicated on the medallion 6. The Nazi dig for the Ark.

Figure 2 Two presentations of the Indiana Jones story plan depicted in Figure 1.

The two presentations may elicit different narrative experiences because the temporal
sequence affects the order that readers learn which events are important. A definition of
causal importance, modeled as the number of incoming and outgoing causal connections of
an event in a story plan, has proven effective at modeling human judgment [16, 17, 5, 4, 12].
Whenever a reader encounters a new event that has an antecedent in the story, the importance
of that antecedent, from the reader’s perspective, increases by virtue of the revealed causal
connection. In the Indiana Jones Story, event 1 (burns) is the most important event in the
story because it has two outgoing connections. In Presentation A, the reader does not learn
of the event’s importance until event 5, whereas in Presentation B, the event’s importance
is learned by event 3 which changes the context for interpreting the remaining events. In
general, the timeline of when readers learn that events are more or less important may be a
dimension of temporal discourse structure critical for characterizing narrative interpretation.

4 Summary

In the work presented, we provided a preliminary model with formally defined properties
of story and discourse to act as a framework for reasoning about timing in narrative. One
immediate application of our framework is that we can design experiments that tease out
the effect of temporal order on comprehension and directly encode this with a computational
model. This would enable generative systems to leverage timing in an actionable way for
producing novel and more interesting experiences. Our framework currently captures only
basic elements of story content and discourse timing to illustrate the relationship between
causal structure and discourse presentation. The framework will be extended to identify
relationships between discourse timing and other formally defined story content.
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Abstract
A story summarizer benefits greatly from a reader model because a reader model enables the story
summarizer to focus on delivering useful knowledge in minimal time with minimal effort. Such a
summarizer can, in particular, eliminate disconnected story elements, deliver only story elements
connected to conceptual content, focus on particular concepts of interest, such as revenge, and
make use of our human tendency to see causal connection in adjacent sentences. Experiments
with a summarizer, built on the Genesis story understanding system, demonstrate considerable
compression of an 85-element précis of the plot of Shakespeare’sMacbeth, reducing it, for example,
to the 14 elements that make it a concise summary about Pyrrhic victory. Refocusing the
summarizer on regicide reduces the element count to 7, or 8% of the original.

1998 ACM Subject Classification I.2.0 General/Cognitive simulation

Keywords and phrases story telling and summarization, story understanding, cognitive modeling
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1 Vision

Suppose you want a program to summarize a story. How should your program decide what
to include and what to leave out? I suggest that people read summaries mainly to acquire
useful knowledge in minimal time with minimal effort. Thus, a summary program should
focus on knowledge useful as precedent, exclude obvious inferences, but include reflective
inferences that help the reader understand how the key elements are connected. Accordingly,
a summary program should adhere to several principles reminiscent of the maxims of Grice
[5], and in so adhering, a summary program must have an understanding of human story
understanding in general and of the summary reader in particular. My students and I have
built such an understanding into our Genesis story-understanding system, and we can adjust
Genesis to model the knowledge and interests of particular summary readers.

2 Genesis models aspects of story understanding by humans

Much recent work has focused on applications that digest large amounts of data so as to
exhibit a kind of intelligence. Google’s caption generator [14], for example, is no doubt an
engineering marvel, but it sheds little or no light on our human visual faculty. Likewise,
IBM’s Watson [1] is no doubt intelligent in some ways, but it does not think as we think.

Work on Genesis goes in a different direction. Genesis was developed in the belief that
story understanding and telling is the distinguishing feature of human intelligence [15, 16, 17].
The aim in building Genesis is to model aspects of that story understanding and telling
feature at the expense of working with story summaries written in simple English of the kind
we can get through the START parser [6] and into Genesis’s inner language of relations and
events.
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One such simple Genesis-readable story is the following précis, which is based loosely
on Shakespeare’s play, Macbeth. It is itself a summary, but it is also an anvil on which to
hammer out principles that enable further compression and clarification.

Macbeth précis
Scotland and England are countries. Dunsinane is a castle and Birnam Wood is a forest.
Macbeth, Macduff, Malcolm, Donalbain, Lady Macbeth, Lady Macduff, Cawdor, and
Duncan are persons. Lady Macbeth is Macbeth’s wife. Lady Macduff is Macduff’s
wife. Lady Macbeth is evil and greedy. Duncan is the king, and Macbeth is Duncan’s
successor. Duncan is an enemy of Cawdor. Macbeth is brave. Macbeth defeats
Cawdor. Duncan becomes happy because Macbeth defeats Cawdor. The witches are
weird. The witches meet at night. The witches danced and chanted. Macbeth tells
witches to speak. Macbeth talks with the witches. Birnam Wood is a forest. Witches
predict that Birnam Wood will go to Dunsinane. The witches predict that Macbeth
will become Thane of Cawdor. The witches predict that Macbeth will become king.
The witches astonish Macbeth. Duncan executes Cawdor. Macbeth becomes Thane of
Cawdor. Duncan rewarded Macbeth because Duncan became happy. Lady Macbeth
wants Macbeth to become king. Macbeth is weak and vulnerable. Lady Macbeth
persuades Macbeth to want to become the king because Lady Macbeth is greedy.
Macbeth loves Lady Macbeth. Macbeth wants to please lady Macbeth. Macbeth
wants to become king because Lady Macbeth persuaded Macbeth to want to become
the king. Lady Macbeth plots to murder the king with Macbeth. Macbeth invites
Duncan to dinner. Duncan compliments Macbeth. Duncan goes to bed. Duncan’s
guards become drunk and sleep. In order to murder Duncan, Macbeth murders the
guards, Macbeth enters the king’s bedroom, and Macbeth stabs Duncan. Macbeth
becomes king. Malcolm and Donalbain become afraid. Malcolm and Donalbain flee.
Macbeth’s murdering Duncan leads to Macduff’s fleeing to England. In order to
flee to England, Macduff rides to the coast and Macduff sails on a ship. Macduff’s
fleeing to England leads to Macbeth’s murdering Lady Macduff. Macbeth hallucinates
at a dinner. Lady Macbeth says he hallucinates often. Everyone leaves because
Lady Macbeth tells everyone to leave. Macbeth’s murdering Duncan leads to Lady
Macbeth’s becoming distraught. Lady Macbeth has bad dreams. Lady Macbeth
thinks she has blood on her hands. Lady Macbeth tries to wash her hands. Lady
Macbeth kills herself. Birnam Wood goes to Dunsinane. Macduff’s army attacks
Dunsinane. Macduff curses Macbeth. Macbeth refuses to surrender. Macduff kills
Macbeth.

Given the Macbeth précis, Genesis notes and infers several kinds of causal connections.
Connections noted are those signaled by the word because, the words leads to, and the
words in order to in stories. Because signals a direct cause between story elements (Duncan
becomes happy because Macbeth defeated Cawdor); leads to indicates there is a chain
of unstated causes connecting two story elements (Macbeth’s murdering Duncan leads to
Macduff’s fleeing to England); in order to explains how something is done (In order to murder
Duncan, Macbeth murders the guards, Macbeth enters the king’s bedroom, and Macbeth
stabs Duncan).

2.1 Genesis deploys various kinds of common-sense rules
In addition to noting explicit causal connections, Genesis produces other causal connections
using inference rules, including deduction rules, abduction rules, explanation rules, and
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Figure 1 Elaboration graph generated by the Macbeth précis. Connections are color coded:
deduction rules and explicit because connections produce black lines; explicit leads to connections
produce blue lines; explanation rules produce orange connections. You can expand the diagram if
you are using a PDF viewer.

presumption rules. Deduction rules, such as If x kills y, then y becomes dead, make connections
whenever all their antecedents are in a story. Abduction rules make connections between
elements and presumed antecedents. For example, Genesis’s reader model may include the
abduction rule If x kills y, then x must be insane. Explanation rules make connections only
when there is no other known way to explain an element. For example, Macduff kills Macbeth
is explained by the explanation rule If x angers y, then y may kill x and the previously
inferred element Macbeth angers Macduff. Presumption rules, like abduction rules, make
connections between elements and presumed antecedents, but only when there is no other
known way to explain an element. Presumption rules, unlike explanation rules, do not require
antecedents to be already in place. Abduction rules, explanation rules, and presumption
rules are ranked, so that the highest ranking rule dominates in the event multiple rules are
available for explaining an unexplained event. We intend to develop a more sophisticated,
context-sensitive process.

The noted and inferred causal connections constitute the elaboration graph of causally
connected elements as shown in Figure 1.

2.2 Genesis discovers concepts by searching for connections
Genesis finds concepts in the elaboration graph by searching for elements that instantiate
concept patterns. In general, concept patterns include specifications for sequences of causal
relations that start and end with particular, specified elements. The concept pattern for

CMN’15



160 Model-based Story Summary

13:25:25 EST 01-Mar-2015

AboutRunRecordReadLibraryDemonstrations

Macbeth/revenge

Total time elapsed: 9.0 sec

Story reading time: 6.4 sec

Total elements: 103

Inferred elements: 33

Explicit elements: 70

Discoveries: 11

Concepts: 15

Inferences: 49

Rules: 39

Analysis

100%100%

Answere...RegicideSuccessSuicideMistake ...Mistake ...Mistake ...Pyrrhic vi...Pyrrhic vi...RevengeRevenge

Lady Macbeth is Macbeth's wife.

Macbeth is Lady Macbeth's

husband.

Macbeth is Lady Macbeth's

relation.

Lady Macbeth is Macbeth's

relation.

Lady Macduff is Macduff's wife.

Macduff is Lady Macduff's husband.

Macduff is Lady Macduff's relation.

Lady Macduff is Macduff's relation.

Macbeth defeats Cawdor. Duncan becomes happy. Duncan executes Cawdor.
Cawdor

becomes dead.

Duncan harms Cawdor.

Macbeth

becomes thane.
Lady Macbeth becomes queen. Duncan rewards Macbeth.

Lady Macbeth is greedy.

Macbeth wants to become king.

Macbeth murders guards.

Macbeth enters bedroom.

Macbeth stabs Duncan.

Macbeth murders Duncan. Guards become dead.

Macbeth harms guards.

Duncan is a

king.

Macbeth is Duncan's successor.

Duncan

becomes dead.

Macbeth

becomes king.

Macbeth becomes happy. Macbeth harms Duncan.

Macduff flees to England.

Macduff rides to coast.

Macduff sails

on ship.

Macbeth murders Lady Macduff.

Lady Macduff

becomes dead.

Macbeth harms Lady Macduff. Macbeth harms Macduff. Macduff becomes unhappy. Macbeth angers Macduff.
Everyone

leaves.
Lady Macbeth becomes distraught. Lady Macbeth kills herself.

Lady Macbeth becomes dead.

Lady Macbeth harms herself. Lady Macbeth harms Macbeth. Macbeth becomes unhappy. Lady Macbeth angers Macbeth.
Macduff kills

Macbeth.

Macbeth

becomes dead.

Macduff harms Macbeth.

Macduff harms Lady Macbeth.

I am
eastern.

I am
machiavellian.

Thane is
noble.

England is a

country.
Dunsinane is a castle. Birnam Wood is a forest.

Duncan is a

person.

Cawdor is a

person.
Lady Macduff is a person. Lady Macbeth is a person.

Macduff is a

person.

Macbeth is a

person.
Donalbain is a person.

Malcolm is a

person.

Macbeth is a

thane.

Macduff is a

thane.

Lady Macbeth is evil. Duncan is Cawdor's enemy.

Witches
dance.

Witches have

visions.
Macbeth talks with witches.

Macbeth

becomes king.
Witches astonish Macbeth. Macbeth loves Lady Macbeth. Macbeth plans to murder king. Lady Macbeth plans to murder king. Macbeth invites Duncan to dinner. Duncan complements Macbeth.

Duncan goes to bed. Guards become drunk.

Guards
sleep.

Malcolm

becomes afraid.

Donalbain

becomes afraid.

Malcolm
flees.

Donalbain

flees.
Macbeth hallucinates at dinner. Lady Macbeth has bad dreams. Birnam Wood goes to Dunsinane. Birham wood is a forest. Burnham wood goes to Dunsinane.

Army attacks

Dunsinane.

Macduff curses Macbeth. Macbeth refuses surrendering.

Elaboration graph

RetellingSummaryResultsSourcesInspectorElaboration graphExpertsStart viewerControlsViewsPop|||

Macbeth
harms

Macduff.

Macbeth
angers

Macduff.

Macduff
kills

Macbeth.

Macduff
harms

Macbeth.

Inspector

RetellingSummaryResultsSourcesInspectorElaboration graphExpertsStart viewerControlsViewsPop|||

Concept analysis

Speech Predictions

Escalation analysis

Macbeth 
murders Lady 
Macduff leads 
to Macduff kills 
Macbeth.

I note that 
murder and 

Results

RetSumReSoInsElaborExStarCoViP|

Figure 2 The instantiated revenge concept pattern found in the Macbeth précis.

revenge, for example, is just a single such sequence described by x’s harming y leads to y’s
harming x. An instantiated revenge pattern is shown in Figure 2.

Remarkably, the elaboration graph, augmented by discovered concept patterns, provides
the substrate for developing models of many kinds of story understanding and telling,
including question answering, cultural bias in interpretation, instructional telling with a
learner model, persuasive telling with a listener model, precedent-based prediction, and as
described here, summary.

2.3 We provide common-sense rules and concept patterns in English

My students and I provide Genesis with common-sense rules, concept patterns, and stories;
all rules, patterns, and stories are provided in English as indicated in the examples. Our
purpose is to establish, by telling, what Genesis needs to know to exhibit a kind of humanlike
understanding.

We think it reasonable, at this stage, to tell Genesis what it needs to know. One reason is
that much of what we know we learn by being told. Few would have the concept of Pyrrhic
victory, for example, without being told. Another reason is that much of what we tell Genesis
in experimenting with one story finds use in other stories. Revenge, for example, is revenge
not only in Macbeth, but also in fairy tales and international conflicts. Yet another reason is
that we have done research on learning concept patterns from ensembles of stories [2, 7], and
we are engaged in research on learning common sense by mining various textual sources.

3 The Genesis model enables principle-based story summary

Genesis, as a model of story understanding by humans, suggests several principles for
summary. Some compress the story provided; others expand the story by adding helpful
explanations. All work toward helping the reader to focus on the elements that convey useful
knowledge and to grasp how the useful story elements are connected.

In the following, I articulate several such principles, and I explain how those principles
are reflected in a model of story summarization by humans. I also show how the Genesis
story summarizer, based on that model, performs on a test case.

3.1 The principle of connection

Good precedents exhibit causal connections between events that are likely to be seen again in
future situations, thereby enabling understanding, prediction, and control. Accordingly, the
Genesis story summarizer preserves those explicit story elements that are involved in causal
connections, where the causal connections are either explicit or inferred. Genesis filters out
explicit story elements that are neither an antecedent nor a consequent in any kind of causal
connection.
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The Macbeth précis contains 55 sentences, which, when understood by Genesis, expand
to 85 explicit story elements, with the expansion caused by separately counting elements
that are embedded in compound sentences and explicit causal connections and by adding
one to the element count for each explicit causal connection. In what follows, I compare the
number of summary elements with the number of explicit story elements for various versions
of the Genesis summarizer.

Many of the explicit elements are not involved in causal connections of any kind, explicit
or inferred, and thus offer little or nothing by way of constraining precedent. Keeping only
those explicit elements that are causal connections and explicit elements that are embedded
in Genesis’s inferred causal connections produces the following summary in which the START
system produces the English, with occasional awkwardness, from Genesis’s inner language of
relations and events:

Macbeth, with principle of connection
Lady Macbeth is Macbeth’s wife. Lady Macduff is Macduff’s wife. Duncan is a
king. Macbeth is Duncan’s successor. Duncan becomes happy because Macbeth
defeats Cawdor. Duncan executes Cawdor. Duncan rewards Macbeth because Duncan
becomes happy. Lady Macbeth persuades that Macbeth wants to become king because
Lady Macbeth is greedy. Macbeth wants to become king because Lady Macbeth
persuades that Macbeth wants to become king. In order to murder Duncan, Macbeth
murders guards; in order to murder Duncan, he enters bedroom; in order to murder
Duncan, he stabs Duncan. Donalbain is Duncan’s son. Malcolm is Duncan’s son.
For Macbeth to murder Duncan leads to Macduff’s fleeing to England. In order to
flee to England, Macduff rides to coast; in order to flee to it, he sails on ship. For
Macduff to flee to England leads to Macbeth’s murdering Lady Macduff. Everyone
leaves because Lady Macbeth tells everyone to the leave. For Macbeth to murder
Duncan leads to Lady Macbeth’s becoming distraught. Lady Macbeth kills herself.
Macduff kills Macbeth.

Thus, the principle of connection allows the Genesis summarizer to reduce the number of
summary elements to 34, 40% of the 85 explicit story elements.

3.2 The principle of concept focus
Good precedents tend to be told in a manner that focuses attention on conceptual content
because associating a story with its conceptual content is part of what separates novices
from domain experts [3, 4]. Accordingly, another version of the Genesis story summarizer
includes only explicit elements that lead eventually—via a chain of inferred connections—to
an element lying in an instantiated concept pattern.

The elaboration graph plays a central role in this kind of summary because searches
in the elaboration graph discover concepts and because searches in the elaboration graph
determine which explicit elements are connected to those concepts. Filtering out other
elements produces the following Macbeth summary:

Macbeth, with principle of concept focus added
The story is about Regicide, Mistake because unhappy, Answered prayer, Revenge,
Suicide, Mistake because harmed, Success, and Pyrrhic victory. Lady Macbeth is
Macbeth’s wife. Lady Macduff is Macduff’s wife. Lady Macbeth persuades that
Macbeth wants to become king because Lady Macbeth is greedy. Macbeth wants to
become king because Lady Macbeth persuades that Macbeth wants to become king.
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In order to murder Duncan, Macbeth murders guards; in order to murder Duncan,
he enters bedroom; in order to murder Duncan, he stabs Duncan. Macbeth murders
Duncan, probably because Macbeth wants to become king, Duncan is a king, and
Macbeth is Duncan’s successor. For Macbeth to murder Duncan leads to Macduff’s
fleeing to England. In order to flee to England, Macduff rides to coast; in order to flee
to it, he sails on ship. For Macduff to flee to England leads to Macbeth’s murdering
Lady Macduff. For Macbeth to murder Duncan leads to Lady Macbeth’s becoming
distraught. Lady Macbeth kills herself, probably because Lady Macbeth becomes
distraught. Macbeth becomes unhappy. Macduff kills Macbeth, probably because
Macbeth angers Macduff.

Now the summary contains only 30 of the 85 explicit story elements or 35%. Excluded are
elements such as Duncan becomes happy because Macbeth succeeded, and Duncan rewarded
Macbeth because Duncan becomes happy. None of the elements involved leads to an element
in an instantiated concept.

3.3 The principle of dominant concept focus
Good precedents tend to have a particular purpose and focus attention on one or a few key
concepts. Accordingly, yet another version of the Genesis story understander retains an
explicit story element only if that element is connected via a chain of inferences to a key
concept.

Which of the discovered concepts are the key concepts? There are several reasonable
possibilities with which we propose to experiment once we have a large enough corpus of
Genesis-readable stories, including concepts that cover a lot of the elements of the story over
a long time span, concepts that involve violent acts, such as murder, concepts that excite big
emotional reaction, concepts that indicate a dramatic situation, such as those identified by
Polti, concepts that the summarizer wants the reader to note, concepts that the summarizer
knows the reader wants to note, concepts that are rarely observed, and concepts that involve
memorable elements.

For example, in the Macbeth précis, Pyrrhic victory dominates all other concepts in the
sense that it incorporates the most story elements. Using Pyrrhic victory to summarize,
rather than all concepts, Genesis produces the following:

Macbeth, with principle of dominant concept focus added
The story is about Pyrrhic victory. Lady Macbeth is Macbeth’s wife. Lady Macduff is
Macduff’s wife. Lady Macbeth persuades that Macbeth wants to become king because
Lady Macbeth is greedy. Macbeth wants to become king because Lady Macbeth
persuades that Macbeth wants to become king. In order to murder Duncan, Macbeth
murders guards; in order to murder Duncan, he enters bedroom; in order to murder
Duncan, he stabs Duncan. Macbeth murders Duncan, probably because Macbeth
wants to become king, Duncan is a king, and Macbeth is Duncan’s successor. For
Macbeth to murder Duncan leads to Macduff’s fleeing to England. In order to flee to
England, Macduff rides to coast; in order to flee to it, he sails on ship. For Macduff to
flee to England leads to Macbeth’s murdering Lady Macduff. Macduff kills Macbeth,
probably because Macbeth angers Macduff.

The elements that deal with Lady Macbeth’s suicide drop out; the number of summary
elements is 25, 29% of the explicit story elements.
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Memorable elements, incidentally, are readily captured in simple concept patterns that
may involve no leads to elements, such as this Memorable event pattern: a woman becomes
the bishop. Of course, what constitutes a memorable event may not be so memorable at a
different time or place.

3.4 The principle of interpretation transparency
Good summaries do not require readers to guess how the summarizer has reasoned. Ac-
cordingly, the Genesis story summarizer is explicit about the assumptions it makes. In
particular, the Genesis story summarizer includes not only the consequents of explanation
rules, which are explicit in the story, but also the fully instantiated explanation rule, even
though the antecedents themselves may be the consequents of deduction rules and not
ordinarily included.

For example, the previous two summaries include Macduff kills Macbeth, probably because
Macbeth angers Macduff. The rationale is that the summarizer, in eagerness to create a
more coherent and easily understood story, has added something not completely obvious
about how the summarizer has interpreted the story. Thus the summarizer’s reasoning is
transparent and the reader is relieved of reasoning effort.

3.5 Compression by eliminating details of how actions are performed
Good summaries stick to essentials. Accordingly, the Genesis story summarizer can be
directed to eliminate details of how actions are performed, providing further compression.

Impatient readers will not care, for example, about exactly how Macbeth murders Duncan,
so the Genesis story summarizer suppresses details about the guards, the bedroom, and
stabbing:

Macbeth, with detail suppression added
The story is about Pyrrhic victory. Lady Macbeth is Macbeth’s wife. Lady Macduff is
Macduff’s wife. Lady Macbeth persuades that Macbeth wants to become king because
Lady Macbeth is greedy. Macbeth wants to become king because Lady Macbeth
persuades that Macbeth wants to become king. Macbeth murders Duncan, probably
because Macbeth wants to become king, Duncan is a king, and Macbeth is Duncan’s
successor. For Macbeth to murder Duncan leads to Macduff’s fleeing to England. For
Macduff to flee to England leads to Macbeth’s murdering Lady Macduff. Macduff
kills Macbeth, probably because Macbeth angers Macduff.

With means deleted, the number of summary elements is further reduced to 18, 21% of
the explicit story elements.

3.6 Compression using the post hoc ergo propter hoc assumption
Good summaries refrain from making natural inferences explicit because making them explicit
is unnatural and annoying. Accordingly, the Genesis story summarizer supposes the reader
will instinctively find plausible causal connections between adjacent events.

After this does not mean because of this in logic, but we use it nevertheless in telling
stories smoothly, dropping explicit cause when proximity makes the cause apparent:

Macbeth, with post hoc ergo propter hoc processing added
The story is about Pyrrhic victory. Lady Macbeth is Macbeth’s wife. Lady Macduff is
Macduff’s wife. Lady Macbeth persuades that Macbeth wants to become king because

CMN’15



164 Model-based Story Summary

Lady Macbeth is greedy. Macbeth wants to become king. Macbeth murders Duncan,
probably because Duncan is a king, and Macbeth is Duncan’s successor. Macduff
flees to England. Macbeth murders Lady Macduff. Macduff kills Macbeth, probably
because Macbeth angers Macduff. Macduff.

Processing with post hoc ergo propter hoc transforms Macduff’s fleeing to England leads
to Macbeth murders Lady Macduff to Macbeth murders Lady Macduff. With post hoc ergo
propter hoc in play, the number of summary elements is 15, 18% of the explicit story elements.

4 Experiments

Using Genesis to summarize Shakespearian play summaries and cyberwar summaries produced
the following percentages of summary elements relative to total elements. The Connected
column reports the fraction of the explicit story elements that are reported when reporting
all and only the elements in the story that are causally connected; the All-methods column
reports the fraction of the explicit story elements reported when all of the principles here
described are engaged.

Connected All methods
Macbeth 40% 18%
Hamlet 41% 14%
Estonia vs. Russia 40% 60%
Georgia vs. Russia 26% 19%

The compression numbers are not dramatic because the test stories are already summaries.
The numbers generally drop when limiting the summary to elements that lead eventually
to one or more instantiated concept patterns. One exception is Estonia vs. Russia. In this
summary, one concept pattern is Aggression of a bully, a concept pattern that looks for
which side the reader is friendly with: x is my friend. x’s angering y leads to y’s harming x.
Instantiating that concept pattern brings in I am Estonia’s friend, a disconnected element,
but an element that corresponds to an element in the concept pattern. If the reader happens
to be Russia’s friend, the concept pattern triggered is Teaching a lesson and I am Russia’s
friend is included.

5 Contributions

Work on the Genesis story understanding and telling system has been inspired, in part, by
the pioneering work of Roger Shank and his students [8, 9, 10, 11]. Work on Genesis has
also been inspired, in part, by paleoanthropologist Ian Tattersall’s reflections on what makes
us human [12, 13], which led me to the conclusion that story understanding and story telling
plays a major role. I have focused here on principles of story summary and shown how those
principles are reflected the Genesis story summarizer. In particular, I have:

Argued that a reader model is a necessary foundation for good story summary
Identified the principles of connection, concept focus, dominant concept focus, and
interpretation transparency.
Suggested means compression and introduced post hoc ergo propter hoc processing.
Exhibited an implemented, principle-based summarizer at work on a representative story
from the Genesis library, a précis of Macbeth, showing a compression of 84%.
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