
Second International Workshop
on Rewriting Techniques for
Program Transformations and
Evaluation

WPTE’15, July 2, 2015, Warsaw, Poland

Edited by

Yuki Chiba
Santiago Escobar
Naoki Nishida
David Sabel
Manfred Schmidt-Schauß

OASIcs – Vo l . 46 – WPTE’15 www.dagstuh l .de/oas i c s

Editors
Yuki Chiba Santiago Escobar
School of Information Science DSIC
JAIST Universitat Politècnica de València
chiba@jaist.ac.jp sescobar@dsic.upv.es

Naoki Nishida David Sabel
Graduate School of Information Science Institute for Informatics
Nagoya University Computer Science and Mathematics Department
nishida@is.nagoya-u.ac.jp Goethe-University Frankfurt am Main

sabel@ki.cs.uni-frankfurt.de

Manfred Schmidt-Schauß
Institute for Informatics
Computer Science and Mathematics Department
Goethe-University Frankfurt am Main
schauss@ki.cs.uni-frankfurt.de

ACM Classification 1998
A.0 Conference proceedings, D.1.3 Concurrent Programming, D.3.1 Formal Definitions and Theory, F.3.1
Specifying and Verifying and Reasoning about Programs, F.3.2 Semantics of Programming Languages,
F.4.1 Mathematical Logic, F.4.2 Grammars and Other Rewriting Systems, I.2.3 Deduction and Theorem
Proving

ISBN 978-3-939897-94-1

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-94-1.

Publication date
June, 2015

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.WPTE.2015.i
ISBN /978-3-939897-94-1 ISSN 2190-6807 http://www.dagstuhl.de/oasics

http://www.dagstuhl.de/dagpub/978-3-939897-94-1
http://www.dagstuhl.de/dagpub/978-3-939897-94-1
http://dnb.d-nb.de
http://dx.doi.org/10.4230/10.4230/OASIcs.WPTE.2015.i
http://www.dagstuhl.de/dagpub/978-3-939897-94-1
http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

iii

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 2190-6807

www.dagstuhl.de/oasics

WPTE’15

http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

Contents

Preface
Yuki Chiba, Santiago Escobar, Naoki Nishida, and David Sabel, and
Manfred Schmidt-Schauß . i

The Collection of all Abstracts of the Talks at WPTE 2015 xi

Invited Paper

Mechanizing Meta-Theory in Beluga
Brigitte Pientka . 1

Regular Papers

Head reduction and normalization in a call-by-value lambda-calculus
Giulio Guerrieri . 3

Towards Modelling Actor-Based Concurrency in Term Rewriting
Adrián Palacios and Germán Vidal . 19

Observing Success in the Pi-Calculus
David Sabel and Manfred Schmidt-Schauß . 31

Formalizing Bialgebraic Semantics in PVS 6.0
Sjaak Smetsers, Ken Madlener, and Marko van Eekelen . 47

2nd International Workshop on Rewriting Techniques for Program Transformations and Evaluation (WPTE’15).
Editors: Yuki Chiba, Santiago Escobar, Naoki Nishida, David Sabel, and Manfred Schmidt-Schauß

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Workshop Organization

WPTE 2015 Organizers
Yuki Chiba JAIST, Japan
Santiago Escobar Universitat Politècnica de València, Spain
Naoki Nishida Nagoya University, Japan
David Sabel Goethe-University Frankfurt am Main, Germany
Manfred Schmidt-Schauß Goethe-University Frankfurt am Main, Germany

Program Chairs
Santiago Escobar Universitat Politècnica de València, Spain
Naoki Nishida Nagoya University, Japan

Program Committee
Takahito Aoto RIEC, Tohoku University, Japan
Yuki Chiba JAIST, Japan
Fer-Jan de Vries University of Leicester, United Kingdom
Santiago Escobar Universitat Politècnica de València, Spain
Johan Jeuring Open Universiteit Nederland & Universiteit Utrecht, the Nether-

lands
Delia Kesner Université Paris-Diderot, France
Sergueï Lenglet Université de Lorraine, France
Elena Machkasova University of Minnesota, Morris, United States
William Mansky University of Pennsylvania, United States
Joachim Niehren INRIA Lille, France
Naoki Nishida Nagoya University, Japan
Kristoffer H. Rose Two Sigma Investments, LLC, United State
David Sabel Goethe-University Frankfurt am Main, Germany
Masahiko Sakai Nagoya University, Japan
Manfred Schmidt-Schauß Goethe-University Frankfurt am Main, Germany
Janis Voigtländer University of Bonn, Germany
Johannes Waldmann HTWK Leipzig, Germany
Harald Zankl University of Innsbruck, Austria

External Reviewers
Jose Cambronero
Alfons Geser
Peter F. Stadler

2nd International Workshop on Rewriting Techniques for Program Transformations and Evaluation (WPTE’15).
Editors: Yuki Chiba, Santiago Escobar, Naoki Nishida, David Sabel, and Manfred Schmidt-Schauß

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Preface

This volume contains the papers presented at the Second International Workshop on Rewriting
Techniques for Program Transformations and Evaluation (WPTE 2015) which was held on
July 2, 2015 in Warsaw, Poland, and affiliated with the eighth edition of the International
Conference on Rewriting, Deduction, and Programming (RDP 2015).

Scope of WPTE

Verification and validation of properties of programs, optimizing and compiling programs, and
generating programs can benefit from the application of rewriting techniques. Source-level
program transformations are used in compilation to simplify and optimize programs, in
code refactoring to improve the design of programs; and in software verification and code
validation, program transformations are used to translate and/or simplify programs into the
forms suitable for specific verification purposes or tests. Those program transformations can
be translations from one language into another one, transformations inside a single language,
or the change of the evaluation strategy within the same language.

Since rewriting techniques are of great help for studying correctness of program transform-
ations, translations and evaluation, the aim of WPTE is to bring together the researchers
working on program transformations, evaluation, and operationally-based programming
language semantics, using rewriting methods, in order to share the techniques and recent
developments and to exchange ideas to encourage further activation of research in this area.
The first WPTE was held in Vienna 2014 during the Vienna Summer of Logic 2014 (VSL
2014) as a workshop of the sixth Federated Logic Conference (FLoC 2014).

Topics in the scope of WPTE include the correctness of program transformations, op-
timizations and translations; program transformations for proving termination, confluence
and other properties; correctness of evaluation strategies; operational semantics of programs,
operationally-based program equivalences such as contextual equivalences and bisimulations;
cost-models for reasoning about the optimizing power of transformations and the costs of
evaluation; program transformations for verification and theorem proving purposes; transla-
tion, simulation, equivalence of programs with different formalisms, and evaluation strategies;
program transformations for applying rewriting techniques to programs in specific program-
ming languages; program transformations for program inversions and program synthesis;
program transformation and evaluation for Haskell and Rewriting.

“Program transformation and evaluation for Haskell and Rewriting” is a new topic of
this workshop including equational reasoning and other rewriting techniques for program
verification and analysis; lambda calculi and type systems for functional programs and
higher-order rewrite systems; rewriting of type expressions in the type checker; rewriting
of programs by refactoring tools, optimizers, code generators; execution of programs as a
form of graph rewriting (terms with sharing); Template Haskell, generally introducing a
rewriting-like macro language into the compilation process; rewriting modulo commonly
occurring axioms such as associativity, commutativity, and identity element.

WPTE 2015

For WPTE 2015 four regular research papers were accepted out of the submissions. Addi-
tionally the program of WPTE contained the following talks which the program committee
recommended for presentation:
2nd International Workshop on Rewriting Techniques for Program Transformations and Evaluation (WPTE’15).
Editors: Yuki Chiba, Santiago Escobar, Naoki Nishida, David Sabel, and Manfred Schmidt-Schauß

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

x Preface

Guillaume Madelaine, Cédric Lhoussaine, and Joachim Niehren: Structural simplification
of chemical reaction networks preserving deterministic semantics
Naosuke Matsuda: A simple extension of the Curry-Howard correspondence with intu-
itionistic lambda rho calculus
Koichi Sato, Kentaro Kikuchi, Takahito Aoto, and Yoshihito Toyama: Context-Moving
Transformation for Term Rewriting Systems

Each submission was reviewed by at least three members of the Program Committee,
with the help of three external reviewers. Paper submission, reviewing, and the electronic
meeting of the program committee used the great EasyChair system of Andrei Voronkov,
which was also indispensable for preparing the WPTE program and collecting the papers for
these proceedings.

In addition to the contributed papers, the WPTE program contained an invited talk by
Brigitte Pientka with title “Mechanizing Meta-Theory in Beluga”.

Acknowledgment

We thank our publisher Schloss Dagstuhl–Leibniz-Zentrum für Informatik for publishing our
proceedings in the OpenAccess Series in Informatics (OASIcs). In particular we would like
to thank Mark Herbstritt and Michael Wagner for their very helpful and always prompt
support during production of the OASIcs proceedings.

We thank the organizers of RDP 2015 for hosting our workshop, and for the financial
support for our proceedings published via OASIcs. We are particularly indebted to Aleksy
Schubert (chair of RDP 2015) and Jacek Chrząszcz for their help in preparing our workshop.

Finally we thank the members of the program committee for their careful reviewing of all
submissions and we thank the participants for their valuable contributions.

July 2015 Yuki Chiba
Santiago Escobar
Naoki Nishida
David Sabel
Manfred Schmidt-Schauß

The Collection of all Abstracts of the Talks at
WPTE 2015

The aim of this chapter is to document all talks of the “Second International Workshop on
Rewriting Techniques for Program Transformations and Evaluation” (WPTE 2015). Hence,
this collection contains all abstracts of talks held at WPTE 2015. The abstracts are ordered
alphabetically by author names. Further information and e.g. extended abstracts on the talks
on work in progress, can also be found in USB flash drives distributed to all participants of
RDP 2015.

Head reduction and normalization in a call-by-value lambda-calculus

Author: Giulio Guerrieri

Abstract: Recently, a standardization theorem has been proven for a variant of Plotkin’s call-
by-value lambda-calculus extended by means of two commutation rules (sigma-reductions):
this result was based on a partitioning between head and internal reductions. We study
the head normalization for this call-by-value calculus with sigma-reductions and we relate
it to the weak evaluation of original Plotkin’s call-by-value lambda-calculus. We give also
a (non-deterministic) normalization strategy for the call-by-value lambda-calculus with
sigma-reductions.

Structural simplification of chemical reaction networks preserving
deterministic semantics

Authors: Guillaume Madelaine, Cédric Lhoussaine, and Joachim Niehren

Abstract: We study the structural simplification of chemical reaction networks preserving
the deterministic kinetics. We aim at finding simplification rules that can eliminate
intermediate molecules while preserving the dynamics of all others. The rules should be
valid even though the network is plugged into a bigger context. An example is Michaelis-
Menten’s simplification rule for enzymatic reactions. In this paper, we present structural
simplification rules for reaction networks that can eliminate intermediate molecules at
equilibrium, without assuming that all molecules are at equilibrium, i.e. in a steady state.
Our simplification rules preserve the deterministic semantics of reaction networks, in all
contexts compatible with the equilibrium of the eliminated molecules. We illustrate the
simplification on a biological example network from systems biology.

A simple extension of the Curry-Howard correspondence with
intuitionistic lambda rho calculus

Author: Naosuke Matsuda

Abstract: In (Fujita et.al., to appear), a natural deduction style proof system called “intu-
itionistic λρ-calculus” for implicational intuitionistic logic and some reduction rules for
the proof system were given. In this paper, we show that the system is easy to treat but
has sufficient expressive power to provide a powerful model of computation.

2nd International Workshop on Rewriting Techniques for Program Transformations and Evaluation (WPTE’15).
Editors: Yuki Chiba, Santiago Escobar, Naoki Nishida, David Sabel, and Manfred Schmidt-Schauß

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

xii The Collection of all Abstracts of the Talks at WPTE 2015

Towards Modelling Actor-Based Concurrency in Term Rewriting

Authors: Adrián Palacios and Germán Vidal

Abstract: In this work, we introduce a scheme for modelling actor systems within sequential
term rewriting. In our proposal, a TRS consists of the union of three components: the
functional part (which is specific of a system), a set of rules for reducing concurrent actions,
and a set of rules for defining a particular scheduling policy. A key ingredient of our
approach is that concurrent systems are modelled by terms in which concurrent actions
can never occur inside user-defined function calls. This assumption greatly simplifies the
definition of the semantics for concurrent actions, since no term traversal will be needed.
We prove that these systems are well defined in the sense that concurrent actions can
always be reduced.
Our approach can be used as a basis for modelling actor-based concurrent programs,
which can then be analyzed using existing techniques for term rewrite systems.

Mechanizing Meta-Theory in Beluga

Author: Brigitte Pientka

Abstract: Mechanizing formal systems, given via axioms and inference rules, together with
proofs about them plays an important role in establishing trust in formal developments.
In this talk, I will survey the proof environment Beluga. To specify formal systems and
represent derivations within them, Beluga provides a sophisticated infrastructure based
on the logical framework LF; in particular, its infrastructure not only supports modelling
binders via binders in LF, but extends and generalizes LF with first-class contexts to
abstract over a set of assumptions, contextual objects to model derivations that depend
on assumptions, and first-class simultaneous substitutions to relate contexts. These
extensions allow us to directly support key and common concepts that frequently arise
when describing formal systems and derivations within them.
To reason about formal systems, Beluga provides a dependently typed functional language
for implementing inductive proofs about derivations as recursive functions on contextual
objects following the Curry-Howard isomorphism. Recently, the Beluga system has also
been extended with a totality checker which guarantees that recursive programs are
well-founded and correspond to inductive proofs and an interactive program development
environment to support incremental proof / program construction. Taken together these
extensions enable direct and compact mechanizations. To demonstrate Beluga’s strength,
we develop a weak normalization proof using logical relations. The Beluga system together
with examples is available from http://complogic.cs.mcgill.ca/beluga/.

http://complogic.cs.mcgill.ca/beluga/

The Collection of all Abstracts of the Talks at WPTE 2015 xiii

Observing Success in the Pi-Calculus

Authors: David Sabel and Manfred Schmidt-Schauß

Abstract: A contextual semantics – defined in terms of successful termination and may- and
should-convergence – is analyzed in the synchronous pi-calculus with replication and a
constant Stop to denote success. The contextual ordering is analyzed, some nontrivial
process equivalences are proved, and proof tools for showing contextual equivalences are
provided. Among them are a context lemma and new notions of sound applicative simil-
arities for may- and should-convergence. A further result is that contextual equivalence
in the pi-calculus with Stop conservatively extends barbed testing equivalence in the
(Stop-free) pi-calculus and thus results on contextual equivalence can be transferred to
the (Stop-free) pi-calculus with barbed testing equivalence.

Context-Moving Transformation for Term Rewriting Systems

Authors: Koichi Sato, Kentaro Kikuchi, Takahito Aoto, and Yoshihito Toyama

Abstract: Proofs by induction are often incompatible with tail-recursive definitions as the
accumulator changes in the course of unfolding the definitions. Context-moving (Giesl,
2000) for functional programs transforms tail-recursive programs into non tail-recursive
ones which are more suitable for verification. In this work, we formulate a context-moving
transformation for term rewriting systems, and prove the correctness with respect to both
eager evaluation semantics and initial algebra semantics under some conditions on the
programs to be transformed.

Formalizing Bialgebraic Semantics in PVS 6.0

Authors: Sjaak Smetsers, Ken Madlener, and Marko van Eekelen

Abstract: Both operational and denotational semantics are prominent approaches for reas-
oning about properties of programs and programming languages. In the categorical
framework developed by Turi and Plotkin both styles of semantics are unified using a
single, syntax independent format, known as GSOS, in which the operational rules of
a language are specified. From this format, the operational and denotational semantics
are derived. The approach of Turi and Plotkin is based on the categorical notion of
bialgebras. In this paper we specify this work in the theorem prover PVS, and prove the
adequacy theorem of this formalization. One of our goals is to investigate whether PVS
is adequately suited for formalizing metatheory. Indeed, our experiments show that the
original categorical framework can be formalized conveniently. Additionally, we present a
GSOS specification for the simple imperative programming language While, and execute
the derived semantics for a small example program.

WPTE’15

List of Authors

Takahito Aoto
RIEC
Tohoku University, Japan

Giulio Guerrieri
Laboratoire PPS, UMR 7126
Université Paris Diderot, France

Kentaro Kikuchi
RIEC
Tohoku University, Japan

Cédric Lhoussaine
CRIStAL, UMR 9189
University of Lille, France

Guillaume Madelaine
CRIStAL, UMR 9189
University of Lille, France

Ken Madlener
Institute for Computing and Information
Sciences
Radboud University Nijmegen, the
Netherlands

Naosuke Matsuda
Department of Mathematical and
Computing Sciences
Tokyo Institute of Technology, Japan

Joachim Niehren
CRIStAL, UMR 9189
INRIA Lille, France

Adrián Palacios
DSIC
Universitat Politècnica de València, Spain

Brigitte Pientka
School of Computer Science
McGill University, Canada

David Sabel
Computer Science and Mathematics
Department
Goethe-University Frankfurt am Main,
Germany

Koichi Sato
RIEC
Tohoku University, Japan

Manfred Schmidt-Schauß
Computer Science and Mathematics
Department
Goethe-University Frankfurt am Main,
Germany

Sjaak Smetsers
Institute for Computing and Information
Sciences
Radboud University Nijmegen, the
Netherlands

Yoshihito Toyama
RIEC
Tohoku University, Japan

Marko van Eekelen
School of Computer Science
Open University of the Netherlands, the
Netherlands

Germán Vidal
DSIC
Universitat Politècnica de València, Spain

2nd International Workshop on Rewriting Techniques for Program Transformations and Evaluation (WPTE’15).
Editors: Yuki Chiba, Santiago Escobar, Naoki Nishida, David Sabel, and Manfred Schmidt-Schauß

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Mechanizing Meta-Theory in Beluga∗

Brigitte Pientka

School of Computer Science, McGill University
Montreal, Canada
bpientka@cs.mcgill.ca

Abstract
Mechanizing formal systems, given via axioms and inference rules, together with proofs about
them plays an important role in establishing trust in formal developments. In this talk, I will
survey the proof environment Beluga. To specify formal systems and represent derivations within
them, Beluga provides a sophisticated infrastructure based on the logical framework LF; in par-
ticular, its infrastructure not only supports modelling binders via binders in LF, but extends and
generalizes LF with first-class contexts to abstract over a set of assumptions, contextual objects
to model derivations that depend on assumptions, and first-class simultaneous substitutions to
relate contexts. These extensions allow us to directly support key and common concepts that
frequently arise when describing formal systems and derivations within them.

To reason about formal systems, Beluga provides a dependently typed functional language
for implementing inductive proofs about derivations as recursive functions on contextual ob-
jects following the Curry-Howard isomorphism. Recently, the Beluga system has also been ex-
tended with a totality checker which guarantees that recursive programs are well-founded and
correspond to inductive proofs and an interactive program development environment to sup-
port incremental proof / program construction. Taken together these extensions enable direct
and compact mechanizations. To demonstrate Beluga’s strength, we develop a weak normaliza-
tion proof using logical relations. The Beluga system together with examples is available from
http://complogic.cs.mcgill.ca/beluga/.

1998 ACM Subject Classification D.3.1 Formal Definitions and Languages, F.3.2 Semantics of
Programming Languages, F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases Type systems, Dependent Types, Logical Frameworks

Digital Object Identifier 10.4230/OASIcs.WPTE.2015.1

Category Invited Talk

Acknowledgements. Many of the ideas I describe in this talk are joint work with Andrew
Cave. Over the past 6 years, several undergraduate students, graduate students, and
postdocs have contributed to the implementation of Beluga: M. Boespflug, A. Cave,
S. Cooper,A. Marchildon, F. Ferreira, O. Savary Belanger, D. Thibodeau, T. Xue.

∗ This work was supported by Natural Sciences and Engineering Research Council of Canada (NSERC)
and Fonds de Recherche Nature et technologies Quebec (FQRNT).

© Brigitte Pientka;
licensed under Creative Commons License CC-BY

2nd International Workshop on Rewriting Techniques for Program Transformations and Evaluation (WPTE’15).
Editors: Yuki Chiba, Santiago Escobar, Naoki Nishida, David Sabel, and Manfred Schmidt-Schauß; pp. 1–1

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://complogic.cs.mcgill.ca/beluga/
http://dx.doi.org/10.4230/OASIcs.WPTE.2015.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Head reduction and normalization in a
call-by-value lambda-calculus
Giulio Guerrieri

Laboratoire PPS, UMR 7126, Université Paris Diderot, Sorbonne Paris Cité
F-75205 Paris, France
giulio.guerrieri@pps.univ-paris-diderot.fr

Abstract
Recently, a standardization theorem has been proven for a variant of Plotkin’s call-by-value
lambda-calculus extended by means of two commutation rules (sigma-reductions): this result was
based on a partitioning between head and internal reductions. We study the head normalization
for this call-by-value calculus with sigma-reductions and we relate it to the weak evaluation of
original Plotkin’s call-by-value lambda-calculus. We give also a (non-deterministic) normalization
strategy for the call-by-value lambda-calculus with sigma-reductions.

1998 ACM Subject Classification D.3.1 Formal Definitions and Theory, F.3.2 Semantics of Pro-
gramming Language, F.4.1 Mathematical Logic, F.4.2 Grammars and Other Rewriting Systems.

Keywords and phrases sequentialization, lambda-calculus, sigma-reduction, call-by-value, head
reduction, internal reduction, (strong) normalization, evaluation, confluence, reduction strategy.

Digital Object Identifier 10.4230/OASIcs.WPTE.2015.3

1 Introduction

The call-by-value λ-calculus (λv-calculus or λv for short) and the operational machine for its
evaluation has been introduced by Plotkin [15] inspired by Landin’s seminal work [9] on the
programming language ISWIM and the SECD machine. The λv-calculus is a paradigmatic
language able to capture two features of many functional programming languages: call-by-
value parameter passing policy (parameters are evaluated before being passed) and weak
evaluation (the body of a function is evaluated only when parameters are supplied).

The syntax of λv is the same as that of the ordinary (i.e. call-by-name) λ-calculus (λ for
short), but the reduction rule for λv, called βv, is a restriction of the β-rule for λ: βv allows the
contraction of a redex (λx.M)N only in case the argument N is a value, i.e. a variable or an
abstraction. Unfortunately, the semantic analysis of the λv-calculus has turned out to be more
elaborate than that of ordinary λ-calculus. This is due essentially to the “weakness” of (full)
βv-reduction, a fact widely recognized: indeed, there are many proposals of alternative call-by-
value λ-calculi extending Plotkin’s one [11, 10, 8, 2, 1]. To have an example of the “weakness”
of the rewriting rules of λv, it is sufficient to consider that it is impossible to have an internal
operational characterization (i.e. one that uses the βv-reduction) of the semantically mean-
ingful notions of call-by-value solvability and potential valuability, as shown in [13, 14, 2].

In this paper we will study the λσv -calculus (λσv for short), a call-by-value extension of λv
recently proposed in [4]: it keeps the λv (and λ) syntax and it adds to the βv-reduction two
commutation rules, called σ1 and σ3, which unblock “hidden” βv-redexes that are concealed
by the “hyper-sequential structure” of terms. The λσv -calculus enjoy some basic properties we
expect from a calculus, namely confluence (see [4]) and standardization (see [7]). Moreover, λσv
provides elegant characterizations of many semantic properties, e.g. solvability and potential

© Giulio Guerrieri;
licensed under Creative Commons License CC-BY

2nd International Workshop on Rewriting Techniques for Program Transformations and Evaluation (WPTE’15).
Editors: Yuki Chiba, Santiago Escobar, Naoki Nishida, David Sabel, and Manfred Schmidt-Schauß; pp. 3–17

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WPTE.2015.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

4 Head reduction and normalization in a call-by-value lambda-calculus

valuability (see [4]), and it is conservative with respect to Plotkin’s λv: in particular, [7] shows
that the notions of solvability and potential valuability for λσv coincide with those for λv.

The v-reduction (i.e. the reduction for λσv) can be partitioned into head v-reduction and
internal v-reduction; the head v-reduction is in turn decomposed into head βv- and head
σ-reduction. The head βv-reduction is just the deterministic weak evaluation strategy for
Plotkin’s λv-calculus. According to a sequentialization theorem proven in [7, Theorem 22], any
v-reduction sequence can be sequentialized in an initial head βv-reduction sequence followed by
a head σ-reduction sequence followed by an internal v-reduction sequence. Similar well-known
results hold for λ and λv, and starting from them one can define a normalization strategy for
λ and λv, i.e. a deterministic reduction strategy that reaches a normal form if and only if one
exists: for example the leftmost reduction, see [19, Theorem 2.8] and [3, Theorem 13.2.2].

Is there a normalization strategy for λσv? Theorem 24, one of the main results of this paper,
proves that, starting from the sequentialization theorem mentioned above, a normalization
strategy can be defined for λσv , based on the notions of head βv- and head σ-reductions.

A first difference appears here between λσv and λv (or λ): the normalization strategy
for λσv is not deterministic. Indeed, while the head βv-reduction (or the call-by-name head
reduction) is deterministic (i.e. a partial function), the head v-reduction is non-deterministic
and, still worse, non-confluent and there are terms having several head v-normal forms: this
might appear disappointing. So, three natural questions arise:

With respect to head v-reduction, do normalization and strong normalization coincide?1

Can we relate the termination of head βv-reduction and head v-reduction?
Can we characterize the terms having a unique head v-normal form?

Our Theorem 21 gives a positive answer to the first two questions. Observe that the lack
of any form of confluence for head v-reduction requires a more complex reasoning, passing
through a syntactic characterization of head βv- and head v-normal forms. Theorem 21 not
only shows that the head v-reduction and the head βv-reduction are deeply related (and
hence, again, λσv is conservative with respect to λv) but also that both enjoy good properties
analogous to the ones of the (call-by-name) head reduction for ordinary λ-calculus.

Our Proposition 27 gives a partial answer to the third question above: it shows that in
some cases (of interest) a head v-normalizable term has a unique head v-normal form; in
particular, every closed head v-normalizable term has a unique head v-normal form.

So, λσv appears as an extension of Plotkin’s λv-calculus that enjoys many meaningful
conservation properties with respect to λv and therefore it is a useful tool for theoretical and
semantic investigations about λv and call-by-value setting. See also conclusions in Section 6
for further and more precise motivations for this paper and future work.

Related work. The λσv -calculus has been recently introduced in [4] and further investigated
in [7]. It is an extension of Plotkin’s λv-calculus inspired by the call-by-value translation
of λ-terms into linear logic proof-nets [6]. Other variants of λv have been introduced in
the literature for modeling the call-by-value computation. We would like to cite here at
least the contributions of Moggi [11], Felleisen and Sabry [18], Maraist et al. [10], Herbelin
and Zimmerman [8], Accattoli and Paolini [2] (the latter is inspired by the call-by-value
translation of λ-terms into linear logic proof-nets, see [1]). All these proposals are based on
the introduction of new constructs to the syntax of λv, so the comparison between them is

1 The answer is trivially positive in the case of call-by-name head normalization (for λ) and head
βv-normalization, since these reductions are deterministic.

G. Guerrieri 5

not easy with respect to syntactical properties (some detailed comparison is given in [2]).
We point out that the calculi introduced in [11, 18, 10, 8] present some variants of our σ1
and/or σ3 rules, often in a setting with explicit substitutions. Regnier [16, 17] used the rule
σ1 (but not σ3) in ordinary (i.e. call-by-name) λ-calculus.

The head v-reduction investigated here has been introduced in [7]. Some results of
this paper are inspired by the Takahashi’s results [19] on the ordinary (i.e. call-by-name)
λ-calculus, partially adapted by Crary [5] for λv.

Outline. In Section 2 we introduce the syntax and the reduction rules of the λσv -calculus.
In Section 3 we define the head v-reduction and the internal v-reduction, and we recall some
results already proven in [7] concerning them. Section 4 is devoted to proving the first main
result of our paper: Theorem 21, which studies the normalization for the head v-reduction
and relates it to the weak evaluation strategy for Plotkin’s λv-calculus. In Section 5 we show
that the head v-reduction can be used to define a normalization strategy for the λσv -calculus
(Theorem 24), and moreover in some cases the head v-normal form (if any) of a term is
unique (Proposition 27). In Section 6 we summarize the findings and suggest future work.

2 The call-by-value lambda calculus with sigma-rules

In this section we present λσv , a call-by-value λ-calculus introduced in [4] that adds two σ-reduc-
tion rules to pure (i.e. without constants) call-by-value λ-calculus defined by Plotkin in [15].

The syntax of terms of λσv [4] is the same as the one of ordinary λ-calculus and Plotkin’s
call-by-value λ-calculus λv [15] (without constants). Given a countable set V of variables
(denoted by x, y, z, . . .), the sets Λ of terms and Λv of values are defined by mutual induction:

(Λv) V,U ::= x | λx.M values
(Λ) M,N,L ::= V | MN terms

Clearly, Λv (Λ. All terms are considered up to α-conversion. The set of free variables of a
termM is denoted by fv(M). Given V1, . . . , Vn ∈ Λv and pairwise distinct variables x1, . . . , xn,
M{V1/x1, . . . , Vn/xn} denotes the term obtained by the capture-avoiding simultaneous sub-
stitution of Vi for each free occurrence of xi in the term M (for all 1 ≤ i ≤ n). Note that, for
all V, V1, . . . , Vn ∈ Λv and pairwise distinct variables x1, . . . , xn, V {V1/x1, . . . , Vn/xn} ∈ Λv.

Contexts (with exactly one hole L·M), denoted by C, are defined as usual via the grammar:

C ::= L·M | λx.C | CM | MC .

We use CLMM for the term obtained by the capture-allowing substitution of the term M for
the hole L·M in the context C.

I Notation. From now on, we set I = λx.x and ∆ = λx.xx.

The reduction rules of λσv consist of Plotkin’s βv-reduction rule, introduced in [15], and
two simple commutation rules called σ1 and σ3, studied in [4, 7].

I Definition 1 (Reduction rules). We define the following binary relations on Λ (for any
M,N,L ∈ Λ and any V ∈ Λv):

(λx.M)V 7→βv M{V/x}
(λx.M)NL 7→σ1 (λx.ML)N with x /∈ fv(L)
V ((λx.L)N) 7→σ3 (λx.V L)N with x /∈ fv(V).

WPTE’15

6 Head reduction and normalization in a call-by-value lambda-calculus

We set 7→σ = 7→σ1 ∪ 7→σ3 and 7→v = 7→βv
∪ 7→σ.

For any r ∈ {βv, σ1, σ3, σ, v}, if M 7→r M
′ then M is a r-redex and M ′ is its r-contractum.

In this sense, a term of the shape (λx.M)N (for any M,N ∈ Λ) is a β-redex.

The side conditions on 7→σ1 and 7→σ3 in Definition 1 can be always fulfilled by α-renaming.
Obviously, any βv-redex is a β-redex but the converse does not hold: (λx.z)(yI) is a

β-redex but not a βv-redex.

I Example 2. Redexes of different kind may overlap: for example, the term ∆I∆ is a
σ1-redex and it contains the βv-redex ∆I; the term ∆(I∆)(xI) is a σ1-redex and it contains
the σ3-redex ∆(I∆), which contains in turn the βv-redex I∆.

I Notation. Let R be a binary relation on Λ. We denote by R∗ (resp. R+; R=) the
reflexive-transitive (resp. transitive; reflexive) closure of R.

I Definition 3 (Reductions). Let r ∈ {βv, σ1, σ3, σ, v}.
The r-reduction →r is the contextual closure of 7→r, i.e. M →r M

′ iff there is a context C
and N,N ′ ∈ Λ such that M = CLNM, M ′ = CLN ′M and N 7→r N

′.
The r-equivalence 'r is the reflexive-transitive and symmetric closure of →r.
Let M be a term: M is r-normal if there is no term N such that M →r N ; M is r-

normalizable if there is a r-normal term N such that M →∗r N ; M is strongly r-normalizable
if there is no sequence (Ni)i∈N of terms such that M = N0 and Ni →r Ni+1 for any i ∈ N.

Obviously, →σ =→σ1 ∪ →σ3 (→v and →βv
(→v and →v =→βv

∪ →σ.

I Remark 4. For any r ∈ {βv, σ1, σ3, σ, v} (resp. r ∈ {σ1, σ3, σ}), values are closed under r-
reduction (resp. r-expansion): for any V ∈ Λv, if V →r M (resp.M →r V) thenM ∈ Λv; more
precisely, V = λx.N and M = λx.N ′ for some N,N ′ ∈ Λ with N →r N

′ (resp. N ′ →r N).

For any r ∈ {βv, v}, values are not closed under r-expansion: I∆→βv
∆ ∈ Λv but I∆ /∈ Λv.

I Proposition 5 (See [4]). The σ-reduction is confluent and strongly normalizing. The
v-reduction is confluent.

The λσv -calculus, λσv for short, is the set Λ of terms endowed with the v-reduction →v.
The set Λ endowed with the βv-reduction →βv is the λv-calculus (λv for short), i.e. the
Plotkin’s call-by-value λ-calculus [15] (without constants), which is thus a sub-calculus of λσv .

I Example 6. M = (λy.∆)(xI)∆→σ1 (λy.∆∆)(xI)→βv
(λy.∆∆)(xI)→βv

. . . and N =
∆((λy.∆)(xI))→σ3 (λy.∆∆)(xI)→βv (λy.∆∆)(xI)→βv . . . are the only possible v-reduction
paths fromM andN respectively: M andN are not v-normalizable, andM 'v N . Meanwhile,
M and N are βv-normal and different, hence M 6'βv

N (by confluence of →βv
, see [15]).

Informally, σ-rules unblock βv-redexes which are hidden by the “hyper-sequential structure”
of terms. This approach is alternative to the one in [2, 1] where hidden βv-redexes are reduced
using rules acting at a distance (through explicit substitutions). It can be shown that the
call-by-value λ-calculus with explicit substitution introduced in [2] can be embedded in λσv .

It is well-known that the βv-reduction can be simulated by linear logic cut-elimination via
the call-by-value translation (·)v of λ-terms into proof-nets, called by Girard [6, pp. 81-82]
“boring” and defined by (A⇒ B)v = !Av (!Bv (see also [1]). The images under (·)v of a
σ-redex and its σ-contractum are equal modulo some non-structural cut-elimination steps.

G. Guerrieri 7

3 Head and internal reductions

In this section we introduce the definitions of head v-reduction (which is decomposed in head
βv- and head σ-reductions) and internal v-reduction, then we recall some results proven in [7].

I Notation. From now on, we always assume that V, V ′ ∈ Λv.

Note that the generic form of a term is VM1 . . .Mm for some m ∈ N (in particular, values are
obtained when m = 0). The sequentialization result is based on a partitioning of v-reduction
between head v-reduction and internal v-reduction.

I Definition 7 (Head βv-reduction). The head βv-reduction
h→βv

is the binary relation on Λ
defined inductively by the following rules (m ∈ N in both rules):

βv

(λx.M)VM1 . . .Mm
h→βv M{V/x}M1 . . .Mm

N
h→βv N

′
right

V NM1 . . .Mm
h→βv V N

′M1 . . .Mm

The head βv-reduction
h→βv

is exactly the (pure) “left reduction” defined in [15, p. 136]
for λv and called “(weak) evaluation” in [18, 5]. If N h→βv N

′ then N ′ is obtained from N by
reducing the leftmost-outermost βv-redex, not in the scope of a λ: thus, the head βv-reduction
is deterministic (i.e. it is a partial function from Λ to Λ) and does not reduce values.

I Definition 8 (Head σ- and head v-reductions). The head σ-reduction h→σ is the binary
relation on Λ defined inductively by the following rules (m ∈ N in all the rules, x /∈ fv(L) in
the rule σ1, x /∈ fv(V) in the rule σ3):

σ1

(λx.M)NLM1 . . .Mm
h→σ (λx.ML)NM1 . . .Mm

N
h→σ N

′
right

V NM1 . . .Mm
h→σ V N

′M1 . . .Mm

σ3

V ((λx.L)N)M1 . . .Mm
h→σ (λx.V L)NM1 . . .Mm

The head v-reduction is h→v = h→βv ∪
h→σ.

Let r∈{βv, σ, v} and N ∈Λ: N is head r-normal if there is no N ′∈Λ such that N h→r N
′;

N is head r-normalizable if there is a r-normal term N ′ such that N h−→∗r N ′; N is strongly
head r-normalizable if there is no (Ni)i∈N such that N = N0 and Ni

h→r Ni+1 for any i ∈ N.

Notice that 7→βv
(h→βv

(→βv
and 7→σ (

h→σ (→σ and 7→v (
h→v (→v.

Informally, if N h→σ N ′ then N ′ is obtained from N by reducing “one of the left-
most” σ1- or σ3-redexes, not in the scope of a λ: in general, a term may contain sev-
eral head σ1- and σ3-redexes. Indeed, differently from h→βv , the head σ-reduction h→σ

is not deterministic, for example the leftmost-outermost σ1- and σ3-redexes may overlap:
if M = (λy.y′)(∆(xI))I then M

h→σ (λy.y′I)(∆(xI)) = N1 by applying the rule σ1 and
M

h→σ (λz.(λy.y′)(zz))(xI)I=N2 by applying the rule σ3. Note that N1 contains only a
head σ3-redex and N1

h→σ (λz.(λy.y′I)(zz))(xI) = N which is head v-normal; meanwhile N2
contains only a head σ1-redex and N2

h→σ (λz.(λy.y′)(zz)I)(xI) = N ′ which is head v-normal:
N 6= N ′, so the head σ- and head v-reductions are not (locally) confluent and a term may have
several head v-normal forms (this example does not contradict the confluence of σ-reduction
because N ′ →σ N but by performing an internal v-reduction step, see next Definition 9).

The head v-reduction h→v is non-deterministic not only because the head σ-reduction h→σ

is non-deterministic, but also because the leftmost-outermost βv-redex of a term may overlap
with “one of its leftmost” σ1- or σ3-redexes, as seen in Example 2.

WPTE’15

8 Head reduction and normalization in a call-by-value lambda-calculus

I Definition 9 (Internal v-reduction). The internal v-reduction int→v is the binary relation on
Λ defined inductively by the following rules:

(m ∈ N) N →v N
′

λ

(λx.N)M1 . . .Mm
int→v (λx.N ′)M1 . . .Mm

(m ∈ N) N
int→v N

′
right

V NM1 . . .Mm
int→v V N

′M1 . . .Mm

(m ∈ N+) Mi →v M
′
i for some 1 ≤ i ≤ m

@
V NM1 . . .Mi . . .Mm

int→v V NM1 . . .M
′
i . . .Mm

.

The following fact collects many minor properties which can be easily proved by inspection
of the rules of Definitions 7-9.

I Fact 10.
1. The head βv-reduction

h→βv does not reduce a value (in particular, does not reduce under
λ’s), i.e., for any M ∈ Λ and any V ∈ Λv, one has V 6 h→βv

M .
2. The head σ-reduction h→σ does neither reduce a value nor reduce to a value, i.e., for any

M ∈ Λ and any V ∈ Λv, one has V 6 h→σ M and M 6 h→σ V .
3. Values are closed under int→v-expansion, i.e., for all M ∈ Λ and V ∈ Λv, if M

int→v V then
M ∈ Λv; more precisely, M = λx.N and V = λx.N ′ for some N,N ′∈ Λ where N →v N

′.
4. If R ∈ { h→βv ,

h→σ,
h→v,

int→v} and M R M ′, then MN R M ′N for any N ∈ Λ.

Clearly, int→v (→v. Next Proposition 11 (whose proof uses Fact 10.4) relates int→v and h→v.

I Proposition 11. One has int→v =→v r h→v.

Proof.
⊆: The proof that int→v⊆→v is trivial. The proof that M int→v M

′ implies M 6 h→v M
′ is by

induction on the derivation of M int→v M
′. Let us consider its last rule r. If r ∈ {λ,@},

then it is evident that there is no last rule to derive M h→v M ′. If r = right then
M = V NM1 . . .Mm and M ′ = V N ′M1 . . .Mm with m ∈ N and N int→v N

′; by induction
hypothesis, N 6 h→v N

′ and hence there is no last rule to derive M h→v M
′.

⊇: We show that M →v M
′ and M 6 h→v M

′ implies M int→v M
′, for all M,M ′ ∈ Λ. Since

M →v M
′, there exist a context C and terms N and N ′ such thatM = CLNM, M ′ = CLN ′M

and N 7→βv N
′. We proceed by induction on C.

If C = L·M then M = N 7→βv
N ′ = M ′ and thus M h→v M

′ since 7→βv
⊆ h→v, which

contradicts the hypothesis.
If C = λx.C′ for some context C′, then M int→v M

′ by applying the rule λ for int→v, since
C′LNM→v C′LN ′M.
If C = C′L for some context C′ and term L, then C′LNM→v C′LN ′M and C′LN ′M 6 h→v C′LN ′M
(by Fact 10.4, since C′LNML 6 h→v C′LN ′ML). By induction hypothesis, C′LNM int→v C′LN ′M,
then M = C′LNML int→v C′LN ′ML = M ′ by Fact 10.4.
If C = V C′ for some context C′ and value V , then C′LNM→v C′LN ′M. There are two cases:

either C′LN ′M h→v C′LN ′M, hence M = V C′LNM h→v V C′LN ′M = M ′ by the rule right for
h→βv or h→σ, which contradicts the hypothesis;
or C′LN ′M 6 h→v C′LN ′M, hence C′LN ′M int→v C′LN ′M by induction hypothesis, thus M =
V C′LNM int→v V C′LN ′M = M ′ by applying the rule right for int→v.

Finally, if C = LC′ for some context C′ and term L /∈ Λv, then L = V N0 . . . Nn for some
n ∈ N, thus M = V N0 . . . NnC′LNM int→v V N0 . . . NnC′LN ′M = M ′ by the rule @ for int→v.

J

G. Guerrieri 9

We end this section by recalling three results proven in [7] concerning head v-reduction
and internal v-reduction: they will be used to prove the main results in Sections 4-5.

The following lemma (proven in [7, Lemma 14]) shows that a head σ-reduction step can
be postponed after a head βv-reduction step, and hence every head v-reduction sequence can
be rearranged into a head βv-reduction sequence followed by a head σ-reduction sequence.

I Lemma 12 (Commutation of head βv- and head σ-reductions, see [7]).
1. If M h→σ L

h→βv
N then there exists L′ ∈ Λ such that M h→βv

L′
h−→=
σ N .

2. If M h−→∗v M ′ then there exists N ∈ Λ such that M h−→∗βv
N

h−→∗σ M ′.

Next Lemma 13 (proven in [7, Corollary 21]) says that internal v-reduction can be shifted
after head v-reductions.2

I Lemma 13 (Postponement, see [7]). If M int→v L and L h→βv
N (resp. L h→σ N), then there

exist L′, L′′ ∈ Λ such that M h−→+

βv
L′

h−→∗σ L′′
int−→∗v N (resp. M h−→∗βv

L′
h−→∗σ L′′

int−→∗v N).

Next Theorem 14 is one of the main result proven in [7, Theorem 22] by adapting
Takahashi’s method [19, 5]: any v-reduction sequence can be sequentialized into a head
βv-reduction sequence followed by a head σ-reduction sequence, followed by an internal
v-reduction sequence. In ordinary λ-calculus, the well-known result corresponding to our
Theorem 14 states that a β-reduction sequence can be factorized in a head reduction sequence
followed by an internal reduction sequence (see for example [19, Corollary 2.6]).

I Theorem 14 (Sequentialization, see [7]). If M →∗v M ′ then there exist L,N ∈ Λ such that
M

h−→∗βv
L

h−→∗σ N
int−→∗v M ′.

The sequentialization of Theorem 14 imposes no order between head σ-reductions. Indeed,
the example in [7, p. 10] shows that it is impossible to sequentialize them by giving way to head
σ1- or head σ3-redexes: a head σ1-reduction step can create a head σ3-redex, and vice versa.

In [7, Definition 27 and Corollary 29] it has also been proven that the v-equivalence (and
in particular the σ-equivalence) is contained in the call-by-value observational equivalence.

4 Head normalization

In this section we prove the first main result of our paper: Theorem 21, which studies the
normalization for head v-reduction and relates it to the head βv-reduction (i.e. the weak
evaluation strategy for Plotkin’s λv-calculus). Let us start with a preliminary remark.

I Remark 15. According to Facts 10.1-2, every V ∈ Λv is head βv- and head σ-normal, and
hence is head v-normal. The converse does not hold: xI is head v-normal but xI /∈ Λv.

First, we give a syntactic characterization of head v- and head βv-normal forms.

I Definition 16. We define the subsets Λa, Λb and Λc (whose elements are denoted by A, B
and C respectively) of Λ as follows (for any variable x, any V ∈ Λv and any N ∈ Λ):

(Λa) A ::= xV | xA | AN (Λb) B ::= (λx.N)A (Λc) C ::= xV | V C | CN

2 In [7, Corollary 21] there is a more informative statement of our Lemma 13, involving a notion of internal
parallel reduction int⇒. Our Lemma 13 follows immediately from [7, Corollary 21] since int→v⊆

int⇒⊆ int−→∗v .

WPTE’15

10 Head reduction and normalization in a call-by-value lambda-calculus

Notice that Λa ∪ Λb (Λc and M,N ∈ Λc r (Λa ∪ Λb) where M = (λy.∆)(xI)∆ and
N = ∆((λy.∆)(xI)) (as in Example 6). Moreover, Λv∩Λa = Λv∩Λb = Λv∩Λc = Λa∩Λb = ∅
and all terms in Λa ∪ Λb ∪ Λc are not closed. All terms in Λb are β-redexes that are not
βv-redexes; all terms in Λa have a free “head variable” and are neither a value nor a β-redex.

I Proposition 17 (Characterization of head βv-normal forms). Let M be a term.
1. M is head βv-normal and is not a λ-value if and only if M ∈ Λc.
2. M is head βv-normal if and only if M ∈ Λv ∪ Λc.

Proof. Statement (2) is an immediate consequence of statement (1) and Remark 15.
⇒: We prove the left-to-right direction of statement (1), by induction on M ∈ Λ.

The case where M ∈ Λv is impossible by hypothesis.
If M = M1M2 (for some M1,M2 ∈ Λ) is head βv-normal then M is not a λ-value and M1
and M2 are head βv-normal, moreover either M1 6= λx.N (for any N ∈ Λ) or M2 /∈ Λv
(otherwise M would be a head βv-redex). Therefore, there are only three cases:

either M1 /∈ Λv, thus M1 ∈ Λc by induction hypothesis, and hence M ∈ Λc;
or M1 ∈ Λv and M2 /∈ Λv, so M2 ∈ Λc by induction hypothesis, and thus M ∈ Λc;
or M1 is a variable and M2 ∈ Λv, hence M ∈ Λc (this is the base case).

⇐: The right-to-left direction of statement (1) can easily be proved by induction on M ∈Λc.J

A consequence of Proposition 17 is that all closed head βv-normal forms are abstractions.

I Proposition 18 (Characterization of head v-normal forms). Let M ∈ Λ.
1. M is head v-normal and is neither a λ-value nor a β-redex if and only if M ∈ Λa.
2. M is head v-normal and is a β-redex if and only if M ∈ Λb.
3. M is head v-normal if and only if M ∈ Λv ∪ Λa ∪ Λb.

Proof. Statement (3) is an immediate consequence of statements (1)-(2) and Remark 15.
⇒: We prove simultaneously the left-to-right direction of statements (1) and (2), by induction

on M ∈ Λ. The case where M ∈ Λv is impossible by hypothesis.
If M = M1M2 (for some M1,M2 ∈ Λ) is head v-normal then M is not a λ-value and M1
and M2 are head v-normal, moreover M1 is not a β-redex (otherwise M would be a head
σ1-redex), and either M1 6= λx.N (for any N ∈ Λ) or M2 /∈ Λv (otherwise M would be a
head βv-redex), and either M1 /∈ Λv or M2 is not a β-redex (otherwise M would be a
head σ3-redex). There are only three cases:

eitherM1 is a variable andM2 is not a β-redex, soM is not a β-redex; ifM2 ∈ Λv then
M ∈Λa (this is the base case); otherwise M2∈Λa by induction hypothesis, so M ∈Λa;
orM1 /∈Λv, thusM is not a β-redex andM1 ∈ Λa by induction hypothesis, so M ∈ Λa;
or M1 = λx.N for some N ∈ Λ and M2 is neither a λ-value nor a β-redex, so M is a
β-redex, furthermore M2 ∈ Λa by induction hypothesis, and thus M ∈ Λb.

⇐: The right-to-left direction of statement (1) can easily be proved by induction on M ∈ Λa.
Let us prove the right-to-left direction of statement (2): if M ∈ Λb then M = (λx.N)A
for some N ∈ Λ and A ∈ Λa, thus M is a β-redex. For any M ′ ∈ Λ, the last rule of
the derivation of M h→v M

′ might be neither σ1 nor σ3 (because A is not a β-redex by
statement 1) nor βv (because A /∈ Λv by statement 1 again) nor right (because A is head
v-normal, by statement 1 again). Therefore, M is head v-normal. J

As a consequence of Proposition 18, all closed head v-normal forms are abstractions.
The sets of terms Λa, Λb and Λc of Definition 16 enjoy the closure properties summarized

in Lemma 19 below. Together with the syntactic characterizations of head βv-normal forms

G. Guerrieri 11

(Proposition 17) and head v-normal forms (Proposition 18), these closure properties allow
one to reason about head v-reduction in spite of its non-confluence: they will be used to
prove our main results, Theorems 21 and 24 and Proposition 27.

I Lemma 19 (Closure properties).
1. The set Λa is closed under v-internal reduction and expansion, i.e., for any N ′∈ Λ and

N ∈ Λa, if N ′
int→v N or N int→v N

′ then N ′∈ Λa.
2. The set Λb is closed under v-internal reduction and expansion, i.e., for any N ′∈ Λ and

N ∈ Λb, if N ′
int→v N or N int→v N

′ then N ′∈ Λb.
3. Head v-normal forms are closed under v-internal reduction and expansion, i.e., for any

N,N ′∈Λ where N is head v-normal, if N ′ int→vN or N int→vN
′ then N ′ is head v-normal.

4. Head βv-normal forms are closed under head σ-reduction and expansion, i.e., for any
N,N ′∈Λ where N is head βv-normal, if N ′ h→σN or N h→σN

′ then N ′is head βv-normal.

Proof.
1. We show that if N ∈ Λa and N ′ int→v N (resp. N int→v N

′) then N ′ ∈ Λa, by induction on
the derivation of N ′ int→v N (resp. N int→v N

′). Let us consider its last rule r.
Since N ∈ Λa (see Definition 16), N = xLN1 . . . Nn for some n ∈ N, some variable x, some
L ∈ Λv ∪ Λa and some N1, . . . , Nn ∈ Λ, thus r 6= λ and hence either r = right or r = @.
If r = right then N ′ = xL′N1 . . . Nn where L′ int→v L (resp. L int→v L

′). Since L ∈ Λv ∪ Λa,
there are two cases:

either L ∈ Λa and then L′ ∈ Λa by induction hypothesis, so N ′ = xL′N1 . . . Nn ∈ Λa;
or L ∈ Λv and then L′ ∈ Λv by Fact 10.3 (resp. Remark 4, since int→v⊆→v), therefore
N ′ = xL′N ′1 . . . N

′
n ∈ Λa.

Finally, if r = @ then n ∈ N+ and N ′ = xLN1 . . . N
′
i . . . Nn for some 1 ≤ i ≤ n with

N ′i →v Ni (resp. Ni →v N
′
i), hence N ′ ∈ Λa because xL ∈ Λa.

2. We show that if N ∈ Λb and N ′
int→v N (resp. N int→v N

′) then N ′ ∈ Λb, by induction on
the derivation of N ′ int→v N (resp. N int→v N

′). Let us consider its last rule r. Since N ∈ Λb,
then N = (λx.M)A for some M ∈ Λ and A ∈ Λa, hence r 6= @ because N has not the
shape V LM1 . . .Mm for any m ∈ N+; therefore either r = λ or r = right:

if r = λ, then N ′ = (λx.M ′)A where M ′ →v M (resp. M →v M
′), hence N ′ ∈ Λb;

if r = right, then N ′ = (λx.M)A′ where A′ int→v A (resp. A int→v A
′), thus A′ ∈ Λa by

Lemma 19.1, hence N ′ ∈ Λb;
3. Thanks to Proposition 18.3, it is sufficient to show that if N ∈ Λv ∪Λa∪Λb and N ′

int→v N

(resp. N int→v N ′) then N ′ ∈ Λv ∪ Λa ∪ Λb. If N ∈ Λv then N ′ ∈ Λv by Fact 10.3
(resp. Remark 4, since int→v⊆→v). If N ∈ Λa then N ′ ∈ Λa by Lemma 19.1. Finally, if
N ∈ Λb then N ′ ∈ Λb by Lemma 19.2.

4. By Proposition 17.2, N ∈ Λv ∪ Λc. Since M
h→σ N or N h→σ M , N /∈ Λv by Fact 10.2.

We prove by induction on N ∈Λc thatM ∈Λc. By Definition 16, there are only two cases:
either N = xV N1 . . . Nn for some n ∈ N, variable x, V ∈ Λv and N1, . . . , Nn ∈ Λ, but
this is impossible since the last rule of the derivation of M h→σ N or N h→σ M can be
neither σ1 nor σ3 (because of the subterm xV) nor right (because of Fact 10.2);
or N = V LN1 . . . Nn for some n ∈ N, V ∈ Λv, L ∈ Λc and N1, . . . , Nn ∈ Λ, and then
there are three sub-cases, depending on the last rule r of the derivation of M h→σ N

(resp. N h→σ M):
if r = σ1 then V = λx.N ′N0 (resp. λx.N ′) and M = (λx.N ′)LN0 . . . Nn (resp. M =
(λx.N ′N1)LN2 . . . Nn with n > 0) for some N ′, N0 ∈ Λ, hence M ∈ Λc;
if r = σ3 then V = λx.V ′N ′ (resp. L = (λx.N ′)L′) andM = V ′((λx.N ′)L)N1 . . . Nn
(resp. M = (λx.V N ′)L′N1 . . . Nn) for some V ′ ∈ Λv (resp. L′ ∈ Λc) and N ′ ∈ Λ,
thus (λx.N ′)L ∈ Λc (resp. (λx.V N ′)L′ ∈ Λc) and hence M ∈ Λc;

WPTE’15

12 Head reduction and normalization in a call-by-value lambda-calculus

if r = right then M = V L′N1 . . . Nn for some L′ ∈ Λ such that L′ h→σ L (resp.
L

h→σ L
′), so L′ ∈ Λc by induction hypothesis, and hence M ∈ Λc.

J

Lemma 19.4 is a formalization of the two following facts: (a) a head σ-reduction step
may create a new βv-redex but in this case it is not a head βv-redex; (b) when M

h→σ N ,
the head βv-redex of M (if any) has a residual in N which is the head βv-redex of N .

I Lemma 20. There exists no infinite head v-reduction sequence with finitely many head
βv-reduction steps.

Proof. Suppose the opposite holds: then there would exist m ∈ N and an infinite sequence of
terms (Mi)i∈N such that Mi

h→v Mi+1 for any 1 ≤ i ≤ m, Mm
h→βv

Mm+1 and Mi
h→σ Mi+1

for any i > m (since h→v = h→βv ∪
h→σ). But this is impossible because h→σ is strongly

normalizing (by Proposition 5 and since h→σ ⊆→σ). Contradiction. J

Now we can state and prove our main result about head βv- and head v-normalization.

I Theorem 21 (Head normalization). Let M ∈ Λ. The following are equivalent:
1. there exists a head βv-normal form N such that M 'βv N ;
2. there exists a head v-normal form N such that M 'v N ;
3. M is head v-normalizable;
4. M is head βv-normalizable;
5. there is no v-reduction sequence from M with infinitely many head βv-reduction steps;
6. M is strongly head v-normalizable.

Proof.
(1)⇒(2) By hypothesis, there exists a head βv-normal N ∈ Λ such that M 'βv N , thus

M 'v N . Since h→σ is strongly normalizing (by Proposition 5 and because h→σ ⊆→σ),
there exists a head σ-normal N ′ ∈ Λ such that N h−→∗σ N ′, therefore M 'v N

′ since
h→σ ⊆→v. By Lemma 19.4, N ′ is also head βv-normal and hence head v-normal.

(2)⇒(3) SinceM 'v N , there is L ∈ Λ such thatM →∗v L and N →∗v L, by confluence of→v
(Proposition 5). By Theorem 14, there are M1,M2, N1, N2 ∈ Λ such that M h−→∗βv

M1
h−→∗σ

M2
int−→∗v L and N h−→∗βv

N1
h−→∗σ N2

int−→∗v L. As N is head v-normal, N = N1 = N2
int−→∗v L.

By Lemma 19.3, L and M2 are v-head normal. So, M h−→∗v M2 with M2 head v-normal.
(3)⇒(4) By hypothesis, there is N ∈ Λ head v-normal such that M h−→∗v N . By Lemma 12.2,

there is L ∈ Λ such thatM h−→∗βv
L

h−→∗σ N . SinceN is head v-normal and in particular head
βv-normal, L is head βv-normal according to Lemma 19.4. So M is head βv-normalizable.

(4)⇒(5) Lemma 12.1 says that if N h→σ L
h→βv N ′ then there exists L′ ∈ Λ such that

N
h→βv

L′
h−→=
σ N ′; Lemma 13 and Fact 10.3 show that if N int→v L

h→βv
N ′ then there

exist L′, L′′ ∈ Λ such that N h−→+

βv
L′

h−→∗σ L′′
int−→∗v N ′. Since →v = h→βv

∪ h→σ ∪
int→v, this

means that if there is an infinite v-reduction sequence from M with infinitely many head
βv-reduction steps, then for any n ∈ N there is a head βv-reduction sequence from M

whose length is at least n. Therefore, M is not head βv-normalizable, since the head
βv-reduction is deterministic.

(5)⇒(6) If M is not strongly head v-normalizable then there exists an infinite head v-
reduction sequence. By Lemma 20, this head v-reduction (and hence v-reduction, since

h→v⊆→v) sequence has infinitely many head βv-reduction steps.

G. Guerrieri 13

(6)⇒(1) As M is strongly head v-normalizable, in particular is head v-normalizable, hence
there exists N ∈ Λ head v-normal and in particular head βv-normal such that M h−→∗v N .
By Lemma 12.2, there exists L ∈ Λ such that M h−→∗βv

L
h−→∗σ N . Therefore M 'βv

L

since h→βv
⊆→βv

. According to Lemma 19.4, L is head βv-normal.
J

In Theorem 21, the equivalence (3)⇔(6) means that (weak) normalization and strong
normalization are equivalent for head v-reduction (for head βv-reduction they are trivially
equivalent since the head βv-reduction is deterministic), therefore if one is interested in
studying the termination of head v-reduction, no difficulty arises from its non-determinism.
The equivalence (4)⇔(3) or (4)⇔(6) says that the weak evaluation process defined for
Plotkin’s λv-calculus (the head βv-reduction) terminates if and only if the weak evaluation
process defined for λσv (the head v-reduction) terminates: σ-rules play no role in deciding the
termination of a head v-reduction sequence. The equivalence (3)⇔(2) (resp. (4)⇔(1)) is the
version for λσv (resp. λv) of a well-known theorem for ordinary λ-calculus (see for example [3,
Theorem 8.3.11]): in some sense, it claims that the head v-reduction (resp. head βv-reduction)
is complete with respect to the v-equivalence (resp. βv-equivalence). The equivalence (5)⇔(2)
(resp. (5)⇔(1)) can be seen as the version for λσv (resp. λv) of the Quasi-Head Reduction
Theorem [19, Theorem 2.10] stated by Takahashi for ordinary λ-calculus.

5 Normalization strategy and other results

Theorems 14 and 21 strengthen the idea that, in spite of non-determinism and non-confluence
of head v-reduction and non-sequentiability of head σ-reduction steps, the head v-reduction
can be used to define a normalization strategy for the λσv -calculus, as proven in next
Theorem 24, the second main result of our paper: given a term M , one starts the (unique)
head βv-head reduction sequence from M as long as a head βv-normal form N is reached
(recall that, according to Theorem 21, a term is (strongly) head v-normalizable if and only if
it is head βv-normalizable); then, one starts a head σ-reduction sequence from N (where
head σ1- and head σ3-reduction steps can be performed in whatever order) as long as a head
σ-normal form N ′ is reached (such a N ′ always exists because h→σ is strongly normalizing,
and it is head v-normal by Lemma 19.4); finally, one performs the internal v-reduction steps
starting from N ′ by iterating the head βv-reduction sequences and then the head σ-reduction
sequences as above on the subterms of N ′, from the left to the right. More precisely:

I Definition 22 (Successors path). Let M ∈ Λ.
A successor of M is a M ′ ∈ Λ defined by induction on M ∈ Λ as follows:
if M is not head βv-normal, then M ′ is such that M h→βv M

′;
if M is head βv-normal but not head σ-normal, then M ′ is such that M h→σ M

′;
if M is head v-normal then:

if M is a variable then M ′ = M ,
if M = λx.N for some N ∈ Λ, then M ′ = λx.N ′ for some successor N ′ of N ,
if M = NL for some N,L ∈ Λ, then either N is not v-normal and M ′ = N ′L where
N ′ is a successor of N , or N is v-normal and M ′ = NL′ where L′ is a successor of L.

A successors path of M is an infinite sequence (Mi)i∈N of terms such that M0 = M and
Mi+1 is a successor of Mi, for any i ∈ N.

Clearly, for every termM there is at least one successorM ′ ofM ; moreover, this successor
M ′ is unique when M is not head βv-normal, since the head βv-reduction is deterministic,
and M = M ′ when M is v-normal.

WPTE’15

14 Head reduction and normalization in a call-by-value lambda-calculus

I Remark 23. Let M ∈ Λ and let (Mi)i∈N be a successors path of M .
1. For every i ∈ N, there exist 0 ≤ j ≤ k ≤ i such that M h−→∗βv

Mj
h−→∗σ Mk

int−→∗v Mi.
2. For every i ∈ N, if Mi is v-normal then Mj is v-normal for any j ≥ i.

A successors path of a termM is a call-by-value left-to-right v-evaluation strategy starting
from M that can reduce under a λ only when a head v-normal from is reached. Due to
the non-determinism of the head σ-reduction, a term M may have several successors paths.
We cannot get rid of the non-determinism of the successors path of M because of the
non-sequentiability of head σ-reductions, see p. 9 and [7, p. 10].

I Theorem 24 (Normalization strategy). Let M ∈ Λ. Every successors path (Mi)i∈N of M is
a normalization strategy for M , i.e. if M is v-normalizable then there exists j, k, ` ∈ N such
that j ≤ k ≤ `, Mj is head βv-normal, Mk is head v-normal and M` is v-normal.

Proof. Let (Mi)i∈N be a successors path of M and N ∈ Λ be such that N is v-normal and
M →∗v N : we prove by induction on N ∈ Λ that there exist j, k, ` ∈ N such that Mj is head
βv-normal, Mk is head v-normal and M` is v-normal.

Since M is v-normalizable, then it is head βv-normalizable (because h→βv ⊆→v), thus
there exists j ∈ N such that Mj is head βv-normal because h→βv

is deterministic. As h→σ

is strongly normalizing (by Proposition 5, since h→σ ⊆→σ), there exists k ∈ N with j ≤ k

such that Mk is head σ-normal. According to Lemma 19.4, Mk is also head βv-normal,
hence Mk is head v-normal. Certainly, Mk = V N1 . . . Nn for some n ∈ N, V ∈ Λv and
N1, . . . , Nn ∈ Λ. By confluence of →v (Proposition 5) and since N is v-normal and Mk is
head v-normal, one has Mk

int−→∗v N and hence N = V ′N ′1 . . . N
′
n for some v-normal V ′ ∈ Λv

and some v-normal N ′1, . . . , N ′n ∈ Λ such that V →∗v V ′ and Nr →∗v N ′r for any 1 ≤ r ≤ n.
By induction hypothesis, for every successors path (Vi)i∈N of V and, for any 1 ≤ r ≤ n, for
every successors path (Lri)i∈N of Nr there exist p, p1, . . . , pn ∈ N such that Vp, L1

p1
, . . . , Lnpn

are v-normal: by confluence of →v (Proposition 5), Vp = V ′ and N ′r = Lrpr
for any 1 ≤ r ≤ n.

Let us consider the infinite sequence of terms s = (M=M0, ,Mk=V N1 . . . Nn =
V0N1 . . . Nn, , VpN1 . . . Nn=V ′L1

0N2 . . . Nn, , V
′L1
p1
N2 . . . Nn=V ′N ′1L2

0 . . . Nn,

. , V ′N ′1N
′
2 . . . N

′
n=N,N,): this is a successors path of M and, for an opportune

choice of the successors paths (Vi)i∈N, (L1
i)i∈N, . . . , (Lni)i∈N, one has that s = (Mi)i∈N, in

particular there exists ` ∈ N such that j ≤ k ≤ ` and M` = N . J

In ordinary λ-calculus, the well-known theorem corresponding to our Theorem 24 is the
Leftmost Reduction Theorem, see [19, Theorem 2.8] or [3, Theorem 13.2.2]. Differently from
the leftmost reduction of ordinary λ-calculus, our normalization strategy is not deterministic,
i.e., our Theorem 24 provides a family of normalization strategies.

Finally, we have shown at p. 7 that the head σ- and head v-reductions are not (locally)
confluent and a term may have several head v-normal forms. Nevertheless, the character-
ization of head v-normal forms given by Proposition 18 allows us to claim that (see next
Proposition 27) in some cases (of interest), more precisely when a term has a head v-normal
form which is a value or an element of Λa, the head v-normal form is unique (Proposition 27.1):
all terms having several head v-normal forms are such that all their head v-normal forms
are in Λb. In particular, every head v-normalizable closed term has a unique head v-normal
form, which is an abstraction and coincides with its head βv-normal form (Proposition 27.2).

I Remark 25. By inspection on the rules of Definition 8, it easy to check that the head σ-
reduction does not reduce to a term in Λa, i.e., for anyM ∈ Λ and N ∈ Λa, one has M 6 h→σ N .

Remark 25 does not hold if we replace h→σ with h→βv
: for instance, x(II) h→βv

xI ∈ Λa.

G. Guerrieri 15

I Fact 26. For every N ∈ Λv ∪ Λa, one has M h−→∗βv
N if and only if M h−→∗v N .

Proof. The left-to-right direction follows from h→βv ⊆
h→v. The right-to-left direction is a

consequence of Lemma 12.2 and either Fact 10.2 (if N ∈ Λv) or Remark 25 (if N ∈ Λa). J

Fact 26 means that, given a head v-reduction sequence, the head σ-reduction plays no
role not only in deciding its termination (as stated in Theorem 21), but also in reaching a
particular value or term in Λa. Fact 26 will be used in the proof of Proposition 27.

I Proposition 27 (Uniqueness of “some” head v-normal forms). Let M ∈ Λ and M h−→∗v N .
1. If N ∈ Λv ∪ Λa then, for every head v-normal L ∈ Λ, M h−→∗v L implies N = L.
2. If M is closed and N is head v-normal, then M h−→∗βv

N and N = λx.N ′ for some N ′ ∈ Λ
such that fv(N ′) ⊆ {x}; moreover, for any head v-normal L ∈ Λ, M h−→∗v L implies N = L.

Proof.
1. Since N ∈ Λv∪Λa,M

h−→∗v N impliesM h−→∗βv
N by Fact 26. According to Proposition 18.3,

N is head v-normal.
Let L ∈ Λ be head v-normal and such thatM h−→∗v L: by Proposition 18.3, L ∈ Λv∪Λa∪Λb.
We claim that L /∈ Λb. Otherwise, L ∈ Λb and then, by confluence of →v there would
exist M ′ ∈ Λ such that N →∗v M ′ and L→∗v M ′. According to Proposition 11 and since
N and L are head v-normal, N int−→∗v M ′ and L

int−→∗v M ′. By Remark 4 (since int→v⊆→v)
and Lemma 19.1, M ′ ∈ Λv ∪ Λa. By Lemma 19.2, M ′ ∈ Λb. But Λv ∩ Λb = ∅ = Λa ∩ Λb:
contradiction, therefore L /∈ Λb.
So, L ∈ Λv ∪ Λa and thus M h−→∗βv

L by Fact 26, hence N = L since h→βv
is deterministic.

2. Since M is closed, N is closed too. Hence, by Proposition 18.3, N ∈ Λv (since the terms
in Λa ∪ Λb are not closed) and N is not a variable, therefore N = λx.N ′ for some N ′ ∈ Λ
such that fv(N ′) ⊆ {x}. By Fact 26, M h−→∗βv

N . According to Proposition 27.1, for every
head v-normal L ∈ Λ, M h−→∗v L implies N = L.

J

Recall that all head v-normal terms are head βv-normal, since h→βv
⊆ h→v.

6 Conclusions and future work

In this paper, we have investigated the λσv -calculus introduced in [4], an extension of Plotkin’s
call-by-value λ-calculus λv [15] with the same syntax as λv (without constants) and ordinary
(i.e. call-by-name) λ-calculus. The peculiarity of λσv is in its reduction rules: the v-reduction
adds to Plotkin’s βv-reduction two commutation rules called σ1 and σ3 which unblock “hidden”
βv-redexes. We have studied the head v-reduction, a non-confluent sub-reduction of the
v-reduction already introduced in [7]. We now summarize our main contributions:
1. Theorem 21 is about head v-normalization, it shows that:

for the head v-reduction, normalization coincides with strong normalization;
the head v-reduction is deeply related to Plotkin’s deterministic weak evaluation
strategy for λv (the former terminates if and only if the latter terminates);
both head v-reduction and weak evaluation strategy for λv enjoy good properties
analogous to the ones of the (call-by-name) head reduction for ordinary λ-calculus.

2. Theorem 24 is about v-normalization: it proves that a top-down extension of the head
v-normalization provides a family of normalization strategies for the (full) v-reduction.

3. Proposition 27 is about the uniqueness of the head v-normal form: it shows that, even if
there are terms having several head v-normal forms, in some case of interest (for instance,
closed terms) the head v-normal form, if any, is unique.

WPTE’15

16 Head reduction and normalization in a call-by-value lambda-calculus

These results, together with the results proven in [4, 7], shows that λσv is a useful tool
to study some theoretical and semantic properties of Plotkin’s λv-calculus, for instance the
notions of call-by-value solvability and potential valuability. This is hard (or impossible) to
obtain directly in λv because of the “weakness” of Plotkin’s βv-reduction. In the case of
ordinary (i.e. call-by-name) λ-calculus, head reduction and solvability are the starting point
to investigate separability, semi-separability and Böhm’s trees. Hence, it may reasonably
be supposed that we have all the ingredients for tackling the question of separability, semi-
separability and Böhm’s trees in a call-by-value setting. In particular, one may reasonably
hope to improve in λσv the separability theorem already proven by Paolini [12] for λv.

Acknowledgements. The author would like to express his gratitude to Luca Paolini and
Simona Ronchi Della Rocca for discussions that inspired this work. Also the author wishes
to thank Michele Pagani and the anonymous referees for many helpful comments.

References
1 Beniamino Accattoli. Proof nets and the call-by-value lambda-calculus. In Delia Kes-

ner and Petrucio Viana, editors, Proceedings Seventh Workshop on Logical and Semantic
Frameworks, with Applications, LSFA 2012, volume 113 of EPTCS, pages 11–26, 2012.

2 Beniamino Accattoli and Luca Paolini. Call-by-Value Solvability, Revisited. In Tom
Schrijvers and Peter Thiemann, editors, Functional and Logic Programming, volume 7294
of Lecture Notes in Computer Science, pages 4–16. Springer-Verlag, 2012.

3 Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies
in logic and the foundation of mathematics. North Holland, 1984.

4 Alberto Carraro and Giulio Guerrieri. A Semantical and Operational Account of Call-by-
Value Solvability. In Anca Muscholl, editor, Foundations of Software Science and Com-
putation Structures, volume 8412 of Lecture Notes in Computer Science, pages 103–118.
Springer-Verlag, 2014.

5 Karl Crary. A Simple Proof of Call-by-Value Standardization. Technical Report CMU-CS-
09-137, Carnegie Mellon University, 2009.

6 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–102, 1987.
7 Giulio Guerrieri, Luca Paolini, and Simona Ronchi Della Rocca. Standardization of a

call-by-value lambda-calculus. In To appear in the Proceedings of the 13th International
Conference on Typed Lambda Calculi and Applications (TLCA’15), 2015. Available at
http://www.pps.univ-paris-diderot.fr/~giuliog/standard.pdf.

8 Hugo Herbelin and Stéphane Zimmermann. An Operational Account of Call-by-Value
Minimal and Classical lambda-Calculus in "Natural Deduction" Form. In Pierre-Louis
Curien, editor, Typed Lambda Calculi and Applications, volume 5608 of Lecture Notes in
Computer Science, pages 142–156. Springer-Verlag, 2009.

9 Peter J. Landin. A correspondence between ALGOL 60 and Church’s lambda notation.
Communications of the ACM, 8:89–101; 158–165, 1965.

10 John Maraist, Martin Odersky, David N. Turner, and Philip Wadler. Call-by-name, call-by-
value, call-by-need and the linear lambda calculus. Theoretical Computer Science, 228(1–
2):175–210, 1999.

11 Eugenio Moggi. Computational Lambda-Calculus and Monads. In Logic in Computer
Science, pages 14–23. IEEE Computer Society, 1989.

12 Luca Paolini. Call-by-Value Separability and Computability. In Antonio Restivo, Simona
Ronchi Della Rocca, and Luca Roversi, editors, Italian Conference in Theoretical Computer
Science, volume 2202 of Lecture Notes in Computer Science, pages 74–89. Springer-Verlag,
2002.

http://www.pps.univ-paris-diderot.fr/~giuliog/standard.pdf

G. Guerrieri 17

13 Luca Paolini and Simona Ronchi Della Rocca. Call-by-value Solvability. Theoretical In-
formatics and Applications, 33(6):507–534, 1999. RAIRO Series, EDP-Sciences.

14 Luca Paolini and Simona Ronchi Della Rocca. The Parametric λ-Calculus: a Metamodel for
Computation. Texts in Theoretical Computer Science: An EATCS Series. Springer-Verlag,
2004.

15 Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theoretical
Computer Science, 1(2):125–159, 1975.

16 Laurent Regnier. Lambda calcul et réseaux. PhD thesis, Université Paris 7, 1992.
17 Laurent Regnier. Une équivalence sur les lambda-termes. Theoretical Computer Science,

126(2):281–292, April 1994.
18 Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing

style. Lisp and symbolic computation, 6(3-4):289–360, 1993.
19 Masako Takahashi. Parallel reductions in lambda-calculus. Information and Computation,

118(1):120–127, 1995.

WPTE’15

Towards Modelling Actor-Based Concurrency in
Term Rewriting∗

Adrián Palacios and Germán Vidal

MiST, DSIC, Universitat Politècnica de València
Camino de Vera, s/n, 46022 Valencia, Spain
{apalacios,gvidal}@dsic.upv.es

Abstract
In this work, we introduce a scheme for modelling actor systems within sequential term rewriting.
In our proposal, a TRS consists of the union of three components: the functional part (which is
specific of a system), a set of rules for reducing concurrent actions, and a set of rules for defining
a particular scheduling policy. A key ingredient of our approach is that concurrent systems are
modelled by terms in which concurrent actions can never occur inside user-defined function calls.
This assumption greatly simplifies the definition of the semantics for concurrent actions, since
no term traversal will be needed. We prove that these systems are well defined in the sense that
concurrent actions can always be reduced.

Our approach can be used as a basis for modelling actor-based concurrent programs, which
can then be analyzed using existing techniques for term rewrite systems.

1998 ACM Subject Classification D.1.3 Concurrent Programming

Keywords and phrases concurrency, actor model, rewriting

Digital Object Identifier 10.4230/OASIcs.WPTE.2015.19

1 Introduction

In this work, we consider the so called actor model [1] of concurrency, the model underlying
programming languages like Erlang [3] or Scala [7]. In this model, a program consists of a
pool of processes –the actors, each one identified by a unique process identifier– that interact
by exchanging messages in an asynchronous manner. Each process has a (local) mailbox
where incoming messages are stored, which is not shared with the other processes. When a
process receives a message, it can update its local state, send messages, or create new actors.
Here, we aim at modelling an Erlang-like language within sequential term rewriting. The
basic objects of the language are variables (denoted by identifiers starting with a capital letter,
e.g., X,Y, . . .), atoms (denoted by a, b, . . .), process identifiers –pids– (denoted by p, p′, . . .),
constructors (which are fixed in Erlang to lists, tuples and atoms), and defined functions
(denoted by f/n, g/m, . . .). In Erlang, programs are sequences of function definitions. Each
function f/n is defined by a rule f(X1, . . . , Xn)→ s. where X1, . . . , Xn are distinct variables
and the body of the function, s, can be an expression, a sequence of expressions, a case
distinction, message sending (e.g., main ! {hello,world} sends a message {hello,world} to the

∗ This work has been partially supported by the EU (FEDER) and the Spanish Ministerio de Economía
y Competitividad under grant TIN2013-44742-C4-1-R and by the Generalitat Valenciana under grant
PROMETEOII2015/013. Adrián Palacios was partially supported by the the EU (FEDER) and the
Spanish Ayudas para contratos predoctorales para la formación de doctores de la Secretaría de Estado de
Investigación, Desarrollo e Innovación del Ministerio de Economía y Competitividad under FPI grant
BES-2014-069749.

© Adrián Palacios and Germán Vidal;
licensed under Creative Commons License CC-BY

2nd International Workshop on Rewriting Techniques for Program Transformations and Evaluation (WPTE’15).
Editors: Yuki Chiba, Santiago Escobar, Naoki Nishida, David Sabel, and Manfred Schmidt-Schauß; pp. 19–29

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WPTE.2015.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

20 Towards Modelling Actor-Based Concurrency in Term Rewriting

process with pid main) and receiving (e.g., receive {A,B} → A end reads a message from
the process mailbox that matches the pattern {A,B} and returns A), pattern matching
where the right-hand side can be an expression, the primitive self() (that returns the pid of
the current process) or a process creation (e.g., spawn(foo, [1, 2]) creates a new process that
executes foo(1, 2)).

Consider, for instance, the following Erlang program:

main(X,Y) → P = spawn(sum, []),
P ! {X,Y, self()},
receive

Z → Z

end.

sum() → receive
{N,M,P} → P ! add(N,M)

end,
sum().

add(N,M) → case N of
zero→M

{succ, X} → {succ, add(X,M)}
end.

Here, natural numbers are represented by zero, {succ, zero}, {succ, {succ, zero}}, etc. When
we execute this program, e.g., with main({succ, zero}, {succ, zero}), the function main first
spawns a new process, then sends both numbers and the own process identifier –obtained with
the predefined function self()– to the new process, say {{succ, zero}, {succ, zero},p1}, and
receive suspends until some message arrives. The new process executes function sum which is
initially suspended until a message arrives. When the message {{succ, zero}, {succ, zero},p1}
arrives, it calls to function add and returns the value {succ, {succ, zero}} to the process that
requested the sum. Graphically,

�� ��main
(1) spawn //

(2) {{succ,zero},{succ,zero},p1}

&& �� ��sum

(3) {succ,{succ,zero}}

ff

We do not formally describe the semantics of Erlang here, but refer the reader to, e.g., [12].
Nevertheless, let us recall some relevant points about the semantics of Erlang:

Erlang considers eager evaluation for function calls.
The clauses of a case expression are tried in the textual order. Once the argument of a
case expression matches a pattern, the remaning branches are discarded; note that this is
the only sensible semantics when we have overlapping clauses (e.g., for defining default
cases).
Receive expressions proceed analogously to a case expression, but considers the first
message in the process mailbox that matches some branch. If no one matches (or the
mailbox is empty), the process’ computation suspends until a new message arrives.

A. Palacios and G. Vidal 21

As for message passing, Erlang’s rule is that the direct messages between two processes
should arrive in the same order they are sent. Nothing is said, though, when the messages
follow different paths (i.e., when they traverse some other intermediate processes that
resend the message). This is actually the source of many unexpected errors, and the
reason to introduce a semantics like that of [11, 14].

In the following, we present an approach to model actor systems in the context of (sequential)
rewriting, so that they can then be analyzed using existing techniques for term rewrite
systems.

2 Term Rewriting

We assume familiarity with basic concepts of term rewriting. We refer the reader to, e.g., [4]
for further details.

A signature F is a set of function symbols. Given a set of variables V with F ∩ V = ∅,
we denote the domain of terms by T (F ,V). We assume that F always contains at least one
constant f/0. We use f, g, . . . to denote functions and x, y, . . . to denote variables. A position
p in a term t is represented by a finite sequence of natural numbers, where ε denotes the
root position. The set of positions of a term t is denoted by Pos(t). We let t|p denote the
subterm of t at position p and t[s]p the result of replacing the subterm t|p by the term s.
Var(t) denotes the set of variables appearing in t. A term t is ground if Var(t) = ∅.

A substitution σ : V 7→ T (F ,V) is a mapping from variables to terms such that Dom(σ) =
{x ∈ V | x 6= σ(x)} is its domain. Substitutions are extended to morphisms from T (F ,V) to
T (F ,V) in the natural way. We denote the application of a substitution σ to a term t by tσ
rather than σ(t). The identity substitution is denoted by id.

A set of rewrite rules l → r such that l is a non-variable term and r is a term whose
variables appear in l is called a term rewriting system (TRS for short); terms l and r are
called the left-hand side (lhs) and the right-hand side (rhs) of the rule, respectively. We
restrict ourselves to finite signatures and TRSs. Given a TRS R over a signature F , the
defined symbols DR are the root symbols of the lhs’s of the rules and the constructors are
CR = F \ DR. Constructor terms of R are terms over CR and V , i.e., T (CR,V). We omit R
from DR and CR if it is clear from the context. A substitution σ is a constructor substitution
(of R) if xσ ∈ T (CR,V) for all variables x. A TRS R is a constructor system if the lhs’s of
its rules have the form f(s1, . . . , sn) where si are constructor terms, i.e., si ∈ T (C,V), for all
i = 1, . . . , n.

For a TRS R, we define the associated rewrite relation→R as the smallest binary relation
satisfying the following: given terms s, t ∈ T (F ,V), we have s→R t iff there exist a position
p in s, a rewrite rule l → r ∈ R and a substitution σ with s|p = lσ and t = s[rσ]p; the
rewrite step is usually denoted by s→p,l→r t to make explicit the position and rule used in
this step. A term t is called irreducible or in normal form w.r.t. a TRS R if there is no term
s with t→R s. A derivation is a (possibly empty) sequence of rewrite steps. Given a binary
relation →, we denote by →∗ its reflexive and transitive closure. Thus t→∗R s means that
t can be reduced to s in R in zero or more steps. We say that s i→p,l→r t is an innermost
rewrite step if s→p,l→r t and all proper subterms of s|p are irreducible.

3 Modelling Concurrency

In this section, we introduce our approach to model actor systems within the context of
(sequential) rewriting. First, note that we do not intend to model the semantics of a

WPTE’15

22 Towards Modelling Actor-Based Concurrency in Term Rewriting

concurrent language (as it is done, e.g., in [9], where basically an interpreter of Erlang
is specified in Maude [5]), but to present a proposal for specifying actor systems in term
rewriting. In particular, we aim at keeping the functional part of the model as independent as
possible from the concurrent actions. Let us introduce first the structure of the specification
a system:

I Definition 1 (system specification structure). An actor system is specified as a constructor
TRS R = E ∪ A ∪ S, where E is the functional component, A specifies the evaluation of
concurrent actions, and S defines a scheduling policy. Usually, only the functional component
E changes from one system to another.

A given system will be modelled as a term, that is then reduced using the rules of the system
specification. Let us first introduce the term representation for processes:

I Definition 2 (process). A process is denoted by a term p(p, t,m), where p/3 is a constructor
symbol, p is the process identifier (a constructor constant), t is the process’ term, and m is
the mailbox (a list of constructor terms).

Here, we use natural numbers (built from 0 and succ) as pids. Other data structures are
possible, but we choose natural numbers for simplicity. Also, the systems have a global
mailbox which is used to model actor systems following the semantics of Erlang. Whenever a
process p sends a message t to another process p′, we store a term m(p, p′, t) in the global
mailbox. It is then the scheduler who determines when and in which order these messages
should be dispatched to the local mailboxes of the processes. Using this strategy, one can
easily ensure that all possible interleavings are explored, which is essential for, e.g., model
checking techniques. A similar strategy is presented in [11, 14].

A system is basically a pool of processes. In our approach, we model a system by means
of a defined function –so systems are reducible– as follows:

I Definition 3 (system). A system is denoted by a term s(k,m, procs), where s/3 is a defined
symbol, k is a natural number (used to produce fresh pids), m is a global mailbox of the
system, and procs is a pool of processes.

In principle, there are several ways in which we can specify a pool of processes. For instance,
we can introduce a constructor symbol �/2 and assume that it is associative and commutative
(AC). Using an AC symbol greatly simplifies the presentation of the rules for concurrent
actions. Note that, in this case, the system rules below are modelling all possible interleavings.
In practice, though, we will be interested only in some of them. For instance, one can use
a standard list to store the processes, and implement a simple Round Robin strategy that
takes the process in the head of the list, performs a reduction step, then moves it to the end
of the list, takes the next one, and so forth (this is the approach followed, e.g., in [13]). Here,
for simplicity, we will consider the first approach.

For instance, an initial system could be represented by the following term:

s(succ(0), [], p(0,main(t1, t2), []))

where main is a call to a user-defined function with two arbitrary terms t1 and t2 as arguments.
After a sequence of reduction steps, we may get a system like

s(succ(succ(0)), [], p(0, self(. . .), [])� p(succ(0), sum, []))

with two processes with pids 0 and succ(0), such that the first one is suspended waiting for
the concurrent action self to be processed by the system rules. The complete example will
be shown in Section 3.3.

In the following, we consider each component of a system specification separately.

A. Palacios and G. Vidal 23

3.1 The Functional Component

The functional component of an actor system is defined by means of a constructor TRS E .
If the system performs no concurrent actions, then E is a standard TRS (and, moreover,
there is no need for the other two components). In general, though, we consider four basic
concurrent actions:

self: this is the simplest action, and just returns the pid of the process.
spawn: this action is used to create new processes. The argument of spawn is typically a
function call that will start the execution of the new process. The pid of the new process
is returned by the call to spawn.
send: this action sends a message to a process identified by a pid. The call to send returns
the value of the message.
receive: this action consists in finding a message in the mailbox that matches some of the
given patterns. If there is no such message (or the mailbox is empty), execution suspends.

In order to model these concurrent actions, we face a difficult problem. In a language
like Erlang, expressions include sequences of actions and/or function calls. Moreover, as
mentioned before, we do not want to specify an interpreter that traverses terms and executes
both user-defined functions and concurrent actions.

Therefore, we took the following decision to avoid defining a complete interpreter for
concurrent systems (i.e., in order to avoid the approach followed in [9], as mentioned before):

during the reduction of a system, concurrent actions must always occur in the topmost
position of a process’ term.

Thanks to this requirement, one can model concurrent actions using a few simple rules (see
Section 3.2 below). In order for this requirement to hold, we model concurrent actions using
a sort of continuations. Basically, for each concurrent action, we have an associated auxiliary
function that is used to bind some variables and to set the continuation after the concurrent
action. This scheme will ensure that concurrent actions never occur below a user-defined
constructor or defined function.

The constructor symbols used to represent concurrent actions are the following: self/2,
spawn/3, send/3, and rec/2. For self/2, spawn/3 and and rec/2, we have auxiliary functions
called fself/3, fspawn/3 and frec/3 (where the prefix f stands for defined “function”, in contrast
to constructor), which are indexed by a constructor constant. For send/3, an auxiliary function
is not needed since no additional bindings are necessary, and the continuation is set in the
third argument of the constructor function. Concurrent actions are reduced to a term, but
they also produce some side effect (e.g., creating a new process or sending a message). For
instance, in order to model a concurrent action, say p = self() followed by the evaluation of
a term t, we should have a term of the form self(f1, vs), together with a rule

fself(f1, vs, p)→ t

The rules for the evaluation of concurrent actions will be responsible of reducing self(f1, vs)
to fself(f1, vs, k), where k is the pid of the process where self(f1, vs) occurs. The situation is
similar for spawn and rec. The case of send is slightly different since no variables need to be
bound and, thus, the continuation term is just an argument of send. E.g., sending a term t

to a process with pid p, and then continue with the evaluation of t′ is written as send(p, t, t′).
The rules for concurrent actions will then rewrite send(p, t, t′) to t′ also storing the message
in the global mailbox.

WPTE’15

24 Towards Modelling Actor-Based Concurrency in Term Rewriting

main(x, y) → spawn(main1, [x, y], sum)
fspawn(main1, [x, y], p) → self(main1, [x, y, p])
fself(main1, [x, y, p], s) → send(p, d(x, y, s),

rec(main1, [x, y])
)

frec(main1, [x, y], z) → z

sum → rec(sum1, [])
frec(sum1, [], d(n,m, p)) → send(p, add(n,m),

sum
)

frec(h, vs, t) → no_match(h, vs)

add(0,m) → m

add(succ(n),m) → succ(add(n,m))

Figure 1 Functional component E of an actor system.

Let us briefly explain the constructor symbols introduced to model concurrent actions:1
self(h, vars), where h is a constructor constant that is used to identify the associated con-
tinuation function. This expression will be rewritten –by the rules of A– to fself(h, vars, k),
where k is the pid of the current process. Here, vars is a list of variables that must be
passed to the auxiliary function.
spawn(h, vars, t), where h is a constructor constant that is used to identify the associated
continuation function, vars are the variables that must be passed to this auxiliary function,
and t is the term that must be evaluated by the new process. As we will see, this term
will be replaced by fspawn(h, vars, k), where k is a fresh pid; also, a new process will be
added to the pool of processes, initialized with t and with pid k.
send(p, t1, t2), where p is a pid and t1, t2 are terms. This action will be replaced with t2
–the continuation– and will add t1 to the mailbox of the process with pid p.
rec(h, vars), where h is a constructor constant that is used to identify the associated
continuation function and vars are the variables that must be passed to this auxiliary
function. This is the most complex action. It is replaced with frec(h, vars,m) where m is
the first message in the process’ mailbox. If there is no matching rule, the next message
will be tried, and so forth.

Note that we do not introduce a special symbol for case expressions. Here, we assume that
case expressions can be modelled by means of ordinary rewrite rules (as in, e.g., [13]).

For instance, the functional component E of the Erlang program shown in Section 1 can
be specified in our context with the rewrite rules of Figure 1. Here, the rules of function
add are essentially the same as in the original Erlang program since they contained no
concurrent actions. Functions main and sum now use a number of auxiliary functions to deal
with concurrent actions so that we get four rules for specifying the original function main
and three more rules for specifying the original function sum. Moreover, some Erlang data
structures are now represented using constructor functions. For instance, the three element

1 Note, however, that the rules that deal with concurrent actions will be introduced in Section 3.2.

A. Palacios and G. Vidal 25

s(k,ms, p(p, self(h, vs),ms′)� ps) → s(k,ms, p(p, fself(h, vs, p),ms′)� ps)

s(k,ms, p(p, spawn(h, vs, t),ms′)� ps) → s(succ(k),ms, p(p, fspawn(h, vs, k),ms′)
� p(k, t, [])� ps)

s(k,ms, p(p, send(p′, t, t′),ms′)� ps) → s(k,ms++[m(p, p′, t)], p(p, t′,ms′)� ps)

s(k,ms, p(p, rec(h, vs),m : ms′)� ps) → s(k,ms, p(p, frec(h, vs,m),ms′)� ps)
s(k,ms, p(p, no_match(h, vs),m : ms′)� ps) → s(k,ms, p(p, frec(h, vs,m),ms′)� ps)

s(k,ms, p(p, no_match(h, vs), [])� ps) → s(k,ms, p(p, rec(h, vs), [])� ps)

Figure 2 Concurrent component A: the system rules.

tuples of the original program are now represented using the constructor function d(_,_,_).
Specifying a system in this style might seem difficult, but one can generate it automatically
from some higher-level language (as it is done in [13] for a similar formalism). The purpose
of this paper, though, is to describe and analyze the properties of the modelling language,
independently of the way the rules are produced.

The language could be more expressive by introducing additional constructs (e.g., a let
expression to avoid duplicating the same term). Nevertheless, here we prefer to keep the
previous minimal set of actions for simplicity.

3.2 Concurrent Actions
In this section, we present the rules of the second component A of an actor system. As
mentioned before, we assume that concurrent actions always occur in the topmost position
of a process’ term, which greatly simplify the rules that deal with concurrent actions.

Let us now introduce the second component, A, with the rules that define the evaluation
of concurrent actions. Here, we assume that � is an AC operator, so that p(p, t,m) � ps
denotes a (non-empty) pool of processes, where p(p, t,m) is an arbitrary process.

I Definition 4 (concurrent actions rules). The component A for concurrent actions is given
by the rewrite rules of Figure 2.2

Let us briefly explain the system rules. The first rule deals with the concurrent action self (a
constructor), which is then replaced by a function call to fself also adding the pid p of the
current process. The second rule first performs a side effect by creating a new process with
pid k, and then replaces the constructor spawn with a call to the function fspawn where the
new pid is also passed as argument. The third rule adds a message to the global mailbox as
a side effect and, then, replaces the constructor send with the continuation t′. The fourth
rule replaces the constructor rec by a call to function frec where the first message of the
local mailbox is also passed as argument. The last two rules are used when the message
does not match any pattern in the receive construct (which is denoted with the constructor

2 We use Haskell’s infix notation for lists, where [] denotes the empty list and x : xs a list with head
element x and tail xs. When the number of elements is fixed, we also use the notation [t1, . . . , tn].
Moreover, we use the operator ++ for list concatenation.

WPTE’15

26 Towards Modelling Actor-Based Concurrency in Term Rewriting

no_match), and we can either perform a new call to function frec passing the next message in
the mailbox, or suspend the evaluation when the mailbox is empty. Observe that in Figure 1
we have a rule

frec(h, vs, t)→ no_match(h, vs)

This rule is used as a default case when a call to function frec with a message does not match
any of the patterns in the previous rules. In order to correctly model this behavior, one
should ensure that once a redex matches a rule, all other rules are discarded (this is further
discussed below in Section 3.4).

3.3 The Scheduler
Finally, we present the specification of the third component, S, the scheduler. These rules
take care of choosing a message from the global mailbox and dispatch it to the corresponding
process. Here, we show a trivial scheduler that just dispatches the messages in the same
order they are sent:

s(k,m(p, p′, t) : ms, p(p′, t′,ms′)� ps) → s(k,ms, p(p′, t′,ms′++[t])� ps)

In [14], for instance, we propose to first normalize a system before applying the scheduling
rules. Here, we achieve the same effect by only applying the rules of the scheduler when
no previous rule from A is applicable. Of course, more complex schedulers are possible. In
particular, we might be interested in nondeterministically exploring all possible interleavings,
as it is common in the context of model checking.

Consider now a system defined by the functional component shown in Figure 1 and the
rules of Sections 3.2 and 3.3. Here, we consider the following initial system:

s(1, [], p(0,main(succ(0), succ(0)), []))

For clarity, we underline the selected redex at each reduction step; besides, we denote pids
with 0,1,2,. . . instead of 0, succ(0), Moreover, we use different colors for each element of
the system: green for the global mailbox, blue for the first process with pid 0 and red for the
second process with pid 1. Then, reduction proceeds as shown in Figure 3. In this derivation,
we have marked with α→ the reduction steps where the scheduler dispatches a message to a
local mailbox. Observe that this rule is only applied when no other rule is applicable.

Observe that the normal form contains defined functions –the case of s– and concurrent
actions –the case of rec–. This is not unusual, since in general actor systems run forever (e.g.,
following a client-server architecture).

3.4 Intended Semantics
In this section, we briefly discuss the intended semantics for action systems specified with
TRSs. First, we consider that reductions are performed using leftmost innermost rewriting,
which essentially coincides with the reduction strategy of the functional and concurrent
language Erlang. However, in order to precisely model the semantics of an Erlang-like
language, one should further assume that

only the first rewrite rule that matches a redex is considered.

This is a strong requirement, but it is essential to be able to express the semantics of case and
receive expressions. Overlapping cases –or default cases where the pattern is just a variable–

A. Palacios and G. Vidal 27

s(1, [], p(0, main(succ(0), succ(0)), []))
→ s(1, [], p(0, spawn(main1, [succ(0), succ(0)], sum), []))
→ s(2, [], p(0, fspawn(main1, [succ(0), succ(0)], 1), [])� p(1, sum, []))
→ s(2, [], p(0, self(main1, [succ(0), succ(0), 1]), [])� p(1, sum, []))
→ s(2, [], p(0, fself(main1, [succ(0), succ(0), 1], 0), [])� p(1, sum, []))
→ s(2, [], p(0, send(1, d(succ(0), succ(0), 0), . . .), [])� p(1, sum, []))
→ s(2, [m(0, 1, d(succ(0), succ(0), 0))], p(0, rec(main1, [succ(0), succ(0)]), [])� p(1, sum, []))
→ s(2, [m(0, 1, d(succ(0), succ(0), 0))], p(0, rec(main1, [succ(0), succ(0)]), [])

�p(1, rec(sum1, []), []))
α→ s(2, [], p(0, rec(main1, [succ(0), succ(0)]), [])� p(1, rec(sum1, []), [d(succ(0), succ(0), 0)]))
→ s(2, [], p(0, rec(main1, [succ(0), succ(0)]), [])� p(1, frec(sum1, [], d(succ(0), succ(0), 0)), []))
→ s(2, [], p(0, rec(main1, [succ(0), succ(0)]), [])� p(1, send(0, add(succ(0), succ(0)), sum), []))
→ s(2, [], p(0, rec(main1, [succ(0), succ(0)]), [])� p(1, send(0, succ(add(0, succ(0))), sum), []))
→ s(2, [], p(0, rec(main1, [succ(0), succ(0)]), [])� p(1, send(0, succ(succ(0)), sum), []))
→ s(2, [m(1, 0, succ(succ(0)))], p(0, rec(main1, [succ(0), succ(0)]), [])� p(1, sum, []))
→ s(2, [m(1, 0, succ(succ(0)))], p(0, rec(main1, [succ(0), succ(0)]), [])� p(1, rec(sum1, []), []))
α→ s(2, [], p(0, rec(main1, [succ(0), succ(0)]), [succ(succ(0))])� p(1, rec(sum1, []), []))
→ s(2, [], p(0, frec(main1, [succ(0), succ(0)], succ(succ(0))), [])� p(1, rec(sum1, []), []))
→ s(2, [], p(0, succ(succ(0)), [])� p(1, rec(sum1, []), []))

Figure 3 Example of the reduction of a system.

are common and we do not see any other viable alternative (note that it is also essential for
the scheduling strategy mentioned above, where the rules of the scheduler are only applied
when no other rule is applicable). Here, one may replace the default case alternatives by
adding a rule for every non-matching constructor. However, this would only work as long as
the number of atoms is finite (e.g., it will not work for integers). Of course, by ignoring this
requirement, we would compute an overapproximation of the computations of the original
system, but in general this is not a satisfactory solution (even more since a state explosion is
a common problem when analyzing concurrent systems).

Another relevant point is that, for a system to be reduced using only the concurrent
action rules A and the scheduling rules S, one should further require that

in the rules of E, the concurrent actions self/2, spawn/3, send/3, and rec/2 do not
occur below a user-defined constructor or function symbol.

In practice, these constructor symbols either occur in the topmost position of the right-hand
side or in the continuation argument of send/3. Moreover, we say that a term is safe if it
contains no occurrences of self/2, spawn/3, send/3 or rec/2 below a user-defined constructor
or defined function. A TRS is safe if the right-hand sides of all its rules are safe. This static
condition ensures that the rules of A ∪ S suffice to deal with concurrent actions since they
can only occur in the topmost position of a process and, thus, the rules of Figure 2 suffice.

I Theorem 5. Let R = E∪A∪S, where E is a safe constructor TRS, and A and S are defined
as in Sections 3.2 and 3.3, respectively. Let t0 be a term of the form s(1, [], p(0, f(t1, . . . , tn), []),

WPTE’15

28 Towards Modelling Actor-Based Concurrency in Term Rewriting

where f is a defined function of E and t1, . . . , tn are purely functional terms.3 Then, for all
t0

i ∗→ t we have that t is a safe term.

Proof. We prove the claim by induction on the length of the reduction t0
i ∗→ t . Since the

base case t0 = t is trivial, we now consider the inductive case.
Assume that t0

i ∗→ t and t is safe. Let us consider now the innermost reduction step
t
i→R t′. First, we consider the case t i→p,l→r t

′ with l→ r ∈ E . By the inductive hypothesis,
we have that t is safe and, thus, both t[]p and t|p = lσ are safe. Since r is also safe, we have
that t[r]p is safe. It only remains to show that σ cannot introduce unsafe terms. Here, we
know that t|p is rooted by a defined function of E . Therefore, since t|p is safe, there are no
occurrences of self/2, spawn/3, send/3 or rec/2. Hence, σ cannot introduce any occurrence
of self/2, spawn/3, send/3 or rec/2 too, and t[rσ]p = t′ is thus safe.

The case when t i→p,l→r t
′ with l→ r ∈ A ∪ S is immediate by definition of A ∪ S. J

4 Related Work

In this section, we review some related work on modelling actor-based concurrent systems in a
language based on term rewriting. First, Giesl and Arts [6] deal with the verification of Erlang
processes using dependency pairs. They transform Erlang programs to conditional rewrite
systems by hand, so that termination can be analyzed. Another related approach –though
for different source and target languages– is that of Albert et al [2], where a transformation
from a concurrent object-oriented programming language based on message passing to a
rule-based logic-like programming language is introduced.

As mentioned in the introduction, there are some approaches where the goal is to define
a sort of interpreter in a rewriting based language like Maude [5]. This is the case of [9], who
introduces an implementation of Erlang in rewriting logic [8], a unified semantic framework
for concurrency. In this approach, Erlang programs are seen as data objects manipulated by
a sort of interpreter implemented in rewriting logic. In contrast, we aim at specifying plain
rewrite systems that can be analyzed using existing technologies.

This work can be seen as a continuation of [13]. While [13] focused on the transformation
from programs written in a subset of Erlang to rewrite systems, in this work we focused on
the modelling language within the term rewriting setting. The long-term goal is the definition
of a modelling language that is rich enough to specify the main features of Erlang or Scala
programming languages, so that program analysis and transformations can be designed. For
instance, [13] already includes a preliminary deadlock analysis based on narrowing [10], an
extension of rewriting to deal with logic variables.

5 Discussion

In this work, we have introduced a scheme for modelling actor-based concurrent systems in
term rewriting. Our approach can be used as a basis for modelling Erlang-like programs,
which can then be analyzed using existing techniques for term rewrite systems. For instance,
[13] presents a translation scheme for Erlang programs to a specification which is closer to the
one introduced in this paper. The transformation can be tested using the web interface from
http://kaz.dsic.upv.es/erlang2trs/. A similar transformation can be defined from a
subset of Erlang to the actor systems as specified in this paper.

3 A purely functional term has no occurrences of self/2, spawn/3, send/3, rec/2, p/3, m/3, �/2 nor s/3.

A. Palacios and G. Vidal 29

As a future work, we consider two main directions. On the first hand, we plan to
investigate rewriting strategies to model the fact that only the first matching rule should
be considered. This is the main difference with standard rewriting. For instance, one could
define a transformation to the actor system –a sort of completion procedure– so that it can
be reduced by standard rewriting with the desired behavior. On the other hand, and in order
to be able to model integers, arithmetic operations, etc., we plan to extend the modelling
language within the framework of integer rewriting. This will allow us to produce more
precise models for programs written in, e.g., Erlang.

Acknowledgements. We thank the anonymous reviewers for their useful comments to
improve this paper.

References
1 G.A. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT

Press, Cambridge, MA, 1986.
2 E. Albert, P. Arenas, and M. Gómez-Zamalloa. Symbolic Execution of Concurrent Objects

in CLP. In PADL’12, pages 123–137. Springer LNCS 7149, 2012.
3 Joe Armstrong, Robert Virding, and Mike Williams. Concurrent programming in ERLANG.

Prentice Hall, 1993.
4 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

1998.
5 M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C.L. Talcott, ed-

itors. All About Maude - A High-Performance Logical Framework, How to Specify, Program
and Verify Systems in Rewriting Logic. Springer LNCS 4350, 2007.

6 Jürgen Giesl and Thomas Arts. Verification of Erlang Processes by Dependency Pairs.
Appl. Algebra Eng. Commun. Comput., 12(1/2):39–72, 2001.

7 Philipp Haller and Martin Odersky. Scala Actors: Unifying thread-based and event-based
programming. Theor. Comput. Sci., 410(2-3):202–220, 2009.

8 José Meseguer. Conditioned Rewriting Logic as a United Model of Concurrency. Theor.
Comput. Sci., 96(1):73–155, 1992.

9 Thomas Noll. A Rewriting Logic Implementation of Erlang. Electr. Notes Theor. Comput.
Sci., 44(2):206–224, 2001.

10 James R. Slagle. Automated theorem-proving for theories with simplifiers, commutativity
and associativity. Journal of the ACM, 21(4):622–642, 1974.

11 H. Svensson, L.-A. Fredlund, and C. Benac Earle. A unified semantics for future Erlang.
In Proc. of the 9th ACM SIGPLAN workshop on Erlang, pages 23–32. ACM, 2010.

12 Hans Svensson and Lars-Ake Fredlund. A more accurate semantics for distributed Erlang.
In Simon J. Thompson and Lars-Ake Fredlund, editors, Proceedings of the 2007 ACM
SIGPLAN Workshop on Erlang, pages 43–54. ACM, 2007.

13 G. Vidal. Towards Erlang Verification by Term Rewriting. In LOPSTR’13, pages 109–126.
Springer LNCS 8901, 2014.

14 G. Vidal. Towards Symbolic Execution in Erlang (short paper). In PSI’14, pages 351–360.
Springer LNCS 8974, 2014.

WPTE’15

Observing Success in the Pi-Calculus
David Sabel and Manfred Schmidt-Schauß

Goethe-University, Frankfurt am Main
{sabel,schauss}@ki.cs.uni-frankfurt.de

Abstract
A contextual semantics – defined in terms of successful termination and may- and should-
convergence – is analyzed in the synchronous pi-calculus with replication and a constant Stop
to denote success. The contextual ordering is analyzed, some nontrivial process equivalences are
proved, and proof tools for showing contextual equivalences are provided. Among them are a con-
text lemma and new notions of sound applicative similarities for may- and should-convergence.
A further result is that contextual equivalence in the pi-calculus with Stop conservatively ex-
tends barbed testing equivalence in the (Stop-free) pi-calculus and thus results on contextual
equivalence can be transferred to the (Stop-free) pi-calculus with barbed testing equivalence.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages, D.3.1 Formal
Definitions and Theory F.4.2 Grammars and Other Rewriting Systems,

Keywords and phrases concurrency, process calculi, pi-calculus, rewriting, semantics

Digital Object Identifier 10.4230/OASIcs.WPTE.2015.31

1 Introduction

The π-calculus [9, 8, 20] is a well-known model for concurrent processes with message
passing. Its minimalistic syntax includes parallel process-composition, named channels, and
input/output-capabilities on the channels. The data flow in the π-calculus is programmed
by communication between processes. There is a lot of research on several bisimulations
of π-processes (see e.g. [20, 10]). They equate processes if testing the processes (using
reduction) exhibits that they have the same input and output capabilities and that they
reach equivalent states. Bisimulations occur in strong variants, where bisimilar processes
must have an identical reduction behavior for every single reduction step, and there are weak
bisimulations, where the numbers of internal reduction need not coincide, but equivalent
states w.r.t. the reflexive-transitive closure of reduction must be reached.

While proving processes bisimilar is often easy and elegant, the bisimilarities (in weak and
strong variants) are very fine grained notions, and thus may not allow to equate processes
even if they can be seen as semantically equal. We are interested in coarser notions of process
equivalences as the semantic base and view bisimulations (provided that they are sound
w.r.t. the semantics) as very helpful proof tools for investigating the (contextual) semantics.

For program calculi based on the lambda-calculus the usual approach to program equival-
ence is Morris style-contextual equivalence [11, 15] which can be used in a uniform way for a
lot of those calculi. For deterministic languages, contextual equivalence is based on the notion
of a terminated (or successful) program and it equates programs, if the ability to terminate
(i.e. so-called may-convergence) is indistinguishable when exchanging one program by the
other in any surrounding program context. For non-deterministic languages this equivalence
is too coarse, but it can be strengthened by additionally observing whether the program
successfully terminates on all execution paths, i.e. whether the program must-converges,
or as a slightly different approach, whether the program should-converges, which holds, if

© David Sabel and Manfred Schmidt-Schauß;
licensed under Creative Commons License CC-BY

2nd International Workshop on Rewriting Techniques for Program Transformations and Evaluation (WPTE’15).
Editors: Yuki Chiba, Santiago Escobar, Naoki Nishida, David Sabel, and Manfred Schmidt-Schauß; pp. 31–46

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WPTE.2015.31
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

32 Observing Success in the Pi-Calculus

the property of being may-convergent holds on all execution paths. In contrast to must-
convergence, should-convergence (see e.g. [12, 2, 16, 21]) has some kind of fairness built-in:
the predicate does not change even if instead of all reduction sequences only fair ones are
taken into account, where fair reduction sequences ensure that every reducible expression is
reduced after finitely many reduction steps.

In this paper we analyze contextual equivalence in the synchronous π-calculus with
replication and – for simplicity – without sums. Since the π-calculus has no notion of
successful termination, we use the same approach as e.g. [6, 13] and add a syntactic construct
(the constant Stop) which indicates successful termination. We call the extended calculus
ΠStop. We develop two proof tools for showing program equivalences: We prove that a context
lemma holds, which restricts the required class of contexts to show contextual equivalence.
We introduce notions of applicative similarities for the may- and the should-convergence.
There are soundness results on bisimilarities and barbed may- and should-testing for the
asynchronous π-calculus in [5], but to the best of our knowledge our notion of an applicative
similarity for should-convergence is new. We prove soundness of these similarities w.r.t. the
contextual preorders and thus they can be used for co-inductive proofs to show contextual
equivalence. Even though the test for may-convergence is subsumed by testing should-
convergence, our reasoning tools require also reasoning about may-convergence, and thus we
will consider both predicates. Equipped with these tools we show that process interaction
is correct, if it is deterministic, prove some further process equations, and investigate the
contextual ordering. We show that a contextually least element does not exist in ΠStop, but
a largest element exists – the constant Stop.

Our notion of contextual equivalence seems to be close to testing equivalences (see e.g. [3]
for CCS, [1] for a restricted variant of the π-calculus, [5] for the asynchronous π-calculus,
and [7] for the join-calculus), which are defined analogously to contextual equivalence, but
instead of observing successful termination, other observations are relevant. For barbed
testing equivalences [5] the capability of receiving (or emitting) a name on an (open) input
(or output) channel is observed (i.e. the process has an input or output barb). There is also
some work where testing is a combination of may- and must- or should-testing (which is
sometimes called fair must-testing, e.g. [5]). Roughly speaking, these predicates require an
input or output capability on every execution path. We prove a strong connection between
contextual equivalence and barbed may- and should-testing: On Stop-free processes, barbed
testing equivalence coincides with contextual equivalence. This connection enables us to
transfer several of our results to the classic π-calculus without Stop.

Outline. In Sect. 2 we introduce the synchronous π-calculus with Stop. The context lemma
and soundness of applicative similarity is proven in Sect. 3. We analyze the contextual
ordering and prove correctness of deterministic process interaction in Sect. 4. In Sect. 5
we analyze the connection between contextual equivalence in ΠStop and barbed testing
equivalence in the π-calculus without Stop and transfer our results obtained in ΠStop to the
Stop-free calculus. Finally, we conclude in Section 6.

2 The π-Calculus ΠStop with Stop

We consider the synchronous π-calculus ΠStop with replication and a constant Stop. For
simplicity, we neither include sums nor name matching. Let N be a countably infinite set of
names. Processes ProcStop and action prefixes π are defined as follows, where x, y ∈ N :

P,Q,R ∈ ProcStop ::= π.P | P1 |||P2 | !P | 0 | νx.P | Stop π ::= x(y) | xy

D. Sabel and M. Schmidt-Schauß 33

P1 |||P2 is the parallel composition of processes P1 and P2. A process x(y).P has the capability
to receive some name z along the channel x and then behaves like P [z/y] where [z/y] is the
capture free substitution of y by z. A process xy.P can send the name y along the channel x
and thereafter it behaves like P . 0 is the silent process and Stop is the successful process. A
restriction νz.P restricts the scope of the name z to process P . The replication !P represents
arbitrary many parallel copies of process P . The constructs νx.P and y(x).P bind the name
x with scope P which induces a notion of α-renaming and α-equivalence =α as usual. We
use fn(P) for the set of free names of P and adopt the distinct name convention, and assume
that free names are distinct from bound names and bound names are pairwise distinct. We
also use name substitutions σ : N → N . With Σ we denote the set of all name substitutions.

In the remainder of the paper, we use several binary relations on processes. Given a
relation R ⊆ (ProcStop × ProcStop), we write R−1 for the relation {(Q,P) | (P,Q) ∈ R} and
Rσ is defined as: (P,Q) ∈ Rσ iff (σ(P), σ(Q)) ∈ R for all σ ∈ Σ.

A context C ∈ CStop is a process with a hole [·]. Replacing the hole of C by process P is
written as C[P]. Structural congruence ≡ is the smallest congruence satisfying the axioms:

P ≡Q, if P =α Q

P1 ||| (P2 |||P3)≡ (P1 |||P2) |||P3
νz.(P1 |||P2)≡P1 ||| νz.P2, if z 6∈ fn(P1)

P ||| 0≡P
P |||Q≡Q |||P
νz.0≡0

νx.Stop≡Stop
νz.νw.P ≡ νw.νz.P

!P ≡P ||| !P

Processes x(y).0 and xy.0 are abbreviated as x(y) and xy. Instead of νx1.νx2.νxn.P

we write νx1, . . . , xn.P , or also νX .P if the concrete names x1, . . . , xn and the number
n ≥ 0 are not of interest. We also use set-notation for X and e.g. write xi ∈ X with its
obvious meaning. With choice(P,Q) we abbreviate the internal choice of two processes
choice(P,Q) := νx, y.(x(y1).P |||x(y2).Q |||xy) (where x, y, y1, y2 6∈ fn(P |||Q)).

The main reduction rule of Stop expresses a synchronous communication between two
process, i.e. the reduction rule x(y).P |||xv.Q ia−→ P [v/y] |||Q performs interaction between
two processes. The standard reduction of Stop is the closure of the rule ia−→ w.r.t. structural
congruence and reduction contexts. We prefer to use reduction contexts instead of closing
reduction by congruence rules for the reduction as done e.g. in [20]. However, this leads
to the same notion of a standard reduction. Note that there are also approaches [19] to
make even the structural transformations of ≡ more deterministic (by using reduction rules),
however, for our goals in this paper this does not seem to be helpful.

I Definition 2.1. Reduction contexts D are D ∈ D ::= [·] | D |||P | P |||D | νx.D. A standard
reduction sr−→ applies an ia−→-reduction in a reduction context (modulo structural congruence):

P ≡ D[P ′], P ′ ia−→ Q′, D[Q′] ≡ Q, and D ∈ D
P

sr−→ Q

The redex of an sr−→-reduction is the subprocess x(y).P |||xv.Q which is replaced by P [v/y] |||Q.
We define sr,∗−−→ :=

⋃
i≥0

sr,i−−→ and sr,+−−−→ :=
⋃
i>0

sr,i−−→ where for P,Q ∈ ProcStop: P
sr,0−−→ P

and P sr,i−−→ Q if there exists P ′ ∈ ProcStop s.t. P sr−→ P ′ and P ′ sr,i−1−−−−→ Q.

We define contextual equivalence by observing whether a process may- or should become
successful, i.e. may-observation means that the process can be reduced to a successful process,
and should-observation means that the process never looses the ability to become successful.

I Definition 2.2. A process P is successful (denoted by stop(P)) if P ≡ Stop |||P ′ for
some process P ′. May-convergence ↓ is defined as P↓ iff ∃P ′ : P sr,∗−−→ P ′ ∧ stop(P ′) and

WPTE’15

34 Observing Success in the Pi-Calculus

should-convergence ⇓ is defined as: P⇓ iff ∀P ′ : P sr,∗−−→ P ′ =⇒ P ′↓. We write P↑ (P is
may-divergent) iff P⇓ does not hold, and P⇑ (P is must-divergent) iff P↓ does not hold.

For ξ ∈ {↓,⇓, ↑,⇑}, the preservation preorders ≤ξ are defined as P ≤ξ Q iff Pξ =⇒ Qξ.
Contextual preorder ≤c is defined as ≤c := ≤c,↓ ∩ ≤c,⇓ where for ξ ∈ {↓,⇓, ↑,⇑}: P ≤c,ξ Q
iff ∀C ∈ CStop : C[P] ≤ξ C[Q]. Contextual equivalence ∼c is defined as ∼c := ≤c ∩ ≥c.

For ξ ∈ {↓,⇓, ↑,⇑} we write ≥c,ξ for (≤c,ξ)−1 and ∼c,ξ for the intersection ≤c,ξ ∩ ≥c,ξ.

Note that P↑ is equivalent to ∃P ′ : P sr,∗−−→ P ′ ∧ P ′⇑ and note also that for any successful
process P , any contractum P ′ is also successful, i.e. stop(P) ∧ P sr,∗−−→ P ′ =⇒ stop(P ′).

Since reduction includes transforming processes using structural congruence, structural
congruent processes are contextually equivalent:

I Proposition 2.3. If P ≡ Q, then for ξ ∈ {↓,⇓, ↑,⇑}: P ≤ξ Q, P ≤c,ξ Q, Q ≤ξ P ,
Q ≤c,ξ P and thus in particular P ∼c Q.

Some easier properties are:

I Lemma 2.4. 1. If P sr−→ Q then νx.P sr−→ νx.Q.
2. If νx.P sr−→ Q then P sr−→ Q′ such that either Q ≡ νx.Q′ or Q ≡ Q′.
3. For ξ ∈ {↓,⇓, ↑,⇑}: P ≤ξ νx.P and νx.P ≤ξ P .

3 Proof Methods for Contextual Equivalence

For disproving an equation P ∼c Q, it suffices to find a distinguishing context. Proving
an equation P ∼c Q is in general harder, since all contexts must be considered. Hence, we
develop proof tools supporting those proofs. In Sect. 3.1 we show that a context lemma
holds, which restricts the set of contexts that need to be taken into account for proving
P ∼c Q. In contrast to the co-inductive proofs given in [14, 20] for a context lemma for
barbed congruence in the π-calculus, our context lemma is proved inductively and also for
should-convergence. In Sect. 3.2 we show soundness of applicative similarities which permit
co-inductive proofs by analyzing the input or output possibilities on open channels of P and
Q. The applicative similarities are related to the “weak early bisimilarities” in the π-calculus,
but there are some differences which are discussed after the definitions.

3.1 A Context Lemma for May- and Should-Convergence
As a preparation we show two extension lemmas for ≤↓ and ≤↑ w.r.t. contexts of hole depth
1, which are the contexts [·] |||R, R ||| [·], x(y).[·], xy.[·], νx.[·], and ! [·]. To ease reading the
proofs are given in the appendix.

I Lemma 3.1. Let P,Q ∈ ProcStop. If σ(P) |||R ≤↓ σ(Q) |||R for all σ ∈ Σ and R ∈ ProcStop,
then σ(C[P]) |||R ≤↓ σ(C[Q]) |||R for all C ∈ CStop of hole depth 1, all σ ∈ Σ and R ∈ ProcStop.

I Lemma 3.2. Let P,Q ∈ ProcStop. Assume that σ(C[Q]) |||R ≤↓ σ(C[P]) |||R for all σ ∈ Σ,
all C ∈ CStop, and all R ∈ ProcStop. If σ(P) |||R ≤↑ σ(Q) |||R for all σ ∈ Σ and R ∈ ProcStop,
then σ(C[P]) |||R ≤↑ σ(C[Q]) |||R for all C ∈ CStop of hole depth 1, all σ ∈ Σ and R ∈ ProcStop.

I Theorem 3.3 (Context Lemma). For all processes P,Q:
If for all σ,R: σ(P) |||R ≤↓ σ(Q) |||R, then P ≤c,↓ Q.
If for all σ,R: σ(P) |||R ≤↓ σ(Q) |||R ∧ σ(P) |||R ≤⇓ σ(Q) |||R, then P ≤c Q.

D. Sabel and M. Schmidt-Schauß 35

Proof. For the first part it suffices to show that σ(C[P]) |||R ≤↓ σ(C[Q]) |||R for all C ∈ CStop,
σ ∈ Σ, and R ∈ ProcStop, which follows from Lemma 3.1 by induction on the depth of the
hole of the context C. For the second part we use the fact that σ(P) |||R ≤↓ σ(Q) |||R for all
σ,R implies σ(C[P]) |||R ≤↓ σ(C[Q]) |||R for all σ,R,C. By induction on the depth of the hole
of the context C, the fact that σ(P) |||R ≤⇓ σ(Q) |||R is equivalent to σ(Q) |||R ≤↑ σ(P) |||R,
and by Lemma 3.2 it follows σ(C[Q]) |||R ≤↑ σ(C[P]) |||R for all C, σ and thus P ≤c,⇓ Q. J

I Remark. The condition for all σ,R: σ(P) |||R ≤⇓ σ(Q) |||R is in general not sufficient for
P ≤c,⇓ Q. Let P := νx.xy |||x(y).Stop |||x(y) and Q := 0. Then σ(P) |||R ≤⇓ σ(Q) |||R for all
σ and R, but P 6≤c,⇓ Q, since the context ! [·] distinguishes P and Q: !P⇓ while !Q⇑.

3.2 Applicative Similarities
We first provide co-inductive definitions of ≤↓ and ≤↑, which will ease some of our proofs:

I Definition 3.4. We define the operators F↓ and F↑ on binary relation on processes:
For η ⊆ (ProcStop × ProcStop), P F↓(η) Q holds iff
1. If P is successful (i.e. stop(P)), then Q↓.
2. If P sr−→ P ′, then there exists Q′ such that Q sr,∗−−→ Q′ and P ′ η Q′.
For η ⊆ (ProcStop × ProcStop), P F↑(η) Q holds iff
1. If P⇑, then Q↑.
2. If P sr−→ P ′, then there exists Q′ such that Q sr,∗−−→ Q′ and P ′ η Q′.

The relation -↓ (-↑, resp.) is the greatest fixpoint of the operator F↓ (F↑, resp.).

For an operator F on binary relations, a relation η is F -dense, iff η ⊆ F (η). The
co-induction principle is that an F -dense relation η is contained in the greatest fixpoint of F .

Since≤↓ is F↓-dense and ≤↑ is F↑-dense, the following lemma holds.

I Lemma 3.5. ≤↓ = -↓ and ≤↑ = -↑.

Before defining “applicative similarities” for may- and should-convergence, we define the
property of a relation to preserve the input and output capabilities of one process w.r.t. another
process. This definition is analogous to preserving actions in labeled bisimilarities. We prefer
this definition here, since we can omit the definition of a labeled transition system.

I Definition 3.6. For processes P,Q ∈ ProcStop and a binary relation η ⊆ (ProcStop ×
ProcStop), we say η preserves the input/output capabilities of P w.r.t. Q iff:

Open input: If P ≡ νX .(x(y).P1 |||P2) with x 6∈ X , then for every name z ∈ N there
exists a process Q′ ∈ ProcStop s.t. Q sr,∗−−→ Q′, Q′ ≡ νY.(x(y).Q1 |||Q2) with x 6∈ Y, and
(νX .(P1[z/y] |||P2)) η (νY.(Q1[z/y] |||Q2)).
Open output: If P ≡ νX .(xy.P1 |||P2) with x, y 6∈ X , then there exists a process Q′
s.t. Q sr,∗−−→ Q′, Q′ ≡ νY.(xy.Q1 |||Q2) with x, y 6∈ Y , and (νX .(P1 |||P2)) η (νY.(Q1 |||Q2)).
Bound output: If P ≡ νX , νy.(xy.P1 |||P2) with x 6∈ X , then there exists Q′ s.t. Q sr,∗−−→ Q′,
Q′ ≡ νY, νy.(xy.Q1 |||Q2) with x 6∈ Y, and (νX .(P1 |||P2)) η (νY.(Q1 |||Q2)).

I Definition 3.7 ((Full) Applicative Similarities). We define the operators Fb,↓ and Fb,↑ on
binary relations on processes, where applicative ↓-similarity -b,↓ is the greatest fixpoint of
Fb,↓ and applicative ↑-similarity -b,↑ is the greatest fixpoint of the operator Fb,↑.

For η ⊆ (ProcStop × ProcStop), P Fb,↓(η) Q holds iff
1. If P is successful (i.e. stop(P)), then Q↓.
2. If P sr−→ P ′, then ∃Q′ with Q sr,∗−−→ Q′ and P ′ η Q′.
3. If P is not successful, then η preserves the input/output capabilities of P w.r.t. Q.

WPTE’15

36 Observing Success in the Pi-Calculus

For η ⊆ (ProcStop × ProcStop), P Fb,↑(η) Q holds iff
1. If P⇑, then Q↑.
2. If P sr−→ P ′, then ∃Q′ with Q sr,∗−−→ Q′ and P ′ η Q′.
3. If ¬P⇑, then η preserves the input/output capabilities of P w.r.t. Q.
4. Q -b,↓ P .

Full applicative ↓-similarity -σb,↓ and full applicative ↑-similarity -σb,↑ are defined as
P -σb,↓ Q (P -σb,↑ Q, resp.) iff σ(P) -b,↓ σ(Q) (σ(P) -b,↑ σ(Q), resp.) for all σ ∈ Σ. Full
applicative similarity -b is defined as the intersection -b := -σb,↓ ∩ (-σb,↑)−1. Mutual full
⇓-applicative similarity 'b,⇓ is the intersection -σb,↑ ∩(-σb,↑)−1 and mutual full applicative
similarity 'b is the intersection 'b := -b ∩ (-b)−1.

We discuss our definitions of applicative similarity. We first consider -b,↓. Its defin-
ition is related to early labeled bisimilarity for the π-calculus [20], but adapted to the
successfulness-test. However, there is a difference whether a similarity or a bisimilarity
is used. Applicative ↓-bisimilarity would be defined as the largest relation R such that
R and R−1 are Fb,↓-dense. The relation -b,↓ ∩ (-b,↓)−1 is much coarser than applicative
↓-bisimilarity. For instance, the processes Pa,bc := choice(a(u1), choice(b(u2), c(u3))) and
Pab,c := choice(choice(a(u1), b(u2)), c(u3)) are not applicative ↓-bisimilar, since after re-
ducing Pa,bc

sr−→ P0 ≡ νx, y.(x(y1).a(u1) ||| choice(b(u2), c(u3))) there is no process P1 with
Pab,c

sr,∗−−→ P1 s.t. P0 and P ′ are applicative ↓-bisimilar. However, Pa,bc -b,↓ Pab,c and
Pab,c -b,↓ Pa,bc. The following example (adapted from an example in [20]) shows that even
-b,↓ is more discriminating than contextual may preorder:

I Proposition 3.8. Let Sxy := x(z).yz and Syx := y(z).xz. For P := ax ||| !Sxy ||| !Syx and
Q := ay ||| !Sxy ||| !Syx, it holds: ¬(P -b,↓ Q) (and thus also ¬(P -σb,↓ Q)), but P ≤c,↓ Q.

Proof. P -b,↓ Q does not hold, since the output on channel a is different. P ≤c,↓ Q is
proved in the appendix in Lemma A.1. J

The definition of applicative ↑-similarity includes the property Q -b,↓ P , i.e.:

I Proposition 3.9. P -b,↑ Q =⇒ Q -b,↓ P .

Thus – like the discussion before on bisimilarity – this requirement makes the relation -b,↑
very fine-grained: the processes Pa,bc and Pab,c are not applicative ↑-similar, although the
processes are contextually equivalent. The reason for our choice of this definition is that we
did not find a coarser ↑-similarity which is sound for contextual should-preorder. Properties
that must hold for such a definition are that it preserves may-divergence w.r.t. Stop, i.e. ↑,
but also (due to Theorem 5.5, see below) that it preserves the may-divergence w.r.t. barbs.
The second condition holds for -b,↑, since we added Q -b,↓ P in Definition 3.7. Obviously,
-b,↓ preserves may-convergence and -b,↑ preserves may-divergence:

I Lemma 3.10. -b,↓ ⊆ -↓ and -b,↑ ⊆ -↑.

We now show soundness of our applicative similarities.

I Proposition 3.11. For all P,Q,R ∈ ProcStop and all X , the following implications hold:
1. (P -b,↓ Q) =⇒ νX .(P |||R) -↓ νX .(Q |||R).
2. (P -b,↑ Q) =⇒ νX .(P |||R) -↑ νX .(Q |||R).

D. Sabel and M. Schmidt-Schauß 37

Proof. The relation -↓ ∪ {(νX .(P |||R), νX .(Q |||R)) | P -b,↓ Q, for any X , R} is F↓-dense
(proved in the appendix, Lemma A.2) and thus the first part holds. The second part holds,
since the relation -↑ ∪ {(νX .(P |||R), νX .(Q |||R)) | P -b,↑ Q, for any X , R} is F↑-dense,
which is proved in the appendix, Lemma A.3. J

I Theorem 3.12 (Soundness of Full Applicative Similarities). The following inclusions hold:
1. -σb,↓ ⊆ ≤c,↓,
2. -b ⊆ ≤c, and
3. 'b,⇓ = 'b ⊆ ∼c.

Proof. For the first part Proposition 3.11 part (1) shows that σ(P) -b,↓ σ(Q) implies
σ(P) |||R -↓ σ(Q) |||R for all σ,R. Thus, P -σb,↓ Q implies σ′(P) |||R -↓ σ′(Q) |||R for all
σ′, R. Since -↓ = ≤↓ (Lemma 3.5) the context lemma (Theorem 3.3) shows P ≤c,↓ Q.

For the second part we apply both parts of Proposition 3.11 which shows that P -σb,↓ Q
and Q -σb,↑ P imply that σ′(P) |||R -↓ σ′(Q) |||R and σ′(Q) |||R -↑ σ′(P) |||R for all σ′, R.
Since -↓ = ≤↓ and -↑ = ≥⇓ (Lemma 3.5), Theorem 3.3 shows P ≤c Q.

The equation of the last part follows from Proposition 3.9. The inclusion of the last part
follows from the second part and the definitions of 'b and ∼c. J

4 Equivalences and the Contextual Ordering

In this section we analyze the contextual ordering and also show some contextual equivalences.

4.1 Correctness of Deterministic Interaction
We demonstrate our developed techniques for an exemplary program optimization and apply
Theorem 3.12 to show correctness of a restricted variant of the ia-reduction that ensures
determinism. Moreover, the result can be used to show a completeness result w.r.t. the tests
in the context lemma (Corollary 4.3).

I Theorem 4.1 (Correctness of Deterministic Interaction). For all processes P,Q the equation
νx.(x(y).P |||xz.Q)) ∼c νx.(P [z/y] |||Q) holds.

Proof. We use Theorem 3.12 and show that νx.(x(y).P |||xz.Q)) 'b,⇓ νx.(P [z/y] |||Q).
Let S := {(σ(νx.(x(y).P |||xz.Q)), σ(νx.(P [z/y] |||Q))) | for all x, y, z, P,Q, σ} ∪ ≡. We

show that S and S−1 are Fb,↓-dense and Fb,↑-dense.
Let (R1, R2) = (σ(νx.(x(y).P |||xz.Q)), σ(νx.(P [z/y] |||Q))). Then (R1, R2) ∈ Fb,↓(S):

1. R1 is not successful, so there is nothing to show.
2. If R1

sr−→ R′1, then R′1 ≡ R2 and (R2, R2) ∈ S.
3. R1 does not have an open input or output, thus there is nothing to show.
Also (R2, R1) ∈ Fb,↓(S−1):
1. If R2 is successful, then R1↓, since R1

sr−→ R2.
2. If R2

sr−→ R′2, then R1
sr,2−−→ R′2 and (R′2, R′2) ∈ S−1.

3. If R2 has an open input or output, then R1
sr−→ R2 and the condition of Fb,↓ can be

fulfilled.
Thus S and S−1 are Fb,↓-dense, and thus R1 -b,↓ R2 and R2 -b,↓ R1 for any (R1, R2) ∈ S.

Now we show that (R1, R2) ∈ Fb,↑(S):
1. If R1⇑ then R2⇑, since R1

sr−→ R2.
2. If R1

sr−→ R′1, then R′1 ≡ R2 (since there is only one reduction possibility for R1) and
(R′1, R′1) ∈ S.

WPTE’15

38 Observing Success in the Pi-Calculus

3. R1 does not have an open input or output, thus there is nothing to show.
4. R2 -b,↓ R1 is already proved.
Finally, also (R2, R1) ∈ Fb,↑(S−1):
1. If R2⇑ then clearly R1↑.
2. If R2

sr−→ R′2, then R1
sr,2−−→ R′2 and (R′2, R′2) ∈ S−1.

3. If R2 has an open input or output, then R1
sr−→ R2 and the condition of Fb,↑ can be

fulfilled.
4. R1 -b,↓ R2 is already proved.

Thus S and S−1 are Fb,↑-dense and R1 -b,↑ R2 and R2 -b,↑ R1 for all (R1, R2) ∈ S and
thus Theorem 3.12 shows the claim. J

Contextual preorder does not change, if we additionally consider all name substitutions:

I Lemma 4.2. For ξ ∈ {↓,⇓}: P ≤c,ξ Q iff ∀C ∈ CStop, σ ∈ Σ: C[σ(P)] ≤ξ C[σ(Q)].

Proof. “⇐” is trivial. For “⇒” we define for σ = {x1 7→ y1, . . . , xn 7→ yn} the context
Cσ := νW.(w1(x1).w2(x2).wn(xn).[·] |||w1y1 ||| . . . |||wnyn) where W = {w1, . . . , wn} and
W ∩ (fn(P) ∪ fn(Q)) = ∅. The reductions Cσ[P] ia,∗−−→ σ(P) and Cσ[Q] ia,∗−−→ σ(Q) are
valid, where all ia-steps are deterministic and thus by Theorem 4.1 Cσ[P] ∼c σ(P) and
Cσ[Q] ∼c σ(Q). Now let P ≤c,ξ Q and let C, σ s.t. C[σ(P)]ξ. Since σ(P) ∼c Cσ[P] also
C[Cσ(P)]ξ which in turn implies C[Cσ(Q)]ξ. Since Cσ[Q] ∼c σ(Q), this shows C[σ(Q)]ξ.
Since C, σ were chosen arbitrarily, C[σ(P)] ≤ξ C[σ(Q)] holds for all C ∈ CStop and σ ∈ Σ. J

Thus, the tests of the context lemma (Theorem 3.3) are complete w.r.t. ≤c:

I Corollary 4.3. For all P,Q ∈ ProcStop:
P ≤c,↓ Q iff for all σ ∈ Σ, R ∈ ProcStop: σ(P) |||R ≤↓ σ(Q) |||R.
P ≤c Q iff for all σ ∈ Σ, R ∈ ProcStop, ξ ∈ {↓,⇓}: σ(P) |||R ≤ξ σ(Q) |||R.

4.2 Results on the Contextual Ordering
We show several properties on the contextual ordering and equivalence. All successful
processes are in the same equivalence class. More surprisingly, all may-convergent processes
are equal w.r.t. contextual may-convergence, which is a strong motivation to also consider
should-convergence. Further results are that Stop is the largest element in the contextual
ordering, and there is no least element:

I Theorem 4.4.
1. If P,Q are two successful processes, then P ∼c Q.
2. If P,Q are two processes with P↓, Q↓, then P ∼c,↓ Q.
3. There are may-convergent processes P,Q with P 6∼c Q.
4. Stop is the greatest process w.r.t. ≤c.
5. 0 is the smallest process w.r.t. ≤c,↓.
6. There is no smallest process w.r.t. ≤c.

Proof. For (1) let P and Q be successful. Then for any σ ∈ Σ and any R ∈ ProcStop also
σ(P) |||R and σ(Q) |||R are successful. This implies σ(P) |||R↓, σ(Q) |||R↓, σ(P) |||R⇓, and
σ(Q) |||R⇓ for all R ∈ ProcStop and σ ∈ Σ and thus Theorem 3.3 shows P ∼c Q.

Since P↓ =⇒ σ(P) |||R↓ for any process P,R and σ ∈ Σ, Theorem 3.3 shows part (2).
For (3) the empty context distinguishes choice(Stop,0) and Stop: choice(Stop,0)↓, and

choice(Stop,0)↑, while Stop⇓, hence choice(Stop,0) 6∼c Stop.

D. Sabel and M. Schmidt-Schauß 39

For part (4) clearly Stop |||R⇓ for all R. Since Stop |||R⇓ =⇒ Stop |||R↓, we have
σ(P) |||R ≤↓ Stop |||R and σ(P) |||R ≤⇓ Stop |||R for any P , σ, and R. Thus Theorem 3.3
shows P ≤c Stop for any process P .

Part (5) follows from Theorem 3.12, since {(0, P) | P ∈ ProcStop} is Fb,↓-dense.
For (6) assume that there is a process P0 that is the smallest one, i.e. P0 ≤c P for all

processes P . Then P0⇑, since P0 ≤c 0. Let P0
∗−→ P1, such that P1 = D[x(y).P3], and where

x is free. With D1 = xy.Stop we obtain D1[P1]↓, but D1[0] ≡ xy.Stop⇑. We argue similarly
for outputs. Thus the reducts of P0 do not have open outputs. Now let P = x(y).0, where
by our assumption P0 ≤c,⇓ P holds. Let D = [·] |||xy.0 |||x(y).Stop. Then D[P0]⇓, since there
is no communication between the reducts of P0 and D, but D can always be reduced to a
successful process. Now consider D[P]. It is D[P]→ 0 |||x(y).Stop, which is must-divergent,
hence we have reached the contradiction P0 6≤c,⇓ P . J

We show that it is suffices to test should-convergence in all contexts, since all tests for
may-convergence can be encoded:

I Theorem 4.5.
1. ≤c,⇓ = ≤c,
2. ≤c 6= ≤c,↓,
3. and ≤c,⇓ 6⊆ ∼c,↓.

Proof. For part (1), we show that ≤c,⇓⊆≤c,↓: let Cx,y,X := ! νx, y, νX .[·]. For any process
P with x, y 6∈ fn(P) and X ⊇ fn(P) one can verify that P↓ iff Cx,y,X [P]⇓: If P↓, then
P ′ := νx, y.νX .P↓ by Lemma 2.4 and for !P ′ we can generate a parallel copy of P ′, and
thus Cx,y,X [P]⇓. If Cx,y,X [P]⇓, then νx, y,X .P↓, since parallel copies of νx, y,X .P cannot
communicate due to the name restriction. Lemma 2.4 shows P↓. Now let P ≤c,⇓ Q, C[P]↓,
but C[Q]⇑. With fresh names x, y, X = fn(P) ∪ fn(Q): Cx,y[C[P]]⇓ but Cx,y[C[Q]]↑ which
contradicts P ≤c,⇓ Q.

The inequality of part (2) follows from Theorem 4.4 items (5), (6).
For part (3), clearly, 0 ≤c Stop, since Stop is a largest element of ≤c, but 0⇑ while Stop↓,

and thus in ΠStop contextual should-preorder does not imply contextual may-equivalence. J

We conclude this subsection, by analyzing several equations, including the ones from [4].

I Theorem 4.6. For all processes P,Q, the following equivalences hold:
1. !P ∼c ! !P .
2. !P ||| !P ∼c !P .
3. ! (P |||Q) ∼c !P ||| !Q.
4. ! 0 ∼c 0.
5. ! Stop ∼c Stop.
6. ! (P |||Q) ∼c ! (P |||Q) |||P .
7. x(y).νz.P ∼c νz.x(y).P if z 6∈ {x, y}.
8. xy.νz.P ∼c νz.xy.P if z 6∈ {x, y}.

Proof. This holds, since Si∪-b,↑ and S−1
i ∪-b,↑ are Fb,↑-dense, where Si := {(R ||| li, R ||| ri) |

for all R}, and li, ri are the left and right hand side of the ith equation. J

WPTE’15

40 Observing Success in the Pi-Calculus

5 Results for the Stop-free Calculus

In this section we consider the π-calculus Π without the constant Stop but with barbed
may- and should-testing as notion of process equivalence. We will show a strong connection
between ΠStop and Π which makes a lot of results transferable.

I Definition 5.1. Let Π be the subcalculus of ΠStop that does not have the constant Stop as
a syntactic construct. Processes, contexts, reduction, structural congruences are accordingly
adapted for Π. We write Proc for the set of processes of Π and C for the set of contexts of Π.

We define the notion of a barb, i.e. that a process can receive a name on an open channel1.
Barbed may- and should-testing is defined analogously to contextual equivalence, where the
observation of success is replaced by observing barbs:

I Definition 5.2. Let P ∈ Proc and x ∈ N . A process P has a barb on input x (written as
P �x) iff P ≡ νX .(x(y).P ′ |||P ′′) where x 6∈ X . We write P �x iff there exists P ′ s.t. P

sr,∗−−→ P ′

and P ′ �x. We write P ��x iff for all P ′ with P sr,∗−−→ P ′ also P ′ �x holds. We write P ��x iff
P �x does not hold, and we write P �x iff P ��x does not hold.

For a name x ∈ N , barbed may- and should-testing preorder ≤c,barb and barbed may- and
should-testing equivalence ∼c,barb are defined as ≤c,barb:=≤c,�x ∩ ≤c,��x and ∼c,barb:=≤c,barb
∩(≤c,barb)−1 where for ξ ∈ {�x, ��x,�x, ��x} and P,Q ∈ Proc the inequality P ≤c,ξ Q holds iff
for all contexts C ∈ C : C[P]ξ =⇒ C[Q]ξ.

In difference to observing success, the barb behavior is not stable under reduction, e.g. for
the process P = x(z) |||xy, P �x holds, but P sr−→ 0 and 0��x. We show that in ∼c,barb the
concrete name x is irrelevant:

I Proposition 5.3. For all x, y ∈ N : ≤c,�x
= ≤c,�y

and ≤c,��x
= ≤c,��y

.

Proof. First assume P ≤c,�x
Q, C[P]�y, but C[Q]��y. Let C ′ = yw.x(w′).0 ||| νX .([·]) where

X = (fn(C[P]) ∪ fn(C[Q])) \ {y}. From C[P]�y also C ′[C[P]]�x follows. Hence C ′[C[Q]]�x
holds, too. But, the structure of C ′ shows that this is only possible if C[Q] sr,∗−−→ Q′ with Q′ �y

and thus C[Q]��y cannot hold. Now assume P ≤c,��x Q and C[P]��y, but C[Q]�y. Clearly,
C ′[C[P]]��x holds. The assumption C[Q]�y implies that C[Q] sr,∗−−→ Q′ with Q′��y. Then also
C ′[Q′]��x, and since C ′[C[Q]] sr,∗−−→ C ′[Q′] we also have C ′[C[Q]]�x. This is a contradiction,
since P ≤c,��x Q implies C ′[C[P]]��x =⇒ C ′[C[Q]]��x. J

I Corollary 5.4. P ≤c,barb Q iff ∀x ∈ N : P ≤c,�x
Q ∧ P ≤c,��x

Q.

We show that contextual equivalence of ΠStop conservatively extends barbed testing
equivalence of the π-calculus: P ∼c,barb Q =⇒ P ∼c Q for all stop-free P,Q. Moreover,
on Stop-free processes2 P,Q, contextual equivalence is also complete for barbed testing,
i.e. P ∼c Q =⇒ P ∼c,barb Q. Thus the identity translation (see e.g. [22] for properties of
translations) from Π into ΠStop is fully-abstract w.r.t. ∼c,barb in Π and ∼c in ΠStop.

I Theorem 5.5. For all processes P,Q ∈ Proc: P ≤c,barb Q ⇐⇒ P ≤c Q, and hence also
P ∼c,barb Q ⇐⇒ P ∼c Q.

1 We only consider an input capability here, since the barbed may- and should-testing equivalence does
not change if also output capabilities are observed.

2 Stop-free means without occurrences of Stop.

D. Sabel and M. Schmidt-Schauß 41

Proof. Let P,Q be Stop-free processes. It suffices to show that P ≤c,�x Q iff P ≤c,↓ Q and
P ≤c,��x

Q iff P ≤c,⇓ Q. In the remainder of the proof let ψu,v(R) be the process (or context)
R with every occurrence of Stop replaced by u(v) and let ψ−1

u,v(R) be the process (or context)
R with every occurrence of the subprocess u(v) be replaced by Stop.

P ≤c,�x Q =⇒ P ≤c,↓ Q: Let P ≤c,�x Q and C ∈ C with C[P]↓, i.e. C[P] = P0
sr−→

P1 . . .
sr−→ Pn s.t. stop(Pn). Let u, v be fresh names. Then ψu,v(C)[P] = ψu,v(P0) sr−→

ψu,v(P1) sr−→ . . .
sr−→ ψu,v(Pn), since ia-reductions do not use Stop and the axiom

νz.Stop ≡ Stop can be replaced by νz.u(v) ≡ u(v) (since u is fresh). Since Pn ≡ Stop |||R,
we have ψu,v(Pn) ≡ (u(v) |||ψu,v(R)) and thus ψu,v(Pn) �u and ψu,v(C)[P]�u. By Propos-
ition 5.3 and P ≤c,�x

Q we have P ≤c,�u
Q and thus ψu,v(C)[Q]�u, i.e. ψu,v(C)[Q] sr−→

Q1 . . .
sr−→ Qm where Qm �u, i.e. Qm ≡ νX .(u(v).R1 |||R2). The reduction cannot perform

an ia-reduction using the prefix u(v), since u is fresh, and thus R1 = 0. Thus the reduction
C[Q] sr−→ ψ−1

u,v(Q1) . . . sr−→ ψ−1
u,v(Qm) exists, and ψ−1

u,v(Qm) ≡ νx1, . . . xn.(Stop |||ψ−1
u,v(R2))

and thus C[Q]↓.
P ≤c,↓ Q =⇒ P ≤c,�x

Q: Let P ≤c,↓ Q, C be a Stop-free context, and C[P]�x.
Then C[P] sr−→ P1 . . .

sr−→ Pn ≡ νX .(x(y).P ′ |||P ′′), and for C1 := ([·] |||xy.Stop) we have
C1[C[P]]↓, since the reduction for C[P] can be used and results in C1[Pn] which reduces
to a successful process. P ≤c,↓ Q also implies C1[C[Q]]↓ and the corresponding reduction
C1[C[Q]] sr,∗−−→ Qm with stop(Qm) must include an ia-reduction with a redex of the
form x(z).R |||xy.Stop. Let Qi

sr,∗−−→ Qi+1 be this step in C1[C[Q]] sr,∗−−→ Qm. The prefix
C1[C[Q]] sr,i−−→ Qi can be used to construct a reduction C[Q] sr,i−−→ Q′i where Q′i �

x and
thus C[Q]�x.
P ≤c,⇓ Q =⇒ P ≤c,��x

Q: Let P ≤c,⇓ Q. For any Stop-free context C ∈ C we have to
show: C[Q]�x =⇒ C[P]�x. Let C be a Stop-free context with C[Q]�x, i.e. C[Q] sr,∗−−→ Q′

and ¬(Q′�x). Then also C1[C[Q]]↑ with C1 = [·] |||xy.Stop, since C1[C[Q]] sr,∗−−→ C1[Q′] and
C1[Q′] cannot become successful (otherwise Q′�x would hold). P ≤c,⇓ Q implies C1[C[P]]↑,
i.e. C1[C[P]] sr,∗−−→ P ′ and P ′⇑. The reduction C1[C[P]] sr,∗−−→ P ′ can never reduce
xy.Stop, since otherwise P ′⇑ cannot hold, and thus we can assume that P ′ ≡ C1[P ′′] and
C[P] sr,∗−−→ P ′′. Again P ′′↓ �x cannot hold (otherwise C1[P ′′]⇑ would not hold) and thus
C[P]�x.
P ≤c,��x

Q =⇒ P ≤c,⇓ Q. Let P ≤c,��x
Q and C be a context with C[Q]↑, i.e. C[Q] =

Q0
sr−→ . . .

sr−→ Qn and Qn⇑. Let u, v be fresh names. Then ¬(ψu,v(Qn)�u) and also
ψu,v(Qi)

sr−→ ψu,v(Qi+1) and thus ψu,v(C)[Q]�u. From P ≤c,��x
Q (using Proposition 5.3)

we have P ≤c,��u
Q and thus ψu,v(C)[P]�u, i.e. C ′[P] sr,∗−−→ Pm and ¬(Pm�u). Then

ψ−1
u,v(Pn)⇑ (otherwise Pn�u would hold). Also ψ−1

u,v(Pi)
sr−→ ψ−1

u,v(Pi+1), since Pi
sr−→ Pi+1

cannot reduce any occurrence of u(v). This shows C[P]↑.
J

Theorem 5.5 enables us to transfer some of the results for ΠStop into Π.

I Corollary 5.6. All equations in Theorem 4.6 (except for equation 5) also hold in Π for
Stop-free processes, and for barbed testing equivalence ∼c,barb. Deterministic interaction (see
Theorem 4.1) is correct in Π for ∼c,barb.

Also Theorem 4.5 can be transferred to Π by applying Theorem 5.5, which shows that
barbed should-testing preorder implies barbed may-testing equivalence (which does not hold
for ΠStop and contextual preorders, see Theorem 4.5 (3)):

I Corollary 5.7. For all Stop-free processes P,Q ∈ Proc: P ≤c,��x Q implies P ∼c,�x Q.

WPTE’15

42 Observing Success in the Pi-Calculus

Proof. The inclusion ≤c,��x ⊆ ≤c,�x follows from Theorems 4.5 and 5.5. Before proving the
remaining part, we show that the equivalence P�x ⇐⇒ C1[P]�y holds, where C1 := R ||| [·] with
R = νz.(zy ||| z(w).w(w′) |||xx′.z(z′)) and P is any process with fn(P) ∩ {w,w′, z, z′, x′} = ∅
We have to show two implications:
1. P �x =⇒ C1[P] �y: If P �x, then C1[P] can be reduced to P ′′ := νz.(z(w).w(w′)) |||P ′

where P ′ is the contractum of P after receiving x′ along x. Clearly, P ′′ cannot barb on y
(i.e. P ′′ ��y) and thus C1[P]�y.

2. C1[P]�y =⇒ P �x: We show its contrapositive P ��x =⇒ C1[P] ��y. If P ��x, then in any
reduction of C1[P] the process P cannot interact with the process R, and since R ��y,
also C1[P] ��y holds.

We show ≤c,��x
⊆ (≤c,�x

)−1: Let P ≤c,��x
Q, C[Q]�x, but C[P] ��x. Proposition 5.3 and

P ≤c,��x Q imply Q ≤c,�y P . But C1[C[Q]]�y while C1[C[P]]��y which is a contradiction. J

Finally, we show that there is no surjective encoding from ΠStop into Π which preserves the
ordering of processes w.r.t. contextual preorder in ΠStop and barbed testing preorder in Π.

I Theorem 5.8. There is no surjective translation ψ : ΠStop → Π s.t. for all P,Q ∈ ProcStop:
P ≤c Q =⇒ ψ(P) ≤c,barb ψ(Q).

Proof. This holds since Stop is a largest element of ΠStop w.r.t. ≤c, but in Π there is no largest
element w.r.t. ≤c,barb: Assume the claim is false, and P is a largest element w.r.t. ≤c,barb.
Let X = fn(P) and x 6∈ X . Then x(z) 6≤c,barb P , since νX .x(z)�x but νX .P ��x. J

6 Conclusion

We analyzed contextual equivalence w.r.t. may- and should-convergence in a π-calculus with
Stop. We proved a context lemma and showed soundness of an applicative similarity. Since
ΠStop with contextual equivalence conservatively extends the π-calculus without Stop and
barbed testing equivalence, this also provides a method to show barbed testing equivalences.

Future work may investigate extensions or variants of the calculus ΠStop, e.g. with
(guarded) sums, or with recursion. The results of this paper may also open easier possibilities
to define and analyze embeddings of ΠStop into other concurrent program calculi (e.g., the
CHF-calculus [17, 18]) which also use a contextual semantics.

References
1 M. Boreale and R. De Nicola. Testing equivalence for mobile processes. Inform. and

Comput., 120(2):279–303, 1995.
2 A. Carayol, D. Hirschkoff, and D. Sangiorgi. On the representation of McCarthy’s amb in

the pi-calculus. Theoret. Comput. Sci., 330(3):439–473, 2005.
3 R. De Nicola and M. Hennessy. Testing equivalences for processes. Theoret. Comput. Sci.,

34:83–133, 1984.
4 J. Engelfriet and T. Gelsema. A new natural structural congruence in the pi-calculus with

replication. Acta Inf., 40(6-7):385–430, 2004.
5 C. Fournet and G. Gonthier. A hierarchy of equivalences for asynchronous calculi. J. Log.

Algebr. Program., 63(1):131–173, 2005.
6 D. Gorla. Towards a unified approach to encodability and separation results for process

calculi. Inf. Comput., 208(9):1031–1053, 2010.
7 C. Laneve. On testing equivalence: May and must testing in the join-calculus. Technical

Report Technical Report UBLCS 96-04, University of Bologna, 1996.

D. Sabel and M. Schmidt-Schauß 43

8 R. Milner. Communicating and Mobile Systems: the π-calculus. CUP, 1999.
9 R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, i & ii. Inform. and

Comput., 100(1):1–77, 1992.
10 R. Milner and D. Sangiorgi. Barbed bisimulation. In Proc. ICALP 1992, LNCS 623, pp.

685–695. Springer, 1992.
11 J.H. Morris. Lambda-Calculus Models of Programming Languages. PhD thesis, MIT, 1968.
12 V. Natarajan and R. Cleaveland. Divergence and fair testing. In Proc. ICALP 1995,

LNCS 944, pp. 648–659. Springer, 1995.
13 K. Peters, T. Yonova-Karbe, and U. Nestmann. Matching in the pi-calculus. In Proc.

EXPRESS/SOS 2014, EPTCS 160, pp. 16–29. Open Publishing Association, 2014.
14 B. C. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Math. Structures

Comput. Sci., 6(5):409–453, 1996.
15 Gordon D. Plotkin. Call-by-name, call-by-value, and the lambda-calculus. Theoret. Comput.

Sci., 1:125–159, 1975.
16 A. Rensink and W. Vogler. Fair testing. Inform. and Comput., 205(2):125–198, 2007.
17 D. Sabel and M. Schmidt-Schauß. A contextual semantics for Concurrent Haskell with

futures. In Proc. PPDP 2011, pp. 101–112. ACM, 2011.
18 D. Sabel and M. Schmidt-Schauß. Conservative concurrency in Haskell. In Proc. LICS

2012, pp. 561–570. IEEE, 2012.
19 D. Sabel. Structural rewriting in the pi-calculus. In Proc. WPTE 2014, volume 40 of

OASIcs, pages 51–62. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014.
20 D. Sangiorgi and D. Walker. The π-calculus: a theory of mobile processes. CUP, 2001.
21 M. Schmidt-Schauß and D. Sabel. Closures of may-, should- and must-convergences for

contextual equivalence. Inform. Process. Lett., 110(6):232 – 235, 2010.
22 M. Schmidt-Schauß, D. Sabel, J. Niehren, and J. Schwinghammer. Observational program

calculi and the correctness of translations. Theoret. Comput. Sci., 577:98–124, 2015.

A Proofs for the Calculus ΠStop

Proofs of Lemmas 3.1 and 3.2. For Lemma 3.1, we analyze all contexts of hole depth 1:
1. C = [·] |||S: Then σ(C[P]) |||R ≡ (σ(P) |||R′) and σ(C[Q]) |||R ≡ σ(Q) |||R′ with R′ =

σ(S) |||R. The precondition of the claim implies that σ(P) |||R′ ≤↓ σ(Q) |||R′ and thus
Proposition 2.3 shows σ(C[P]) |||R ≤↓ σ(C[Q]) |||R.

2. C = S ||| [·]: The claim follows from the previous item and Proposition 2.3.
3. C = νx.[·]: Since σ(P) |||R ≤↓ σ(Q) |||R holds by the precondition of the claim, Lemma 2.4

shows the claim.
4. C = x(y).[·]: Let σ(C[P]) |||R

sr,n−−→ Pn where Pn is successful. We use induction on n.
The base case n = 0 holds, since in this case R must be successful, and thus σ(C[Q]) |||R
is successful, too. For the induction step assume σ(x) = x1 and w.l.o.g. σ(y) = y. Let
x1(y).σ(P) |||R sr−→ νX .σ(P)[z/y] |||R′ be the first reduction step of the reduction sequence,
where X ⊆ {z}. The same reduction step for σ(x(y).Q) |||R results in νX .σ′(Q)[z/y] |||R′.
By induction assumption, the lemma holds for the pair σ(P)[z/y] and σ(Q)[z/y], and by
item (3) also for extending it with ν.

5. C = xy.[·]: This case is similar to the previous item.
6. C = ! [·]. Let σ(!P) |||R

sr,n−−→ Pn where stop(Pn). We show σ(!Q) |||R↓ by induc-
tion on n. If n = 0, then R or P is successful. Thus stop(σ(P) |||R) holds and
the precondition of the lemma shows (σ(Q) |||R)↓, which implies σ(!Q) |||R↓. For
n > 0, let σ(!P) |||R sr−→ P1 be the first reduction of σ(!P) |||R

sr,n−−→ Pn: If the re-
dex is inside R, then the same reduction can be performed for σ(!Q |||R) and then

WPTE’15

44 Observing Success in the Pi-Calculus

the induction hypothesis shows the claim. If the redex uses one instance of σ(P)
and parts of R, i.e. P1 ≡ σ(!P) |||RP , s.t. R |||σ(P) sr−→ RP , then we apply the in-
duction hypothesis to P1 and have (σ(!Q) |||RP)↓. This implies σ(!Q) |||σ(P) |||R↓,
since σ(!Q) |||σ(P) |||R sr−→ σ(!Q) |||RP . By the precondition of the lemma we have
σ(!Q) |||σ(P) |||R ≡ σ(P) ||| (σ(!Q) |||R) ≤↓ σ(Q) ||| (σ(!Q) |||R) ≡ σ(!Q) |||R, and thus we
have σ(!Q) |||R↓. If the redex uses two instances of σ(P), i.e. P1 ≡ σ(!P) |||R |||P ′,
s.t. σ(P) |||σ(P) sr−→ P ′, then the induction hypothesis for P1 shows σ(!Q) |||R |||P ′↓. Since
σ(P) |||σ(P) sr−→ P ′, we have σ(!Q) |||R |||σ(P) |||σ(P)↓. We apply the precondition twice:
σ(!Q) |||R |||σ(P) |||σ(P) ≡ σ(P) ||| (σ(P) ||| (σ(!Q) |||R)) ≤↓ σ(Q) ||| (σ(P) ||| (σ(!Q) |||R)) ≡
σ(P) ||| (σ(!Q) |||R) ≤↓ σ(Q) ||| (σ(!Q) |||R) ≡ σ(!Q) |||R and thus σ(!Q) |||R↓.

The proof of Lemma 3.2 is analogous to Lemma 3.1 by replacing ≤↓ with ≤↑, and replacing
the base cases “if σ(C[P]) |||R is successful, then σ(C[Q]) |||R↓” with “if (σ(C[P]) |||R)⇑, then
(σ(C[Q]) |||R)↑” which holds, since σ(C[Q]) |||R ≤↓ σ(C[P]) |||R. J

I Lemma A.1. For P,Q, Sxy, Syx as defined in Proposition 3.8: P ≤c,↓ Q.

Proof. Let S := S1 ∪ S2 ∪ -↓ where S2 := {(σ(P) |||R, σ(Q) |||R) | for any R and σ} and
S1 := {((!Sxy ||| !Syx |||R[x/w] ||| yu1 ||| . . . ||| yun), (!Sxy ||| !Syx |||R[y/w] |||xu1 ||| . . . |||xun))

| for any R, any x, y, w, ui, and any n ≥ 0}
For proving P ≤c,↓ Q, it suffices to show that the relation S is F↓-dense: This implies

σ(P) |||R ≤↓ σ(Q) |||R for all R, σ and thus the context lemma (Theorem 3.3) shows P ≤c,↓ Q.
First let (P1, P2) ∈ S1. If P1 is successful, then clearly also P2 is successful and thus P2 ↓.

If P1
sr−→ P ′1, then there are following cases:

If the redex is inside R[x/w], then either the same reduction can also be performed for
P2, then P2

sr−→ P ′2 and (P ′1, P ′2) ∈ S, or the name x occurs in R. We consider two cases,
where we use the abbreviations Lx := xu1 ||| . . . |||xun and Ly := yu1 ||| . . . ||| yun:
1. If R = νW.(w(z′).R1 |||xv.R2 |||R3) and
P ′1 = !Sxy ||| !Syx ||| νW.(R1[v/z′] |||R2 |||R3)[x/w] |||Ly, then P2

sr−→ P ′2
sr−→ P ′′2 with

P2 = !Sxy ||| !Syx |||Lx ||| νW.(w(z′).R1 |||xv.R2 |||R3)[y/w] and
P ′′2 = !Sxy ||| !Syx |||Lx ||| νW.(R1[v/z′] |||R2 |||R3))[y/w], since xv.R2 |||Sxy

sr−→ R2 ||| yv.
Since (P ′1, P ′′2) ∈ S, we are finished.

2. If R = νW.(x(z′).R1 |||wv.R2 |||R3) and for P ′1 we have
P ′1 = !Sxy ||| !Syx ||| νW.(R1[v/z′] |||R2 |||R3)[x/w] |||Ly, then there exists the reduction
P2

sr−→ P ′2
sr−→ P ′′2 with P2 = !Sxy ||| !Syx |||Lx ||| νW.(x(z′).R1 |||wv.R2 |||R3)[y/w] and

P ′′2 = !Sxy ||| !Syx |||Lx ||| νW.(R1[v/z′] |||R2 |||R3))[y/w], since yv.R2 |||Syx
sr−→ R2 |||xv

and thus (P ′1, P ′′2) ∈ S.
The redex is Syx ||| yui, i.e. with the abbreviation Ly = yu1 ||| . . . yui−1 ||| yui+1 ||| . . . yun,
the reduction is P1 = !Sxy ||| !Syx |||R[x/w] ||| yui |||Ly

sr−→ !Sxy ||| !Syx |||R[x/w] |||xui |||Ly ≡
!Sxy ||| !Syx ||| (R |||wui)[x/w] |||Ly = P ′1. Then for Lx := xu1 ||| . . . xui−1 |||xui+1 ||| . . . xun,
there is the following reduction for process P2: P2 = !Sxy ||| !Syx |||R[y/w] |||xui |||Lx

sr−→
!Sxy ||| !Syx |||R[y/w] ||| yui |||Lx ≡ !Sxy ||| !Syx ||| (R |||wui)[y/w] |||Lx=P ′2 and (P ′1, P ′2) ∈ S.
The redex is Sxy |||R[x/w], i.e. R = wv.R′ and for Ly := yu1 ||| . . . ||| yun we have
P1 = !Sxy ||| !Syx |||xv.R′[x/w] |||Ly

sr−→ !Sxy ||| !Syx |||R′[x/w] ||| yv |||Ly = P ′1. Then for
Lx := xu1 ||| . . . |||xun the reduction P2 = !Sxy ||| !Syx ||| yv.R′[y/w] |||Lx

sr−→ P ′2 exists,
where P ′2 := !Sxy ||| !Syx |||R′[y/w] |||xv |||Lx = P ′2 and thus (P ′1, P ′2) ∈ S.

Now let (P1, P2) ∈ S2 and let a′ = σ(a), x′ = σ(x), y′ = σ(y), z′ = σ(z) . If P1 is
successful, then P2 is successful. If P1

sr−→ P ′1, then there are the cases:
If the redex is inside R, then P2

sr−→ P ′2 and (P ′1, P ′2) ∈ S.

D. Sabel and M. Schmidt-Schauß 45

If R = νW.(a′(w).R′ |||R′′) and P1
sr−→ !σ(Sxy) ||| !σ(Syx) ||| νW.(R′[x/w] |||R′′) := P ′1.

Then P ′1 ≡ !σ(Sxy) ||| !σ(Syx) ||| νW.(R′ |||R′′)[x/w], since we may assume that w was
renamed fresh for R′′. Then P2

sr−→ P ′2 with P ′2 := !σ(Sxy) ||| !σ(Syx) ||| νW.(R′[y/w] |||R′′).
Since P ′2 ≡ !σ(Sxy) ||| !σ(Syx) ||| νW.(R′ |||R′′)[y/w] = P ′2, this shows (P ′1, P ′2) ∈ S.
R = νW.(x′u.R′ |||R′′) and P1

sr−→ a′x′ ||| !σ(Sxy) ||| !σ(Syx) ||| (R′ |||R) ||| y′u = P ′1. Then P2
sr−→ a′y′ ||| !σ(Sxy) ||| !σ(Syx) ||| (R′ |||R) ||| y′u = P ′2. and (P ′1, P ′2) ∈ S.
R = νW.(y′u.R′ |||R′′) and P1

sr−→ a′x′ ||| !σ(Sxy) ||| !σ(Syx) ||| (R′ |||R) |||x′u = P ′1. Then P2
sr−→ a′y′ ||| !σ(Sxy) ||| !σ(Syx) ||| (R′ |||R) |||x′u = P ′2 and (P ′1, P ′2) ∈ S. J

I Lemma A.2. The relation S := {(νX .(P |||R), νX .(Q |||R)) | P -b,↓ Q, for any X , R}∪-↓
is F↓-dense.

Proof. Let (νX .(P |||R), νX .(Q |||R)) ∈ S. We have to show (νX .(P |||R), νX .(Q |||R)) ∈
F↓(S). If νX .(P |||R) is successful, then P or R is successful too, and thus either Q↓ and
so does νX .Q |||R or νX .(Q |||R) is already successful. For νX .(P |||R) sr−→ P1 we show
that νX .(Q |||R) sr,∗−−→ Q1, s.t. (P1, Q1) ∈ S: If the redex of νX .(P |||R) sr−→ P1 is inside
P , i.e. P1 = νX .(P ′ |||R), then by P -b,↓ Q there exists Q′ with Q

sr,∗−−→ Q′, P ′ -b,↓ Q
′.

Since also νX .(Q |||R) sr,∗−−→ νX .(Q′ |||R) and thus (νX .(P ′ |||R), νX .(Q′ |||R)) ∈ S, this case
is finished. If the redex of νX .(P |||R) sr−→ P1 is inside R, i.e. P1 = νX .(P |||R′) then also
νX .(Q |||R) sr−→ νX .(Q |||R′) and (νX .(P |||R′), νX .(Q |||R′)) ∈ S.

The remaining cases are that the redex uses parts of P and parts of R.

If P ≡ νX1.(x(y).P ′ |||P ′′), R ≡ νX2.(xz.R′ |||R′′) with z 6∈ X2 and νX .(P |||R) sr−→
νX .(νX1.(P ′[z/y] |||P ′′) ||| νX2.R

′ |||R′′) = P1, then by P -b,↓ Q there exists Q0 s.t.
Q

sr,∗−−→ Q0 = νY1.(x(y).Q′ |||Q′′) and X1.(P ′[z/y] |||P ′′) -b,↓ νY1.(Q′[z/y] |||Q′′). Since
νX .(Q |||R) sr,∗−−→ νX .(Q0 |||R) sr−→ νY1.(Q′[z/y] |||Q′′) ||| νX2.R

′ |||R′′) = Q1, (P1, Q1) ∈ S.
If P ≡ νX1.(x(y).P ′ |||P ′′), R ≡ νz,X2.(xz.R′ |||R′′) and νX .(P |||R) sr−→ P1 with P1 :=
νX .(νz.(νX1.P

′[z/y] |||P ′′ ||| νX2.(R′ |||R′′))), then by P -b,↓ Q there exists a process Q0

s.t. Q sr,∗−−→ Q0, Q0 = νY1.(x(y).Q′ |||Q′′) and νX1.(P ′[z/y] |||P ′′) -b,↓ νY1.(Q′[z/y] |||Q′′).
Since νX .(Q |||R) sr,∗−−→ νX .(Q0 |||R) sr−→ νX .(νz.(νY1.(Q′[z/y] |||Q′′) ||| νX2.(R′ |||R′′))) =
Q1 we have (P1, Q1) ∈ S.
If P ≡ νX1.(xy.P ′ |||P ′′) and R ≡ νX2.(x(z).R′ |||R′′) with y 6∈ X1 and νX .(P |||R) sr−→
νX .(νX1.P

′ |||P ′′) ||| νX2.(R′[y/z] |||R′′) = P1, then by P -b,↓ Q there exists Q0 with
Q

sr,∗−−→ Q0, Q0 = νY1.(xy.Q′ |||Q′′) where y 6∈ Y1 s.t. νX1.(P ′ |||P ′′) -b,↓ Y1.(Q′ |||Q′′).
Since also νX .(Q |||R) sr,∗−−→ νX .(Q0 |||R) sr−→ νX .(νY1.(Q′ |||Q′′) ||| νX2.(R′[y/z] |||R′′)) =
Q1, we have (P1, Q1) ∈ S.
If P ≡ νy.νX1.(xy.P ′ |||P ′′), R ≡ νX2.(x(z).R′ |||R′′), and νX .(P |||R) sr−→ P1 where
P1 := νX .νy.(νX1.(P ′ |||P ′′) ||| νX2.(R′[y/z] |||R′′)), then by P -b,↓ Q there exists Q0 with
Q

sr,∗−−→ Q0, Q0 = νy.νY1.(xy.Q′ |||Q′′) s.t. νX1.(P ′ |||P ′′) -b,↓ νY1.(Q′ |||Q′′). Since also
νX .νy.(Q |||R) sr,∗−−→ νX .νy.(Q0 |||R) sr−→ νX .νy.(νY1.(Q′ |||Q′′) ||| νX2.(R′[y/z] |||R′′)) =
Q1, we have (P1, Q1) ∈ S. J

I Lemma A.3. The relation S := {(νX .(P |||R), νX .(Q |||R)) | P -b,↑ Q, for any X , R}∪-↑
is F↑-dense.

Proof. Note that if P -b,↑ Q, then Q -b,↓ P . Let (νX .(P |||R), νX .(Q |||R)) ∈ S. We
have to show that (νX .(P |||R), νX .(Q |||R)) ∈ F↑(S). If νX .(P |||R) ⇑, then Q -b,↓ P and
Proposition 3.11 show that νX .(Q |||R) -↓ νX .(P |||R) which implies that νX .(P |||R) ≤⇑
νX .(Q |||R) and thus νX .(Q |||R) ↓ . If νX .(P |||R) sr−→ P1, then we have to show that
νX .(Q |||R) sr,∗−−→ Q1, s.t. (P1, Q1) ∈ S. If the redex of νX .(P |||R) sr−→ P1 is inside P ,

WPTE’15

46 Observing Success in the Pi-Calculus

i.e. νX .(P |||R) sr−→ νX .(P ′ |||R) then P -b,↑ Q shows that Q sr,∗−−→ Q′ s.t. P ′ -b,↑ Q
′.

Since νX .(Q |||R) sr,∗−−→ νX .(Q′ |||R) and thus (νX .(P ′ |||R), νX .(Q′ |||R)) ∈ S in this case.
If the redex of νX .(P |||R) sr−→ P1 is inside R, i.e. νX .(P |||R) sr−→ νX .(P |||R′) then also
νX .(Q |||R) sr−→ νX .(Q |||R′) and thus (νX .(P |||R′), νX .(Q |||R′)) ∈ S in this case.

It remains to consider the cases where the redex uses parts of P and parts of R.

If P ≡ νX1.(x(y).P ′ |||P ′′), R ≡ νX2.(xz.R′ |||R′′) with z 6∈ X2 and νX .(P |||R) sr−→
νX .(νX1.(P ′[z/y] |||P ′′) ||| νX2.R

′ |||R′′) = P1, then by P -b,↑ Q there exists Q0 with
Q

sr,∗−−→ Q0 = νY1.(x(y).Q′ |||Q′′) s.t. X1.(P ′[z/y] |||P ′′) -b,↑ νY1.(Q′[z/y] |||Q′′). Since
νX .(Q |||R) sr,∗−−→ νX .(Q0 |||R) sr−→ νY1.(Q′[z/y] |||Q′′) ||| νX2.R

′ |||R′′) = Q1 this shows
(P1, Q1) ∈ S.
If P ≡ νX1.(x(y).P ′ |||P ′′), R ≡ νz,X2.(xz.R′ |||R′′), and νX .(P |||R) sr−→ P1 where P1 :=
νX .(νz.(νX1.P

′[z/y] |||P ′′ ||| νX2.(R′ |||R′′))), then P -b,↑ Q shows that there exists Q0

with Q
sr,∗−−→ Q0 = νY1.(x(y).Q′ |||Q′′) s.t. νX1.(P ′[z/y] |||P ′′) -b,↑ νY1.(Q′[y/z] |||Q′′).

Since νX .(Q |||R) sr,∗−−→ νX .(Q0 |||R) sr−→ νX .(νz.(νY1.(Q′[z/y] |||Q′′) ||| νX2.(R′ |||R′′))) =
Q1 we have (P1, Q1) ∈ S.
If P ≡ νX1.(xy.P ′ |||P ′′), R ≡ νX2.(x(z).R′ |||R′′) with y 6∈ X1, and νX .(P |||R) sr−→ P1
with P1 := νX .(νX1.P

′ |||P ′′) ||| νX2.(R′[y/z] |||R′′), then P -b,↑ Q shows that Q sr,∗−−→ Q0
with Q0 := νY1.(y.Q′ |||Q′′) where y 6∈ Y1 s.t. νX1.(P ′ |||P ′′) -b,↑ Y1.(Q′ |||Q′′). Since
νX .(Q |||R) sr,∗−−→ νX .(Q0 |||R) sr−→ νX .(νY1.(Q′ |||Q′′) ||| νX2.(R′[y/z] |||R′′)) = Q1, we have
(P1, Q1) ∈ S.
If P ≡ νy,X1.(xy.P ′ |||P ′′), R ≡ νX2.(x(z).R′ |||R′′), and νX .(P |||R) sr−→ P1 with P1 :=
νX .νy.(νX1.(P ′ |||P ′′) ||| νX2.(R′[y/z] |||R′′)), then P -b,↑ Q shows that Q sr,∗−−→ Q0 with
Q0 = νy.νY1.(y.Q′ |||Q′′) s.t. νX1.(P ′ |||P ′′) -b,↑ νY1.(Q′ |||Q′′). Since also the reduc-
tion νX .νy.(Q |||R) sr,∗−−→ νX .νy.(Q0 |||R) sr−→ Q1 exists, where the process Q1 is Q1 :=
νX .νy.(νY1.(Q′ |||Q′′) ||| νX2.(R′[y/z] |||R′′)), this shows(P1, Q1) ∈ S. J

Formalizing Bialgebraic Semantics in PVS 6.0
Sjaak Smetsers1, Ken Madlener1, and Marko van Eekelen1,2

1 Institute for Computing and Information Sciences, Radboud University
Postbus 9010, 6500 GL Nijmegen, The Netherlands
{S.Smetsers,K.Madlener}@cs.ru.nl

2 School of Computer Science, Open University of the Netherlands
Postbus 2960, 6401 DL Heerlen, The Netherlands
{M.vanEekelen}@cs.ru.nl

Abstract
Both operational and denotational semantics are prominent approaches for reasoning about prop-
erties of programs and programming languages. In the categorical framework developed by Turi
and Plotkin both styles of semantics are unified using a single, syntax independent format, known
as GSOS, in which the operational rules of a language are specified. From this format, the op-
erational and denotational semantics are derived. The approach of Turi and Plotkin is based on
the categorical notion of bialgebras. In this paper we specify this work in the theorem prover
PVS , and prove the adequacy theorem of this formalization. One of our goals is to investigate
whether PVS is adequately suited for formalizing metatheory. Indeed, our experiments show
that the original categorical framework can be formalized conveniently. Additionally, we present
a GSOS specification for the simple imperative programming language While, and execute the
derived semantics for a small example program.

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.3.2 Semantics of Programming
Languages

Keywords and phrases operational semantics, denotational semantics, bialgebras, distributive
laws, adequacy, theorem proving, PVS , While.

Digital Object Identifier 10.4230/OASIcs.WPTE.2015.47

1 Introduction

The formal definition of a real-world programming language is often a monumental under-
taking. The process of verifying metatheory often exceeds human capabilities; due to its
inherent complexity, mechanization time, even for the interesting core facets of the semantics
of real-world programming languages, is prohibitive. The best alternative for complete veri-
fication is to employ well-established methods, such as type systems or the use of mechanized
verification tools. These verification tools are usually based on typed higher-order logic. The
specification languages of these tools often provide automatic code generation, which enables
the execution of specifications. This feature can be used as an additional check of the de-
veloped concepts, before one starts with formally proving properties of these concepts.

In this paper, we present a formalization of both popular styles of semantic specifica-
tions: (structural) operational semantics and denotational semantics. Our main goal is to
experiment with PVS ’s latest feature, so-called declaration parameters, which enable the
specification of polymorphic functions and data structures. The experiments are carried out
with PVS version 6.0, released in February 2013. Previous versions of PVS already offered a
limited form of polymorphism by means of theory level parameters. However, there are situ-

© Sjaak Smetsers and Marko van Eekelen;
licensed under Creative Commons License CC-BY

2nd International Workshop on Rewriting Techniques for Program Transformations and Evaluation (WPTE’15).
Editors: Yuki Chiba, Santiago Escobar, Naoki Nishida, David Sabel, and Manfred Schmidt-Schauß; pp. 47–61

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WPTE.2015.47
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

48 Formalizing Bialgebraic Semantics

ations where these theory parameters are inconvenient, particularly if notions are involved
with a generic nature, such as the categorical concepts used in our formalization.

Our approach is based on a framework developed by Turi and Plotkin [18] unifying both
styles of semantics. By exploiting the language of category theory, they managed to dis-
associate from language-specific details such as concrete syntax and behavior. Given a set
of operational rules, they derived both operational and denotational semantics using the
concept of bialgebras equipped with a distributive law. The format in which these opera-
tional rules are specified is known as the GSOS (Grand Structural Operational Semantics)
format, introduced by [3]. This format originates from the theory of SOS, and has been
given a categorical interpretation by means of bialgebras. Turi and Plotkin prove that the
operational and denotational semantics generated from any set of GSOS rules are consistent
for every input program. Our work is also inspired by previous comparable experiments
with the Coq proof assistant; see [14].

The contribution of our work is threefold. First, we investigate whether PVS 6.0 is
sufficiently expressive for formalizing metatheory. Until now, such PVS developments have
been constrained to only a few metatheoretical experiments. This seems to be a missed
opportunity, because PVS has shown to be very successful in proving properties of com-
puter programs. In our attempt, we extend to a very high abstraction level, namely we
use Turi and Plotkin’s categorical description [18] as the point of inception. Our goal is to
formally prove that their construction is sound, which is expressed in the adequacy theorem.
The second, but not less important contribution is a PVS formalization providing a frame-
work for facilitating both formal reasoning about, and experimentation with semantics of
programming languages1. The setup is such that the user is free to choose between either de-
notational or operational semantics at any point. And third, we illustrate the expressiveness
of our framework with an elaborate example of a standard imperative language specified in
the GSOS format. Until now, concrete applications of GSOS are mostly restricted to process
algebras. The reader is expected to have a modest knowledge of Category Theory. If not,
we recommend [1] as an easy-going starting point.

2 Background

A brief introduction of the basic prerequisite concepts for this paper follows. Let us start
with an example following the approach as, for instance, taken by [9] and [11]. We explain
and illustrate the technicalities using a very simple language of streams (see also [12]). The
operational rules for this stream language are given in Figure 1. These rules inductively
define a transition relation that is a subset of T × L × T, where T, L denote the sets of
closed terms and output labels, respectively. The two basic operations AS and BS generate
constant (infinite) streams of As and Bs whereas the operation Alt yields an alternation of
two streams. The latter operates by repeatedly taking the head of its first argument, and
calling itself recursively on the swapped tails, discarding the head of the second argument.
The first step towards the formalization of such a language is to express both the signature
and behaviour (i.e., the result/effect of an operation) of the operations as functors. In
languages with support for higher-order polymorphism, like the functional language Haskell,
one would express a functor as a type constructor class that is parameterized with the type
(the object map) of the functor. The type class itself contains the corresponding (morphism)

1 All definitions and theorems given in this paper have been formalized and proven. The files of the
development can be obtained via http://www.cs.ru.nl/~sjakie/papers/adequacy/.

http://www.cs.ru.nl/~sjakie/papers/adequacy/

S. Smetsers et. al. 49

AS A−→AS BS B−→BS

x l−→ x ′ y m−→ y′

Alt x y l−→Alt y′ x ′

Figure 1 A simple language for streams.

map. However, PVS only offers first-order type variables which forces us to specify functors
in a slightly more ad hoc way.

Syntax and Σ-algebras
We start with representing the syntax of a language as (open) terms, by introducing the
following datatype:

TER [V : type,F : type, ar : [F → nat]] : datatype begin
tvar (var_id : V) : tvar ?
tapp (op : F , args : [below (ar (op))→ TER]) : tapp ?

end TER

The datatype is parametric in the type V of variables and the signature which is represented
by the set F of operator symbols and the arity map ar . It has two constructors (tvar and
tapp), and two recognizers (tvar? and tapp?)2. These recognizers are used as predicates to
test whether or not a term starts with the respective constructor. The field names var_id,
op and args are used as accessors to extract these components from a term. It is more
convenient, however, to define operations on inductive datatypes by pattern matching. This
datatype definition also illustrates PVS ’s special typing facility: dependent types, i.e., types
depending on values. For example, below (n) denotes the set of natural numbers between 0
and n.

The signature (F and ar) is encoded as a functor which we will call the signature functor.
The following PVS theory3 defines the notion of Σ-functor (consisting of a type Σ, and a
map function mapΣ), and Σ-algebra (categorically, an algebra is defined as a pair consisting
of an object X , called the carrier of the algebra, and a structure map Σ[X]→ X)4. In PVS
syntax, a function type T1 → T2 has the form [T1 → T2], and tuple types have the form
[T1, ..., Tn]. Associated with every n-tuple type is a set of projection functions: ‘1, ‘2, ...,
i.e., by t‘i one selects the ith component from t.

ΣAlgebra [F : type, ar : [F → nat]] : theory begin
Σ [a : type] : type = [f : F , [below (ar (f))→ a]]
mapΣ [a, b : type] (f : [a → b]) (sf : Σ [a]) : Σ [b] =

(sf ‘1, λ (i : below (ar (sf ‘1))) : f (sf ‘2 (i)))
AlgΣ [a : type] : type = [Σ [a]→ a]

end ΣAlgebra

2 PVS allows question marks as constituents of identifiers.
3 PVS uses parameterized theories to organize specifications, i.e, datatypes, function definitions, and
properties.

4 Here, we tacitly omit the fact that the structure map is usually equipped with two so-called functor
laws.

WPTE’15

50 Formalizing Bialgebraic Semantics

In this theory we have used the new feature of PVS 6.0: declaration (level) parameters,
i.e. (type) variables ranging over first-order types. These are comparable to type variables
in, for instance, Haskell and Coq. Combined with the dependent typing facility, these
declaration parameters enable us, for example, to specify the type part of the functor Σ [a]
as a dependent pair being parametric in the object type a.

To illustrate how to use these notions in combination with the simple stream language,
we introduce the following auxiliary theory:

StreamL : theory begin
SigS : type = {AS ,BS ,Alt}
arS (s : sigS) : nat = cases (s) of AS : 0,BS : 0,Alt : 2 endcases

end StreamL

The enumeration type SigS represents the set of operator symbols, whereas the function
arS assigns arities to each of these symbols. We can now use SigS and arS as actual
parameters for ΣAlgebra theory in order to obtain the concrete signature functor.

The datatype TER introduced earlier is also a functor. To make this more explicit, we
introduce T [v] as an abbreviation for TER [v,F , ar]. When PVS typechecks TER then it
automatically generates for TER the corresponding map operation and a folding operation
called reduce. To adhere to standard terminology and to the notation used in the present
paper, we rename these generated operations to mapT and foldT, respectively. Incidentally,
the latter is a standard operation for processing terms that avoids explicit recursion, see also
[16] where this operation is called a catamorphism.

Terms [F : type, ar : [F → nat]] : theory begin importing TER,ΣAlgebra [F , ar]
T [v : type] : type = TER [v,F , ar]

foldT [v, x : type] (e : [v → x], a :AlgΣ [x]) (t :T [v]) : x = reduce (e, a) (t)
mapT [a, b : type] (f : [a → b]) (t :T [a]) :T [b] = map (f) (t)

end Terms

The following uniqueness property is based on the categorical fact that tapp (which is an
algebra for the functor Σ) is initial.

I Proposition 1. Let e : V → X and a : AlgΣ [X]. Then foldT (e, a) is unique in making
the following diagram commute5 :

V tvar //

∀ e
!!

T[V]

foldT (e,a)
��

Σ[T[V]]tappoo

Σ (foldT (e,a))
��

X Σ[X]
∀ a

oo

This propery appears to be very useful as an alternative for structural induction in proofs
of properties on terms. In fact, it allows for a direct translation of diagrammatic proofs
into a PVS formalization. In our experience, these (hand-drawn) diagrammatic proofs are
indispensable as the initial and most important step towards a fully formalized proof. The
‘textual’ PVS version of this proposition is:

5 For the diagrams in this paper we adopted the categorical notation for functors by writing F instead
of mapF , for some functor F .

S. Smetsers et. al. 51

fold_unique [v, x : type] : proposition
∀ (f : [T [v]→ x], e : [v → x], a :AlgΣ [x]) :

f ◦ tvar = e ∧ f ◦ tapp = a ◦ mapΣ (f) ⇔ f = foldT (e, a)

Next, we show that T is a monad in the categorical sense, by defining the corresponding
operations (so-called natural transformations) unit (embedding) and join (composition):

TMonad [F : type, ar : [F → nat]] : theory begin importing Terms [F , ar]

unitT [v : type] (vid : v) :T [v] = tvar (vid)
joinT [v : type] (tt :T [T [v]]) :T [v] = foldT (id, tapp) (tt)

end TMonad

Likewise, from category theory we borrow the notion of T-algebra: A T-algebra (or, more
verbosely, an algebra for the T monad) is a ‘plain’ algebra a with two additional properties:

a ◦ unitT = id (1) a ◦ mapT (a) = a ◦ joinT (2)

Below, these properties are encoded by the predicate TAlg?. Additionally, we introduce a
slightly modified version of foldT, named freeT, taking a T-algebra as argument instead of
a Σ-algebra. In PVS :

TAlgebra [F : type, ar : [F → nat]] : theory begin importing TMonad [F , ar]
AlgT [a : type] : type = [T [a]→ a]

freeT [v,w : type] (e : [v → w], a :AlgT [w]) : [T [v]→ w] = foldT (e, a ◦ tapp ◦ mapΣ (tvar))
TAlg? [w : type] (a :AlgT [w]) : bool = a ◦ unitT = id ∧ a ◦ mapT (a) = a ◦ joinT

end TAlgebra

We end this section with a proposition supplying freeT with a proof principle.

I Proposition 2. Let e : V → W and a : AlgT [W] such that TAlg? (a) holds. Then,
freeT (e, a) is unique in making the following diagram commute:

V unitT//

∀ e !!

T[V]

freeT (e,a)
��

T[T[V]]joinToo

T (freeT (e,a))
��

W T[W]
∀ a

oo

Behaviour and B-coalgebras
The operational semantics of a language is given by a transition relation representing the
execution steps of an abstract machine. These transition relations can be modelled in a
categorial manner using coalgebras (e.g., see [10]). A coalgebra is the dual of an algebra:
for a functor B, the coalgebra consists of a carrier C , and a structure map C → B[C]. We
express a transition relation as a B-coalgebra, with carrier T [V], more specifically, as a
function with type T [V]→ B[T[V]]. We call this coalgebraic formalization the operational
model.

For the stream language, the functor B is defined by B X = (L,X), i.e., B just pairs a
label from L with X . Specifying the operational rules as a coalgebra is straightforward; e.g.,
see [14]. In Section 4 we will give a more elaborate example.

By making the behaviour functor B parametric in X we anticipate the fact that the terms
can be executed according to the operational rules of the language yielding an infinite stream

WPTE’15

52 Formalizing Bialgebraic Semantics

of labels. Categorically, this stream is constructed by taking the greatest fixpoint of B. In
order to express this in PVS , we use PVS ’s capability to introduce co-inductive datatypes.
However, we cannot do this as a general fixpoint construction that is parametric in the
behaviour functor. Incidentally, also Coq forbids such a construction for exactly the same
technical restrictions imposed by its underlying logic, namely, such a construction would
admit instantiations that have no set-theoretic semantics. Instead, we define the output
stream directly as a codatatype, named NB, and extract the functor B from this definition.
In fact, no definitions are required to obtain B: it is automatically generated from the
definition of the codatatype, together with the unfold operation (named coreduce). This
unfolding operation is also know as an anamorphism, see [16].

NB [L : type] : codatatype begin
nb_in (el : L,next : NB) : nb_in ?

end NB

The PVS specification of a coalgebra is as follows:

BCoalgebra [L : type] : theory begin importing NB [L]
B [x : type] : type = NB_struct [L, x]
CoalgB [x : type] : type = [x → B [x]]

outB : CoalgB [NB] = λ (nb : NB) : inj_nb_in (el (nb),next (nb))
unfoldB [x : type] (c : CoalgB [x]) (z : x) : NB = coreduce (c) (z)

end BCoalgebra

The functor B and operation unfoldB coincide with the generated datatype NB_struct
and the (coinductive) function coreduce. As the components of NB_struct (e.g., see the
definition of outB), are also used, we give the definition as is generated by PVS .

NB_struct [L, x : type] : datatype begin
inj_nb_in (inj_el : L, inj_next : x) : inj_nb_in ?

end NB_struct

As said before, the operational model, which represents the transition relation of the
language, is specified as a coalgebra with type CoalgB [T(V)]. The evaluation of a term
(with type T [V])6 is obtained by unfolding the operational model, using the term as ‘initial
seed’.

The function outB is the (unique) final B-colagebra on NB. The following property is
the dual of Propostion 1.

I Proposition 3. Let c : CoalgB [X]. Then, unfoldB (c) is unique in making the following
diagram commute:

X
unfoldB (c) //

∀ c
��

(finality)

NB

outB

��
B[X]

B (unfoldB (c))
// B[NB]

6 Observe that the term might be open, i.e., it is possible to evaluate term containing variables.

S. Smetsers et. al. 53

The proof of this property is done by coinduction on NB. The coinduction principle in PVS
requires the construction of a proper bisimulation relation; e.g., see [8]. This principle is
based on the fact that if two streams are bisimilar, then they are equal.

The “fusion law for anamorphisms” was introduced by [16]. We apply this law in a proof
in Section 3.

unfold_fusion [a, b : type] : lemma
∀ (f : [a → b], c1 : CoalgB [a], c2 : CoalgB [b]) :
mapB (f) ◦ c1 = c2 ◦ f ⇒ unfoldB (c1) = unfoldB (c2) ◦ f

This lemma is proven by applying Proposition 3 twice: once to coalgebra c1 , and the other
to c2 .

3 Bialgebraic semantics

In the previous section we already mentioned that the operational model (abbreviated as
om) is specified as a coalgebra. The dual notion, the denotational model (dm), will be
specified as an algebra. Before actually defining both om and dm, we introduce a general
categorical concept, known as a bialgebra, which is used to link om and dm together.

Formally, let N,M be functors. Then, a bialgebra (for N , M) is a triple 〈V, a, c〉 such
that a is a N -algebra and c is aM -coalgebra, sharing V as the common carrier. For two bial-
gebras, a bialgebra homomorphism is a mapping which is both a N -algebra homomorphism
and a M -coalgebra homomorphism.

The concrete functors of our framework are T (for the syntax), and the so-called free
pointed functor D of B, i.e., D[X] = X × B[X] (for the behaviour). Furthermore, we
consider two bialgebras with carriers T[V] and ND (i.e., greatest fixpoint of D), namely,
〈T[V], joinT, om (Γ)〉 and 〈ND, dm, outD〉. Here, Γ : X → D[X] represents a behaviour
environment. We explain later how om depends on Γ. The following diagram shows these
two bialgebras together with a connecting homomorphism R.

T[T[V]]
T (R) //

joinT

��

T[ND]

dm

��
T[V]

R
//

om (Γ)
��

ND

outD

��
D[T[V]]

D (R)
// D[ND]

Here, R is an (evaluation) function that maps each term to its execution result which is
a (possibly infinite) value of type ND. From this diagram we infer two different ways of
defining R: (1) by considering the top square and using Proposition 2, or (2) by using the
bottom square in combination with Proposition 3. This leads to the following two cases:

RD (Γ) = freeT (unfoldD (Γ), dm) RO (Γ) = unfoldD (om (Γ))

From their construction it follows that both RD (i.e., execution according to the denotational
model) and RO (i.e., execution according to the operational model) are unique. It remains to
be shown that these functions are equal, which is called the adequacy theorem. Obviously,
this depends on the way om and dm are defined. Now, the essence of the framework of

WPTE’15

54 Formalizing Bialgebraic Semantics

[18] is the following: instead of defining om and dm separately, the operational rules of
the language are described by using a specific syntactic format from which both om and
dm are obtained generically (i.e., syntax-independently). The interrelation between om and
dm is given by a so-called distributed law Λ [v : type] : T[D[v]] → D[T[v]] from which both
models can be derived.7 Formally, a distributive law (between a monad, here T, and an
endofunctor, here D) is a natural transformation for which the following two identities hold
(e.g., see [4]):

law_distributive : lemma
Λ ◦ unitT = mapD (unitT) ∧ Λ ◦ joinT = mapD (joinT) ◦ Λ ◦mapT (Λ)

To be a natural transformation, Λ should satisfy:

law_natural : lemma Λ ◦ mapT (mapD (f)) = mapD (mapT (f)) ◦ Λ

In polymorphic functional languages, the latter property is an example of a so-called theorem
for free; see [19]. In essence, this free theorem formalizes the fact that Λ is genuinely
polymorphic.

As for dm, we observe that the codomain of this operation is ND, calling for a definition
based on unfoldD. This leads to:

dm :AlgT [ND] = unfoldD (Λ ◦ mapT (outD))

Dually, we define om as a foldT (actually, we use the special variant freeT of foldT):

om (Γ : [V → D[V]]) : CoalgD [T(V)] = freeT (mapD (unitT) ◦ Γ,mapD (joinT) ◦ Λ)

For a detailed explanation, see [14].
The proof of the adequacy theorem (stating that RD (Γ) = RO (Γ)) is done by using

Proposition 3 with om (Γ) substituted for c. This will immediately lead to the following
commutation property:

T[V]
om (Γ)//

RD (Γ)
��

D[T[V]]

D (RD (Γ))
��

ND outD
// D[ND]

For the proof of this property we apply the alternative proof principle for terms (Propos-
ition 2) using dm as TAlgebra, and thus we need to verify the fact that TAlg? (dm).
The key to this proof is the unfold_fusion lemma. Finally, nowhere in the above proofs it
was required to use any (language-)specific properties of Λ, making the our approach fully
syntax-independent.

4 Semantics of While

We have seen that our treatment of semantics is parametric in the concrete set of opera-
tional rules: the construction of the operational and denotational models did not depend

7 The term distributed law can be explained by considering the type of Λ as a proposition, specifying
that T distributes over D.

S. Smetsers et. al. 55

AJnKs = n

AJxKs = s(x)
AJa1 + a2Ks = AJa1Ks+AJa2Ks
AJa1 − a2Ks = AJa1Ks−AJa2Ks
AJa1 × a2Ks = AJa1Ks×AJa2Ks

Figure 2 Semantics of arithmetic expressions.

〈S1, s〉 ⇒ 〈S′
1, s

′〉
〈S1;S2, s〉 ⇒ 〈S′

1;S2, s
′〉

〈S1, s〉 ⇒ s′

〈S1;S2, s〉 ⇒ 〈S2, s
′〉

〈x := a, s〉 ⇒ s[x 7→ AJaKs] 〈skip, s〉 ⇒ s

〈if c then St else Se, s〉 ⇒ 〈St, s〉 if s(c) 6= 0
〈if c then St else Se, s〉 ⇒ 〈Se, s〉 if s(c) = 0

〈while c do S, s〉 ⇒ 〈if c then (S; while c do S) else skip, s〉

Figure 3 SOS for While.

on language specific properties. As such, our treatment could be classified as ‘meta-meta-
theoretical’.

In this section we demonstrate a paradigmatic example for many concrete (imperative)
programming languages. The language we have chosen is While, appearing in many text-
books on semantics; e.g., see [17]. The standard structural operational semantics is given
as a set of transitions, each of the form 〈S, s〉 ⇒ γ, where γ is either of the form 〈S′, s′〉 or
simply s′.

The complete set of operational rules is given in Figure 3, in small-step style.
This system is based on the evaluation of arithmetic expressions which is defined separ-

ately in Figure 2, in (a sort of) big-step style. Although it is very well possible to specify
both styles of semantics in the bialgebraic framework (for example, see [11]) we will treat
arithmetic expressions differently, by expressing the semantics directly in PVS as a recurs-
ive function; see the PVS proof files. We have simplified the language by omitting boolean
expressions, and restricting conditions to solely (integer) variables. The value 0 will be
interpreted as false; any other value as true.

We specify the operational rules, not directly as a distributive law, but in the so-called
GSOS-format which is more restrictive: the rules given in this format are functions ρ of
type

ρ [v : type] : Σ[D[v]]→ B[T[v]].

As a first step, we introduce appropriate functors for representing the syntax and behaviour.

Syntax
In our PVS formalization, the syntax functor is derived from an enumeration of operator
symbols, and their corresponding arity function. These can subsequently be used as actual
parameters of the Terms theory (see Section 2) to obtain Σ. Concretely,

SigW [V : type] : datatype begin importing Expr [V]
ass (dst : V , src : Expr) : ass ?
skip : skip ?
seq : seq ?

WPTE’15

56 Formalizing Bialgebraic Semantics

ifs (con : V) : ifs ?
while (con : V) : while ?

end SigW

The imported type Expr [V] represents the arithmetic expressions. Aside from the
function arW , the following theory contains some auxiliary definitions which facilitate the
specification of the operational rules and concrete While programs. The representation of
the syntax by T terms requires that the arity of each operation, as returned by arW , should
correspond to the number of T arguments instead of the real number of arguments. This,
for instance, explains why ifs and while have arities 2 and 1, respectively.

WhileLang [V : type] : theory begin importing SigW [V],Expr [V]

arW (s : SigW [V]) : nat = cases (s) of
ass (v, a) : 0, skip : 0, seq : 2, ifs (c) : 2,while (c) : 1

endcases

importing Terms [SigW [V], arW],EmptyFunP
args0 [x : type] : [below (0)→ T [x]] = emptyFun [below (0),T [x]]
args1 [x : type] (a :T [x]) (i : below (1)) :T [x] = a
args2 [x : type] (a1 , a2 :T [x]) (i : below (2)) :T [x] = if i = 0 then a1 else a2 endif

assT [x : type] (v : V , src : Expr) : T [x] = tapp (ass (v, src), args0)
skipT [x : type] : T [x] = tapp (skip, args0)
seqT [x : type] (s1 , s2 :T [x]) : T [x] = tapp (seq, args2 (s1 , s2))
ifT [x : type] (co : V , t, e :T [x]) : T [x] = tapp (ifs (co), args2 (t, e))
whileT [x : type] (co : V , b :T [x]) :T [x] = tapp (while (co), args1 (b))
varT [x : type] (v : x) : T [x] = tvar (v)

end WhileLang

Behaviour
As to the behaviour functor, we must remember that the semantic domain (being the greatest
fixpoint ND of functor D)8, cannot be expressed in terms of D (= X ×B[X]). Again, we will
define ND as a coinductive data type, and let PVS generate the corresponding functor D.
The behaviour functor for While resembles the behaviour functor for the stream language.
However, instead of using a label set, we now need a state transition function for passing the
(possibly) modified store s. The store itself maps variables to integer values. Furthermore,
to represent the two possibilities for γ in the state transitions, we use the Maybe functor
which is given below. The standard mapMb and foldMb operations are defined in terms of
the corresponding map and reduce functions generated by PVS itself.

MBF : theory begin
Maybe [x : type] : datatype begin

nothing : nothing ?
just (fromJust : x) : just ?

end Maybe

mapMb [a, b : type] (f : [a → b]) : [Maybe [a]→ Maybe [b]] = map (f)

8 Some other approaches use NB as domain. However, this is not an essential difference since one can
easily show that NB and ND are isomorphic.

S. Smetsers et. al. 57

foldMb [a, b : type] (nf : b, jf : [a → b]) : [Maybe [a]→ b] = reduce (nf , jf)
end MBF

The data types, and basic operations for representing D in PVS are:

BF [ST : type] : theory begin importing MBF
B [x : type] : type = [ST → [ST ,Maybe [x]]]

mapB [a, b : type] (f : [a → b]) (bf : B [a]) : B [b] =
λ (s : ST) : let ber = bf (s) in (ber ‘1,mapMb (f) (ber ‘2))

end BF

ND [ST : type] : codatatype begin
importing BF [ST]
dz_in (left : ND, right : B [ND]) : dz_in ?

end ND

DCoalgebra [ST : type] : theory begin importing ND [ST]
D [x : type] : type = DZ_struct [ST , x]
CoalgD [x : type] : type = [x → D [x]]

injD [a, b : type] (f : [a → b], g : [a → B [b]]) (x : a) :D [b] = inj_dz_in (f (x), g (x))

outD : CoalgD [ND] = injD (left, right)

mapD [a, b : type] (f : [a → b]) : [D [a]→ D [b]] = injD (f ◦ inj_left,mapB (f) ◦ inj_right)
end DCoalgebra

For the sake of completeness, we also give the definition of DZ_struct as is generated from
ND by PVS .

DZ_struct [ST , x : type] : datatype begin importing BF [ST]
inj_dz_in (inj_left : x, inj_right : B [x]) : inj_dz_in ?

end DZ_struct

Before specifying the operational rules, we have a closer look at the GSOS-format itself.
The domain of ρ (i.e., Σ[D[v]]) allows us to pattern-match on the outermost symbol. The
symbol is parameterized (depending on the arity) with a D expression which will provide
access to the premises of the rule. Since only the sequence operator has rules with premises,
we will elaborate on the alternative for ρ that corresponds to this operation. The first com-
ponent of D represents the meta-variable on the left-hand side of the premise, whereas the
second component represents the right-hand side. Since we do not pass the state explicitly,
we have to apply the second component to the state argument of the state transition func-
tion that is yielded as a result. By inspecting the outcome of that application we can decide
which of the two rules for seq applies, and construct the corresponding right-hand side of
the conclusion. For the latter, we use the fold operation for Maybe. In PVS :

WhileGSOS [V : type] : theory begin
STORE : type = [V → int]

ρ [v : type] (sf : Σ[D[v]]) : B[T[v]] = cases sf ‘1 of
...

seq : let a0 = sf ‘2 (0), a1 = sf ‘2 (1) in
λ (st : STORE) : let rst = inj_right (a0) (st) in
foldMb ((rst‘1, just (varT (inj_left (a1)))),
λ (s1 : x) : (rst‘1, just (seqT (varT (s1), varT (inj_left (a1)))))) (rst‘2),

WPTE’15

58 Formalizing Bialgebraic Semantics

...

endcases
end WhileGSOS

In order to obtain a distributive law of T over D, ρ needs to undergo a two-step trans-
formation. The first step is to expand ρ’s codomain using the auxiliary function injD defined
in the theory DCoalgebra:

τ [v : type] : [Σ[D[v]]→ D[T[v]]] = injD (tapp ◦mapΣ (tvar ◦ inj_left), ρ)

Adjusting the domain is slightly more involved, and requires an appropriate use of foldT:

Λ [v : type] : [T[D[v]]→ D[T[v]]] = foldT (mapD (unitT),mapD (joinT) ◦ τ)

This construction does not affect the naturality property (Lemma law_natural). Moreover,
it guarantees that Λ is indeed a distributive law (Lemma law_distributive).

Running a program
There is one discrepancy between our formalization and a standard denotational semantics
for While as, for instance given by [17]. In our case, the mathematical object describing
the effect of executing each construct is the greatest fixed point ND of D. In the standard
case, this is a (possibly partial) state transition function, which is obtained by composing
the functions that correspond to the components of this construct. Moreover, for while
statements, a standard denotational semantics also requires fixed points. The result of
executing a program in our framework, ND, is not a single state transition function, but a
(possibly infinite) stream of functions that still need to be interconnected. In PVS , however,
all functions have to be total. We solve this issue by defining the following total variant9
of a compose function which returns the constructed transition function after N execution
steps.

composeN (N : nat, dz : ND) (ist : STORE) : recursive ST =
if N = 0 then ist
else let res = right (dz) (ist) in
cases res‘2 of nothing : res‘1,

just (x) : composeN (N − 1, x) (res‘1) endcases endif measure N

To illustrate program execution, we use the following program that computes the 12th Fibon-
acci number. It uses 3 variables each identified by a number. Variable 2 will hold the final
result.

PFib10 :T = seqT (assT (0, enum (10)), seqT (assT (1, enum (1)), seqT (assT (2, enum (1)),
(whileT (0, seqT (assT (3, eplus (evar (1), evar (2))), seqT (assT (1, evar (2)),

seqT (assT (2, evar (3)), assT (0, emin (evar (0), enum (1)))))))))))

We execute this program and apply the final store, obtained after 62 steps (just enough for
the while loop to terminate), to variable 2, producing10 the value 144.

9 In Pvs, totality is enforced by a so-called measure specification which is mandatory when defining a
recursive function. This measure is used to guarantee (by generating special proof obligations) that
the function indeed terminates.

10The answer was obtained by executing our specification in the functional language Clean. The current,
so-called, ground evaluator of PVS seems to have difficulties with evaluating expressions containing
infinite codata structures.

S. Smetsers et. al. 59

EXEC : nat = composeN (62, RO (emptyEnv) (PFib10)) (λ (i : nat) : 0) (2)

Observe that we used RO (based on the operational model) to execute the program. Equi-
valently, we could have used the denotational version RD, obviously leading to the same
result, since we proven that RO and RD equal.

5 PVS formalization

Our main motivation for developing this formalization was to investigate whether or not
implementing abstract categorical concepts in PVS 6.0 is feasible. The case study we per-
formed was based on previous, similar experiments with Coq.

As far as this case study is concerned, the main difference between Coq and PVS is that
Coq is equipped with a rich type class system offering type classes as first class citizens.
Therefore, in Coq, functors, monads, and (co)algebras can be naturally represented. PVS
offers parameterized theories, but using these as a substitute for Coq’s type classes in general
is definitely a setback. Moreover, like PVS , Coq suffers from the same restriction that
polymorphism is only first-order. This definitely reduces the generality of the formalisation,
however, we managed to separate the language-specific components from the more abstract
categorial concepts such that changes in the syntax and/or behaviour of the programming
language hardly affects the description in its entirety.

Additionally, for the most part these aspects of our formalization do not obstruct the
proving process. There were no fundamental problems which could not be resolved due
to restrictions of PVS ’s specification language. The rich support for abstract (co)data
types (including the facility for automatic generation of common theories) has shown to be
adequate.

There was, however, a minor issue obstructing the proving process to some extent. When
importing a parameterized theory, the user must explicitly specify which actual arguments
are required. In a truly polymorphic case this matter would have been solved by the type
checker (as is done in Coq or in Haskell). Unfortunately, PVS lacks the ability to resolve
theory instantiations automatically. To some extent, this is also the case for instantiation
of declaration parameters. We encountered situations in which the type checker was not
capable of determining the correct instance types. However, from the discussions with the
developers of PVS we concluded that this was not a fundamental issue but a temporary
defect of the typing algorithm, that is expected to be repaired in the near future.

Finally, the goal of our experiment was not to compare PVS with Coq. In terms of
development times, for our specific example these were about the same. Of course, we have
to take into account that we first did our experiment with Coq and all theoretical difficulties
were already solved when we started the exercise with PVS . We are convinced that the
time it takes to formalize a relatively complex system, such as the bialgebraic framework,
is mainly determined by the experience of the user. This development process is barely
retarded by (the peculiarities of) the specific proof assistant itself.

6 Related work

This work was inspired by our earlier work on modularity, the formalization of Modular
Structural Operational Semantics (MSOS) [15]. The present paper can be seen as a con-
tribution to field of bialgebraic semantics, starting with Turi and Plotkin’s research [18],
and resulting in a uniform categorical treatment of semantics. They abstracted from con-
crete syntactical and semantical details by characterizing these language-dependent issues

WPTE’15

60 Formalizing Bialgebraic Semantics

by a distributive law between syntax and behaviour. By means of a categorical construct,
both an operational and a denotational model were obtained, and moreover the adequacy
of these models could be proven. Klin [12] gives an introduction to the basics of bialgebras
for operational semantics that was used in the present formalization. He also sketches the
state-of-the-art in this field of research.

The distributive law actually describes a syntactic format for specifying operational rules.
This abstract so-called GSOS format has been applied to several areas of computer science.
For example, in his thesis [2] Bartels gives concrete syntactic rule formats for abstract
GSOS rules in several concrete cases. Variable binding, which is a fundamental issue in, for
example, λ-calculus or name passing π-calculi, is addressed in [6]. The authors show that
name binding fits in the abstract GSOS format. This was refined further in [7].

In [5] a framework is introduced, called MTC, for defining and reasoning about extensible
inductive datatypes which is implemented as a Coq library. It enables modular mechanized
metatheory by allowing language features to be defined as reusable components. Similar to
our work, MTC’s modular reasoning is based on universal property of folds [16], offering an
alternative to structural induction.

A significant contribution to the work on interpreters for programming languages, is
that of the application of monads in order to structure semantics. Liang et al. [13] in-
troduced monad transformers to compose multiple monads and build modular interpreters.
Jaskelioff et al. use [11] as a starting point, and provide monad-based modular implementa-
tion of mathematical operational semantics in Haskell. The authors also give some concrete
examples of small programming languages specified in GSOS-format. Our example in Sec-
tion 2 is inspired by this work. Although, [11] strictly follows the approach of Turi and
Plotkin, there is no formal evidence that their construction is correct, i.e., there are no ‘pen
and paper’ or machine-checked proofs given. The latter issue is addressed by recent work of
[9] who introduce modular proof techniques for equational reasoning about monads.

7 Conclusions

We presented a formalization in PVS version 6.0 of Turi and Plotkin’s work based on cat-
egory theory. Our main goal was to investigate whether this could be done in a conveni-
ent way. Except for some minor flaws in PVS ’s type checker discussed in Section 5, we
did not encountered any fundamental issues that seriously hindered the proving process.
Our experiment also resulted in a PVS framework which can be used for formal reasoning
about programming languages in general, in addition to reasoning about specific programs.
Moreover, it offers the user the possibility to choose between either denotational or opera-
tional semantics at any point in his application.

Our future plans comprise of experimenting with our framework in formal reasoning with
case studies in specific examples of denotational and operational semantics, and to extend
the framework with an axiomatic semantics.

References
1 Michael Barr and Charles Wells. Category theory for computing science, volume 49. Prentice

Hall New York, 1990.
2 Falk Bartels. On generalised coinduction and probabilistic specification formats. PhD thesis,

CWI, Amsterdam, April 2004.
3 Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimulation can’t be traced. J. ACM,

42(1):232–268, January 1995.

S. Smetsers et. al. 61

4 Marcello M Bonsangue, Helle Hvid Hansen, Alexander Kurz, and Jurriaan Rot. Presenting
distributive laws. In Algebra and Coalgebra in Computer Science, LNCS, pages 95–109.
Springer, 2013.

5 Ben Delaware, Bruno C.d.S. Oliveira, and Tom Schrijvers. Meta-theory à la carte. In
Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, POPL ’13, New York, NY, USA, 2013. ACM.

6 Marcelo Fiore, Gordon Plotkin, and Daniele Turi. Abstract syntax and variable binding.
In Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science, LICS
’99, pages 193–202, Washington, DC, USA, 1999. IEEE Computer Society.

7 Marcelo Fiore and Sam Staton. A congruence rule format for name-passing process calculi
from mathematical structural operational semantics. In Proceedings of the 21st Annual
IEEE Symposium on Logic in Computer Science, LICS ’06, pages 49–58, Washington, DC,
USA, 2006. IEEE Computer Society.

8 Ulrich Hensel and Bart Jacobs. Coalgebraic theories of sequences in pvs. J. Log. Comput.,
9(4):463–500, 1999.

9 Ralf Hinze and Daniel W.H. James. Proving the unique fixed-point principle correct: an
adventure with category theory. SIGPLAN Not., 46(9):359–371, September 2011.

10 Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and (co)induction. EATCS Bulletin,
62:62–222, 1997.

11 Mauro Jaskelioff, Neil Ghani, and Graham Hutton. Modularity and implementation of
mathematical operational semantics. Electron. Notes Theor. Comput. Sci., 229(5):75–95,
March 2011.

12 Bartek Klin. Bialgebras for structural operational semantics: An introduction. Theoretical
Computer Science, 412(38):5043–5069, 2011. CMCS Tenth Anniversary Meeting.

13 Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular interpret-
ers. In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’95, pages 333–343, New York, NY, USA, 1995. ACM.

14 Ken Madlener and Sjaak Smetsers. GSOS formalized in Coq. In The 7th International
Symposium on Theoretical Aspects of Software Engineering (TASE2013), pages 199–206,
2013. Birmingham, UK, 2013. IEEE.

15 Ken Madlener, Sjaak Smetsers, and Marko C. J. D. van Eekelen. Formal component-based
semantics. In Michel A. Reniers and Pawel Sobocinski, editors, SOS, volume 62 of EPTCS,
pages 17–29, 2011.

16 Erik Meijer, Maarten M. Fokkinga, and Ross Paterson. Functional programming with
bananas, lenses, envelopes and barbed wire. In Proceedings of the 5th ACM Conference on
Functional Programming Languages and Computer Architecture, pages 124–144, London,
UK, UK, 1991. Springer-Verlag.

17 Hanne Riis Nielson and Flemming Nielson. Semantics with applications: a formal intro-
duction. John Wiley & Sons, Inc., New York, NY, USA, 1992.

18 Daniele Turi and Gordon Plotkin. Towards a mathematical operational semantics. In
Proceedings of the 12th Annual IEEE Symposium on Logic in Computer Science, LICS ’97,
pages 280–291, Washington, DC, USA, 1997. IEEE Computer Society.

19 Philip Wadler. Theorems for free! In Functional Programming Languages And Computer
Architecture, pages 347–359. ACM Press, 1989.

WPTE’15

	p000-00-frontmatter
	Workshop Organization
	Preface
	The Collection of all Abstracts of the Talks at WPTE 2015

	p001-01-pientka
	p003-02-guerrieri
	Introduction
	The call-by-value lambda calculus with sigma-rules
	Head and internal reductions
	Head normalization
	Normalization strategy and other results
	Conclusions and future work

	p019-03-palacios
	Introduction
	Term Rewriting
	Modelling Concurrency
	The Functional Component
	Concurrent Actions
	The Scheduler
	Intended Semantics

	Related Work
	Discussion

	p031-04-sabel
	Introduction
	The pi-Calculus with Stop
	Proof Methods for Contextual Equivalence
	A Context Lemma for May- and Should-Convergence
	Applicative Similarities

	Equivalences and the Contextual Ordering
	Correctness of Deterministic Interaction
	Results on the Contextual Ordering

	Results for the Stop-free Calculus
	Conclusion
	Proof for the Calculus PiStop

	p047-05-smetsers
	Introduction
	Background
	Bialgebraic semantics
	Semantics of While
	PVS formalization
	Related work
	Conclusions

	Leere Seite
	Leere Seite
	Leere Seite

