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Models for Optimization of Railways
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The 6th Workshop on Algorithmic Methods and Models for Optimization
of Railways (ATMOS 06) is held on September 14, 2006 in Zürich, Switzerland
(http://algo06.inf.ethz.ch/atmos), as part of the ALGO meeting. Previous AT-
MOS workshops were held in Heraklion, Crete, Greece (2001), in Malaga, Spain
(2002), in Budapest, Hungary (2003), in Bergen, Norway (2004), and in Palma
de Mallorca, Spain (2005).

Solving railway optimization problems requires a coordinated interdiscipli-
nary effort from various areas in mathematical optimization and theoretical com-
puter science, including graph and network algorithms, theory of computation,
approximation algorithms, combinatorial optimization, and algorithm engineer-
ing. The goal of the ATMOS workshop series is to provide a forum for the
exchange and dissemination of new ideas, techniques, and research in the field
of railway optimization. In particular, the workshop is meant to bring together
researchers from the above areas interested in all aspects of algorithmic methods
and models for railway optimization, including the development of algorithms,
experimental studies, and useful prototype implementations.

The program committee received 14 submissions of full papers. After a peer-
reviewing process 8 contribution were selected for presentation at the workshop,
7 of these papers are collected in this issue, the contribution of Dennis Huisman
is already accepted for publication in the European Journal of Operational Re-
search. The contributed papers are representative for several areas of research
within the scope of ATMOS: locomotive and wagon scheduling, crew schedul-
ing, line planning, quality of service aware transportation planning, periodic
timetabling, and simulation studies on robustness and recovery.

In addition, the workshop includes an invited lecture by Ralf Borndörfer
(Zuse-Institute Berlin, Germany) on “Directions in Railway and Public Trans-
port Optimization”, and an invited tutorial by Ravindra K. Ahuja (Univ. of
Florida and Innovative Scheduling, Inc., USA) on “Next Generation Decision
Support Systems in Railroad Scheduling”.

ATMOS 2006 is partially supported by the ARRIVAL project a Specific Tar-
geted Research Project funded by the Future and Emerging Technologies Unit
of the EC within the 6th Framework Programme of the European Commission,
under contract no. FP6-021235-2.

ATMOS 2006

6th Workshop on Algorithmic Methods and Models for Optimization of Railways

http://drops.dagstuhl.de/opus/volltexte/2006/690
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We would like to take this opportunity to thank the other program committee
members for their timely and professional work:

– Ravindra K. Ahuja (Univ. of Florida and Innovative Scheduling Inc., USA)
– Elias Dahlhaus (DB Systems, Frankfurt a.M., Germany)
– Camil Demetrescu (Univ. of Rome La Sapienza, Italy)
– Dick Middelkoop (ProRail, Utrecht, The Netherlands)
– Martin Skutella (Univ. Dortmund, Germany)
– Paolo Toth (Univ. Bologna, Italy)

We also thank all external referees who helped in the paper selection. Finally,
we would like to thank the editors of the Dagstuhl Seminar Proceedings for
the opportunity to publish these proceedings within DROPS. For the upcoming
workshop we wish for many nice talks and constructive discussions.

Zürich and Darmstadt, August 2006

Riko Jacob and Matthias Müller-Hannemann
PC co-chairs of ATMOS 2006
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INVITED TALK:
Directions in Railway and Public Transport Optimization

Ralf Borndörfer (Zuse-Institute Berlin, Germany)

Optimization methods for rail and public transport have reached a high mathematical stan-
dard and can make significant contributions to the solution of the planning problems of the
area. Particularly rolling stock, crew, and roster optimizers are nowadays routinely used
in many companies to solve scheduling problems of unprecedented size and complexity.
Such success stories often create a demand for more, such that extensions, new problems,
and applications emerge directly out of practice. This demand, combined with changes in
technology and regulations, result in a dynamic environment with interesting optimization
challenges. The talk illustrates three of these developments from a mathematical as well as
a practical point of view, namely, the more and more integrated treatment of scheduling
problems, approaches to service design, and some developments related to deregulation.

TUTORIAL:
Next Generation Decision Support Systems in Railroad Scheduling

Ravindra K. Ahuja (University of Florida and Innovative Scheduling, Inc., USA)

The past few decades have witnessed numerous applications of combinatorial optimization
in industry and these applications have resulted in substantial cost savings. However, the
US railroad industry has been benefited from the advances and most of the planning and
scheduling processes do not use modeling and optimization. Indeed, most of the planning
and scheduling problems arising in railroads, which involve billions of dollars of resources
annually, are currently being solved manually. The main reason for not using optimization
models and methodologies is the mathematical difficulty of these problems which prevented
the development of decision tools that railroads can use to obtain implementable solutions.
However, this situation is now gradually changing. We are now developing cutting-edge
discrete optimization and network flow based algorithms that railroads have already started
using and have started deriving benefits from them. This talk will give an overview of
important railroad planning and scheduling problems including blocking, train scheduling,
locomotive and crew scheduling; describe new algorithms to solve some of these problems;
and how these algorithms are packaged into highly interactive web-based decision support
systems. We will present computational results of these algorithms on the data provided
by several US railroads, demonstrating potential benefits from tens of millions of dollars
annually.

ATMOS 2006
6th Workshop on Algorithmic Methods and Models for Optimization of Railways
http://drops.dagstuhl.de/opus/volltexte/2006/689
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A Column Generation Approach for the Rail Crew Re-Scheduling
Problem

Dennis Huisman (Erasmus University Rotterdam, Netherlands)

When tracks are out of service for maintenance during a certain period, trains cannot be
operated on those tracks. This leads to a modified timetable, and results in infeasible rolling
stock and crew schedules. Therefore, these schedules need to be repaired. The topic of this
paper is the rescheduling of crew.

In this paper, we define the Crew Re-Scheduling Problem (CRSP). Furthermore, we show
that it can be formulated as a large-scale set covering problem. The problem is solved with
a column generation based algorithm. The performance of the algorithm is tested on real-
world instances of NS, the largest passenger railway operator in the Netherlands. Finally,
we discuss some benefits of the proposed methodology for the company.

Keywords: Column generation, crew re-scheduling, large-scale optimization, railways,
transportation

An Efficient MIP Model for Locomotive Scheduling with Time
Windows

Martin Aronsson, Per Kreuger (Swedish Institute of Computer Science, Kista, Sweden), and
Jonata Gjerdrum (Green Cargo AB, Sweden)

This paper presents an IP model for a vehicle routing and scheduling problem from the
domain of freight railways. The problem is non-capacitated but allows non-binary integer
flows of vehicles between transports with departure times variable within fixed intervals.
The model has been developed with and has found practical use at Green Cargo, the largest
freight rail operator in Sweden.

Keywords: Vehicle routing and scheduling, rail traffic resource management, resource
levelling

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/683

Locomotive and Wagon Scheduling in Freight Transport

Armin Fügenschuh, Henning Homfeld (TU Darmstadt, Germany), Andreas Huck (Deutsche
Bahn AG, Germany), and Alexander Martin (TU Darmstadt, Germany)

We present a new model for a strategic locomotive scheduling problem arising at the
Deutsche Bahn AG. The model is based on a multi-commodity min-cost flow formulation
that is also used for public bus scheduling problems. However, several new aspects have to
be additionally taken into account, such as cyclic departures of the trains, time windows on
starting and arrival times, network-load dependend travel times, and a transfer of wagons
between trains. The model is formulated as an integer programming problem, and solutions
are obtained using commercial standard software. Computational results for several test
instances are presented.

Keywords: Freight transport, vehicle scheduling, time windows, Integer Programming.

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/686

http://drops.dagstuhl.de/opus/volltexte/2006/683
http://drops.dagstuhl.de/opus/volltexte/2006/686
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Periodic Metro Scheduling

Evangelos Bampas, Georgia Kaouri, Michael Lampis, and Aris Pagourtzis (National Tech-
nical University of Athens, Greece)

We introduce the Periodic Metro Scheduling (PMS) problem, which aims in generating
a periodic timetable for a given set of routes and a given time period, in such a way that the
minimum time distance between any two successive trains that pass from the same point
of the network is maximized. This can be particularly useful in cases where trains use the
same rail segment quite often, as happens in metropolitan rail networks.

We present exact algorithms for (PMS) in chain and spider networks, and constant ratio
approximation algorithms for ring networks and for a special class of tree networks. Some
of our algorithms are based on a reduction to the Path Coloring problem, while others
rely on techniques specially designed for the new problem.

Keywords: Train scheduling, path coloring, delay-tolerant scheduling, periodic timetabling

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/684

A Game-Theoretic Approach to Line Planning

Anita Schöbel and Silvia Schwarze (Georg-August Universität Göttingen, Germany)

We present a game-theoretic model for the line planning problem in public transportation,
in which each line acts as player and aims to minimize a cost function which is related to
the traffic along its edges.

We analyze the model and in particular show that a potential function exists.
Based on this result, we present a method for calculating equilibria and present first

numerical results using the railway network of Deutsche Bahn.

Keywords: Line planning, network game, equilibrium

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/688

QoS-aware Multicommodity Flows and Transportation Planning

George Tsaggouris and Christos Zaroliagis (CTI & University of Patras, Greece)

We consider the QoS-aware Multicommodity Flow problem, a natural generalization of the
weighted multicommodity flow problem where the demands and commodity values are elastic
to the Quality-of-Service characteristics of the underlying network. The problem is funda-
mental in transportation planning and also has important applications beyond the trans-
portation domain. We provide a FPTAS for the QoS-aware Multicommodity Flow problem
by building upon a Lagrangian relaxation method and a recent FPTAS for the non-additive
shortest path problem.

Keywords: Quality of service, multicommodity flows, fully polynomial approximation
scheme, transportation planning

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/682

http://drops.dagstuhl.de/opus/volltexte/2006/684
http://drops.dagstuhl.de/opus/volltexte/2006/688
http://drops.dagstuhl.de/opus/volltexte/2006/682
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Freight Service Design for the Italian Railways Company

Marco Campetella (Trenitalia Spa, Italy), Guglielmo Lulli (Università di Milano ”Bicocca”,
Italy), Ugo Pietropaoli, and Nicoletta Ricciardi (Università di Roma ”La Sapienza”, Italy)

In this paper, we present a mathematical model to design the service network, that is the set
of origin-destination connections. The resulting model considers both full and empty freight
car movements, and takes into account handling costs. More specifically, the model suggests
the services to provide, as well as the number of trains and the number and type of cars
traveling on each connection. Quality of service, which is measured as total travel time, is
established by minimizing the waiting time of cars at intermediate stations.

Our approach yields a multi-commodity network design problem with concave arc cost
functions. To solve this problem, we implement a tabu search procedure which adopts “per-
turbing” mechanisms to force the algorithm to explore a larger portion of the feasible region.
Computational results on realistic instances show a significant improvement over current
practice.

Keywords: Railways transportation, service network design, tabu search

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/685

Robustness and Recovery in Train Scheduling - a Case Study from
DSB S-tog a/s

Mads Hofman, Line Madsen, Julie Jespersen Groth, Jens Clausen, Jesper Larsen (Technical
University of Denmark)

This paper presents a simulation model to study the robustness of timetables of DSB S-tog
a/s, the city rail of Copenhagen. Dealing with rush hour scenarios only, the simulation model
investigates the effects of disturbances on the S-tog network. Several timetables are analyzed
with respect to robustness. Some of these are used in operation and some are generated for
the purpose of investigating timetables with specific alternative characteristics.

Keywords: Train scheduling, simulation model, robustness, recovery

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/687

http://drops.dagstuhl.de/opus/volltexte/2006/685
http://drops.dagstuhl.de/opus/volltexte/2006/687


A Game-Theoretic Approach to Line Planning?

Anita Schöbel1, Silvia Schwarze2

1 University of Göttingen, Institute for Numerical and Applied Mathematics
37083 Göttingen, Lotzestr. 16 – 18, Germany

schoebel@math.uni-goettingen.de
2 University of Göttingen, Institute for Numerical and Applied Mathematics

37083 Göttingen, Lotzestr. 16 – 18, Germany
schwarze@math.uni-goettingen.de

Abstract. We present a game-theoretic model for the line planning
problem in public transportation, in which each line acts as player and
aims to minimize a cost function which is related to the traffic along
its edges. We analyze the model and in particular show that a potential
function exists. Based on this result, we present a method for calculating
equilibria and present first numerical results using the railway network
of Deutsche Bahn.

Keywords. Line Planning, Network Game, Equilibrium

1 Introduction

In line planning, a public transportation network (PTN) is modeled by vertices
for each stop (or train station) and edges for each direct connection between
stops (or tracks between stations). A line is given as a path in the PTN and
the frequency indicates, how often the bus or train goes within a certain time
interval. The goal is to choose lines from a given line pool that satisfy certain
criteria and minimize an objective function. The usual restrictions consider that
the demand of the passengers is satisfied, i.e. that enough resources are provided
to transport the customers that want to travel in the PTN. Furthermore, the
amount of traffic may be limited e.g. by safety regulations. Problems of this
kind have been treated with different objective functions: In [1] the lines are
chosen with respect to the cost of operating the lines, but also customer-oriented
objectives have been considered (see [2] for maximizing the number of direct
travelers and [3,4,5,6] for recent approaches minimizing traveling times).

In our approach, we present a new model for line planning, namely from a game
theoretic point of view. The lines act as players, the strategies of the players
correspond to the frequencies of the lines. The payoff of the game represents the
objective of the players which is to minimize the expected delay. This delay is
dependent on the overall traffic and hence on the frequencies of all lines in the

? This work was partially supported by the Future and Emerging Technologies Unit of
EC (IST priority - 6th FP), under contract no. FP6-021235-2 (project ARRIVAL).

ATMOS 2006
6th Workshop on Algorithmic Methods and Models for Optimization of Railways
http://drops.dagstuhl.de/opus/volltexte/2006/688
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network. The remainder of the paper is structured as follows. In order to keep the
notation clear, we first present the model for lines between only a single origin
and a single destination (see Section 2) and show in Section 3 that this model is a
special case of generalized Nash equilibrium games with a polyhedron as feasible
set. In particular this allows us to prove the existence of an exact potential
function. In Section 4 we extend our results to multiple origin-destination pairs.
First numerical results within a real-world application are presented in Section 5.
The paper is concluded by suggestions for further research.

2 The Line Planning Game Model

We consider a network G = (V, E) with vertices v ∈ V and edges e ∈ E, where
V and E are nonempty and finite. A line P in G is given by a finite path of
edges e ∈ E: P = (e1, ...., ek). We denote the line pool P as a set of lines P in G

from a single origin s to a single destination t. Multiple origin-destination pairs
will be considered in Section 4.

The frequency of a line P is denoted by fP . The frequencies in the complete

network are represented by the frequency vector, given by f ∈ R
|P|
+ . Furthermore,

the frequency (or load) on an edge e ∈ E is given by the sum of the frequencies
on lines that are containing e,

fe =
∑

P :e∈P

fP . (1)

As common in the literature about line planning, we consider the following two
restrictions. First, a minimal frequency fmin ≥ 0 from s to t has to be covered
to meet the demand of the customers, i.e. we require

∑

P∈P

fP ≥ fmin . (2)

If this condition is not satisfied all lines receive a payoff M , with M being a
large number working as a penalty. The second bound is the real-valued maximal
frequency 0 ≤ fmax

e < ∞ that is assigned to each edge e ∈ E, i.e. it has to hold

fe ≤ fmax
e ∀ e ∈ E . (3)

The maximal frequency establishes a capacity constraint usually given by secu-
rity issues. If fe > fmax

e for an edge e, all lines that contain e receive a payoff
of N < M . We allow N to be any real value smaller than M , nevertheless in
the line planning problem it makes sense to choose N being a large number to
punish if constraints (3 are exceeded.
Further, we will call a frequency vector f feasible if the both the constraints (2)
and (3) are satisfied, i.e. if both bounds fmin and fmax

e , e ∈ E, are respected.
The set of feasible frequency vectors is given by

F
LPG =

{

f ∈ R
|P|
+ :

∑

P∈P

fP ≥ fmin ∧
∑

P :e∈P

fP ≤ fmax
e ∀ e ∈ E

}

.
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Finally, we have to specify the payoff function of the game. To this end, we first
define the cost of a line P as the sum of costs on the edges belonging to that
line,

cP (f) =
∑

e∈P

ce(fe) ,

where the cost functions ce(·) describe the expected average delay on edge e,
which depends on the frequency or load on e. We assume the cost functions ce

to be continuous and nonnegative for nonnegative loads, i.e. ce(x) ≥ 0 for x ≥ 0.
We need no further assumption on the cost functions, although in line planning
the costs are usually nondecreasing.
The payoff function (or benefit) of a line P is for nonnegative frequency vectors
f given by

bP (f) =















cP (f) if
∑

Pk∈P fPk
≥ fmin ∧ ∀ e ∈ P : fe ≤ fmax

e

N if
∑

Pk∈P fPk
≥ fmin ∧ ∃ e ∈ P : fe > fmax

e

M if
∑

Pk∈P fPk
< fmin

.

Summarizing, the line planning game Γ is given by the tuple

Γ = (G,P , fmin, fmax, c, N, M) .

To illustrate the payoff function of one single player (or line) P , we fix the
frequencies fPk

of all other players Pk 6= P . We obtain the frequency vector f−P ,
by deleting the P th component in the frequency vector f . The payoff function
depending just on fP is illustrated in Figure 1. The payoff consists of three

bP (f−P , fP )

fP

d2
Pd1

P

N

M

Fig. 1. Payoff of line P for a fixed frequency vector f−P

continuous intervals. The left part is described by the (penalty) payment M in
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case of not satisfying the minimal frequency fmin, the right part by the (penalty)
payment N in case of exceeding a maximal frequency. The middle part is given
by the sum of costs on the edges belonging to P . It is nondecreasing, if we have
nondecreasing cost functions ce(fe) on the respective edges of the path. The
values that mark the boundaries of the intervals will be important later:
The lower decision limit of player P is given by

d1
P (f−P ) = fmin −

∑

Pk∈P\{P}

fPk
. (4)

The upper decision limit of player P is denoted by

d2
P (f−P ) = min

e∈P
{fmax

e −
∑

Pk∈P\{P}

fPk
} . (5)

If no confusion regarding the strategies f−P of the other players arises, we
denote the lower and the upper decision limit by d1

P and d2
P , respectively. We

obtain that
bp(f) = cP (f) if and only if d1

P ≤ fP ≤ d2
P ,

i.e. whenever fP ∈ [d1
P , d2

P ], the constraints (2) and (3) are satisfied. In this case,
f is feasible, if it is nonnegative. Note that it may happen that [d1

P , d2
P ] ∩ R+ is

empty for a player P , even if F
LPG is nonempty.

As usual in game theory, we are interested in finding the equilibria of the game,
which in our case represent line plans with equally distributed probability for
delays. In a line planning game, a frequency vector f ∗ is an equilibrium if and
only if for all lines P ∈ P and for all fP ≥ 0 it holds that

bP (f∗
−P , f∗

P ) ≤ bP (f∗
−P , fP ) ,

i.e. no player P ∈ P is able to improve its payoff by changing only his strat-
egy. Equilibria in line planning games may be feasible or infeasible, which can
be observed in the following example. As we are interested in implementable
solutions, we analyze feasible frequencies in the following.

Example 1. We consider a line planning game with a line pool containing two
lines. Let f1 and f2 be the frequencies of these lines. The minimal frequency
fmin = 1 has to be covered from s to t. The game network consists of three
edges, as illustrated in Figure 2. The maximal frequencies of the edges are given
by fmax

e1
= fmax

e2
= 2 and fmax

e3
= 3. Furthermore, the following costs are

assigned to the edges: ce1(x) = x, ce2(x) = 2x and ce3(x) = x2. Thus, we obtain
payoffs: c1(f) = f1+(f1+f2)

2 for the first player and c2(f) = 2f2+(f1+f2)
2 for

the second player. See Figure 3 for an illustration of the set of feasible frequencies
F

LPG. This line planning game provides multiple equilibria. Feasible equilibria
are e.g. f1 = (1, 0) and f2 = (0, 1), with payoffs b(f1) = (2, 1) and b(f2) = (1, 3).
There are also infeasible equilibria, e.g. f 3 = (4, 4), where no player is able
to receive a smaller payoff than N . The frequency vector f 4 = (3, 3) is no
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equilibrium, although no player is able to reach the set of feasible frequencies
within one step. It is a property of line planning games that outside the feasible
region not necessarily each player gets punished. Here, e.g. player 1 could change
his frequency to zero. The resulting frequency vector f̄4 = (0, 3) is still infeasible,
but player 1 is able to improve his payoff from b1(f

4) = N to b1(f̄
4) = 9.

s t

ce2
(x) = 2x

ce1
(x) = x

ce3
(x) = x2

Fig. 2. Game network of Ex.1

f2

f1

3

3

1

1

Fig. 3. Set of feasible frequencies F
LPG

The above example illustrates that in line planning games, there may be areas of
infeasible frequency vectors, where some players violate constraints and others
do not. See Figure 4, the illustration of the two players game of Example 1 and
consider the four infeasible regions A, B, C, and D. For frequency vectors that

f2

f1

3

3

1

1

D

CB

A

Fig. 4. Infeasible regions A, B, C, and D
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lie in region A, both players get punished with payoff N , while in region B,
both receive the payoff M . In region C, only player 1 gets punished with payoff
N , while player 2 receives a payoff c2(f), as player 2 is satisfying the maximal
frequencies fmax

e on his edges e2 and e3, but player 1 is violating fmax
e1

= 2. In
region D the reverse situation occurs: player 2 gets punished and player 1 does
not. Situations like in regions C and D happen since the players are not sharing
the same set of constraints. A systematic investigation of such areas is a topic
of future research (e.g. for for standard networks G(n), see [7], which are a basic
concept to represent all networks of a line planning game with n players, such
that the set of equilibria remain unchanged).

3 Line Planning Games as Games on Polyhedra

Since we are not interested in solutions not satisfying the constraints (2) and (3)
we now concentrate on feasible strategies f . First of all, note that the feasible
region F LPG of an LPG (see (2)) is a polyhedron. It can be represented as
S(A, b) = {f : Af ≤ b} where the (1 + |E| + |P|) × |P|-matrix A and the
right-hand side vector b ∈ R

(1+|E|+|P|) are given as

A =













−
�

|P|

H

−I|P|













b =













−fmin

fmax

�
|P|













.

In this formula, the |E| × |P| matrix H is the edge-path incidence matrix of the
underlying network with entries

he,P =

{

1 if e ∈ P

0 else
, (6)

�
n = (1, . . . , 1) is the vector containing n-times the entry 1, and

�
n = (0, . . . , 0)T

is the vector containing n-times the entry 0. Note that the polyhedron S(A, b)
is compact.

Example 2. In the line planning game of Example 1 the corresponding matrix
H is given by

H =





1 0
0 1
1 1



 .

The polyhedron S(A, b) is described by

A =

















−1 −1
1 0
0 1
1 1

−1 0
0 −1

















, b =

















−1
2
2
3
0
0

















.
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Hence we can model LPG as a game on a polyhedron, as defined in [8]: In a game
on a polyhedron with n players, each player chooses a coordinate xn such that
(x1, . . . , xn) lies within a given feasible set P , which is a polyhedron. Each of
the players i = 1, . . . , n has a payoff function c̃i : P → R where the payoff c̃i(x)
of player i depends on the complete vector x and hence also on the strategies of
the other players. Since not only the payoff but also the feasibility of a strategy
of player i depends on the decisions of the other players, games on polyhedra
belong to the class of generalized Nash equilibrium (GNE) games (see [9]).
Consequently, if we are only looking for feasible solutions f ∈ F

LPG, we will call
the line planning game generalized line planning game to stress that the feasible
strategy set of each player depends on the strategies the other players. As usual
for GNE games, we now require that the equilibria are feasible, i.e. in generalized
line planning games, a feasible frequency vector f ∗ is a generalized equilibrium
if and only if for all lines P ∈ P and for all

fP ∈ [d1
P (f∗

−P ), d2
P (f∗

−P )] ∩ R+ ,

it holds that
bP (f∗

−P , f∗
P ) ≤ bP (f∗

−P , fP ) .

Since only feasible solutions are considered, the payoff in the generalized line
planning game is hence given by bP (f) = cP (f). Furthermore, since the line
planning game is a game on a polyhedron, we can transfer results from this type
of games. One important property is the existence of a potential function.

A function Π : f → R is an exact restricted potential function for a generalized
line planning game Γ if for every P ∈ P , for every f−P with a nonempty set
[d1

P (f−P ), d2
P (f−P )] ∩ R+ and for every x, z ∈ [d1

P (f−P ), d2
P (f−P )] it holds:

bP (f−P , x) − bP (f−P , z) = Π(f−P , x) − Π(f−P , z) . (7)

A line planning game Γ is called an exact restricted potential game if it admits
an exact restricted potential.

Exact potential functions have been introduced in [10]. The modification to a
restricted version enables the investigation of GNE games and has been intro-
duced in [7]. Although exact restricted potential functions do not exist in general
for games on polyhedra, it can be shown that they exist if the cost structure of
the game originates from a network. This property is called path player game
property and has been introduced in [7]. To satisfy this property, it has to be
possible to define for each subset of the set of players P a standard function that
is dependent on the subset such that any player’s payoff can be decomposed into
these standard functions. In [7,8] it was shown that games on polyhedra have
an exact restricted potential function whenever the path player game property
holds. Fortunately, the line planning game has this property (see again [7]) such
that the following holds:

Theorem 1. A generalized line planning game is a game on a polyhedron with
PPG-property. Hence, it has an exact restricted potential function.
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An exact restricted potential function is given as

Π(f) =
∑

e∈E

[ce(fe) − ce(0)].

To alternatively prove this result, consider the two feasible frequency vectors
fx = (f−P , x) and fz = (f−P , z) and verify that equation (7) does hold.

Π(fx) − Π(fz) =
∑

e∈E

[ce(f
x
e ) − ce(0)] −

∑

e∈E

[ce(f
z
e ) − ce(0)]

=
∑

e∈E

[ce(f
x
e ) − ce(f

z
e )] =

∑

e∈P

[ce(f
x
e ) − ce(f

z
e )] (8)

= cP (fx) − cP (fz) = bP (fx) − bP (fz) .

Equation (8) is true as fx and fz are different only with respect to line P . Since
it is a general result that for infinite potential games with continuous payoffs on
compact feasible strategy sets, equilibria exist (see [10]) we directly obtain the
following corollary.

Corollary 1. In the line planning game, equilibria exist.

Using the shape of the potential function, we furthermore obtain:

Theorem 2. For a generalized line planning game with feasible region F
LPG, a

generalized equilibrium is given by an optimal solution of the following problem:

min
∑

e∈E

ce(fe) subject to f ∈ F
LPG .

Theorem 2 provides a method for calculating equilibria in the line planning
game, namely by solving the optimization problem mentioned. This method is
valid for all types of continuous cost functions ce(fe), which is the strength of this
approach. On the other hand, not necessarily all equilibria are found by using
Theorem 2. Other approaches which determine all equilibria for line planning
games with linear costs or strictly increasing costs are presented in [7].

Example 3. Consider the line planning game analyzed in Example 1. By Theo-
rem 2 an equilibrium can be found by solving the following problem:

min f1 + 2f2 + (f1 + f2)
2 subject to f ∈ F

LPG . (9)

The solution of the optimization problem, and thus an equilibrium is given by
f∗ = (1, 0) with b(f∗) = (2, 1). Note that f∗ is the unique solution of (9), but
not the unique equilibrium.
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4 Multiple Origin-Destination-Pairs

In this section we consider a network G = (V, E) with Q multiple origin-
destination(OD)-pairs {sq, tq}, q = 1, . . . , Q. For the qth OD-pair, the pool of
lines connecting sq and tq is given by Pq . The paths are given as pairwise disjoint
sets:

Pq1 ∩ Pq2 = ∅ ∀ q1, q2 = 1, . . . , Q, q1 6= q2 .

With q(P ) we denote the index of the OD-pair {sq, tq} such that P ∈ Pq . Since
each line P is assigned to exactly one OD-pair, q(P ) is well-defined. Furthermore,
the minimal frequency for the qth OD-pair is given by fmin

q . We denote:

P =
⋃

q=1,...,Q

Pq and fmin =
(

fmin
q

)

q=1,...,Q
.

The maximal frequencies on edges fmax
e and the cost ce(fe) assigned to the

edges are defined as in the single origin-destination case. We call such a game
line planning game with multiple OD-pairs.

The payoff for player P ∈ Pq and a nonnegative frequency vector f in an LPG
with multiple OD-pairs is given by

bP (f) =















cP (f) if
∑

Pk∈Pq(P )
fPk

≥ fmin
q(P ) ∧ ∀ e ∈ P : fe ≤ fmax

e

N if
∑

Pk∈Pq(P )
fPk

≥ fmin
q(P ) ∧ ∃ e ∈ P : fe > fmax

e

M if
∑

Pk∈Pq(P )
fPk

< fmin
q(P )

.

Like in the single OD-pair case a frequency vector f is called feasible if the
bounds fmin

q , q = 1, . . .Q and fmax
e , e ∈ E are satisfied. The set of feasible

frequencies for line planning games with multiple OD-pairs is given by

F
LPGMOD =







f ∈ R
|P|
+ :

∑

P∈Pq

fP ≥ fmin
q ∀ q ∈ Q ∧

∑

P :e∈P

fP ≤ fmax
e ∀ e ∈ E







.

Finally, for a player P ∈ Pq we have to adjust the definition of the lower decision
limit presented in (4):

d1
P (f−P ) = fmin

q(P ) −
∑

Pk∈Pq
Pk 6=P

fPk
,

while the upper decision limit stays the same as in (5). If we just consider
feasible frequencies f ∈ F

LPGMOD, we obtain a generalized line planning game
with multiple OD-pairs. Generalized equilibria are defined in such games similar
to the single OD-pair case.

Recall the definition of the edge path incidence matrix H . A line planning game
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with multiple OD-pairs is represented by a game on a polyhedron S(A,b) with:

A =































−
�

|P1| 0 . . . 0 0
0 −

�

|P2| . . . 0 0
...

...
. . .

...
...

0 0 . . . −
�

|Pm−1| 0
0 0 . . . 0 −

�

|Pm|

H

−I|P|































b =



























−fmin
1

−fmin
2
...

−fmin
m

fmax

�
|P|



























.

Example 4. We consider a line planning game with four OD-pairs as illustrated
in Figure 5. Let fmin

q = 1 ∀ q = 1, . . . , Q and fmax
e = 4 ∀ e ∈ E. We denote the

e = 1 2 3

4

5

6

7
8 9 10

11

12

13

14
15 16 17

18

19

20

21

22 23 24

s1

s3

s4

s2

t1

t3

t4

t2

Fig. 5. Game network of Example 4

edges e = 1, . . . , 24 and the lines with P 1, . . . , P 10. The frequency of the lines is
given by f1, . . . , f10. The line pools are given by

P1 = {P 1, P 2} = {(1, 2, 3), (4, 9, 7)} ,

P2 = {P 3, P 4, P 5} = {(5, 2, 6), (8, 9, 10), (11, 16, 14)} ,

P3 = {P 6, P 7, P 8} = {(12, 9, 13), (15, 16, 17), (18, 23, 21)} ,

P4 = {P 9, P 10} = {(19, 16, 20), (22, 23, 24)} .
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We introduce cost functions ce(fe) = fe for all edges e in E. We apply Theorem 2
and solve

min
∑

e∈E

ce(fe) = min
∑

e∈E

ce

(

∑

P∈P

he,P fP

)

= min (3f1 + 3f2 + 3f3 + 3f4 + 3f5 + 3f6 + 3f7 + 3f8 + 3f9 + 3f10)

subject to f ∈ S(A, b) .

As each frequency fP has exactly the same coefficient in the objective function,
each frequency that satisfies

∑

P∈Pq
fP = fmin

q = 1, e.g. f1 = (1, 0, 1, 0, 0, 1, 0, 0, 1, 0),
is an optimal solution and thus also an equilibrium. The objective value is 4 for
all these solutions. The payoff for f 1 is given by b(f1) = (4, 1, 4, 1, 1, 3, 1, 0, 3, 0),
while for f2 = (1, 0, 0, 1, 0, 0, 1, 0, 0, 1)we have a payoff b(f 2) = (3, 1, 1, 3, 1, 1, 3, 1, 1, 3).

We can use this approach also for nonlinear cost functions. Set e.g. ce(fe) = f2
e

for all edges e in E. The objective function min
∑

e∈E ce(fe) yields the optimal
solution

f3 = (0.538, 0.462, 0.385, 0.308, 0.308, 0.308, 0.308, 0.385, 0.462, 0.538)

with an objective value of 7.385. Solving this problem as an integer problem
yields f4 = (0, 1, 1, 0, 0, 0, 0, 1, 1, 0), with objective value 12.

5 Line Planning for Interregional Trains in Germany

We implemented our approach of Theorem 2 using real-world data, related to
the German railway system of Deutsche Bahn AG. In particular we consider
train stations connected by interregional trains, such as InterCityExpress (ICE),
InterCity (IC), and EuroCity (EC). The following studies are meant to test
the possibility of implementing our method with realistic data and to obtain
equilibria based on larger databases. Our numerical study is interesting due to
the following two reasons:

– Although the investigation of line planning games is still in an early stadium,
and the results are hence not ready for practical use yet, the study illustrates
that further research in this field is worthwhile.

– Second, the numerical behavior of the method for finding equilibria in the
line planning game is demonstrated.

The following data is at our disposal:

– OD-matrix describing 319 train stations and the minimal frequency fmin
q

given for the OD-pairs.
– Three line databases of different size, containing 132 (S - small), 688 (M -

medium) and 2770 (L - large) lines.
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The line databases are not in a form suitable for our model. We will discuss later
how line pools are created from this data. From theoretically 319×318 = 101 442
OD-pairs, still 56 646 have a positive minimal frequency fmin

q and have to be
considered. Thus, we have a line planning game with multiple OD-pairs. For
those OD-pairs, fmin

q ∈ [1, 4831] hold. Note that the values of fmin are to
be interpreted as weights dependent on the number of passengers. From these
weights, frequencies are obtained by a linear transformation.

2 4 6 8 10 12 14 16 18 20 22
44

46

48

50

52

54

56

Warsaw
Berlin

Munich

Goettingen

Hamburg

Cologne

Frankfurt

Paris

Amsterdam

Kaiserslautern

Dresden

Vienna

Zurich

Verona

Bruxelles

Fig. 6. Train stations under consideration

The train stations under consideration are located in Germany and neighboring
countries. Figure 6 illustrates the locations of all 319 stations. The following in-
formation are needed for the line planning game, but are not given in the data.
We do not have available the maximal frequency fmax

e on the edges, as well as
we do not know the costs ce(fe) assigned to the edges. Thus, we have to make
assumptions for the implementation of our model. As there is no maximal fre-
quency on the edges, we choose the value sufficiently large for each edge, such
that the maximal frequency is satisfied for our problems. In particular, we set
fmax

e = 100 000. Regarding the cost function ce(fe), Theorem 2 allows to use any
continuous function. We implement the strictly increasing function ce(fe) = fe
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on all edges e ∈ E.

As the line planning game model considers only direct connections between sta-
tions, we neglect all OD-pairs where no direct connection exists in the line pool.
For the future design of line databases, this should be taken into consideration.
Furthermore, we introduce the bound Uq and consider only OD-pairs where
fmin

q > Uq does hold. This bound is used to consider just “important” OD-pairs
with high minimal frequencies for our computations and it is a tool to control
the size of the problem.

Furthermore, we have to construct a line pool from the line databases according
to the definitions in our model. As we reduced the number of OD-pairs, we have
to analyze only lines that are relevant for the OD-pairs under consideration.
Thus, we generate the line pool by using these lines. On the other hand, one
line may offer a direct connection for more than one OD-pair. In our model, we
assume disjoint line pools, i.e. one line has to be assigned to exactly one OD-pair.
According to this, we duplicate lines that provide a direct connection for more
than one OD-pair. The lines have to be given such that we obtain a line pool
P =

⋃

q=1,...,Q Pq consisting of disjoint subsets Pq . Note that the frequencies of
the original lines from the databases S, M and L are then given by the sum over
the frequencies of its duplicates.

We study five scenarios with a different number of OD-pairs and use different line
databases. In Studies 1,2 and 3, we consider the same set of OD-pairs, namely
for fmin

q > 599, but we change the size of the line database. In Studies 2,4 and
5, the line database is invariant (we choose the medium sized one), but the set
of OD-pairs is changed.

fmin
q > 999 fmin

q > 599 fmin
q > 399

small Study 1
medium Study 4 Study 2 Study 5
large Study 3

Table 1 contains the computational results. We present a short explanation of
the content in the following list:

Column 3 Number of OD-pairs which satisfy fmin
q > Uq

Column 5 Size of line databases
Column 6 Number of OD-pairs with direct connections and which satisfy fmin

q > Uq

Column 7 Size of line pool constructed from line database, including duplicates of
lines

Column 8 Number of lines with positive frequency, i.e. that are established for the
PTN (including duplicates)

Column 9 Objective function value of the optimization problem solved with Method 1
Column 10 Reference to Figure of PTN
Columns 12 – 14 Copied from the first part of the table, for easier reading
Columns 15 – 19 Statistical information about length of each line (number of sta-

tions)
Columns 20 – 24 Statistical information about number of lines (including dupli-

cates) serving each train station

It can be observed from Studies 1 – 3 that for a larger database, more direct
connections are available and thus more OD-pairs can be served. The number
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Table 1. Computational results

1 2 3 4 5 6 7 8 9

Study Uq # Line Size # OD-pairs Size Lines with c × x

OD-pairs data- data with direct line positive
base base connections pool frequency

1 599 251 S 132 87 262 88 1 402 494.001

2 599 251 M 688 117 1287 156 2 151 352.000

3 599 251 L 2770 157 5544 244 2 636 404.000

4 999 113 M 688 53 493 68 1 456 873, 000

5 399 499 M 688 132 2610 299 2 971 507.012

11 12 13 14 15 16 17 18 19 20 21 22 23

# of stations per line # of lines per station

Study Line # OD-pairs # of min max mean var histogram min max mean var
data- with direct chosen Figure
base connections lines

1 S 87 88 6 33 15.15 25.94 7 1 43 4.18 52.76

2 M 117 156 9 20 15.06 10.87 8 1 73 7.36 131.97

3 L 157 244 6 37 14.18 23.83 9 1 121 10.84 323.17

4 M 53 68 9 20 15.21 11.66 10 1 34 3.24 30.59

5 M 132 299 9 20 15.34 10.44 11 1 129 14.38 435.38

of chosen lines hence also increases. Nevertheless, it is not growing in the same
speed as the line pool, but about the same speed as the number of considered
OD-pairs. Thus, in our examples, the number of established lines is not so much
influenced by the size, but by the structure of the line pool, i.e. how much OD-
pairs are served by the line pool. This should be taken into consideration for the
design of line pools that are to be used for line planning games. In Studies 2,4
and 5, the lower bound Uq on minimal frequencies is small, hence we obtain a
larger number of OD-pairs. It can also be observed that with increasing number
of OD-pairs, the number of established lines is increasing, although the line data
base is unchanged.

Considering the number of stations contained in the established lines, this exam-
ple shows a relation to the chosen line database S, M or L. It can be observed
that the results in the three scenarios using database M are similar.

In terms of lines per station, the station served by the highest number of lines
in each study is Frankfurt(Main) Süd.
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Histogram: Number of Stations per Line
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Fig. 7. Uq = 599, S
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Fig. 8. Uq = 599, M
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Fig. 9. Uq = 599, L
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Fig. 10. Uq = 999, M
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Fig. 11. Uq = 399, M

6 Conclusion and further research

The line planning game is a new model for analyzing line planning problems
with game theoretical means. In particular it is a special case of a game on
polyhedra in which an exact potential function exists. This result is the basis for
an algorithm to calculate equilibria of the game. Numerical results have been
presented.

Other methods for finding all equilibria in the path player games for linear or
strictly increasing functions have been developed in [7]. The implementation of
the second of these approaches, which seems to be realistic in line planning, is
under research.

Although the resulting line plans seem to be suitable for practical applications,
other aspects of line planning have been neglected and are topics for future
research. Among these are setup costs for installing the lines (or fixed costs for
operating a line) which can be approximated by bounding the maximal number
of lines which may be installed. From the passengers’ point of view, the travel
time of their journeys should be considered; a first measure can be the length
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of the lines. Another drawback of the basic model presented in this work is that
frequencies fP are real numbers, while in practice, only fP ∈ N0 make sense.
A first extension to an integer LPG has been considered in [7], where also an
algorithmic approach has been developed to find integer equilibria. Finally, it
will be a reasonable extension of the current model to take into account that
passengers may want to change lines. More results and an implementation of
this topic is under research.
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àrá R B T @ME O Dfð�â4áQIxK R E O DFK]â R @NB4>ADFE�BMI*â�@MIJKMK'BCá R â�è^â�ç R BCD _ªR ìÍIx>A@4X R @ R43 >Wâ)BMçÁèIWELâ R õ^Dkõ R 2

(

di + ti + rij > dj

)

∧
(

di + ti + rij − CT ≤ dj

)

i

j

A2
G _ IW@ R @4>A@ R âU>JK R ä
áLDFâ4áýáÍ>WK�E R î R @CBCá R ç R KCK&BMIÊì R B4>�� R EúDFEJBMIÇ>JâUâ�I T ExBDFK�ä
á R EùBCá R B T @ME O DÁð&â4áLIJK R E O DïK�â R @NB4>ADFEùBCIýâ�I�î R @ÅBnä
I ã¦R @MDFI«XLKUõ#5HIAB RBCáL>ABHDÁEòBMáQDïKHâU>JK R �É>WK
ä R çFçu>JK;KCI _ªR BMD _ªR K O DFE A1

� O Bnä]I�DFELKNBM>WELâ R K
IAð-BCá RBC@4>AELK ã IJ@NB'BCáÍ>�Bzâ�@MIJKMK R KuBCá R ì¦IJ>W@MX R @-áL>�î R BCI ì R â�IJELKCDFX R @ R X O IWE R ç R >�î«DFE VBCá R ã¦R @MDÁI^X�>AELX/IWE R R ExB R @CDFE V BCá R ã¦R @MDÁI^X O DÉõ R 2
(

di + ti + rij − CT > dj

)



GHE�÷Æø�âUD R ExBH=[ö P =[I^X R ç¬ðñIJ@���I^â�I _ IABCDFî R ô^â4á R X T çFDÁE V �

ii

j

àráQDFKÆDFK~áÍ>A@4X^çÁè R î R @ÆX R KNDF@M>WìQç RWO >ABÆç R >WKNBÆEQIABÆDÁð�BCá R;ã¦R @MDFI«X�BMD _ªR DïK~çFIWE V DFEâ�I _ªã >W@CDïKCIWE�ä
DfBMá[BCá R çÁIJE VWR KnBHBC@4>�î R ç�BMD _ªR õÍöhE[BMá R ô^ä R X^DFKCá[@4>ADFç�ðñ@ R D V áxB
ã @CIJìQç RU_ BCá RÅã¦R @MDÁI^XòBMD _ªR DFK�>�ä RUR �[>AELX?BCá R çÁIJE VWR KnBÌBC@4>AELK ã IW@CB;BC@4>�î R çBCD _ÅR ELIW@ _ >WçÁçFè�ç R KMK
BCáL>WE � � áQI T @4K8õ
öhE�BCá R/_ I^X R ç]ì R çFI�ä ä R ä
DÁçFç ã¦R EL>WçÁDïK R BCáLDFK�âU>WK R Bnä
Dïâ R >JK*áL>W@MXú>JK A1ä
áQDFâ4á&DFE ã @4>Wâ)BMDFK R-_ªR >AEÍK�BCáL>AB�B T @CELK�IAð«BCáQDïK�Bnè ã¦R >A@ R >Aç _ IxKnB�E R î R @¬ðñI T ELXDÁEý>WE"I ã BCD _ >Aç
KNIJç T BMDÁIJE�õüGHEý>AçÁB R @MEL>ABCDFî R�_ I^X R ç
â�I T çFX"ä
DÁBCáéKCI _ªR çFIJKMKIAð VWR E R @4>AçFDfBnè/DÁEÍKnB R >WX RD3^ã çFDFâUDfBMçÁè�ðñIW@MìQDïX�BCáQDïKHBnè ã¦R IWð~B T @ME[ì«èòDÁExBC@MI^X T â ëDÁE V â�IJELKNBC@4>ADFEJB4KÌðñIW@4â�DFE V Xij = 0

ä
á R E R î R @ (

di + ti + rij − CT > dj

)

ä
áQDFâ4á�ä
I T çïX"DÁE�BMá R¾VJR E R @M>WçÆâU>JK R @ R X T â R BCá R E TQ_ ì R @*IWð
ìÍI«IWç R >WELK DFEBCá R;_ I^X R çQBCI$áL>AçÁðnõWöhE ã @4>Wâ�BCDïK RJO áQI�ä R î R @ O BCá R;V >ADFEªDFK _ >W@ V DÁEÍ>AçLKCDÁEÍâ R ä RDÁExBC@MI^X T â R BCá R ì¦IxIJç R >AELKÌIWELçÁè�ä
á R @ R BMá R è[>W@ R E RUR X R X?>WELXòBMáQDFK&â8>WK R DFK>WK
>AçF@ R >WXQè _ÅR ExBCDFIWE R X¾@4>A@ R õ
àrá R â8>WK R ä
á R @ R di + ti + rij > 2CT

â8>AE?ì R KC>Að R çFèòD V EQIW@ R X?KCDFELâ R ä R@ R�êJT DÁ@ R BMá R â�IJELKNBM>AExB4K
BCIÅð T çÁþLç ti + rij ≤ CT
>AELX

ti < CT
õ

G _ IW@ R âUI _ªã ç RD3 âU>JK R I^âUâ T @�ä
á R EýBMá R BMD _ªR ä
DÁEÍX^I�ä;K$I�î R @MçF> ã KNIÊBCáL>AB�BMá R B T @ME
_ >�è[IJ@ _ >�èòEQIWB âU@CIxKCK;BCá R âUè«âUç R BCD _ªR ì¦IJ>W@MX R @�IWE R IW@ _ IW@ R BMD _ªR K�ì T B�BMá RªRD3 >Wâ�BE TL_ ì R @;X R8ãÍR ELXQK
IJE/BMá R >WKMKND V E _ÅR ExBrIWðüBMá R X RUã >A@CB T @ R BCD _ÅR î�>W@CDï>AìQç R K8õ

0QIW@¾Bnè ã DFâ8>Aç&X^DïKnBM@CDFì T BMDÁIJELK�IAð BCD _ªR ä
DFELX^I�ä;K/DFE�BCá R @4>ADFçHðñ@ R D V áxB�â8>WK RWO ä R K R8R
_ >WDÁELçÁè�âU>WK R Krä
á R @ R BCá R BMD _ªR ä
DFELX^I�ä çÁD _ DfB4K
ä
DFçÁç ã çF>Jâ R&T KHDÁE[KCDfB T >�BMDÁIJELK
ä
á R @ R ä RâU>AELEQIAB
X R B R @ _ DÁE R DÁð'ä R >A@ R DFE�â8>WK R A0

IW@
A1
O IWELçÁè�@4>A@ R çFèªä
á R BMá R @
ä R >A@ R DFE�â8>WK R

A1
IJ@

A2
ì T BÌ>Aç _ IJKNB
E R î R @;DFEòIWE R K
ä
á R @ R ä R âU>AELEQIAB R43 âUç T X R >�B;ç R >JKnB;IJE R IAð-BCá RBCáQ@ RUR õ¦àráQDïKHð}>Wâ)B&âU>WE?ì R�T K R XòBMI¾@ R X T â R BMá R E TQ_ ì R @ÌIWðÆìÍI«IWç R >WE[î�>A@MDF>WìQç R K;E R8R X R XDÁE�BCá R _ I^X R çüKCD V EQDfþ¦âU>AExBMçÁèJõöhE¾BMá R VWR E R @4>Aç¬âU>JK R DÁB;DFK ã IxKCKCDÁìLç R BCI�X^DïKNBCDFE VWT DïKCá/BMá R ðñIWçFçFI�ä
DÁE V K T ì ë âU>WK R K�2

B1
àrá R B T @ME _ >�è/â�@MIJKMKzBMá R â�è^âUç R BCD _ªR çÁD _ DfB;IJELâ R IJ@
EQIABH>AB
>WçÁç O Dkõ R 2

(

di + ti + rij ≤ dj

)

∧
(

di + ti + rij > dj

)

∧
(

di + ti + rij − CT ≤ dj

)

i

j



� =úõQGH@CIJELKMKNIJE O^P õLS&@ R8TQVWR @ O YÍõLZ]\ R @4X^@ TQ_

B2
àrá R B T @ME _ >�è�â�@MIJKMKzBCá R â�è^âUç R BCD _ªR çÁD _ DfBrBnä
Dïâ R ì T B _ >�è«ì R IWEQçFè�IWEÍâ R õö)õ R 2
(

di + ti + rij > dj

)

∧
(

di + ti + rij − CT ≤ dj

)

∧
(

di + ti + rij − CT > dj

)

ii

j

B3
àrá R B T @CE _ >�èòâ�@MIJKMK
BMá R âUè^â�ç R BCD _ªR ì¦IW@4X R @ÌBnä
Dïâ RWO IWEÍâ R IJ@HEQIWB�>�B&>AçFçÉõö)õ R 2

(

di + ti + rij ≤ dj

)

∧
(

di + ti + rij − CT > dj

)

i

j

öhEòBCá R âUIWELKNBC@4>ADFExBMK V DFî R Eòì R çÁI�ä ä R ä
DFçFç#B	? 6 X^DFKNBCDFE VJT DFKCáòì R Bnä R8R EòBMá R K R BCáQ@ RUR K T ì ëâU>WK R K;ì T BHBM@ R >�B;BMá RU_ â�IJçÁç R â�BCDFî R çÁè�>WKH>¾KNDFE V ç R âU>JK R B ä
áQDïâ4á[ä
DÁçFç'KCD _Åã çÁDÁðñè¾BMá R$ã @ RUëK R EJB4>�BMDÁIJEùIWð&BCá R?_ I^X R çÉõ]öhEæ> ã @4>Wâ)BMDFâ8>Aç;D _ªã ç RU_ªR ExBM>ABCDFIWE�DÁB �&? �D= _ >�� R K R EÍK R BMIX^DFKNBCDFE VJT DFKCá[ì R Bnä RUR E�BMá RU_ KNDFELâ R ä R E R8R X�BMI�DÁExBM@CI^X T â R Bnä]Iªì¦I«IWç R >AEÍK ãÍR @ ã IJKMKNDFìQç RB T @MEòIWEQçFè�DFE/BMá R B3
âU>WK R ä
áQDFâ4áòDïKrî R @Cè�@4>A@ R õ

� � Û
Ü�	��ªÞ�ÛzØ�
JÙ^Ú��~ßNØ]Ù�
 �~ØHÜ�Û���� 	üÞ¦ÙQß � 	

àrá R â8>WK R KÌçF>Wì R çÁç R X A0
BMáQ@CI TQV á A2

>Aì¦I�î R >A@ R >AçFç O DÁð T K R XÊ>WKÌB T @CEÍKÌDFE�>/KCIWç T BCDFIWE OX R B R @ _ DFE R X BCI&â�@MIJKMKüBCá R â�è^âUç R BCD _ªR çFD _ DÁB R DÁBCá R @'IJELâ RJO Bnä
DFâ R IJ@'ELIAB~>�B~>AçFçÉõ�àrá R âU>JK R KçF>Wì R çÁç R X Bi

IWEªBMá R IWBCá R @ÆáL>AEÍX�>A@ R DÁELX R B R @ _ DFEL>�B R >AEÍX�ä
DFçFçLì R â�IJçÁç R â�BCDFî R çFè R ELâ�I^X R X
T KNDFE V BMá R Bnä
I?ì¦IxIJç R >AEúX R â�DïKNDFIWEúî�>A@MDï>AìQç R K Cij

>AELX
C ′

ij

õ'àuI?ì R >AìLç R BMI[BC@ R >AB*BCá R



GHE�÷Æø�âUD R ExBH=[ö P =[I^X R ç¬ðñIJ@���I^â�I _ IABCDFî R ô^â4á R X T çFDÁE V 


A
>WELX

B
âU>WK R K�K RUã >W@M>AB R çFèòä R ä
DÁçFç~X R þÍE R ðñI T @ _$T B T >AçFçFè RD3 â�ç T KCDÁî R K T ìLK R BMK�IWðÆBCá R

ã IxKCKCDÁìLç R B T @CELK8õ
� R B

A0 = {〈i, j〉 | (0 < i, j ≤ n) ∧ di + ti + rij ≤ dj}

A1 = {〈i, j〉 | (0 < i, j ≤ n) ∧
(

di + ti + rij > dj

)

∧
(

di + ti + rij − CT ≤ dj

)

}

A2 = {〈i, j〉 | (0 < i, j ≤ n) ∧
(

di + ti + rij − CT > dj

)

}

>AELX
B = {〈i, j〉 | 0 < i, j ≤ n} \ (A0 ∪A1 ∪ A2)

� R ä
DÁçFç-E RUR X?BMI R43^ã çÁDïâ�DÁBCçFè[@ RUã @ R K R ExBHBMá R X R âUDFKCDFIWE?î�>A@MDï>AìQç R KÌIWEQçFèòðñIW@ÌBCá R â8>WK R
B
õ � ìLK R @Mî R >AçïKCI$BMáL>�B A0,A1,A2

>AELX
B
áL>�î R EQI R ç R8_ÅR ExBMKrDFEòâUI _ª_ IWE�õ

ô«DÁEÍâ R BCá R _ >WDÁEòIWìQ\ R â)BMDÁî R IAðüBMá R _ I^X R ç�DïK
BCI _ DFEQD _ DïK R BCá R E TQ_ ì R @
IAð-î R áLDFâUç R K
T K R XÅìxèÅ> KNIJç T BCDFIWE�>AELX�BMáQDFKzâ�IW@M@ R K ã IJELXQK RD3 >Wâ�BCçFè*BMI&BCá R E TQ_ ì R @ÆIAð�î R áQDFâUç R K-B T @CE R XI�î R @*BCá R â�è^â�ç R BCD _ªR çFD _ DÁB O BCá R IWì^\ R â)BMDÁî R ð T ELâ�BCDFIWEýä
DFçÁçzBC@ R >AB R >Jâ4áúIAð
BCá R K R âU>JK R K
� RD3 â RUã B A0

ä
áLDFâ4áªâU>WE�E R î R @-âUIWExBC@MDFì T B R BMI&BCá R â�IxKnB �-K R8ã >A@4>�B R çFèWõ � R >WçFKCI�DÁExBC@MI^X T â R>?B R @ _ DÁE BCá R âUIJKNB�ð T EÍâ)BCDFIWEùä
áQDïâ4á ã¦R EL>WçÁDïK R K�BCá RòT K R IAðÌ>JXQX^DÁBCDFIWEL>Wç
î R áQDïâ�ç R K�ðñIJ@BC@4>AELK ã IJ@NB4KÆBMáL>�B
X^IÅEQIABrE R8R X�BMá RU_ õQàrá R K R >A@ R DFE _ IxKnB
âU>JK R KzE R â R KCKM>A@Mè�BCIÅìL>Açï>AELâ RBCá R�� I�ä�IAð¬BMá R�_ I^X R ç�ì T B
KNáQI T çïX�ì R >�îWIJDFX R XªDÁð ã IxKCKCDÁìLç R õ«àrá RHã¦R EL>WçfBnèªDïK]ä R D V áxB R XìxèéBCá R �ñB R8_Åã IW@4>Aç �Åç R E V BCá ti
IAð&BMá R BC@4>AELK ã IW@CB�>WELX¼>"ð}>Wâ�BCIW@ pi

K ãÍR â�DÁþÍâ�BCI R >Wâ4áBC@4>AELK ã IJ@NB�õ
àráQDFK$ð}>Wâ�BCIJ@ÅKCáQI T çFXúDFE _ IxKnBªâU>WK R K�ì R K _ >AçFç R @*BCáÍ>AE 1

BCI V DFî R BMá R E TL_ ì R @ÅIAðî R áLDFâUç R KzBMá R > ãLã @CI ã @MDF>AB R DFE �LTLR ELâ R IJE¾BMá R BCIWBM>Wç�â�IJKNB8õ P IAB R ExBCDï>Aç �': = = 7 � � 6
� : B'= � ? � 6 =
�ñä
DÁBCá"î R áLDFâUç R X RU_ >WELX Si = 0

�Ìä
DÁçFç VWR E R @4>AçFçÁèòáL>�î R >�çï>A@ VWR @Hð}>Wâ�BCIW@ pi

BCáL>WE?BCáLIJK RDÁEòä
áQDïâ4á�>ªî R áQDïâ�ç R @ R çÁI^â8>�BCDFIWE/DFK
>JâUâUI _ªã >AE«è«DFE V >WE R43 DFKNBCDFE V BC@4>AELK ã IW@CB8õ

=[DFEQD _ DïK R

Σ〈i,j〉∈A1
Xij + Σ〈i,j〉∈A2

2Xij + Σ〈i,j〉∈B

(

Yij + Y ′
ij

)

+ Σ0<i≤nEipiti

K T ì^\ R â�B
BCI
ÿ õ
àrá R E TL_ ì R @zIWð¬î R áLDFâUç R K-B T @ME R X�� � ? 9 BM@M>WELK ã IW@CB i

DFK R8êxT >AçLBCI BMá R E TQ_Åëì R @ T K R X/ì«è¾DÁB

∀i((Σj∈{j|ldi=loj}Xij) − Si = 0)

>AEÍXéBMá R E TQ_ ì R @�IAð&î R áQDFâUç R KªB T @CE R X 6 ?"BM@M>WELK ã IJ@NB j
DïK R�êxT >AçrBMIúBCá RE TQ_ ì R @ T K R X¾ì«è�DÁB

∀j((Σi∈{ki|ldi=loj}Xij) − Sj = 0)

àrá R â8>AELXQDFXQ>AB R B T @MELK;>A@ R â4áQIxK R EòK T â4áòBMáL>�B;BMá R X R KnBMDÁEÍ>�BCDFIWE ldi

IAð-BCá RKCI T @4â R BC@4>AELK ã IJ@NB i
>AELX?BCá R IW@MD V DFE loj

IWðÆBCá R KCDÁE � j
DFK�DïX R ExBCDïâU>WçÉõ � E Rär>�è BCI&@ R çï> 3 BCáLDFKÆâUIWELXQDfBMDÁIJEªKCI _ªR ä
áL>�B-DFKzX R KMâ�@MDÁì R X�DFEªK R â�BCDFIWE � ì R çÁI�ä õ



ÿ � =ýõLG;@MIWELKMKCIWE O«P õLS&@ RUTQVJR @ O YÍõLZ]\ R @4X^@ TQ_

�^õ
à T @CE�BMD _ªR â�IJELKNBC@4>ADFEJB4KUõ






dj − di + CT Cij + CT C ′
ij > ti + rij

Xij − Yij + M Cij ≤ M

Xij − Y ′
ij + M C ′

ij ≤ M

∀i, j (〈i, j〉 ∈ B)

>AEÍX
Si − Ei = Si ∀i

� õ Cij
O C ′

ij boolean O C ′
ij ≤ Cij� õ

Si
O Xij

�ñD _ªã çFDFâUDfBMçÁè � integer�^õ 
Æ>A@MDï>AìQç R ìÍI T ELXQK di ≤ di ≤ di
O Si ≤ Si ≤ Si

O Xij ≤ Xij ≤ Xij

ðñIJ@
∀ij

� ��� � "�/-.�� � �1��/�� /-"'�(� .

àrá R � I�ä �}âUIWELK R @Mî�>�BCDFIWE �&â�IWEÍKnBM@M>WDÁExBMK � ÿ � R ELK T @ R BMáL>�B R >Wâ4á"BM@M>WELK ã IW@CB*DïK$K TQãQã çFD R Xä
DfBMá?>WK _ >AE«è�î R áQDïâ�ç R K
>JK
DfB;E RUR XLK;>AELX/BMáL>�B
BMá R � I�ä DFK
ìÍ>Açï>AELâ R X¬õQàuI R ELK T @ R BCáL>ABBCáQDïK'DFK->AçFär>�è«K ã IxKCKCDFìQç R ä R E R8R X BMIÌDFExBC@MI^X T â R > � K T ø�â�D R ExBCçFè&çF>W@ VJR � K R B'IWð �Nã IWB R ExBMDF>Wç �
ã >WKMKNDFî R BC@4>AEÍK ã IW@CBMK
DFEJBMIªBCá R ã @CIJìQç R8_ õ

�;I�ä BCáLDFK&DïK&X^IWE R DFE VJR E R @M>WçuDïK�EQIAB�ð T @CBCá R @&XQDFKMâ T KMK R X?DFEÇBCáQDïK ã > ã¦R @�õ��;I�ä R î R @>?KnBM@M>WD V áxB ðñIW@Mä
>W@MX"á R8T @CDïKNBCDïâ�BCIÊDÁExBC@MI^X T â R >WXQXQDfBMDÁIJEL>Aç
K T â4á�BM@M>WELK ã IJ@NB4K IAðH>òþ 3«R X
_ > 3 D _�TQ_ X T @4>�BMDÁIJE/DïK
I T BCçFDÁE R X/DÁE[K R â)BMDÁIJE � ì R çFI�ä õ
àrá R B T @CEòBMD _ªR âUIWELKNBC@4>ADFExBMK � � �
>AEÍX�BCá R DÁ@ T K R IAð-BCá R ìÍI«IWç R >WEòî�>W@CDï>AìLç R K � � �
>A@ RBCá R âUIW@ R IAð'BCá R _ I^X R çkõ�5HIAB R BCáL>AB Cij = C ′

ij = 0
DfðÆ>AEÍX/IJEQçFè�Dfð

di + ti + rij ≤ dj
OBCáL>AB

Cij = 1 > C ′
ij

DÁð*>AELXùIWELçÁè Dfð
di + ti + rij − CT ≤ dj

>AELX þLEÍ>AçFçÁèéBCáL>AB
Cij = C ′

ij = 1
DÁð
>WELXÇIWEQçFè[Dfð

di + ti + rij − CT > dj

â�IW@M@ R K ã IJELX^DFE V¾R43 >Jâ)BMçÁèòBMIBCá R BMáQ@ R8R A ë âU>WK R K&>WìÍI�î R õ�5;IWB R >AçïKNI/BCáÍ>�B T EQE R â R KCKM>A@MDÁçFè?>WKMKCD V EQDÁE V 1
BCI

Cij

ä
áQDFç R
Xij > 0

ä
DÁçFç~ì Rªã¦R EL>WçÁDïK R XÇìxè?ðñIW@4â�DFE V Yij

BMI�ì R âUI _ªRªR8êxT >WçuBMI Xij

>WELX"KND _ DÁçï>A@MçÁèðñIW@
C ′

ij

>WELX
Y ′

ij

õ
Ei

DFK~X R þLE R X$ì«è BMá RrR8êxT >ABCDFIWE Si−Ei = Si

BMI�ì R BCá R ��� � �D= =
E TQ_ ì R @~IAð¦î R áLDFâUç R KBC@4>�î R çFçFDÁE V ä
DfBMá¾BM@M>WELK ã IJ@NB i
õ^àrá R @ R8êxT DF@ R8_ªR ExBzBMáL>�B C ′

ij ≤ Cij

@ R8_ I�î R K]>AE¾IJì«îxDFI T KKNè _ª_ªR BC@Mè�ðñ@CI _ BMá RH_ I^X R çÉõxöhE ã @4>Wâ�BCDïK R BMá RHRUí¦R â)B
IAð¬BCáLDFK
â�IJELKnBM@M>WDÁExBÆDïK _ DFEQIW@
KNDFELâ RBCá R â8>WK R ä
á R @ R ì¦IABMáòìÍI«IWç R >WELKr>A@ R E RUR X R X O >Aç _ IxKnB
E R î R @
I^â8â T @4KUõ
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Abstract. In this paper, we present a mathematical model to design
the service network, that is the set of origin-destination connections. The
resulting model considers both full and empty freight car movements, and
takes into account handling costs. More specifically, the model suggests
the services to provide, as well as the number of trains and the number
and type of cars traveling on each connection. Quality of service, which
is measured as total travel time, is established by minimizing the waiting
time of cars at intermediate stations.
Our approach yields a multi-commodity network design problem with
concave arc cost functions. To solve this problem, we implement a tabu
search procedure which adopts “perturbing” mechanisms to force the al-
gorithm to explore a larger portion of the feasible region. Computational
results on realistic instances show a significant improvement over current
practice.

Keywords. railways transportation, service network design, tabu search

1 Introduction

Railways freight transportation is a relevant activity in many economies. It sup-
ports and makes possible most other economic activities and exchanges. In the
last twenty years, the privatization and reorganization of most of the national
railways companies, combined with the removal of many entrance barriers and
national protectionism to markets and the consequent increase of competition
have boosted the development of Operations Research methods applied to rail-
ways transportation.

ATMOS 2006
6th Workshop on Algorithmic Methods and Models for Optimization of Railways
http://drops.dagstuhl.de/opus/volltexte/2006/685
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For comprehensive reviews on planning models for freight transportation,
the reader may refer to the surveys by Crainic and Laporte [1] and by Cordeau,
Toth and Vigo [2]. The former describes the main issues in freight transportation
planning and operations and presents OR models, methods and tools to be used
in this field of application. The latter is specifically focused on railways trans-
portation. The authors provide a complete list of routing and fleet management
models for freight transportation, of scheduling models for train dispatching and
of assignment models to assign locomotives and cars.

The two cited surveys also give a broad overview on several types of prob-
lems and issues arising within the freight transportation arena. Obviously, most
of railways transportation models available in the literature belong to the class
of network flow models [3], since this is the topological structure of the problem.
However, the general network flow model is often customized to take into ac-
count specific aspects of the problem. We here consider the freight service design
problem, i.e. the problem of deciding the set of origin-destination connections.
The reader may refer to [1] for a survey of the topic. This problem is a typical
tactical planning problem, since the effects of decisions span a mid-term planning
horizon.

A first example of a tactical planning model applied to rail freight trans-
portation can be found in [4]. In this paper the authors examined traffic routing,
train scheduling and allocation of work between yards. They also presented an
optimization model intended to compute efficient solutions, allowing a reduction
of costs, and to provide good quality of services in terms of transportation delays
and reliability, over a medium term planning horizon. A nonlinear mixed-integer
multi-commodity formulation is given and a heuristic algorithm is tested on in-
stances arising from the Canadian National Railroads. Kwon et al. [5] presented
a network flow model on a time-space network to model the problem of dynamic
freight car routing and scheduling, which is solved with the column generation
technique. Holmberg and Hellstrand [6] proposed a Lagrangean heuristic within
a Branch & Bound framework to solve the uncapacitated network design prob-
lem with single origins and destinations for each commodity, which can be used
to model the rail freight transportation. Fukasawa et al. [7] presented a network
flow model to maximize the total profits, while satisfying the demands within a
certain period of time, given the schedules and the capacities of the trains.

In railways freight transportation the movement of empty cars represents
an important source of costs. Dejax and Crainic [8] provided a complete re-
view of models for empty cars movement in freight transportation. Moreover
we can mention some recently published papers in this specific area of research.
Holmberg et al. [9] faced the problem of identifying distribution plans for the
movement of empty cars by solving an integer multi-commodity network flow
model on a time-expanded network. Sherali and Suharco [10] proposed a tacti-
cal model for the distribution and repositioning of empty railcars for shipping
automobiles. Jaborn et al. [11] analyzed the cost structure for the reposition-
ing of empty cars, and showed that such costs often depend on the number of
car groups handled at yards. In the cost structure they also compounded costs
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due to car classification at intermediate yards. They observed the economy-of-
scale behavior of total distribution costs, which can be reasonably decreased by
building fewer but larger car groups. The authors modeled the empty freight
car distribution problem as a capacitated network design on a time-dependent
network and solved it with a tabu search meta-heuristic.

The application of railways transportation models to real operations generally
requires the solution of large size instances, thus calling for a compromise be-
tween solution quality and computational time. On this subject, meta-heuristic
algorithms have been widely implemented. For instance, we can mention Maŕın
and Salmerón [12], [13] and Gorman [14] among others. Maŕın and Salmerón
[12], [13] compared the application of three different local search meta-heuristics
to the tactical planning of rail freight networks. Gorman [14] discussed both ge-
netic and tabu search meta-heuristics to solve the weekly routing and scheduling
problem of a major US freight railroad.

Herein, we present a case study on the Italian freight railways transportation,
whose features make it rather different from other systems and in particular from
the North American reality. In Italy, freight trains run according to a fixed sched-
ule, and they cannot exceed 20 cars, due to length and weight limits. Moreover,
cars are generally managed individually and blocks (groups) of cars are not com-
posed. The problem of identifying a blocking plan in order to minimize handling
costs, known as Railroad Blocking Problem, has been recently faced by several
papers. For instance, Newton et al. [15] and Barnhart et al. [16] presented two
network design formulations and solved real instances by a column-generation
algorithm and a heuristic Lagrangean approach, respectively. Ahuja et al. [17]
developed a Very Large-Scale Neighborhood Search for the blocking problem and
tested it on data provided by three major US railroad companies. All these papers
showed that relevant savings can be obtained by establishing “good” blocking
plans. Moreover, composing blocks of cars permits large economies of scale in
North American systems, as pointed out in [11]. This is true for the American re-
ality. On the contrary, in Italy blocks are not formed. At any classification yard,
cars are uncoupled from the incoming train, reclassified and coupled again to a
new outgoing train, if they have not reached their final destination. Therefore,
at any intermediate yard, car handling implies a coupling and an uncoupling
manoeuvre, with relevant impacts on the total transportation costs and delivery
times. Blocks are not formed mainly for organizational reasons: at the moment,
it is not possible to organize blocks of cars directed to the same destination and
the automatism to hook cars, enabling engine-drivers to easily handling groups
of cars, is not available on the Italian cars. Moreover, American blocks may eas-
ily exceed 20 cars, which is the standard size of an Italian train. Therefore, no
economies of scale can be achieved in the Italian reality.

In every rail transportation system, to satisfy the transportation demand,
empty car repositioning has to be handled. The movement of empty cars is quite
relevant in Italy and it reflects the economy of the country, characterized by
production districts concentrated mainly in the northern part. The movement



4 M. Campetella, G. Lulli, U. Pietropaoli, N. Ricciardi

of empty cars is about 36% of the total. Besides the movement of empty cars,
there is another relevant source of cost: the car handling process at intermediate
yards. More than one third of the cars are coupled to at least three trains before
arriving at their final destinations. Handling costs at intermediate yards repre-
sent a large percentage of total transportation costs: on average they contribute
for one third to the total transportation cost borne to move a car from its origin
to its final destination. Furthermore, handling a car at intermediate yards has
also consequences on delivery time of goods. Taking into account such costs also
guarantees a good level of service to customers by reducing delivery time.

In the sequel, we present a service network design model (refer to [18] for
more details on the problem) for the Italian rail transportation, which is devoted
to define the set of direct train connections between yards. The mathematical
model we propose is tailored to the Italian system. We focus our attention on
movements of both full and empty cars, taking into account the specific cost
structure of the Italian freight railways transportation. We formalize a math-
ematical model classified as a Concave-cost Multi-commodity Network Design
Problem which takes into account both the specific cost structure and the move-
ments of both full and empty cars. In the proposed model, we also indirectly
guarantee the quality of service, by minimizing the waiting time of cars at in-
termediate yards.

This problem is NP-hard (see [19]). To solve real instances of the model,
we propose a tabu search algorithm. We furnish the algorithm with additional
mechanisms adopted to perturb the current solution with the scope of exploring
a larger portion of the feasible region. The tabu search procedure takes advantage
of the particular structure of the network, thus resulting an efficient algorithm
as opposed to previous experience with similar problems.

The paper is organized as follows. In Section 2, we propose a mathemati-
cal formulation for the tactical problem of designing the network of services to
move cars in order to satisfy transportation demand at minimum cost. Section
3 is dedicated to the description of the meta-heuristic algorithm designed in
order to solve real instances of the problem. Section 4 reports some results of
computational tests, and Section 5 concludes.

2 A mathematical model for tactical planning

Railways freight transportation problems are generally large-size and high level
of difficulty problems. Operations Research-based methods can be useful in pro-
viding valid decision support systems to decision makers. We here propose a
model to design the set of services of the Italian rail network in order to satisfy
the whole transportation demand at minimum cost.

To formulate our model, we make use of the network of possible services,
which is represented by a directed graph D = (N ,A), where N denotes the
set of yards and A the set of all the possible direct services. Since it is always
possible to have a direct train between any pair of yards, we can reasonably
assume that the following hypothesis holds true.
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Hypothesis 1 The graph representing the network of possible services is com-
plete: A ≡ N ×N .

The purpose of the model that we propose is to design the network of acti-
vated services, namely D′ = (N ,S), which is a subgraph of D = (N ,N ×N ),
the complete (directed) graph defined on n = |N | vertices. More precisely, if
(i, j) ∈ S, then yard i ∈ N is directly connected to yard j ∈ N by a service,
that is, at least one direct train connects i to j.

Cars move from their origins to their destinations using either a direct service,
if one exists, or a sequence of trains with intermediate stops. In the Italian
railways transportation operations blocks of cars are not allowed or at least they
are extremely rare, see Section 1. Therefore, we can assume, without incurring
in poor approximations, the following hypothesis.

Hypothesis 2 If a train stops at an intermediate classification yard, all its cars
are reclassified.

In view of Hypothesis 2, we can directly associate handling costs to arcs
(i, j) ∈ (N ×N ) representing direct connections between pairs of yards i, j ∈ N .

Finally, according to the experience of the Italian railways operator, capacity
constraints are not restrictive at a tactical decision level, since enough cars to
satisfy all the demands can be routed on each railroad; therefore, we are allowed
to assume what follows.

Hypothesis 3 The network of services is uncapacitated.

The scope of the model we here propose is twofold. First, define the number
of direct trains connecting origin-destination pairs. Second, route cars on the
network in order to satisfy all the transportation demands. We consider both
the full and the empty cars, and all the decisions are taken in order to minimize
the total costs.

The notation of the model is in the sequel:

– N = 1, 2, . . . , n: set of yards;
– K = 1, 2, . . . , k: set of types of cars;
– fij : unit cost associated with the planning of a train on the direct service

(i, j);
– cij : unit cost associated to link (i, j). This cost compounds the movement of

a car on the link and the handling costs at yard i (coupling manoeuvre) and
at yard j (uncoupling manoeuvre);

– b
p
i : supply (if positive) or demand (if negative) of cars of type p at yard i;

– α: maximum number of cars that can be assigned to a train.

The decision variables of the model are:

– x
p
ij : number of cars of type p ∈ K assigned to a service (i, j);
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– yij : frequency of the service (i, j), i.e., number of trains traveling on the
direct service (i, j).

The non-linear integer programming formulation is the following:

Min
∑

(i,j)∈A

fij · h(yij) · yij +
∑

(i,j)∈A,p∈K

cij · x
p
ij

s.t.

∑

j∈N

x
p
ji −

∑

j∈N

x
p
ij = b

p
i ∀i ∈ N , ∀p ∈ K. (1)

∑

p∈K

x
p
ij ≤ α · yij ∀i, j ∈ N : i 6= j. (2)

x
p
ij ≥ 0 integer ∀i, j ∈ N : i 6= j, ∀p ∈ K. (3)

yij ≥ 0 integer ∀i, j ∈ N : i 6= j. (4)

(5)

where h(yij) =
(

a + b
yij+1

)

, with a, b ∈ IR+.

This is a multi-commodity network design problem with a concave cost func-
tion. The cost function is composed by two terms: a train cost, which takes into
account the planning of direct trains between origin-destination pairs, and a car
cost.

The train cost is computed by multiplying the number yij of trains planned
on a link (i, j) by a locomotive cost fij (computed as fij = f · dij , where dij is
the length of the link (i, j) and f is a train cost per kilometer, which accounts
depreciation, maintenance, power, toll and engine drivers) and by a factor h(yij),
which depends on the number of trains planned on the direct service (i, j). This
last factor, which makes the objective function concave, is introduced in order to
take into account a “quality” cost, which depends on the frequency of a service,
i.e. on the number of available trains. In fact, an increase in the frequency of a
service implies a decrease in the waiting times of cars at intermediate yards and
therefore an increase in the quality of the service provided to the customers.

The car cost is computed by multiplying the total number of trains traveling
on link (i, j) by a car unit cost cij that is computed as cij = c · dij + mi + mj ,
where c is a car cost per kilometer which accounts both car depreciation and
maintenance, and mi, mj are car handling costs at yards i and j, respectively.

It is worth noticing that all cost parameters are chosen according to the cost
structure of the accounting system of the Italian railways company, and that
we deliberately do not consider in the model the possibility to form blocks of
cars, since at the moment this opportunity cannot be implemented in the Italian
transportation reality.



Freight Service Design for an Italian Railways Company 7

Minimum concave-cost network flow problems are known to be NP-hard
(refer to [20] for a survey on algorithms and applications). Several solution tech-
niques have been developed, both exact and approximate. The first ones ex-
plicitly or implicitly enumerate the vertices of the polyhedron defined by the
network constraints, and are based on branch & bound, extreme point rank-
ing methods or dynamic programming [20]. The second ones can be subdivided
into two classes: heuristic and approximate algorithms. Heuristics find local op-
tima using standard convex programming techniques; approximate algorithms
underestimate the concave objective functions with piecewise linear functions
(for instance, see [21] for a recent result).

We here propose a heuristic algorithm based on a tabu search, which com-
putes good solutions in reasonable CPU time.

3 A heuristic algorithm

The size of any realistic instance of the service network design model presented
in Section 2 is extremely large. Even instances which consider only classification
yards lead to formulations with a number of constraints and variables of order
of several hundreds of thousands. Given the computational complexity of the
problem (NP-hard), to solve the formulation and compute a good solution in
reasonable time, we propose a heuristic algorithm based on a tabu search. The
algorithm is furnished with a perturbing mechanism which alters the current
solution in order to explore a larger portion of the solution space.

# iter = max iter?

Order solutions in the neighborhood
by non increasing cost in a list L

Is s’ tabu?

Serial elimination

Forced insertion/removal

Route full and empty cars

Generate a feasible service network s

Choose the first solution s’ in L

Remove s’ from L

s is locally opt

f(s’) < f(s)?

Starting
solution

Tabu
search

Disturbing
mechanisms

s:=s’

Y

Y

Y

N

N

N

TABU LOOP

MAIN LOOP

Fig. 1. Flow chart of the heuristic algorithm.
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In our model, decisions can be classified into service decisions - deciding
whether to activate or not a direct connection between a pair of yards of the
network - and routing decisions. In the proposed heuristic we treat the two types
of decisions in a hierarchical manner, i.e., we first fix the value of service decision
variables and then we decide how to route cars using the activated services.

Finding a starting feasible solution. Our heuristic procedure is initialized
with initial feasible solutions computed with the procedures reported in the
sequel.

Minimum spanning tree: The initial solution is given by a minimum spanning
tree (MST) found on a complete graph, whose arc costs rij are computed as
follows:

rij =
dij

fij

, ∀(i, j) ∈ N ×N

where fij represents the total demand for full cars from origin i to destination
j, and dij is the length of the link (i, j). Observe that the MST minimizes the
number of services, i.e. direct links between specified origins and destinations.

Currently used logistic network: We use the solution currently implemented,
which is computed on practitioners’ experience.

“Complete” graph: We compute a solution which satisfies all the demands
with a direct service. This solution clearly minimizes the car handling costs.

Minimum distance sub-graph: We compute a feasible solution selecting arcs
in a minimum length order until a connected sub-graph is obtained.

In the computational analysis we verified that the algorithm shows better perfor-
mances when the minimum spanning tree or the currently used logistic network
are chosen as initial feasible solutions.

Once the initial feasible service network is determined, we route the cars
minimizing the overall cost. Observe that we deal with full and empty cars
separately, since they have a different feature. Full cars are characterized by a
fixed O/D pair, while empties have to satisfy only constraints on the type: any
demand for empties can be satisfied with cars located at any origin. As observed
in Section 2, the service network is uncapacitated and we can schedule as many
trains as needed on any service. Therefore, the flow of full cars can be computed
using a shortest path algorithm for each commodity. In particular, we implement
a Floyd-Warshall algorithm. As regards the routing of empty cars, we solve an
uncapacitated minimum cost flow problem. In particular, we solve a minimum
cost flow for each commodity.

Tabu search procedure. As we have already mention, the core routine of our
heuristic is a tabu search procedure, see [22] and [23] for details on tabu search.
We implement as notion of neighborhood of the current solution within search for
a better solution, the set of all the networks that can be obtained from the current
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service network adding or deleting an arc. Adding an arc corresponds to opening
a new service, while deleting an arc corresponds to closing the corresponding
service.

For each possible “move” from the current solution to a new one in the
neighborhood we have to evaluate the cost of such solution. This requires solving
the routing sub-problem of cars, both empties and fulls. This procedure can be
very time consuming and it may lead to high computational time. To overcome
this drawback, we use estimates of such costs which are easily computed. Let us
evaluate the cost of a solution obtained by opening a new direct service (arc)
between nodes i and j. In this case all the flow going from i to j will be re-routed
on the directed arc (i, j). Given the new flow vector, the new cost of the objective
function is obtained simply adding up the new total transport and the new car
handling costs. In closing a service, we first have to guarantee that the deletion
of the arc leaves the graph connected. Therefore we only consider among all the
arc deletions those which maintain graph connectivity. When the arc is removed,
all the flow which previously used arc (i, j), is re-routed on the shortest path
connecting i to j.

These procedures are fast and easy to implement; in fact, they do not compute
the vector of flows (routing of cars) from scratch, but they focus their attention on
the O/D pair i−j whose connection status has changed. However, these estimates
may clearly be non-exact. It is worth noticing that, once the most convenient
move is determined based on the cost estimates, the new service network (new
solution) is considered, and full and empty cars are routed optimally according
to the procedures discussed above, thus computing the optimal vector of flows
and the exact cost value.

Two different data structures are used in order to keep memory of the more
recently visited solutions: a tabu list TL1 and a tabu list TL2. TL1 is a l-
dimensional list which is filled with the last l solutions visited by the algorithm,
while TL2 is an h-dimensional list which contains the last h moves performed
by the procedure. The dimensions of the lists are read as input parameters at
the beginning of the procedure. Once the number of solutions belonging to TL1
(respectively, TL2) is equal to its dimension l (respectively h) and it becomes
necessary to add a new solution to the list, the maximum cost solution in the
list is deleted. The algorithm ends when a maximum number of iterations is
achieved.

Perturbing mechanisms. To visit a larger portion of the feasible region, we
furnish our tabu search algorithm with a perturbing mechanism in the search
procedure. Whenever the current optimal solution is not updated within a certain
(fixed) number of iterations, the algorithm is forced to perform a move. The move
consists in adding (forced insertion) or deleting (forced removal) an arc. The arc
added or removed is the one that gives the highest improvement (or the lowest
worsening) in the objective function, among a set of candidate arcs. The set of
candidate arcs is composed by a certain (fixed) number of less recently selected
arcs. Again, if a removal is performed, network connectivity has to be verified.
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We also introduce another perturbing mechanism, referred to as serial elim-
ination whose scope is to let the algorithm to “re-start from zero”. Whenever
the current optimal solution is not updated within a certain (fixed) number of
iterations, the serial elimination forces the algorithm to re-start the local search
from a service network which is composed by a “small” number of direct arcs.
The procedure forces the algorithm to remove arcs until the solution becomes
composed by a small fixed number of arcs. Again, removed arcs are those pre-
serving network connectivity and providing the highest improvement (or the
lowest worsening) in the objective function.

4 Computational experience on a real instance

The proposed heuristic algorithm has been tested on both a set of random gen-
erated instances and on a real instance relative to the Italian case. In particular,
we considered a set of 25 random generated “small” instances, which we solved
using a mixed-integer programming solver based on the Branch & Bound algo-
rithm, called MINLP-B&B. All random generated instances have been solved
to optimality by the Branch & Bound procedure quickly. We compared these
optimal solution with the solutions proposed by our tabu search heuristic, and
we verified that in most cases our algorithm finds the optimum and that the
deviation from the optimal solution is rather low (1.78 %, on average).

The real-world instance has been obtained by an elaboration of the data
contained into the historical databases, and into the accounting systems of our
industrial partner. The maximum number of cars which can be assigned to a train
has been set to 20. The parameters defining the multiplicative factor which gives
the non-linearity of the objective function are fixed according to cost criteria
which are currently used in the accounting systems. We restrict our analysis to
a network composed by a set of 39 nodes, which correspond to the set of all
the major classification yards and frontier passes. The number of commodities
is 375. The main characteristics of the considered instance are reported in Table
1.

Table 1. Characteristics of a real instance of the problem.

Real instance

Number of instances 1

Number of yards (n) 39

Number of commodities (p) 375

Distances (Km) 0 to 2000

Demands (number of cars) -2000 to 2000

Car handling cost (euro) 0 to 50
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In Table 2 we compare the solution proposed by our algorithm with the
solution currently implemented by the Italian railways company. In particular,
we consider the following technical and economical statistics.

1. C: it is the objective function value and represents a measure of the total
cost.

2. S: number of directed services between yards.
3. T : number of trains necessary to deliver all the cars on the service network

in order to satisfy all the transportation demands.
4. TK: total amount of kilometers covered by all the trains traveling on the

network.
5. CK: total amount of kilometers covered by all the cars traveling on the

network.
6. M : number of manoeuvres.

Table 2. Comparison between the currently used logistic network and the net-
work proposed by the heuristic algorithm.

Statistic Current network Algorithm solution % Comparison

C 11767851 11318144 -3.82%

S 144 158 +9.72%

T 4258 3851 -9.56%

TK 1060889 1027310 -3.17%

CK 21217665 20546329 -3.16%

M 170390 154014 -9.61%

It can be observed that total costs decrease of 3.82%, as well as the number of
trains (−9.56%), car manoeuvres (−9.61%), and the total amount of kilometers
covered by all the trains (cars, respectively) traveling on the service network
(−3.17 and −3.16%, respectively). On the other hand, we have an increase in
the number of directed services which are activated in the solution proposed by
the algorithm (+9.72%).

5 Conclusions

The purpose of this paper is two-fold. First, we focus on the current Italian rail
transportation reality. Several different features identify the Italian system with
respect to others, especially the Northern American ones. Relevant differences
arise with respect to the planning process, the structure of railroads, the limits in
terms of maximum weight and length of a train and finally in the policies adopted
to compose trains. Furthermore, in Italy both empty cars distribution and cars
handling at intermediate yards have a relevant impact on total transportation
costs.
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Second, we proposed a mathematical model intended to design the set of
direct connections between yards, and to route cars on it. The model combines
both the full and empty freight cars management and takes into account the
handling costs, suggesting the services to provide and the number of trains and
the number and type of cars traveling on each service. In order to ensure a certain
level of quality of the service which is offered to the customers, a concave cost
objective function is introduced. The resulting model, which can be classified
within the class of minimum concave-cost network design problems, is solved
with a tabu search meta-heuristic which adopts some perturbing mechanisms
in order to force the search process to explore a larger portion of the feasible
region.

The computational results showed a good behavior of the algorithm on real-
istic instances of the problem, thus proving the viability for an integration in a
decision support system.
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Abstract. We present a new model for a strategic locomotive schedul-
ing problem arising at the Deutsche Bahn AG. The model is based on a
multi-commodity min-cost flow formulation that is also used for public
bus scheduling problems. However, several new aspects have to be addi-
tionally taken into account, such as cyclic departures of the trains, time
windows on starting and arrival times, network-load dependend travel
times, and a transfer of wagons between trains. The model is formu-
lated as an integer programming problem, and solutions are obtained
using commercial standard software. Computational results for several
test instances are presented.

Keywords. Freight Transport, Vehicle Scheduling, Time Windows, In-
teger Programming.

1 Introduction

Deutsche Bahn AG (DB) is the largest German railway company with 216,000
employees and a turnover of 25 billion Euros in 2005. DB is active in both
passenger and freight transportation. Per year, 1.8 billion passengers (72 billion
passenger kilometers) and 253 million tons of goods (77 billion ton kilometers)
are transported. Moreover, DB is the owner of the German railway system,
where DB freight and passenger trains travel 887 million kilometers per year,
and external railway companies around 110 million kilometers. The overall length
of the railways is 34,000 kilometers, and about 4,400 freight trains and 30,000
passenger trains per day traverse this network [1,2]. All in all, DB’s network is
considered as one of the most dense and most frequently used railway network
in the world.

For the long-term simulations and future predictions of the network load,
DB developed a complex simulation tool. The entire simulation tool can be con-
sidered as a chain, which decomposes into several components. To this end it
is possible to model the normal course of business operations, and to analyze

ATMOS 2006
6th Workshop on Algorithmic Methods and Models for Optimization of Railways
http://drops.dagstuhl.de/opus/volltexte/2006/686
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the influence of changing external parameters, such as future demands on goods,
possible network expansions or the sensitivity to the price for oil. The compo-
nents of the tool chain interact by generating output data, which is used as input
for other parts of the chain. The entire simulation tool has evolved over the last
5 years, and is still under continuous improvement. In this article we describe
the development of a new segment for the tool chain.

Currently, a chain’s segment called train scheduler is responsible for the gen-
eration of trains from individual wagons. As soon as enough wagons are assem-
bled, the train is started. That means, the starting times of the trains are not
aligned to some timetable, they just follow the estimated customers’ productions
and demand peaks in the simulation. Hereby it is assumed that a locomotive for
pulling this train is always and immediately available. Moreover, the locomotives
are not scheduled.

From the area of public bus transport it is known that routing and scheduling
of the vehicles is an important field in the optimization of the operator’s business
process. For instance, Löbel [3] and Gintner, Kliewer, and Suhl [4] developed
models for the scheduling of public buses, which led to significant cost savings
in public transport. Moreover, it was noted by Daduna and Völker [5] that in
public bus transport an even fewer number of buses is necessary to serve all trips,
if the starting times of the vehicles are altered within some small interval. Later,
Fügenschuh [6] also included the customers’ demands into the optimization such
that the scheduling problem of the vehicles is solved together with the starting
time problem of the trips, which leads to further reductions of vehicles and costs.

The scope of our research is to carry over these observations to the locomotive
scheduling in freight transport of Deutsche Bahn. Several new aspects have to
be taken into account, such as cyclic departures of the trains, time windows on
starting and arrival times, network-load dependend travel times, and a transfer
of wagons between trains. The model presented in this article aims at a support
of strategic simulations of the future, for example, simulating the network load
in freight transport in the year 2015. The model is formulated as a linear integer
programming problem (IP, for short). We give a computational evaluation of the
resulting IPs and show whether standard commercial IP solvers (such as ILOG
Cplex [7]) are able to handle problem sizes of instances that occur in the context
of DB.

The remainder of this article is organized as follows. In Section 2 we describe
the problem in greater detail. In Section 3 we provide a stepwise refined model,
formulated as an integer programming problem. In Section 4 we present compu-
tational results for the different varients of our model using standard software.
An outlook to further work is finally given in Section 5. For a survey on combi-
natorial optimization problems in connection with rail transport we refer to the
literature, for instance, the survey articles of Bussieck, Winter, and Zimmermann
[8] and Caprara, Fischetti, Toth, and Vigo [9].
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2 The Problem Settings

In this section we give details of the integrated scheduling problem and introduce
the terminology used at DB.

Wagons. A wagon is a rolling stock for freight transport. The wagons have
to be delivered between a source and a destination point (goods station)
within the network. Large customers produce and/or consume so much goods
that they order whole trains. In these cases, the route of the wagons equals
the route of the train. Smaller customers order individual wagons. Then
the wagons of different customers are assembled to trains and pulled as a
whole to an intermediate destination (a shunting yard), where the trains are
disaggregated and reassembled to new trains. The trains and the yards where
the wagon transfer between trains are known in advance. When changing
the starting time of the trains, one has to take care that these transfers still
remain feasible.

Trains. A freight train (also called production trip) consists of several wagons.
Each train has a start and a destination, which are goods stations or railroad
shunting yards. Also given are starting times and arrival times. These can
be either fixed times or intervals, in which the start or the arrival has to
take place. We assume that the trains start cyclical every 24 hours. The trip
duration is the time difference between start and arrival. The average travel
speed of freight trains is not as high as in passenger transport, especially at
daytime, when passenger trains always have priority, such that some trips
can last up to 3 days. The trains have different length and weight and thus
require locomotives with sufficient driving power. In contrast to the prob-
lems described by Ahuja et al. [10] or Ziarati [11], a train is always pulled
by a single locomotive. At the start a locomotive is attached to the train,
and at the destination station it is detached (uncoupled). For both coupling
processes, a certain train-dependent amount of time has to be taken into
account (15 to 30 minutes). At this stage, technical checks and refueling of
diesel locomotives are carried out.

Locomotives. DB uses up to 30 different locomotives of several manufacturers.
However, the differences between them are often minor, so they are grouped
into 3 to 6 classes of similar locomotives. The main differences among the
classes are the driving power of the engines, and the traction (i.e., the motor
type, diesel or electrical). Electrical locomotives can only be used on elec-
trical tracks, whereas diesel locomotives in principle can drive everywhere.
However, diesel soots the electrical wires, so one wants to avoid their deploy-
ment on such tracks. Hence, it is only possible to assign such locomotives to
trains that have a sufficient power and the right traction for the track.

Deadheads. A locomotive is either active, i.e., pulling a train, or deadheading,
i.e., driving under its own power without pulling a train from the destination
station of one train to the start of another train. The duration for a deadhead
trip depends on the distance between these two points, and on the class of
the locomotive (diesel and electrical might have to use different routes), but
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not so much on the network load (i.e., independent of daytime or nighttime),
because it is assumed that a single locomotive can always be pushed through.

Goals and Objectives. The main goal is to compute feasible starting and ar-
rival times of the trains such that the wagons are transported as fast as
possible from their start to the destination within the trains. At interme-
diate shunting stations the stopover of wagons should not exceed certain
limits. The main objective is to reduce operating expenses, that is, to use as
few locomotives as possible to pull all trains and, on a subordinate level, to
schedule the locomotives in such a way that the deadhead trips are as short
as possible.

3 Models

The models we describe in this section can be classified by one main characteris-
tic, the starting time intervals. In the first type of the models, the starting time
is given by the pre-scheduler of the tool chain. By this tool, a train is started as
soon as enough wagons are assembled. What “enough” in this context means is
guided by a local criterion, which is mainly based on the number, total weight,
and total length of the wagons. However, this local criterion does not take the
availability of locomotives into account. It is simply assumed that a locomo-
tive is always available, if required by some train. A model for scheduling the
locomotives under this assumptions is presented in Section 3.1.

On the other hand, there is always a little flexibility in the departure and
arrival of the trains, which has to be negotiated with the customers. In Section 3.2
we describe a model where the starting time can vary within a given interval.
This model is much more complex, since it has to take care of the syncronization
of the train departures and the wagon schedules. A further refinement of this
model is given in Section 3.3. Here the trip durations are not constant but
dynamically depending on the actual network load.

For all models we use the following notations. Let V be the set of freight trains
(production trips), and let B be the set of locomotive classes. We introduce a
parameter ab,i ∈ {0, 1} with ab,i = 0 if a class b locomotive cannot pull train i.
Let A := V×V denote the set of all deadhead trips. Denote ab,(i,j) := ab,i ·ab,j ∈
{0, 1}, then we have ab,(i,j) = 0 if and only if the deadhead trip from i to j is
not feasible for a class b locomotive. Moreover, those ab,(i,j) can be set to zero
where the corresponding deadhead trip exceeds a certain length.

3.1 Fixed Starting Times

To begin with, we take the starting and arrival times for the trains as they were
computed by the train scheduler of the tool chain. This computation also ensures
that individual wagons can transfer between trains. We introduce a decision
variable xb,(i,j) ∈ {0, ab,(i,j)} with xb,(i,j) = 1 if trains i and j are connected and
both served with a locomotive of class b, and xb,(i,j) = 0 otherwise. Each train j
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must be served with one class of locomotive, that is,∑
b∈B

∑
i:(i,j)∈A

xb,(i,j) = 1. (1)

There is a flow conservation in the sense that the cycles of each class b and each
trip j must be closed, that is,∑

i:(i,j)∈A

xb,(i,j) =
∑

k:(j,k)∈A

xb,(j,k). (2)

The connection of production and deadhead trips is called cycle. This notion is
justified since each trip has a unique predecessor and a unique successor, and
therefore at some point each locomotive will serve the first trip again. We denote
by λb,(i,j) the number of locomotives of class b that are additionally necessary
due to the connection of i with j. Similar to Liebchen and Möhring [12] this
number is computed as

λb,(i,j) :=

⌈
t̂i − t̂j + δb,(i,j)

1440

⌉
≥ 0. (3)

Here t̂i, t̂j are the pre-scheduled starting times of trains i and j, respectively.
The constant 1440 refers to the number of minutes per day, which is the basis
of the cycles (i.e., all trips are repeated on a daily base), and δb,(i,j) denotes the
total trip and deadhead trip duration, that is,

δb,(i,j) := δtrp
i + δuncpl

i + δdhd
b,(i,j) + δcpl

j , (4)

where

– δtrp
i denotes the trip duration, i.e., the time the locomotive is active while

pulling train i,
– δuncpl

i denotes the time for uncoupling the locomotive from the train at the
arrival,

– δdhd
b,(i,j) denotes the time for deadheading from the end of i to the start of

train j, and
– δcpl

j denotes the time for coupling the locomotive to the train at the start of
j.

Remark that the driving time δtrp
i is assumed to be independent of the actual

class, whereas the deadhead time δdhd
b,(i,j) is class dependent (since diesel and

electrical might use different routes).
A capacity in form of an upper bound Bb on the number of available loco-

motives of class b can be specified:∑
(i,j)∈A

λb,(i,j)xb,(i,j) ≤ Bb. (5)
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As objective function we want to minimize the total costs defined as∑
b∈B

∑
(i,j)∈A

(γcls
b λb,(i,j) + γdhd

b,(i,j))xb,(i,j) (6)

where

– γcls
b denotes the costs for a locomotive of class b,

– γdhd
b,(i,j) denotes the costs in connection with deadheading from i to j with

locomotive b.

The most important objective is the reduction of the deployed locomotives, and
second is the reduction of deadhead costs. Hence γcls

b � γdhd
b,(i,j).

The optimization problem is the minimization of (6) subject to the con-
straints (1), (2), (5), and the integrality of all xb,(i,j). Due to the cyclic character
of the schedules of the locomotives we call this problem the capacitated cyclic
vehicle scheduling problem (CVSP). In the case of no upper bounds (or Bb = ∞)
we also speak of the uncapacitated CVSP.

For |B| = 1, this problem reduces to a single-commodity minimum-cost flow
problem, which can be solved efficiently by polynomial or pseudopolynomial
algorithms (for instance by the Hungarian Method, see Ahuja, Magnanti, and
Orlin [13] for details). For |B| > 1, the uncapacitated CVSP is a multi-commodity
min-cost flow problem, which is known to be NP -hard. Moreover, it is NP -
complete to decide whether a feasible solution exists for the capacitated CVSP
(see Löbel [3]).

3.2 Variable Starting Times

We change the above model for locomotive scheduling for the case where the
starting times of the trains are allowed to be changed within a given interval.
The corresponding model is called (capacitated or uncapacitated) cyclic vehi-
cle scheduling problem with time windows (CVSPTW). In comparison with the
CVSP, the CVSPTW model is more complicated, because we have to take care
of the transfer of wagons between trains.

We first introduce bounds on the starting time of the trains. The starting
time for i ∈ V is denoted by ti ∈ Z+. The set V is devided into two subsets,
V = C ∪̇ S. In C there are all trips i with a connected starting time interval
[ti, ti] ⊆ [0, 1439] ∩ Z in which the starting time must lie:

ti ≤ ti ≤ ti. (7)

In particular, each trip has to start during the first day. If the starting time
exceeds this limit, the interval is split into two. This is the case for all trips
i ∈ S. Their starting time must be in ([ti, 1439] ∪

[
0, ti

]
) ∩ Z. We introduce a

binary variable yi ∈ {0, 1} with yi = 1 if the starting time is in [0, ti] (after
midnight), and yi = 0 if it is in [ti, 1439] (before midnight). We then obtain the
following constraints for the starting times:

ti(1− yi) ≤ ti ≤ 1439 + (ti − 1439)yi. (8)
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As in the CVSP model we introduce decision variables xb,(i,j) ∈ {0, ab,(i,j)} for
the deadhead trips, and use the same multi-commodity flow formulation:∑

b∈B

∑
i:(i,j)∈A

xb,(i,j) = 1, (9)

and ∑
i:(i,j)∈A

xb,(i,j) =
∑

k:(j,k)∈A

xb,(j,k). (10)

If i, j ∈ V are connected, then the corresponding starting times must be syn-
chronized,

ti + δb,(i,j) − 1440lb,(i,j) ≤ tj + 5760(1− xb,(i,j)). (11)

The constant 5760 = 4 ·1440 reflects the assumption that the train starting time
is fixed to the first day, and a trip duration per train is at most 3 days. Since the
starting time selection is now integrated in the model, we cannot compute the
number of locomotives λb,(i,j) beforehand, as in the case of the CVSP. Instead
we introduce a variable lb,(i,j) ∈ Z+ which represents the number of additional
locomotives due to the connection of i with j.

Finally we have to syncronize those trains i, j ∈ V where wagons transfer
from one to the other. Since all trains are cyclic, there are in principle no missed
transfers. That is, if j departs before the arrival of i, then the wagons have to
wait at most 24 hours until the arrival of the next train j. However, long idle
waiting times of the wagons are undesired. This is modeled by the following
inequality:

0 ≤ (tj + 1440qi,j)− (ti + δtrp
i + δshnt

i,j ) ≤ 719 + 720pi,j , (12)

where

– δshnt
i,j denotes the time for shunting the wagon from i to j,

– qi,j ∈ {0, . . . , 4} is a variable to shift the starting time of j within the same
day of the arrival of i, and

– pi,j ∈ {0, 1} is a decision variable with pi,j = 1 if and only if the wagons
from i to j are idle for more than 12 hours.

In this formulation, the variables pi,j are put into the objective function with
a suitable scaling coefficient. In this way it is possible to analyze how many
locomotive could potentially be saved if some transfers are missed. It is also
possible to set pi,j := 0 for all transfers i, j, which gives a hard constraint, i.e.,
the transfers are much more important than saved locomotives.

The objective is to minimize the total costs defined as∑
(i,j)∈A

γidle
i,j pi,j +

∑
b∈B

∑
(i,j)∈A′

(γcls
b lb,(i,j) + γdhd

b,(i,j)xb,(i,j)), (13)

where γcls
b and γdhd

b,(i,j) are defined as above, and γidle
i,j denotes the costs for idle

wagons, i.e., a wagon missing its subsequent train which then has to wait for
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more than 12 hours. In general, these coefficients reflect the following ordering:
Reducing idle wagons is most important, since high contract penalties for late
arrivals have to be paid. Second is now the reduction of the deployed locomotives,
and the reduction of deadhead costs is moved to the third place.

3.3 Netload-dependent Travel Times

We further refine the above CVSPTW model to the case that the driving time of
the trains is not constant, but a function depending on the total network load.
At daytime the freight transport has to wait for the passenger transport such
that the traveling speed is much lower than at nighttime.

To this end, the whole day is partitioned into a discrete number of time slices
H = {1, . . . ,H}, that is, [0, 1439] =

⋃̇
h∈H[τh, τh]. For each train i we introduce

decision variables zi,h ∈ {0, 1} with zi,h = 1 if and only if the train starts within
time slice h. Exactly one slice must be selected:∑

h∈H

zi,h = 1. (14)

The slice selection is coupled to the starting time of train i such that the “right”
slice h is chosen:

τh − ti ≤ 1439(1− zi,h), (15)
ti − τh ≤ 1439(1− zi,h). (16)

Then the trip duration of train i is given by

dtrp
i =

∑
h∈H

δtrp
i,hzi,h, (17)

where dtrp
i ∈ Z+ is a new variable, and δtrp

i,h is a parameter giving the trip duration
of train i when being started in slice h. The actual values of δtrp

i,h are statistically
estimated along historical data. Then in the CVSPTW model, δtrp

i is replaced
by dtrp

i .
Morover, in case of dynamic trip durations it is desired to specify bounds on

the arrival time of some of the trains in addition to the starting time bounds,
i.e.,

T i ≤ ti + dtrp
i ≤ T i, (18)

where [T i, T i] ⊆ [0, 5759] ∩ Z is the arrival time interval of train i.

4 Computational Results

The CVSP and the CVSPTW problems are formulated as integer programming
problems. Thus one can use standard IP solvers to compute feasible or optimal
solutions. For an introduction to integer programming we refer to the literature
(Nemhauser and Wolsey [14] for instance). For our computational studies we used
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ILOG Cplex 10 [7], one of the currently fastest IP solvers. We made exhaustive
tests with the number of parameters that guide the solution process. We made
overall best experiences when setting cut generation and probing to the highest
level. These settings yield the shortest computation times that are reported in
the sequel. The software was running on a Linux server with 16 GByte main
memory and 4 dual core AMD Opteron 880 processors running at 2.4 GHz each.
Cplex is able to make use out of such environment by parallelizing the branch-
and-bound tree.

From the data base of the tool chain we extracted 7 test instances, which we
refer to as A, B, C, D, E, F, G in the sequel. Here A is the smallest instance with
42 trains and 3 classes of locomotives, whereas G is the largest, having 1,537
trains and 4 classes of locomotives (for details see the first three columns of
Table 1 or Table 2). The instances are related to certain regions within the DB
railway network. For example, instance G consists of trains mainly from the south
of Germany, trains from A serve north-south connections, whereas E comprises
trains from all over Germany.

4.1 Results for the CVSP

At first we take the fixed starting times for the trains in the form they were
generated by the train scheduling part of the tool chain. Here each train is
assumed to depart as soon as enough wagons are assembled. For most instances
the solver was able to find optimal solutions within short amount of time, with
exception of G, where more than 3 hours of computation time was needed. Note
that an instance with around n trains and m classes leads to integer programs
with around n2m many variables, which is more than 3 Mio. for instances F and
G. For the instances from A to G the solution time grows with the size of the
instance (see column 4 of Table 1 or Table 2).

name trips classes time locomotives
P

km

A 42 3 1 2/19/2 23 3,808
B 82 3 2 3/34/8 45 52
C 120 4 18 6/35/1/1 43 2,560
D 394 5 27 12/11/21/15/26 85 27,132
E 945 3 480 137/51/45 233 42,057
F 1, 507 4 652 28/19/287/52 386 58,446
G 1, 537 4 9, 502 53/22/26/72 173 2,942

Table 1. Solutions for the uncapacitated CVSP.

The actual amount of locomotives per class that is needed to serve all trips
is shown in column 5, the sum of these is given in column 6. Table 1 shows the
solutions for the uncapacitated case, that is, it is possible to deploy arbitrarily



10 A. Fügenschuh, H. Homfeld, A. Huck, A. Martin

name trips classes time locomotives
P

km

A 42 3 1 6/15/2 23 958
B 82 3 2 3/26/16 45 52
C 120 4 7 15/26/1/1 43 1,919
D 394 5 27 12/14/22/19/20 87 26,776
E 945 3 2, 837 150/38/45 233 35,375
F 1, 507 4 4, 971 28/19/216/123 386 56,130
G 1, 537 4 13, 864 53/22/46/52 173 2,838

Table 2. Solutions for the capacitated CVSP.

many locomotives of each class. In contrast, Table 2 shows the solutions of the
capacitated case, that is, the number of locomotives per class is limited to the
actual stock of DB. In general, the solution times for the capacitated case were
higher, in particular for the larger instances E, F, G. However, the total number of
locomotives is unchanged (with the exception of instance D), only the locomotives
per class are different between the capacitated and the uncapacitated case. The
last column of Table 1 and Table 2 shows the sum of deadhead trips lengths for
all locomotives. Interestingly, the total length (in kilometer) of deadhead trips
decrease when switching from the uncapacitated to the capacitated version of the
CVSP. This could be ascribed to an increase in diesel locomotives for example,
whose deadhead trips are in general shorter.

4.2 Results for the CVSPTW

In the CVSP instances the starting times of all trains were fixed to the times that
were computed by the tool chain’s scheduler. We now allow the starting times to
be altered within a small time window centered around the pre-scheduled start-
ing time, that is, we consider the (uncapacitated) vehicle scheduling problem
with time windows (CVSPTW). It turns out that the computation time heavily
depends on the actual size of the time windows. Generally speaking, the larger
the time window, the more time the solver needs. For all computations we now
impose a time limit of 3,600 seconds. We consider the three smallest instances A,
B, and C, and take intervals of ±10,±30,±60, and ±120 minutes around the cur-
rent (pre-scheduled) starting time. Moreover, the solver Cplex allows to specify
so-called starting solutions, which are integral feasible solutions to the problems
that can be generated by other methods (primal heuristics, for instance). For our
computations, we take the respective optimal solutions to the (uncapacitated)
CVSP (presented in Table 1) as input for the ±10 instances. Then, we take the
optimal (or best feasible) solutions of ±10 as input for ±30, and so on. The
computational results are shown in Table 3. For the other instances D to G the
solver did not find feasible solutions, or did not even solve the root LP relaxation
within the time limit. In column 3 of Table 3 we show the computation time in
seconds. An asterisk (*) marks whether the given limit was reached. In those
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cases the integrality gap (i.e., the distance between the best known solution and
the corresponding lower bound) shown in column 4 is non-zero. The last three
columns of Table 3 depict the quality of the optimal or best feasible solution. It
turns out that there is a significant potential to save locomotives by changing
the departure times of the trains. The possible savings are higher the wider the
time windows are open. The price one has to pay for this additional flexibility
is the increasing solution time.

instance time w. time gap locomotives
P

km

A-42-3 ± 10 4 0.00 % 2/18/2 22 3, 931
A-42-3 ± 30 30 0.00 % 2/14/2 18 3, 731
A-42-3 ± 60 3, 600∗ 11.69% 2/11/2 15 2, 516
A-42-3 ±120 3, 600∗ 27.78% 2/10/2 14 1, 640

B-82-3 ± 10 79 0.00 % 3/27/14 44 52
B-82-3 ± 30 183 0.00 % 3/23/16 42 52
B-82-3 ± 60 3, 600∗ 5.32 % 3/15/19 37 6
B-82-3 ±120 3, 600∗ 9.59 % 2/14/16 32 1, 591

C-120-4 ± 10 753 0.00 % 5/35/1/1 42 2, 301
C-120-4 ± 30 3, 600∗ 21.84% 6/32/1/1 40 3, 608
C-120-4 ± 60 3, 600∗ 38.14% 6/30/1/1 38 3, 120
C-120-4 ±120 3, 600∗ 79.06% 6/29/1/1 37 2, 882

Table 3. CVSPTW with different time window sizes.

Note that in these computations the number of missed transfers of wagons is
not shown. This is due to the fact that the corresponding variables pi,j are fixed
to their lower bounds beforehand. This reflects the fact that a fast transfer of
wagons is always more important than saved locomotives.

4.3 Results for the refined CVSPTW

Finally we consider the (uncapacitated) CVSPTW with netload-dependend travel
times for the trains. This is the most evolved model in our hierarchy and it
comes with no surprise that the solution times here are even higher than for the
CVSPTW with constant traveling times. As before, we take the best feasible
solution of an instance with a smaller time window as integer starting solution
for the instance with the next bigger time window. Our results are summarized
in Table 4. Depending on the starting time, the total travel time varies between
70 % and 130% of the constant travel time. The bias of the travel time is esti-
mated using historical data.

The results in Table 4 give an impression on the current state of problem
sizes that can be solved using Cplex out of the box, with some altered parameter
settings. Since we are far from solving even medium-size instances to optimality,
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instance time w. time gap locomotives
P

km

A-42-3 ± 10 5 0.00 % 2/18/2 22 3, 808
A-42-3 ± 30 34 0.00 % 2/13/2 17 2, 510
A-42-3 ± 60 3, 600∗ 19.38 % 2/11/2 15 2, 516
A-42-3 ±120 3, 600∗ 36.99% 3/9/2 14 2, 125

B-82-3 ± 10 102 0.00 % 3/24/17 44 98
B-82-3 ± 30 213 0.00 % 3/19/18 40 52
B-82-3 ± 60 3, 600∗ 9.41 % 3/20/13 36 6
B-82-3 ±120 3, 600∗ 16.56 % 2/18/11 31 1, 649

C-120-4 ± 10 1, 033 0.00% 5/35/1/1 42 2, 301
C-120-4 ± 30 3, 600∗ 22.60% 8/30/1/1 40 3, 083
C-120-4 ± 60 3, 600∗ 41.10% 7/29/1/1 38 3, 168
C-120-4 ±120 3, 600∗ 79.06% 6/29/1/1 37 4, 191

Table 4. CVSPTW with netload-dependent travel times.

one can try to use heuristic reductions of the problem’s complexity. A first idea
in this respect is to remove those deadhead trips that are above a certain limit.
The hope is that sufficiently many long deadhead trips are removed by this, such
that the remaining instance is smaller and computationally easier to solve, and
on the other hand the solution is not too far away from the optimal solution.
Similar as above, the best feasible solution of one instance with a tighter bound
on the maximal deadhead length can be used as input for another instance with
a larger bound. This we use here for the C instances, which cannot be solved to
optimality within the given time limit. Our results are shown in Table 5. Column
3 of this table contains the upper bound on the deadhead trip length δdhd

b,(i,j). If
δdhd
b,(i,j) exceeds the respective bound then ab,(i,j) is set to zero. The last three

columns of Table 5 show the deviation from the optimality (for those instances
A and B where the optimal solution is known, cf. Table 4). For convenience we
repeat in the first row of each block A, B, C the results from Table 5 (with an
upper bound of ∞, which is equivalent to no upper bound). As one can see, the
loss is only a small one, whereas the solution time (given in column 4) is much
lower now.

5 Conclusions and Further Work

In this article we presented new models for the strategic locomotive scheduling.
These models were in part inspired by similar optimization problems in pub-
lic bus transport. However, several new rail-specific requirements emerged such
that the models could not be directly carried over. The models were formu-
lated as integer programs. Thus commercial standard software for their solution
could be applied. The evaluation of the capability of this software was part of
our project. It turned out that for the cyclic vehicle scheduling without time
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instance time w. bound time gap locomotives
P

km

A-42-3 ±30 ∞ 34 0.00% 2/13/2 17 2,510
A-42-3 ±30 600 27 0.00 % 3/12/2 17 958
A-42-3 ±30 300 9 0.00 % 3/12/2 17 958
A-42-3 ±30 100 2 0.00 % 3/16/2 21 6
A-42-3 ±30 0 2 0.00 % 3/16/3 22 0

B-82-3 ±30 ∞ 213 0.00% 3/19/18 40 52
B-82-3 ±30 100 39 0.00 % 3/25/12 40 52
B-82-3 ±30 50 39 0.00 % 3/23/14 40 52
B-82-3 ±30 10 24 0.00 % 3/24/14 41 6
B-82-3 ±30 0 22 0.00 % 4/23/15 41 0

C-120-4 ±30 ∞ 3, 600∗ 21.08 % 4/34/1/1 40 2,459
C-120-4 ±30 600 3, 600∗ 18.63 % 4/34/1/1 40 2,459
C-120-4 ±30 300 3, 600∗ 18.54 % 5/33/1/1 40 2,113
C-120-4 ±30 100 3, 600∗ 13.85 % 6/37/1/1 45 486
C-120-4 ±30 0 3, 600∗ 12.28 % 7/44/2/1 54 0

Table 5. CVSPTW with upper bounds on the deadhead trips.

windows, the software was able to solve even larger instances. As soon as time
windows enter the scene, the sizes where global optimal solutions were computed
was reduced by some orders of magnitude. Our further work thus aims at an im-
provement of the model formulation, where we want to develop and implement
primal heuristics, problem-specific cutting planes, and branching rules such that
larger models can be routinely solved to optimality. Also a further refinement
of the presented model is on our agenda. An example in this direction is the
inclusion of deadheading locomotives which are included in trains and thus do
not need own power and staff for operating.
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2. Railion Deutschland: Geschäftsbericht. Railion Deutschland AG, Rheinstraße 2,
55116 Mainz (2005)
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6. Fügenschuh, A.: The Integrated Optimization of School Starting Times and Public
Transport. Logos Verlag, Berlin (2005)

7. ILOG Ltd.: ILOG Cplex 10 Solver Suite. Technical report, ILOG Cplex Division,
889 Alder Avenue, Suite 200, Incline Village, NV 89451, USA (2006)

8. Bussieck, M., Winter, T., Zimmermann, U.: Discrete optimization in public rail
transport. Mathematical Programming 79 (1997) 415 – 444

9. Caprara, A., Fischetti, M., Toth, P., Vigo, D.: Algorithms for railway crew plan-
ning. Mathematical Programming 79 (1997) 125 – 141

10. Ahuja, R., Liu, J., Orlin, J., Sharma, D., Shughart, L.: Solving real-life locomotive
scheduling problems. Transportation Science 39 (2002) 503 – 517

11. Ziarati, K.: A heuristic to find cyclical planning solution for locomotive assignment
problems. In: Proc. 1st Nat. Ind. Eng. Conf., Iran, Sharif University of Technology
(2001)
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Abstract. We introduce the Periodic Metro Scheduling (PMS)
problem, which aims in generating a periodic timetable for a given set of
routes and a given time period, in such a way that the minimum time dis-
tance between any two successive trains that pass from the same point of
the network is maximized. This can be particularly useful in cases where
trains use the same rail segment quite often, as happens in metropolitan
rail networks.

We present exact algorithms for PMS in chain and spider networks,
and constant ratio approximation algorithms for ring networks and for a
special class of tree networks. Some of our algorithms are based on a re-
duction to the Path Coloring problem, while others rely on techniques
specially designed for the new problem.

Keywords. train scheduling, path coloring, delay-tolerant scheduling,
periodic timetabling

1 Introduction

In railway networks where trains use the same railway segment quite often (e.g.
metro) it would be desirable to schedule trains so as to guarantee an ample time
distance between successive trains that pass from the same point of the network
(in the same direction). Such a scheduling would result in a more delay-tolerant
system. This is a particularly essential requirement in cases where there are
several overlapping routes that have to be carried out periodically and the time
limits are such that some route must start before the termination of another
route with which it shares a part of the network.

Here, we formulate this situation by introducing the problem Periodic

Metro Scheduling (PMS): given a rail network, a set of routes (described
as paths over the network graph), and a time period, we seek to arrange the
departure times of routes so that the minimum time distance between any two
trains that pass from the same point of the network is maximized. Although

? Research supported in part (a) by the European Social Fund (75%) and the Greek
Ministry of Education (25%) through “Pythagoras” grant of the Operational Pro-
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nical University of Athens through “Protagoras” grant.
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our motivation comes from railway optimization, PMS may also describe other
transportation media timetabling problems.

We show the NP-hardness of PMS, by reduction from Path Coloring

(PC), which is the problem of coloring paths in a graph with minimum number
of colors so that intersecting paths receive different colors. We further investigate
the relation between the two problems and present exact algorithms for chain and
spider networks that rely on a reduction from PMS to PC. Moreover, we show
that this technique also applies to rings for which the time needed to traverse the

ring is a multiple of the given period. This results to a
(

1
ρ

L
L+1

)

-approximation

algorithm for such instances, where ρ is the approximation ratio we can achieve
for PC and L is the maximum number of routes passing through any edge of
the network. For ring instances that do not satisfy this condition we present a
more involved algorithm that achieves an approximation guarantee of 1

6 . Finally,
we show how to apply the path coloring technique to tree networks where the
time distance between stations is a multiple of the half of the period, resulting

in a
(

1
ρ

L
L+1

)

-approximation algorithm for this topology as well. Our algorithms

employ known algorithms for PC [4, 22, 9, 13] as subroutines.

Related work. To the best of our knowledge Periodic Metro Scheduling has
not been studied before in the form of an optimization problem. The decision
version of PMS, namely the problem of requiring a minimum safety distance not
smaller than a given threshold between all pairs of overlapping routes, can be
described in terms of a generic problem known as Periodic Event Scheduling

Problem (PESP) [23]. PESP has been studied by several researchers, see e.g.
[25, 19, 18, 20] and references therein. However, we are not aware of any concrete
results for PESP that could apply to PMS, as PESP is usually studied in
conjuction with several other constraints that render the problem quite hard and
the proposed methods for solving it are mainly heuristics based on “branch-and-
bound”, “branch-and-cut”, and “branch-and-price” methods. A similar problem
as PMS has been defined in [11], and it has been proven to be NP-complete.
However, the setting is broader and the completeness results apply to general
graphs1.

There is a huge bibliography on railway optimization topics; the interested
reader is referred to [3] for a nice collection of concepts and earlier results on
railway optimization. More recent work on periodic train scheduling includes
a rolling stock minimization problem where routes are given and it is sought
to determine departure times either arbitrarily (as in our case) or within an
allowed time window [7]; however, the objective there is quite different, namely
to serve all routes with a minimum number of trains while it is allowed for
routes to simultaneously depart from the same station even if they follow the
same direction. The rolling stock minimization problem with fixed departure
times has been extensively studied: the simplest version, also known as Minimum

Fleet Size [2], or Rolling Stock Rostering [8], can be solved exactly in

1 Unfortunately, we were not able to thoroughly check the similarity of those results
to ours because that thesis is available only in German.
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polynomial time; Dantzig and Fulkerson [6] give the first known algorithm and
Erlebach et al. [8] present one of improved complexity. In [8] some variations
are also studied and shown APX-hard: allowing empty rides and requiring that
the trains pass through a maintenance station; constant ratio approximation
algorithms have been proposed.

A problem that has recently drawn attention is that of delay management,
that is, how to reduce or increase delays of trains in order to better serve rail-
way customers [24, 12, 14]. Several other railway optimization problems have
been considered in the literature [26, 5, 21, 1], most of which are hard to solve; a
number of heuristics have been presented for them in the corresponding papers.

2 Definitions – Preliminaries

We assume that all trains move at the same speed, therefore the duration of
traveling between any two connected stations is the same for all trains. In the
sequel we denote the travel time between two stations connected by edge e as
t(e). We also assume that all edges represent directed railway lines and any two
connected stations are linked by a pair of opposite directed edges. For simplicity
we consider that the waiting time at stations is negligible.

We are interested in maximizing the time distance between any two overlap-
ping routes, that is, routes that share at least one edge. Note that, due to the
uniformity of speed, it suffices to measure the time distance between overlap-
ping routes only at the starting node (station) of the first edge of each common
section. More precisely, let e be a common edge between routes r and r′ and t

(resp. t′) be the time at which r (resp. r′) enters edge e. Then the time distance
of r and r′ at edge e is defined as min(t − t′ mod T, t′ − t mod T ). When the
time distance between two routes in an edge is 0 we say that the routes collide.

We will denote the source of a route r by s(r), and its target by e(r). We
define τ(i, j) as the time distance between nodes i and j in the input graph.

Let us now formally define our problem.

Periodic Metro Scheduling (PMS)

Input: A directed graph G = (V, E), an inter-station time function t : E → N,
an integer time period T and a collection R = {r1, . . . , rk} of simple paths on G

(routes).

Feasible solution: A schedule for R, that is, a function stime : R → [0, T ) which
assigns a departure time to each route such that no two routes enter the same
edge at the same time.

Goal: Maximize the minimum time distance between any two overlapping routes.

We define L(e) to be the number of paths that pass through an edge e of the
graph. Let L = maxe L(e). It is not hard to see that T

L
is an upper bound to the

objective value of an optimal solution (OPT), because routes cannot be spaced
further apart than T

L
on the edge with the maximum load.
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In our study we will show a close relation between PMS and PC. The defi-
nition of PC is as follows:

Path Coloring (PC)

Input: A directed graph G = (V, E) and a collection P = {r1, . . . , rk} of paths
on G.

Feasible solution: An assignment of colors to all paths of P such that no two
paths which share an edge are assigned the same color.

Goal: Minimize the number of colors used.

PC (note that here we consider the directed version) can be solved optimally
in polynomial time in chains (folklore, see e.g. [15]), stars and spiders using L

colors, but is known to be NP-hard in rings [13] and trees [22].

We will widely use the notation a ≡T b to denote that a mod T = b mod T .

3 PMS in chain, star and spider networks

A chain is a graph that consists of a single path. A star is a tree with at most
one internal node. A spider is a tree in which at most one internal node has
degree ≥ 3, called the central node; that is, a spider is a graph resulting from a
star whose edges have been replaced by chains (also called legs of the spider).

In chains we label the nodes of the graph from 0 to n − 1 successively. In
stars we label the central node 0 and the peripheral nodes 1, . . . , n. In a spider
with k legs each node is labeled (i, j) where i = 1, . . . , k represents the leg the
node belongs to and j represents the node’s position in the leg relative to the
central node.

3.1 An algorithm for chains

Since all connections are bidirectional we can divide any problem instance into
two subproblems, one containing paths moving to the right and one containing
paths moving to the left and solve them separately.

Let ti be the time distance from node i to i + 1 for i = 1, . . . , n − 1. In the
case of chain networks the time distance between two nodes i and j is

τ(i, j) =

j−1
∑

k=i

tk

We will make use of the fact that PC can be solved optimally for chain
networks by using a simple greedy technique.

We propose the following algorithm:
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Algorithm 1 An algorithm for PMS in chain networks

1: Compute a path coloring of routes with exactly L colors from {0, . . . , L − 1}. Let
color(r) denote the color assigned to route r.

2: Set t = T

L
and define L time slots as follows: 0, t, 2t, . . . , (L − 1)t.

3: Assign time slots to routes according to the coloring obtained in step 1, namely
timeslot(r) := color(r) · t.

4: For each r set starting time

stime(r) = (timeslot(r) + τ (0, s(r))) mod T

Theorem 1. Algorithm 1 computes an optimal solution for PMS in chains.

Proof. Let r and r′ be two overlapping paths and without loss of generality
assume that s(r′) ≤ s(r). The first point of their common section is s(r) and
their time distance at s(r) is:

d(r, r′, s(r)) = min ((stime(r′) + τ(s(r′), s(r)) − stime(r)) mod T,

(stime(r) − (stime(r′) + τ(s(r′), s(r)))) mod T )

Note that

stime(r′) + τ(s(r′), s(r)) − stime(r) = timeslot(r′) + τ(0, s(r′)) + τ(s(r′), s(r))

−(timeslot(r) + τ(0, s(r)))

= timeslot(r′) − timeslot(r)

Therefore

d(r, r′, s(r)) = min ((timeslot(r′) − timeslot(r)) mod T, (timeslot(r) − timeslot(r′)) mod T )

≥
T

L

Hence, the solution returned by the algorithm is optimal, since T
L

is an upper
bound for the value of any feasible solution.

�

T/6 T/3 T/6 T/6 

p1

p2

p3 p4

0 1 2 43

Fig. 1. An instance of PMS in chain networks.
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Example 1. Consider the instance of Figure 1. The maximum load is L = 3 and
as a result the path coloring algorithm will yield a solution with 3 colors. The
time slots corresponding to these colors are: 0, T

3 and 2T
3 . Assume that paths p3

and p4 are assigned time slot 0, p2 is assigned time slot T
3 and p1 is assigned time

slot 2T
3 . According to Algorithm 1, stime(p1) = 5T

6 , stime(p2) = T
3 , stime(p3) =

0 and stime(p4) = 2T
3 . Observe that on edge (1, 2) the three overlapping paths

p1, p2, p3 have time distance at least T
3 , which is optimal. Furthermore, path p1

reaches node 3 at time T
3 (“wrapping around” the end of the time period), thus

also having distance T
3 from p4.

3.2 An algorithm for stars and spiders

Given an instance of PMS in a star or a spider, we will utilize an optimal path
coloring of the given instance in order to produce an optimal time schedule;
note that such an exact algorithm for spiders can be obtained by appropriate
combination of an exact algorithm for stars and the algorithm for chains. We
should note that some routes may be confined in one of the spider’s legs while
others may be directed from one leg to another.

Algorithm 2 An algorithm for PMS in spider networks

1: Compute a path coloring of routes with exactly L colors from {0, . . . , L − 1}. Let
color(r) denote the color assigned to route r.

2: Set t = T

L
and define L time slots as follows: 0, t, 2t, . . . , (L − 1)t.

3: Assign time slots to routes according to the coloring obtained in step 1, namely
timeslot(r) := color(r) · t.

4: For each r passing through the central node, set starting time

stime(r) = (timeslot(r) − τ (0, s(r))) mod T

5: For each r confined in a single leg and directed towards the central node, set starting
time

stime(r) = (timeslot(r) − τ (0, s(r))) mod T

6: For each r confined in a single leg and directed away from the central node, set
starting time

stime(r) = (timeslot(r) + τ (0, s(r))) mod T

Theorem 2. Algorithm 2 computes an optimal solution for PMS in spiders.

Proof. We will first prove the claim for the case where the spider is a star. Let r

and r′ be two overlapping routes. Therefore they receive different colors, hence
also different time slots. There are two cases: either s(r) = s(r′) or e(r) = e(r′).
In both cases, it suffices to examine their time distance at the central node. Each
route arrives at or departs from the central node at time equal to its time slot.
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Therefore their time distance is a nonzero multiple of t = T
L

, which is an upper
bound for OPT.

In a general spider network, we consider two cases. For two overlapping routes
that pass through the central node, we can use the same argumentation as above
for star networks. For two overlapping routes that lie in the same leg, the proof
is similar to the proof of Theorem 1 for chains since it can be shown that the
same properties hold considering either the central node or the tip of a leg as
the first node of the chain (possibly with an appropriate time shift).

�

4 PMS in ring networks

In the case of ring networks, that is, networks which consist of a single cycle, we
can assume that all trains travel in the same direction (clockwise, without loss of
generality), for the same reasons as for chains. Nodes are labeled by picking one
arbitrarily and labeling it 0, then labeling every other node 1, . . . , n− 1 starting
from 0’s neighbor in the direction trains travel. We define τ(i, j) as the time
distance from node i to node j in the clockwise direction. We also define the
ring perimeter C as the total time needed to travel around the ring.

For ring networks we can distinguish between two cases: the case where the
ring perimeter C is a multiple of the period T and the case where it is not. In
the following two sections we will analyze these cases.

4.1 The case C ≡T 0

Theorem 3. An instance of PMS in a ring with C ≡T 0 admits a solution of
value at least T

k
if and only if the corresponding PC instance can be colored with

k colors.

Proof. For the “if” direction, we can produce the desired schedule by using
Algorithm 1 for PMS in chains, starting from step 2 and using k instead of L.
Let r and r′ be two overlapping paths; without loss of generality assume that
s(r′) is closer to 0 than s(r) in the clockwise direction. Because C ≡T 0, it can be
shown that it suffices to check their time distance on only one of their common
segments, even if there are two such segments.

Following similar arguments as those in the proof of Theorem 1, it can be
shown that the time distance is:

min((timeslot(r)− timeslot(r′)) mod T, (timeslot(r′)− timeslot(r)) mod T ) ≥
T

k

For the “only if” direction, suppose we have a schedule for the PMS instance
with value T

k
. We will show how to obtain a coloring with k colors for the corre-

sponding PC instance. For each route r, let timeslot(r) = (stime(r) − τ(0, s(r))) mod
T . Assign to r the color w − 1, where w is the smallest integer such that
timeslot(r) < w · T

k
. Since w ranges from 1 to k and for any two overlapping

paths r and r′ we have |timeslot(r) − timeslot(r′)| ≥ T
k
, this is a valid coloring.
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�

Corollary 1. PMS in rings is NP-hard.

Proof. We present a reduction from the decision version of PC in rings to the
decision version of PMS in rings. PC is known to be NP-hard in rings [13].
Suppose we are given an instance of PC in a ring with n nodes and a path set
P , asking if P is colorable with k colors. We construct an instance of PMS in a
ring with n nodes, routes identical to the paths in P , inter-station distances of
one time unit and T = n, asking if it is possible to achieve an objective function
value of T

k
. Clearly, the corresponding PC instance for the PMS instance we

produced is the original PC instance. Therefore Theorem 3 applies, implying
that the original PC instance can be colored with k colors if and only if a
solution of value T

k
can be achieved for the PMS instance.

�

At a first glance Theorem 3 seems to imply that a ρ-approximation algorithm
for PC would give a 1

ρ
-approximation algorithm for PMS. However, this is true

only in the case that the optimal solution for the PMS instance divides exactly
T . In the general case we can show something slightly weaker.

Theorem 4. A ρ-approximation algorithm for PC in rings implies an
(

1
ρ

L
L+1

)

-

approximation algorithm for PMS in rings with C ≡T 0.

Proof. We will use the algorithm of Theorem 3. Let OPTPMS be the value of an
optimal solution of an instance of PMS and OPTPC the cost of an optimal so-
lution of the corresponding PC instance. We observe that OPTPMS < T

OPTPC−1

because a solution of PMS of value T
OPTPC−1 would lead to a coloring with only

OPTPC − 1 colors by Theorem 3. Recall also that OPTPMS ≤ T
L

.
A ρ-approximation algorithm for PC returns a solution SOLPC ≤ ρ ·OPTPC.

By Theorem 3 we can compute a solution for PMS of value SOLPMS = T
SOLPC

≥
1
ρ
· T

OPTPC
. By the observations above it turns out that:

SOLPMS ≥
1

ρ
·

T
T

OPTPMS
+ 1

=
1

ρ
·

T · OPTPMS

T + OPTPMS
≥

1

ρ
·

L

L + 1
· OPTPMS

�

Corollary 2. There is a
(

2
3 · L

L+1

)

-approximation algorithm and a
(

0.73 · L
L+1

)

-

approximation randomized algorithm for PMS in rings with C ≡T 0.

Proof. By using Theorem 4 and the deterministic approximation algorithm of
Karapetian [16] and the randomized approximation algorithm of Kumar [17]
that achieve ratios 3

2 and 1.368 respectively.

�
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Remark 1. So far, we have assumed that the departure times of trains could be
any rational number in [0, T ). However there is a possibility that trains need
to be assigned integer departure times. In this case following by appropriate
modification of the above analysis, it can be shown that our results carry over
with a further reduction of the approximation ratio to:

1

ρ
·

L

L + 1
−

1

OPTPMS

It should be noted though, that this approximation ratio is asymptotically equal
to the approximation ratio obtained for rational departure times.

4.2 The case C 6≡T 0

Consider a ring network with n nodes and two paths p1, p2 with 0 = s(p1) <

e(p2) < s(p2) < e(p1) and τ(s(p1), s(p2)) = x. Let t1, t2 be the moments in
time where the trains traveling along p1 and p2 arrive at node 0. These trains
reach node s(p2) at times (t1 + x) mod T and (t2 − D + x) mod T respectively,
where D = C mod T . As a result in order to maximize the minimum distance
of the two trains, we have to take into account the following time differences:
(t1− t2) mod T , (t2− t1) mod T , (t1− t2 +D) mod T and (t2− t1−D) mod T . It
is now clear that the algorithm of Theorem 3 may produce an infeasible solution
if D = (t2 − t1) mod T (see Figure 2). Therefore we need a new algorithm for
this case.

0

p2

p1

u

Fig. 2. An example showing that the “path coloring” technique does not work for
rings with C 6≡T 0. Assuming τ (0, u) = T and τ (u, 0) = T

2
, the path coloring technique

would assign time slots 0 and T

2
to paths p1 and p2 respectively and the two paths

would collide at node 0 at any time which is an integer multiple of T .
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Theorem 5. Let S be a set of paths passing through node 0 in a ring network.
There is an enumeration of S such that for any two paths p and p′, if e(p) > s(p′)
then p appears before p′ in the enumeration.

Proof. We define the binary relation ≺ over S: p ≺ p′ if and only if e(p) > s(p′).
This relation is antisymmetric: suppose p ≺ p′ and p′ ≺ p. Then e(p′) > s(p) >

e(p) > s(p′) which is a contradiction, because for each path r ∈ S it holds that
s(r) > e(r). It is also transitive: if p ≺ r and r ≺ q then we have e(p) > s(r) >

e(r) > s(q), thus p ≺ q. As a result, the relation ≺ is a strict partial order. The
theorem follows.

�

Algorithm 3 An algorithm for PMS in ring networks with C 6≡T 0

1: Split R into two sets P0 and Pc. P0 contains the paths passing through node 0 (i.e.
having node 0 as an intermediate node) and Pc = R \P0. Let L0 = |P0| and Lc be
the maximum load with respect to Pc.

2: Define t = T

6L′ and the set of available time slots as follows: S = {0, t, 2t, . . . , (6L′
−

1)t}, where L′ = max{L0, Lc}.
3: Assign colors to routes of Pc by using an algorithm for PC in chains.
4: for each color k, 1 ≤ k ≤ Lc do

5: define timeslot(k) = kt

6: for each path p colored with k do

7: assign departure time stime(p) = timeslot(k) + τ (0, s(p)).
8: end for

9: Remove kt from S

10: Remove from S all time slots whose distance from kt + D is smaller than t.
11: end for

12: Enumerate paths in P0 as implied by Theorem 5.
13: for each p ∈ P0 in the order of the enumeration do

14: Set timeslot(p) = wt, where wt is the smallest available time slot.
15: Set stime(p) = (wt − τ (s(p), 0)) mod T .
16: Remove wt from S

17: Remove from S all time slots whose distance from wt + D is smaller than t.
18: end for

Theorem 6. Algorithm 3 is a 1
6 -approximation algorithm for PMS in rings.

Proof. First let us observe that 6L′ time slots suffice to arrange the departure
times of all routes. As far as paths in Pc are concerned, each one uses one time
slot and excludes at most two others, in total using at most 3Lc time slots.
Similarly, paths in P0 use at most 3L0 time slots.

The distance between time slots in Algorithm 3 is T
6L′

. We will show that the
time distance between any two overlapping routes at any point is not smaller
than the time distance between the corresponding time slots. Since the algorithm
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assigns different time slots to overlapping routes, the minimum time distance is
at least T

6L′
.

Now, observe that no two paths in Pc can have a time difference smaller
than T

6L′
in a scheduling produced by the algorithm, because their arrangement

is essentially the same as in the case of a chain network.

Suppose we have two overlapping paths r ∈ Pc and r′ ∈ P0. We need to
show that their time difference is not less than T

6L′
at nodes s(r) and s(r′) if

these nodes are shared between the two paths, since all trains travel at the same
speed.

Let t0 = timeslot(r′) be the time when r′ passes through node 0. r′ reaches
s(r) (if s(r) is contained in r′) at time (τ(0, s(r))+t0) mod T , and since stime(r) =
(τ(0, s(r)) + timeslot(r)) mod T if r and r′ had a time distance of less than T

6L′

then they would have been assigned the same time slot, which is a contradiction.

Route r arrives at s(r′) at time stime(r) + τ(s(r), s(r′)) = timeslot(r) +
τ(0, s(r′)) while r′ departs from s(r′) at time stime(r′) = timeslot(r′)−τ(s(r′), 0) ≡T

timeslot(r′)−D+ τ(0, s(r′)). If r and r′ had time distance of less than T
6L′

, then

timeslot(r′) would have a distance of less than T
6L′

from timeslot(r) + D which
is also a contradiction.

Finally, let us consider two paths r, r′ in P0 to which the algorithm has
assigned time slots timeslot(r) and timeslot(r′) respectively. Suppose, without
loss of generality, that s(r′) > s(r). It is clear that since they are assigned
different time slots these two paths cannot have a time distance of less than T

6L′

at node 0 and therefore neither at node s(r′). We now need to show that their
time distance is not less than T

6L′
at node s(r). We should examine two cases

depending on whether r ≺ r′ or not.

Suppose e(r′) > s(r). In that case r′ ≺ r and r′ will be assigned a time slot
before r. Route r′ will reach s(r) at time stime(r′) + τ(s(r′), 0) + τ(0, s(r)) ≡T

timeslot(r′)+τ(0, s(r)). Route r departs from s(r) at time stime(r) = timeslot(r)−
τ(s(r), 0) ≡T timeslot(r) − D + τ(0, s(r)). However, the time distance between
timeslot(r′) + D and timeslot(r) is at least T

6L′
, because r′ was assigned a time

slot before r and timeslot(r′) + D was excluded from the list of available time
slots.

Let us now assume that e(r′) < s(r). In that case the the two paths have
only one common segment that starts at s(r′) and contains 0. Therefore, the
fact that they have been assigned different time slots suffices to guarantee that
their time difference is at least T

6L′
.

�

5 PMS in tree networks

In the case of tree networks one might attempt to use Algorithm 2 for spiders,
after picking an arbitrary node 0. However, this idea may lead to the production
of an infeasible solution. Figure 3 illustrates this situation.
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T/6

3T/6 
T/6

2T/6 T/6 

0

p1

p2

u

Fig. 3. An example showing that Algorithm 2 for spiders does not work for trees.
Assuming that path p1 is assigned time slot 0 and path p2 is assigned time slot T

3
,

path p1 collides with path p2 at node u at time T

6
.

However, if we consider tree networks in which the time needed to travel
along each edge is a multiple of T

2 it turns out that we can use Algorithm 4. In
these networks the following useful property holds.

Remark 2. For any three nodes a, b, c: τ(a, b) + τ(b, c) ≡T τ(a, c).

Theorem 7. An instance of PMS in a tree where the time needed to travel
along each edge is a multiple of T

2 admits a solution of value at least T
k

if and
only if the corresponding PC instance can be colored with k colors.

Proof. For the “if” direction, the following algorithm yields a solution with the
desired value.

Algorithm 4 An algorithm for PMS in tree networks where each edge is a
multiple of T

2

1: Assume that a coloring with k colors is given.
2: Pick a root r0 arbitrarily.
3: Set t = T

k
and the available time slots as follows: 0, t, 2t, . . . , (k − 1)t.

4: for each path p do

5: Let timeslot(p) be the time slot corresponding to the color of p.
6: Set the starting time of p as follows:

stime(p) = (τ (r0, s(p)) + timeslot(p)) mod T

7: end for
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Assume there are two paths p and p′ overlapping on a single edge e = (u, v).
Path p reaches node u at time (timeslot(p) + τ(r, s(p)) + τ(s(p), u)) mod T =
(timeslot(p) + τ(r, u)) mod T . By the same reasoning path p′ reaches node u at
time (timeslot(p′) + τ(r, u)) mod T . Hence, the time distance of the two paths
is equal to (timeslot(p′) − timeslot(p)) mod T which is clearly at least T

k
.

For the “only if” direction, we pick an arbitrary node r0 and, for each path
p, we consider the value timeslot(p) = stime(p)−τ(r0, s(p)). Following the proof
of Theorem 3 and using remark 2, we obtain a valid coloring with k colors for
the original PC instance.

�

Corollary 3. PMS in trees is NP-hard.

Proof. We will reduce the decision version of PC in trees to the decision version
of PMS in trees. Given a PC instance and an integer k we will construct a PMS

instance with time distances between nodes equal to one time unit and period
T = 2. Theorem 7 implies that it is possible to achieve a solution of value at
least T

k
if and only if the original PC instance can be colored with at most k

colors.

�

Theorem 8. Given a ρ-approximation algorithm for PC in bidirectional trees,
Algorithm 4 achieves an approximation ratio of 1

ρ
L

L+1 .

Proof. The key observation is that if OPTPMS ≥ T
OPTPC−1 then by using algo-

rithm 4 we could achieve a coloring with OPTPC − 1 colors, which is a contra-
diction. Therefore OPTPMS < T

OPTPC−1 and the rest of the proof follows along
the lines of the proof of Theorem 4.

�

Corollary 4. There is a
(

3
5

L
L+1

)

-approximation algorithm for PMS in trees

where the time distances between nodes are multiples of T
2 .

Proof. By using Theorem 8 and the 5
3 -approximation algorithm of Erlebach et

al. [9].

�

6 Conclusions

We have introduced the Periodic Metro Scheduling problem, which aims
at generating a periodic timetable for a given set of routes and a given time
period, in such a way that the minimum time distance between successive trains
is maximized.
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We have presented exact algorithms for chain and spider networks, and con-
stant ratio approximation algorithms for ring networks, as well as for a special
class of tree networks. Some of our algorithms make use of a reduction to Path

Coloring. We have left open the question of the approximability of PMS in
general tree networks. Another interesting open question is the variation where
only the end stations of a route are given and one should determine both a path
for each route and a departure time; such a variation applies in topologies that
contain cycles, such as rings, grids and trees of rings.
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Abstract. We consider the QoS-aware Multicommodity Flow problem,
a natural generalization of the weighted multicommodity flow problem
where the demands and commodity values are elastic to the Quality-of-
Service characteristics of the underlying network. The problem is funda-
mental in transportation planning and also has important applications
beyond the transportation domain. We provide a FPTAS for the QoS-
aware Multicommodity Flow problem by building upon a Lagrangian
relaxation method and a recent FPTAS for the non-additive shortest
path problem.

1 Introduction

Consider a capacitated directed network G = (V,E) in which we wish to route
k commodities to meet certain initial demands. Each commodity i is associated
with a specific origin-destination pair (si, ti), a demand di, and a value vi repre-
senting the profit of routing one unit of flow from that commodity. Also, for each
commodity i, a weight wti : E → IR+

0 is defined that quantifies the provided
quality of service (QoS) when this commodity is routed along an edge e or a
path p, where wti(p) =

∑
e∈p wti(e). Smaller weight means better QoS. When

a commodity is not routed along its shortest w.r.t. wti (optimal w.r.t. the QoS)
path due to capacity restrictions, then (i) a portion of its demand di drops (the
worse the QoS of the path, the larger the portion of di that is lost), and (ii)
its value vi is reduced (the worse the QoS, the larger the reduction). In other
words, demands and values are elastic to the provided QoS. The objective is to
compute the maximum weighted multicommodity flow (sum over all commodi-
ties and over all paths of the flow routed from every commodity on each path
multiplied by the commodity’s value) subject to the QoS-elastic demands and
values. We call the above the QoS-aware Multicommodity Flow (MCF) problem.

The QoS-aware MCF problem is a natural generalization of the weighted
MCF problem that (is motivated by and) plays a key role in transportation
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planning: one of the prime issues that planners of transport operators in pub-
lic transportation networks have to deal with concerns the routing of various
commodities (customers with common origin-destination pairs) to meet certain
demands [9,13,14]. A customer, when provided with a non-optimal path (route)
due to unavailable capacity, s/he will most likely switch to another operator
or even other means of transport and the probability in doing so increases as
the QoS drops (actually, as a result of statistical measurements over several
years, major European railway companies know quite accurately the percentage
of customers they lose in such cases as a function of the path’s QoS [9,14]). To
minimize the loss of customers, the value charged for the requested service is
usually reduced to make the alternative (worse in QoS) path, offered for that
service, attractive.

Consequently, transportation planners are confronted with the following net-
work and line planning issues:

– Which is the maximum profit obtained with the current capacity policy that
incurs certain QoS-elastic demands and values?

– How much will this profit improve if the capacity is increased?
– Which is the necessary capacity to achieve a profit above a certain threshold?

A fast algorithm for the QoS-aware MCF problem would allow transporta-
tion planners to address effectively such network and line planning issues by
identifying capacity bottlenecks and proceed accordingly.

It is worth mentioning that the QoS-aware MCF problem is also fundamental
in applications beyond the transportation domain. For instance, in networking
(e.g., multimedia) applications over the Internet [8], or in information dissem-
ination over various communication networks [3]. In such a setting, a “server”
(owned by some service provider) sends information to “clients”, who retrieve
answers to queries they have posed regarding various types of information. Com-
mon queries are typically grouped together. Answering a query incurs a cost and
a data acquisition time that depends on the communication capacity. When a
“client” is provided with an non-optimal service (e.g., long data acquisition time
due to capacity restrictions), s/he will most likely switch to another provider.
On the other hand, the provider may reduce the cost of such a service in order
to minimize the loss.

A related problem, called max-flow with QoS guarantee (QoS max-flow),
has been considered in [2]. The problem asks for computing the maximum (un-
weighted) MCF routed along a set of paths whose cost does not exceed a spe-
cific bound, and has been shown to be NP-hard in [2]. In the same paper [2],
a pseudopolynomial time approximation scheme for QoS max-flow is given. It
can be easily seen that QoS max-flow is a special case of the QoS-aware MCF
problem (Section 5).

In this paper, we show that the QoS-aware MCF problem can be formulated
(in a non-straightforward manner) as a fractional packing LP, and provide a
FPTAS for its approximate solution. Our algorithm builds upon the Garg &
Könemann Lagrangian relaxation method for fractional packing LPs [5], com-
bined with the phases technique by Fleischer [4]. A crucial step of the method is
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to construct an oracle that identifies the most violated constraint of the dual LP.
While in the classical weighted MCF problem the construction of the oracle is
harmless (reduces to the standard, single objective shortest path problem), this
is not the case with the QoS-aware MCF problem. The construction turns out to
be non-trivial, since it reduces to a multiobjective (actually non-additive) short-
est path problem due to the QoS-elastic demands and values. Building upon a
recent FPTAS for non-additive shortest paths [12], we are able to construct the
required oracle and hence provide a FPTAS for the QoS-aware MCF problem.
Our approach gives also a FPTAS for the QoS max-flow problem, thus improving
upon the result in [2].

The rest of the paper is organized as follows. We start (Section 2) with
some necessary preliminaries, a formal definition of the problem and its LP
formulation. We then proceed (Section 3) with a review of the GK method [5]
upon which our algorithm builds. Subsequently, we give the details of our FPTAS
(Section 4), and present extensions of our results to constrained versions of the
QoS-aware problem (Section 5). We conclude in Section 6.

2 Preliminaries and Problem Formulation

2.1 Problem Definition and LP Formulation

We are given a digraph G = (V,E), along with a capacity function u : E → IR+
0

on its edges. We are also given a set of k commodities. A commodity i, 1 ≤ i ≤ k,
is a tuple (si, ti, di, wti(·), fi(·), vi(·)), whose attributes are defined as follows.
Attributes si ∈ V and ti ∈ V are the source and the target nodes, respectively,
while di ∈ IR+

0 is the demand of the commodity. The weight function wti : E →
IR+

0 quantifies the quality of service (QoS) for commodity i (smaller weight
means better QoS). For any si-ti path p, wti(p) :=

∑
e∈p wti(e) and let δi(si, ti)

be the length of the shortest path from si to ti w.r.t. the weight function wti(·).
The non-decreasing function fi : [1,∞) → [0, 1] is the elasticity function of i that
determines the portion fi(x) of the commodity’s demand di that is lost if the
provided path is x times worse than the shortest path w.r.t. wti(·); that is, if
a units of di were supposed to be sent in case the provided path was shortest
(optimal), then only (1 − fi(x))a units will be shipped through the actually
provided (non-optimal) path, while fi(x)a units will be lost. Commodity i is also
associated with a non-increasing profit function vi : [1,∞) → IR+

0 that gives the
profit vi(x) from shipping one unit of flow of commodity i through a path that is
x times worse than the shortest path w.r.t. wti(·). The objective is to maximize
the total profit, i.e., the sum over all commodities and over all paths of the flow
routed from every commodity on each path multiplied by the commodity’s profit,
subject to the capacity and demand constraints, and w.r.t. the QoS-elasticity of
demands and profits. We call the above the QoS-aware Multicommodity Flow
(MCF) problem.

Let Pi = {p : p is an si-ti path} be the set of candidate paths along which
flow from commodity i can be sent. Consider such a particular path p ∈ Pi and
let Xi(p) ∈ IR+

0 denote the flow of commodity i routed along p. The definition
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of the elasticity function implies that for each unit of flow of commodity i routed
along p, there are 1

1−fi(x) units consumed from the demand of the commodity.
Thus, we define a consumption function hi : [1,∞) → [1,∞) with hi(x) = 1

1−fi(x) .
Since fi is non-decreasing, hi is also non-decreasing. Accordingly, we define the
consumption hi(p) ≥ 1 of a path p as the amount of demand consumed for each
unit of flow routed along p:

hi(p) = hi

(
wti(p)

δi(si, ti)

)
.

Similarly, we define the value vi(p) of a path p as the profit from routing one
unit of flow of commodity i through p:

vi(p) = vi

(
wti(p)

δi(si, ti)

)
.

Using the above definitions, the QoS-aware MCF problem can be described by
the following linear program (LP).

max
k∑

i=1

∑
p∈Pi

vi(p)Xi(p) (1)

s.t.
k∑

i=1

∑
e∈p,p∈Pi

Xi(p) ≤ u(e),∀e ∈ E (2)

∑
p∈Pi

Xi(p)hi(p) ≤ di,∀i = 1 . . . k (3)

Xi(p) ≥ 0,∀i = 1 . . . k, ∀p ∈ Pi

2.2 Non-Additive Shortest Paths

In this section, we introduce the non-additive shortest path (NASP) problem that
will be used as a subroutine in our FPTAS for the QoS-aware MCF problem.

In NASP, we are given a digraph G = (V,E) and a d-dimensional function
vector c : E → [IR+]d associating each edge e with a vector of attributes c(e)
and a path p with a vector of attributes c(p) =

∑
e∈p c(e). We are also given

a d-attribute non-decreasing and non-linear utility function U : [IR+]d → IR.
The objective is to find a path p∗, from a specific source node s to a destination
t, that minimizes the objective function, i.e., p∗ = argminp∈P (s,t)U(c(p)). (It is
easy to see that in the case where U is linear, NASP reduces to the classical
single-objective shortest path problem.) For the general case of non-linear U , it
is not difficult to see that NASP is NP-hard.

The first FPTAS for NASP were independently presented in [11] (for any
d > 1 and polynomially bounded utility function) and in [1] (for d = 2 and quasi-
polynomially bounded utility function), with the former having a better time
complexity. Recently, an improved FPTAS for NASP was given [12] that holds
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for any d > 1 and a larger than quasi-polynomially bounded family of utility
functions. The new result improves considerably upon those in [1,11] w.r.t. time
(dependence on 1/ε), number of objectives, and class of utility functions.

The following lemma is an immediate consequence of [12, Theorem 4].

Lemma 1. Let the utility function of NASP be of the form U([x1, x2]T ) =
x1U1(x2) + U2(x2), where U1,U2 are any non-negative and non-decreasing func-
tions. Then, for any ε > 0, there is an algorithm that computes an (1 + ε)-
approximation to the optimum of NASP in time O(n2m log(nC1)

ε ), where C1 =
maxe∈E c1(e)
mine∈E c1(e)

.

3 Review of the GK Method

The linear program for the QoS-aware MCF problem (given in Section 2.1) is a
(pure) fractional packing LP, i.e., a linear program of the form max{cT x|Ax ≤
b, x ≥ 0}, where AM×N , bM×1 and cN×1 have positive entries. By scaling we also
assume that A(i, j) ≤ b(i), ∀i, j. The dual of that problem is min{bT y|AT y ≥
c, y ≥ 0}. In [5], Garg and Könemann present a remarkably elegant and simple
FPTAS for solving fractional packing LPs. Their algorithm maintains a primal
and a dual solution. At each step they identify the most violated constraint in
the dual and increase the corresponding primal variable, and the dual variables.
The most violated constraint is identified by using an exact oracle.

The algorithm works as follows. Let the length of a column j with respect to
the dual variables y be lengthy(j) =

∑
i

A(i,j)
c(j) y(i). Let a(y) denote the length

of the minimum-length column, i.e., a(y) = minj lengthy(j). Let also D(y) =
bT y be the dual objective value with respect to y. Then, the dual problem is
equivalent to finding an assignment y that minimizes D(y)

a(y) . The procedure is
iterative. Let yk−1 be the dual variables and fk−1 be the value of the primal
solution at the beginning of the k-th iteration. The initial values of the dual
variables are y0(i) = δ/b(i), where δ is a constant to be chosen later, and the
primal variables are initially zero. In the k-th iteration, a call to an oracle is made
that returns the minimum length column q of A, i.e., lengthyk−1

(q) = α(yk−1).

Let now p = argmini
b(i)

A(i,q) be the “minimum capacity” row. In this iteration, we

increase the primal variable x(q) by b(p)
A(p,q) , thus the primal objective becomes

fk = fk−1 + c(q) b(p)
A(p,q) . The dual variables are updated as

yk(i) = yk−1(i)
(

1 + ε
b(p)/A(p, q)
b(i)/A(i, q)

)
,

where ε > 0 is a constant depending on the desired approximation ratio. For
brevity we denote a(yk) and D(yk) by a(k) and D(k), respectively. The proce-
dure stops at the first iteration t such that D(t) ≥ 1. The final primal solution
constructed may not be feasible since some of the packing constraints may be
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violated. However, scaling the final value of the primal variables by log1+ε
1+ε

δ
gives a feasible solution (see Lemma 6 in the Appendix).

The above algorithm can be straightforwardly extended to work with an
approximate oracle1. Simply, in the k-th iteration we call an oracle that returns
an (1+w)-approximation of the minimum length column of A. If q is the column
returned by the oracle, then we have that lengthyk−1

(q) ≤ (1 + w)a(yk−1). By
working similarly to [5] and choosing δ = (1+ε)((1+ε)M)−1/ε, we can show the
following theorem (whose proof is in the Appendix for the sake of completeness).

Theorem 1. There is an algorithm that computes an (1−ε)−2(1+w)-approximation
to the packing LP after at most Mdlog1+ε

1+ε
δ e = Md 1

ε (1+log1+ε M)e iterations,
where M is the number of rows.

4 The FPTAS for QoS-aware Multicommodity Flows

In this section, we describe the (non-straightforward) details of solving the QoS-
aware MCF problem by building upon the GK method. We start by obtaining
the dual of the LP formulation of the QoS-aware MCF problem. We introduce for
each edge e a dual variable l(e) that corresponds to the capacity constraint (2)
on e, and for each commodity i we introduce a dual variable φi that corresponds
to the demand constraint (3) on i. The dual LP becomes

min D =
∑
e∈E

l(e)u(e) +
k∑

i=1

φidi (4)

s.t. l(p) + φihi(p) ≥ vi(p),∀i = 1 . . . k, ∀p ∈ Pi (5)
l(p) ≥ 0,∀i = 1 . . . k,∀p ∈ Pi φi ≥ 0,∀i = 1 . . . k

where l(p) :=
∑

e∈p l(e).
To apply the GK method, it must hold u(e) ≥ 1, ∀e ∈ E, and di ≥ hi(p),

∀1 ≤ i ≤ k, p ∈ Pi. To ensure this, we scale the capacities and demands by
min{mine∈E u(e),min1≤i≤k

di

hmax
i

}, where hmax
i = hi(

(n−1) maxe∈E wti(e)
δi(si,ti)

) is an
upper bound on the maximum possible value of hi(·).

Given an assignment (l, φ) for the dual variables, the length of a dual con-
straint is defined as length(l,φ)(i, p) = l(p)+φihi(p)

vi(p) and the length of the most
violated constraint is denoted by a(l, φ) = min1≤i≤k minp∈Pi length(l,φ)(i, p).
The algorithm maintains a dual variable l(e) for each edge e, initially equal
to δ

u(e) , and a dual variable φi for each commodity i, initially equal to δ
di

, where

δ = (1 + ε)((1 + ε)(m + k))−
1
ε .

The algorithm proceeds in iterations. Initially all flows are zero. In each
iteration, it makes a call to an oracle that returns a commodity i′ and a path
1 Such an extension of the GK approach to work with approximate oracles was known

before [6], and its combination with the phases technique of Fleischer [4] for solving
packing problems has been first observed by Young [15] for solving the more general
case of mixed packing LPs.
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p ∈ Pi′ that approximately minimizes length(l,φ)(i, q) over all 1 ≤ i ≤ k and
q ∈ Pi; i.e., we have length(l,φ)(i′, p) ≤ (1 + ε)a(l, φ). It then augments ∆ =

min{ d′i
h′i(p) ,mine∈p u(e)} units of flow from commodity i′ through p and updates

the corresponding dual variables by setting l(e) = l(e)(1 + ε ∆
u(e) ), ∀e ∈ p, and

φi′ = φi′(1 + ε∆hi′ (p)
di′

). The algorithm terminates at the first iteration for which

D =
∑

e∈E l(e)u(e) +
∑k

i=1 φidi > 1, and scales the final flow by log1+ε
1+ε

δ .
We now turn to the most crucial step of the algorithm: to build a suitable

approximate oracle to identify the most violated constraint (5) of the dual. Our
task is to approximately minimize, overall 1 ≤ i ≤ k and q ∈ Pi, the function

l(q) + φihi(q)
vi(q)

=
l(q) + φi · hi

(
wti(q)

δi(si,ti)

)
vi

(
wti(q)

δi(si,ti)

) .

Note that for a fixed i, this requires the solution of a NASP instance with

objective function U([x1, x2]T ) =
x1+φihi

�
x2

δi(si,ti)

�

vi

�
x2

δi(si,ti)

� and cost vector c = [l, wti]T .

Note also that the above function is of the form required by Lemma 1 with

U1(x) = 1

vi

�
x

δi(si,ti)

� and U2(x) = φi ·
hi

�
x

δi(si,ti)

�

vi

�
x

δi(si,ti)

� . Consequently, we can apply

Lemma 1 for any fixed i and make use of a non-additive shortest path routine p̄ =
NASP(G, si, ti, l, wti, ε) that returns an si-ti path p̄ that approximately (within
(1 + ε)) minimizes the above function, overall q ∈ Pi, in time O(n2m log(nL)

ε ),
where L = maxe∈E l(e)

mine∈E l(e) .
To efficiently implement the oracle, we do not call the NASP routine for every

value of i. Instead, the oracle proceeds in phases (like in [4]), maintaining a lower
bound estimation a of a(l, φ), initially equal to a = 1

1+ε min1≤i≤k{ l(pi)+φihi(pi)
vi(pi)

|pi =
NASP(G, si, ti, l, wti, ε)}. In each phase, the oracle examines the commodities
one by one by performing NASP computations. For each commodity i the oracle
returns a path p = NASP(G, si, ti, l, wti, ε)} for which l(p)+φihi(p)

vi(p) ≤ a(1 + ε)2.
As long as such a path can be found, the oracle sticks to commodity i. Other-
wise, it continues with commodity i + 1. After all k commodities are considered
in a phase, we know that a(l, φ) ≥ (1 + ε)a and proceed to the next phase by
setting a = (1 + ε)a. The pseudocodes of our algorithm and the oracle are given
in Fig. 1.

To discuss correctness and time bounds, we start with the following lemma
that establishes an upper bound on the ratio of the lengths of the minimum
length column at the start and the end of the GK algorithm.

Lemma 2. Let a(0) and a(t) be the lengths of the minimum length column at
the start and the end of the algorithm, respectively. Then, a(t)

a(0) ≤
1+ε

δ .

Proof. By the initial values of the dual variables, we have a(0) = minj

∑
i

A(i,j)
c(j) y0(i) =

δ · minj

∑
i

A(i,j)
c(j)b(i) . Since now the algorithm stops at the first iteration t such
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QoS-MCF(G, u, s, t, d, wt, v, ε) {
forall e ∈ E { l(e) = δ

u(e)
}

for i = 1 to k { φi = δ
di

}
for i = 1 to k { forall e ∈ E { Xi(e) = 0 }}
D = (m + k)δ;
for i = 1 to k { pi = NASP(G, si, ti, l, wti, ε) }
a = 1

1+ε
min1≤i≤k

n
l(pi)+φihi(pi)

vi(pi)

o
;

i = 1;
while D ≤ 1 {

(p, i, a) = QoS-MCF-oracle(G, s, t, l, wt, v, φ, ε, i, a);

∆ = min{ di
hi(p)

, mine∈p u(e)};
Xi(p) = Xi(p) + ∆;
forall e ∈ p do l(e) = l(e)(1 + ε ∆

u(e)
);

φi = φi(1 + ε∆hi(p)
di

);

D = D + ε∆ l(p)+φihi(p)
vi(p)

;

}
for i = 1 to k { forall e ∈ E { Xi(e) = Xi(e)/log1+ε

1+ε
δ

}}
}

QoS-MCF-oracle(G, s, t, l, wt, v, φ, ε, j, a) {
while true {

for i = j to k {
p = NASP(G, si, ti, l, wti, ε);

if l(p)+φihi(p)
vi(p)

≤ a(1 + ε)2

return (p, i, a);
}
a = a(1 + ε); /* update rule for

next phase */
}

}

Fig. 1. The approximation algorithm for the QoS-MCF problem.
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that D(t) > 1 and the dual variables increase by at most 1 + ε in each iter-
ation, it holds that D(t) ≤ 1 + ε. Consequently,

∑
i b(i)yt(i) ≤ 1 + ε, which

implies that yt(i) ≤ (1 + ε) 1
b(i) , ∀i. Hence, a(t) = minj

∑
i

A(i,j)
c(j) yt(i) ≤ (1 + ε) ·

minj

∑
i

A(i,j)
c(j)b(i) = 1+ε

δ a(0). ut

The following lemma establishes the approximation guarantee for the oracle.

Lemma 3. A call to the oracle returns an (1 + ε)2-approximation of the most
violated constraint in the dual.

Proof. Let aj be the value of a during the j-th phase of the algorithm. It suffices
to show that for all phases j ≥ 1, aj ≤ a(l, φ).

Initially (j = 1), we set a1 = 1
1+ε min1≤i≤k{ l(pi)+φihi(pi)

vi(pi)
|pi = NASP(G, si, ti,

l, wti, ε)}. By the definition of the NASP routine, we get a1 ≤ 1
1+ε min1≤i≤k{(1+

ε) minp∈Pi

l(p)+φihi(p)
vi(p) } = a(l, φ).

For any subsequent phase j > 1, consider phase j − 1. The oracle finishes
the examination of a commodity i and proceeds with i + 1 only when a call to
NASP(G, si, ti, l, wti, ε) in phase j−1 returns a path pi for which l(pi)+φihi(pi)

vi(pi)
>

aj−1(1 + ε)2. This inequality and the definition of the NASP routine imply that
at the end phase j − 1, we have for each commodity i

aj−1(1 + ε)2 < (1 + ε) min
p∈Pi

l(p) + φihi(p)
vi(p)

.

Hence, by the definition of a(l, φ), and since l(e) can only increase during the
algorithm, at the end of the phase we have aj−1(1 + ε)2 < (1 + ε)a(l, φ). Since
aj = aj−1(1 + ε), we get aj < a(l, φ). ut

To establish a bound on the time complexity of the algorithm, we need to
count the number of NASP computations. Clearly, at most one NASP compu-
tation is needed per augmentation of flow. The rest of NASP computations (not
leading to an augmentation) are bounded by k times the number of phases. The
following lemma establishes a bound on the total number of phases.

Lemma 4. The number of phases of algorithm QoS-MCF is bounded by d 1
ε (1+

log1+ε(m + k))e+ 2.

Proof. Let a(0) and a(t) be the lengths of the most violated constraint at the
start and the end of the algorithm, respectively. Let now aj be the value of a
during the j-th phase of the algorithm, and T be the last phase of the algorithm.

Initially, we set a1 = 1
1+ε min1≤i≤k

{
l(pi)+φihi(pi)

vi(pi)
|pi = NASP(G, si, ti, l, wti, ε)

}
and by the definition of the NASP routine we get that a(0) ≤ (1 + ε)a1. From
the proof of Lemma 3, we have that aT ≤ a(t), and from Lemma 2 we get that
a(t) ≤ 1+ε

δ a(0). Combining the last three inequalities we get aT ≤ (1+ε)2

δ a1. By
the update rule for a on each phase, we have that aT = a1(1+ ε)T−1, and there-
fore a1(1 + ε)T−1 ≤ (1+ε)2

δ a1, which implies that T ≤ log1+ε
(1+ε)3

δ . Hence, the
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number of phases is bounded by dlog1+ε
(1+ε)3

δ e = d 1
ε (1 + log1+ε(m + k))e + 2,

since δ = (1 + ε)((1 + ε)(m + k))−
1
ε . ut

We are now ready for the main result of this section.

Theorem 2. There is an algorithm that computes an (1−ε)−2(1+ε)2-approximation
to the QoS-aware MCF problem in time O(( 1

ε )3(m+k) log(m+k)mn2( 1
ε log(m+

k) + log(nU)), where n is the number of nodes, m is the number of edges, k is
the number of commodities, and U = maxe∈E u(e)

mine∈E u(e) .

Proof. From Theorem 1 (with M = m + k) and Lemma 3 we have that the
algorithm computes an (1− ε)−2(1 + ε)2-approximation to the optimal and ter-
minates after at most (m + k)d 1

ε (1 + log1+ε(m + k))e augmentations. Since for
each phase at most k NASP computations do not lead to an augmentation, we
get from Lemma 4 that the oracle performs at most kd 1

ε (1+log1+ε(m+k))e+2k
NASP computations not leading to an augmentation. Therefore, the total num-
ber of NASP computations during an execution of the algorithm is O( 1

ε (m +
k) log1+ε(m + k)) = O(( 1

ε )2(m + k) log(m + k)).
A NASP computation is carried out in time O( 1

εn2m log(nL)), where L =
maxe∈E l(e)
mine∈E l(e) . From the initialization of l(e), and since they can only increase during
the algorithm, it is clear that mine∈E l(e) ≥ δ

maxe∈E u(e) . Since now the algorithm

stops at the first iteration such that
∑

e∈E l(e)u(e)+
∑k

i=1 φidi > 1 and the dual
variables increase by at most 1+ε in each iteration, it holds that

∑
e∈E l(e)u(e)+∑k

i=1 φidi ≤ 1+ε. Consequently at the end of the algorithm we have l(e) ≤ (1+ε)
u(e) ,

∀e ∈ E, and thus maxe∈E l(e) ≤ 1+ε
mine∈E u(e) . Hence, L ≤ 1+ε

δ U . By our choice of

δ = (1 + ε)((1 + ε)(m + k))−
1
ε , we have that L ≤ ((1 + ε)(m + k))

1
ε U , and hence

the time required for a NASP computation is O( 1
εmn2( 1

ε log(m+k)+log(nU))).
Thus, we get an algorithm that computes an (1− ε)−2(1+ ε)2-approximation to
the QoS-aware MCF problem in time O([(1

ε )2(m+k) log(m+k)][1εmn2( 1
ε log(m+

k) + log(nU)]) = O(( 1
ε )3(m + k) log(m + k)mn2( 1

ε log(m + k) + log(nU)), which
is polynomial to the input and 1

ε . ut

5 Extensions

Better bounds can be obtained for the constrained version of the QoS-aware
MCF problem. In that version all profits are constant (non QoS-elastic) — i.e.,
vi(p) = vi, ∀i, p ∈ Pi — and there is an upper bound (constraint) on the QoS
per path provided — i.e., the consumption functions are now defined as:

hi(p) =
{

1 if wti(p) ≤ bi

+∞ otherwise , ∀i, p ∈ Pi.

The objective is to maximize the total profit. In this case, we can achieve a FP-
TAS by implementing the oracle using a FPTAS for the Restricted Shortest Path
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(RSP) problem instead of NASP. The currently best FPTAS for general digraphs
is due to Lorenz and Raz [7], and runs in O(mn(log log n+1/ε)) time. Arguing as
in Theorem 2 and taking into account the time complexity of the FPTAS for RSP
[7], we can achieve a running time of O(( 1

ε )2(m+k) log(m+k)mn(log log n+1/ε))
for the constrained version of the QoS-aware MCF problem.

For the version of the problem with unbounded demands, which constitutes
the QoS max flow problem defined in [2], we can achieve a better time bound of
O(( 1

ε )2nm2 log m(log log n + 1/ε)), since the number of constraints in its corre-
sponding LP is m.

6 Conclusions

We considered the QoS-aware MCF problem, a natural and important gener-
alization of the weighted multicommodity flow problem with elastic demands
and values that is fundamental in transportation planning (and beyond). We
formulated the problem as a fractional packing LP, and provided a FPTAS for
its solution by building upon a Lagrangian relaxation method combined with
a recent FPTAS for non-additive shortest paths. Finally, we presented better
FPTAS for constrained versions of the QoS-aware MCF problem.

Acknowledgments. We are indebted to Naveen Garg, Jochen Könemann, Spyros
Kontogiannis, Frank Geraets (aka Wagner) for various useful discussions, and to
Christos Papadimitriou for bringing [2] to our attention.
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A APPENDIX

A.1 Proof of Theorem 1

The analysis is straightforward from [5]. We only consider an approximate oracle.
In order to prove Theorem 1 we need the next two lemmata. In the first lemma,
we establish a bound on the ratio of the optimal dual value to the primal objective
value at the end of the algorithm.

Lemma 5. Let β = miny
D(y)
a(y) be the optimal dual value and let t be the last

iteration of the algorithm. The ratio of the optimal dual value to the primal
objective value at the end of the algorithm is bounded by ε(1+w)

ln(1/Mδ) .

Proof. For each iteration k ≥ 1 it is

D(k) =
∑

i

b(i)yk(i)

=
∑

i

b(i)yk−1(i) + ε
b(p)

A(p, q)

∑
i

A(i, q)yk−1(i)

≤ D(k − 1) + (1 + w)ε(fk − fk−1)a(k − 1)

which implies that

D(k) ≤ D(0) + (1 + w)ε
k∑

l=1

(fl − fl−1)a(l − 1).
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Since β = miny D(y)/a(y) it is β ≤ D(l − 1)/a(l − 1),∀l = 1 . . . k, and thus

D(k) ≤ Mδ +
(1 + w)ε

β

k∑
l=1

(fl − fl−1)D(l − 1).

Observe now that for fixed k, this right hand side is maximized by setting D(l−1)
to its maximum possible value for all 1 ≤ l − 1 < k, and let us denote this
maximum value by D′(k), i.e.,

D′(k) = Mδ +
(1 + w)ε

β

k∑
l=1

(fl − fl−1)D′(l − 1).

Consequently,

D(k) ≤ D′(k)

= D′(k − 1) +
(1 + w)ε

β
(fk − fk−1)D′(k − 1)

= D′(k − 1)
(

1 +
(1 + w)ε

β
(fk − fk−1)

)
≤ D′(k − 1)e

(1+w)ε
β (fk−fk−1)

≤ D′(0)e
(1+w)ε

β

Pk
l=1(fl−fl−1)

≤ D′(0)e
(1+w)ε

β (fk−f0)

Since now D′(0) = Mδ and f0 = 0 it follows that

D(k) ≤ Mδe(1+w)εfk/β .

From our stopping condition it is 1 ≤ D(t) ≤ Mδe(1+w)εft/β and hence

β

ft
≤ ε(1 + w)

ln(1/Mδ)
.

ut

The final primal solution constructed may not be feasible since some of the
packing constraints may be violated. The second lemma shows that the final
primal assignment can be appropriately scaled as to obtain a feasible solution.

Lemma 6. Scaling the final primal assignment by log1+ε

(
1+ε

δ

)
, we obtain a

feasible solution to the fractional packing LP.

Proof. When we pick a column q and increase the left-hand-side of the i-th
constraint by A(i,q)b(p)

A(p,q)b(i) . Simultaneously we increase the dual variable y(i) by

a multiplicative factor of 1 + εA(i,q)b(p)
A(p,q)b(i) . By the definition of p it follows that

A(i,q)b(p)
A(p,q)b(i) ≤ 1 and thus increasing the left-hand-side of the i-th constraint by one
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causes an increase in y(i) by a multiplicative factor of 1 + ε. Since t is the first
iteration for which D(t) > 1, it is yt−1(i) < 1/b(i) and thus yt(i) < (1 + ε)/b(i).
Since now y0(i) < δ/b(i) it follows that the left-hand-side of the i-th constraint
is no more than log1+ε

(
1+ε

δ

)
for any i. Thus scaling the primal solution by

log1+ε

(
1+ε

δ

)
gives a feasible solution. ut

We now proceed with the proof of Theorem 1.

Proof. In the k-th iteration we increase the dual variable of the “minimum ca-
pacity” row by a factor of 1+ε. Since we stop the algorithm at the first iteration
t such that D(t) > 1 it follows that D(t) < 1 + ε and thus yt(i) < 1+ε

b(i) for any
row. Since now y0(i) = δ

b(i) and yt(i) < 1+ε
b(i) and there are M rows the total

number of iterations is at most Mdlog1+ε
1+ε

δ e = Md 1
ε log1+ε Me, by choosing

δ = (1 + ε)((1 + ε)M)−1/ε.
The ratio of the optimal dual value to objective value of the scaled final

primal assignment is γ = β
ft

log1+ε

(
1+ε

δ

)
by substituting the bound on β

ft
from

Lemma 5 we get

γ ≤ ε(1 + w)
ln(1/Mδ)

log1+ε

(
1 + ε

δ

)
=

ε(1 + w)
ln(1 + ε)

ln 1+ε
δ

ln(1/Mδ)

For δ = (1+ε)((1+ε)M)−1/ε, the ratio ln 1+ε
δ

ln(1/Mδ) equals (1−ε)−1, hence we have

γ ≤ ε(1 + w)
(1− ε) ln(1 + ε)

≤ ε(1 + w)
(1− ε)(ε− ε2/2)

≤ (1− ε)−2(1 + w)

ut
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Abstract. This paper presents a simulation model to study the robust-
ness of timetables of DSB S-tog a/s, the city rail of Copenhagen. Deal-
ing with rush hour scenarios only, the simulation model investigates the
effects of disturbances on the S-tog network. Several timetables are an-
alyzed with respect to robustness. Some of these are used in operation
and some are generated for the purpose of investigating timetables with
specific alternative characteristics.

1 Background

DSB S-tog (S-tog) is the sole supplier of rail traffic on the infrastructure of
the city-rail network in Copenhagen. S-tog has the responsibility of buying and
maintaining trains, ensuring the availability of qualified crew, and setting up
plans for departures and arrivals, rolling stock, crew etc. The infrastructural
responsibility and the responsibility of safety lie with Banedanmark, which is
the company owning the major part of the rail infrastructures in Denmark.

The S-tog network consists of 170 km double tracks and 80 stations. At
the most busy time of day the network presently requires 103 trains to cover
all lines and departures, including 4 standby units. There are at daily level
1100 departures from end stations and additionally appr. 15.000 departures from
intermediate stations. Figure 1 illustrates the current line structure covering the
stations of the network.

All lines of the network have a frequency of 20 minutes and are run according
to a cyclic timetable with a cycle of 1 hour. The frequency on stations in specific
time periods as e.g. daytime is increased by adding extra lines to the part of
the network covering these specific stations. This way of increasing frequency
makes it easy for to customers to remember the line routing both in the regular
daytime and in the early and late hours.

Each line must be covered by a certain number of trains according to the
length of its route. The trains covering one line forms a circuit. The time of a
circuit is the time it takes to go from one terminal to the other and back.

The network consists of two main segments, the small circular rail segment,
running from Hellerup in the north to Ny Ellebjerg in the south, and the remain-
ing major network. This consists of seven segments - six ”fingers” and a central
segment combining the fingers. A consequence of this structure is that a high
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Fig. 1. The DSB S-tog network according to the 2006 timetable

number of lines pass the central segment resulting in substantial interdependency
between these lines. This interdependency makes the network very sensitive to
delays and it is thus imperative to S-tog to reduce the line interdependency as
much as possible in the early planning stages. The plans of timetable, rolling
stock and crew should if possible be robust against disturbances of operations.
It is, however, in general non-trivial to achieve such robustness.

1.1 Simulation

One way to identify characteristics regarding robustness is by simulating the
operation of the network. Simulation helps identifying critical parts of the net-
work, the timetable and the rolling stock and crew plans. One example is poor
crew planning in relation to the rolling stock plan. It is unfortunate to have too
little slack between two tasks of a driver, if the tasks involve two different sets
of rolling stock.

Simulation also provides a convenient way to compare different types of
timetables on their ability to maintain reliability in the operation. This allows
better decisions to be made on a strategic level regarding which timetable to
implement. Specifically, for the network structure of S-tog the number of lines
intersecting the central segment has proven important to the stability in opera-
tion in the past. It has been a common understanding that an increasing number
of lines passing the central segment will lead to a decreasing regularity.
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Time slack is often used as a remedy for minor irregularities at the time
of operation. Time slack can for example be added to running times along the
route, dwell times on intermediate stations and turn around times at terminals.
Common for these types of slack are that they are introduced at the time of
timetabling in the planning phase.

It is common knownledge that time slack increases the ability of a timetable
and a rolling stock plan to cope with the facts of reality, i.e. the unavoidable dis-
turbances arising in operation. Slack in a plan is, however, costly since resources
are idle in the slack time if no disturbance occurs. It is therefore not evident
which type of slack to use, exactly where to use it, and how much to use.

The stability of a network is not only related to the ”inner robustness” in-
troduced through time slack. As noted earlier, slacks in the plans are intended
to compensate for minor disturbances. When larger disturbances occur action
must be taken to bring the plan back to normal. This process is called recovery.
There are various types of recovering plans. For example, cancelling departures
decreases the frequency of trains on stations, which in turn increases freedom in
handling the disturbance.

The simulation model to be presented is used for testing various timetables
with different characteristics. Also we use the model for testing some of the
strategies of recovery used by rolling stock dispatchers at S-tog. Firstly, in Section
2, related literature on the subject is presented. Recovery strategies employed
at S-tog are described in Section 3. In Section 4 we present the background for
the simulation model, and Section 5 discusses assumptions and concepts of the
model. The model itself is presented in Section 6, and the test setups and results
are presented in sections 7 and 8. Finally, Section 9 gives our conclusions and
suggestions for further work.

More details on the topic can be found in the M.Sc. thesis [5] by Hofman and
Madsen.

2 Related work

Related work involves studies on robustness and reliability, simulation and re-
covery. The first subject area, robustness and reliability, focuses on identifying
and quantifying robustness and reliability of plans. Simulation is used for various
purposes within the rail industry, and the models of the various subjects often
have similar characteristics. The area of recovery presents various strategies and
systems for recovery. Systems are often based on optimization models.

2.1 Robustness and reliability studies

Analytical and simulation methods for evaluating stability are often too complex
or computationally extremely demanding. The most common method is there-
fore using heuristic measures. In [1] Carey describes various heuristic measures
of stability that can be employed at early planning stages. Carey and Carville [2]
present a simulation model used for testing schedule performance regarding the
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probability distribution of so-called secondary delays (knock-on effects) caused
by the primary delays, given the occurrence of these and a schedule. The model is
used for evaluating schedules with respect to the ability to absorb delays. In [13]
Vroman, Dekker and Kroon present concepts of reliability in public railway sys-
tems. Using simulation they test the effect of homogenizing lines and number of
stops in timetables. Mattsson [9] presents a literature study on how secondary
delays are related to the amount of primary delay and the capacity utilization
of the rail network. An analytic tool for evaluating timetable performance in a
deterministic setting, PETER, is presented by Goverde and Odijk [4]. The eval-
uation of timetables is done without simulation, which (in contrast to simulation
based methods) makes PETER suitable for quick evaluations.

2.2 Simulation studies

Hoogheimstra and Teunisse [6] presents a prototype of a simulator used for
robustness study of timetables for the Dutch railway network. The simulation
prototype is called the DONS-simulator and is used for generating timetables.
Similarly, in [10] Middelkoop and Bouwman present a simulation model, Simone,
for analysing timetable robustness. The model simulates a complete network and
is used to identify bottlenecks. Sandblad et al. [12] offer a general introduction
to simulation of train traffic. A simulation system is discussed with the multiple
purposes of improving methods for train traffic planning, experimenting with
developing new systems, and training of operators.

2.3 Recovery studies

In [3] Goodman and Takagi discuss computerized systems for recovery and vari-
ous criteria for evaluating recovery. In particular, they present two main methods
of implementing recovery strategies: Either recovering from a known set of re-
covery rules or optimizing the individual situation, i.e. determining the optimal
recovery strategy for the specific instance at hand. A train holding model is pre-
sented in [11] by Puong and Wilson. The objective of the model is to minimize
the effect of minor disturbances by levelling the distance between trains by hold-
ing them at certain times and places of the network. In [7] Kawakami describes
the future framework of a traffic control system for a network of magnetically
levitated high speed trains in Japan. Different recovery strategies are presented,
one of which is increasing the speed of delayed trains.

3 Recovery strategies

When a timetable is exposed to disturbances and disruption occurs, it is crucial
how the operation returns to normal, and how fast the strategy can be imple-
mented. At present, the procedure of returning to a normal state of operation
is manual with support from operation surveillance systems and a system show-
ing the plan of operation constructed in advance. The different manual actions
available are mainly the following:
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Platform changes on-the-day It is planned in advance which platforms to
use for the different train arrivals and departures at the time of operation.
If a planned platform is occupied at the time of arrival of the next train, the
train is rescheduled to another vacant platform if possible. For example, at
Copenhagen Central (KH) there are two platforms in each direction. When
one platform is occupied with a delayed train the trains can be lead to the
other vacant platform for that direction.

Trains skipping stations i.e. making fast-trains out of stop-trains If a
train is delayed it is possible to skip some of its stops at stations with minor
passenger loads and few connecting lines. However, two consequtive depar-
tures on the same line cannot be skipped.

Shortening the routes of trains A train can be ”turned around” before reach-
ing its terminal i.e. the remainder of the stations on its route can be skipped,
cf. Figure 2. Again, two consequtive trains cannot be turned.

Fig. 2. The train movement at early turn around

Swapping the tasks/routes of fast-trains catching up with stop-trains

On some of the segments of the network both slow trains stopping at all sta-
tions and faster trains that skip certain stations are running. Delays some
times occur so that fast lines catch up with slow lines leading to a delay of
the fast trains. Here, it is possible do a ”virtual overtaking”, i.e. to swap the
identity of the two trains so that the slow train is changed to a fast train
and vice versa.

Inserting replacement trains from KH for trains that are delayed Trains
covering lines that intersect the central section run from one end of the net-
work to the other passing Copenhagen Central. Here, a major rolling stock
depot as well as a crew depot is located. If a train is delayed in the first part
of its route, it is often replaced by another train departing on-time from KH.
Thus, a new train is set in operation at KH, which proceeds on the route of
the delayed train. This is on arrival at KH taken out of operation.
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Inserting replacement trains for trains that have broken down In case
of rolling stock failure the train is replaced by new unit of rolling stock from
a nearby depot.

Reducing dwell times to a minimum At stations there are pre-decided dwell
times. These vary with the different passenger flows of the stations and with
different special characteristics such as a driver depot. The latter demands
extra time for the releasing of drivers. In the case of a disruption the dwell
times on all stations are reduced to minimum.

Reducing headways to a minimum In the outer ends of the network there
are some slack on the headways. In the case of delays headways are reduced
making the trains drive closer to each other. As the frequency of trains in
the central section is high there is less slack here for decreasing headways.

Reducing running times to a minimum Timetables are constructed given
predefined running times between all sets of adjacent stations. The running
time is always the minimum running time plus some slack. In case of a
disruption, running times between all stations are reduced to a minimum
given the particular context.

Allowing overtaking on stations with available tracks Handling operations
is less complex if there is a predetermined order of train lines. In the case
of a disruption the predetermined order of lines can be broken on stations
with several available platforms in the same direction i.e. where overtaking
between trains is possible. This is for example used when a fast train reaches
a delayed stop train at KH.

Cancelling of entire train lines In the case of severe disruption entire lines
are taken out, i.e. all trains currently servicing the departures on the relevant
lines are taken out of operation. In the case of severe weather conditions such
as heavy snow, the decision is taken prior to the start of the operation.

The main components in recovery strategies are increasing headways or ex-
ploiting slack in the network, called respectively re-establishing and re-scheduling.
The first handles disturbances by employing prescheduled buffers in the plans.
The latter refers to the handling of disturbances by making some changes in the
plan to bring the situation back to normal. The ways of changing the plan are
in most cases predefined.

4 Background of the problem

4.1 Planning and designing timetables

In S-tog the first phase of timetabling consists of deciding the overall line-
structure of the train network. The basis for the decision includes various criteria
such as number of passengers on the different fingers, passenger travel-patterns
and rotation time of lines. Regarding the latter criteria, it is from a crewing
perspective an advantage to keep the rotation time at a level matching a rea-
sonable duration for driver-tasks. In the next phase the stopping patterns are
decided automatically from input such as driving time, minimum headways and
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turn-around times. In the third phase, we then verify whether the plan is feasi-
ble with respect to rolling stock. These first three first phases are all carried out
internally in S-tog. The following phases involve various other parties, each of
which evaluates the proposed timetable, including BaneDanmark and the Na-
tional Rail Authority. When all involved parties have accepted the timetable,
the phase of rolling stock planning begins.

The process of designing and constructing a timetable is exceedingly long. It
is made up by the long process of constructing possible timetables that might be
rejected in other phases of the process, thereby forcing the process of timetabling
to be highly iterative. Many stakeholders are involved in the decision of which
timetable to implement in operation, and these may very well have conflicting in-
terests. In all phases of the timetabling process there is an urgent need for being
be able to discuss specific plans both qualitatively and quantitatively. Quantita-
tive information can be obtained by simulation. Often it is an advantage not to
have too many details in the input of a simulation. To compare different timeta-
bles it may e.g. not be necessary to know all details about tracks and signals.
Therefore, a decision regarding the timetable to be developed for operation may
be taken early in the planning process.

4.2 Disturbances at S-tog

The disturbances at S-tog can be classified into categories at several levels leading
to various actions when experienced during operations. First of all, disturbances
are categorized as being the consequence of some specific primary incident as
e.g. rolling stock defects (causing speed reductions), passenger’s questions to the
train driver, illness of a driver, or signal problems (forcing the trains to stop). We
distinguish between primary incidents caused by the rail system (trains, rails,
passengers etc.) and driver related incidents.

Incidents with a very long duration and complete breakdowns of the sys-
tem are considered as a separate type of incidents. An example of a complete
breakdown is the fall-down of overhead wires.

Secondary incidents occur as a consequence of primary incidents. These in-
cidents occur because primary incidents have influenced the operation, forcing
trains to stop or to slow down. The slack present in the timetable and the number
of secondary incidents that usually occur during operation are directly related.
That is, when slack is decreased the number of secondary delays increases and
vice versa.

The general measures of disturbances in the S-tog network are termed reg-
ularity and reliability. These refer respectively to lateness and cancellations in
the network. Regularity is calculated as

(

1 −
LateDepartures

DeparturesinTotal

)

∗ 100%

Traffic is considered stable when regularity exceeds a limit of 95%. A departure
is late when it is delayed more than 2.5 minutes. Reliability is calculated as
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(

ActualDepartures

ScheduledDepartures

)

∗ 100%

Contractually, reliability must be higher than 97% over the day.

4.3 Recovery strategies

Implementing different recovery strategies in a simulation model makes it pos-
sible to evaluate, which actions lead to the quickest recovery and least sizeable
disruption with respect to affected trains. We have chosen to investigate three
specific S-tog strategies for recovery. These have been implemented in the simu-
lation model and are evaluated individually i.e. two different recovery strategies
are not employed at the same time in any of the presented test-cases. The three
recovery strategies chosen were ”Early turn around”, ”Insertion of on-time trains
on KH” and ”Cancelling of entire train lines”. All of these recovery strategies
are frequently used in operation. They each contribute to increased headways
in some segment of the network. Furthermore, these three methods of recovery
are employed both in case of smaller and of medium size delays. Also they have
varying effects on customer service level.

Early turn around increases headways in the part of the network not serviced
because of the early turn around, and the train catches up on schedule in the
following departures. As a result, the number of secondary delays is decreased
as the train is often turned to an on-time departure. The negative consequences
of the recovery strategy are that some departures are cancelled when the train is
turned around before the end station of its route. This decreases the reliability.
Also, it becomes difficult to locate the rolling stock according to the circular
schedule, which must continue the following morning. In reality the trains are
turned without any respect of the line of the train. The train simply turns and
departs according to the first scheduled departure.

In the simulation model the strategy has been implemented with the costraint
that two successive trains can not be turned, i.e. one of them must continue to the
end station to meet passenger demands. Also, a train can not be turned in both
ends of its route. The shortening of routes are, apart from these two constraints,
invoked for each individual train by judging whether it is either more late than a
certain threshold or more late than can be gained by using the buffer at the end
station. In priciple, it is physically possible to turn around trains on all stations
in the S-tog network. However, as only a subset of the larger stations are used
for turn around in practice, these are also the only stations in the simulation
model where turn around is feasible. In the model, a turned around train must
match the departures that was originally planned for that particular train.

Cancelling of entire train lines is invoked by the condition of the regularity
of the line in question. If the regularity of the line is below a certain threshold,
the line or a predefined extra line on the same route is taken out. The line may
be reinserted when the regularity again exceeds a certain lower limit and has
been above this limit for a predefined amount of time. When put into action this
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recovery strategy increases the headways on the segment of the network where
the line in question runs. A positive effect of the recovery strategy is that the
number of secondary delays decreases. As entire lines are cancelled, employing
this strategy has a considerable negative impact on the reliability.

Specific characteristics of the recovery strategy are that trains on the line in
question can only be taken out at rolling stock depots and that at the time of
insertion it must be ensured that drivers are available at these depots. As drivers
are not simulated in the model, the latter restriction is not included.

Insertion of on-time trains on KH is the strategy of replacing a late train with
train being on-time from KH. This means that the time the network is serviced
by the delayed train is decreased. Like the recovery strategy of shortening routes,
this strategy is also employed when the relevant train is more than a predefined
threshold late. The threshold limit is set by the duration of the buffer at end
station. The strategy has no impact on the reliability as no trains are being
cancelled. It does, though, have a limited positive effect on the regularity. As no
headways are increased the headways are merely levelled out in the part of the
route from KH to the end station. It is assumed in the model that only one train
in each direction on the same line can be replaced at the same time. Hence, at
least every second train services the entire line.

5 Assumptions

One of the difficulties in simulation modelling is to decide on the level of detail
to use, i.e. to decide whether it is necessary to implement a very detailed model
or whether trustworthy conclusions can be made on the basis of more coarse
grained information. In the rail universe we have to determine whether signals
and tracks must be modelled with high precision or whether it is sufficient to
model a network with stations as the nodes and tracks between them as the
edges.

Additional considerations regarding specific details must also be made. Below
we describe the assumptions we have made in modelling the S-tog network.

All experiments are based on the worst case scenario of operating peak hour
capacity throughout the simulation. This will not affect the validity of the results
as stability and robustness are lowest when production and demand are highest.

We assume that the stopping pattern of each lines is constant over the day.
In most cases, each line has a fixed individual stopping pattern over the day.
Deviations do occur, especially in the early morning hours and in the evening. As
we have chosen only to simulate peak hours not intersecting these time intervals,
we assume that the stopping pattern for each line is fixed.

The stopping times of trains in the timetable are given with the accuracy of
half a minute. Therefore, the train in reality arrives at a station approximately
at the time defined by the timetable. Arrivals ”before schedule” may thus occur.
Since we do not allow a train to depart earlier than scheduled, these early arrivals
have not been implemented in our simulation-model.
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The circular rail segment has been omitted from the test scenarios. In general,
it has a very high regularity and its interaction with the remainder of the network
is very limited.

In the model, all minimum headways have been set to 1.5 minutes. This
makes the model less exact than if minimum headways are kept at their real
levels, which vary depending on the area of the network. In reality, network
parts where trains drive with high speed have larger minimum headways than
low speed parts. However, due to the heavy traffic the low speed parts constitute
the bottleneck network parts.

In our model delays are added at stations. The alternative is to add delays
between stations describing the track segment between two stations to some
predefined detail. This, however, complicates the model without giving any ad-
ditional benefits regarding the possible comparisons between time tables and
recovery strategies.

Delays are genereated from delay-distributions of historical data. We hence
assume that the delays in the system will occur mainly caused by the same
events as they have done up till now. However, there may be a variation in delay
patterns stemming from the structure of the timetable. Even if no timetable
similar to the timetable in a test scenario have been in operation, the delays
observed at stations in the past still seem to offer the best basis for generating
delays for the test scenario in question.

The probability of delay on a station is set to 50%. This is estimated from
the historical data as a worst case situation. Almost no time registrations are
zero (i.e. the departure is exactly on time).

In our model, regaining time is only possible at stations and terminals and
not while running between stations. Even though time can be gained between
the stations in the outer part of the network, this is insignificant compared to
what can be gained in the terminals. Again, it is clear that the regularity of a
test case in real-life will be at least as good as the one observed in the simulation
model, since extra possibilities for regaining lost time are present.

The single track of 500 m on a part between Værløse and Farum is not
modelled. This is the only part of the network with a single track. As the single
track part only accounts for 0.3% of the network this has no measurable effect
on the results.

In the central section there are four junctions in the form of stations where
lines merge and split up. To enable the use of a simple common station model,
these junctions are not explicitly modelled in the simulation model. To compen-
sate for this, virtual stations are introduced in the model. On the hub stations,
where different sections of the network intersect, a station is added for merging
or parting of the lines meeting at the hub. As a result of the extra station, the
model merges and divides at slightly other times than in reality. An example
of this is Svanemøllen (SAM). At SAM the northbound track divides into two.
Hence, the lines that have passed the central section divide into two subsets. In
the 2003 timetable, the subsets are two lines running towards Ryparken (RYT)
and the remainder running towards Hellerup (HL). SAM is modelled as four sta-
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tions; two stations where trains run towards respectively come from RYT and
two that run towards respectively come from HL. Going south this means that
when departing from SAM the trains must merge so no ”crash” appears. When a
station has several platforms in each direction, this is also handled in the model
by adding in an extra station for each platform. For example, KH is modelled
as four stations, two in each direction. This means that KH has two platforms
available for each direction and can have up to four trains in the station at the
same time.

The changes in the infrastructure since 2003 mostly concern the expansion
of the circular rail of the network. Therefore, results obtained using the 2003
structure are still valid.

The simulation model is in general coarse grained and contains several minor
modifications in relation to the facts of reality. Nevertheless, the model is ade-
quate for comparing timetables and for evaluating the immediate impact of one
recovery method compared to either one of the two other implemented recovery
methods or no recovery cf. the text sections above.

6 The simulation model

The simulation model has been implemented in Arena [8], which is a general
programming tool for implementing simulation models. The model is based on
the circulations of rolling stock for each of the lines. Therefore, the main model
of the simulation is built based on the lines. It has an entrance for each line
where entities are created corresponding to the trains necessary to run the line.
The trains circulate in a general station submodel common for all stations. A
recovery method is given before the entities enter the station submodel and start
iterating over it.

The input to the model is the line sequences, the departures, and various sta-
tion information such as for example whether a particular station is a terminal,
an intermediate stopping station or an intermediate non-stopping station, and
the dwelling time at each station.

6.1 Station submodel

In the station submodel attributes are first updated for the next step and the
next station respectively as these are used in the model relative to the current
step and station. The model iterates over the stations in each line of the network.
Therefore, the model reiterates from the beginning when the final station in the
route is reached. Secondly, the attribute of direction is updated depending on
the arriving train entity. Thirdly, the entity is put on hold if the station of the
current step is occupied by another train. If the station is not occupied, the entity
in question is allowed to enter the station. This is emphasized in the model by
setting an ”occupied” flag on the station. Thereafter, it is decided which type of
station is entered, given the three possibilities.
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The next action of the station submodel is handling the train dwelling time
depending on the type of the station. If the train entity is set to stop at the
station, the train is delayed by the predefined dwelling time. The dwelling time
assigned depends on whether the train entity is already delayed from a previous
station. If the train is delayed it should use the minimum dwelling time allowed.
If not, it should use the standard dwelling time. No train can leave earlier than
scheduled.

Next a possible delay is added. Delay is added at 50% of the stations. There
are no delays added in the model before all trains have been introduced. Delays
are added to the trains according to a distribution based on historical data.

The station is now marked unoccupied, as the train leaves the station after
have performed its stop including dwelling time and possible delay. The reg-
ularity and the reliability are updated immediately after the station has been
registered as unoccupied. These are calculated for each train on each of its sta-
tions. The overall regularity and reliability are the final averages of the individual
values.

Now the entity enters some recovery method depending on which method was
chosen initially. The method may be that no recovery action should be taken at
all.

After recovery, the specific case of merging the lines B and B+ is handled
in the submodel merge. If the line of the train entity is either the B or the B+
line and the current station is Høje Taastrup (HTAA), the trains merge and
drive alternately B and B+ unless recovery has cancelled line B+. The merge
is handled simply by alternating an attribute on the entity characterizing which
line the train entity runs. If B+ has been cancelled, merging is not possible and
the trains are instead delayed 10 minutes, which is the frequency between B and
B+.

Routing is also handled in the station submodel. In the routing part, the
train entity is routed from the current station to the next. First the train is
held back to ensure sufficient headway. Next the train is held back in a queue
until there is an open platform at the following station. There is a maximum
number on the queue length identical to the space on tracks between stations in
the S-tog network. If the current station is a terminal, the train can gain time
and is routed to the same station in opposite direction otherwise it is routed to
the next station in its line sequence without the possibility of gaining lost time.
Finally, time is updated for the train entity with the driving from one station to
the next.

6.2 Recovery submodels

Early turn-around The basic idea of this recovery method is that if a train
is delayed more than a certain threshold, it will change direction at an inter-
mediate station before it reaches the planned next terminal. This is checked in
the beginning of the model together with a check of whether the line has been
turned on its previous trip in the opposite direction.
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If the current station is a possible turn-around station, the turn-around is
performed and the next step and the starting time are decided. By creating a
duplicate of the train entity turned around, it is possible to ensure that the
following train is not also turned early.

Take Out This recovery method cancels specific lines in the network in case
of disruption. The cancellation of lines are initiated by regularity falling below
a certain threshold. When regularity has reattained another certain threshold,
the method reinserts the trains on the cancelled line.

The candidates to be cancelled are predefined. For example, if delays are on
line A, line A+ is cancelled.

Trains can only be taken out on depot stations. We assume the availability
of drivers at the time of reinsertion. The method sets the train entities on hold.
The cancellation of some entity is simply done by setting the train entities to
be cancelled on hold and reinsertion is initiated by signalling. Time and station
are then updated according to the time on hold and the line of the entity, and
the train entity continues to run from that specific station along its planned line
sequence.

Replace This recovery method inserts an on-time train from KH to replace a
train delayed along its route, which is then taken out. It is activated when a
train is more late than a certain threshold and the previous train was allowed
to continue along its entire route.

The model of the method is divided in two. One handling the take out of
trains at KH and one handling observation of delay at all other stations and
scheduled insertion on KH. In the latter of these, a duplicate of the train entity
is created to ensure that the train is taken out when it reaches KH.

It is at all times assumed that rolling stock is available at KH for inserting
trains.

7 Test Cases

For the purpose of testing the simulation model 7 timetables has been used, some
of which are run in several versions to make results more comparable. Two of the
timetables are actual timetables of respectively 2003 with 10 lines intersecting
the central section and 2006 with 9 lines intersecting the central section. They are
both of the structure seen in Figure 1 Three timetables are potential timetables
for years to come. They have respectively 10, 11 and 12 lines intersecting the
central section. See Figure 3 and Figure 4. Finally, two artificial timetables have
been constructed especially for the test session. The first of these has 19 lines on
the fingers and 1 central metro line in the central section. The other has in total
17 lines, with a combination of circular and drive through lines in the central
section. See Figure 5.
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Fig. 3. Network with 10 lines through the central section

Fig. 4. Networks with respectively 11 and 12 lines through the central section

Fig. 5. Network on the left has one central metro line. Network on the right is
a kombination of metro and through-going lines
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The purpose of the test session with so different timetables is to test the
effect of different characteristics such as a varied number of lines, different stop-
ping patterns, line structures, cycle times, homogeneous use of double tracks,
homogeneous scheduled headways and buffer times at terminals.

To make results comparable, changes have been made to some of the timeta-
bles. For example, lines have been extended and headways have been evened
out.

The recovery methods have been tested with varying thresholds for activa-
tion of the methods. The Early Turn around and Replace methods have been
tested for activation when the train in question is more late than respectively
2.5 minutes, 5 minutes, and “the amount of buffer time” at the terminal. For
the Cancellation method, activation has been set at regularity falling below 80%
without reinsertion, or 90% both with or without reinsertion. Reinsertion takes
place when regularity increases above 95%. The recovery methods are not tested
on the artificial timetables as these are so different from the timetables of today
that recovery results are incomparable.

A series of tests were run with varying buffer time at terminals.
Tests with small and large delays are performed. In these test cases we have

added respectively small delays, large delays and both large and small delays.
The definition of small and large delays are derived from the historical data.
The delays divide the stations into two subset of respectively 80 stations with
small delays and 81 stations with large delays. For the first two of the three test
scenarios, delay can hence only occur occur at 50 % of the stations. The tests
are run with no recovery and 100% probability of delay on the relevant stations.

8 Computational Results

A variety of tests have been carried out with the simulation model. We have
chosen to present specifically test results regarding the comparison of timetables,
the effect of large versus small delays on operation and varying sizes of terminal
buffer times. The complete set of tests is described in [5].

The main measures used for evaluating results are regularity and reliability.
The registration in the simulation model starts when the start-up period is
completed, i.e. when all trains has been inserted in the current model run.

When evaluating the results, it is also interesting to evaluate the cost of a
timetable with respect to the number of trains necessary to maintain circulation.
An optimal solution is a robust timetable operated by as few trains as possible.
This is an obvious trade-off since fewer trains in a solution implies that the
times of circuits for lines are decreased. The result is less “room” for slack in the
timetable and therefore generally less robustness.

8.1 Comparing Timetables without recovery

A total of 12 different timetables has been tested with and without recovery.
Figure 6 shows a plot of the regularity of different timetables run without recov-
ery.
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Fig. 6. Regularity of the 12 tested timetables where no recovery is applied

In general the number of lines have a high impact on regularity. Fewer lines
implies an increase in regularity. It is, however, possible to improve timetables
that has a high number of lines by increasing buffers on terminals. The results
show that increased buffers improve the ability to “cope with” delays. An ex-
ample of this is the timetable with 10 lines, cf. Figure 3.

8.2 Comparing Timetables using Turn-Around Recovery

The regularities of the timetables run with the turn-around recovery method are
shown in Figure 7. The threshold for invoking the method has been set to the
terminal buffer time used in the time tables.

Results show again that the number of lines significantly influences the level
of regularity, however, the effect decreases with increasing number of lines. This
is a consequence of more trains reaching the threshold and hence being turned,
cf. Figure 8, where regularities of timetables are shown with a threshold for the
turn-around recovery set to 5 minutes. The ranking of timetables with respect to
level of regularity is here different from that of Figure 7. In addition, an overall
better regularity on lines when using buffertimes as threshold can be observed.

8.3 Comparing Timetables using Cancellation of Lines Recovery

As expected, the results show that the cancellation of lines has a very positive ef-
fect on regularity. Corresponding to the positive effect on regularity, the recovery
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Fig. 7. Regularity of the 12 tested timetables where Turn Around recovery is
applied

Fig. 8. Regularity of the 12 tested timetables where Turn Around recovery is
applied when delay is higher than 5 minutes
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method has a negative effect on reliability. That is, the majority of departures
may be on time but only when a substantial part of the planned departures have
been cancelled. The results for all timetables are given in Figure 9.

Fig. 9. Regularity of the 12 tested timetables where Cancellation recovery is
applied when regularity is under 90%

8.4 Comparing Timetables using Replacement of Trains Recovery

This recovery method does not cancel any departures. Therefore the reliability
is 100% in all test results. This also means that the headways are not increased
when the recovery method is invoked. As expected this shows that the positive
effect on regularity is less than for the other recovery methods.

8.5 Comparing the Effectiveness of Recovery Methods

If we compare the results of the “turn-around” with the “line-cancellation” re-
covery method, we see that the regularity of the “tun-around” is at the same level
as the one of “line-cancellation” for timetables with a low number of lines. For
timetables with high numbers of lines, only “line-cancellation” recovery brings
up the regularity to a sufficiently high level.

Comparing recovery by replacement with the two other recovery methods, it
is evident that the method does not have the same level of effect on the regularity
as the two others when it comes to the timetables with many lines.
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8.6 Testing the Effect of Large and Small Delays

The test results of running with small and large delays separately are shown in
Figure 10 for timetables with 12 lines. Similar results were observed for other
timetables.

Fig. 10. Regularity when respectively only small delays, only large delays and
all delays are applied

The figure shows a clear tendency: Small delays have almost no effect on
the regularity when no large delays are present. The size of buffers are relatively
large compared to the delays in the system. Large delays have a significant effect
on the regularity as expected. When small delays are introduced in addition to
the large delays, they have a much larger effect on propagation of delay than
hen they occur on their own. It is, however, still obvious that larger delays has
the largerst effect on regularity and that these if possible should be eliminated.
Nevertheless, a substantial increase in regularity can be achieved through the
removal of small delays, which is a much easier task.

8.7 Terminal Buffers

The terminal buffers has a substantial effect on regularity. There is often more
available time at end stations than on intermediate stations with respect to the
size of buffers. As buffers are larger on terminals, there is a better possibility to
decrease an already incurred delay. Regarding the size of terminal buffers it is
expected that increasing buffer times at terminals in general implies decreasing
delays in the network. Test were run with increasing buffer times to confirm
this. The increase in buffer time necessitate that one additional train is set into



20 M. Hofman, L. Madsen, J. J. Groth, J. Clausen, J. Larsen

rotation on specific lines. Hence the number of trains necessary to cover the line
increases as the buffers on terminals are increased, cf. Table 1.

Timetable Trains Needed

2003, 10 lines 73

2003, 10 lines and improved buffers on terminals 77

Constructed, 10 lines 67

Constructed, 10 lines and improved buffers on terminals 71

Constructed, 12 lines 93

Constructed, 12 lines and improved buffers on terminals 100

Combination 82

Combination, Improved buffers on terminals 88

Table 1. Number of trains running simultaneously in the tested timetables

The results show that in general regularity improves when buffers are in-
creased, but also that there is an upper limit on the amount of buffer time,
beyond which no extra regularity is gained, cf. Figure 11 and 12.

Fig. 11. Regularity on the lines of the timetable with 9 lines with different sizes
of buffers on terminals

The improvement of regularity depends heavily on the timetable in question
for each individual test. The timetable with 12 lines improves considerably more
than the timetable with 9 lines.
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Fig. 12. Regularity on the lines of the timetable with 10 lines with different sizes
of buffers on terminals

9 Conclusions and future work

We have presented a simulation model for testing timetable robustness and the
effect on robustness of three different recovery strategies. The main results from
our tests are that there is a upper limit on the amount of buffer time leading to
positive effect on the regularity, and that small delays though insignificant on
their own have a significant additional effect when occuring together with large
delays. Finally, there is a clear tendency that the recovery methods rendering
the largest increase in headways result in the best robustness and thereby the
best increase in regularity.

Further work on the simulation model is to implement various others of the
presented recovery methods. Also, simulating the operation during non-peak
hours including the implementation of rules for change of train-formation is of
ovbious interest. Furthermore, including the train drivers in the simulation will
enable analysis of the dependency between timetables and crew plans, but will
also require substantial additions and changes to the underlying model.
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