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Preface

Running and optimizing transportation systems give rise to very complex and large-scale
optimization problems requiring innovative solution techniques and ideas from mathematical
optimization, theoretical computer science, and operations research. Since 2000, the series of
Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS)
workshops brings together researchers and practitioners who are interested in all aspects
of algorithmic methods and models for transportation optimization and provides a forum
for the exchange and dissemination of new ideas and techniques. The scope of ATMOS
comprises all modes of transportation.

The 16th ATMOS workshop (ATMOS’16) was held in connection with ALGO’16 and
hosted by Aarhus University in Aarhus, Denmark, on August 25, 2016. Topics of interest
were all optimization problems for passenger and freight transport, including, but not limited
to, demand forecasting, models for user behavior, design of pricing systems, infrastructure
planning, multi-modal transport optimization, mobile applications for transport, conges-
tion modelling and reduction, line planning, timetable generation, routing and platform
assignment, vehicle scheduling, route planning, crew and duty scheduling, rostering, delay
management, routing in road networks, and traffic guidance. Of particular interest were
papers applying and advancing techniques like graph and network algorithms, combinatorial
optimization, mathematical programming, approximation algorithms, methods for the integ-
ration of planning stages, stochastic and robust optimization, online and real-time algorithms,
algorithmic game theory, heuristics for real-world instances, and simulation tools.

All submissions were reviewed by at least three referees and judged on originality, technical
quality, and relevance to the topics of the workshop. Based on the reviews, the program
committee selected twelve submissions to be presented at the workshop, which are collected
in this volume. Together, they quite impressively demonstrate the range of applicability of
algorithmic optimization to transportation problems in a wide sense. In addition, Thomas
Schlechte kindly agreed to complement the program with an invited talk.

Based on the program committee’s reviews, Marco Blanco, Ralf Borndoerfer, Nam
Dũng Hoàng, Anton Kaier, Adam Schienle, Swen Schlobach and Thomas Schlechte won the
Best Paper Award of ATMOS’16 with their paper “Solving Time Dependent Shortest Path
Problems on Airway Networks Using Super-Optimal Wind”.

We would like to thank the members of the Steering Committee of ATMOS for giving us
the opportunity to serve as Program Chairs of ATMOS’16, all the authors who submitted
papers, Thomas Schlechte for accepting our invitation to present an invited talk, the members
of the Program Committee and the additional reviewers for their valuable work in selecting
the papers appearing in this volume, and the local organizers for hosting the workshop as
part of ALGO’16. We also acknowledge the use of the EasyChair system for the great help
in managing the submission and review processes, and Schloss Dagstuhl for publishing the
proceedings of ATMOS’16 in its OASIcs series.

August, 2016

Marc Goerigk
Renato F. Werneck

16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’16).
Editors: Marc Goerigk and Renato Werneck

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/oasics/
http://www.dagstuhl.de/en/about-dagstuhl/




Organization

Program Committee

Julian Dibbelt Apple Inc., United States
Alexandros Efentakis Research Center “Athena”, Greece
Marc Goerigk (co-chair) Lancaster University, United Kingdom
Sigrid Knust Universität Osnabrück, Germany
Leo Kroon Erasmus University Rotterdam, Netherlands
Marco Laumanns IBM Research, Switzerland
Stephen J. Maher Zuse Institute Berlin, Germany
Maria Grazia Speranza University of Brescia, Italy
Sabine Storandt Universität Freiburg, Germany
Thibaut Vidal PUC Rio de Janeiro, Brazil
Renato F. Werneck (co-chair) Amazon, United States
Peter Widmayer ETH Zürich, Switzerland

Steering Committee

Anita Schöbel Georg-August-Universität Göttingen, Germany
Alberto Marchetti-Spaccamela Università di Roma “La Sapienza”, Italy
Dorothea Wagner Karlsruhe Institute of Technology (KIT), Germany
Christos Zaroliagis University of Patras, Greece

List of Additional Reviewers

Augusto Baffa, Katerina Bohmova, Teobaldo Leite Bulhões Júnior, Walton Coutinho, Haroldo
Gambini Santos, Andrew Goldberg, Daniel Graf, Tobias Pröger, Michael Rice, Ben Strasser

16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’16).
Editors: Marc Goerigk and Renato Werneck

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/oasics/
http://www.dagstuhl.de/en/about-dagstuhl/




A Matching Approach for Periodic Timetabling∗

Julius Pätzold1 and Anita Schöbel2

1 Institut für Numerische und Angewandte Mathematik, Georg August
University Göttingen, Göttingen, Germany
paetzold@stud.uni-goettingen.de

2 Institut für Numerische und Angewandte Mathematik, Georg August
University Göttingen, Göttingen, Germany
schoebel@math.uni-goettingen.de

Abstract
The periodic event scheduling problem (PESP) is a well studied problem known as intrinsically
hard, but with important applications mainly for finding good timetables in public transportation.
In this paper we consider PESP in public transportation, but in a reduced version (r-PESP) in
which the driving and waiting times of the vehicles are fixed to their lower bounds. This results in
a still NP-hard problem which has less variables, since only one variable determines the schedule
for a whole line. We propose a formulation for r-PESP which is based on scheduling the lines.
This enables us on the one hand to identify a finite candidate set and an exact solution approach.
On the other hand, we use this formulation to derive a matching-based heuristic for solving PESP.
Our experiments on close to real-world instances from LinTim show that our heuristic is able to
compute competitive timetables in a very short runtime.

1998 ACM Subject Classification G.1.6 Optimization, G.2.2 Graph Theory, G.2.3 Applications

Keywords and phrases PESP, Timetabling, Public Transport, Matching, Finite Dominating Set

Digital Object Identifier 10.4230/OASIcs.ATMOS.2016.1

1 PESP: The Periodic Event Scheduling Problem

The Periodic Event Scheduling Problem (PESP) in which events have to be scheduled periodi-
cally is a complex and well-known discrete problem with interesting real-world applications.
It has been introduced in [17]. The PESP is known to be NP hard - in fact, even finding a
feasible solution is so. The PESP can be formulated as linear mixed-integer program and
has been extensively studied. Still, even heuristics are rare and suffer under high empirical
run times. Nevertheless using constraint programming techniques, [7] were able to support
the decision process of the Netherlands Railway (NS) using the PESP model, and the basic
concept of the 2005 timetable of Berlin Underground has been computed in [9]. Solution
approaches include constraint generation [14], techniques using the cycle space (see [11, 16, 8]),
or the modulo-simplex heuristic [12, 3]. Recently SAT-solvers proved to be successful for
solving the PESP [4]. Under research is the construction of timetables under uncertainty,
see, e.g., [6, 1].

We start by giving the mathematical formulation of PESP, its interpretation in the
context of public transportation will be provided in Section 2. Let an event-activity network
N = (E ,A) with nodes (or events) E and directed arcs (or activities) A be given. We want to
assign a time πi to every event i ∈ E . For setting up feasibility constraints, we furthermore

∗ This work was partially supported by DFG under grant SCHO1140/8-1
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1:2 A Matching Approach for Periodic Timetabling

assume time spans ∆a = [La, Ua] with a lower bound La and an upper bound Ua for all
activities a ∈ A, and weights wa which represent the importance of activity a ∈ A. Finally,
we need a period T ∈ N. An instance I of PESP is hence given by N , w, L, U, T . Defining

[x]T := min{x− zT : z ∈ Z, x− zT ≥ 0},

PESP can be formulated as

(PESP) min
∑

a=(i,j)∈A

wa[πj − πi − La]T

s.t. [πj − πi − La]T ∈ [0, Ua − La] for all a ∈ A
πi ∈ {0, 1, . . . , T − 1} for all i ∈ E .

The variables πi assign a point of time to each event i ∈ E . This time is usually assumed
to be integer (in minutes) and takes only values in {0, 1, . . . , T − 1} since it is repeated
periodically with a period of T . Note that the PESP only looks at the differences of the π
values, hence one of the variables can always be fixed, e.g., π1 := 0.

The objective function minimizes the sum of slack times over all activities of the resulting
periodic schedule while the constraints ensure that the minimal duration La and maximal
duration Ua of all activities a = (i, j) ∈ A are respected by the periodic schedule. Note that
[πj − πi − La]T ∈ [0, Ua − La] is equivalent to La ≤ πj − πi + zaT ≤ Ua for some integer
za ∈ Z which can be used to linearize the formulation given above to receive a linear integer
program. For details on the periodicity and the meaning of the time spans ∆a we refer to
the extensive literature on PESP.

Our contribution. In this paper we study the PESP in the context of its main application,
namely for timetabling in public transportation. We use the special underlying structure of
the event-activity network to design an exact and a heuristic approach for solving the PESP
in this case.

2 r-PESP: The reduced periodic event scheduling problem in public
transportation

We first repeat how the event-activity network is constructed for the case of periodic
timetabling in public transportation.

Given a set of traffic lines L, the event-activity network N = (E ,A) consists of nodes
E = Earr ∪ Edep which are called arrival and departure events and of edges A = Adrive ∪
Await ∪ Atrans called driving activities, waiting activities and transfer activities. These are
constructed as follows (see, e.g., [11, 8]):

Let l ∈ L be a line passing through stations s1, s2, . . . , sp. Such a line corresponds to p−1
arrival and to p− 1 departure events (s1, l, dep), (s2, l, arr), (s2, l, dep), . . . , (sp, l, arr).
A departure event (si, l, dep) and its consecutive arrival event (si+1, l, arr) on the same
line l at its next station are linked by a directed driving activity. Waiting activities link
an arrival event of a line (si, l, arr) and its consecutive departure event (si, l, dep) at the
same station.
Transfer activities connect an arrival event (s, l, arr) of one line l at some station s to
a departure event (s, k, dep) of another line k at the same station s if a transfer for the
passengers should be possible here.
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Note that in railway applications also headway activities are needed which ensure a minimal
distance between two consecutive trains on the same piece of infrastructure.

In the PESP formulation, the La describe lower bounds on the activities, i.e., the minimal
driving time for driving activities, the minimal dwell time at stations for waiting activities
and the minimal time needed for a transfer (i.e., getting off the train, changing the platform
and boarding the next train) for the passengers for transfer activities. The weights wa give
the number of passengers who use activity a ∈ A. Minimizing the sum of all slack times
in PESP hence can be interpreted as minimizing the sum of all traveling times over the
passengers.

2.1 r-PESP in public transportation

In public transportation it is often assumed that there are no upper bounds for transfer
activities, since a passenger can always take the train of the next period, and the objective
function aims at minimizing the transfer slack times anyway. We will also use this assumption
here, i.e., that

∆a = [La, La + T − 1] for all a ∈ Atrans. (1)

As mentioned above, in the practice of public transportation planning, every event i ∈ E
belongs to exactly one line l ∈ L. Hence, the events E of the event-activity network can be
partitioned into the lines they belong to, i.e.,

E =
⋃
l∈L

El.

Every line l induces a subgraph Nl = (El,Al) with Al ⊆ Await ∪Adrive, i.e., Al consists only
of waiting and driving activities. Solving PESP on such a subgraph is easy: The optimal
solution is to fix all driving and waiting activities to their lower bounds. This motivates the
formulation of a reduced PESP in which we require that all driving and waiting times are
fixed to their lower bounds. This can formally be done by setting

∆a := [La, La] for all a ∈ Await ∪ Adrive. (2)

Using both the assumptions (1) and (2) we obtain the following straightforward formulation
for the reduced PESP in which we fix the length of all waiting and driving activities to their
lower bounds and do not have any restriction on the transfer activities. The latter are the
only activities which are then relevant in the objective function.

(r−PESP) min
∑

a=(i,j)∈Atrans

wa[πj − πi − La]T

s.t. [πj − πi − La]T = 0 for all a ∈ Adrive ∪ Await

πi ∈ {0, 1, . . . , T − 1} for all i ∈ E .

Fixing the driving and waiting activities to their lower bounds has been done in other
publications before. In [13] it has been shown that the resulting problem is still NP-hard. A
theoretical analysis of the error which is made by fixing the values of the waiting and driving
activities to their lower bounds is provided in the next section, an experimental evaluation
can be found in Section 4.

ATMOS 2016



1:4 A Matching Approach for Periodic Timetabling

2.2 Comparing PESP and r-PESP

We are interested in a bound on the error which is made by fixing the driving and waiting
activities to their lower bounds. To this end, we denote the objective values of PESP and
r-PESP by PESP(I), or r-PESP(I), respectively. Then the gap between the reduced version
of PESP and the original PESP is specified by

Gap := sup
Instances I

r-PESP(I)− PESP(I),

where for an instance I = (N , w, L, U, T ) r-PESP(I) is defined by (2), i.e., the time windows
for waiting and driving activities a are set to ∆a := [La, La].

I Lemma 1. If (1) holds we have

0 ≤ Gap ≤ T
2

∑
a∈Atrans

wa

Proof.
Under assumption (1) we have that every feasible solution of r-PESP is also feasible for
PESP and satisfies

∑
a=(i,j)∈A wa[πj − πi − La]T =

∑
a=(i,j)∈Atrans

wa[πj − πi − La]T ,
hence PESP is a relaxation of r-PESP. This gives that Gap ≥ 0.
On the other hand, it can be shown that for every instance I of r-PESP we have
r-PESP(I) ≤ T

2
∑

a∈Atrans
wa, i.e., any optimal solution is bounded by the waiting time

which would be received if trains are scheduled according to a uniform distribution (for
details, see [15, 13]). We hence obtain r-PESP(I)− PESP(I) ≤ T

2
∑

a∈Atrans
wa − 0 for

all instances I, and hence Gap ≤ T
2
∑

a∈Atrans
wa.

J

We will also see in the experiments that solving r-PESP seems to be a very good heuristic
for finding PESP solutions.

2.3 An equivalent formulation for r-PESP and a finite candidate set

We now consider some line l ∈ L with its corresponding events El. We need the following
notation.

For every line l, let first(l) denote the first event of line l.
For every event i ∈ El of line l define dur(i) as the length of the (unique) path from first(l)
to i in the subnetwork Nl with edge weights La. This is the duration which a vehicle of
line l needs from its start to event i. Note that dur(i) is well defined since every event i
belongs to exactly one line l.
For two lines k, l ∈ L define Atrans(k, l) := {a = (i, j) ∈ Atrans : i ∈ Ek, j ∈ El} as the
(possibly empty) set of transfer activities from line k to line l.

If πfirst(l) is fixed for the first event of line l, the resulting arrival and departure times for all
other events i ∈ El in r-PESP can be determined as

πi := πfirst(l) + dur(i) for all i ∈ El.
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Plugging this into r-PESP, the objective function can be transformed to∑
a=(i,j)∈Atrans

wa[πj − πi − La]T

=
∑

k,l∈L

∑
a=(i,j)∈Atrans(k,l)

wa[πfirst(l) + dur(j)− πfirst(k) − dur(i)− La]T

:=
∑

k,l∈L

∑
a∈Atrans(k,l)

wa[da + πfirst(l) − πfirst(k)]T

where

da := [dur(j)− dur(i)− La]T for a = (i, j) ∈ Atrans.

We abbreviate πl := πfirst(l) emphasizing that we now determine only one point of time for
every line l ∈ L. Given πl for all lines l ∈ L we furthermore denote

fk,l(π) :=
∑

a∈Atrans(k,l)

wa[da + πl − πk]T

f(π) :=
∑

k,l∈L

fk,l(π)

r-PESP can hence be equivalently formulated as

(r−PESP) min
∑

a∈
⋃

k,l∈L
Atrans(k,l)

wa[πl − πk + da]T

s.t. πl ∈ {0, 1, . . . , T − 1} for all l ∈ L

which is a PESP on a reduced event-activity network, without any feasibility requirements,
but with possibly multiple activities between every pair of events. In the following, when
we talk about a solution to r-PESP we mean a solution π ∈ {0, . . . , T − 1}|L| to the above
reformulation r-PESP. We now illustrate this reformulation on two special cases which will
be used later in our algorithmic approach.

An optimal timetable for the case of two lines. For only two lines L = {k, l} we receive
a problem with two variables πk, πl ∈ {0, 1, . . . , T − 1}. We can further reduce its objective
function to only one variable by computing

f(πk, πl) = fk,l(πk, πl) + fl,k(πk, πl)

=
∑

a∈Atrans(k,l)

wa[da + πl − πk]T +
∑

a∈Atrans(l,k)

wa[da + πk − πl]T

and substituting t := πk − πl due to the fact that we can set e.g., πl := 0 and then receive
t := πk − πl = πk. We obtain

min
t=0,...,T−1

g(t) :=
∑

a∈Atrans(k,l)

wa[da − t]T +
∑

a∈Atrans(l,k)

wa[da + t]T

=
∑

a∈Atrans(k,l)

wa[d̄a − t]T +
∑

a∈Atrans(l,k)

wa[d̄a + t]T (3)

with d̄a := [da]T ∈ {0, . . . , T − 1} for all a ∈ Atrans, since adding an integer multiple of T in
[da − t]T or in [da + t]T does not change their values.

ATMOS 2016



1:6 A Matching Approach for Periodic Timetabling

Optimal adjustment of two line clusters. A similar situation appears if we have a partition
of the set of all lines L = L1 ∪ L2 into two disjoint line clusters L1,L2. Suppose, a timetable
πl, l ∈ L is given. We want to adjust the two clusters such that they fit as good as possible
to each other without changing the synchronization between any pair of lines within the
same cluster. This can be done by shifting all lines in L1 by an amount of t minutes. The
new timetable π(L1, t) is then given by

π(L1, t)l :=
{
πl if l ∈ L2
πl + t if l ∈ L1

(4)

We are now interested in the best t, i.e., the optimal shift between the two clusters. The
objective function f(π(L1, t)) is only dependent on t and can hence be simplified to

g(t) := g(π(L1, t))
=

∑
k,l∈L1

fk,l(π) +
∑

k,l∈L2

fk,l(π) +
∑

k∈L1,l∈L2

∑
a∈Atrans(k,l)

wa[πl − (πk + t) + da]T

+
∑

k∈L2,l∈L1

∑
a∈Atrans(k,l)

wa[(πl + t)− πk + da]T

= const+
∑

a∈Atrans(k,l)
k∈L1,l∈L2

wa[d̄a − t]T +
∑

a∈Atrans(k,l)
k∈L2,l∈L1

wa[d̄a + t]T (5)

with d̄a := [da + πl − πk]T ∈ {0, . . . , T − 1} for all a ∈ Atrans(k, l), k, l ∈ L.

Note that using this formula one directly sees that

g(π(L1, t)) = g(π(L2, T − t)). (6)

The following lemma applies to solving problems of type (3) or (5).

I Lemma 2. Let A1 and A2 be two disjoint sets and let da ∈ {0, . . . , T − 1}, wa ≥ 0 for all
a ∈ A1 ∪ A2. Consider the optimization problem

(P ) min
t∈{0,1,...,T−1}

g(t) :=
∑

a∈A1

wa[da − t]T +
∑

a∈A2

wa[da + t]T .

Then there exists an optimal solution t∗ to (P) which satisfies

t∗ ∈ {da : a ∈ A1} ∪ {T − da : a ∈ A2}.

Furthermore,
t∗ ∈ {da : a ∈ A1} for all optimal solutions t∗ to (P) if

∑
a∈A1

wa >
∑

a∈A2
wa,

t∗ ∈ {T − da : a ∈ A2} for all optimal solutions t∗ to (P) if
∑

a∈A1
wa <

∑
a∈A2

wa.

Proof. The first part of the lemma was already observed by [13]. For the second part, let∑
a∈A1

wa >
∑

a∈A2
wa and consider t ∈ {0, 1, . . . , T − 1}. Let t 6∈ {da : a ∈ A1}. Increasing

t to t+ 1 gives [da − t]T − [da − (t+ 1)]T = 1 and

[da + t]T − [da + (t+ 1)]T =
{

−1 if t 6= T − da − 1
T − 1 ≥ −1 if t = T − da − 1,
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hence

g(t)− g(t+ 1) =
∑

a∈A1

wa ([da − t]T − [da − (t+ 1)]T )

+
∑

a∈A2

wa ([da + t]T − [da + (t+ 1)]T )

≥
∑

a∈A1

wa −
∑

a∈A2

wa > 0,

i.e., increasing t improves the objective function value and t can hence not be optimal. The
other direction works analogously. J

This means the problem for two lines can be solved by testing all t = da in the case
that

∑
a∈Atrans(l,k)

wa ≥
∑

a∈Atrans(k,l)
wa and all t = T − da otherwise. The same holds for

problem (5) with two line clusters where we have to test all t = d̄a or all t = T − d̄a. In both
cases we have a finite candidate set of possible solutions to be checked. Using the Lemma 2
we can even derive a finite candidate set for any instance of (r-PESP). To this end, we define
the line graph

GL = (L, EL)

as the graph with nodes corresponding to the lines L and undirected edges

EL := {{k, l} ⊆ L : Atrans(k, l) ∪ Atrans(l, k) 6= ∅}.

I Theorem 3. There exists an optimal solution π ∈ {0, 1, . . . , T − 1}|L| to r-PESP and a
spanning tree S in the line graph GL such that for every edge e = {k, l} ∈ S there exists
some a ∈ Atrans(k, l) ∪ Atrans(l, k) with πl − πk = [da]T .

Proof. We give a sketch of the proof here, its details can be found in the appendix.

In the proof we start with some timetable π. We determine the set E(π) of all edges {k, l}
in the line graph which satisfy the condition of the theorem. If the set of these edges does
not contain a spanning tree, we determine a largest connected component L1 in (L, E(π))
and adjust the timetable optimally between the two line clusters L1 and L \ L1. We receive
a new timetable π̃. We then show that the resulting graph (L, E(π̃)) w.r.t the new timetable
π̃ has a strictly larger connected component. We can repeat this procedure until we find a
timetable π∗ such that E(π∗) contains a spanning tree. J

The result shows that for every optimal solution there exists a spanning tree for which
the tension xkl := πl − πk of its (directed) edge {k, l} comes from a finite set {[da]T : a ∈
Atrans(k, l) ∪ Atrans(l, k)} of values. We hence can enumerate over all trees and all such
tensions to find an optimal timetable which will be formulated as Algorithm 1 in the next
section.

We remark that the structure of the line graph GL = (L, EL) may also be exploited for
decomposing an r-PESP instance into two smaller instances in the following case.

I Lemma 4. Let {k̄, l̄} ∈ EL be a bridge of the line graph GL, i.e., an edge such that
(L, EL \ {e}) decomposes into two components GL1 = (L1, EL1) and GL2 = (L2, EL2). Let
π1 be an optimal solution to r-PESP on L1 and π2 be an optimal solution to r-PESP on L2.
Let furthermore t∗ be the optimal adjustment between the two line clusters L1 and L2. Then

π(L1, t
∗)l :=

{
π1

l + t∗ if l ∈ L1
π2

l if l ∈ L2

is an optimal solution to r-PESP on L.
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Proof. For the case of a bridge {k̄, l̄} with k̄ ∈ L1, l̄ ∈ L2 the objective function (5) for the
adjustment of the two line clusters L1 and L2 with timetables π1 and π2 simplifies to

g(t) = const+
∑

a∈Atrans(k,l)
k∈L1,l∈L2

wa[da + π2
l − π1

k − t]T +
∑

a∈Atrans(k,l)
k∈L2,l∈L1

wa[da + π2
l − π1

k + t]T

= const+
∑

a∈Atrans(k̄,l̄)

wa[da + π2
l̄
− π1

k̄
− t]T +

∑
a∈Atrans(k̄,l̄)

wa[da + π2
l̄
− π1

k̄
+ t]T

Now consider any timetable π∗. We compare f(π∗) with f(π(L1, t
∗)):

f(π∗) =
∑

k,l∈L1

fk,l(π∗) +
∑

k,l∈L2

fk,l(π∗) + fk̄,l̄(π∗) + fl̄,k̄(π∗)

f(π(L1, t
∗) =

∑
k,l∈L1

fk,l(π1 + t∗) +
∑

k,l∈L2

fk,l(π2) + fk̄,l̄(π(L1, t
∗)) + fl̄,k̄(π(L1, t

∗))

For the first two terms we receive due to the optimality of π1 and π2 directly that∑
k,l∈L1

fk,l(π1 + t∗) =
∑

k,l∈L1

fk,l(π1) ≤
∑

k,l∈L1

fk,l(π∗) and
∑

k,l∈L2

fk,l(π2) ≤
∑

k,l∈L2

fk,l(π∗).

For the third term we know that

fk̄,l̄(π(L1, t
∗)) + fl̄,k̄(π(L1, t

∗))

=
∑

a∈Atrans(k̄,l̄)

wa[da + π2
l̄
− π1

k̄
− t∗]T +

∑
a∈Atrans(l̄,k̄)

wa[da + π1
k̄
− π2

l̄
+ t∗]T

≤
∑

a∈Atrans(k̄,l̄)

wa[da + π2
l̄
− π1

k̄
− t]T +

∑
a∈Atrans(l̄,k̄)

wa[da + π1
k̄
− π2

l̄
+ t]T

for all t ∈ {0, . . . , T − 1} since t∗ is a minimizer of g(t). In particular, this holds for
t := [π2

l̄
− π1

k̄
− π∗

l̄
+ π∗

k̄
]T . Plugging this in, we receive

fk̄,l̄(π(L1, t
∗)) + fl̄,k̄(π(L1, t

∗))

≤
∑

a∈Atrans(k̄,l̄)

wa[da + π∗
l̄
− π∗

k̄
]T +

∑
a∈Atrans(l̄,k̄)

wa[da + π∗
k̄
− π∗

l̄
]T

= fk̄,l̄(π∗) + fl̄,k̄(π∗),

which finally shows that f(π(L1, t
∗) ≤ f(π∗). J

3 Algorithms for r-PESP

3.1 An exact approach
The naive approach to solve r-PESP would be to enumerate brute-force and evaluate all
possible T |L|−1 timetables of the reduced formulation r-PESP in O(T |L|−1 · |Atrans|). The
result of Theorem 3 provides a finite set of values for the tensions on the edges of a specific
spanning tree. Recall (e.g., from [11]) that fixing the tensions on a spanning tree (with
directed edges) already determines the timetable π: It can be found by setting, e.g, π1 := 0
and then iteratively choosing a neighbor i of a node j with already assigned time πj and
setting πi = [πj + x1i]T if (1, i) ∈ E and πi = [πj − x1i]T if (i, 1) ∈ E) until all events have a
time assigned. This approach works since a tree does not contain a cycle. We use this for
proposing the following new exact approach for solving r-PESP:
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Algorithm 1: Exact approach for finding an optimal solution to r-PESP

1. For every spanning tree S of the line graph GL with edges ES find an optimal timetable
πS for S by
a. fixing an (arbitrary) direction of every edge {k, l} of the tree S
b. computing the corresponding timetable for all combinations of possible tensions values

on the directed edges (k, l)
{da : a ∈ Atrans(k, l)} if

∑
a∈Atrans(k,l) wa >

∑
a∈Atrans(l,k) wa

{T − da : a ∈ Atrans(l, k)} if
∑

a∈Atrans(k,l) wa ≤
∑

a∈Atrans(l,k) wa.
2. Choose π as minimizer of min{f(πs) : S is a spanning tree of GL}.

Using Cayley’s formula saying that the number of spanning trees in a complete graph
with n nodes is nn−2, and that evaluating a timetable is of order O(Atrans) it turns out that
the complexity if Algorithm 1 is O(|L||L|−2 · η|L|−1 · |Atrans|) in a complete line graph GL
with η transfers between any pair of lines, i.e. η = |Atrans(k, l)| for all k, l ∈ L. Note that
for this time complexity we make use of Lemma 2, namely that we only need to evaluate all
da, a ∈ Atrans(k, l) or T − da, a ∈ Atrans(l, k).

Even in this worst case we end up with a smaller time complexity than the naive brute-
force approach if η|L| ≤ T which will be the case in small to medium-size metro systems,
assuming a period of T = 60 minutes. In practice, the line graph is usually not a complete
graph, and the number of possible transfers η from a line l to another line k is usually small
(often even zero) such that the complexity can be significantly reduced.

3.2 A heuristic based on matching
The idea of the matching heuristic is taken from [10] where a similar approach was used for
aperiodic timetabling based on given vehicle routes. In every iteration we use a partition of
the set of lines into line clusters C = {L1, . . . ,Lk} with L = L1 ∪ . . . ∪ Lk and the Lp are
pairwise disjoint. In the first step each line cluster consists of one single line only. In every
iteration, the line clusters are matched pairwise. For every pair of clusters being matched
one looks for the optimal adjustment of them by solving the optimization problem (5).

Algorithm 2: Matching-based heuristic for finding a solution to r-PESP

1. Initialization: Define the initial cluster graph GC = (C, EC) as the line graph graph: C = L
(each line makes up one cluster), and EC := EL, i.e., two such clusters are connected if a
transfer between their lines is possible.
For every line l ∈ L, define πl = 0.

2. While |C| > 1 do
a. For every edge {L1,L2} ∈ EC determine eval(L1,L2) as in (10).
b. Determine a matching M ⊆ EC with maximal weight in GC .
c. For every edge {L1,L2} ∈M do

i. Find an optimal adjustment of the timetable of the two line clusters L1 and L2
(using the result of Lemma 2).

ii. Merge the nodes L1 and L2 to one node L1 ∪ L2 in GC .

The algorithm runs in polynomial time. The main question is how to evaluate two line
clusters L1 and L2. As in the case of two clusters, we look at all transfers a between a
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line k ∈ L1 and another line l ∈ L2 and vice versa. If a timetable π is already given, the
evaluation of the timetable π(L1, t) (as in (4)) is done by computing

gL1,L2(t) := +
∑

a∈Atrans(k,l)
k∈L1,l∈L2

wa[d̄a − t]T +
∑

a∈Atrans(k,l)
k∈L2,l∈L1

wa[d̄a + t]T

with (as usual) d̄a := da + πl − πk. As evaluation functions we tested

best(L1,L2) := min
t∈{1,...,T−1}

gL1,L2(t) (7)

worst(L1,L2) := max
t∈{1,...,T−1}

gL1,L2(t) (8)

span(L1,L2) := worst(L1,L2)− best(L1,L2) (9)

expected(L1,L2) := 1
T

(
T−1∑
t=0

gL1,L2(t)
)
− best(L1,L2) (10)

Note that all these evaluation functions are symmetric in L1 and L2, i.e., it does not matter
if we look at gL1,L2(t) or at gL2,L1(t) when determining the values of (7)-(10).

I Lemma 5. All the evaluation functions (7) - (10) are symmetric, i.e.,

best(L1,L2) = best(L2,L1), worst(L1,L2) = worst(L2,L1),
span(L1,L2) = span(L2,L1), expected(L1,L2) = expected(L2,L1).

Proof. As in (6) we can easily verify that gL1,L2(t) = gL2,L1(T − t). Using furthermore that
gL2,L1(0) = gL2,L1(T ), we receive that

{gL1,L2(t) : t = 0, . . . , T − 1} = {gL2,L1(t) : t = 0, . . . , T − 1},

hence the result follows from the fact that

min
t∈{1,...,T−1}

gL1,L2(t) = min
t∈{1,...,T−1}

gL2,L1(t),

max
t∈{1,...,T−1}

gL1,L2(t) = max
t∈{1,...,T−1}

gL2,L1(t),

T−1∑
t=0

gL1,L2(t) =
T−1∑
t=0

gL2,L1(t).

J

The different evaluation functions follow different strategies. best (7) matches the lines
first which are most expensive to get adjusted even in the best case. worst (8) matches
the lines which could make the objective value really bad later. span (9) and expected (10)
consider how much the objective value for adjusting two line clusters can change between the
best and the worst case, or between the expected and the best case. If the change is rather
low there is no need to match such a pair.

Our pre-evaluation show that span and expected perform better than best and worst with
expected providing the overall best results. We hence used expected (10) in Algorithm 2.
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3.3 A hybrid algorithm
We can combine the exact and the matching approach by starting with the matching approach
and changing to the exact approach when the complexity for solving the instance with an
exact approach gets small enough. In case that brute-force is used as exact approach, we
check the size of T |C| where C contains the remaining clusters. When using Algorithm 1 as
exact approach the decision is based on the number of spanning trees in the remaining graph.

Algorithm 3: Hybrid heuristic for finding a solution to r-PESP

1. Initialization: Define the initial cluster graph GC = (C, EC) as the line graph graph: C = L
(each line makes up one cluster), and EC := EL, i.e., two such clusters are connected if a
transfer between their lines is possible.
For every line l ∈ L, define πl = 0.

2. While Complexity is too large do
a. For every edge (L1,L2) ∈ EC determine eval(L1,L2) as in (10).
b. Determine a matching M ⊆ EC with maximal weight in GC .
c. For every edge (L1,L2) ∈M do

i. Find an optimal adjustment of the timetable of the two line clusters L1 and L2 as
in Lemma 2.

ii. Merge the nodes L1 and L2 to one node L1 ∪ L2 in GC .
3. Solve the remaining instance exactly by using Algorithm 1 or another exact procedure.

Our experiments show that the runtime of the exact approaches is still too large for more
than five lines; hence this is approximately the size of C when we switch from Algorithm 2 to
an exact approach.

4 Experimental results

For our experiments we used data from the LinTim library [2, 5]. Besides a toy example this
includes close-to real world data from the metro network of Athens, the German high-speed
train network with different line concepts, and the bus network of the local bus company in
Göttingen. The characteristics of the data used are summarized in Table 1. Note that all of
these instances have no restriction on the upper bounds of transfer activities, so they satisfy
assumption (1). On the other hand, none of the instances fixes the waiting or driving times
of the activities to their lower bounds (2) as we do in r-PESP. It will be observed that even
with this variable fixing the resulting outcomes of Algorithm 2 are competitive.

In our first evaluation we tested Algorithm 3 (the hybrid strategy) with three different
settings: We either changed to an exact approach and took the naive brute-force enumeration
or Algorithm 1, or we did not use any exact approach but only performed Algorithm 2. The
results are shown in Table 2. We see that in all but one instance Algorithm 1 is faster than
brute-force while the clear winner in runtime is (as expected) Algorithm 2, i.e., the polynomial
matching heuristic. We also see that there is nearly no benefit in terms of the objective value
solving the reduced final instances exactly instead of just continuing Algorithm 2. Note that
the objective function values between using brute-force or Algorithm 1 as exact approach
differ (although both alternatives are exact approaches) since the point when we switch
to the exact approach depends on the algorithm chosen as explained at the beginning of
Section 3.3.
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Table 1 The characteristics of the test instances. V denotes the set of stations, L the set of
lines, E the set of all arrival and departure events, and Atrans the set of transfer activities.

Name |V | |L| |E| |Atrans|
toy 8 6 64 8

athens 51 20 592 115
bahn-eq-f 250 53 3444 1761
bahn-01 250 65 4184 4370
bahn-02 280 80 5048 3397
bahn-04 319 115 6368 7986
goevb 257 76 3044 9029

Table 2 Different versions of Algorithm 3.

Brute-force in Step 3 Algorithm 1 in Step 3 No exact approach
Instance objective runtime objective runtime objective runtime

toy 22094 10s 22094 <1s 22094 <1s
athens 12274246 30min 12274246 1s 12725934 1s

bahn-eq-f 66473861 1min 66473861 70min 66462971 1s
bahn-01 541120106 29min 540759985 20s 540759985 2s
bahn-02 675040353 35min 675206688 7min 675206688 2s
bahn-04 742637615 1min 742772838 1min 742637615 3s
goevb 20147281 18min 20191871 43s 20191871 1s

We finally compared Algorithm 2 to another procedure for periodic timetabling, namely
to the modulo simplex ([12, 3]) in its implementation within LinTim [2, 5]. We compared
the result of the matching-based heuristic (Algorithm 2) directly to the result of the modulo
simplex, but also used it as a starting solution to check if the modulo simplex is able to
further improve it. The runtime of the modulo Simplex was bounded to 60 minutes.

Note that in our instances slack times of driving and waiting activities are allowed, i.e.,
assumption (2) is not satisfied. This means that Algorithm 2 can only provide a heuristic
solution also from this point of view. However, as we see in Table 3, the objective function
values obtained by Algorithm 2 are highly competitive. The objective function values obtained
by Algorithm 2 were surprisingly good, in one case even better than the result of the modulo
simplex. But the main advantage of Algorithm 2 is its very fast runtime (which is also shown
in the table). It furthermore turns out that the modulo simplex is able to further improve
the solution obtained by Algorithm 2 in all cases, and that it cannot predicted which starting
solution leads to the overall best solution after performance of the modulo simplex in the
end.

5 Extension and conclusion

We presented a new formulation of the PESP in public transportation networks which is
based on the characteristics of instances from timetabling. We show that this formulation
can be used to derive a finite candidate set which is smaller than enumerating all possibilities
in a brute-force approach. We also used the formulation to derive a matching-based heuristic
for the PESP. Our experiments show promising results: the heuristic is competitive with
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Table 3 Comparison with the Modulo Simplex.

Algorithm 2 Algorithm 2 + ModSim ModSim
Instance objective runtime objective runtime objective runtime

toy 22094 < 1s 18236 < 1s 18236 < 1s
athens 12725934 1s 10215458 4s 10215458 30s

bahn-eq-f 66462971 1s 65430934 5min 65388991 13min
bahn-01 540759985 2s 536208754 1h 537965995 1h
bahn-02 675206688 2s 663179698 1h 668819275 1h
bahn-04 742637615 3s 737959364 1h 746841914 1h
goevb 20191871 1s 19691541 11min 18984122 19min

solutions obtained by the modulo simplex but with a runtime only in seconds. We currently
investigate a heuristic in which the starting times πl of the lines are fixed one after another
in a Greedy manner (as proposed in [13]), in particular which of the evaluation functions
(7)-(10) performs best in such an approach for choosing the sequence in which the lines are
processed.

In our study we neglected headway constraints. However, they can be incorporated by
adding feasibility constraints also in r-PESP meaning that constraints on t have to be taken
into account when adjusting two lines or two line clusters. The implication of headway
constraints and the performance of the matching-based approach in this case are subject of
future research. Another interesting point is the further exploitation of Theorem 3. Since
r-PESP is a special case of a PESP on the line graph GL = (L, EL), the modulo simplex can
directly applied to the reduced formulation. Using the special properties of the line graph GL
together with the finite candidate set on every tree is likely to yield further improvements for
the modulo simplex. This is another point which is interesting to be studied in the future.

Finally, since the set of lines L is used explicitly in Algorithm 2, this seems to be a
promising approach also for solving the integrated line-planning and timetabling problem in
which a line plan and a timetable are optimized simultaneously.
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A Proof of Theorem 3

Theorem 3. There exists an optimal solution π ∈ {0, 1, . . . , T − 1}|L| to r-PESP and a
spanning tree S in the line graph GL such that for every edge e = {k, l} ∈ S there exists
some a ∈ Atrans(k, l) ∪ Atrans(l, k) with πl − πk + da = 0.

Proof. Let π∗ ∈ {0, . . . , T − 1}|L| be a given timetable. Without loss of generality assume
that da ∈ {0, . . . , T − 1}, otherwise just use [da]T instead of da. Define

E(π) := {e = {k, l} ∈ EL : πl − πk − da = 0 for some a ∈ Atrans(k, l) ∪ Atrans(l, k)}

and consider the largest connected component of L1 of (L, E(π)) (which may consist of one
node l ∈ L only). Note that E(π) does not contain any edge between L1 and L2, i.e.,

E(π) ⊆ {{k, l} ∈ EL : k, l ∈ L1} ∪ {{k, l} ∈ EL : k, l ∈ L2}. (11)

If L1 = L, the line graph GL contains a tree which satisfies the condition of the theorem and
we are done. Otherwise we construct a tree and a timetable which is at least as good as π
and satisfies the condition.

To this end, consider again (L, E(π)) with its largest connected component L1, and let
L2 := L \ L1. Let S be a spanning tree of L1 using only edges of E(π). We now construct a
new timetable

π̃ := π(L1, t) =
{
πl if l ∈ L2
πl + t if l ∈ L1
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(see also (4)) which optimally adjusts the two clusters L1 and L2. According to (5) we hence
have to find the minimum of g(t) with

g(t) :=
∑

a∈Atrans(k,l)
k∈L1,l∈L2

wa[d̄a − t]T +
∑

a∈Atrans(k,l)
k∈L2,l∈L1

wa[d̄a + t]T

and d̄a := da + πl − πk as in (5). To this problem we apply Lemma 2 with A1 := {a ∈
Atrans(k, l) : k ∈ L1, l ∈ L2} and A2 := {a ∈ Atrans(k, l) : k ∈ L2, l ∈ L1}. We distinguish
two cases:
Case 1 There exists a minimum t∗ of g(t) with t∗ = d̄a for some a ∈ Atrans(k, l) with

k ∈ L1, l ∈ L2 (if
∑

a∈Atrans(k,l)
k∈L1,l∈L2

wa ≥
∑

a∈Atrans(k,l)
k∈L2,l∈L1

wa):

For the resulting timetable π̃ := π(L1, t
∗) we compute

π̃l − π̃k + da = πl − (πk + t∗) + da = πl − πk − d̄a + da = 0.

Case 2 There exists a minimum t∗ of g(t) with t∗ = T − d̄a for some a ∈ Atrans(k, l) with
k ∈ L2, l ∈ L1 (if

∑
a∈Atrans(k,l)

k∈L1,l∈L2

wa <
∑

a∈Atrans(k,l)
k∈L2,l∈L1

wa):

For the resulting timetable π̃ := π(L1, t
∗) we again receive

π̃l − π̃k + da = πl + t∗ − πk + da = πl + T − d̄a − πk + da = 0.

(Note that this is the same as t∗ = T − (T − d̄a) = d̄a for π̃ = π(L2, d̄a) according to (6).)
We now consider E(π̃) = {e = {k, l} ∈ EL : π̃l − π̃k − da = 0 for some a ∈ Atrans(k, l) ∪
Atrans(l, k)}. Observe that

for k, l both in L1 or for k, l both in L2 we have that π̃l − π̃k − da = 0 if and only if
πl − πk − da = 0,
for k ∈ L1, l ∈ L2 or vice versa, no edge {k, l} is contained in E(π) (see (11)), while we
have just seen that the optimal adjustment of the two clusters L1 and L2 yields at least
one transfer activity a in Atrans(k, l) ∪ Atrans(l, k) for some edge {k, l} between L1 and
L2 with π̃l − π̃k + da = 0. Hence {k, l} ∈ E(π̃) \ E(π).

We conclude that the largest connected component L′1 of E(π̃) contains L1 and at least one
additional node l ∈ L2. We may proceed with L1 := L′1 and π := π̃ and continue the whole
procedure until L1 = L. J
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2:2 Sensitivity Analysis and Coupled Decisions in Train Dispatching

1 Introduction

Public railway passenger transport is a key for greater mobility. Every day millions of
passengers choose to travel by train and rely on the quality of service offered by railway
companies. In daily operations, the quality of service is hindered by the fact that train
delays and disruptions occur frequently. For passengers this often means that they miss
some transfer and arrive delayed at their destination. To improve and to maintain their
quality of service, railway companies employ train dispatchers who monitor delays and
manually decide which trains shall wait for delayed incoming trains in order to maintain
connections for passengers. Since waiting decisions induce further delays which propagate
through the network, train delay management becomes a challenging and highly complex
optimization problem. In this paper, we focus on coping with small and medium-size delays,
while disruption management deals with more severe cases.

Recently, we introduced the decision support tool PANDA (Passenger Aware Novel
Dispatching Assistance) [11] which has been developed together with Deutsche Bahn. The
purpose of this tool is to provide dispatchers with information about which transfers are
critical and require their attention, and the impact of waiting decisions gained from simulation.
The evaluation of estimated arrival delays at the final destinations of all affected passengers
is the basis for a qualified recommendation to wait or not to wait, and where applicable,
how many minutes to wait. The PANDA prototype has been successfully tested in two field
studies. In this paper, we introduce and study two enhancements of PANDA. As additional
features we provide a sensitivity analysis and a more sophisticated simulation.

In practice, train disposition always has to deal with fuzzy and uncertain data. The
current delay scenario and predictions about arrival and departure times change from minute
to minute. Thus, we have to work with incomplete and estimated data. Since real-time
passenger flow data will only be available in the future, our passenger flows are based on
resource planning data, estimated by experts of Deutsche Bahn. This data is likely to be
quite accurate, but for a specific day of operations we have to expect deviations. For example,
it might be that a whole group of people, say a school class, is sitting in a train while we
assume that there is none. Therefore, we want to investigate how stable our recommendations
are with respect to fluctuations in the size and composition of the passenger flow. Simulation
of delay scenarios in PANDA is done for critical transfers. In case of a waiting decision, the
waiting train induces further delays in the network. PANDA’s simulation framework assumes
that all subsequent waiting decisions are derived from a strict application of standard waiting
time rules.1 It is quite obvious that such a simple strategy can be suboptimal. For example,
passengers on a route with several transfers may only take advantage from a kept transfer if
they also reach their subsequent ones. For them, an optimal decision would include “coupled
decisions”, where a specific waiting decision is taken jointly with one or several others (an
example is given in Appendix A). Therefore, a more advanced simulation depth would be
desirable, but appears to be quite challenging in a real-time setting.

Goals and contribution. We study the following questions:
1. How sensitive are waiting decisions in PANDA with respect to the given passenger flow?

To this end, we want to study the following optimization problem: Determine the minimum

1 These rules are of the form that trains of a certain train class have to wait in case of delays up to x
minutes for a train of some other class. For example, an ICE train has to wait for 3 minutes for some
other ICE train.
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number of passengers which we have to add or to subtract from the current passenger
flow such that the current decision would change. If this minimum number is small —in
comparison with the number of affected passengers, then we conclude that the decision is
sensitive to fluctuations. In Section 3, we show how to model this optimization problem
as an integer linear program. Experimental results with realistic passenger flow data and
recorded delay streams within Germany from 2015 indicate that the sensitivity of waiting
decisions has to be taken into account by dispatchers.

2. What do we gain in terms of passenger punctuality by exploring coupled decisions?
Or correspondingly, what do we lose by applying only standard waiting time rules in
subsequent decisions? To answer these questions, we implemented a conflict tree approach
for simulating more complex scenarios. Our main observation is that coupled waiting
decisions improve about 6.3% of all cases.

Related work. Delay management and dispatching has been studied intensively. A first
integer linear programming (ILP) formulation of delay management has been given by
Schöbel [13] and extended in [14]. Several recent approaches integrated passenger rerouting
into ILP formulations for delay management, for example Dollevoet et al. [5], Dollevoet and
Huisman [4], Schmidt [12], and Kanai et al. [6]. Typically, they consider offline versions, where
all delays are known before the optimization process starts. Unfortunately, the integration
of the rerouting part into ILP models leads to a huge blow up of model size. For large and
complex train networks with several thousands of stations and millions of passengers, the
resulting ILP models cannot be solved by state-of-the-art integer programming techniques,
and certainly not within very few minutes as needed in an operational setting. While the
above mentioned approaches model delay management on a macroscopic operational level of
detail (arrival and departure events at stations), Corman et al. [3] present a first attempt
to combine detailed microscopic (i. e., block section level) delay management models with
passenger routing. Dollevoet and Huisman [4] proposed and studied several fast heuristics.
In particular, they introduce an iterative ILP approach which comes close to an exact
ILP solution but is significantly faster. However, it is not known whether the iterative
ILP approach scales well to large-scale networks. For online scenarios, Kliewer and Suhl [7]
evaluate several simple dispatching rules. They work with randomly generated delay scenarios
and randomly generated passenger flows while we use observed delays and more realistic
passenger flows. Moreover, they work only with a subfleet of interregional trains from the
Frankfurt area. Bauer and Schöbel [1] also consider various online strategies. They introduce
a learning strategy based on simulations with many delay scenarios and report promising
results using this strategy in experiments on artificial schedules and generated delay data.

An important aspect of train dispatching is the timing within the decision making process.
Lemnian et al. [9] and Rückert et al. [11] studied the question when to decide. They showed
that early rerouting is beneficial in a significant number of cases in comparison to the
conservative strategy which decides as late as possible.

In this paper we focus on train dispatching for small and medium-size delays. Passenger-
oriented management strategies for major disruptions, where part of the infrastructure is
temporarily unavailable, have been proposed by Kroon et al. [8] and Veelenturf et al. [15].
We are not aware of any previous studies on the sensitivity of dispatching decisions.

Overview. The remainder of this work is structured as follows. In Section 2, we briefly
review the train dispatching framework of PANDA. Afterwards, in Section 3, we describe our
approach for analyzing the sensitivity of waiting decisions with respect to the passenger flow.
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Moreover, we evaluate the results of several thousand test cases. The second theme, the
impact and importance of coupled decisions, is discussed in Section 4. Finally, we conclude
with a short summary and an outlook to future work (Section 5). The Appendix contains an
illustrating example for coupled decisions.

2 Train Dispatching Framework

Event-activity networks and passenger flows. To model the railway schedule and passenger
flow we use an event-activity network N = (V,A), which is a directed acyclic graph with
vertex set V and arc set A. Each vertex represents an arrival or departure event of some
train. Arcs model relations between events. We distinguish between driving arcs, modelling
the driving of a specific train until its next stop, waiting arcs, modelling a train standing on a
platform and transfer arcs, modelling the possibility for passengers to switch between trains.
For more details of the event-activity network see [2] or [9]. In our model, the passenger flow
is represented by directed paths in N . Each passenger route corresponds to a path between
a departure event at its origin and an arrival event at its destination. Since we are dealing
with millions of passengers, we merge passengers with an identical path in the event-activity
network to passenger groups and consider them as a kind of equivalence class. In case of
delays all passengers who belong to the same group are treated in the same fashion. This
approach greatly reduces the computational effort for persistently updating the passenger
flow. In reality not all individual members of a passenger group will necessarily act in the
same way if they have to change their original travel plans due to some kind of disturbance.
Thus, more sophisticated behavioral models might be needed. However, a refinement of
equivalence classes of passengers into smaller groups can easily be implemented.

Delays and critical transfers. Event nodes are equipped with time stamps: the planned
event time according to schedule and the current forecast for its realization (if it lies in the
future) or its realization time (if it lies in the past). In addition to the railway schedule
and passenger flow we obtain delay information from Deutsche Bahn in real-time. Delay
information is used to modify the event-activity network in such a way that its time stamps
represent the real delay status of the railway network. Delay propagation is done as described
in [10]. Therefore, the event-activity network changes its structure over time. Because of
these changes it is necessary to evaluate the feasibility of each transfer. To this end, we
developed a method to classify all future transfers according to the current delay situation in
the event-activity network (for details see [9]). We have two different infeasible states for
transfers, critical and broken. Critical means that the transfer can be maintained by a slight
delay (additional to what is specified in the standard waiting time rule) of the connecting
train. Broken means that the transfer can only be maintained by a large (additional) delay of
the connecting train. The differentiation of the two states is important, because dispatchers
should keep an eye on critical transfers and only in exceptional cases on broken ones.

Basic framework. A schematic sketch of the basic framework for train dispatching is
given in Fig. 1. First, PANDA uses the schedule and passenger flow information to create
an event-activity network. Every 30 seconds, our framework receives the newest delay
information and updates the structure of the event-activity network accordingly. After this
step the program classifies all future transfers. For all passengers affected by broken transfers
PANDA determines a fastest alternative route with minimum number of transfers to their
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Figure 1 Schematic sketch of the train dispatching process.

destinations.2 For all passengers using a critical transfer our software simulates a WAIT and
a NO-WAIT decision and displays the evaluation of both alternatives to the dispatcher.

The chosen criteria to evaluate both decisions are listed below. If the dispatcher decides
not to maintain the transfer, PANDA again determines the fastest alternative routes for all
affected passengers to their destinations. If the decision is to maintain the transfer, then the
dispatcher manually creates a delay for the connecting train and our framework receives this
delay message in the next iteration of its dispatching process. A waiting decision for a specific
transfer, say from train A to train B, may implicitly also resolve other critical transfers of
trains feeding train B. In such cases our evaluation considers all affected passenger groups.

Multi-criteria objectives. We use the following criteria to evaluate the impact of waiting
and non-waiting decisions on passengers. The specific choice of the following criteria is an
outcome of discussions with practitioners, and the given thresholds are somewhat arbitrary.
Clearly, the precise definitions are easily adaptable. Our criteria are
1. the total delay at destination (or, equivalently the average delay) over all passengers
2. number of passengers with a delay at destination < 6 minutes (regarded as “on-time”)
3. number of passengers with a delay at destination ≥ 6 minutes
4. number of passengers with a delay at destination ≥ 30 minutes
5. number of passengers with a delay at destination ≥ 60 minutes
6. number of passengers with a delay at destination ≥ 120 minutes
7. number of passengers without any (acceptable) alternative.3
Objectives 3-6 include passengers without any acceptable alternative. We evaluate all given
criteria for both alternative decisions, but consider only those passenger groups for which
a difference with respect to their arrival time at the destination occurs. To provide a
recommendation to dispatchers, we apply a simple majority rule. We recommend WAIT if
the majority of criteria is in favor of waiting, and NO-WAIT if the majority of criteria is in
favor of non-waiting. Otherwise, there is a tie.

2 We only reroute passengers if necessary, i. e. if their original route has become infeasible. In some cases,
other passengers may have the possibility to switch to some faster route, but such options are not
supported in this context.

3 Here we have either been unable to find any alternative route, or passengers have planned to arrive at
their final destination before 02:00 a.m. on the next day, but by being rerouted to the best available
alternative route they would arrive only after 04:00 a.m. on the next day. We consider an unplanned
over-night trip or an extended stay at some station during night as not acceptable.
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3 Sensitivity Analysis

In this section we are interested in the following optimization problem: Given a critical
transfer, what is the minimum number of passengers we have to add or to subtract from
the given passenger flow such that the decision of PANDA would change from waiting to
non-waiting or vice versa? In our model we consider deviations from the given passenger flow
in both directions. For each passenger group, the actual number of passengers can be larger
or smaller than planned. A restriction of our model is that we do not consider additional
passenger groups with other source-destination relations than the ones given.

Recall, that in our dispatching framework PANDA, dispositions follow a majority decision
with respect to several optimization criteria. Let us assume that n passenger groups
p1, p2, . . . pn are affected by one of the two alternative decisions (a passenger is affected if
his route or his arrival time at the destination differs). We can identify affected passengers
during the simulation by first collecting all arrival events with non-identical timestamps in the
two alternatives. Second, we collect all passenger groups which have their final destination
associated with these events. Moreover, we can easily keep track of rerouted passengers.
Let us denote the set of affected passenger groups by P and let the expected number of
passengers in group pi be ci. For each group pi, our simulation calculates the delay at the
final destination for both possibilities. In the waiting case, this delay in minutes is denoted
by W (pi), whereas in the non-waiting case we write N(pi). For the `-th decision criterion,
let crit`(P) be the function which maps to {−1, 0, 1}, where we identify the function value 1
with the decision WAIT, the value −1 with the decision NO-WAIT, and the value 0 with
a tie (NEUTRAL). For example, we can define for the first criterion (the total amount of
delay at the destination) the function as

crit1(P) =


1 if

∑n
i=1 W (pi)ci <

∑n
i=1 N(pi)ci

−1 if
∑n

i=1 W (pi)ci >
∑n

i=1 N(pi)ci

0 otherwise .

With k different criteria, we decide WAIT if
∑k

`=1 crit`(P) > 0, and NO-WAIT if this
expression is negative. Otherwise, we obtain a tie.

Sensitivity problem.
Given: A critical or broken transfer for which the decision is either WAIT or NO-Wait, and

a set of n affected passenger groups P, and values ci, W (pi), N(pi) for each pi ∈ P.
Task: Determine numbers c̃i ≥ 0 such that the total deviation from the given multiplicities of

passenger groups
∑n

i=1 |c̃i − ci| is as small as possible and the overall decision is reversed
to the opposite one.

The complexity status of the problem is unknown. At first glance, one might think that
a simple greedy approach could solve the sensitivity problem. It seems natural to order the
passenger groups by decreasing difference |W (Pi)−N(Pi)|. However, it is easy to come up
with counter-examples showing that a greedy strategy based on such an order does not work.
While changing the multiplicity of the group maximizing |W (Pi)−N(Pi)| is most beneficial
to revert the criterion total delay at destination from NO-WAIT to WAIT, its influence on
other criteria is more subtle —it may or may not have an effect. A second natural greedy
heuristic would order passenger groups decreasingly by the number of criteria which they
can influence. But again, easy counter-examples demonstrate that a greedy approach based
on this idea does not work either.
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Next we provide an ILP formulation of the sensitivity problem. Its main advantage is the
ease by which we can adapt the formulation to changes in the specific choice of criteria for
evaluating WAIT and NO-Wait decisions. For example, one could easily add further criteria
or integrate a weighting scheme to differentiate the influence of selected criteria.

3.1 ILP Formulation
We sketch the basic idea behind our ILP formulation. Let x+

i and x−i be integral variables,
describing the number of passengers which are added to or subtracted from group pi ∈ P,
respectively. Suppose that we have to deal with k criteria. Let ∆ := |

∑k
j=1 critj(P )|. This

number ∆ represents the absolute value of the difference of criteria in favor or against a WAIT
decision. Hence, in order to change the overall outcome, the net change of the individual
criteria must be at least ∆ + 1. A technical complication for our ILP formulation comes from
the fact that each criterion can assume the three states WAIT, NO-WAIT, and NEUTRAL.
Hence, we have to distinguish the cases that a criterion changes from WAIT to NEUTRAL
or NO-WAIT, from NO-WAIT to NEUTRAL or WAIT, and from NEUTRAL to WAIT or
NO-WAIT. To this end, we introduce the following three {0, 1}-decision variables for each
criterion. For criterion j, variable wj denotes that the j-th criterion will vote for WAIT in
an optimal solution of the sensitivity problem, whereas variable wj means that it is in favor
for NO-WAIT. The third possible outcome, a tie (NEUTRAL), is denoted by ti.

Let K be the set of all criteria. With respect to the situation before solving the ILP,
let W be the subset of criteria in favor of WAIT, NW the subset of criteria in favor of
NO-WAIT, and T the remaining subset of criteria with a tie. Assuming that the current
decision is NO-WAIT, we obtain the following ILP (the opposite case is very similar).

min
∑
i∈P

(x+
i + x−i ) (1)

subject to

wj + wj + tj = 1 for j ∈ K (2)∑
j∈NW

(2wj + tj) +
∑
j∈T

(wj − wj) +
∑
j∈W

(−2wj − tj) ≥ ∆ + 1 (3)

∑
i∈P

aij(x+
i − x−i )− (bj + 1)wj − bjtj + Mwj ≥ 0 for j ∈ NW (4)∑

i∈P
aij(x+

i − x−i )− (bj + 1)wj − bjtj + Mwj ≥ 0 for j ∈ W (5)∑
i∈P

aij(x+
i − x−i ) + M(tj + wj) ≥ 1 for j ∈ T (6)∑

i∈P
aij(x+

i − x−i )−M(tj + wj) ≤ −1 for j ∈ T (7)

2 ·
∑
i∈P

aij(x+
i − x−i )− tj + Mwj ≥ 0 for j ∈ T (8)

−2 ·
∑
i∈P

aij(x+
i − x−i ) + tj + Mwj ≥ 0 for j ∈ T (9)

x−i ≤ ci for i ∈ P (10)
x+

i , x−i ∈ N0 for i ∈ P (11)
wj , wj , tj ∈ {0, 1} for j ∈ K, (12)
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where M is a sufficiently large constant, and the coefficients aij ∈ Z denote the contribution
of passenger group i ∈ P to criterion j ∈ K, and the coefficients bj ∈ Z the amount by which
the current evaluation of criterion j ∈ W ∪ NW has to be changed in order switch this
criterion from WAIT or NO-WAIT to NEUTRAL.

The objective function expresses that we want to minimize the necessary change. In
an optimal solution, at most one of each pair of variables x+

i , x−i can be strictly positive.
Equality (2) in combination with the 0-1-variable bounds in (12) ensures that exactly one
of the three possible states (WAIT, NO-WAIT, NEUTRAL) is chosen for each criterion.
In Inequality (3), the left-hand-side sums up the total change of criteria. To fulfill the
inequality, the sum must be large enough to change the decision from NO-WAIT to WAIT.
Inequalities (4)-(9) link the change in passenger flow to the different criteria. We use
a “big-M” formulation to ensure that we can always fulfill all of these inequalities. The
expression zj =

∑
i∈P aij(x+

i − x−i ) measures the effect of the passenger flow change on
criterion j ∈ K. For j ∈ NW (the j-th criterion is currently in favor of NO-WAIT), we can
fulfill Inequality (4) with wj = 1 (or tj = 1) if zj is large enough to reverse the criterion to
WAIT (or to NEUTRAL, respectively). Otherwise, we can always choose wj = 1. Since
it helps to fulfill Inequality (3), we may safely assume that an optimal solution prefers
setting wj = 1 over tj = 1 and the latter over wj = 1. For j ∈ W, Inequality (5) works
analogously. Inequalities (6)-(9) together model the case that the current state of a criterion
is NEUTRAL. Here, a case analysis shows that zj > 0 implies wj = 1, zj < 0 implies wj = 1,
and zj = 0 implies tj = 0. Inequality (10) ensures for each group that we cannot subtract
more passengers than we currently have.

3.2 Experiments
Experimental Setup. We use the German train schedule of 2015 including all long-distance
and regional trains. Overall, we have about 66000 trains and a million events per day. In
addition to the schedule we obtained realistic passenger flow data from Deutsche Bahn. The
used model contains about 3.3 million passengers on roughly 320 000 different routes per
day. This passenger flow includes only passengers which use at least one long-distance train.
With respect to our flow about 28000 different transfers are used by passengers every day.
For our evaluation we used recorded data for actual delays of eight weekdays in June and
October 2015. Every single test day is simulated by spreading the recorded delays into the
network. For each detected critical or broken transfer we simulate a PANDA decision 15
minutes before the connecting train is scheduled to depart. If the evaluation suggests either
to wait or not to wait we calculate the minimal number of passengers to change the suggested
strategy. We solved the corresponding ILPs by using the non-commercial SCIP Optimization
Suite4 in version 3.2.1 with SoPlex 2.2.1 as the ILP-solver. Overall, we examined 73486 many
PANDA decisions.

Experimental Results. To allow a comparison between different scenarios, we normalize
the necessary total passenger change (i. e., the value of the optimal ILP solution) by the
number of affected passengers (more precisely, by the number of passengers which are affected
differently by the two alternative decisions). This gives us a kind of reliability measure

rel = total passenger change
#affected passengers .

4 http://scip.zib.de

http://scip.zib.de
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Figure 2 Top: sensitivity for all decisions: on average about 40% of the passengers are needed to
change the decision. The median is about 24%. Left: sensitivity of WAIT-decisions: on average
about 45% of the passengers are needed to change the decision. The median is about 30%. Right:
sensitivity of NO-WAIT-decisions: on average about 36% of the passengers are needed to change the
decision. The median is about 19%.

Since the optimal solution will never change the passenger flow by more than removing all
existing passengers, we clearly have 0 ≤ rel ≤ 1. The larger the value of rel, the more robust
is the corresponding decision.

In the top part of Figure 2, a histogram shows the empirical distribution of the reliability
measure rel based on all considered cases. This distribution appears to be U-shaped. A
significant number of cases turns out to be highly sensitive, and another significant portion of
all cases is quite robust. The mean of rel is .4, that is, on average we need about 40% of the
affected passengers to change the suggested decision. Note that the distribution is skewed,
and that the median is only .24. In the lower part of Figure 2, we distinguish between
WAIT (left) and NO-WAIT decisions (right). It is an interesting observation that WAIT
decisions turn out to be more robust than NO-WAIT decisions on average. The median of
the sensitivity measure is .29 in case WAIT, in comparison to .19 in case NO-WAIT.

4 Coupled Decisions

We are now going to study the possible benefit of coupled waiting decisions. For each
potential waiting decision of a critical or broken transfer, we do this evaluation in two steps.
First, we recursively build up a conflict tree structure representing the dependencies of the
given waiting decision with other subsequent decisions. In a second phase, we evaluate the
impact of every choice of coupled waiting decisions by enumerating subtrees of the conflict
tree. Note that this approach is only meant for the purpose of an a posteriori evaluation.
Therefore, running times are neglected.
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Figure 3 Example scenario of coupled decisions. Upper part: Involved trains and the induced
delay if the transfer from its feeder train is kept. Lower part: the corresponding conflict tree. For
each vertex, we denote the corresponding transfer and waiting decision by the feeder train, the
departing train, the station, and the required artificial delay to keep the transfer.

4.1 The Conflict Tree
Given a critical or broken transfer tr, its associated conflict tree Ttr = (V (Ttr), E(Ttr)) is
defined recursively. Every vertex of Ttr represents a critical or broken transfer in the underly-
ing event-activity network. The root of conflict tree Ttr represents the initial critical/broken
transfer tr. A conflict tree consists of a single vertex if waiting for the feeder train does not
make any other transfers critical or broken. Otherwise, we obtain non-trivial conflict trees.
For each tree vertex v ∈ V (Ttr), its children correspond exactly to all those transfers which
are critical or broken under the condition that the transfers corresponding to v and all its
predecessors in the tree are kept.

Keeping a critical or broken transfer tr′ means, we have to delay the corresponding
departure event such that passengers have enough time to reach the departing train, say
by d(tr′) minutes. Such an artificial delay has to be propagated through the event-activity
network. Propagated delays may influence other transfers in all directions. They may newly
create, worsen or even maintain following critical or broken transfers. Every non-root vertex
of the conflict tree represents a critical or broken transfer induced by a WAIT decision for
some other transfer higher up in the tree. Since NO-WAIT decisions do not alter the delay
scenario, they do not lead to follow-up conflicts. We would like to point out that the same
transfer can be represented several times within a conflict tree. See for example Fig. 3 where
all leave nodes occur twice.

Conflict trees may have a self-similarity or fractal property as shown in Fig. 4. Self-
similarity/fractal means that subtrees and their associated transfers are similar to other
subtrees. In the example presented in Fig. 4 the subtree of vertex v2 is similar to the subtree
of vertex v1 (without v2). However, the necessary delays to maintain the individual transfers
can be different, because of the different delay situation in both subtrees. For instance, v3 and
v4 are critical/broken transfers by spreading the delay d(v1) into the network. Nevertheless,
v3′ and v4′ are the same critical/broken transfers, but by spreading the delays d(v1) and
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Figure 4 An example of a conflict tree with a self-similarity property. The subtree of vertex v2
is similar to the subtree of vertex v1 (without v2). The vertices v3 to v6 and v3′ to v6′ correspond
to the same transfers, but the necessary delays to maintain the transfers might be different.

then d(v2) into the network. For a large-scale network like that of Germany, this property
can lead to very large conflict trees with over several millions of vertices.

Creation of a Conflict Tree. Our algorithm to create a conflict tree is similar to breadth-
first search. We start with an empty queue Q and push the root vertex with the initial
critical/broken transfer into it. As long as there are vertices in the queue, we explore its first
element (and then perform a dequeue operation). The current vertex v has to be maintained
by propagating an artificial delay d(v) in the underlying network N . All thereby induced
critical/broken transfers are collected and then inserted into the tree as well as into the queue.
Let us consider the example given in Figure 4. We start with vertex v1 and spread the delay
d(v1) into the network N . Then, we collect the induced conflicts v2, v3 and v4. Next we
continue with vertex v2 and spread the delay d(v2) into the network. We also collect the
subsequent conflicts v3′ and v4′. Now we would like to process v3, but the current state of
the network is modified by the two delays d(v1) and d(v2). The delay d(v2) is unnecessary
to measure the impact of delay d(v3). Therefore, we have to re-establish a valid state of the
network before spreading the delay of the current vertex. For sake of simplicity, we remove
all artificial delays directly after we inserted the induced subsequent critical/broken transfers
into the queue and re-propagate all artificial delays from the root vertex to the predecessor
of the current vertex v directly before spreading the delay. Thereby, we always ensure that
the current state of the underlying network is valid.

Evaluation of a Conflict Tree. For each vertex in the tree we have a binary decision variable
to model that this transfer will be maintained (one) or not (zero). We can interpret these
|V = V (Ttr)| many binary decision variables as a |V | bit long variable x. This variable x can
theoretically attain 2|V | different values, but not all of these values are feasible. For instance,
if the root vertex is assigned with a zero, then there are no following conflicts, therefore
the remaining |V | − 1 bits have to be set to zero. In general, a |V | bit long variable x is a
feasible configuration for a conflict tree, if and only if for every bit i that is set to one all bits
corresponding to the path from the root to the predecessor of vi in the conflict tree are also
set to one.

The evaluation algorithm has two phases. In the first phase we determine the set of all
affected passenger groups. To do so, we simulate all feasible coupled decisions successively
and collect from all simulated decisions the affected passenger groups. Note that we have
to re-establish the original state of the event-activity network after every simulation step.
Working with the set of affected passengers is necessary to have an unbiased comparison
between the impact of all simulated feasible decisions on the passenger flow. In this phase no
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passenger flow adjustments are done. In the second phase we again iterate over and simulate
all feasible coupled decisions successively, but in each step we measure and store the impact of
the injected delays on the previously collected passenger groups. The passenger groups may
have to be rerouted at this point if their route is not feasible any more. After these two steps
we can compare all feasible coupled decisions with each other in an unbiased way. Finally,
we are able to evaluate the impact on the passenger flow of all feasible coupled decisions.
For each scenario we compute objective values for all seven PANDA criteria. As before, we
compare two solution vectors by counting the number of criteria where one solution is strictly
better than the other. Hence, scenario A is considered as better as scenario B if the majority
of criteria is in favor of scenario A.

4.2 Experiments
Experimental Setup. We use the same German train schedule for the evaluation of the
benefit of coupled waiting decisions as in the previously described experiment. For every
critical/broken transfer we calculate the conflict tree 15 minutes in advance of the scheduled
event time and evaluate the impact of all feasible coupled decisions on the passenger flow.
Because of the high computational effort to determine all feasible coupled decisions we focus
only on conflict trees with at most 10 vertices/conflicts (at most 1024 different coupled
decisions). Note that the larger the tree becomes the less likely it is that coupling is
preferable. Finally, we collect all evaluations and compare them with pure NO-WAIT and
WAIT decisions. By this process we obtained 20920 different conflict trees.

Experimental Results. For these 20920 conflict trees we have found 4941 cases (about
23.61%) where coupled waiting decisions are better than single WAIT-decisions. Furthermore,
there are 2982 cases (about 14.25%) in which the coupled waiting decisions are better than
NO-WAIT-decisions. However, there are only 1319 cases (about 6.3%) where coupled waiting
decisions are better than both WAIT- and NO-WAIT-decisions.

Next we are interested to understand under which circumstances coupled decisions are
preferable. In the cases where coupled waiting decisions are at least better than WAIT- or
NO-WAIT-decisions we collect all maintained non-root vertices (about 12000). Similarly,
we also collect all not maintained non-root vertices of all remaining scenarios (about 14000
vertices). For both sets of vertices we consider several properties of its members. These
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Table 1 The average change for three criteria by applying coupled waiting decisions in comparison
with standard single WAIT/NO-WAIT decisions.

criteria benefit of coupled waiting decisions
total arrival delay -3.02%

# passengers with ≥ 60 min. delay 2.34%
# passengers with ≥ 120 min. delay .58%

properties are for instance: the number of minutes required to maintain the corresponding
transfer and the number of its children in the conflict tree. Figure 5 shows that it is more
likely to have a maintained transfer if the additional delay minutes are quite small. In
addition, Figure 6 shows that it is more likely for a vertex to become a maintained transfer if
it is a leaf in the decision tree. If a vertex has at least one child it is about 15% more likely to
be a non-maintained transfer. We conclude that a heuristic pruning scheme should preferably
explore vertices which require a small extra delay or those which induce no follow-up conflicts
(that is, leaves in the decision tree).

To measure the benefit of coupled waiting decisions we compare the standard single
WAIT/NO-WAIT decisions with the best solution we can obtain for either WAIT, NO-WAIT,
or a coupled decision according to three different criteria. As shown in Table 1 the coupled
waiting decisions have slightly worsened the total arrival delay by about 3%. Nevertheless,
the number of passengers with an arrival delay of at least 60 or at least 120 minutes could be
reduced by about 2% respectively by .58%. Thus, the overall benefit of coupled decisions is
mixed, but the improvements for passengers with large delays should outweigh their slightly
larger average delay.

5 Summary and Future Work

In this paper we have discussed two enhancements of the dispatching framework provided
by PANDA. First, we showed how to provide sensitivity information for dispatching re-
commendations with respect to fluctuations within the passenger flow. For each critical
transfer, we can tell whether our waiting or non-waiting recommendation is stable under
slight changes of the passenger flow. Our main finding is that the overall distribution of
the sensitivity is U-shaped. That means, we observe a significant fraction of cases that are
either very stable or very unstable. We conclude that the knowledge the specific sensitivity
of a critical WAIT/NO-WAIT decision is highly valuable for the decision making process. If
the sensitivity is low, an automatized decision might be possible, whereas a high sensitivity
indicates that a human dispatcher is required to take a closer look into the pros and cons of
the decision in question. Future work should also study a second dimension of uncertainty in
the given data: How sensitive are waiting decisions with respect to delay predictions?

Second, we explored the value of coupled decision making which extends the analysis of
critical transfers. We learned that the large extra work spent in exploring larger parts of
conflict trees only pays off in relatively rare cases. In most cases, just exploring the root node
and working with standard waiting time rules for all other nodes of the conflict tree already
yields an optimal solution. As a next step, we would like to exploit these observations to
develop heuristic rules for pruning conflict trees. Up to now, the conflict tree part of our
prototype has not been optimized for efficiency. Hence, we will work on speeding it up to
meet the requirements of real-time dispatching.
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In Figures 7 – 12 we provide a small example to illustrate a typical scenario where coupling
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Figure 7 Planned scenario. Figure 8 Train IC 1 delayed by 20 minutes.

Figure 9 NON-WAITING case: The trans-
fer from IC 1 to IC 2 breaks. Passengers
on this transfer have to be rerouted to later
trains.

Figure 10 WAITING case: The transfer
from IC 1 to IC 2 is maintained. But as a
side effect the transfer from IC 2 to IC 3 at
station B becomes critical.

Figure 11 The transfer from IC 2 to
IC 3 breaks. Several passenger groups are
rerouted.

Figure 12 Coupled waiting decision: Both
transfers (IC 1 to IC 2 and IC 2 to IC 3)
are kept. All passenger groups stay on their
original route.

with two passenger groups (their travel paths are shown in blue and orange, respectively).
Next, we assume that train IC 1 is delayed by 20 minutes. This makes the transfer from
IC 1 to IC 2 for one passenger group critical. If IC 2 does not wait, passengers on this
transfer have to be rerouted. If, however, the transfer from IC 1 to IC 2 is maintained, the
late departure of IC 2 causes another critical transfer from IC 2 to IC 3. If this transfer is
not maintained, the situation becomes even worse, since both passenger groups have to be
rerouted. Here we see a prototypal use-case for coupled decisions: if both transfers are kept,
all passengers can stay on their original route and their total delay is minimized.
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Abstract
The periodic event scheduling problem (PESP) is a well studied problem known as intrinsically
hard. Its main application is for designing periodic timetables in public transportation. To
this end, the passengers’ paths are required as input data. This is a drawback since the final
paths which are used by the passengers depend on the timetable to be designed. Including the
passengers’ routing in the PESP hence improves the quality of the resulting timetables. However,
this makes PESP even harder.

Formulating the PESP as satisfiability problem and using SAT solvers for its solution has
been shown to be a highly promising approach. The goal of this paper is to exploit if SAT solvers
can also be used for the problem of integrated timetabling and passenger routing. In our model
of the integrated problem we distribute origin-destination (OD) pairs temporally through the
network by using time-slices in order to make the resulting model more realistic. We present a
formulation of this integrated problem as integer program which we are able to transform to a
satisfiability problem. We tested the latter formulation within numerical experiments, which are
performed on Germany’s long-distance passenger railway network. The computation’s analysis
in which we compare the integrated approach with the traditional one with fixed passengers’
weights, show promising results for future scientific investigations.
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1 Introduction

Since the introduction of the Periodic Event Scheduling Problem (PESP) in [26] this problem
has been investigated and analyzed in numerous publications. Early contributions about
the PESP in the context of timetabling include [16, 18, 19]. They show NP-hardness of
even the feasibility problem and develop different formulations as integer programs. It
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turns out that formulations using cycle-bases are the most efficient ones leading to several
further publications, e.g., [21, 20, 10, 22, 14, 11]. Success stories for timetabling in practice
based on PESP models are presented in [7, 12] where the Dutch railway timetable and the
timetable of Berlin Underground have been computed. Besides using integer programming,
the modulo simplex [17, 2] is a heuristic approach for tackling PESP. Recently, [8, 4] showed
that SAT solvers can be used successfully for solving PESP instances in the context of railway
timetabling.

When using PESP models for timetabling, it is always assumed that the precise passengers’
paths are known beforehand, i.e., which lines a passenger takes and at which stations he or
she wants to transfer. As noted in [24, 23] this is not realistic since the passengers’ behavior
crucially depends on the timetable which still has to be determined. Recently, [1] showed
that the error which can be made by this assumption can be arbitrarily large theoretically
and present a case study which shows that allowing a re-routing of passengers can improve
the transfer waiting time of periodic timetables by more than 20%.

Our contribution. In this paper we study an integrated problem of finding a timetable and
passengers’ routes in which we distribute the passengers temporally using time-slices. We
propose a formulation as satisfiability problem and study its computational behavior.

2 Definition of the integrated problem

When integrating timetabling and passenger routing we want to find a solution which
optimizes the travel quality of the passengers. The travel quality of the passengers is usually
measured as the sum of all traveling times over all passengers. For technical reasons we use
a slightly different measure here, namely the speedup compared to a maximal travel time
that a passenger is going to accept. In order to determine a passenger’s travel time, they are
routed through the network on shortest paths (according to the actual timetable) as part
of the optimization. To account for a more realistic distribution of passengers, an OD-pair
is distributed to different time slices. The time slice a passengers is allotted to specifies in
which part of the planning period his or her journey is supposed to start. Changing to a
different time slice is allowed but penalized in order to account for much shorter travel times
when starting earlier or later than planned. Every passenger whose travel time exceeds the
maximal one for the OD-pair is supposed to use another mode of transportation and is not
counted towards the objective function.

Our model only uses data which can be supplied when only the public transportation
network (V,E), with its set of stations V and direct connections E between them, the line
plan L and the planning period T are known. We especially need maximal and minimal
driving times Ldrive

e , Udrive
e for all edges, minimal and maximal waiting times Lwait

v , Uwait
v

in each stop as well as minimal and maximal transfer times Ltrans
v , U trans

v in each station
to define feasibility of a timetable. As mentioned above, we need origin-destination data
Ct

u,v for each time-slice t ∈ {1, . . . , Tu,v}, where Tu,v is the number of time slices for OD-pair
(u, v), and a penalty P t,t′

u,v for changing the start of a journey from time slot t to t′ as well as
a maximal traveling time Du,v for each passenger. The Timetabling Problem with Passenger
Routing hence is:

I Definition 1. For the input data mentioned above, find a timetable such that the speedup
of the passengers routed along their shortest paths according to travel time and time slice
changing penalty, is maximized.
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In the following we model this problem more formally as integer program and as satis-
fiability problem. To this end, we first have to introduce the extended event-activity network
(extended EAN ) as common basis for both formulations.

2.1 Extended EAN
The basis of both the integer programming (IP) and the satisfiability (SAT) formulation for
the integrated problem is an event-activity network, similar to the one used in a standard
PESP-formulation (see, e.g., [16, 11]). First we define the basic EAN N 0 = (E0,A0):

E0 = E0
arr ∪ E0

dep

as the set of all arrival and departures of all lines at all stations,
E0
arr = {(v, l, arr) : v ∈ V, v ∈ l, l ∈ L}
E0
dep = {(v, l, dep) : v ∈ V, v ∈ l, l ∈ L}
A0 = A0

drive ∪ A0
wait ∪ A0

trans

links the events in E0 by driving, waiting and transfer activities,
A0

drive = {((v1, l, dep), (v2, l, arr)) : {v1, v2} ∈ l, l ∈ L}
A0

wait = {((v, l, arr), (v, l, dep)) : v ∈ l, l ∈ L}
A0

trans = {((v, l1, arr), (v, l2, dep)) : v ∈ l1, v ∈ l2, l1, l2 ∈ L}.

Moreover, headway activities (which are not relevant for the passengers’ paths) are used to
model security distances between trains. The upper and lower bounds on the duration of the
activities are set according to the underlying edges E of the public transportation network.

La =


Ldrive
{v1,v2}, if a = ((v1, l, dep), (v2, l, arr))

Lwait
v , if a = ((v, l, arr), (v, l, dep))

Ltrans
v , if a = ((v, l1, arr), (v, l2, dep))

Ua =


Udrive
{v1,v2}, if a = ((v1, l, dep), (v2, l, arr))

Uwait
v , if a = ((v, l, arr), (v, l, dep))

U trans
v , if a = ((v, l1, arr), (v, l2,dep))

Additionally, we need nodes and arcs representing the OD-pairs. These nodes need not be
scheduled in the timetable. Thus we get N̄ = (Ē , Ā) with

Ē = E0 ∪ E0
OD

E0
OD = {(u, v, t, t′, source), (u, v, t, target) : u, v ∈ V, t, t′ ∈ {1, . . . , Tu,v}}

source and target nodes for passenger paths
Ā = A0 ∪ A0

time ∪ A0
to ∪ A0

from

A0
time = {((u, v, t, t, source), (u, v, t, t′, source)) : u, v,∈ V, t 6= t′ ∈ {1, . . . , Tu,v}}

arcs for changing the time slice
A0

to = {((u, v, t, t′, source), (u, l, dep)) : u ∈ l, u, v,∈ V, t, t′ ∈ {1, . . . , Tu,v}}
acrs to get from a source node into the network

A0
from = {((v, l, arr), (u, v, t, target)) : v ∈ l, u, v,∈ V, t ∈ {1, . . . , Tu,v}}

arcs to get from the network to a source node.
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Here, a node (u, v, t, t′, source) ∈ E0
OD corresponds to the OD-pair traveling from u to v which

was appointed to start in time slice t and actually starts in t′.

3 An IP formulation for the integrated problem

For the IP-formulation for the integrated problem, we combine a PESP-formulation for
timetabling with an IP-formulation for passenger flow for each OD-pair and each time slice.

Integer variables πi are used to model the time appointed to event i with corresponding
modulo parameters za. For the passengers we are using binary variables xt

u,v to determine if
there is there a path from u to v starting in time slice t which is used and variables zu,v,t

a to
decide if arc a is used by the passengers going from u to v starting in time slice t.

max
∑

u,v,∈V

Tu,v∑
t=1

Ct
u,v

(
Du,v · xt

u,v −
∑

a=(i,j)∈A0

zu,v,t
a · (πj − πi + za · T )

−
∑

a=((u,v,t,t′,source),•)∈A0
time

P t,t′

u,v · zu,v,t
a )

)
(1)

πj − πi + za · T ≥La ∀a = (i, j) ∈ A0 (2)
πj − πi + za · T ≤Ua ∀a = (i, j) ∈ A0 (3)

xt
u,v ≥zu,v,t

a ∀u, v ∈ V, t ∈ {1, . . . , Tu,v}, (4)
a ∈ Ā, l ∈ L :
a = (•, (•, l, •)), a = ((•, l, •), •)

Au,v,t · (zu,v,t
a )a∈Ā =bu,v,t ∀u, v,∈ V, t ∈ {1, . . . , Tu,v} (5)

πi ≥zu,v,t
a · Lt′

u,v ∀u, v ∈ V, t, t′ ∈ {1, . . . , Tu,v}, (6)
a = ((u, v, t, t′, source), i) ∈ A0

to

πi ≤U t′

u,v +M · (1− zu,v,t
a ) ∀u, v ∈ V, t, t′ ∈ {1, . . . , Tu,v}, (7)

a = ((u, v, t, t′, source), i) ∈ A0
to

πi ∈{0, T − 1} ∀i ∈ E0

za ∈Z ∀a ∈ A0

zu,v,t
a ∈{0, 1} ∀u, v,∈ v, t ∈ {1, . . . , Tu,v}, a ∈ Ā
xt

u,v ∈{0, 1} ∀u, v,∈ v, t ∈ {1, . . . , Tu,v}

As the model is non-linear, the objective function (1) has to be linearized by substituting

zu,v,t
a · (πj − πi + za · T ) = du,v,t

a

with

du,v,t
a ≥ 0
du,v,t

a ≥ πj − πi + za · T − (1− zu,v,t
a ) ·M ′

where M ′ is sufficiently large, e.g. M ′ ≥ maxa∈A0 Ua.
Constraints (2) and (3) are the standard timetabling constraints while constraint (4) makes
sure that an activity can only be used by a passenger, if a path for this passengers is
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chosen at all. The routing of passengers is modeled by constraint (5). Here, Au,v,t is a
node-arc-incidence-matrix and bu,v,t the corresponding demand vector:

Au,v,t ∈ {0, 1,−1}|Ē|×|Ā|

au,v,t
i,a =



1, if a = (i, j) ∈ A0
time ∪ A0

to, i = (u, v, t, t′, source)
−1, if a = (j, i) ∈ A0

time ∪ A0
to, j = (u, v, t, t′, source)

1, if a = (i, j) ∈ A0
from, j = (u, v, t, target)

−1, if a = (j, i) ∈ A0
from, i = (u, v, t, target)

1, if a = (i, j) ∈ A0

−1, if a = (j, i) ∈ A0

0, otherwise

bu,v,t ∈ {0, 1}|Ē|

bu,v,t
i =


xt

u,v, if i = (u, v, t, t, source)
−xt

u,v, if i = (u, v, t, target)
0, otherwise

Constraints (6) and (7) make sure that the first event of a path starting in time slice t′ lies
in the correct time slice. Here Lt′

u,v = (t′ − 1) · T
Tu,v

and U t′

u,v = t′ · T
Tu,v
− 1. M has to be

sufficiently large, e.g. M = T is large enough.
In case that all xt

u,v variables are set to one, the objective function minimizes the
traveling time

∑
a=(i,j)∈A0 zu,v,t

a · (πj − πi + za · T ) and the penalty for changing a time slice∑
a=((u,v,t,t′,source),•)∈A0

time
P t,t′

u,v · zu,v,t
a ). For technical reasons we, however, need an upper

bound Du,v on the length of a passengers’ path, and hence allow that a passenger is not
routed at all if his or her shortest path exceeds this length. Since the contribution of such
an non-routed passengers to the objective function is only zero, the model tries to avoid
non-routed passengers such that this happens only in exceptional cases.

4 A SAT formulation for the integrated problem

Now we model the same problem as a partial weighted MaxSAT problem. Therefore, we have
to formulate all constraints in conjunctive normal form and convert the objective into a set
of clauses with positive weight.

To emphasize the similarities of the problems, the variables we are using will be mostly
the same. We can directly use the binary variables xt

u,v for the usage of paths and zu,v,t
a

for the usage of arcs. Due to the definition of the satisfiability problem we cannot use the
integer variables πi but have to substitute them for binary variables πk

i which determine if
πi ≤ k holds.

4.1 Modeling feasibility

At first we show how to model the feasibility of the Timetabling Problem with Passenger
Routing as a SAT problem by extending the timetabling SAT model proposed in [5]. We
will discuss all sets of constraints in detail in the following paragraphs.
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4.1.1 Timetabling
As shown in [5], the timetabling constraints can be modeled as conjunction of two sets of
clauses. One set, which we call ΩN 0 , is used for modeling the variable encoding and another
set, called ΨN 0 , for modeling the constraints.

4.1.2 Modeling passenger routes
For the passenger routes we simply model whether a path from u to v is used for time slice t
by the variables xt

u,v. If this is the case, we also have to model the corresponding passenger
path.
Therefore, we first have to make sure that for each OD-pair u, v and each time slice t a path
starts, if one is chosen at all. This can be realized either by moving to a different time slice
or by starting at a specified event in the allotted time slice.

xt
u,v ⇒

∨
a=((u,v,t,t,source),•)∈A0

time∪A
0
to

zu,v,t
a

⇐⇒ ¬xt
u,v ∨

∨
a=((u,v,t,t,source),•)∈A0

time∪A
0
to

zu,v,t
a︸ ︷︷ ︸

enc_start(u,v,t)

for all u, v ∈ V, t ∈ {1, . . . , Tu,v}

Additionally, we have to make sure that if an arc a = ((u, v, t, t′, source), i) ∈ A0
to is used, the

target event i ∈ E0 lies in the correct time slice.

zu,v,t
a ⇒ πi ∈ {(t′ − 1) · T

Tu,v
, . . . , t′ · T

Tu,v
− 1}

⇐⇒ ¬zu,v,t
a ∨ (¬π

(t′−1)· T
Tu,v

−1
i ∧ π

t′· T
Tu,v

−1
i )

⇐⇒ (¬zu,v,t
a ∨ ¬π

(t′−1)· T
Tu,v

−1
i )︸ ︷︷ ︸

enc_slice_1(a,u,v,t′)

∧ (¬zu,v,t
a ∨ π

t′· T
Tu,v

−1
i )︸ ︷︷ ︸

enc_slice_2(a,u,v,t′)

for all u, v ∈ V, t, t′ ∈ {1, . . . , Tu,v}, a = ((u, v, t, t′, source), i) ∈ A0
to

Next we have to ensure that if a path is started, this path continues throughout the network.
Let a = (i, j) ∈ A0 ∪ A0

to ∪ A0
time.

zu,v,t
a ⇒

∨
a′=(j,k)∈A0∪A0

to∪A0
from

zu,v,t
a′ ⇐⇒ ¬zu,v,t

a ∨
∨

a′=(j,k)∈A0∪A0
to∪A0

from

zu,v,t
a′

︸ ︷︷ ︸
enc_continue(a,u,v,t)

for all u, v ∈ V, t ∈ {1, . . . , Tu,v}, a = (i, j) ∈ A0 ∪ A0
to ∪ A0

time

We also have to make sure that the path ends at a node (u, v, t, target).

xt
u,v ⇒

∨
a=(k,(u,v,t,target))∈A0

from

zu,v,t
a ⇐⇒ ¬xt

u,v ∨
∨

a=(k,(u,v,t,target))∈A0
from

zu,v,t
a︸ ︷︷ ︸

enc_stop(u,v,t)

for all u, v ∈ V, t ∈ {1, . . . , Tu,v}
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In the end we have to ensure that there are no nodes where multiple arcs are used. First we
make sure that each node i ∈ Ē has only one successor.

¬(
∨

a,a′∈Ā:
a=(i,j),a′=(i,j′)

zu,v,t
a ∧ zu,v,t

a′ ) ⇐⇒
∧

a,a′∈Ā:
a=(i,j),a′=(i,j′)

(¬zu,v,t
a ∨ ¬zu,v,t

a′ )︸ ︷︷ ︸
enc_only_one_successor(a,a′)

for all u, v ∈ V, t ∈ {1, . . . , Tu,v}, i ∈ Ē

Next we make sure that each node j ∈ Ē has only one predecessor.

¬(
∨

a,a′∈Ā:
a=(i,j),a′=(i′,j)

zu,v,t
a ∧ zu,v,t

a′ ) ⇐⇒
∧

a,a′∈Ā:
a=(i,j),a′=(i′,j)

(¬zu,v,t
a ∨ ¬zu,v,t

a′ )︸ ︷︷ ︸
enc_only_one_predecessor(a,a′)

for all u, v ∈ V, t ∈ {1, . . . , Tu,v}, j ∈ Ē

To model the whole passenger behavior we get the following.

ΘN 0 : =
∧

u,v∈V

∧
t∈{1,...,Tu,v}

(
enc_start(u, v, t)

∧
a∈A0

to

enc_slice_1(a, u, v, t) ∧ enc_slice_2(a, u, v, t)

∧
a∈A0∪A0

to∪A0
time

enc_continue(a, u, v, t)

∧ enc_stop(u, v, t)∧
i∈Ē

∧
a,a′∈Ā:

a=(i,j),a′=(i,j′)

enc_only_one_successor(a, a′)

∧
j∈Ē

∧
a,a′∈Ā:

a=(i,j),a′=(i′,j)

enc_only_one_predecessor(a, a′)
)

Together, the feasibility can be modeled as

ΩN 0 ∧ΨN 0 ∧ΘN 0 ,

i.e., by a conjunction of clauses. Thus, the feasibility of the Timetabling Problem with
Passenger Routing can be modeled as a SAT problem.

Note that the number of clauses needed for passenger routing can be reduced in a
preprocessing step. This process is described in more detail in the experimental evaluation
in Section 5.

4.1.3 Considering only one time slice
If only one time slice is considered, the index t is not needed for any of the variables. The arc
set A0

time reduces to the empty set. Additionally the clauses enc_slice_1 and enc_slice_2
are not needed anymore.

4.2 Objective function
It remains to show that the objective function can be written as a set of weighted clauses,
such that the Timetabling Problem with Passenger Routing can be formulated as a partial
weighted MaxSAT problem. We refer to the following theorem and its proof which can be
found in the appendix.
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Figure 1 Line plan of Germany’s inter city network.

I Theorem 2. The Timetabling Problem with Passenger Routing can be formulated as a
partial weighted MaxSAT problem.

5 Experiments

The MaxSAT model introduced in Section 4 is implemented and the experiments are evaluated
on an Intel® Core™ i7-4790K CPU with 32GB RAM. However, the memory limit has never
been reached for any instance. As MaxSAT Solver we apply the solver open-wbo [15]. As IP
solver we use Gurobi 6.0.3 [6] which is used with 4 CPU cores.

The line plan in our experiments is fixed as input. The periodic event-activity network is
generated automatically from the given input data. This is necessary, as large timetabling
problems can consist of up to one million activities and ten thousands of events, which cannot
be calculated manually. The program automatically assigns an optimal route on the track
layout to each train and calculates the running times within seconds. All minimum headways
are calculated individually based on microscopical infrastructure data and are part of the
PESP instance as well as symmetry constraints for pairwise connected train paths [13]. For
details for encoding symmetry constraints we refer to the literature [3] that basically follows
the same encoding as enc_rec(A), A ∈ ζ(a) shown in the previous sections.

In our instance, the German long-distance passenger railway network is examined, which
in our scenario has 158 periodic lines and 181 stations. The macroscopic network is visualized
in Figure 1. The PESP instance consists of 1 176 periodic events and 10 651 (periodic)
activities. For comparison we also use the traditional approach in which

first, the passengers are routed on shortest paths through the network (where the lower
bounds La of the activities a are used as edge weights),
second, a timetable is computed minimizing the weighted slacks on driving, waiting and
transfer activities. (In our implementation the driving times are fixed to their lower
bounds, i.e., La = Ua for driving activities a ∈ A0

drive.) The resulting problem is then a
traditional PESP including headway constraints which is solved by the above mentioned
IP solver. The outcome is an optimal timetable π∗.
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Figure 2 Graph of the computation for instance ic1 of the integrated approach.

Finally, for the evaluation of the optimal timetable π∗ from the second step we proceed as
follows: We use this timetable as given in the integrated formulation, i.e., we determine
the best routes for the passengers with respect to this timetable and evaluate the sum of
their traveling times.

For a fair comparison we use a single time slice such that Tu,v = 1 for all regarded OD-
pairs (u, v).

In order to reduce the number of possible constraints we proceed as follows. For every
OD-pair (u, v) we do the following: We search for the fastest path (again with respect to the
lower bounds La) between u and v and then only add the constraints for paths that deviate
at most by a given detour factor. For the experiments, we choose a maximum detour factor
of 1.2. This seems reasonable, especially in terms of long-distance train networks.

The computational times contain both the encoding times and the solver times. Neverthe-
less, in Figure 2 and in Figure 3 just the solver times are shown, since the encoding times for
large networks are neglectable. Note that the solvers formulate the problem as minimization
problem and show the sum of weighted violated clauses which is displayed in the graphs.

The number of OD-pairs in the first run (ic1) is 38, in order to experimentally validate
the method. These are the most important OD-pairs in Germany. The value of the objective
function (1) in minutes of passenger traveling time is 1 219 which in this case (accidentally)
equals the sum of weighted lower bounds, i.e., the theoretically best travel times for all
given OD-pairs. Thus, no better timetable is possible. If we compare this to the traditional
approach, which has an objective value of 1 279, we can conclude that the integrated approach
results as expected in better results. Regarding only the travel times without the weights
results in an improvement of 60 min from the traditional approach to the integrated one.

We also compared the computation times (encoding and optimization):
For the integrated model using the SAT formulation the computation time was 133 s.
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Figure 3 Graph of the computation for instance ic2 of the integrated approach.

Table 1 PESP instances and their results.

OD-pairs objective value slack objective value traveling time
instance integrated traditional integrated traditional

ic1 38 0 60 1 219 1 279
ic2 192 141 572 13 515 13 946

For the traditional approach using an IP solver the computation time was 3 075 s.
Hence, comparing the computational times for this instance, we get even better results with
the integrated approach. This is probably due to the fact that SAT solvers perform better
on PESP instances than integer programming solvers, see [5]. This promising result directly
leads to the question whether more OD-pairs may be considered, which is investigated in the
sequel.

In the second run (ic2) we had a total number of 192 OD-pairs, which are yet again the
top most important OD-pairs in Germany. The computation times are 2 453 s and 620 s for
the integrated and traditional method, respectively. Evaluating the objective functional’s
value (1) and then computing the sum of traveling times for all OD-pairs yields 13 515 for
the new and 13 946 for the traditional approach. The absolute lower bound, i. e., the sum of
weighted minimum travel times for the OD-pairs is 13 374. As usual we hence evaluate the
sum of slack times on all passengers’ paths, i.e., the differences of absolute lower bound and
the objective values. These are 141 for the integrated approach and 572 for the traditional
approach. Cutting off the passenger weights and comparing the difference in travel time for
both approaches conducts in an improvement of 301 min.

The results of the computations for both instances is provided in Table 1. Note that
both instances were solved to optimality, so the duality gap is zero (and hence not listed). It
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can be concluded that at least for these first experiments the new approach leads always to
better objective values compared to the traditional approach. Looking at the slack times the
passengers may save, these reductions are rather large.

Nevertheless, the computational times for the traditional approach seem to vary de-
pending on the instance. It should be mentioned that increasing the number of OD-pairs
heavily increases the optimization times and hence, further methods or possible encoding
improvements should be applied. Possible variable reduction methods are shortly discussed
in Section 6.

6 Conclusion

In this paper, we provided an integer programming and a satisfiability formulation for the in-
tegrated problem of finding a periodic timetable and optimal passengers’ paths simultaneously.
We use time slices to distribute the passengers temporally.

The results on a restricted set of OD-pairs clearly show that the newly introduced,
integrated method yields better objective values compared to the traditional approach. This
is a promising position for regarding more OD-pairs. However, currently the computational
times increase drastically with the number of OD-pairs such that no good objective value
can be found in a reasonable time.

Nevertheless, the computational experiments have shown that there exists high potential
for improvements. Firstly, we reduced the number of variables by reducing the possible path
constraints with a detour factor. Secondly, by reducing the upper bounds of the transfer
activities, the number of variables in the SAT formulation can be reduced as well.

Furthermore, we suggest the following possibilities for handling more OD-pairs: Currently,
the lower and upper bounds of the constraints are coded in minutes which yields many binary
variables in the resulting constraints in the SAT formulation. This leaves a lot of room for
cutting off variables in two ways. On the one hand, we can reduce the search space – and
not the solution space – by applying constraint propagation [16] and eliminating all variables
that are no longer part of a constraint. This technique can even be applied for the possible
routes with their possible detours. This results in better constraints’ lower bounds for the
path search which eventually results in fewer constraints per OD-pair [9]. On the other
hand, from an engineering perspective we could also reduce the solution space by cutting off
solutions that seem to be irrelevant in real-world scenarios. Therefore, we suggest a scaled
variable encoding for the constraints to be optimized, which has a high granularity on the
lower parts and a coarse-grained granularity on the higher parts of the constraints feasible
areas. However, each variable’s weight has to be adopted in the objective (1). The reasoning
is that flows that are already badly fulfilled, e. g. contain transfer times above 60 min, are for
better primal bounds not important, since the resulting solutions will be avoided anyway.

In future work we will implement the integrated approach as IP model and compare the
computation times of state-of-the-art IP solvers to the state-of-the-art MaxSAT solvers. Also
the number and distribution of the time-slices are subject of further experiments.

Finally, the SAT formulation provided in this paper can be easily extended to also include
planning the lines (for a survey on line planning, see [25]), i.e., for modeling the problem of
integrated line planning and timetabling. To this end, all potential lines from a given line
pool have to be included in the formulation, and decision variables determine if a line is used
(and should hence get a timetable) or not. We currently work on an implementation of this
integrated formulation to make a step forward to integrated planning in public transportation.

All in all, it can be concluded that the introduced, integrated approach provides a

ATMOS 2016



3:12 Integrating Passengers’ Routes in Periodic Timetabling: A SAT approach

promising scientific outlook that could highly improve travel times for passengers in periodic
public railway transport networks in real-world scenarios.
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A Objective function of the SAT formulation

I Theorem 2. The Timetabling Problem with Passenger Routing can be formulated as a
partial weighted MaxSAT problem.

Proof. We already showed that the feasibility of the Timetabling Problem with Passenger
Routing can be modeled by SAT constraints. Thus it remains only to show that the objective
can be expressed as set of clauses with positive weight.

At first we need auxiliary variables τk
a ∈ {0, 1} for all activities a = (i, j) ∈ A0, k ∈

{0, . . . , Ua + 1} which determine if πj −πi + zaT ≥ k holds. Here za ∈ Z is the corresponding
modulo parameter.

We need to make sure that τk
a is consistent for all k ∈ {1, . . . , Ua}, i.e., that it really

models a ≥-constraint. We encode this similar to the encoding enc of the variables πi:

enc′ : a 7→ (τ0
a ∧ ¬τUa+1

a

∧
k∈{1,...,Ua+1}

(¬τk
a ∨ τk−1

a )).

It remains to ensure that τk
a is true if πj − πi + za · T ≥ k. For k ≤ La we already know this

due to the timetabling constraints. Therefore, we consider the following:

(πj − πi + za · T ≥ k)⇒ τk
a

⇐⇒ ¬(πj − πi + za · T ≥ k) ∨ τk
a

⇐⇒ πj − πi + za · T ∈ [La, k − 1]︸ ︷︷ ︸
F2

∨τk
a

for all a ∈ A0, k ∈ {La + 1, . . . , Ua}.

As F2 can be encoded in the same way as any other timetabling constraint, we again get
conjunction of clauses here.

Now we can express the length of an activity as the sum of τk
a variables.

πj − πi + za · T =
Ua∑

k=1
τk

a
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Now we can formulate the objective function using only binary variables:

max
∑

u,v∈V

Tu,v∑
t=1

Ct
u,v · (Du,v · xt

u,v −
∑

a∈A0

zu,v,t
a · (

Ua∑
k=1

τk
a )

−
∑

a=((u,v,t,t′,source),•)∈A0
time

P t,t′

u,v · zu,v,t
a )

⇐⇒ max
∑

u,v∈V

Tu,v∑
t=1

Ct
u,v · (Du,v · xt

u,v +
∑

a∈A0

(−zu,v,t
a · Ua + zu,v,t

a ·
Ua∑

k=1
¬τk

a )

−
∑

a=((u,v,t,t′,source),•)∈A0
time

P t,t′

u,v︸ ︷︷ ︸
fixed

+
∑

a=((u,v,t,t′,source),•)∈A0
time

P t,t′

u,v · ¬zu,v,t
a )

⇐⇒ max
∑

u,v∈V

Tu,v∑
t=1

Ct
u,v ·Du,v · xt

u,v

+
∑

u,v∈V

Tu,v∑
t=1

∑
a∈A0

−Ct
u,v · Ua · zu,v,t

a

+
∑

u,v∈V

Tu,v∑
t=1

∑
a∈A0

Ua∑
k=1

Ct
u,v · zu,v,t

a · ¬τk
a

+
∑

u,v∈V

Tu,v∑
t=1

∑
a=((u,v,t,t′,source),•)∈A0

time

Ct
u,v · P t,t′

u,v · ¬zu,v,t
a

⇐⇒ max
∑

u,v∈V

Tu,v∑
t=1

Ct
u,v ·Du,v · xt

u,v

+
∑

u,v∈V

Tu,v∑
t=1

∑
a∈A0

−Ct
u,v · Ua︸ ︷︷ ︸

fixed

+
∑

u,v∈V

Tu,v∑
t=1

∑
a∈A0

Ct
u,v · Ua · ¬zu,v,t

a

+
∑

u,v∈V

Tu,v∑
t=1

∑
a∈A0

Ua∑
k=1

Ct
u,v · zu,v,t

a · ¬τk
a

+
∑

u,v∈V

Tu,v∑
t=1

∑
a=((u,v,t,t′,source),•)∈A0

time

Ct
u,v · P t,t′

u,v · ¬zu,v,t
a
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As we want to maximize, we can substitute zu,v,t
a · ¬τk

a by a variable yu,v,t,k
a which is set to 0

if either ¬τk
a = 0 or zu,v,t

a = 0.

⇐⇒ max
∑

u,v∈V

Tu,v∑
t=1

Ct
u,v ·Du,v · xt

u,v

+
∑

u,v∈V

Tu,v∑
t=1

∑
a∈A0

Ct
u,v · Ua · ¬zu,v,t

a

+
∑

u,v∈V

Tu,v∑
t=1

∑
a∈A0

Ua∑
k=1

Ct
u,v · yu,v,t,k

a

+
∑

u,v∈V

Tu,v∑
t=1

∑
a=((u,v,t,t′,source),•)∈A0

time

Ct
u,v · P t,t′

u,v · ¬zu,v,t
a

From the substitution we get the following clauses:

¬¬τk
a ⇒ ¬yu,v,t,k

a ⇐⇒ ¬τk
a ∨ ¬yu,v,t,k

a

¬zu,v,t
a ⇒ ¬yu,v,t,k

a ⇐⇒ zu,v,t
a ∨ ¬yu,v,t,k

a

We see that the objective is to maximize a sum of weighted booleans. This can modeled
in a partial weighted MaxSAT problem, where all the clauses appearing in the objective get
their respective weight from the objective function and all other clauses which are needed to
model the constraints get weight infinity, i.e., they have to be fulfilled anyway.

J

ATMOS 2016





Pricing Toll Roads under Uncertainty
Trivikram Dokka1, Alain Zemkoho2, Sonali Sen Gupta3, and
Fabrice Talla Nobibon4

1 Department of Management Science, Lancaster University
t.dokka@lancaster.ac.uk

2 Department of Mathematics, University of Southampton
a.b.zemkoho@soton.ac.uk

3 Department of Economics, Lancaster University
s.sengupta@lancaster.ac.uk

4 Fedex Europe
tallanob@gmail.com

Abstract
We study the toll pricing problem when the non-toll costs on the network are not fixed and can
vary over time. We assume that users who take their decisions, after the tolls are fixed, have
full information of all costs before making their decision. Toll-setter, on the other hand, do not
have any information of the future costs on the network. The only information toll-setter have
is historical information (sample) of the network costs. In this work we study this problem on
parallel networks and networks with few number of paths in single origin-destination setting. We
formulate toll-setting problem in this setting as a distributionally robust optimization problem
and propose a method to solve to it. We illustrate the usefulness of our approach by doing
numerical experiments using a parallel network.
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1 Introduction

Public-Private partnerships and private investment are becoming more popular than ever
in infrastructure projects. For example more roads are now built by private companies as
against the tradition of governments building roads. Typically these projects employ build-
operate-transfer model. Here the investing company enters in a contract with government
to build a road/highway. In return of the investment, the company is allowed to collect
tolls for an agreed period of time before the transfer of ownership to the government. In
fact, in recent years, tolls have become a primary way to encourage private investment in
public infrastructure [4]. There are both successes and failures of this model. One of the
notable examples is M6 toll between Cannock and Coleshill in the United Kingdom, which
opened in 2003. According to a BBC News Report, “the company operating M6 toll made
a 1 million pound loss in the year 2012”,“drivers have said the road is underused because of
its prices”. Therefore, a key element to the success of this model is the revenue generated
from tolls. The investor company’s main objective is to maximize the revenue from tolls.
Therefore, toll pricing can be the defining factor to the success of the project and the key
to a successful revenue maximization pricing mechanism lies in understanding the network
users options compared to the toll roads. In [12], a bilevel model is proposed to capture the
situation where the toll-setter anticipates the network user’s reaction to his decisions. In a
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4:2 Pricing Toll Roads under Uncertainty

full information situation, it is assumed that costs of travel on the network are fixed and
known to both toll-setter and users. However, cost of travel is rarely constant over time in a
real-world transportation network. Modern technology enables users to estimate the travel
costs (or times) more accurately than before, which implies users can change their decisions
over time depending upon the costs in the network. The toll-setter, however, suffers from
the disadvantage that (more often in practice) he is not allowed to change the toll very
frequently due to policy regulations and other constraints. In most cases, the toll is required
to be fixed for a minimum period. Even after the minimum period, changing the toll price,
especially, increasing it usually has a negative impact on the user’s beliefs and may end up
resulting in reduced revenues. Naturally, in such a situation the toll-setter has to make his
decisions under uncertainty about the user’s future options. On the other hand, users have
full information before they make their decisions. In this work, we study a robust toll-pricing
mechanism which aims to minimize the risk of the toll-setter against this uncertainty. In
doing so, we use the ideas from robust optimization literature and show that our approach is
very near to the conditional value-at-risk approach used in portfolio optimization and other
problems, see [15] and [16].

Profit and revenue maximization problems over a transportation network are given much
attention in pricing literature, see for example, [17, 3, 11] to name a few. Within the huge
body of papers, many have studied the application of the bilevel programming paradigm to
pricing problems, such as [12] and many subsequent papers, [5, 2, 10, 14] considered different
application areas. The deterministic version of the problem that we study in this paper has
been well investigated, see [13] and references therein. However, the stochastic extensions of
the problem have gained more interest only in recent years. Two different extensions of the
model in [12] have been studied in [7] and [1]. In [7], authors study the logit pricing problem
and [1] studies the two-stage stochastic problem with recourse extension of the deterministic
toll pricing problem. In this paper we study the toll pricing problem under uncertainty
and on single commodity parallel networks and networks with polynomial number of paths.
The deterministic pricing problem on such networks can be easily solved by enumerating all
paths and finding the least cost non-toll path. To the best of our knowledge, there is no
work on robust pricing in the presence of uncertainty even in such basic networks, and as
we will show, the pricing problem in these networks is quite complex. There, however, are
two studies where robust optimization framework is applied to pricing problems, in [18] and
[6]. In both of these works, the models considered are different from our model and problem
setting. Understanding the pricing problem in parallel networks will provide useful insights
into the complexity of pricing for more general networks involving more commodities and
with variable demands. As we will show that the ideas we propose in this work will provide
a basis for solving toll-pricing problem in more general networks.

The aim of this paper is to understand the toll-pricing problem faced by a risk-averse toll-
setter when there is uncertainty on non-toll costs. We use the framework of distributional
robustness which is very useful in making optimal decisions under limited or imprecise
information, see [8] for recent developments on distributionally robust optimization. Our
main contribution in this work is the study the toll-pricing problem in parallel networks
and its modeling as a distributionally robust optimization problem, see Section 3.1. We
propose an algorithm and a heuristic to solve the problem, see Section 3.1 and Section 4.
We assess the heuristic performance using computational experiments in Section 5. Finally
we conclude the work by giving possible extensions to solve the robust pricing problem on
general networks in Section 6.
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2 Problem definition

We will first describe the deterministic pricing model as used in [12]. We consider a single-
commodity transportation network with a single origin and single destination, G = (N,A),
where N (of cardinality n) denotes the set of nodes, and A (of cardinality m) the set of
arcs. The arc set A of the network G is partitioned into two subsets A1 and A2, where A2
denotes the set of roads which are toll-free (public roads), and A1 the set of roads which are
owned by a toll-setter (toll roads). There can be more than one parallel roads between any
two nodes in G.

With each toll arc a in A1, we associate a generalized travel cost composed of two parts:
toll (ra) - set by the toll-setter expressed in time units, and non-toll cost (ca) - which can
vary over time (discretized into unit intervals). An arc a ∈ A2 only bears the non-toll cost ca.
Once the toll is set on arcs in A1, it cannot changed for T consecutive time periods. We will
refer to the T consecutive time periods in which the toll is fixed as tolling period. We denote
by b ∈ Rn the fixed demand, with the assumption that all nodes except origin and destination
nodes have a demand equal to 0. Assuming fixed demand and neglecting congestion implies
users choose shortest paths between the origin and destination. Further we assume that
when faced with two alternatives, a user will choose the one which maximizes the revenue of
the toll-setter. Another key assumption in our model is that it allows conversion from time
to money and assume this be to uniform throughout the users. Under this setting, when
the non-toll costs are known to both toll-setter and users, the question that the toll-setter
faces is:

How to set prices which maximizes the total toll revenue when the network user chooses
the shortest paths to minimize his cost?

In the absence of uncertainty on non-toll costs, the deterministic toll-pricing problem is
modeled as the following bilevel optimization problem, see [12]:

(TOP) max
R,X

F (R,X) :=
∑
a∈A1

raxa

s.t. min
X

∑
a∈A1

(ca + ra)xa +
∑
a∈A2

caxa (1)

∑
a∈i+

xa −
∑
a∈i−

xa = bi, ∀i ∈ N

xa ≥ 0, ∀a ∈ A.

Here, X is the collection of decision variables in the lower level problem which in this setting
is a shortest path problem. For each node i, i+ (resp. i−) corresponds to the leaving (resp.
entering) flow arcs, and bi = 1, if i is the origin while bi = −1, if i is the destination.

We will now extend the above deterministic model to the case where there is uncertainty
on non-toll costs ca. Our uncertainty model and corresponding assumptions can be described
follows:

the toll-setter has the historical information encoded in the form of previously observed
states. A state s corresponds to an observed state of the network in a single time period.
In other words, in each state s, the non-toll cost on each arc a ∈ A is fixed denoted as csa.
The advantage of modeling uncertainty in this way is that the correlations are captured
in the states.
The number of states is equal to #H × T . That is, the toll-setter observes #H tolling
periods.

ATMOS 2016



4:4 Pricing Toll Roads under Uncertainty

We assume the variability on each arc is bounded, that is, the variance-to-mean ratio
for the toll period is bounded by a constant which is unknown to the toll-setter. This is
usually the case in real world networks.
The cost distribution (unknown to toll-setter) of each arc is assumed to be fixed and
belongs to a set of non-negative distributions D with support in Ω = [q,Q]. Given the
bounded variability assumption it is reasonable to assume fixed support. One can also
consider different supports for different arcs, however, we see Ω as the aggregated support
set. We will denote integers in Ω as Ω̄.

Given this setting, our aim is to answer the following question faced by a toll-setter:

How to set toll prices under uncertainty of non-toll costs, when users will have full
knowledge of future non-toll costs based on which they choose shortest paths?

In the next section, we propose a robust model to answer this question and also propose
the methods to solve it.

3 Robust model and solution method

3.1 Network with two parallel arcs
Consider a network with just two parallel arcs connecting the origin and destination. Let
one of these arcs be the toll arc and the other arc be the non-toll arc whose costs are not
known. We assume for the ease of exposition that the non-toll costs on the toll arc are
zero or negligible. We will later remove this assumption and show that the method can be
extended to such a case. As mentioned in the previous section, the toll-setter has a sample
of costs of #H tolling periods from the recent history. Using this sample, the toll-setter
wishes to calculate the toll, referred hereafter as ra, on the toll arc. In the rest of the section
we will drop the suffix a for the ease of notation and readability. If the toll-setter knows the
distribution F (we denote the density of F with F) of c, then to fix the toll which maximizes
his expected revenue, he solves the following optimization problem which maximizes his
expected revenue:

max
r∈Ω

∫ Q

r

rF(c)dc. (2)

Given the distribution F , this is a trivial problem; F is however not known to the toll-
setter. In the absence of this knowledge, a risk-averse toll-setter would prefer to insure his
revenues by setting tolls such that the usage of toll roads is maximized. Now suppose that,
the toll-setter first decides his toll and then nature, who plays adversary to the toll-setter,
will decide on F . Then, the toll-setter wishes to calculate a robust toll price which maximizes
his revenue by solving the following optimization problem:

max
r∈Ω

min
F∈D

∫ Q
r
rF(c)dc

s.t. u ≤ µF (c) ≤ u,
σ2
F (c) ≤ κµF (c),
κ ≤ κ.

(3)

Here, the parameters u, u are calculated as (1 − α)% confidence limits of mean; κ are
calculated as 1 + α× variance/mean of the observed sample with α ∈ [0, 1]. Note that the
constraints in (3) correspond mainly to nature’s problem, i.e., to find a distribution satisfying
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the mean (or moment) constraint. The second constraint limits the possible distributions
by using the assumption of bounded variability. Such a situation with sufficiently high
allowed variability gives too much power to adversarial nature forcing the toll-setter (to be
too conservative) to set very low r if he chooses to be robust against all possible F ∈ D. To
avoid such over-conservativeness, we assume that nature does not play such a role. Instead
nature’s objective is to minimize the overall expected cost of the network user, that is:∫ Q

r

rF(c)dc +
∫ r

q
cF(c)dc, (4)

where the first term is the expected cost of travel on the toll road and the second term
is the expected cost on the non-toll road. The toll-setter then solves the following bi-level
distributionally robust program to find the robust r:

max
r∈Ω

∫ Q
r
rF(c)dc

min
F∈D

∫ Q
r
rF(c)dc +

∫ r
q cF(c)dc

s.t. u ≤ µF (c) ≤ u,
σ2
F (c) ≤ κµF (c),
κ ≤ κ.

(5)

Since we consider F with support in Ω, we can use
∫ Q
r

F(c)dc +
∫ r

q F(c)dc = 1 and
rewrite the nature’s objective function as∫ Q

r
rF(c)dc +

∫ r
q cF(c)dc = r(1−

∫ r
q

F(c)dc) +
∫ r

q cF(c)dc
= r −

∫ r
q

(r − c)F(c)dc

We will now show that (5) can be written as a single level max-min optimization problem.
For a fixed ε ∈ [0, 1], consider the function

fε(r, F ) =
[
r − 1

(1− ε)

∫ r

q

(r − c)F(c)dc
]

and observe that f is nothing but nature’s objective function with an additional factor
involving ε. We have the following property of f .

I Lemma 1. For fixed F ∈ D and ε ∈ [0, 1], fε(r, F ) is concave and continuously differen-
tiable, and the maximum of f is attained at r ∈ Ω such that

∫
c≤r F(c)dc = 1− ε.

As a corollary of this Lemma, we can infer that for fixed r and F , there exists an ε which
maximizes the function r × ε and is found by solving 1− 1

(1−ε)
∫
c≤r F(c)dc = 0. Note that

for a fixed F , if we put ε =
∫ Q
r

F(c)dc, then maximizing rε is nothing but maximizing
the expected revenue of the toll-setter. One way of interpreting ε is that it can be seen as
usage probability of a toll road. In other words, given F when the toll-setter decides the toll
according to (2), he indirectly also chooses this probability. This implies that the bi-level
problem in (5) can be written as a single level parametric problem with a max-min objective
and ε ∈ [0, 1] as a parameter:

max
r∈Ω

min
F∈D

r − 1
1−ε

∫ Q
q

max(r − c, 0)F(c)dc
s.t. u ≤ µF (c) ≤ u,

σ2
F (c) ≤ κµF (c),
κ ≤ κ.

(6)
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4:6 Pricing Toll Roads under Uncertainty

By choosing a value of the parameter ε, the toll-setter wishes to set the toll which ensures
the expected probability of the toll road usage is at least ε with an expected revenue of at
least rε.

For a fixed F , the objective function is very similar to the concept of Conditional-Value-
at-Risk, which has been applied to portfolio optimization problems in [15]. In fact it turns
out that our problem formulation is similar to worst-case conditional value-at-risk studied
in [19] and more recently in [16]. Hereafter we will assume that ε takes values with two
significant digits after the decimal for numerical simplicity. Since we assume that time is
discretized, we consider the discrete version of (6) which can be seen as nature optimizing
over samples, C, drawn from distributions in D:

max
r∈Ω

min
C∈ΩT

r − 1
(1− ε)T

T∑
i=1

max(r − ci, 0)

s.t. u ≤ µF (c) ≤ u (7)
σ2
F (c) ≤ κµF (c)
κ ≤ κ

For a fixed value of the toll-setter’s decision, the problem (7), that is, the inner problem
in (7), is a minimization problem with a concave objective function. Concave minimization
problems are hard to solve; for some recent work on quasi-concave minimization over convex
sets, see [9] and references therein. To solve the inner problem in (7) we reformulate the
inner problem as the following non-convex integer programming problem by introducing
additional variables:

min
C∈ΩT

r − 1
(1− ε)T

T∑
i=1

zi (8)

s.t. u ≤ µ(c) ≤ u, (9)
σ2(c) ≤ κµ(c), (10)
κ ≤ κ, (11)
ci − r + zi ≥ 0 i = 1, . . . , T, (12)
r − ci +Myi ≥ 0 i = 1, . . . , T, (13)
zi ≤M(1− yi) i = 1, . . . , T, (14)
zi − (r − ci)(1− yi) ≤ 0 i = 1, . . . , T, (15)
Y ∈ {0, 1}, C, Z ≥ 0. (16)

Note that for M in the above formulation, any value greater than or equal to Q suffices;
this leads to our next theorem:

I Theorem 2. For fixed r and ε, (8)-(16) is a valid reformulation of the inner problem of
(7).

The only non-convex constraint apart from integrality constraints in the above formulation is
(15). We linearize this by introducing two additional sets of variables as follows. Replace the
product terms ryi and ciyi in this constraint by variables ui and vi and then add constraints
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(25)-(30). After doing this we get the following convex integer programming problem.

min
C∈ΩT

r − 1
(1− ε)T

T∑
i=1

zi (17)

s.t. u ≤ µ(c) ≤ u, (18)
σ2(c) ≤ κµ(c), (19)
κ ≤ κ, (20)
ci − r + zi ≥ 0 i = 1, . . . , T, (21)
r − ci +Myi ≥ 0 i = 1, . . . , T, (22)
zi ≤M(1− yi) i = 1, . . . , T, (23)
zi − r + ci + ui − vi ≤ 0 i = 1, . . . , T, (24)
ui ≤Myi i = 1, . . . , T, (25)
vi ≤Myi i = 1, . . . , T, (26)
vi ≤ ci i = 1, . . . , T, (27)
ui ≤ r i = 1, . . . , T, (28)
r −M(1− yi) ≤ u ≤ r i = 1, . . . , T, (29)
Y ∈ {0, 1};C,Z,U, V ≥ 0. (30)

I Theorem 3. (17)-(30) is a valid reformulation of (8)-(16).

For a fixed r and ε, (17) - (30) can be solved by using a state of the art commercial solver like
CPLEX and more specialized algorithms are also conceivable owing to tremendous success
and availability of techniques for solving convex quadratic integer programs from the last
few years. However, (17) - (30) is still the inner problem of the main toll setting problem
which takes r as input. Lemma 1 implies that we can use (17) - (30) and do a binary search
over r ∈ Ω to find the robust toll. We formally give this in Algorithm 2, that we move to
the appendix section due to space restriction.

3.2 General networks
In this section we extend our method to more general networks.

3.2.1 Multiple parallel arcs
Let us first consider the immediate extension to a network where there are k non-toll arcs
parallel to the toll arc between the origin and destination. Let a1, . . . , ak be the non-toll
arcs. We input the mean and variance limits (u, u and κ) of the data obtained from taking
the following minima, minki=1 c

s
ai

to Algorithm 3 to calculate the robust toll.

3.2.2 Multiple parallel arcs with positive non-toll costs on toll arc
Let us now consider the above network when the assumption that the non-toll costs on toll
arc are not zero. Let ak+1 be the toll arc. To apply our method to this case, we calculate
the mean and variance limits (u, u and κ) of

csak+1
−

k
min
i=1

csai
(31)

for all s and input these to Algorithm 3.
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Figure 1 General network and an equivalent parallel network.

3.2.3 General networks with polynomial (in n) number of paths

Consider now a general single commodity network with multiple toll arcs but with few
(polynomial) number of paths between origin and destination; for example the network on
the left given in Figure 1. An equivalent parallel network is constructed as shown in the
right side in Figure 1. For each path in this parallel network with toll arcs, we will calculate
the quantities (state minima) given in (31) on each path involving toll arcs by ignoring all
other paths with toll arcs. That is, we calculate the robust toll on each toll path as if that
is the only path with toll arcs in the network. Using these quantities as input sample to
Algorithm 3, we calculate an upper bound on the total toll on each path and then solve an
integer programming problem to allocate the tolls to individual toll arcs. Suppose the upper
bounds for the paths in the example network in Figure 1 are ς1, ς2, ς3, respectively from
left to right, then we solve the following optimization problem for prices of r1, r2, and r3:
max r1 + r2 + r3 || s.t r2 + r3 ≤ ς1, r1 + r2 ≤ ς2, r1 ≤ ς3, ri ∈ Z. We observe here that
for general networks with not necessarily polynomial number of paths, such a procedure
could still be used as a heuristic to calculate a robust toll on a subset of paths which can be
obtained as shortest paths in the observed states. We omit details due to space restriction.

4 Two-point Heuristic

The formulation given in (17) can be hard to solve and can be time consuming when using
a generic solver like CPLEX. Of course, one can derive efficient algorithms using branch
and bound and/or other methodologies. In this section, however, we focus on constructing
a simple approximate solution to (17). In our computational experience of solving (17)
using CPLEX we found that in all cases, the solution found has two-point support. That
is, the vector of costs returned by CPLEX has exactly two distinct values. If we restrict
to the distributions with two-point support {`, u} with probabilities { λT , 1 −

λ
T }, assuming
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Algorithm 1 Two Point Algorithm
λ = T − 1, µ = u

while λ ≥ 1 do
` = 0
while ` < µ do
u = ((µ×T )−(λ×`))

(T−λ)
if (λ × ` + (T − λ) × u) ≤ u and (λ × ` + (T − λ) × u) ≥ u and u ≤ Q and

λ(`− µ)2 + (T − λ)([µT−λ`(T−λ) ]− µ)2 ≤ κµ(T − 1) then
if obj > (λ× `+ (T − λ)× r) then
obj = (λ× `+ (T − λ)× r)

end if
break

else
` = `+ 1

end if
end while
λ = λ− 1

end while

` ≤ r ≤ u, the inner problem of (7) can be written as

min
`∈Ω,u∈Ω;λ∈[0,T ]

rT − λ(r − `)

s.t. (T − λ)u+ λ` = µT,

u ≤ µ ≤ u,
λ(`− µ)2 + (T − λ)(u− µ)2 ≤ κµ(T − 1),
κ ≤ κ.

Suppose now that we fix µ = u and κ = κ, we can write the problem of finding {`, u} as

min
`∈Ω,u∈Ω;λ∈[0,T ]

rT − λ(r − `)

s.t. (T − λ)u+ λ` = µT,

λ(`− µ)2 + (T − λ)(u− µ)2 ≤ κµ(T − 1).

Eliminating u, we get

min
`∈Ωλ∈[0,T ]

rT − λ(r − `) (32)

s.t. λ(`− µ)2 + (T − λ)([µT − λ`(T − λ) ]− µ)2 ≤ κµ(T − 1).

For a fixed λ, the objective function in (32) is linear in ` with a positive slope. This implies
that the optimal solution to (32) is simply the lowest value satisfying the inequality in (32)
and u ∈ Ω. Using this observation we now give a simple algorithm for finding a two-point
solution to (17).

Algorithm 1 solves (32) by searching for all values of λ, where obj is the objective in (32).
Note that we search for ` ∈ Ω̄, this is again for numerical simplification and will only result
in minor loss in terms of approximation. Note that the heuristic presented in Algorithm 1
is aimed mainly for a quick optimal solution for (17)–(30) with fixed µ = u and κ = κ. It

ATMOS 2016
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Table 1 Distributions and parameters used.

Distribution First parameter second parameter
Beta [2,5] [2,5]
Beta [1,3] [1,3]

Gamma [1,3] [ 1
3 , 1

5 ]
Normal [90,110] [10,30]

Lognormal [0.1,0.3] [0.1,0.3]

may be possible that for these value of µ and κ there is no solution to (32). In which case
as mentioned in Algorithm (2), we choose u as the robust toll. However, this was never the
case in our numerical experiments which we present in the next section.

5 Computational experiments

In this section, we report the performance of our approach with some numerical experiments.
We have done experiments to assess the robustness of our procedure under two different
experimental set-ups differing in the network structure and cost distributions. We explain
them below.

First-Experiment: We consider a parallel network with five parallel links connecting
the origin to the destination. In this set-up we fix the distributions of the links to be
same but allow the parameters to vary randomly within a given interval.
Second-Experiment: We consider the same network as in the first but the distributions
on each links can be different including parameters.

In both experiments, we would like to understand the robustness of the two-point toll. The
distributions we use are Beta, Gamma, Normal and Lognormal. The parameters for each
distribution are selected uniformly from an interval. The parameter intervals are given in
Table 1.

We first created 50 samples (history sample), from each distribution which are used to
calculate the robust tolls. We then created 5000 random samples from each distribution
and computed optimal revenues generating tolls for each of these samples. We compare the
revenues from optimal tolls in each of these 5000 samples with revenues when a robust toll
is used which is calculated from a sample in history sample. To calculate an optimal toll
for a given instance we try each integer in Ω̄ and select the toll which generates the most
revenue. In total we compare robust tolls with optimal tolls on 250000 samples. We report
the percentage relative regret from using the robust toll which is calculated as follows:

relative regret(%) = optimal revenue - robust toll revenue
optimal revenue (33)

From these experiments we want to understand the answers to the following two ques-
tions:

how bad are revenues from robust tolls compared to the optimal revenues?
how do robust tolls compare to optimal tolls?

In both experiments we used the two-point approximate algorithm to compute the robust
tolls, and we set T = 100, #H = 1, and α = 0.
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Table 2 Fixed case: average (%) relative regret.

Distribution Robust toll mean-variance toll Robust toll mean-variance toll
Average Average Stdev Stdev

Beta 12.99 16.19 8.85 14.74
Gamma 13.35 21.93 11.65 21.22

Lognormal 6.61 29.63 5.44 19.36
Normal 9.06 22.96 6.25 15.11

Table 3 Exp 3: average (%) relative regret.

Distribution Robust toll mean-variance toll Robust toll mean-variance toll
Average Average Stdev Stdev

Mixed 8.11% 12.03% 5.86% 10.82%

5.1 Fixed distributions

In this section we will evaluate the robustness of our two-point robust toll on the instances
when all parallel arcs have same distributions but the parameters can be selected randomly
in the intervals given in Table 1. Table 2 displays the average percentage relative regret for
each of the four distributions when robust toll is used and when (µ(#H)− 0.01σ2(#H)) is
used as toll. Here µ(#H) and σ2(#H) are mean and variance of the observed sample. From
Table 2 we observe that the robust toll achieves a regret less than 14% in all distributions.
On the other hand using a mean-variance toll can have regret as high as 30%. Our algorithm
also performs well when comparing standard deviations of regrets with that of mean-variance
toll. This suggests that revenues from robust toll compare well especially given the fact that
the toll decision is taken with minimal knowledge about the network cost distributions.

As previously pointed out a measure of robustness of the toll is how it compares with the
optimal revenue generating tolls. Figure 2 displays the comparison of minimum, maximum
and average values of tolls over the 50 history samples, and optimal revenue generating tolls
in each of the 5000 samples (sorted in increasing order). From Figure 2 we observe that it is
possible that the Algorithm 2 can set the toll too high or too low especially seen in Gamma
and Normal distributions. However, the average robust toll compares well with optimal tolls
and roughly stands above the lower quartile of optimal tolls. Figures also suggest that with
a higher #H the variability in robust tolls can be further reduced.

5.2 Mixed distributions

In this section we will evaluate the robustness of Algorithm 2 when arcs in the (same) network
can have different distribution with parameters again chosen randomly from intervals given
in Table 1. We observe from Table 3 that average regret from the robust toll is less than that
in the case of fixed distribution case. This is also reflected in Figure 3 which again displays
the comparison of minimum, maximum and average values of robust tolls with optimum
revenue generating tolls. The average robust toll is set roughly around 40% mark of optimal
curve indicating a better tradeoff between setting toll too high and setting it too low.

ATMOS 2016



4:12 Pricing Toll Roads under Uncertainty

0 

10 

20 

30 

40 

50 

60 

70 

80 GAMMA b GAMMA r_min 

GAMMA r_max GAMMA r_ave 

10 

20 

30 

40 

50 

60 

70 

80 
BETA b BETA r_min BETA r_max BETA r_ave 

40 

50 

60 

70 

80 

90 

100 

110 LOGNORMAL b LOGNORMAL r_min 

LOGNORMAL r_max LOGNORMAL r_ave 

30 

40 

50 

60 

70 

80 

90 NORMAL b NORMAL r_min 

NORMAL r_max NORMAL r_ave 

Figure 2 Exp. 2: Comparison of optimal tolls with robust tolls.

6 Conclusion

We have considered a basic version of the toll pricing problem in the presence of uncertainty.
We formulate it as distributionally robust optimization problem and discuss its similarities
with the concept of conditional value-at-risk. We present a two-point approximate algorithm
to solve it and show by numerical experiments the robustness of the approach.

A number of questions remain to be studied even in the simple case considered in this
work. Given the simplicity of the two-point algorithm and the experimental evidence it still
remains to investigate that if two-point solutions are in fact among the optimal solutions
to (17). Next immediate question to consider is to extend the approach to general single
commodity networks where the number of paths are large. Here we note that the approach
presented can be extended to such networks in designing an efficient heuristic. Finally,
another direction we are currently working is to extend the pricing framework to dynamic
setting as against the static setting considered in this paper.

Acknowledgements. We would like to thank Martine Labbé for an interesting discussion
on the topic and also for pointing out references. We thank Marc Goerigk for spotting a
mistake in an early version of the paper.
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A Robust Toll Algorithm

Algorithm 2 Robust Toll Algorithm
BinarySearchr̂∈Ω(Core(r̂))
Output r̂ with maximum revenue.
if maximum revenue is 0 for every r̂ in BinarySearch(r̂ ∈ Ω) then
Output u

end if

Algorithm 3 Core(r̂)
INPUT: r̂, u, u, κ
for ε ∈ [0, 1] do

Solve (17) - (30) with r = r̂ for all ε ∈ [0, 1],
if
∑

i
yi

T ≥ ε then
revenue(r̂) = r̂ × ε
break

else
revenue(r̂) = 0

end if
end for
Output revenue(r̂).

B Proof of Lemma 1

Proof. Let G(r) =
∫ r
q

(r − c)F(c)dc. From Lemma 1 of [15] G is a convex continuously
differentiable function. Using the fundamental of theorem of calculus and the differentiation
by parts, we can derive G′(r) =

∫
c≤r F(c)dc. This implies ∂f

∂r = 1 − 1
(1−ε)

∫
c≤r F(c)dc,

which proves the statement. J

C Proof of Theorem 2

Proof. Constraints (12) - (14) ensure that yi = 0 when r > ci and yi = 1 otherwise, and
(14)- (15) ensure zi = max[r − ci, 0]. J

D Proof of Theorem 3

Proof. To see that this is true, note that for every solution to (8)-(16), we can create an
equivalent solution to (17)-((30)) by taking the C, Z, Y values as they are and putting
ui = r and vi = ci for every i with yi = 1 and 0 otherwise. J



Scheduling Autonomous Vehicle Platoons
Through an Unregulated Intersection
Juan José Besa Vial1, William E. Devanny2, David Eppstein3, and
Michael T. Goodrich4

1 Computer Science Department, University of California, Irvine, USA
2 Computer Science Department, University of California, Irvine, USA
3 Computer Science Department, University of California, Irvine, USA
4 Computer Science Department, University of California, Irvine, USA

Abstract
We study various versions of the problem of scheduling platoons of autonomous vehicles through
an unregulated intersection, where an algorithm must schedule which platoons should wait so
that others can go through, so as to minimize the maximum delay for any vehicle. We provide
polynomial-time algorithms for constructing such schedules for a k-way merge intersection, for
constant k, and for a crossing intersection involving two-way traffic. We also show that the more
general problem of scheduling autonomous platoons through an intersection that includes both
a k-way merge, for non-constant k, and a crossing of two-way traffic is NP-complete.
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1 Introduction

The advent of autonomous vehicles is introducing a number of interesting algorithmic ques-
tions concerned with how to coordinate the motion of such vehicles, especially through un-
regulated intersections (e.g., see [1, 2, 4, 6, 5, 7, 8, 9, 10, 11, 12, 14, 18, 17, 19, 21, 22, 25, 26]).
Such an intersection would not have any stop signs or lights and would instead rely on algo-
rithmic coordination between the autonomous vehicles approaching the intersection in order
to prevent collisions.

In addition to intersection management, another interesting algorithmic development
for autonomous vehicle control is the use of platoons, where a sequence of autonomous
vehicles operates in close proximity, much like the cars of a locomotive train, so as to save
time and/or energy. (E.g., see [3, 14, 23, 24].) Ideally, we would like to keep platoons as
contiguous sequences of vehicles, even as they are traveling through an intersection.

Thus, we are interested in this paper in algorithms for solving the problem of scheduling
autonomous vehicle platoons through an unregulated intersection, so as to minimize the
maximum delay for any vehicle (due to waiting in traffic at the intersection) while keeping
platoons as contigous sequences of vehicles. The algorithms we describe are agnostic about
whether times and locations are continuous variables or (following the discrete framework of
Dasler and Mount [8]) discretized to be integers, which we may consider as normalized such
that each platoon moves one unit of distance in one unit of time. No two vehicles are allowed
to occupy the same point at the same time, but platoons advance in “lock step”, with all
vehicles within a platoon moving the same distance as each other in each time unit. For
continuous models of time and space, we obtain strongly polynomial time bounds, and for
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discrete models we obtain time bounds that are polynomial both in the number of platoons
and in the logarithm of the total travel time.

Although online scheduling algorithms would also be of interest, in this paper, we focus
on the offline scheduling problem, where we are given in advance the location and path for
each platoon wishing to travel through a given intersection.

1.1 Related Work
Prior related work on autonomous vehicle coordination through an intersection is usually
referred to as autonomous intersection management, with most of the previous work focused
on low-level sensor, multi-agent, and acceleration/braking control algorithms (e.g., see [9, 10,
11, 17, 19, 21, 25]) or high-level management policies and strategies (e.g., see [1, 7, 22, 26]).

Closer to the mid-level approach that we take in this paper, Guler et al. [14] study the
problem of scheduling platoons through an unregulated intersection, but they focus on the
problem of minimizing the total number of stops for all vehicles or the total delay for all
vehicles, e.g., in simple first-in/first-out strategies, rather than minimizing the maximum
delay for any vehicle. Also in this mid-level framework, Dasler and Mount [8] build on the
work of Berger and Klein [6] for solving a geometric version of the “Frogger” video game
to study the problem of routing variable-length cars (which could also model platoons)
through multiple intersections. They introduce a discrete model for autonomous vehicle
scheduling, which, as we mentioned above, we use in this paper. They show that the problem
of scheduling vehicles through an arbitrary grid configuration of multiple intersections to
minimize the maximum delay for any vehicle is NP-complete. Such a result is also implied
by the work of Hatzack and Nebel [15] on modeling traffic scheduling as job-shop scheduling
with blocking. These hardness results do not apply to the single intersection problem that
we study in this paper, however, because their proofs require interactions between multiple
intersections. Dasler and Mount [8] also give several polynomial-time algorithms for special
cases in which horizontally-traveling vehicles must always yield to and never block vertically-
traveling vehicles, but these algorithms similarly do not apply to the problems we study in
this paper, since we don’t assign different priorities to different platoons.

In the problems that we study in this paper, platoons must always move monotonically,
that is, they may move forward or stop, but they may not back up. If platoons are allowed
both forward and backward movements, then path planning becomes much harder. See,
e,g., the PSPACE-completeness proofs of Hearn and Demaine for various traffic-clearing
problems [16].

1.2 Our Contributions
In this paper, we study various versions of the problem of scheduling platoons of autonomous
vehicles through an unregulated intersection, where the set of such platoons and their paths
are given in advance. The optimization goal in the problems that we study is to minimize
the maximum delay for any vehicle. We provide polynomial-time algorithms for constructing
such schedules for a k-way merge intersection, for constant k, and for a crossing intersection
involving two-way traffic. Our solutions are based on novel uses of dynamic programming
and parametric search techniques.

We also show that the more general problem of scheduling autonomous platoons through
an intersection that includes both a k-way merge, for non-constant k, and a crossing of two-
way traffic is NP-complete, via a reduction from the partition problem, which is known to
be NP-complete (e.g., see Garey and Johnson [13]).
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2 Definitions

An intersection may be modeled as a collection of incoming and outgoing traffic lanes,
together with constraints on which pairs of incoming and outgoing lanes can be used for
simultaneous traffic flows without interference with each other. Each platoon can be specified
by the incoming and outgoing lanes it follows, together with the times that the start and end
of the platoon would reach the intersection if no delays are imposed; by analogy to job shop
scheduling, we call the time at which the start of the platoon would reach the intersection
the release time of the platoon. The length of a platoon is the difference between its start and
end times. We require that the platoons initially occupy disjoint positions on each of their
incoming lanes (that is, on each lane, the start and end times of each platoon form disjoint
ranges of time) and that they remain disjoint throughout any valid schedule of traffic: two
platoons on the same lane cannot exchange positions. A platoon cannot be subdivided into
smaller units of traffic.

A schedule for such a problem can be described by specifying the time that each platoon
begins crossing the intersection, which we call the crossing time of the platoon. The time
that it finishes crossing is the crossing time plus the length. A schedule is valid if it meets
the following conditions:

Every platoon’s crossing time is on or after its release time. (Platoons can’t break the
speed limit to reach the intersection more quickly.)
For every two platoons on the same incoming lane, the crossing time of the second
platoon is on or after the release time plus length of the first platoon. (Platoons in the
same lane can’t pass each other.)
If two platoons are on incompatible pairs of incoming and outgoing lanes, the open
intervals between their crossing times and crossing times plus lengths are disjoint. (Cross
traffic should not collide.)

The delay of any platoon, in a valid schedule, is the difference between its crossing time
and its release time (equivalently, the difference between the time that the end of the platoon
finishes crossing in the schedule and the time that the end would finish crossing if there were
no delays). The delay of a valid schedule is the maximum of the delays of the platoons. Our
goal is to find a valid schedule with minimum delay. (See Figure 1.)

The main parameter in our analysis will be the size of a scheduling problem, which we
define to be the number of platoons and which we will usually denote by the variable n. In
some cases the analysis of our algorithms will also depend on the numerical resolution of
the input. If all release times are integers, then there necessarily exists an optimal schedule
in which the crossing times are also integers. In this case we define the length of a schedule
to be the maximum release time plus the sum of the lengths of all platoons. This number,
which we denote by L, provides a naïve bound on the maximum time required by a valid
schedule that does not introduce gratuitous delays.

3 Polynomial-time Algorithms

In this section, we provide algorithms for platoon scheduling, whose time bounds are either
strongly polynomial (i.e., with a runtime that depends polynomially on the number of pla-
toons, but not at all on the timing of the platoons) or polynomial (depending polynomially
on the number of platoons and on the number of bits of precision needed to specify their
timing). In contrast, algorithms whose running time includes terms proportional to the total
number of time units of the schedule are not polynomial.

ATMOS 2016



5:4 Scheduling Autonomous Vehicle Platoons

t = 0 t = 1 t = 3

Figure 1 At t = 0 platoon A, of length 3, reaches the intersection and begins to cross it. The
release time of A is 0 and it’s delay is also 0. Later at t = 1 platoon B arrives at the intersection;
its release time is 1 but it cannot cross immediately because A is in the intersection. Finally at
t = 3 B begins to cross, with delay 2. The delay of the overall schedule of these platoons is the
maximum of the delays of the two platoons, 2.

3.1 Parametric search
We will provide different algorithms for different intersection models, but they will all be
based on an algorithmic metaprinciple, the parametric search technique of Megiddo [20],
which allows us to convert decision algorithms (which answer whether or not there is a
schedule with a given delay) into optimization algorithms (which find a schedule with min-
imum delay).

More precisely, we define a decision algorithm for a platoon scheduling problem to be
an algorithm that takes as input a scheduling task and a parameter d, and tests whether
there exists a valid schedule whose delay is at most d. We require that the only use the
algorithm makes of its parameter d is to perform a comparison, d ≥ c, of d against another
number, c, calculated from the other input values (not including d). Intuitively, the decision
algorithm is allowed to test questions like “if this platoon were to cross now, would it cause
other platoons’ delays to exceed the given delay parameter?” We will use D(n) to denote
the running time for such an algorithm. However, as well as performing this algorithm
directly, with a numeric parameter d, we will also simulate the algorithm on a parameter
that is not given to it explicitly, by performing some alternative computation to replace the
comparisons with d. As a simple example, we have the following simulation.

I Lemma 1. If there is a decision algorithm (as described above) that either finds a valid
schedule with delay at most d or determines that no such schedule exists, in time D(n), then
there is also an algorithm that tests for a given d whether there is a valid schedule with delay
strictly less than d, in time O(D(n)).

Proof. We simulate the decision algorithm on the parameter d− ε, for an unknown number
ε > 0 that is smaller than the difference in delays between d and the best valid schedule. To
do so, every time the simulated algorithm needs to test whether d ≥ c, for some computed
number c, we substitute the result of the comparison d > c. J

Using this method of simulation, we can transform a decision algorithm into an opti-
mization algorithm, as follows.
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I Lemma 2. Let n denote the size and L denote the length of a platoon scheduling problem.
Suppose that there exists a decision algorithm (as described above) that takes time D(n) to
test whether there is a schedule whose delay is at most a given parameter d. Then it is
possible to compute a minimum-delay schedule in time O(min(D2(n), D(n) logL)).

Proof. We simulate the decision algorithm, as if it were given the (unknown) delay d∗ of a
minimum-delay schedule. To do so, we maintain an open interval (`, r) known to contain
d∗; initially (`, r) = (−∞,∞). Whenever the simulated decision algorithm performs a
comparison of d∗ with some comparison value c, we simulate the comparison by checking
whether c belongs to the interval (`, r), and (if it does) refining this interval to exclude t.
Once c lies outside (`, r), we can determine the relative orders of d∗ and c by comparing c
to ` and r.

To refine the interval (`, r) to exclude t, we choose a test value t within the interval, and
call both the decision algorithm itself and the modified decision of Lemma 1, recursively
with t as their parameters. If the two algorithms produce differing results, then t is the
optimal delay, and we half the simulation and return t. If they determine that there is a
valid schedule with delay less than t, we set r to t, and the new interval to (`, t). And if they
determine that there is no schedule with delay t or less, we set ` to t, and the new interval
to (t, r).

It remains to specify how to choose the test value t that we use to refine the interval. For
each simulated comparison with a value c within the interval, we perform at most two such
tests. The first one selects t to be the integer closest to the midpoint of the current interval
(`, r). If we refine the interval using that choice of t and determine that c still remains within
the interval, then we perform a second refinement with t = c. The first choice of t ensures
that the total number of refinement steps is O(logL), and the second choice of t ensures
that, after these refinement steps, c will be outside the remaining interval (`, r).

The simulated algorithm behaves discontinuously at d∗ (it returns a valid schedule for
larger values and a failure indication for smaller values). Because the only use it makes
of its parameter is to perform comparisons, the only way it can be discontinuous at d∗ is
to eventually perform a comparison in which the comparison value c equals d∗. When it
does so, the simulation will detect this equality and terminate the search with the optimal
delay. J

3.2 One-way crossings or Y merges
The simplest example of our scheduling algorithm arises for two one-way roads that cross
each other, with no platoons that turn from one road to the other. Each road has one
incoming and one outgoing lane of traffic, the only pairs of incoming and outgoing lanes
that are allowed to be used are the ones that stay on the same road, and traffic on one road
cannot cross the intersection simultaneously with traffic on the opposite road.

Although it describes a different configuration of streets, this model is mathematically
equivalent to one with two incoming lanes and one outgoing lane, forming a Y where the
two incoming lanes merge. The pairs of lanes that are allowed are formed by one of the
two incoming lanes together with the single outgoing lane. As before, it is not allowed for
platoons from both incoming lanes to cross the merge point simultaneously. Almost the
same mathematical model also applies to a T-junction of a minor two-way street onto a
more major boulevard, restricted so that left turns from or to the boulevard are disallowed:
right-turning traffic from the boulevard to the street, and through traffic on the far side of
the boulevard from the street, can both flow freely, as they cannot interfere with any other
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(a) (b) (c)

Figure 2 Three intersections that are mathematically equivalent in our model: (a) a crossing,
(b) a Y merge, and (c) a T-junction.

Figure 3 An example where crossing if possible is not always the best choice. Delaying the cross-
ing of the long platoon, until the short platoon has cleared the intersection, reduces the maximum
delay of the schedule.

platoons, and the remaining traffic has the same pattern as a Y merge. (See Figure 2.)
If we are trying to find a minimum-delay schedule, it is not always safe to allow a platoon

to cross, even when there is no platoon on the other incoming lane that can cross at the
same time. For example, consider the situation where one incoming road has a long platoon,
ready to cross, while the other incoming road has a short platoon that is not yet ready but
will reach the crossing soon. If we allow the long platoon to cross, the short platoon may be
delayed for an excessive amount of time while waiting for the long platoon to finish crossing.
On the other hand, if we delay the long platoon while we wait for the short platoon to arrive
and cross, the delay for these two platoons may be better, but the time until both platoons
have cleared the crossing will be longer, potentially causing greater delays for later platoons.
(See Figure 3.) Nevertheless, if we know the maximum delay that we are willing to tolerate,
we can apply a simple greedy algorithm that will either find a valid schedule with that delay
or determine that no such schedule is possible.

I Lemma 3. Let d be a delay parameter for a platoon scheduling problem with an intersection
configured as a one-way crossing or Y merge and with n platoons. Then an algorithm given
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d as a parameter can either find a valid schedule with delay at most d, or determine that no
such schedule is possible, in time O(n).

Proof. After each platoon finishes crossing the intersection, the algorithm selects between
the next two platoons, pi and pj , to arrive at the intersection (one on each of the two
incoming lanes), as follows. Let pi be the first of these platoons to arrive at the intersection
(choosing arbitrarily when they both arrive at the same time). If allowing pi to cross as soon
as it can would delay pj by at most d time units, then pi is allowed to cross next. Otherwise,
pj crosses next. If the resulting schedule has delay at most d, it is returned; otherwise, the
algorithm reports that no such schedule is possible.

Clearly, this simple algorithm takes time O(n) and, when it returns a valid schedule,
the schedule has delay at most d. It remains to show that, if a valid schedule S with delay
at most d exists, then our algorithm will succeed in finding a schedule (possibly different
from S) that also has delay at most d. We may assume without loss of generality that (like
our greedy algorithm) S schedules each platoon as early as possible given the ordering of
platoons across the crossing that it selects. We may also assume without loss of generality
that the hypothetical valid schedule S follows the same sequence of scheduling choices as
our greedy algorithm for as many steps as possible. We will prove by contradiction that,
with this assumption, S must actually equal our greedy schedule.

For, if not, S and the greedy schedule diverge at some point t in time, when two platoons
pi and pj are arriving on the two incoming lanes, S chooses one of them as the next to cross,
and our greedy algorithm selects the other one as the next to cross. Let pi be the first of
these platoons that our greedy algorithm considers as a candidate for the next one to cross.
Then our algorithm will only choose pj if it is forced to (because choosing pi would cause
an excessive delay to pj), and in this case S cannot choose pi for the same reason. So the
only way for our algorithm and S to differ would be for our algorithm to allow pi to cross
and for S to instead let pj be the next platoon to cross. But in this case let S′ be a schedule
modified from S by allowing pi to cross next, and otherwise keeping all platoons in the same
order given by S. The platoons that are disadvantaged by this change are pj and the other
platoons on the same incoming lane that immediately follow pj in schedule S, but their
maximum delay in S′ is at most d. For all remaining platoons, this change in schedule does
not cause any additional delays, because the total time until pi, pj , and the other platoons
following pj in the same lane have all crossed can only decrease because of the earlier release
time of pi relative to pj . So, like S, schedule S′ also has maximum delay at most d, but
it agrees with our greedy algorithm for one more step. This contradicts the choice of S as
the schedule that agrees with the greedy algorithm for as many steps as possible, and the
contradiction can only be resolved by S (a valid schedule with delay at most d) equalling
the greedy schedule. J

I Theorem 4. A minimum-delay schedule for a platoon scheduling problem with an inter-
section configured as a one-way crossing or Y merge and with n platoons can be found in
time O(min(n2, n logL)).

Proof. We apply the parametric search technique of Lemma 2, using the greedy algorithm
of Lemma 3 as the decision algorithm. J

3.3 Multiway merges
It is not clear how to extend our greedy scheduling decision algorithm even to 3-way merges.
For instance, consider a situation where a long platoon arrives on one incoming lane, some-
what earlier than two shorter platoons would arrive on two other lanes. Even if the long
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Figure 4 An example 5-way merge intersection.

platoon would not necessarily cause excessive delays to either short platoon by itself, allow-
ing the long platoon to cross might lead to a situation where neither of the two short platoons
can cross, because it would excessively delay the other one. Untangling these indirect effects
seems beyond the scope of the local decisions made by the greedy algorithm.

Nevertheless, we can find an optimal schedule for a k-way merge in polynomial time using
a somewhat more complicated dynamic programming algorithm. We model the intersection
as having k incoming lanes and one outgoing lane. The outgoing lane can be paired with
any incoming lane, but only one such pair of an incoming and outgoing lane can use the
intersection at any given time. (See Figure 4.)

We define a state of an intersection to be a situation in which some platoons have
completely crossed the intersection and some others still remain to cross, without there
being a platoon that is only partly across. For a scheduling task with n platoons and k

incoming lanes, there are O(nk) possible states that could occur. Any actual schedule for
this task can be represented as a sequence of n+ 1 states, starting from a state in which no
platoons have crossed and ending at a state in which all platoons have crossed. For any such
sequence of states, it is safe to allow each platoon to cross as early as possible, consistent
with the ordering of the platoons determined by the sequence of states.

I Lemma 5. For a k-way merge platoon scheduling problem as described above (with k

constant), and a given parameter d, it is possible to determine in time O(nk) whether a
valid schedule with delay at most d exists.

Proof. We use dynamic programming to find, for each state s, the earliest time td(s) that
it is possible to reach state s via a partial schedule in which the maximum delay of any
platoon that crosses the intersection within the partial schedule is d (or +∞ if no such
schedule exists). As a base case, for the state in which no platoons have crossed, td(s) may
be set to the earliest release time of any platoon.

For each state s, there are (at most) k states s1, . . . sk that could be the predecessor
of s in a valid sequence of states, obtained from s by omitting the last platoon to cross
on each of the k incoming lanes (if s includes a platoon that has already crossed on that
lane). A potential schedule for s may be obtained by choosing an incoming lane i, choosing
a schedule for si obtaining the earliest possible completion time td(si), and then allowing
the final platoon on lane i to cross at the maximum of td(si) and its release time. If this
potential schedule does not delay the platoon on lane i by more than d, it is valid. The
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Figure 5 A two-way crossing.

earliest completion time td(s) may be computed by finding all valid schedules of this type
and choosing one for which the final platoon finishes crossing as early as possible.

The overall algorithm loops through the states in a consistent ordering, chosen so that
for each state s the predecessor states si will all already have been looped through. For each
state s in this loop, it uses the computation described above to compute td(s). The time is
constant for each state, and there are O(nk) states, so the total time is O(nk).

A valid schedule for the whole scheduling task exists if and only if the state s representing
the situation in which all platoons have crossed has a finite value of td(s). J

I Theorem 6. A minimum-delay schedule for a platoon scheduling problem with an intersec-
tion configured as a k-way merge and with n platoons can be found in time
O(min(n2k, nk logL)).

Proof. We apply the parametric search technique of Lemma 2, using the dynamic program-
ming algorithm of Lemma 5 as the decision algorithm. J

3.4 Two-way crossing

Our most complicated single-intersection model has two roads with two-way traffic, crossing
each other at a single intersection, with no left turns allowed. There are four incoming
lanes of traffic paired with four outgoing lanes of traffic. Two pairs of lanes on the same
road as each other do not interfere (platoons of traffic traveling on these pairs of lanes can
simultaneously pass through the intersection without delays) but any traffic on one road
interferes with all traffic on the other road. (See Figure 5.)

As for the k-way merge, we define a state to be a situation in which some platoons have
completely crossed the intersection and some others still remain to cross, without there being
a platoon that is only partly across. There are O(n4) states, one for each way of selecting an
initial subset of the platoons on each of the four incoming lanes. Unlike the k-way merge,
however, a valid schedule for all the platoons does not necessarily have n+1 states, differing
from each other by a single platoon. Instead, the states can be guaranteed to occur within
a valid schedule only at times when the schedule switches from allowing traffic to cross the
intersection on one of the roads to allowing traffic to cross on the other road. Because the
parts of the schedule between two states are more complicated, the dynamic programming
algorithm for stringing together states into an optimal schedule is also more complicated.
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To be specific, we compute (as before) the minimum time td(s) at which a valid schedule
can reach state s, with maximum delay at most d on the platoons that cross the intersection
as part of state s. To compute td(s), we examine each state s′ that differs from state s only
by traffic on (all four lanes of) a single road. A valid schedule for s can be obtained from
the optimal schedule for s′ (the schedule that achieves completion time td(s′) by greedily
scheduling the remaining traffic by which s differs from s′, scheduling each platoon as soon
as it is released or otherwise available to cross the intersection, as long as this greedy
schedule also achieves maximum delay at most d. The optimal completion time td(s) is
the minimum, over all of the O(n2) potential predecessor states s′, of the completion time
obtained by appending this greedy schedule (whenever it is valid) to the optimal schedule
for s′.

I Lemma 7. Given a state s and a potential predecessor state s′, form a schedule for
s by appending a greedy schedule for the remaining cars to a schedule for s′ that obtains
completion time td(s′). Then it is possible to test whether the schedule for s obtained in
this way has maximum delay at most d, and to compute the completion time of the resulting
schedule, in time O(1).

Proof. By assumption, the part of the schedule for the platoons in s′ has maximum delay
at most d. Among the remaining platoons, the most heavily delayed will be the first ones
to go in the two lanes controlled by the greedy schedule. For each of these two platoons, we
can calculate its delay as max(0, td(s′)− ri) where ri is the release time of the platoon.

The completion time of the schedule is the maximum, over the two lanes controlled by
the greedy part of the schedule, of the end time of the last platoon plus the amount by
which that platoon was delayed. If the delay of the first greedily-scheduled platoon on the
lane is d, then the delay of the last platoon on the same lane is max(0, d−

∑
gi) where the

numbers gi are the gaps between the end time of one platoon and the start time of the next
platoon, for the platoons scheduled on that lane by the greedy algorithm. If we store the
prefix sums of the gaps, we can calculate the sum of the gaps for any contiguous interval of
platoons in constant time, by subtracting the prefix sum up to the first platoon from the
prefix sum for the last platoon. J

I Lemma 8. For a two-way crossing platoon scheduling problem as described above, and a
given parameter d, it is possible to determine in time O(n6) whether a valid schedule with
delay at most d exists.

Proof. There are O(n4) states s, O(n2) predecessor states s′ per state, and O(1) time to
perform the greedy scheduling algorithm that augments a schedule for s′ to a schedule for s.
Multiplying these terms together gives O(n6). J

I Theorem 9. A minimum-delay schedule for a platoon scheduling problem with an intersec-
tion configured as a two-way crossing and with n platoons can be found in time
O(min(n12, n6 logL)).

Proof. We apply the parametric search technique of Lemma 2, using the dynamic program-
ming algorithm of Lemma 8 as the decision algorithm. J

4 Hardness

In this section, we show that combining the two way intersection and multiway merge
versions leads to an NP-complete version of the problem. Specifically, let us consider a
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Figure 6 The intersection used in our hardness proof.

version of the problem where an arbitrary number of lanes are merging onto one outgoing
lane, one lane of traffic is going in the opposite direction, and one lane of traffic crosses these
two. The multilane merge and the lane of traffic in the opposite direction can both use the
intersection simultaneously, but neither of them can use the intersection when a platoon on
the third lane travels through the intersection. (See Figure 6.)

To precisely specify the MULTI-CROSS problem, we name the roads as follows:
The multiway merge has k incoming lanes m1,m2, . . . ,mk for some input parameter k
the street parallel to the multiway merge is a
the street crossing these two is b.

No two platoons one on mi and one on mj can enter the merge at the same time. If a
platoon on b is in the intersection, no other platoons can be passing through as well. The
platoons on a do not interfere with any platoon on an mi lane.

An instance of the MULTI-CROSS problem is defined by a value for k, a set of platoons
P = [(r1, s1, t1), . . . (rn, sn, tn)] assigned to the roads and their arrival and exit times at the
intersection (platoon pi is on road ri and arrives at the intersection at time si and would
exit the intersection at time ti if there is no delay), and a maximum delay parameter dmax.
The decision problem is to decide whether or not there is a schedule of the platoons through
the intersection such that no platoon experiences a delay more than dmax. Any schedule can
be simulated to check for validity and compute the maximum delay; hence, MULTI-CROSS
is in NP.

To show the MULTI-CROSS problem is NP-hard, we reduce the PARTITION problem
to it. The PARTITION problem is to given a multiset of positive integersX = {x1, . . . , x`},
decide whether or not they can be partitioned into two sets U and V such that

∑
x∈U x =∑

x∈V x. PARTITION is known to be NP-complete [13].
Given an instance of the PARTITION problem X, we build an instance of the MULTI-

CROSS problem as follows. Let q =
∑

x∈X
x

2 and set dmax = 2q + 1 and k = ` + 1.
We place one long platoon on a and one short platoon on b: p1 = (a, 0, 4(q + 1)) and
p2 = (b, 2q, 2q + 1). Then one other long platoon is placed on one of the multiway merge
lanes: p3 = (m`+1, q, q + 4(q + 1)). Finally for each integer xi ∈ X, place one platoon on
lane mi: p3+i = (mi, q, q + xi).
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I Lemma 10. If there is a valid partitioning of X, then there is a viable schedule with
maximum delay 2q + 1.

Proof. Let U and V be such a partitioning of X. Assign the platoons who correspond to
integers in U go through the merge first. Once the short platoon p2 arrives on road b have it
cross immediately. At this point platoon p1 will have been waiting for exactly q+ 1 units of
time and must cross immediately after p2. Simultaneously set the platoons associated with
the integers in V to merge. Finally once every other platoon has merged, send platoon p3
through the merge.

Platoon p1 has a delay of exactly 2q+1 in this schedule, p2 has a delay of 0, and platoon
p3 also has a delay of exactly 2q + 1. The platoons p4, . . . , p3+` all had delays less than
2q + 1. Therefore the maximum delay of this schedule is 2q + 1. J

I Lemma 11. If there is a schedule with maximum delay at most 2q + 1, then there is a
valid partitioning of X.

Proof. If any platoon blocks an intersection for more than 2q+1 units of time while another
platoon is waiting, then the maximum delay must be more than 2q+1. Therefore p1 cannot
go until p2 passes and p3 cannot go until p4, . . . , p3+` all go through the merge. Because p1
has been waiting for 2q time units when p2 arrives at the intersection, p2 must immediately
enter the intersection otherwise p1 will delay more than 2q + 1 time units. The platoons
p4, . . . , p3+` must all clear the intersection before time 3q+ 1 for p3 to enter the intersection
with a delay of at most 2q+1. They arrive at time q, have q time before p2 must go through,
and have q time after before p3 must go through. Therefore if it is possible to route these
platoons through their merge, then the two sets of platoons who go through the merge before
or after p2 each must sum to exactly q. So the two sets of integers these two sets of platoons
correspond to are a valid partitioning of X. J

I Theorem 12. The MULTI-CROSS problem is NP-complete.

Proof. By Lemmas 10 and 11, and our observation that MULTI-CROSS is in NP. J

5 Conclusion and Future Work

We have studied several scheduling problems for routing autonomous vehicle platoons
through an unregulated intersection, providing polynomial-time algorithms for the cases
of a k-way merge (for constant k) and for a crossing involving two-way traffic. We have also
provided an NP-completeness result for instances of the problem that involve a k-way merge
(for non-constant k) and two-way traffic. We leave as open problem to determine whether
the k-way merge version of problem for non-constant k is NP-complete or whether there is a
polynomial-time algorithm for solving this problem. In addition, we studied offline versions
of all these problems, and it may be interesting to study online versions, where the platoons
and their desired paths are not all known in advance.
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Abstract
We propose a new decomposition model and a multi-column generation algorithm for solving the
Locomotive Assignment Problem (LAP). The decomposition scheme relies on consist configura-
tions, where each configuration is made of a set of trains pulled by the same set of locomotives.
We use the concept of conflict graphs in order to reduce the number of trains to be considered in
each consist configuration generator problem: this contributes to significantly reduce the fraction
of the computational times spent in generating new potential consists. In addition, we define a
column generation problem for each set of variables, leading to a multi-column generation process,
with different types of columns.

Numerical results, with different numbers of locomotives, are presented on adapted data sets
coming from Canada Pacific Railway (CPR). They show that the newly proposed algorithm
is able to solve exactly realistic data instances for a timeline spanning up to 6 weeks, in very
reasonable computational times.
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1 Introduction

Rail transport is a very energy efficient means of freight transport. Compared to road
transport using trucks, it consumes substantially less energy. Consequently, in many countries,
governments are developing policies in order to encourage the use of trains for freight transport.
At the same time, at least in North America, freight railways have increasingly shifted toward
using longer, heavier trains to transport goods over the past 10 years, in order to not only
improve the efficiency of the rails by reducing the number of trains required to transport
goods, but also to reduce the crews needed and the fuel used to move their shipments.
One consequence is that more locomotives need to be assigned to a single train, and then
locomotive assignment becomes a critical problem in view of locomotive costs, and the
objective of maintaining the smallest possible locomotive fleet.

Management of a locomotive fleet includes the assignment of proper locomotives to each
train in schedule, satisfying the horsepower requirements, remotely relocating locomotives
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for the trains, and making sure to obey to the locomotive maintenance rules. In this paper,
we focus solely on the locomotive assignment problem. The set of locomotives that is used
to pull a given train is called a consist. Note that today, some railway industry use the
so-called distributed power trains, in which the locomotives are interspersed throughout the
full length of the train, cutting down on the in-train forces and making the near-boundless
vehicle easier to control. Beyond the distributed power system, a time-consuming process
is called consist busting. It corresponds to disassembling the consist of an inbound train
into stand alone locomotives and reassigning them to several outbound trains. It requires
additional labor, induces operational cost and time. It also reduces the robustness of the
train schedules because it allows an outbound train to get locomotives from multiple inbound
trains. If any of the inbound trains is delayed, the outbound train has to be delayed as well.
So consist busting should be avoided as much as possible.

We focus on the optimization of locomotive assignment problem (LAP), which aims to
optimize the locomotive fleet size to satisfy the horsepower requests of scheduled trains
and the other technical and business constraints. The objective of LAP is not only to
minimize the total number of locomotives in operation, but to view the locomotive manage-
ment as a whole, i.e., with the integration of the minimization of locomotive number and
operational/maintenance costs.

There are many solution methodologies proposed for locomotive assignment, including
exact mathematical models and heuristics. In this paper, we concentrate on the former part,
and the latter part can be found in the survey of Piu et al. [13].

Ziarati et al. [19] focus on LAP with heterogeneous consists, i.e., made of different types
of locomotives. In addition, the locomotive assignment also includes the need to perform
some maintenance shopping and outpost process. In order to get a feasible solution in a
reasonable computational time, Ziarati et al. decompose the original 1-week problem into
several sub-problems which have overlapping day between adjacent ones. Rouillon et al.
[14] improve the solution algorithm of Ziarati et al. [19] with different branching methods
and search strategies to develop a branch-and-price algorithm for LAP of a freight railway
on operational level. Ahuja et al. [1] develop a MILP for LAP of CSX Transportation
for a cyclic weekly train schedule. However, the maintenance process, i.e., routing back to
shop site for critical locomotive is not considered. The authors develop a neighborhood
search algorithm/heuristic to improve the performance for large scale data instances, with
no information on the accuracy of the output solutions. Ahuja’s model neither considers
locomotive maintenance nor consist busting issue. To avoid the issues of the model of Ahuja
et al. [2] (e.g., scalability and consist busting issues), Vaidyanathan et al. [18] focus on a
consist based assignment model, which assigns pre-configured consists to pull the scheduled
trains with respect to the minimum power and other business constraints. Their consist
based formulation uses a data set with 382/388 trains, 6 locomotive types, 87 stations, and 3
up to 17 types of consists in the test scenarios, without considering the maintance/shopping
constraints for locomotives.

There are also some model for similar problems. Cordeau et al. [6] propose a exact model
based on the Benders decomposition approach, for the locomotive and car assignment in
passenger transportation. Fügenschuh et al. [8] propose an ILP model for the locomotive
and car cycle scheduling problem with time window, which allow the train delay within given
time window. Cacchiani et al. [3] focus on the train unit assignment problem in passenger
transportation. A type of train unit includes a set of passenger cars with a supported
locomotive. It is self-contained and may fulfill one or part of a scheduled trip. They propose
two integer linear programming formulations, one with linear programming (LP) relaxation
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based heuristic, the other with Lagrangian relaxation based heuristic. None of these three
models consider maintenance constraint, neither for consist busting issue.

In our previous papers (Jaumard et al. [10] & [11]), we proposed a consist travel
plan(previously called train string) based optimization model, which includes all those con-
straints including maintenance, and consist busting constraints. The model can be efficiently
solved using large scale optimization techniques, namely column generation techniques, to
optimize the locomotive requirements and the operations including consist busting and the
deadheading. The resulting model can solve LAP with up to 1,394 scheduled trains and 9
types of locomotives over a two-week time period, over the railway network infrastructure of
Canada Pacific Railway. The computational time of the largest test scenario took more than
2 days.

In this paper, we propose to enhance the scalability of our previous work, throughout a
multi-column generation strategy.

Other authors have explored various strategies at different stages of column generation
algorithms, which can accelerate the computational time or the convergence rate. Firstly,
in the pre-processing stage, there are heuristics that can reduce the initial size of original
problem, e.g., for network flow problem, to eliminate arcs for the initial network (e.g.,
Mingozzi et al. [12]), to initialize with a good-enough solution (e.g., Sadykov et al. [16]), to
separate a large scale problem to smaller parts in time or space horizon, and merge them
after (e.g., Desaulniers et al. [7] ). Secondly, in the sub-problem stage, Chen et al. [4] use
some problem-specific knowledge to generate a column-pool a priori for the subproblem, and
allow selections of solutions from the pool. In column generation practice, some schemes
allow a subproblem to return multiple columns with negative reduced cost. Goffin et al. [9]
observe that the non-correlated columns selection increases the performance in the analytic
center cutting plane method. At the master problem level, Surapholchai et al. [17] develop
Eligen-algorithm that applies column elimination which removes columns with positive
reduced cost from the matrix. Saddoune et al. [15] use dynamic constraint aggregation to
reduce number of constraints and reintroduce them as needed are two general strategies.
Sadykov et al. [16] use a diversified diving heuristic to get feasible and good integer solution.

This paper is organized as follows. In Section 2, we generally describe LAP. Section 3
gives the details of LAP model. In Section 4, the solution scheme for the model is presented
with two enhanced schemes/algorithms. In Section 5, we analyze the numerical results.

2 Statement of LAP

The locomotive assignment problem (LAP) is to minimize the total number and/or cost of
assigning locomotives on existing trains while all the technical and business constraints are
satisfied. A locomotive fleet usually contains different types of locomotives, e.g., SD60 and
AC4400CW, each with its own parameters. We do not distinguish the locomotives of same
type, except for their maintenance status (regular or critical). A critical locomotive, i.e., a
locomotive due to maintenance, must stop at a shop for maintenance operations during the
given scheduled time period. A consist travel planis defined as a set of trains that use the
same locomotive consist one train after the other one, without any consist busting.

2.0.0.1 Multi Commodity Network

The present study focuses on reducing the size and time consumption of pricing problem
for the decomposition of LAP. As in our previous study [10], we convert LAP to a multi-
commodity network problem. The multi commodity network is a time/space network, see
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Figure 1 Multi commodity network.

Figure 1, where each node v is associated with station location, and time. The arcs represent
activities such as waiting periods, train travel between two stations (usually the origin and
the destination) or train maintenance, and commodities are the locomotives.

We now describe in detail the generic multi-commodity network G = (V,L) associated
with the overall set of locomotives. V denotes the set of nodes, indexed by v, where each v has
a space and a time coordinate. L is the set (indexed by `) where L = LT ∪Lshop ∪LW ∪LD
which represents train links, maintenance shop links, waiting links and deadheading links
respectively.

Among the nodes, we identify the so-called source and destination nodes as follows: V src:
indexed by vsrc, as the set of nodes where some locomotives are first available in the planning
period. vsink: dummy destination node, where all destination arcs converge. See the links
represented by the long dash lines in Figure 1 for an illustration.

3 LAP Model

3.1 Notations
S is the set of consist travel plans, where a consist travel plans ∈ S defines a sequence of
trains led by the same locomotive consist. Note that S =

⋃
v∈V

S+
v , where S+

v (resp. S−v )

denotes the set of consist travel plansoriginating at (resp. destined to) v.

K denotes the set of locomotives, indexed by k, which represents a certain locomotive.
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Each locomotive k is characterized by different parameters: the horsepower hpk, and the
subtype of regular (indexed by kr) and critical (kc).

Moreover, we use the following additional parameters to characterize the generated consist
travel plans:
nsk ∈ {0, 1}. nsk is equal to 1 if locomotive k belongs to consist travel plan s ∈ S, 0 otherwise.
nspare
k,v ∈ {0, 1}. nspare

k,v is equal to 1 if there is a spare locomotive k in starting node v ∈ V src,
0 otherwise.
ds` ∈ {0, 1}. ds` is equal to 1 if train link ` ∈ LT belongs to consist travel plans, 0 otherwise.
Note that ds` is not a decision variable, but an attribute of consist travel plans.
nspare
k,v ∈ Z+

0 . It is equal to the number of spare locomotives of type k in source node v ∈ V src.
Lastly, we have the following last general parameters:

cap(`shop) ∈ Z+
0 . It defines an upper bound on the number of critical locomotives that can

be maintained in shop link `shop ∈ Lshop.
TimeSrc(t),TimeDst(t) ∈ Z+

0 . They define the start and end times (in days) of train t,
counted from the start time of LAP scheduling period.

3.2 Variables.

We use three sets of variables:
zs ∈ {0, 1}: equals to 1 if ctp s is selected, 0 otherwise.
xneed
kv ∈ Z+

0 : number of additional required locomotives of type k at source node v ∈ V src in
order to be able to assign adequate locomotives to all trains.
xloco
k` ∈ Z+

0 : number of locomotive of type k going through waiting link ` ∈ LW ∪LD ∪Lshop.

3.3 Objective

We next develop the LAP optimization model we propose for the locomotive assignment. In
order to alleviate the presentation, we describe it without the legacy trains.

The primary objective is to minimize both the number of consist busting and the size of
the locomotive fleet. While the minimization of those two numbers seem to go in opposite
directions, the maintenance constraints force to withdraw locomotives from the tracks for
a short period, hence creating some avoidable consist busting. Moreover, if the locomotive
fleet is too small, depending of the train schedule, there might be a lack of locomotives in
order to be able to move all the trains. We therefore propose the following objective with
the minimization of: (i) the number of consist travel plans; (ii) the number of additional
locomotives, which reflects the number of trains that can not be assigned enough power; (iii)
the number of total locomotives in operation, (iv) the number of deadheading activities.

min
∑

`∈ω−(vsink)

∑
k∈K

penalk · xloco
k` +

∑
`∈LD

∑
k∈K

penalk · xloco
k`

+
∑
v∈V src

∑
k∈K

penalk xneed
kv +

∑
s∈S

∑
k∈K

nsk zs (1)

3.4 Constraints

The set of constraints can be written as follows.
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∑
s∈S+

v

nsk zs +
∑

`w∈ω+(v)

xloco
kLw +

∑
`w∈ω+(v)

xloco
k`D − xneed

kv ≤ nspare
k,v k ∈ Kr, v ∈ V src (2)

∑
s∈S+

v

nsk zs +
∑

`w∈ω+(v)

xloco
kLw +

∑
`w∈ω+(v)

xloco
k`D ≤ nspare

k,v k ∈ Kc, v ∈ V src (3)

∑
`∈ω−(vsink)

xloco
k` ≤ nk k ∈ K (4)

∑
s∈S+

v

nsk zs +
∑

`∈ω+(v) ∩ (Lwait∪LD)

xloco
k` =

∑
s∈S−v

nsk zs +
∑

`w∈ω−(v) ∩ (Lwait∪LD)

xloco
k`

v ∈ V \
(
V src ∪ vsink ∪ δ+(Lshop)

)
, k ∈ Kr ∪Kc (5)∑

s∈S+
v

nskr
zs +

∑
`∈ω+(v) ∩ (Lwait∪LD)

xloco
kr`

=
∑
s∈S−v

nskr
zs +

∑
`∈ω−(v) ∩ Lshop

xloco
kc` +

∑
`∈ω−(v) ∩ (Lwait∪LD)

xloco
kr`

v ∈ δ+(Lshop), k = {kr, kc} ∈ K (6)∑
s∈S+

v

nskzs +
∑

`∈ω+(v) ∩ (Lwait∪LD)

xloco
k` =

∑
s∈S−v

nskzs +
∑

`∈ω−(v) ∩ (Lwait∪LD)

xloco
k`

v ∈ δ+(Lshop), k ∈ Kc. (7)∑
s∈S+

v

nsk zs ≤
∑

`w∈ω−(v) ∩ Lwait

xloco
k` v ∈ V \

(
V src ∪ vsink ∪ δ+(Lshop)

)
,

k ∈ Kr ∪Kc (8)∑
s∈S+

v

nskr
zs ≤

∑
`∈ω−(v) ∩ Lshop

xloco
kc` +

∑
`∈ω−(v) ∩ Lwait

xloco
kr` v ∈ δ+(Lshop), k ∈ K (9)

∑
s∈S+

v

nskzs ≤
∑

`∈ω−(v) ∩ Lwait

xloco
k` v ∈ δ+(Lshop), k ∈ Kc (10)

∑
s∈S

ds` · zs = 1 ` ∈ LT (11)∑
k∈K

xloco
kc`shop ≤ cap(`shop) `shop ∈ Lshop (12)∑

k∈K

xloco
kLw = 0 `w ∈ Lw_in \ ω+(V src) : time(`w) < dwell_loco. (13)

Constraints (2) and (3) guarantee that we do not exceed the number of spare locomotives,
or, if we do it, it is with the minium number of additional (regular) locomotives, thanks to
the minimization of the third term in the objective.

Constraints (4) guarantee that, even if we allow the usage of additional locomotives, the
overall number of used locomotives can not exceed the size of the locomotive fleet, i.e., the
maximum number of locomotives of each type. Constraints (4) also serve the purpose of
deadheading locomotives, before either renting locomotives, or delaying a train.

Constraints (5), (6) and(7) are the flow conservation constraints for normal nodes and shop
end nodes, excluding the source and dummy sinking nodes. Note that critical locomotives are
relabelled as regular after completing the maintenance process at a shop node. Constraints
(8), (9), (10) take care of that relabelling in the flow conservation constraints. Constraints (11)
guarantee that each train should belong to exactly one consist travel planin the locomotive
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assignment. Constraints (12) limit the number of critical locomotives at any given time in
a maintenance shop. Constraints (13) guarantee that between any two consecutive consist
travel plans, there is a dwell time of at least dwell_loco (set to 2 hours in this study), for the
time required to bust and re-assemble locomotive consists.

4 Solution Process

4.1 CG Decomposition
The model described in the previous section, called Restricted Master Problem (RMP), is first
solved with an initial limited number of consist travel plans. A consist travel plangenerator,
so-called pricing problem in optimization, see, e.g., Chvátal et al. [5], create an improving
column, i.e., a consist travel planwhose addition improves the value of the linear relaxation
of the current restricted master problem, or concludes that the current solution of the
RMP is indeed the optimal solution of the linear relaxation of RMP. It then remains to
generate an integer solution, which can be done using an iterative rounding off procedure.
Such a procedure has proved to be effective in order to reach accurate ILP solutions, see
the numerical results in Section 5.2. So we use the simple rounding of process instead of
developing a more computational costly ILP solution method.

4.2 Enhanced Pricing Problem: Multiple Column Generation Based on
Reduced Network

For the CG decomposition process described in [10], the proposed algorithm can reach an
optimal solution but the time and space requirements are still high for large scale data sets.
For further improvement of CG, we introduce a key feature: a reduced network for each train,
which is the set of trains that can be connected by the waiting links, i.e., those trains can be
assigned to a consist travel planor consist travel plan. There is a two-stage pre-process to get
the reduced network of each train: firstly to cut off the un-used links from the time-space
network architecture for the given train, based on the time limitation, and then to remove
un-connectable trains.

In the CG process used in [10], each pricing problem (PP) (and there are as many as the
number of possible origins for a consist) uses the same data set of RMP and the same set
of dual values. In the newly proposed LAP model, we introduce the flexibility for each PP
to choose any train source node as the origin to build the consist travel plan and generate
a new column for RMP. While not fixing the origin of the consist generated in a given
PP offers more flexibility, it leads to more computational expensive PPs. However, this is
counterbalanced by the reduced time for checking the optimality condition. Observe that
in the original CG algorithm of [10], while each PP takes significantly much less time for
its solution, satisfying the optimality condition for an optimal LP solution requires solving
a whole sequence of PPs without being able to generate a single consist with a negative
reduced cost: this this is computational costly. Observe that we can generate more than one
consist with a negative cost when solving a given PP. In practice, we generated the one with
the most negative reduced cost, as well as potentially several other ones. // Re-using the
idea of reduced network and of conflict graphs introduced in [10], we wrote a more generic
PP than in [10]. Indeed, instead of rooting each PP to a given train, the generic PP selects
the leading train of the generated consist, and generates the associated reduced network. A
major advantage of such a PP leads to a much faster way to check whether the LP optimality
condition is satisfied,as it requires the solution of a single PP.
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In order to use the last feature in the newly proposed column generation, instead of considering
the overall set of trains in the multi-commodity network, we divide it (but not with a partition
scheme) into several overlapping reduced networks. Indeed, we break the original network
around some critical trains, and consider each time two cases, whether the consist will use or
not those critical trains. If we allow the consist to use a given critical train, we eliminate
those trains that are unreachable within a consist, leading to a reduced graph. In order to
generate a reduced network with only denied trains, the set of critical trains is selected in
such a way that, in any optimal solution, one of the critical train has to be selected and
embedded in a consist. This way, we generate a set of reduced balanced networks, that are
usually not train disjoint.

4.3 Pricing Problem: Multiple Consist Travel PlansGenerator

4.3.1 Multi-CG Model

Variables.
srcv ∈ {0, 1}. srcv is equal to 1 if a consist travel planunder construction starts at node v,
0 otherwise, for v ∈ δ−(LTc ). And same situation is applied to dstv for its end node.
x` ∈ {0, 1}. :x` is equal to 1 if link ` ∈ LT ∪ LW belongs to the path supporting any of the
consist travel plans, 0 otherwise.
nk` ∈ Z

+
0 . It defines the number of locomotives of type k going through ` ∈ LT ∪ LW . Note

that nk`t > 0 if and only if x`t = 1, but there is no such limit for nk`w .
Observe that the flow decision variables x` and nk` have no path index, as paths (consist
travel plans) are node-disjoint.

Objective.

cost =
∑

k∈Kr∪Kc

∑
`∈ω−(vsink)∩LW

nk`

−
∑

k∈Kr∪kc

∑
v∈V \(V src∪{vsink}∪δ+(Lshop))

u
(5)
kv ·

 ∑
`∈δ−(v)

nk` −
∑

`∈δ+(v)

nk`


−
∑
k∈Kr

∑
v∈δ+(Lshop)

u
(6)
kv ·

 ∑
`∈δ−(v)

nk` −
∑

`∈δ+(v)

nk`


−
∑
k∈Kc

∑
v∈δ+(Lshop)

u
(7)
kv ·

 ∑
`∈δ−(v)

nk` −
∑

`∈δ+(v)

nk`


+

∑
k∈Kr∪kc

∑
v∈V \(V src∪{vsink}∪δ+(Lshop))

u
(8)
kv ·

∑
`∈δ+(v)

nk`

+
∑

v∈δ+(Lshop)

u
(9)
k,v ·

∑
`∈δ+(v)

nk` +
∑

v∈δ+(Lshop)

u
(10)
k,v ·

∑
`∈δ+(v)

nk` −
∑
`∈LT

u
(11)
` · x`. (14)
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Constraints.∑
v∈δ−(LT∩c)

srcv ≤ 1 c ∈ C (15)

∑
v∈δ+(LT )

dstv =
∑

v∈δ−(LT )

srcv (16)

∑
`∈ω+(v)

x` −
∑

`∈ω−(v)

x` = −dstv v ∈ δ+(LT ) (17)

∑
`∈ω+(v)

x` −
∑

`∈ω−(v)

x` = srcv v ∈ δ−(LT ) (18)

∑
`∈ω+(v)

x` −
∑

`∈ω−(v)

x` = 0 v ∈ V \
(
δ+(LT ) ∪ δ−(LT ) ∪ V src ∪ vsink) (19)

∑
`∈ω−(v) & 6̀∈LT

x` = 0 v ∈ V src (20)

∑
`∈ω+(vsink) & ` 6∈LT

x` = 0 (21)

x` ≥ srcδ+(`) ; x` ≥ dstδ−(`) ` ∈ LT (22)∑
k∈Kr

hpk · nk` +
∑
k∈Kc

hpk · nk` ≥ x` · hpt `(≡ t) ∈ LT (23)

∑
k∈Kr∪Kc

nk` ≤M · x` ` ∈ L \
(
ω+(V src) ∪ ω−(vsink)

)
(24)

∑
k∈Kr∪Kc

∑
`∈ω−(v)∩ω+(v′)∩LW

nk` ≤M · srcv v ∈ V \ V src, v′ ∈ V src (25)

∑
k∈Kr∪Kc

∑
`∈ω−(vsink)∩ω+(v)∩LW

nk` ≤M · dstv v ∈ V \ vsink (26)

∑
`∈ω−(v)∪LW∪LT

nk` =
∑

`∈ω+(v)∪LW∪LT

nk` v ∈ V \ (V src ∪ vsink) , k ∈ Kr ∪Kc (27)

consist_sizemin ≤
∑
k∈Kr

nk` +
∑
k∈Kc

nk` ≤ consist_sizemax ` ∈ LT . (28)

Constraints (15) allow no more than 1 source node per conflict graph. Constraints (16)
guarantee that source nodes and destinations are the same amount. By these two sets, we
allow that in the pricing problem, each conflict graph has at most one complete consist travel
planwhich the source and destination nodes are both in it. So there is no complete consist
travel planin the intersection of any two or more graphs. But multiple destination nodes are
accepted in a graph. Constraints (17) are the flow conservation constraints for dvar x`, work
only on train source nodes, considering the source node dvar srcv. Constraints (18) are the
flow conservation constraints for dvar x`, work on train destination nodes, considering the
source node dvar dstv. Constraints (19) are the flow conservation constraints for dvar x`,
work on other nodes, except source nodes and dummy sink node, considering the source
node dvar dstv. Constraints (20) & (21) guarantee that the path/consist travel plancan
neither start from a station source node, nor end at the dummy sink node, otherwise the
model can build a path without letting any srcv = 1 or dstv = 1, based on the fact that
station source nodes and dummy sink node are artificial nodes and no train can use them
as sourcedestination nodes. Constraints (22) guarantee the train which source/destination
node is the start/end of a consist travel planmust be selected. Note that in our time-space
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networks, trains are node-disjoint. The first flow conservation set above, will generate some
paths, at most one per graph, and totally node-disjoint. This is the base for the next step to
assign locomotive flows over them without the path indices. Constraints (23) assign enough
power to each train selected by any consist travel plan. Constraints (24) guarantee that the
power should be only assigned to the paths we selected by the first set of flow conservation
constraints. Note that this set does not take effect on the waiting links from or to the
artificial nodes (station source node or dummy sink node). Constraints (25) allows only the
locomotive flows on the waiting links from the station source nodes to the source nodes of
selected path(s). Constraints (26) allows only the locomotive flows on the waiting links from
the destination nodes of selected paths to the dummy sink node. Constraints (27) are the
flow conservation constraints.Constraints (28) set the upper and lower bounds of consist size.
The second set of flow conservation constraints build the locomotive flows in order to assign
proper locomotives to each train selected by the first flow conservation constraint set. Since
the paths are node-disjoint, the flows do not need path indices. In addition, the flows are
only half-limited over paths: the paths must be covered, but it is possible to use unselected
waiting links to finish a flows from the "station" source node to the dummy sink node.

5 Numerical Results

The primary objective of this study is to provide a new optimization model and algorithm
for the real-life locomotive assignment problem. For this reason, computational results are
restricted to the CPR data sets, except for the larger data sets, which we generated to add
connectable and feasible trains to the existing train schedule. We now describe the data used
in the computational experiments, followed by a summary of computational results, and a
comparison with our previous LAP algorithm [10].

5.1 Data Instances

We use a set of 9 different types of locomotives, limiting our experiments to the most used
locomotives in the CPR fleet of locomotives. As requested by the mathematical model, the
number of types was doubled in order to distinguish the critical (about 20% of the overall
number of locomotives) from the non critical locomotives.

Data sets (adapted from CPR data sets) contain 862-train schedules over a time period of
7 days and 1,750-train schedule over a time period of 14 days. The maximum time period is
set to two weeks, as it offers for flexibility a better planning, taking into account the overall
travel times from a side of the railway network (e.g., Vancouver) to the other side (e.g.,
New-York). Indeed, a regular coast-to-coast train takes 5-7 days from East to West, so a two
week schedule allows the planning of a round trip for a set of train pair. For larger data sets,
we added 100 and 200 trains to each original CPR data set, while making sure that they can
share some consists with some of the other trains.

We run numerical experiments on an adapted train scheduling data and railway infras-
tructure of CPR. Data include train departure times and stations, train arrival times and
stations, and horse-power requirements. The railway infrastructure of CPR includes CPR’s
entire railway network (from Vancouver to Montreal, covering all of Canada and parts of
the United States), the type of locomotives in operation, and the location and capacity of
maintenance shops.

Programs/algorithms were run using CPlex 12.6.1 on a server with 40-cores, 1TB memory.
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Table 1 Computational Comparison of the Different CG Model/Algorithm

# of LAP LP Total Time ILP # Columns Round Req. GAP
Trains Model Obj. Obj. Generated Selected Loc. (%)
7-day, SCG 630,182 20h19m36s 637,980 2,207 516 4 962 1.24
862 SCG+ 11h03m21s

trains MCG 630,898 1h36m02s 635,500 1,543 506 155 961 0.73

+ SCG 675,010 23h22m53s 683,280 2,387 534 4 1,014 1.23
100 SCG+ 13h32m22s

trains MCG 674,918 2h13m05s 681,360 2,027 521 203 1,006 0.95

+ SCG 729,404 26h34m12s 737,320 2,507 541 4 1,129 1.09
200 SCG+ 14h38m55s

trains MCG 730,585 3h08m55s 735,520 2,325 533 233 1,109 0.68

14-day SCG 1,057,813 44h41m53s 1,077,100 1,835 1,294 4 1,289 1.82
1,750 SCG+ 26h29m31s
trains MCG 1,057,949 11h18m55s 1,071,300 1,263 1,284 127 1,290 1.26

+ SCG 1,113,992 50h58m21s 1,126,780 1,654 1,355 4 1,350 1.15
100 SCG+ 28h19m45s

trains MCG 1,113,926 12h50m21s 1,129,860 1,544 1,355 155 1,350 1.43

+ SCG 1,165,227 56h19m41s 1,178,880 1,853 1,345 4 1,464 1.17
200 SCG+ 31h17m56s

trains MCG 1,164,679 21h27m17s 1,185,140 1,727 1,317 173 1,481 1.76

5.2 Computational Comparison of the Different CG Models/Algorithms
In Table 1, we compare different solution scenarios, for each data set: the original CG
algorithm of [10] (marked as LAP-SCG), the original CG algorithm with PPs using the
concept of conflict graphs (marked as LAP-SCG+), and the newly proposed multiple column
generated (marked as LAP-MCG, and we set 10 columns per call of PP).

In Table 1, we provide the total computational times, the objective value of LP and ILP,
the number of columns that all PPs generated throughout the overall solution process, and
the number of columns selected in the final ILP solutions. The column rounds shows how
many times that all possible nodes are checked as the origin of PP. The second last column
contains the size of locomotive fleet that the final ILP solution recommends. The last column
shows the gap between the optimal LP solution and the ε-optimal ILP solution.

We can also observe that gap is very small in practice, close to 1%, sometimes even smaller
than 1%, meaning that the current multi-column algorithm outputs very good ε-optimal ILP
solution.

From Table 1, we can see that using the concept of conflict graphs can reduce the total
computational time by about half its value. The multi-CG algorithm can save another half
of the computational times, without reducing the quality of the final ε-optimal ILP solution.

5.3 Analysis of Multi-CG Architecture
From Table 1, we can see that the Multi-CG model reduces the computational times by about
70%. The first reason is that for each PP call, the Multi-CG algorithm converges faster than
the former CG from [10]: the Multi-CG model can select the consist with the best origin
node rather than comparing all best consists with a fixed origin node. The second reason
comes from allowing each PP call of the Multi-CG algorithm to generate several columns.
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Figure 2 Analysis of the computational computing times (CPU).

The third reason is that, even if each PP requires a longer computational time in the
Multi-CG algorithm, as showed in Figure 2(a) it can generate up to 10 columns, so the time
per column is much less, as showed in Figure 2(b).

6 Conclusions

The key contributions of the paper is a new CG architecture with the generation of multiple
columns per pricing problem, which can greatly reduce the CPU time of the original
LAP model. This multi-CG architecture can be used in CG associated with network flow
formulations for networks that can be decomposed into semi-independent conflict graphs
with some small overlapping. The multi-CG algorithm significantly increases the convergence
rate and decreases the average generation time per column, so reduces the total time for
reaching the final optimal or ε-optimal solution.

Acknowledgments. Special thanks to Mr. Peter Finnie, who kindly provides data set as
the former manager of yard metrics, capital projects, costing and operations research in
CPR.

References
1 R.K. Ahuja, J. Liu, J.B. Orlin, D. Sharma, and L.A. Shughart. Solving real-life locomotive-

scheduling problems. Transportation Science, 39(4):503–517, 2005.
2 R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms, and

Applications. Prentice-Hall, 1993.
3 V. Cacchiani, A. Caprara, and P. Toth. Models and algorithms for the train unit assignment

problem. In R. Mahjoub, V. Markakis, I. Milis, and V.T. Paschos, editors, Combinatorial
Optimization, volume 7422 of Lecture Notes in Computer Science, pages 24–35. Springer,
2012.

4 S. Chen and Y. Shen. An improved column generation algorithm for crew scheduling
problems. Journal of Information and Computational Science, 10(1):175–183, 2013.

5 V. Chvátal. Linear programming. A series of books in the mathematical sciences, 1983.
6 J.-F. Cordeau, F. Soumis, and J. Desrosiers. A benders decomposition approach for the

locomotive and car assignment problem. Transportation science, 34(2):133–149, 2000.



B. Jaumard and H. Tian 6:13

7 G. Desaulniers, J. Desrosiers, and M. M. Solomon. Accelerating strategies in column gen-
eration methods for vehicle routing and crew scheduling problems. Springer, 2002.

8 A. Fügenschuh, H. Homfeld, A. Huck, A. Martin, and Z. Yuan. Scheduling locomotives
and car transfers in freight transport. Transportation Science, 42(4):478–491, 2008.

9 J.-L. Goffin and J.-P. Vial. Multiple cuts in the analytic center cutting plane method.
SIAM Journal on Optimization, 11(1):266–288, 2000.

10 B. Jaumard, H. Tian, and P. Finnie. Locomotive assignment under consist busting
and maintenance constraints. Submitted, 2014. https://www.gerad.ca/en/papers/
G-2014-54.

11 B. Jaumard, H. Tian, and P. Finnie. Best compromise in deadheading and locomotive
fleet size in locomotive assignment. In 2015 Joint Rail Conference, pages V001T04A003–
V001T04A003. American Society of Mechanical Engineers, 2015.

12 A Mingozzi, M. A. Boschetti, S. Ricciardelli, and L. Bianco. A set partitioning approach
to the crew scheduling problem. Operations Research, 47(6):873–888, 1999.

13 F. Piu and M. G. Speranza. The locomotive assignment problem: a survey on optimization
models. International Transactions in Operational Research, 21(3):327–352, 2013.

14 S. Rouillon, G. Desaulniers, and F. Soumis. An extended branch-and-bound method for
locomotive assignment. Transportation Research. Part B, Methodological, 40(5):404–423,
June 2006.

15 M. Saddoune, G. Desaulniers, I. Elhallaoui, and F. Soumis. Integrated airline crew pairing
and crew assignment by dynamic constraint aggregation. Transportation Science, 46(1):39–
55, 2012.

16 R. Sadykov, F. Vanderbeck, A. Pessoa, and E. Uchoa. Column generation based heuristic for
the generalized assignment problem. XLVII Simpósio Brasileiro de Pesquisa Operacional,
Porto de Galinhas, Brazil, 2015.

17 C. Surapholchai, G. Reinelt, and H. G. Bock. Solving city bus scheduling problems in
bangkok by eligen-algorithm. In Modeling, Simulation and Optimization of Complex Pro-
cesses, pages 557–564. Springer, 2008.

18 B. Vaidyanathan, R.K. Ahuja, J. Liu, and L.A. Shughart. Real-life locomotive planning:
new formulations and computational results. Transportation Research, Part B 42:147–168,
2008.

19 K. Ziarati, F. Soumis, J. Desrosiers, S. Gelinas, and A. Saintonge. Locomotive assign-
ment with heterogeneous consists at CN North America. European Journal of Operational
Research, 97(2):281–292, 1997.

ATMOS 2016

https://www.gerad.ca/en/papers/G-2014-54
https://www.gerad.ca/en/papers/G-2014-54




The Maximum Flow Problem for Oriented Flows∗

Stanley Schade1 and Martin Strehler2

1 Zuse Institute Berlin
Takustr. 7, 14195 Berlin, Germany,
schade@zib.de

2 BTU Cottbus - Senftenberg,
Postfach 101344, 03013 Cottbus, Germany
strehler@b-tu.de

Abstract
In several applications of network flows, additional constraints have to be considered. In this
paper, we study flows, where the flow particles have an orientation. For example, cargo containers
with doors only on one side and train coaches with 1st and 2nd class compartments have such an
orientation. If the end position has a mandatory orientation, not every path from source to sink is
feasible for routing or additional transposition maneuvers have to be made. As a result, a source-
sink path may visit a certain vertex several times. We describe structural properties of optimal
solutions, determine the computational complexity, and present an approach for approximating
such flows.
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1 Introduction

1.1 Motivation
In many practical applications of network flows, the entities that are flowing have an ori-
entation. Consider for example a modern container terminal like the container terminal
Altenwerder1 in the port of Hamburg. The containers there are transported by automated
guided vehicles, which are centrally controlled and driverless. Thus, it is possible to operate
them back and forth without limitations, e.g., the direction of motion could be changed to
make a sharp turn. However, it matters to which direction the doors of the containers open.

At sea, to protect the cargo against wave impact and spray, the doors of a container
should point astern. At port, doors of containers should point towards the driveway to
be easily accessible, e.g., for custom inspections. Loaded on a truck, the doors should be
again at the back. Apart from these rules, the desired orientation may depend on other
side constraints. For example, refrigerated containers have to be positioned in reach of a
power supply. Usually, connectors are only on one side of the container and on one side
of the storing position. Furthermore, containers have different sizes, e.g., two twenty foot
containers may be placed on a forty foot container. As shown in the example in Figure 1, this
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7:2 The Maximum Flow Problem for Oriented Flows

Figure 1 Oriented flows occur, e.g., when handling containers at a terminal. The red paths are
shorter, but the desired orientation is not achieved. The green paths fulfill all requirements, but
detours or additional moves to change the orientation are needed. Considering several automated
guided vehicles carrying containers at the same time, i.e., the corresponding network flow problem,
the orientation constraints may cause a significant drop in the network’s capacity due to such extra
moves.

may lead to detours or transposition maneuvers while handling these containers to achieve
the desired orientations.

Another practical example is the orientation of railcars, where the orientation indicates,
e.g., whether the first or second class is at the beginning of a car and is relevant considering
seat numbering, rest rooms, or luggage compartments. At terminals, trains have to reverse
out of the station, thus, changing their orientation. These aspects are particularly relevant
in rolling stock rotation planning.

The considered applications surely involve dynamic aspects, but here, we are going to
study the underlying static flow problem. Regarding the corresponding static maximum
flow problem of this underlying routing problem, e.g., handling several containers at the
same time, also yields bounds to the performance of the network and the dual cut problem
enables to identify bottlenecks in the current infrastructure.

We can incorporate the orientation of containers by also equipping the flow units with an
orientation which indicates whether the doors of the corresponding transported containers
head into the direction of motion. It should be noted that this orientation of flow must not
be confused with the orientation of arcs. Each arc can only be used in the correct direction,
but flow particles on this arc may have both orientations.

1.2 Related work
The maximum flow problem is a well-known linear optimization problem. Even without the
use of the sophisticated tools of linear programming, one can easily determine an optimal
solution, which can be chosen to be integral if the capacities are integral, in strongly poly-
nomial time. There is a huge number of fast combinatorial algorithms available, see [9] for
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an overview. The optimality of a solution can be proven using a minimum source-sink cut
as demonstrated by Ford and Fulkerson’s max-flow min-cut theorem [6].

In the following, we will distinguish between combinatorial algorithms, e.g., algorithms
that are increasing the flow value on augmenting paths, and linear programming based
approaches. Of course, also the simplex algorithm for solving linear programs can be con-
sidered to be combinatorial, but it may have an exponential running time. Polynomial-time
algorithms for solving linear programs like the ellipsoid method or inner points algorithms
are rather purely numerical approaches. Nevertheless, combinatorially easy problems and
good polyhedral descriptions are closely related [14].

Tardos [15] presents a linear programming algorithm that is independent of the size of
numbers in the right-hand side of the constraints and in the objective. She concludes that
the maximum-value multi-commodity flow problem is solvable in strongly polynomial time
using linear programming. For the undirected case with two commodities a combinatorial
algorithm is known and there is a max-flow min-cut theorem which is similar to the one
for the single commodity case [10]. Also for this case, it is possible to find an half-integral
solution if the capacities are integral [10]. If, additionally, the vertices are even, an integral
solution can be found [13]. In general, finding an integral solution of the maximum-value
flow problem for two or more commodities is an NP-complete problem [5].

Furthermore, also single-commodity network flow problems tend to becomeNP-complete
when additional constraints are added. For example, if a length bound for the used paths is
added, it is even NP-complete to compute a feasible path decomposition out of a feasible
edge flow [2]. Confluent flows where the routing options in a vertex are limited cannot be
approximated with arbitrary precision in polynomial time [4]. Hence, the computational
complexity of the oriented flow problem is not clear a priori.

The routing of automated guided vehicles has been studied especially in a dynamic
setting [8]. The cycle embedding problem [3] is a subproblem that appears in rolling stock
rotation planning for railways. One first detects cycles (rotations) in a coarse graph, which
does not model orientations. The cycle embedding problem is to regain the same cycles in
a finer graph that correctly models orientations. If it is restricted to standard arcs, it can
be regarded as a special case of the directed oriented maximum flow problem in this paper.

1.3 Our contribution
In this paper, we equip network flows with orientations. In Section 2, we demonstrate how
we incorporate the orientations into the networks. Subsequently, we present the problem
formulation for the oriented maximum flow problem which uses a graph expansion to keep
track of the orientations. In Section 4, we examine the maximum oriented flow problem
with respect to properties of maximum-value single-commodity and multi-commodity flow
problems. In particular, we establish a dual bound and show that it is unlikely that there is
a combinatorial polynomial-time algorithm that solves the problem. Instead, we show that
there is a fully polynomial-time approximation scheme in Section 5.

2 Problem Input

As we want to incorporate orientations into the maximum flow problem, we require a flow
network N = (G, u, s, t), where G = (V,A) is a directed graph, u : A→ R+ is the capacity
function and s, t denote the source and the sink, respectively. Additionally, we define a
finite set S, the set of orientations and os, ot ∈ S, the orientation of the source and the
orientation of the sink. We also have to specify how the orientation changes at a vertex v.
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7:4 The Maximum Flow Problem for Oriented Flows

For every pair of an incoming arc e1 and an outgoing arc e2 of v, the orientation transition
function rv : δ−(v) × δ+(v) × S → 2S \ {∅}, rv(e1, e2, o) 7→ S∗ specifies the set of possible
orientations S∗ of the outgoing flow on e2 for the fraction of the incoming flow on e1 with
orientation o. Here, δ−(v) and δ+(v) denote the set of incoming and outgoing arcs of a
vertex v ∈ V , respectively. We collect the orientation transitions functions of all vertices
in R. The functions can also be given via a matrix representation. For each vertex v, we
have a (δ−(v)×S)×(δ+(v)×S) matrix with binary entries describing whether the transition
is possible.

I Definition 1. Given a flow network N = (G, u, s, t) and S, os, ot and R as described
above, N ∗ = (G, u, s, t, S, os, ot, R) is called an oriented network.

While the above definition is very flexible, it is also tedious to specify all required pa-
rameters. If there are just two orientations, i.e., |S| = 2, it is often more convenient to use
the following alternative definition of the orientation transition function. Declare a map
r̂v : δ−(v)× δ+(v)→ {−1, 0, 1} for each vertex v ∈ V (G) and let r̂v(e1, e2) specify whether
the orientation changes when the flow passes from e1 to e2. We define that 1 indicates no
alteration of the orientation, −1 indicates an alteration, and 0 means that the orientation
may be altered.

This is a restriction of the previous definition, e.g., let S = {+,−} and r̂v(e1, e2) = −1.
This can easily be modeled using rv by setting rv(e1, e2,+) = {−} and rv(e1, e2,−) = {+}.
But if the negative flow did not change the orientation when passing v, i.e., rv(e1, e2,+) =
{−} and rv(e1, e2,−) = {−}, this could not be modeled using r̂v, because the symmetry
is lost. However, such a situation did not occur in our container applications. That is,
there is no situation in which an AGV has to perform a motion that will result in a certain
orientation regardless of the initial orientation. Hence, the restricted orientation transition
may also suffice for modeling many other applications.

3 Graph Expansion Model

We propose a model that makes use of graph expansion to represent oriented flows. In this
model, every arc carries only flow of one orientation. Thus, the expanded graph, let us call it
G#, contains several copies of every arc of the original graph G, that stems from the oriented
network N ∗ = {G, u, s, t, S, os, ot, R}. Although these arc copies are distinct, they share a
common capacity. We shall call them partner arcs. A second kind of arcs will model the
orientation transition. Their head and tail correspond to the same vertex in G. Therefore,
we shall call them internal arcs. To avoid confusion, we make the following definition.

I Definition 2. A digraph is a tuple G = (V,A, h, t) that consists of the finite vertex set
V , the finite arcs set A and the functions h, t : A → V that associate each arc e ∈ A

with a head h(e) and a tail t(e). We require h(e) 6= t(e) ∀ e ∈ A and h(e1) = h(e2),
t(e1) = t(e2), e1, e2 ∈ A⇒ e1 = e2, i.e., we only consider simple digraphs.

I Remark. It is sufficient to consider simple digraphs, as loops or parallel arcs can be replaced
by two arcs and an artificial vertex that preserves the orientation.

Let us now specify in detail how to obtain an expanded graph G#. An example is provided
in Figure 2. We start with the set of partner arcs A#

P = A(G)×S. We define the projections
protoP : A#

P → A(G), (a, o) 7→ a and orient : A#
P → S, (a, o) 7→ o that map a partner arc to

its prototype or orientation, respectively. The arcs that share their capacity with a certain
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s0 t0

(s, et,+)

(et,+)

(v, et,+)

s tev

v

et es

Figure 2 Example of an orientation-expanded graph with two orientations (S = {+,−}). On the
left-hand side, the original graph with all arc capacities equal to 1, source orientation os = +, sink
orientation ot = −, and orientation transition functions r̂s(et, ev) = r̂t(ev, es) = 1 and r̂v(es, et) =
−1. On the right-hand side the corresponding expanded network is shown where the two orientation
layers are visualized by different arc colors (+: red, −: blue). To demonstrate our notation, the
red arc on the upper left and its incident vertices are labeled according to our definitions.

arc a ∈ A#
P are called the partners of a and we define partner(a) = {e ∈ A#

P | proto(e) =
proto(a)}. The vertex set of G#is defined as

V (G#) =
⋃

a∈A(G)

(
{h(a), t(a)} × {a} × S

)
∪ {s0, t0},

i.e., it consists of a super source and a super sink and the heads and tails of the partner arcs.
For a ∈ A#

P the head is given by (h(protoP (a)), protoP (a), orient(a)) and the corresponding
tail is (t(protoP (a)), protoP (a), orient(a)). In Figure 2, the partner arcs are depicted in red
and blue, since there are two orientations.

The black arcs in Figure 2 are the internal arcs. Before we can define the set of internal
arcs A#

I , we have to make a few preliminary definitions. The function protoV : V (G#) →
V (G), (v, ·, ·) 7→ v ∀ v ∈ V \ {s, t}, s0 7→ s, t0 7→ t associates every vertex of G#with its
prototype in G. Let us denote all vertices of G#that have the prototype v ∈ V (G) by a meta
vertex v# = {u ∈ V (G#) | protoV (u) = v}. We define δ−(v#) := {e ∈ A#

P | h(e) ∈ v#},
δ+(v#) := {e ∈ A#

P | t(e) ∈ v#}. Then, the set of internal arcs is

A#
I =

⋃
v∈V (G)

{(e−, e+) | e− ∈ δ−(v#), e+ ∈ δ+(v#),

orient(e+) ∈ rv
(
protoP (e−), protoP (e+), orient(e−)

)
}

∪ {(s, e+) | e+ ∈ δ+(s#), orient(e+) = os}
∪ {(e−, t) | e− ∈ δ−(t#), orient(e−) = ot}.

It remains to define the heads and tails of the internal arcs. For an arc of the form (e−, e+),
the head is t(e+) and, accordingly, the tail is h(e−). Therefore, it enables the flow to transit
from e− to e+. For an arc of the form (s, e+) the tail is the super source s0 and the head
is t(e+). Analogously, h(e−) is the tail of an internal arc of the form (e−, t) and the super
sink t0 is its head.

I Definition 3. Given an oriented network N ∗ = {G, u, s, t, S, os, ot, R}, we call the tuple
N# = (G# = (V #, A#

P ∪ A
#
I ), u, s0, t0), whose components are constructed as described

above, an expanded network. We call G the underlying graph of G#.

ATMOS 2016



7:6 The Maximum Flow Problem for Oriented Flows

The notion of an expanded graph enables us to formulate the maximum flow problem with
orientations as a linear optimization problem.

I Definition 4. Given an expanded network N# = (G# = (V #, A#), u, s0, t0) and its
underlying graph G = (V,A), the directed maximum oriented flow problem is given by the
following linear optimization problem:

max
∑

e∈δ+(s0)

f(e)

∑
e∈δ−(v)

f(e) =
∑

e∈δ+(v)

f(e) ∀ v ∈ V (G#) \ {s0, t0}

∑
e#:protoP (e#)=e

f(e#) ≤ u(e) ∀ e ∈ A(G) (1)

f ≥ 0.

Any feasible solution f ∈ RA#

+ of this problem is called an (oriented) flow of N#. It is
integral iff., additionally, f ∈ ZA# is true. The value of the objective function val(f) =∑
e∈δ+(s0) f(e) is called the value of f .

Hence, creating the structure of an expanded graph enables us to write the oriented max-
imum flow problem as an ordinary maximum flow problem with a coupling constraint (1).
Although this seems like a small difference, we will see that is significant. To conclude this
section, we show that the description provided by our model is efficient.

I Lemma 5. The number of arcs of the expanded graph G# is bounded by k2m2 + (k+ 2)m,
where m is the number of arcs of its underlying graph G and k = |S| is the number of
orientations.

Proof. We count the internal arcs within a meta-vertex v#, which is the set of all vertices in
G# that have the same prototype v ∈ V (G), except for the arcs that are incident to s0 or t0.
Note that every such arc connects an incoming partner arc of v# and an outgoing partner
arc. Therefore, their number is bounded by |S||δ−(v)||S||δ+(v)|. By the Cauchy-Schwartz
inequality and the relationship of the Euclidean norm and the Manhattan norm, we obtain
the following estimate:

|V |∑
i=1
|δ−(v)||δ+(v)| ≤

√√√√ |V |∑
i=1
|δ−(v)|2

√√√√ |V |∑
i=1
|δ+(v)|2 ≤

|V |∑
i=1
|δ−(v)| ·

|V |∑
i=1
|δ+(v)| = m2

The vertices s0 and t0 are connected to at most m vertices each and the number of partner
arcs is k ·m. Hence, there are no more than k2m2 + (k + 2)m arcs in G#. J

I Theorem 6. For a fixed number of orientations, the directed oriented maximum flow
problem can be solved in polynomial time.

Proof. There is a formulation as a linear optimization problem. The variables of the problem
correspond to the arcs of the expanded graph whose number is bounded by a polynomial of
the input size. J

I Remark. If we do not fix the number of orientations k, the problem can still be solved in
polynomial time in some cases. This depends on the encoding of the transition functions.
The transition functions map to 2S . If the values of the function are saved as k bits, the
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input size is greater than k and the problem can be solved in polynomial time. However,
for huge k, one may prefer to save the values of the functions as a list and, conceivably,
their number of elements could be bounded by some constant K ∈ Z+ for the values of all
transition functions. Then, we obtain a pseudo-polynomial running time.

4 Properties Of Oriented Flows

4.1 Integrality of Oriented Flows
I Lemma 7. The solution of an instance of the directed oriented maximum flow prob-
lem need not be integral, even if the capacities of the underlying oriented network N ∗ =
(G, u, s, t, S, os, ot, R) are integral.

Proof. Let G be the triangle with the vertices s, t and v and unit capacities. Choose
S = {+,−}, os = +, ot = −. Use ew to denote the arc that lies opposite to the vertex
w in the triangle for each w ∈ {s, t, v}. Then, we choose r̂s(et, ev) = 1, r̂t(ev, es) = 1 and
r̂v(es, et) = −1, that is the orientation only changes at v, see Figure 2. It is easy to verify
that there is a flow of value 0.5. Any quantity of flow that leaves s0 has to pass (ev,+).
So does any quantity of flow that enters t0 have to pass (ev,−). Using (1), we make the
following estimate: 2 val(f) ≤ f((ev,+)) + f((ev,−)) ≤ 1. Therefore, the oriented flow of
value 0.5 is maximum. J

I Remark. We will later show that the directed two-commodity maximum value flow problem
can be solved using a similar instance of the directed oriented maximum flow problem. Even
if the capacities for the former problem are integral, there may be no optimal flow which
is integral or at least half-integral [11]. In fact, finding an integral maximum-value two-
commodity flow is an NP-complete problem [5]. Thus, these properties are also implied for
the directed oriented maximum flow problem.

4.2 Flow Decomposition Theorem
The well-known flow decomposition theorem is a very useful tool and it can also be applied
to oriented flows.

I Theorem 8 (Flow Decomposition Theorem). If N# = {G#, u, s0, t0} is an expanded net-
work and G its underlying graph, the following is true for any oriented flow f of N#:
There is a family P of paths and a family C of cycles, both in G#, with associated weights
w : P ∪ C → R+, such that

f(e) =
∑

P∈P∪C: e∈A(P )

w(P ) ∀ e ∈ A(G#).

The number of paths and cycles that are required to obtain the above representation does
not exceed the cardinality of A(G#). Moreover, the weight function w can be chosen to be
integral if f is integral.

The full proof is not given here. However, the strategy is the same as for the proof for
ordinary flows (cf. [1]) because the capacity constraints are not used. Find an s0-t0 path or
a cycle that carries flow in the expanded graph using depth-first search and remove it, then
repeat. This procedure completely eliminates the flow on at least one arc or the excess of
the source and the sink in every step.
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7:8 The Maximum Flow Problem for Oriented Flows

4.3 Augmenting Paths

To check if a flow in an ordinary network is maximum, one usually considers the residual
graph and the residual capacity. A path in the residual graph is called an augmenting path
and its existence is a necessary and sufficient condition for the maximality of the associated
flow. In this section, we will introduce these notions for oriented networks. To make the
definition clearer, we will look at the crucial cases first.

Let N# = (G# = (V #, A#
P ∪A

#
I ), u, s0, t0) be an expanded network with the underlying

graph G = (V,A) and let f denote an oriented flow of N#. To make the exposition less
repetitive, all definitions in this subsection are referring to this N# and f , unless specified
otherwise. We look for a strategy to improve f with respect to the objective function of the
directed maximum oriented flow problem (Definition 4). A straightforward idea is to find a
path P from s0 to t0, such that it contains no arc with with a tight capacity constraint (1).
For a partner arc a# ∈ A#

P with the prototype a = protoP (a#), the constraint is tight iff.∑
e#∈partner(a#)

f(e#) = u(a).

As we will not consider such arcs, we can remove them from the residual graph. Additionally,
it should be possible that an augmenting path may use a partner arc or an internal arc a
that has a non-zero flow f(a) > 0 in the reverse direction. This models that the flow on a
can be decreased. Hence, we introduce a reverse arc a′, i.e., h(a′) = t(a) and t(a′) = h(a),
with the residual capacity uf (a′) = f(a) to model that we can decrease the flow on a using
a path. Note that the residual capacity is not shared for reverse arcs, nor do they have
partner arcs. To simplify the exposition, let A′(G#) be the set of reverse arcs of A(G#),
i.e., ∃ a′ ∈ A′(G#) : h(a′) = v, t(a′) = w ⇔ ∃ a ∈ A(G#) : h(a) = w, t(a) = v.

I Definition 9. The residual graph of G# with respect to f is the graph Gf with the vertex
set V (Gf ) = V (G#) and the arc set

A(Gf ) =A(G#) \ {a ∈ A#
P |

∑
e∈partner(a)

f(e) = u(proto(a))}

∪ {a′ ∈ A′(G#) | f(a) > 0}.

The residual capacity function uf : A(Gf ) → R+ is defined as following. For a ∈ A(Gf ) ∩
A(G#), we have uf (a) = u(a) −

∑
e∈partner(a) f(e). For a′ ∈ A(Gf ) ∩ A′(G#), we have

uf (a′) = f(a), a′ being the reverse arc of a. An augmenting path is an s0-t0 path in Gf .

I Definition 10. Let Gf be the residual graph of G# with respect to f and let uf denote
the residual capacity function. The function ϕf : A(Gf ) → R+ is a (feasible) residual flow
in N# iff. ∑

e∈δ−
Gf

(v)

ϕf (e) =
∑

e∈δ+
Gf

(v)

ϕf (e) ∀ v ∈ V (Gf ) \ {s0, t0}

ϕf (a′) ≤ uf (a′) ∀ a′ ∈ A(Gf ) ∩A′(G#)∑
e#∈A(Gf ): proto(e#)=a

ϕf (e#) ≤ uf (a) ∀ a ∈ A(G).

The value of ϕf is val(ϕf ) =
∑
e∈δ+

Gf
(s0) ϕf (e).
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t

ot = +

s0 t0

Figure 3 Network with orientations S = {+,−} and unit capacities. The right-hand side shows a
reduced version of the residual network after augmenting along s-w1-v1-v2-w2-t. The colors indicate
the orientation of the flow on the arcs. The dashed red arc does not belong to the residual network.
It needs to be unblocked, to obtain another augmenting path.

I Definition 11. The binary operation ⊕ takes an oriented flow f and a residual flow ϕf
of Gf and returns a function f ⊕ ϕf : A(G#)→ R with

f ⊕ ϕf (a) =


f(a) + ϕf (a) if a′ 6∈ A(Gf )
f(a) + ϕf (a)− ϕf (a′) if a ∈ A(Gf ) and a′ ∈ A(Gf )
f(a)− ϕf (a′) if a 6∈ A(Gf ) and a′ ∈ A(Gf ).

I Corollary 12. For a flow f and a residual flow ϕf in N#, the function f ⊕ ϕf of the
above definition is an oriented flow of value val(f ⊕ ϕf ) = val(f) + val(ϕf ) in N#.

I Lemma 13. Let P be an augmenting path in N#, then f is not of maximum value.

Proof. Let ε > 0 and choose ϕ(e) = ε ∀ e ∈ A(P ) and ϕ(e) = 0 ∀ e ∈ A(Gf ) \ A(P ).
Obviously, it fulfills the flow conservation constraint. We define a function ueff : A(P ) →
R+ \ {0} on the arcs of P . Let ueff(e) = uf (e) for e ∈ A(P ) ∩ (A#

I ∪A
#′
P ). If e is a partner

arc, we choose ueff(e) = uf (e)
|A(P )∩partner(e)| . Choosing ε = mine∈A(P ) ueff(e) assures that ϕ

fulfills the capacity constraint. Hence, it is a residual flow. Moreover, it is of positive value.
Therefore, f ⊕ ϕ is a flow of higher value than f and, consequently, f is not of maximum
value. J

The result of Lemma 13 is not very surprising; however, the converse does not hold. Consider
the sample instance given in Figure 3. The oriented network is given on the left-hand side.
By augmenting the flow along s-w1-w2-t and s-v1-v2-t by one unit each, one obtains an
oriented flow of value 2, which is maximum. However, if one decides to augment along
s-w1-v1-v2-w2-t in the beginning, one obtains the residual network on the right-hand side
of Figure 3. Here, a few vertices have been contracted to simplify the drawing. In this
case, there is no path from s0 to t0. To unblock the red dashed arc, which is not part of
the residual network, one has to shift the flow along the blue dashed cycle (which is part
of the residual network) first. In general, it is not clear along which cycles the flow has to
be shifted to improve towards a maximum flow. Therefore, this strategy does not lead to a
combinatorial polynomial-time algorithm and, in particular, the lack of an augmenting path
in the residual network does not prove the optimality of the corresponding oriented flow.

4.4 Distance Criterion
The dual problem of the ordinary maximum flow problem is the minimum cut problem.
However, since an optimal oriented flow can be fractional, even if all capacities are integral,
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7:10 The Maximum Flow Problem for Oriented Flows

s ! ! t s0 t0
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0.5
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0.5
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1

Figure 4 An oriented network with unit capacities and two orientation (+ and −). The source
and sink have a positive orientation. The vertices labeled with an exclamation mark negate the
orientation, all other vertices preserve it. The right hand figure shows the optimal flow in the
simplified expanded network. Assigning length one half to the dashed arcs and zero to all other
arcs gives a tight dual bound.

one can deduce that minimum cuts do not provide a tight dual bound. In this subsection,
we will inspect the dual problem of the directed maximum oriented flow problem, which is
similar to the dual problem of the maximum value multi-commodity flow problem (cf. [12]).

Let N# = {G#, u, s0, t0} denote an expanded network and G its underlying graph. Let
P denote the set of all s0-t0 paths in G#. We construct a matrix M ∈ ZA(G)×P

+ with

Me,P = #occurences of an arc with prototype e in P ∀ e ∈ A(G), P ∈ P.

We can now formulate the directed maximum oriented flow problem as

max
∑
P∈P

λP

s.t. Mλ ≤ u
λ ≥ 0

and its dual as

min
∑

e∈A(G)

u(e)ze

s.t. MT z ≥ 1

z ≥ 0.

Because any oriented flow can be decomposed into paths and cycles by the flow decomposi-
tion theorem and the cycles do not contribute to the value of the flow, this primal formulation
yields the same optimal value as Definition 4, although it may restrict the amount of feasible
solutions. The dual variables can be interpreted as a length function z : A(G)→ R+ on the
digraph G. Then, the constraints of the dual problem assure that no s0-t0 path in G# is
shorter than 1. Thereby, each partner arc has the length that is assigned to its prototype
by z. In other words, the constraints assure that the distance dist#

z (s0, t0) from s0 to t0 in
G# is at least one. Note that the dual variables can be scaled by 1/dist#

z (s0, t0) to ensure
this (unless the distance is 0). Therefore, we obtain the bound

dist#
z (s0, t0)val(f) ≤ zTu ∀ z ∈ RA(G)

+

for any oriented flow f in N#. This bound is tight by strong duality. An example is given
in Figure 4. If the three dashed arcs have a length of 0.5 and all other arcs have length zero,
the distance from s0 to t0 is 1. One obtains val(f) ≤ 3 · 0.5, which is a tight bound, since
the optimal flow shown on the right hand of the figure has value 1.5. An ordinary minimum
s-t or s0-t0 cut only gives an upper bound of value 2.

4.5 Relationship to Multi-Commodity Flow Problems
Consider a directed graph G = (V,A) with capacities u : A → R+ and two commodities
(s1, t1) and (s2, t2). We claim that we can find the flow of maximum total value in this
network using our formulation of the directed maximum oriented flow problem using the
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t1

t2
tb

!
ta

+

Figure 5 Construction to state the maximum-value 2-commodity flow problem as an maximum
oriented flow problem.

construction shown in Figure 5. We add an artificial source vertex sa and the vertex sb
that we use to split up the orientations. Similarly, we add tb and ta. The modified graph
G∗ contains the additional arcs (sa, sb), (sb, s1), (sb, s2), (t1, tb), (t2, tb) and (tb, ta) with a
sufficient capacity. (Say, for example, an estimate of the value of the total maximum flow
in the two-commodity network.) We have two orientations, S = {+,−}. The orientation
of the source and the sink is positive, osa

= ota = +. We set r̂sb
((sa, sb), (sb, s1)) = 1,

r̂sb
((sa, sb), (sb, s2)) = −1, r̂tb((t1, tb), (tb, ta)) = 1 and r̂tb((t2, tb), (tb, ta)) = −1. That is,

all flow that is emitted by s1 and absorbed by t1 has a positive orientation and, likewise, all
flow that is emitted by s2 and absorbed by t2 has a negative orientation. All other vertices
preserve the orientation, i.e., r̂v(·, ·) = 1 ∀ v ∈ V (G). This completes the description of the
oriented network N ∗. It is now easy to establish a one-to-one correspondence between an
oriented flow in the expanded network N# that we obtain from N ∗ and a two-commodity
flow (f1, f2) in the original network. In fact, since all vertices except for sb and tb preserve
the orientation, the expanded network decomposes into two independent parts, one that
carries positively oriented flow and one that carries negatively oriented flow. Both fulfill the
flow conservation constraint independently. Thus, we can directly regard them as f1 and f2
and the coupling constraint (1) becomes the capacity constraint of the two-commodity flow.

In Section 1.2 we introduced a distinction between polynomial time algorithms that are
combinatorial, e.g., the augmenting paths method for the maximum flow problem, and linear
programming based approaches like the interior points method, which rely on numerics. In
this sense, there is no known combinatorial polynomial-time algorithm for the directed
maximum-value two-commodity flow problem. In fact, Itai [11] showed that one can solve
general linear optimization problems using the directed two-commodity flow problem and
some combinatorial reductions. Hence, a combinatorial polynomial-time algorithm that
solves the directed maximum oriented flow problem would imply such an algorithm for
general linear optimization problems. Therefore, it seems unlikely that such an algorithm
exists for the directed maximum oriented flow problem.

5 Approximation

In the previous section, we argued why we do not expect that a fast combinatorial algorithm
exists for the directed oriented maximum flow problem. Nevertheless, it is still possible to
approximate the problem. In this section, we will apply a technique that is used by Garg
and Könemann [7] to approximate the multi-commodity flow problem and related problems.
Our presentation follows the exposition of their algorithm in [12].

The algorithm basically constructs a feasible solution of the dual problem (cf. Section 4.4)
and a primal feasible solution. It is then possible to relate the value of the obtained flow
with the optimal dual solution. In the beginning all arcs are assigned length δ. A shortest
source-sink path is found in every iteration. This path is used to route flow from the source
to the sink and the arc lengths along the path are increased. Once the obtained arc lengths
are feasible, i.e., the distance dist#

z (s0, t0) from the source to the sink in the expanded graph
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7:12 The Maximum Flow Problem for Oriented Flows

Algorithm 1: Modified algorithm of Garg and Könemann
Data: N ∗ = (G, u, s, t, S, os, ot, R), N# = (G# = (V #, A#

P ∪A
#
I ), u, s0, t0), 0 < ε ≤ 1

2
Result: A flow f that is approximately maximum (within a factor of 1 + ε)
Initialization: f ≡ 0 is an oriented flow of N#;
δ = (|V #|(1 + ε))−d 5

ε e(1 + ε);
z : A(G)→ R+, e 7→ δ is a distance function on G; // end of initialization
while dist#z (s0, t0) < 1 do

P ← shortest s0-t0 path in G# with respect to z;
P ′ ← {e ∈ A(G) | ∃e# ∈ A(P ) ∩A#

P : protoP (e#) = e};
foreach e ∈ P ′ do visits(e)← |{e# ∈ A(P ) | protoP (e#) = e}|;
u← mine∈A(P ′)

u(e)
visits(e) ;

// the following may lead to a violation of the capacity constraints
Increase f by u along P ;
foreach e ∈ A(P ′) do z(e)← z(e)(1 + ε · visits(e) · u/u(e)) ;

end
Scale f , such that no capacity constraint is violated anymore;

is at least 1, the algorithm stops. It is worth mentioning that the flow f that is obtained
during the iterations of the algorithm need not fulfill the capacity constraints. Instead, after
the last iteration, it is scaled such that the capacity constraints are fulfilled, that is by the

inverse of maxe∈V (G)

∑
e#:protoP (e#)=e

f(e#)
u(e) . A detailed listing is given in Algorithm 1.

To avoid a bare repetition, we refer to Garg and Könemann’s paper [7] and [12] for the
full proof of our our approximation result. Here, we only point out the modifications that
have to be made to apply their method to the directed oriented maximum flow problem.
In Algorithm 1, the length and capacity function are not defined on the expanded graph
G#, but its underlying graph G. That is, the algorithm basically runs on G and uses G#

only to determine the paths for routing. This is possible, since the algorithm of Garg and
Könemann does not consider commodities as such. It only takes possible source-sink paths,
along which the flow can be routed, into account. Thus, we can use the source-sink paths
given by the expanded network to determine the routes of the flow. The only problem that
arises is that, in the underlying graph, it may look as if a path uses an arc several times
because the flow may traverse an arc with different orientations. In this case, the length of
the arc in question is increased once and, for the capacity, one has to consider the original
capacity divided by the number of visits by the path.

I Theorem 14. Algorithm 1 returns an oriented flow whose value approximates the optimal
value within a factor of 1+ε and it runs in O( 1

ε2 |A(G)| log(|V #|)T ) time, where T is the time
required to compute a shortest s0-t0 path in G#. That is, there is a fully polynomial-time
approximation scheme for the directed maximum oriented flow problem.

6 Conclusion

Incorporating orientations into network flow makes the problem of computing maximum
flows slightly harder. The problem is still in P, but since the absence of an augmenting
path does not guarantee optimality anymore, there is no obvious combinatorial algorithm.
Oriented flows are often a subproblem, e.g., in a container terminal we also have to decide
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where to store the containers, in which order they are loaded on the ship, et cetera. Hence,
one the one hand, one will most likely use mixed integer programming or other sophisticated
techniques anyway. On the other hand, oriented flows are no obvious candidate for a de-
composition and a fast subroutine. The structure of oriented flows on undirected networks,
where we can also apply linear programming for solving, remains even more nebulous and
requires further investigations, since expanded networks are no successful approach in this
case. In further research, we will also study dynamic flow versions of this problem, since
many practical applications require a time dependent handling of flow units.
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Abstract
Most approaches for optimizing traffic signal timings deal with the daily traffic. However, there
are a few occasional events like football matches or concerts of musicians that lead to exceptional
traffic situations. Still, such events occur more or less regularly and place and time are known in
advance. Hence, it is possible to anticipate such events with special signal timings. In this paper,
we present an extension of a cyclically time-expanded network flow model and a corresponding
mixed-integer linear programming formulation for simultaneously optimizing traffic signal timings
and traffic assignment for such events. Besides the mathematical analysis of this approach, we
demonstrate its capabilities by computing signal timings for a real world scenario.
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1 Traffic signal settings for major events

Some major sporting events or gigs of celebrated musicians attract tens to hundreds of
thousands of supporters and fans. A venue in a downtown area is also a major challenge for
the transportation infrastructure. In inner-city traffic, intersections are the main bottleneck,
since crossing traffic has to obey traffic signals and the right of way, reducing the available
capacity significantly. Traffic signals either operate in a pretimed manner or they rely on
sensor data to switch adaptively. Anyway, common standard strategies for operating traffic
signals do not suffice to cope with the extreme traffic situations due to such mega events
since the traffic volume on some roads may exceed the normal traffic volumes many times.

In this paper we present an approach to optimize traffic signal timings for such mega
events in advance. That is, we compute optimal signal timings for inner-city traffic, where a
subset of commodities has very high demand and a common origin or a common destination,
respectively. The main objective is a fast reduction of the additional demand without
disrupting the normal traffic.

∗ This work was supported by the German Research Foundation (DFG, grant number KO 2256/2-1).

© Robert Scheffler and Martin Strehler;
licensed under Creative Commons License CC-BY

16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’16).
Editors: Marc Goerigk and Renato Werneck; Article No. 8; pp. 8:1–8:16

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2016.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de


8:2 Optimizing Traffic Signal Timings for Mega Events

1.1 Literature Overview
In practice, there exist various approaches to optimize traffic signal timings. Roughly one
can distinguish two main approaches. In pretimed signal settings, green and red phases
follow a fixed schedule and repeat periodically. Actuated timings use sensor data to react
on actual traffic.

The Traffic Signal Timing Manual [11] suggests to use pretimed signals when traffic de-
mands and patterns do not vary widely, when crossing roads carry a similar traffic load,
and when short distances between intersections allow a coordination of consecutive traf-
fic signals. Several approaches have been developed to optimize such coordinations. First
results date back to 1964, when Morgan and Little [16] presented a graphical method for
maximizing the bandwidth of a signalized road. This approach was later extended using
mixed integer programming [15]. First results for road networks were obtained by All-
sop [1]. Shortly after, Robertson [17] presented his theoretical work on offset optimization
based on a simplified simulation model and genetic programming which lead to the devel-
opment of TRANSYT. These early approaches did not consider route choice, but Allsop
and Charlesworth [2] demonstrated that coordination and assignment do interact. Since
then, besides several heuristic algorithms, only a few models using exact mathematical pro-
gramming techniques for optimizing coordination and assignment have been reported, e.g.,
[3, 14, 19, 20]. Recently, we presented a cyclically time-expanded network flow model to
address this task [8, 9, 10].

Actuated signal timings may perform well where detection is provided in locations with-
out nearby signals, rural areas or intersections of two arterials where traffic patterns vary
widely [11]. Depending on the used sensors, e.g., only stop-line detection or upstream-
downstream detectors and communication between signals, actuated or adaptive systems
can be subdivided into further categories. The most widely deployed adaptive system is
SCOOT (Split Cycle Offset Optimisation Technique, developed in the United Kingdom),
but there are several other systems in use like RHODES (Real Time Hierarchical Optimized
Distributed Effective System, using peer-to-peer-communication) or SYLVIA+ (widely de-
ployed in Germany). Recently, a new approach was presented by Lämmer [12]. The author
states stability as one of the main problems of all adaptive systems and he suggests an
underlying pretimed signal coordination to stabilize the system. Further, he states that an
adaptive system has to be run below saturated traffic demand to prevent degeneracy [13].
As a disadvantage, all adaptive systems need accurate detection systems, hence, initial and
maintenance costs are higher than that of other control types.

Transportation is considered to be one of the critical factors for the success of sporting
events like the Olympic Games in Rio de Janeiro in 2016 [18]. However, traffic signals in
particular are rarely studied in this context. The Traffic Signal Timing Manual ([11], see
Section 9.5) highlights the importance of adjusted timings for such situations and it suggests
to increase green times of (manually identified) arterial roads or corridors. Yet, automated
routines how to identify such arterials and how to set timings, also with respect to the
normal traffic, are not specified.

In contrast, most urban administrations seem to simply believe that actuated signal
control will suffice to cope with the additional traffic. Such adaptive signal timings are used
quite often, but to the best of our knowledge, there is no scientific justification and the
prerequisites contradict the proposals of the Traffic Signal Timing Manual. Unfortunately,
such high traffic volumes may lead to permanent requests for green on all incoming roads
of an intersection since all sensors are permanently triggered. In such situations, most
actuated signal timings behave like pretimed signals, but coordination between consecutive
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intersections is not present. Hence, a coordinated pretimed signal control anticipating the
upcoming traffic peak may perform much better than the standard traffic signal timings for
the daily traffic or actuated signal timings.

1.2 Our contribution
In this paper, we discuss how mega-events or evacuation scenarios can be integrated in
traffic signal control such that the extreme traffic volume is resolved in an optimized way.
We consider route choice simultaneously, i.e., roads and arterials to be used by the visitors of
such an event are not fixed in advance. Instead, we use an integrated approach to optimize
signal settings and traffic assignment simultaneously. Parameters under consideration are
offsets, split times and phase orders of the signals in the road network. Our approach uses
mixed integer linear programming techniques, hence, it also provides dual bounds on the
obtained solutions. We present numerical results for a real world scenario, namely a football
match in the city of Cottbus, Germany.

This paper is organized as follows. In Section 2, we present the basic model for optimizing
traffic signal timings and traffic assignment simultaneously. The modifications that are
necessary for coping with peak commodities are presented in Section 3. Afterwards, we
study the real-world scenario in Section 4. Finally, we close with a discussion of our results.

2 Basic model

Signal coordination requires the optimization of a large number of parameters. In the
simplest approach, we have to choose the beginning and the end of green times for each
turning direction at each signalized intersection of a road network with respect to several
constraints. Computing route choice at the same time adds time-dependent flow variables
and corresponding constraints for each arc and each commodity.

Recently, we presented a cyclically time-expanded network flow model [8, 10] for opti-
mizing signal coordination and traffic assignment simultaneously, which reduces the number
of variables significantly. In the following, we present the main ideas of this mixed-integer
linear programming model. However, it is not directly suitable for computing traffic signal
timings for situations with high peaks in traffic volume. Thus, we also describe an extension
of the model in the subsequent section.

2.1 Basic Model
Time-expanded networks have been used to study dynamic network flows since Ford and
Fulkerson introduced them in their seminal work about flows more than 60 years ago [4, 5].
However, the time horizon determines the size of the networks and corresponding approaches
lead almost directly to models of pseudo-polynomial size.

But inner-city traffic with traffic signals has a very high periodicity. Let Γ be the least
common multiple of all cycle times of signals in the road network, we can define a cyclically
time-expanded network.

I Definition 1 (Cyclically time-expanded network). Let G = (V,A, u) be a network with
capacities u : A→ N and non-negative integral transit times te for each e ∈ A. For a given
number k of time steps of length t = Γ

k , the corresponding cyclically time-expanded network
Gk = (V k, Ak, uk) is constructed as follows.

For each node v ∈ V , we create k copies v0, v1, . . . , vk−1, thus V k = {vt|v ∈ V, t ∈
{0, . . . , k − 1}}.
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s0 v0 t0

s1 v1 t1

s2 v2 t2

s3 v3 t3

s4 v4 t4

s5 v5 t5

v ts

Figure 1 A very simple example of a cyclically time-expanded network with three consecutive
nodes s, v, and t and k = 6 time steps. A traffic signal is installed at node v, a sample timing and
corresponding capacities (dashed: bi = 0, standard: bi = 1) of the outgoing links are shown. On
the right-hand side, an intersection of the unexpanded model with separate arcs for each turning
direction is shown.

For each link e = (v, w) ∈ A, we create k copies e0, e1, . . . , ek−1 in Ak where arc et
connects node vt to node w(t+[ tek

Γ ]) mod k. These arcs are called transit arcs and et has

capacity u(et) := u(e)
k and cost te.

Additionally, we add waiting arcs from vt to vt+1 ∀v ∈ V and ∀t ∈ {0, . . . , k − 2} and
from vk−1 to v0 ∀v ∈ V with cost Γ

k and infinite capacity to Ak.

Throughout this paper, we choose k = Γ, i.e., a time step is exactly one second long.
In our numerical experiments, this choice seems to be the best trade-off between accuracy
and calculation time. With larger steps of 2, 3, or even 5 seconds, the model is solved
much faster but solutions get worse. Especially steps of length 5 and larger may cause
conflicts, since minimum green times, clearance times, et cetera have to be rounded up to
multiples of the step length. Thus, one may not even find a feasible signal setting for a single
intersection that meets all the constraints. In contrast, shorter steps less than a second have
no significant impact on the objective value.

Commodities are expanded in the same way. Let Φ ⊂ V × V × R+ be the set of
commodities with ϕ = (s, t, d) ∈ Φ being a triple of a source (or origin) s, a sink (or
destination) t, and demand d. Here, d is scaled to Γ, that is, d denotes the amount of
flow starting during one cycle. For simplicity, we assume that traffic demand is uniformly
distributed over all copies of the original source. That is, the net outflow of flow of commodity
ϕ of each si, i ∈ {0, . . . , k− 1}, is d

k . However, flow may also directly use a waiting arc from
si to si+1. Each commodity may leave the network at an arbitrary copy ti of the original
sink t, i.e., we do not fix the net inflow of each ti, but the total inflow is d. Flow is now a
standard multi-commodity network flow fϕ : Ak → R≥0 ∀ϕ ∈ Φ in this network, obeying to
flow conservation at each node for each commodity separately and obeying the capacities in
total, i.e.,

∑
ϕ∈Φ fϕ(et) ≤ u(et) for all et ∈ Ak.

Traffic signals can now be modeled via variable capacities. For this purpose, each turning
direction at an intersection (cf. Figure 1) is represented by an arc which is expanded into
a set of k arcs as described in Definition 1. The capacity of these arcs is multiplied with
binary decision variables. Let e1 and e2 be two such arcs with capacities u1 and u2, then
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e1
0, . . . , e

1
k−1 and e2

0, . . . , e
2
k−1 are the arcs in the cyclically time-expanded network with

capacities u1
k and u2

k , and let b10, . . . , b1k−1 ∈ {0, 1} and b20, . . . , b2k−1 ∈ {0, 1} be the binary
decision variables. A signal for ei can now be realized by setting the capacity of arc eij to
bij
ui

k for all j ∈ {0, . . . , k−1}. Green at the same time for both signals can now be prohibited
by b1j + b2j ≤ 1 ∀j ∈ {0, . . . , k − 1}.

Yet, this is not a realistic timing and we have to link the binary variables, e.g., for
achieving only one period of green during one cycle. We introduce binary decision variables
Bi,onj and Bi,offj for each turning direction i and each time step j. Now, the (in-)equalities
bij−1 ≥ bij −B

i,on
j and

∑k−1
j=0 B

i,on
j = 1 guarantee only one switch to green per cycle at time

step ̂ with Bi,on̂ = 1. Similarly, the signal switches to red at time step ̂ with Bi,off̂ =
1. Several other requirements can now be modeled via linear constraints. For example
a minimum green time of x time steps is realized by

∑k−1
j=0 b

i
j ≥ x. For a more detailed

description, we refer to [10]. Now, this model allows the simultaneous optimization of traffic
assignment (multi-commodity flow) and traffic signal timings (coordination).

The main advantage of this approach is a rather low number of variables and a complete
linear model which allows the use of exact mathematical programming techniques and the
use of solvers like CPLEX or GUROBI, i.e., we can prove optimality of a solution or we
can at least provide dual bounds. Although the model is a linear one, we have shown that
it provides very realistic travel times and link performance functions, i.e., the raise in the
travel times is non-linear in relation to an increasing traffic demand [10].

As a disadvantage, the rolling horizon limits the total capacity. Whereas we can send
any desired amount of flow in a standard time-expanded network whenever the time horizon
is chosen large enough, flows in the cyclically time-expanded network may turn out to be
infeasible due to exceeded capacities.

2.2 Queues and Overload
Before we focus on very high demand and traffic load in the network, let us shortly describe
how queues and spillback are handled in the cyclically time-expanded model. When a signal
is red, i.e., the capacity of arc ei = (vi, wj) is set to zero, incoming flow to vi may either use
the waiting arc (vi, vi+1) or any other outgoing arc if there is one. Thus, instead of setting
the capacity of a waiting arc to infinity, a finite capacity can limit the amount of flow waiting
at a certain node. This may be interpreted as a limited queue length and parameters should
be chosen appropriately. Consequently, when the capacity on the waiting arc is reached,
flow already has to wait, i.e., use the waiting arcs, at the previous node. Thus, also spillback
may occur in the cyclically time expanded network.

Still, the total amount of flow that can be sent from a source s to a sink t is obviously
limited. In other words, we cannot store arbitrary amounts of flow at a node and we also
cannot store flow for more than one cycle at each node even when the waiting arcs have
infinite capacity. Eventually, all flow has to reach the sink. In contrast, considering peak
traffic after a mega event, already the first signalized intersection can be the main bottleneck
and most road users will not pass it during the first cycle.

3 Coping with congested roads

In this section, we consider additional event commodities Θ ⊂ V × V × R+. As a first
difference, the demand of these commodities is not scaled to a time unit and flow does not
start uniformly distributed over time. Instead, the entire demand d of ϑ = (s, t, d) enters the

ATMOS 2016



8:6 Optimizing Traffic Signal Timings for Mega Events

cyclically time-expanded network at the first copy s0. Due to the limited outflow of s0, the
flow of this commodity will use several consecutive waiting arcs (si, si+1). Given a feasible
flow, the draining time of commodity ϑ is Γ i

k with i = min{j ≥ 0 : fϑ((sj , sj+1)) = 0}. In
other words, it is the time until the last flow unit has left the source.

Unfortunately, the demand of the event commodities will be too high to be drained
during one cycle and the flow will turn out to be infeasible in many cases. Of course, it is
possible to extend the cyclic expansion to multiple cycles, i.e., the cyclic time span is αΓ
for some integer α and αk time steps. However, this foils several advantages of the cyclic
model like the rather low number of binary variables. Increasing α, the computation time
increased more than linearly in our numerical experiments. The main reason, however, is
the lack of a good guess for α. It is not known a priori how much time is needed to drain
the whole demand of the event commodities. Hence, there is also no reasonable choice for α
which also depends on signal settings. Nevertheless, we will use this approach to compute
travel times in a second step once the best choice for α is known and signal timings are
optimized.

Before we can do this, we need another method to optimize signal timings in a first step.
To cope with high traffic volumes and bottlenecks due to traffic signals, we introduce overload
edges in the following subsection. Since these overload edges are suitable for optimizing the
signal timings, but they do not provide the correct travel times, total travel time and final
route choice are computed in the second step as mentioned above.

3.1 Implementing overload edges
The intended use of overload edges is to provide additional network capacity such that
a feasible flow can be found. Furthermore, the remaining flow which is not using these
overload edges should reproduce an realistic traffic load in the network which is important
for calculating signal timings.

Here, we make the following assumptions. Firstly, overload edges start at the nodes
where a signal reduces the total capacity of the outgoing edges, since these are the main
bottlenecks. Secondly, overload edges have to remove traffic from the original network. If
overload edges bring flow back into the network somewhere else, it loads edges that would
not have been loaded in the original network, since the flow would have been locked in front
of the bottleneck. Thirdly, the costs have to be chosen carefully. If costs are too low, flow
directly uses overload edges. If costs are too high, flow takes unrealistic long detours in the
network to avoid these expensive edges. Furthermore, the costs have to reflect the remaining
distance to the sink. Flow should not use the first available overload edge. Instead, it should
stay in the original network until the actual bottleneck is reached.

For this purpose, we define overload edges as follows.

I Definition 2. Let ϑ = (s, t, d) be an event commodity from s to t and let S ⊆ V be
the set of nodes where signals are present. The set of overload edges of commodity ϑ is
Aϑ = {(v, t) : v ∈ S ∪ {s}}. The cost of an overload edge from v ∈ S to t is given by
t(v, t) + nΓ where t(v, t) denotes the travel time of a shortest path from v to t and n is the
number of signalized nodes w ∈ S on this path. Overload edges have infinite capacity.

Thus, overload edges connect each node with a signal directly to the sink and they are
exclusive for each commodity. The shortest paths in G can easily be computed by a reverse
Dijkstra’s algorithm starting at the sink of the event commodity. Here, the cycle time is
assigned to each traffic light edge as cost. Thus, also the travel time on overload edges is
obtained easily.



R. Scheffler and M. Strehler 8:7

Since we are interested in solutions where the normal traffic is not blocked by the event
traffic, we do not introduce overload edges for the standard commodities. Flow of the
standard commodities is not allowed to use any overload edge. Overload edges are cyclically
time-expanded like any other edge yielding the subset Akϑ ⊆ Ak of overload edges for each
event commodity ϑ. Due to the overload edge from s to t for each event commodity, we can
state the following result.

I Lemma 3. Each instance of network flow in the cyclically time expanded network with
standard commodities Φ, event commodities Θ, and overload edges for each ϑ ∈ Θ is feasible
if it is feasible for the standard commodities Φ.

The choice of travel times on overload edges also guarantees the following property.

I Theorem 4. Let vi-tj be a path in Gk, such that the underlying v-t-path is a shortest
path in G. If the vi-tj-path has a residual capacity greater than zero for a cost minimal
multi-commodity flow fϑ : Ak → R≥0, ϑ ∈ Θ, then fϑ((vq, tr)) = 0 ∀ϑ ∈ Θ with sink tϑ = t

and for all overload edges (vq, tr) with q, r ∈ {0, . . . , k − 1}.

Proof. The vi-tj-path has cost lower than t(v,t) +nΓ, since it may use at most k−1 waiting
arcs at each of the n signals of length Γ

k . Thus, if there would be flow on the overload edge
(vq, tr) in the optimal solution, the value could be improved by rerouting flow from (vq, tr)
to the vi-tj-path. J

In other words, flow remains on reasonable paths in the standard cyclically time-expanded
network as long as possible before switching to an overload edge.

3.2 Optimization procedure
Optimization of signal timings and traffic assignment is carried out in two steps. After
adding overload edges for all event commodities ϑ = (sϑ, tϑ, dϑ), the cyclically time-expanded
network Gk is created as described in Definition 1 with rolling time horizon Γ. Traffic signals
and corresponding constraints are added. The resulting mixed integer linear program is
solved with a standard solver. This yields a simultaneous optimization of traffic signal
timings and traffic assignment in the cyclically time-expanded network with overload edges.

Afterwards, we determine the ratio between flow in the network and flow on the overload
edges for each commodity. We set

α =
⌈

max
ϑ∈Θ

dϑ
dϑ −

∑
e∈Ak

ϑ
fϑ(e)

⌉
.

In other words, at least a fraction of 1
α of each commodity reaches the sink without using

overload edges. Thus, if the network is completely blocked by the standard commodities
and the event commodities only use overload edges, no feasible solution exists and we set
α = ∞. For α < ∞, we cyclically time-expand the original network without overload edges
with time span αΓ and αk time steps in the second phase of the optimization procedure,
obtaining a network Gαk. Again, event commodities ϑ ∈ Θ start at the first copy of the
original source, but standard commodities (sϕ, tϕ, dϕ) ∈ Φ start uniformly distributed over
the whole time span αΓ with dϕ

k flow units entering the network at every time step. Fur-
thermore, we canonically transfer the signal timings obtained for Gk to Gαk, that is, we
repeat the sequences α times. This yields a network with α-times the capacity for the event
commodities, hence, we can conclude the following theorem.
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I Theorem 5. If α <∞, there exists a feasible multi-commodity flow for commodities Φ and
event commodities Θ in the cyclically time-expanded network Gαk (without overload edges).

Since all binary variables are fixed in the corresponding programming formulation ob-
tained from Gk, we now have a standard multi-commodity flow problem in Gαk to solve.
This yields an optimized assignment in Gαk without using any overload edges.

Please note that α can be infinite, when all the flow of one event commodity only uses
overload edges. In this case, the network does not provide enough capacity, i.e., we cannot
find a reasonable solution to drain the event commodities without blocking the standard
commodities. Moreover, the optimal assignment still depends on α. Considering the pro-
jection of the flow from Gk into G, i.e., computing the underlying static traffic assignment
by ignoring the time component, there may be differences between the projections of Gk
with overload edges and Gαk as well as between the projections of Gαk and G(α+1)k. Due
to space limitations, we have to omit an example.

3.3 Additional modeling issues

If several overload commodities start at the same source s, we force the optimization to
distribute the flow over the overload edges (s, tϑ) according to the fraction of the demand
of the commodity to the total demand at this source. Let d∗ be the total demand of
all commodities originating from s and let f∗ be the total flow over overload edges from
source s, then the flow fϑ((s, tϑ)) on overload edge (s, tϑ) of commodity ϑ = (s, tϑ, dϑ)
has to fulfill fϑ((s, tϑ)) = dϑ

d∗ f
∗. The main reason for this condition is a uniform shift

of flow to overload edges. In reality, we assume the traffic of the different commodities
to be uniformly distributed in the queue, hence, there is no preference who has to wait.
Without this constraint, the optimization will prefer sending traffic with a greater gap
between overload cost and normal cost to the normal network and commodities with a
smaller gap will disproportionately often use the overload edges. Note that this additional
constraint may imply that Theorem 4 holds only for at least one commodity, but it no longer
holds for all commodities.

The normal traffic of the standard commodities Φ can be considered as in the standard
model, i.e., they are subject to rerouting. However, some road users may be aware of the
mega event, others are not. We use the following approach to integrate this base traffic
volume in a more realistic way. Firstly, traffic assignment of the normal commodities Φ is
optimized for the standard signal timings, that is, there is no mega event and we compute a
base case. Secondly, each commodity ϕ ∈ Φ is split into two commodities. The first one (the
unaware road users) uses the same relative path decomposition as the original commodity
in the base case, that is, their routes are fixed. In contrast, the assignment of the second
commodity (the knowing) is completely re-optimized together with the new signal timings
and the event commodities Θ. The percentage of the split has to be given as a predefined
parameter.

4 Numerical results

We will now present a numerical case study of our traffic signal optimization scheme for
mega events. To this end, let us have a look on the city of Cottbus, Germany, and a
match of the local association football team on a Saturday afternoon. Cottbus is a city with
about 100,000 inhabitants and we consider the whole inner-city with about thirty signalized
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Figure 2 The Cottbus network with source s at the "Stadion der Freundschaft", destinations 1,
2, and 3 of the three football commodities, and about 30 signalized intersections. Minor roads in
housing areas et cetera are not shown.

intersections. The road network is presented in Figure 2 and the underlying scenario was
already presented in previous work [10].

Figure 2 also shows the location of the football stadium, which holds up to 20,000
spectators. For football matches, many supporters from the surrounding rural area arrive
by car. In the following, we assume three football commodities (Θ) to leave the stadium after
the end of the match, headed towards the three major roads leading out of Cottbus. The
demand of each commodity is around 300 cars. Furthermore, we use 17 standard commodities
(Φ) to represent the normal traffic on a Saturday afternoon. Corresponding to the rather
low traffic volume at this time, the total demand of these commodities is scaled to 100 cars
per minute. Please note, that 900 cars in total may not sound ‘mega’ at first glance, but the
traffic volume of the event commodities is about 100 times higher than the average demand
of the standard commodities. Furthermore, 900 is a realistic number of cars, since most
cars are used by three or four persons, local spectators arrive by foot, and supporters of the
visiting team usually arrive by train. The common cycle time of the network is Γ = 90s.
Accordingly, we use k = 90 time steps of one second for the cyclic time-expansion.

Using CPLEX 12.6, we are now going to compute and compare the following scenarios.
Firstly, we determine the base case. This is an optimal signal timing computed for the 17
standard commodities, that is, no football match is happening. We will test this fixed signal
timings for the three football commodities and for all 20 commodities together. Thus, we
estimate the draining time using overload edges. Then, we calculate average travel times
and the draining time in a sufficient cyclically time-expanded network as described in the
previous section. In both cases, we apply complete re-routing of all standard commodities,
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Table 1 Average travel times and draining times for combinations of signal settings and demands.
Travel times are given in seconds, draining time is given in multiples of the cycle time Γ. Travel
times are computed in G27Γ, G6Γ, and G10Γ, respectively.

signal setting average travel times for draining time

standard football total
standard football

base 225.46 253.33 225.86 256.88 26.31
football offset 288.22 156.53 290.66 159.86 26.31
total offset 225.71 225.73 225.87 227.13 26.31
football split - 149.57 - - 5.78
total split 242.27 170.52 242.83 174.46 9.62

that is, all road users are aware of the match and the increased traffic volume around the
stadium.

Secondly, we re-optimize offsets for both cases, the three football commodities alone and
all 20 commodities together. This optimization is carried out in the cyclically time-expanded
network with one cycle and overload edges. The restriction to offsets reduces the number
of binary variables significantly, since a lot of binaries can be fixed. Thus, solutions can be
obtained faster and the gap is smaller in most cases. On the other hand, re-optimizing only
offsets does not resolve bottlenecks. Thus, one should expect a reduced average travel time,
especially for the three football commodities, but the draining time will only be slightly
affected. To compare, we also compute the travel times and draining times for all pairs of
demands and signal timings, that is, we also compute the consequences when timings and
demand do not match. Again, this final travel time calculation is done in the cyclically
time-expanded network with multiple cycles.

Thirdly, we also re-optimize split times and phase orders on all routes used by the
football commodities. Doing so for the three football commodities should reduce the draining
time significantly. However, when considering only these three commodities, we may create
bottlenecks for the 17 standard commodities. In other words, the total demand of these 17
commodities could not be routed with this signal timing due to short green splits. Hence,
we also calculate optimal signal timings for all 20 commodities. This should yield a slightly
higher draining time, but all standard commodities can reach their destinations.

4.1 The base case
The base case signal timings are computed as described above. Introducing overload edges
the estimate for draining all demand is α = 27 cycles for the three football commodities as
well as for all 20 commodities. The obtained average travel times (in seconds) and draining
times (in multiples of Γ) are presented in Table 1 (signal setting base).

Please note that the average travel time for the three football commodities in Table 1
is the time spent in the standard network, i.e., it does not include the waiting time at the
source s. These costs are taken into account in the draining time. Thus, the total average
travel time for the event commodities is around 1400 seconds.

The standard commodities are only slightly decelerated. The increased traffic volume
only yields an increase of about 1 percent in travel time. On the other hand, since the
progressive signal timings for these commodities are still in effect, a very significant increase
would have been surprising.



R. Scheffler and M. Strehler 8:11

4.2 Optimizing offsets
Offsets are now re-optimized with help of the cyclically time expanded network model with
overload edges. Since the 17 standard commodities in the base case use routes which will
be partially used by the three football commodities as well, already the base case should
provide a rather good signal timing for the football commodities.

Nevertheless, as can be seen in Table 1 (signal settings football offset and total offset),
offset optimization can reduce the average pure travel time of the football commodities by
nearly 40 percent. However, when optimization only considers the football commodities
(football offset), the travel time of the standard commodities is increased by 30 percent.
Considering both football and standard commodities in the optimization (total offset), we
can reduce the travel time of the football commodities by 10 percent compared to the base
case. Surprisingly, the travel time of the standard commodities in this case is nearly the
same as in the base case.

Again, average travel time in Table 1 only accounts for travel and waiting times in the
network. The time which is spent before the first link is entered does not add to the average
travel time, but it is indirectly accounted for in the draining time. As expected, offset
optimization can only improve the travel times, but draining times are unaffected. Thus,
the total average travel time for the football commodities is still around 1300 seconds when
including the waiting time at the source s.

4.3 Optimizing split times and phase orders
Finally, we also re-optimize split times and phase orders. The results are presented in
Table 1 in the rows football split and total split. As expected, the specifically for the football
commodities optimized signal timings (football split) do not provide a feasible solution for
the standard commodities, because bottlenecks are created and there is not enough capacity
available due to short green phases. Hence, one should always consider all commodities
in practice. Yet, focusing only on the football commodities yields a solution, where the
additional traffic is drained four times faster compared to the solution with fixed split times.
Also the average travel time is improved.

To guarantee feasibility, signal timings are optimized for all commodities in a final run
(total split). Of course, the very short draining time cannot be maintained, but the event
commodities are still drained three times faster than in the base case solution. Also the
average travel time for the football commodities is significantly reduced compared to offset
optimization. Surprisingly, this solution also means an increase in travel time of only seven
percent for the standard commodities compared to the base case.

Overload edges were introduced, since a good choice for α was not known. After comput-
ing traffic assignments in both the network with overload edges and the extended network
GαΓ, we can now compare the travel times in Table 2 to evaluate the accuracy of the model
with overload edges. In other words, flows in GΓ and GαΓ should behave the same. Since
there are only slight differences, the travel times and the traffic assignment in GΓ with
overload edges is a reasonable prediction about the situation in a classically time-expanded
network without these overload edges.

The resultant traffic assignment for the scenario total split is shown in Figure 3 and 4.
Here, we sum up all traffic volumes over time, i.e., the figures correspond to a projection of
the dynamic traffic into the static network. In this example, there is hardly any difference
between the projection from GΓ with overload edges and GαΓ without overload edges besides
the overload edges themselves. Thus, we only present the figures for GΓ.
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Table 2 The cyclically time-expanded network model with overload edges slightly overestimates
travel times compared to the expansion with multiple cycles. Here, average travel times in GΓ refer
only to flow in the actual network, travel times on overload edges are disregarded.

average travel time in seconds in
GΓ with overload edges GαΓ without overload edges

total offset standard 232.56 225.87
total offset football 228.69 227.13
total split standard 244.24 242.83
total split football 181.19 174.46

Figure 3 Traffic volumes of the three football commodities in the scenario total split (the 17
standard commodities are not shown). Colors encode the traffic density with respect to the total
demand of the football commodities (gray: no traffic; green: very low traffic; red: about 20 % of
the total demand use this road). The first commodity to t1 uses three different routes. Moreover,
other routes were used in the other scenarios.
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Figure 4 Total traffic volumes of all commodities in the scenario total split. Colors now encode
traffic density regarding the total demand of all commodities. Yet, the increased traffic volume due
to the football commodities is clearly visible.

Furthermore, we present an example of the signal settings of the intersection at node s.
In Table 3, the green intervals of the original coordination and of the signal settings football
split and total split are shown.

Summarizing, we have found signal timings for this football scenario, which hardly in-
fluence the base traffic, but which lead the additional event traffic towards its destinations
very efficiently. In practice, one has two switch to these new timings for only about 15 to 20
minutes to drain the stadium. In contrast, leaving the old signal timings in place will stress
the road network with additional traffic for more than 45 minutes. Observe that these times
nearly linearly increase with the demand of the event commodities. That is, doubling the
number of cars will cause about a doubled draining time.

5 Discussion

Concluding, the results of Section 4 provide evidence that optimizing pretimed signals for
mega events can significantly improve traffic flow and reduce traffic congestion. With help of
the optimized signal timings, not only travel times can be reduced in the presented real-world
scenario, but also the duration of this exceptional traffic situation is shortened by around
70 percent. We had to introduce overload edges for two reasons: computing a bound on
draining time and creating a work-around for the strict capacity constraints in the cyclically
time-expanded network flow model. Comparing the predicted travel times in the network
with overload edges to travel times in the network GαΓ with increased time horizon, the
extension with overload edges seems to be a suitable approach to find very good signal
timings for such mega events.

The supposed model can also be used to compute signal timings for evacuation scenarios,
e.g., to evacuate cities as fast as possible in case of a nearby forest fire or volcanic activity.
For this purpose, the standard commodities Φ can be ignored and timings are just computed
for the exceptional commodities as in the scenario football split.
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Table 3 Green intervals at intersection s for different coordinations. The football commodities
arrive from the left and the corresponding splits are increased in both football scenarios. The road to
the right leads into a residential area, splits are reduced. Observe that also phases are significantly
re-arranged.

turning green intervals at intersection s

direction standard football split total split

Traffic simulation with the multi-agent simulation tool MATSim, developed by TU Berlin
and ETH Zurich, also reveals the good performance of our approach for signal optimization,
but we have to omit these results here due to space constraints.

In future developments, we will investigate whether it is possible to re-optimize signal
timings of only a few intersections near to an exceptional traffic event like an accident in a few
seconds to also provide optimized reactions to unexpected events. Furthermore, pedestrians
were not considered so far. On the one hand, traffic signal coordination is hardly possible for
pedestrians, since the comparatively high ratio of distance and differing speeds causes very
high deviations in travel time between consecutive intersections. Without a tight estimation
of arrival times at traffic signals, something like a green wave does not exist. On the other
hand, pedestrians are indirectly incorporated in minimum green times and clearance times
of traffic signals. For example, a minimum green time of traffic light for cars can be at least
as high as the clearance time of the parallel pedestrian signal. Since the considered events
involve an greatly increased number of pedestrians, parameters like the minimum green
times could be included in a simultaneous or parallel optimization process to also improve
the convenience for pedestrians.
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Abstract
We present an application of Integer Programming to the design of arrival routes for aircraft in a
Terminal Maneuvering Area (TMA). We generate operationally feasible merge trees of curvature-
constrained routes, using two optimization criteria: (1) total length of the tree, and (2) distance
flown along the tree paths. The output routes guarantee that the overall traffic pattern in the
TMA can be monitored by air traffic controllers; in particular, we keep merge points for arriving
aircraft well separated, and we exclude conflicts between arriving and departing aircraft. We
demonstrate the feasibility of our method by experimenting with arrival routes for a runway at
Arlanda airport in the Stockholm TMA. Our approach can easily be extended in several ways,
e.g., to ensure that the routes avoid no-fly zones.
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1 Introduction

Air transportation experienced significant growth over the last decades, and the International
Air Transport Association (IATA) projected that the number of passengers will double to
reach 7 billion/year by 2034 [1]. On the one hand, this reflects a healthy economic and
technological development, on the other hand, the increased volume of air traffic poses many
challenges. The Terminal Maneuvering Area (TMA), i.e., the area surrounding one or more
neighboring aerodromes, is particularly affected by congestion. Thus, designing arrival and
departure procedures in the TMA to allow for a high throughput is crucial for handling
higher and higher volumes of air traffic.

One of the main challenges in route planning for air traffic management (ATM) is brought
by the central role of humans-in-the-loop: the planes in the air are constantly monitored
and guided by air traffic controllers (ATCOs) taking the highest level of responsibility for
safe separation between aircraft (in contrast with other types of transportation—e.g., cars
on roads are a fully distributed system). This imposes additional constraints on the route
design—the aircraft following the flight paths should give rise to "low complexity" traffic
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patterns and avoid creating conflict points where human attention would be constantly
needed to resolve the potential loss of separation between the aircraft.

At most airports predesigned standard routes for departure and arrival are established.
Currently, these Standard Instrument Departures (SIDs) and Standard Terminal Arrival
Routes (STARs) are designed manually. This design is based on the airspace layout and
incorporates constraints like avoidance of no-fly zones, manageability by ATCOs, and others.
However, the manual design will generally not result in optimal routes for any specific criteria.

1.1 Problem description and Results
In this paper, we present a mathematical programming framework for finding optimal STAR
merge trees. As part of the input to the problem, we are given locations of the entry points
to the TMA, and the location and direction of the airport runway. In the output we seek an
arrival tree that merges traffic from the entries to the runway, i.e., a tree that has the entries
as leaves and the runway as the root (contrary to the common convention, we assume that
the edges of this arborescence are directed from leaves to root).

The novelty of the considered problem is that the merge tree must take into account a
set of operational constraints imposed on the STAR:
1. No more than two routes merge at a point: Points where routes merge require elevated

level of attention from the controllers, and thus traffic complexity around the merges
should be kept at a minimum [12]. This translates to the requirement that every vertex
of the tree must have in-degree less than or equal to 2.

2. Merge point separation: Having two merge points very close to one another (even if at
each of the points only two paths merge) effectively creates a small zone with several
routes merging together—which is, again, undesirable for control. Thus, it is required that
the separation between any two merge points is larger than a given distance threshold L
[12].

3. No sharp turns: Aircraft dynamics impose a limit on the angle at which the routes can
turn (bank angle) [4, p. 61]. We thus require that the turn from a segment of a route to
the consecutive segment is never smaller than a given angle threshold α. If we would allow
arbitrarily short edges this would still allow to simulate a sharp turn with a sequence of
many short edges. Hence, we obtain the limited turning angle by combining the parameter
α with the limit, L, on the minimum length for any edge [8]. We assume that the runway
is the last segment of every route: this way, the turn onto the runway must also be larger
than α—the aircraft must align with the runway before the touchdown.

4. Obstacle avoidance: The routes should not pass over a specified set of regions (we do not
digress into the specific nature of the obstacles—they may be no-fly zones, noise-sensitive
areas, etc.).

5. STAR–SID separation: Since TMA traffic consists of aircraft arriving to and departing
from the same airport, it is unavoidable that the STARs and SIDs cross; to alleviate the
potential conflicts between in- and outbound flights (and relieve ATCOs from constantly
solving the conflict-free scheduling problem by delaying or speeding up the planes), the
STAR–SID crossings should happen far from the runway, where the arriving and departing
planes are sufficiently separated vertically due to the difference of descend and climb
slopes [4, p. 25]. We thus require that SIDs are not crossed by STARs closer than a given
distance d from the runway. Note that we assume that the SIDs are given in the input:
arriving traffic is slower and thus has more room for maneuverability; in addition, it was
confirmed with the practitioners that, e.g., in Stockholm TMA (our guinea pig), current
SIDs are satisfactory while the STARs are in need of improvement.
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1.1.1 Objective functions
It is natural to seek STARs featuring short flight routes for aircraft. Thus, one objective
function in our optimization problem is the total length of the routes from the entry points to
the runway. At the same time, the STAR tree should "occupy little space"—both from the
ATCO perspective (to minimize attention attraction area), and to avoid spreading the noise
and other environmental impact of aviation over the larger region. This can be modeled
by requiring that the produced tree has small total length of the edges.1 We consider both
objectives, and call them paths length and tree weight respectively (these shorter names
better emphasize the difference between the objectives).

We explore the Pareto frontier of our multicriteria optimization problem: we output
a set of Pareto optimal solutions – those that cannot be improved with respect to one of
the objectives without sacrificing on the other. (In particular, from the Pareto frontier,
it is easy to obtain the solution optimizing any linear combination of the two objectives.)
Our development may thus be viewed as a decision support tool, presenting the airspace
designers with a set of options to choose from, and helping the decision makers in quantifying
tradeoffs between the route length and complexity of the solution (exploring such tradeoffs is
standard in multi-criteria optimization, and has been studied also in ATM, e.g., with respect
to airspace capacity estimation [7]).

Note that if we compute a tree with minimum tree weight that complies with operational
constraints 1 and 3, we would compute a minimum Steiner tree, that guarantees degree 3 for
Steiner nodes and an angle of 120◦ between edges incident to such a node. If we add the
operational constraint 2—the initial version we are interested in—we obtain a generalized
version of the minimum Steiner tree problem (L = 0 representing the original problem).
Thus, as the minimum Steiner tree problem is NP-complete, the same holds for our problem.

1.2 Roadmap
In the remainder of this Section we review related work. Section 2 presents our main tool: a
grid-based integer programming (IP) formulation for the most basic version of the STAR
finding problem; it considers only the constraints 1, 2 and 3. In Section 3 we apply the IP to
produce STAR trees for RWY19L of Arlanda airport in Stockholm TMA. We output the trees
on the Pareto frontier, and also show how the obstacle avoidance constraint 4 is handled. In
Section 3.2 we experiment with adding a large number of entry points, which highlights the
difference between the two objective functions. Handling STAR–SID separation (constraint 5)
is explored in Section 3.3. Section 4 concludes the paper.

1.3 Related work
Automatic design of STARs/SIDs has been studied earlier, but to the best of our knowledge,
finding optimal trees, taking into account the turn constraints, has not been considered
before. In prior work, the routes have been constructed iteratively (one-by-one) and/or did
not adhere to the full set of our constraints and/or did not route the traffic all the way to
the runway.

1 Note the differences between the objectives: in the former, the length of each edge of the tree is counted
as many times as it is used by the leaf-to-root paths; in the latter, each edge is counted only once. In
a graph the optimal solution for the former objective is the Shortest-Paths tree; the optimizer of the
latter is a Steiner tree (or Steiner arborescence, in a directed graph).

ATMOS 2016
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Pfeil [10] focusses on weather forecast and the redesign or design of TMAs pertaining
to different weather scenarios. The author develops an IP model to optimally choose fix
locations and corresponding routes in fixed sectors, and to renegotiate sector boundaries.
For the TMA design from scratch a two-step solution is presented: first optimal outer fixes
are selected with an IP, then 3D routes between fix-runway pairs are chosen with a modified
version of the A* algorithm. This defines some first chosen routes as obstacles for later
routes, that is, the construction is sequential. All algorithms are presented for the US model
of a TMA: two circles of different radii around the runway, where all merges and maneuvers
are assumed to be performed within the inner circle and are not considered. The same TMA
model is used by Prete et al. [12].

Krozel et al. [8] considered turn-constrained route planning for a single path; trees and
the merging of paths are not considered. Zhou et al. [16, 15] also construct single, individual
routes (not arrival merge trees) through weather-impacted TMA. Similarly, Visser and
Wijnen [13] construct single routes, the objective in their work is to minimize noise impact.

Choi et al. [2] present results on STAR merging, testing the impact of different merge
topologies on scheduling of aircraft along the routes; however, the actual location of merge
points is not of interest and turn constraints are not taken into account. In [11], circular
arcs are used to iteratively construct a curvature-constrained tree; however, no optimality
guarantee is given for the solution.

An example for mainly manual STAR construction is Micallef et al.’s [9] design for Malta
international airport.

2 Grid-based IP formulation

We discretize the search space by laying out a square grid in the TMA, and snapping the
locations of the entry points and the runway onto the grid; let P denote the set of (snapped)
entry points, and r the runway. The side of the grid pixel is equal to our lower bound L on
the distance between route vertices—this ensures that the merge point separation (constraint
2) is satisfied by any path in the grid. Every grid node is connected to its 8 neighbors, thus
forming a graph G = (V,E). The graph is bi-directed, i.e., for any two neighboring nodes i
and j, both edges (i, j) and (j, i) exist in E; the only exceptions are the entry points (they
do not have incoming edges) and r (it does not have outgoing edges). The length of an edge
(i, j) ∈ E is denoted by `ij .

Our model is an integer program, which in general is NP-hard, but we are able to solve
relevant sizes of instances in Section 3. Our IP formulation is based on the flow IP formulation
for Steiner trees [14, 5] (Min Cost Flow Steiner arborescence). We use decision variables
xe that indicate whether the edge e participates in the STAR. In addition, we have flow
variables: fe gives the flow on edge e = (i, j) (i.e., the flow from i to j). The constraints are
given in Equations (1)-(4):

∑
k:(k,i)∈E

fki −
∑

j:(i,j)∈E

fij =


|P| i = r

−1 i ∈ P
0 i ∈ V \ {P ∪ r}

(1)

xe ≥
fe

N
∀e ∈ E (2)

fe ≥ 0 ∀e ∈ E (3)
xe ∈ {0, 1} ∀e ∈ E (4)

where N is a large number (e.g., N = |P|).
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Equation (1) ensures that a flow of |P| reaches the runway r, a flow of 1 leaves every
entry point, and in all other vertices of the graph the flow is conserved. Equation (2) enforces
edges with a positive flow to participate in the STAR. The flow variables are non-negative
(Equation (3)), the edge variables are binary (Equation (4)).

Our two objective functions—paths length and tree weight—are given in Equations (5)
and (6), respectively:

min
∑
e∈E

`efe (5)

min
∑
e∈E

`exe (6)

2.1 Degree constraints

We extend the above vanilla MinCostFlow Steiner tree IP to handle the constraints defined
in Section 1. First, we ensure that the outdegree of every node is at most 1 and that the
maximum indegree is 2 (operational constraint 1):

∑
k:(k,i)∈E

xki ≤ 2 ∀i ∈ V \ {P ∪ r} (7)

∑
j:(i,j)∈E

xij ≤ 1 ∀i ∈ V \ {P ∪ r} (8)

∑
k:(k,r)∈E

xkr = 1 (9)

∑
j:(r,j)∈E

xrj ≤ 0 (10)

∑
k:(k,i)∈E

xki ≤ 0 ∀i ∈ P (11)

∑
j:(i,j)∈E

xij = 1 ∀i ∈ P (12)

Equations (9) and (10) ensure that the runway r has one ingoing and no outgoing edges,
respectively; Equations (12) and (11) make sure that each entry point has one outgoing and
not ingoing edge, respectively; the maximum indegree of 2 for all other vertices is given by
Equation (7), the maximum outdegree of 1 by Equation (8).

2.2 Turn angle constraints

If an edge e = (i, j) is used, all outgoing edges at j must form an angle of at least α with
e (operational constraint 3). Let Ae be the set of all outgoing edges from j that form an
angle ≤ α with e, i.e., Ae = {(j, k) : ]ijk ≤ α, (j, k) ∈ E}, and let ae = |Ae|, see Figure 1.
We add the constraint:

aexe +
∑

f∈Ae

xf ≤ ae ∀e ∈ E (13)

ATMOS 2016
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Figure 1 Limited turn: if edge e = (i, j) is used, only edges within the light green region are
allowed, that is, edges with an angle of at least α with e. If edges in the light blue region, Ae, are
used, xe must be set to zero. Here: e1 ∈ Ae, e2 /∈ Ae.

(a) (b)

Figure 2 (a) A STAR in the grid with L = 6nmi and turns sharper than a threshold angle α of
135 degrees not allowed. (b) The same STAR underlaid with a map of the Stockholm region.

2.3 SID constraints
In Section 1 (constraint 5) we described the necessity to exclude conflicts between arriving
aircraft on the constructed STAR and departing aircraft on the given SID. Specifically, we
disallow STAR edges to intersect SID edges within distance d from the runway. That is,
we consider the set of all points on SID edges that along the SID have a distance of at
most d to the runway, and delete all edges from E that intersect with this set. Formally:
let distSID(x, y) denote the distance of two points x, y along the SID, SID(d) = {p ∈ SID :
distSID(p, vST AR) ≤ d}, p({i, j}) = {i, p} for p ∈ {i, j} a subset of edge {i, j} up to a given
point p, ESID = {edges {i, j} ∈ SID : i, j ∈ SID(d)} ∪ {p({i, j}) : {i, j} ∈ SID, i ∈ SID(d), j /∈
SID(d), distSID(p, vST AR) = d}, F = {e ∈ E : e ∩ESID 6= ∅}, and E′ = E \ F . If we integrate
the SID constraints, we simply use the edge set E′ instead of E.

3 Experimental Study: Arlanda Airport

In this section we present solutions to our IP for the STAR design for the Arlanda airport in
Stockholm TMA. The TMA is managed by LFV (Swedish Air Navigation Service Provider),
and is manually designed based on expert opinion. In 2012 LFV ordered an initial study
that confirmed the need to investigate possibilities of improving the TMA design with
the help of advanced optimization tools. Currently, a collaboration between LFV and
Linköping University (LiU) researchers this topic within the ODESTA (Optimal Design of
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Figure 3 The path through the grid (left) is shortcut (right).

(a) (b) (c)

(d) (e)

Figure 4 Total paths length: (a) 286, (b) 292.5, (c) 295.75, (d) 299, (e) 302.25. Tree weight: (a)
232.7, (b) 230.1, (c) 227.37, (d) 222.95, (e) 222.17.

Terminal Airspace) project. A reference group with members from LFV, EUROCONTROL,
Trafikverket (Swedish Traffic Agency), Swedavia (a company that owns and operates the
major airports of Sweden), and Transportstyrelsen (Swedish Transportation Authority) is a
vital part of this project.

We consider Arlanda’s runway 19L, and the four main entry points NILUG, XILAN, HMR,
and ARS. We solve an IP with constraints (1)-(4), (7)-(12), (13), and objective functions (5)
and (6) on square grids of size 14× 20 and 25× 30. The entry points and the runway are
snapped to the closest grid vertices. Figure 2 shows the STAR in the grid and overlaid on
a map for Stockholm’s TMA. We use 8 edge directions: horizontal and vertical grid edges,
and grid diagonals. After the solution is found, we postprocess it in order to have smoother
paths (not restricted to the grid): we do shortcuts by removing vertices as long as the turn
angle constraint is not violated (Figure 3).

Figure 4 shows Pareto optimal solutions, the Pareto frontier is shown in Figure 5. Table 1
presents the associated CPU times and number of branch and bound nodes.

The IP was solved using AMPL and Gurobi [6] on a single server with 24GB RAM,
processor Intel(R) Xeon(R) CPU E5-2650 0 @ 2.00GHz and 64-bit operating system.

ATMOS 2016
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Figure 5 Pareto optimal solutions, the corresponding STARs are shown in Figure 4. The x-axis
shows the total paths length, the y-axis the tree weight.

Table 1 The CPU time and number of branch and bound nodes to find the Pareto-optimal trees,
from heaviest to lightest.

CPU time, s 993 2950 6949 7793 9447
# B&B nodes 8912 24342 33314 45244 52740

3.1 Obstacle avoidance
It can be seen from Figure 6(a) that for the Pareto optimal solution from Figure 4(e) our route
from the west flies directly over Enköping. We can easily mitigate noise impact and other
environmental consequences for populated areas, and remove all edges that intersect those
areas from the edge set E. Figure 6(b) shows the resulting output STAR that circumnavigates
Enköping.

Note, that our approach based on solving an IP on a graph easily allows to incorporate
arbitrary obstacles, e.g. no-fly zones, as edges crossing these can simply be forbidden for a
solution.

3.2 Increased Number of Entry Points
One might argue that our trees on the Pareto frontier (refer to Figure 4) do not differ too
much between themselves. To emphasize the difference between our two objective functions,
we ran experiments with additional (artificial) entry points. From the practical perspective,
adding more entries may be appreciated by airlines, as this would give them the flexibility
to plan straighter routes, and thus save time and fuel; however, the traffic situation might
become more complex and difficult to control. To show how the model can be used to provide
different suggestions for the TMA design, we created scenarios with 8, 16, and 32 entry
points. Figure 7 (a)-(c) shows STARs of minimum paths length, Figure 7 (d)-(f) shows
STARs of minimum tree weight.

For optimal total length, the trees merge paths from different entry points as soon as
allowed. This implies that most merge points are located in close proximity to the TMA
boundary—an effect ATCOs would not appreciate, since they would rather have some time
to get a good "hold" on the planes before merging them (in fact, conflicts close to the
boundary with adjacent sectors is one of the top 5 operational safety priorities identified



T. Andersson Granberg, T. Polishchuk, V. Polishchuk, and C. Schmidt 9:9

(a) (b)

Figure 6 (a) Routes without obstacle avoidance, same routes as in Figure 4(e), (b) routes avoiding
Enköping.

(a) (b) (c)

(d) (e) (f)

Figure 7 Solutions for increased number of entry points: eight entries (a),(d), 16 entries (b),(e),
and 32 entries (c),(f). In (a)-(c) we minimize the paths length (objective function (5)), in (d)-(f) we
minimize the tree weight (objective function (6)). Paths length: (a) 458.60, (b) 893.61, (c) 1751.68,
(d) 567.69, (e)1181.48, (f) 2108.86. Tree weight: (a) 311.33, (b) 451.47, (c) 671.06, (d) 268.64, (e)
465.74.

ATMOS 2016
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by EUROCONTORL [3]). On the other hand, the solutions with an optimal paths length,
though they clearly serve the airlines’ request for short trajectories best under the given
constraints, are trees that produce a quite dense network of routes within most of the TMA,
which might make it hard to control the traffic. Thus, it might be helpful to use linear
combination of these two functions. As we mentioned before, the optimizer of any linear
combination is found among the Pareto optimal solutions.

In addition, solutions for a large number of entry points, for example, the 32 entry point
solutions, could be used to suggest the number and location of entry points for a design from
scratch. If we assume that the grid covers an area larger than the TMA, the minimum tree
weight solution, Figure 7(f), suggests two entry points, based on the minimum paths length
solution, Figure 7(c), we might advocate for 16 entry points.

3.3 SID constraints
In this section, we experiment with keeping the STARs vertically separated from SIDs at the
points where the arrival and departure routes cross; i.e., we experiment with constraint 5
outlined in Section 1—STARs are not allowed to intersect a given SID closer than d from
the runway (the necessary modifications to the IP are described in Section 2.3). Figure 8
shows minimum route length STARs for increasing values of d. Each tree was obtained
within approximately 2 CPU hours (∼ 105 B&B nodes); the numbers did not differ much for
different values of d. The whole SID is light gray, and the parts that are not allowed to be
intersected by the STAR are red. Figure 9(a) shows that, as expected, the objective function
(total length of the routes in the tree) grows with increasing d. To explain the apparently
non-linear growth, we model the STAR–SID interaction as follows (Fig. 9(b)): Assume the
STAR needs to connect vertices of a regular polygon (the entry points) to its center (the
runway), but there is some shape (for simplicity—a set of radius-d circular sectors disjoint
other than at the common apex at the center) that needs to be avoided. The length of each
route in the STAR depends on d as d+

√
(1− d)2 + 1/2 (assuming the entry points lie on

unit circle), which is similar to what we observed in the experiments (Fig. 9(c)).

4 Conclusion and Discussion

In this paper we present a proof of concept for our grid-based IP approach for finding aircraft
arrival routes with limited turning angle. The approach incorporates constraints on the
merge points in the STAR that facilitate handling for aircraft controllers: separation of merge
points and a limit on the number of routes that merge. In addition, to allow for handling of
both arriving and departing aircraft, we show that we can easily integrate constraints from
the departure routes. We present arrival routes for the Stockholm TMA.

Static obstacles, e.g., no-fly zones, can be added to our method: all edges that intersect
the obstacle are deleted from the edge set E (actually, reducing the problem instance size).
This gives also the potential to integrate flexible obstacles like weather, when we recompute
based on weather forecast. Our STARs might still cross noise-sensitive areas; in Section 3.1
we chose to completely forbid these areas, in future work we may integrate noise impact by
increasing the cost for edges that intersect noise-sensitive areas.

Moreover, the number of aircraft that enter the TMA via different entry points varies.
Thus, we might choose to not only minimize the length of paths from entry points to the
runway, but consider a weighted version that minimizes the sum of trajectory lengths flown
by all arriving aircraft. That is, each path is counted as many times as it is used by aircraft.
Hence, we minimize the demand-weighted distance. We can easily integrate this by changing
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Figure 8 Minimum paths length STARs for increasing values of d. The SID is shown in light
gray, edges in ESID are shown in red. Paths lengths: (a) 201.34, (b) 201.34, (c) 202.37, (d) 202.37,
(e) 202.37, (f) 204.85, (g) 207.34, (h) 213.34, (i) 221.82, (j) 228.55, (k) 238.79, (l) 247.28, (m) 266.01,
(n) 284.01. Tree weight: (a) 176.88, (b) 176.88, (c) 177.64, (d) 181.88, (e) 181.88, (f) 184.37, (g)
186.85, (h) 186.85, (i) 185.09, (j) 188.82, (k) 200.31, (l) 205.79, (m) 216.04, (n) 228.04.
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Figure 9 (a) Paths length (y-axis) over the radius d (x-axis) for the STARs from Figure 8.
(b) Black dots are the entries and the blue is a STAR route avoiding the forbidden sectors. (c)
d+

√
(1− d)2 + 1/2 as a function of d.

the right-hand side of Equation (1): If wk aircraft enter the TMA via entry k ∈ P, we
substitute the −1 for i ∈ P by −wi, and the |P| for i = r by

∑
k∈P wk (and increase N

accordingly).
Our approach can be embedded into a tool for simultaneous optimization of routes and

the TMA control sectors (within which the ATCOs control the traffic)—a topic for future
research. Further possible extensions include simultaneous design of both SIDs and STARs,
and 3D routes.
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Abstract
We study the problem of planning Pareto-optimal journeys in public transit networks. Most
existing algorithms and speed-up techniques work by computing subjourneys to intermediary
stops until the destination is reached. In contrast, the trip-based model [26] focuses on trips and
transfers between them, constructing journeys as a sequence of trips. In this paper, we develop a
speed-up technique for this model inspired by principles behind existing state-of-the-art speed-up
techniques, Transfer Patterns [1] and Hub Labelling [9]. The resulting algorithm allows us to
compute Pareto-optimal (with respect to arrival time and number of transfers) 24-hour profiles
on very large real-world networks in less than half a millisecond. Compared to the current state
of the art for bicriteria queries on public transit networks, this is up to two orders of magnitude
faster, while increasing preprocessing overhead by at most one order of magnitude.
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1 Introduction

Finding optimal journeys in public transit networks is a complex problem. Efficient algorithms
are required to allow real-time answering of queries by users in online systems such as Google
Maps Transit1 or those of local providers such as bahn.de or fahrplan.sbb.ch. In these
systems, users enter a source location, a destination, and a rough point in time and expect a
number of journeys that are optimal in some sense.

Precisely what constitutes an optimal journey is non-trivial to define, as it often depends
on individual user preferences. Generally, passengers want to arrive as quickly as possible, so
travel time should usually be minimized. However, some users may prefer a slightly longer
journey with fewer transfers between different vehicles, as transfers reduce travel comfort
and introduce additional uncertainty — connecting trains might be missed due to delays.
How much extra travel time someone is willing to accept in exchange for fewer transfers
differs from user to user and might depend on several factors, such as arrival time or even
purpose of the journey.

Since no system can capture all these variables to compute the optimal journey for each
query, we usually compute a set of possible journeys and let the user choose among them,
possibly after applying some filtering [11, 18]. A general approach to this is to define a
number of criteria, such as arrival time and number of transfers, and compute a set of
Pareto-optimal journeys, i.e. a set such that no journey is better than any other in all criteria.

1 https://maps.google.com/transit
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1.1 Related Work
In the past, several algorithms based on different principles have been proposed. For an
extensive survey, please refer to Bast et al. [2]. Pyrga et al. [23] reduce the problem of
finding optimal journeys in public transit networks to finding shortest paths in graphs. They
propose the time-extended and time-dependent model along with some speed-up techniques
such as goal directed search, and optimize both travel time and number of transfers in the
Pareto sense. Geisberger [20] applies the concept of contraction hierarchies, which have
proved successful on road networks, to public transit networks. Only travel time is optimized.
Berger et al. [5] introduce SUBITO and k-flags, two speed-up techniques that optimize both
travel time and number of transfers in the Pareto sense.

RAPTOR [14] foregoes modelling the data as a graph and instead operates directly on the
timetable data. In addition to travel time and number of transfers, they also consider price
as a criteria. The Connection Scan Algorithm (CSA) [15] also eschews graphs and instead
works on an ordered array of connections to find Pareto-optimal journeys with respect to
travel time and number of transfers. Accelerated CSA [24] is a speed-up technique for CSA
that works via partitioning of the network. Unlike the original CSA, it was only evaluated as
a single-criterion algorithm, using the number of transfers as a tiebreaker between journeys
with identical arrival time.

Public Transit Labelling (PTL) [12] uses, as the name implies, a hub labelling approach.
It requires extensive preprocessing and produces a very large amount of auxiliary data, but
leads to very low query times, even for multi-criteria queries. Timetable Labelling (TTL) [25]
is another labelling-based approach, which has been extended in the context of databases by
Efentakis [17]. However, TTL only performs single-criterion queries regarding arrival time.

Transfer Patterns (TP) [1, 3, 4] is a speed-up technique that precomputes the eponymous
transfer patterns between all stops in the network. These transfer patterns are formed by the
sequence of stops where passengers transfer between vehicles. At query time, these patterns
are then used to quickly find all Pareto-optimal journeys.

1.2 Our Contribution
In this work, we present a speed-up technique based on Trip-Based Public Transit Routing
(TB) [26]. Unlike other approaches, TB conceptually works on a graph where nodes represent
trips, not stops. Edges represent possible transfers between trips, and are qualified using the
indices of the stops where passengers exit or board a trip. These transfers are precomputed
and can be looked up quickly during query processing. This has the advantage that minimum
change times and footpaths do not have to be evaluated at query time, and allows fine-grained
modelling without query-time overhead.

Inspired by the principles behind Transfer Patterns [1] and Hub Labelling [9], our speed-up
technique achieves sub-millisecond query times for profile queries on country-sized networks,
while keeping preprocessing overhead low.

2 Preliminaries

A public transit network is defined by an aperiodic timetable, which contains a set of stops,
a set of footpaths, and a set of trips. A stop is a physical location where passengers can
enter or exit a vehicle, such as a bus or train. Depending on the granularity of the model, a
stop may represent an entire train station, a single platform, or some subset of all platforms
within a train station. Transferring from one vehicle to another at the same stop s may
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require a certain amount of time, which we call minimum change time ∆τch(s). If the time
between the arrival of the previous vehicle and the departure of the subsequent one is less
than ∆τch(s), no transfer between them is possible at this station. Footpaths connect two
stops and indicate the time required to walk from one to the other. We use the most general
model of directed, non-transitive footpaths. We denote the time required to walk from stop
s1 to s2 as ∆τfp(s1, s2), with ∆τfp(s1, s2) :=∞ if no footpath from s1 to s2 exists.

Trips represent vehicles. Each trip t travels along a sequence of stops ~s(t) = 〈t@1, . . . , t@n〉.
A trip may visit a stop multiple times. For each t@i, the timetable contains the arrival time
time τarr(t@i) and the departure time τdep(t@i) of trip t at that stop index. Trips that travel
along the same sequence of stops are grouped into lines. We require that trips never overtake
another trip of the same line; more specifically, we require that the trips of a line can be
totally ordered with respect to

t1 � t2 ⇐⇒ ∀i ∈ [1, |~s(t1)|] : τarr(t1@i) ≤ τarr(t2@i). (1)

Trips that violate this requirement are assigned to different lines. We denote the line of a
trip t as L(t), and define ~s(L(t)) := ~s(t).

Transfers indicate connections between trips. We denote transfers as t1@e → t2@b,
meaning that passengers can exit trip t1 at stop index e in order to board trip t2 at stop
index b. Transfers may occur at a single stop, in which case

τarr(t1@e) + ∆τch(t1@e) ≤ τdep(t2@b) (2)

must hold, or they may involve a footpath, in which case the requirement is

τarr(t1@e) + ∆τfp(t1@e, t2@b) ≤ τdep(t2@b). (3)

A journey describes how and when to get from a source stop ssrc to a destination stop sdest.
It can be defined by a sequence 〈t1@b1, t2@b2, . . . , tn@bn〉 with the following requirements:

ssrc = t1@b1 ∨∆τfp(ssrc, t1@b1) <∞ (4)
∀i ∈ [1, n) : ∃e > bi : ti@e→ ti+1@bi+1 (5)
∃i : tn@i = sdest ∨∆τfp(tn@i, sdest) <∞. (6)

These requirements ensure that the first trip can be reached (4), that transfers are possible
between subsequent trips (5), and that the final trip arrives at the destination (6).

We consider two well-known bicriteria problems, optimizing arrival time and number
of transfers required. It has been shown [22] that for these criteria, computing the full
set of Pareto-optimal journeys is feasible. A journey is Pareto-optimal if no other journey
dominating it exists. A journey dominates another if it is better or equal in all criteria — if
they are equal in all criteria, we break the tie arbitrarily and keep only one of them in the
set.

The input to the earliest arrival query consists of a source stop ssrc, a destination stop
sdest, and a departure time τ . The result is a set of tuples (τdest, n), one for each Pareto-
optimal journey leaving ssrc no earlier than τ and arriving at sdest at time τdest after n
transfers. For the profile query, we are given a source stop ssrc, a destination stop sdest,
an earliest departure time τedt, and a latest departure time τldt. Here, we consider the
departure time of journeys as an additional criterion, with later departures dominating earlier
ones. Thus, we compute all Pareto-optimal journeys departing at ssrc at some time τsrc with
τedt ≤ τsrc ≤ τldt and arriving, after n transfers, at sdest at time τdest. The answer to the
query is then the set of tuples (τsrc, τdest, n) corresponding to these journeys.

ATMOS 2016



10:4 Trip-Based Public Transit Routing Using Condensed Search Trees

3 Trip-Based Public Transit Routing

This section provides a quick explanation of the Trip-Based Public Routing (TB) al-
gorithm [26]. For more details, please refer to the original publication.

3.1 Preprocessing
As mentioned in section 1.2, TB uses trips and transfers between them as its basic building
blocks. During a short preprocessing phase, all possible transfers between trips are computed.
However, it can be shown that many of these transfers can never be part of an optimal
journey, for example transfers that lead to trips that run in the opposite direction, or transfers
to several trips of the same line. Therefore, the second step of preprocessing is discarding
these superfluous transfers, which may constitute up to 90% of total transfers. Since each
trip can be processed separately, preprocessing is trivially parallelized and can be performed
within minutes even for very large networks.

3.2 Queries
Queries are similar to a breadth-first search on the graph formed by trips and the transfers
between them. For an earliest arrival query, we first identify the trips reachable from the
source stop, and insert them into a queue. Then, each trip is processed by scanning its
outgoing transfers. Newly reached trips are in turn added to the queue. Trips are marked
as reached by, conceptually, assigning labels consisting of trip, stop index, and number of
transfers needed to reach that trip to lines.2 Branches of the search are pruned if they are
dominated by existing labels. The graph is explored until all Pareto-optimal journeys to the
destination stop are found.

For a profile query, we essentially repeat the above multiple times. Observe that the
departure time is an additional criteria for journeys in profile queries, with later journeys
dominating earlier ones. If all other criteria are equal, the journey with the later departure
has less travel time and is therefore preferable. Thus, we start with the latest possible
departure at the source stop, and perform an earliest arrival query. We can add the resulting
journeys to the result set. Then, without resetting labels, we perform an earliest arrival
query for the second-latest departure, and so on. By preserving the labels between runs, we
allow later journeys to dominate earlier ones, avoiding redundant work.

4 Storing One-to-All Search Trees

In this section, we show how some of the principles behind Transfer Patterns [1] can be
applied to the Trip-Based model. The core idea of the Transfers Patterns algorithm is to
precompute, for all pairs of source and destination stop, the transfer patterns for all optimal
journeys. The transfer pattern of a journey is the sequence of stops where a change of vehicle
occurs. In practice, optimal journeys between two given stops share a limited number of
transfer patterns. If all optimal transfer patterns between source and destination are known,
queries can be answered quickly by looking up direct connections between the stops forming
the transfer patterns.

2 In the implementation, we unroll the “trip” and “number of transfers” dimensions for faster lookup and
to allow the use of SIMD instructions.
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We use the same property as the foundation for our speed-up technique. Since we operate
on trips — or more generally, lines, which are ordered sets of trips — we do not precompute
sequences of stops where transfers occur. Instead, we precompute the sequence of lines that
correspond to an optimal journey, together with the stop indices where each of these lines is
boarded. As we show in the next section, these line sequences form a natural generalization
of one-to-all profile search trees.

4.1 Prefix Trees
We compute one-to-all profiles from each stop to find all potential line sequences. These
one-to-all profiles are at their core identical to the one-to-one profiles described in the original
publication [26] and summarized in section 3.2.

First, all departures at the source stop are ordered by departure time and then processed
backwards. For each distinct departure time, we then perform a breadth-first search as
described in section 3.2. This results in a breadth-first tree, with the source stop as the root
node, the visited trips as internal nodes, and the reached stops as leaves. In contrast to
one-to-one profiles, we also assign labels to all stops, consisting of arrival time and number
of transfers. We update these using the breadth-first tree, pruning branches that do not lead
to an improved stop label. The remaining tree is generalized by replacing all trips with their
respective line and the index of the stop where the trip was boarded. We then restart the
search using the next (earlier) departure, preserving all labels.

Finally, the trees are merged, resulting in one prefix tree [10] for each source stop,
containing the optimal line sequences to all destination stops. In essence, this prefix tree
represents a condensed, time-independent result of a one-to-all profile search. Note that prefix
trees are functionally equivalent to the transfer pattern graphs used by Transfer Patterns [1],
except that internal nodes represent lines instead of stops.

4.2 Queries
We can use these prefix trees to quickly answer queries. First, we construct the query graph.
To do so, we find the nodes corresponding to the destination stop in the prefix tree of the
source stop. We follow the paths from these nodes to the root, adding edges from parent
to child nodes to the query graph. Multiple occurrences of the same L@b in the prefix tree
are mapped onto the same node in the query graph. Again, note the similarity to the query
graph used by Transfer Patterns [1].

To answer the query, we run a simple multi-criteria label-correction shortest path al-
gorithm [16] on the query graph. Labels consist of a trip, the number of transfers, and,
for profile queries, the departure time at the source stop. Finding the initial trips at the
source stop is straightforward. Given a label (t, n, τdep), we relax an edge between L1@i and
L2@j by finding a transfer t@k → s@j such that k > i and L(s) = L2. We then add a label
(s, n+ 1, τdep) to the node representing L2@j. Once the algorithm terminates, we can extract
the arrival times at the destination stop from the labels. Intuitively, the prefix tree tells us
which paths through the networks optimal journeys can take. The query then follows these
paths to find the actual journeys for the given departure time(s).

5 Splitting Trees

Unfortunately, for large networks, prefix trees grow unfeasibly large, and memory usage
becomes an issue. Each tree spans the entire network, and in addition, many subtrees are
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duplicates of each other, with slightly different prefixes. Furthermore, subtrees are often
duplicated across different trees, since stops can only be reached through a limited set of
lines.

We can reduce this redundancy by removing branches from the prefix trees and instead
storing them in postfix trees. These postfix trees are essentially reverse prefix trees: They
are rooted at a destination stop and describe optimal line sequences for reaching that stop.
Storing these sequences once for each destination stop instead of once or even multiple
times for each source stop greatly improves space efficiency. Optimal line sequences can be
recovered by concatenating branches of the source’s prefix tree with matching branches of
the destination’s postfix tree.

5.1 Postfix Trees
We construct the postfix trees from the prefix trees as follows. For each path from the root
(that is, the source stop) to a leaf (a destination stop), we select an internal node Ncut where
we “cut” this path. Section 5.3 explains how this node is chosen. We add the subpath from
Ncut (inclusive) to the leaf — in reverse order — to the postfix tree for the destination node.
Then, we remove the leaf node and, recursively, all internal nodes that no longer have any
children from the prefix tree, until we reach Ncut. Thus, if the prefix tree originally contained
the path 〈S,N1, . . . , Nl, Ncut, Nl+1, . . . , Nn, T 〉, we end up with 〈S,N1 . . . , Nl, Ncut〉 in the
prefix tree and 〈T,Nn, . . . , Nl+1, Ncut〉 in the postfix tree.

However, recall that each internal node represents a line together with the stop index
where the line is boarded, L@b. This breaks the symmetry between prefix and postfix trees.
As a result, we end up with many postfixes that are identical except for the board index at
Ncut — depending on the source stop, there are many ways to reach a line, but only a limited
number of (optimal) ways from that line to the destination stop. We can merge these nodes
by setting the index to the exit of the next transfer, which is identical for all of them. Note
that we only do this for the Ncut in postfix trees, not for any other nodes in either prefix or
postfix trees. Thus, if Ncut

∧= L@b and the original path was 〈S,N1, . . . , L@b, . . . , Nn, T 〉, we
now have 〈S,N1, . . . , L@b〉 in the prefix tree for S and 〈T,Nn, . . . , L@e〉 in the postfix tree
for T , with b < e. This results in a greatly reduced number of leaves in postfix trees, while
still allowing us to recover the original line sequence.

Since we no longer store destination stops in prefix trees (or source stops in postfix trees),
but still want to preserve directional information, a bit vector is stored with each Ncut. We
partition the stops and set the ith bit if Ncut connects to the postfix tree of a stop in partition
i, and vice versa for the Ncut in postfix trees. In practice, we use 64-bit integers and simply
partition the stops by ID, taking advantage of the pre-existing locality in the data sets.

5.2 Queries
The algorithm for query graph construction follows from the construction of the postfix trees.
First, we take the prefix tree for the source stop and select all Ncut where the bit vector
has the bit corresponding to the destination stop set. Similarly, we select the N ′

cut from the
postfix tree for the destination stop where the bit corresponding to the source stop is set.
Then, we find all pairs (Ncut, N

′
cut) such that Ncut

∧= L@b and N ′
cut

∧= L@e with b < e. Each
such pair defines a path 〈S,N1, . . . , Nl, Ncut, Nl+1, . . . , Nn, T 〉, and we need to ensure that
the query graph contains all edges in that path. By ordering the nodes by their corresponding
line, we can find these pairs using an algorithm similar to a coordinated sweep. Due to the
generalizations performed during postfix tree construction, we will find some prefix-postfix
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combinations that do not correspond to an optimal line sequence. Thus, the resulting query
graph will usually be larger than in section 4.2, but this only affects performance of the
query, not correctness. The query algorithm itself is the same as before.

Essentially, we find optimal paths during preprocessing, split them at some intermediary
node for more efficient storage, and then reassemble them at query time. Note the similarity
to the concept of hub labelling [9]. In hub labelling, optimal journeys are split at some
intermediary hub, then stored in compressed form at the source and destination. We do the
same, except we only store the more general line sequences instead of the journeys, which we
can then reconstruct at query time. Indeed, as we show in section 6, our approach shares
some properties with existing labelling approaches.

The flags we use to filter possible connections are reminiscent of arc flags [21]. Without
them, many long prefixes would connect to long postfixes for stops that are close together on
the network, without a corresponding optimal journey. Exploring these unnecessary nodes
during the query would be costly and is avoided by this pre-filtering.

5.3 Cut Selection
It is clear that the choice of Ncut has a large effect on the resulting trees. In general, we
want smaller trees, which are more space efficient. We examined two fundamentally different
strategies.

The first is to simply cut paths in half. Unsurprisingly, this results in rather large trees,
since paths are cut at more or less arbitrary lines. This results in many different prefixes
and postfixes for each stop, which translates to large trees.

The second strategy exploits the underlying network’s structure by selecting the most
“important” lines. To find these lines, we construct the line graph [6] of the network. In
the (undirected) line graph, nodes correspond to lines, and two nodes share an edge if and
only if a transfer between these lines is possible. We then use this line graph to compute
the betweenness centrality [19] of each line using Brandes’ algorithm [7].3 This gives us an
ordering of the lines, and when choosing Ncut, we select the node which corresponds to the
most central line on the path. This ensures that the choice is consistent across different
paths, which allows better merging of prefixes and postfixes. As we show in section 6, this
strategy gives good results on country-sized networks, which typically exhibit good structure.
Unfortunately, it is less successful on the less structured metropolitan networks. On these,
using the simpler strategy of cutting paths into two equal halves leads to better results.
Exploration of further criteria for selecting cut nodes is a subject of future research.

6 Experiments

We performed experiments using a quad 8-core Intel Xeon E5-4640 clocked at 2.4GHz with
512GB of DDR3-1600 RAM, using 64 threads for parallel preprocessing. Except where
otherwise noted, computations are sequential. Code was written in C++ and compiled
using g++ 5.2.0 with optimizations enabled. We consider five real-world data sets, three
covering countries of varying size and two metropolitan networks: Germany, provided to
us by Deutsche Bahn, Switzerland, available at gtfs.geops.ch, and Sweden, available at
trafiklab.se, contain both long-distance and local transit, and cover two consecutive days

3 We chose this algorithm for simplicity; since the exact centrality is not required, one could also use an
approximate algorithm [8] instead.

ATMOS 2016
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Table 1 Instances used for experiments.

Instance Stops Conn. Trips Lines Footp. Transfers
Germany 296.6 k 27, 062 k 1, 432 k 192.9 k 102.8 k 84, 953 k
Sweden 50.7 k 6, 054 k 261 k 17.6 k 0.8 k 16, 455 k
Switzerland 27.8 k 4, 650 k 611 k 14.4 k 34.3 k 12, 626 k
London 20.8 k 4, 991 k 129 k 2.2 k 27.6 k 15, 883 k
Madrid 4.6 k 5, 280 k 190 k 1.4 k 1.4 k 9, 256 k

Table 2 Preprocessing figures. Listed are the average time required to compute the full prefix tree
for a stop, the total time required to compute the split trees for all stops (sequential and parallel),
the average number of nodes in those trees (per stop, i.e. the sum of prefix and postfix), and the
total space consumption. Sequential preprocessing for the Germany instance was performed on a
different machine.

p. prefix seq. par. speed avg. # mem.
Instance tree [ms] [h:m] [h:m] up of nodes [GB]
Germany 2143.6 (231:16) 13:48 (16.8 x) 6, 131 23.2
Sweden 166.7 4:33 0:18 15.2 x 2, 433 1.6
Switzerland 209.3 3:18 0:12 16.5 x 4, 315 1.6
London 1, 368.1 15:19 0:42 21.9 x 20, 390 6.0
Madrid 497.3 1:22 0:04 17.0 x 32, 293 2.0

to allow for overnight journeys. London, available at data.london.gov.uk, and Madrid,
available at emtmadrid.es, cover a single day only. For Madrid, we computed footpaths
using a known heuristic [13], for all other instances, they are part of the input. These data
sets are summarized in Table 1.

Preprocessing figures can be found in Table 2. Due to scheduling conflicts, sequential
preprocessing of the Germany instance was performed on a different machine4. We report
the total time required to perform the computation of prefix and postfix trees, as described
in section 5. This includes the time required to compute the betweenness centrality, which
is negligible in most cases. For Germany, Switzerland and Sweden we use the betweenness
centrality to select cut nodes; for London and Madrid we use the simpler method of cutting
paths in half. The reverse generally leads to larger trees and therefore higher memory
consumption. For most instances, the difference is about 1–2GB; for Germany, the difference
is almost 50GB. It is interesting to note that the metropolitan networks require more space
than the two small country-sized networks. This indicates that the topology of the network
is more important than the raw size in terms of stops or connections. A similar effect can
be seen in the labelling approaches, Public Transit Labelling (PTL) [12] and Timetable
Labelling (TTL) [25].

We evaluate query times in Table 3. We measured the average times for 10, 000 queries
with source and destination stop chosen uniformly at random. For earliest arrival queries,
the departure time was chosen uniformly at random on the first day; for profile queries, the
departure time range is the entire first day. We evaluated queries for three different variants:
The basic trip-based algorithm (TB), using prefix trees as described in section 4 (PT), and
using both prefix and postfix trees as described in section 5 (ST). The ST variant leads to

4 Dual 8-core Intel Xeon E5-2650s v2, 2.6GHz, 128GB DDR3-1600 RAM, 20MB L3 cache
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Table 3 Query figures. Listed are the query graph size (nodes + edges), the time required to
construct the query graph, and the time required to perform an earliest arrival and a 24h profile
query. The first block refers to the basic trip-based algorithm, where no query graph is used. The
second block uses a prefix tree for each source stop, as in section 4. The third block uses the split
trees for source and destination stop, as in section 5.

Query graph Query graph EA profile
Instance Var. size [N+E] time [µs] [µs] [µs]
Germany TB — — 30, 856 192, 952
Sweden TB — — 2, 760 16, 532
Switzerland TB — — 1, 780 18, 104
London TB — — 1, 374 96, 114
Madrid TB — — 711 54, 118
Germany PT 41 + 58 994.4 63.3 155.0
Sweden PT 23 + 32 24.6 40.4 88.6
Switzerland PT 38 + 59 34.0 45.8 155.9
London PT 91 + 196 138.2 101.1 2, 786.6
Madrid PT 150 + 407 306.9 81.7 6, 913.8
Germany ST 124 + 232 81.1 75.0 430.5
Sweden ST 66 + 122 32.5 27.2 207.1
Switzerland ST 118 + 233 76.1 32.7 327.6
London ST 331 + 1242 1, 583.3 141.4 14, 545.4
Madrid ST 456 + 2073 11, 822.9 165.8 28, 919.0

larger query graphs than the PT variant. This is to be expected, as some information gets
lost in the transformation, and some prefixes may connect to more postfixes than required.
This does not affect correctness, because all optimal line sequences are still contained in the
query graph. It does, however, lead to increased query times for ST in comparison to PT.
Nevertheless, the time required to construct the query graph on the Germany instance is
lower for ST, since the split trees contain fewer nodes in total than the original prefix tree.
Profile query times are much higher on the metropolitan networks than on the generally
larger country-sized networks. In part, this is because they are less structured than the larger
networks, which leads to larger query graphs. However, on the metropolitan networks, the
set of optimal journeys is also much larger than on the others, which slows down the query
algorithm.

We compare variant ST, using prefix and postfix trees, to other state of the art algorithms
in Table 4. Algorithms based on labelling approaches are generally the fastest. In particular,
for single criterion queries, they dominate other preprocessing-based approaches with regard
to query times, preprocessing time and memory consumption. PTL [12] supports multi-
criteria queries, at the cost of massive increases in both preprocessing time and memory
consumption, while TTL [25] only performs single-criterion queries. TP [1, 3, 4] can answer
bicriteria profile queries in a few milliseconds, even on large networks. The original TP had
the drawbacks of very long preprocessing times and a large memory consumption. More
recently, Scalable Transfer Pattern [3] has made impressive improvements on this front, at
the cost of increased query times.

On the metropolitan networks, our algorithm performs notably worse than could be
expected, although query times are still in the low milliseconds. As previously mentioned, this
is mostly due to the much higher number of journeys compared to the country-sized networks.

ATMOS 2016
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Table 4 Comparison with the state of the art. Results taken from [2, 3, 4, 12, 24, 25]. Algorithms
computing Pareto-optimal journeys with respect to the number of transfers in addition to arrival
time are marked in column “tr.” Profile queries are marked in column “pr.”

algorithm instance stops conn. tr. pr. mem. pre. query
[103] [106] [GB] [h] [µs]

CSA [24] Germany 252.4 46.2 ◦ ◦ — — 298.6 k
ACSA [24] Germany 252.4 46.2 ◦ ◦ n/a 0.2 8.7 k
TP [4] Germany 248.4 13.9 • ◦ 140.0 372.0 300.0
Sc-TP [3] Germany 250.0 15.0 • ◦ 1.2 16.5 32.0 k
TB Germany 296.6 27.1 • ◦ 23.2 231.3 156.1

TTL [25] Sweden 51.4 n/a ◦ ◦ ≈ 0.5 0.2 ≈ 10.0
PTL [12] Sweden 51.1 12.7 • ◦ 12.3 36.2 27.6
TB Sweden 50.7 6.1 • ◦ 1.6 3.8 59.7

PTL [12] Switzerland 27.1 23.7 • ◦ 12.7 61.6 21.7
TB Switzerland 27.8 4.7 • ◦ 1.6 2.7 108.8

CSA [15] London 20.8 4.9 ◦ ◦ — — 1.8 k
PTL [12] London 20.8 5.1 • ◦ 26.2 49.3 30.0
TB London 20.8 5.0 • ◦ 6.0 11.6 1.7 k

TTL [25] Madrid 4.6 n/a ◦ ◦ ≈ 0.4 0.1 ≈ 30.0
PTL [12] Madrid 4.7 4.5 • ◦ 9.9 10.9 64.3
TP [2] Madrid 4.6 4.8 • ◦ n/a 185.0 3.1 k
TB Madrid 4.6 5.3 • ◦ 2.0 1.1 12.0 k

ACSA [24] Germany 252.4 46.2 ◦ • n/a 0.2 171.0 k
TP [4] Germany 248.4 13.9 • • 140.0 372.0 5.0 k
TB Germany 296.6 27.1 • • 23.2 231.3 511.6

PTL [12] Sweden 51.1 12.7 ◦ • 0.7 0.5 12.1
TB Sweden 50.7 6.1 • • 1.6 3.8 239.6

PTL [12] Switzerland 27.1 23.7 ◦ • 0.7 0.7 24.5
TB Switzerland 27.8 4.7 • • 1.6 2.7 403.7

PTL [12] London 20.8 5.1 ◦ • 1.3 0.9 74.3
CSA [15] London 20.8 4.9 • • — — 466.0 k
TB London 20.8 5.0 • • 6.0 11.6 16.1 k

PTL [12] Madrid 4.7 4.5 ◦ • 0.4 0.4 111.9
TB Madrid 4.6 5.3 • • 2.0 1.1 40.7 k

For bicriteria queries on the country-sized networks, our algorithm has preprocessing costs
one order of magnitude less than PTL, while query times are similar. Note, however, that
PTL has not been evaluated for bicriteria profile queries, making direct comparison difficult.
In comparison to Scalable TP, our query times are two orders of magnitude lower, at the
cost of one order of magnitude for preprocessing costs. As such, our algorithm enables
the currently fastest bicriteria profile queries on large realistic instances, with reasonable
preprocessing overhead. On very large instances, such as Germany, preprocessing time and
memory consumption may be prohibitive for some use cases. This is a subject of future
research.
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7 Conclusion

We introduced a speed-up technique for the basic trip-based public transit routing al-
gorithm [26]. This technique applies principles sharing some similarities to those behind
Transfer Patterns [1, 4] and Hub Labelling [9] to the trip-based model and expands on them.
The resulting algorithm enables query times on the microsecond scale on large realistic public
transit networks with moderate preprocessing cost, occupying a Pareto-optimal spot among
current state of the art algorithms.

Future work includes the study of different methods for cut node selection, with the goal
of further reducing memory consumption and query graph size, developing tailored query
algorithms to speed up queries on metropolitan networks, and making preprocessing more
scalable by avoiding the computation of full one-to-all queries for all stops. We are also
interested in adapting this speed-up technique to different scenarios, such as other and/or
more criteria, and stop-based routing.
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Abstract
A special case of the Time-Dependent Shortest Path Problem (TDSPP) is the itinerary planning
problem where the objective is to find the shortest path between a source and a destination
node which passes through a fixed sequence of intermediate nodes. In this paper, we deviate
from the common approach for solving this problem, that is, finding first the shortest paths
between successive nodes in the above sequence and then synthesizing the final solution from the
solutions of these sub-problems. We propose a more direct approach and solve the problem by
a label-setting approach which is able to early prune a lot of partial paths that cannot be part
of the optimal solution. In addition, we study a different version of the main problem where it
is only required that the solution path should pass through a set of specific nodes irrespectively
of the particular order in which these nodes are included in the path. As a case study, we have
applied the proposed techniques for solving the itinerary planning of a ship with respect to two
conflicting criteria, in the area of the Aegean Sea, Greece. Moreover, the algorithm handles the
case that the ship speed is not constant throughout the whole voyage. Specifically, it can be set
at a different level each time the ship departs from an intermediate port in order to obtain low
cost solutions for the itinerary planning. The experimental results confirm the high performance
of the proposed algorithms.
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1 Introduction

The Time-Dependent Shortest Path Problem (TDSPP) is a fundamental and well studied
multi-objective optimization problem with many applications. However, less effort has been
made for addressing the Time-Dependent Shortest Path Problem that must go through a
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given sequence of nodes, which is also known as travel planning problem. In this case, apart
from optimizing the selected objective, the given sequence defines intermediate nodes that
must be visited after departing from the origin and before arriving at the destination. This
problem arises from both travel industry and daily life activities. Trip planning applications,
such as location-based services and car navigation systems need efficient algorithms for the
earliest arrival problem as well as for multi-criteria problems in large road networks. Usually,
the intermediate nodes represent specific Points of Interest (POIs) and the duration of each
intermediate stop varies. As we are working with a time-dependent network, we need to know
in advance how long the user expects to stay at each POI and specify the exact departure
time from the intermediate POI.

An important property of the network which much differentiates the complexity of the
time-dependent algorithms is the FIFO property [4, 12, 19]. A network is said to fulfill the
FIFO property if all of its arcs fulfill that property i.e., for each arc (i, j) of the network,
earlier departure from i always leads to earlier arrival at j, that is, the arrival events at j

are in the same chronological order as the departure events at i. More explicitly, it may be
defined in the following mathematical form:

∀(i, j, t), t + c(i, j, t) ≤ (t + 1) + c(i, j, t + 1) (1)

where cost function c(i, j, t) denotes the cost for traversing arc (i, j) at time instance t and
has integer-valued domain and positive integer-valued range. When the FIFO property holds,
waiting at the nodes of the network is pointless since leaving immediately from each node is
always a beneficial practice leading to optimal solution paths. Computing shortest paths
in FIFO networks is a polynomially solvable problem [12]. On the other hand, when the
FIFO property does not hold, optimal solutions may require waiting at certain nodes of the
network. Therefore, in non-FIFO networks the complexity of the time-dependent shortest
path problem depends on the waiting policy at nodes. If waiting is allowed, the problems is
polynomially solvable otherwise, the problem is NP-hard [18].

This paper is motivated by itinerary planning problems in sea transportation. The
duration of a voyage and the distance travelled in such a voyage are the two causal factors
which determine the voyage cost [8]. The time spent while at a port is also accounted in
the total voyage time. Especially, in short distance voyages, the delay incurred in ports
is much more important for the whole voyage duration than the travelling time itself [15].
In particular, we address the problem of finding the Pareto optimal set of paths which
pass through a fixed sequence of nodes with predefined visiting time and specific time
constraints at each intermediate node, in a time-dependent setting. Indeed, there may be
several constraints that should be considered when drawing up a travel plan. For instance,
in maritime there are several charter types which imply different constraints. For example,
a voyage charter specifies a period, known as laytime, for loading and unloading the cargo.
If laytime is exceeded, the charterer must pay demurrage. If laytime is saved, the charter
party may require the ship owner to pay despatch to the charterer. Moreover, in a contract
of Affreightment, apart from the period in which the transfer of the cargo must be carried,
the route of the voyage is also specified. On the contrary, in a time charter, only the period
of time is defined and the charterer is responsible for the selection of the ports that the
vessel approaches. The arrival time at a port affects directly the total visiting time at that
port since in case of congestion at that particular port, the ship may have to queue for port
facilities. Thus, besides optimizing several economical, safety and ecological objectives, it is
also crucial to take into account the constraints imposed by the strict schedule of a vessel.
To this end, the ship speed may be different but within an acceptable range for each travel
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leg between successive intermediate ports in such a way that the stay at each port incurs the
least operational cost.

A greedy approach to solve the itinerary planning problem is to search for independent
shortest paths locally between each pair of successive stops. More specifically, we first locate
the nearest stop from the query location, then we locate the nearest stop from the current
stop, and so on, until the destination is reached. As discussed in [21], the travel planning
problem can not be solved optimally by using this approach and this clearly also applies for
the time-dependent problem.

In [1], the bi-criteria itinerary problem for time-dependent networks is studied. The
proposed method is based on the decomposition of the problem into a sequence of elementary
itinerary sub-problems, solved by a backward dynamic programming algorithm. Adapting
also the Bellman’s backward optimality principle, the solution of the sub-problems starts
from the destination and traverses the route backwards using the Decreased Order Time
(DOT) technique described in [4].

In [3], a travel planning problem was proposed which consists in finding the best travel
plan from a origin to a destination that follows a given sequence of nodes on a transportation
network with deterministic time-dependent travel times. The authors proposed a decomposi-
tion scheme in which the whole problem is divided into sub-problems and each of them is
solved as a one-to-many shortest path problem by adding a surrogate node to the graph.

In [5], an algorithm is proposed for finding the shortest distance route that passes through
a fixed sequence of POIs in a time-dependent road network. The method is based on A∗

algorithm, together with a suitable admissible heuristic function and a pruning scheme that
reduces the search space. The method is also applicable to static road networks.

Another relevant problem was proposed in [14], termed as the Trip Planning Query
(TPQ). In TPQ, only the subset of the intermediate POIs is defined by the user. Aim of
the optimization problem is to find the path that minimizes the travel cost between origin
and destination, and subsequently to define the visiting order of POIs. As this problem is
NP-hard due to the existence of multiple possibilities in POI ordering, the authors proposed
a number of approximation algorithms.

Recent research for trip planning in public multi-modal transportation networks has
produced several speedup techniques and algorithms. In this paper, we focus on the travel
itinerary problem in sea transportation. The objective is to reach the destination port, at
minimum fuel consumption and maximum safety, visiting all the predefined intermediate
ports and at the same time, respecting the constraint on the travelling time as well as other
technical and operational restrictions. The itinerary planning problem can be cast as a
multi-objective, non-linear optimization problem with constraints where the desired solution
should be found among a number of conflicting objectives.

The main complicating factor in sea transportation is the weather. Regardless of the
specific objectives, the cost functions in this kind of transportation depend heavily on weather
conditions and thus the itinerary planning problem for ships is a time-dependent problem.
Besides weather variations, moving obstacles with known or unknown trajectories, such as
other vessels or marine protected populations, are additional factors that make the problem
even more dynamic.

In our problem setting, the ship speed along each sub-route between successive interme-
diate ports are decision variables whose values should be optimized for returning low cost
solutions. It is worth mentioning that since the ship speed can vary only within a certain
range due to operational constraints and since the relation between fuel consumption and
speed is approximated by a cubic function [20], it is always beneficial to sail at the lowest
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allowable speed that does not disrupt the ship schedule. Indeed, when fuel consumption is
the only objective, it has been proven that this strategy for selecting the ship speed gives
the optimal solution [10]. However, since our problem is time-dependent and there is also
the objective of the minimum incurred risk other than the fuel consumption, the above rule
cannot be applied for finding the optimal speed. For example, a high speed may negatively
affect the fuel consumption criterion but it may help in avoiding adverse weather conditions.
Thus, sailing at the minimum allowable speed is not profitable for both objectives in this
case.

The rest of the paper is organised as follows. In the next section, the Time-Dependent
Bi-criteria Shortest Path Problem with fixed sequence of intermediate stops is defined. In
section 3, the proposed algorithm is described and then in section 4, the algorithm is tested
in maritime scenarios for finding ship itineraries. Finally, the conclusions are discussed in
section 5.

2 Preliminaries

Firstly, a description of the Time-Dependent Bi-criteria Shortest Path Problem (TDBiSPP)
is given and then we define the itinerary planning problem addressed in this paper.

Let G = (V, A) be a directed graph, where V is the set of nodes and A is the set of arcs
with |V | = n and |A| = m. Each arc (i, j) ∈ A is associated with three attributes c1(i, j, t, U),
c2(i, j, t, U) and pt(i, j, t, U), whose values are assumed to be non-negative and may change
over time; c1(i, j, t, U) and c2(i, j, t, U) denote the two costs for traversing (i, j) with speed
U and pt(i, j, t, U) denotes the travel time for traversing (i, j), departing from node i at time
instance t with speed U . In the TDBiSPP the speed U is assumed to be constant. The two
costs are the objectives to be minimized, while the travel time is the “resource” constrained
in the problem. The frozen arc model [19] is also assumed where the arc cost is determined
at the arrival time at the tail of the arc and does not change during its traversal.

Let C1(P ), C2(P ) denote the total cost of a path P according to the first and the second
criterion respectively, and PT (P ) denote the total travel time along P . Given a start node
s ∈ V , a destination node d ∈ V , a departure time tstart, an upper bound T on the maximum
permissible total travel time, with no waiting at nodes, the problem is to find a path P from
s to d departing at tstart from s that minimizes the two objectives C1(P ) and C2(P ) without
violating the travel time constraint i.e., PT (P ) ≤ T . Since the objective functions may be
conflicting, a single solution that simultaneously optimizes each objective may not exist
and therefore, the problem actually is to find the set of Pareto optimal or non dominated
solutions. A solution is termed as a non dominated solution if none of the objectives can be
improved in value without degrading the value of the other objective. Formally, a path p is
said to dominate another path p′ if (C1(p) < C1(p′) and C2(p) ≤ C2(p′)) or (C1(p) ≤ C1(p′)
and C2(p) < C2(p′)).

In TDBiSPP with fixed sequence of intermediate stops, besides the usual origin and
destination node, a fixed sequence of nodes through which the path must pass is also given
as an input. This sequence of intermediate stops will be denoted by IS where IS ⊆ V . For
each intermediate stop isk, the Earliest Arrival Time (EAT) and the Latest Arrival Time
is specified and thus isk should be visited within the time window [EATisk

, LATisk
]. Also,

the visiting time of isk may not be always the same but may vary according to the type of
the vessel and the arrival time at isk. Specifically, we use the notation L(isk, t) to denote
the laytime of a vessel reaching the intermediate stop isk at time instance t. Moreover, a
vessel is allowed to extend its laytime in a port if that helps in avoiding congestion or adverse
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weather conditions. Recall also that waiting at intermediate stops is beneficial in non-FIFO
networks. However, although waiting is allowed at stops, it might be an upper bound on
this time. Thus, we define the Latest Departure Time (LDT) for each intermediate stop isk

denoted by LTDisk
.

Upon departing from an intermediate stop or the origin node, we have to decide the
nominal cruising speed U which must lie in the interval {Umin, Umax} where Umin and Umax

are the minimum and the maximum allowable speed respectively. Along a sub-route between
successive intermediate stops, the nominal speed is assumed to be constant.

It is now clear that the itinerary planning problem can be solved as a Time-Dependent
Shortest Path Problem (TDSPP) where the arcs are labelled with a pair of costs, namely
fuel consumption and risk incurred along the arcs. With regard to the TDSPP classification,
the itinerary planning problem is characterized by the following:

Goal: minimization of two costs.
Decision variables: ship course and ship speed along each sub-route.
Waiting at stops: waiting is allowed only at the intermediate stops and not at any other
node of the input graph.
Source and destination: one source to one destination node through many intermediate
stops.
Network properties: non-periodic network and non-FIFO regarding the costs c1 and c2.

3 The proposed bi-objective algorithm

We propose a forward label setting algorithm (Algorithm 1) for finding the set of Pareto
optimal paths in time-dependent non-FIFO networks, visiting also a fixed sequence of
intermediate destinations, based on a Time-Dependent Bi-criteria Shortest Path algorithm
[24].

In order to improve the performance of the algorithm, we employ a heuristic function h

to estimate a lower bound of the passage time of the path from the current position to the
final destination passing through the remaining intermediate stops. Summing the current
cost of the path (denoted as g) and the h value, we compute the f value, which is a lower
bound of the total passage time of the path. We use this estimation to check if the extension
of the current, partial, path will violate the constraint of the total passage time T . Using this
heuristic, we can prune paths from a very early stage of the algorithm, since we can be sure
that this path is never going to reach the destination node in time. The heuristic function
is computed in a preprocessing phase by running a single-objective Dijkstra algorithm for
finding the least passage time path from the destination to any other node of the input
graph. For this computation, we use as edge weight the least passage time cost of each edge
occurring within the passage time window namely, [tstart, tstart + T ] and as ship speed the
maximum allowable speed Umax. Likewise, we also employ two heuristic functions h1(i, k, k′)
and h2(i, k, k′) with k < k′ to estimate a lower bound of costs C1 and C2 respectively of the
path starting from the node i and visiting the kth, (k + 1)th, . . . , k′th intermediate stop in
that order. These heuristic estimates are used for checking the domination relation between
two different paths. Similarly with the heuristic function h, the heuristic functions h1 and
h2 are pre-computed by running a single-objective Dijkstra algorithm for finding the optimal
path from each intermediate stop to any other node of the input graph, that minimizes the
fuel consumption and the risk respectively. For this computation, we use as edge weight the
least fuel consumption and risk cost of each edge occurring within the passage time window
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[tstart, tstart + T ] and for all possible speed levels. All heuristic functions, h, h1 and h2, are
admissible and hence they provide a lower bound on the corresponding real cost value.

Algorithm 1 keeps a set of labels li(t) where i is a node and t a time instance. Each label
is a tuple of six elements namely, li(t) = (C1, C2, j, prev_ptr, k, Spd) and corresponds to a
path from the source node s to i arriving at node i exactly at time t. C1, C2 is the total cost
of the estimated path from s to i with respect to the two criteria c1, c2 respectively. The
integer j is the predecessor node of i on the path from s to i. The pointer prev_ptr points
to the Pareto optimal label of the j whose extension gave li(t). The integer k denotes that
the most recently visited intermediate stop is the kth stop in the IS. The integer Spd is the
nominal travel speed between the kth and the (k + 1)th intermediate stop.

We also need to revisit the definition of dominance between two paths. Suppose two
paths p and p′ starting from the same source node and leading to the same destination node
i. We assume also that paths p and p′ have already visited the k and k′th intermediate
stop respectively and k′ < k. The path p is said to dominate p′ (p ≺ p′) if (C1(p) <

C1(p′)+h1(i, k′+1, k) and C2(p) ≤ C2(p′)+h2(i, k′+1, k)) or (C1(p) ≤ C1(p′)+h1(i, k′+1, k)
and C2(p) < C2(p′) + h2(i, k′ + 1, k)). In case that the two paths p and p′ have already
visited exactly the same intermediate nodes (k′ = k), they are comparable without using the
heuristic functions h1 and h2 and the path p is said to dominate another path p′ (p ≺ p′) if
(C1(p) < C1(p′) and C2(p) ≤ C2(p′)) or (C1(p) ≤ C1(p′) and C2(p) < C2(p′)). Finally, when
k′ > k and it holds either that C1(p) + h1(i, k + 1, k′) < C1(p′) and C2(p) + h2(i, k + 1, k′) ≤
C2(p′) or that C1(p) + h1(i, k + 1, k′) ≤ C1(p′) and C2(p) + h2(i, k + 1, k′) < C2(p′), no
conclusion about the dominance between these two paths can be safely reached; path p must
surely be extended till it reaches the intermediate node k′ and this additional route may
eventually make the cost of p higher than that of p′ even though the heuristic estimates show
otherwise.

It is important to note that the FIFO property does not hold for the cost functions
employed in our scenario, since leaving as much as earlier from a node does not necessarily
reduce the cost of the outgoing edge. Thus, there is no possible way to know the ideal
time of leaving a node in advance for obtaining an optimal cost path to the destination
node. As a result, for each node and for each arrival time instance at this node, we should
keep all the non-dominated labels referring to that particular arrival time. In contrast, in a
static bi-criteria shortest path problem there is no need to partition the labels at each node
according to their arrival time and only a single set of non-dominated labels can be kept at
each node.

Algorithm 1 iterates over all integer time instances in the interval [tstart, T + tstart], where
tstart is the departure time from the source node and T is the maximum allowable total
travel time. During the execution, the algorithm maintains two groups of label lists at each
node and for each time instance namely, the permanent and temporary lists. The labels
of the temporary list of a node for a given time instance are all transferred one by one to
the corresponding permanent list when the algorithm iteration proceeds to that particular
instance. However, just before that transfer, each of these labels is extended, thus creating a
new label. Each of these new labels is kept only if it does not violate the total travel time
constraint (line 19) and also if it is not dominated by another label belonging to the same
node with the same arrival time (lines 31 and 47). In the case that a label corresponds to
the next intermediate stop along the path, it must satisfy the earlier and the latest arrival
time constraint (line 23) in addition. In this case, we must also consider the laytime at
the intermediate stop and the fact that the speed can change. As a consequence, a label
corresponding to an intermediate stop is replicated in order to take into account all possible
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departure time instances from the intermediate stop and all allowable ship speed values (lines
27-28). Also, labels already in the temporary list for that arrival instance are compared
against this newly generated label and discarded when they are dominated by the new label
(line 51). The order in which the labels of the current time instance are extended is not
actually important, since all labels of that time instance should be extended first before
proceeding to the next iteration step. Thus, the label to be extended (pivot label) each
time can be selected randomly (line 9). By the end of the execution, all Pareto-optimal
solution paths will have been stored as permanent labels of the destination node d. Notice
also that for the node d, no label extension takes place (line 15) since the algorithm does
not need to go further down the destination node due to the fact that the cost functions are
non-negative-valued and hence going further only adds to the total cost of the path. Also,
in Algorithm 1, we assume a single departure time from the source node but it is trivial to
handle the case of multiple possible departure time instances too.

The same algorithm can be applied for solving the problem when the only requirement is
to visit a set of intermediate stops regardless of the particular visit order. Notice that this
version of the problem is NP-hard even in the case of only one objective by reduction from
the Hamiltonian path problem [6]. Now, each label should keep the stops already visited and
in the domination check between two labels li and lj , li wins if its intermediate stops are
superset of the stops of lj and the total estimated costs of the extended path of lj which
also includes the missing intermediate stops from li are higher than the corresponding ones
of the path of lj . Furthermore, the heuristic functions h, h1, h2 are redefined as h(i, S),
h1(i, S), h2(i, S) where S is a subset of intermediate stops that should be visited at minimum
cost and in any order starting from node i. In the case of h, after visiting the stops in
S, the path should also reach the final destination. For computing these functions, all
possible permutations of stops in S should be generated, keeping that which derives the
lowest cost. Although computing the heuristic functions for all possible subsets S and nodes
in advance seems to be a heavy computation, in practice it is not, because the set of unvisited
intermediate stops is small. Finally, during the generation of a new label, at line 21, we need
to check that this node is an intermediate stop which has not already been considered as
such along the so far constructed path.

4 Experimental results

We tested the performance of the proposed itinerary planning algorithm in a maritime
application where ship itineraries should be determined. In this problem, the objective is
to reach the destination port after visiting a predefined sequence of intermediate ports, at
minimum fuel consumption and maximum safety, respecting the constraint on the travelling
time as well as other technical and operational restrictions. The proposed algorithm is
compared to the common approach of decomposing the bi-criterion itinerary planning problem
with mandatory intermediate stops into a series of bi-criterion shortest path problems between
successive intermediate stops [1]. For a fair comparison, we have also enhanced the basic
algorithm in [1] with heuristic functions analogous with those employed in the proposed
algorithm.

4.1 Case Study
The two algorithms were tested in finding ship routes in the region of the Aegean sea in
Greece. For modelling this area, the grid structure developed for the AMINESS system
[7] is used. The data grid structure holds a great amount of data, spatially stored in the
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grid nodes and edges. Static as well as dynamic information is taken into account, such as
geographic and bathymetric data, protected areas, risk estimation [13] as well as weather
and sea state predictions. A grid point is assumed to be valid if it does not correspond to a
landmass point. All valid grid points correspond to nodes which are connected with each
other via bidirectional edges. Each node is connected to the 16 geographically closest nodes
in the grid. Furthermore, voyage safety is enhanced by following the IMO recommendations
[11] for avoiding dangerous situations. Regarding IMO recommendations, surf-riding and
broaching-to situations should be avoided when navigating in severe weather conditions.
Surf-riding and broaching-to may occur when the conditions below are satisfied:

135o < a < 225o and VR >
1, 8
√

L

cos(180− a)

with a, VR and L being the ship-wave angle, the speed and the length of the ship respectively.
Since ship speed is constant along each sub-route, the only way to avoid the above

situations is by rejecting the edges of the grid where these conditions arise.
As has been already mentioned, the objectives to be optimized are the fuel consumption

and the risk. For each possible nominal speed U and edge e, the fuel consumption and
incurred risk for traversing e with speed U is assigned to e. For calculating the navigation
time between the endpoints of an edge, we have to consider the actual ship speed along the
edge which is usually lower than the nominal one due to the added resistances induced by
irregular waves and wind during ship navigation. To this end, the ship model described in
[16] is used.

This model is general, independent of specific ship features. According to this model, the
speed reduction depends only on the significant wave height H and the ship-wave relative
direction Θ.

Estimating the fuel consumption rate along a vessel route is a complex issue still under
investigation. As a rule of thumb, the following formula is used in practice [2, 9, 17, 23, 22]:

F = K · P (2)

where F is the rate of fuel consumption measured in kg/h, K is the specific fuel consumption
of the ship and P is the engine power in BHP1 (kW) of the ship. The engine power of a
ship also determines the nominal speed of the ship. Now, the total fuel consumption along a
route with constant engine power P in the ship and hence constant nominal speed is the
product of its passage time PT and the rate of fuel consumption per hour F :

FCtotal = F · PT (3)

Concerning implementation setup, algorithms were implemented in C++. The experi-
ments were performed on a system with an Intel(R) Xeon(R) E5-2430 v2 processor at 2.50GHz
and 16 GB RAM. It is also worth mentioning that we did not exploited any parallelism in
this multi-core architecture during the tests.

For each test case, a random set of starting, intermediate and destination ports were
chosen and the maximum passage time for each voyage was proportional to the sum of
the straight line distances connecting the consecutive ports. The speed of the ship ranges
between 12 and 25 knots.

1 Brake HorsePower (BHP) is the total measure of engine power at the output shaft of the engine.
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Algorithm 1 Bi-objective, Fixed Sequence, Time-Dependent and Time-Constrained Shortest
Path Algorithm
Require: G = (V, A), and C, the cost matrix for all arcs (i, j) ∈ A

Ensure: All Pareto optimal paths from the node s to the node d passing through a fixed
sequence of intermediate nodes

1: s: the start node
d: the destination node
tstart: the departure time
T: the maximum allowed total travel time
IS = (is1, is2, . . . , isk): the fixed sequence of intermediate nodes
EATj: the Earliest Arrival Time at intermediate node j

LATj: the Latest Arrival Time at intermediate node j

LDTj: the Latest Departure Time from intermediate node j

L(j, t): the laytime of an intermediate stop arriving at intermediate node j at time
instance t

U: the nominal speed at which the ship sails since departing from the most recent
intermediate stop
pt(i, j, t, U): the travel time for traversing the arc (i, j) with speed U departing from
the node i at time instance t

fc(i, j, t, U): the total fuel consumption for traversing the arc (i, j) with speed U departing
from the node i at time instance t

r(i, j, t, U): the total risk incurred for traversing the arc (i, j) with speed U departing
from the node i at time instance t

tj
ar: an arrival time instance at the node j

li(t): a label of the node i corresponding to the path from s to i, arriving at i at time
instance t

Ltempi(t): the list of temporary labels of node i at time instance t

Lpermi(t): the list of permanent labels of node i at time instance t

card(li(t), Lpermi(t)): the position of li(t) in the list of permanent labels of node i

lp
i (t): the pth component of a label li(t)

/* Initialization of temporary and permanent labels of every node and for all
t ∈ {tstart, tstart + 1, ..., T + tstart} */

2: Ltempi(t), Lpermi(t)← ∅, ∀i ∈ V,∀t ∈ {tstart, tstart + 1, ..., T + tstart}
/* Initialization of temporary labels of source node for all t ∈ {tstart, tstart +1, ..., T +

tstart} and for all U ∈ {Umin, Umax} */
3: for U = Umin to Umax do
4: Ltemps(tstart)← {(0, 0, null, null, 0, U)}
5: end for
6:
7: for tar = tstart to T + tstart do
8: while (∪i∈V Ltempi(tar) 6= ∅) do
9: Select a pivot label li∗(tar) from ∪i∈V Ltempi(tar)
10: /* Remove li∗(tar) from Ltempi(tar) and add it to Lpermi∗(tar) */
11: Ltempi∗(tar)← Ltempi∗(tar)\{li∗(tar)}
12: Lpermi∗(tar)← Lpermi∗(tar) ∪ {li∗(tar)}
13: /* Store the position of label li∗(tar) in the list Lpermi∗(tar) */
14: p← card(li∗(tar), Lpermi∗(tar))
15: if i∗ 6= d then

ATMOS 2016



11:10 Time-dependent bi-criteria itinerary planning algorithm

16: /* Label all the successors of i∗ */
17: for all (i∗, j) ∈ E do
18: tj

ar ← tar + pt(i∗, j, tar, l6
i∗(tar))

19: /* Check the total duration constraint */
20: if tj

ar − tstart + h ≤ T then
21: /* Check if successor node j is the next Intermediate Stop */
22: if j = is(l5

i∗ (tar)+1) then
23: /* Check the EAT and LAT constraint at Intermediate Stop j */
24: if tj

ar ≥ EATj and tj
ar ≤ LATj then

25: /* Take into account the laytime at Intermediate Stop j */
26: tj

ar ← tj
ar + L(j, tj

ar)
27: for t = tj

ar to LDTj do
28: for U = Umin to Umax do
29: lj(t)← (li∗

1(tar) + fc(i∗, j, tar, l6
i∗(tar)), li∗

2(tar)
30: +r(i∗, j, tar, l6

i∗(tar)), i∗, p, j, U)
31: /* Check that there is no label l′j(t) of node j at time instance t dominating label lj(t)*/
32: if 6 ∃l′j(t) ∈ Ltempj(t) : l′j(t) ≺ lj(t) then
33: /* Store the label lj(t) of node j at time instance t as temporary */
34: Ltempj(t)← Ltempj(t) ∪ {lj(t)}
35: /* Delete all temporary labels of node j at time instance t dominated by lj(t) */
36: Ltempj(t)← Ltempj(t)\{l′j(t) ∈ Ltempj(t) and

37: lj(t) ≺ l′j(t)}
38: end if
39: end for
40: end for
41: end if
42: end if
43: else
44: /* node j is not the next Intermediate Stop */
45: lj(tj

ar)← (li∗
1(tar) + fc(i∗, j, tar, l6

i∗(tar)), li∗
2(tar)

46: +r(i∗, j, tar, l6
i∗(tar)), i∗, p, li∗

5(tar), l6
i∗(tar))

47: /* Check that there is no label l′j(tj
ar) of node j at time instance tj

ar dominating label
lj(tj

ar) */
48: if 6 ∃l′j(tj

ar) ∈ Ltempj(tj
ar) : l′j(tj

ar) ≺ lj(tj
ar) then

49: /* Store the label lj(tj
ar) of node j at time instance tj

ar as temporary */
50: Ltempj(tj

ar)← Ltempj(tj
ar) ∪ {lj(tj

ar)}
51: /* Delete all temporary labels of node j at time instance tj

ar dominated by lj(tj
ar) */

52: Ltempj(tj
ar)← Ltempj(tj

ar)\{l′j(tj
ar) ∈ Ltempj(tj

ar) and lj(tj
ar)

53: ≺ l′j(tj
ar)}

54: end if
55: end if
56: end for
57: end if
58: end while
59: end for
60: /* Output:Lpermd, all Pareto optimal paths from the node s to the node d */
61: return Lpermd
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Table 1 Itinerary planning with predefined visiting order of intermediate ports and with no other
constraints in these ports.

Case
No

Start
Time

Maximum Travel
Duration (hours)

No of
Intermediate
Stops

CPU time (in seconds)
Decomposition
Algorithm

Proposed
Algorithm

1 10:00 am 4 1 88 57
2 1:00 pm 4.5 2 102 68
3 3:00 pm 5 3 117 79
4 3:30 pm 6 4 140 92
5 7:00 am 6.5 5 151 100
6 8:00 am 7.5 6 169 113
7 9:00 am 8.5 7 189 146
8 8:30 am 9.5 8 203 156
9 7:30 am 10 9 224 171
10 7:00 am 11 10 235 194

4.2 Computational Results
Firstly, the proposed algorithm is evaluated in the case that there are no constraints on
the arrival or departing time from the intermediate ports, however, waiting at these ports
is forbidden. Thus, ∀j ∈ IS we can assume that EATj is equal to zero, LATj is equal to
the maximum voyage duration and LDTj = tj

ar (see Algorithm 1, Line 27), since a vessel
can not wait at an intermediate port. The only constraint imposed is on the arrival time at
the final destination. In Table 1, the experimental results clearly show that the proposed
algorithm has lower execution time than that of the common decomposition approach. In
the next experimental setup, the arrival time at each intermediate port is not arbitrary as in
the first case but should be within a certain time window. This scenario is more realistic
since the mooring at the port is a predefined procedure, taking place in specific time frame.
In this case, EAT and LAT parameters of each intermediate port have different values, but
again it is assumed that waiting is not allowed at intermediate ports. The computational
results in Table 2 confirm the high performance of the proposed algorithm, compared to the
common decomposition approach.

Although the anchorage duration is usually fixed, we investigate the possibility of extending
that duration without additional cost. Specifically, we assume that the anchorage duration
could be extended up to 30 minutes and hence LDTj = tj

ar + 30. Clearly, the results of the
Table 3 show that the execution time is increased in both algorithms but still our algorithm
exhibits the best performance.

Our algorithm can also handle the more general case where the visiting order of the
intermediate stops is not predefined. In this scenario, the algorithm should select the most
beneficial visiting order according to the objectives being optimized given the constraint on
the total travel time. The common decomposition algorithm could not be applied in this
case because despite the fact that the initial problem could be divided in sub-problems, the
sub-problem order is unknown and due to time-dependency, synthesizing the sub-problems
solutions is even more difficult. Table 4 lists the execution time of our algorithm for this
problem variation and for different input instances. Interestingly, although the search space
in this variation is much larger than in the case when there is a fixed sequence of intermediate
ports, the execution time of our algorithm is comparable with that in the case of the predefined
visiting order of intermediate stops.
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Table 2 Travel planning with predefined visiting order of intermediate ports and time windows
in these ports.

Case
No

Start
Time

Maximum Travel
Duration (hours)

No of
Intermediate
Stops

CPU time (in seconds)
Decomposition
Algorithm

Proposed
Algorithm

1 10:00 am 4 1 77 49
2 1:00 pm 4.5 2 89 58
3 3:00 pm 5 3 105 70
4 3:30 pm 6 4 127 81
5 7:00 am 6.5 5 134 89
6 8:00 am 7.5 6 145 101
7 9:00 am 8.5 7 162 123
8 8:30 am 9.5 8 181 134
9 7:30 am 10 9 196 149
10 7:00 am 11 10 201 163

Table 3 Itinerary planning with predefined visiting order of intermediate ports and waiting
allowed at these ports.

Case
No

Start
Time

Maximum Travel
Duration (hours)

No of
Intermediate
Stops

CPU time (in seconds)
Decomposition
Algorithm

Proposed
Algorithm

1 10:00 am 4 1 95 61
2 1:00 pm 4.5 2 113 73
3 3:00 pm 5 3 129 85
4 3:30 pm 6 4 158 98
5 7:00 am 6.5 5 173 112
6 8:00 am 7.5 6 180 129
7 9:00 am 8.5 7 201 155
8 8:30 am 9.5 8 226 168
9 7:30 am 10 9 248 183
10 7:00 am 11 10 255 203

5 Conclusions

We have focused on the problem of finding all the Pareto optimal itinerary plans which passes
through a fixed sequence of nodes, in a deterministic time-dependent setting considering
two conflicting objectives and with a constraint on the total duration of the itinerary. We
have proposed a general algorithm which can be applied to several application scenarios.
The time-dependent network on which we search for the Pareto optimal solutions is a non-
FIFO network. Thus, waiting at intermediate stops may be a valid option for achieving
low-cost solutions. We considered also the case where there is a fixed schedule for visiting
the intermediate stops and a constraint on the latest departure time from each intermediate
stop. In order to evaluate the performance of the proposed algorithm, it was compared
with the common decomposition approach in a case study relevant to the sea transportation.
The optimization criteria in the experiments were the total fuel consumption and the total
risk of the itinerary. The main conclusion from these experiments is that due to efficient
early pruning of candidate solutions, our algorithm outperforms the common decomposition
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Table 4 Itinerary planning with no predefined visiting order of the intermediate ports.

Case
No

Start
Time

Maximum Travel
Duration (hours)

No of Intermediate
Stops

CPU time (in seconds)
Proposed Algorithm

1 10:00 am 4 2 61
2 1:00 pm 4.5 2 71
3 3:00 pm 5 3 87
4 3:30 pm 6 4 99
5 7:00 am 6.5 5 112
6 8:00 am 7.5 6 127
7 9:00 am 8.5 7 156
8 8:30 am 9.5 8 170
9 7:30 am 10 9 188
10 7:00 am 11 10 205

method in all tests. Moreover, our algorithm turns out to be applicable also in the case where
the visiting order of the intermediate stops is not predefined. This generalized problem is
more difficult than the original problem, because the set of efficient solutions is even larger.
Finally, another interesting feature of the proposed algorithm is that it permits the change
of the vessel speed between successive intermediate ports. A more general scenario, where
the speed of a ship is allowed to change more frequently even from node to node in the input
grid is not very interesting since the common practice is exactly the opposite, that is, the
ship speed is usually maintained constant while at sea and when there is no emergency.
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Abstract
We study the Flight Planning Problem for a single aircraft, which deals with finding a path of
minimal travel time in an airway network. Flight time along arcs is affected by wind speed and
direction, which are functions of time. We consider three variants of the problem, which can be
modeled as, respectively, a classical shortest path problem in a metric space, a time-dependent
shortest path problem with piecewise linear travel time functions, and a time-dependent shortest
path problem with piecewise differentiable travel time functions.

The shortest path problem and its time-dependent variant have been extensively studied,
in particular, for road networks. Airway networks, however, have different characteristics: the
average node degree is higher and shortest paths usually have only few arcs.

We propose A* algorithms for each of the problem variants. In particular, for the third
problem, we introduce an application-specific “super-optimal wind” potential function that over-
estimates optimal wind conditions on each arc, and establish a linear error bound. We compare
the performance of our methods with the standard Dijkstra algorithm and the Contraction Hier-
archies (CHs) algorithm. Our computational results on real world instances show that CHs do
not perform as well as on road networks. On the other hand, A* guided by our potentials yields
very good results. In particular, for the case of piecewise linear travel time functions, we achieve
query times about 15 times shorter than CHs.
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1 Introduction

We consider the Flight Planning Problem (FPP), which seeks to compute a cost-minimal
flight trajectory on an airway network, given origin and destination airports, a departure time,
an aircraft, and weather prognoses. Some of the factors that need to be taken into account
are overflight costs, weight-dependent fuel consumption functions, avoidance of hazardous
areas, and restrictions to prevent overcrowding of airspaces, such as those published by
EUROCONTROL in the Route Availability Document [9]. A comprehensive discussion of the
FPP can be found in the survey [13]. However, to the best of our knowledge, the algorithmic
treatment of flight planning problems on the complete airway network has not yet been
considered in the literature. Existing approaches to the FPP, such as [5] or [6], consider only
small regions of the airway network or artificial networks.

In this paper, we will focus on the Horizontal Flight Planning Problem (HFPP), a variant
that seeks to minimize total flight time (in this case equivalent to total fuel consumption)
while flying at constant altitude. This variant is very important because it is often used in
practice as a subroutine in sequential approaches for computing 4-dimensional routes (with
speed as the fourth dimension) [13]. Furthermore, it can be argued that the cruise phase is
more important in terms of potential savings than the climb and descent phases, in particular
for long-haul flights. Flight time between any two points is highly dependent on weather
conditions, which are given as a function of time. For this reason, we model the HFPP as a
Time-Dependent Shortest Path Problem (TDSPP).

The classical Shortest Path Problem (SPP) and the TDSPP have been extensively
studied in the literature, with particular emphasis on routing in road networks. The past
decades have seen a significant development of preprocessing techniques for both the SPP
and the TDSPP, which yield astounding speedups compared to Dijkstra’s algorithm, see [2],
[8] for comprehensive surveys. Some of the most prominent state-of-the-art approaches are
the following:

The A∗ algorithm was first introduced in [12]. It is based on finding a potential function
that, for each node, underestimates the length of an optimal path which uses it. The main
ingredient for designing a potential function is thus an underestimator of the distance from
each node to the target. In road networks, an obvious choice for such an underestimator is
the great circle distance (GCD) to the target node. However, this method usually provides
very loose underestimators (and thus very small speedups), due to the fact that subpaths
of the optimal route often deviate substantially from the great circle connecting their
endpoints. This can be explained by the grid-like topology of most road networks and the
existence of obstacles such as rivers or mountain ranges. Therefore, more sophisticated
potential functions have been developed, such as ALT, see the next item.
A∗ with Landmarks and Triangle-inequality (ALT) [11] is a variant of the A∗ algorithm,
which can also be extended to the time-dependent case [14]. The main idea is to identify
a set of “important” nodes, known as landmarks, for which a one-to-all (or all-to-one)
shortest path tree is computed. The potential of each node is then computed by using
these stored distances and the triangle inequality. The main challenge is defining the
landmarks, which should ideally lie on a large number of shortest paths, or close to them.

http://dx.doi.org/10.4230/OASIcs.ATMOS.2016.12
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Figure 1 The exact travel time function T (a, τ) in red and the approximated piecewise linear
function in blue, for some arc a.

The ALT algorithm can be further improved by combining it with other preprocessing
techniques, see [4].
Contraction Hierarchies (CHs) [10], as well as its time-dependent counterpart, Time-
dependent Contraction Hierarchies (TCHs) [3], is one of the leading techniques in shortest
paths computation. Even though TCHs have the disadvantage of large space requirements,
they are considered one of the (if not the) best algorithms for the TDSPP in road networks
[8], due to their lower preprocessing times. To the best of our knowledge, computational
results on the performance of CHs and TCHs have been published only for road networks
and public transportation networks [2].
Approaches based on Hierarchical Hub Labeling [1] have been shown to be effective not
only on road networks but on a large variety of input graphs [7], such as social networks
or computer game networks. However, the nature of this approach seems to make it
unsuitable for extension to the time-dependent case.

We will consider the real-world airway network. Its characteristics are very different from
those of road networks. As of 2016, the complete horizontal network has approximately 53000
nodes and 330000 arcs after some preprocessing (i.e., contracting a large set of nodes with
in-degree and out-degree equal to one). The average node degree of over six is higher than in
road networks (usually between two and three), but still significantly smaller than in typical
social networks (often in the two-digit range, see [7]). An advantage of flight planning over
routing in road networks is that the number of possible OD-pairs is small. In fact, only about
1300 airports worldwide are used by commercial airlines1. Also, flight paths are typically
short, usually involving below one hundred nodes, and do not deviate much from the great
circle connection. It turns out that shortest path computation in airway networks is heavily
influenced by these characteristics, and that the relative performance of the algorithms is
different than in road networks.

In this paper, we investigate three variants of the HFPP.

The static case is a particular shortest path problem, where the nodes belong to a metric
space and arc costs are given by the corresponding distance (i.e., the GCD in our case).

1 According to data from www.flightradar24.com
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We will denote this problem as SPP. We present an A∗ algorithm in which the lower
bounds for the potential function are given by the GCD from any node to the target node.
This makes it possible to avoid the preprocessing step completely. Our computational
results show that the speedup is comparable to that of CHs.
The exact dynamic case is a Time Dependent Shortest Path Problem. In contrast to
the literature standard, the time-dependent travel time functions (TTFs) on the arcs are
not piecewise linear. In fact, in our application, the TTFs depend on wind forecasts and
model the exact arc travel time. We refer to this problem as TDSPP-E. We present a
super-optimal wind algorithm that underestimates the minimal travel time on each arc
using the Newton method and establish a strong a priori error bound. The super-optimal
wind bounds and the fact that the set of targets is known in advance, allow us to design
an A∗ algorithm that yields a speedup of approximately 20 w.r.t. Dijkstra. Due to the
non-linearity of the TTFs, this problem can not be solved by state-of-the-art TDSPP
algorithms, in particular TCHs.
Finally, in the approximate dynamic case, we consider a standard Time Dependent
Shortest Path Problem. To this purpose, we approximate all TTFs by piecewise linear
functions. Figure 1 shows an exact TTF and its approximate counterpart. We denote
the resulting problem as TDSPP-PWL and present an A∗ algorithm similar to the one
for TDSPP-E. Our computations show that the average speedup is approximately 25
with respect to Dijkstra, and 15 with respect to TCHs.

In Section 2, we describe the problems that we will study. In particular, we give a detailed
description of the TTFs used in the exact dynamic case, to model the time-dependent
influence of the wind on the travel time. Section 3 presents the super-optimal wind algorithm
and the corresponding potential functions for the A∗ algorithm in the exact dynamic case.
Finally, Section 4 presents computational results computed on real world data.

2 The Horizontal Flight Planning Problem

The HFPP can be modeled in terms of the Time-Dependent Shortest Path Problem, which
is defined as follows: Given are a directed graph D = (V,A) (In our application, nodes
represent waypoints in the airway network and arcs stand for airway segments) and, for each
a ∈ A, a travel time function (TTF) T (a, ·) : [0,∞)→ [0,∞) that depends on the entering
time. The travel time along a path (v0, v1, . . . , vk) departing at time τ is defined as

T ((v0, . . . , vk), τ) =
{
T ((v0, v1), τ) k = 1
T ((v0, . . . , vk−1), τ) + T ((vk−1, vk), T ((v0, . . . , vk−1), τ) + τ) k > 1.

Given a pair of nodes s, t ∈ V and a departure time τ ≥ 0, the objective is to find an
s, t-path P in D such that the total travel time T (P, τ) is minimized.

The literature on the TDSPP usually considers piecewise linear (PWL) TTFs. We will
denote this special (approximate) case of the dynamic problem as TDSPP-PWL.

The exact version of the dynamic problem, which we denote as TDSPP-E, assumes
functions T (a, ·) as described subsequently in Subsection 2.1. Finally, when T (a, ·) is constant
for every a ∈ A, we obtain the classical shortest path problem, denoted simply as SPP.

A standard assumption on TTFs is that they satisfy the First-In-First-Out (FIFO)
property, which states that overtaking on arcs is not possible. That is, T (a, τ1) ≤ (τ2− τ1) +
T (a, τ2) for every a ∈ A, 0 ≤ τ1 ≤ τ2. It is well known that the FIFO property guarantees
correctness of the Dijkstra and A∗ algorithms, while the TDSPP is NP-hard in the general
case. In the remainder of this paper, we assume that the FIFO property is always satisfied.
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Figure 2 Crosswind and tailwind components.

2.1 Wind-Dependent Travel Time Functions
In this subsection, we define the travel time functions T (a, ·) for the exact dynamic HFPP.
We first recall some aeronautics terminology.

Let a = (u, v) ∈ A and τ ≥ 0. For the next definitions, assume that the aircraft is located
at u at time τ and then proceeds to traverse a. The ground distance dG(a) is defined as the
GCD between u and v, and is thus independent of τ . The airspeed vA is the speed relative
to the air mass surrounding the aircraft. In our application, we assume that vA is constant.
Finally, the ground speed vG(a, τ) is the aircraft’s speed relative to the ground at the moment
in which the aircraft enters arc a. The ground speed can be described in terms of a wind
vector w acting on a at time τ as follows:

vG(a, τ) =
√

(vA)2 − wC(a, τ)2 + wT (a, τ).

Here, wC(a, τ) represents the crosswind component and wT (a, τ) the tailwind component
affecting arc a at time τ ; these are the components of the wind vector with angles π

2 and 0
with respect to a’s direction, respectively, see Figure 2. Since an aircraft’s airspeed is always
much larger than wind speed, we can assume that vG is always well-defined and positive.

Consider a wind vector w(a, τ) =
(
ra(τ), θa(τ)

)
acting on a at time τ , where ra(τ) is the

wind speed, i.e., the wind vector’s magnitude; and θa(τ) is the wind direction, i.e., the angle
with respect to the arc’s direction. Then, the crosswind and tailwind components can be
computed as follows:

wC(a, τ) = ra(τ) sin(θa(τ)) and wT (a, τ) = ra(τ) cos(θa(τ)).

A weather prognosis set provides wind information for a finite number of time points
t0 < t1 < · · · < tN . Without loss of generality, we will assume t0 = 0. Furthermore, in
practice, prognosis sets are used to plan flights taking off after time t0 and landing well
before time tN . For that reason, in the rest of the paper, we will assume that we are only
interested in evaluating TTFs for τ ∈ [t0, tN ].

If ti < τ < ti+1 for i ∈ {0, . . . , N − 1}, the wind vector is interpolated. More precisely,
given two wind vectors wi and wi+1 for arc a at times ti and ti+1, defined by wind speeds
ria, r

i+1
a and directions θia, θi+1

a , then for τ = λti + (i−λ)ti+1 with λ ∈ (0, 1), the wind vector
at time τ is defined by

ra(τ) = λria + (1− λ)ri+1
a and θa(τ) = λθia + (1− λ)θi+1

a .
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Therefore the resulting crosswind and tailwind components at time τ are

wC(a, τ) =
(
λria + (1− λ)ri+1

a

)
sin
(
λθia + (1− λ)θi+1

a

)
wT (a, τ) =

(
λria + (1− λ)ri+1

a

)
cos
(
λθia + (1− λ)θi+1

a

)
.

In this paper, we assume that wC(a, τ) and wT (a, τ) remain constant during the traversal of
a and define the travel time T (a, τ) across arc a entering at time τ as

T (a, τ) = dG(a)
vG(a, τ) = dG(a)√

(vA)2 − wC(a, τ)2 + wT (a, τ)
. (1)

One can argue that the functions T (a, ·) in (1) satisfy the FIFO property for realistic weather
conditions. They represent the industrial state-of-the-art in aeronautical computations.

3 A* algorithms for the HFPP

For each of the three problem variants described in Section 2, we design an A∗ algorithm.
Such an algorithm is based on a potential function π : V → R that, for every v ∈ V ,
underestimates the cost of the shortest (v, t)-path. The potential is used to define the reduced
cost of an arc (u, v) at time τ as follows:

T ′((u, v), τ) := T ((u, v), τ)− π(u) + π(v).

If T ′((u, v), τ) ≥ 0 for every (u, v) ∈ A, τ ≥ 0, we say that π is feasible. Given this condition,
the A∗ algorithm is equivalent to running Dijkstra on D using the reduced costs T ′. In the
following, we will introduce potential functions for each of the three problem variants.

3.1 Potential in the Static Case
In the static case, i.e., for SPP, a potential function for A∗ can be computed by simply
considering the great-circle-distance between any node and the target node. That is, given
v ∈ V and a target node t ∈ V , we define

π(v) := dG(v, t),

where dG : V × V → R+ is the GCD-function. The advantage of this approach is that π can
be computed on-the-fly during the query, and so no preprocessing step is necessary.

3.2 Potential in the Approximate Dynamic Case
For TDSPP-PWL, we make use of the fact that, in our application, there exists a small
number of possible targets (which correspond to airports). Thus, we compute a lower bound
on the minimum travel time from each node to each airport. For this, we first seek a
value T (a) that, for each arc a, lower-bounds all possible travel times on the arc. That is,
T (a) ≤ T (a, τ) for each τ ∈ [t0, tN ]. Since T (a, ·) is a piecewise linear function, this bound
can be found in linear time. Then, we compute all-to-one shortest path trees towards all
airport nodes using T as arc costs and set

πt(v) = min
{∑
a∈P

T (a)|P is a (v, t)-path
}

(2)

for every node v and every possible target node t. Given an OD-pair s, t, we choose πt(·)
as a potential function. We remark that this is equivalent to choosing all airport nodes as
landmarks in the ALT algorithm.
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w1

w2

ws-opt

w2
C(a)

w̄2
T (a)

(a) The super-optimal wind vector ws-opt resulting
from w1 and w2.

τ2τ1

wC(λ)

wT (λ)

(b) Crosswind (red) and tailwind (blue)
functions for the wind vectors in the
interval [τ1, τ2].

Figure 3 Super-optimal wind and component functions for wind vectors w1 and w2, corresponding
to time points τ1 and τ2.

3.3 Potential in the Exact Dynamic Case Using Super-Optimal Wind
For TDSPP-E, we also compute lower bounds T on the TTFs and then define π accord-
ing to (2). As opposed to the approximate case, finding good lower bounds T (a) is not
straightforward. This section is dedicated to the solution of this problem.

It is clear from (1) that an upper bound on the ground speed directly leads to a lower
bound on the travel time. Thus, to find a good lower bound on T ∗(a) := minτ∈[t0,tN ] T (a, τ),
we will concentrate on finding a good upper bound on vG∗ (a) := maxτ∈[t0,tN ] v

G(a, τ).
We assume that the length of the weather prognosis intervals is constant, i.e., ti − ti−1 ≡

L > 0 for i = 1, . . . , N . Our first step is to discretize the time interval [t0, tN ] into smaller
intervals of length ∆ > 0. That is, we define τ0, . . . , τK such that t0 = τ0 < τ1 < · · · < τK =
tN , ∆ = τk − τk−1 for k = 1, 2, . . . ,K; and N divides K. This condition guarantees that
every two consecutive time points τk−1 and τk belong to an interval [ti−1, ti] for some index
i. Define

wkC(a) := min
τ∈[τk−1,τk]

|wC(a, τ)|,

w̄kT (a) := max
τ∈[τk−1,τk]

wT (a, τ),

v̄Gk (a) :=
√

(vA)2 − wkC(a)2 + w̄kT (a),

v̄G(a) := max
k∈{1,...,K}

v̄Gk (a),

and T (a) := dG(a)
v̄G(a) .

By definition, we know that on any time interval, the ground speed increases as the tailwind
increases, and decreases as the crosswind increases. Thus, (wkC(a), w̄kT (a)) corresponds to an
imaginary super-optimal wind vector whose corresponding ground speed v̄Gk (a) overestimates
the ground speed in the time interval [τk−1, τk].
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For an example, see Figure 3. On the right side, we see a typical behavior of the tail- and
crosswind functions on an arc in a given time interval [τ1, τ2], the minimum and maximum
of interest are marked. On the left side, we see the super-optimal wind vector that results
from the combination of both components. This vector yields a larger ground speed than
all wind vectors in the gray rectangle, and thus larger than all wind vectors in the interval
[τ1, τ2], represented by the dashed curve.

From this overestimation property and the definition of v̄G(a), it follows that, for each arc,
the maximum of the ground speed overestimators on all discretization intervals overestimates
the ground speed at any time, while the resulting travel time is a global underestimator:

I Lemma 1. For every a ∈ A and τ ∈ [t0, tN ], we have

v̄G(a) ≥ vG∗ (a) ≥ vG(a, τ) and T (a) ≤ T ∗(a) ≤ T (a, τ).

Thus, all we need to obtain the bounds v̄G(a) and T (a) is to compute wkC(a) and w̄kT (a) for
every a ∈ A, k = 1, . . . ,K. We will describe that step in Subsection 3.4. In the remainder
of this subsection, we will prove that the absolute overestimation/underestimation error is
linear with respect to the discretization step. Assuming that the aircraft is always at least
twice as fast as the wind (which is always the case in practice), we can bound the constant
in terms of the airspeed and the length of the weather prognosis intervals.

I Theorem 2. For every a ∈ A, assume that vA ≥ 2r∗a. Then, there exists a constant Cv > 0
such that the ground speed error is bounded as follows:

0 ≤ v̄G(a)− vG∗ (a) ≤ Cv∆.

Proof. The left inequality follows from Lemma 1. For the right one we only have to prove
that there exists Cv > 0 s.t.

max
τ∈[τk−1,τk]

(
v̄Gk (a)− vG(a, τ)

)
≤ Cv∆ for every k = 1, 2, . . . ,K. (3)

To bound the ground speed error, we first bound the error on tailwind and crosswind. W.l.o.g
assume k = 1 and define I = [τ0, τ1]. Let ρ1, ρ2 ∈ I ⊆ [t0, t1] and λ1, λ2 ∈ [0, 1] satisfy
ρi = λit0 + (1− λi)t1, i = 1, 2. We have

|wT (a, ρ1)− wT (a, ρ2)| ≤ |ρ1 − ρ2|max
ρ∈I
|w′T (a, ρ)|

= |ρ1 − ρ2|max
ρ∈I

∣∣∣r′a(ρ) cos
(
θa(ρ)

)
− ra(ρ) sin

(
θa(ρ)

)
θ′a(ρ)

∣∣∣
≤ ∆

(
max
ρ∈I
|r′a(ρ)|+ r∗a max

ρ∈I
|θ′a(ρ)|

)
, (4)

where r∗a = maxρ∈[t0,tN ] ra(ρ). Since wind speed and direction are interpolated linearly in
[t0, t1], we have

r′a(ρ) = r1
a − r0

a

t1 − t0
and θ′a(ρ) = θ1

a − θ0
a

t1 − t0
. (5)

From (4) and (5), it follows that

|wT (a, ρ1)− wT (a, ρ2)| ≤ ∆ |r
1
a − r0

a|+ r∗a|θ1
a − θ0

a|
t1 − t0

≤ ∆r∗a(1 + 2π)
t1 − t0

.
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Similarly, we can prove that

|wC(a, ρ1)− wC(a, ρ2)| ≤ ∆r∗a(1 + 2π)
t1 − t0

.

We are now ready to establish a bound on the ground speed error. Let ρ∗, ρ̄, ρ ∈ I satisfy
ρ∗ ∈ argmaxτ∈IvG(a, τ), wT (a, ρ̄) = w̄1

T (a), and wC(a, ρ) = w1
C(a). The absolute ground

speed error in interval I is thus

v̄G1 (a)− vG(a, ρ∗) =
√

(vA)2 − wC(a, ρ)2 + wT (a, ρ̄)−
√

(vA)2 − wC(a, ρ∗)2 − wT (a, ρ∗)

=
wC(a, ρ∗)2 − wC(a, ρ)2√

(vA)2 − wC(a, ρ)2 +
√

(vA)2 − wC(a, ρ∗)2
+ wT (a, ρ̄)− wT (a, ρ∗)

≤
|wC(a, ρ∗)− wC(a, ρ)||wC(a, ρ∗) + wC(a, ρ)|√

(vA)2 − ra(ρ)2 +
√

(vA)2 − ra(ρ∗)2
+ ∆r∗a(1 + 2π)

t1 − t0

≤ ∆r∗a(1 + 2π)
t1 − t0

(
ra(ρ∗) + ra(ρ)
2
√

(vA)2 − r∗a2
+ 1
)

≤ ∆r∗a(1 + 2π)
t1 − t0

(
r∗a√

(vA)2 − r∗a2
+ 1
)
.

By assumption, the wind speed r∗a is always smaller than half of the airspeed vA, so we have

r∗a

(
r∗a√

(vA)2 − r∗a2
+ 1
)
≤ vA

2 (1 + 1) = vA.

In practice, r∗a (wind speed) is usually much smaller than vA

2 (flight speed), hence we can

choose Cv := vA(1 + 2π)
L

. J

Using T (a)v̄G(a) = dG(a) = T ∗(a)vG∗ (a) and Theorem 2, the main result of this section
follows:

I Corollary 3. For every a ∈ A, assume that vA ≥ 2r∗a. Then, there exists a constant CT
s.t.

0 ≤ T ∗(a)− T (a) ≤ CT∆.

That is, assuming reasonable wind conditions, the additive gap between the presented TTF
underestimators and the corresponding minima is linearly bounded by the discretization
step.

3.4 Minimization of Crosswind and Maximization of Tailwind
In the previous subsection, we used the minimum-magnitude crosswind in an interval in order
to compute the super-optimal wind vector that is needed to define T (a). In this subsection,
our objective is to show how this minimization can be done. We recall

|wC(a, τ)| = |
(
λrk−1 + (1− λ)rk

)
sin
(
(λθk−1 + (1− λ)θk

)
|,
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θ2θ1

w1

w2
r1

r2

(a) θ1, θ2 belong to the
first quadrant.

θ2

θ1

w1

w2

r1

r2

(b) θ1, θ2 belong to dif-
ferent quadrants.

f

λ

1

0 1

case 1.2
case 1.1

(c) Function f in case 1.

Figure 4 Cases considered for crosswind minimization.

where λ := τ2−τ
τ2−τ1

and τ ∈ [τk−1, τk] for some k = 1, . . . ,K. W.l.o.g., assume k = 2 for ease of
notation. It suffices to consider the case wC(a, τ) ≥ 0 for all τ ∈ [τ1, τ2]. Indeed, if wC(a, τ)
takes both positive and negative values in [τ1, τ2], by continuity the minimum absolute value
must be 0, thus making the solution trivial. The case where wC(a, τ) ≤ 0 for all τ ∈ [τ1, τ2]
is analogous by symmetry. Thus, we can ignore the absolute values.

We can also assume that θ1 < θ2 and r1 6= r2, as the other cases are either simple or can
be reduced to this case. W.l.o.g. we will further assume that θ1 and θ2 belong to the same
quadrant, since otherwise (see e.g. Figure 4b) we can compute the minimal value in each
quadrant and take the overall minimum. Define

wC(a, τ) =
(
λr1 + (1− λ)r2

)
sin
(
(λθ1 + (1− λ)θ2

)
= (aλ+ b) sin(αλ+ β) =: f(λ)

with a = r1 − r2, b = r2 > 0, α = θ1 − θ2 < 0 and β = θ2. Its derivatives are then

f ′(λ) = a sin(αλ+ β) + (aλ+ b)α cos(αλ+ β),
f ′′(λ) = 2aα cos(αλ+ β)− α2(aλ+ b) sin(αλ+ β),
f ′′′(λ) = −3aα2 sin(αλ+ β)− α3(aλ+ b) cos(αλ+ β).

We make the following case distinction:
1. θ1, θ2 ∈ [0, π2 ]: We have λ ∈ [0, 1], sin(αλ+ β), cos(αλ+ β) ≥ 0. Consider the following

two subcases (see Figures 4a and 4c):
1.1. a > 0, i.e., r1 > r2: As (aλ+b) > 0 and since α < 0 we have f ′′(λ) < 0 for all λ ∈ [0, 1].

Hence, f is concave and must attain its minimum at either 0 or 1.
1.2. a < 0: Since f ′′′(λ) > 0, f ′′(λ) is increasing. Evaluating f ′′ at λ = 1 results in two

possibilities: If f ′′(1) < 0, we have that f is concave in [0, 1], and hence its minimum
must be attained at one of the boundary points. If f ′′(1) > 0, we further need to
distinguish whether f ′′(0) > 0 (which means f is convex, see below) or f ′′(0) < 0.
In the latter case, we perform a Newton procedure for finding the inflection point
(f ′′(λ) = 0), and subdivide [0, 1] into its convex and its concave part. Having done so,
we know that the minimum in the concave part is attained at one of the end points.
When f is convex, we apply Newton’s method to find a root of f ′(λ). In case the
minimum is found outside of [0, 1], we simply take the λ ∈ {0, 1} closest to it.
Comparing the values from the concave and convex parts yields the minimum.

2. θ1, θ2 ∈ [π2 , π]: We have sin(αλ + β) ≥ 0 and cos(αλ + β) ≤ 0, and again distinguish
between two subcases:
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Table 1 Algorithm nomenclature used in the result tables.

Algorithm
Problem SPP TDSPP-PWL TDSPP-E

Dijkstra Dijk DijkP W L DijkE

A∗ A∗ A∗
P W L A∗

E

Contraction Hierarchies CH TCH −

2.1. a > 0: Analogous to 1.2.
2.2. a < 0: Since f ′′(λ) < 0, analogous to 1.1.

3. θ1, θ2 ∈ [π, 3π
2 ]: Analogous to 2 by symmetry.

4. θ1, θ2 ∈ [ 3π
2 , 2π]: Analogous to 1 by symmetry.

Applying a very similar procedure to the function g(λ) defined below yields the maximum
of the tailwind component wT (a, τ):

wT (a, τ) =
(
λr1
a + (1− λ)r2

a

)
cos
(
λθ1
a + (1− λ)θ2

a

)
= (aλ+ b) cos(αλ+ β) =: g(λ).

3.5 Validation of Super-Optimal Wind Quality
To assess the quality of the super-optimal wind bounding procedure, we ran it on all arcs in
nine instances, corresponding to the three graphs and three weather prognoses described
below, in Section 4. Our weather prognoses satisfy L = ti+1 − ti equal to three hours
for i = 1, . . . , n. That, is, precise prognoses are given at three hour intervals and wind is
interpolated for times in between. Thus, an obvious candidate for the discretization step ∆
is at most three hours. Computational results show that our algorithm with ∆ = L = 3h
already provides excellent results. To validate our lower bounds, we also used a brute force
approach which computes the maximal ground speed on each segment and each time interval
through enumeration. The average relative error between our lower bounds and the brute
force results is only 0.434 · 10−3. Also, the average time it takes to process an arc is less than
one millisecond; the average run time measured for the complete calculation is 5.61 seconds,
running the code on 20 threads on the computer described in Section 4. Another interesting
fact is that, in almost one third of the cases, the estimated result coincided with the exact
result.

4 Computational Results

In this section, we present the results of extensive computations measuring the performance
of our algorithms on airway networks.

For each of the considered problem variants (SPP, TDSPP-PWL, and TDSPP-E),
we implemented a Dijkstra algorithm and an A∗ algorithm, using the potential functions
described in Section 3. To test CHs and TCHs on our instances, we used the tools Contraction
Hierarchies and KaTCH, both released by the Karlsruhe Institute of Technology (KIT) [15].

All algorithms (including the Contraction Hierarchies tools) were implemented in C++
and compiled with GCC, and all our computations were performed on computers with 132
GB of RAM and an Intel(R) Xeon(R) CPU E5-2660 v3 processor with 2.60GHz and 25.6
MB cache. All preprocessing steps were carried out in parallel using 20 threads, except for
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Table 2 Graph instances corresponding to three common flight altitudes.

Instance Nodes Arcs Avg. degree Flight altitude
I-29 52719 329442 6.249 29000ft
I-34 52691 329736 6.258 34000ft
I-39 52662 329580 6.258 39000ft

Table 3 Comparison of CH and A∗ in the static case.

Dijk CH A∗

Instance query
(ms)

prep
(s)

query
(ms)

speedup
×

prep
(s)

query
(ms)

speedup
×

I-29 2.01 1260 0.37 5.45 0 0.34 5.86
I-34 2.00 1233 0.38 5.24 0 0.33 6.12
I-39 1.94 1309 0.39 5.01 0 0.32 6.00

that of static Contraction Hierarchies, whose code does not offer the option of parallelization.
All other computations were carried out in single-thread mode.

We use the notation introduced in Table 1 to refer to the different algorithms. In all
subsequent tables, we use the abbreviations “prep” for preprocessing time, “query” for query
time (given an OD pair) and “speedup” for the ratio between the given algorithm’s query
times and Dijkstra’s query times.

4.1 Instances
All instances used in our computations correspond to real-world data, provided to us either
by Lufthansa Systems GmbH & Co. KG (graphs and weather prognoses) or obtained from
the flight tracking portal www.flightradar24.com (list of OD pairs).

We consider three directed graphs, corresponding to horizontal layers of the airway
network at altitudes 29000 feet, 34000 feet, and 39000 feet, respectively. We chose these
particular three because they are all common cruise altitudes distant enough from each other
that the weather conditions are substantially different. While the graphs are topologically
very similar, there exist several arcs which may be used only at certain altitudes. The
characteristics of the three graphs and the notation we will use to refer to them are presented
in Table 2.

Furthermore, we consider three different sets of weather prognoses. Each contains weather
information for a period ranging from 30 to 45 hours, with prognoses available at intervals of
3 hours. We identify them by the names Dec, Feb and Mar, based on the dates in which the
prognoses were made.

To construct instances for TDSPP-PWL, we approximated the TTFs with piecewise
linear functions by discretizing the time horizon into time intervals of length one/three hours.
Three hours is an obvious choice, since each prognosis set makes predictions for time points
at three hours intervals. All TTFs thus obtained satisfy the FIFO property.

For all algorithms, we ran queries on a fixed set of 18644 OD pairs, corresponding to all
flights recorded by www.flightradar24.com in June, 2015.

We use the following notation to identify our instances. For SPP, instances are given
by the altitude (e.g. I-29). For TDSPP-E, instances are defined by the altitude and the
weather prognosis set (e.g. I-29-Feb). Finally, for TDSPP-PWL, we identify instances by
the altitude, prognosis, and discretization size (e.g. I-29-Feb-3).
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Table 4 Comparison of TCHs and A∗
P W L for TDSPP-PWL.

DijkP W L TCH A∗
P W L

Instance query
(ms)

prep
(min)

query
(ms)

speedup
×

prep
(s)

query
(ms)

speedup
×

I-29-Dec-1 4.91 380.48 4.08 1.20 1.82 0.22 21.51
I-34-Dec-1 4.91 451.82 4.27 1.15 1.83 0.24 20.24
I-39-Dec-1 4.93 195.75 3.23 1.53 1.81 0.16 30.15
I-29-Feb-1 4.90 414.78 3.94 1.25 1.87 0.21 22.96
I-34-Feb-1 4.86 466.95 3.96 1.23 1.72 0.21 22.23
I-39-Feb-1 4.92 184.20 3.01 1.63 1.72 0.15 31.50
I-29-Mar-1 4.55 216.57 2.82 1.61 1.50 0.16 27.27
I-34-Mar-1 4.55 189.18 2.92 1.55 1.56 0.18 24.38
I-39-Mar-1 4.58 127.38 2.52 1.81 1.54 0.15 29.45
I-29-Dec-3 4.36 312.40 2.67 1.63 1.54 0.19 22.03
I-34-Dec-3 4.38 351.70 2.80 1.56 1.54 0.21 20.85
I-39-Dec-3 4.38 160.20 2.30 1.90 1.54 0.14 30.87
I-29-Feb-3 4.31 328.47 2.66 1.62 1.51 0.18 23.09
I-34-Feb-3 4.28 372.15 2.92 1.47 1.60 0.19 21.68
I-39-Feb-3 4.33 155.07 2.20 1.97 1.52 0.13 31.94
I-29-Mar-3 4.22 179.45 2.31 1.82 1.34 0.14 28.39
I-34-Mar-3 4.26 146.52 2.33 1.83 1.37 0.16 26.68
I-39-Mar-3 4.26 96.80 2.03 2.10 1.35 0.13 31.02

Summary
Average 4.55 262.77 2.94 1.60 1.59 0.18 25.90
Minimum 4.22 96.8 2.03 1.15 1.34 0.13 20.24
Maximum 4.93 466.95 4.27 2.10 1.87 0.24 31.94

4.2 Static Case
The results for SPP can be found in Table 3. The speedup obtained by A∗ is slightly better
than that of CHs, but not significantly. What is remarkable is that, since the potential for
A∗ is computed on-the-fly during query time, no preprocessing is necessary. This results in a
distinct advantage over CHs, which require over 20 min. preprocessing time. However, this
is also the reason why the query times of A∗ are longer than in the time-dependent version
(see Table 4). In fact, the computation of the potential functions accounts for over half the
CPU time needed for the queries. The good performance of A∗ in this case is likely due
to the fact that airway networks allow for minimum-distance paths to lie close to the great
circle, as opposed to road networks.

4.3 Approximate Dynamic Case
In Table 4, we compare the results for the solution of TDSPP-PWL: A∗PWL is the clear
winner. We can see that the preprocessing time of TCHs is much longer than that of A∗,
and is in fact too long to be of use in practical applications. Furthermore, the query times
of A∗PWL yield an approximate speedup of 25 w.r.t. Dijkstra and 15 w.r.t. TCHs. Recall
that A∗PWL can exploit the fact that the set of possible target nodes is small and known in
advance, while TCHs have no such advantage. This partially explains the former algorithm’s
superiority.

4.4 Exact Dynamic Case
Finally, in Table 5, we compare our versions of A∗ implemented for TDSPP-E and TDSPP-
PWL. While A∗PWL1

and A∗PWL3
refer to the same algorithm, we use the indices 1 and 3 to

distinguish between the instances with corresponding discretization steps. The preprocessing
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Table 5 Comparison of A∗
E and A∗

P W L in the time-dependent case.

DijkE A∗
E A∗

P W L1 A∗
P W L3

Instance query
(ms)

prep
(s)

query
(ms)

speedup
×

prep
(s)

av err
(%)

max err
(%)

bad paths
(#)

prep
(s)

av err
(%)

max err
(%)

bad paths
(#(%))

I-29-Dec 100.89 7.51 5.80 17.38 139.41 0.059 8.76 506 (2.71%) 46.69 0.078 8.76 740 (3.97%)
I-34-Dec 102.12 7.38 6.13 16.64 140.81 0.072 5.30 701 (3.76%) 47.88 0.093 10.92 940 (5.04%)
I-39-Dec 104.33 7.56 4.47 23.34 140.98 0.018 2.65 79 (0.42%) 47.93 0.021 2.65 94 (0.50%)
I-29-Feb 100.88 7.66 5.49 18.37 139.74 0.028 5.38 195 (1.05%) 47.03 0.035 5.38 269 (1.44%)
I-34-Feb 101.37 7.35 5.68 17.85 141.32 0.038 4.64 317 (1.70%) 48.43 0.049 4.63 431 (2.31%)
I-39-Feb 104.44 7.45 4.16 25.09 140.72 0.015 3.60 51 (0.27%) 48.45 0.019 3.60 75 (0.40%)
I-29-Mar 100.07 7.14 4.85 20.60 91.38 0.022 5.37 96 (0.51%) 31.26 0.030 5.41 183 (0.98%)
I-34-Mar 35.72 5.77 1.85 19.25 92.78 0.019 4.60 87 (0.47%) 32.34 0.022 4.60 111 (0.60%)
I-39-Mar 36.18 5.68 1.59 22.66 95.21 0.016 4.74 89 (0.48%) 33.01 0.017 4.74 93 (0.50%)

Summary
Average 87.33 7.06 4,45 20.13 124.71 0.032 5.00 235.67 (1.26%) 42.56 0.040 5.63 326.22 (1.75%)
Minimum 35.72 5.68 1,59 16.64 91.38 0.015 2.65 51.00 (0.27%) 31.26 0.017 2.65 75.00 (0.40%)
Maximum 104.44 7.66 6,13 25.09 141.32 0.072 8.76 701.00 (3.76%) 48.45 0.093 10.92 940.00 (5.04%)

times measured for A∗PWL1
and A∗PWL3

include both the construction of the piecewise linear
functions (not considered in Table 4, since in that case the procedure is needed by all
algorithms) and of the potential functions. Comparing the query times with those of A∗PWL1

and A∗PWL3
(Table 4) shows that the running time increases by a factor of over 20. This is a

disadvantage of the exact method, even though it is still very fast.
On the other hand, measuring the impact of the approximations on the final solution

reveals some outliers. To this purpose, we compare the optimal solution returned by Dijkstra
with that returned by the A∗PWL algorithms. For both solutions we compute the exact
minimal travel time and the PWL objective value. Table 5 displays the average relative
error, the maximum relative error, and the number of “bad paths”, which are defined as OD
pairs for which the relative error is larger than 0.5%. This value is interesting since, in the
flight planning industry, savings of 0.5% can justify longer running times. The number of
bad paths is not insignificant, and justifies the consideration of the exact method.

5 Conclusion

This paper shows that airway networks allow significant speedups in shortest path computa-
tions over Dijkstra’s algorithm, but with different methods than those used for road networks.
In particular, it turns out that the A∗ algorithm with problem-specific potentials performs
better than Contraction Hierarchies. We discuss three different versions of the Horizontal
Flight Planning Problem: The shortest path problem with static costs, the time-dependent
shortest path problem with piecewise-linear TTFs, and a special case of the time-dependent
shortest path problem with non-piecewise-linear (weather-dependent) TTFs.

For the first two variants, A∗ potentials based on GCDs and PWL approximations,
respectively, are faster than CHs and TCHs. In both cases, the preprocessing time needed
by A∗ is shorter than that of CHs by several orders of magnitude. In the static case, the
query times of both algorithms are comparable, while in the case of piecewise linear TTFs,
A∗ outperforms TCHs by a factor of 15. It remains an open question whether Contraction
Hierarchies can be adapted to attain a better performance on airway networks.

For the variant of non-piecewise-linear TTFs, we propose a super-optimal wind procedure
for underestimating TTFs. We present tight theoretical and empirical bounds on its approx-
imation error. The A∗ algorithm resulting from these bounds yields a speedup factor of 20
with respect to Dijkstra and very short preprocessing times. We also analyze the effect of
approximating TTFs with piecewise linear functions. This approximation approach leads to
extremely fast query times and a very small average error, but produces a few outliers. An
interesting research direction is to combine the advantages of these methods.
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Future research also includes adapting these techniques for the three-dimensional flight
planning problem. This is not straightforward since the TTFs corresponding to climb and
descent phases depend not only on the wind, but also on the current aircraft’s weight and
technical specifications.
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