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Preface

It is a great pleasure to welcome you to the 16th International Workshop on Worst-Case
Execution Time Analysis (WCET 2016). This year we had 20 paper submitted. Each
paper was reviewed by four members of the program committee. From those 20 papers we
selected 12 papers for presentation at the workshop and publication in the proceedings. The
proceedings of WCET 2016 will be published through the Schloss Dagstuhl’s OASIcs online
proceedings series, as they were in the last years.

I would like to thank all authors for their contribution to WCET 2016 and all program
committee members for their insightful and helpful reviews. This year’s WCET workshop
received financial support by the EU COST Action IC1202: Timing Analysis on Code-Level
(TACLe) and by the COST Office, which is highly appreciated. WCET 2016 is being
organized as satellite workshop of the 28th Euromicro Conference on Real-Time Systems
(ECRTS 2016). I am therefore grateful to the ECRTS 2016 general chair, Christian Fraboul,
his local team, and the Real-Time Technical Committee Chair of Euromicro, Gerhard Fohler,
for their support.

I hope that you will find this program interesting and maybe triggering new ideas. I wish
you informative and exciting sessions and and stimulating discussions during and between
the sessions to share ideas with other researchers and practitioners.

Martin Schoeberl

Program Chair, July, 2016
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Mitigating Software-Instrumentation Cache
Effects in Measurement-Based Timing Analysis∗

Enrique Díaz1, Jaume Abella2, Enrico Mezzetti3, Irune Agirre4,
Mikel Azkarate-Askasua5, Tullio Vardanega6, and
Francisco J. Cazorla7

1 Universitat Politècnica de Catalunya, Barcelona, Spain; and
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6 University of Padova, Padova, Italy
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Abstract
Measurement-based timing analysis (MBTA) is often used to determine the timing behaviour
of software programs embedded in safety-aware real-time systems deployed in various industrial
domains including automotive and railway. MBTA methods rely on some form of instrumenta-
tion, either at hardware or software level, of the target program or fragments thereof to collect
execution-time measurement data. A known drawback of software-level instrumentation is that
instrumentation itself does affect the timing and functional behaviour of a program, resulting in
the so-called probe effect: leaving the instrumentation code in the final executable can negatively
affect average performance and could not be even admissible under stringent industrial qualific-
ation and certification standards; removing it before operation jeopardizes the results of timing
analysis as the WCET estimates on the instrumented version of the program cannot be valid any
more due, for example, to the timing effects incurred by different cache alignments. In this paper,
we present a novel approach to mitigate the impact of instrumentation code on cache behaviour
by reducing the instrumentation overhead while at the same time preserving and consolidating
the results of timing analysis.

1998 ACM Subject Classification D.4.7 Real-time Systems and Embedded Systems

Keywords and phrases WCET, Measurements, Instrumentation overhead

Digital Object Identifier 10.4230/OASIcs.WCET.2016.1

1 Introduction

Measurement-based timing analysis (MBTA) methods are widely used in application domains
such as automotive, railway or space [19]. With MBTA, execution-time measurements of

∗ The research leading to these results has received funding from the European Community’s FP7
[FP7/2007-2013] under the PROXIMA Project (http://www.proxima-project.eu), grant agreement
no. 611085. This work has also been partially supported by the Spanish Ministry of Science and
Innovation (grant TIN2015-65316-P) and the HiPEAC Network of Excellence. Jaume Abella has been
partially supported by the Ministry of Economy and Competitiveness under Ramon y Cajal fellowship
RYC-2013-14717.
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Tullio Vardanega, and Francisco J. Cazorla;
licensed under Creative Commons License CC-BY
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1:2 Mitigating Software Instrumentation Cache Effects in MBTA

selected fragments of software programs of interest are taken while observing runs of the
program on the target processor, performed under stressful conditions. The highest value,
usually known as high-water mark time (HWMT), is recorded. The HWMT of all code
fragments (the smallest of which is a basic block) in the program are then combined to
determine the worst-case execution time (WCET) of the corresponding task. It is worth
noting that MBTA works on the premise that the testing conditions are representative of
real system operation, so that the HWMT approximates the real WCET.

The places in the code where the required execution-time observations are made are
usually referred to as instrumentation points (ipoints). MBTA generates a run-time trace
that logs which ipoints are traversed at what time during the observation run. Two differing
approaches exist to generate time readings at ipoints: the generation of time traces via
hardware methods has been made possible with the advent of processors with advanced
debug capabilities that do not affect program timing behaviour. Hardware instrumentation
ideally provides transparent generation of timing traces – assuming that collected traces
can be output in a fast-enough and equally transparent way so that no trace data are lost
because of overfull buffers and no explicit program action is to be taken. However, this
support is not present in all processors candidate for use in real-time systems. As a result, in
the general case, software-level solutions are adopted where some form of instrumentation
code is required in the program to generate timing information.

In contrast with its hardware-based counterpart software instrumentation is highly
intrusive, especially on the temporal behaviour. In the presence of caches, instrumentation
code can generate unwanted timing effects far beyond the intrinsic timing penalty of the
additional instrumentation instructions, that would not have been observed in the un-
instrumented (original) program. The user thus faces the dilemma of whether to remove the
instrumentation code from or leave it in the final program.

Removing the instrumentation code from the final executable raises the question of
how the execution-time observations taken with the instrumented code correlate with
the timing behaviour of the un-instrumented program. In fact, both functional and
timing verification would have been conducted on a different software artifact and strong
additional argument must be provided for the analysis result to hold.
Leaving instrumentation code in the final executable spares the burden (for cost and
complexity) of demonstrating equivalent functionality as WCET estimation is performed
on the executable that will be deployed in the operational system. However, certification
and qualification practices may simply not accept the presence of this instrumenter-
added code in the executable. As an immediate effect, leaving instrumentation code in a
program is likely to worsen memory footprint and average performance. Further, some
memory-mapped I/O space – where execution-time readings might be kept – may be
unnecessarily wasted.

In fact, both leaving and removing instrumentation code may have disruptive effects on
the certification process. While there have been several methods to minimise the number
of instrumentation points, without losing too much precision [17], in this paper we show
that even a single instrumentation point can lead to significantly different timing behaviour
between the original (un-instrumented) program and the instrumented version.

We present a novel technique that strikes an optimal balance between the two approaches,
basing on the concept of functionally-neutral program, that is used at system operation.
From the original program (oprog), fnprog is generated by inserting nop instructions at
desired instrumentation points. The neutral nature of nop instructions and the fact that
they can neither generate interrupts nor have input or output dependences simplifies certi-
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fication/qualification argumentation. For the purposes of timing analysis, nop instructions
are replaced by actual instrumentation operations, resulting in an instrumented program
(iprog). The number of nops inserted per ipoint in fnprog is carefully selected so that the
cache alignment of code in fnprog and iprog stays unchanged. This prevents any unwanted
impact on timing behaviour that may stem from variations in cache alignment. The increase
in terms of memory footprint and execution time of fnprog as compared to oprog, instead,
depends on the program and the number of ipoints inserted.

We have applied this method within the scope of measurement-based probabilistic timing
analysis (MBPTA) [2]. Besides its evident benefits on the fronts of qualification and certific-
ation alike, our approach significantly reduces the impact of software-level instrumentation.
In quantitative terms, assuming basic block level instrumentation with two instructions per
ipoint, the average degradation we observed in the computed execution-time bounds was
9.3% for EEMBC benchmark programs and 8.7% for a railway case-study application.

2 Background and Problem Statement

MBTA differentiates between the analysis phase, when verification of timing behaviour takes
place, and the operation phase, when the system is deployed into operation. MBTA computes
WCET estimates with execution-time measurements taken at analysis time, on the condition
that the corresponding bound holds at operation. This requires the user to define test
scenarios that trigger worst-case conditions that can occur during system operation. (We
intentionally omit discussing here how difficult, if at all possible, that is for the user.)

MBPTA [2] is a variant of MBTA that derives probabilistic WCET (pWCET) estimates –
an execution-time distribution expressing the maximum probability that upper bounds the
residual risk that one instance of the program may exceed a given execution-time threshold.
MBPTA handles the sources of execution-time variability caused by hardware and software
effects by ensuring that the jitter they cause at analysis matches or upper bounds that
which occurs during operation [8]. Cache memories, whose behaviour cannot be treated
that way, are time randomised instead [6], so that their impact on execution time can be
studied probabilistically for both analysis and operation conditions and the former can be
made to upper bound the latter. MBPTA employs extreme value theory [9] (EVT) to model
the distribution of extreme (worst-case) execution times (pWCET), considering the timing
impact of randomised hardware resources both individually and collectively.

2.1 Problem Statement

MB(P)TA generates a trace that records which and when ipoints are traversed during
execution. Every such trace is a sequence of <ipointid, timestamp> pairs. Two main steps
take place in the generation of ipoint traces.

Generation. Modern hardware comprises advanced debug interfaces that trigger specific
actions when certain opcodes are executed. For example, debug hardware can be used, on
every branch instruction taken by program execution, to collect a <branch (instruction)
address, execution cycle> pair of trace data. The type of instruction (event) to trace
and the action to perform when such an instruction is hit can be programmed through a
provided interface, e.g. Nexus or GRMON for the LEON processor family [15]. Debug
hardware of that kind is not present in all processors used in real-time systems. In
general, therefore, some form of software instrumentation is needed. To that end, specific
instrumentation instructions are inserted at the desired granularity of information in the

WCET 2016



1:4 Mitigating Software Instrumentation Cache Effects in MBTA

execution context of the program of interest. For instance, these instructions may read
the time-base register and output its contents to a specific I/O address.
Collection. Once instrumentation (in either hardware or software) is in place, the
execution of the unit of analysis on the target processor results in a set of timestamps and
events. This list is output outside of the processor and dispatched to some off-line analysis
tool. The capture and offloading process can be the source of further interference. On-
chip debug hardware usually includes off-band buses so that the transfer of <timestamp,
event> pairs does not affect the execution of the unit of analysis. Depending on the speed
of the CPU and the quantity of ipoints, the volume of timestamped data can be high.
This can be managed by outputting the data to high-speed ports. Specialised hardware to
process the trace at very high speed has been proposed [12] and exists commercially [14],
which prevents loss of information or stalls of execution.

The generation and collection of this trace may interfere with the system’s timing and
perturb its behaviour. This phenomenon is known as the probe effect, which causes the
instrumented program to have register and cache usage profiles that differ from those of the
original (un-instrumented) program.

We categorise those effects as follows:
Direct impact stems from the execution latency of fetching and executing instrumentation
code (icode). The icode usually involves reading internal processor registers, e.g., the
time register, (∆core−exec

icode ) and outputting the readout to a specific memory address. If
this information is transferred via buses or I/O controllers used by the application under
analysis, this action is bound to interfere with application’s timing behaviour. Furthermore,
if ipoint information is cached, this can also cause significant effects (∆chip−exec

icode ). Not
all processors are capable of tracing and dumping data implicitly, without using ipoints.
Fast debug links and I/O ports (e.g., GPIO, Ethernet) are often available to dump trace
data transparently to the application as long as the ipoints are conveniently placed in the
program being run. Trace data can be either processed in real-time of stored for off-line
processing.
Indirect impact of the icode arises from the change in the layout of program code in
memory. When an ipoint is inserted in the program, it shifts the position in memory
of the subsequent instructions and hence also their address and possibly its cache set
layout. This may make it considerably difficult for the user to provide evidence that the
execution-time measurements obtained with the instrumented binary (iprog) are larger
or smaller than those obtained with oprog. This in turn causes the pWCET estimates
obtained for iprog to not safely upper bound oprog’s execution time.

The execution time of the original program (EToprog) is affected in a direct manner by
icode in the instrumented program (ETiprog) as shown in the second addend of Equation 1.

ETiprog = EToprog +
(

∆core−exec
icode + ∆chip−exec

icode + ∆collect
icode

)
+ ∆malign

icode (1)

Without loss of generality, we assume that both trace-generation impact, other than execut-
ing icode at the core level, and trace-collection overhead are null (∆collect

icode = ∆chip−exec
icode = 0),

and instrumentation overheads only arise from the core execution of ipoints included in the
unit of analysis (∆core−exec

icode 6= 0), which however creates a constant execution time overhead.
The actual problem stems from the fact that the insertion of the icode may change the
memory layout of the original code in oprog. Unlike the direct impact of icode that is bound
to be a positive value, misalignment impact (∆malign

icode ) can be either positive or negative.
This may cause iprog to run either faster or slower than oprog. This may lead to the situation
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Figure 1 Memory impact.

(a)

(b)

Figure 2 Execution-time impact.

in which, despite the direct impact caused by the insertion of icode, the execution-time
distribution and pWCET estimate for iprog are even smaller than those for obtained for
oprog, i.e. ∆core−exec

icode + ∆chip−exec
icode + ∆collect

icode < ∆malign
icode so ∆core−exec

icode < ∆malign
icode .

2.2 Illustrative Example
In this section we use a small example to demonstrate how instrumentation code can create
unexpected timing behaviour in which the instrumented program yields an execution-time
profile that does not upper bound the profile of the un-instrumented program.

Let us consider the code fragment shown in the left part of Figure 1. This code comprises
a for structure with a nested switch structure. In the example, I1, I2 and I3 (not shown)
correspond to loop and switch control instructions; I4 − I6 are in the first case of the
switch; I7− I10 in the second; and I11− I15 in the third. Further assume that before any
instrumentation is applied the code (instruction addresses) is laid out in memory as presented
in (a), occupying 5 cache lines. Further assume that a single instrumentation instruction is
inserted somewhere before this fragment, causing a shift of one instruction and resulting in
the memory layout presented in (b). The body of the loop thus occupies 4 lines.

We executed this code on a light-weight processor simulator comprising a 2-set 2-way
instruction cache. Other than the jitter caused by the instruction cache – 4 cycles in case
of hit and 94 cycles in case of miss – instructions have a back-end latency of 6 cycles. We
assume an arbitrary input vector that causes a different branch of the switch to be triggered
at each loop iteration. We assume ∆core−exec

icode = 2 for the only added ipoint.
In terms of MBPTA, this yields the empirical complementary cumulative distribution

functions (ECCDFs) shown in Figure 2(a) from where we see that the execution profile of
the un-instrumented code is higher than that of the instrumented code. If we apply MBPTA
to those observed execution times we obtain the pWCET estimates shown in Figure 2(b).
We observe that both the empirical distribution and the pWCET for the original code are
much higher than those for the instrumented code.

Hence, even a single instrumentation instruction can change the cache layout so that the
instrumented program has lower execution time than the un-instrumented one.

WCET 2016



1:6 Mitigating Software Instrumentation Cache Effects in MBTA

Figure 3 Schematics of the proposed approach.

3 Proposal

The proposal we present in this section aims to help the user be assured that the version of
the program used for WCET analysis leads to an execution-time distribution that reliably
upper bounds the execution time of the version of the program used during operation. As a
secondary goal, we want to reduce ∆core−exec

icode to produce tighter WCET estimates.
Our approach uses three versions of the program of interest, see Figure 3: oprog, the ori-

ginal program, fnprog, its augmented functionally-neutral version, which is used in operation,
and iprog, the instrumented executable, which is used for analysis.

fnprog. This is a version of oprog augmented with nop instructions inserted to bound the
indirect impact of the icode (∆malign

icode ). This modification results in a program with unaltered
functional behaviour that can therefore be used in operation. However, an argument (which
we denote A1) is needed to show that fnprog provides the same functional output as oprog.
Furthermore, we also need to prove that the average performance of fnprog is near and not
unacceptably worse than that of oprog.

The nop instructions in fnprog are inserted at all places where ipoints are needed.
The number of nop instructions inserted per ipoint is sufficient to ensure that, when the
actual instrumentation instructions are inserted in iprog, no cache-line misalignment occurs.
Typically, one or two instrumentation instructions per ipoint are sufficient to collect timing
information, depending on the actual hardware support and instruction set. Hence, fnprog
includes one or two nops at the place of each ipoint. It is worth noting that oprog may
already include some nops. For instance, in an architecture with delayed branches (e.g.,
SparcV8), delayed slots may not be filled with useful instructions or nops, depending on
compiler flags or program semantics. Further, some compilers include options that insert
nops to enforce memory alignment at the level of function, branches, jumps and loops (e.g.
-falign-functions=n, -falign-labels=n, -falign-loops=n, -falign-jumps=n in GCC).
Those nops are just fine for placing instrumentation code in iprog.

iprog. The execution-time measurement traces needed by MB(P)TA are obtained from a
modified version of fnprog. In that version, which we call instrumented binary, iprog, some or
even all of the inserted nops are replaced by actual instrumentation instructions impacting
execution time. This change is made in a way that causes no code realignment with respect
to fnprog which simplifies ensuring that the execution-time traces obtained from iprog can
be reliably used to derive a pWCET estimate for fnprog as used in operation. A further
argument (A2) is needed to show that the execution-time behaviour of iprog is never less
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than that of fnprog, so that the execution-time observations taken for iprog can be used to
upper bound the WCET of fnprog.

If our approach is adopted, the required nops could be automatically added by the
(qualified) compiler. The number of nops and the level they are added could be easily
controlled via compiler parameters, e.g. -fnopcount=n and -fnoplevel=basicblock.

3.1 Functionally-neutral impact of fnprog (A1)

The use of nops simplifies providing arguments that fnprog does not change the functional
behaviour of oprog: most of today’s Instruction Set Architectures (ISAs) include nop-type
instructions, whose function is to perform no operation in the processor other than fetch
and, possibly, decode, where the instruction is usually stripped from the execution stream.

The main advantage of using nops is that they are functionally neutral: (1) by definition,
a nop performs no operation; (2) its execution does not change status flags or any other
control registers; (3) a nop generates neither raises interrupts nor exceptions; (4) a nop uses
no architectural (programmer accessible) register, which allows inserting nops anywhere in
the code; and (5) a nop has no input and no output (register) dependences. From all these
properties it follows that fnprog cannot change the functional behaviour of oprog.

From the average performance standpoint, whose improvement we defined as our second
goal, nops usually take a few cycles to execute. In some architectures, the processor may even
strip nops out from the pipeline before they reach the execution stage. This is in contrast
with actual instrumentation instructions that usually need to access off-core (or off-chip)
resources such as I/O ports or trace buffers, thus incurring longer execution times.

3.2 fnprog’s WCET is upper bounded by that of iprog (A2)

The difference between fnprog and iprog is that some nops in the former are changed to
actual instrumentation instructions in the latter. The number of nops inserted at the place
of each ipoint in fnprog is such that exactly the same cache-line alignment occurs in fnprog
and in iprog. The net result is an increase in the execution time of iprog in comparison to
fnprog since the instrumentation code takes longer to execute than nops. The fact that this
overhead has an additive nature ipoint by ipoint – in a processor free of timing anomalies –
facilitates making an argument about the fact that the resulting execution-time distribution
collected with iprog upper bounds that of fnprog. Notably, the execution time of fnprog might
be lower than that of oprog, owing to the instruction cache effects described before. However,
this does not create any issue since fnprog is the one that will be deployed to operation.

Recent work [7] in the specific context of MBPTA [2] for time-randomised caches [6] helps
us contend that the execution time of iprog does indeed upper bound that of fnprog. Let
ISorg be a sequence of instructions to which we add a set O of new operations – both acting
within core (e.g. add) and on memory – resulting in the extended instruction sequence ISext.

The authors of [7] show that the probabilistic execution time (pET) of ISext is higher
than the pET of ISorg. We say that pET (ISi) ≥ pET (ISj) if, for any cut-off probability,
the execution time of ISi is higher than or equal to the execution time of ISj. We contend
that this argument can be made for standard MBTA, not just MBPTA, but we leave the
corresponding demonstration as future work.

In addition to cache-related icode variability – which we attack in this paper – measurement-
based timing analysis needs to handle timing anomalies if they can happen.

WCET 2016
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Table 1 Average increase in code size and execution time of fnprog and iprog normalized to oprog.

no. instruct. Code Size execution time fnprog execution time iprog

1 inst./2 inst. 6.87%/13.74% 4.35%/9.28% 8.33%/17.54%

4 Experimental Results

So far we have provided arguments in support to the fact that our functionally-neutral
approach provides a reasonable solution to the software instrumentation problem from the
qualification and certification standpoint as fnprog can be safely deployed instead of the
oprog and iprog. In our experimental evaluation we aimed at providing evidence that the
fnprog always exhibits pWCET that tightly upper bounds oprog and is always lower than
iprog. For our evaluation we use the well-known EEMBC automotive benchmark suite [11].
In particular, we use the following benchmark programs: a2time (A2), aifftr (AI), aifirf
(AF), aiifft (AT), bitmnp (BI),cacheb (CB), canrdr (CN), idctrn (ID), iirflt (II),
matrix (MA). We also use a railway case-study application that is part of the European
Railway Traffic Management System (ERTMS) [4] initiative that seeks to define a unique
European train signalling standard. Our focus is on the on-board unit of the ERTMS, called
European Train Control System (ETCS). We consider 10 different input sets (S0 to S9). For
the iprog we assume 1 and 2 instrumentation instructions per ipoint.

We focus on the pessimistic scenario where ipoints are added at basic block boundary –
the smallest granularity of instrumentation in general. While in this case the instrumentation
impact is high, we have seen that a single instrumentation point can cause unwanted cache
effects between the instrumented and non-instrumented code. In the presence of techniques
reducing the number of ipoints (see Related Work Section), the overhead introduced by our
approach will naturally reduce. We use a cycle-accurate processor simulator that implements
4KB L1 instruction- and data-caches, which comprise 128 sets and 2 ways each. Both caches
implement random placement and replacement [6]. The access latency to the L1 caches is 1
cycle and that to main memory is 28 cycles. For the instrumentation instructions, we assume
they have the cost of 2 cycles.

4.1 Execution Time and Code Size Increase Due to Instrumentation
Table 1 shows the increase in code size and execution time incurred by fnprog and iprog
respectively. We can see that fnprog incurs moderate overhead in footprint – between 7%
and 14% – when one or two nop operations are added per ipoint per basic block. In terms of
execution time, the impact is 5% and 10% when 1 and 2 instructions are added respectively.
Meanwhile iprog incurs higher execution time overheads: 9% and 19% respectively.

Per-benchmark results (not depicted for space constraints), show a clear relation between
program’s average basic block size the the code size impact of nops. In terms of time, in
addition to average basic block size the average duration of each instruction (program’s CPI)
determines the execution overhead of nops.

4.2 pWCET estimates
For the case of 2 instrumentation operations per ipoint, we compare the pWCET estim-
ates obtained from the execution-time measurements from oprog, fnprog and iprog. We
collected 1,000 runs for each version, which have sufficed to pass the MBPTA convergence
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(a) Histogram (b) pWCET estimate

Figure 4 Histogram and MBPTA projection for a2time.

Table 2 pWCET estimates for 10−12 for fnprog and iprog normalized to oprog.

prog. A2 AI AF AT BF BI CB CN ID II MA

fnprog 26.4% 3.8% 11.6% 7.1% 11.5% 11.9% 2.1% 14.1% 12.3% 11.9% 6.4%
iprog 33.0% 9.3% 22.1% 12.4% 22.0% 16.8% 4.0% 27.1% 23.3% 21.6% 12.7%

criteria [2]. Figure 4 shows the execution-time histogram and the resulting pWCET estimate
for a2time benchmark. We observe how fnprog is close to oprog’s. Further, changing nops
by instrumentation instructions causes iprog’s execution-time to upper bound fnprog’s.

For the other benchmarks, Table 2 summarises the difference observed for the three
versions of the program for a cut-off probability of 10−12 per run. As shown, fnprog is
relatively tight with respect to oprog. The only exception is A2, which includes many basic
blocks, and therefore takes a higher density of nops.

4.3 Railway case study
Table 3 reports analogous results for the railway case study for 2 instrumentation instructions
per ipoint. The results are even tighter on average than those we obtained for the EEMBC
benchmarks, with an average increase in pWCET estimates of 8.7% and 11.9% for fnprog and
iprog respectively. The code size increase observed is 12%, which is also less than the average
incurred with the EEMBC benchmarks. Overall, our proposed solution provably abates the
negative misalignment effects of icode, for a small cost in execution time in general.

5 Related Work

The literature on measurement-based timing analysis is abundant [17, 10, 16, 17, 1, 19].
In [10], the authors discuss the pros and cons of several ways to collect execution traces

and how the frequency of ipoints results in light-weight or heavy-weight instrumentation.
Measurements can be taken (i.e., ipoints can be placed) at program boundaries. However,

hybrid mechanisms exist to identify smaller program parts. The particular segments used
are extracted from an analysis of the Control-Flow Graph [5, 1]. The segments (partitions)
are chosen to facilitate the derivation of a WCET by composing the WCET of each segment,
facilitating measurements [17, 1] or reducing the number of ipoints. Some of these techniques
also work on an automatic generation of input data [5, 17, 18]. In [5], the authors decompose
execution paths into sub-paths and then use formal methods to derive the required test data
(in an automatic manner) and measure the execution time of the sub-paths.

WCET 2016
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Table 3 pWCET estimates for 10−12 for fnprog and iprog w.r.t. that for oprog.

prog. S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

fnprog 8.4% 7.6% 9.5% 9.1% 8.1% 9.5% 9.4% 8.3% 8.6% 8.9%
iprog 11.5% 10.4% 12.1% 12.3% 12.2% 13.3% 12.4% 11.9% 12.2% 11.1%

In [13], the authors propose the concept of context-sensitive traces to capture the impact
of execution history on the precision of measurement-based execution-time estimates. This
is done using the concept of “call string” that defines the sequence (of the last k calls) that
keeps information similar to the call stack. For trace collection, some research approaches
developed an FPGA board to transfer information from the target to the host to increase
trace processing capabilities [12]. Other approaches propose on-line aggregation of timing
data removing the need for collecting and post-processing long traces [3].

6 Conclusions and Future Work

We have presented a new approach to mitigate the impact of instrumentation code to prevent
cache misalignments from occurring between the instrumented and un-instrumented versions
of the program under analysis, while incurring low overhead in terms of execution time. In
particular, we build upon the use of functionally-neutral operations such as nops to create a
program version to be deployed that is functionally equivalent to the original program, and
has a provable lower execution time than the instrumented version.

As part of our future work we plan to evaluate the fnprog approach in a real hardware
platform and a commercial timing analysis tool. We also plan to extend the argumentation
about the timing impact of iprog w.r.t. fnprog to non probabilistic timing analysis.
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1 Introduction

Good, realistic benchmark suites are essential for the evaluation and comparison of worst-
case execution time (WCET) analysis, compiler, and computer architecture techniques.
TACLeBench provides a freely available and comprehensive benchmark suite for timing
analysis and related research topics. TACLeBench will be continuously extended by novel
benchmarks, especially by parallel multi-task/multi-core benchmarks. The extension of
TACLeBench will be carefully managed with snapshots and versioning so that it is clear which
code has been used in a research experiment. The overall goal is to establish TACLeBench as
the standard benchmarking suite for WCET analysis, WCET oriented compiler and computer
architecture research worldwide.

TACLeBench is a collection of currently 53 benchmark programs from several different
research groups and tool vendors around the world. These benchmarks are provided as ISO
C99 source codes. The source codes are 100% self-contained; no dependencies to system-
specific header files via #include directives or an operating system exist. All input data is
part of the C source code. Potentially used functions from math libraries are also provided
in the form of C source code. This makes the TACLeBench collection useful for general
embedded/barebone systems where no standard library is available.

Furthermore, almost all benchmarks are processor-independent and can be compiled
and evaluated for any kind of target processor. The only exception is PapaBench that uses
architecture-dependent I/O addresses and currently supports Atmel AVR processors only.

Since TACLeBench addresses the needs imposed by timing analysis tools, all benchmarks
are completely annotated with flow facts. These flow facts are directly incorporated into the
C source codes using pragmas. TACLeBench distinguishes between so-called flow restrictions,
loop bounds, and entry points. Besides flow restrictions, TACLeBench also uses loop bound
flow facts, which simplify the annotation of regular loops. Loop bounds provide an upper
and a lower bound for the number of iterations of the annotated loop. Finally, TACLeBench
uses entry point annotations that denote points in a program’s control flow graph where the
control flow may start. Typically, this is the “main” function of a program, but in a (possibly
interrupt-driven) multi-task system, there may be multiple entry points in a single set of
source files. These entry points may even share some common code. In order to mark such
task entries, each function of a multi-task application where a task begins can be marked as
an entry point. The complete specification of the used flow fact language can be found in [3],
which is part of the source distribution.

If you would like to share your benchmarks with us, feel free to contact Heiko Falk (or
any coauthor of this paper) in order to have your source codes included in TACLeBench.

The first version of TACLeBench (version 1.0, available from1), which was produced by
Heiko Falk, was a collection of 102 programs from several different research groups. We keep
this first version tagged with “V1.0” in the public GitHub repository.2 The version described
in this paper is version 1.9 and tagged as such in the repository. Version 2.0 will be soon
available when the last missing programs have been formatted. The intention is to have
the HEAD of the master branch being the most recent, versioned snapshot of TACLeBench.
Future development and additions will be performed on a development branch so that HEAD
of master is always a consistent snapshot.

This paper is organized in 5 sections: The following section presents related work.

1 http://www.tacle.eu/index.php/activities/taclebench
2 https://github.com/tacle/tacle-bench
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Section 3 presents the benchmark collection, its classification, and the updates to make them
useful. Section 4 evaluates the benchmark collection. Section 5 concludes.

2 Related Work

The Mälardalen WCET benchmarks (MRTC) [6] is the first collection of programs especially
intended for benchmarking WCET analysis tools, with a focus on program flow analysis. It
was collected from several sources in 2005, and has since then been used in many WCET
research projects as well as for the WCET Tool Challenge 2006 [5]. A subset of the Mälardalen
benchmarks has even been translated to Java [8]. Most benchmarks are relatively small,
except two C programs that have been generated from tools. The benchmarks also contain
all input data. This effectively turns them into single-path programs, which makes them
less suitable for evaluating tools that can handle multi-path codes. We include most of the
benchmarks from the Mälardalen WCET benchmark suite in TACLeBench. We dropped
benchmarks where the licensing terms are unknown or even disallow distributing the source.

MiBench [7] is a collection of benchmarks targeting the embedded domain and providing
them in open-source. We include some of the MiBench benchmarks, especially those where
it was possible to include the input data with the C source.

DEBIE [9] is a program derived from a satellite-mounted detector of micro-meteorids and
space debris. It was developed by Space Systems Finland Ltd and was converted by Tidorum
Ltd into a portable benchmark for real-time applications. DEBIE is a multi-task application
that consists of 8, partially small, different tasks. DEBIE is accompanied by a specification
of valid input and output data and of required activation rates of the individual tasks.

PapaBench [10] has been derived from Paparazzi,3 a project for unmanned aerial vehicles.
PapaBench includes two software components that run on separate processors: the fly-by-wire
part controls the flight while the autopilot part controls the GPS and executes the flight
plan (which is decided offline). Both software parts cumulate 13 tasks that are subject to
precedence constraints and 6 interrupt service routines.

The Embedded Microprocessor Benchmark Consortium (EEMBC) [2] provides a bench-
mark suite dedicated to the evaluation of the performance of embedded hardware and
embedded software. The benchmarks are divided into subsets according to the target domain,
e.g., the automotive domain, phones and tablets, but also big data and cloud computing.
To improve comparability between different systems, the consortium provides a test-harness
that allows deriving certifiable scores. The test-harness, being a clear advantage in terms
of comparability, constitutes a hindrance in terms of portability and usability. Whereas
the TACLeBench has been designed to ease portability and to allow the immediate use
of the benchmark with a large variety of tools and platforms, the EEMBC benchmarks
are not stand-alone executable without the test-harness. Furthermore, in stark contrast
to TACLeBench, the EEMBC benchmarks are not published under an open-source license.
Instead, the benchmarks are behind a pay-wall, even for purely academic research.

JemBench [13] is a Java benchmark suite targeting embedded Java platforms. JemBench
only assumes the availability of a CLDC API, the minimal configuration defined for the
J2ME. The core of the benchmark suite consists of adapted real-world applications. The
benchmarks are structured in micro, kernel, application, parallel, and streaming benchmarks.
Micro benchmarks are used to measure short bytecode sequences; kernel benchmarks compute
a computational kernel; and application benchmarks are real-world programs restructured

3 https://wiki.paparazziuav.org/

WCET 2016

https://wiki.paparazziuav.org/


2:4 TACLeBench: A Benchmark Collection to Support WCET Research

Table 1 TACLeBench kernel benchmarks.

Name Description Code Size Origin
(SLOC)

binarysearch Binary search of 15 integers 47 SNU-RT

bitcount Couting number of bits in an integer
array 164 Bob Stout &

Auke Reitsma
bitonic Bitonic sorting network 52 MiBench
bsort Bubblesort program 32 MRTC
complex_updates Multiply-add with complex vectors 18 DSPStone
countnegative Counts signes in a matrix 35 MRTC
fac Factorial function 21 MRTC
fft 1024-point FFT, 13 bits per twiddle 78 DSPStone
filterbank Filter bank for multirate signals 75 StreamIt
fir2dim 2-dimensional FIR filter convolution 75 DSPStone
iir Biquad IIR 4 sections filter 27 DSPStone
insertsort Insertion sort 35 SNU-RT

jfdctint Discrete-cosine transformation on a
8x8 pixel block 123 SNU-RT

lms LMS adaptive signal enhancement 51 SNU-RT
ludcmp LU decomposition 68 SNU-RT
matrix1 Generic matrix multiplication 28 DSPStone
md5 Message digest algorithm 344 NetBench
minver Floating point matrix inversion 141 SNU-RT
pm Pattern match kernel 484 HPEC
prime Prime number test 41 MRTC
quicksort Quick sort of strings and vectors 992 MiBench
recursion Artificial recursive code 18 MRTC
sha NIST secure hash algorithm 382 MiBench
st Statistics calculations 90 MRTC

as standalone benchmarks. Parallel and streaming benchmarks are intended to explore
multicore speedup. Benedikt Huber ported one of the application benchmarks (Lift) to C
and we include it in TACLeBench.

3 The Benchmark Collection

3.1 Benchmark Sources and Classification
The benchmarks included in TACLeBench are sourced from single sources and benchmarks
collections. The benchmarks are: SNU-RT benchmark suite, MiBench embedded benchmark
suite, Mälardalen Real-Time Research Center (MRTC) WCET benchmarks, DSPStone from
RWTH Aachen, StreamIt from MIT, NetBench from UCLA, MediaBench, and the HEPC
challenge benchmark suite. We have specified the origin of each benchmark in Tables 1–5.

As a measure of the size of each benchmark, we present the number of source lines of
code (SLOC). The SLOC count excludes input data arrays and the initialization code. We
used the Linux utility sloccount to measure the SLOC. The benchmarks are divided into
five classes: Kernel, sequential, application, test, and parallel.
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Table 2 TACLeBench sequential benchmarks.

Name Description Code Size Origin
(SLOC)

adpcm_dec ADPCM decoder 293 SNU-RT
adpcm_enc ADPCM encoder 316 SNU-RT

ammunition C compiler arithmetic stress test 2431 Vladimir
Makarov

anagram Word anagram computation 2710 Raymond Chen
audiobeam Audio beam former 833 StreamIt
cjpeg_transupp JPEG image transcoding routines 608 MediaBench
cjpeg_wrbmp JPEG image bitmap writing code 892 Thomas G. Lane
dijkstra All pairs shortest path 117 MiBench
epic Efficient pyramid image coder 451 MediaBench
fmref Software FM radio with equalizer 680 StreamIt

g723_enc CCITT G.723 encoder 480 SUN
Microsystems

gsm_dec GSM provisional standard decoder 543 MediaBench
gsm_enc GSM provisional standard encoder 1491 MediaBench
h264_dec H.264 block decoding functions 460 MediaBench

huff_dec Huffman decoding with a file source to
decompress 183 David Bourgin

huff_enc Huffman encoding with a file source to
compress 325 David Bourgin

mpeg2 MPEG2 motion estimation 1297 MediaBench
ndes Complex embedded code 260 MRTC

petrinet Petri net simulation 500 Friedhelm
Stappert

rijndael_dec Rijndael AES decryption 820 MiBench
rijndael_enc Rijndael AES encryption 734 MiBench

statemate Statechart simulation of a car window
lift control 1038 Friedhelm

Stappert
susan MR image recognition algorithm 1491 MiBench

The kernel benchmarks, listed in Table 1, are synthetic benchmarks implementing small
kernel functions; the size of the kernel benchmarks is in the range of 18 to 992 SLOC.

The sequential benchmarks, listed in Table 2, implement large function blocks, such as
encoders and decoders, which are used in many embedded systems. The size of the sequential
benchmarks is in the range of 117 to 2710 SLOC. The sequential benchmarks cover graph
search, cryptographic algorithms, compression algorithms, etc.

Three artificial test benchmarks, listed in Table 3, are used to stress test WCET analysis
tools.

The two parallel benchmarks, listed in Table 4, are: Debie and PapaBench. These two
benchmarks are comparable in size and in the number of tasks.

The application benchmarks, derived from real applications and provided with simulated
input stimuli, are listed in Table 5. Lift is a lift controller that has been deployed at a factory
in Turkey. The hardware is based on a Java processor (JOP). The controller has just a few
inputs (command buttons and input sensors for the height measurement) and a simple motor

WCET 2016
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Table 3 TACLeBench test benchmarks.

Name Description Code Size Origin
(SLOC)

cover Artificial code with lots of different
control flow paths 620 MRTC

duff Duff’s device 35 MRTC

test3 Artificial WCET analysis stress test 4235 Universität des
Saarlandes

Table 4 TACLeBench parallel benchmarks.

Name Description #Tasks Code Size Origin
(SLOC)

Debie
DEBIE-1 instrument observing
micro-meteoroids and small space
debris

8 6615 Tidorum Ltd

PapaBench UAV autopilot and fly-by-wire
software 10 6336 Paparazzi

control. The I/O devices are simulated in the benchmark. The Java version of Lift is part of
the Java benchmark suit JemBench [13]. Benedikt Huber has translated lift to C.

powerwindow implements a controller for an electric window in a car. Both the driver
and the passenger are able to control the window by requesting the window to roll up or
down. In case an object is stuck between the window and the doorframe, the controller will
move the window down to avoid damaging the object.

3.2 Issues with the Original Sources
The original benchmarks include all input data or we added input data into the C source.
However, this effectively turns them into single-path programs. This fact could be used
by analysis tools to explore only this single path. Another consequence of the fixed input
data, and that some programs do not provide any return value, is that compilers with
optimizations turned on can optimize most of the code away. However, to prohibit the
unwanted compiler optimizations we changed the way input data is represented in variables
(made them volatile), and made the return of main dependent on the benchmark calculation.

Some benchmarks contain target dependent code. For example, PapaBench contains
hardcoded I/O addresses. Furthermore, a few benchmarks (e.g., rijndael) are byte order
dependent and there is no standard way in C to detect the byte order of a processor. Finally,
some benchmarks can be executed only once, either because they rely on global initialization,
or because they use malloc but not free.

3.3 Benchmark Updates
The benchmarks have been rewritten to split the functions of input data initialization, the
benchmark itself, and computing a return value depending on the output data. Moving the
input data generation into its own function resulted sometimes in movements from originally
stack allocated data into global data. All function and variable names are prepended with
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Table 5 TACLeBench application benchmarks.

Name Description #Tasks Code Size Origin
(SLOC)

lift A lift controller 1 361 Martin
Schoeberl

powerwindow Distributed power window control 4 2533 CoSys-Lab

the benchmark name to provide unique names. All loops have been annotated with loop
bounds. Moreover, several bugs have been fixed, and compiler warnings have been eliminated.
The benchmarks are now ISO C99 compliant. Some benchmarks have been renamed. The
original name of a benchmark can be found in the comment header of each benchmark. The
library functions used by some benchmarks have been moved to their own files. All source
files adhere to a common set of formatting rules that can be found in the git repository
(doc/code_formatting.txt).

Due to these changes, results obtained with the TACLeBench versions of these benchmarks
are not comparable with the original versions of the benchmarks.

3.4 Licenses
An issue we encountered with several benchmarks was that the original source did not
include any licensing information. In absence of such information, we had to assume that
the copyright holder reserves all rights. Wherever necessary, we contacted the copyright
holders to obtain the right to use, modify, and redistribute the benchmarks. In a small
number of cases we however discovered that the code was in fact under a license that made
the benchmark unusable; the respective benchmarks were consequently dropped from the
TACLeBench benchmark suite. All benchmarks in the benchmark suite now contain licensing
information, such that future developments do not require tracking down the original authors
of the benchmark.

3.5 Usage Recommendations
TACLeBench is released in source form. However, to report results based on TACLeBench,
the benchmarks shall not be changed. Furthermore, the version of TACLeBench shall be
included in any paper.

If possible, use all benchmarks in your evaluation. One issue with subsetting a bench-
mark collection is to selecting the most representative benchmarks to show an improvement.
However, this introduces a bias in the result and is considered scientific misconduct. If you
really need to subset a benchmark collection you have two possibilities: (1) use only one
class of benchmarks, e.g., the sequential benchmarks or (2) use a random selection, possibly
generated by a program.

If some benchmarks have not been used, state the reason for exclusion (e.g., “the
tool/target architecture does not support floating point numbers”).

3.6 Known Uses of TACLeBench
Although TACLeBench is a relative new collection of embedded benchmarks, we can already
list some usage of the collection in research projects. This early adaption of TACLeBench is
already a strong indication of the need of such a benchmark collection.

WCET 2016
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Compiler optimizations: The origin of TACLeBench is the collection of free programs
used for evaluation of the wcc compiler [4].
Measurement-based analysis: TACLeBench has been used to evaluate the continuous
measurement-based WCET estimation approach presented in [1]. The different charac-
teristics of the different benchmarks proved to be very useful to trigger edge cases in
the analysis and led to various improvements of the prototype. However, the evaluation
for this approach happened before version 2.0 of TACLeBench has been finished, which
makes the results non-comparable to the final benchmark collection.
Hybrid analysis: The hybrid model splits the code of tasks into basic blocks and uses
measurements to obtain instruction traces. The challenge of this two-layer hybrid
approach is tackling the computational complexity problems within the static analysis
and accuracy within the measurements based layer. The TACLeBench is used in the
COBRA-HPA (COde Behaviour fRAmework-Hybrid Program Analyser) framework that
facilitates evaluation of the different approaches using different block sizes. Furthermore,
COBRA-TG (Taskset Generator) uses TACLeBench for schedulability analysis. Different
scheduling methodologies can be analyzed in a reproducible way using generated tasksets
based on specific application descriptions.
Hardware design: As the TACLeBench collection is self contained, it leads itself as an easy
to use benchmark collection to evaluate computer architecture design in the embedded
and real-time domain. We have used version 1.0 for the evaluation of the stack cache
design optimized for real-time systems [12].

3.7 Source Access and Compiling the Benchmarks
The benchmarks are hosted on GitHub at https://github.com/tacle/tacle-bench. Each
benchmark is in its own folder and can simply be compiled with your favorite C compiler
with following command:

cc/gcc/clang *.c

4 Evaluation and Sanity Checks

To evaluate the complexity of the benchmarks and their resilience against compiler optim-
izations, we executed each benchmark on pasim, a cycle-accurate simulator of the Patmos
architecture [11]. Each benchmark was compiled using patmos-clang with activated compiler
optimizations (i.e., -O2). The results of this evaluation are summarized in Figure 1. All
execution traces start at the function marked as entry point by a pragma directive in the
source code of the benchmark. The execution times range from 305 cycles (binarysearch) up
to 1,658,333,567 cycles (test3). To put this into relation, the benchmark program test3 runs
approximately for 21 seconds on the Patmos platform assuming a CPU Frequency of 80Mhz.
From this evaluation we make the main observation that TACLeBench consists of both short-
and long running benchmarks with a huge variety in execution time. No benchmark in the
suite is optimized to a single return statement.

Different members of the TACLe COST action changed the code. Such a collaborative
procedure is inherently error-prone. Human errors can occur and the original sources were
often faulty to start with. The distributive work on the benchmarks led to an additional
source of error detection: a benchmark behaving well under system configuration A may
be faulty under configuration B. To ensure the quality of the benchmarks and to improve
portability, we have thus implemented automatic sanity checks.

https://github.com/tacle/tacle-bench
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Figure 1 Execution times of programs in TACLeBench range from 305 cycles up to more than
1,600,000,000 cycles on the Patmos architecture.

The code quality is validated centrally and the latest results can be viewed online.4 For
this sanity check, all benchmarks are compiled using gcc, g++ and clang, executed and the
return values are checked against the expected value. Clang’s static analyzer5 is used to
further reveal programming bugs, such as out-of-bounds errors, and also to validate the
compliance of the code with the code-formatting rules.

The portability has been checked via a shell-script (checkBenchmark.sh) that is now part
of the TACLeBench repository. The script allows to quickly identifying incompatibilities
of the benchmarks with specific operating systems, compilers, and system configurations.
Even though full coverage of all system configurations can never be achieved, we were able
to cover most of the common operating systems and compilers.

5 Conclusion

Research in the field of embedded real-time systems needs benchmarks to evaluate research
ideas. TACLeBench provides an open source collection of 53 benchmarks. As all benchmarks
are self-contained, they are easy to use in systems that are lacking the standard library or an
operating systems. 2.0 will be released when the last missing programs have been adapted
to the common coding style. We intend to grow the collection of programs and coordinate
the release of benchmark versions. We further welcome contributions to the benchmark
collection.
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Abstract
The presence of infeasible paths in a program is a source of imprecision in the Worst-Case
Execution Time (WCET) analysis. Detecting, expressing and exploiting such paths can improve
the WCET estimation or, at least, improve the confidence we have in estimation precision. In
this article, we propose an extension of the FFX format to express conflicts over paths and we
detail two ways of enhancing the WCET analyses with that information. We demonstrate and
compare these techniques on the Mälardalen benchmark suite and on C code generated from
Esterel.

1998 ACM Subject Classification B.2.2 Performance Analysis and Design Aids, C.3 Special-
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Keywords and phrases WCET analysis, Infeasible paths, Path conflicts, IPET, CFG transform-
ation
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1 Introduction

The Worst-Case Execution Time (WCET) analysis of a program takes into account all the
finite (with loop bounds) paths of its Control Flow Graph (CFG). The data manipulated by
the program might make some of these paths infeasible. If the WCET analyser is unaware of
these infeasible paths, or is not able to exploit them, the analysis may suffer from:
1. Direct over-approximation when the Worst-Case Execution Path (WCEP) is infeasible,
2. Indirect over-approximation when infeasible paths pollute the timing of hardware analyses.
The function shown on Listing 1 illustrates these two points. When called with a value
less than 64 the heavy computation comp is infeasible and should not be taken as WCEP
(Item 1). When called with a value greater than or equal to 64 the array precomp is not
accessed and should not alter the abstract state of the cache (Item 2).
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int f(int n) {
if (n < 64) return precomp[n];
else return comp(n);

}

Listing 1 A function that either computes
its result or returns a precomputed result.

<conflict>
<!-- Edge or block identifier 1 -->
<!-- ... -->
<!-- Edge or block identifier N -->

</conflict>

Listing 2 General form of a conflict.

In this paper we focus on a specific class of infeasible paths called conflicts1. A conflict is
defined by a set of CFG edges that cannot all appear in the same execution trace. As soon
as one of these edges can be executed several times, there is no straightforward translation
of the conflict into the Integer Linear Program (ILP) usually built to compute an upper
bound on the WCET – Implicit Path Enumeration Technique (IPET). If ILP could handle
efficiently disjunctions then we could translate a conflict between the edges A, B and C by
nA = 0 ∨ nB = 0 ∨ nC = 0 where nX is the number of executions of edge X.

Our contributions are the following:
We present an extension of the FFX format [2] for expressing conflicts. We can represent
simple conflicts, conflicts that are valid in a given context and conflicts involving specific
instances of an edge, with or without relevant order (Section 2).
We propose two ways of integrating conflicts in the WCET analysis, through CFG
transformation (based on [8], Section 3) or with additional ILP constraints (based on [9],
Section 4).

In Section 5 we experiment these approaches on the Mälardalen benchmark suite [4] and
two C programs generated from Esterel, considering conflicts inferred by a SMT-based tool
at binary level [10]. Gains can be significant (but do not exceed 10%).

The issue of infeasible paths in WCET analysis being an active topic since many years,
we compare our expression format and integration process with some previous work inferring,
expressing and exploiting conflicts [3, 5, 11, 6] in Section 6.

2 Expressing Conflicts in FFX

The open format FFX (Flow Facts in XML) is a flowfact annotation language [2] aimed to
be portable, expandable and easy to write, understand and process. Annotations in FFX
are stored in an XML file rooted by a flowfacts element. Inside, a hierarchy of elements
represents:

Facts (e.g. loop bounds)
Context of validity for inner elements (e.g. call context, loop iteration)

2.1 The conflict Element
We enrich the FFX format with the element conflict illustrated in Listing 2. This element
means that a valid program trace cannot contain all blocks/edges mentioned inside. In other
terms, only paths that go through at most N-1 of the N blocks/edges mentioned in the
element are valid. A block/edge is identified by the block/edge FFX element and we make
the assumption that it can be mapped to a block/edge of the CFG.

1 The term is borrowed from [11].
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<loop loopId="L">
<iteration number="*">

<conflict>
<edge "A" />
<edge "B" />

</conflict>
</iteration>

</loop>

Listing 3 Conflicts for each
iteration of a loop.

<conflict>
<edge "A" />
<call name="C1" ...>

<edge "B" />
<edge "C" />

</call>
</conflict>

Listing 4 Conflict with
edges in a call.

<conflict ordered="yes">
<edge "A" />
<edge "B" />
<edge "C" />

</conflict>

Listing 5 A then B then C is
infeasible, but CAB is allowed
for example.

2.1.1 Context of Validity
We inherit from FFX the notion of context of validity. A conflict element inside a given
context applies to each sub-trace defined by the context. For example, Listing 3 describes a
conflict that occurs in each iteration of loop L. It means that in one iteration we can see no
A but some B and in another iteration no B, but some A (no A and no B is also allowed).

2.1.2 Specific Instances of Edge/Block
The use of contextual elements in FFX allows stating that a property holds in that context
(e.g. for the last iteration, when the function is called from a given call site). We employ the
same contextual elements inside the conflict tag to restrain it to specific instances of a
given edge or block. For example, Listing 4 describes a conflict between A and instances of B
and C belonging to a specific call.

2.1.3 Ordered Conflict
We experienced that a conflict as described in Section 2.1 is a strong property in the sense that
it holds regardless of the order of its elements. To allow the expression of a weaker property,
we introduced an attribute named ordered for the conflict element. This attribute can be
given the value yes or no, the default being no. If a conflict is ordered, it only states that its
constituents cannot appear altogether in that order.

2.2 Formal Semantics
In this section, we give a formal semantics to the conflict element. This semantics is the
foundation of the properties of Section 2.3 but it can be skipped if reading Section 2.1 was
clear enough. The semantics takes the form of a predicate indicating whether the execution
path π is accepted or not. We extend the FFX acceptance semantics FFX J·K as follows:

FFX
s

<conflict ordered=o>
elems </conflict>

{
(π) = C JelemsK (o, π)

C Jelem1 . . . elemnK (no, π) =
∨

1≤i≤n

C JelemiK (no, π)

C Jelem1 . . . elemnK (yes, π) = 〈σ1, . . . , σn〉 ∈ splitn(π)⇒
∨

1≤i≤n

C JelemiK (yes, σi)

C J<edge e/>K (o, π) = e /∈ π
C J<block b/>K (o, π) = b /∈ π

C J<ctx>elems</ctx>K (o, π) = σ ∈ subctx(π)⇒ C JelemsK (o, σ)

WCET 2016



3:4 Expressing and Exploiting Conflicts over Paths in WCET Analysis

where subctx is a function returning the sub-traces matching the contextual element ctx and
where σ1. · · · .σn = π means that the σi form a sequential decomposition of π.

2.3 Properties of the conflict Element
I Property 1. A conflict element can be flipped with:

Its internal context, if it is the only child of the conflict,
Its external context, if the conflict is its only child.

<conflict>
<context>

<!-- content -->
</context>

</conflict>

⇐⇒

<context>
<conflict>

<!-- content -->
</conflict>

</context>

I Property 2. A conflict having its ordered attribute set to no entails the same conflict
with this attribute set to yes since the paths that go through an ordered list of edges is a
subset of the paths that go though the same list of edges in any order.

<conflict ordered="no">
<!-- content -->

</conflict>
=⇒

<conflict ordered="yes">
<!-- content -->

</conflict>

3 Integrate Conflicts by CFG Transformation

In this section we propose to turn a conflict FFX tag into an equivalent automaton to
integrate it in the analysis process through a CFG transformation. This idea is based on [8]
where we present a method to turn the semantic information of an annotation language
(such as FFX) into a hierarchical automaton enriched with constraints. We then perform a
product operation between the CFG of a program and this automaton and feed the result to
IPET to obtain a WCET.

3.1 Example of CFG Transformation
If we reduce a CFG to an equivalent Deterministic Finite Automaton (DFA), we obtain the
set of paths that are structurally possible in a program. If we want to remove an edge of this
DFA, we can simply perform an automata product with an automaton that would forbid
that specific edge. More precisely, this automaton would accept any edge except this one.

The general idea is to rely on the formal operations that exist on automata to integrate
additional semantic information in the analysis process.

Figure 1 illustrates an automata product between an automaton that represents a conflict
between two edges A and B and the DFA that corresponds to a CFG.

The Conflict automaton works as follows: in the state x, all edges are accepted through
the default transition *, except edges A and B that go respectively in y (resp. z) where any
edges different from B (resp. A) is accepted.

The result of this product is an unfolded CFG where there exists no path that can go
through A and B. The semantic information of the conflict has been carried by the automaton
and integrated as a structural restriction in the CFG.

Two limitations appear in this process:
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Figure 1 Product between a conflict automaton and a CFG.
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Figure 2 Product between an ordered conflict and the automaton that describes the order.

Turning a semantic property into an equivalent automaton is not straightforward. However
we presented in [8] a strong formalism of hierarchical automata enriched with constraints
that can handle most of the annotations that are used in the WCET analysis (e.g.
contexts, loop bounds, conflicts...).
This approach suffers from scalability problems: in Figure 1, some blocks are duplicated
due to the product (e.g. block 4,5,7). Also, blocks 7,x and 7,y are now separated due to
the z state, even if there exists no path that could go through A after B. And if the CFG
had more blocks after block 7, they would all appear in the three branches. Moreover
this is only a 2-edge conflict. A 3-edge conflict has seven states and a product could
almost multiply the number of blocks of a CFG by seven. We propose to use the “ordered”
property to reduce the number of states of the conflict automaton and then to reduce the
number of replications.

3.2 Simpler Automaton with the Ordered Property
When the ordered property of a conflict is set to “yes”, the only paths removed are those
that go through the elements of a conflict in the right order. This is weaker than the
non-ordered conflict. However, if we add the information that the order specified in the
conflict is the only one possible, we obtain an equivalence to the non-ordered conflict.

The first automaton in Figure 2 represents an ordered conflict that only excludes paths
where B is taken after a A.

If we perform a product with the second automaton which ensures that no A can occur
after a B, we obtain the previous non-ordered conflict.

It turns out that when our conflict detection tool finds a conflict over a list of edges of
a CFG in a specific context, it also ensures that there exists no other possible orders for
these edges in this context. In other terms, the order of these edges is already a structural
constraint of the CFG. In these conditions, we can carry the property with the weaker but
simpler ordered conflict automaton, since it is the only structurally feasible path in the CFG.
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Figure 3 Product between an ordered conflict and a CFG.

3.3 Benefits of the Ordered Property
Figure 3 illustrates how a simpler conflict automaton avoids the separation of the CFG in
three distinct branches while still removing the conflicting path from the structure.

With this ordered version of the conflict, we can consider performing the product using a
conflict over n edges, even when n is greater than three since it results in an automaton with
n− 1 states. It was impossible with the non-ordered conflict which results in an automaton
with 2n − 1 states and almost as many potential replications of each block of the CFG.

4 Integrate Conflicts with ILP Constraints

In this section, we present a method based on [9] for translating FFX conflicts into ILP
constraints. These constraints are meant to be added to the constraints produced by an
IPET-based WCET analysis tool (with potential pessimism).

4.1 Framework
In [9] Raymond proposed a method for turning any set of conflicting edges into linear
constraints. For example, consider a CFG where an edge A is located inside a loop (bound n)
and an edge B outside. Consider a conflict between the edge A (in any iteration) and the
edge B. If we unroll the loop, the complete set of conflicts is {(A1, B), . . . , (An, B)}. Note that
A1, . . . , An are called avatars of A.

The method proposed turns this set of conflicts into the ILP constraint A + n.B ≤ n.
The key idea of this framework is that it works on an acyclic unfolding of the original

CFG where we can turn a conflict like (A1, B) into A1 + B ≤ 1. From sets of such inequalities,
clever summation recovers linear constraints on the original CFG. This leads to a general
formula that is valid for any set of CFG edges X and any set of conflicting edge avatars S
built upon X:∑

x∈X

pxx ≤ (|X| − 1)|S|+
∑
x∈X

lx

where:
px is the maximum of the counts of each avatar of x in S (called multiplicity),
lx is pxmx − |S| (called lack),
mx is the number of avatars of x in the unfolding.

This formula does not reflect exactly the conflict, but it is a safe approximation.



V. Mussot, J. Ruiz, P. Sotin, M. de Michiel, and H. Cassé 3:7

<conflict ordered="yes">
<edge "a" />
<edge "b" />

</conflict>

Listing 6 Conflict without
context.

<conflict ordered="yes">
<loop address="0x...">

<iteration number="*">
<edge "a" />
<edge "b" />

</iteration>
</loop>

</conflict>

Listing 7 Conflict on each
iteration of a loop.

<conflict ordered="yes">
<loop address="0x...">

<iteration number="-1">
<edge "a" />
<edge "b" />

</iteration>
</loop>
<edge "c" />

</conflict>

Listing 8 Conflict on the last
iteration of a loop and after.

4.2 Translations
Our contribution is a prototype Otawa [1] plug-in to translate FFX conflicts into ILP
constraints. We illustrate the translation performed on several examples.

The conflict presented in Listing 6 is a simple conflict with no contexts. Under the
hypothesis that ma = mb = 1 (a and b appear only once in the acyclic unfolding) the method
results in: S = {(a, b)} and |S| = 1, pa = pb = 1, la = lb = 0. Therefore the generated
constraint is a+ b ≤ 1.

The Listing 7 presents a conflict for each iteration of a loop. Under the assumption that
ma = mb = n, we obtain the system:{

S = {(a1, b1), . . . , (an, bn)}
|S| = n, pa = pb = 1, la = lb = 0

The resulting ILP constraint is then a+ b ≤ n. Note that the right-side of the inequality can
be generalized to n(|X| − 1).

Finally, the conflict presented in Listing 8 illustrates a conflict between two edges in the last
iteration of a loop and a third one after. Under the assumption that ma = mb = n ∧mc = 1,
the following system is obtained:{

S = {(an, bn, c)}
|S| = 1, pa = pb = pc = 1, la = lb = n− 1, lc = 0

The generated ILP constraint is then a+ b+ c ≤ 2n. Again, note that the right-side of
the inequality can be generalized to |X| + |In|.(n − 1) − 1 where In ⊆ X is the subset of
edges belonging the loop.

5 Experiments

The PathFinder tool presented in [10] runs an abstract interpretation top-to-bottom ana-
lysis on binary programs, looking for semantic conflicts. It acts as a pre-analysis for the
WCET analysis, aiming to provide information about infeasible paths in the most factorized,
exploitable way possible for other analyses. It relies on the OTAWA framework.

This infeasible path analysis tool models the program state for a set of paths in the CFG
as a conjunction of predicates on registers and memory cells. It checks the feasibility of a set
of paths by checking the satisfiability of this abstract program state in an SMT2 solver.

When an infeasible path is detected, PathFinder attempts to express the detected conflicts
in a minimal number of infeasible paths, each written as a list of CFG edges that cannot all

2 Satisfiability Modulo Theory
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Table 1 Results on the Mälardalen benchmarks.

Nb. of conflicts found WCET gain simple arch. WCET gain arm9 + cache
Program Total After minim. Constraints Unfolded Constraints Unfolded

Small Mälardalen benchmarks
adpcm 174 28 0.00 % 0.00 % CE CE
cnt 118 5 0.00 % 0.00 % 0.00 % 0.00 %
cover 3 3 6.95 % 6.95 % 0.01 % 0.25 %
crc 8 8 0.50 % 0.50 % 4.10 % 9.70 %
edn 7 6 0.03 % 0.03 % CE CE

expint 8 5 0.00 % 0.00 % 0.00 % 0.09 %
fibcall 1 1 0.72 % 0.72 % 0.32 % 0.32 %
fir 1 1 0.00 % 0.00 % 3.37 % 7.45 %

select 18 11 0.16 % 0.16 % 0.09 % 0.09 %
sqrt 407 10 0.40 % 0.40 % 0.04 % 0.04 %

Large Mälardalen benchmarks
statemate 1118 71 2.77 % CE∗ 1.00 % CE∗

ud 13 1 1.17 % 1.17 % 1.08 % 1.08 %
nsichneu 13648 7684 0.00 % CE∗ 0.00 % CE∗

minver 10 9 1.40 % 1.40 % CE CE
ludcmp 29 3 0.00 % 0.00 % 0.00 % 0.00 %
lms 2097 141 CE CE CE CE
fft1 830 149 CE CE CE CE
qurt 797 41 CE CE CE CE

Esterel benchmarks
runner 5618 185 9.84 % CE∗ 9.12 % CE∗

abcd 4949 274 3.01 % CE∗ 5.17 % CE∗

be taken on a single path associated with a context (the scope of a loop, of a function for
any or a particular function call point).

This list of edges expressing each infeasible path must also be as small as possible, in
order to minimize the complexity of WCET analysis that will use these results. This is
achieved by retrieving from the SMT solver a kernel of predicates, named an unsatisfiable
core, and hook one or several edges to each predicate. Other refinements are performed,
namely using (post-)dominance properties on the CFG in order to remove superfluous items
from the list of conflicting edges.

Once the analysis completes and the infeasible paths have been minimized as best we
can, we output them using the FFX format (Section 2).

Results of our experiments are presented in Table 1. Programs were compiled for the
armv5t architecture without any optimization (-O0). The second and third columns show
the total number of conflicts found by Pathfinder, and the number after minimization. In
the next two columns, we analyzed the benchmarks with a trivial architecture that applies a
simple metric to compute low-level timings and without any cache. In the last two columns,
we used an architecture model derived from ARM9 with a 1 KB instruction cache and a 256
KB data cache.

For several programs we were not able to compute a WCET due to Capacity Exceeded
(CE) because of scalability problems occurring either during the unfolding of the CFG (CE∗),
or during the WCET computation itself. Other benchmarks of the suite are not listed
here either because they contain recursion that is not supported by Pathfinder or because
Pathfinder did not detect any conflict.
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In the Constraints columns we fed ILP with the constraints derived from the conflicts
(Section 4) while we applied the automata product (section 3) in the Unfolded columns.
The values are the percentage of gain between the WCET computed with the integration of
conflicts over the WCET estimation without.

Thanks to the integration of conflicts in the WCET analysis, we observed significant
improvements of the precision in some cases, even for a trivial architecture without cache:
for these benchmarks, the original WCEP was infeasible.

Unsurprisingly, the table also shows that for a trivial architecture without cache, the
WCET precision improvement is exactly the same if we add ILP constraints or if we unfold
the CFG. In other terms, gains only appear when the WCEP is infeasible.

On the other hand we highlighted an important result in the column where cache is used:
significant precision improvements are noticeable (in bold) when we unfold the CFG. Indeed,
at some points in the WCET analysis, abstract cache states that represent the possible
states of a cache are merged. When the constraint method is used, the merge points remain
unchanged, but unfolding the CFG allows to separate paths which avoids some of these
merging operations. It results in more precise abstract cache states and eventually a more
precise WCET estimation.

6 Related Work

Engblom et al. [3] present an IPET-based framework for WCET analysis together with an
annotation language based on scopes. These scopes correspond to the contexts enclosing our
conflicts. We rely on their technique for scoping out local ILP constraints to global ones.

Kirner et al. [6] survey the annotation languages used by the WCET analysis tools
(including FFX). They identify categories of dynamic control flow information but the notion
of conflict is absent. In their section 9, they use four languages to encode flow information,
one of which (B1) is a contextual conflict. Only PL and IDL are able to encode faithfully
the conflict using a regular expression (linked with Section 3).

Suhendra et al. [11] present an algorithm3 for inferring pairwise-conflicts in a given
context (function or iteration). They then use these conflicts to improve a path-based WCET
analysis. There tool was not meant to export this knowledge.

Knoop et al. [7] refine the WCET by disproving the feasibility of the WCEP. This approach
has the clear interest of focusing the flow analysis on relevant paths. The price to pay is
an increased WCET resolution technique complexity. Note that ignoring the infeasibility of
paths that are not WCEP might lead to indirect over-approximation of the WCET (Item 2
in Section 1).

Ruiz and Cassé [10] retrieve conflicts from a binary program. Unlike the work previously
mentioned these conflicts can involve edges in a loop and edges outside of this loop. The
analysis can deliver contextual conflicts over a single function call. It was a motivation for
extending the FFX format so to encompass all these subtleties.

3 It turns out that Algorithm 1 of [11] is wrong. If the program of Figure 1 is run with x = y = z = 5
the path taken goes through edges that are reported as branch-branch conflict. This is due to a bad
hypothesis in the second item of Definition 3.2: all paths between the two branches must not modify
the involved variables.
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7 Conclusion

Throughout the paper, we presented an extension to the FFX format that allows representing
a class of infeasible paths called conflicts (Section 2). Finding these conflicts and taking
them into account enables an improvement of the WCET analysis precision of up to 10%
on some programs (Section 5). We presented two methods to integrate the conflicts in the
WCET analysis. One creates additional ILP constraints reflecting the conflicts (Section 4)
and scales well. The other one is an automatic transformation of the CFG that removes the
conflicting paths (Section 3); the size of the CFG may explode, but this method can affect
the low-level analyses and yield additional WCET precision.

We noted that benchmark suite programs offer a field of improvement through detection
and integration of conflicts, while source codes generated from Esterel compiler are slightly
more promising. We plan to look for other classes of programs to illustrate the various
conflicts that our tools are able to detect and take into account. We also plan to address the
issue of scalability, both in the WCET analysis and with the unfolding method, in order to
support bigger and more complex programs.
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Abstract
Traditionally, the Worst-Case Execution Time (WCET) of Embedded Software has been estim-
ated using analytical approaches. This is effective, if good models of the processor/System-
on-Chip (SoC) architecture exist. Unfortunately, modern high performance SoCs often contain
unpredictable and/or undocumented components that influence the timing behaviour. Thus,
analytical results for such processors are unrealistically pessimistic. One possible alternative ap-
proach seems to be hybrid WCET analysis, where measurement data together with an analytical
approach is used to estimate worst-case behaviour. Previously, we demonstrated how continuous
evaluation of basic block trace data can be used to produce detailed statistics of basic blocks
in embedded software. In the meantime it has become clear that the trace data provided by
modern SoCs delivers a different type of information. In this contribution, we show that even
under realistic conditions, a meaningful analysis can be conducted with the trace data.
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Start	main

main.L1

Start	main.L1

arm::0x104

arm::0x104 cmp	r1,	#0xb
arm::0x108 blt	0xfc	<??main_1>

End	main.L1arm::0xfc

arm::0xfc adds	r0,	r1,	r0
arm::0x100 adds	r1,	r1,	#1

arm::0x10c

arm::0x10c bx	lr

arm::0xf0

arm::0xf0 mov	r0,	#0
arm::0xf4 mov	r1,	#1
arm::0xf8 b			0x104	<??main_0>

End	main

Start	main

Waypoint

arm::0xf8 b	0x104

Direction	arm::0x104,	ID	2

main.L1

Start	main.L1

Waypoint

arm::0x108 blt	0xfc

Direction	arm::0x10c,	ID	4

End	main.L1

Direction	arm::0xfc,	ID	3

Waypoint

arm::0x10c bx	lr

Direction	end,	ID	5

Direction	arm::0xf0,	ID	1

End	main

Figure 1 Control flow graph of a small program containing a simple loop (left) and its associated
waypoint graph (right).

One of the underlying techniques used to implement this approach is the notion of the
control flow graph. A control flow graph consists of basic blocks – sequences of instructions,
where each instruction except the first and the last has exactly one predecessor and one
successor – and edges that describe the flow of control in a program, i.e. conditionals, routine
calls, loops etc. However, the embedded trace unit (ETU) of modern ARM processors (like
the Xilinx Zynq featuring an ARM Cortex-A9) is not fully compatible with this model.

The mental model of the ETU is as follows: For each non-linear control flow, for example
interrupts and hardware exceptions, but also normal branches and calls, a so-called waypoint
event is emitted. These events carry the address where the control flow change happened
and the target of the change. Some instructions (the waypoint instructions) always generate
a waypoint event [2]. Amongst others, all instructions that possibly modify the program
counter are waypoint instructions. This is enough to fully reconstruct the control flow, but
less fine grained than the control flow graph.

Consider Figure 1. It contains a control flow graph on the left and its associated waypoint
graph on the right. On the left, inside the loop main.L1, two basic blocks are shown. The
second one, starting at address 0xfc, does not contain any change-of-flow instruction, but
performs always a fall-through to the basic block at 0x104. Consequently, no waypoint
instruction exists that represents this second basic block, but only one for the first basic
block (the instruction blt at address 0x108). Each outgoing edge of a waypoint instruction
is annotated with the target address given by its waypoint event. Hence we can distinguish
the two possible paths through the loop.

To cope with the changed setting, we had to rework large parts of our approach presented
in [8]. We spend higher effort in the preprocessing phase, but we are rewarded by a simplified
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implementation of the runtime phase. This paper presents the changes that we made to our
former approach in order to achieve precise continuous non-intrusive measurement-based
execution time estimation for waypoint graphs.

The paper is structured as follows: First, in Section 2, we discuss related work. We
continue with a recapitulation of our method’s workflow in Section 3. Then, in Section 4,
we discuss different hardware tracing units, the quality of the trace they produce and their
usefulness for our approach. Afterwards, in Section 5, we highlight the changes between
our revised approach and our original approach. Moreover, we introduce a new tool to
determine in which context an instruction sequence is executed, the so-called loop automata.
We continue with an evaluation of our approach on the TACLeBench benchmark suite [9] in
Section 6. Finally, we conclude our work and discuss future work in Section 7.

2 Related Work

The problem of computing tight bounds of the execution time of a program is an active
field of research, with many methods and tools using both static and dynamic analysis
approaches [14]. Static analysis methods compute safe upper bounds of the execution time
from a mathematical model of the target architecture. Dynamic analysis methods, on the
other hand, derive the execution time from measurements performed on real hardware.
Hybrid methods, like our approach, combine execution time information extracted from
measurements with statically computable information like control flow graphs to improve
safety, precision and/or coverage of the result. Probabilistic methods, finally, try to compute
statistical models from measurements to compute upper bounds of the execution time.

The most basic version of measurement-based execution time analysis, namely end-to-end
measurements, is still in frequent industrial use [12], but its problems are manifold. Not
only it is unable to produce safe estimates, as in general not all possible scenarios can be
measured, but the results are hard to interpret, too, as they are not related to particular
parts of the code but only to the whole program.

To overcome this, more structured approaches have been proposed, e.g. by Betts et
al. in [6], which combine the measured execution times of small code snippets to form an
overall execution time estimate. Their use of software instrumentation leads to the probe
effect, i.e. the timing behaviour of the program under observation changes due to the used
observation technique. Moreover, their method does not account for typical cache behaviour
and may be overly conservative. In a more recent publication [7], they use the non-intrusive
tracing mechanisms of state-of-the-art debugging hardware. The main obstacle of their
method is the limited size of trace buffers and/or the huge amount of trace data. According
to their estimates, around half a terabyte of data would be generated in an hour of testing.

Stattelmann et al. [13] propose the use of context information in order to account for cache
effects. Their work shows that the inclusion of context information leads to more precise
execution time results. However, their approach is limited to processors with sophisticated
trace trigger mechanisms and performs again an offline analysis of the collected data.

Most measurement-based methods suffer from one or the other problem mentioned above.
Our approach, in contrast, circumvents these drawbacks:

We measure the timing of short instruction sequences. This fine grained approach allows
to see where time is spent.
We use non-intrusive hardware tracing mechanisms of state-of-the-art processors to
produce timestamps. The probe effect is avoided.
We process the trace events online. There is no need to store huge amounts of trace data.
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Figure 2 Workflow. Our approach is splitted into three phases: an offline pre-processing phase,
the continuous online aggregation phase and an offline post-processing phase.

We process the trace events continuously. The aggregation can literally run for weeks.
The possibilities to catch rare circumstances are increased.
We incorporate the execution context of instructions and account for typical cache
behaviour. The results are thus much more precise.
The use of an FPGA allows us to adapt our method to different hardware tracing units.

3 Workflow

Our method works on the object code level and is split into three phases: an offline pre-
processing phase, the continuous online aggregation phase and an offline post-processing
phase. The workflow of our method is shown in Figure 2. The control flow reconstruction
and the ILP-based path analysis are re-used from the aiT tool chain [1].

We assume that a set of tasks is distributed over the cores of a multicore processor
such that each task runs on exactly one core. Each task uses its own trace extraction and
continuous aggregation modules. Hence it suffices to describe the workflow for a single core.

Control Flow Reconstruction and Waypoint Graph Computation. First, the binary reader
disassembles a fully linked binary executable into its individual instructions. Architecture
specific patterns decide whether an instruction is a call, branch, return or just an ordinary
instruction. This knowledge is used to form the basic blocks of the control flow graph (CFG).

Then, the control flow between the basic blocks is reconstructed. In most cases, this is done
completely automatically. However, if a target of a call or branch cannot be statically resolved,
then the user needs to write some annotations to guide the control flow reconstruction.

After finishing the reconstruction of the CFG, the waypoint graph (WPG) is computed.
To do so, a pattern matcher checks for each instruction whether it is a waypoint instruction.
Afterwards, the edges of the WPG are computed. For each waypoint instruction found, the
algorithm follows the edges in the CFG to find reachable waypoints. This gives the direction
of a waypoint edge and its target.

Configuration of the Continuous Online Aggregation. Then, the WPG is used to create a
configuration for the trace extraction module as well as for the continuous online aggregation
module on the FPGA. This configuration assigns an unique ID to each edge in the waypoint
graph. Moreover, it instantiates the lookup tables in the loop automata cluster (see Section 5
for a detailed description).
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Trace Extraction. During the program’s execution, the ETU continuously emits raw trace
data. This stream of data is fed into the trace extraction module. There, the raw data is
decoded and compiled into an event stream. An event is generated for each traversal of a
waypoint and consists of an ID and a timestamp. The special ID 0 is used if the waypoint
does not belong to the WPG computed during the pre-processing phase. This happens for
example in case of an interrupt. Otherwise, the ID from the module’s configuration is used.
The resulting event stream is then fed into the continuous aggregation module.

Continuous Context-Sensitive Aggregation. To achieve precise results, it is important
that the aggregation module accounts for cache effects. Typically, the first iteration of a
loop needs more time than the subsequent iterations because the instruction cache is not yet
filled. Simply aggregating all loop iterations in the same record would thus most probably
overestimate the time spend in all iterations but the first. For well-formed loops, we thus
compute two statistical records for each edge belonging to a loop, one that aggregates the
execution times in the first iteration and another that aggregates the execution times in all
subsequent iterations, i.e. we take the execution context into account. This resembles some
kind of virtual loop unrolling. If a basic block is part of nested loops, we only discriminate
the iterations of the innermost loop, due to limited storage for the statistical records.

The ID of an event is used as input for the loop automata cluster. Each automaton in
the cluster performs one step. Then, their state is used to decide whether a loop is executed
and if it is the first iteration of the loop or already a later one.

The timestamp of an event is used to measure the execution time of the code snippet
represented by the waypoint edge. Various statistics (minimal observed execution time,
maximal observed execution time, count of executions) are updated each time an edge event
is processed. The ID together with the execution context computed in the loop automata
cluster form the index in the memory of statistical records.

Post-Processing and Path Analysis. After the program has finished (or the test engineer
has collected enough data), the post-processing phase is started by downloading the statistics
from the FPGA’s memory. Subsequently, the WPG together with the edge timing statistics
are used to construct a maximisation problem encoded as an integer linear program (ILP).
Solving this ILP gives a path with maximal execution time (and consequently, an estimate
of the worst-case execution time).

Finally, the computed path is visualised for the user. An edge is marked infeasible if
no statistics have been created for it. This information can be used to detect dead code.
Moreover, the WCET contribution of the individual parts of the program is visualised. That
way, the test engineer can see where in the program the hot spots are. This is particularly
useful if the program is the target of performance optimisations.

4 Embedded Trace Units

The measurability of the execution time of instruction or basic blocks is a precondition for
the proposed hybrid WCET measurement approach.

The traditional software instrumentation methodology with its obvious change of the
systems behaviour (application blow up, execution slow down) is inappropriate for this
measurement. In lieu thereof ETUs are implemented in the SoC. An ETU observes the SoC
internal states, compresses and outputs this information via a dedicated high-bandwidth
trace port. There are several ETU implementations available, which differ in the type
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Table 1 ETU overview and its applicability for hybrid WCET measurement.

ETU type Nexus 5001TM [11] ARM CoreSight™
Implementation Traditional

branch messages
Branch
history messages

ETMv3 [3] ETMv4 [5] PFT [2]

Program Flow
Observation
Level

Branch Branch Instruction Branch Branch

Cycle count Yes No No Yes Yes Yes
Applicable for
hybrid WCET
measurement

Yes No No Yes Yes Yes

of trace information and the compression efficiency (see Table 1). The most important
ETU implementations are Nexus 5001TM [11] (for instance within the NXP Qorriva/QorIQ
devices [10]) and the ARM CoreSight™ architecture [4].

The processor can possibly generate more trace data than the SoC’s trace port can output
at a given time. Therefore, the ETU includes a FIFO to buffer trace messages. The trace
processing unit has to be able to handle the overflow of the ETU FIFO if a large volume of
trace messages is generated (e.g. at narrow loops with high branch frequency).

5 Revised Method

This section presents a revised version of our approach for hybrid measurement-based timing
analysis [8]. The original version of this approach was based on basic blocks, therefore the
trace extraction unit had to emit basic block events. These events were also used to determine
the execution context of the measured basic blocks, and to compute statistics over these
blocks. By considering the execution context of the basic blocks, two statistics per basic
block were computed: one containing the execution times of the basic block during the first
iteration of its innermost surrounding loop (cold cache) and one containing all subsequent
iterations (hot cache).

It turned out that there are processor architectures on the market for which we cannot
reconstruct the basic blocks because not enough information is available in the stream of
trace data. So we had to revise our architecture to use waypoint edge events instead of basic
block events. The module that determined the context of executed instructions based on
basic block events had to be replaced by new a one that uses waypoint edge events. This
new module is called loop automata cluster and the central point of our revised work. It
determines the context of each instruction based on a set of finite state machines and will be
further described in this section. Only a few changes had to be made to the original statistics
module to be compatible with the new loop automata cluster.

Loop Automata Cluster. The loop automata cluster has the purpose to determine the
context of each executed instruction, so that the statistics module can compute context-
sensitive statistics. We define the context of an instruction by the context of its innermost
surrounding loop. The context of each loop of an application can be determined by interpreting
the waypoint edge event stream emitted by the trace extraction module [2]. For this
interpretation WPG information is required because the event stream contains only the
waypoint ID and the cycle count.
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We model each loop of an application by two finite state machines (FSM) and four
comparator trees. Figure 3 illustrates one set of four comparator trees that are used to
translate the waypoint edge IDs of the event stream into loop specific context change events,
namely enter (the loop has been entered), reenter (the loop has been iterated), exit (the
loop has been exited), and exception (knowledge about the loop’s context have been lost).
The compare values of these loop specific comparator tree sets can be extracted from the
WPG of the application.

Besides the comparator trees we use FSMs to store loop information. The first FSM gives
information about the context of the loop and is illustrated in Figure 4. Its states reflect
the different contexts of a loop, namely None (the loop is not executed), First (the loop
is in its first iteration), Further (the loop is at least in its second iteration), and Unknown
(no knowledge whether the loop is executed or not). If the FSM is in state First, the
statistics for the first iteration of the waypoint are updated. If the FSM is in state Further,
the statistics for all subsequent iterations are updated. If waypoint edge events have been
lost during the trace extraction, e.g. because trace buffers within the processor have been
overflowed, it can not be determined whether the loop is executed in the first or further
iterations or not. In this case the FSM is in state Unknown and both statistics of a waypoint
are updated to further maximize its WCET.

During program execution, several loops can be in their first or further iteration, due to
nested loops. In this case, the context of the innermost loop determines the context of the
waypoint edge events. For this, we use a stack to track the innermost loop during runtime.

The second FSM gives information about the iteration count of the loop and is depicted
in Figure 5. It consists of tree states, namely Out (the loop is not being executed), In (the
loop is being executed), and Unknown (it is not known if the loop is being executed or not).
If the loop is not executed, the FSM is in state Out and the iteration counter is zero. Once
the loop is executed the state changes to In and the counter is set to one because we count
the executions of the loop header. Each time the FSM is in state In and a reenter event
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occurs the counter is incremented by one. As soon as the machine changes it state from
In to Out the counter value is considered as performed loop iterations and the loop bounds
statistics for this loop are updated.

It is possible that a trace analysis starts after the program execution has been stated.
Consequently, there is a lack of loop context information at the beginning of the analysis.
Therefore the initial state of each FSM is Unknown.

6 Evaluation

We evaluated our approach on a set of benchmarks. However, parts of the prototypical
implementation have been simulated in software due to the changes we had to implement
compared to our initial approach. We plan to have a full hardware implementation at the
time of the workshop.

Setting. The target SoC for our prototype is a Xilinx Zynq featuring a dual-core ARM
Cortex-A9 running at 667 MHz. The memory subsystem of this SoC constists of 32 kilobytes
of L1 instruction cache, 512 kilobytes of L2 cache and 1 gigabyte of DDR main memory.
We deactivated the L2 cache and the dynamic branch prediction in order to focus on
L1 instruction cache effects. We used the TACLeBench benchmark collection [9] for the
evaluation. We started with the evaluation before version 2.0 of the benchmark collection
was finalized and had some problems with some of the tests. In particular, the benchmark
sha could not be compiled with the C++ compiler provided with the Xilinx SDK 2014.4 that
we used. We ran the triplet of a benchmark’s init, main and return functions ten times
in a row, except for powerwindow, which has been run only once as it contains a slightly
different structure than the other benchmarks. Unfortunately, this setting led to runtime
errors in some of the benchmarks such that we could not use them for the evaluation.

Results. The results of our evaluation are shown in table 2. We performed two runs of
measurements, one with the L1 instruction cache enabled and one with disabled L1 instruction
cache.

For the measurements performed with activated L1 instruction cache, we give the maximal
observed end-to-end execution times of executing the benchmark’s main function, the result
of our analysis when the execution context is ignored, the result of our context-sensitive
analysis, the improvement ratio between the later two and the overestimation of the context-
sensitive analysis compared to the end-to-end measurements. A smaller ratio denotes a
better improvement of the estimated execution time bound when the loop iteration has been
taken into account as typical cache behaviour is exploited.

For the measurements performed with disabled L1 instruction cache, we give the max-
imal observed end-to-end execution time and the result of the context-insensitive analysis.
Moreover, we compared them with with the results when the L1 instruction cache is enabled
to see what impact the L1 cache has one the execution time of the benchmarks.

On average, an improvement ratio of 0.94 has been reached, i.e. the estimated execution
time bound was decreased by 6% when the execution context has been taken into accout.
Some benchmarks, like md5 and prime showed much better bound reductions with 33% and
49%, respectively. Other showed almost no improvement at all. On closer inspection, it
turned out that those benchmarks had little variance in the observed waypoint execution
times. We suspect that the prefetching mechanism of the Cortex-A9 pipeline is able to
prevent long delays during instruction fetch.
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Table 2 Results for the TACLeBench benchmark suite. The programs have been measured twice,
once with L1 instruction cache enabled and once with L1 instruction cache disabled. The first
column gives the measured end-to-end execution time in cycles. The second and third columns give
the computed execution time estimates, once ignoring the execution context and once taking the
loop iteration context into account. The forth column shows the ratio between context-sensitive
and context-insensitive estimates (smaller is better). The fifth column shows the overestimation
comparing the end-to-end observations and the analysed context-sensitive bounds. The final four
columns compare activated and deactivated L1 instruction cache.

L1 instruction cache activated L1 instrcution cache deactivated
program end-to-end context-insensitive context-sensitive improvement overestimation end-to-end context-insensitive end-to-end ratio bound ratio
adpcm_dec 2099113 4292573 3585664 0,84 1,71 8269445 30367476 3,94 7,07
adpcm_enc 52417 90387 88641 0,98 1,69 82542 154810 1,57 1,71
basicmath 19497183 44583249 44138972 0,99 2,26 40107369 168812436 2,06 3,79
binarysearch 1726 2499 2292 0,92 1,33 3237 5739 1,88 2,30
bitcount 149719 466712 463553 0,99 3,10 273131 1599420 1,82 3,43
bitonic 162046 33378706 33361129 1,00 205,87 333355 60556151 2,06 1,81
bsort 2912025 9847181 9829328 1,00 3,38 4470758 15486611 1,54 1,57
complex_updates 7948 11066 10997 0,99 1,38 10735 14086 1,35 1,27
countnegative 98709 256863 255445 0,99 2,59 150774 420206 1,53 1,64
crc 23728 42511 41035 0,97 1,73 1010312 4941180 42,58 116,23
fac 4567 19492 19141 0,98 4,19 10892 54133 2,38 2,78
fft 4967772 2060545070 2060447457 1,00 414,76 7638856 2386497145 1,54 1,16
filterbank 52757627 56175367 56000579 1,00 1,06 130534265 214822229 2,47 3,82
fir2dim 45900 87390 81835 0,94 1,78 91914 174316 2,00 1,99
iir 1779 2401 2227 0,93 1,25 2431 3286 1,37 1,37
insertsort 29397 68977 68291 0,99 2,32 40268 83702 1,37 1,21
jfdctint 37358 39795 39657 1,00 1,06 44769 46902 1,20 1,18
lift 10329419 17278328 13925216 0,81 1,35 20087468 38399195 1,94 2,22
lms 5209670 12704581 12478923 0,98 2,40 8672208 25151604 1,66 1,98
ludcmp 38448 154678 146569 0,95 3,81 65963 256881 1,72 1,66
matrix1 136086 351749 350891 1,00 2,58 275566 537144 2,02 1,53
md5a 154573496 615340440 410888084 0,67 2,66 – 1596703270 – 2,59
minver 25746 41736 40152 0,96 1,56 61579 149386 2,39 3,58
pm 178339194 349576605 348784220 1,00 1,96 273680209 503009838 1,53 1,44
powerwindowb 8204 – – – – 14096 30889 1,72 –
prime 135944 485956 249622 0,51 1,84 682279 2939746 5,02 6,05
quicksort 56159097 138962109974 135157270647 0,97 2406,69 82844689 206979278894 1,48 1,49
recursion 25991 35506 35506 1,00 1,37 85317 233528 3,28 6,58
st 1726823 2682337 2663482 0,99 1,54 2893966 5864534 1,68 2,19

a trace buffer overflow
b consistency check failed

Most benchmarks showed reasonable overestimation when comparing the end-to-end
execution times and the estimated context-sensitive bounds, with a median of 1.90. Exceptions
are bitonic, fft and quicksort which contain data dependent loops and recursions. Since
we used the maximal observed loop bounds as bounds for our ILP, we get huge overestimations.

For two benchmarks, we where not able to perform a full evaluation. One is md5, where
we encountered a trace buffer overflow. We could thus not measure any end-to-end time,
but our approach worked nonetheless, as we observed enough small snippets to estimate an
overall bound. For benchmark powerwindow, we could not give any bound with activated L1
instruction cache because a consistency check in our prototype failed.

Deactivation of the L1 instruction cache leads to a slowdown factor of 3.29 on average.
Ignoring the outlier crc, which benefits extremely from the L1 instruction cache, the average
slowdown factor is 1.94.

Overall, our evaluation shows that the benchmarks benefit from the L1 instruction cache
(as visible in the end-to-end measurements), but it is sometimes hard to capture the typical
cache behaviour in a hybrid approach which aims for upper bounds.

7 Conclusion and Future Work

In this contribution, we have shown a method that is capable of estimating meaningful
WCET of embedded software under the realistic conditions of modern SoCs. Even using the
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waypoints instead of basic blocks, a context sensitive aggregation of instruction execution
times can be achieved. These execution times can be combined to form a WCET for the
overall program (or larger portions of it). Using TACLeBench examples, we can show that
the results are highly realistic.

Still many open questions remain. We are currently working on a method to gather a
much more detailed statistics of the execution times between waypoints. This would allow a
better judgement of the gathered statistics. Also, we want to check, whether this approach
can be used for other trace streams like Nexus 5001TM. Ultimately, the question still has be
answered whether slightly enhanced trace streams could give better results for the WCET
estimation.
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Abstract
The growing complexity of modern computer architectures increasingly complicates the prediction
of the run-time behavior of software. For real-time systems, where a safe estimation of the
program’s worst-case execution time is needed, time-predictable computer architectures promise
to resolve this problem. The stack cache, for instance, allows the compiler to efficiently cache a
program’s stack, while static analysis of its behavior remains easy.

This work introduces an optimization of the stack cache that allows to anticipate memory
transfers that might be initiated by future stack cache control instructions. These eager memory
transfers thus allow to reduce the average-case latency of those control instructions, very similar
to “prefetching” techniques known from conventional caches. However, the mechanism proposed
here is guaranteed to have no impact on the worst- case execution time estimates computed by
static analysis. Measurements on a dual-core platform using the Patmos processor and time-
division-multiplexing-based memory arbitration, show that our technique can eliminate up to
62% (7%) of the memory transfers from (respectively to) the stack cache on average over all
programs of the MiBench benchmark suite.
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Keywords and phrases Predictability, Eager Memory Transfers, Stack Cache, Real-Time Sys-
tems, Prefetching, Eager Eviction
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1 Introduction

The design of modern computer architectures has become more and more complex over the
last decades in order to optimize performance and efficiency. In the vast majority of the cases
modern architectures try to improve the average-case performance1 by introducing instruction
and data caches, branch predictors, instruction pipelines, and out-of-order execution. The
optimizations usually follow the popular design principle: “Make the common case fast.” [9].
A downside of this approach is that rare corner cases are often slowed down, which leads to
a considerable gap between the best-case and worst-case performance that can be observed.
This, in turn, complicates the precise analysis of the timing behavior of real-time programs
running on such computer architecture and often results in considerable overestimation.

Time-predictable computer architectures thus gained considerable traction in recent
years [15, 10, 12, 11]. In these designs the focus is on predictable and analyzable behavior,
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while retaining acceptable average-case performance. The stack cache [2] is an example of a
predictable cache design that was shown to be analyzable [6, 1], while efficiently handling
memory accesses to stack data [3] at low (hardware) cost. Stack data is cached using a sliding
window that follows the top of the stack across function calls. The cache is implemented
using a ring buffer, following a FIFO policy. Data accesses are, by definition, guaranteed
cache hits, the content of the cache thus has to be managed explicitly using three stack cache
control instructions: (1) sres k allows to reserve k words on the stack, (2) sfree k can be
used to free previously reserved stack space, and (3) sens k, finally, can be used to make sure
that at least k words are available in the cache. Only the reserve (sres) and ensure (sens)
operations may initiate time-consuming memory transfers and thus need to be considered
during timing analysis [6, 1]. In the case of the sres instruction, content might be evicted,
or spilled, from the cache in order to make space for the k newly reserved words. The sens
instruction on the other hand might require to fill data from main memory when less than
k words are available in the cache. The remaining stack cache operations (notably sfree)
have constant timing and are thus trivial to analyze.

In order to improve predictability and ensure composability, the original stack cache
design [2] stalls the processor while performing spilling or filling, even when the stack
cache would not be used by any of the subsequent instructions. This allows to analyze the
stack cache’s timing behavior in isolation from other components of the Patmos computer
architecture [12] at the expense of average-case performance. In this work, we explore the use
of eager – or anticipatory – memory transfers in order to alleviate this shortcoming. The goal
is to improve average-case performance by performing memory transfers in the background
alongside with other instructions that are executed by the processor. The eager transfers are,
however, not allowed to interfere with the worst-case behavior of the stack cache (or any
other hardware component in the system). Most notably, the timing bounds computed for a
regular stack cache without our optimizations, should not be invalidated in the presence of
our optimizations. This is ensured by exploiting features of a recently proposed stack cache
extension [3] to track data that are coherent between the cache and main memory.

2 Background

The stack cache is implemented as a ring buffer with two hardware registers holding point-
ers [2]: stack top (ST) and memory top (MT). The top of the stack is represented by ST, which
points to the address of all stack data either stored in the cache or in main memory. MT
points to the top element that is stored only in main memory. The stack grows towards lower
addresses. The difference MT− ST represents the amount of occupied space in the stack cache.
This notion of occupancy is crucial for the effective analysis of the stack cache behavior [6].
In this work we will use an extension of the original stack cache design that allows to track
coherent data [3]. This extension introduces a third pointer LP, which divides the stack
cache into two parts: (1) cache data between ST and LP is potentially incoherent with the
corresponding addresses in main memory, while (2) data between LP and MT is known to
have the same value in the cache and in main memory – the data is coherent. The knowledge
about coherent data allows to optimize the stack cache’s operation. This is captured by a
complementary notion of occupancy, called effective occupancy that is given by LP− ST.

Clearly, the (effective) occupancy cannot exceed the total size of the cache’s memory
|SC|. The stack cache thus has to respect the following invariants:

ST ≤ MT (1) 0 ≤ MT− ST ≤ |SC| (2) ST ≤ LP ≤ MT (3)
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Stack Cache Operations: The stack control instructions manipulate the three stack pointers
and initiate memory transfers to/from the cache from/to main memory, while preserving the
above equations. We summarize these instructions below, details are in [2, 3]:
sres k: Subtract k from ST. If this violates the Equations from above, data has to be evicted

from the cache. In the simplest case only coherent data is discarded, i.e., LP− ST ≤ |SC|
but MT − ST > |SC|. It then suffices to set MT = ST + |SC|. Otherwise, a memory
spill of incoherent data has to be performed by a transfer covering the address range
[ST + |SC|, LP] to main memory. When spilling is completed, the LP and MT pointers are
updated LP = MT = ST + |SC|.

sfree k: Add k to ST. If this violates Equation 1 or 3, MT and/or LP are simply set to ST.
Main memory is not accessed.

sens k: Ensure that the occupancy is larger than k. If this is not the case, a fill from
main memory is initiated covering the address range [MT, ST + k]. MT is subsequently
incremented to MT = ST + k. LP does not change.

Data in the cache is accessed using dedicated stack load and store instructions. These
instructions only access the stack cache’s ring buffer and thus exhibit constant execution
times. This is particularly true for stack store instructions, which only modify the cached
value but not the backing main memory. Modified values are potentially transferred to main
memory only by sres instructions. This policy resembles traditional write back caches. Also
note that the LP might be updated by stack store instructions, i.e., when previously coherent
data is modified. This has no impact on the constant instruction latency [3].

Compiler Support: The compiler manages the stack frames of functions quite similar to
other architectures with exception of the ensure instructions. Stack frames are typically
allocated upon entering a function (sres) and freed immediately before returning (sfree).
A function’s stack frame might be (partially) evicted from the cache during calls. Ensure
instructions (sens) are thus placed immediately after each call. Evicted data is then reloaded
into the cache. Functions may only access their own stack frames. Data that is larger than
the stack cache or that is shared is allocated on a shadow stack outside the stack cache.

3 Eager Memory Transfers

Prefetching is a well-known technique used in conventional caches, which aims to hide
memory access latencies caused by cache misses. Instead of waiting for a cache miss to
initiate a memory transfer, prefetching anticipates such misses and fetches data from memory
in advance of the actual memory reference. The idea, though simple, raises two important
problems: (1) the addresses of future memory references need to be predicted and (2) side
effects may arise due to the eviction of data from the cache in order to make space. Both
of these issues are difficult to solve in general settings and pose even more problems in the
context of real-time systems requiring predictability.

We explore the use of eager memory transfers – combining prefetching and eager evic-
tion [8] – in order to reduce the latency of the stack cache control instructions. We introduce
two kinds of eager memory transfers: (1) eager spilling transfers data from the stack cache
to main memory, while (2) eager filling transfers data from main memory to the stack cache.
The stack cache, in contrast to conventional caches, tracks its content using simple pointers
and thus can only cache a contiguous memory region between the ST and MT pointers. In the
following we will exploit this feature in order to realize “prefetching-like” functionality for
the stack cache and address the two aforementioned problems faced in standard caches.

WCET 2016
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Address Prediction: Due to the use of pointers to track the stack cache content, it is trivial
to predict the address of any future memory transfers that might be initiated by any stack
cache control instruction. Data is either read from memory at the address starting at MT or
written to memory at the address up to LP, depending on whether the (effective) occupancy
will grow too large (sres spilling up to LP) or will become too small (sens filling from MT).
It thus suffices to predict whether data needs to be spilled or filled with regard to the future
stack cache control instructions.

Side effects: We rely on a recently proposed stack cache extension [3] that allows to track
coherent data between the stack cache and main memory in order to avoid side effects when
performing eager memory transfers. A first observation is that eager spilling only needs to
consider incoherent data (just like regular spilling). The eagerly spilled data is, however, not
evicted from the stack cache. Instead, it simply becomes coherent. Since no data was evicted
from the cache, side effects on future sens instructions are excluded. Similarly, since the
amount of incoherent data was reduced, the spilling at future sres instructions is potentially
reduced. A second observation is that eagerly filled data is known to be coherent. Side effects
on future sres instructions are consequently excluded after eager filling since the amount of
incoherent data did not change. The filling at future sens instructions, on the other hand, is
reduced due to the newly loaded data.

The eager memory transfers are guaranteed to have no side effects on the stack cache
itself. However, side effects on other hardware components, and here in particular the bus
and main memory, may arise. For instance, a cache for regular data might be blocked by
an eager memory transfer upon a cache miss. Such interferences may, of course, impact the
program’s worst-case performance and compromise predictability as well as composability.

An elegant solution is to exploit the arbitration scheme that mitigates between competing
memory accesses [4, 1]. In the context of this work, we use the Patmos multi-core architecture,
which relies on time-division multiplexing (TDM) to arbitrate main memory accesses. In the
following we assume that each processor core may transfer a single memory burst from/to
main memory in a dedicated TDM slot. Transfers may only be initiated at the beginning of a
TDM slot, which are periodically scheduled in a TDM period. The duration of a period then
depends on the number of cores n and the duration of a TDM slot k and is given by n · k
cycles. We assume that the memory controller is able to process transfers with arbitrary start
addresses and lengths. The actual memory transfer is, however, performed at the granularity
of bursts, i.e., the start address and length are aligned accordingly to the burst size (excess
data is either masked or discarded). In such a setting it is easy to detect TDM slots that
are not used by any other hardware component. It suffices to check that no other memory
request is pending at the beginning of the processor core’s TDM slot. The free TDM slots
of a processor can then be used to perform the eager memory transfers and avoid any side
effects on either the stack cache itself nor any other hardware component.

3.1 Eager Fill
The eager fill operation aims to reduce the latency of a future ensure instruction sens k.
Recall that filling is required only when the occupancy is too small, i.e., MT− ST < k. The
occupancy has to be increased in order to reduce the latency. This can be achieved by
loading, i.e. filling, data from main memory such that MT can be pushed upwards until the
occupancy reaches the stack cache size. The corresponding memory transfer, however, has to
be limited to a single burst transfer in order to guarantee that only a single TDM slot is
occupied. Assuming a burst size BS, an eager fill operation thus proceeds as depicted by the
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if (MT - ST < |SC|) {
start = MT;
end =

⌊
MT+BS

BS

⌋
× BS;

fill(start , end );
MT = end;

}

(a) The eager fill operation.

if (LP− ST < k) {
end = LP;
start =

⌈
LP−BS

BS

⌉
× BS;

spill(start , end );
LP = start;

}

(b) The eager spill operation.

Figure 1 Pseudo code illustrating the operation of the eager filling and eager spilling.

algorithm in Figure 1a. The eager fill operation can be initiated whenever a TDM slot is
free and is then guaranteed to be free of any interference with other hardware components
that might wish to access main memory. It remains to show that the worst-case timing
of subsequent stack cache operations is not affected. Three cases have to be considered,
depending on the kind of the next stack cache control instruction:
sres k: May only initiate a memory transfer when incoherent data has to be evicted from

the cache. The address range of the transfer ([ST+ |SC|, LP]) only depends on the position
of ST and LP. Eager filling does not modify either of those pointers (effective occupancy)
and thus cannot impact spill costs.

sfree k: Free instructions do not access memory and exhibit constant latency.
sens k: May only initiate a memory transfer when the occupancy is too low. The address

range of the transfer ([MT, ST+k]) only depends on ST and MT. The former is not impacted
by eager filling, while the address of MT is incremented, i.e., the occupancy was previously
increased. Fill costs thus may only be reduced.

Eager fill operations, consequently, may only improve the latency of future sens instruc-
tions. Note, however, that some side effects may still arise. This may appear when all filling
of an sens instruction is eliminated. In this case, the sens instruction no longer synchronizes
with the TDM period and may change the alignment of subsequent memory accesses. This
may incidentally increase the number of stall cycles of these memory accesses. The number
of additional stall cycles can, however, never exceed the gain induced by eager filling. WCET
estimates computed without considering eager filling thus remain valid.

3.2 Eager Spill
The aim of the eager spill operation is to anticipate and reduce future spill costs associated
with subsequent sres instructions. A spill is initiated by an sres if the effective occupancy
would exceed the size of the stack cache, i.e., LP − ST > |SC|. The effective occupancy
thus has to be lowered in order to reduce the spill latency. One possible solution is to copy
incoherent stack data to main memory without evicting them from the cache. This allows to
decrement LP and thus reduce the effective occupancy.

As for eager filling, the corresponding memory transfer size must not exceed the burst
size so that at most one TDM slot is used. Assuming a burst size BS, an eager spill operation
then proceeds as depicted by Figure 1b. The eager spill operation can be performed during
free TDM slots as soon as the effective occupancy is non null. We will, nonetheless, prevent
the spilling of data from the stack frame of the current function. This is because it may
happen that data about to be eagerly spilled is modified by a stack store instruction. This
would require additional checks to ensure that incoherent data is correctly tracked and
increase hardware costs as well as complexity. As before, only free TDM slots are used,

WCET 2016
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which guarantees that eager spill operations cannot interfere with other memory accesses.
The worst-case timing of subsequent stack cache control operations is also not affected:
sres k: May only initiate a memory transfer when the effective occupancy becomes too

large. The covered address range ([ST + |SC|, LP]) only involves the ST and LP pointers.
The latter is lowered by eager spilling, while the former is not modified, i.e., effective
occupancy was previously decreased. The spill costs experienced by an sres instruction
thus may only be reduced.

sfree k: Free instructions do not access memory and exhibit constant latency.
sens k: May only initiate a memory transfer when the occupancy is too low. The address

range of the transfer ([MT, ST + k]) only depends on ST and MT. Both are not impacted by
eager spilling. Fill costs thus cannot be impacted by eager spilling.

Eager spill operations, consequently, may only improve the latency of future sres instruc-
tions. Similarly to eager filling, the alignment of memory accesses with regard to the TDM
period may change. The worst-case timing behavior of the program is not impacted.

3.3 Spill/Fill Arbitration
The eager fill and spill operations can be executed asynchronously alongside other instructions
that are executed by the processor whenever a free TDM slot is encountered and the respective
conditions necessary to perform a transfer are met. The two operations naturally compete
for the available TDM slots, we thus defined several simple arbitration policies.

Spill/Fill-Only: As the names indicate, in these two configuration schemes only one of the
two eager operations is performed throughout program execution, subject to the respective
conditions as described above. This allows to quantify the attainable profit of either operation,
ignoring the potential overhead induced by unprofitable eager transfers.

Alternate: Eager spill and fill are performed alternatingly in order to attain the maximum
profit by applying both operations whenever this is possible on a fair arbitration policy.

Threshold: This approaches aims to reduce the amount of unprofitable eager operations,
e.g., eagerly spilling data that is never evicted. Eager operations are performed alternatingly
until a preset (effective) occupancy level (threshold) is reached. In the experiments, eager
spilling stops when the effective occupancy is half of the stack cache size. Likewise, eager
filling stops when the occupancy reaches half of the stack cache size.

Saturation Counter: In this approach, the kind of the next stack control instruction is
predicted and eager operations chosen such that its transfer costs are reduced. The hypothesis
is that sres and sens instructions are performed in sequences when descending/ascending
the call chain. The prediction uses a saturation counter, similar to branch prediction [9], that
is in-/decremented up to prespecified maximum levels whenever an sres/sens instruction is
encountered. The eager spill/fill operations are then only permitted when the counter value
lies within predefined ranges. We use a simple 1-bit saturation counter in the experiments.

4 Experiments

We evaluated eager memory transfers using the cycle-accurate simulator of the Patmos
processor [12], which implements a stack cache and its associated control instructions. It
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(a) Spill. The black bar represents the Spill-Only configuration.
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(b) Fill. The black bar represents the Fill-Only configuration.

Figure 2 Normalized number of total cache blocks regularly spilled/filled with respect to standard
stack cache implementation supporting lazy pointer. (Lower is better).

also allows to simulate several processor cores in parallel that access a shared main memory
using bursts of 32 B. Memory arbitration is then performed using a TDM policy. We
furthermore extended the stack cache implementation to support eager memory transfers
using the arbitration strategies described above. Benchmarks of the MiBench benchmark
suite [5] were compiled using optimizations (-O2) and subsequently executed on multi-core
configurations with 2, 4 (2×2), and 9 (3×3) cores. Each core is equipped with a 256 byte
stack cache, a 64 KB, 4-way set-associative data cache using a least-recently used replacement
and write-through policy, as well as a 64 KB, 64-entry method cache using first in, first out
replacement. The stack cache operates on 4 byte blocks, while the block size of the other
caches matches the burst size of the main memory. Memory accesses take 21 cycles.

Figure 2 shows the normalized reduction in the number of blocks spilled and filled by sres
and sens instructions in comparison to regular program execution without eager memory
transfers. For eager spilling, results show a considerable reduction of spill costs by 62% over
all benchmarks for the dual-core platform. For several benchmarks all spilling is performed
by the eager operation (erijndael, ebf, dbf, bitcnts, drijndael). The total stack size of
rawcaudio and rawdaudio fits into the stack cache. So, no spilling is ever performed for these
benchmarks. The results for 4 and 9 cores are very close and give reductions of 6% and 1%
respectively. Notable differences can be observed for say-tiny, bitcnts, and djpeg-small.
This can be explained by the increased TDM period, which reduces the number of free
TDM slots and the potential to perform eager memory transfers. All arbitration strategies
were able to reduce the number of blocks spilled by sres instructions. The Alternate and
Threshold configurations performed best and almost always reached the best possible result
represented by the Spill-Only strategy.
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(a) Spill.
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(b) Fill.

Figure 3 Efficiency of the various eager spill/fill arbitration policies relative to the Spill- and
Fill-Only configurations on a dual-core platform (Lower is better).

The results for eager filling are less pronounced, resulting in reductions of only 7.4%, 1.7%,
and 0.1% for the platforms with 2, 4, and 9 cores respectively. The large difference with eager
spilling is surprising. Investigations showed that our hypothesis that sres/sens instructions
often appear in sequences appears to hold. However, the average distance between sres
instructions is typically much larger than the distance between sens instructions. The
probability to encounter free TDM slots thus is much smaller between consecutive sens
instructions, thus reducing the amount of eager filling that can be performed. Again, all
strategies are able to achieve reductions. However, the Threshold configuration clearly
performs best. This is once more surprising, since the theoretical bandwidth available for
filling in the Alternate approach should at least reach 50% of the bandwidth of the Threshold
configuration. It appears that the limited number of TDM slots available in between sens
instructions aggravates the competition with eager spilling, explaining this bias. Further
investigations are, however, needed to confirm this hypothesis.

We also performed measurements on a single-core configuration, where the processor
performs memory accesses using a private bus (without TDM). Eager operations were
initiated following the Alternate arbitration scheme immediately when no other bus requests
were pending. Note that in this case interferences with other memory accesses frequently
occur. We observed that spilling and filling of the stack control instructions was completely
eliminated for almost all benchmarks, i.e., all cache transfers were carried out by eager
operations. This indicates that eager transfers are effectively limited by the number of free
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TDM slots. An interesting idea would thus be to investigate means to explicitly allocate
non-free TDM slots to eager operations. This could allow to entirely eliminate stalls at the
stack control instructions in an analyzable and predictable manner.

In addition to the effective reduction by the various configurations in the number of memory
transfers suffered by sres and sens instructions, we also compared the relative efficiency
of the approaches. Figure 3 shows the normalized number of blocks eagerly spilled/filled
with respect to the aggressive Spill-Only and Fill-Only configurations respectively. The
Threshold configuration appears to provide the best trade-off between efficiency and the
actual reduction of memory transfers by the stack control instructions. On the dual-core
platform and over all benchmarks, it eagerly spills 60% and eagerly fills 30% fewer cache
blocks than the Spill-/Fill-Only configurations respectively. Still the amount of excess spilling
(and to a lesser degree filling) is considerable. On average, over all benchmarks 75 times the
number of cache blocks are spilled compared to the number of cache blocks spilled by the
program when eager memory transfers are deactivated.

However, excess spilling is not necessarily a waste. The reduced effective occupancy
may reduce the cost of context switching [1]. The Threshold configuration on a dual-core
platform decreases the average effective occupancy over the benchmarks’ entire execution
time by about 25%. For ssusan_small, for instance, the reduction amounts to 68%, thus
considerably reducing the context switch cost related to the stack cache.

5 Related Work

Prefetching data before it is needed is a common concept in computer science and particular
in computer architecture design [13]. However, the vast majority of prefetching mechanisms
are only designed to improve the average-case and thus are not suited for the use in real-time
systems. The notable exception is the WCET-preserving stream prefetcher proposed by
Garside and Audsley [4]. The approach avoids side effects on the content of the cache by
introducing separate prefetch buffers – similar to the initial work on stream prefetching by
Jouppi [7]. In addition, properties of the bus arbitration scheme are exploited to schedule
“prefetch slots”. The authors observe that the interference between multiple cores in the
system is typically overestimated. A prefetch can thus be scheduled whenever an interference
is overdue, while respecting the worst-case execution time of the program. The actual
implementation is based on a fixed-priority scheme with a predefined blocking factor to
avoid starvation. The approach provides excellent average-case improvements. However, it
appears difficult to improve the WCET estimation by considering the prefetching, due to the
potential interaction with all other cores in the system. Our approach does not require a
separate memory structure and directly operates on the stack cache. An address prediction
mechanism is also not required since addresses are a priori kown (MT or LP). We thus expect a
much simpler hardware design. Instead of a fixed-priority scheme we rely on free TDM slots
that are left over by the program. Interference from other programs or processor cores with
regard to the eager memory transfers are consequently excluded. It thus appears feasible to
actually improve WCET estimates by taking the eager memory transfers into consideration.

In addition to prefetching, data is also transferred from the stack cache to main memory by
eager spill operations. To the best of our knowledge such a mechanism was not yet proposed
in the context of time-predictable cache design. Similar ideas were, however, explored for
conventional write-back cache designs and termed eager write-back [8].

An alternative approach is to allocate code as well as data to scratchpad memories [14].
However, scratchpad memories typically complement caches instead of replacing them. The
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stack cache mixes properties of both, conventional caches and scratchpads, and thus is
situated in between those concepts. Due to space considerations we do not elaborate these
techniques in more depth here.

6 Conclusion

We presented an elegant and simple extension of the stack cache that allows to perform
memory transfers eagerly in order to reduce the latency of future stack cache control
instructions. We exploit the capability to track coherent data in the stack cache using the
lazy pointer (LP), which allows us to distinguish between the effective occupancy and the
total cache occupancy. Eager filling increases the occupancy and thus may profit future sens
instructions, while eager spilling decreases the effective occupancy and thus may profit sres
instructions. The interplay between effective occupancy and occupancy guarantees that the
worst-case timing is not impacted. In addition, we propose to perform these eager operations
in free TDM slots to avoid any interference with concurrent memory accesses.
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Abstract
It is a known fact that processes running concurrently on different cores in a multicore environ-
ment interfere with each other on the processor shared resources. The contention on these shared
resources considerably slows down the execution on every core since sometimes the cores must
stall while their requests to access the resources are being served. But by how much the execu-
tion may be slowed down due to this interference? In this paper we answer this question with
numbers coming from experimentation. That is, we quantify the magnitude of the impact of the
interference on the execution time by running programs taken from the TACLeBench benchmark
suite, a popular benchmark suite in the real-time research community, on the first generation
of Kalray manycore processor family, the MPPA-256 (the development board) that goes by the
codename “Andey”.
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1 The problem of inter-core interference

Determining the worst-case execution time (WCET) of a software application has always
been a major problem in the design of real-time systems. Those WCET estimates are at the
base of the whole stack of higher-level analyses defined to characterize the timing behaviour
of the system and verify its timing requirements. Computing estimates that are as close as
possible to the actual maximum execution time is crucial. Under-estimating the application
execution times during the analysis phase may result in designing an over-utilized system
that does not meet its timing requirements, whereas over-estimating them may result in an
over-dimensioned (costlier) system of which the resources are under-utilized and thus wasted.

In multi-core architectures, the problem of finding WCET upper-bounds is further
exacerbated by the high number of resources shared between the cores. In such platforms
running processes may execute concurrently on different processor cores but any of their
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accesses to a memory (to fetch an instruction or data) traverses multiple layers of arbitration
in which the request may contend with others, emitted by processes running on other cores.
Contrasting with single-core architectures, on multi-cores the time during which a core stalls
waiting for a memory request to be served is a significant component of the overall execution
time of a program.

The research community has addressed the additional problem of estimating the time-
penalty caused by inter-core interference in various ways. One methodology consists in
estimating the worst-case interference that a program may incur at runtime and inflate the
individual WCET upper-bounds accordingly. This preserves the original analysis flow used
in single-core systems, in which individual WCET are estimated for every software program
and then fed as input into the higher-level schedulability analyses. Other works take into
consideration that the interference between processes effectively depends on the scheduling
decisions taken for these processes. In those works the estimated maximum interference is
accounted for at the schedulability level. Other initiatives acknowledge that the interference
between processes may be way too high on multi-cores and thus focus on how to temporally
isolate the processes to nullify, or at least mitigate, the interference between them.

Related work and contribution: It is important to understand that the present work does
not aim at measuring or determining the worst-case execution time of a given program.
For that particular problem, the interested reader may consult [6] for an overview of the
state-of-the-art solutions. Broadly speaking there are three main methodologies to estimate
the worst-case execution time of a software program: static, measurement-based, and hybrid
analyses, with their respective advantages and drawbacks discussed in [4]. More recently, the
research community has been focusing on statistic methods as well (see [3] for an interesting
starting point). In this work we performed a set of experiments to measure and quantify
the variability in the execution time of a program due to resource contention when run
concurrently with other programs on a multi-core processor. That is, we like to point out the
magnitude of the time-overhead due to the interference on the processor shared resources.
To do so, we have run a collection of programs taken from various application benchmark
suites on the Kalray MPPA-256 development board. We have run the selected programs
numerous times, always over the same set of input data, and varied the execution conditions.

2 Our test-case platform and applications

Platform settings: Our experiments have been carried out on the first generation of Kalray
manycore processor family, the MPPA-256 that goes by the codename “Andey” [2] (we used
the development board). It is a clustered many-core platform composed by an array of 16
clusters and 4 I/O subsystems, themselves connected by two NoCs (illustrated in Fig. 1).
Cores are grouped in clusters connected by a Round-Robin (RR) arbitrated Network-on-Chip
(NoC) in a 2D-torus topology [1]. Each cluster contains 17 identical VLIW cores: 16 compute
cores that are dedicated to general-purpose computations and one Resource Manager (RM)
core whose responsibility is to manage the processor resources on the behalf of the entire
cluster (maps and schedules threads on compute cores) and organize the communication
between its cluster and the other clusters, as well as with the main off-chip memory. Every
compute core has a private instruction and data cache. All the cores are fully timing
compositional [7] in the sense that they do not exhibit timing anomalies. Additionally each
cluster also contains a Debug Support Unit, a network interface for receiving data requests
from the Data-NoC and a DMA engine used for data transmission over the Data-NOC.
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Figure 1 Outline of the architecture of the Kalray MPPA-256 (Andey) manycore processor.

Figure 2 Memory request arbitration of the Kalray MPPA-256.

Regarding the organization of the memory subsystem, each cluster has a local shared
memory comprising 16 banks, each with a capacity of 128 KB, for a total memory capacity of
2 MB per cluster. The memory banks are organized into two groups of equal sizes, referred to
as the banks on the left and right sides of the memory, respectively. Similarly, the 16 compute
cores are grouped into 8 core-pairs1. Although the cluster address space can be divided
among banks in an interleaved fashion (useful for high-performance and parallel applications),
this work uses the blocked memory mode where the address space is divided in a sequential
manner. This results in more predictable system behavior, which is a desired characteristic
in systems subject to timing requirements.

The arbitration of memory requests is performed in four levels (stages), as depicted
in Fig. 2. The first three levels use the Round-Robin arbitration scheme. The first level
arbitrates memory requests issued from the two data caches and instruction caches of each
core-pair. At the second level, the requests issued from each core-pair compete against the
requests coming from the other core-pairs. At the third level, requests from all core-pairs
compete against requests from the RM, the DSU, and the DMA. Finally, at the fourth level,
the scheduled requests compete with those coming from the D-NOC (Rx) under static-priority

1 This organization in core-pairs is specific to the “Andey”. The second generation of Kalray’s manycore
processor family, the MPPA2 high-speed I/O processor (codename “Bostan”) dropped this architectural
choice.
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Table 1 The 13 benchmark programs for which we measured the execution time. “LoC” is the
total number of lines of code of all source code files belonging to a benchmark, empty lines and
comments are not counted. This information as been taken as is from [5].

Name Description LoC Origin
ammunition C compiler arithmetic stress test 2508 misc
cjpeg_jpeg6b_transupp JPEG image transcoding routines 1599 MediaBench
cjpeg_jpeg6b_wrbmp JPEG image bitmap writing code 1296 MediaBench
dijkstra All pairs shortest path 227 MiBench
epic Efficient pyramid image coder 994 MediaBench

gsm_decode GSM 06.10 provisional standard
decoder 1368 MediaBench

gsm_encode GSM 06.10 provisional standard
encoder 1940 MediaBench

h264dec_ldecode_block H.264 block decoding functions 1574 MediaBench
mpeg2 MPEG2 motion estimation 1533 MediaBench
ndes Complex embedded code 407 MRTC
rijndael_decoder Rijndael AES decryption 3043 MiBench
rijndael_encoder Rijndael AES encryption 1024 MiBench

statemate Statechart simulation of a car
window lift control 1053 MRTC

arbitration, where requests from the NoC always have a higher priority. Note: in order to
minimize contention, the second, third, and fourth levels of arbitration are replicated for each
memory bank. The first level is only duplicated for memory banks located on the left and
the right side of the memory, respectively, so that paired cores can access banks on different
sides in parallel without interfering with each other. From the organization of the memory
and its four-stages arbitration mechanism, it is easy to discern that there can be substantial
interferences arising from different sources, e.g., from the concurrent accesses to memory
banks from different cores or the contention on the NoC for the access to off-chip memory.

Application test-cases: We measure the execution time of a set of programs taken from the
TACLeBench benchmark suite (from those labelled as “sequential benchmarks”). TACLeBench
provides a freely available and comprehensive benchmark suite for timing analysis, featuring
complex multi-core benchmarks [5]. We selected 13 programs out of the 102 programs
available in the TACLeBench suite (see Table 1). Those programs are provided as ANSI-C 99
source codes that are 100% self-contained, i.e. no dependencies to system-specific header files
via “#include” directives (eventually used functions from math libraries are also provided in
C source code) [5].

3 Our approach to measuring the execution times

Our timing analysis methodology is based on the intuitive idea that the total execution
time of any piece of code, e.g. a basic block, a software function, or an entire application,
can be seen as composed of two main terms: the “intrinsic” time spent executing every
instruction of the code and the time spent waiting for a shared software or hardware resource
to become available. It is fundamental to clearly understand the difference between these
two components.
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The maximum intrinsic execution time (MIET): For a given set of input data, it is the
time that the program takes to produce the corresponding output2, assuming that all software
and hardware services provided by the execution environment and shared among different
cores are always available (the core running that program never stalls waiting for one of
these resources to become available). That is, the intrinsic execution time of a program is its
execution time when it runs in isolation, i.e. with no interference whatsoever with the rest of
the system on the shared resources. Note that it does not mean that the code and data of
the program are preloaded in the caches before execution, rather it means that wherever the
information is stored, there will be no interference when fetching it.

On an “ideal” hardware architecture every instruction should take a constant number of
cycles to execute (i.e. there is no time variation what-so-ever) and thus running the same
program in isolation over the same set of input arguments always results in the exact same
execution time. Although this may sound like a very strong assumption to make in practice,
we will see that on a platform such as the Kalray MPPA-256 this assumption is reasonable.
By running a preliminary set of tests with the same program an arbitrary number of times
over the same inputs, we experienced a variation of its execution time of typically less
than 0.1% of the maximum observed.

The maximum extrinsic execution time (MEET): For a given set of input data, it is
the time that the program takes to produce its output assuming a maximum interference
on all the shared resources. That is, the extrinsic execution time of a function is its
execution time assuming that all the software and hardware services provided by the execution
environment and shared among the cores are constantly saturated by requests from other
system components. As we will see, contrary to the intrinsic execution time, the extrinsic
execution time is generally subject to substantial variations due to the high number of
processor resources shared amongst software functions.

3.1 Extraction of the MIET: the isolation mode
In order to extract the MIET of an application, the platform is configured in what we call
the “isolation mode”: the entire application is assigned to a single thread that is pinned
to a core and all the other cores are shut down and kept idle. This is done to minimize
the interference with the rest of the system. To enforce this mode of execution, we have
implemented a platform-specific API for the Kalray MPPA-256. This API provides a set of
functions and global parameters to perform the following tasks:

Enforce that the thread running the analyzed program is executed, uninterruptedly, on a
single core,
Synchronise the IO cores and the cluster cores so that it is guaranteed that nothing runs
in the background that could interfere with the execution of the analysed program, and
Perform additional operations on the demand of the user to [re]configure the cluster before
processing. Specifically, any of the following actions, or a combination of them can be
performed: (a) Activate/deactivate the data cache; (b) Invalidate the data cache; (c) Flush

2 We assume that there is no functional random behaviours involved in the definition of the analysed
program. That is, the outcome of evaluating a condition is never the result of an operation involving
randomly-generated numbers. Under this assumption of not involving randomness in the control flow
of the program, running it multiple times over a same set of input data always results in taking the
same path throughout the program’s code and thus execute the exact same sequence of instructions
and eventually, it always produces the same output.
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the data cache; (d) Change the operating mode of the data cache (i.e. make the cores
stall on access or not); (e) Invalidate the Data-TLB; (f) Activate the instruction cache;
(g) Invalidate the instruction cache; (h) Set the address mapping scheme of the 2MB
shared memory in each cluster (i.e., set the address mapping scheme to “interleaved” or
“sequential” mode).

With these configuration options, we define two different configurations of the platform
in order to give a hint of the type of results that can be expected from applications with
very different memory access profiles:

The High-Performance (HP) configuration. In this configuration, the data cache is
enabled; The content of the data cache is neither invalidated nor flushed before each
execution; The “stall-on-access” mode is disabled (that is, the core does not stall while
waiting for a data to be fetched); The content of the data TLB is not invalidated before
each execution; The instruction cache is enabled; The content of the instruction cache is
not invalidated before each execution; and the 2MB shared memory of the cluster is set
in “interleaved” mode, to allow data to span several banks.
The Low-performance (LP) Configuration. In this configuration, the data cache is
disabled; The “stall-on-access” mode is enabled; The instruction cache is disabled; and
the 2MB shared memory of the cluster is set in “sequential” mode, to allow data to span
multiple adjacent banks if and only if it does not fit in the bank currently in use.

Clearly, using the LP or HP configuration has a substantial impact on the execution time of
the application. The reason for defining these two platform configurations is not to assess
the level of performance that is achievable in general on the Kalray-MPPA 256. Rather, we
want to give a hint at the type of results that can be expected from applications with very
different memory access profiles. To understand this relation between the platform settings
and the memory access pattern of the application, it is important to understand that if the
memory footprint of the analyzed program (instruction + data) is small enough, it will fit
entirely in the private cache of the core on which the application is run. Therefore, when
executing the program using the HP configuration, the instructions and data will be loaded
once in the private cache and the program will not need to communicate further with the
shared memory. That is, running a program with a small memory footprint using the HP
configuration is equivalent to running a program with very limited communication with the
shared memory. As it will be seen, when using the HP configuration the execution time of
some of the benchmark programs used in our experiments is not, or almost not, affected
by the execution of other programs running concurrently on other cores. On the contrary,
when the LP configuration is used, since the caches are disabled, the analyzed program must
frequently communicate with the shared memory during its execution. As a result, it is way
more subject to interference with other programs running concurrently on the other cores
and accessing the shared memory as well.

3.2 Extraction of the MEET: the contention mode
In order to extract the MEET of each application, the platform is configured in what we
call the “contention mode”. In this mode, we start each application and try to interfere as
much as possible with its execution while it is running. The objective of the contention
mode is to create the “worst” execution conditions for the application so that its execution is
constantly suspended due to interference with other programs. This gives us an estimation
of the maximum execution time of the application when it suffers maximum interference
from other programs on the shared resources.
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The contention mode is similar to the isolation mode in that the analyzed program is
assigned to a single thread that is pinned to a core (here, core 0 of cluster 0). However, on
the contrary to the isolation mode that shuts down all the other cores of the cluster (thereby
nullifying all possible interference within that cluster), we deploy onto all these other cores
small programs that we call “Interference Generators” (or IG for short). Those programs
are essentially tiny pieces of code that have for sole purpose to saturate all the resources
(e.g., interconnection, memory banks) that are shared with the application under analysis
running on core 0. Remember that the objective of the contention mode is to create the
worst execution conditions for the execution of the analyzed program, i.e. conditions in which
its execution is slowed down as much as possible due to contention for shared resources. The
IGs are deployed and started before the analyzed program starts executing, and they are
stopped after it has run for a pre-defined number of times.

Implementing the IG that generates the worst possible interference that an application
could ever suffer is a very challenging task, if not impossible. This is because the exact
behaviour of the application to be interfered with (i.e. its utilization pattern of every shared
resources and the exact time-instants of accessing it) should be known, as well as all the
detailed specifications of the platform. Besides, even if those information were known, the
execution scenario causing the maximum interference may be impossible to reproduce. Rather
than concentrating our efforts on creating such a worst IG, we opted for the implementation
of an IG that is “bad enough” and used it as a proof of concept to demonstrate how large
can be the time-overhead incurred by the application under analysis due to the interference.

Our implementation of the IG consists of a single function “IG_main()” that is executed
by a thread dispatched to every core on which the analyzed program is not assigned (recall
that the application under analysis is executed sequentially on core 0). That is, every
core that is not running the analyzed program runs a thread that executes IG_main().
Essentially, IG_main() executes three functions, namely: IG_init_interference_process(),
IG_generate_interference(), and IG_exit_interference_process(). The first one is called
upon deployment, at the beginning of execution of IG_main(), before the analyzed program
start to execute and be timed. The second one is the main function. It creates interference
on the shared resources. The call to that function is encapsulated in a loop that terminates
only when the IG is explicitly told to stop. Finally, the third function is called when the
analyzed application has been timed and the analysis process is about to end.

Let us now briefly describe our implementation of these three functions on the Kalray
MPPA-256. We use a global array of integer called “my_array” and declare the three main
functions described above as follows.

int* my_array;
inline void IG_init_interference_process() __attribute__((always_inline));
inline void IG_generate_interference() __attribute__((always_inline));
inline void IG_exit_interference_process() __attribute__((always_inline));

The first function “IG_init_interference_process()” simply allocates memory space to
“my_array” (the size of 1024 integers) and fills that array with arbitrary values. Note that on
the Kalray MPPA-256, a thousand integers occupy roughly half of the private data cache of a
VLIW core in a compute cluster. The third function “IG_exit_interference_process()” simply
frees the memory space held by “my_array”. The second function, “IG_generate_interference()”,
is the main one and a snippet of its code is presented below.
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inline void IG_generate_interference() {
__builtin_k1_dinval();
__builtin_k1_iinval();
register int *p = my_array;
volatile register int var_read;
var_read = __builtin_k1_lwu(p[0]);
var_read = __builtin_k1_lwu(p[8]);
var_read = __builtin_k1_lwu(p[16]);
// ...
var_read = __builtin_k1_lwu(p[1015]);
var_read = __builtin_k1_lwu(p[1023]);

}

The function starts by invalidating the content of the data and instruction caches. Then, it
reads every element of “my_array”, starting from the element K=0 and moving on iteratively
from element K to element ((K+8) modulo 1024), until K reaches 1023. This way, every
element of the array is read exactly once and every two consecutive readings access data that
are located exactly 8 × 4 = 32 bytes apart in the memory (the size of an integer is standard
on the Kalray, i.e. 4 bytes). This is done on purpose knowing that the private data cache
line of every VLIW core in the compute clusters of the Kalray MPPA-256 is 32 bytes long.
Consequently, every reading causes a cache miss and the value must then be fetched from the
2MB in-cluster shared memory, hence it creates traffic on the shared memory communication
channels and potentially interfere with the application being analysed. At runtime, this
function is called repeatedly in an infinite while-loop until the IG receives the command to
stop (that command is sent at the end of the execution of the program under analysis).

By running the application concurrently with these IGs, every request that it sends to
read or write a data in the shared memory is very likely to interfere with a read request from
one of the IGs. As reported in Section 4, the variation in the execution time between the
isolation and contention modes is substantial.

4 Experimental results

We ran each benchmark application one thousand times, each time over the same input data3,
in isolation and contention modes and both with the HP and LP configurations. Tables 2
and 3 expose the results in the LP and HP configurations, respectively. It is important to
stress here that for each program, we used the same input set for the thousand runs! We did
so in order to focus solely on the variation of execution time due to the interference between
concurrently-running processes. The input data set that we used is the one provided “by
default” that is available immediately on downloading the source code of the benchmark
programs from the TACLe website [5]. From the results we made few interesting observations:

With the LP configuration (Table 2), for 8 out of 13 tested programs, the execution takes
the exact same time, to the nearest CPU cycle, when running in isolation one thousand
times over the same set of inputs. This is true even for the “mpeg2” program that
executes in about 2890 millions of cycles. Its execution time remains constant throughout
the 1000 runs. Although this constance is commonly assumed in theoretical works (same

3 Since the inputs are fixed, the remaining variability in the MIET should be caused by the initial
hardware state (like contents of caches, state of the branch predictor, etc.).
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Table 2 Results in the LP configuration, in which the instruction and data caches are disabled.
The columns “min” and “max” are expressed in millions of cycles; the columns “var” are expressed
in % and correspond to (max − min)/ min; the column “factor” is the ratio between the maxima in
contention and isolation, i.e. factor = max (CON) / max (ISO).

ISO CON
Name min max var (%) min max var (%) factor
ammunition 1148.3 1148.3 0 8675.44 8676.04 0.007 7.56
cjpeg_jpeg6b
_wrbmp 1.09 1.09 0 8.04 8.05 0.14 7.37

cjpeg_transupp 39.84 39.84 0 279.97 280 0.012 7.03
dijkstra 472.61 472.61 < 0.001 1552.71 1557.35 0.3 3.3
epic 64.15 64.15 0 510.87 511.03 0.031 7.97
gsm_decode 19.69 19.7 < 0.022 151.69 151.84 0.099 7.71
gsm_encode 47.19 47.19 0 340.17 340.22 0.013 7.21
h264_dec 0.46 0.46 0 3.83 3.83 0.126 8.39
mpeg2 2890.55 2890.55 0 20237.81 20238.08 0.002 7
ndes 0.63 0.63 < 0.548 4.46 4.5 0.753 7.09
rijndael_decoder 31.06 31.06 < 0.001 228.46 228.48 0.011 7.36
rijndael_enc 35.16 35.16 < 0.001 256.62 256.73 0.046 7.3
statemate 0.39 0.39 0 3.15 3.15 0.187 8.02

input → same execution path → same output and same duration), we did not expect it
to be 100% true in practice.
With the HP configuration (Table 3), still in the isolation mode, all the programs have
experienced a different execution time, which is thus due to the non-determinism of the
cache. Sometimes this variation is small, still it is always there.
Comparing the results of the contention mode between the LP and HP configurations,
we see that using the caches has somewhat isolated the programs from each other. Under
the HP configuration, The IGs are able to increase the execution time of the analyzed
program only by a small factor (1.11 being the worst-case observed). This is because
once the program is loaded into the cache (both instructions and data), the program does
not need to further communicate with the 2MB of shared in-cluster memory. Therefore
the IGs do not have a mean to interfere substantially with its execution. In the LP
configuration however, the execution time is increased by a factor up to 8, which means
that the analyzed program is 8 times slower due to interference with concurrently-running
processes! This slow-down factor clearly advocates the use of specialized techniques to
prevent processes from interfering with each other at runtime (or at least mechanisms
should be set to mitigate the effect of this interference). We believe that a slow-down
factor of similar magnitude could be observed even with the caches enabled (i.e. in the HP
configuration) if the analyzed program had to communicate frequently with the shared
memory, hence giving the opportunity to the other processes running on the other cores
to interfere with its execution.

Important note: All the benchmarks that we have analysed seem to have data sets that
mostly fit into the data cache of the core on which they are deployed. It would be useful and
highly interesting to conduct further experiments on benchmarks with larger data set sizes.
Intuitively, it seems that the results of the “contention” mode for benchmarks with larger
data set sizes would be somewhere in between what we see in this paper for the LP and HP

WCET 2016



6:10 The Variability of Application Execution Times on a Multi-Core Platform

Table 3 Results in the HP configuration, in which the instruction and data caches are enabled.
The columns “min” and “max” are expressed in millions of cycles; the columns “var” are expressed
in % and correspond to (max − min)/ min; the column “factor” is the ratio between the maxima in
contention and isolation, i.e. factor = max (CON) / max (ISO).

ISO CON
Name min max var (%) min max var (%) factor
ammunition 247.24 247.25 < 0.002 248.07 248.09 < 0.008 1.003
cjpeg_jpeg6b
_wrbmp 0.23 0.23 < 0.067 0.23 0.23 < 0.217 1.003

cjpeg_transupp 8.9 8.9 < 0.004 8.9 8.9 < 0.005 1.00003
dijkstra 101.92 101.92 < 0.001 101.39 101.4 < 0.009 0.995
epic 18.81 18.81 < 0.002 18.84 18.84 < 0.023 1.002
gsm_decode 4.44 4.44 < 0.017 4.44 4.45 < 0.042 1.002
gsm_encode 11.08 11.08 < 0.001 11.1 11.1 < 0.028 1.002
h264_dec 0.09 0.09 < 0.149 0.09 0.09 < 0.347 1.002
mpeg2 619.77 619.77 < 0.001 620.31 620.33 < 0.003 1.0009
ndes 0.13 0.13 < 0.679 0.13 0.13 < 0.937 1.003
rijndael_decoder 9.29 9.29 < 0.002 9.54 9.55 < 0.102 1.03
rijndael_enc 10.13 10.14 < 0.105 10.31 10.32 < 0.164 1.02
statemate 0.09 0.09 < 0.33 0.1 0.1 < 1.83 1.11

configurations. Due to time and space constraints, we were not able to include such results
in this paper.

5 Conclusion

The paper aimed at quantifying the effect of the inter-process interference on the processor
shared resources. We showed that on the Kalray MPPA-256 (Andey) manycore platform
the interference can slow down the execution of a program by a factor of 8, and this slow
down factor is obtained in conditions that may not even be the worst (the IGs certainly do
not generate the maximum interference). Of course, many questions remain open: What is
the maximum slow-down factor that we could experience at runtime? What is the relation
between the slow down factor and the memory access pattern of the analyzed program?
And of course, how to totally isolate the processes from each other without degrading too
much the performance? We plan to make more elaborated experiments in the near future to
answer those questions, or at least to provide insights that would enable us to answer them.
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Abstract
We describe the implementation of Best, a tool for slicing binary code. We aim to integrate
this tool in a WCET estimation framework based on model checking. In this approach, program
slicing is used to abstract the program model in order to reduce the state space of the system.
In this article, we also report on the results of an evaluation of the efficiency of the abstraction
technique.
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1 Introduction

In the recent years, several works have explored techniques to statically estimate the worst-
case execution times (WCET) of a program using model checking [10, 6, 4]. The most
important issue encountered when using model checking to perform WCET estimation is the
exponential size of the state space that must be exhaustively explored during the analysis [20].
To fight this problem, state-of-the-art model checking tools for dense timed systems such
as Uppaal [14] use powerful symbolic algorithms and data structures. It has been shown
that it allows to deal with small but realistic instances of the WCET problem [10, 6]. It
is expected that model checking technology will continue to improve in the coming years,
widening the range of instances that can be solved.

A different and complementary direction to deal with the explosion of the state space
consists in abstracting the models of the programs [4, 3] or the models of the hardware
components [5]. The idea is to remove the information which does not impact the WCET.
This work follows this direction, with a focus on the models of programs. In the continuation
of prior work [4] we explore the use of program slicing [19] at the level of the binary code to
abstract the model of the program.

In this paper we introduce Best, a program slicer for binary code. We describe its
architecture and implementation. We explain the interface between Best and Harmless [12],
a toolchain built around a Hardware Architecture Description Language (HADL). Thanks to
this interface, the core of Best is independent from the target instruction set of the binary
code. We also use Best and the Mälardalen benchmarks to show how to compute abstract
model of programs and report on the benefits that could be reached with this approach.

The paper is organized as follows. In Section 2 we give an overview of related works.
In Section 3 we outline an approach to the estimation of WCET with model checking.
In Section 4 we provide a summary of program slicing. In Section 5 we describe the
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implementation of Best and its interface with Harmless. In Section 6 we report on an
evaluation of the abstraction approach using Best. In Section 7 we conclude the paper.

2 Related works and contribution

In the context of static WCET analysis, program slicing has been explored [17, 15, 4].
Program slicing is mostly used to accelerate the static analysis of flow facts [17, 15]. Our
goals are different, as well as the slicing technique. In contrast to our work, program slicing
is applied to structured programs at the source code level (or intermediate code level [17]).
Our tool works at the binary code level. As a positive side effect, it is independent from both
the programming language and the compiler. To our best knowledge, there is no established
tool for slicing non-x86 binary code and Best aims at filling this gap.

Our work is the continuation of previous work by Cassez and Béchennec [4]. In this work
they propose a prototype tool based on the classical dataflow equations approach [19] that
computes slices for ARM-based binary code. Unlike that, our tool is independent from the
target instruction set thanks to its interface with the Harmless toolchain. Furthermore, our
tool is based on a state-of-the-art graph-based approach [13]. We also provide an evaluation
focused on the benefits of the program abstraction technique.

Brandner and Jordan [3] propose a graph pruning technique to increase the precision of
static WCET estimation. Branches of the Control Flow Graph (CFG) are pruned based on
the criticality of their basic blocks. The criticality is defined as the normalized duration of
the longest path passing through the block [2]. According to the authors this approach is akin
to “program slicing in the time domain”. Based on this pruning approach, a refinement based
WCET calculation meta-algorithm is proposed. We do not address a full WCET analysis
in this paper. However, their technique could be combined with our approach to improve
WCET calculation. Such a combination should allow to further abstract the program in
order to deal with state space explosion.

3 WCET estimation using model-checking

WCET estimation can be reduced to a reachability problem in a network of timed automata [4].
The Uppaal tool that supports timed automata extended with bounded integer variables is
used to build the models, and to solve the reachability problem.

A model of the hardware is built where each architectural feature (pipeline(s), cache(s),
bus(es), memory, . . . ) is modeled by one or more timed automata. These automata are
synchronized through channels to model the actual hardware behavior. For instance the
automaton modeling the fetch stage of a pipeline is synchronized with the automaton
modeling the instruction cache which is synchronized with the automaton modeling the bus
and so on. The timings of the hardware are modeled by guards and clocks on some edges
of the automata. A simple model of a memory controller could be the timed automaton of
Figure 1. Notice that this model accounts only for the timing.

A model of the program is automatically built from the binary code. In this model,
each location corresponds to an instruction. An edge leaving a location corresponds to the
execution of the instruction. For conditional branches, two edges leave the location according
to the behavior of the branch (taken or not taken). Each edge is synchronized with the
automaton that models the instruction fetch so that it may only be fired if the hardware
fetches a new instruction. Memory locations are updated according to the semantics of the
instruction and to its advance in the pipeline. The model of the program has an initial state,
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MainMemStart?

MainMemEnd!

t = 0

t ≤ MAINMEMTRANS

t == MAINMEMTRANS

Figure 1 Simple modeling of a memory using Uppaal. In the initial state (on the top left)
the memory waits for an access (MainMemStart synchronization channel). When the access is
requested, clock t resets and the automaton remains in the bottom right state until t reaches the
MAINMEMTRANS value. Then the memory returns to the initial state and notifies the end of the
memory access (MainMemEnd synchronization channel).

I, that corresponds to the entry point of the program and a final state, F , that corresponds
to the point at which the WCET has to be computed.

At last, a global clock x is used to measure the time. It is initialized at 0.
The WCET is then the largest value, max(x), of x when F is reached. max(x) can

be computed with a model-checker and the following reachability property R(T ): “Is F

reachable with x ≥ T ?”. If R(T ) is true and R(T + 1) is false then T is the WCET of the
program.

This approach is modular since the hardware and software models are built separately
and the hardware model does not depend on the software to check. No assumption is made
about the structure of the binary code generated by the compiler and the model of the
program is built automatically without need for annotations

Modeling the values stored in memory

Data stored in memory and registers – called a location in the remaining of the paper – and
used by the program can be either included in or abstracted away from the model. Each
location included in the model is associated with a bounded variable. When the program
accesses a location, the timing is computed by the models of the hardware. If the location
is included in the model, the associated variable is also read / written. If the location is
abstracted away, the data to be written is discarded and any read access returns the special
value ⊥.

On the one hand, every location included in the model adds a dimension to the state
of the system and thus contributes to the growth of the state space. On the other hand, ⊥
values can lead the model checker to explore paths that are not in the systems when they
impact a conditional branch instruction. Thus the problem is to automatically compute the
minimal set of locations that impact on the control flow of the program and that should be
included in the model. In this paper, we focus on this problem.

4 Program Slicing

4.1 Notations
Let I be a finite set of instructions. Let L be a totally ordered finite set of labels. A program
P is a finite subset of L × I such as ∀(l, i) ∈ P, (l, i′) ∈ P ↔ i = i′. We denote V the set
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of variables of P . If we consider the program in Figure 2a, I is the subset of instructions of
the 32 bits PowerPC instruction set used by the program, L is the set of memory addresses
aligned on 4 bytes boundaries in the range [3000, 3034] and V is the set of memory locations
explicitly or implicitly used (i.e. {r1, r3, r8, r9, r10, lr, ctr}).

A basic block is a sequence of instructions of P with one entry point, its first instruction,
and one exit point, its last instruction. A basic block is maximal if it is not contained in any
other basic block. Let GP = 〈VP , EP , uGP

, vGP
〉 where VP is the finite set of maximal basic

blocks of P and EP ⊂ VP × VP is such that there is an edge between v1 ∈ VP and v2 ∈ VP if
and only if the first instruction of v2 can be executed immediately after the last instruction
of v1 in P . uGP

∈ VP and vGP
∈ VP are respectively the entry block and the exit block of P .

Then GP is the CFG of P .

4.2 General overview
Program slicing has been introduced by Weiser [19]. Weiser defines a program slice as an
executable program that is obtained from the original program by deleting zero or more
statements, computing the same values for a given subset of variables of the program. He
claims that a slice corresponds to the mental abstractions that people make when they are
debugging a program. The original formulation of program slicing proposed by Weiser is
based on iterative solutions of data-flow equations. Ottenstein and Ottenstein [16] were
the first to redefine slicing as a reachability problem in a dependence graph representation
of a program. They use a Program Dependence Graph (PDG) [8] for static slicing of
single-procedure structured programs. Efforts have been made to extend this approach to
unstructured programs [1, 13] and multiple-procedure programs [11, 13]. More details on the
topic can be found on the survey by Tip [18].

We consider in this section a toy example to highlight the slicing method. It is a
simple program that computes iteratively the first 30 values of the Fibonacci sequence
(Fn = Fn−1 + Fn−2, with F0 = 1 and F1 = 1). The code targets the PowerPC instruction
set. The program works as follow:

The _start label (Figure 2a, line 1) is the program entry point. It gets minimal startup
code that initializes the stack pointer r1 and calls the main at 3010 (Figure 2a, line 7). If
the main() function returns, it enters in an infinite loop (Figure 2a, line 5) ;
Figure 2a, lines 8 to 11 initialize the sequence. The loop is controlled by the dedicated
ctr counter register ;
Figure 2a, lines 13 to 16 are the instructions in the loop. r9 and r10 stores respectively
the current and the last value and are used to compute the next value (in r3).

A slice is computed with regards to a slice criterion C = 〈l, v〉 with l ∈ L a label and
v ⊆ V a set of variables. So, if we consider the program in Figure 2a and the slicing criterion
〈3030, {ctr}〉, i.e. the value of register ctr when the instruction pointer contains the address
3030, we obtain the slice shown in Figure 2b. Indeed, the instruction bdnz 3024 at address
3030 (Figure 2b, line 16) implicitly modifies the register ctr, ctr is set by mtctr r8 at 3018
(Figure 2b, line 10) and r8 is set by li r8,29 at 3010 (Figure 2b, line 8).

To compute a slice in binary code, we need to handle arbitrary control flows (as opposed
to control flow of structured programs) and inter-procedurality. In our use case, we must also
exclude the techniques that change the order of the instructions. Given all these constraints,
we have to use slicing techniques based on graph manipulations [13].

This approach is based on the computation of several graphs. The first one is the CFG
of the program. Figure 3a gives the CFG of fibcall-O2.elf. Then the Data Dependence
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1 00003000 <_start >:
2 3000: li r1 ,1 ;r1 <- 1
3 3004: ori r1 ,r1 ,49296 ;ri

<- r1 | 49296
4 3008: bl 3010 ;call main
5 0000300 c <loop >:
6 300c: b 300c ; branch
7 00003010 <main >:
8 3010: li r8 ,29 ;r8 <- 29
9 3014: li r10 ,1 ;r10 <- 1

10 3018: mtctr r8 ;ctr <- r8
11 301c: li r9 ,1 ;r9 <- 1
12 3020: b 3028 ; branch
13 3024: mr r9 ,r3 ;r9 <- r3
14 3028: add r3 ,r9 ,r10 ;r3

<- r9+r10
15 302c: mr r10 ,r9 ;r10 <- r9
16 3030: bdnz 3024 ;ctr --,
17 ; branch if ctr !=0
18 3034: blr ; return

(a) Dump of fibcall-O2.elf.

1 00003000 <_start >:
2 3000: -- --
3 3004: -- --
4 3008: -- --
5 0000300 c <loop >:
6 300c: -- --
7 00003010 <main >:
8 3010: li

r8 ,29
9 3014: -- --

10 3018: mtctr r8
11 301c: -- --
12 3020: -- --
13 3024: -- --
14 3028: -- --
15 302c: -- --
16 3030: bdnz

3024
17
18 3034: --

(b) Slice for C = 〈3030, {ctr}〉.

Figure 2 Dump and slice of a binary executable.

Graph (DDG) and the Control Dependence Graph (CDG) are computed from the CFG.
The DDG captures data dependencies between instructions. Its nodes are the instructions
of P . There exists an edge between two nodes of the DDG when the source node does a
reaching definition of a memory location used by the target node. The CDG captures control
dependencies between basic blocks. Its nodes are the maximal basic blocks of P . There
exists an edge between two nodes of the CDG when the source node determines whether the
target node is executed or not.

After the DDG and the CDG, the next graph is the Program Dependence Graph (PDG) [8].
It is built by merging the DDG and the CDG. Node sets of the DDG and the CDG being
disjoint (nodes are instructions in the DDG and maximal basic blocks in the CDG), the PDG
gets its consistency from special edges that represent the belonging of a set of instructions to
a basic block. In summary, the PDG captures the belonging of set of instructions to basic
blocks, data dependencies at instruction level and control dependencies at basic block level.
Figure 3b gives the PDG of fibcall-O2.elf.

If P does not contain procedure calls, or if these calls are “inlined” when the CFG is built,
it is possible to compute slices on the PDG. The slice corresponding to a given criterion is
obtained by performing a backward reachability analysis. The slice is initialized with the
slice criterion. When an instruction in the slice is the target of a data dependence edge, the
source instruction is added to the slice. When an instruction in the slice belongs to a basic
block which is the target of a control dependence edge, the last instruction of the source
basic block is added to the slice. This procedure is iterated until a fixpoint is reached.

In Figure 3b, dashed, bold and solid edges represent respectively the belonging of a
set of instructions to a block, a control dependency between two basic blocks, and a data
dependency between two instructions. Considering once again the program in Figure 2a
and the slicing criterion 〈3030, {ctr}〉, we obtain the slice shown in Figure 2b. Indeed,
the backward reachability analysis shows that the instruction at address 3030 has a data
dependency with the instruction at 3018 which has also a data dependency with the instruction
at 3010 and the basic block BB2 has no control dependency apart from the entry point.

Slicing the PDG is suboptimal for programs with procedure calls [13]. To overcome this
limitation, inter-procedural slicing techniques use a fourth graph, the System Dependence
Graph (SDG) [11]. To build the SDG, in a first step, the PDG of each procedure must be
built. In a second step, these PDGs are connected with call, parameter-in and parameter-out
edges to account for procedure calls and parameters passing. The slicing algorithm on the
SDG is based on two backwards analyses similar to the one used for the PDG. The first
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BB0

BB1BB4

BB2

BB5

BB3

(a) CFG of fibcall-O2.elf.

BB0 BB1 BB4 BB2 BB5

BB3

3000
3004
3008

300c

3024 3028
302c
3030

3010
3014
3018
301c
3020

3034

(b) Simplified PDG of fibcall-O2.elf.

Figure 3 Dump and slice of a binary executable.

backward analysis does not follow parameters-out edges. It only adds to the slice instructions
up to the entry point. The second backward analysis does not follow call and parameter-in
edges. It adds to the slice all instructions down to the procedures output parameters. As a
result, unwanted dependencies to output parameters from called procedures are not added
to the slice.

4.3 Abstraction of programs for WCET estimation.
Program slicing has many use cases in software engineering. In this paper we want to compute
the set of memory locations that impact the WCET of a program. To determine this set of
locations we have to determine a suitable slicing criterion. This criterion is the set of pairs
〈l, v〉 such that l is the label of a conditional branch instruction and v is the set of memory
locations read by this instruction. If we consider the program in Figure 2a, it has only one
conditional branch instruction: bdnz 3024 at address 3030. The branch is taken if the count
register ctr is not zero. So, to compute the locations that should be part of the state of the
model we have to compute the slice for the criteria {〈3030, {ctr}〉}. The set of variables used
either explicitly or implicitly by the initial program is {r1, r3, r8, r9, r10, lr, ctr}. The subset
of variables used in the slice is {r8, ctr} (see Figure 2b). Only these two registers have to be
included in the state of the model.

Let us underline that computing this slice gives us extra informations. For each register
in the slice, we also know which instructions impact its value at a given execution point. In
the general case, not all the instructions using a register in the slice are in the slice. Such
instructions must be processed as instructions using registers not in the slice. Their output
must not be written to the state. This allows to further reduce the number of states to
explore.

5 Implementation

Architecture

Our tool, Best for Binary Executable Slicing Tool, computes slices on binary executable
files. Its architecture is illustrated in Figure 4.

The decoding and interpretation of the binary files relies on a library generated by the
Harmless toolchain [12]. Harmless is an Hardware Architecture Description Language
that is used to model a whole processor. In this study, we are only interested in the model
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Figure 4 Structure of the tool.

of the instruction set. The Harmless compiler is primarily designed to generate either
functional or cycle accurate simulators. We re-targeted it to extract static information of the
instruction set. The library generated from Harmless can read a binary file (.elf format
in our case) and give information about each instruction such as:

the instruction mnemonic;
the memory locations that are read by the instruction;
the memory locations that are written by the instruction;
is the instruction a branch instruction? is it a conditional branch? what is its target (if it
is statically defined)?

In this study we have used only the PowerPC instruction set, but Best is not architecture-
dependent, thanks to this library.

Using this library, Best does a CFG reconstruction from a PowerPC binary executable
file. Then it applies program slicing to compute the set of memory locations that should be
in the model. The main output is an abstract model of the program that can be used to solve
the WCET estimation problem with Uppaal. For validation and visualization purposes,
the different models built along the computation can be exported as graphs or as timed
automata in the Uppaal format [14].

Best is distributed in open-source1. To the best of our knowledge, there is no established
program slicing tool for non-x86 binary code, especially in open-source. Best aims to fill this
gap. It is implemented in C++. Apart from Harmless it relies on the graph manipulation
library Lemon [7].

Limitations and Future work

The current version of Best has different limitations that we want to break in the near future.
First, the computation of the abstraction is limited to the register file. The other levels of
memory (stack words, all other parts of the volatile memory and non-volatile memory) are
automatically excluded from the model. It will be straightforward to take into account the
other levels by extending the technique used for the register file. The first step will be the
analysis of the stack frame. Being able to track data dependencies between memory and
registers through stack loads and stores will produce a more accurate model of the binary
executable, and so more accurate WCET estimations.

The second limitation is the limited support for programs with multiple procedures. The
slice is currently computed on the PDG. It is not much of hard work to build the SDG and

1 Available at https://github.com/TrampolineRTOS/BEST.

WCET 2016

https://github.com/TrampolineRTOS/BEST


7:8 BEST: a Binary Executable Slicing Tool

Table 1 Ratio of registers (resp. instructions) in slice compared to the unsliced program.

Compiler Optim. Registers in slice Instructions in slice
Avg. Min Max. Std. dev. Avg. Min Max. Std. dev.

Gcc

-O0 61.8% 43.7% 78.9% 8.8% 21.6% 1.7% 43.2% 8.9%
-O1 64.6% 19.1% 87.5% 13.6% 36.7% 3.24% 67.9% 10.2%
-O2 64.3% 13.3% 92.9% 20.3% 37.8% 2.9% 72.5% 15.7%
-O3 62.8% 9% 96.4% 21.7% 34.7% 0.4% 72.2% 18%

Cosmic -no 40.5% 8.6% 86.7% 16.6% 34% 1.9% 60.2% 15.2%
default 37% 2.8% 66.7% 15.8% 37% 2.8% 66.7% 15.8%

adapt the slicing algorithm because Best has been designed on structures and algorithms
intended to produce inter-procedural slices. The main benefit of inter-procedural slicing
resides on a more accurate slicing of procedure parameters i.e. even smaller slices.

6 Experimental results

We have conducted experiments to measure the reduction of the set of memory locations
that must be included in the model. Given the current restriction of Best, we have focused
on the registers. To do so, Best outputs the following information for each program:

the number of registers used either explicitly or implicitly and the number of instructions
in the original program ;
the number of registers used either explicitly or implicitly and the number of instructions
in the sliced program (using the slicing criterion defined in Section 4).

We used the Mälardalen WCET benchmarks [9] to generate the programs. We had to
exclude certain programs to account for the current limitation of our tool: program containing
floating point arithmetic or switch-case statements and recursive programs.

We used the library generated by the Harmless compiler from a description of a PowerPC
e200z4 core based on the 32 bits PowerPC instruction set. This architecture includes 32
general purpose registers (r0, r1, . . . , r31) and 5 dedicated registers (cr, xer, lr, ctr, pc).
We used two different compilers: Gcc 5.3.1 and Cosmic C 4.3.7. For a given compiler, the
generated binary may be very different according to the optimizations. For instance without
optimization Gcc generates code where local variables are loaded from and stored to the
stack frame each time they are used, whereas in higher optimization levels local variables are
allocated in registers. Thus we created different program versions for each optimization level
offered by each compiler (4 levels for Gcc and 2 levels for Cosmic C).

All in all, we created 6 versions of each of the 16 Mälardalen benchmarks fitting our
constraints and we ran Best on these 96 programs. Due to space limitations the detailed
results are provided online2. The results are summarized in Table 1 and 2. Table 1 gives
the ratio of registers and instructions in the slice compared to the original program. Table 2
gives the number of registers in the slice. It is not meaningful to compare our results with
pior work [4] because we consider a different instruction set and different compilers (or at
least compiler version for Gcc). We do not comment either on the execution time of Best
that were below one second in every case.

2 Available at https://github.com/TrampolineRTOS/BEST.

https://github.com/TrampolineRTOS/BEST
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Table 2 Average number of registers in slice.

Gcc Cosmic
-O0 -O1 -O2 -O3 -no default
8.8 13 11.8 12.1 11.9 12

These results confirm that slicing is an effective abstraction technique for our use case.
It allows a significant reduction of the number of variables that should be included in the
model (reduction of the dimension of the state space) as well as the number of instructions
the output of which should be taken into account (reduction of the number of states to
explore). As expected, the best results are obtained for programs with very simple control
flow, namely fdct.c and jfdctint.c, whereas the worst results are obtained for programs
with nested control statements and procedure calls , namely ndes.c and adpcm.c. However,
let us underline that the structure of the source code is not always the dominant factor. For
some programs, it appears that the compiler (version and/or optimization) has more impact
on the capacity of the program slicer to abstract the binary. Example of such programs are
expint.c and fir.c.

7 Conclusion

This article describes the working principles of a tool that computes abstract models of binary
executables to be processed by a WCET estimation toolchain based on model checking. Our
tool uses program slicing to compute the set of memory locations of the program that have
an impact on the WCET of the program. The content of these memory locations is tracked
in the abstract model of the program whereas the content of the other ones is abstracted
away. A first prototype has been implemented and evaluated. The evaluation has been
performed on the Mälardalen benchmarks using two compilers for the PowerPC architecture
with varying optimization levels. On average, 41% of the registers can be abstracted. This is
a promising result.
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Abstract
Static analysis requires the full knowledge of the overall program structure. The structure of a
program can be represented by a Control Flow Graph (cfg) where vertices are basic blocks (bb)
and edges represent the control flow between the bb. To construct a full cfg, all the bb as well
as all of their possible targets addresses must be found. In this paper, we present a method to
resolve dynamic branches, that identifies the target addresses of bb created due to the switch-
cases and calls on function pointers. We also implemented a slicing method to speed up the
overall analysis which makes our approach applicable on large and realistic real-time programs.
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1 Introduction

The verification of critical real-time system is utterly important to ensure safety and to avoid
catastrophic failures. An aspect of this verification is related to check the schedulability of
the real-time programs, which requires computing the Worst Case Execution Time (wcet).
To be precise, the wcet computation needs to be performed at machine code level to cope
with all details of the work of the underlying microprocessor and memory system.

Implicit Path Enumeration Technique (ipet), one of the most effective approach to
compute the wcet by static analysis, consists in three phases: (a) the execution path
analysis, (b) the block timing analysis, and (c) the wcet estimation as a maximisation of
an object function modelled as an Integer Linear Programming system (ilp). Usually the
execution paths are represented synthetically by a Control Flow Graph (cfg) where vertices
are basic blocks (bb)1 and edges represent the control flow between the bb. This phase is
crucial because, if some paths are missing, the obtained wcet will not be sound.

Yet, working at the machine-code level means that the analyser has to retrieve the control
flow from semantically-poor instructions, as the results of translating the rich high-level
language structures and of the optimisations performed by the compiler to speed up the
program. The cfg may be viewed as a kind of canonical representation of the execution
path independent of the high-level language. Yet, some paths are harder to recover. Usually,

∗ This work is supported by the french research foundation (ANR) as part of the W-SEPT project
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1 A BB is a sequence of instructions which are only started at the first instruction and which accepts only
the last instruction as a control instruction.
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the execution paths are determined by executing control instructions (such as branches) that
can be executed conditionally or unconditionally. Different execution paths are the result
from control instructions that modify the program counter of the microprocessor to execute
one part of the code (e.g. the branch is taken) or another. Most of these instructions are
static: the target address is obtained as a combination of the instruction program counter
and of the literal operand (e.g. a constant) found in the instruction word (therefore known
at analysis time). Such control instructions are used to translate selection or loop structures.

In the opposite, the target addresses of some high-level structures are results of complex
computations based (a) on the current state of the program or/and (b) on the data stored in
memory. For example, the C language supports the concept of function pointer meaning
that the control flow depends on the data flow of the program and the program points that
set this pointer. Another construct of the C language, the switch-case statement, may be
translated and optimized as a branch whose possible target addresses are stored in a look-up
table: an index is computed from the case value and used to get the corresponding index of
the table. We call this type of control instruction, dynamic: to be analysed, they require
data-flow information that is usually obtained, in turn, from an analysis of the cfg.

The contributions and the organisation of the paper

This paper proposes a new approach to determine the possible target(s) of dynamic control-
flow instructions based on the combination of different types of analyses, the Circular-Linear
Progression (clp) [5, 11] and the k-set analyses. We are also introducing LightSlicing, a
policy of program slicing which does not require address analysis for both simplicity and
better performances. LightSlicing works on the machine code and (1) is relatively cheap in
computation time and (2) remains precise enough to slice out the program parts that are not
involved in the calculation of the control flow targets. Hence, the reduction of the analysis
time for both small benchmarks and large realistic programs. We believe our solution is
well-adapted to industrial applications.

The remaining of the article is organized as follows: in Section 2 we look into the problem
of dynamic branches and expose our combined analyses approach. Section 3 shows our
approach for the fast program slicing to speed-up the analysis. The experimentation and the
related works are presented, respectively, in Section 4 and 5. Finally, Section 6 concludes the
paper and also proposes possible extensions of our approach.

2 Dynamic Branch Resolution

This section presents the combined analysis used to resolve the targets of dynamic branch.

2.1 Path Analysis

The path analysis aims to provide a representation of the execution paths of the program.
In this paper, we focus on the cfg representation, a graph G = (V,E, ε) where V is the set
of bb, the set E = V × V is the set of edges, and the vertex ε ∈ V is the entry of the graph.
G is built from the binary representation of the program by following the instruction flow
from known entry points that may be the starting point of the program or function entries
provided in the symbol table of the binary file. Usually, it is not feasible to sequentially
decode the code segments because (a) they may also contains data and (b) some instruction
sets have variable-size instruction words.
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Algorithm 1 cfg Building.
1: V ← {ε};E ← ∅;wl← {(ε, i0)}
2: while wl 6= ∅ do
3: (v, i)← pop(wl)
4: B ← [i]
5: while ¬ is_control(i) do . if the current instruction is not a control instruction
6: i← next(i);B ← B @ [i] . append the instruction to the BB
7: end while
8: if B /∈ V then
9: V ← V ∪ {B} . collect the current BB
10: end if
11: E ← E ∪ {(v,B)};wl← wl ∪ {(B, target(i))} . creating the edges between BBs
12: if is_conditional(i) then . for conditional instructions, such as BEQ
13: wl← wl ∪ {(B,next(i)} . the next instruction will be used to start a new BB
14: end if
15: end while

Algorithm 1 gives an overview of how to build a cfg. In brief, the sets V and E are
built incrementally from the synthetic initial bb, ε and from the initial instruction i0. A bb
is obtained from continuously collecting the current instruction i until reaching a control
instruction. Depending on the nature of this instruction (conditional or not), the next
instruction and/or the target instruction of the branch are added to the working list wl.
When wl is empty, all paths have been traversed and the cfg is complete.

Functions is_control, is_conditional, and next are instruction-set dependent but can
be easily derived from the instruction words, which also applies for the targets of static
branches. However, the target may also be resulted from a computation involving the state
of the program: such an instruction is called a dynamic branch. Having dynamic branches
leads to an incomplete cfg. To compute its possible targets, an analysis of the possible
program state is required.

2.2 The Flow of the Dynamic Branching Analysis
Let’s take the example of Fig 1 that implements a switch-case statement. The actual
computation of the branch address is performed by instructions at addresses 0x2e260 to
0x2e268. r3 is loaded from a byte in memory; if it is not greater than 3 (comparison at
0x2e264), it is used to compute the address pc + r3 × 4 that points to an entry of the
subsequent table that contains the actual targets of the branch. Hence, (a) the calculation of
the possible targets of dynamic control instruction 0x2e268 is feasible and (b) we need to use
a value analysis to evaluate its components. Another outcome of this example is that we
need to apply value analyses to partial cfg and we need also to repeat the analysis until
we get the whole cfg: on the first path, the cfg until the dynamic control instruction is
obtained and values for pc and r3 are estimated and enable the calculation of dynamic control
instruction targets; in the second path, the cfg is extended and, possibly, new dynamic
control instruction are discovered and so on.

In our approach, the flow to identify the targets of dynamic branches consists of the
following steps: (1) First we perform a clp analysis [5, 11] to obtain the possible values
of the registers and the memory addresses. The range of the represented values is over-
approximated, i.e. this includes both of all possible values (values which may present during

WCET 2016
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Addrs Content Assembly (ARM)
1 2e250 e59f2050 ldr r2 , [pc , #80] ; load for r2
2 2e254 e51b3008 ldr r3 , [fp , #-8] ; load for r3
3 2e258 e0823003 add r2 , r3 , r2 ; r2 used by some cases
4 2e25c e59f3264 ldr r3 , [pc , #612]
5 2e260 e5d33000 ldrb r3 , [r3]
6 2e264 e3530003 cmp r3 , #3
7 2e268 979 ff103 ldrls pc , [pc , r3 , lsl #2]
8 2e26c ea000075 b 2e448 ; address of the default case
9 2e270 0002 e280 ; target address for the 1st case
10 2e274 0002 e2dc ; target address for the 2nd case
11 2e278 0002 e364 ; target address for the 3rd case
12 2e27c 0002 e3c4 ; target address for the 4th case
13 2e280 e59f3254 ldr r3 , [pc , #596] ; the first case

Figure 1 Example of the switch code in ARM’s assembly.

the program execution) and spurious values (which are included due to the analysis because of
the performed abstraction). (2) A k-set analysis is then applied to gather the concrete values
of the registers and the memory addresses. (3) The dynamic branch resolution is carried
out to find the targets of the control instructions. If new targets of a control instruction are
found, the cfg of the program will be updated with newly added code segments and the
analysis will restart from the step (1). The analysis terminates once reached a fix-point such
that no more new targets are added.

2.3 CLP analysis and its drawbacks

The clp analysis makes use of abstract interpretation [6] with the trade-off of (1) having the
better performance, especially when performing analysis on loops, and (2) the accuracies of
the analysis, for example the strategy for performing widening.

A range of integers can be represented in the format of clp, and we call the represented
range a clp value. To differentiate, we use sub-values to call the integers within a clp value.
Each clp value is a triple (b, δ,m) representing set {b+ δi | 0 ≤ i ≤ m}: b is the starting
integer, δ the amount of difference between integers and m the number of integers within a
clp representation. For example, to represent a set of integers 2, 4, 10 in clp, we will have
base = 2, delta = 2, and multiple = 5, such that the clp value will cover the set 2, 4, 6, 8,
10. Therefore, one may consider that in the domain of clp, the set of sub-values is presented
in an over-sampling manner, i.e. in order to include all the possible (in this case 2, 4, and
10) values, some spurious values (6 and 8 here) are included.

The over-sampling behaviour of clp is for the sake of soundness but this can also bring
unwanted behaviours in the analysis. We use Figure 1 to demonstrate this. Figure 1 contains
the ARM instructions typically generated from a switch case and perform as the follows: (1)
storing the result of some calculation to the register r2 (lines 1 to 3), which will be used
later; (2) lines 4 and 5 provides the switch-index number used to calculate the target address
of the switch-cases; (3) the values of the switch-index, infers as the number of the possible
targets, are limited by line 6 so that line 7 will only execute if the switch-index falls in the
desired range; and (4) if none of the case is chosen, the default case falls through (line 8). By
looking at the lines 6 and 7, we know that the index (stored in r3) falls between the range 0
to 3. The target addresses to load is calculated as pc+ r3 × 4, which are stored between the
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address 0x2e270 to 0x2e27c (lines 9 to 12). The clp representation of these target addresses
is thereby of base = 0x2e280, delta = 0x4, and multiple = 0x51. This indicates that there
could be 82 (number of the multiple plus one) potential targets which is a huge difference
from the actual amount of the possible targets (which is 4).

2.4 k-set analysis
To overcome the drawback of clp abstraction, we use a k-set analysis [4]. In contrast with
the clp, the values in the k-set analysis are in the form of sets which size is bound to k
values. If we get a set bigger than k, it is approximated to > (any possible value): this
property avoids too long or endless analysis looping to reach a fix-point. The k-set analysis
is only slightly better than a constant propagation because it usually does not cope well with
most of variable behaviour (often linear): the analysis time would become excessively large.
Yet, the branch target addresses are not linear and to avoid the over-sampling problem, they
need to be stored as an explicit set and k-set is a good candidate to represent them.

Let Ŝ ⊆ 2N to be the set of k-set values that abstracts concrete value as set over N. The
abstraction, α : N→ Ŝ is quite simple: ∀n ∈ N, α(n) = { n }. It is easy to extend a function
f : N → N to f̂ : Ŝ → Ŝ by just applying the concrete function f to each element of the
input set:

∀ a ∈ Ŝ, f̂(a) = { f(e) | e ∈ a} (1)

Likely, an abstraction of functions with an arity bigger than 1 may be built by a
Cartesian product. Yet, if the size of the resulting set is bigger than k, the resulting value is
approximated to > (the abstraction of any possible value). In the static analysis, in order to
reduce the number of paths to explore, we often use a join operator t to combine together
values when several paths of the cfg join. Its definition for k-set is given in Eq. 2: the set
union ∪ is mainly used while the resulting set size is lower or equal to k. Otherwise, the
result is >.

∀ a, b ∈ S, a t b =
{
> if |a ∪ b| > k

a ∪ b else
(2)

∀ a, b ∈ S, a ∇ b =
{
a if a = b

> else
(3)

Finally, to speed up the convergence of paths containing loops, a widening operator
∇ : Ŝ × Ŝ → Ŝ is useful. As the usual k-set implementation exhibits very poor performances,
because of the number of generated values in a loop context, we use a stringent implementation
of ∇ in Eq. 3: if both operands are the same the result is this value, else the > value is
returned. This definition works well with purpose of our k-set analysis: the code addresses
are rarely, maybe never, the result of a computation and even less the result of a loop
computation. They are either read from the memory or computed from the pc register.
Therefore, we want to get rid as soon as possible of values which are not instruction addresses.

However, this widening operator quickly leads to a lot of values approximated to >.
Usually, this is not an issue as we are not interested by most of computed data computations
except when this value is the address handled by a store instruction: in this case, a > address
would touch the whole memory. This means that all information collected by the analysis
about the memory is scratched and lost. In turn, this would negatively impact the remaining
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of the analysis. This is why the k-set analysis is useless alone: it is combined with another
more precise value analysis (like clp) such that, when an important value is required (address
to load from, address to store to) and approximated by > in k-set, the matching clp value
is used instead and this usually leads to a much more precise analysed value.

Applying this method to the example of Fig. 1, the instruction at 0x2e260 may produce,
for register r3, the > value for k-sets and (0, 1, 255) for clp. If the condition ls of the
comparison at 0x2e264 holds, r3 becomes {0, 1, 2, 3} for k-sets thanks to the clp value
(0, 1, 3). From this, the address accessed at instruction 0x2e268 is 0x2e270 + {0, 1, 2, 3} × 4
and results in {0x2e270, 0x2e274, 0x2e278, 0x2e26c}. These are the exact set of addresses
stored in the table used to translate the switch-case obtained by loading the words at the
addresses provided by the k-set value.

3 Dynamic Branch and Real-Time Application

The approach presented in the previous section is effective but expensive to apply to a
complete program. Therefore, we expose here a slicing method to speed up these analyses.

3.1 Analysis of the Whole Program
The functionality of real-time systems are often divided into tasks. The execution of the tasks
are scheduled statically in the event loop or dynamically with the help of a real-time operating
system. A task can be stand-alone, i.e. performing its functionality without depending on
the outcome of the other tasks. On the other hand, a task might require the results of the
others, through task communications [12]. The communication between the tasks relies on
mechanisms such as globally shared variables and pointers, where a task writes to a variable
and it is read by other tasks.

When analysing solely a task which reads from a globally shared variable, there will be
no assumption made to the value of such variable, i.e. the writes to the variable are outside
of the analysed task. Also, as stated in [7], to have a safe analysis (where all the possibilities
are considered) of the function pointers, it is required to perform the analysis on the program
as a whole. Indeed, a function pointer called in one task may be used by another task.

3.2 LightSlicing – a Smart and Effective Slicing Approach
To have safe results, tasks communicating with each other shall be analysed together. It
is obvious to see that the complexity of the analysis grows as the number of tasks grows.
Even though the amount of instructions to analyse grows, it can also be seen that some
codes/instructions do not have influence over the results of the analysis. In this case, the
technique program slicing [14] can be applied to remove the uninteresting codes. For example,
in Figure 1, the lines 1 to 3 (as well as lines 8 to 13) do not affect the outcome of the
branching, and they can be sliced away.

The problem now is that slicing a program is a costly operation in analysis time requiring
data flow analyses and several graph constructions and are even more time-consuming
operations applied to machine language. To be effective, the slicing time must not exceeds
the gain in analysis time of the dynamic control instructions. It already exists an approach
to perform fast slicing on machine code [10]. However, while the slicing is performed, the
working elements (registers and memory locations of interest) continue to grow even if their
content is no more relevant, which leads to keep unnecessary parts of the program. It is not
efficient enough to significantly reduce the program cfg size.
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Algorithm 2 LightSlicing algorithm.
1: K ← I

2: wl← {(v, USE(i)) / i ∈ I ∧ i ∈ v ∧ v ∈ V } . consider bb containing instructions of I
3: while wl 6= ∅ do
4: (v, we)← pop(wl)
5: WE(v)← we

6: for all i ∈ reverse(v) do . examine instructions of bb in reverse order
7: if DEF (i) ∩ we 6= ∅ then . if the instruction define a useful register
8: K ← K ∪ {i} . the instruction is kept
9: we← we \ DEF (i) ∪ USE(i) . its used registers are now interesting
10: end if . yet its defined registers are no more interesting
11: if i = FIRST_INST (v) then . when reaching the first instruction
12: wl← wl ∪ {(w,we ∪WE(w)) | w ∈ pred(v) ∧ we \WE(w) 6= ∅}
13: end if . the predecessors are added to wl if the fixed-point is not reached
14: end for
15: end while

Hence, we introduce our slicing approach on binary code: the LightSlicing. It adapts the
conventional DEF and USE approach used to build DU- or UD-chains described in [8]. The
DEF and the USE give up a set of elements (i.e. registers and/or memory addresses) that
an instruction writes a value to and reads a value from, respectively. Conventional program
slicing based on this will start with a set of elements of interest, which we call working
elements, or we. During the process, the instructions inst that write to any of these elements,
donated by using the DEF(inst), will be kept. Then, the redefined element(s) are removed
from the working elements; while the required elements, i.e. the elements to read which are
obtained by using the USE(inst), are added to the working element. In general, identifying
the registers in the DEF and USE is straight-forward. In contrast, obtaining the memory
addresses can be complicated. For example, a memory address to read (or write) may be
stored in a register which value is decided at run-time. Therefore, the help of address analysis
is required. For a large program, to have a coherent result of the address analysis, the whole
program must be taken into account, which may lead to an expensive computation time. To
achieve better performance, LightSlicing does not require the address analysis: the whole
memory is considered as a single register: we loose in precision but hope to gain a lot in
speed. LightSlicing is applied just before each iteration of the dynamic branching resolution
to avoid unnecessary computations and hence the speed-up. The details of LightSlicing is
shown in Algorithm 2: the result is K, the set of instructions to keep while the initial set of
interesting instructions is I.

4 Experiments and Findings

We carried out the experiments over two sets of benchmarks: the Mälardalen benchmarks
[9], and the realistic industrial Engine Management System from Continental Corporation
(which consists of 7 tasks, 184 KLOC). The experiments were carried out on Intel i7-4810MQ
2.8 GHz with 32 GB of RAMs. Because we are mainly interested in the detection of the
unknown target addresses, due to the switch-cases and calls on function pointers, we only
experimented with cover, duff, and lcdnum from the Mälardalen benchmarks. The results of
the analysis times and speed-ups (due to applying LightSlicing) are shown in the Figure 2.
Since the examples from the Malardalen benchmarks are much smaller than the industrial
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case, we multiply the analysis time with 1000 to make them visible in Figure 2. Because we
are interested in the impacts due to the application of the slicing, we performed the analyses
for three different cases: (a) the analysis without program slicing, (b) applying program
slicing with address analysis, and (c) the analysis with LightSlicing. We are able to resolve
all the dynamic branches of the Mälardalen benchmarks, but 92% for the industrial example.
It is mainly due to that the slicing of the industrial application makes irreducible loops that
are not completely handled by OTAWA framework, hence we can not perform the analysis
on the whole program but on its individual tasks.

Figure 2 shows the distributions of time taken by each analysis. For the analysis without
slicing, we use the real execution time (in micro-seconds) for the vertical axis. To compare
the performance for the analyses that take advantage of the slicing, we use the speed-up as
the vertical axis. The speed-up is calculated by Equations 4. When the value of the speed-up
is less than one, this means that the analysis runs slower than the non-slicing approach: we
use red lines in the figure to represent this boundary.

It shows that the analysing times decrease drastically, with the average of 7.30 times, and
the maximum of 33.37 times of speed-up, when applying LightSlicing. From (a) we can see
that the clp analysis takes the majority of the analysis times because it is more complex
than the k-set analysis. Since the address analysis used in (b) is implemented within the
clp analysis, which leads the clp analysis to take more proportion in the analysis. Because
the size of the cfgs are reduced, the time spent on k-set analysis is also reduced. We can
also observe that the slicing does not impact overall performance heavily. In (c), both of the
clp and k-set analyses are performed upon the reduced cfgs, as the result from applying
LightSlicing and hence the reduction of the analysis time. LightSlicing takes more proportion
in the analysis because it works on the full cfgs, however it reduces the analysis by large
amounts for all cases.

It also shows that having slicing with address analysis may have negative impact on
the performance for smaller examples, whose speed-ups are less than one (in the grey-out
area). This is because the overhead from the address analysis can not be compensated by
the time saved due to slicing. We avoid the address analysis in LightSlicing and obtained
the improvements up to 33.37 times faster. LightSlicing works particularly well on larger
codes which justifies its use in realistic and real-time applications.

Speedup = Tnon-sliced
Tsliced

(4)

5 Related Works

Building cfgs from binaries is a recurrent issue for static analysis of binaries, for making
smart debugger or for reverse-engineering programs [15]. Theiling, in [13], proposes a multi-
instruction set generic framework to extract cfgs from binaries. He identifies the issues in
the determination of dynamic branches but no solution is provided.

Bardin et al. in [4] use variable-precision k-sets to compute the targets of dynamic branch
instructions. The k determination is variable for each handled value and adjusted according
to the need of precision, focused in this case, on the set of possible targets of a branch.
The experimentation on an industrial application (21 kloc of C) exhibits relatively long
computation times (in tens of minutes). Moreover, the authors do not address the problem
of memory loss due to imprecise k-set values.

In [3, 1, 2], Balakrishnan and Reps present a complete method to perform data flow
analysis, resolve dynamic branches and extend the cfg in an incremental way. The approach
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Figure 2 Execution comparisons of the dynamic branching analyses.

is quite integrated and therefore relatively costly in analysis time. Yet, they use, as abstraction
of values, a form close to clp and hence suffers from the over-sampling problem.

In a recent article [7], Holsti et al. experiments and compares several common value
analyses (including clp) to resolve the target of dynamic control instructions. They identify
several shortcomings in these classic value analyses (particularly the over-sampling problem
of clp) and the requirement to analyse the whole application for function pointers resolution
inside tasks of a real-time system. None of the experimented analyses overtakes the others
but their limitations are highlighted.

6 Conclusion

In this paper, we have presented an approach to resolve dynamic control instructions. The
approach is based on a usual value analysis (clp in this case but this could be another value
analysis) used to help the k-set analysis. The k-set analysis enables us to precisely preserve
the possible target addresses of branch instructions. In the case of function pointers, it is
shown in [7] that a whole analysis of the application is needed. As this analysis may be
time-consuming, we propose a fast slicing method which works on the machine codes and
speed up the subsequent value analyses.

The experiments conducted on a subset of Mälardalen benchmarks and on a real industrial
application shows good but not perfect results. The main cause of unresolved dynamic
branches is the precision of the auxiliary value analysis (clp): in future works, we plan either
to improve our clp analysis, or to replace it with a better value analysis, or to combine
together several value analyses providing different aspects of the program values.

Then, although we have achieved very good analysis time, particularly on the real
industrial application, it remains some room for improvement: at each step of the analysis,
clp and k-set analyses are wholly re-computed while only a small part of the cfg is changed.
A good effect of Abstract Interpretation based analyses is that the detailed behaviors of each
instruction/bb are simplified and abstract states are used to present the effects constituted
by each part of the cfg. The changes in the abstract states propagate throughout the cfg

WCET 2016
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and new paths of propagation could be formed according to the evolution of the abstract
states. If the propagation of new paths does not contribute a lot of time to the overall
analysis, we expect substantial speed-ups from the incremental calculation of the clp and
the k-set analyses for the calculation of dynamic branches targets.
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Abstract
Cache memories are one of the hardware resources with higher potential to reduce worst-case
execution time (WCET) costs for software programs with tight real-time constraints. Yet, the
complexity of cache analysis has caused a large fraction of real-time systems industry to avoid
using them, especially in the automotive sector. For measurement-based timing analysis (MBTA)
– the dominant technique in domains such as automotive – cache challenges the definition of test
scenarios stressful enough to produce (cache) layouts that causing high contention. In this paper,
we present our experience in enabling the use of caches for a real automotive application running
on an AURIX multiprocessor, using software randomization and measurement-based probabilistic
timing analysis (MBPTA). Our results show that software randomization successfully exposes –
in the experiments performed for timing analysis – cache related variability, in a manner that
can be effectively captured by MBPTA.
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1 Introduction

Despite the complexity added by caches to timing analysis [11], their potential benefits in
the reduction of WCET estimates have motivated their analysis for decades [27]. In terms of
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performance, it is well known that the program memory layout, i.e. the addresses in which
the program’s code and data are located, determines the program’s cache layout, i.e. the
cache sets to which the program’s data and code are mapped. For a given program, the
execution time variability under different cache layouts can be significant, ultimately affecting
processor performance [22][25][23]. This occurs because both even small variations in the
order in which the object files are linked together [25] and in other elements of the memory
layout (e.g. environmental variables) may significantly affect execution time. This variability
in execution time complicates timing analysis significantly. In confirmation of the difficulties
that caches bring into timing analysis, the state of the art chips for the automotive market
typically include large scratchpads (32KB for code and 120KB for data in our target platform)
and relatively smaller caches (16KB for code and 8KB for data in our target platform),
possibly disabled by default. However, in the general case, transparently-managed caches
offer a more flexible and efficient hardware acceleration mechanism than user-controlled
scratchpad. The computational power required to support the user demands for increasingly
complex functionality suggests that in the long term, scratchpads and caches will coexist
in embedded real-time systems. It therefore stands to reason that cache-related variability
needs be characterized and analysed.

Measurement-based timing analysis (MBTA) methods are widely used in application
domains such as automotive [27]1. MBTA application comprises the analysis phase in which
verification of the timing behaviour is performed and the operation phase in which the system
is deployed in the actual operational environment. MBTA aims at estimating a WCET
estimate that holds during operation with execution-time measurements taken at analysis
time. In the context of MBTA, the challenge of using caches lies on providing evidence that,
in the measurements runs, the cache layouts that lead to high execution times are properly
factored in when computing the WCET estimates. However, in general, it is hard for the
user to design experiments in which bad (worst) cache layouts are enforced. This reduces
the confidence on the WCET estimates obtained with MBTA required for timing verification
according to the domain-specific safety standards, resulting in the cache not being fully
embraced by the real-time industry.

Performing an exhaustive exploration of the space of potential cache layouts is not
only practically difficult (assuming full control of hardware and software states) but also
computationally infeasible in the general case. Cache randomization techniques [14][18]
may help in this respect by ensuring that a new random cache layout is exercised in every
program run. As a result, the search space of cache layouts is transparently (and randomly)
explored by performing additional runs of the program at analysis time. This, in turn, allows
deriving a probabilistic characterization of the impact of changes in the cache layout on the
execution time of a program. Furthermore, such probabilistic characterization facilitates the
application of Measurement-based Probabilistic Timing Analysis (MBPTA) [9, 1] in that it
probabilistically guarantees that those cache layouts leading to higher execution times have
been captured at analysis time.

Two main flavours of cache randomization exist: hardware randomization employs time-
randomized caches [13], featuring random placement and replacement policies; software
randomization [18] instead randomizes the memory layout of the program’s data and code

1 While the scientific literature extends on trade-offs between static and measurement-based approaches [3],
industrial practitioners take a pragmatic view to when to use either, which considers cost-effectiveness in
achieving required evidence. This paper contributes how to increase confidence on measurement-based
approaches – massively used in automotive – in the presence of caches.
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across runs. In this paper we present our experience with applying MBPTA and software-
based cache randomization to probabilistically characterize and analyse the impact of code
and data layout of an Automotive Cruise Control System (ACCS) running on an AURIX
TC277 processor board [26]. In this work is we do not provide an analysis method for the
TC277, which has been designed to be with determinism in mind. Nor we make a comparison
between MBPTA and static timing analysis techniques, which has been already done [3].
Instead, in this paper we demonstrate that the impact of cache layout on execution time
variability is relevant even on deterministic architectures, showing how this variability can
be effectively analysed and characterized with randomization and MBPTA.

2 Background and Problem Statement

In the presence of caches, the memory layout of a program impacts the pattern of hits and
misses – and hence the timing behaviour – of individual program runs [7]. Even small changes
in their memory layout may cause significant jitter in the observed timing behaviour [19].
The memory layout is subject to small – many times transparent-to-the-user – changes (e.g.,
compiler flags or even small code modifications). As a result, no deterministic timing analysis
approach can provide trustworthy timing guarantees unless either the memory layout is
guaranteed not to change or the worst-case layout is determined (and observed, in MBTA
approaches). However, freezing the memory layout is typically not possible before the very
end of the development process and the definition of a global (best-) worst-case memory
layout for an application comprising several tasks is a generally intractable problem. Needless
to say, changes to the memory layout may always occur even after deployment, as a result of
code patches and other modifications.

MBPTA [9, 1] offers a solution to probabilistically characterise the impact of memory
layout on the timing behaviour of a program while still exhibiting the appealing cost-benefit
ratio of deterministic measurement-based methods [27]. Probabilistic WCET (pWCET)
estimates computed with MBPTA differ from standard WCET figures in that they do not
consist on a single value but corresponds to a probability distribution of high execution
times. The pWCET distribution conservatively models the residual risk for one instance
of the target program to exceed a given execution time bound. Users are then interested
in those execution time bounds whose exceedance probability is considered acceptable in
relation to the integrity level of the functionality being analysed, which in turns depends on
the corresponding safety standard.

MBPTA builds on extreme value theory [17] (EVT) to model the pWCET distribution.
EVT requires that the observed execution times of the program under analysis must be
modellable with independent and identically distributed (i.i.d.) random variables. This
requirement has been shown to be achievable with the adoption of MBPTA-compliant
hardware [15]. In the absence of time-randomised hardware, by exploiting specific software
techniques. In particular, software randomisation (SWRand) approaches have been shown
to enable the analysis of deterministic caches with MBPTA [14][18]. Different software
randomization variants are presented in Section 5.

Interestingly MBPTA and EVT are not the same thing [8]: while EVT can be, in
principle, applied to time-deterministic architectures, it would still requires the user to
provide evidence that the measurements at analysis time capture the potential variability at
operation time. This same requirement, instead, is almost met by construction in MBPTA-
compliant platforms where the sources-of-variability are operated almost transparently to
the user (or with low user intervention) in a way that guarantees that the jitter they cause
at analysis matches or upperbounds that which may occur during operation [15].

WCET 2016
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Figure 1 Block Diagram of one core and the
LMU/PMU in the AURIXTC277.

Figure 2 Memory mapping configuration used
for the application.

Deterministic upperbounding. Some resources are forced to work on their worst latency
so that the analysis time measurements capture the worst timing behaviour that those
resources may have during operation [15]. This can be applied to resources with limited
impact in the WCET (e.g., some floating point operations with input-dependent latencies).
Probabilistic upperbounding. The previous approach is unaffordable for resources in
which jitter is high, since assuming every access to incur the longest latency would
cause a significant performance degradation. Instead resource timing randomization and
probabilistic reasoning is used. For instance, the reliability of the upperbounds derived by
EVT over deterministic caches lies on the user ability to design experiments that exercise
conflictive cache layouts causing high execution times. With hardware randomization [13]
or software randomization [14], the space of cache layouts is randomly sampled in every
new run. Hence, the user only cares about the number of runs to perform instead of
having to enforce specific cache layouts.

It is worth noting that MBPTA is exposed to the risk of not capturing the representat-
iveness of events with significant impact on execution time and low probability [2][24]. As
discussed in [2][20][21], it is possible to reduce the risk that any such timing event has not
being captured in the execution time measurements used by MBPTA. Further exploring this
topic is part of our future work.

3 Target AURIX Platform

For this work we use an AURIX TC277 board [26]. Although it is a three-core architecture
(TriCore), in this study we focus on a single-core configuration in order to isolate the cache
effects from contention-related jitter [29]. That is the application described in Section 4 is
executed on one core, while the other two cores remain idle. As part of our future work we
aim at combining the solutions to simultaneously handle cache jitter and contention jitter.

The AURIX platform has been designed to have as few jittery resources as possible,
following current industrial practice for timing analysis based on determinism. In particular,
all the three cores present in the platform are equipped with scratchpad memories to provide
deterministic memory accesses. As a platform designed for reliability, the AURIX TC277 is a
heterogeneous platform comprising differently implemented cores, which share a common ISA.
The first core, which is optimised for low-power execution, has a simpler microarchitecture
than the other two high-performance cores, which are equipped with high-performance
features such as caches, which create jitter. Our goal is to show how caches in an automotive
system like the one presented in this paper can be handled with randomisation and MBPTA.
Cores are connected to the ‘memory system’ through the Shared Resource Interconnect (SRI),
see Figure 1. The memory system comprises a SRAM device (LMU - Local Memory Unit)
and FLASH device (PMU - Program Memory Unit). The 32 KB SRAM shared memory can
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Figure 3 Case Study application overview.

be defined through the LMU as cacheable or uncacheable. Similarly, the PMU flash memory
can be also configured as cacheable or not, and is divided in separate units for code and data.
The application/RTOS defines statically in a linker script which application software element
(function, data etc) is mapped in which hardware resource (LMU, PMU, scratchpad, CPU
number etc) and whether accesses to it will be cached or not. Each cacheable memory access
can result in a hit or miss in cache, which creates a source of variability. This is handled in
the target AURIX platform by MBPTA and static software randomisation (SSR, see Section
5 for further details).

In the integration of SSR in our target AURIX platform we note that AURIX imple-
ments a physical memory management unit in which the memory address used in read and
write operations determines the device location in which data reside and their cacheability.
Concretely, AURIX defines 15 memory segments defined during the linker process, specifying
that objects must be located in the LMU, PMU, scratchpads or caches. In order for the
timing effects of SSR, as described in Section 5, to be effective, memory objects need to
be located in cacheable memory segments: concretely in segments 8 and 9, which allow
cached access to PMU and LMU respectively, as shown in Figure 2. For our experiments,
the application is executed on one of the high-performance cores, which features caches.

4 Automotive Cruise Control System (ACCS) Case Study

The real-world application analysed in this work implements an Automotive Cruise Control
System (ACCS), automatically generated from a Simulink model. The functional code
generated by Simulink has been merged to the architectural code obtained by model trans-
formations applied to the CONCERTO representation of the original application model2.
The application has been adapted to run on top of a customized version of ERIKA3, a
OSEK/VDX compliant Real-time Operating System, which has been modified to exhibit
time-composable timing behaviour [4]. The application includes stubbing for IOs to facilitate
the analysis and keeps iterating over a discrete and finite set of inputs. While this may limit
the realism in the observation of the application behaviour, the resulting execution scenario
is acceptable for the intent of our work.

As depicted in Figure 3, the application consists of four main tasks:
Signal Acquisition: it provides signal acknowledgement to the system. It periodically

2 CONCERTO, ARTEMIS JU, http://www.concerto-project.org/.
3 Erika Enterprise RTOS, http://erika.tuxfamily.org/drupal/.
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reads and converts the inputs (i.e., the pedals, the cruise user controls and the vehicle
speed) and provides them to the Monitor Function task;

Monitor Function: it implements a finite-state machine for the ACCS. It computes the
state transition when activated by the Signal Acquisition task;

Vehicle Speed Controller : it performs several interpolations to compute the requested
torque according to the system state and the vehicle speed. Its execution is triggered by
the Monitor Function task;

Update Status: it updates the inputs according to the current execution time.

The application has been deployed on the AURIX target according to a specific configur-
ation where the global data and the task’s private stack are allocated in the cached SRAM.
Instructions are stored in the PFlash memory and accessed from the cacheable segment.
Input and outputs were stubbed to dispense with the use of actual sensors and actuators.

5 Software Randomization

The main characteristic of cache software-randomization techniques is that they enable the
use of MBPTA on COTS, i.e. non-hardware randomized, caches. Software randomization
techniques help assessing that the jitter generated by the cache in analysis phase exposes the
jitter that the cache can generate at operation phase. To the best of our knowledge, software
randomization is the only technique that enables the analysis of COTS caches with MBPTA.
There are two main variants of software randomization: dynamic and static.

Dynamic Software Randomisation (DSR) [14][10] performs the randomisation at runtime
during the initialisation phase of the program, so that the location of objects in memory
is randomised across different executions of the program. DSR combines a compiler pass
that modifies appropriately the intermediate representation of the application’s code and a
run-time system, based on self-modifying code, that is in charge of performing the relocation
of objects in memory. The memory objects whose location is randomised are code, stack
frames and global data. However, it has been shown [18] that DSR generated code makes
intensive use of pointers and dynamic objects which complicates its use in automotive, where
the ISO26262 [12] standard requires a limited use of pointers and no use of dynamic objects
(among others). Moreover, most automotive processors and microcontrollers, including
AURIX, impose practical limitations which prevent the use of self-modifying code, such
as fetching code and read-only data directly from read-only flash devices, featuring small
dynamic memories (LMU) and strong memory protection units.

With Static Software Randomisation (SSR) [18] instead, the program code, stack and
global data are allocated to random memory positions across images, achieving the same
effect as DSR in an entirely static manner. SSR builds on the fact that memory objects
in the executable defines their placement in main memory, and therefore the cache layout.
SSR carries out all relocation operations statically at compile time. SSR generates a number
of different binaries of the same program each with different random allocation of memory
objects in the executable. By randomly selecting an executable from the pool of the generated
ones, the timing properties required for the pWCET estimates are preserved. Similarly to
DSR, SSR randomises code (functions), stack frames and global data. Interestingly SSR is
certification aware since it does not use pointers [18]. For these reasons, and because of the
practical limitations of applying DSR on AURIX, this paper focus on SSR.
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Figure 4 Cache Set distribution of the first
instruction of FUNC1 in set groups.

Figure 5 Observed Jitter across runs of
the different FUNC for each path.

6 Experimental Results

In the AURIX platform, the execution time of ACCS may be influenced by:
(i) the initial processor state when the task starts its execution,
(ii) the interference from the underlying RTOS,
(iii) the time randomisation injected by some processor resources and
(iv) the task input data.
All the above factors are taken into account in our experiments by guaranteeing that the
execution conditions enforced at analysis time over-approximate those at deployment. We
cover issue (i) by flushing the cache state before each experiment: we start collecting
measurements only after the cache warms up and execution times stabilize, which occurs
after very few iterations. With respect to factor (ii), we guarantee the OS-induced jitter to
be probabilistically analysable [4] by using a time-composable version of the ERIKA [29], as
noted in Section 3. The jitter introduced by SSR is also taken into account by MBPTA [9, 1],
thus covering issue (iii).

In terms of input-related variability (iv), the MBPTA variant we use [9, 1] can only reason
about the paths triggered by the test runs performed at analysis. Solutions to deal with path
coverage in MBPTA exist [16][28] but they are not required in this specific context as we rely
on a controlled set of input vectors, leading to the different paths. In fact, in our evaluation
we focused on two specific paths of the ACCS application, corresponding to the worst-case
and best-case observed paths for the used input vectors. We refer to those paths as Path1
and Path2 respectively and reason on pWCET estimates obtained separately for each path.

6.1 Randomisation Assessment
We validate that SSR uniformly randomises the cache layout by studying the distribution of
the first instruction of the functions under analysis, in the instruction cache sets. Since all the
functions under analysis have the same behaviour, in Figure 4 we provide this information
for only one of them, FUNC1. Given the initial address of the function, recorded across
1,000 runs, we determine the probability that the first instruction of the function is mapped
to any group of 32 sets (0–31, 32–63, . . . , 224–255). As it can be observed SSR achieves a
fairly balanced distribution across runs, with similar results obtained for other group sizes.
Note that for a higher number of runs, the probability of each group converges to 1/8=0.125,
due to the uniform random nature of SSR. This evidences that SSR randomises effectively
the cache memory layout.

Since the basic principle of SSR is that the memory layout has a direct impact on the
execution time, we also assess the effect of cache layout randomisation on the execution time.

WCET 2016
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(a) FUNC1-Path 1 (b) FUNC1-Path 2 (c) FUNC2-Path 1 (d) FUNC2-Path 2

(e) FUNC3-Path 1 (f) FUNC3-Path 2 (g) FUNC4-Path 1 (h) FUNC4-Path 2

Figure 6 pWCET curves derived with MBPTA for the paths of FUNC1-FUNC4.

Table 1 Independence and identical
distribution tests results for FUNC1-4.

Path1 Path2
Test i.d. ind. i.d. ind.

FUNC1 0.81 0.89 0.96 0.13
FUNC2 0.59 0.55 0.85 0.10
FUNC3 0.28 0.92 0.89 0.51
FUNC4 0.85 0.63 0.24 0.51

Table 2 WCET reduction between MBTA
and MBPTA for cut-off probability 10−12.

Cut-off prob. 10−12

Path1 Path2

FUNC1 9% 9%
FUNC2 5% 11%
FUNC3 15% 14%
FUNC4 11% 11%

In Figure 5 we observe the variability induced by SSR on the execution time of each observed
path of the functions under analysis. This variability (jitter) across executions of different
binaries is between 1.5–4.5%. Note that the observed variability is introduced only from the
instruction and data cache. Recall that due to the deterministic nature of AURIX executions
with the same binary and input do not have any variability. Moreover, since the execution
times are collected per path and the same input is used, the variability does not come from
the traversal of different paths. Hence, SSR can be used in order to provide insights to the
industrial user about the potential impact of memory layout in its final integrated system.
Further, from the above results we can conclude that SSR exposes cache jitter impact into
execution times, whose probabilistic properties are examined in the next Section.

6.2 Independence and Identical Distribution Tests

We execute the case study 1,000 times to collect execution times, each with a different binary
generated by SSR by using different random seeds. We flush caches and reload the executable
across executions to have the same clean environment for each execution. This setup complies
with MBPTA requirements [15]. The application of EVT – part of MBPTA – requires the
execution times (data) provided as input to be statistically i.i.d. We test independence with
the Ljung-Box test [6]. For identical distribution we use the two-sample Kolmogorov-Smirnov
test [5]. In both cases we use a 5% significance level (a typical value for this type of tests).
These means that i.i.d. is rejected only if the value for any of the tests is lower than 0.05. As
shown in Table 1 all tests are passed in all setups, hence enabling the application of EVT.
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6.3 pWCET Estimates
In Figure 6 we show pWCET estimates for every function and path. In all cases we successfully
derived a pWCET curve, whose slope changes from case to case. The Complementary
Cumulative Distribution Function (CCDF) of the observed execution times is also reported
(shorter scattered green line). The fact that the CCDF is always below the pWCET curve
confirms that in all cases our observations are tightly upperbounded by the pWCET.

In addition to the pWCET curves, we also show the maximum observed execution time, or
MOET, for each FUNC and path (vertical line on the left), and a WCET estimate computed
with MBTA using an engineering margin of 20% (vertical line on the right), commonly used
in the real-time industry (e.g. avionics), to account for systems unknowns that could not
be fully exercised during analysis such as the memory and cache layouts4. Interestingly, in
all the cases the pWCET obtained for exceedance probability 10−15, is below the estimates
computed with current practice. In particular, considering a cut-off probability of 10−12 which
has been shown to be an appropriate exceedance probability for hard-real time systems [18],
MBPTA provides between 6–17% tighter results than MBTA (see Table 2). Despite the
WCET reduction yielded by MBPTA, its most important benefit is that it provides scientific
reasoning about the pWCET upper-bound instead of an engineering margin.

6.4 Summary
Cache jitter can be arguably hard to observe with standard MBTA approach. This is so
because cache layout is (mostly) implicitly handled by the RTOS and the end user lacks
evidence that despite it makes high number of runs, the space of potentially cache layouts
that can arise at operation emerge. With software randomization instead, every new run a
random cache layout is generated, which makes that as more runs are performed the space
of potential cache layout are naturally covered. This not only provides a coverage criteria
but also simplifies the analysis of program high execution times with measurement based
probabilistic timing analysis. In the ACCS study randomization (i) exposes that variability
is reduced; and (ii) enables MBPTA. This results in a proper handling of cache jitter in
WCET estimates and further provides evidence for certification.

7 Conclusions

We presented our experience in using a software-based cache randomization techniques –
that randomizes across image runs the position in memory where program’s data and code
are located, and MBPTA for an automotive cruise-control systems on the AURIX TC277
board. We have shown that in such deterministic architecture like the AURIX, caches can
cause execution time variability. We further show that cache jitter can be handled with
randomization – that makes it naturally emerge in the runs performed at analysis time – and
probabilistic timing analysis that models the probability of high execution times.
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Abstract
Static WCET analysis of parallel programs running on shared-memory multicores suffers from
high pessimism. Instead, distributed memory platforms which communicate via messages may
be one solution for manycore systems. Message Passing Interface (MPI) is a standard for commu-
nication on these platforms. We show how its concept of collective operations can be employed
for timing analysis. The idea is that the worst-case execution time (WCET) of a parallel pro-
gram may be estimated by adding the WCET estimates of sequential program parts to the
WCET estimates of communication parts. Therefore, we first analyse the two MPI operations
MPI_Allreduce and MPI_Sendrecv. Employing these results, we make a timing analysis of the
conjugate gradient (CG) benchmark from the NAS parallel benchmark suite.
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1 Introduction

Future embedded real-time systems might realise high performance through high parallelism
with many cores. For increasing core numbers, shared memory puts strong limitations on
static WCET analysis: it always has to be assumed that all nodes access the memory before
the own request is processed by the memory controller (cf. [12, 5]). Furthermore, modern
multi- and manycore architectures employ networks on chip (NoCs) to connect cores.

Therefore, parallel platforms with distributed memory and message-based communication
might be the way to go (cf. [8]). Message Passing Interface (MPI) [4] is the standard for
message-based communication which is widely used in high-performance computing. It
encapsulates communication not only in single requests, but also in collective operations,
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where all participating cores work together. For example, one (master) core distributes
data and coordinates computation which is done by several (slave) cores. This is achieved
by executing the same code on all cores and making case distinctions at some points to
differentiate between master and slave cores. Moreover, this characteristic is beneficial for
timing analysis of a parallel program: worst-case response times (WCRTs) are low and all
cores share the same state in the program. Communication steps work as implicit barriers:
Cores synchronise and afterwards go on executing sequential code.

However, only few research already took place in the field of real-time message passing
parallel programs. Metzlaff et al. [9] described that an overall WCET estimate of a parallel
program may be determined by adding the WCET estimate of communication parts to the
WCET estimates of sequential program parts. They presumed a predictable NoC, simple
cores and distributed memory. Now we go one step further: instead of only determining the
worst-case traversal times (WCTTs) for the communication, the WCETs of MPI collectives
including the WCTTs are estimated. Then, these collectives’ WCET estimates can be added
to the WCET estimates of sequential program parts to get an overall WCET estimate.

Since MPI collective operations can be reused by any MPI program, the corresponding
timing analysis may also be reused. Thus, the analysis effort for MPI collective operations
is necessary only once for a given hardware platform and WCTT behaviour (schedule, see
Section 2.3). Then, the only remaining work at new programs is to WCET analyse the
sequential program parts.

The contributions of our paper are the following: First, we show that a generic timing
analysis of MPI collectives is possible for a given hardware platform and generic schedule.
We formulate equations with hardware- and schedule specific parameters which can be used
to determine the WCET estimate of a MPI operation. Then, we utilise these equations to
determine the WCET estimate of a benchmark, where we determined sequential WCET
estimates and joined them with WCET estimates of MPI collective operations.

The rest of the paper is structured as follows: In the next Section, we present related
work and backgrounds about (real-time) MPI and the setting for our analysis. Afterwards,
we analyse MPI collective operations in Section 3 and utilise the results for the analysis of
the conjugate gradient (CG) benchmark in Section 4. Finally, we conclude our paper in
Section 5 and give an outlook to future work.

2 Related Work and Background

2.1 MPI
MPI is the de-facto standard for message passing [4]. It encapsulates all communication
between cores or distributed systems. MPI programs are typically written in a way that all
cores execute the same code.

Many MPI programs utilise collective operations to distribute a computation and gather
results. These are operations which are executed by all cores of a group1. A simple example
would be a barrier, but data exchange also often works with collective operations, e. g.
MPI_Scatter or MPI_Gather. MPI_Scatter distributes data stored at one core to all
participating cores. Afterwards, each core has an equally sized portion of data to work with.
MPI_Gather is its counterpart – it collects data from several cores to compound it.

1 At MPI, groups help to specify which cores communicate together. A group may have any size – only
two cores, but also all cores.
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The first step towards a timing-analysable MPI was MPI/RT, a standard for real-time
MPI [6, 14], an extension of MPI 1.1 from 1998. On the one hand, its extensions are
quite broad. On the other hand, MPI/RT is quite old, does not respect NoCs and is not
commonly used. In our implementation we focused on being simple and time-predictable
and on following the widespread standard MPI [4].

In the context of real-time multi- and manycore architectures, Sørensen et al. [16] already
analysed simple MPI operations for the Argo NoC [7]. They implemented send and receive
operations as well as barriers and broadcasting. In our paper, we focus on collective operations
and their impact on timing analysis. Moreover, we develop a concept for the complete timing
analysis of MPI programs. Furthermore, we apply it on a complete benchmark and compare
two different variations of time division multiplexing (TDM).

2.2 PaterNoster NoC and our Implementation

For being able to estimate the WCET of an MPI operation, it is required that the underlying
NoC ensures upper bounds for communication. In our paper, we use the PaterNoster NoC [10]
which fullfills this requirement by providing guaranteed service (GS) with TDM [11], see
details in Section 2.3.

The nodes in our NoC are arranged in a quadratic torus and connected via unidirectional
X rings (horizontal) and Y rings (vertical). Each node consists of a processing element (core),
a sufficiently sized send/receive buffer and a lightweight router. Data exchange takes place
via flits that are sent from one node to another over the NoC. Because the information where
a flit is to be sent is included seperately, there is no need of a head flit. Flits are 32 bits wide
and are forwarded instantly without buffering. They first take the X direction and then the
Y direction (xy-routing). When flits change their direction from X to Y, they are stored in a
so-called corner buffer until it is the right time to leave the node. The right time to leave
and arrive at buffers is determined by a schedule, see the following Section 2.3.

The goal of our implementation is to abstract communication in a parallel program:
instead of making a detailed WCTT analysis for every program again, the already known
WCET estimates of MPI collectives may be used. The WCET estimate of a program can then
be determined by adding the WCET estimates of MPI operations to the WCET estimates
of sequential parts. Because all nodes execute the same sequential code and we take its
WCET estimate, it can be assumed that they are all finished when reaching a MPI operation.
However, there are some restrictions to enable our implementation to stay general, e. g. no
derived data types are allowed and we assume that no flit gets lost. Sometimes, more flits
have to be sent at collective operations than with direct communication. One example
are acknowledgement flits, which contain no real data, but only the information that a
communication partner is ready.

2.3 Scheduling

TDM means that shared resources are available for each requester for a fixed time interval.
Each of them has its own time slot – these are ordered in a way that no conflicts can occur.
At a NoC this means that for each pair of senders and receivers it is clear when their flit
is at which location in the NoC – ensuring that no other node will place a flit there at the
same time. This enables estimating a WCTT – first, each participant has to wait until its
time slot is available, then the flit can be transmitted. The time intervals and their order
form one round of a TDM schedule.
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There are two types of schedules: custom and generic schedules. Custom schedules are
computed for the specific configuration of applications on a core. They feature a good
(worst-case) performance, but each time something is changed, they have to be recomputed
since a change may result in a conflict. Generic schedules are application-independent – they
describe a regular pattern: when is each node allowed to send flits? How many? Which
nodes are allowed for receiving these flits?

The (worst-case) performance of generic schedules is worse than that of custom schedules.
However, it is possible to give general statements and changes are easier to handle than with
custom schedules. In our case, we make general statements about the timing behaviour of
MPI collective operations. Our timing estimation applies for any application utilising this
collective operation, presuming that the same NoC and schedule is used.

Schoeberl et al. propose a generic All-To-All schedule (AA) [13]: within one period of
the schedule, each node is allowed to send flits to any other node. However, each node is
allowed to send at most one flit to the same node. In the worst-case this means that all nodes
send one flit to each other node. Mische et al. propose a One-To-One schedule (11) amongst
others [11]: each node is allowed to send and receive at most one flit in one period. This is
much stricter than All-To-All, but results in shorter periods, when not all nodes participate.
Furthermore, the worst-case is the same as the average case: each node sends and receives
one flit. Sending several flits takes several rounds. A detailed comparison of different generic
schedules for MPI collective operations takes place in [15].

3 Timing Analysis of MPI Collectives

3.1 Setting for the Analysis
Generally, our approach is platform-independent. However, to get concrete numbers, we
make a timing analysis on a custom platform. It is composed of 16 nodes connected via the
PaterNoster NoC and arranged as a 4x4 unidirectional torus. The NoC has been already
described in Section 2.2. Each node consists of a simple core with ARM instruction set,
5 stage pipeline, no caches and 10 cycles memory access latency to the local memory. We
apply a 1:1 mapping meaning that each core executes one thread.

We utilise the static WCET analysis tool OTAWA [3] for the sequential program parts.
3 cycles are assumed for the assembler instructions for sending and receiving a flit. Another
4 cycles are assumed for the time between execution of the assembler instructions and
availability of the flits at the NoC buffer (and vice versa)2. This time can be changed at
any time by adjusting the parameter tBuf at the equations in the rest of this paper. For
communication between nodes we considered two schedules: All-To-All as described by
Schoeberl et al. [13] or One-To-One as described by Mische et al. [11]. Their WCTTs are
described by the following two equations, where n is the dimension of the NoC (4 in our
case), f is the number of flits to be transmitted and χ is the number of participating nodes
(excluding the master node). Details can be found in [11, 15]:

WCTTAll−To−All = n2 · (n+ 1)
2 · f + n2

2 + 2n (1)

WCTTOne−To−One = n · χ · f + 2n (2)

2 This time is very short because our group develops hardware support for fast message passing to
substitute shared memory synchronisation.
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Figure 1 MPI_Allreduce with one master and two slave nodes.

Applying these equations with parameters later needed in this paper gives following
numbers: When 1 flit is to be transmitted in a 4x4 NoC with All-To-All schedule, we get a
WCTT of 56 cycles. With the same schedule, the WCTT is 136 cycles for 3 flits, 616 cycles
for 15 flits or 14 056 cycles for 351 flits. Utilising the One-To-One schedule, 1 flit can be
transmitted to or from 2 participating nodes with a WCTT of 16 cycles or 351 flits in 2 816
cycles. When χ and f are both 15 at the One-To-One schedule, the WCTT is 908 cycles,
while it would be 44 cycles when they are both 3. These numbers will be used later in our
analysis.

3.2 MPI_Allreduce
MPI_Allreduce and its variations are defined as “global reduction operations such as sum,
max, min, or user-defined functions, where the result is returned to all members of a group” [4].
Thereby, all participating nodes send their values to the master node, which combines them
with the given operation. In the benchmark example in Section 4, this operation is summing
up the values. When the master node has finished collecting and totalising, it sends the
result to all participating nodes.

3.2.1 MPI_Allreduce: Structure
The implementation of MPI_Allreduce is structured as follows (letters correspond to Fig-
ure 1):
(A) First, there is a short initialisation phase.
(B) Then, the master node sends an acknowledgement flit to all participating nodes.
(C) While the flits are on their way, the master node initialises some data structures preparing

receiving of the values and the operation to be performed on them. At the slave nodes,
there is a small sequential code after receiving the acknowledgement flit.

(D) Now, the slave nodes send their values to the master node. When more than one value
should be sent, slave nodes go on sending without waiting for further acknowledgement
flits from the master node.

(E) The master node gathers the values sent from the slave nodes and collects them in an
array. Afterwards, the master node copies its own values to the array.

(F) Then, the collective operation is applied on the collected values (e. g. summing up
values).

(G) Finally, the result of the operation is broadcasted to all participating nodes.
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Table 1 Execution steps and their estimated WCET contribution to MPI_Allreduce.

Step Estimated WCET contribution
A 73
B 12χ (local processing of broadcast)

C,D max(23 + 6n2 + 11χ, 2 · (ttransm,χ + tBuffer) + 24)
D (f − 1) · max(35χ, ttransm,χ) (when there is more than one value)
E 35χ+ 15 + 32f (processing and copying own values)
F 42 + (χ+ 1) · (94 + 23f) (arithmetic op.) or 42 + (χ+ 1) · 41 (bitwise op.)
G 14 + f · (11 + 12χ) + f · ttransm,χ + tBuffer + 35

3.2.2 MPI_Allreduce: Timing Analysis

There is one prerequisite for the timing analysis: data structures have to be allocated
statically. Since MPI_Allreduce gets the data structures handed over as calling parameter,
this is left to the program.

Table 1 illustrates the execution steps of MPI_Allreduce and their contribution to the
WCET estimate: After the initialisation, the broadcast of an acknowledgement flit is prepared
at the master node (A). This is sent out and processed by the slave nodes (B), who reply
with the (first) value to be sent (D). Meanwhile, the master node prepares data structures
needed for the receiving and the collective operation (C). When C is finished before D, it
has to wait for D and vice versa. Therefore, the maximum of C and D has to be taken into
account for the WCET estimate.

In the case that more than one value is to be sent, the maximum of the time to receive
flits (processing received values at the master node and store them in an array) and the time
to transmit flits has to be determined (step D). At step E, the last received values are stored
in the array and the values from the master node are appended. Afterwards, an arithmetic
operation (e.g. SUM, MIN, MAX) or a bitwise operation (e.g. AND, OR, XOR) is applied
on the collected values (F). Finally, broadcasting of the results is prepared and performed,
followed by postprocessing in step G.

The variables in Table 1 were already described in Section 3.1. Additionally, two types of
transportation times exist: ttransm.,χ is the time to get χ flits transported from all nodes to
one node or vice versa, while tBuf is the time flits need to pass from the NoC to the pipeline
and vice versa. We assume 4 cycles to move from the sender’s core to the NoC router and 4
cycles to move from the receiver’s NoC router into the pipeline, which are together 8 cycles.

Alltogether, the WCET estimate of MPI_Allreduce can be rewritten as the following
equation (the elements from Table 1 are summarised and transformed):

WCETAR(f, χ) = 273 + 35fχ+ max(23 + 6n2 + 11χ, 24 + 2(ttransm,χ + tBuf ))
+ 141χ+ (f − 1) max(35χ, ttransm,χ) + (66 + ttransm,χ)f + tBuf

(3)

Utilising the numbers from Section 3.1, WCET estimates for several scenarios can be
computed. For example, the WCET estimate of MPI_Allreduce is 6 698 cycles for 2 flits to
be transmitted to or from 15 nodes when the All-To-All schedule is used, while it is 8 158
cycles with the One-To-One schedule. When f is 351 and χ is 3, All-To-All’s WCET estimate
is 156 373 cycles while One-To-One’s WCET estimate is 113 073 cycles. Due to traversal
times which are influenced by group sizes, One-To-One scheduling is better than All-To-All
scheduling in the second case.
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Table 2 Execution steps and their estimated WCET contribution to MPI_Sendrecv.

Step Estimated WCET contribution
Initialisation 20

acknowledgement sender-receiver max(5, ttransm,1 + tBuf )
time between acknowledgements 7
acknowledgement receiver-sender max(5, ttransm,1 + tBuf ) (only if sender != receiver)

initialisation for sendrecv-loop 15
sendrecv-loop 15 + max(f · 32, ttransm,f ) + tBuf

postprocessing, finish function 51

3.3 Analysis of MPI_Sendrecv
Analogous to MPI_Allreduce, we analyse the operation MPI_Sendrecv. Its purpose is to
send and receive messages at the same time. The communication partners for sending and
receiving do not need to be the same. Table 2 illustrates the parts of MPI_Sendrecv and
shows their calculated WCET estimates.

f is the maximum of the number of flits to be sent and received. ttransm,f is the time
needed to transmit f flits through the NoC, while ttransm,1 is the time needed to transmit 1
flit through the NoC.

The process of MPI_Sendrecv works as follows: After the initialisation, the sender sends
an acknowledgement flit to the receiver, who waits for it. When the communication partners
for sending and receiving are different, the other core also acknowledges the communication.
After finishing acknowledgements, the loop for sending and receiving data is first prepared,
then executed. Finally, some postprocessing takes place before the function is finished.

Since transmission and buffer times are expected to be greater than five, the equation
may be written as shown in Equation (4):

WCETSR(f) = 108 + 2 · (ttransm,1 + tBuf ) + max(f · 32, ttransm,f ) + tBuf (4)

Again, the numbers from Section 3.1 can be used in this equation. For sending and
receiving 351 values to/from two different nodes, the WCET estimate of MPI_Sendrecv is
14 300 with the All-To-All schedule and 11 396 with the One-To-One schedule.

3.4 Differences at varying configurations
While sequential parts always remain equal, the impact of communication parts changes
with the size of the NoC: With increasing NoC size, communication times increase, too.
Furthermore, the impact of the schedule also increases.

On the other side, a timing anomaly can occur at a small NoC: when the transmission
is faster than new flits are provided by the core, it might have to be assumed that a flit
misses a round of the schedule and has to wait until the next round is carried out (each
round one flit can be transported). This leads to a “step” at the admission time of the flit,
which could cause disadvantageous configurations of small NoCs being slower than a little
bit larger NoCs.

Attention has to be paid at the receive buffer: a core is stalled when the send buffer is
full, which means that everything still works fine because the WCET is driven by the WCTT.
However, all schedules rely on free capacity at the receive buffer. When it is full, receiving of
flits does not follow the schedule anymore and blows up the WCET. It could also mean that
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estimating a WCET is not possible anymore. At our analysis, we assume that buffers are
large enough.

4 Case study: Timing Analysis of the CG benchmark

Utilising the results from the previous Section, we analyse the conjugate gradient (CG)
benchmark, which is taken from the NAS Parallel Benchmark Suite3 [1, 2]. It is described as
following: “a conjugate gradient method used to compute an approximation to the smallest
eigenvalue of a large, sparse, symmetric positive definite matrix. This kernel is typical
of unstructured grid computations in that it tests irregular long-distance communication,
using unstructured matrix-vector multiplication” [1]. The NAS Parallel Benchmarks were
developed for highly parallel systems. Therefore, they seem to be good benchmarks for
embedded real-time multicores with distributed memory.

For the analysis, we decided to analyse a class S CG benchmark, which is the smallest
class: The matrix size is 1400 · 1400, there are 7 nonzero values per row and 15 main
benchmark iterations take place4. In the benchmark, the matrix is divided into equal sized
blocks and each block is assigned to one core for computation.

Several changes had to be done for analysis: first, the benchmark had to be ported
from FORTRAN 77 to C99. Then, we had to ensure that no data structures are allocated
dynamically. Since OTAWA’s support for floating point is not yet available for the ARM
instruction set, we used integers instead of doubles5.

The structure and estimated WCETs’ contributions of the benchmark are illustrated
in Table 3. Thereby, we did not analyse the initialisation of the benchmark (which is not
included in the table), but the parts which are intended for benchmarking a system. This
means the steps 1 to 18 have to be executed: After a sequential part at the beginning and one
execution of MPI_Allreduce, a for loop is executed, which is iterated 15 times (estimated
WCETs in the third column are for one iteration, those in the last column for 15 iterations).
Afterwards, four sequential parts and communication parts alternate, before the end of the
main iteration loop is reached. In the right column of Table 3 it is shown how much each
step totally contributes to Equation 5.

Altogether, CG benchmark’s estimated WCET can be summarised as follows:

WCET cg = 1 896 959 + WCETAR(2, 15) + 17 · WCETAR(1, 3)
+ 16 · (WCETAR(351, 3) + WCETSR(351))

(5)

1 896 959 is the sum of the sequential parts from Table 3, where the for loop was respected
with 15 iterations. Most of the variables needed to get a total WCET estimate were already
computed throughout the previous Section 3. The only missing number is WCETAR(1, 3),
which is 1 323 with the All-To-All schedule and 1 071 with the One-To-One schedule. The
numbers can be placed in Equation (5) and lead to following results:

WCET cg,AA = 1 896 959 + 6 698 + 17 · 1 323 + 16 · (156 373 + 14 300) = 4 656 916 (6)
WCET cg,11 = 1 896 959 + 8 158 + 17 · 1 071 + 16 · (113 073 + 11 396) = 3 914 828 (7)

3 http://www.nas.nasa.gov/Software/NPB/.
4 We only analyse 1 iteration – the result may be multiplied by 15 to get the final result.
5 This leads to loss of precision, but all computational steps keep the same. We do not focus on analysing
all sequential instructions precisely, but to demonstrate the possibility of analysing parallel program
structures.

http://www.nas.nasa.gov/Software/NPB/
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Table 3 Parts of the main iteration loop and their estimated WCET contribution.

Step Description Est. WCET contrib. Contrib. to Equation 5
1 Start of main iteration loop 15 929 15 929
2 MPI_Allreduce WCETAR(1,3) WCETAR(1,3)
3 Begin of for loop (15 iterations) 100 490 15 · 100 490 = 1 507 350
4 MPI_Allreduce WCETAR(351,3) 15 ·WCETAR(351,3)
5 Sequential part 2 480 15 · 2 480 = 37 200
6 MPI_Sendrecv WCETSR(351) 15 · WCETSR(351)
7 Sequential part 10 749 15 · 10 749 = 161 235
8 MPI_Allreduce WCETAR(1,3) 15 · WCETAR(1,3)
9 End of for loop (15 iterations) 3 792 15 · 3 792 = 56 880

10 Sequential part 100 513 100 513
11 MPI_Allreduce WCETAR(351,3) WCETAR(351,3)
12 Sequential part 2 480 2 480
13 MPI_Sendrecv WCETSR(351) WCETSR(351)
14 Sequential part 3 180 3 180
15 MPI_Allreduce WCETAR(1,3) WCETAR(1,3)
16 Sequential part 8 142 8 142
17 MPI_Allreduce WCETAR(2,15) WCETAR(2,15)
18 End of main iteration loop 4 050 4 050

odd Sum of sequential parts 1 896 959

With the All-To-All schedule, one main iteration loop of the CG benchmark has an overall
estimated WCET of 4 656 916 cycles, while it is 3 914 828 with the One-To-One schedule.
The result of the One-To-One schedule is better than with the All-To-All schedule, because
its periods are shorter when only a part of the nodes participates at communication with
one node. However, for large groups the All-To-All schedule outperforms the One-To-One
schedule.

Furthermore, it can be seen that the communication times are very large compared to the
sequential program parts. This is caused by the communication intensive program structure,
mainly influenced by the operations where 351 values are exchanged. These operations are
executed 16 times.

5 Conclusion and Outlook

We presented our idea that collective (MPI) operations are beneficial for timing analysis of
parallel distributed memory platforms with message passing communication. Timing analysis
is performed of the two MPI collective operations MPI_Allreduce and MPI_Sendrecv for a
platform with simple ARM cores connected via the PaterNoster NoC. Afterwards, we used
these results to make a timing analysis of the CG benchmark, which does a lot of inter-core
communication to move data and coordinate computation.

Maybe there are better implementations exhibiting lower WCET bounds for the MPI
collectives. With this paper, we made the first step to show the feasability that MPI collectives
could be one way to enable timing analysis for parallel platforms. Our next step will be to
tighten the WCET estimate with (i) an improved MPI implementation, (ii) better workload
distribution within MPI collectives and (iii) optimised hardware support. Furthermore, we
see the need to implement and analyse more collectives, as well as making the results open
source at https://github.com/unia-sik.
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Abstract
With the advent of multi-core platforms, research in the field of hard real-time has recently
considered parallel software, from the perspective of both worst-case execution time (WCET)
and task schedulability (or worst-case response time, WCRT) analyses. These two areas consider
task models that are not completely identical and sometimes make different assumptions. This
paper draws a brief overview of the state of the art in the timing analysis of parallel tasks and
tries to identify points of convergence and divergence between the existing approaches.
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1 Introduction

After many years of improved single-core processor performance thanks to micro-architectural
innovations, a ceiling has been reached due to three limitations: (i) the memory wall (the
gap between processor and memory performance is still growing and can only partially be
hidden using cache hierarchies), (ii) the instruction-level parallelism wall (finding enough
parallelism in a single instruction stream to keep ever more intra-core resources busy becomes
challenging) and (iii) the power wall (power consumption exponentially increases with the
operating frequency, which comes with thermal dissipation issues). For all these reasons, the
design of microprocessors has turned to multicore architectures that integrate several cores
on a single chip and share some resources (such as the main memory and the interconnection
network) among cores.

This trend, that first concerned servers and desktop systems, spreads now to embedded
systems: they exhibit growing performance requirements, mainly to implement new function-
alities (e.g. better control of gas emissions in automotive engines), but are subject to drastic
constraints on power consumption and thermal dissipation.

Critical systems may not be ready yet to take the step because of the new challenges
raised by these multicore architectures. But they will have to in the medium term because
they also have increasing computing power needs and because off-the-shelves components
likely to meet these needs will all be multicore.

However, if a multicore processor makes it trivially possible to increase performance by
allowing higher task rates (several tasks can be run in parallel on different cores), it does not
reduce the execution time of a particular task. In that sense, it does not help tasks to meet
their deadline. To shorten execution times, parallelising task codes is needed.

© Christine Rochange;
licensed under Creative Commons License CC-BY

16th International Workshop on Worst-Case Execution Time Analysis (WCET 2016).
Editor: Martin Schoeberl; Article No. 11; pp. 11:1–11:11

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2016.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de


11:2 Parallel Real-Time Tasks, as Viewed by WCET and WCRT

It is likely that not all real-time applications can be parallelised because some of them
must typically execute a series of actions in sequence. But we can think of applications that
perform image processing which generally lends itself well to parallelisation.

As soon as real-time applications are parallelised, the question of their timing analysis
arises. This means estimating their worst-case execution time and their worst-case response
time (which is related to scheduling decisions). These last few years, a few results have been
published in these two areas. Often, contributions to WCET analysis and to schedulability
analysis tend to ignore their respective constraints. On one hand, schedulability analysis
assumes that tasks can be preempted, migrated from one core to another one, without
impairing WCET estimations. On the other hand, WCET analysis assumes that a task
will run from end to end on the same core without being interrupted. Recently though,
some steps towards higher integration of these two kinds of analyses have been made in the
context of single-core platforms. For example, Altmeyer et al. [1] estimate cache-related
preemption delays while Zhi-Hua et al. [26] introduce a WCET-aware task mapping and cache
partitioning strategy. In this paper, we discuss the few solutions that have been proposed on
both sides to handle parallel tasks, and we try to identify how far they fit together.

Please note that this paper focuses on software-level interferences between the threads of a
parallel task. We are aware that hardware-level interferences occur when cores share resources.
This includes bandwidth sharing that might generate conflicts and incur additional latencies,
but also space sharing, such as when multiple cores share a single L2 cache. Although such
hardware-related interferences may strongly impact worst-case execution times, we want to
keep the focus of this paper on software-level interferences. For this reason, we deliberately
ignore hardware-level conflicts, assuming that either they cannot occur (e.g. partitioning
strategies are used [23]) or they are accounted for in WCET estimations [5, 3]. Almost all
the approaches considered in this paper make a similar assumption.

The paper is organised as follows. In Section 2, we give an overview of parallel pro-
gramming that support the parallel task models considered in WCET and WCRT analyses.
Section 3 deals with scheduling approaches for parallel real-time tasks to be run on multicore
platforms. Worst-case execution time analysis techniques for parallel codes are overviewed in
Section 4. Section 5 discusses the compatibility of WCET and WCRT analyses and Section 6
summarises the paper.

2 Parallel Programming

The goal of parallel programming is to allow several computations within the same application
to be performed simultaneously. To do so, a task is split into subtasks, technically processes
or threads. In the following, we only refer to threads for the sake of simplicity. Generally,
threads belonging to the same application share data and thus have to communicate in one
way or another. Additionally, they sometimes have to synchronise their respective progress
to ensure the correctness of the final result.

When the same computation must be done on each element of a set of data, a way to
split a task is to split the set of data into subsets and to have each of them processed by a
different thread. For example, in matrix-based algorithms, each thread may compute one
column of the result matrix. Often, data parallelism leads to parallelising a loop in such a
way that each thread executes one part of the loop iterations.

Task parallelism is another kind of parallelism where the application includes several
more-or-less independent computations that may exhibit precedence constraints. In such a
case, a thread is created for each computation or sequence of computations.
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Of course, a hybrid pattern is possible, where the application contains several computations
that can be run simultaneously and some of these computations exhibit data parallelism.
Software pipelining is a particular parallel programming pattern: each piece of data must
undergo the same sequence of computations and one thread is created for each computation
(pipeline stage). All the threads execute in parallel and data flow from one thread to the
next one.

According to the memory organisation (either a shared memory with a common address
space or a distributed memory with local address spaces), the way shared data can be
exchanged among threads differs. In the case of a common address space, threads simply
access shared variables in memory. However, precautions must be taken to enforce the
integrity of data. For example, read-modify-write sequences must be performed atomically
to avoid inconsistencies. In the case of a distributed memory, threads communicate though
message passing: the thread that hosts the piece of data in its local memory provides it by
executing a send() primitive, while the thread that requires the data executes a receive()
primitive.

Two kinds of synchronisations are typically used in parallel programs. Some of them
ensure a coherent progress of threads, e.g. that one thread cannot execute beyond a given
point X until another thread has reached a given point Y . Mechanisms that implement such
progress synchronisations include barriers and conditions. Other synchronisations enforce
atomicity for a region of the code, called a critical section, by ensuring that no other thread
can execute the same region of code at the same time. This is referred to as mutual exclusion
and locks are a simple way to implement it.

3 Scheduling Parallel Tasks

In the field of real-time multiprocessor scheduling, earlier works considered independent
sequential tasks [4]. In this paper, we focus instead on scheduling parallel tasks. In this
area, a parallel task is defined as a collection of subtasks that can be run in parallel as long
as their precedence constraints are fulfilled. Each release of the task generates as many
jobs as subtasks and the task instance is considered completed when every related job has
been completed. We will first present common parallel task models and the underlying
assumptions, then we will provide a brief overview of real-time scheduling approaches for
such parallel tasks.

3.1 Parallel Task Model and Assumptions
The most general model used to represent real-time parallel tasks is a directed acyclic graph
(DAG) G = (V, E) that exposes subtasks (nodes, v ∈ V ) and their precedence constraints
(edges, e ∈ E) [2], as illustrated in Figure 1. The WCET of each node/subtask is supposed
to be known. The task is characterised by a relative deadline and a period, that apply to
the whole DAG. When the task is released, a job is created for each subtask. Jobs are
scheduled on several cores in a way that meets precedence constraints and they all must
be completed before the deadline. Note that subtask dependencies mentioned in real-time
scheduling literature usually denote such precedence constraints exclusively.

This model assumes that the task is mapped to n identical cores that are not shared with
other tasks. However the number of cores allocated to the task might not allow running all
the ready threads simultaneously.

Other works consider the fork-join model where a task is released as a master thread
that creates child threads which can run simultaneously (i.e. that do not exhibit precedence
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Figure 1 A parallel task defined as a set of sub-tasks subject to precedence constraints (DAG).

Figure 2 A parallel task following the fork-join model.

constraints) before joining [12]. This results in a sequence of sequential/parallel segments, as
illustrated in Figure 2. This model assumes that all the child threads in a parallel segment
execute the same code (then have the same WCET). All parallel segments have the same
number of threads.

A variant of the fork-join model is the multi-frame segment model [22] shown in Figure 3.
The main difference resides in the fact that parallel segments may have different numbers of
threads.

Note that both the fork-join and multi-frame segment models can be expressed as DAGs.

3.2 Scheduling Approaches
There are two main kinds of approaches to scheduling real-time parallel tasks. The first one,
called task decomposition, transforms a parallel task expressed as a DAG of subtasks into
a set of independent tasks that can be handled by multiprocessor scheduling strategies for
sequential tasks. The second kind of approach, referred to as direct scheduling, considers a
parallel task as a set of subtasks that can be scheduled on different cores but must altogether
meet the timing constraints of the task. These approaches are summarised below.

3.2.1 DAG Transformation
The goal of DAG transformation techniques is to convert the set of dependent subtasks into
independent tasks that can then be scheduled using multiprocessor scheduling approaches for
sequential tasks. Each new sequential task has its own computing requirements (WCET) but
also its own release offset and its own deadline which are derived from the timing parameters
of the original parallel task, taking precedence constraints into account [12, 22, 20].

3.2.2 Direct scheduling
Kato et al. [11] consider the fork-join task model (Fig. 2). They observe that threads in
parallel segments should run in parallel to avoid deadlocks (or long delays) that might arise
if a thread holding a lock was preempted. For this reason, they explore gang scheduling
techniques in the context of real-time parallel tasks. Gang scheduling grants a task with as
many cores as threads in its parallel segments. This way, all the threads run simultaneously.
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Figure 3 A parallel task following the multi-frame segment model.

Other works focus on the DAG model (Fig. 1). The federated scheduling strategy allocates
a sufficient number of cores to each high-utilization parallel task and schedules its DAG nodes
using a greedy algorithm [13]. Global-EDF-based approaches have also been proposed [2, 14].

4 WCET Analysis of Parallel Applications

Scheduling approaches generally summarise a task as an execution segment characterised by
a worst-case execution time (often denoted as Ci), together with other attributes such as a
period, a deadline or a release time. WCET analysis sees it as a control flow graph (CFG),
that expresses theoretically possible execution paths and is built from the executable code.
Part of the analysis exploits knowledge of the code semantics.

Research on WCET analysis started more than 20 years ago and investigates two main
branches: flow analysis, that computes loop bounds and infeasible paths [7, 16, 10], and
low-level analysis, that determines the local WCET of basic blocks (indivisible sequences
of instructions) taking the characteristics of the underlying hardware architecture into
account [24, 21, 19].

Recently, several contributions have been made to the WCET analysis of parallel tasks.
Some of them consider a distributed memory organisation while other ones assume a shared
memory and focus on synchronisations. All these works assume that each thread of the
parallel application runs on a separate core and that there are enough cores to run all
the threads simultaneously. They further consider that all threads are released and start
executing at the same time. Note that they all rely on static WCET analysis techniques.
However, some of their principles have been adapted to measurement-based analysis with
the RapiTime tool [25].

4.1 Communicating Tasks

Potop-Butucaru and Puaut [18] consider two distinct control loops (an infinite loop that
typically repeats the following cycle: read sensors, process, write actuators) running on
separate cores. They assume that these loops share some data and communicate by message
passing.

Their analysis aims at determining the WCET of the longest loop body, taking into
account delays due to blocking message passing primitives. To achieve this, they first perform
flow and low-level analyses on the control flow graphs of both loops. Then they merge the
CFGs by adding edges (dashed red edges in Figure 4) to express precedence between CFG
nodes (a thread calling a receive() primitive is stalled until the other thread executes the
corresponding send() primitive). Finally, they compute the worst-case path in the joint
CFG using the commonly used IPET method [15].
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Figure 4 Joint CFG of parallel control loops (Figure taken from [18]).

This approach fits well message-passing asymmetric communications but cannot be
applied to symmetric communication/synchronisation schemes, when the interleaving of
threads is decided dynamically (e.g. when the order in which threads enter a critical section
depends on which thread reaches the critical section first).

4.2 Parallel Tasks
Contributions in this category consider parallel tasks using shared memory and focus on
delays incurred by synchronisations (barriers, conditions, locks).

Gustavsson et al. [8] apply model-checking techniques to a system of timed automata
to compute the WCET of a parallel task composed of synchronising threads running on a
multicore processor. Both the behaviour of the hardware executing the code and the conflicts
between threads to acquire locks are modeled with timed automata that are then combined.
Then properties such as "the clock value must be lower than x for every possible state" are
verified considering several values of x selected following a binary search scheme.

Gustavsson et al. [9] introduce a shared-memory parallel programming language and a
fix-point analysis able to identify all the possible thread interleavings at critical sections.

The approach proposed by Ozaktas et al. [17] sticks to the usual static WCET analysis
process (flow analysis, low-level analysis and IPET method) and only modifies basic blocks
local WCETs to reflect stall times at synchronisation points. The way worst-case stall times
(WCST) are estimated is illustrated in Figure 5. It requires being able to compute partial
WCETs, e.g. the WCET from one point in the code to another one.

The WCST for thread t to enter a critical section (i.e. to acquire a lock) is given by:

WCST t =
∑

0≤i<n,i6=t

wcs
i

where n is the number of parallel threads and wcs
i is the worst-case execution time of thread i
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Figure 5 Computing worst-case delays at synchronisations.

in the critical section. If all the threads are identical, we get: WCST t = (n− 1)× wcs. This
formula assumes that the lock is granted with a FIFO policy [6].

The WCST at a barrier must reflect the staggered arrival of threads at the synchronisation
point. To estimate the maximum delay, we need to refer to a point in the execution where
all the threads expected at the barrier formerly synchronised: this point can be another
barrier or the point where threads were created since we assume that they all were created
simultaneously. Then we can compute:

WCST t = max
0≤i<n

(wi − wt)

where wi is the worst-case execution time of thread i from the previous collective synchron-
isation to the barrier. All the synchronisation-related stall times in the task can be upper
bounded this way, from partial WCET estimates. They are then added to the local WCETs
of corresponding basic blocks before computing the WCET of the task, that is the WCET of
its master thread.

5 How Do WCRT and WCET Analyses Fit Together?

In this section, we discuss the compatibility of WCRT and WCET analyses for parallel tasks,
from three different perspectives: do they consider similar task models, do they manipulate
coherent timing data and do they rely on consistent assumptions?

5.1 Different Task Models, Different Focus, Different Assumptions
Schedulability analysis typically represents a parallel task as a DAG of subtasks (see Sec-
tion 3.1) while worst-case execution time analysis examine its CFG. These different repres-
entations reflect different granularity of analysis.

The main difference between the two areas is the kind of interferences that are considered
among subtasks. In WCRT analysis, they are limited to precedence constraints (more precisely,
other interferences are assumed to be accounted for in subtasks WCET estimations). It can
happen that subtasks work on independent data and do not need to synchronise except for
enforcing precedence (e.g. using condition signalling): the parallelisation process splits a
sequential task into smaller scheduling units to favor a better utilisation of all the available
cores. WCET analysis can support such a model by evaluating each subtask independently.
However, the contributions reported in this paper give emphasis to data sharing and to
synchronisation delays. This obviously makes sense for so-called data-parallel applications,
that perform the same computation on a large set of data: often, the computation performed
by one thread uses data allocated to another thread (data sharing, that may require protected
access) and threads need to synchronise (e.g. at the end of each iteration of a loop) to
produce correct results. Nevertheless, control loops may also exhibit data sharing and thread
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Figure 6 Simultaneous vs. staggered thread creation.

synchronisations, as observed within the parMERASA European project on parallel software
from the automotive and construction machinery domains [25].

Furthermore, WCRT and WCET analyses consider different timing information. Most of
the approaches in the field of WCRT/schedulability analysis require the knowledge of the
WCET of each individual subtask. Worst-case execution time analysis produces instead a
WCET estimation for the whole task, that is for its master thread.

Both domains make assumptions on guarantees given by the other one. WCRT analysis
postulates that WCET estimations are safe regardless of scheduling decisions. On the other
hand, WCET analysis assumes that all the threads belonging to the same parallel segment
are created at the same time and run simultaneously on different cores (which is possible only
if the number of threads does not exceed the number of available cores). This assumption is
correct with gang-style scheduling strategies [11] that allocate enough cores to execute at the
same time all the threads in a parallel segment. But it may not hold with the scheduling
approaches that have been discussed more recently [2, 13, 14].

A staggered scheduling of threads in a parallel segment may impair the safeness of
WCET bounds. Estimating the worst-case stall time at a barrier requires determining a
common former synchronisation point for all the threads expected at the barrier. As shown
in Section 4.2, this can be another synchronisation barrier or the point where the threads
were created (more precisely, the point where they started executing). If threads are started
asynchronously and in a way that is unknown at analysis time, it might be difficult to identify
such collective synchronisations. This is illustrated in Figure 6. On the leftmost diagram,
both threads start simultaneously: the worst-case stall time can be computed as explained in
Section 4.2. On the rightmost diagram, thread B starts later than thread A. Unless an upper
bound on D can be specified to the WCET analysis, the WCST (S) at barrier 1 cannot be
estimated.

5.2 Towards Further Integration
Schedule-dependent WCET analysis of parallel tasks could be designed in order to to relax
the need of co-scheduling all parallel threads: different WCET values could be derived for
different schedules. Information provided by the scheduling analysis could help in identifying
relevant schedules. For example, whether a pair of threads should be released simultaneously
or not, and if not, what the release offset could be, might help in computing a correct WCET
for that particular schedule. Similarly, an indication that all the threads competing for a
critical section cannot run at the same time would make is possible to account for shorter
stall times.
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On the other hand, scheduling decisions could be taken from an enriched task model.
For example, scheduling directives or constraints could be specified as conditions that the
provided WCET estimations are safe. Such directives could enforce the simultaneous schedule
of a given group of threads that compete for a critical section, or, on the contrary, split the
group in subgroups that should not run at the same time to reduce estimated stall times.
More general information on how scheduling decisions may impact WCETs could also be
exploited at scheduling time to better drive these decisions.

6 Conclusion

Several recent papers in the domain of real-time systems deal with parallel tasks, either
from the schedulability analysis or the worst-case execution time analysis point of view. The
goal of this paper was to understand whether they all consider the same task model and
make consistent assumptions, and to determine how far the different approaches could be
combined. It appears that contributions to WCRT analysis mainly focus sets of subtasks
with precedence constraints, while contributions to WCET analysis are more concerned with
inter-thread data sharing and progress synchronisation, assuming a trivial scheduling scheme
that grants a parallel task with as many cores as threads.

From this overview, it appears that both fields need to cooperate more closely. Some
information about subtasks schedules might help to refine WCET estimations, or even
to make them safe. Conversely, a more detailed view of subtasks (including information
produced by WCET analysis) could be exposed to scheduling approaches.

Acknowledgements. The author would like to thank the organizers, the speakers and the
participants of the Optimizing Real-Time Systems workshop on Parallelization of real-time
tasks1: they have inspired this paper.
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Abstract
Deployment of multi-core platforms in safety-critical applications requires reliable estimation
of worst-case response time (WCRT) for critical processes. Determination of WCRT needs to
accurately estimate and measure the interferences arising from multiple processes and multiple
cores. Earlier works have proposed frameworks in which CPU, shared cache, and shared memory
(DRAM) interferences can be estimated using some application and platform-dependent para-
meters. In this work we examine a recent work in which single core equivalent (SCE) worst case
execution time is used as a basis for deriving WCRT. We describe the specific requirements in an
avionics context including the sharing of memory banks by multiple processes on multiple cores,
and adapt the SCE framework to account for them. We present the needed adaptations to a
real-time operating system to enforce the requirements, and present a methodology for validating
the theoretical WCRT through measurements on the resulting platform. The work reveals that
the framework indeed creates a (pessimistic) bound on the WCRT. It also discloses that the
maximum interference for memory accesses does not arise when all cores share the same memory
bank.
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1 Introduction

Future safety-critical avionic systems will use multi-core platforms, partly because of the more
complex systems requiring more computational capacity and partly because of decreasing
availability of single-core processors; but there are still challenges remaining to demonstrate
the predictability needed for certification.

The memory hierarchy, and more specifically, shared caches and dynamic random access
memory (DRAM) is one of the major sources of timing variability in a multi-core system [9].
Parallel accesses by cores can lead to interference and either of the resources can become
saturated.

Shared caches introduce a number of problems when estimating worst-case execution time
(WCET): an intra- or inter-task interference may occur when tasks on the same core evict
either their own cache lines or another task’s cache line respectively. In addition, asynchronous
operating system activities can result in cache pollution. Furthermore, inter-core interference
is the result of a task evicting a cache line used by a task on another core.
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The DRAM memory system is composed of a memory controller and memory devices
that store the data. The controller is a shared resource in most multi-core systems, which if
accessed simultaneously from multiple cores has to somehow arbitrate the accesses and this
arbitration can lead to non-determinism in the time domain. DRAM memory devices are
organized into ranks containing banks. Banks contain a number of rows and each row has a
number of columns. For each bank there is a row buffer that is used to store the contents
of one row in the bank. To read data from memory, the row containing that data must be
opened and the contents read to the row buffer and from there the column containing the
data can be read. Subsequent requests to the same row can be serviced with low latency, as
the row is already open. If a request requires another row to be opened, this will increase the
latency as the currently open row must be closed and the data written back to the row before
the new row can be opened. This will also affect the worst-case response time (WCRT) if
different cores request data from different rows in the same bank.

To mitigate these effects when estimating the WCET, several methods have been pro-
posed [9]. One approach targeting the problems outlined above is the Single Core Equivalence
(SCE) framework proposed by Mancuso et al. [12]. This approach combines several of the
previously proposed approaches and consists of three parts: Colored Lockdown [11] for
managing the shared cache; MemGuard [24] for monitoring and limiting the number of
DRAM requests; PALLOC [23] for DRAM bank partitioning. Starting from single-core
WCET estimations, they are able to add interference bounds resulting from shared resource
usage on a multi-core platform to minimize the effects from other cores.

For some systems it may be possible to locate the data in such a way that each core
can access its own private bank(s), but in the general case there will be some sharing of
data between applications and these applications may reside on different cores resulting in a
use-case where shared banks is a necessity. It may also be the case that we have more cores
than banks, which also will result in the necessity of sharing banks. Currently, the number
of cores in a multi-core chip is growing faster than the number of banks in the DRAM [8].

In this paper we consider integrating the SCE concepts in an ARINC 653 [1] real-time
operating system (RTOS) designed for avionic systems. Specifically, we study the general
case of bounding the interference delay when using shared DRAM banks.

The contributions of this paper are:
We adapt the SCE approach for WCRT estimation in avionics software by integrating
assumptions valid for our context, namely cache partitioning and memory bank sharing.
We adapt a custom RTOS to restrict memory accesses according to earlier works ([14, 5,
24, 10]).
We present a methodology for validation of the WCRT estimates using the modified
RTOS, COTS multi-core hardware, and repeatable measurements.
We show that accessing the same bank from all cores does not necessarily represent the
worst-case interference delay.

The remainder of this paper is structured as follows. Section 2 contains related work and
Section 3 contains relevant background. We describe our SCE adaptation and the validation
in Section 4 and Section 5 respectively. We conclude the paper in Section 6.

2 Related Work

The early work on utilizing multi-core processors for deterministic systems includes CPU
scheduling. Anderson et al. [2] propose a hierarchical scheduling with different levels of
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execution time estimation requirements for the different criticality levels in RTCA/DO-
178 [18]. Mollison et al. [13] and Herman et al. [4] continue building on that framework,
turning attention to other shared resources, such as shared last-level cache and the DRAM.
Both of these shared resources have to be addressed in order to make the execution times of
tasks predictable.

Several methods for handling the shared cache have been proposed. These include page
coloring [11, 19] and explicit reservation [20]. In our work we will adopt the latter by using
dedicated cache partitions for each application.

When cores need to access the main memory due to e.g., a cache miss, the system has to
somehow arbitrate among the cores. This creates another bottleneck introducing interference.
The interference1 delay experienced by one core depends on how many memory requests the
other cores issue, making it hard to estimate WCRT. One way of handling this is to specify
a memory request budget for each core or a group of tasks on a core and then to monitor all
memory requests and temporarily disallow access by the core if too many memory requests are
performed. This will result in an upper bound of the interference delay. Inam et al. [5] use the
concept of multi-resource servers, where they monitor both CPU usage and memory requests
for each server. Nowotsch et al. [14] focus on extending existing estimation techniques by
introducing an interference-delay analysis and a run-time monitoring mechanism that make
it possible to analyze each task in isolation and then add the interference delay to account for
the shared resources. A similar approach is presented by Fernandez et al. [3], who introduce
resource usage signatures and templates to abstract the contention caused and experienced by
tasks on different cores. These signatures and templates are used to determine an execution
time bound instead of the actual tasks. Yun et al. [24] propose MemGuard, a memory
bandwidth reservation system that provides bandwidth reservation for temporal isolation
and a reclamation component. None of these monitoring systems consider the effects of
the memory requests of the RTOS(es) running on the cores, this was addressed and shown
significant in our earlier work [10]. In this paper we will consider both application and RTOS
memory requests when profiling or estimating response times.

The memory has often been regarded as a single resource (black box) and a constant
time used for the access times, but the DRAM can be in one of several states affecting the
time required to perform the access. The DRAM consists of banks that can be accessed in
parallel; Yun et al. [23] use this to reduce the interference delay when accessing the DRAM.
They implement a memory allocator (PALLOC) that reserves memory in private banks for
each core. This will also eliminate any row collisions, where two cores access different rows
in the same bank. Row collisions are more expensive than row hits as the currently open
row has to be closed. Wu et al. [21] and Kim et al. [8] both model the memory system more
realistically than as a single resource. The memory controller has one request queue for each
DRAM bank. Wu et al. only consider private DRAM banks for each core. Kim et al. who
also include shared banks relax this limitation. Yun et al. [22] study interference arising in
COTS platforms that can generate multiple outstanding memory requests and evaluate their
approach on a simulation platform. In our work we use a physical COTS platform.

There are also efforts to develop predictable memory controller hardware [15, 16]. This is
of course a potential scenario in the future. In this paper we are interested in deploying our
system to an available COTS hardware platform in the absence of these options.

In modern memory controllers the memory requests are not always sent to the DRAM in
the order they are sent by the core. Instead, they are buffered in request buffers and issued

1 Note that in a single core context the increase in response time due to a shared resource is referred to as
blocking, but we use the term interference here to stay consistent with the recent multi-core literature.
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Table 1 DRAM timing parameters.

Parameter Value Description

BL 8 columns Burst Length
CL 13 cycles Column Access Strobe Latency
WL 9 cycles Write Latency
tRCD 13 cycles Activate to read/write latency
tRRD 5 cycles Activate to activate interval
tRP 13 cycles Precharge to activate interval
tFAW 26 cycles Window for four activates
tWTR 7 cycles Write to read interval
tWR 14 cycles Data to precharge min interval
tCK 1 ns DRAM clock cycle time

to the DRAM in the order specified by a memory scheduler. The policy often used today, is
the First-Ready First-Come First-Served (FR-FCFS) policy. This policy prioritizes requests
to already open rows before closed rows in order to minimize row conflicts.

3 Background

In this section, we review the basic concepts relevant to this work.

3.1 DRAM Controller
A DRAM controller sends a number of commands: precharge (PRE) to close an open
row; activate (ACT) to open a row; read (RD) and write (WR) to read or write data to
the row buffer. The commands take time to finish and the DRAM controller must satisfy
timing constraints between the commands. The JEDEC standard [6] specifies a number of
requirements for JEDEC-compliant SDRAM devices as shown in Table 1.

3.2 Inter- and Intra-bank Delay
In the general case tasks share data and need to share banks. To more accurately model the
worst-case memory interference delay, we build on the work by Kim et al. [8] that includes
the interference delay resulting from shared banks. We briefly describe the request-driven
notation used in this work to reuse in later sections.

The interference delay experienced by a core p for a memory request is given by RDp =
RDinter

p + RDintra
p , where RDintra

p is the inter-bank interference delay for core p and RDinter
p

is the inter-bank interference delay. RDinter
p is the delay due to a memory request generated

by a core p is being delayed by requests from other cores due to timing effects of accessing
the common command and data bus, it is given by:

RDinter
p =

∑
∀q:q 6=p ∧

shared(q,p)=∅

(LPRE
inter + LACT

inter + LRW
inter) (1)

shared(q, p) is the set of DRAM banks shared between core q and core p, LPRE
inter reflects

timings of the address/command bus scheduling. LACT
inter is related to the minimum separation

time between two activate commands sent to two different banks, and LRW
inter is related to



A. Löfwenmark and S. Nadjm-Tehrani 12:5

the data bus contention and the bus turn-around delay as a result of the data flow direction
change if a read is issued after a write or vice versa. RDintra

p is a result of multiple cores
accessing (different rows in) the same bank and is given by:

RDintra
p = reorder(p) +

∑
∀q:q 6=p ∧

shared(q,p) 6=∅

(Lconf + RDinter
q ) (2)

where reorder(p) calculates the delay from the reordering based on the number of queued
row hits (Nreorder) that may be scheduled before the request under analysis and Lconf is a
constant that represents a row-conflict in the same bank, which requires both a PRE and an
ACT command to close the current row and open a new row.

We use the request-driven approach presented by Kim et al. [8] since it does not make any
assumptions on the memory requests of applications running on other cores. The job-driven
approach can in some situations reduce the pessimism of the delays, but it requires us to
know the number of interfering memory requests from other cores and goes against the
reconfiguration ideas of Integrated Modular Avionics (IMA) [17].

Based on this, Kim et al. extend the classical response time test [7] to include the memory
interference delay:

Rk+1
i = Ci +

∑
τj∈hp(τi)

⌈
Rk
i

Tj

⌉
· Cj + Hi · RDp +

∑
τj∈hp(τi)

⌈
Rk
i

Tj

⌉
· Hj · RDp (3)

where Hi denotes the maximum number of memory requests generated by task i, Ci denotes
the WCET of task i when run in isolation, Ri denotes the response time of task i, and Ti
denotes the minimum inter-arrival time of task i. R0

i = Ci and the test terminates when
Rk+1
i = Rk

i .

4 SCE Adaptation

In this section we outline the steps needed to implement the SCE concepts on our evaluation
platform and RTOS. We assume that the applications tasks are organized in ARINC 653
partitions scheduled in a static cyclic schedule unique for each core.

Instead of implementing the cache-coloring concept, used by Mancuso et al. [12], we
utilize the ability to allocate cache ways for exclusive use by a specific core. In our system
(described later) the L2 cache is set up to allocate four ways to each of the four cores. This
effectively limits the available cache for each core to 512 KiB and will ensure that there is no
inter-core cache interference.

The memory request monitoring within the RTOS has been modified to also suspend
the partition if the counted number of memory requests exceeds a specified limit during its
partition window, in effect regulating the number of memory requests that can be issued
from a partition. This is accomplished by using the Performance Monitor Counters (PMCs)
to generate an interrupt at overflow. The budget is replenished at the start of each period.
The PMC is set up to count both the requests issued by the partition and the requests issued
by the RTOS itself. The sum of the memory budgets for all partitions must not exceed
the total number of requests possible during a regulation period as this would saturate the
DRAM controller and introduce additional delays.

Earlier Linux based bank partitioning assumes that the page size of the memory man-
agement unit (MMU) is smaller than the row size of the DRAM (i.e. 4KiB). This makes
it possible to always allocate contiguous virtual memory that will map to a set of physical
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memory pages belonging to the same bank. Our chosen RTOS uses a different approach,
where all memory is allocated using variable page sizes during initialization. This will
minimize page misses in the MMU to be handled by the RTOS, but it will also make it very
difficult to implement bank partitioning as the MMU page sizes used could possibly span
multiple DRAM banks. Therefore, we aim to use the SCE concepts adapted with the shared
bank interference delay estimations described in Section 2.

5 Validation of the SCE Adaptation

In this section we describe the methodology for validating the adapted SCE model using
the implemented SCE mechanisms (as described in Section 4) on the platform, and show
the validation results. We use the four avionics related applications from previous work [10]:
Nav, Mult, Cubic and Image. Without loss of generality, in this setup all partitions consist of
only one process (Nav has two, but we are only interested in the highest priority one), which
simplifies the response time calculations. Equation 3 is therefore reduced to Ri = Ci+Hi·RDp.

5.1 Methodology
We use the following method for validating the WCRT estimations:

We estimate the WCET and count the number of memory requests for each partition in
isolation.
The worst-case response time for each partition when executing in parallel is calculated
based on the (adapted) SCE formulas.
We measure the (worst case) response time for each partition and compare with the
calculated estimates.
For critical partitions where calculations indicate a small margin to the relative deadline,
we perform additional interference studies with a memory-intensive synthetic application
to ensure that maximum memory bank interference is properly accounted for.

Each application is run inside one partition and deployed to different cores and they all
execute in 60 Hz. We run the system in an asymmetric multiprocessing (AMP) configuration
(i.e. each core has its own instance of the RTOS).

The experiments are performed on an NXP (Freescale) T4240 using only one cluster
with four cores sharing the 2048 KiB L2 cache, which is partitioned to allocate four ways
for each core resulting in each core having 512 KiB of L2 cache each. Without loss of
generality, we have in this work disabled the reordering of requests in the DRAM controller
(i.e. Nreorder = 0).

5.2 WCET Estimation
Single-core WCET can be estimated either using static analysis, by measuring the execution
time of the application when running on the target hardware or by some hybrid method. In
this work we use a measurement approach where we (manually) insert instrumentation points
(IPOINTs) that can be used to derive an estimate of the WCET. The four applications are
run in isolation on core 0 with the rest of the cores disabled. Table 2 shows the measured
WCET and the number of memory requests per period for each application and also for the
RTOS.

To ensure that the IPOINTs do not introduce any unintentional probe effects, we measure
the execution overhead of an IPOINT and also the number of memory requests with and
without IPOINTS in the applications. The maximum execution time of one IPOINT is 23 ns,
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Table 2 Characterization of partitions in isolation.

Partition Period (µs) WCET (C) (µs) Memory Requests (H)
(Partition) (RTOS)

Nav 16667 14 93 54
Mult 16667 16615 21740 160
Cubic 16667 9345 45 38
Image 16667 4391 560 40
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Figure 1 Theoretical interference delay when using four cores.

which gives a maximum overhead of 0.5 percent per partition window. No significant increase
of memory requests is observed when using IPOINTs.

5.3 Response Time Calculations and Measurements
To calculate the response time we need the interference delay, RDp. Using the equations in
Section 2 and the DRAM timing parameters in Table 1 we calculate RDinter

p and RDintra
p to

get RDp. Figure 1 shows the calculated intra- and inter-bank delays as well as the combined
delay (RDp). Intuitively, one would imagine that a higher number of cores gives higher
interference. However, as we can see the maximum delay does not occur when all four cores
share the same bank. This is a result of intra-bank delay depending on the inter-bank delay
for other cores (Equation 2). When all cores access the same bank the inter-bank delay is
zero, which will result in the seen delay time drop, given an Lconf smaller than the

∑
RDinter

q

contributing in the case with two cores sharing bank. In the following estimates we use the
maximum total interference corresponding to the highest point on the curve (209 ns).

The estimated WCRT listed in Table 3 show that the calculated response time of Nav,
Cubic and Image is safely below their relative deadline, but for Mult the estimated WCRT
exceeds the relative deadline. Mult performs several orders of magnitude more memory
requests compared to Nav, Cubic and Image. For every partition window we use the earlier
mentioned IPOINTs to record response times over a 30 second interval (1800 measurements)
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Table 3 Maximum response time of partitions.

Partition Core Response time (R) (µs)
Estimated Measured

Nav 0 45 14
Mult 1 21192 16620
Cubic 2 9362 9345
Image 3 4516 4391

Table 4 Measured maximum response time of Mult with memory intensive tasks in parallel.

Partition Core Response time (R) (µs)
No regulation Regulation

Mult 0 17075 16654

with partition placement on cores according to column 2. The maximum measured response
time is then disclosed in column 4.

This shows that when the partitions execute in parallel no partition misses deadlines
though the critical application Mult has a tight margin (see periods in Table 2). We can
also see that the WCRT measurements do not differ in any significant way from the WCET
measurements in that table. The memory controller can service all the memory requests
without being saturated. The memory access patterns of the partitions are such that they do
not interfere in many instances. The estimation model assumes that all cores issue memory
requests simultaneously. To ensure the measurements are not overly optimistic we perform
additional measurements on Mult, whose estimated WCRT exceeds its relative deadline, in a
scenario with maximal memory interference.

5.4 Studying Critical Processes Individually
When we run Mult on core 0 in parallel with a memory intensive task deployed on core
1–3 with disabled memory access regulation, Mult misses its deadline. If we turn on the
memory regulation, mentioned in Section 4, for the memory intensive tasks on core 1–3 with
a suitable budget we notice that Mult does not miss its deadline. This shows that given
a suitable restriction of memory accesses by partitions running on other cores we are able
to run Mult within its time constraints. So, for the critical task, the correct estimation
of regulation budget of other tasks is essential. To measure Mult’s response time in this
scenario we disable the overrun detection function and perform repeated experiments where
the memory budgets of the memory intensive tasks were reduced until a WCRT value below
the relative deadline was found for Mult. The resulting response times (with and without
regulation) can be found in Table 4.

5.5 Applying the Method to an Earlier Benchmark
To further assess the validity of the approach we also use the Latency and Bandwidth
benchmarks from Yun et al. [24], adapted to our environment and RTOS, to measure the
worst-case memory interference. The benchmarks are modified to enable us to direct the
requests from Bandwidth to a specified DRAM memory bank. We run Latency on core
0 and Bandwidth on core 1–3 several times with different number of Bandwidth instances
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Figure 2 Comparison of measured and estimated request time.

targeting the same DRAM memory bank as Latency. These measurements compared to the
estimations are shown in Figure 2. As we can see, the estimations are a conservative (and
possibly somewhat pessimistic) approximation of the measurements.

6 Conclusion

In this paper we have presented an adaptation of the SCE framework for an avionics ARINC
653 RTOS targeting the T4240 multi-core SoC from NXP. We have relaxed the constraints of
requiring private memory banks for each core and our adaptation provides an analytic upper
bound on the interference delay. The implementation on the avionics platform has been used
to understand and validate the revised SCE framework using both synthetic and realistic
applications for avionics systems. Our work has highlighted an interesting aspect of the
calculated response times as a function of the number of cores, namely that the maximum
core deployment need not give maximum memory bank interference. It also justifies the use
of the SCE framework as an approach to assess schedulability of critical tasks on multi-core
platforms. As future work, we will examine the DRAM request reordering we turned off in
this work and an improved model of the DRAM controller for more precise estimates.
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