
2017 Imperial College
Computing Student Workshop

ICCSW 2017, September 26–27, 2017, London, United Kingdom

Edited by

Fergus Leahy
Juliana Franco

ICCSW17

OASIcs – Vo l . 60 – ICCSW 2017 www.dagstuh l .de/oas i c s

Editors
Fergus Leahy Juliana Franco
Department of Computing Department of Computing
180 Queen’s Gate, London, SW7 2AZ 180 Queen’s Gate, London SW7 2AZ
United Kingdom United Kingdom
fergus.leahy@imperial.ac.uk j.vicente-franco@imperial.ac.uk

ACM Classification 1998
D.1.3 Concurrent Programming, D.2.2 Design Tools and Techniques, D.2.8 Performance measures, D.2.11
Software Architectures, D.3.3 - Language Constructs and Features, D.4.7 Distributed systems, D.4.8
Performance, E.1 Trees, F.1.2. Models of Computation - Probabilistic Computation, F.4.1. Mathematical
Logic, F.4.2. Formal Languages, G.1.6 Optimization, G.3 Probability and Statistics, H.2.4 Concurrency,
H.5.2 User Interfaces, I.2.6 Learning, K.0 General, K.2 History of Computing.

ISBN 978-3-95977-059-0

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-059-0.

Publication date
February 2018

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.ICCSW.2017.0

ISBN 978-3-95977-059-0 ISSN 1868-8969 http://www.dagstuhl.de/oasics

http://www.dagstuhl.de/dagpub/978-3-95977-059-0
http://www.dagstuhl.de/dagpub/978-3-95977-059-0
http://dnb.d-nb.de
http://dx.doi.org/10.4230/OASIcs.ICCSW.2017.0
http://www.dagstuhl.de/dagpub/978-3-95977-059-0
http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

0:iii

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 2190-6807

http://www.dagstuhl.de/oasics

ICCSW 2017

http://www.dagstuhl.de/dagpub/2190-6807
http://www.dagstuhl.de/oasics

Contents

Keynotes

How to Write a Great Research Paper
Simon Peyton Jones . 1:1–1:1

Optimizing the Unoptimizable: A Whirlwind Tour of JavaScript
Leszek Swirski . 2:1–2:1

Regular Papers

Improving the Latency and Throughput of ZooKeeper Atomic Broadcast
Ibrahim EL-Sanosi and Paul Ezhilchelvan . 3:1–3:10

Demand for Medical Care by the Elderly: A Nonparametric Variational Bayesian
Mixture Approach

Christoph F. Kurz and Rolf Holle . 4:1–4:7

Discriminative and Generative Models for Clinical Risk Estimation: an Empirical
Comparison

John Stamford and Chandra Kambhampati . 5:1–5:9

Hey there’s DALILA: a DictionAry LearnIng LibrAry
Veronica Tozzo, Vanessa D’Amario, and Annalisa Barla . 6:1–6:14

Faster Concurrent Range Queries with Contention Adapting Search Trees Using
Immutable Data

Kjell Winblad . 7:1–7:13

Abstracts

Gesture Recognition and Classification using Intelligent Systems
Norah Alnaim and Maysam Abbod . 8:1–8:1

KubeNow: A Cloud Agnostic Platform for Microservice-Oriented Applications
Marco Capuccini, Anders Larsson, Salman Toor, and Ola Spjuth 9:1–9:2

ICCSW172017 Imperial College Computing Student Workshop (ICCSW 2017).
Editors: Fergus Leahy and Juliana Franco

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/oasics/
http://www.dagstuhl.de/en/about-dagstuhl/

Preface

Welcome to the 2017 Imperial College Computing Student Workshop (ICCSW’17), the sixth
workshop in its series. ICCSW was initiated with a “by students, for students” spirit: a
workshop organised solely by students to give student speakers the opportunity to present
their work. The organising students gain the valuable experience of what is involved in
conference organisation, including writing a call for sponsors, taking part in the reviewing
process, and chairing a session. On the other hand, the participating students benefit from
the interaction with international researchers who are at a similar stage in their career and
developing skills in presenting their research to a non-specialist computer science audience.

This volume contains the papers accepted for presentation at the 2017 Imperial College
Computing Student Workshop. ICCSW’17 received 12 submissions, including both papers
and abstracts, from 6 different countries. After the thorough reviewing process and discussion
by members of the Imperial College ACM Student Chapter 6 papers and 2 abstracts were
accepted, representing a 75% acceptance rate.

After a year hiatus, ICCSW was back for more, more student talks, more keynotes, more
socials and a new addition of a breakfast poster session. ICCSW’17 was a great success on
all fronts, with over 30 students attending a variety of interesting and novel talks, covering
systems, cloud, networking, programming languages and machine learning. This year we also
hosted two exciting keynotes covering Google’s V8 Javascript engine (Leszek Swirski) and
How to write a great paper (Simon Peyton Jones), both of which saw upwards of 50 students
and staff attend, and included some really insightful Q&A. To their merit, students arose
first thing in the morning ready to be quizzed on their work at our breakfast poster session,
as inquisitive wanderers chowed down on croissants, coffee and enlightening conversation. For
our social event, we invited the students and our Googler to explore the Sky Garden atop the
Walkie-Talkie and took them on a tour of the surrounding London sights, including the Tower
of London and Tower Bridge, before settling down for 3 courses of pizza-and-pasta-riffic food
at Pizza Express.

ICCSW’17 has been a great success - but absolutely could not have been done without
the dedication and perserverence from the ICCSW committee, hard work and patience from
the student authors, assistance from our network of ambassadors in disseminating the calls,
financial support from our sponsors and the gratiutous support from the department here at
Imperial; all of whom we would like to thank dearly.

We wish the best of luck to the new committee. Until next year!

Juliana Franco and Fergus Leahy,
ICCSW’17 Editors,
Chair & Vice-Chair,
ACM Student Chapter 2016 – 2017.

ICCSW172017 Imperial College Computing Student Workshop (ICCSW 2017).
Editors: Fergus Leahy and Juliana Franco

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/oasics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:viii Preface

ICCSW’17 Social Photo

Figure 1 ICCSW visits the sky garden.

Conference Organisation

Organising Committee

Juliana Franco Imperial College London
Fergus Leahy Imperial College London
Kyriacos Nikiforou Imperial College London
Simon Olofsson Imperial College London
Mengjiao Wang Imperial College London
Pamela Bezerra Imperial College London
Shale Xiong Imperial College London
Oana Cocarascu Imperial College London
Assel Altayeva Imperial College London
Nick Pawlowski Imperial College London
Casper da Costa-Luis Imperial College London

Imperial College London
ACM Student Chapter
http://acm.doc.ic.ac.uk/

ICCSW172017 Imperial College Computing Student Workshop (ICCSW 2017).
Editors: Fergus Leahy and Juliana Franco

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://acm.doc.ic.ac.uk/
http://www.dagstuhl.de/en/publications/oasics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:x Conference Organisation

Ambassadors
Jasper Schulz Kings College, UK
Fabio Niephaus Hasso-Plattnner-Institut, Germany
Kiko Fernandez Uppsala University, Sweden
Phuc Vo Uppsala University, Sweden
Daniel Hillerstrom University of Edinburgh, UK
Kim-Anh Tran Uppsala University, Sweden
Stephan McQuistin University of Glasgow, UK
Marija Jegorova University of Edinburgh, UK
Dionysis Manousakas University of Cambridge, UK
Ana-Maria Sutii Eindhoven University of Technology, The Netherlands
Tatjana Davidovic Serbian Academy of Science and Arts, Serbia
Darren Matthews Royal Holloway, University of London, UJ

Supporters and Sponsors

Supporting Scientific Institutions

Imperial College London
http://www.imperial.ac.uk/

HiPEDS: Imperial College London
http://wp.doc.ic.ac.uk/
hipeds/

Platinum Sponsor

Google Inc.
http://www.google.com/

ICCSW172017 Imperial College Computing Student Workshop (ICCSW 2017).
Editors: Fergus Leahy and Juliana Franco

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.imperial.ac.uk/
http://wp.doc.ic.ac.uk/hipeds/
http://wp.doc.ic.ac.uk/hipeds/
http://www.google.com/
http://www.dagstuhl.de/en/publications/oasics/
http://www.dagstuhl.de/en/about-dagstuhl/

How to Write a Great Research Paper
Simon Peyton Jones

Microsoft Research Cambridge, United Kindgom

Abstract
Writing papers is a core research skill for any researcher, but they aren’t easy. Writing is not
just a way to report on great research; it’s a way to do great research. Yet many papers are so
badly written that, even if they describe excellent work, the work has much less impact than it
should. In this talk I’ll give you seven simple, actionable guidelines that will, I hope, help you
to write better papers, and have more fun at the same time. I don’t have all the answers—far
from it—and I hope that the presentation will evolve into a discussion in which you share your
own insights, rather than a lecture. The slides and video presentation are available online 1.

Simon Peyton Jones, FRS, graduated from Trinity College Cambridge in 1980. After two
years in industry, he spent seven years as a lecturer at University College London, and nine years
as a professor at Glasgow University, before moving to Microsoft Research (Cambridge) in 1998.

1998 ACM Subject Classification K.0 General

Keywords and phrases Academia, Research, Writing

Digital Object Identifier 10.4230/OASIcs.ICCSW.2017.1

Category Keynote

1 https://www.microsoft.com/en-us/research/academic-program/write-great-research-paper/

ICCSW17© Simon Peyton Jones;
licensed under Creative Commons License CC-BY

2017 Imperial College Computing Student Workshop (ICCSW 2017).
Editors: Fergus Leahy and Juliana Franco; Article No. 1; pp. 1:1–1:1

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2017.1
https://www.microsoft.com/en-us/research/academic-program/write-great-research-paper/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

Optimizing the Unoptimizable: A Whirlwind Tour
of JavaScript
Leszek Swirski

Google Inc., London, United Kingdom

Abstract
A whirlwind tour through the history and state-of-the-art of JavaScript execution and optimiza-
tion, with a focus on the V8 engine used by Chrome and Node.js, and how a 10-day prototype
became one of the most important programming languages in the world.

Leszek Swirski has been a software engineer at Google for two years, first in California, now in
London, working on the performance of the Android camera and the V8 Javascript engine. Before
joining Google, Leszek did a PhD in the University of Cambridge, researching gaze estimation
(a.k.a. eye tracking) on stereoscopic (a.k.a. “3D”) displays.

1998 ACM Subject Classification D.3.3 Language Constructs and Features, K.2 History of
Computing

Keywords and phrases Javascript, NodeJS

Digital Object Identifier 10.4230/OASIcs.ICCSW.2017.2

Category Keynote

ICCSW17© Leszek Swirski;
licensed under Creative Commons License CC-BY

2017 Imperial College Computing Student Workshop (ICCSW 2017).
Editors: Fergus Leahy and Juliana Franco; Article No. 2; pp. 2:1–2:1

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2017.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

Improving the Latency and Throughput of
ZooKeeper Atomic Broadcast
Ibrahim EL-Sanosi1 and Paul Ezhilchelvan2

1 Faculty of Information Technology, Sebha University, Sebha, Libya and
School of Computing, Newcastle University, Newcastle Upon Tyne, United
Kingdom
i.elsanosi@sebhau.edu.ly
i.s.el-sanosin@ncl.ac.uk

2 School of Computing, Newcastle University, Newcastle Upon Tyne, United
Kingdom
paul.ezhilchelvan@ncl.ac.uk

Abstract
ZooKeeper is a crash-tolerant system that offers fundamental services to Internet-scale applica-
tions, thereby reducing the development and hosting of the latter. It consists of N ≥ 3 servers
that form a replicated state machine. Maintaining these replicas in a mutually consistent state
requires executing an Atomic Broadcast Protocol, Zab, so that concurrent requests for state
changes are serialised identically at all replicas before being acted upon. Thus, ZooKeeper per-
formance for update operations is determined by Zab performance. We contribute by presenting
two easy-to-implement Zab variants, called ZabAC and ZabAA. They are designed to offer small
atomic-broadcast latencies and to reduce the processing load on the primary node that plays a
leading role in Zab. The former improves ZooKeeper performance and the latter enables Zoo-
Keeper to face more challenging load conditions.

1998 ACM Subject Classification D.2.8 Performance measures, D.4.7 Distributed systems

Keywords and phrases Atomic Broadcast, Server Replication, Protocol Latency, Throughput

Digital Object Identifier 10.4230/OASIcs.ICCSW.2017.3

1 Introduction

Apache ZooKeeper [5] is a high-availability system that is designed to offer several fundamental
services to Internet-scale distributed applications. It is a widely used, industrial-strength
system because it relieves large-scale applications from having to build fundamental services
themselves. Some of the services offered by ZooKeeper include: leader election (used by
Apache Hadoop [9]) and failure-detection and group membership configuration (by HBase
[3]).

ZooKeeper is built as a replicated system using N, N ≥ 3, fail-independent servers. At
most f = bN−1

2 c of these N servers can crash which means that ZooKeeper can continue to
provide uninterrupted services to applications as long as crashed servers are replaced and at
least f + 1 servers are operative at any given time.

ZooKeeper uses the atomic broadcast protocol, Zab [5], to ensure that ZooKeeper servers’
states and its clients are kept in a consistent state. Zab is typically composed of three to
seven machines which are used for replicating data in order to achieve high availability. In
ZooKeeper, one of the nodes has a leader role and the rest have follower roles. The leader is
responsible for accepting all incoming state changes (write requests) from the clients and
replicating them to all servers in the ensemble through Zab.

ICCSW17© Ibrahim EL-Sanosi and Paul Ezhilchelvan;
licensed under Creative Commons License CC-BY

2017 Imperial College Computing Student Workshop (ICCSW 2017).
Editors: Fergus Leahy and Juliana Franco; Article No. 3; pp. 3:1–3:10

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2017.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

3:2 Improving the Latency and Throughput of ZooKeeper Atomic Broadcast

However, many leader-based protocols, including Zab, have problems associated with
overloading, weak writes as well as scalability and bottleneck that occur under write-intensive
workloads [2, 7, 10]. In Zab, write requests always take longer to process, as they must go
through the Zab and the leader replica, which requires extra tasks to propagate the requests
to all followers since three communication steps are needed to broadcast a single write request.
Consequently, this can add more latency to the requests and decrease performance.

In this paper, we present two atomic broadcast protocols, ZabAC and ZabAA. ZabAC
accomplishes write request in two-rounds of communication, namely the proposal and
acknowledgement-commit rounds. ZabAC is similar to the Zab protocol, the different is
that ZabAC executes a write in two communication steps rather than three. However,
ZabAC works only in a three server ensemble. ZabAA can also accomplish a write in two
communication steps, and moreover unlike ZabAC, it can utilise any ensemble size, N. We
discuss these two approaches in more detail in section 3.

The remainder of the paper is structured as follows. Section 2 describes the design of Zab,
an atomic broadcast protocol for the ZooKeeper coordination service. Section 3 describes the
protocols we developed. Section 4 provides a thorough performance evaluation of the ZabAC
and ZabAA model compared to the existing Zab approach. Section 5 discusses related work.
Finally, section 6 concludes the paper and the outlook for our future research.

2 ZooKeeper Atomic Broadcast Protocol

ZooKeeper is implemented using an ensemble of N , N ≥ 3, fail-independent and fully-
connected servers. In practice, N is an odd number, typically 3-7 servers [4]. The following
assumptions are made by ZooKeeper.

A1 – Crash Tolerance.

Servers can crash and at least N+1
2 servers are operational at any time. Thus, up to f ,

f = bN−1
2 c, server crashes are tolerated.

A2 – Reliable and Source-Ordered Communication.

Servers are connected by a reliable communication subsystem in which messages are never
lost and are received in the order in which there are sent. More precisely, if a server sends a
message m then all operative destinations receive m within some finite time; if a server sends
m1 followed by m2, any common destination for m1 and m2 will receive m1 before m2.

ZooKeeper servers are basically replicas of each other and each maintains a copy of the
application state. A Zookeeper client can submit its request or signal an event to any server.
If the processing of requests or events from clients does not involve modifying the application
state, then the server will respond directly to the client without involving the other servers.

If however a client request requires modifying the application state, this will be handled by
all servers in a mutually consistent manner; that is, it will be identically ordered against any
concurrent requests/events received at other servers before it is processed. Ensuring identical
order on concurrent requests and events is accomplished through Zab, the ZooKeeper atomic
broadcast protocol.

Zab is an asymmetric protocol in its structure: it designates one of the ZooKeeper servers
as the leader and the rest as followers. As with the well-known 2-Phase commit protocol
in database transactions [1], atomic broadcasting can be initiated only by the leader and

I. EL-Sanosi and P. Ezhilchelvan 3:3

ZooKeeper Services

ZooKeeper Atomic Broadcast

Leader Follower1 Follower2

1. Write Request

3. Response

2. Broadcast Write
Response

Write Request

Forward Write

Figure 1 Write Operations in ZooKeeper.

followers respond to what they receive. Figure 1 depicts how requests and events requiring
state modification are handled by ZooKeeper.

When a follower receives a write request from a client (shown in blue in Figure 1),
it forwards it to the leader. Whenever the leader receives a write request that has been
forwarded to it by a follower or sent to it directly by a client, it initiates a Zab execution
for that request. The execution ensures that the request is delivered to all servers in the
same order and only the server that received the request directly from the client returns a
response.

2.1 Zab Protocol

It consists of the following steps.
L1: Leader initiates proposal(m) (state change request) by proposing a sequence number
m.c for m and by broadcasting its proposal(m) to all processes, including itself;
F1: A follower, on receiving proposal(m), logs m and then sends an acknowledgement,
ack(m), to the leader;
L2: Leader sends ack(m) to itself after logging m. On receiving ack(m) from a quorum,
it broadcasts commit(m) before commit(m′: m′.c = m.c + 1) is broadcast;
F2: A follower, on receiving commit(m), delivers m.
L3: Leader, on receiving commit(m) (from itself), delivers m.

2.2 Crash-Tolerance Invariant

Let Π be the set of ZooKeeper servers: Π ={p1, p2,, pN}. Let Q be the set of all majority
subsets or quorums of Π: Q = {Q : Q ⊆ Π ∧ |Q| > f = bN−1

2 c}.
For example, when N = 3, Q = {{p1, p2}, {p2, p3}, {p3, p1}, {p1, p2, p3}}.

The invariant is as follows: If any server delivers mi, then all servers in some Q ∈ Q have
logged mi locally.

To see informally that this invariant is a requirement for crash-tolerance provisions,
suppose that the leader delivers mi and then crashes, possibly before broadcasting the
commit message for mi. Some quorum of servers, say Q′, will elect the new leader and inform
it of all messages proposed by leader that crashed. Suppose that the invariant holds and
there is a quorum Q of servers that have logged mi. By definition, Q and Q′ must intersect.
Q′ cannot contain the leader that crashed. Thus, Q and Q′ must have at least one server
in common that is not the crashed leader. That server will instruct the new leader of the
existence of mi and of the need to complete the delivery of mi by all followers.

ICCSW 2017

3:4 Improving the Latency and Throughput of ZooKeeper Atomic Broadcast

3 Zab Alternatives

In this section, we present two protocols that also preserve the crash-tolerance invariant (see
section 2.2). The first protocol, called ZabAC, works only when N = 3 and the second, called
ZabAA, is developed for when N > 3.

3.1 ZabAC
The design of ZabAC is based on the observation that when N = 3, the crash-tolerance
invariant is satisfied as soon as a follower locally logs the proposal received from the leader.
This is because when N = 3, any two servers constitute a quorum and, given that the leader
broadcasts its proposal only after logging it locally, the follower can deliver a proposal as
soon as it logs it locally; that is, a follower does not have to wait for an explicit commit
message from the leader. The letters AC in ZabAC stand for the optimisation that followers
can acknowledge and commit, without having to wait for an explicit commit message from
the leader.

The key stages of the ZabAC protocol are detailed below. Note that v stands for a write
request.
1. Leader Logs and Sends Atomic Broadcast – Process a proposal 〈v, zxid〉 and broad-

cast it to all processes in Π.
2. Follower Delivers a Proposal – Receive, log a proposal 〈v, zxid〉, send an acknowledge-

ment for 〈zxid〉 to the leader and deliver a proposal 〈v, zxid〉.
3. Leader Delivers a Proposal – Receive an acknowledgement for 〈zxid〉, compute a ma-

jority of ACK (acknowledgement) and deliver a proposal 〈v, zxid〉.

3.1.1 ZabAC Implementation Details
We explore the inner workings of each step of the ZabAC protocol. We describe each step in
the order in which they are executed by the protocol.

1. Leader Sends Atomic Broadcast (Proposal Stage)

Prior to commencing the broadcast, a leader places a client’s write operation in its Broadcast
Request Pool (BRP), which holds all client write operations until they are broadcast. When
BRP contains operations, a single thread, called send thread, is utilised for retrieving the
operations from the BRP and broadcasting them to all processes in Π. Operations are
retrieved from the BRP in the order in which they were originally received (FIFO). Upon
retrieving an operation, the send thread creates a proposal message which includes a tuple
〈v, zxid〉 that uniquely identifies the broadcast.

Note that, before broadcasting a proposal message, the send thread places it in a
list called pending until it receives acknowledgements from a quorum of processes. The
pending list contains the proposals. Each proposal waits for a quorum of processes to send
acknowledgements to the leader. In parallel, the send thread stores the proposal in logging
list and periodically logs the list contents in persistent storage for recovery purpose.

2. Follower Delivers a Proposal (Acknowledgment and Commit Stage)

A follower, on receiving the proposal, first places it in a logging list and periodically logs the
list’s contents on a disk. After this, the follower must certify that the proposal has the highest
zxid that has been received and precedes the last committed zxid. Since the ZabAC uses

I. EL-Sanosi and P. Ezhilchelvan 3:5

reliable communication and FIFO when exchanging messages and the leader sends a proposal
in the order according to its zxid, the proposal can always be certified, except when a crash
occurs before has been certified the proposal. Once a proposal is certified, the follower, in
parallel, sends an ACK message to the leader and commits the proposal, delivering it to
the memory. Upon certifying a proposal, the followers deliver the proposal due to receiving
ACKs from quorum of processes: a follower receives one ACK from the leader, piggybacked
with the proposal, and one from itself when it acknowledges the proposal.

3. Leader Delivers a Proposal

Upon receiving an ACK, the leader delivers the proposal as it receives ACKs from a quorum
of processes: it receives one from itself and one from any followers. Note that each process
has a delivered list which stores all delivered proposals for future read requests by clients.
Unlike Zab, ZabAC’s leader does not need to send a commit message to the followers as each
follower commits the change locally as soon as it receives ACKs from a quorum of processes.
As a result we save one-third of the communication steps compared to Zab.

Moreover, there are similarities between Zab and ZabAC in the way that proposals are
delivered from the perspective of the leader replica. In Zab and ZabAC, a proposal 〈v, zxid〉
is delivered as soon as the leader receives an ACK from any follower. However, ZabAC’s
leader does not need to process and send a commit message to Π. One major difference
between Zab and ZabAC is that the followers in ZabAC always deliver a proposal before the
leader does, while it is the other way round in Zab.

3.2 ZabAA
ZabAA is developed for any N and as with ZabAC it has been designed so that the leader
does not have to broadcast commit messages to its followers. This is achieved by having
followers broadcast acknowledgements to every server in the system (AA in ZabAA stands
for Acknowledge All). A follower commits a proposal after it (i) receives that proposal from
the leader and (ii) knows that at least f followers have acknowledged that proposal. Note
that (i) and (ii) ensure that the crash-tolerance invariant is preserved: committing a proposal
by a follower occurs only after the leader and at least f followers have logged that proposal
locally, and when any subset of f + 1 servers constitute a quorum in Π.

Like ZabAC, ZabAA requires two communication steps: Proposal and Acknowledgement-
Commit rounds. Proposal and Commit stages remind unchanged (They are similar to
ZabAC implementation). However, the number of acknowledgement messages sent between
followers increases quadratically with N . Note that ZabAA does not increase the number of
acknowledgements that are sent to the leader. ZabAA thus trades-off against higher message
overhead for followers. The quadratic increase in follower message overhead may off-set the
gain from reduced follower latencies as N increases. Yet, it is worth investigating ZabAA to
study the effect of this trade-off for small values of N , particularly for N = 5 which is the
second most typically value (after N = 3).

4 Experiments and Performance Evaluation

In this section, we present a comparative evaluation of Zab, ZabAC and ZabAA. We study
different performance metrics: namely latency and throughput.

We used 250 simultaneous clients executed on 10 machines; with each machine operating
up to 25 clients. Up to 5 machines were dedicated to run evaluated protocols, typical

ICCSW 2017

3:6 Improving the Latency and Throughput of ZooKeeper Atomic Broadcast

ZooKeeper installations use 3-7 servers, so 5 is just smaller compared to a typical setting [5].
All machines in the experiment utilised commodity PCs of 2.80GHz Intel Core i7 CPU and
8GB of RAM, running Fedora 21 and communicating over 100 Mbps Switched Ethernet.

The evaluated protocols were implemented in Java (JDK 1.8.0) on the top of the JGroups
framework; JGroups is a toolkit for reliable communication and it is used to establish a
group membership where members can send messages to each other. All messages were
transmitted using JGroups’ reliable UDP. As well as using a reliable UDP, the JGroups’
UNICAST3 protocol is used to provide node-to-node ordering as the default for each message
sent. Utilising a UNICAST3 protocol provides FIFO ordering similar to a TCP protocol.

Each request consists of a read or write with 1000 bytes of maximum payload, which
represents a typical request size [5]. In our experiment, 1 million requests were sent. Each
client was responsible for sending (106

10machines)
25clients requests. To distribute the load equally on the

server protocols, the clients sent the requests to the protocol in a round robin manner. Our
benchmark client used the synchronous JGroups client API.

Experiments are run in failure-free scenarios. Furthermore, servers do not log a proposal
message in disk (as ideally required) but only record the proposal in main-memory. Thus
the performance figures we present here do not include disk write delays, but only network
delays. This kind of evaluations corresponds to the ’Net-Only’ category of the evaluations in
[5] where several ways of logging have been considered. Since Zab and proposed protocols
require logging of the proposal message exactly at the same point in the execution for every
broadcast, ignoring delays due to disk writes cannot invalidate the integrity of observations
made and conclusions drawn from the performance figures.

Note that the latency is defined here as t1 − t0 where t0 is the time at which a client
sends a request to a protocol’s server and t1 is the time at which the client receives a replay
message from the server. So, the final latency is an average of the computed latencies for
all clients. We compute the average of 1000000 such latencies and repeat the experiment
10 times for a confidence interval of 95%. Throughput is defined as the number of requests
made by all servers per unit time and is computed, like latencies, with a 95% confidence
interval.

4.1 Zab vs ZabAC

In this experiment, we deployed Zab and ZabAC in a three-server ensemble since ZabAC
works only when N = 3. Figure 2a shows the latency in milliseconds (ms) of the mixed
workload (the ratio of writes to reads) as the percentage of writes was increased. The figure
shows that increasing the number of writes has a negative impact on the performance of
Zab and ZabAC. The reason the performance is affected is because write requests must go
through atomic broadcast, which requires additional processing and adds more latency to
requests whereas read requests require the server to only read data from the local replica’s
state.

The graph also shows that the latency for ZabAC is lower than for Zab in all writes
to reads ratios. For example, with a 100% writes, ZabAC’s latency is approximately 37
ms whereas Zab’s latency is 44 ms. This finding was expected because ZabAC has lower
overheads as a result of fewer messages being broadcast generally and more specifically
because it dispenses with the leader having to send commit messages to its followers.

Figure 2b shows a throughput comparison between Zab and ZabAC. Throughout the
figure, ZabAC has a higher throughput compared to Zab in all cases, with the maximum
difference being 846 operations per second (ops/sec) (operations size is 1000 bytes) when

I. EL-Sanosi and P. Ezhilchelvan 3:7

0

10

20

30

40

50

60

25 50 75 100

Write Ratio

L
a
te

n
c
y
 (

m
s
)

Zab ZabAC

(a) Latency comparison

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

25 50 75 100

Write Ratio

T
h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
)

Zab ZabAC

(b) Throughput comparison

Figure 2 Performance comparison, varying the ratio of writes to reads.

the number of writes is 100%. This is due to the fact that in ZabAC there are fewer
communication patterns and less network traffic than in Zab. In other words, reducing the
number of communication steps results in less computation being performed by the leader,
which creates a significant throughput advantage for ZabAC.

4.2 Zab vs ZabAA
In this section, we investigate the effect of ensemble size in Zab and ZabAA.

Figures 3a and 3b show how latency varies according to the size of the ensemble and
the workload (the ratio of writes to reads requests). Each figure corresponds to a different
ensemble size. We can see that the larger the ensemble size, the higher latency there is
in both Zab and ZabAA. This is because the leader needs to synchronize its state with a
quorum of replicas, that is, the larger the ensemble size, the longer the leader has to wait
before delivering a proposal (for instance, with an ensemble size of three (N = 3), only two
acknowledgements are needed whereas with an ensemble size of five (N = 5) the leader must
wait until it receives an acknowledgement from three replicas). Thus, increasing the ensemble
size has an impact on both latency and throughput.

Moreover, each figure shows that latency increases when the workload includes more
writes than reads. This could be due to the fact that write requests must go through atomic
broadcast and this requires additional processing which, in turn, causes further delay, thus
increasing latency.

Comparing ZabAA with Zab, we observe that ZabAA experiences lower latency than
Zab for all types of workload and ensemble size. Moreover, the difference becomes more
significant when the percentage of write requests increases. For example, with 100% writes
and an ensemble size of three, latency is approximately 37 ms for ZabAA and 44 ms for Zab.
Likewise, with 100% writes and an ensemble size of five, latency is approximately 95 ms
for ZabAA and 103 ms for Zab. This difference in latency between ZabAA and Zab stems
from the fact that in ZabAA only two communication steps are required to deliver a request
whereas in Zab three communication stages are needed.

ICCSW 2017

3:8 Improving the Latency and Throughput of ZooKeeper Atomic Broadcast

Unsurprisingly, when the percentage of read requests increases, small differences were
found between Zab and ZabAA in term of latency, although ZabAA experiences slightly
lower latency than Zab. This small difference in latency could be due to the fact that, as
previously stated in section 2, reads are in-memory operations and are serviced from the
local replica which means no agreement protocol needs to be run and therefore, latency are
decreased and becomes less significant when comparing ZabAA with Zab.

Figure 4a and 4b shows how throughput varies with the number of servers and a mixed
workload. The figures indicate that since the leader propagates a proposal to all followers,
the throughput must drop as the number of servers increases. Another possible explanation
for a decrease in the throughput is that as we scale the number of servers (from three to
five), we saturate the network card of the leader. Therefore, the throughput of the evaluated
protocols depends on the number of servers connected to the leader as well as write ratio.

Comparing the two protocols, it can be seen that at 100% writes, ZabAA’s through-
put is higher than that of Zab, with the maximum difference being relatively significant,
approximately 520 ops/sec for N = 3 and 278 ops/sec for N = 5. There are two possible
explanations for this result. First, ZabAA’s leader does not process and broadcast the commit
message, unlike in Zab. Second, ZabAA only requires two communication steps to complete
write request whereas Zab requires three communication steps. However, the difference in
throughput becomes less noticeable as the number of reads increases; the reason being once
again that, no additional CPU processing or network load when servicing read requests (in
both ZabAA and Zab), which in turn makes the difference between ZabAA and Zab in terms
of throughput of less significant. In fact, an increase in the number of reads to writes leads
to better overall performance in both protocols.

One interesting observation that has arisen from this experiment is that the ZabAA
protocol has a better performance than Zab in terms of latency and throughput at 100%
write when N = 3 and 5. We observe that broadcasting an acknowledgement to all servers
in the ensemble does not seem to impair the overall performance, but it might impact on
the performance if N increases to 7 or more as the number of acknowledgment broadcast
increases.

5 Related Work

Leader based protocols tend to overload the leader and several authors [2, 7, 10, 6] have
sought to remedy this drawback. S-Paxos [2] relieves the leader from broadcasting client
requests by separating the roles of request dissemination and request ordering. Each process
directly broadcasts client requests to others and request ordering is done using only request
identifiers. Chain replication [10] reduces the leader load by distributing the role between
two servers called the head and the tail but involves sequential transmission of message which
tends to increase latencies for large N .

The benefit of sending an acknowledgement as a broadcast instead of a unicast is explored
in the algorithm described in [8]. More importantly, to our knowledge, although the approach
of ZabAA (changing from unicast to broadcast) is relatively simple, no previous study has
evaluated it or exposed the trend, particularly in leader and quorum-based protocols.

6 Conclusion

We have presented ZabAC and ZabAA as atomic broadcast protocols that follow a leader-
based approach, similar to Zab. ZabAC and ZabAA guarantee the delivery and order of

I. EL-Sanosi and P. Ezhilchelvan 3:9

requests which means that each process has an equal opportunity of having its messages
delivered in the same order. ZabAA is an alternative to ZabAC when N > 3.

Performance benchmarks showed that ZabAC had low latency and high throughput.
Furthermore, by increasing the number of replicas, the ZabAA protocol not only becomes
more fault tolerant but also achieves higher throughput and lower latency than the Zab
protocol.

Further investigation needs to be accomplished. We plan to evaluate ZabAA using
N = 7 and 9 to measure latency and throughput. Moreover, our research is currently
being carried out to reduce the ZabAA’s message overhead by conditioning the sending of
acknowledgements on the outcomes of coin tosses.

References

1 Philip A Bernstein and Eric Newcomer. Principles of transaction processing. Morgan
Kaufmann, 2009.

2 Martin Biely, Zoran Milosevic, Nuno Santos, and Andre Schiper. S-paxos: Offloading the
leader for high throughput state machine replication. In IEEE 31st Symposium on Reliable
Distributed Systems (SRDS), pages 111–120, 2012.

3 Lars George. HBase: the definitive guide. " O’Reilly Media, Inc.", 2011.

4 Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed. Zookeeper:
Wait-free coordination for internet-scale systems. In USENIX Annual Technical Conference,
volume 8, page 9, 2010.

5 Flavio P Junqueira, Benjamin C Reed, and Marco Serafini. Zab: High-performance broad-
cast for primary-backup systems. In IEEE/IFIP 41st International Conference on Depend-
able Systems & Networks (DSN), pages 245–256. IEEE, 2011.

6 Leslie Lamport. Fast paxos. Distributed Computing, 19(2):79–103, 2006.

7 Yanhua Mao, Flavio Paiva Junqueira, and Keith Marzullo. Mencius: building efficient
replicated state machines for wans. In OSDI, volume 8, pages 369–384, 2008.

8 Pedro Ruivo, Maria Couceiro, Paolo Romano, and Luis Rodrigues. Exploiting total order
multicast in weakly consistent transactional caches. In IEEE 17th Pacific Rim International
Symp. on Dependable Computing (PRDC), 2011, pages 99–108, 2011.

9 Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The hadoop dis-
tributed file system. In IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), 2, pages 1–10, 2010.

10 Robbert Van Renesse and Fred B Schneider. Chain replication for supporting high through-
put and availability. In OSDI, volume 4, pages 91–104, 2004.

A Source Code

The source code for the evaluated protocols and the benchmarks are publicly available at
https://github.com/ibrahimshbat/JGroups.

ICCSW 2017

https://github.com/ibrahimshbat/JGroups

3:10 Improving the Latency and Throughput of ZooKeeper Atomic Broadcast

B Performance Compression for Zab and ZabAA

0

10

20

30

40

50

60

25 50 75 100

Write Ratio

L
a
te

n
c
y
 (

m
s
)

Zab ZabAA

(a) Ensemble size N = 3

0

10

20

30

40

50

60

70

80

90

100

110

120

25 50 75 100

Write Ratio
L
a
te

n
c
y
 (

m
s
)

Zab ZabAA

(b) Ensemble size N = 5

Figure 3 Zab and ZabAA latency comparison, varying the ratio of writes to reads.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

25 50 75 100

Write Ratio

T
h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
)

Zab ZabAA

(a) Ensemble size N = 3

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

25 50 75 100

Write Ratio

T
h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
)

Zab ZabAA

(b) Ensemble size N = 5

Figure 4 Zab and ZabAA throughput comparison, varying the ratio of writes to reads.

Demand for Medical Care by the Elderly: A
Nonparametric Variational Bayesian Mixture
Approach
Christoph F. Kurz1 and Rolf Holle2

1 Helmholtz Zentrum München, Institute of Health Economics and Health Care
Management, Neuherberg, Germany
christoph.kurz@helmholtz-muenchen.de

1 Helmholtz Zentrum München, Institute of Health Economics and Health Care
Management, Neuherberg, Germany

Abstract
Outpatient care is a large share of total health care spending, making analysis of data on outpa-
tient utilization an important part of understanding patterns and drivers of health care spend-
ing growth. Common features of outpatient utilization measures include zero-inflation, over-
dispersion, and skewness, all of which complicate statistical modeling. Mixture modeling is a
popular approach because it can accommodate these features of health care utilization data. In
this work, we add a nonparametric clustering component to such models. Our fully Bayesian
model framework allows for an unknown number of mixing components, so that the data, rather
than the researcher, determine the number of mixture components. We apply the modeling
framework to data on visits to physicians by elderly individuals and show that each subgroup
has different characteristics that allow easy interpretation and new insights.

1998 ACM Subject Classification G.3 Probability and Statistics

Keywords and phrases machine learning, health care utilization, Bayesian statistics

Digital Object Identifier 10.4230/OASIcs.ICCSW.2017.4

1 Introduction

Outpatient hospital services account for a large share of health care utilization and therefore
of total health care spending. To understand the variation in this major component of
health care expenditures, researchers have sought to identify patient subgroups with different
utilization and spending patterns.

Health care resource use data are often non-negative, right-skewed, heavy-tailed, and
multi-modal with a point mass at zero. Desirable analytical approaches for these data should
be sufficiently powerful and flexible to accommodate all of these features. Several authors
showed that finite mixture models (FMMs) provide better model fit than single distribution
generalized linear models (GLMs) and the hurdle model. [1, 2] In addition, FMMs have
two advantages: first, they can easily handle multimodality. This may be important when
the outcome distribution suggests decomposing resource use into different components. For
example, it may be necessary to fit the tail distribution separately. Second, mixture models
allow us to link the prevalence of different mixture components to different covariates. [2]
Generally, mixture models distinguish between different groups of users (e.g. low- and high
users) and avoid the sharp dichotomy between users and non-users.

A key question in mixture models is the optimal number of components. (Note that we
use component, rather than cluster, to describe the subpopulations identified by FMMs.)

ICCSW17© Christoph F. Kurz and Rolf Holle;
licensed under Creative Commons License CC-BY

2017 Imperial College Computing Student Workshop (ICCSW 2017).
Editors: Fergus Leahy and Juliana Franco; Article No. 4; pp. 4:1–4:7

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2017.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

4:2 Demand for Medical Care by the Elderly

Too many components may overfit the data and impair model interpretation, while too
few components limit the flexibility of the mixture to approximate the true underlying
data structure. The number of different user groups can be decided either “ex-ante” by a
defined value (two or three groups are common), or “ex-post”, i.e. chosen by model fit after
calculating different models. While the ex-ante approach is focused on feasibility and is a
one-stage decision process, ex-post approaches use information which extends beyond the
time at which the actual model is prepared and involves a second decision process. Both
approaches introduce a decision and model selection bias.

In this paper, we present a fully variational Bayesian (VB) hierarchical mixture model,
where the optimal number of components is evaluated during model fit. This one-stage process
yields both the ideal number of components and allows interpretation of each component. In
this Bayesian nonparametric mixture model, we let the data determine both the number and
the form of the local mean functions. In contrast to frequentist nonparametric regression
methods, this Bayesian approach creates a model that is only as complex as the data
require. [3] In models with a fixed, finite number of parameters, there may be misfit between
the complexity of the model and the amount of data available. By contrast, Bayesian
nonparametric models are less subject to over- or under-fitting: the unbounded complexity
of the infinite mixture mitigates under-fitting, while the Bayesian approach of computing the
full posterior over parameters mitigates over-fitting. [4]

Our model uses a Dirichlet process (DP) prior for the mixing component and comprises a
fully VB regression scheme. VB is an alternative to Markov chain Monte Carlo (MCMC)
sampling methods for taking a fully Bayesian approach to statistical inference over complex
distributions that are difficult to directly evaluate or sample from. In particular, whereas
MCMC techniques provide a numerical approximation to the exact posterior using a set of
samples, VB provides a locally-optimal, exact analytical solution to an approximation of the
posterior. VB inference algorithms are usually faster than MCMC and suitable for large
scale data sets, which are becoming more and more prevalent through the analysis of claims
data and electronic health records.

In the following, we define a VB regression mixture model for counts and apply it on a
data set to analyze outpatient health care utilization. The data set has already been used
in [1] where Deb and Trivedi showed that a FMM with two components provides better
model fit than a simple GLM. In this paper, we apply our proposed VB mixture model on
the DebTrivedi data set and demonstrate that this model has good clustering and inference
properties that allow new insights.

2 Model Definition

2.1 Dirichlet Process Mixtures for Generalized Linear Models

The DP is a measure on measures [5] or a distribution over distributions [6] parameterized
by a base distribution G0 and a concentration parameter α. Each draw from a DP is a
distribution that is discrete with countably infinite parameters, making this a nonparametric
model. Using a DP prior for the distribution of component means in mixture models does
not require one to specify the number of components. Instead, a concentration parameter
controls it implicitly. Suppose the sample space Ω is partitioned into measurable subsets
U1, ..., Uk. Let U be the collection of all possible subsets of Ω. If G is a random probability
measure over (Ω,U) that assigns probabilities to all subsets, then G ∼ DP(α,G0) is a measure

C. F. Kurz and R. Holle 4:3

with property

G(U1), ..., G(Uk) ∼ Dir(αG0(U1), ..., αG0(Uk)).

More precisely, if α > 0 and G is an instantiation of a DP with base measure G0, then each
component k has mixture weight ck sampled as follows:

G =
∞∑
k=1

ckδ(θ = ζk), where ζk
iid∼ G0, k = 1, ...,∞,

vk = Φ(α), ck = vk

k−1∏
j=1

(1− vj),
∞∑
k=1

ck = 1, (1)

where Φ(·) denotes the cumulative distribution function for the standard normal distribution
and δ is the delta function. The base measure G0 provides an initial guess at G, and
α controls how close samples from the Dirichlet process are to G0. The DP serves as a
nonparametric prior on the mixture components. As the ζ’s are drawn from a (discrete)
DP-distributed distribution, it is very likely that they will be the same in each draw. The
distinct number of ζ’s defines the number of components.

The representation in Equation 2.1 is called a stick-breaking process and yields an infinite
mixture model representation:

fmix(x|α,G0) =
∞∑
k=1

ckf(x|φk),

where f is the density function with parameters φk. Note that we define the stick-breaking
process according to the probit representation [7] instead of using Beta random variables.

In addition to the usual regression parameters, these nonparametric mixture models
produce several additional parameters of interest. For each mixture component k, we want
to estimate the relative prevalence of the mixture component in the data and parameters of
the mixture component’s distribution, such as the mean, variance, and regression coefficients.
The mixture weights ck are the probabilities associated with each component and come
directly from the stick-breaking proportions vk. The features of the mixture component are
in φk. In addition, for each observation, we want to estimate the mixture component from
which it was most likely drawn, also called the component assignment.

2.2 The Negative Binomial Regression Model
The Negative Binomial distribution is a flexible alternative to the Poisson model for counts
that accommodates over-dispersion with a longer, fatter tail. [8] Hilbe identified more than
12 different parameterizations of the Negative Binomial in the literature; [9] here, we use the
definition in [1].

For i = 1, . . . , N observations and d = 1, . . . , D covariates, the data comprise an (N,D)-
dimensional covariate matrix X with rows xi and an N -vector of outcomes y = (y1, . . . , yN)′.
For simplicity, we omit the subscript i in what follows. The density function for the
y ∼ NegBin(µ, ψ) distribution is

f(y) = Γ(y + ψ)
Γ(ψ)Γ(y + 1)

(
ψ

µ+ ψ

)ψ (
µ

µ+ ψ

)y
,

where we specify a regression model (with regression coefficients β) for the mean parameter

µ = exp(xβ)

ICCSW 2017

4:4 Demand for Medical Care by the Elderly

and ψ is a precision parameter. In this specification, mean and variance are

E(y|x) = µ, Var(y|x) = µ+ ψ−1µ2 ,

which corresponds to the NB2 model definition. [10]

2.3 Variational Inference Scheme

We assume a mixture distributions with K components, each following a negative binomial
regression model. The data set consists of pairs {xn, yn}Nn=1 where xn is a vector of length
D and yn is scalar. Therefore, for each pair of observations there exists a latent variable zn
indicating the component assignment. The conditional distribution of the observed data
vectors given the latent variables and the component parameters can be defined as:

p(y|x, z,β,ψ) =
N∏
n=1

K∏
k=1

NegBin(yn|xβ, ψ)znk .

We define a Dirichlet prior over the mixing proportions c:

p(c) = Dir(c|α0)

and introduce a Gaussian-Wishart prior over the mean and dispersion component:

p(β,ψ) =
K∏
k=1
N (βk|β̂k, ψ−1

k P̂−1
k)W(ψk|ν̂k, τ̂k).

The joint distribution over all random variables is:

p(y,x, z, c,β,ψ) = p(y|x, z,β,ψ)p(z|β)p(c)p(β|ψ)p(ψ).

The goal of variational inference is to optimize the parameters of a fully factorized variational
distribution q that minimizes the Kullback-Leibler divergence from the true intractable
posterior. The optimal q maximizes the evidence lower bound objective. Because of intractable
integrals in the variational distribution

q(z, c,β,ψ) = q(z)q(c,β,ψ),

We define

q(c,β,ψ) = q(c)
K∏
k=1

q(βk,ψk) = q(c)
K∏
k=1

q(βk,Σ−1
k),

where q(βk,Σ−1
k) = N (βk,Σ−1

k).
The optimization problem is therefore

q∗(z) = arg min
q(z)∈D

KL(q(z, c,β,Σ)‖p(y,x, z, c,β,ψ)).

and we solve this by memoized online variational inference as in [11].

C. F. Kurz and R. Holle 4:5

0 1 2 3 4

hosp

healthpoor

healthexcellent

numchron

gendermale

age

blackyes

faminc

school

privinsyes

Comp. 1

0 1 2

Comp. 2

0 1 2

Comp. 3

incidence rate ratio

Figure 1 Parameter estimates for all three components on the DebTrivedi data set based on the
negative binomial VB regression mixture model. Parameter estimates are presented as incidence
rate ratios and 95% high probability density intervals. Intercept is not shown. The yellow dashed
line at one marks no effect.

3 Data

We explore the model on the data set from Deb and Trivedi. [1] It contains 4406 individuals,
aged 66 and over, who are covered by Medicare, a public insurance program. Originally
obtained from the US National Medical Expenditure Survey (NMES) for 1987/88, the
data are available in the R package MixAll. The objective is to model the demand for
medical care–as captured by the number of physician/non-physician office and hospital
outpatient visits–by the covariates available for the patients. Here, we adopt the number
of physician office visits ofp as the dependent variable and use the health status variables
hosp (number of hospital stays), health (self-perceived health status), numchron (number
of chronic conditions: cancer, heart attack, gall bladder problems, emphysema, arthritis,
diabetes, other heart disease), as well as the socioeconomic variables gender, age, black
(race), faminc (family income), school (number of years of education), and privins (private
insurance indicator) as regressors.

4 Results and Conclusion

For the DebTrivedi data set, the VB regression mixture model finds three components.
The first component contains only 4.2% (186/4406) of all observations and corresponds
to individuals who, on average, utilize less health care, but with higher variance. The
second component corresponds to the largest proportion of individuals, 62.3%, (2745/4406)

ICCSW 2017

4:6 Demand for Medical Care by the Elderly

Comp. 1 Comp. 2 Comp. 3

0

2

4

6

8
of chronic conditions

Comp. 1 Comp. 2 Comp. 3
60

70

80

90

100
Age

Comp. 1 Comp. 2 Comp. 3
0

5

10

15

20
years of education

Figure 2 Boxplots for number of chronic conditions, age, and years of education for each
component as modeled by the VB mixture model for the DebTrivedi data set. The red triangle
marks the mean.

with medium health care utilization. The third component captures 33.5% (1475/4406) of
individuals, with high utilization counts and again high variance. Figure 1 presents the
parameter estimates from the regression model as incidence rate ratios (IRRs). In the first
component, insurance status has the largest influence with an IRR of 2.41. This means that
individuals with private insurance in the first component visit the doctor more than twice
as often as those without private insurance. A similar explanation can be made for the
number of hospital stays in the first component: one hospital stay accounts for 2.05 times
more doctor visits, on average. This effect diminishes in the other components who contain
individuals with higher utilization.

In the second component, a self perceived excellent health condition reduces the doctor
visits by a factor or 0.68, while a poor health condition increases them by 1.46. This trend
is slightly reduced in the third component. Most other variables show only slight effects
on the number of doctor visits in the second component. In the third component, age has
a protective influence on utilization, one additional year of age represents 0.73 times the
utilization, on average. This seems counter-intuitive, but may be explained when comparing
the age of the individuals in each cluster: Figure 2 shows that age is increasing over the
components. In addition, the number of chronic diseases is also increasing in each component.
That explains the highest number of doctor visits in component 3. Interestingly, the years
of education also increase slightly in each component. This should be subject of further
investigation as, for example, Fiscella et al. [12] found that the time spent for physical
examination is lower for more educated individuals.

Regarding computational speed, the VB inference method only takes 2 seconds to analyze
the data set. A comparable MCMC approach took about 45 minutes on a 2016 Core i7
CPU with 32 GB RAM. This difference is mainly due to VB providing only a solution to
an approximation of the posterior, while MCMC estimates the exact posterior. While we
did not find great differences in the estimates in the present case, future research should
investigate this difference, for example, in simulation studies.

In conclusion, the defined VB regression mixture model provides an interesting alternative
with good accuracy and speed, especially suited for large data sets.

Acknowledgements. We thank Laura Hatfield for improving the manuscript.

C. F. Kurz and R. Holle 4:7

References
1 Partha Deb, Pravin K. Trivedi. Demand for Medical Care by the Elderly: A Finite Mixture

Approach, Journal of Applied Econometrics, 12, 313–336, 1997
2 Borislava Mihaylova, et al. Review of statistical methods for analysing healthcare resources

and costs, Health economics 20.8, 897-916 2011.
3 Lauren A. Hannah, David M. Blei, and Warren B. Powell, Dirichlet process mixtures of

generalized linear models, Journal of Machine Learning Research, 1923-1953, 2011.
4 Carl Edward Rasmussen, The infinite Gaussian mixture model, NIPS. Vol. 12, 1999.
5 David M. Blei, Michael I. Jordan, et al.,Variational inference for dirichlet process mixtures,

Bayesian analysis, 1(1):121–143, 2006.
6 Claude Sammut and Geoffrey I. Webb, Encyclopedia of Machine Learning, Springer Pub-

lishing Company, Incorporated, 1st edition, 2011.
7 Abel Rodriguez and David B. Dunson, Nonparametric bayesian models through probit

stick- breaking processes, Bayesian Analysis, 6(1), 2011.
8 Mei-Chen. Hu, Martina Pavlicova, and Edward V. Nunes, Zero-inflated and hurdle models

of count data with extra zeros: examples from an hiv-risk reduction intervention trial, The
American journal of drug and alcohol abuse, 37(5):367–375, 2011.

9 Joseph Hilbe, Negative Binomial Regression, Cambridge University Press, 2011.
10 A. Colin Cameron and Pravin K. Trivedi, Econometric models based on count data. com-

parisons and applications of some estimators and tests, Journal of Applied Econometrics,
1(1):29–53, 1986.

11 Michael C. Hughes, and Erik Sudderth, Memoized online variational inference for Dirichlet
process mixture models, Advances in Neural Information Processing Systems, 2013.

12 Kevin Fiscella, Meredith A. Goodwin, and Kurt C. Stange, Does patient educational level
affect office visits to family physicians?, Journal of the National Medical Association 94.3,
157, 2002.

ICCSW 2017

Discriminative and Generative Models for Clinical
Risk Estimation: an Empirical Comparison
John Stamford1 and Chandra Kambhampati2

1 Department of Computer Science, The University of Hull, Kingston upon Hull,
HU6 7RX, United Kingdom
j.stamford@2014.hull.ac.uk

2 Department of Computer Science, The University of Hull, Kingston upon Hull,
HU6 7RX, United Kingdom
c.kambhampati@hull.ac.uk

Abstract
Linear discriminative models, in the form of Logistic Regression, are a popular choice within
the clinical domain in the development of risk models. Logistic regression is commonly used
as it offers explanatory information in addition to its predictive capabilities. In some examples
the coefficients from these models have been used to determine overly simplified clinical risk
scores. Such models are constrained to modeling linear relationships between the variables and
the class despite it known that this relationship is not always linear. This paper compares the
conditions under which linear discriminative and linear generative models perform best. This
is done through comparing logistic regression and naïve Bayes on real clinical data. The work
shows that generative models perform best when the internal representation of the data is closer
to the true distribution of the data and when there is a very small difference between the means
of the classes. When looking at variables such as sodium it is shown that logistic regression can
not model the observed risk as it is non-linear in its nature, whereas naïve Bayes gives a better
estimation of risk. The work concludes that the risk estimations derived from discriminative
models such as logistic regression need to be considered in the wider context of the true risk
observed within the dataset.

1998 ACM Subject Classification D.4.8 Performance

Keywords and phrases Discriminative, Generative, Naïve Bayes, Logistic Regression, Clinical
Risk

Digital Object Identifier 10.4230/OASIcs.ICCSW.2017.5

1 Introduction

Within the clinical domain the use of linear discriminative models such as logistic regression
is a popular choice in the development of clinical risk models. Such models are able to
model linear relationships between continuous variables and binary outcome events such as
mortality. Generally discriminative models are preferred over generative models, however,
there is a need to understand the conditions under which these models perform best [20].
Within the context of clinical risk modelling we aim to explore these conditions. This is
achieved by selecting logistic regression as a linear discriminative model and comparing this
to naïve Bayes which is as a linear generative model.

Logistic regression is a linear discriminative model which estimates probability directly
from the inputs x and the class label y. The posterior probability is estimated directly as a
function of p(y|x). Logistic regression is widely applied in the clinical domain and has shown

© John Stamford and Chandra Kambhampati;
licensed under Creative Commons License CC-BY

Discriminative and Generative models for clinical risk estimation: An empirical comparison.
Editors: Fergus Leahy; Article No. 5; pp. 5:1–5:9

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2017.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

5:2 Discriminative and Generative Models for Clinical Risk Estimation

to be effective for modelling clinical risk. The popularity of this approach in the clinical
domain is the dual ability of the model to offer explanatory information about the underlying
causes as well as its predictive capability. The main limitation of logistic regression is the
estimated coefficients model linear relationships between the input variables and the class
label.

To compare the differences between discriminative and generative models in the clinical
context a naïve Bayes model is selected as it is a linear generative model. Naïve Bayes
determines probability estimates from the joint probability expressed as p(x, y). Probability
estimates are derived by estimating the probability p(y|x) for each class label based on
the input, then using Bayes rule to determine the most likely class. Whilst naïve Bayes is
considered a linear model, the probability estimates derived from the function p(x, y) can
model non-linear relationships between the inputs and the class label.

2 Background

As discussed, discriminative models are commonly applied to clinical data usually in the
form of logistic regression for the use of both explanatory and predictive purposes. It is
shown that logistic regression is widely used in the prediction of mortality events in addition
to predicting hospital readmission, and it is able to outperform other regression techniques
[18]. In other examples it is shown that logistic regression has been used to model short term
mortality events including death within 30 days [2] and death within 60 days [8]. In these
examples the performance was reported as area under the curve (AUC) with results of 0.86
and 0.77 respectively.

In other work, the coefficients from regression models have been used to develop simpler
points based models for use in clinical practice [19][15]. The points are produced by rounding
the estimated coefficients of the model to an integer value [15][10]. These integer values
represent univariate risk with the sum representing a compound risk score.

Logistic regression is an extension of linear regression. With linear regression estimations
been determined as

y = f(x, β) = β0 + β1x1,+...+, βnxn + ε (1)

where βn is some estimated coefficients and ε represents the error. This is then extended
to the general linear model of logistic regression where the estimates are bound to values
between 0 and 1 through the use of a logistic sigmoid function such as

f(y|x, β) = 1
1 + e−(β0+β1x1,+...+,βnxn) (2)

Regression models allow the combination of discrete and continuous input variables to
be used which allows for the estimation of a linear relationship. It is useful to transform
some continuous variables into categorical variables using arbitrary ranges. For example, a
continuous variable could be transformed into a categorical variable with ranges representing
low, medium and high. This can be seen in existing clinical risk models [19][15]. Whilst
this can help model nonlinear relationships between the variable and the class it can lead to
unnatural step changes in risk between each category [16].

Naïve Bayes is an example of a generative linear model which has been applied to the
clinical domain. In terms of accuracy, non-linear discriminative models such as Support
Vector Machines and Decision Tress have performed marginally better than naïve Bayes at
identifying patients at risk of having heart failure [1][14]. However when comparing naïve

J. Stamford and Ch. Kambhampati 5:3

Bayes with a Multi-Layer Perceptron, which is a discriminative general non-linear model,
naïve Bayes has performed better [14]. Naïve Bayes can be applied in different forms which is
underpinned by the type of data which is required as the inputs. This can include multinomial
naïve Bayes and Gaussian naïve Bayes. Recent work has shown that Tree Augmented naïve
Bayes can perform better than other versions of naïve Bayes in the clinical domain [12].

As introduced previously, naïve Bayes estimates the probability from the joint probability
expressed as p(x, y). For each class the probability is estimated as

p(Y1|x) = p(x|Y1)p(Y1)
p(x|Y1)p(Y1) + p(x|Y2)p(Y2) (3)

This gives a probability estimate for class 1 and when the problem is constrained to two
classes the estimation for class 0 can be p(Y0|x) = 1− p(Y1|x).

In this work we are using a Gaussian naïve Bayes model which determines p(Yn|x) where
x ∈ X and X conforms to a normal distribution. Within clinical dataset this requirement is
commonly unsatisfied.

3 Dataset and Methodology

The dataset used in this study is a subset which is extracted from the MIMIC-III dataset
[9] where heart failure patients have been identified. Patients are selected based on the
use of heart failure related ICD Codes in position one, two or three of the admission
diagnosis. Additionally, patients without a test for N-terminal pro-B-type natriuretic peptide
(NTproBNP) was excluded as this is a valuable marker in the diagnosis of patients with heart
failure [13]. The subset used contained 2,536 patients with 90 day mortality used as the class
labels (Dead: 697, Alive: 1839).

Naïve Bayes and logistic regression was used for univariate analysis of the datasets.
Performance of the models is measured using the Pseudo R2, the means square error (MSE)
and the area under the curve (AUC).

The aim of the work is to explore how discriminative and generative models perform using
real clinical data. This is achieved by comparing the commonly applied logistic regression
model with naïve Bayes which are both linear models.

4 Results

The results show the performance of the two models on clinical data, specifically showing
the univariate relationship between the variable and risk of death within 90 days. The
results also visually show the risk estimates derived from the two models (Figure 1 and 2).
Additionally, a sample range is selected from each variable with risk estimates from the
models compared to the true proportion of risk in those ranges. As the outputs from the
models are probabilistic estimates of risk rather than classification values the AUC is reported.
R2 and MSE give representations of the distance between the probabilistic estimates and the
true binary outcomes.

Risk Estimations
The distributions of the MCV and Sodium variables approximate a Gaussian distribution
along with similar means and standard deviations for the two classes (Table 1 and Figure
1). In these examples linear discrimination between the two classes is not possible. This is
reflected in the probabilistic risk estimates derived from the logistic regression model which

ICCSW 2017

5:4 Discriminative and Generative Models for Clinical Risk Estimation

Table 1 Mean and standard deviation (SD) for MCV and Sodium for each class

Alive Dead
Variable Mean SD Mean SD
MCV 89.9 6.8 90.2 7.1
Sodium 138.4 4.7 138.4 5.9

Figure 1 Density plots for both classes (left) and predictive model estimations (right) for MCV
and Sodium.

shows little change in risk as values for MCV and Sodium change. Furthermore, the risk
estimations for these two variables is low and when interpreting the relationship between
sodium or MCV and the risk of death using a logistic regression model these variables can be
said to be poor predictors. However the probabilistic estimates derived from the naïve Bayes
show a different relationship between these variables and risk. It is known that levels of
sodium which are too high or too low can increase the risk of death [3]. From the distributions
shown in Figure 1 for both MCV and Sodium it is intuitive that risk is increased for low and
high values of these variables and risk is reduced in the mid ranges. As naïve Bayes derives
its estimates from the mean and standard deviation of the classes it can better approximate
the relationship between theses variables and outcome when the means are similar but the
standard deviations are different. When considering this in terms of detecting patients at
risk, the naïve Bayes would enable a larger number of patients at risk of death to be identified
(increasing sensitivity) at the cost of incorrectly identifying low risk patients as high risk
(decreased specificity).

The plots for NTproBNP which has been transformed using a natural logarithm where it
can be seen that the estimates from logistic regression and naïve Bayes are similar (Figure 2).

Clinical Ranges
To further explore the accuracy of the models at determining risk, three ranges (low, medium,
high) where selected from each variable. The proportion of mortality events are calculated
within these ranges and formed the ground truth for comparison. Risk estimations for both
models are recorded on the original data and log transformed data.

J. Stamford and Ch. Kambhampati 5:5

Figure 2 Density plots for both classes (left) and predictive model estimations (right) for
NTproBNP.

Table 2 Estimation Accuracy using a sample of ranges.

Raw Log
Variable Range True % LR NB LR NB
Creatinine 1 - 1.2 0.211 0.268 0.294 0.264 0.261
Creatinine 4 - 4.5 0.346 0.302 0.208 0.324 0.334
Creatinine 08 - 12 0.077 0.368 0.002 0.365 0.409
Glucose 50 - 60 0.375 0.282 0.267 0.286 0.292
Glucose 190 - 200 0.417 0.271 0.279 0.270 0.270
Glucose 350 - 400 0.304 0.257 0.108 0.262 0.269
NTproBNP 150 - 200 0.053 0.211 0.195 0.095 0.061
NTproBNP 19,000 - 20,000 0.364 0.333 0.297 0.374 0.374
NTproBNP 45,000 - 50,000 0.269 0.552 0.927 0.454 0.415
Potassium 3 - 3.2 0.360 0.259 0.292 0.260 0.309
Potassium 4.8 - 5 0.234 0.282 0.268 0.281 0.234
Potassium 9 - 10 0.714 0.349 0.987 0.314 0.770
Sodium 125 - 128 0.464 0.276 0.494 0.280 0.494
Sodium 138 - 140 0.242 0.275 0.234 0.275 0.237
Sodium 150 -155 0.714 0.273 0.604 0.269 0.536

The results for these tests show that overall the naïve Bayes model gave a closer estimate
of risk to the ground truth values (Table 2). The distribution of Creatinine is positively
skewed with logistic regression giving more accurate estimation. However, when the variable
is transformed to a natural logarithm scale the naïve Bayes provides closer estimations. For
values greater than 8 mg/dL, the naïve Bayes model gives a better representation of risk.

In variables where the data is closer to being normally distributed such as Potassium and
Sodium it can be seen that the naïve Bayes model gives better estimations (Table 2). This is
true for both the original data and the log transformed data where estimations from a naïve
Bayes model are closer to the true values than estimates from the logistic regression model.

Metrics
Whilst it is expected that the results using Pseudo R2, MSE and AUC will be poor for a
single variable, the results have been shown to explore measurable differences in the models
performance.

When comparing pseudo R2 and MSE there is subtle differences between the two models
for all clinical variables (Table 3). With variables such as Creatinine and NTproBNP which

ICCSW 2017

5:6 Discriminative and Generative Models for Clinical Risk Estimation

Table 3 Results comparing psuedo R2, Mean Square Error (MSE) and Area under the Curve
(AUC).

Naïve Bayes Logistic Regression
Variable R2 MSE AUC R2 MSE AUC
Creatinine mg/dL -0.006 0.200 0.515 0.001 0.199 0.547
ln(Creatinine mg/dL) 0.002 0.199 0.547 0.003 0.199 0.547
MCV fL 0.000 0.199 0.534 0.000 0.199 0.519
ln(MCV fL) 0.000 0.199 0.532 0.000 0.199 0.519
NTproBNP pg/mL -0.025 0.204 0.624 0.036 0.192 0.633
ln(NTproBNP pg/mL) 0.040 0.191 0.633 0.044 0.191 0.633
Glucose mg/dL -0.004 0.200 0.500 0.000 0.199 0.495
ln(Glucose mg/dL) 0.000 0.199 0.494 0.000 0.199 0.495
Bicarbonate 0.007 0.198 0.551 0.003 0.199 0.538
ln(Bicarbonate) 0.004 0.198 0.552 0.005 0.198 0.538
Potassium -0.019 0.203 0.535 0.001 0.199 0.508
ln(Potassium) -0.003 0.200 0.535 0.000 0.199 0.508
Sodium 0.004 0.198 0.573 0.000 0.199 0.508
ln(Sodium) 0.003 0.199 0.572 0.000 0.199 0.508

are highly skewed it is shown that logistic regression has a better AUC. However, when these
variables are transformed using the natural logarithm (ln) the AUC is the same for both
models. In contrast, naïve Bayes performs better with variables which are approximately
normally distributed as shown with MCV and Sodium.

5 Discussion

Discriminative models estimate the model parameters based on separation by minimising
the negative log-likelihood classification loss against the true density [4]. Due to the nature
of how the model parameters are estimated these types of models are regarded as supervised
learning [5]. Discriminative models can be susceptible to cost or class imbalances in real
world scenarios and in instances where the negative examples are more prevalent they are
known to over fit [6]. This class imbalance problem is common in clinical datasets when
developing models to predict mortality events [11].

The key feature of generative models is that the probability estimates of p(y|x) are derived
from the parameters of p(x|y) and p(x) which are estimated directly from the data. This
involves internally representing the distribution of the data which adds an extra step in the
probability estimations process. In the case of the naïve Bayes model p(x|y) and p(x) are
assumed to be normally distributed, however, as shown, this is rarely the case with clinical
data. Therefore, the application of generative models can be said to be more complex and it
is recommended that you should not solve a more difficult problem as an intermediate step
[17]. However by modelling the distribution of the input this information is incorporated
into the model [5].

When comparing logistic regression and naïve Bayes it is concluded that discriminative
models will perform better than generative models when considering the asymptotic errors
[20]. However it has been shown that with real world datasets this may not always be
the case [21]. When applying the two models to real clinical data it is shown that logistic
regression models performed better when the data is highly skewed. Discriminative models

J. Stamford and Ch. Kambhampati 5:7

learn the model parameters from maximizing the conditional likelihood [21] therefore, with
skewed data the model estimations will be skewed towards the higher density regions of the
variables distributions. Once the distributions are closer to been normally distributed the
estimations of naïve Bayes become more accurate and gives a better representation of the
the relationship between the inputs and the class. This is especially true when the means
for the class are similar but the shape of the distributions are dissimilar, as shown with
MCV and Sodium. As the applied Gaussian naïve Bayes model takes its estimations from
normal distributions based on the mean and standard deviation for each class it can more
accurately estimate the relationship between the inputs and class when the data is normally
distributed. In these cases, generative linear models can determine nonlinear relationships
between the input variable and the class. In contrast the linear discriminative nature of
logistic regression implies that the probability estimates must either increase monotonically,
or decrease monotonically in relation to the input [7].

One of the key features of this work is the demonstration of generative and discriminative
linear models on clinical data. While the use of linear discriminative models, specifically
logistic regression, is favoured within the development of clinical risk models these models
may not always be appropriate. This is shown when performing a univariate analysis on
variables such as Sodium and MCV (Fig. 1). When looking at Sodium the results from the
logistic regression model show no evidence that Sodium levels which are too high or too
low have an impact on mortality, despite this relationship been known [3]. When looking
at the probability estimations for Sodium using a naïve Bayes model it is shown that these
estimates are similar to the ground truth (Table 2). This is a result of the two classes having
similar means, however, class 1 (dead) has a greater proportion of the data points within the
extremities of the distribution. This is similar to values reported in a study using a heart
failure dataset when looking at the means for Sodium of the two groups of patients. It is
shown that alive patients had a mean Sodium level of 138.93 and those who died had a mean
of 138.45, with differences in the standard deviations, 3.00 and 3.56 respectively [11].

6 Conclusion

In this study discriminative and generative models have been applied to clinical data with
the results showing that both models perform equally well in scenarios where the classes are
linearly separable. It is shown that the generative model of naïve Bayes is better at modelling
the relationship between the input variable and class label when distributions for each class
is not linearly separable. When applying this to clinical data it is shown that when using
naïve Bayes as a generative model, the assumption of the input variables been normally
distributed is important. In variables which are not separable and normally distributed the
generative model gave more accurate estimations compared to the ground truth. The work
concludes that the choice of discriminative and generative models is related to the data and
dependant on the task which is to be modelled.

This work forms the foundation for model selection within a clinical dataset and future
work should explore the comparison of discriminative and generative models in a multivariate
context using clinical data. This should include the use of non-linear discriminative models
such as SVMs and MLPs.

References
1 Roohallah Alizadehsani, Mohammad Javad Hosseini, Zahra Alizadeh Sani, Asma

Ghandeharioun, and Reihane Boghrati. Diagnosis of coronary artery disease using cost-

ICCSW 2017

5:8 Discriminative and Generative Models for Clinical Risk Estimation

sensitive algorithms. In Jilles Vreeken, Charles Ling, Mohammed Javeed Zaki, Arno
Siebes, Jeffrey Xu Yu, Bart Goethals, Geoffrey I. Webb, and Xindong Wu, editors, 12th
IEEE International Conference on Data Mining Workshops, ICDM Workshops, Brus-
sels, Belgium, December 10, 2012, pages 9–16. IEEE Computer Society, 2012. doi:
10.1109/ICDMW.2012.29.

2 Ruben Amarasingham, Billy J Moore, Ying P Tabak, Mark H Drazner, Christopher A
Clark, Song Zhang, W Gary Reed, Timothy S Swanson, Ying Ma, and Ethan A Halm.
An Automated Model to Identify Heart Failure Patients at Risk for 30-Day Readmission
or Death Using Electronic Medical Record Data. Medical Care, 48(11):981, 2010. doi:
10.1097/mlr.0b013e3181ef60d9.

3 Jan Bohacik, Chandrasekhar Kambhampati, Darryl N. Davis, and John G. F. Cleland.
Prediction of mortality rates in heart failure patients with data mining methods. Annales
UMCS, Informatica, 13(2):7–16, 2013. doi:10.2478/v10065-012-0046-7.

4 Guillaume Bouchard and Bill Triggs. The Tradeoff Between Generative and Discriminative
Classifier. In 16th IASC International Symposium on Computational Statistics, pages 721–
728, Prague, Czech Republic, 2004.

5 Olivier . Chapelle, Bernhard. Schölkopf, and Alexander Zien. Semi-Supervised Learning.
MIT Press, London, 2006. doi:10.1007/s12539-009-0016-2.

6 Nitesh V. Chawla, Nathalie Japkowicz, and Aleksander Kotcz. Editorial: special issue on
learning from imbalanced data sets. SIGKDD Explorations, 6(1):1–6, 2004. doi:10.1145/
1007730.1007733.

7 Charles Elkan. Maximum Likelihood , Logistic Regression , and Stochastic Gradient Train-
ing. Tutorial notes at CIKM, page 11, 2012. URL: http://www.ats.ucla.edu/stat/
stata/dae/mlogit.htm.

8 G. Michael Felker, Jeffrey D. Leimberger, Robert M. Califf, Michael S. Cuffe, Barry M.
Massie, Kirkwood F. Adams, Mihai Gheorghiade, and Christopher M. O’Connor. Risk
stratification after hospitalization for decompensated heart failure. Journal of Cardiac
Failure, 10(6):460–466, 2004. doi:10.1016/j.cardfail.2004.02.011.

9 Alistair E.W. Johnson, Tom J. Pollard, Lu Shen, Li-wei H. Lehman, Mengling Feng, Mo-
hammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G.
Mark. MIMIC-III, a freely accessible critical care database. Scientific Data, 3:160035,
2016. doi:10.1038/sdata.2016.35.

10 Wayne C. Levy, Dariush Mozaffarian, David T. Linker, Santosh C. Sutradhar, Stefan D.
Anker, Anne B. Cropp, Inder Anand, Aldo Maggioni, Paul Burton, Mark D. Sullivan,
Bertram Pitt, Philip A. Poole-Wilson, Douglas L. Mann, and Milton Packer. The Seattle
Heart Failure Model: Prediction of survival in heart failure. Circulation, 113(11):1424–1433,
2006. doi:10.1161/CIRCULATIONAHA.105.584102.

11 Lisa Moore. Data Mining for Heart Failure: An investigation into the challenges un real life
clinical datasets. PhD thesis, University of Hull, 2015. doi:10.1017/CBO9781107415324.
004.

12 Lisa Moore, Chandra Kambhampati, and John G. F. Cleland. Classification of a real
live heart failure clinical dataset- is TAN bayes better than other bayes? In 2014 IEEE
International Conference on Systems, Man, and Cybernetics, SMC 2014, San Diego, CA,
USA, October 5-8, 2014, pages 882–887. IEEE, 2014. URL: https://doi.org/10.1109/
SMC.2014.6974023, doi:10.1109/SMC.2014.6974023.

13 NICE. Chronic heart failure - Management of chronic heart failure in adults in primary
and secondary care, 2010.

14 Sellappan Palaniappan and Rafiah Awang. Intelligent heart disease prediction system using
data mining techniques. In The 6th ACS/IEEE International Conference on Computer

http://dx.doi.org/10.1109/ICDMW.2012.29
http://dx.doi.org/10.1109/ICDMW.2012.29
http://dx.doi.org/10.1097/mlr.0b013e3181ef60d9
http://dx.doi.org/10.1097/mlr.0b013e3181ef60d9
http://dx.doi.org/10.2478/v10065-012-0046-7
http://dx.doi.org/10.1007/s12539-009-0016-2
http://dx.doi.org/10.1145/1007730.1007733
http://dx.doi.org/10.1145/1007730.1007733
http://www.ats.ucla.edu/stat/stata/dae/mlogit.htm
http://www.ats.ucla.edu/stat/stata/dae/mlogit.htm
http://dx.doi.org/10.1016/j.cardfail.2004.02.011
http://dx.doi.org/10.1038/sdata.2016.35
http://dx.doi.org/10.1161/CIRCULATIONAHA.105.584102
http://dx.doi.org/10.1017/CBO9781107415324.004
http://dx.doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1109/SMC.2014.6974023
https://doi.org/10.1109/SMC.2014.6974023
http://dx.doi.org/10.1109/SMC.2014.6974023

J. Stamford and Ch. Kambhampati 5:9

Systems and Applications, AICCSA 2008, Doha, Qatar, March 31 - April 4, 2008, pages
108–115. IEEE Computer Society, 2008. doi:10.1109/AICCSA.2008.4493524.

15 Stuart J. Pocock, Cono A. Ariti, John J V McMurray, Aldo Maggioni, Lars Køber, Iain B.
Squire, Karl Swedberg, Joanna Dobson, Katrina K. Poppe, Gillian a. Whalley, and Rob N.
Doughty. Predicting survival in heart failure: A risk score based on 39 372 patients from
30 studies. European Heart Journal, 34(19):1404–1413, 2013. doi:10.1093/eurheartj/
ehs337.

16 Ewout W. Steyerberg. Clinical Prediction Models. Springer, 2009.
17 Vladimir Vapnik. Statistical learning theory. Wiley, 1998.
18 J. J. G. De Vries, Gijs Geleijnse, Aleksandra Tesanovic, and Ramon van de Ven. Heart

failure risk models and their readiness for clinical practice. In IEEE International Confer-
ence on Healthcare Informatics, ICHI 2013, 9-11 September, 2013, Philadelphia, PA, USA,
pages 239–247. IEEE Computer Society, 2013. doi:10.1109/ICHI.2013.26.

19 P W Wilson, R B D’Agostino, Daniel Levy, Albert M Belanger, Halit Silbershatz, and Wil-
liam B Kannel. Prediction of coronary heart disease using risk factor categories. Circulation,
97(18):1837–1847, 1998. doi:10.1161/01.CIR.97.18.1837.

20 Jing-Hao Xue and D. M. Titterington. Comment on "on discriminative vs. generative
classifiers: A comparison of logistic regression and naive bayes". Neural Processing Letters,
28(3):169–187, 2008. doi:10.1007/s11063-008-9088-7.

21 Jing-Hao Xue and D. M. Titterington. Comment on "on discriminative vs. generative
classifiers: A comparison of logistic regression and naive bayes". Neural Processing Letters,
28(3):169–187, 2008. doi:10.1007/s11063-008-9088-7.

ICCSW 2017

http://dx.doi.org/10.1109/AICCSA.2008.4493524
http://dx.doi.org/10.1093/eurheartj/ehs337
http://dx.doi.org/10.1093/eurheartj/ehs337
http://dx.doi.org/10.1109/ICHI.2013.26
http://dx.doi.org/10.1161/01.CIR.97.18.1837
http://dx.doi.org/10.1007/s11063-008-9088-7
http://dx.doi.org/10.1007/s11063-008-9088-7

Hey there’s DALILA: a DictionAry LearnIng
LibrAry
Veronica Tozzo1, Vanessa D’Amario2, and Annalisa Barla3

1 Department of Informatics, Bioengineering, Robotics and System Engineering
(DIBRIS), University of Genoa, Genoa, I-16146, Italy
veronica.tozzo@dibris.unige.it

2 Department of Informatics, Bioengineering, Robotics and System Engineering
(DIBRIS), University of Genoa, Genoa, I-16146, Italy
vanessa.damario@dibris.unige.it

3 Department of Informatics, Bioengineering, Robotics and System Engineering
(DIBRIS), University of Genoa, Genoa, I-16146, Italy
annalisa.barlao@unige.it

Abstract
Dictionary Learning and Representation Learning are machine learning methods for decompos-
ition, denoising and reconstruction of data with a wide range of applications such as text re-
cognition, image processing and biological processes understanding. In this work we present
DALILA, a scientific Python library for regularised dictionary learning and regularised repres-
entation learning that allows to impose prior knowledge, if available. DALILA, differently from
the others available libraries for this purpose, is flexible and modular. DALILA is designed to
be easily extended for custom needs. Moreover, it is compliant with the most widespread ML
Python library and this allows for a straightforward usage and integration. We here present and
discuss the theoretical aspects and discuss its strength points and implementation.

1998 ACM Subject Classification G.1.6 Optimization, D.1.3 Concurrent Programming, D.2.2
Design Tools and Techniques

Keywords and phrases Machine learning, dictionary learning, representation learning, alternat-
ing proximal gradient descent, parallel computing

Digital Object Identifier 10.4230/OASIcs.ICCSW.2017.6

1 Introduction

Nowadays many optimisation algorithms and libraries are freely available for the most
disparate machine learning applications. For example some machine learning tasks, as
classification, have hundreds of algorithms and libraries implementations. This is not the case
for Dictionary Learning (DL) [11, 12, 13, 14, 17, 19, 23] and its specialisation Representation
Learning (RL) [3, 25], which are designed for matrix decomposition and reconstruction.
They can be applied on many application domains such as signal processing [23], image
processing [18], bioinformatics [2] and text-recognition [1]. Even though dimensionality
reduction methods such as PCA [10] and ICA [9] may be used to solve these tasks, dictionary
learning is preferable when more emphasis on the interpretability of the dictionary is required
[11].

In this paper we present DALILA, a Python library for DL and RL. The optimisation is
based on alternating proximal gradient descent [4], which allows flexibility on the minimisation

ICCSW17© Veronica Tozzo, Vanessa D’Amario, and Annalisa Barla;
licensed under Creative Commons License CC-BY

2017 Imperial College Computing Student Workshop (ICCSW 2017).
Editors: Fergus Leahy and Juliana Franco; Article No. 6; pp. 6:1–6:14

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2017.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

6:2 DALILA: A DictionAry LearnIng LibrAry

problem and therefore enables the imposition of prior knowledge. Designed to be extremely
flexible and modular, DALILA can be easily extended differently from the other available
libraries.

As regards the implementation, the library is compatible with the scikit-learn Python
library and it supports the distribution of the most computationally heavy routines across
different machines [6].

The remainder of this paper is organised as follows. In Section 2 we present DL, RL and
the alternating proximal gradient descent algorithm. In Section 3 we give an overview on the
library design and the implemented regularisers. In section 4 we comment the other available
libraries on the topic. We finish with the conclusion and further work we intend to perform.

2 Theoretical background

In the following section a basic theoretical background on DL and RL problems is provided,
together with the alternating proximal minimisation algorithm. The expert reader can feel
free to skip it, if she/he is familiar with these mathematical concepts.

2.1 Dictionary Learning
Dictionary learning (DL) is a machine learning method that aims at finding a representation
of the original data as a linear combination of basic patterns (atoms) and coefficients. The
representation is completely data driven, in contrast to more generic and less adaptive
methods such as Wavelet and Fourier transform [15, 26].

Given a dataset X ∈ Rn×d where n is the number of samples and d is the feature space
dimension, the goal of DL is to decompose a dataset into two matrices:

a dictionary D ∈ Rk×d, a matrix of atoms that represent basic signals;
the coefficients C ∈ Rn×k, a matrix of weights for the atoms of the dictionary.

k represents the number of atoms composing the dictionary.
Hence, the original matrix X can be retrieved as a linear combination of dictionary and

coefficients as in Equation (1).

X ≈ CD (1)

The recovering of the matrices C and D is solved by minimising a loss term `: a a posit-
ive differentiable function that quantifies how well the multiplication of the two matrices
approximates the signal.

argmin
C,D

[
`(X,CD)

]
(2)

The minimisation problem in Equation (2) not always gives us the best possible solution.
In presence of noisy data, ill-posed problems or when we have prior knowledge on the problem
one of the usual tricks is to add terms or constraints to the functional in order to obtain a
regularised problem (Equation (3)).

argmin
C,D

[
`(X,CD) + Φ(C) + Ψ(D)

]
(3)

Φ(C) and Ψ(D) are two penalty functions that act respectively on the coefficients and on
the dictionary. The functional in Equation (3) can be further specialised in order to include

V. Tozzo, V. D’Amario, and A. Barla 6:3

Algorithm 1 Alternating proximal gradient descent
1: Random initialization of the matrices C and D
2: for i = 0 : max_iters do
3: γD ← lipschitz_step`(D)
4: γC ← lipschitz_step`(C)
5: Dt+1 = proxγDΨ(Dt − γD 5D (`t))
6: Ct+1 = proxγCΦ(Ct − γC 5C (`t))
7: if difference between iterates < ε and
8: different between previous and current objective function < ε then
9: break

constraints sets that reduce the space in which a solution is admissible. A very common
example is when we impose the involved matrices to be non-negative, a problem known as
Non-negative Matrix Factorization (NMF) [11].

2.2 Alternating proximal gradient descent

It is worth noting that the optimisation of Equation (3) poses some issues. In fact, due to the
multiplication present in the loss function `, Equation (3) is jointly non-convex. Moreover
the generality of the penalty terms requires the use of a minimisation algorithm that deals
with different choices of penalties without a substantial change in its flow.

All taken into account, our optimisation choice is alternating proximal gradient descent
[4] which assures the convergence to a local minima under the following assumptions: 1) the
loss function `(X,CD) is differentiable and partially Lipschitz continuous; 2) it is possible to
compute the proximal mapping of the penalty terms in closed form or at least to approximate
it. See [4] for mathematical details and theoretical proofs.

The proximal mapping [16] of a function g for a point u is defined as Equation (4).

proxµg(u) = argmin
v

(
g(v) + 1

2µ ‖ v− u ‖22
)

(4)

When the computation of the prox is not available in a closed form, it can be approximated
via a iterative algorithm.

A general overview on the optimization algorithm is given in Algorithm 1. The algorithm
alternates the steps 3, 4, 5 and 6 until convergence. In step 4 the computation of the gradient
descent is performed on the dictionary keeping the coefficients fixed. On the result the
proximal mapping of the dictionary learning penalty Ψ is applied. The same is done in step
6 on the coefficients.

We want to remark that the gradient is computed w.r.t. the previous iteration in both
cases [17]. This allows to perform the two steps in parallel if needed.

2.3 Representation learning (sparse coding)

Representation learning is a more general form of sparse coding (SC) that similarly to DL
aims at finding the best approximation of a signal X (Equation (1)), when the dictionary D
is given. This leads to a problem which is easier to minimise and, given convex loss function
and penalty, becomes convex. The convexity property guarantees that a global optimum can
be always reached.

ICCSW 2017

6:4 DALILA: A DictionAry LearnIng LibrAry

Figure 1 Diagram of DALILA library structure. The main core consists of the two classes which
address the minimization problem. This depends on the class Penalty which represents a generic
penalty term and that can be specialised by declaring subclasses. The library also offers cross
validation utilities for the free parameters tuning.

In representation learning the choice of the penalty on the coefficients is arbitrary and
dictated by the problem while in SC we assume the use of L0 or L1 norms. The formalisation
is given in Equation (5).

argmin
C

[
`(X,CD) + Φ(C)

]
(5)

This optimisation problem, since involves the minimisation on only one variable, can be
solved with proximal gradient descent that acts similarly to what explained in Algorithm 1
without steps 3 and 5.

3 DALILA

DALILA is a library for signal decomposition and reconstruction. Its first focus is Dictionary
Learning (DL) described in Section 2. The fact that both the dictionary and the coefficients
are learned from data allows for a more complete analysis of the results extracting useful
information about the original signals. Moreover the possibility to impose prior knowledge
on the problem using penalty terms grants that the final matrices respect certain constraints.
Examples for regularised DL are: 1) image denoising where sparsity imposition forces the
most important atoms to be used and the noisy ones to be discarded; 2) pattern recognition,
where the atoms of the dictionary are seen as latent patterns from which the original signals
are generated.

DALILA second focus is Representation Learning whose purpose is to represent the
original data matrix on a new space defined by the atoms of the dictionary D. Penalty terms
can be added to impose a structure on this new representation.

The learned coefficients may be used as a new representation for further tasks such
as: 1) compressed sensing that exploits sparsity reducing the size of the original signal; 2)
classification where, rather than considering the original signal, the coefficients are used as
new features.

V. Tozzo, V. D’Amario, and A. Barla 6:5

3.1 Implementation
DALILA is implemented in Python. It supports different versions of Python and it is
scikit-learn compatible. See https://slipguru.github.io/dalila for the full docu-
mentation and a quick start.

DALILA has a modular and easily extendible design (see Figure 1). The core of the
library consists of two classes, DictionaryLearning and RepresentationLearning which
respectively solve the two minimisation problems in Equation (3) and (5). These classes
depend on a generic penalty term (Penalty) which can be specialised into different regular-
isers by declaring a subclass. The library is therefore easily extendible with new regularisers
and flexible in the choice of the model. Cross validation utilities to tune the parameters
of the model are provided, the two methods shown in Figure 1, tune_parameters_DL and
tune_parameters_RL, can perform the tuning by parallel or distributed computation using
dask library [6].

The loss function ` introduced in a generic form in Equation (3) and (5) is common to
both DictionaryLearning and RepresentationLearning classes. It is implemented as the
Frobenius norm of the difference between the original signal and its reconstruction, defined
as Equation (6).

`(X,CD) = ‖X−CD‖2F (6)

As regards the regularisation terms, called Φ and Ψ in Equation (3) and (5), DALILA
offers many possibilities.

In this way a proper regulariser, dependent from the task, can be chosen, during
the initialisation of the DictionaryLearning/RepresentationLearning instances. In fact
DictionaryLearning/RepresentationLearning minimisation algorithms do not depend
on the penalties chosen, as long as the penalty classes inherit from the superclass Penalty
and reimplement the same methods (Figure 1). For a better understanding see Appendices
B, C.

Available regularisation terms

The penalty terms Φ and Ψ are the product between a regularisation parameter and, typically,
a norm. The norm is used to impose a structure on the matrix, while the regularisation
parameter, a positive scalar, weights the regularisation term influence on the solution.

In the following we show the possible choices for Φ and Ψ applied on a generic matrix
M whose i-th row is indicated as Mi,: and j-th column as M:,j . Its generic element is
denoted by mij . With the notation Φ|Ψ we indicate that the penalty can be applied or on
the dictionary or on the coefficients or on both.

L1Penalty - `1 norm

Φ|Ψ(M) = λ
∑
i

‖Mi,:‖1 = λ
∑
i

∑
j

|mij | (7)

Regularisation terms of this form, due to the geometrical meaning of the `1 norm, force
the solution to be sparse and, therefore, highly interpretable [21]. If the penalty is applied
on the dictionary it promotes a dictionary whose atoms have a low number of non-null
components. For the coefficients, the penalisation promotes a reconstruction based only
on few atoms of the dictionary, discarding the ones which give minor contribution to the
original signal.

ICCSW 2017

https://slipguru.github.io/dalila

6:6 DALILA: A DictionAry LearnIng LibrAry

The proximal operator related to this regulariser is

proxΦ|Ψ(mij) =

mij − λ if mij > λ

0 if mij ∈ [−λ, λ]
mij + λ if mij < −λ

(8)

L2Penalty - `2 norm

Φ|Ψ(M) = λ
∑
i

∑
j

m2
ij

 1
2

(9)

Penalties of this form, as in the previous case, can be applied to both matrices C and D.
The `2 regularisation term leads to the shrinkage of the components of each row, but,
differently from the `1 norm, it does not lead to a sparse solution [22].
The proximal operator is

proxΦ|Ψ(Mi,:) = max(1− λ/‖Mi,:‖2, 0) Mi,: (10)

ElasticNetPenalty

Φ|Ψ(M) =
∑
i

[
αλ1‖Mi,:‖1 + (1− α)λ2‖Mi,:‖2

]
(11)

Elastic Net can be preferable to `1 norm, in the case of highly correlated variables, and
also to `2 norm since it inherits the possibility of finding a sparse solution [27].
Here λ1 and λ2 weight the two norms separately while α ∈ [0, 1] balances the contribution
of the two terms. The proximal operator is

proxΦ|Ψ(Mi,:) =
(

1
1 + αλ2

)
proxλ1‖·‖1(Mi,:) (12)

L0Penalty - `0 pseudo-norm

Φ|Ψ(M) : ∀i ‖Mi,:‖0 ≤ s (13)

where ‖Mi,:‖0 counts the number of non-zero elements in the row. The regularisation
parameter s ∈ N impose the maximum number of non-null elements in Mi,:, naturally
leading to sparse results. The proximal operator is

proxΦ|Ψ(Mi,:) =
{

mij , if mij ∈ S
0, otherwise

(14)

where S is the set containing the first s biggest components of Mi,:.

LInfPenalty - `∞ norm

Φ(M) = λ
∑
j

‖M:,j‖∞ (15)

where ‖M:,j‖∞ returns the maximum element in the column. This regularisation term
acts column-wise only on the coefficients and it is useful in presence of a redundant
dictionary [24].

V. Tozzo, V. D’Amario, and A. Barla 6:7

The effect of this regulariser is to discard the atoms that overall have a low impact in the
reconstruction while emphasising the atoms that, even if only in few samples, contribute
largely.
The proximal operator is

proxΦ(mj) = mj − λΠ1(mj/λ) (16)

The algorithm for the projection on the `1 ball is explained in [7].

GroupLassoPenalty - `1,2 norm

Φ|Ψ(M) = λ
∑
i

∑
g∈G
‖Mi,g‖2 (17)

where G is the set of the groups (i.e. the indices of the columns) defined by the user.
For each row of the matrix M the penalty enforces all the values of a group to be selected
or discarded together (i.e. all of them set to zero). The groups cannot be overlapping
and they have to cover all the columns indices. Its proximal mapping is

proxΦ|Ψ(Mi,:)G = max(1− λ/‖Mi,g‖2, 0) Mi,g for all g ∈ G (18)

Additional user-implemented penalties As introduces before DALILA is flexible in
the sense that it allows to use different penalties without changing the minimisation flow
and it further allows the user to declare new non-considered penalties. More details are
given in Appendix C.

Both for DictionaryLearning and RepresentationLearning the user can impose non-
negativity constraints on the involved matrices. When this requirement is applied both on
the dictionary and the coefficients it is called Non-negative Matrix Factorization [11]. The
non-negativity condition can, moreover, be imposed only on the coefficients in order to obtain
a more interpretable contribution of the dictionary elements to the reconstruction of the
original signal [19]. The projection is performed by setting to zero all the negative elements
in the considered matrix.

Furthermore, in the DictionaryLearning class the user can impose the normalization
condition on the dictionary matrix, which is equivalent to set the euclidean norm of each
row equal to 1.

‖Di,:‖2 = 1 for all i ∈ {1, . . . , k} (19)

Model selection

A critical aspect of these reconstruction techniques is constituted by the choice of the free
parameters, which are the number of atoms k that define the dictionary and the regularisation
values that weight the penalty terms. This choice depends on the dataset given as input X
and it can varies depending on different factors, as the high level of noise in the measurements,
the redundancy of the founded dictionary and the interpretability of the solution. Given
the fact that there is an infinite set of possible values for each parameter and no theoretical
formulation that guides to the best solution exists, the only feasible approach is to empirically
solve a searching problem over the parameters space.

DALILA allows for a fine tuning of the free parameters of the model on the dataset by
performing a grid search based on cross validation. The best combination of parameters is
selected as the one that returns the best mean score over multiple iterations. As score we
use BIC (Bayesian Information Criterion) [20], shown in Equation (20).

BIC = −log(n) · k − c · `(X,CD) (20)

ICCSW 2017

6:8 DALILA: A DictionAry LearnIng LibrAry

where c is a positive constant. The highest value of the BIC corresponds to the best
model in the search space. This procedure is available both for DictionaryLearning and
RepresentationLearning.

The two procedures, tune_parameters_DL and tune_parameters_RL, allow the user to
specify different search modalities. In tune_parameters_DL the user can choose among
different configurations.

tuning the number of atoms together with the dictionary penalty and after searching the
regularisation parameter on the coefficients;
fixing the number of atoms in the estimator and tuning the penalties together;
fixing the penalties values and tuning the best number of atoms;
tuning all the possible value together, number of atoms and regularisation parameters,
analysing every possible combination in the grid.

4 Related work

As of today other libraries addressing similar tasks are available, SPAMS1 (SPArse Modeling
Software) [13] and the Decomposition modules of scikit-learn [5, 12].

SPAMS, implemented in C++, performs the decomposition tasks through dictionary
learning, non negative matrix factorization and sparse PCA. It offers a good set of options,
but, even if it is interfaceable with Python, it is not scikit-learn compatible. Therefore, it
cannot be integrated in scikit-learn pipelines. Moreover, it is non trivial to customise or
extend it.

The other main competitor, the decomposition module of scikit-learn library, imple-
ments dictionary learning and NMF but it only has few fixed penalty terms.

5 Conclusions and further work

In this work we introduced DALILA, a library for dictionary learning and representation
learning. We presented its main features: the wide variety of penalties, the possibility to
customise the library on specific problems, its compatibility with scikit-learn library,
its high flexibility and its scalable architecture which allows to perform parallel parameter
searching procedures.

The wide variety of penalties applicable on the matrices allow the user to solve a broad
range of problems. Moreover, since scientific problems can introduce more specific and new
needs, the possibility to customise and adapt the library is essential.

DALILA is fully compliant with one of the most complete machine learning Python
libraries that is scikit-learn. This makes almost effortless its integration with the majority
of machine learning Python pipelines.

The possibility to parallelise or distribute computationally heavy routines [6] greatly
reduce the wall-clock time. Nevertheless our implementation is still basic and therefore the
time performance are worse compared to the other presented libraries. In the future we plan
to replace the use of dask with an hybrid parallelised system which will take advantage both
of MPI tasks distribution and the computational acceleration given by GPUs.

Given DALILA flexibility and the existence of other Dictionary Learning related problems,
we aim at extending it. The planned expansions are: 1) Discriminative Dictionary Learning
[14], a variant of the dictionary learning problem which includes the classification task; 2)

1 http://spams-devel.gforge.inria.fr/doc/html/

http://spams-devel.gforge.inria.fr/doc/html/

V. Tozzo, V. D’Amario, and A. Barla 6:9

Shift Invariant Dictionary Learning [8] that allows the reconstruction of signals using atoms
with smaller support than the original signal and 3) Total Variation penalty in combination
with Lasso [19].

References
1 Charu C Aggarwal and ChengXiang Zhai. Mining text data. Springer Science & Business

Media, 2012.
2 Ludmil B Alexandrov, Serena Nik-Zainal, David C Wedge, Peter J Campbell, and Mi-

chael R Stratton. Deciphering signatures of mutational processes operative in human cancer.
Cell reports, 3(1):246–259, 2013.

3 Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Representation learning: A review
and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell., 35(8):1798–1828, 2013.
doi:10.1109/TPAMI.2013.50.

4 Jérôme Bolte, Shoham Sabach, and Marc Teboulle. Proximal alternating linearized minim-
ization for nonconvex and nonsmooth problems. Mathematical Programming, 146(1-2):459–
494, 2014.

5 Andrzej Cichocki and PHAN Anh-Huy. Fast local algorithms for large scale nonnegat-
ive matrix and tensor factorizations. IEICE transactions on fundamentals of electronics,
communications and computer sciences, 92(3):708–721, 2009.

6 Dask Development Team. Dask: Library for dynamic task scheduling, 2016. URL: http:
//dask.pydata.org.

7 John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections
onto the l 1-ball for learning in high dimensions. In Proceedings of the 25th international
conference on Machine learning, pages 272–279. ACM, 2008.

8 Roger Grosse, Rajat Raina, Helen Kwong, and Andrew Y Ng. Shift-invariance sparse
coding for audio classification. arXiv preprint arXiv:1206.5241, 2012.

9 Aapo Hyvärinen, Juha Karhunen, and Erkki Oja. Independent component analysis,
volume 46. John Wiley & Sons, 2004.

10 Ian Jolliffe. Principal component analysis. Wiley Online Library, 2002.
11 Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative matrix

factorization. Nature, 401(6755):788–791, 1999.
12 Chih-Jen Lin. Projected gradient methods for nonnegative matrix factorization. Neural

Computation, 19(10):2756–2779, 2007. doi:10.1162/neco.2007.19.10.2756.
13 Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online Learning for Matrix

Factorization and Sparse Coding. Journal of Machine Learning Research, 11:19–60, 2010.
URL: http://dl.acm.org/citation.cfm?id=1756006.1756008.

14 Julien Mairal, Jean Ponce, Guillermo Sapiro, Andrew Zisserman, and Francis R Bach.
Supervised dictionary learning. In Advances in neural information processing systems, pages
1033–1040, 2009.

15 Stephane Mallat. A wavelet tour of signal processing: the sparse way. Academic press,
2008.

16 Neal Parikh, Stephen Boyd, et al. Proximal algorithms. Foundations and Trends® in
Optimization, 1(3):127–239, 2014.

17 Alain Rakotomamonjy. Direct optimization of the dictionary learning problem. IEEE
Transactions on Signal Processing, 61(22):5495–5506, 2013.

18 Saiprasad Ravishankar and Yoram Bresler. MR image reconstruction from highly un-
dersampled k-space data by dictionary learning. IEEE transactions on medical imaging,
30(5):1028–1041, 2011.

19 Saverio Salzo, Salvatore Masecchia, Alessandro Verri, and Annalisa Barla. Alternating
proximal regularized dictionary learning. Neural computation, 26(12):2855–2895, 2014.

ICCSW 2017

http://dx.doi.org/10.1109/TPAMI.2013.50
http://dask.pydata.org
http://dask.pydata.org
http://dx.doi.org/10.1162/neco.2007.19.10.2756
http://dl.acm.org/citation.cfm?id=1756006.1756008

6:10 DALILA: A DictionAry LearnIng LibrAry

20 Gideon Schwarz et al. Estimating the dimension of a model. The annals of statistics,
6(2):461–464, 1978.

21 Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996.

22 Andrĕı Nikolaevich Tikhonov, Vasilĭı Iakovlevich Arsenin, and Fritz John. Solutions of
ill-posed problems, volume 14. Winston Washington, DC, 1977.

23 Ivana Tosic and Pascal Frossard. Dictionary learning. IEEE Signal Processing Magazine,
28(2):27–38, 2011.

24 Joel A Tropp. Just relax: Convex programming methods for identifying sparse signals in
noise. IEEE transactions on information theory, 52(3):1030–1051, 2006.

25 Joel A. Tropp and Anna C. Gilbert. Signal recovery from random measurements via
orthogonal matching pursuit. IEEE Trans. Information Theory, 53(12):4655–4666, 2007.
doi:10.1109/TIT.2007.909108.

26 Martin Vetterli, Jelena Kovacevic, and Vivek K Goyal. Fourier and wavelet signal pro-
cessing. Book site, 2013.

27 Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–320, 2005.

A Appendix: example of usage and related output

In this appendix we want to offer some insights of how DALILA code works and the possible
outcomes we can obtain. All the experiments are performed on the ORL database of faces 2.
This database is saved as a matrix within the library with 400 samples and 112× 92 features.

In order to perform Dictionary Learning on this dataset we firstly need to flatten the
matrices into arrays and then apply the fitting procedure. In this estimator we are using an
arbitrary number of atoms that we choose randomly and we impose non-negativity on both
the matrices since we are dealing with gray scale images that have values in the range of
[0,255].

1 import numpy as np
2

3 from dalila . dictionary_learning import DictionaryLearning
4 from dalila . penalty import L1Penalty
5

6 dataset = np.load("/path/to/ dalila / folder / dalila / databases /
ORL_database .npy")

7 d1 , d2 , n = dataset .shape
8 data = np.empty ((n, d1*d2))
9 for i in range(n):

10 data[i ,:] = np.ravel(dataset [:,:,i])
11

12 estimator = DictionaryLearning (k=60, non_negativity ="both")
13 estimator .fit(data , n_iter =1000)
14 C, D = estimator . decomposition ()

Some of the results obtained with this code are depicted in Figure 2. Here the most used
atoms in the reconstructions are showed. In Figure 3, instead, we show some reconstructions
and their original signals to perform a qualitative comparison.

2 The database is available for download at the link http://www.cl.cam.ac.uk/research/dtg/
attarchive/facedatabase.html

http://dx.doi.org/10.1109/TIT.2007.909108
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

V. Tozzo, V. D’Amario, and A. Barla 6:11

Figure 2 The ten more recurrent atoms for the reconstruction of the samples in ORL dataset.

In this example we tune only the right number of atoms we should use for this particular
dataset. Given the dimensionality of the dataset we picked as range k ∈ [5, 10, 15, 20, 30, 40, 50].

Moreover we did not use the basic BIC score but a normalised one since the values
within the BIC computation, with this dataset, are not comparable in their magnitude (see
scoring_function). The results are showed in Figure 4 where we can see that the best
number of atoms is 15.

1 import matplotlib . pyplot as plt
2 import numpy as np
3 from dalila . parameters_research import tune_parameters_DL
4 from dalila . dictionary_learning import DictionaryLearning
5

6 dataset = np.load("/path/to/ dalila / folder / dalila / databases /
ORL_database .npy")

7 d1 , d2 , n = dataset .shape
8 data = np.empty ((n, d1*d2))
9 for i in range(n):

10 data[i ,:] = np.ravel(dataset [:,:,i])

1 def scoring_function (estimator , X, y=None):
2 C, D = estimator . decomposition ()
3 r_error = (np. linalg .norm(estimator .X - C.dot(D))/
4 np. linalg .norm(estimator .X))
5 n = estimator .X.shape [0]
6 return -(2.3* np.array(r_error) + 0.001* estimator .k*np.log(n))
7

8 possible_ks = [5 ,10 ,15 ,20 ,30 , 40 ,50]
9 estimator = DictionaryLearning (k=5, non_negativity ="both")

10 gscv = tune_parameters_DL (data , estimator , analysis =2,
11 range_k = possible_ks , fit_params ={’n_iter ’:500} ,
12 scoring_function = scoring_function)

ICCSW 2017

6:12 DALILA: A DictionAry LearnIng LibrAry

Figure 3 Examples of the reconstruction obtained with DL decomposition. In the first row the
reconstructions are shown and beneath them their original picture.

Figure 4 Curve of the scoring_function values (refined BIC) w.r.t. the number of atoms used
for the decomposition. To an higher value corresponds a better model for the dataset. In this case
the best model is the one with 15 atoms in the dictionary.

B Appendix: interchangeability of the penalties

With DALILA trying different penalties on the same dataset requires only few lines of code.
For example suppose we have the right number of atoms (with the dataset we use is 7)

in which to decompose the dataset and that, some oracle, told us the perfect regularisation
parameters for each penalty on that dataset. Then we may want to try different sparsifications
on the coefficients to see which one better approximates the original signal. We tried
L1Penalty, L0Penalty and ElasticNetPenalty.

V. Tozzo, V. D’Amario, and A. Barla 6:13

1 import numpy as np
2

3 from dalila . dictionary_learning import DictionaryLearning
4 from dalila . dataset_generator import synthetic_data_non_negative
5 from dalila . penalty import L1Penalty , L0Penalty , ElasticNetPenalty
6

7 X, D, C = synthetic_data_non_negative ()
8

9 estimator = DictionaryLearning (k=7, coeff_penalty = L1Penalty (0.01) ,
non_negativity ="both")

10 estimator .fit(X)
11 C_l1 , D_l1 = estimator . decomposition ()
12 error_l1 = estimator . reconstruction_error ()
13

14 estimator = DictionaryLearning (k=7, coeff_penalty = L0Penalty (3) ,
non_negativity ="both")

15 estimator .fit(X)
16 C_l0 , D_l0 = estimator . decomposition ()
17 error_l0 = estimator . reconstruction_error ()
18

19 estimator = DictionaryLearning (k=7, coeff_penalty = ElasticNetPenalty
(0.01 , 0.1, 0.7) , non_negativity ="both")

20 estimator .fit(X)
21 C_en , D_en = estimator . decomposition ()
22 error_en = estimator . reconstruction_error ()

After the execution of this piece of code the comparison between the results is straight-forward
and you can notice that the effort is minimal.

C Appendix: addition of a new penalty

DALILA allows to easily introduce new customised penalties for the optimisation of dictionary
learning or representation learning. We want to underline that, even if the implementation
steps are easy, the function that computes the proximal mapping has to be correct and no
theoretical inconsistencies should be present. The behaviour is otherwise unpredictable.

The first step is the import of the super-class Penalty that our new penalty has to extend.
We also import other things that we need later.

1 from dalila . representation_learning import RepresentationLearning
2 from dalila . penalty import Penalty
3 import numpy as np

The implementation of the new class, besides the construction, has to expose the method
apply_prox_operator that is the one called during the minimisation. In this method the
prox operator is implemented.

1 class NewPenalty (Penalty):
2

3 def __init__ (self , regularization_parameter):
4 self. regularization_parameter = regularization_parameter
5

6 # x is the matrix on which apply the prox

ICCSW 2017

6:14 DALILA: A DictionAry LearnIng LibrAry

7 # gamma is the gradient descent step
8 def apply_prox_operator (self , x, gamma):
9 # if you are declaring a real penalty

10 # change the implementation and
11 # transform x according to your penalty
12 return x

Once we have declared the penalty, in this case a penalty that does nothing, we put it into
the representation learning procedure.

1 fake_data = np. random .rand (50 ,50)
2 fake_dictionary = np. random .rand (5, 50)
3 estimator = RepresentationLearning (fake_dictionary , penalty =

NewPenalty (5))
4 estimator .fit(fake_data)

It is also possible to use the parameter research procedures with the new penalty provided
that we also overwrite the method make_grid since the searching function assumes it exists.
We here show a basic example of how it can be implemented, one may want to vary the
interval or the sampling procedure.

1 class NewPenalty (Penalty):
2

3 # ..as above ..
4

5 def make_grid (self , low =0.001 , high =1, number =10):
6 # possible regularization parameters to analyse
7 values = np. linspace (low , high , number)
8 l = []
9 # the list has to be composed of NewPenalty objects

10 for (i, v) in enumerate (values):
11 l. append (NewPenalty (v))
12 return l

Again we show that it is usable right away without further code.

1 from dalila . parameters_research import tune_parameters_RL
2 estimator = RepresentationLearning (fake_dictionary , penalty =

NewPenalty (5))
3 gscv = tune_parameters_RL (fake_data , estimator , coeff_penalty_range

=(0.1 , 1, 3))

Faster Concurrent Range Queries with Contention
Adapting Search Trees Using Immutable Data∗

Kjell Winblad

Department of Information Technology, Uppsala University, Sweden
kjell.winblad@it.uu.se

Abstract
The need for scalable concurrent ordered set data structures with linearizable range query support
is increasing due to the rise of multicore computers, data processing platforms and in-memory
databases. This paper presents a new concurrent ordered set with linearizable range query sup-
port. The new data structure is based on the contention adapting search tree and an immutable
data structure. Experimental results show that the new data structure is as much as three times
faster compared to related data structures. The data structure scales well due to its ability to
adapt the sizes of its immutable parts to the contention level and the sizes of the range queries.

1998 ACM Subject Classification D.2.8 Performance measures, E.1 Trees, H.2.4 Concurrency

Keywords and phrases linearizability, concurrent data structures, treap

Digital Object Identifier 10.4230/OASIcs.ICCSW.2017.7

1 Introduction

The use of concurrent ordered set data structures1 with support for linearizable2 range
queries3 is increasing as multicores are becoming more readily available and due to the rise
of big scale data processing platforms and in-memory databases such as Google’s F1 [23]
and Yahoo’s Flurry [1]. Both of these require set data structures with fast updates4 to
store incoming data while concurrently serving (typically large) linearizable range queries for
analytics [3]. Although there are many concurrent set data structures (e.g. [22, 12, 16]) and
ordered set data structures (e.g. [8, 13, 6]), there are only a few concurrent data structures
with efficient linearizable range queries [5, 2, 17, 19, 7, 3].

This paper proposes a new concurrent ordered set data structure that internally makes
use of an immutable data structure. The difference between an immutable data structure
and its mutable counterpart is that the immutable data structure’s update operations do not
modify the given data structure instance in-place but instead return a new version, leaving
the input instance intact. For many data structures, e.g. binary search trees, the operations
of the immutable version are asymptotically as efficient as in its mutable counterpart [14].
As an example, the insert operation of an immutable balanced binary search tree only needs

∗ This work was supported by the Linnaeus centre of excellence UPMARC (Uppsala Programming for
Multicore Architectures Research Center).

1 A concurrent ordered set data structure represents a set of items that can be manipulated concurrently
by several threads and where an item consists of an ordered key and optionally some additional data.

2 A linearizable operation appears to happen instantly between the operation’s invocation and return [10].
3 A range query operation returns all items with keys within the given range (specified by two keys).
4 An update operation is an insert operation or a remove operation where the former inserts an item
(replacing an existing item if one with an equal key already exists) and the latter removes an item with
the given key if such an item exists.

ICCSW17© Kjell Winblad;
licensed under Creative Commons License CC-BY

2017 Imperial College Computing Student Workshop (ICCSW 2017).
Editors: Fergus Leahy and Juliana Franco; Article No. 7; pp. 7:1–7:13

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2017.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

7:2 Faster Concurrent Range Queries in CA Trees Using Immutable Data Structures

to make a copy of the nodes on the path to the inserted node, which only consists of O(logn)
nodes, where n is the number of items that are stored in the search tree.

One can derive a concurrent ordered set data structure with linearizable range query
support from a single mutable reference to an immutable data structure [9]. A lookup or a
range query simply performs the operation in the referenced immutable data structure. An
update operation repeatedly tries to update the reference using an atomic compare-and-swap
operation [9] until the update succeeds. Unfortunately, this coarse-grained approach does
not scale when concurrent updates are common due to the scalability bottleneck that exists
in the updating of the shared reference. Instead, several data structures [5, 2] use immutable
parts that can store a fixed number of items to shorten the time range queries need to
spend reading shared mutable data. This fine-grained approach can be efficient when it is
possible to fine-tune the size of the data structure’s immutable parts to fit the sizes of the
range queries (the number of items within the range) and the contention level. However, the
fine-grained approach does not work well when the access pattern is unknown or differs in
different parts of the data structure.

The main contribution of this paper is a new concurrent ordered set data structure
with linearizable range query support that solves the problems with the coarse-grained and
fine-grained approaches described above by dynamically changing the sizes of its immutable
parts to fit the workload at hand. The new data structure is based on the contention adapting
search tree (CA tree) [18, 19, 20] and an immutable data structure. Previous results [19]
show that CA trees using mutable data structures provide good scalability in scenarios with
short range queries. However, previous CA tree variants’ scalability for large range queries is
limited as their range queries lock out other threads from large portions of the data structure
for a time period whose length is proportional to the number of items with keys in the given
range. The new CA tree variant eliminates this problem by utilizing an immutable data
structure. As is shown in this work, the new CA tree variant’s ability to reduce the lock
holding times does not only make its scalability substantially better compared to the old CA
tree variants but also much better than the other recently proposed data structures with
linearizable range query support.

This paper starts with a high-level description of CA trees (Section 2). The new CA tree
variant and its implementation are described in Sections 3 and 4. Analytical and experimental
comparisons with related data structures are given in Sections 5 and 6. The paper finishes
with a conclusion (Section 7).

2 High-Level Description of Contention Adapting Search Trees

CA trees are structured as depicted in Figure 1. The items that are stored in a CA tree are
located in sequential data structures under the base nodes (see Figure 1). To efficiently find
a specific item in a CA tree, the search is directed by the keys in the routing nodes. All
items stored under the left branch of a routing node have keys that are less than the key of
the routing node and all items stored under the right branch have keys that are greater than
or equal to the key in the routing node. The sequential data structures are protected from
concurrent accesses by locks in the base nodes. A base node lock has a statistics counter
which is incremented when a thread needs to wait to acquire the lock and decremented when
no waiting is required. If the statistics counter in a base node reaches a certain threshold, the
items stored in the base node are split between two new base nodes to reduce the contention;
see Figure 2a and Figure 2b. In the reverse direction, if the statistics counter in a base node
reaches the threshold for low contention adaption, the items in the base node and a neighbor

K. Winblad 7:3

Figure 1 The structure of a CA tree. Numbers denote keys.

(a) Initial CA tree. (b) CA tree after a split. (c) CA tree after a join

Figure 2 Effect of the split and join operations on the CA tree of Figure 2a.

base node are joined into one new base node; see Figure 2a and Figure 2c. Base nodes also
have a valid flag (depicted by 3 and 7) which is used to indicate if a base node is in the CA
tree or if it has been removed. Operations that end up in an invalid (7) base node need to
retry the search until they end up in a valid (3) base node. Routing nodes also have a valid
flag and a lock that are only used rarely during the low contention optimizing join. Range
queries are performed in CA trees by first finding and locking the base node containing the
first key in the range and then traversing and locking subsequent base nodes until a base
node containing a key which is equal to or greater than the largest key in the range is found.

An optimization that has been shown to greatly enhance performance of read operations
(lookup and range query) is to let read operations optimistically attempt to do their operation
without writing to shared memory [18, 19]. This can be done by using a sequence lock [11]
as base node lock. A sequence lock has an operation to read a sequence number from the
lock. If a thread gets the same even sequence number from two calls of this operation, then
the sequence lock guarantees that the lock has not been acquired between the two calls. An
optimistic attempt of a read operation first scans the sequence numbers and checks the valid
flags of the base nodes that the operation needs to read data from, and then performs the
operation, after which the sequence numbers from the locks have to be checked again to
make sure that the sequence numbers match the previously read sequence numbers. If the
optimistic attempt fails, the operation is done by acquiring the base node locks in read-mode
(several read-mode lock holders can hold the lock at the same time).

The reader is referred to the earlier papers on CA trees [18, 19, 20] for a detailed
description including pseudo-code and arguments that their operations provide linearizability,
deadlock freedom, and livelock freedom.

ICCSW 2017

7:4 Faster Concurrent Range Queries in CA Trees Using Immutable Data Structures

3 CA Tree Optimization Enabled by Immutable Data Structures

By using a mutable reference to an immutable data structure as a CA tree’s sequential data
structure, it is straightforward to reduce the amount of time that read operations spend
on reading shared mutable data. Assuming that the CA tree’s sequential data structure
component is implemented with a mutable reference to an immutable data structure, a lookup
or range query operation only needs to copy the values of the references that are needed
by the operation while traversing shared mutable data. The immutable data structures
referenced by the copied references are then traversed after the base node locks have been
unlocked (or after the second sequence number scan).

Especially for range queries, this optimization can give a large reduction of the amount
of time which is spent on reading shared mutable data as the time that range queries need
to spend on traversing the sequential data structures is at least linear in the number of items
in the range. With the optimization, range queries may only need to traverse a few base
nodes (one in the best case) while reading shared mutable data even when the number of
items in the range is large.

It is straightforward to see that this optimization does not jeopardize correctness as the
result of a read operation would be the same if the traversal of the sequential data structures
happened instantly at the linearization point (due to the immutability of the data structures
referenced by the copied references).

4 The Implementation of the Optimized CA Tree

To experimentally evaluate the optimization described in the previous section, a CA tree
using a mutable reference to an immutable treap [21] as its sequential data structure has
been implemented in Java. A treap is a self-balancing binary search tree with expected time
complexity of O(logn) for insert, remove and lookup and an expected time complexity of
O(logn+r) for range queries, where n is the number of items stored in the data structure and
r is the number of items in the range. The treap also has efficient split and join operations [21]
which is important for the CA tree’s low and high contention adaptions [18]. To facilitate
cache friendly range queries, the treap implementation stores all items in fat leaf nodes
containing arrays that can store up to 64 items.

One heuristic, that CA trees use to reduce the time that future similar range queries need
to spend on traversing base nodes, is to decrement the contention statistics counters in the
locks of base nodes needed by a range query, if more than one base node is needed; cf. [19].
With the optimization described in the previous section in place, the portion of a range query
that is spent on traversing shared mutable data is even more affected by the number of base
nodes that the range query needs to access than without the optimization. The reason for
this is that the optimization moves the traversal of the sequential data structures from within
the period that is spent on reading shared mutable data to after this period. It therefore
makes sense to decrement the contention statistics counters with a larger value, when the
optimization is used, as the potential benefit for similar range queries is larger than without
the optimization. Indeed, experiments show that changing the heuristic to decrement by
the value 100 instead of the value one (which is used by the old CA tree implementations)
gives significantly better performance in scenarios with large range queries. Except for the
change of the value used to decrement the statistics counters in the described heuristic, the
immutable treap version of the CA tree has the same constants and thresholds for low and
high contention adaptions as described in the previous work [19].

K. Winblad 7:5

5 Related Work

The CA tree is the only one of the previously proposed approaches for linearizable range
queries [4, 5, 2, 17, 7, 3] that dynamically changes the synchronization granularity to optimize
for the conflicting requirements of range queries of different sizes and single-key operations [19].

The SnapTree by Bronson et al. [4] has an efficient linearizable clone operation that
returns a copy of the data structure from which a range query operation can easily be derived.
SnapTree’s clone operation waits for active update operations and forces subsequent update
operations to copy nodes lazily before node modifications so that the copy is not modified.
The behavior of SnapTree resembles the behavior of the data structure implemented from a
single mutable reference to an immutable data structure (that is discussed in Section 1) when
range queries are common. The SnapTree can thus serve as an example of the coarse-grained
approach for doing range queries.

The lock-free k-ary search tree is an unbalanced external search tree with up to k keys
stored in every node [6]. Range queries in k-ary search trees are performed by doing a read
scan and a validation scan of the immutable leaf nodes containing items in the range [5]. The
range query operation needs to retry if the validation scan fails. The k-ary is an example
of the fine-grained approach discussed in Section 1. Another example of this fine-grained
approach based on software transactional memory is the Leaplist [2].

Chatterjee has proposed a general method for doing range queries in lock-free ordered set
data structures [7] based on the work by Erez and Shahar [15]. Unfortunately, the scalability
of Chatterjee’s method suffers from the global sequential hot spot in the list of range-collector
objects that all range queries have to write to in the worst case.

The KiWi data structure by Basin et al. [3] supports wait-free range queries and lookup
operations as well as lock-free update operations. Update operations help range queries by
storing multiple versions of inserted items when it is needed for the range queries. Similarly
to Robertson’s data structure [17], KiWi’s range queries atomically increment a global version
counter which is used by update operations to decide if storing an additional version is
necessary. KiWi’s global version number counter is bound to become a scalability bottleneck
with a high enough level of parallelism. Similarly to the treap based CA tree, KiWi tries to
improve cache locality by storing items in arrays that can store up to k items.

A fundamental difference between the other efficient methods for range queries in ordered
set data structures and the optimized CA tree is the time spent by range queries reading
shared mutable data and thus the time in which conflicts with update operations can happen.
In the other methods [5, 2, 17, 19, 7, 3], this time is at least linear in the number of items
inside the range while the optimized CA tree can do much better as is described in Section 3.

6 Evaluation

We now experimentally evaluate the optimized CA tree implementation using the immutable
treap described in Section 4 (Im-Tr-CA). Im-Tr-CA will be compared to the recently pro-
posed methods for doing linearizable range queries in ordered sets: SnapTree [4], k-ary [5],
Chatterjee’s method applied to a lock-free skiplist [7] (ChatterjeeSL), KiWi [3] and the two
CA tree variants that use a mutable skiplist with fat nodes (SL-CA) and a mutable AVL
tree (AVL-CA) as sequential data structures [19]. The lock-free skiplist, called Concurrent-
SkipListMap, from the Java library that only supports range queries that are not linearizable
(NonAtomicSL) is also included in the comparison. All data structures were provided by
their respective authors and are implemented in Java. The maximum number of items in

ICCSW 2017

7:6 Faster Concurrent Range Queries in CA Trees Using Immutable Data Structures

1 2 4 8 16 32 64

0

5

10

15

20

25
KiWi
k-ary
SnapTree
ChatterjeeSL
NonAtomicSL
AVL-CA
SL-CA
Im-Tr-CA

(a) w:20% r:55% q:25%-10
1 2 4 8 16 32 64

0

2

4

6

8

10

12

(b) w:20% r:55% q:25%-1000
1 2 4 8 16 32 64

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(c) w:20% r:55% q:25%-100000

Figure 3 Throughput (operations/µs) on the y-axis and thread count on the x-axis.

the nodes (k) is set to 64 for k-ary, Im-Tr-CA and SL-CA as this value has previously been
shown to give good results [5]. KiWi’s constants are set as described in the KiWi paper [3].

The benchmarks were run on a machine with four Intel(R) Xeon(R) E5-4650 CPUs
(2.70GHz each with eight cores and hyperthreading, giving a total of 32 actual and 64 logical
cores), turbo boost turned off, 128GB of RAM, running Linux 3.16.0-4-amd64 and Oracle
JVM 1.8.0_131 (with the JVM flags -Xmx8g -Xms8g -XX:+UseCondCardMark -server -d64).
Each data point comes from the average of three measurements runs of 10 seconds each that
were preceded by 3 warm up runs, also of 10 seconds each. The purpose of the warm up runs
is to give the just-in-time compiler enough time to compile the code. Error bars showing the
minimum and maximum measurements are displayed when they are large enough to be seen.

The keys for the operations lookup, insert and remove as well as the starting keys for
range queries are randomly generated from a range of size S. The data structure is pre-filled
before the start of each benchmark run by performing S/2 random insert operations. In all
experiments presented in the main part of this paper S = 106. The interested reader can
find results for S = 105 and S = 107 in the appendix of this paper. Range queries calculate
the sum of the items in the range and the number of items in the range. As a sanity check,
the average number of items that are traversed per range query is calculated and checked
against the expected value.

The Random Operations Benchmark. This benchmark measures throughput of a mix of
operations performed by N threads. In all captions, benchmark scenarios are described
by strings of the form w:A% r:B% q:C%-R, meaning that the benchmark performs (A/2)%
insert, (A/2)% remove, B% lookup operations and C% range queries of maximum range size
R. The range sizes are randomly set to values between 1 and R.

Figure 3 shows the results from three scenarios with increasing range sizes. In the scenario
with small range queries of maximum size 10 (Figure 3a), the best performing data structures
(the CA trees and k-ary) are almost indistinguishable. ChatterjeeSL and KiWi that have a
global scalability bottleneck, as explained in the previous section, both scale worse in this
scenario. Im-Tr-CA scales well in this scenario due to its ability to adapt the sizes of its
immutable parts but does not get much benefit from its quick traversal of shared mutable
data as conflicts between threads are rare for all data structures in this scenario.

Conflicts are still relatively rare in the scenario with range queries of maximum size 1000
(Figure 3b). The top performing data structures in this scenario (Im-Tr-CA, SL-CA, KiWi
and k-ary) are those with cache locality friendly nodes that store several items in arrays.

K. Winblad 7:7

1 2 4 8 16 32
Number of Range Query Threads

0
200
400
600
800

1000
1200
1400
1600

(o
pe

ra
tio

ns
/μ

s)
 *

32
00

0
KiWi
k-ary
SnapTree
ChatterjeeSL

NonAtomicSL
AVL-CA
SL-CA
Im-Tr-CA

(a) Range queries, range size 32K (parallel updates)

2 4 8 32 128 512 2K 8K 32K 128K
Range Size

0

200

400

600

800

1000

1200

(o
pe

ra
tio

ns
/μ

s)
 *

(ra
ng

e
siz

e)

(b) Range queries 16 threads (parallel updates)

1 2 4 8 16 32
Number of Update Threads

0

1

2

3

4

5

6

7

op
er

at
io

ns
/μ

s

(c) Updates (parallel range queries, range size 32K)

2 4 8 32 128 512 2K 8K 32K 128K
Range Size

0

1

2

3

4

5

6

7

op
er

at
io

ns
/μ

s

(d) Updates 16 threads (parallel range queries)

Figure 4 Results for benchmark with separate threads doing updates and range queries.

However, Im-Tr-CA and SL-CA, that adapt their synchronization granularity to the scenario
at hand, outperform KiWi and k-ary with a wide margin in this scenario.

The scenario that has large range queries of maximum size 100000 (Figure 3c) shows the
distinguishing feature of Im-Tr-CA that outperforms all the other data structures with a
large margin. Conflicts between range queries and update operations are very likely with
these large range queries but the conflicts are significantly less costly in Im-Tr-CA due to its
short critical sections, as is explained in Section 3.

Separate Threads for Range Queries and Updates. Most of the time is spent doing range
queries when large range queries are used in the random operations benchmark. Thus, another
benchmark is needed to measure the data structures’ ability to handle large range queries
concurrently with frequent update operations. To this end, we use a similar benchmark
to the one developed by the KiWi authors. This benchmark is motivated by large scale
applications that require quick updates of a data set while other threads do large linearizable
range queries concurrently (for analytics) [3]. In this benchmark, half the threads do update
operations (insert and remove with equal probability) while the other half do range queries
with a range of fixed size. The throughput for updates is presented separately from the range
query throughput so that one can study the performance of these operations separately. Note
that in the graphs that show the range query throughput, the number of operations per µs
multiplied by the range query size is shown on the y-axis to make the graphs more readable.

ICCSW 2017

7:8 Faster Concurrent Range Queries in CA Trees Using Immutable Data Structures

Table 1 Statistics for Im-Tr-CA in the scenarios displayed in Figure 4b and Figure 4d.

Range Size 2 4 8 32 128 512 2K 8K 32K 128K
base nodes 2.5K 2.1K 1.7K 1.0K 590 390 310 310 390 430

traversed base nodes
range queries 1.0 1.0 1.0 1.0 1.1 1.2 1.6 3.5 13 56

Figure 4a and Figure 4c show the results of this benchmark with a range query size of
32K and with varying thread counts. In Figure 4b and Figure 4d, the thread count is fixed
to 32 (16 updaters and 16 threads doing range queries) and the x-axis shows varying range
query sizes. First of all, Im-Tr-CA with its short range query critical section is overall the
fastest data structure in the scenarios. KiWi is the second most performant data structure
in the scenarios with range query sizes larger than 2000. The bumpy performance of CA-SL
in Figure 4b can be explained by the fact that the range queries acquire the base node locks
in read-mode which enables concurrent range queries to bypass waiting update operations
and take over the lock.

CA-SL thus provides good throughput for range queries with a range size of 512 because
conflicts are rare and with a range size of 128K as “conflicts” with other range queries that
have already acquired the relevant base nodes are common.

ChatterjeeSL’s and KiWi’s update operations need to read the RangeCollector list
(ChatterjeeSL) or the global version number (KiWi) which are updated by range queries.
The more frequent updates of these global objects with smaller range queries can explain the
slight partial upward trend that exists for ChatterjeeSL and KiWi in Figure 4d.

k-ary’s range queries are starved by update operations in the scenarios with large range
queries. The SnapTree’s operations are slow in most scenarios due to its coarse-grained
approach for doing range queries, but the SnapTree’s performance is better in scenarios with
larger and less frequent range queries.

Table 1 shows the average number of base nodes and the number of base nodes traversed
per range query in Im-Tr-CA after the benchmark runs of the scenarios displayed in Figure 4b
and Figure 4d. It is evident from the table data that Im-Tr-CA’s range queries spend a very
short time traversing shared mutable data even for large range queries (e.g. approximately
the time it takes to traverse 13 base nodes in the case with range queries of size 32K). After
the base nodes have been traversed, the collected immutable data can be traversed without
any need to care about other threads and without disturbing other threads.

7 Conclusion

A new CA tree variant that makes use of an immutable data structure has been presented.
The advantage of the new CA tree variant over the CA tree variants that use mutable data
structures as the sequential data structure component is that the new variant drastically
reduces the time period in which conflicts between large range queries and other operations can
happen. Compared to all other data structures with linearizable range query support, the CA
trees have the advantage that they dynamically adapt the synchronization granularity to fit the
workload at hand. The experimental comparison shows that the presented implementation’s
quick traversal of shared mutable data and cache friendly design makes the implementation
outperform the best of the other data structures with a wide margin in scenarios with large
range queries. Furthermore, the new CA tree variant also performs better or close to the
best of the other data structures in scenarios with small range queries due to its ability to
dynamically change its synchronization granularity. As future work, we plan to design and
evaluate a lock-free CA tree variant. A lock-free CA tree variant could potentially give even
better performance as it could avoid priority inversions and other lock related problems.

K. Winblad 7:9

Acknowledgments. Vincent Gramoli gave me the idea of looking into immutable data
structures in combination with the CA tree. Amelie Lind, Martin Viklund, Stephan Brand-
auer, Andreas Löscher, Elias Castegren and Konstantinos Sagonas helped me improve the
language.

References
1 Flurry analytics. https://developer.yahoo.com/flurry/docs/analytics/. Accessed:

2017-07-26.
2 Hillel Avni, Nir Shavit, and Adi Suissa. Leaplist: lessons learned in designing tm-supported

range queries. In Panagiota Fatourou and Gadi Taubenfeld, editors, ACM Symposium on
Principles of Distributed Computing, PODC ’13, Montreal, QC, Canada, July 22-24, 2013,
pages 299–308. ACM, 2013. doi:10.1145/2484239.2484254.

3 Dmitry Basin, Edward Bortnikov, Anastasia Braginsky, Guy Golan-Gueta, Eshcar Hillel,
Idit Keidar, and Moshe Sulamy. KiWi: A key-value map for scalable real-time analytics.
In Proceedings of the 22Nd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’17, pages 357–369, New York, NY, USA, 2017. ACM. doi:
10.1145/3018743.3018761.

4 Nathan Grasso Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. A practical
concurrent binary search tree. In R. Govindarajan, David A. Padua, and Mary W. Hall,
editors, Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPOPP 2010, Bangalore, India, January 9-14, 2010, pages 257–268.
ACM, 2010. doi:10.1145/1693453.1693488.

5 Trevor Brown and Hillel Avni. Range queries in non-blocking k-ary search trees. In Roberto
Baldoni, Paola Flocchini, and Binoy Ravindran, editors, Principles of Distributed Systems,
16th International Conference, OPODIS 2012, Rome, Italy, December 18-20, 2012. Pro-
ceedings, volume 7702 of Lecture Notes in Computer Science, pages 31–45. Springer, 2012.
doi:10.1007/978-3-642-35476-2_3.

6 Trevor Brown and Joanna Helga. Non-blocking k-ary search trees. In Antonio Fernández
Anta, Giuseppe Lipari, and Matthieu Roy, editors, Principles of Distributed Systems -
15th International Conference, OPODIS 2011, Toulouse, France, December 13-16, 2011.
Proceedings, volume 7109 of Lecture Notes in Computer Science, pages 207–221. Springer,
2011. doi:10.1007/978-3-642-25873-2_15.

7 Bapi Chatterjee. Lock-free linearizable 1-dimensional range queries. In Proceedings of
the 18th International Conference on Distributed Computing and Networking, ICDCN ’17,
pages 9:1–9:10, New York, NY, USA, 2017. ACM. doi:10.1145/3007748.3007771.

8 Keir Fraser. Practical lock-freedom. PhD thesis, University of Cambridge Computer Labor-
atory, 2004.

9 Maurice Herlihy. A methodology for implementing highly concurrent data structures. In
David A. Padua, editor, Proceedings of the Second ACM SIGPLAN Symposium on Princiles
& Practice of Parallel Programming (PPOPP), Seattle, Washington, USA, March 14-16,
1990, pages 197–206. ACM, 1990. doi:10.1145/99163.99185.

10 Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990. doi:10.1145/
78969.78972.

11 Christoph Lameter. Effective synchronization on Linux/NUMA systems. In Proc. of the
Gelato Federation Meeting, 2005. URL: http://www.kde.ps.pl/mirrors/ftp.kernel.
org/linux/kernel/people/christoph/gelato/gelato2005-paper.pdf.

12 Maged M. Michael. High performance dynamic lock-free hash tables and list-based sets. In
SPAA, pages 73–82, 2002. doi:10.1145/564870.564881.

ICCSW 2017

https://developer.yahoo.com/flurry/docs/analytics/
http://dx.doi.org/10.1145/2484239.2484254
http://dx.doi.org/10.1145/3018743.3018761
http://dx.doi.org/10.1145/3018743.3018761
http://dx.doi.org/10.1145/1693453.1693488
http://dx.doi.org/10.1007/978-3-642-35476-2_3
http://dx.doi.org/10.1007/978-3-642-25873-2_15
http://dx.doi.org/10.1145/3007748.3007771
http://dx.doi.org/10.1145/99163.99185
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1145/78969.78972
http://www.kde.ps.pl/mirrors/ftp.kernel.org/linux/kernel/people/christoph/gelato/gelato2005-paper.pdf
http://www.kde.ps.pl/mirrors/ftp.kernel.org/linux/kernel/people/christoph/gelato/gelato2005-paper.pdf
http://dx.doi.org/10.1145/564870.564881

7:10 Faster Concurrent Range Queries in CA Trees Using Immutable Data Structures

13 Aravind Natarajan and Neeraj Mittal. Fast concurrent lock-free binary search trees. In
José E. Moreira and James R. Larus, editors, ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’14, Orlando, FL, USA, February 15-19,
2014, pages 317–328. ACM, 2014. doi:10.1145/2555243.2555256.

14 Chris Okasaki. Purely functional data structures. Cambridge University Press, 1999.
15 Erez Petrank and Shahar Timnat. Lock-free data-structure iterators. In Yehuda Afek,

editor, Distributed Computing - 27th International Symposium, DISC 2013, Jerusalem,
Israel, October 14-18, 2013. Proceedings, volume 8205 of Lecture Notes in Computer Science,
pages 224–238. Springer, 2013. doi:10.1007/978-3-642-41527-2_16.

16 Aleksandar Prokopec, Nathan Grasso Bronson, Phil Bagwell, and Martin Odersky. Con-
current tries with efficient non-blocking snapshots. In J. Ramanujam and P. Sadayappan,
editors, Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPOPP 2012, New Orleans, LA, USA, February 25-29, 2012, pages
151–160. ACM, 2012. doi:10.1145/2145816.2145836.

17 Callum Robertson. Implementing contention-friendly range queries in non-blocking key-
value stores. Bachelor thesis, The University of Sydney, 2014.

18 Konstantinos Sagonas and Kjell Winblad. Contention adapting search trees. In Daniel
Grosu, Hai Jin, and George Papadopoulos, editors, 14th International Symposium on Par-
allel and Distributed Computing, ISPDC 2015, Limassol, Cyprus, June 29 - July 2, 2015,
pages 215–224. IEEE Computer Society, 2015. doi:10.1109/ISPDC.2015.32.

19 Konstantinos Sagonas and Kjell Winblad. Efficient support for range queries and range
updates using contention adapting search trees. In Xipeng Shen, Frank Mueller, and
James Tuck, editors, Languages and Compilers for Parallel Computing - 28th Interna-
tional Workshop, LCPC 2015, Raleigh, NC, USA, September 9-11, 2015, Revised Selected
Papers, volume 9519 of Lecture Notes in Computer Science, pages 37–53. Springer, 2015.
doi:10.1007/978-3-319-29778-1_3.

20 Konstantinos Sagonas and Kjell Winblad. A contention adapting approach to concurrent
ordered sets. Journal of Parallel and Distributed Computing, Forthcoming.

21 Raimund Seidel and Cecilia R. Aragon. Randomized search trees. Algorithmica,
16(4/5):464–497, 1996. doi:10.1007/BF01940876.

22 Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free extensible hash tables. J. ACM,
53(3):379–405, 2006. doi:10.1145/1147954.1147958.

23 Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy, Chad Whipkey, Eric Rollins, Mir-
cea Oancea, Kyle Littlefield, David Menestrina, Stephan Ellner, John Cieslewicz, Ian Rae,
Traian Stancescu, and Himani Apte. F1: A distributed SQL database that scales. Proceed-
ings of the VLDB Endowment, 6(11):1068–1079, 2013. doi:10.14778/2536222.2536232.

http://dx.doi.org/10.1145/2555243.2555256
http://dx.doi.org/10.1007/978-3-642-41527-2_16
http://dx.doi.org/10.1145/2145816.2145836
http://dx.doi.org/10.1109/ISPDC.2015.32
http://dx.doi.org/10.1007/978-3-319-29778-1_3
http://dx.doi.org/10.1007/BF01940876
http://dx.doi.org/10.1145/1147954.1147958
http://dx.doi.org/10.14778/2536222.2536232

K. Winblad 7:11

1 2 4 8 16 32 64

0

10

20

30

40
KiWi
k-ary
SnapTree
ChatterjeeSL
NonAtomicSL
AVL-CA
SL-CA
Im-Tr-CA

(a) w:20% r:55% q:25%-10
1 2 4 8 16 32 64

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

(b) w:20% r:55% q:25%-1000
1 2 4 8 16 32 64

0.0

0.2

0.4

0.6

0.8

1.0

(c) w:20% r:55% q:25%-100000

Figure 5 Results with key range of size 105 which corresponds to a set size of approximately
5 × 104. Throughput (operations/µs) on the y-axis and thread count on the x-axis.

Table 2 Statistics for Im-Tr-CA in the scenarios displayed in Figure 6b and Figure 6d.

Range Size 2 4 8 32 128 512 2K 8K 32K 128K
base nodes 890 720 570 330 190 120 97 130 90 96

traversed base nodes
range queries 1.0 1.0 1.1 1.1 1.2 1.6 3.0 11 27 98

Table 3 Statistics for Im-Tr-CA in the scenarios displayed in Figure 8b and Figure 8d.

Range Size 2 4 8 32 128 512 2K 8K 32K 128K
base nodes 6.0K 5.3K 4.5K 2.9K 1.8K 1.2K 900 860 1.0K 1.1K

A Source Code

The source code for the CA tree implementations and the benchmarks can be found online
(https://www.it.uu.se/research/group/languages/software/im_tr_ca).

B Results with Other Set Sizes

Results corresponding to the results in figures 3 and 4 but with smaller set sizes (the key
range size S = 105) can be found in figures 5 and 6. The corresponding results for larger set
sizes (S = 107) can be found in figures 7 and 8. The statistics corresponding to the statistics
in Table 1 but with the smaller and larger set sizes can be found in tables 2 and 3.

In the cases with the smallest set size (S = 105), the ranges of size 32K and 128K span
32% and 100% of the set represented by the data structures; see Figure 6. Im-Tr-CA’s range
queries lock out update operations from the portion of the set that is covered by the range
query. Even though this only happens for a short period of time as Table 2 shows, it still
has a negative effect on update operations as Figure 6d shows. This is compensated by
Im-Tr-CA’s excellent performance for range queries in these scenarios as Figure 6b shows.

In the cases with the largest set size (S = 107), the ranges span a smaller part of the sets
represented by the data structures which explains why many of the other data structures are
closer to Im-Tr-CA in these scenarios; see figures 7 and 8.

ICCSW 2017

https://www.it.uu.se/research/group/languages/software/im_tr_ca

7:12 Faster Concurrent Range Queries in CA Trees Using Immutable Data Structures

1 2 4 8 16 32
Number of Range Query Threads

0

500

1000

1500

2000

2500

3000

3500
(o

pe
ra

tio
ns

/μ
s)

 *
32

00
0

KiWi
k-ary
SnapTree
ChatterjeeSL

NonAtomicSL
AVL-CA
SL-CA
Im-Tr-CA

(a) Range queries, range size 32K (parallel updates)

2 4 8 32 128 512 2K 8K 32K 128K
Range Size

0

500

1000

1500

2000

2500

3000

3500

(o
pe

ra
tio

ns
/μ

s)
 *

(ra
ng

e
siz

e)

(b) Range queries 16 threads (parallel updates)

1 2 4 8 16 32
Number of Update Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

op
er

at
io

ns
/μ

s

(c) Updates (parallel range queries, range size 32K)

2 4 8 32 128 512 2K 8K 32K 128K
Range Size

0

2

4

6

8

10

12

op
er

at
io

ns
/μ

s

(d) Updates 16 threads (parallel range queries)

Figure 6 Results for benchmark with separate threads doing updates and range queries with key
range of size 105 which corresponds to a set size of approximately 5 × 104.

1 2 4 8 16 32 64

0

2

4

6

8

10

12

14
KiWi
k-ary
SnapTree
ChatterjeeSL
NonAtomicSL
AVL-CA
SL-CA
Im-Tr-CA

(a) w:20% r:55% q:25%-10
1 2 4 8 16 32 64

0

1

2

3

4

5

(b) w:20% r:55% q:25%-1000
1 2 4 8 16 32 64

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(c) w:20% r:55% q:25%-100000

Figure 7 Results with key range of size 107 which corresponds to a set size of approximately
5 × 106. Throughput (operations/µs) on the y-axis and thread count on the x-axis.

K. Winblad 7:13

1 2 4 8 16 32
Number of Range Query Threads

0

200

400

600

800

(o
pe

ra
tio

ns
/μ

s)
 *

32
00

0

KiWi
k-ary
SnapTree
ChatterjeeSL

NonAtomicSL
AVL-CA
SL-CA
Im-Tr-CA

(a) Range queries, range size 32K (parallel updates)

2 4 8 32 128 512 2K 8K 32K 128K
Range Size

0

200

400

600

800

1000

(o
pe

ra
tio

ns
/μ

s)
 *

(ra
ng

e
siz

e)

(b) Range queries 16 threads (parallel updates)

1 2 4 8 16 32
Number of Update Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

op
er

at
io

ns
/μ

s

(c) Updates (parallel range queries, range size 32K)

2 4 8 32 128 512 2K 8K 32K 128K
Range Size

0

1

2

3

4

op
er

at
io

ns
/μ

s

(d) Updates 16 threads (parallel range queries)

Figure 8 Results for benchmark with separate threads doing updates and range queries with key
range of size 107 which corresponds to a set size of approximately 5 × 106.

ICCSW 2017

Gesture Recognition and Classification using
Intelligent Systems
Norah Alnaim1 and Maysam Abbod2

1 Department of Electronic and Computer Engineering, Brunel University
London, Uxbridge UB8 3PH, United Kingdom
Norah.alnaim@brunel.ac.uk

2 Department of Electronic and Computer Engineering, Brunel University
London, Uxbridge UB8 3PH, United Kingdom
Maysam.abbod@brunel.ac.uk

Abstract
Gesture Recognition is defined as non-verbal human motions used as a method of communication
in HCI interfaces. In a virtual reality system, gestures can be used to navigate, control, or interact
with a computer. Having a person make gestures formed in specific ways to be detected by a
device, like a camera, is the foundation of gesture recognition. Finger tracking is an interesting
principle which deals with three primary parts of computer vision: segmentation of the finger,
detection of finger parts, and tracking of the finger. Fingers are most commonly used in varying
gesture recognition systems.

Finger gestures can be detected using any type of camera; keeping in mind that different
cameras will yield different resolution qualities. 2-dimensional cameras exhibit the ability to
detect most finger motions in a constant surface called 2-D. While the image processes, the
system prepares to receive the whole image so that it may be tracked using image processing
tools. Artificial intelligence releases many classifiers, each one with the ability to classify data,
that rely on its configuration and capabilities. In this work, the aim is to develop a system for
finger motion acquisition in 2-D using feature extraction algorithms such as Wavelets transform
(WL) and Empirical Mode Decomposition (EMD) plus Artificial Neural Network (ANN) classifier.

WL is an image processing algorithm that performs signal analysis with one signal frequency
differing at the end of time. EMD is an innovative technology used in both non-stationary and
non-linear data. The primary function of this method is decomposing a signal into Intrinsic Mode
Functions consistently through the domain. For classification, ANN is used which is defined as
a system that processes information and has structure much like that of the biological nervous
system. What is most unique is that this system inhibits an abstract but familiar structure as
an information processing system.

In this work, three different finger motions are recorded using an iPhone 6s Plus camera. The
gesture classification system is developed for three types of finger gesture recognition. WL and
EMD algorithms are used to extract features which are fed to ANN for gesture classification.
The classification results of training, validation, and testing mean square error using WL are
5.1312E-4/0.01245/0.0079 respectively, while the classification mean square error using EMD are
1.1035E-11/9.676E-09/2.5616E-9 respectively. Feature extraction execution time, in seconds, for
Wavelet Transform is 131 and EMD is 7200. The classification accuracy for training, validation,
and testing using WT are 0.9984/0.9909/0.9953 and using EMD are 1.0/1.0/1.0. The results of
this experiment clearly identify EMD being a suitable method to extract features from the image
but it is time consuming.

1998 ACM Subject Classification H.5.2 User Interfaces, I.2.6 Learning

Keywords and phrases Wavelets, Empirical Model Decomposition, Artificial Neural Network,
Gesture Recognition, HCI

Digital Object Identifier 10.4230/OASIcs.ICCSW.2017.8

ICCSW17© Nora Alnaim and Maysam Abbod;
licensed under Creative Commons License CC-BY

2017 Imperial College Computing Student Workshop (ICCSW 2017).
Editors: Fergus Leahy and Juliana Franco; Article No. 8; pp. 8:1–8:1

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2017.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

KubeNow: A Cloud Agnostic Platform for
Microservice-Oriented Applications∗

Marco Capuccini1, Anders Larsson2, Salman Toor3, and
Ola Spjuth4

1 Department of Information Technology, Uppsala University and
Department of Pharmaceutical Biosciences, Uppsala University, Sweden
marco.capuccini@it.uu.se; marco.capuccini@farmbio.uu.se

2 Department of Cell and Molecular Biology, Uppsala University, Sweden
anders.larsson@icm.uu.se

3 Department of Information Technology, Uppsala University, Sweden
salman.toor@it.uu.se

4 Department of Pharmaceutical Biosciences, Uppsala University, Sweden
ola.spjuth@farmbio.uu.se

Abstract
KubeNow is a platform for rapid and continuous deployment of microservice-based applica-

tions over cloud infrastructure. Within the field of software engineering, the microservice-based
architecture is a methodology in which complex applications are divided into smaller, more nar-
row services. These services are independently deployable and compatible with each other like
building blocks. These blocks can be combined in multiple ways, according to specific use cases.
Microservices are designed around a few concepts: they offer a minimal and complete set of
features, they are portable and platform independent, they are accessible through language ag-
nostic APIs and they are encouraged to use standard data formats. These characteristics promote
separation of concerns, isolation and interoperability, while coupling nicely with test-driven de-
velopment. Among many others, some well-known companies that build their software around
microservices are: Google, Amazon, PayPal Holdings Inc. and Netflix [11].

Cloud computing is a new technology trend that enables the allocation of virtual infrastruc-
ture on demand, giving place to a new business model where organizations can purchase resources
with a pay-per-use pricing arrangement [8]. Microservices in cloud environments can help to build
scalable and resilient applications, with the goal of maximing resource usage and reducing costs.
At the time of writing, Docker and Kubernetes are the most broadly adopted container engine
and container orchestration framework [10, 9]. Even though these software tools ease micro-
croservices operations considerably, their setup and configuration is still complex, tedious and
time consuming. When allocating cloud resources on demand this becomes a critical issue, since
applications need to be continuously deployed and scaled, possibly over different cloud providers,
to minimize infrastructure costs. This new challenging way of provisioning infrastructure was
the main motivation for the development of KubeNow.

KubeNow provides the means to rapidly deploy fully configured clusters, automating Docker
and Kubernetes configuration, while providing a mechanism for the application layer setup. We
designed KubeNow using the Infrastructure as Code (IaC) paradigm, meaning that the virtual
resources and the provisioning process are defined as machine-readable language. A natural
consequence of this choice is that KubeNow is immutable and repeatable over different cloud
providers, being cloud agnostic in this sense. In addition, IaC enables infrastructure version
control and collaborative development.

KubeNow has been adopted by the PhenoMeNal H2020 consortium as the platform used
to launch on demand Cloud Research Environments (CRE) [6]. The PhenoMeNal CRE allows

∗ This work was supported by the PhenoMeNal H2020 consortium.

ICCSW17© Marco Capuccini, Anders Larsson, Salman Toor, and Ola Spjuth;
licensed under Creative Commons License CC-BY

2017 Imperial College Computing Student Workshop (ICCSW 2017).
Editors: Fergus Leahy and Juliana Franco; Article No. 9; pp. 9:1–9:2

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

9:2 KubeNow: A Cloud Agnostic Platform for Microservice-Oriented Applications

for running reproducible large-scale medical metabolomics analysis. In addition, we are cur-
rently developing additional software layers for large-scale analysis on top of KubeNow including:
Apache Spark [12], Pachyderm [5] and Slurm [7]. KubeNow supports Amazon Web Services [1],
Google Compute Engine [2] and OpenStack [4]. The software is generally applicable and publicly
available as open source on GitHub [3].

1998 ACM Subject Classification D.2.11 Software Architectures

Keywords and phrases Microservices, Cloud computing, Infrastructure as Code, Docker, Kuber-
netes

Digital Object Identifier 10.4230/OASIcs.ICCSW.2017.9

References
1 Amazon Web Services. https://aws.amazon.com. [Online; accessed 03-07-2017].
2 Google Compute Engine. https://cloud.google.com/compute. [Online; accessed 03-07-

2017].
3 KubeNow repository. https://github.com/kubenow/KubeNow. [Online; accessed 03-07-

2017].
4 OpenStack. hhttps://www.openstack.org. [Online; accessed 03-07-2017].
5 Pachyderm. http://pachyderm.io/. [Online; accessed 03-07-2017].
6 PhenoMeNal. http://phenomenal-h2020.eu/home/. [Online; accessed 03-07-2017].
7 Slurm. https://slurm.schedmd.com/. [Online; accessed 03-07-2017].
8 Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H. Katz, An-

drew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion Stoica, and Matei
Zaharia. Above the clouds: A berkeley view of cloud computing. Technical Report
UCB/EECS-2009-28, EECS Department, University of California, Berkeley, Feb 2009.
URL: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html.

9 Matt Asay. Why Kubernetes is winning the container war.
http://www.infoworld.com/article/3118345/cloud-computing/
why-kubernetes-is-winning-the-container-war.html, sep 2016. [Online; accessed
03-07-2017].

10 Alan Shimel. Docker becomes de facto Linux standard. http://www.networkworld.com/
article/2226751/opensource-subnet/docker-becomes-de-facto-linux-standard.
html, 2016. [Online; accessed 03-07-2017].

11 C. L. Williams, J. C. Sica, R. T. Killen, and U. G. Balis. The growing need for microservices
in bioinformatics. J Pathol Inform, 7:45, 2016.

12 Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica.
Spark: Cluster computing with working sets. In Proceedings of the 2Nd USENIX Con-
ference on Hot Topics in Cloud Computing, HotCloud’10, pages 10–10, Berkeley, CA,
USA, 2010. USENIX Association. URL: http://dl.acm.org/citation.cfm?id=1863103.
1863113.

http://dx.doi.org/10.4230/OASIcs.ICCSW.2017.9
https://aws.amazon.com
https://cloud.google.com/compute
https://github.com/kubenow/KubeNow
hhttps://www.openstack.org
http://pachyderm.io/
http://phenomenal-h2020.eu/home/
https://slurm.schedmd.com/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www.infoworld.com/article/3118345/cloud-computing/why-kubernetes-is-winning-the-container-war.html
http://www.infoworld.com/article/3118345/cloud-computing/why-kubernetes-is-winning-the-container-war.html
http://www.networkworld.com/article/2226751/opensource-subnet/docker-becomes-de-facto-linux-standard.html
http://www.networkworld.com/article/2226751/opensource-subnet/docker-becomes-de-facto-linux-standard.html
http://www.networkworld.com/article/2226751/opensource-subnet/docker-becomes-de-facto-linux-standard.html
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113

	p000-frontmatter
	Preface
	Conference Organisation
	Supporters and Sponsors

	p001-PeytonJones
	p002-Swirski
	p003-EL-Sanosi
	Introduction
	ZooKeeper Atomic Broadcast Protocol
	Zab Protocol
	Crash-Tolerance Invariant

	Zab Alternatives
	ZabAC
	ZabAC Implementation Details

	ZabAA

	Experiments and Performance Evaluation
	Zab vs ZabAC
	Zab vs ZabAA

	Related Work
	Conclusion
	Source Code
	Performance Compression for Zab and ZabAA

	p004-Kurz
	Introduction
	Model Definition
	Dirichlet Process Mixtures for Generalized Linear Models
	The Negative Binomial Regression Model
	Variational Inference Scheme

	Data
	Results and Conclusion

	p005-Stamford
	Introduction
	Background
	Dataset and Methodology
	Results
	Discussion
	Conclusion

	p006-Tozzo
	Introduction
	Theoretical background
	Dictionary Learning
	Alternating proximal gradient descent
	Representation learning (sparse coding)

	DALILA
	Implementation

	Related work
	Conclusions and further work
	Appendix: example of usage and related output
	Appendix: interchangeability of the penalties
	Appendix: addition of a new penalty

	p007-Winblad
	Introduction
	High-Level Description of Contention Adapting Search Trees
	CA Tree Optimization Enabled by Immutable Data Structures
	The Implementation of the Optimized CA Tree
	Related Work
	Evaluation
	Conclusion
	Source Code
	Results with Other Set Sizes

	p008-Alnaim
	p009-Capuccini

