
1st Symposium on Simplicity in
Algorithms

SOSA 2018, January 7–10, 2018, New Orleans LA, USA
Co-located with The 29th ACM-SIAM Symposium on Discrete
Algorithms (SODA 2018)

Edited by

Raimund Seidel

OASIcs – Vo l . 61 – SOSA 2018 www.dagstuh l .de/oas i c s

Editors
Raimund Seidel
FR Informatik, Saarland University
Saarland Informatics Campus
Saarbrücken, Germany
rseidel@cs.uni-saarland.de

ACM Classification 1998
G.4.1 Algorithm design and analysis

ISBN 978-3-95977-064-4

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-064-4.

Publication date
January, 2018

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.SOSA.2018.0

ISBN 978-3-95977-064-4 ISSN 1868-8969 http://www.dagstuhl.de/oasics

http://www.dagstuhl.de/dagpub/978-3-95977-064-4
http://www.dagstuhl.de/dagpub/978-3-95977-064-4
http://dnb.d-nb.de
http://dx.doi.org/10.4230/OASIcs.SOSA.2018.0
http://www.dagstuhl.de/dagpub/978-3-95977-064-4
http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

0:iii

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 2190-6807

http://www.dagstuhl.de/oasics

SOSA 2018

http://www.dagstuhl.de/dagpub/2190-6807
http://www.dagstuhl.de/oasics

Contents

Preface
Raimund Seidel . 0:vii

Organisation
. 0:ix

Authors
. 0:xi

Regular Papers

A Naive Algorithm for Feedback Vertex Set
Yixin Cao . 1:1–1:9

A Note on Iterated Rounding for the Survivable Network Design Problem
Chandra Chekuri and Thapanapong Rukkanchanunt . 2:1–2:10

Congestion Minimization for Multipath Routing via Multiroute Flows
Chandra Chekuri and Mark Idleman . 3:1–3:12

Better and Simpler Error Analysis of the Sinkhorn-Knopp Algorithm for Matrix
Scaling

Deeparnab Chakrabarty and Sanjeev Khanna . 4:1–4:11

Approximation Schemes for 0-1 Knapsack
Timothy M. Chan . 5:1–5:12

Counting Solutions to Polynomial Systems via Reductions
Richard Ryan Williams . 6:1–6:15

On Sampling Edges Almost Uniformly
Talya Eden and Will Rosenbaum . 7:1–7:9

A Simple PTAS for the Dual Bin Packing Problem and Advice Complexity of Its
Online Version

Allan Borodin, Denis Pankratov, and Amirali Salehi-Abari . 8:1–8:12

Simple and Efficient Leader Election
Petra Berenbrink, Dominik Kaaser, Peter Kling, and Lena Otterbach 9:1–9:11

A Simple Algorithm for Approximating the Text-To-Pattern Hamming Distance
Tsvi Kopelowitz and Ely Porat . 10:1–10:5

Compact LP Relaxations for Allocation Problems
Klaus Jansen and Lars Rohwedder . 11:1–11:19

Just Take the Average! An Embarrassingly Simple 2n-Time Algorithm for SVP
(and CVP)

Divesh Aggarwal and Noah Stephens-Davidowitz . 12:1–12:19

Complex Semidefinite Programming and Max-k-Cut
Alantha Newman . 13:1–13:11

1st Symposium on Simplicity in Algorithms (SOSA 2018).
Editor: Raimund Seidel

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/oasics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:vi Contents

A Simple, Space-Efficient, Streaming Algorithm for Matchings in Low Arboricity
Graphs

Andrew McGregor and Sofya Vorotnikova . 14:1–14:4

Simple Analyses of the Sparse Johnson-Lindenstrauss Transform
Michael B. Cohen, T. S. Jayram, and Jelani Nelson . 15:1–15:9

Preface

Although simplicity in algorithms is usually appreciated it frequently does not find the
recognition it deserves. Typically program committees prefer papers pursuing new domains
or papers reporting improvements in various performance guarantees over papers that “just”
simplify known results or that report algorithms that are simpler but slower. The present
workshop was set up to counteract this attitude making simplicity and elegance in the design
and analysis of algorithms its main objectives.

The response from the community was overwhelming. In spite of rather short notice
we received 81 submissions. It quickly became clear that simplicity and elegance are not
absolute notions but depend on the field, the background, and the sophistication of the
researchers. The work of the program committee was therefore not easy. In the end we
selected 15 papers, which you find in these proceedings and which we hope you will enjoy.

I would like to thank members of the program committee for putting this much work in
this workshop and I would like to thank the members of the steering committee for conceiving
this workshop and making it happen.

Raimund Seidel
Program Committee Chair

1st Symposium on Simplicity in Algorithms (SOSA 2018).
Editor: Raimund Seidel

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/oasics/
http://www.dagstuhl.de/en/about-dagstuhl/

Organisation

Program Committee

Keren Censor-Hillel, Technion|
Edith Cohen, Google, Mountain View
Edith Elkind, University of Oxford
Jeremy Fineman, Georgetown University
Mohsen Ghaffari, ETH Zürich
David Karger, MIT
Richard Karp, University of California, Berkeley
Valerie King, University of Victoria
Dániel Marx, Hungarian Academy of Sciences
Moni Naor, Weizmann Institute of Science
Raimund Seidel (Chair), Universität des Saarlandes
Robert Tarjan, Princeton University
Virginia Vassilevska Williams, MIT
David Williamson, Cornell University
David Woodruff, Carnegie Mellon University
Uri Zwick, Tel Aviv University

Steering Committee

Michael A. Bender, Stony Brook University
David Karger, MIT
Tsvi Kopelowitz, University of Waterloo
Seth Pettie, University of Michigan
Robert Tarjan, Princeton University
Mikkel Thorup, University of Copenhagen

1st Symposium on Simplicity in Algorithms (SOSA 2018).
Editor: Raimund Seidel

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/oasics/
http://www.dagstuhl.de/en/about-dagstuhl/

List of Authors

Divesh Aggarwal
CQT and Department of Computer Science,
NUS
Singapore
dcsdiva@nus.edu.sg

Petra Berenbrink
Fachbereich Informatik, Universität
Hamburg
Hamburg, Germany
berenbrink@informatik.uni-hamburg.de

Allan Borodin
Department of Computer Science, University
of Toronto
Toronto, Canada
bor@cs.toronto.edu

Yixin Cao
Department of Computing, Hong Kong
Polytechnic University
Hong Kong, China
yixin.cao@polyu.edu.hk

Deeparnab Chakrabarty
Department of Computer Science,
Dartmouth College
Hanover NH, USA
deeparnab@dartmouth.edu

Timothy M. Chan
Dept. of Computer Science, University of
Illinois
Urban IL 61801, USA
tmc@illinois.edu

Chandra Chekuri
Dept. of Computer Science, University of
Illinois
Urban IL 61801, USA
chekuri@illinois.edu

Michael B. Cohen
MIT
32 Vassar Street, Cambridge, MA 02139,
USA
micohen@mit.edu

Talya Eden
School of Electrical Engineering, Tel Aviv
University
Tel Aviv, Israel
talyaa01@gmail.com

Mark Idleman
Dept. of Computer Science, University of
Illinois
Urban IL 61801, USA
midleman2@illinois.edu

Klaus Jansen
Christian-Albrechts-Universität
Kiel, Germany
kj@informatik.uni-kiel.de

T.S. Jayram
IBM Almaden Research Center
650 Harry Road, San Jose, CA 95120, USA
jayram@us.ibm.com

Dominik Kaaser
Fachbereich Informatik, Universität
Hamburg
Hamburg, Germany
dominik.kaaser@uni-hamburg.de

Sanjeev Khanna
Department of Computer and Information
Science, University of Pennsylvania
Philadelphia PA, USA
sanjeev@cis.upenn.edu

Peter Kling
Fachbereich Informatik, Universität
Hamburg
Hamburg, Germany
peter.kling@uni-hamburg.de

Tsvi Kopelowitz
University of Waterloo
Waterloo, Canada
kopelot@gmail.com

Andrew McGregor
College of Computer and Information
Sciences, University of Massachusetts
Amherst MA, USA
mcgregor@cs.umass.edu

1st Symposium on Simplicity in Algorithms (SOSA 2018).
Editor: Raimund Seidel

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/oasics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:xii Authors

Jelani Nelson
Harvard John A. Paulson School of
Engineering and Applied Sciences
29 Oxford Street, Cambridge, MA 02138,
USA
minilek@seas.harvard.edu

Alantha Newman
CNRS–Université Grenoble Alpes
F-38000, Grenoble, France
alantha.newman@grenoble-inp.fr

Lena Otterbach
Fachbereich Informatik, Universität
Hamburg
Hamburg, Germany
otterbach@informatik.uni-hamburg.de

Denis Pankratov
Department of Computer Science, University
of Toronto
Toronto, Canada
denisp@cs.toronto.edu

Ely Porat
University of Bar-Ilan
Ramat Gan, Israel
porately@cs.biu.ac.il

Lars Rohwedder
Christian-Albrechts-Universität
Kiel, Germany
lro@informatik.uni-kiel.de

Will Rosenbaum
School of Electrical Engineering, Tel Aviv
University
Tel Aviv, Israel
will.rosenbaum@gmail.com

Thapanapong Rukkanchanunt
Chiang Mai University
239 Huay Kaew Road, Chiang Mai 50200,
Thailand
thapanapong.r@cmu.ac.th

Amirali Salehi-Abari
Faculty of Business and IT, University of
Ontario Institute of Technology
Oshawa, Canada
abari@uoit.ca

Noah Stephens-Davidowitz
New York University
New York NY, USA
noahsd@gmail.com

Sofya Vorotnikova
College of Computer and Information
Sciences, University of Massachusetts
Amherst MA, USA
svorotni@cs.umass.edu

R. Ryan Williams
CSAIL & EECS, MIT
Cambridge, MA, USA
rrw@mit.edu

A Naive Algorithm for Feedback Vertex Set∗

Yixin Cao

Department of Computing, Hong Kong Polytechnic University, Hong Kong, China
yixin.cao@polyu.edu.hk

Abstract
Given a graph on n vertices and an integer k, the feedback vertex set problem asks for the deletion
of at most k vertices to make the graph acyclic. We show that a greedy branching algorithm,
which always branches on an undecided vertex with the largest degree, runs in single-exponential
time, i.e., O(ck · n2) for some constant c.

1998 ACM Subject Classification F.2.2 Analysis of Algorithms and Problem Complexity, G.2.2
Graph Theory

Keywords and phrases greedy algorithm, analysis of algorithms, branching algorithm, parame-
terized computation, graph modification problem

Digital Object Identifier 10.4230/OASIcs.SOSA.2018.1

1 Introduction

All graphs in this paper are undirected and simple. A graph G is given by its vertex set
V (G) and edge set E(G), whose cardinalities will be denoted by n and m respectively. A
set V− of vertices is a feedback vertex set of graph G if G− V− is acyclic, i.e., being a forest.
Given a graph G and an integer k, the feedback vertex set problem asks whether G has a
feedback vertex set of at most k vertices.

The feedback vertex set problem was formulated from artificial intelligence, where a
feedback vertex set is also called a loop cutset. For each instance of the constraint satisfaction
problem one can define a constraint graph, and it is well known that the problem can be
solved in polynomial time when the constraint graph is a forest [11]. Therefore, one way
to solve the constraint satisfaction problem is to find first a minimum feedback vertex set
of the constraint graph, enumerate all possible assignments on them, and then solve the
remaining instance. Given an instance I of the constraint satisfaction problem on p variables,
and a feedback vertex set V− of the constraint graph, this approach can be implemented
in O(p|V−| · |I|O(1)) time [7]. A similar application was found in Bayesian inference, also in
artificial intelligence [18]; more updated material can be found in the thesis of Bidyuk [3].

The feedback vertex set problem is NP-hard [16]. The aforementioned approach for
solving the constraint satisfaction problem only makes sense when |V−| is fairly small. This
motivates the study of parameterized algorithms for the feedback vertex set problem, i.e.,
algorithms that find a feedback vertex set of size at most k in time f(k) · nO(1). Since earlier
1990s, a chain of parameterized algorithms have been reported in literature; currently the
best known f(k) is 3.62k [5, 15]. We refer to [5] for a complete list of published results.
Instead of providing a new and improved algorithm, this paper considers a naive branching
algorithm that should have been discovered decades ago.

∗ Supported in part by the National Natural Science Foundation of China (NSFC) under grant 61572414,
the Hong Kong Research Grants Council (RGC) under grants 25202615 and 15201317, and the European
Research Council (ERC) under grant 280152.

© Yixin Cao;
licensed under Creative Commons License CC-BY

1st Symposium on Simplicity in Algorithms (SOSA 2018).
Editor: Raimund Seidel; Article No. 1; pp. 1:1–1:9

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SOSA.2018.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

1:2 A Naive Algorithm for Feedback Vertex Set

A trivial branching algorithm will work as follows. It picks a vertex and branches on
either including it in the solution V− (i.e., deleting it from G), or marking it “undeletable,”
until the remaining graph is already a forest. This algorithm however takes O(2n) time. A
(rather informal) observation is that a vertex of a larger degree has a larger chance to be
in a minimum feedback vertex set, thereby inspiring a two-phase greedy algorithm for the
problem. If there are undecided vertices of degree larger than two after some preprocessing,
then it always branches on an undecided vertex with the largest degree. Believe it or not,
this greedy algorithm already beats most previous algorithms for this problem.

I Theorem 1.1. The greedy algorithm can be implemented in O(8k · n2) time.

The use of the observations on degrees in solving the feedback vertex set problem is
quite natural. Indeed, the research on parameterized algorithms and that on approximation
algorithms for the feedback vertex set problem have undergone a similar process. Early work
used the cycle packing-covering duality, and hence ended with O((log k)O(k) · nO(1))-time
parameterized algorithms [19] and O(logn)-ratio approximation algorithms [8], respectively,
while the first 2-approximation algorithm uses a similar greedy approach on high-degree
vertices [1]. Indeed, all the four slightly different 2-approximation algorithms for this problem
are based on similar degree observations [6, 12]. So is the quadratic kernel of Thomassé [20].
There is also an O(4k · n)-time randomized algorithm [2] based on this idea. Our greedy
branching algorithm can be viewed as the de-randomization of this randomized algorithm.

For a reader familiar with parameterized algorithms of the feedback vertex set problem,
Theorem 1.1 may sound somewhat surprising. Deterministic single-exponential algorithms
for the feedback vertex set problem had been sedulously sought, before finally discovered in
2005. With so many different techniques, some very complicated, having been tried toward
this end,1 it is rather interesting that the goal can be achieved in such a naive way.

The significance of single-exponential algorithms for the feedback vertex set problem lies
also in the theoretical interest, for which let us put it into context.

Together with the vertex cover problem (finding a set V− of at most k vertices of a
graph G such that G − V− is edgeless), the feedback vertex set problem is arguably the
most studied parameterized problem. However, a simple O(2k · (m+ n))-time algorithm for
vertex cover was already known in 1980s [17]. For this difference there is a quick and easy
explanation from the aspect of graph modification problems [16, 4]. Vertex deletion problems
ask for the deletion of a minimum set of vertices from a graph to make it satisfy specific
properties. The vertex cover problem and the feedback vertex set problem are precisely
vertex deletion problems to, respectively, the edgeless graphs and acyclic graphs, i.e., forests.
The obstruction (forbidden induced subgraph) for the edgeless graphs is an single edge, the
simplest one that is nontrivial. On the other hand, the obstructions for forests are all cycles,
which may be considered the simplest of all those infinite obstructions, for most of which
single-exponential algorithms are quite nontrivial, if possible at all.

The problems vertex cover and feedback vertex set are also known as planar-F-deletion
problems, which, given a graph G, a set F of graphs of which at least one is planar, ask for
a minimum set of vertices whose deletion make the graph H-minor-free for every H ∈ F [9].
They correspond to the cases with F = {K2} and F = {K3} respectively. Recently, Fomin
et al. [10] and Kim et al. [14] showed that all planar-F-deletion problems can be solved
in single-exponential time. Yet another way to connect the vertex cover problem and the

1 To date, the number of parameterized algorithms for feedback vertex set published in literature exceeds
any other single problem, including the more famous vertex cover problem.

Y. Cao 1:3

Algorithm naive-fvs(G, k, F)
Input: a graph G, an integer k, and a set F ⊆ V (G) inducing a forest.
Output: a feedback vertex set V− ⊆ V (G) \ F of size ≤ k or “no.”

0. if k < 0 then return “no”; if V (G) = ∅ then return ∅;
1. if a vertex v has degree less than two then

return naive-fvs(G− {v}, k, F \ {v});
2. if a vertex v ∈ V (G) \ F has two neighbors in the same component of G[F] then

X ← naive-fvs(G− {v}, k − 1, F);
return X ∪ {v};

3. pick a vertex v from V (G) \ F with the maximum degree;
4. if d(v) = 2 then
4.1. X ← ∅;
4.2. while there is a cycle C in G then

take any vertex x in C \ F ;
add x to X and delete it from G;

4.3. if |X| ≤ k then return X; else return “no”;
5. X ← naive-fvs(G− {v}, k − 1, F); \\ case 1: v ∈ V−.

if X is not “no” then return X ∪ {v};
6. return naive-fvs(G, k, F ∪ {v}). \\ case 2: v 6∈ V−.

Figure 1 A simple algorithm for feedback vertex set branching in a greedy manner. As we will
see in the end of this section, we may terminate the recursive calls after certain number of steps.
This leads to a search tree of bounded depth.

feedback vertex set problem is that a graph has treewidth zero if and only if it is edgeless,
and treewidth at most one if and only if it is a forest.

2 The algorithm

There is no secret in our algorithm, which is presented in Figure 1, except the recursive
form and an extra input F , the set of “undeletable” vertices. We say that (G, k, F), where
F ⊆ V (G) and the solution can only be picked from V (G) \ F , is an extended instance; note
that to make such an extended instance nontrivial, F needs to induce a forest. (Indeed, the
solution in the original loop cutset problem has to be selected from “allowed” vertices, which
is exactly the case F comprising all vertices that are not allowed.) The algorithm can be
viewed as two parts, the first (steps 1–4) applying some simple operations when the situation
is simple and clear, while the second (steps 5 and 6) trying both possibilities on whether a
vertex v is in a solution. The operations in the first part are called reductions in the parlance
of parameterized algorithms. The three we use here are standard and well-known,2 and their
correctness is straightforward; see, e.g., [5].

2 For the reader familiar with related algorithms, our reduction steps may seem slightly different from
those in literature. First of all, unlike most algorithms for the problem, our algorithm does not involve
multiple edges. We believe it is simpler to keep the graph simple. As a result, we are not able to
eliminate all vertices of degree two: The common way to dispose of a vertex v of degree-2 is to delete v
and add an edge between its two neighbors, so called smoothening. Smoothening a vertex whose two
neighbors were already adjacent would introduce parallel edges. Noting that there always exists an
optimal solution avoiding v, one may move v into F [5], but we prefer the current form because it is
simpler and easier to analyze. It is also easier to be extended in Section 3.

SOSA 2018

1:4 A Naive Algorithm for Feedback Vertex Set

I Lemma 2.1. Calling algorithm naive-fvs with (G, k, ∅) solves the instance (G, k) of the
feedback vertex set problem.

Proof. The two termination conditions in step 0 are clearly correct. For each recursive call
in steps 1 and 2, we show that the original instance is a yes-instance if and only if the new
instance is a yes-instance. Note that no vertex is moved to F in these two steps. In step 1,
the vertex v is not in any cycle, and hence it can be avoided by any solution. In step 2, there
is a cycle consisting of the vertex v and vertices in F (any path connecting these two vertices
in G[F]), and hence any solution has to contain v.

To argue the correctness of step 4, we show that the solution found in step 4 is optimal.
Let c be the number of components in G and ` the size of optimal solutions. Note that every
vertex in a solution has degree two, and hence after deleting ` vertices the graph has n− `
vertices and at least m− 2` edges. Moreover, deleting vertices from an optimal solution will
not decrease the number of components of the graph, we have (n− `)− (m− 2`) ≥ c. Hence,
` ≥ m − n + c, and showing |X| = m − n + c would finish the task. Deleting a vertex of
degree 2 from a cycle never increases the number of components. Also note that a graph of
c components contains a cycle if and only if it has more than n− c edges. Therefore, the
while loop in step 4 would be run exactly m − n + c iterations: After deleting m − n + c

vertices, each of degree two when deleted, the remaining graph has 2n−m− c vertices and
2n−m− 2c edges, which has to be a forest of c trees.

The last two steps are trivial: If there is a solution containing v, then it is found in step 5;
otherwise, step 6 always gives the correct answer. J

We now analyze the running time of the algorithm, which is simple but nontrivial. The
execution of the algorithm can be described as a search tree in which each node corresponds
to two extended instances of the problem, the entry instance and the exit instance. The entry
instance of the root node is (G, k, ∅). The exit instance of a node is the one after steps 0–2
have been exhaustively applied on the entry instance. If step 5 is further called, then two
children nodes are generated, with entry instances (G − {v}, k − 1, F) and (G, k, F ∪ {v})
respectively. (Note that the second child may not be explored by the algorithm, but this is
not of our concern.) A leaf node of the search tree returns either a solution or “no.”

It is clear that each node can be processed in polynomial time, and thus the focus of
our analysis is to bound the number of nodes in the search tree. Since the tree is binary, it
suffices to bound its depth. We say that a path from the root of the search tree to a leaf node
is an execution path. Let us fix an arbitrary execution path in the search tree of which the
leaf node returns a solution V−, and let F ′ denote all the vertices moved into F by step 6 in
this execution path. The length of this execution path is at most |V−|+ |F ′|: Each non-leaf
node puts at least one vertex to V− or F . We are allowed to put at most k vertices into V−,
i.e., |V−| ≤ k, and hence our task in the rest of this section is to bound |F ′|.

Let us start from some elementary facts on trees. Any tree T satisfies∑
v∈V (T)

d(v) = 2|E(T)| = 2|V (T)| − 2 and
∑

v∈V (T)

(d(v)− 2) = −2.

Let L denote the set of leaves of T , and V3 the set of vertices of degree at least three. If
V (T) ≥ 2, then |L| ≥ 2 and

−2 =
∑
v∈L

(d(v)−2)+
∑

v∈V (T)\L

(d(v)−2) =
∑
v∈L

(−1)+
∑
v∈V3

(d(v)−2) =
∑
v∈V3

(d(v)−2)−|L|.

Y. Cao 1:5

Hence∑
v∈V3

(d(v)− 2) = |L| − 2. (1)

The implication of (1) for our problem is that the more large-degree vertices (V3) in the
final forest G − V−, the more leaves (L) it has. Every vertex u ∈ F ′ will be in the forest.
Since its original degree is at least three, either its degree is decreased to two or less, or there
must be some leaves produced to “balance the equation (1).” On the other hand, however,
every vertex has degree at least two when u is moved to F . Therefore, if it is the second
case, the leaves have to be “produced” in later steps. The requirement of degree decrements
is decided by the degree of u, and can be satisfied by vertices deleted later, whose degrees
cannot be larger than that of u. This informal observation would enable us to derive the
desired lower bound on |F ′|.

The following invariants will be used in our formal analysis.
Invariant 1 : During the algorithm, the degree of no vertex can increase.
Invariant 2 : When a recursive call is made in step 5 or 6, there is no vertex of degree 0 or 1

in the graph.

This algorithm never directly deletes any edge, and thus the degree of a vertex decreases
only when some of its neighbors are deleted from the graph,—we are talking about the degree
in the whole graph G, so moving a vertex to F does not change the degree of any vertex. In
particular, only steps 1, 2, 4, and 5 can decrease the degree of vertices. By Invariant 2, after
a vertex is moved to F , step 1 cannot be called before step 2, 4, or 5. In other words, the
degree of a vertex in F decreases only after some vertex put into V−. We can attribute them
to vertices V− as follows.

For a vertex v ∈ V− ∪ F ′, we use d∗(v) to denote the degree of v at the moment it is
deleted from the graph and put into V− (step 2, 4, or 5) or moved into F (step 6). Note
that dG(v) ≥ d∗(v) by Invariant 1, and d∗(v) ≥ 3 when v ∈ F ′. Let x1, x2, . . ., x|V−| be
the vertices in V−, in the order of them being put into V−, and let (Gi, ki, Fi) be the exit
instance in the node of the search tree corresponding to xi.

I Definition 2.2. We say that the decrements of the degree of a vertex u ∈ F ′ from d∗(u)
to 2 are effective, and an effective decrement is incurred by xi ∈ V− if it happens between
deleting xi and xi+1, or after deleting x|V−| if i = |V−|. Let δ(u, xi) denote the number of
effective decrements of u incurred by xi.

Note that δ(u, xi) may be larger than 1. It is worth stressing that we do not count the degree
decrements of u before it is moved into F . Therefore, δ(u, xi) can be positive only when u is
in F when xi is deleted, i.e., u ∈ Fi and hence dGi

(u) ≥ 2:

δ(u, xi) =
{
dGi(u)−max{dGi+1(u), 2} when u ∈ Fi,

0 otherwise.

I Proposition 2.3. For any u ∈ F ′ and xi ∈ V−, if δ(u, xi) > 0 then d∗(u) ≥ d∗(xi).

First, we bound the total number of effective decrements incurred by xi for each xi ∈ V−.

I Lemma 2.4. For each xi ∈ V−, it holds
∑

u∈F ′ δ(u, xi) ≤ d∗(xi).

Proof. Recall that all effective decrements incurred by xi happen after deleting xi from Gi.
If dGi

(v) > 2 for every vertex v ∈ NGi
(xi), then the deletion of xi will not make the degree

SOSA 2018

1:6 A Naive Algorithm for Feedback Vertex Set

of any vertex smaller than two. Therefore, step 1 will not be called before putting the next
vertex into V−. The degree of each vertex in NGi

(xi) decreases by one, and the total number
of effective decrements incurred by xi is thus at most d∗(xi).

In the rest dGi
(v) = 2 for some v ∈ NGi

(xi), and it becomes 1 with the deletion of xi.
This decrement is not effective, but it will trigger step 1, which may subsequently lead to
effective decrements. Let d denote the number of degree-2 neighbors of xi in Gi. After the
deletion of xi, all of them have degree one, and there is no other vertex having degree one in
Gi−{xi} (Invariant 2). We consider the application of step 1, and let x be the vertex deleted.
If the only neighbor of x has degree two when this step is executed, then its degree becomes 1
after the deletion of x, and hence the number of degree-1 vertices is not changed. Otherwise,
there is one less vertex of degree 1 but there may be one effective decrement (only when the
only neighbor of x is in F and has degree at least three). Therefore, when step 1 is no longer
applicable, the total number of effective decrements is at most d∗(xi)− d+ d = d∗(xi). J

We are now ready to bound the number of calls of step 6 made in this execution path,
i.e., the size of F ′, by the size of V−. This is exactly the place the greedy order of branching
plays the magic.

I Lemma 2.5. In an execution path that leads to a solution, |F ′| ≤ 3|V−|.

Proof. Since this execution path leads to a solution, all vertices must be deleted from the
graph at the end of the path. In the algorithm, a vertex in F can only be deleted from the
graph in step 1, when the degree of the vertex has to be one or zero. On the other hand,
d∗(u) ≥ 3. Thus, all the d∗(u)− 2 effective decrements must have happened on this vertex,
i.e.,

∑
v∈V−

δ(u, v) = d∗(u)− 2. Putting everything together, we have

|V−| =
∑

v∈V−

1 =
∑

v∈V−

d∗(v)
d∗(v)

≥
∑

v∈V−

1
d∗(v)

∑
u∈F ′

δ(u, v) (Lemma 2.4)

=
∑

v∈V−

∑
u∈F ′

δ(u, v)
d∗(v)

≥
∑

v∈V−

∑
u∈F ′

δ(u, v)
d∗(u) (Proposition 2.3)

=
∑

u∈F ′

1
d∗(u)

∑
v∈V−

δ(u, v)

=
∑

u∈F ′

d∗(u)− 2
d∗(u)

≥
∑

u∈F ′

1
3 (d∗(u) ≥ 3)

= |F
′|

3 ,

and the proof is complete. J

I Theorem 2.6. Algorithm naive-fvs can be implemented in O(16k · n2) time to decide
whether a graph G has a feedback vertex set of size at most k.

Y. Cao 1:7

Proof. If the input graph G has a feedback vertex set of size at most k, then there must be an
execution path that returns a solution, and by Lemma 2.5, the length of this path is at most
4k. Otherwise, all execution paths return “no,” disregard of their lengths. Therefore, we can
terminate every execution path after it has put 3k vertices into F by returning “no” directly.
The new search tree would then have depth at most 4k. Clearly, the processing in each node
can be done in O(n2) time. This gives the running time O(24k+1 · n2) = O(16k · n2). J

3 An improved running time

It is long (but not well) known that if the maximum degree of a graph is at most three,
then a minimum feedback vertex set can be found in polynomial time [13, 21]. This can
be extended to the setting that the degree bound holds only for the undecided vertices i.e.,
vertices in V (G) \ F .

I Lemma 3.1 ([5]). Given a graph G and a set F of vertices such that every vertex in
V (G)\F has degree at most three, there is a polynomial-time algorithm for finding a minimum
set V− ⊆ V (G) \ F such that G− V− is a forest.

Therefore, we can change step 4 of algorithm naive-fvs to the following:

4. if d(v) ≤ 3 then
4.1. call Lemma 3.1 to find a minimum solution X;
4.2. if |X| ≤ k then return X; else return “no”;

Now that d∗(u) ≥ 4 for each vertex u ∈ F ′, as a result, in the last inequality in the proof
of Lemma 2.5, we can use (d∗(u)− 2)/d∗(u) ≥ 2/4 = 1/2, which implies |F ′| ≤ 2|V−|. We
can hence terminate every execution path after it has put 2k vertices into F by returning
“no” directly, and the algorithm would then run in O(8k · nO(1)) time, as announced in
Theorem 1.1.

We conclude this paper by pointing out that the analysis is not tight. The inequalities in
the proof of Lemma 2.5 could be tight only when d∗(v) = 4 for every vertex v ∈ V− ∪ F , and
more importantly, all the degree decrements incurred by putting a vertex to V− are effective.
If such a graph exists,—we may assume without loss of generality that it does not contains
any vertex of degree two or less,—then all its vertices have degree four, and all neighbors of
a vertex x ∈ V− are in F . But in such a graph there should be a different solution, and note
that our algorithm explores the subtree rooted at the child node made by step 6 only if all
the leaves in the other subtree (rooted at the node made by step 5) have returned “no.”

Acknowledgment. The author would like to thank O-joung Kwon and Saket Saurabh for
pointing out a mistake in the introduction of a previous version.

References
1 Vineet Bafna, Piotr Berman, and Toshihiro Fujito. A 2-approximation algorithm for the

undirected feedback vertex set problem. SIAM Journal on Discrete Mathematics, 12(3):289–
297, 1999. doi:10.1137/S0895480196305124.

2 Ann Becker, Reuven Bar-Yehuda, and Dan Geiger. Randomized algorithms for the loop
cutset problem. Journal of Artificial Intelligence Research, 12:219–234, 2000. doi:10.
1613/jair.638.

SOSA 2018

http://dx.doi.org/10.1137/S0895480196305124
http://dx.doi.org/10.1613/jair.638
http://dx.doi.org/10.1613/jair.638

1:8 A Naive Algorithm for Feedback Vertex Set

3 Bozhena Petrovna Bidyuk. Exploiting Graph Cutsets for Sampling-Based Approximations
in Bayesian Networks. PhD thesis, University of California, Irvine, 2006.

4 Leizhen Cai. Fixed-parameter tractability of graph modification problems for heredi-
tary properties. Information Processing Letters, 58(4):171–176, 1996. doi:10.1016/
0020-0190(96)00050-6.

5 Yixin Cao, Jianer Chen, and Yang Liu. On feedback vertex set: New measure and new
structures. Algorithmica, 73(1):63–86, 2015. A preliminary version appeared in SWAT 2010.
doi:10.1007/s00453-014-9904-6.

6 Fabián A. Chudak, Michel X. Goemans, Dorit S. Hochbaum, and David P. Williamson.
A primal-dual interpretation of two 2-approximation algorithms for the feedback vertex
set problem in undirected graphs. Operations Research Letters, 22(4-5):111–118, 1998.
doi:10.1016/S0167-6377(98)00021-2.

7 Rina Dechter and Judea Pearl. Network-based heuristics for constraint-satisfaction prob-
lems. Artificial Intelligence, 34(1):1–38, 1987. doi:10.1016/0004-3702(87)90002-6.

8 Paul Erdős and Lajos Pósa. On the maximal number of disjoint circuits of a graph. Publi-
cationes Mathematicae Debrecen, 9:3–12, 1962.

9 Michael R. Fellows and Michael A. Langston. Nonconstructive tools for proving polynomial-
time decidability. Journal of the ACM, 35(3):727–739, 1988. doi:10.1145/44483.44491.

10 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-
deletion: Approximation and optimal FPT algorithms. In Proceedings of the 53rd Annual
IEEE Symposium on Foundations of Computer Science, pages 470–479. IEEE Computer
Society, 2012. doi:10.1109/FOCS.2012.62.

11 Eugene C. Freuder. A sufficient condition for backtrack-free search. Journal of the ACM,
29(1):24–32, 1982. doi:10.1145/322290.322292.

12 Toshihiro Fujito. A note on approximation of the vertex cover and feedback vertex set
problems - unified approach. Information Processing Letters, 59(2):59–63, 1996. doi:
10.1016/0020-0190(96)00094-4.

13 Merrick L. Furst, Jonathan L. Gross, and Lyle A. McGeoch. Finding a maximum-genus
graph imbedding. Journal of the ACM, 35(3):523–534, 1988. doi:10.1145/44483.44485.

14 Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith, Ignasi
Sau, and Somnath Sikdar. Linear kernels and single-exponential algorithms via protrusion
decompositions. ACM Transactions on Algorithms, 12(2):21:1–21:41, 2015. doi:10.1145/
2797140.

15 Tomasz Kociumaka and Marcin Pilipczuk. Faster deterministic feedback vertex set. Infor-
mation Processing Letters, 114(10):556–560, 2014. doi:10.1016/j.ipl.2014.05.001.

16 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary proper-
ties is NP-complete. Journal of Computer and System Sciences, 20(2):219–230, 1980. Pre-
liminary versions independently presented in STOC 1978. doi:10.1016/0022-0000(80)
90060-4.

17 Kurt Mehlhorn. Data Structures and Algorithms 2: Graph Algorithms and NP-
Completeness. EATCS Monographs on Theoretical Computer Science. Springer Verlag,
1984.

18 Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Series in Representation and Reasoning. Morgan Kaufmann, 1988.

19 Venkatesh Raman, Saket Saurabh, and C. R. Subramanian. Faster fixed parameter
tractable algorithms for undirected feedback vertex set. In Prosenjit Bose and Pat
Morin, editors, ISAAC, volume 2518 of LNCS, pages 241–248. Springer, 2002. doi:
10.1007/3-540-36136-7_22.

http://dx.doi.org/10.1016/0020-0190(96)00050-6
http://dx.doi.org/10.1016/0020-0190(96)00050-6
http://dx.doi.org/10.1007/s00453-014-9904-6
http://dx.doi.org/10.1016/S0167-6377(98)00021-2
http://dx.doi.org/10.1016/0004-3702(87)90002-6
http://dx.doi.org/10.1145/44483.44491
http://dx.doi.org/10.1109/FOCS.2012.62
http://dx.doi.org/10.1145/322290.322292
http://dx.doi.org/10.1016/0020-0190(96)00094-4
http://dx.doi.org/10.1016/0020-0190(96)00094-4
http://dx.doi.org/10.1145/44483.44485
http://dx.doi.org/10.1145/2797140
http://dx.doi.org/10.1145/2797140
http://dx.doi.org/10.1016/j.ipl.2014.05.001
http://dx.doi.org/10.1016/0022-0000(80)90060-4
http://dx.doi.org/10.1016/0022-0000(80)90060-4
http://dx.doi.org/10.1007/3-540-36136-7_22
http://dx.doi.org/10.1007/3-540-36136-7_22

Y. Cao 1:9

20 Stéphan Thomassé. A 4k2 kernel for feedback vertex set. ACM Transactions on Al-
gorithms, 6(2):32.1–32.8, 2010. A preliminary version appeared in SODA 2009. doi:
10.1145/1721837.1721848.

21 Shuichi Ueno, Yoji Kajitani, and Shin’ya Gotoh. On the nonseparating independent set
problem and feedback set problem for graphs with no vertex degree exceeding three. Dis-
crete Mathematics, 72(1-3):355–360, 1988. doi:10.1016/0012-365X(88)90226-9.

SOSA 2018

http://dx.doi.org/10.1145/1721837.1721848
http://dx.doi.org/10.1145/1721837.1721848
http://dx.doi.org/10.1016/0012-365X(88)90226-9

A Note on Iterated Rounding for the Survivable
Network Design Problem∗

Chandra Chekuri1 and Thapanapong Rukkanchanunt†2

1 Dept. of Computer Science, University of Illinois, Urbana, 61801, USA
chekuri@illinois.edu

2 Chiang Mai University, 239 Huay Kaew Road, Chiang Mai 50200, Thailand
thapanapong.r@cmu.ac.th

Abstract
In this note we consider the survivable network design problem (SNDP) in undirected graphs.
We make two contributions. The first is a new counting argument in the iterated rounding based
2-approximation for edge-connectivity SNDP (EC-SNDP) originally due to Jain [10]. The second
contribution is to make some connections between hypergraphic version of SNDP
(Hypergraph-SNDP) introduced in [17] and edge and node-weighted versions of EC-SNDP and
element-connectivity SNDP (Elem-SNDP). One useful consequence is a 2-approximation for
Elem-SNDP that avoids the use of set-pair based relaxation and analysis.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems: Computations
on Discrete Structures

Keywords and phrases survivable network design, iterated rounding, approximation, element
connectivity

Digital Object Identifier 10.4230/OASIcs.SOSA.2018.2

1 Introduction

The survivable network design problem (SNDP) is a fundamental problem in network design
and has been instrumental in the development of several algorithmic techniques. The input to
SNDP is a graph G = (V,E) and an integer requirement r(uv) between each unordered pair
of nodes uv. The goal is to find a minimum-cost subgraph H of G such that for each pair uv,
the connectivity in H between u and v is at least r(uv). We use rmax to denote maxuv r(uv),
the maximum requirement. We restrict attention to undirected graphs in this paper. There
are several variants depending on whether the costs are on edges or on nodes, and whether
the connectivity requirement is edge, element or node connectivity. Unless otherwise specified
we will assume that G has edge-weights c : E → R+. We refer to the three variants of interest
based on edge, element and vertex connectivity as EC-SNDP, Elem-SNDP and VC-SNDP.
All of them are NP-Hard and APX-hard to approximate even in very special cases.

The seminal work of Jain [10] obtained a 2-approximation for EC-SNDP via the tech-
nique of iterated rounding that was introduced in the same paper. A 2-approximation for
Elem-SNDP was obtained, also via iterated rounding, in [7, 5]. For VC-SNDP the current
best approximation bound is O(r3

max log |V |) [6]; it is also known from hardness results in [2]
that the approximation bound for VC-SNDP must depend polynomially on rmax under
standard hardness assumptions.

∗ Work on this paper supported in part by NSF grants CCF-1016684, CCF-1319376 and CCF-1526799.
† The second author was an undergraduate student in the Dept. of Computer Science at Univ. of Illinois

when he worked on results of this paper.

© Chandra Chekuri and Thapanapong Rukkanchanunt;
licensed under Creative Commons License CC-BY

1st Symposium on Simplicity in Algorithms (SOSA 2018).
Editor: Raimund Seidel; Article No. 2; pp. 2:1–2:10

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SOSA.2018.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

2:2 On iterated rounding for SNDP

Our contribution: In this note we revisit the iterated rounding framework that yields a
2-approximation for EC-SNDP and Elem-SNDP. The framework is based on arguing that
for a class of covering problems, a basic feasible solution to an LP relaxation for the covering
problem has a variable of value at least 1

2 . This variable is then rounded up to 1 and the
residual problem is solved inductively. A key fact needed to make this iterative approach work
is that the residual problem lies in the same class of covering problems. This is ensured by
working with the class of skew-supermodular (also called weakly-supermodular) requirement
functions which capture EC-SNDP as a special case. The proof of existence of an edge
with large value in a basic feasible solution for this class of requirement functions has two
components. The first is to establish that a basic feasible solution is characterized by a
laminar family of sets in the case of EC-SNDP (and set pairs in the case of Elem-SNDP).
The second is a counting argument that uses this characterization to obtain a contradiction
if no variable is at least 1

2 . The counting argument of Jain [10] has been simplified and
streamlined in subsequent work via fractional token arguments [1, 13]. These arguments have
been applied for several related problems for which iterated rounding has been shown to be
a powerful technique; see [12]. The fractional token argument leads to short and slick proofs.
At the same time we feel that it is hard to see the intuition behind the argument. Partly
motivated by pedagogical reasons, in this note, we provide a different counting argument
along with a longer explanation. The goal is to give a more combinatorial flavor to the
argument. We give this argument in Section 2.

The second part of the note is on Elem-SNDP. A 2-approximation for this problem
has been derived by generalizing the iterated rounding framework to a set-pair based
relaxation [7, 5]. The set-pair based relaxation and arguments add substantial notation
to the proofs although one can see that there are strong similarities to the proofs used in
EC-SNDP. The notational overhead limits the ability to teach and understand the proof
for Elem-SNDP. Interestingly, in a little noticed paper, Zhao, Nagamochi and Ibaraki [17]
defined a generalization of EC-SNDP to hypergraphs which we refer to as Hypergraph-SNDP.
They observed that Elem-SNDP can be easily reduced to Hypergraph-SNDP in which the
only non-zero weight hyperedges are of size 2 (regular edges in a graph). The advantage of this
reduction is that one can derive a 2-approximation for Elem-SNDP by essentially appealing to
the same argument as for EC-SNDP with a few minor details. We believe that this is a useful
perspective. Second, there is a simple and well-known connection between node-weighted
network design in graphs and network design problems on hypergraphs. We explicitly point
these connections which allows us to derive some results for Hypergraph-SNDP. Section 3
describes these connections and results.

This note assumes that the reader has some basic familiarity with previous literature on
SNDP and iterated rounding.

2 Iterated rounding for EC-SNDP

The 2-approximation for EC-SNDP is based on casting it as a special case of covering a
skew-supermodular requirement function by a graph. We set up the background now. Given
a finite ground set V an integer valued set function f : 2V → Z is skew-supermodular if for
all A,B ⊆ V one of the following holds:

f(A) + f(B) ≤ f(A ∩B) + f(A ∪B)
f(A) + f(B) ≤ f(A−B) + f(B −A)

Given an edge-weighted graph G = (V,E) and a skew-supermodular requirement function
f : 2V → Z, we can consider the problem of finding the minimum-cost subgraph H = (V, F)

C. Chekuri and T. Rukkanchanunt 2:3

of G such that H covers f ; that is, for all S ⊆ V , |δF (S)| ≥ f(S). Here δF (S) is the
set of all edges in F with one endpoint in S and the other outside. Given an instance of
EC-SNDP with input graph G = (V,E) and edge-connectivity requirements r(uv) for each
pair uv, we can model it by setting f(S) = maxu∈S,v 6∈S r(uv). It can be verified that f is
skew-supermodular. The important aspect of skew-supermodular functions that make them
well-suited for the iterated rounding approach is the following.

I Lemma 1 ([10]). Let G = (V,E) be a graph and f : 2V → Z be a skew-supermodular
requirement function, and F ⊆ E be a subset of edges. The residual requirement function
g : 2V → Z defined by g(S) = f(S)− |δF (S)| for each S ⊆ V is also skew-supermodular.

Although the proof is standard by now we will state it in a more general way.

I Lemma 2. Let f : 2V → Z be a skew-supermodular requirement function and let h : 2V →
Z+ be a symmetric submodular function. Then g = f − h is a skew-supermodular function.

Proof. Since h is submodular we have that for all A,B ⊆ V ,

h(A) + h(B) ≥ h(A ∪B) + h(A ∩B).

Since h is also symmetric it is posi-modular which means that for all A,B ⊆ V ,

h(A) + h(B) ≥ h(A−B) + h(B −A).

Note that h satisfies both properties for each A,B. It is now easy to check that f − h is
skew-supermodular. J

Lemma 1 follows from Lemma 2 by noting that the cut-capacity function |δF | : 2V → Z+
is submodular and symmetric in undirected graphs. We also note that the same property
holds for the more general setting when G is a hypergraph.

The standard LP relaxation for covering a function by a graph is described below where
there is variable xe ∈ [0, 1] for each edge e ∈ E.

min
∑
e∈E

cexe∑
e∈δ(S)

xe ≥ f(S) S ⊂ V

xe ∈ [0, 1] e ∈ E

The technical theorem that underlies the 2-approximation for EC-SNDP is the following.

I Theorem 3 ([10]). Let f be a non-trivial1 skew-supermodular function. In any basic
feasible solution x to the LP relaxation of covering f by a graph G there is an edge e such
that xe ≥ 1

2 .

To prove the preceding theorem it suffices to focus on basic feasible solutions x that are
fully fractional; that is, xe ∈ (0, 1) for all e. For a set of edges F ⊆ E let χ(F) ∈ {0, 1}|E|

denote the characteristic vector of F ; that is, a |E|-dimensional vector that has a 1 in each
position corresponding to an edge e ∈ F and a 0 in all other positions. Theorem 3 is built
upon the following characterization of basic feasible solutions and is shown via uncrossing
arguments.

1 We use the term non-trivial to indicate that there is at least one set S ⊂ V such that f(S) > 0.

SOSA 2018

2:4 On iterated rounding for SNDP

I Lemma 4 ([10]). Let x be a fully-fractional basic feasible solution to the the LP relaxation.
Then there is a laminar family of vertex subsets L such that x is the unique solution to the
system of equalities

x(δ(S)) = f(S) S ∈ L.

In particular this also implies that |L| = |E| and that the vectors χ(δ(S)), S ∈ L are linearly
independent.

The second part of the proof of Theorem 3 is a counting argument that relies on the
characterization in Lemma 4. The rest of this section describes a counting argument which
we believe is slightly different from the previous ones in terms of the main invariant. The
goal is to derive it organically from simpler cases.

With every laminar family we can associate a rooted forest. We use terminology for
rooted forests such as leaves and roots as well as set terminology. We refer to a set C ∈ L
as a child of a set S if C ⊂ S and there is no S′ ∈ L such that C ⊂ S′ ⊂ S; If C is the
child of S then S is the parent of C. Maximal sets of L correspond to the roots of the forest
associated with L.

2.1 Counting Argument
The proof is via contradiction where we assume that 0 < xe <

1
2 for each e ∈ E. We call

the two nodes incident to an edge as the endpoints of the edges. We say that an endpoint u
belongs to a set S ∈ L if u is the minimal set from L that contains u.

We consider the simplest setting where L is a collection of disjoint sets, in other words,
all sets are maximal. In this case the counting argument is easy. Let m = |E| = |L|. For
each S ∈ L, f(S) ≥ 1 and x(δ(S)) = f(S). If we assume that xe < 1

2 for each e, we have
|δ(S)| ≥ 3 which implies that each S contains at least 3 distinct endpoints. Thus, the m
disjoint sets require a total of 3m endpoints. However the total number of endpoints is at
most 2m since there are m edges, leading to a contradiction.

Now we consider a second setting where the forest associated with L has k leaves and h
internal nodes but each internal node has at least two children. In this case, following Jain,
we can easily prove a weaker statement that xe ≥ 1/3 for some edge e. If not, then each leaf
set S must have four edges leaving it and hence the total number of endpoints must be at
least 4k. However, if each internal node has at least two children, we have h < k and since
h+ k = m we have k > m/2. This implies that there must be at least 4k > 2m endpoints
since the leaf sets are disjoint. But m edges can have at most 2m endpoints. Our assumption
on each internal node having at least two children is obviously a restriction. So far we have
not used the fact that the vectors χ(δ(S)), S ∈ L are linearly independent. We can handle
the general case to prove xe ≥ 1/3 by using the following lemma.

I Lemma 5 ([10]). Suppose C is a unique child of S. Then there must be at least two
endpoints in S that belong to S.

Proof. If there is no endpoint that belongs to S then δ(S) = δ(C) but then χ(δ(S)) and
χ(δ(C)) are linearly dependent. Suppose there is exactly one endpoint that belongs to S and
let it be the endpoint of edge e. But then x(δ(S)) = x(δ(C)) + xe or x(δ(S)) = x(δ(C))− xe.
Both cases are not possible because x(δ(S)) = f(S) and x(δ(C)) = f(C) where f(S) and
f(C) are positive integers while xe ∈ (0, 1). Thus there are at least two end points that
belong to S. J

C. Chekuri and T. Rukkanchanunt 2:5

Using the preceding lemma we prove that xe ≥ 1/3 for some edge e. Let k be the number
of leaves in L and h be the number of internal nodes with at least two children and let `
be the number of internal nodes with exactly one child. We again have h < k and we also
have k + h+ ` = m. Each leaf has at least four endpoints. Each internal node with exactly
one child has at least two end points which means the total number of endpoints is at least
4k+ 2`. But 4k+ 2` = 2k+ 2k+ 2` > 2k+ 2h+ 2` > 2m and there are only 2m endpoints for
m edges. In other words, we can ignore the internal nodes with exactly one child since there
are two endpoints in such a node/set and we can effectively charge one edge to such a node.

We now come to the more delicate argument to prove the tight bound that xe ≥ 1
2

for some edge e. Our main contribution is to show an invariant that effectively reduces
the argument to the case where we can assume that L is a collection of leaves. This is
encapsulated in the claim below which requires some notation. Let α(S) be the number of
sets of L contained in S including S itself. Let β(S) be the number of edges whose both
endpoints lie inside S. Recall that f(S) is the requirement of S.

I Claim. For all S ∈ L, f(S) ≥ α(S)− β(S).

Assuming that the claim is true we can do an easy counting argument. Let R1, R2, . . . , Rh
be the maximal sets in L (the roots of the forest). Note that

∑h
i=1 α(Ri) = |L| = m. Applying

the claim to each Ri and summing up,

h∑
i=1

f(Ri) ≥
h∑
i=1

α(Ri)−
h∑
i=1

β(Ri) ≥ m−
h∑
i=1

β(Ri).

Note that
∑h
i=1 f(Ri) is the total requirement of the maximal sets. And m−

∑h
i=1 β(Ri)

is the total number of edges that cross the sets R1, . . . , Rh. Let E′ be the set of edges
crossing these maximal sets. Now we are back to the setting with h disjoint sets and E′

edges with
∑h
i=1 f(Ri) ≥ |E′|. This easily leads to a contradiction as before if we assume

that xe < 1
2 for all e ∈ E′. Formally, each set Ri requires > 2f(Ri) edges crossing it from E′

and therefore Ri contains at least 2f(Ri) + 1 endpoints of edges from E′. Since R1, . . . , Rh
are disjoint the total number of endpoints is at least 2

∑
i f(Ri) + h which is strictly more

than 2|E′|.
Thus, it remains to prove the claim which we do by inductively starting at the leaves of

the forest for L.

Case 1: S is a leaf node. We have f(S) ≥ 1 while α(S) = 1 and β(S) = 0 which verifies
the claim.

Case 2: S is an internal nodes with k children C1, C2, . . . , Ck. See Figure 1 for the different
types of edges that are relevant. Ecc is the set of edges with end points in two different
children of S. Ecp be the set of edges that cross exactly one child but do not cross S. Epo
be the set of edges that cross S but do not cross any of the children. Eco is the set of edges
that cross both a child and S. This notation is borrowed from [15].

Let γ(S) be the number of edges whose both endpoints belong to S but not to any child
of S. Note that γ(S) = |Ecc|+ |Ecp|.

SOSA 2018

2:6 On iterated rounding for SNDP

S

C1 C2

C3

∈ Ecc
∈ Ecc

∈ Epo ∈ Eco ∈ Eco

∈ Ecp

Figure 1 S is an internal node with several children. Different types of edges that play a role. p

refers to parent set S, c refer to a child set and o refers to outside.

Then,

β(S) = γ(S) +
k∑
i=1

β(Ci)

≥ γ(S) +
k∑
i=1

α(Ci)−
k∑
i=1

f(Ci) (1)

= γ(S) + α(S)− 1−
k∑
i=1

f(Ci)

(1) follows by applying the inductive hypothesis to each child. From the preceding inequality,
to prove that β(S) ≥ α(S)−f(S) (the claim for S), it suffices to show the following inequality.

γ(S) ≥
k∑
i=1

f(Ci)− f(S) + 1. (2)

The right hand side of the above inequality can be written as:

k∑
i=1

f(Ci)− f(S) + 1 =
∑
e∈Ecc

2xe +
∑
e∈Ecp

xe −
∑
e∈Epo

xe + 1. (3)

We consider two subcases.

Case 2.1: γ(S) = 0. This implies that Ecc and Ecp are empty. Since χ(δ(S)) is linearly
independent from χ(δ(C1)), . . . , χ(δ(Ck)), we must have that Epo is not empty and hence∑
e∈Epo

xe > 0. Therefore, in this case,

k∑
i=1

f(Ci)− f(S) + 1 =
∑
e∈Ecc

2xe +
∑
e∈Ecp

xe −
∑
e∈Epo

xe + 1 = −
∑
e∈Epo

xe + 1 < 1.

Since the left hand side is an integer, it follows that
∑k
i=1 f(Ci)− f(S) + 1 ≤ 0 = γ(S).

C. Chekuri and T. Rukkanchanunt 2:7

Case 2.2: γ(S) ≥ 1. Recall that γ(S) = |Ecc|+ |Ecp|.

k∑
i=1

f(Ci)− f(S) + 1 =
∑
e∈Ecc

2xe +
∑
e∈Ecp

xe −
∑
e∈Epo

xe + 1 ≤
∑
e∈Ecc

2xe +
∑
e∈Ecp

xe + 1

By our assumption that xe < 1
2 for each e, we have

∑
e∈Ecc

2xe < |Ecc| if |Ecc| > 0, and
similarly

∑
e∈Ecp

xe < |Ecp|/2 if |Ecp| > 0. Since γ(S) = |Ecc|+ |Ecp| ≥ 1 we conclude that∑
e∈Ecc

2xe +
∑
e∈Ecp

xe < γ(S).

Putting together we have

k∑
i=1

f(Ci)− f(S) + 1 ≤
∑
e∈Ecc

2xe +
∑
e∈Ecp

xe + 1 < γ(S) + 1 ≤ γ(S)

as desired.
This completes the proof of the claim.

3 Connections between Hypergraph-SNDP, EC-SNDP and
Elem-SNDP

Zhao, Nagamochi and Ibaraki [17] considered the extension EC-SNDP to hypergraphs. In
a hypergraph G = (V, E) each edge e ∈ E is a subset of V . The degree d of a hypergraph
is maxe∈E |e|. Graphs are hypergraphs of degree 2. Given a set of hyperedges F ⊆ E and
a vertex subset S ⊂ V , we use δF (S) to denote the set all of all hyperedges in F that
have at least one endpoint in S and at least one endpoint in V \ S. It is well-known that
|δF | : 2V → Z+ is a symmetric submodular function.

Hypergraph-SNDP is defined as follows. The input consists of an edge-weighted hypergraph
G = (V, E) and integer requirements r(uv) for each vertex pair uv. The goal is to find a
minimum-cost hypergraph H = (V, E ′) with E ′ ⊆ E such that for all uv and all S that
separate u, v (that is |S ∩ {u, v}| = 1), we have |δE′(S)| ≥ r(uv). Hypergraph-SNDP is a
special case of covering a skew-supermodular requirement function by a hypergraph. It
is clear that Hypergraph-SNDP generalizes EC-SNDP. Interestingly, [17] observed, via a
simple reduction, that Hypergraph-SNDP generalizes Elem-SNDP as well. We now describe
Elem-SNDP formally and briefly sketch the reduction from [17], and subsequently describe
some implications of this connection.

In Elem-SNDP the input consists of an undirected edge-weighted graph G = (V,E) with
V partitioned into terminals T and non-terminals N . The “elements” are the edges and
non-terimals, N ∪E. For each pair uv of terminals there is an integer requirement r(uv), and
the goal is to find a min-cost subgraph H of G such that for each pair uv of terminals there
are r(uv) element-disjoint paths from u to v in H. Note that element-disjoint paths can
intersect in terminals. The notion of element-connectivity and Elem-SNDP have been useful
in several settings in generalizing edge-connectivity problems while having some features
of vertex connectivity. In particular, the current approximation for VC-SNDP relies on
Elem-SNDP [6].

The reduction of [17] from Elem-SNDP to Hypergraph-SNDP is quite simple. It basically
replaces each non-terminal u ∈ N by a hyperedge. The reduction is depicted in Figure 2.

SOSA 2018

2:8 On iterated rounding for SNDP

v ev

Figure 2 Reducing Elem-SNDP to Hypergraph-SNDP. Each non-terminal v is replaced by a
hyperedge ev by introducing dummy vertices on each edge incident to v. The original edges retain
their cost while the new hyperedges are assigned a cost of zero.

The reduction shows that an instance of Elem-SNDP on G can be reduced to an instance
of Hypergraph-SNDP on a hypergraph G′ where the only hyperedges with non-zero weights
in G′ are the edges of the graph G. This motivates the definition of d+(G) which is the
maximum degree of a hyperedge in G that has non-zero cost. Thus Elem-SNDP reduces to
instances of Hypergraph-SNDP with d+ = 2. In fact we can see that the same reduction
proves the following.

I Proposition 6. Node-weighted Elem-SNDP in which weights are only on non-terminals can
be reduced in an approximation preserving fashion to Hypergraph-SNDP. In this reduction
d+ of the resulting instance of Hypergraph-SNDP is equal to ∆, the maximum degree of a
non-terminal with non-zero weight in the instance of node-weighted Elem-SNDP.

3.1 Reducing Elem-SNDP to problem of covering skew-supermodular
functions by graphs

We saw that an instance of Elem-SNDP on a graph H can be reduced to an instance of
Hypergraph-SNDP on a graph G where d+(G) = 2. Hypergraph-SNDP on G = (V, E)
corresponds to covering a skew-supermodular function f : 2V → Z by G. Let E = F] E ′

where E ′ is the set of all hyperedges in G with degree more than 2; thus F is the set of all
hyperedges of degree 2 and hence (V, F) is a graph. Since each edge in E ′ has zero cost we
can include all of them in our solution, and work with the residual requirement function
g = f − |δE′ |. From Lemma 2 and the fact that the cut-capacity function of a hypergraph
is also symmetric and submodular, g is a skew-supermodular function. Thus covering f by
a min-cost sub-hypergraph of G can be reduced to covering g by a min-cost sub-graph of
G′ = (V, F). We have already seen a 2-approximation for this in the context of EC-SNDP.
The only issue is whether there is an efficient separation oracle for solving the LP for covering
g by G′. This is a relatively easy exercise using flow arguments and we omit them. The
main point we wish to make is that this reduction avoids working with set-pairs that are
typically used for Elem-SNDP. It is quite conceivable that the authors of [17] were aware of
this simple connection but it does not seem to have been made explicitly in their paper or
in [16].

3.2 Approximating Hypergraph-SNDP
[17] derived a d+Hrmax approximation for Hypergraph-SNDP where Hk = 1 + 1/2 + . . .+ 1/k
is the k’th harmonic number. They obtain this bound via the augmentation framework for
network design [9] and a primal-dual algorithm in each stage. In [16] they also observe that
Hypergraph-SNDP can be reduced to Elem-SNDP via the following simple reduction. Given
a hypergraph G = (V, E) let H = (V ∪N,E) be the standard bipartite graph representation
of G where for each hyperedge e ∈ E there is a node ze ∈ N ; ze is connected by edges in H

C. Chekuri and T. Rukkanchanunt 2:9

to each vertex a ∈ e. Let r(uv) be the hyperedge connectivity requirement between a pair of
vertices uv in the original instance of Hypergraph-SNDP. In H we label V as terminals and
N as non-terminals. For any pair of vertices uv with u, v ∈ V , it is not hard to verify that
the element-connectivity betwee u and v in H is the same as the hyperedge connectivity in G.
See [16] for details. It remains to model the costs such that an approximation algorithm for
element-connectivity in H can be translated into an approximation algorithm for hyperedge
connectivity in G. This is straightforward. We simply assign cost to non-terminals in H;
that is each node ze ∈ N corresponding to a hyperedge e ∈ E is assigned a cost equal to ce.
We obtain the following easy corollary.

I Proposition 7. Hypergraph-SNDP can be reduced to node-weighted Elem-SNDP in an
approximation preservation fashion.

[16] do not explicitly mention the above but note that one can reduce Hypergraph-SNDP
to (edge-weighted) Elem-SNDP as follows. Instead of placing a weight of ce on the node ze
corresponding to the hyperedge e ∈ E , they place a weight of ce/2 on each edge incident to ze.
This transformation loses an approximation ratio of d+(G)/2. From this they conclude that a
β-approximation for Elem-SNDP implies a d+β/2-approximation for Hypergraph-SNDP; via
the 2-approximation for Elem-SNDP we obtain a d+approximation for Hypergraph-SNDP.
One can view this as reducing a node-weighted problem to an edge-weighted problem by
transferring the cost on the nodes to all the edges incident to the node. Since a non-terminal
can only be useful if it has at least two edges incident to it, in this particular case, we
can put a weight of half the node on the edges incident to the node. A natural question
here is whether one can directly get a d+ approximation for Hypergraph-SNDP without the
reduction to Elem-SNDP. We raise the following technical question.

I Problem 8. Suppose f is a non-trivial skew-supermodular function on V and G = (V, E)
be a hypergraph. Let x be a basic feasible solution to the LP for covering f by G. Is there an
hyperedge e ∈ E such that xe ≥ 1

d where d is the degree of G?

The preceding propositions show that Hypergraph-SNDP is essentially equivalent to
node-weighted Elem-SNDP where the node-weights are only put on non-terminals. Node-
weighted Steiner tree can be reduced to node-weighted Elem-SNDP and it is known that
Set Cover reduces in an approximation preserving fashion to node-weighted Steiner tree
[11]. Hence, unless P = NP , we do not expect a better than O(logn)-approximation
for Hypergraph-SNDP where n = |V | is the number of nodes in the graph. Thus, the
approximation ratio for Hypergraph-SNDP cannot be a constant independent of d+. Node-
weighted Elem-SNDP admits an O(rmax log |V |) approximation; see [14, 3, 4, 8]. For planar
graphs, and more generally graphs from a proper minor-closed family, an improved bound of
O(rmax) is claimed in [3]. The O(rmax log |V |) bound can be better than the bound of d+ in
some instances. Here we raise a question based on the fact that planar graphs have constant
average degree which is used in the analysis for node-weighted network design.

I Problem 9. Is there an O(1)-approximation for node-weighted EC-SNDP and Elem-SNDP
in planar graphs, in particular when rmax is a fixed constant?

Finally, we hope the counting argument and the connections between Hypergraph-SNDP,
EC-SNDP and Elem-SNDP will be useful for related problems including the problems
involving degree constraints in network design.

SOSA 2018

2:10 On iterated rounding for SNDP

References
1 Nikhil Bansal, Rohit Khandekar, and Viswanath Nagarajan. Additive guarantees for degree-

bounded directed network design. SIAM Journal on Computing, 39(4):1413–1431, 2009.
2 Tanmoy Chakraborty, Julia Chuzhoy, and Sanjeev Khanna. Network design for vertex

connectivity. In Proceedings of the fortieth annual ACM symposium on Theory of computing,
pages 167–176. ACM, 2008.

3 Chandra Chekuri, Alina Ene, and Ali Vakilian. Node-weighted network design in planar
and minor-closed families of graphs. In Automata, Languages, and Programming, pages
206–217. Springer, 2012.

4 Chandra Chekuri, Alina Ene, and Ali Vakilian. Prize-collecting survivable network design in
node-weighted graphs. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 98–109. Springer, 2012.

5 J. Cheriyan, S. Vempala, and A. Vetta. Network design via iterative rounding of setpair
relaxations. Combinatorica, 26(3):255–275, 2006.

6 Julia Chuzhoy and Sanjeev Khanna. An O(k3 logn)-approximation algorithm for vertex-
connectivity survivable network design. Theory of Computing, 8:401–413, 2012. Preliminary
version in Proc. of IEEE FOCS, 2009.

7 L. Fleischer, K. Jain, and D.P. Williamson. Iterative rounding 2-approximation algorithms
for minimum-cost vertex connectivity problems. Journal of Computer and System Sciences,
72(5):838–867, 2006.

8 Takuro Fukunaga. Spider covers for prize-collecting network activation problem. In Proceed-
ings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’15, pages 9–24. SIAM, 2015. URL: http://dl.acm.org/citation.cfm?id=2722129.
2722131.

9 M.X. Goemans, A.V. Goldberg, S. Plotkin, D.B. Shmoys, E. Tardos, and D.P. Williamson.
Improved approximation algorithms for network design problems. In Proc. of ACM-SIAM
SODA, pages 223–232, 1994.

10 K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem.
Combinatorica, 21(1):39–60, 2001. Preliminary version in FOCS 1998.

11 P. Klein and R. Ravi. A nearly best-possible approximation algorithm for node-weighted
Steiner trees. J. Algorithms, 19(1):104–115, 1995. Preliminary version in IPCO 1993.

12 Lap Chi Lau, Ramamoorthi Ravi, and Mohit Singh. Iterative methods in combinatorial
optimization, volume 46. Cambridge University Press, 2011.

13 Viswanath Nagarajan, R Ravi, and Mohit Singh. Simpler analysis of lp extreme points for
traveling salesman and survivable network design problems. Operations Research Letters,
38(3):156–160, 2010.

14 Z. Nutov. Approximating minimum cost connectivity problems via uncrossable bifamilies
and spider-cover decompositions. In Proceedings of the 50th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 417–426. IEEE, 2009.

15 David P Williamson and David B Shmoys. The design of approximation algorithms. Cam-
bridge university press, 2011.

16 Liang Zhao, Hiroshi Nagamochi, and Toshihide Ibaraki. A note on approximating the sur-
vivable network design problem in hypergraphs. IEICE TRANSACTIONS on Information
and Systems, 85(2):322–326, 2002.

17 Liang Zhao, Hiroshi Nagamochi, and Toshihide Ibaraki. A primal–dual approximation
algorithm for the survivable network design problem in hypergraphs. Discrete applied
mathematics, 126(2):275–289, 2003. Preliminary version appeared in Proc. of STACS, 2001.

http://dl.acm.org/citation.cfm?id=2722129.2722131
http://dl.acm.org/citation.cfm?id=2722129.2722131

Congestion Minimization for Multipath Routing
via Multiroute Flows∗

Chandra Chekuri1 and Mark Idleman2

1 Dept. of Computer Science, University of Illinois, Urbana, 61801, USA
chekuri@illinois.edu

2 Dept. of Computer Science, University of Illinois, Urbana, 61801, USA
midleman2@illinois.edu

Abstract
Congestion minimization is a well-known routing problem for which there is an O(logn/ log logn)-
approximation via randomized rounding [17]. Srinivasan [18] formally introduced the low-conges-
tion multi-path routing problem as a generalization of the (single-path) congestion minimization
problem. The goal is to route multiple disjoint paths for each pair, for the sake of fault tolerance.
Srinivasan developed a dependent randomized scheme for a special case of the multi-path problem
when the input consists of a given set of disjoint paths for each pair and the goal is to select a
given subset of them. Subsequently Doerr [7] gave a different dependent rounding scheme and
derandomization. In [8] the authors considered the problem where the paths have to be chosen,
and applied the dependent rounding technique and evaluated it experimentally. However, their
algorithm does not maintain the required disjointness property without which the problem easily
reduces to the standard congestion minimization problem.

In this note we show a simple algorithm that solves the problem correctly without the need
for dependent rounding — standard independent rounding suffices. This is made possible via the
notion of multiroute flows originally suggested by Kishimoto et al. [13]. One advantage of the
simpler rounding is an improved bound on the congestion when the path lengths are short.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems: Computations
on Discrete Structures

Keywords and phrases multipath routing, congestion minimization, multiroute flows

Digital Object Identifier 10.4230/OASIcs.SOSA.2018.3

1 Introduction

Congestion minimization is a routing problem which originally arose in the context of wire
routing problem in VLSI design. It is also a relaxation of the classical disjoint paths problem.
Here we restrict attention to directed graphs. The input to these problem consists of a
directed graph G = (V,E) and a collection of source-sink pairs (s1, t1), (s2, t2), . . . , (sh, th).
The edge-dijsoint paths problem (EDP for short) is the following: given the graph and the
pairs, can the given pairs be connected via edge-disjoint paths? More formally, are there
edge-disjoint paths P1 . . . , Ph such that for 1 ≤ i ≤ k, Pi is an si-ti path? This is a classical
NP-Complete problem. An optimization related to EDP is the congestion minimization
problem. The goal is to find a collection of paths for the given pairs such that the congestion
of the paths is minimized. The congestion of an edge e with respect to a collection of paths is

∗ Supported in part by NSF grants CCF-1319376 and CCF-1526799. Part of this work appeared in the
author’s recent MS thesis [11].

© Chandra Chekuri and Mark Idleman;
licensed under Creative Commons License CC-BY

1st Symposium on Simplicity in Algorithms (SOSA 2018).
Editor: Raimund Seidel; Article No. 3; pp. 3:1–3:12

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SOSA.2018.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

3:2 Multipath Routing via Multiroute Flows

the number of paths in the collection that contain e, and the congestion of a given collection
of paths is simply the maximum congestion over all the edges. Raghavan and Thompson, in
their influential work [17], introduced the randomized rounding technique and obtained an
O(logn/ log logn) approximation via a natural multicommodity flow relaxation. Here n is
the number of nodes in the graph. Surprisingly this approximation ratio was recently shown
to be the right threshold of approximability [6] (modulo appropriate complexity theoretic
assumption). There are generalizations of the congestion minimization problem where the
pairs have demands and the edges have capacities. We restrict attention to the basic version
with unit demands and unit capacities. The results for this basic version generalize easily.

Multipath routing for fault tolerance: The focus of this paper is multipath routing. This
is motivated by fault tolerance considerations in high-capacity networks such as optical
networks. In such networks each pair (si, ti) needs to be connected via ki disjoint paths; in
typical applications ki = 2. The idea is to protect the connection between si and ti in case
of edge or node failures. We will restrict our attention to edge failures since node failures
can be addressed via appropriate reductions in directed graphs. In the network literature
the case of ki = 2 is typically referred to a 1 + 1 or 1 : 1 protection. See [9] for some relevant
background and additional references.

Srinivasan [18] considered approximation algorithms for the multipath congestion mini-
mization problem that he formalized as follows. The input is a directed graph G = (V,E)
and h source-sink pairs as before. In addition, for each (si, ti), we have an integer require-
ment ki ≥ 1. The goal is to choose for each pair i a set of ki edge-disjoint si-ti paths
Qi = {pi,1, pi,2, . . . , pi,ki

} so as to minimize the congestion induced by the collection of paths
Q = ∪iQi. Srinivasan developed an O(logn/ log logn)-approximation for a variant of this
problem. He assumes that the input includes for each i a collection of disjoint paths Pi. The
goal now is to choose for each i a sub-collection of exactly ki paths from Pi so as to minimize
the congestion of the chosen paths. For this purpose Srinivasan developed and used his
influential dependent rounding technique for cardinality constraints [18]. We refer the reader
to [9, 7, 5] for several subsequent developments on dependent rounding including deran-
domization, and the ability to handle more general constraints than cardinality constraints.
Doerr et al. [8] consider the multipath congestion minimization problem where the path
collection Pi is not explicitly given and the goal of the algorithm is to find ki disjoint paths
for each pair i so as to minimize the congestion of the chosen path collection. They write
a natural multicommodity flow LP relaxation and use dependent rounding techniques to
derive an O(logn/ log logn) congestion bound. However, their algorithm does not maintain
the crucial property that the chosen path collection for each pair i is edge disjoint! If there is
no requirement of edge-disjointness, the problem is easily reduced to the standard congestion
minimization problem: simply create ki copies of each pair (si, ti) with only one path for
each copy required.

Our contribution: This note is motivated by two considerations. The first is to address the
deficiency of the algorithm from [8] that we pointed out. We also note that the assumption
that the input consists of a large number of disjoint paths for each pair, as assumed by
Srinivasan, may not be the right model. Indeed, in practice a number of candidate paths are
generated for each pair but they need not all be disjoint. Typically, the edge connectivity in
high-speed networks is not very large. Can we solve the multipath congestion minimization
problem when the paths are not explicitly given? Our second motivation is regarding
the use of dependent rounding. Dependent rounding has been an elegant and powerful

C. Chekuri and M. Idleman 3:3

methodology with several new applications. Nevertheless, it is useful to examine whether
specific applications really need it since the dependent rounding adds to the complexity of
the algorithm from a conceptual and implementation point of view.

Here we show that there is a simple solution to the multipath congestion minimization
problem via the notion of multiroute flows. We show that standard randomized rounding
can be used to obtain an O(logn/ log logn) approximation. In other words there is no need
to use dependent rounding for the multipath congestion minimization problem. There is also
a concrete advantage to the simpler rounding. It allows us to improve the approximation to
O(log d/ log log d) when the paths have only d edges; this improvement requires the use of
the Lovasz local lemma (LLL) and its constructive version [15, 10]. As far as we are aware
this improvement is not easy to obtain via the dependent rounding approach.

One of our goals is to highlight multiroute flows. These flows were originally introduced
by Kishimoto et al. [13] and some of their properties have been clarified by Aggarwal and
Orlin [1]. Multiroute flows are a useful concept when considering fault-tolerance in networks,
and it appears that they are less well known in the theoretical computer science literature
although there have been several previous applications [3, 14, 4].

Finally, the simpler algorithm presented here inspired the following algorithmic question
that we briefly describe although it is not the main focus of this paper. Given an s-t flow in a
directed graph G = (V,E) it is well-known that it can be decomposed into paths and cycles in
O(nm) time where n = |V | andm = |E|. The corresponding question for multiroute flows has
not been explored systematically. Given an s-t k-route flow (see Section 2 for definitions and
background on multiroute flows) how fast can we decompose it into a collection of elementary
k-flows? The existence of a polynomial time algorithm follows from the properties of these
flows [1]. The MS thesis of the second author [11] describes faster exact and approximation
algorithms for the multiroute flow decomposition problem.

2 Background on multiroute flows

We will assume that graphs are directed for the rest of the paper. Unless otherwise noted,
we will use n and m to represent the number of nodes and edges of a graph in question,
respectively.

Network flow and flow decomposition: Given a directed graph G = (V,E) with non-
negative capacities ce on each edge e ∈ E, a network flow is defined as a function f : E → R+.
We will often express flows as vectors to help differentiate them from scalar values; for a
given flow f written in this way, fe is the flow value on an edge e. A feasible flow of k units
from a source node s to a target node t is a flow f such that
1. The flow value fe on each edge e ∈ E satisfies 0 ≤ fe ≤ ce,
2. k units of flow leave vertex s and enter vertex t, i.e.,∑

e=(s,u)

fe −
∑

e=(u,s)

fe =
∑

e=(u,t)

fe −
∑

e=(t,u)

fe = k, and

3. f satisfies the flow conservation property: for each vertex v ∈ V \ {s, t},∑
e=(u,v)

fe =
∑

e=(v,u)

fe.

The above definition characterizes network flows based on the flow value assigned to
each edge in the graph; we will refer to such formulations as edge-based flows. It is often
beneficial to also consider an equivalent formulation of network flows, the path-based flow.

SOSA 2018

3:4 Multipath Routing via Multiroute Flows

Let Pst be the set of all paths from s to t. In the path based formulation, an s-t flow in
a graph G is defined as a function f : Pst → R+. Although this definition works with
an implicit and exponential sized set Pst, there are several advantages to this view. The
path-based and edge-based formulations of s-t flows are “equivalent” in a certain sense. One
can see that a path-based flow induces an edge-based flow of the same value, and conversely,
flow-decomposition allows one convert an edge-based acyclic flow into a path-based flow of
the same value (note that the decomposition is not unique). Such a decomposition can be
computed in O(nm) time.

Multiroute aka k-route flows: Let k be a non-negative integer. Given a directed graph
G = (V,E) and two distinct nodes s, t ∈ V , an elementary k-flow from s to t is defined
as an s-t flow of k total units, consisting of 1 unit sent along each of k edge-disjoint s-t
paths. Equivalently we can view an elementary k-flow as a tuple (p1, p2, . . . , pk) where each
pi ∈ Pst and the paths p1, p2, . . . , pk are mutually edge-disjoint. Let P(k)

st be the set of all
elementary k-flows from s to t in G. We will some times use the notation p̄ to denote an
elementary k-flow in P(k)

st . A k-route s-t flow is defined as f : P(k)
st → R+, in other words, as a

non-negative sum of elementary k-flows. The value of a k-route flow f is simply
∑
p̄∈P(k)

st
f(p̄).

A k-route flow f is feasible if the total flow on any edge is at most its capacity c(e); that is,∑
p̄3e f(p̄) ≤ c(e) for each e. Note that the case of k = 1 is simply the standard definition of

flow via the path formulation.
Two natural questions arise. Can a maximum k-route flow be computed efficiently?

Second, what is the relationship between standard flows and k-route flows. The first question
is easy to answer. One can write a natural LP relaxation for the maximum k-route flow
based on the definition, however, the number of variables is |P(k)

st | and hence exponential in
the graph size. However, the number of non-trivial constraints is only m and one see that
the separation oracle for the dual LP is poly-time solvable via min-cost flow. However, there
are much faster algorithms via a crucial property that connects k-route flows to standard
flows (1-route flows). We have defined k-route flows via a path formulation. We say that an
edge-based flow f : E → R+ is a k-route flow if it can be decomposed into a k-route flow.
More formally f is a k-route flow if there is a g : P(k)

st → R+ such that f(e) =
∑
p̄3e g(p̄).

The following theorem, first proved by Kishimoto [12] and subsequently simplified by
Aggarwal and Orlin [1], gives a simple necessary and sufficient condition for a flow to be a
k-route flow. See Figure 1. This condition is related to the integer decomposition property
of polytopes defined by totally unimodular matrices [2].

I Theorem 1 ([12, 1]). An acyclic edge-based s-t flow f : E → R+ can be decomposed into
an s-t k-route flow if and only if f(e) ≤ v/k for each e ∈ E, where v is the value of f .

The proof of the preceding theorem gives a polynomial time algorithm for the decompo-
sition. Recently we have improved the running time for the decomposition; details can be
found in [11].

Aggarwal and Orlin describe an algorithm that finds a maximum s-t k-route flow via
min{k, log(kU)} standard maximum flow computations. Here U is the maximum capacity of
any edge in the graph. Note that the algorithm returns an edge-based multiroute flow.

3 Multipath routing via multiroute flows

In this section we consider the multipath minimum congestion routing problem via multiroute
flows. We are given a directed network G = (V,E) along with h commodities, each of which
consists of a pair of vertices (si, ti) in G. For each commodity (si, ti), the node si is referred

C. Chekuri and M. Idleman 3:5

s t

e1

0.5

e4 0.1

e3
0.3

e2 0.1

(a)

s t

e1

0.6

e4 0.1

e3
0.3

e2 0.1

(b)

Figure 1 The flow in (a) is decomposable into a 2-route flow by sending 0.3 units of flow along
e1 and e3, 0.1 units of flow along e1 and e2, and 0.1 units of flow along e1 and e4. The flow in (b)
is not decomposable into a 2-route flow; the 0.6 units of flow on edge e1 presents a bottleneck to
obtaining a valid decomposition.

to as the source node, and the node ti is referred to as the sink node. For each commodity
we are also given an integer ki which is the number of edge-disjoint paths needed for pair i.
For notational simplicity we will assume that ki = k for all i. It is easy to generalize the
entire approach when ki are different. The goal is to find for each i an elementary k-flow
p̄i ∈ P(k)

st such that the congestion induced by the path collection in ∪ip̄i is minimized. The
whole approach can also be generalized to the setting where pairs have demands and edges
have capacities and the goal is to minimize the relative congestion. We avoid this general
version for notational simplicity.

As we mentioned, Srinivasan [18, 9] considered the version of the problem where the
elementary k-flow for each i has to be chosen from a given set of disjoint path collection
Pi ⊆ Pst. Here we consider the version where the algorithm is not given such a path collection.
(We later show that the given paths case can be treated as a special case.) We write two
different relaxations, one based on the path based definition of multiroute flows and the
other based on the edge based definition (via Theorem 1).

Figure 2 describes the path-based formulation. For ease of notation we will assume that
the pairs are distinct (otherwise we can add dummy terminals to achieve this) and hence P(k)

siti

for the different i are distinct. For each p̄ ∈ ∪iP(k)
siti we have a flow variable x(p̄) indicating

the amount of flow that is sent on the elementary k-flow p̄. The natural constraints are that
the total k-route flow for (si, ti) is 1 for each i. The goal is to minimize the maximum flow on
any edge e which is the variable C. This is the same as minimizing the maximum congestion
since we are working with the case when all capacities are 1.

Figure 3 describes the edge-based formulation. Here we have variables xi,e to indicate the
flow for pair i on edge e. In addition to flow conservation constraints we seek a total flow of
k units from si to ti. The goal is again to minimize the maximum flow on any edge e which
is the variable C. Note that we include the constraint that xi,e ≤ 1 for each e and each i.
This is crucial. If we did not include this constraint we would not be able to guarantee that
the flow for pair i defined by the variables xi,e is a k-route flow. We observe that [8] write
this same relaxation.

The proof of the following lemma easily follows from Theorem 1. We note that the
constraint xi,e ≤ 1 is necessary.

I Lemma 2. The two LP relaxation are equivalent in that any feasible solution to one can
be used to define a corresponding feasible solution of the same or better value to the other.

SOSA 2018

3:6 Multipath Routing via Multiroute Flows

minC∑
p̄∈P(k)

siti

x(p̄) = 1 i = 1, . . . , h

h∑
i=1

∑
p̄∈P(k)

siti
,e∈p̄

x(p̄) ≤ C e ∈ E

x(p̄) ≥ 0 p̄ ∈ ∪iP(k)
siti

Figure 2 LP relaxation for multipath congestion minimization via path-based flows.

minC∑
e=(w,v)∈E

xi,e −
∑

e=(v,w)∈E

xi,e = 0 v ∈ V \ {si, ti}, i = 1, . . . , h

∑
e=(si,v)∈E

xi,e −
∑

e=(v,si)∈E

xi,e = k i = 1, . . . , h

h∑
i=1

xi,e ≤ C e ∈ E

xi,e ∈ [0, 1] e ∈ E, i = 1, . . . , h

Figure 3 LP relaxation for multipath congestion minimization via edge-based flows.

Proof. We sketch the more interesting direction. Consider a feasible solution the edge-based
LP. Consider any commodity i and the si-ti flow of k units induced by the variables xi,e.
Since xi,e ≤ 1 for each e this flow satisfies the conditions of Theorem 1 and hence can be
decomposed into a path-based k-route flow of value 1. We do this decomposition for each i
to generate a path-based flow solution. It is easy to see that it is feasible for the path-based
LP. J

We observe that the path-based LP can be solved in polynomial time. There are two
ways to see this. One way is to note that the separation oracle for the dual of the path-based
LP is min-cost flow. The other way is via the equivalence shown in Lemma 2 since the
edge-based LP is a polynomial sized formulation; one can decompose the edge-based flow for
each pair i into a path based flow via Theorem 1.

In [8] the following rounding strategy is used. They first solve the edge-based flow LP.
Let C∗ be the congestion in the fractional solution. We will assume without loss of generality
that C∗ ≥ 1 since we know that 1 is a lower bound on the optimum integral solution. For
each commodity i the xi,e variables define a flow of value k. They do a standard flow
decomposition of this flow to obtain a collection of paths Qi = {pi,1, . . . , pi,`i

} ⊂ Psiti and
associated fractions αi,1, . . . , αi,`i

such that
∑
j αi,j = k and 0 ≤ αi,j ≤ 1. Then they apply

the dependent rounding scheme of Srinivasan or the variant developed in [7] to select exactly
k paths from Qi. They do this process independently for each commodity i. They exploit
the negative correlation properties of the dependent rounding which implies that the process
behaves as if the paths are chosen independently and hence one can apply Chernoff-bound

C. Chekuri and M. Idleman 3:7

style analysis and the union bound. This allows one to show that the congestion obtained
by the rounding is, with high probability, O(logn/ log logn · C∗). One can, via well-known
Chernoff-inequalities, also show related bounds that provide improved bounds when C∗ is
large.

The main issue with the above rounding is the fact that the path collection Qi obtained
via standard flow-decomposition is not guaranteed to give a collection of disjoint paths. Thus,
the k paths chosen for (si, ti) may not in fact be edge disjoint.

Randomized rounding via k-route flows: It is convenient to describe our rounding algo-
rithm via the path-based LP formulation. We solve the LP to find a fractional solution with
congestion C∗. Note that the LP solution gives us for each i a k-route flow of value 1. More
formally for each i we have a collection Qi = {p̄i,1, . . . , p̄i,`i

} where p̄i,j ∈ P(k)
siti for each j,

and also associated non-negative numbers αi,1, . . . , αi,`i such that
∑
j αi,j = 1. Note that

we have a convex combination over elementary k-flows for each i. Now we can perform a
simple randomized rounding similar to what Raghavan and Thompson did for the standard
congestion minimization problem. For each i, we independently pick a single elementary
k-flow p̄i,j from Qi where the probability of picking it is exactly αi,j . Since we are picking an
elementary k-flow for each i, we are guaranteed that the k paths for each i are edge disjoint.
We can use the same standard argument as in [17] to argue that the congestion induced
by this randomized rounding is O(logn/ logn · C∗). Note that we do not need to use any
dependent rounding techniques since all the work has been done for us via the multiroute
flow based LP relaxation.

For the sake of completeness we prove the desired bound on the congestion. We first
state the standard Chernoff bound that we need (see [16]).

I Theorem 3. Let X1, . . . , Xn be n independent random variables (not necessarily distributed
identically), with each variable Xi taking a value of 0 or vi for some value 0 < vi ≤ 1. Then
for X =

∑n
i=1Xi, E[X] ≤ µ, and δ > 0,

Pr[X ≥ (1 + δ)µ] <
(

eδ

(1 + δ)(1+δ)

)µ
.

I Lemma 4. With probability 1− 1/poly(n), the congestion resulting from the randomized
rounding algorithm is O(logn/ log logn · C∗).

Proof. For each edge e ∈ E, define Xi,e to be a binary random variable where Xi,e = 1
if e lies on one of the si-ti paths making up the elementary k-flow chosen by the above
randomized rounding scheme, and 0 otherwise. Note that E[Xi,e] = xi,e is the total flow on
e for commodity i. Let Ye =

∑
i∈[h]Xi,e be the random variable which is the total number

of paths using edge e in the chosen solution. Note that

E[Ye] =
∑
i∈[h]

E[Xi,e] =
∑
i∈[h]

∑
j∈[`i]:e∈p̄i,j

x(p̄i,j) =
∑
i∈[h]

xi,e ≤ C∗.

In the above we use the fact that any edge e belongs only to one of the paths of an elementary
k-flow since the paths making up the elementary k-flow are by definition edge disjoint. For
any edge e ∈ E, the variables Xi,e, i ∈ [h] are independent via the rounding procedure;
therefore, the bound in Theorem 3 applies. Choose δ such that (1 + δ) = c lnn

ln lnn for some
constant c that will be determined later. Assume n > e so that ln lnn− ln ln lnn > 0.5 ln lnn.

SOSA 2018

3:8 Multipath Routing via Multiroute Flows

By letting µ = C∗ ≥ 1 in Theorem 3, we then have

Pr[Ye ≥ (1 + δ)C∗] <
(

eδ

(1 + δ)(1+δ)

)C∗
≤ eδ

(1 + δ)(1+δ) (*)

≤ e(1+δ)

(1 + δ)(1+δ)

=
(

c lnn
e ln lnn

)(−c lnn/ ln lnn)

= exp((ln c/e+ ln lnn− ln ln lnn)(−c lnn/ ln lnn))
≤ exp(0.5 ln lnn(−c lnn/ ln lnn))

≤ 1
nc/2

There are at most n2 edges, so by the union bound, we have

Pr
[

max
e∈E

Ye ≥ (1 + δ)C∗
]
≤
∑
e∈E

Pr[Ye ≥ (1 + δ)C∗]

≤ n2 · 1
nc/2

= n2−c/2.

Choosing c = 8 makes the claim fail to hold with probability at most 1
n2 , and ensures

that the inequality marked with (*) above is true (this choice of c ensures that the value of
the expression within parenthesis is less than 1). This probability can be made arbitrarily
small by increasing c. Because

(1 + δ)C∗ = (c lnn/ ln lnn)C∗ = O(logn/ log logn) · C∗,

this completes the proof. J

Using variants of the Chernoff bounds we can prove the following two lemmas as well.
These bounds show improved relative bounds on the congestion when C∗ is large. One can
also show similar analysis if the capacities are large compared to the demands. The analysis
is standard and we omit details in this version.

I Lemma 5. If C∗ ≥ 1, then for any δ with 0 ≤ δ ≤ 1, there exists some constant c > 0
such that the congestion resulting from the randomized rounding algorithm is no more than
(1 + δ)C∗ + c logn/δ2 with probability 1− 1/nΩ(c).

I Lemma 6. There is a constant c > 1 such that if C∗ ≥ c lnn, then with high probability,
the congestion of the rounding algorithm is at most C∗ +

√
C∗(c lnn).

3.1 Short paths and improved congestion via local lemma
In this section we point to another advantage of the simple rounding that we described in
the preceding section. Consider the basic congestion minimization problem when k = 1. It is
known that if all the flow paths in the fractional solution are “short”, then the congestion
bound improves. More formally, if all the paths in the decomposition have at most d edges
then one can obtain an integral solution with congestion O(log d/ log log d · C∗) [19]. This
can be substantially better than the bound of O(logn/ log logn · C∗) when d� n. One can

C. Chekuri and M. Idleman 3:9

minC∑
e=(w,v)∈E

xi,e −
∑

e=(v,w)∈E

xi,e = 0 v ∈ V \ {si, ti}, i = 1, . . . , h

∑
e=(si,v)∈E

xi,e −
∑

e=(v,si)∈E

xi,e = k i = 1, . . . , h

h∑
i=1

xi,e ≤ C e ∈ E∑
e∈E

xi,e ≤ d i = 1, . . . , h

xi,e ∈ [0, 1] e ∈ E, i = 1, . . . , h

Figure 4 LP relaxation for multipath congestion minimization with additional constraint to limit
the number of edges used in the flow to at most d.

also ensure that the flow paths are short by solving a path-based LP relaxation with the
restriction that the flow is only on paths with at most d edges. The rounding that achieves
the improved bound relies on the Lovász local lemma. LLL based analysis does not yield a
polynomial-time. Srinivasan [19] obtained a polynomial-time algorithm by derandomizing
the LLL based algorithm. More recently, building on the constructive version of the LLL
due to Moser and Tardos [15], Haupeler, Saha and Srinivasan [10] obtained a much simpler
randomized polynomial time algorithm that achieves a congestion of O(log d/ log log d · C∗).
In fact they consider a general class of min-max integer programs, and one can cast the
single path routing problem as a special case after the flow-decomposition. In the general
setting of min-max integer programs the structure of the routing problem is not relevant for
the bound we seek. The only parameter that matters is the maximum number of constraints
that any variable participates in, which corresponds to the length of the flow paths.

Now suppose we consider the multipath routing problem. The multiroute flow based path
LP formulation can be easily seen to be a special case of min-max integer programs considered
in [10]. We can thus obtain an improved congestion bound of O(log d/ log log d ·C∗) where d
is the maximum number of edges in any elementary k-flow. The following natural question
then arises. Find a fractional multipath routing for the given instance with the additional
constraint that for each pair (si, ti) the elementary flow chosen has at most d edges. For single
path setting this LP can be solved in polynomial time since the separation oracle for the dual
LP can be seen to be the constrained shortest path problem which is polynomial-time solvable.
Unfortunately the corresponding separation oracle for the multipath case is NP-Hard even
when k = 2. Nevertheless, we can apply a simple trick to obtain a bi-criteria approximation.
We can ensure that each elementary k-flow has at most 2d edges as follows.

We consider the following relaxation which adds additional constraints to the edge-based
relaxation from Figure 3. The additional constraint says that for each commodity i, the
total number of edges used is at most d in a fractional sense.

We now describe the modification to the rounding algorithm. As before we consider
each commodity i and consider the k-route flow given by the variables xi,e. We decompose
this into a path based flow to obtain a collection Qi = {p̄i,1, . . . , p̄i,`i

} of elementary k-flows
between si and ti. Abusing notation, we let amount of flow on p̄i,j as x(p̄i,j). Note that∑
j x(p̄i,j) = 1. Let dj be the number of edges in p̄i,j . From the constraint in the LP on

SOSA 2018

3:10 Multipath Routing via Multiroute Flows

minC∑
p∈Pi

y(p) = k i = 1, . . . , h

h∑
i=1

∑
p∈Pi,e∈p

y(p) ≤ C e ∈ E

y(p) ∈ [0, 1] p ∈ ∪iPi

Figure 5 LP relaxation for multipath congestion minimization when paths for each pair are
specified.

∑
e xi,e we have that

∑
j djx(p̄i,j) ≤ d. Let Q′i ⊆ Qi be the subset of elementary k-flows

such that each of them contains at most 2d edges. It is easy to see, via Markov’s inequality,
that

∑
j∈Q′

i
x(p̄i,j) ≥ 1/2. By scaling up the fractional values of the elementary k-flows in

Q′i by 2 we obtain a feasible solution to the path-based LP using only elementary k-flows
which have at most 2d edges. We have thus found a feasible fractional solution to the path
LP formulation with the following guarantees: (i) the congestion of the solution is at most
2C∗ where C∗ is the congestion of the original relaxation (ii) the support of the solution
consists of elementary k-flows for each commodity i which have at most 2d edges. We can
now apply the algorithm from [10] to round this solution to obtain a randomized algorithm
with congestion O(log d/ log log ·C∗). Note that there is nothing special about the factor of
2. We can obtain a trade off. For any ε > 0 we can ensure that the elementary k-flows have
at most (1 + ε)d edges while guaranteeing that the congestion is O(1

ε · log d/ log log d · C∗).

3.2 Choosing paths from a given collection

Now we consider the setting that Srinivasan considered in his original paper where he assumes
that the input includes for each i, a collection of disjoint paths Pi. The goal is to select
exactly k paths from Pi for each i. We can handle this problem also via multiroute flow
decomposition. First, we consider the natural LP relaxation for this problem from [18]. For
simplicity we will again assume that the given h pairs are distinct and hence P〉 ∩ Pj = ∅
for i 6= j. We have a variable y(p) for each p ∈ ∪iPi to indicate whether p is chosen or not.
We require k paths to be chosen from each Pi and also that y(p) ∈ [0, 1]. Subject to these
conditions we minimize the congestion. The relaxation is formally specified in Figure 5.

Suppose we are given a feasible solution y to the preceding LP with congestion value C.
We claim that we can find a feasible solution x to the LP in Figure 2 with congestion value
at most C with the following additional condition: for any i, if x(p̄) > 0 for some p̄ ∈ P(k)

siti

then p̄ is a tuple of k paths from Pi. If this is true then we can do randomized rounding via
x as before and obtain the desired congestion bound while picking for each i exactly k paths
from Pi. Moreover, if the paths in ∪iPi are short we can obtain an improved congestion
bound via the algorithm described in the preceding subsection.

We now justify the claim. Suppose y is a feasible solution to the LP in Figure 5. Fix a
particular i. Without loss of generality Pi = {p1, p2, . . . , p`i

} for some `i ≥ k. Consider a
graph Hi with two nodes si, ti and `i parallel edges e1, e2, . . . , e`i

from si and ti with unit
capacities where ej corresponds to the path pj . We now create a flow of value k from si to ti
in Hi where the flow on edge ej is equal to y(pj). Note that y(pj) ≤ 1 for each pj . Thus, via

C. Chekuri and M. Idleman 3:11

Theorem 1, we can decompose this flow into a si-ti k-route flow in Hi. Suppose this k-route
flow is given by x′ : Q(k)

siti → [0, 1]. Here Q(k)
siti is the set of elementary k-flows in Hi; each

such elementary k-flow is a set of k distinct edges from {e1, e2, . . . , e`i}. For each q̄ ∈ Q
(k)
siti

there is a unique p̄ ∈ P(k)
siti where the edge ej maps to the path pj ; we set x(p̄) = x(q̄). We

set x(p̄) = 0 for all p̄ ∈ P(k)
siti which don’t correspond to an elementary k-flow in Hi. We do

this for each i and the resulting x is the claimed feasible solution to the LP in Figure 2. By
construction x satisfies (i)

∑
p̄∈P(k)

siti

x(p̄) = 1 for each i and (ii) if p̄ ∈ P(k)
siti and x(p̄) > 0

then p̄ is a set of k paths from Pi. It is also easy to check that the congestion induced by x
on any edge is the same as the congestion induced by y.

References

1 Charu C. Aggarwal and James B. Orlin. On multiroute maximum flows in networks. Net-
works, 39(1):43–52, 2002. doi:10.1002/net.10008.

2 Stephen Baum and Leslie E Trotter Jr. Integer rounding and polyhedral decomposition for
totally unimodular systems. Optimization and Operations Research, 157:15–23, 1978.

3 Graham Brightwell, Gianpaolo Oriolo, and F Bruce Shepherd. Reserving resilient capacity
in a network. SIAM journal on discrete mathematics, 14(4):524–539, 2001.

4 Chandra Chekuri, Alina Ene, and Ali Vakilian. Prize-collecting survivable network design
in node-weighted graphs. Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 98–109, 2012.

5 Chandra Chekuri, Jan Vondrak, and Rico Zenklusen. Dependent randomized rounding
via exchange properties of combinatorial structures. In Foundations of Computer Science
(FOCS), 2010 51st Annual IEEE Symposium on, pages 575–584. IEEE, 2010.

6 Julia Chuzhoy, Venkatesan Guruswami, Sanjeev Khanna, and Kunal Talwar. Hardness of
routing with congestion in directed graphs. In Proceedings of the thirty-ninth annual ACM
symposium on Theory of computing, pages 165–178. ACM, 2007.

7 Benjamin Doerr. Randomly rounding rationals with cardinality constraints and derandom-
izations. STACS 2007, pages 441–452, 2007.

8 Benjamin Doerr, Marvin Künnemann, and Magnus Wahlström. Randomized rounding for
routing and covering problems: Experiments and improvements. In Proceedings of the
9th International Conference on Experimental Algorithms, SEA’10, pages 190–201, Berlin,
Heidelberg, 2010. Springer-Verlag. doi:10.1007/978-3-642-13193-61_7.

9 Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srinivasan. Depen-
dent rounding and its applications to approximation algorithms. Journal of the ACM
(JACM), 53(3):324–360, 2006.

10 Bernhard Haeupler, Barna Saha, and Aravind Srinivasan. New constructive aspects of the
lovász local lemma. Journal of the ACM (JACM), 58(6):28, 2011.

11 Mark Idleman. Approximation algorithms for the minimum congestion routing problem
via k-route flows. Master’s thesis, University of Illinois, July 2017.

12 Wataru Kishimoto. A method for obtaining the maximum multiroute flows in a net-
work. Networks, 27(4):279–291, 1996. doi:10.1002/(SICI)1097-0037(199607)27:
4<279::AID-NET3>3.0.CO;2-D.

13 Wataru Kishimoto and Masashi Takeuchi. m-route flows in a network. Electronics and
Communications in Japan (Part III: Fundamental Electronic Science), 77(5):1–18, 1994.
doi:10.1002/ecjc.4430770501.

14 Andrew McGregor and F. Bruce Shepherd. Island hopping and path colouring with ap-
plications to WDM network design. In Nikhil Bansal, Kirk Pruhs, and Clifford Stein,

SOSA 2018

http://dx.doi.org/10.1002/net.10008
http://dx.doi.org/10.1007/978-3-642-13193-61_7
http://dx.doi.org/10.1002/(SICI)1097-0037(199607)27:4<279::AID-NET3>3.0.CO;2-D
http://dx.doi.org/10.1002/(SICI)1097-0037(199607)27:4<279::AID-NET3>3.0.CO;2-D
http://dx.doi.org/10.1002/ecjc.4430770501

3:12 Multipath Routing via Multiroute Flows

editors, Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2007, New Orleans, Louisiana, USA, January 7-9, 2007, pages 864–873.
SIAM, 2007. URL: http://dl.acm.org/citation.cfm?id=1283383.1283476.

15 Robin A Moser and Gábor Tardos. A constructive proof of the general lovász local lemma.
Journal of the ACM (JACM), 57(2):11, 2010.

16 Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Chapman & Hall/CRC,
2010.

17 Prabhakar Raghavan and Clark D. Thompson. Randomized rounding: a technique for
provably good algorithms and algorithmic proofs. Combinatorica, 7(4):365–374, 1987. doi:
10.1007/BF02579324.

18 Aravind Srinivasan. Distributions on level-sets with applications to approximation algo-
rithms. In 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001,
14-17 October 2001, Las Vegas, Nevada, USA, pages 588–597. IEEE Computer Society,
2001. doi:10.1109/SFCS.2001.959935.

19 Aravind Srinivasan. An extension of the lovász local lemma, and its applications to integer
programming. SIAM Journal on Computing, 36(3):609–634, 2006.

http://dl.acm.org/citation.cfm?id=1283383.1283476
http://dx.doi.org/10.1007/BF02579324
http://dx.doi.org/10.1007/BF02579324
http://dx.doi.org/10.1109/SFCS.2001.959935

Better and Simpler Error Analysis of the
Sinkhorn-Knopp Algorithm for Matrix Scaling∗

Deeparnab Chakrabarty1 and Sanjeev Khanna2

1 Department of Computer Science, Dartmouth College, Hanover NH, USA
deeparnab@dartmouth.edu

2 Department of Computer and Information Science, University of Pennsylvania,
Philadelphia PA, USA
sanjeev@cis.upenn.edu

Abstract
Given a non-negative n × m real matrix A, the matrix scaling problem is to determine if it is
possible to scale the rows and columns so that each row and each column sums to a specified
target value for it. The matrix scaling problem arises in many algorithmic applications, perhaps
most notably as a preconditioning step in solving linear system of equations. One of the most
natural and by now classical approach to matrix scaling is the Sinkhorn-Knopp algorithm (also
known as the RAS method) where one alternately scales either all rows or all columns to meet
the target values. In addition to being extremely simple and natural, another appeal of this
procedure is that it easily lends itself to parallelization. A central question is to understand the
rate of convergence of the Sinkhorn-Knopp algorithm.

Specifically, given a suitable error metric to measure deviations from target values, and an
error bound ε, how quickly does the Sinkhorn-Knopp algorithm converge to an error below ε?
While there are several non-trivial convergence results known about the Sinkhorn-Knopp al-
gorithm, perhaps somewhat surprisingly, even for natural error metrics such as `1-error or `2-error,
this is not entirely understood. In this paper, we present an elementary convergence analysis
for the Sinkhorn-Knopp algorithm that improves upon the previous best bound. In a nutshell,
our approach is to show (i) a simple bound on the number of iterations needed so that the
KL-divergence between the current row-sums and the target row-sums drops below a specified
threshold δ, and (ii) then show that for a suitable choice of δ, whenever KL-divergence is below δ,
then the `1-error or the `2-error is below ε. The well-known Pinsker’s inequality immediately al-
lows us to translate a bound on the KL divergence to a bound on `1-error. To bound the `2-error
in terms of the KL-divergence, we establish a new inequality, referred to as (KL vs `1/`2). This
new inequality is a strengthening of the Pinsker’s inequality that we believe is of independent in-
terest. Our analysis of `2-error significantly improves upon the best previous convergence bound
for `2-error.

The idea of studying Sinkhorn-Knopp convergence via KL-divergence is not new and has
indeed been previously explored. Our contribution is an elementary, self-contained presentation
of this approach and an interesting new inequality that yields a significantly stronger convergence
guarantee for the extensively studied `2-error.

1998 ACM Subject Classification F.2.1.3 Computations on matrices

Keywords and phrases Matrix Scaling, Entropy Minimization, KL Divergence Inequalities

Digital Object Identifier 10.4230/OASIcs.SOSA.2018.4

∗ This work was supported in part by the National Science Foundation grants CCF-1552909 and CCF-
1617851.

© Deeparnab Chakrabarty and Sanjeev Khanna;
licensed under Creative Commons License CC-BY

1st Symposium on Simplicity in Algorithms (SOSA 2018).
Editor: Raimund Seidel; Article No. 4; pp. 4:1–4:11

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SOSA.2018.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

4:2 Error Analysis of the Sinkhorn-Knopp Algorithm for Matrix Scaling

1 Introduction

In the matrix scaling problem one is given an n×m non-negative matrix A, and positive
integer vectors r ∈ Zn>0 and c ∈ Zm>0 with the same `1 norm

∑n
i=1 ri =

∑m
j=1 cj = h. The

objective is to determine if there exist diagonal matrices R ∈ Rn×n and S ∈ Rm×m such that
the ith row of the matrix RAS sums to ri for all 1 ≤ i ≤ n and the jth column of RAS sums
to cj for all 1 ≤ j ≤ m. Of special importance is the case when n = m and r ≡ c ≡ 1n, the
n-dimensional all-ones vector – the (1,1)-matrix scaling problem wishes to scale the rows
and columns of A to make it doubly stochastic. This problem arises in many different areas
ranging from transportation planning [12, 26] to quantum mechanics [32, 1]; we refer the
reader to a recent comprehensive survey by Idel [15] for more examples.

One of the most natural algorithms for the matrix scaling problem is the following
Sinkhorn-Knopp algorithm [33, 34], which is known by many names including the RAS
method [4] and the Iterative Proportional Fitting Procedure [30]. The algorithm starts off
by multiplicatively scaling all the columns by the columns-sum times cj to get a matrix A(0)

with column-sums c. Subsequently, for t ≥ 0, it obtains the B(t) by scaling each row of A(t)

by the respective row-sum times ri, and obtain A(t+1) by scaling each column of B(t) by the
respective column sums time cj . More precisely,

A
(0)
ij := Aij∑n

i=1Aij
· cj ∀t ≥ 0, B

(t)
ij :=

A
(t)
ij∑m

j=1A
(t)
ij

· ri, A
(t+1)
ij :=

B
(t)
ij∑n

i=1B
(t)
ij

· cj

The above algorithm is simple and easy to implement and each iteration takes O(nnz(A)),
the number of non-zero entries of A. Furthermore, it has been known for almost five
decades [33, 34, 13, 35] that if A is (r, c)-scalable then the above algorithm asymptotically1
converges to a right solution. More precisely, given ε > 0, there is some finite t by which one
obtains a matrix which is “ε-close to having row- and column-sums r and c”.

However, the rate of convergence of this simple algorithm is still not fully understood.
Since the rate depends on how we measure “ε-closeness”, we look at two natural error
definitions. For any t, let r(t) := A(t)1m denote the vector of row-sums of A(t). Similarly, we
define c(t) := B(t)>1n to be the vector of the column-sums of B(t). Note that

∑n
i=1 r(t)

i =∑m
j=1 c(t)

j = h for all t. The error of the matrix At (the error of matrix Bt similarly defined)
is

`1-error : error1(At) := ||r(t) − r||1 `2-error : error2(At) := ||r(t) − r||2

In this note, we give simple convergence analysis for both error norms. Our result is the
following.

1 Computationally, this asymptotic viewpoint is unavoidable in the sense that there are simple examples
for which the unique matrix scaling matrices need to have irrational entries. For instance, consider
the following example from Rothblum and Schneider [29]. The matrix is

[1 1
1 2

]
with r ≡ c ≡ [1, 1]>.

The unique R and S matrices are
[

(
√

2 + 1)−1 0
0 (

√
2 + 2)−1

]
and

[√
2 0

0 1

]
, respectively, giving

RAS =
[

2−
√

2
√

2− 1√
2− 1 2−

√
2

]
.

D. Chakrabarty and S. Khanna 4:3

I Theorem 1. Given a matrix A ∈ Rn×m≥0 which is (r, c)-scalable, and any ε > 0, the
Sinkhorn-Knopp algorithm
1. in time t = O

(
h2 ln(nρ/ν)

ε2

)
returns a matrix At or Bt with `1-error ≤ ε.

2. in time t = O
(
ρh ln (nρ/ν) ·

(1
ε + 1

ε2

))
returns a matrix At or Bt with `2-error ≤ ε.

Here h =
∑n
i=1 ri =

∑m
j=1 cj, ρ = max(maxi ri,maxj cj), and ν = mini,j:Aij>0 Aij

maxi,j Aij .

For the special case of n = m and r ≡ c ≡ 1n, we get the following as a corollary.

I Corollary 2. Given a matrix A ∈ Zn×n≥0 which is (1,1)-scalable, and any ε > 0, the
Sinkhorn-Knopp algorithm
1. in time t = O

(
n2 lnn
ε2

)
returns a matrix At or Bt with `1-error ≤ ε.

2. in time t = O
(
n lnn ·

(1
ε + 1

ε2

))
returns a matrix At or Bt with `2-error ≤ ε.

I Remark. To our knowledge, the `1-error hasn’t been explicitly studied in the literature,
although for small ε ∈ (0, 1) the same can be deduced from previous papers on matrix
scaling [20, 14, 19, 16]. One of our main motivations to look at `1-error arose from the
connections to perfect matchings in bipartite graphs as observed by Linial, Samorodnitsky
and Wigderson [20]. For the `2 error, which is the better studied notion in the matrix
scaling literature, the best analysis is due to Kalantari et al [18, 19]. They give a Õ(ρh2/ε2)
upper bound on the number of iterations for the general problem, and for the special
case when m = n and the square matrix has positive permanent (see [18]), they give a
Õ(ρ(h2 − nh+ n)/ε2) upper bound. Thus, for (1,1)-scaling, they get the same result as in
Corollary 2. We get a quadratic improvement on h in the general case, and we think our
proof is more explicit and simpler.
I Remark. Both parts of Theorem 1 and Corollary 2 are interesting in certain regimes of
error. When the error ε is “small” (say, ≤ 1) so that 1/ε2 ≥ 1/ε, then statement 2 of
Corollary 2 implies statement 1 by Cauchy-Schwarz. However, this breaks down when ε

is “large” (say ε = δn for some constant δ > 0). In that case, statement 1 implies that in
O(lnn/δ2) iterations, the `1-error is ≤ δn, but Statement 2 only implies that in O(lnn/δ2)
iterations, the `2 norm is ≤ δn. This “large `1-error regime” is of particular interest for an
application to approximate matchings in bipartite graphs discussed below.

Applications to Parallel Algorithms for Bipartite Perfect Matching. As a corollary, we get
the following application, first pointed by Linial et al [20], to the existence of perfect matchings
in bipartite graphs. Let A be the adjacency matrix of a bipartite graph G = (L ∪R,E) with
Aij = 1 iff (i, j) ∈ E. If G has a perfect matching, then clearly there is a doubly stochastic
matrix X in the support of A. This suggests the algorithm of running the Sinkhorn-Knopp
algorithm to A, and the following claim suggests when to stop. Note that each iteration can
be run in O(1) parallel time with m-processors.

I Lemma 3. If we find a column (or row) stochastic matrix Y in the support of A such that
error1(Y) ≤ ε, then G has a matching of size ≥ n(1− ε).

Proof. Suppose Y is column stochastic. Given S ⊆ L, consider
∑
i∈S,j∈ΓS Yij = |S| +∑

i∈S

(∑n
j=1 Yij − 1

)
≥ |S| −

∑n
i=1

∣∣∣∑n
j=1 Yij − 1

∣∣∣ ≥ |S| − n · error(Y) ≥ |S| − nε. On
the other hand,

∑
i∈S,j∈ΓS Yij ≤

∑
j∈ΓS

∑n
i=1 Yij = |ΓS|. Therefore, for every S ⊆ L,

|ΓS| ≥ |S| − nε. The claim follows by approximate Hall’s theorem. J

I Corollary 4 (Fast Parallel Approximate Matchings). Given a bipartite graph G of max-degree
∆ and an ε ∈ (0, 1), O(ln ∆/ε2)-iterations of Sinkhorn-Knopp algorithm suffice to distinguish

SOSA 2018

4:4 Error Analysis of the Sinkhorn-Knopp Algorithm for Matrix Scaling

between the case when G has a perfect matching and the case when the largest matching in G
has size at most n(1− ε).

Thus the approximate perfect matching problem in bipartite graphs is in NC for ε as
small as polylogarithmic in n. This is not a new result and can indeed be obtained from the
works on parallel algorithms for packing-covering LPs [21, 36, 3, 23], but the Sinkhorn-Knopp
algorithm is arguably simpler.

1.1 Perspective
As mentioned above, the matrix scaling problem and in particular the Sinkhorn-Knopp
algorithm has been extensively studied over the past 50 years. We refer the reader to Idel’s
survey [15] and the references within for a broader perspective; in this subsection we mention
the most relevant works.

We have already discussed the previously best known, in their dependence on h, analysis
for the Sinkhorn-Knopp algorithm in Remark 1. For the special case of strictly positive
matrices, better rates are known. Kalantari and Khachiyan [16] showed that for positive
matrices and the (1,1)-scaling problem, the Sinkhorn-Knopp algorithm obtains `2 error ≤ ε
in O(

√
n ln(1/ν)/ε)-iterations; this result was extended to the general matrix scaling problem

by Kalantari et al [19]. In a different track, Franklin and Lorenz [13] show that in fact the
dependence on ε can be made logarithmic, and thus the algorithm has “linear convergence”,
however their analysis2 has a polynomial dependence of (1/ν). All these results use the
positivity crucially and seem to break down even with one 0 entry.

The Sinkhorn-Knopp algorithm has polynomial dependence on the error parameter and
therefore is a “pseudopolynomial” time approximation. We conclude by briefly describing
bounds obtained by other algorithms for the matrix scaling problem whose dependence on
ε is logarithmic rather than polynomial. Kalantari and Khachiyan [17] describe a method
based on the ellipsoid algorithm which runs in time O(n4 ln(n/ε) ln(1/ν)). Nemirovskii
and Rothblum [25] describe a method with running time O(n4 ln(n/ε) ln ln(1/ν)). The first
strongly polynomial time approximation scheme (with no dependence on ν) was due to Linial,
Samoridnitsky, and Wigderson [20] who gave a Õ(n7 ln(h/ε)) time algorithm. Rote and
Zachariasen [28] reduced the matrix scaling problem to flow problems to give a O(n4 ln(h/ε))
time algorithms for the matrix scaling problem. To compare, we should recall that Theorem 1
shows that our algorithm runs in time O(nnz(A)h2/ε2) time.

Very recently, two independent works obtain vastly improved running times for matrix
scaling. Cohen et al [9] give Õ(nnz(A)3/2) time algorithm, while Allen-Zhu et al [2] give
a Õ(n7/3 + nnz(A) · (n + n1/3h1/2)) time algorithm; the tildes in both the above running
times hide the logarithmic dependence on ε and ν. Both these algorithms look at the matrix
scaling problem as a convex optimization problem and perform second order methods.

2 Entropy Minimization Viewpoint of the Sinkhorn-Knopp Algorithm

There have been many approaches (see Idel [15], Section 3 for a discussion) towards analyzing
the Sinkhorn-Knopp algorithm including convex optimization and log-barrier methods [16,
19, 22, 5], non-linear Perron-Frobenius theory [24, 35, 13, 8, 16], topological methods [27, 6],
connections to the permanent [20, 18], and the entropy minimization method [7, 10, 11, 14]
which is what we use for our analysis.

2 [13] never make the base of the logarithm explicit, but their proof shows it can be as large as 1− 1/ν2.

D. Chakrabarty and S. Khanna 4:5

We briefly describe the entropy minimization viewpoint. Given two non-negative matrices
M and N let us define the Kullback-Leibler divergence3 between M and N as follows

D(M,N) := 1
h

∑
1≤i≤n

∑
1≤j≤m

Mij ln
(
Mij

Nij

)
(1)

with the convention that the summand is zero if both Mij and Nij are 0, and is∞ if Mij > 0
and Nij = 0. Let Φr be the set of n×m matrices whose row-sums are r and let Φc be the
set of n×m matrices whose column sums are c. Given matrix A suppose we wish to find
the matrix A∗ = arg minB∈Φr∩Φc D(B,A). One algorithm for this is to use the method of
alternate projections with respect to the KL-divergence [7] (also known as I-projections [10])
which alternately finds the matrices in Φr and Φc closest in the KL-divergence sense to the
current matrix at hand, and then sets the minimizer to be the current matrix. It is not too
hard to see (see Idel [15], Observation 3.17 for a proof) that the above alternate projection
algorithm is precisely the Sinkhorn-Knopp algorithm. Therefore, at least in this sense, the
right metric to measure the distance to optimality is not the `1 or the `2 error as described
in the previous section, but the rather the KL-divergence between the normalized vectors as
described below.

Let π(t)
r := r(t)/h be the n-dimensional probability vector whose ith entry is r(t)

i /h;
similarly define the m-dimensional vector π(t)

c . Let πr denote the n-dimensional probability
vector with the ith entry being ri/h; similarly define πc. Recall that the KL-divergence
between two probability distributions p, q is defined as DKL(p||q) :=

∑n
i=1 pi ln(qi/pi). The

following theorem gives the convergence time for the KL-divergence.

I Theorem 5. If the matrix A ∈ Rn×m≥0 is (r, c)-scalable, then for any δ > 0 there is a
t ≤ T = d

(
ln(1+2nρ/ν)

δ

)
e with either DKL(πr||π(t)

r) ≤ δ or DKL(πc||π(t)
c) ≤ δ..

Proof. Let Z := RAS be a matrix with row-sums r and column-sums c for diagonal matrices
R,S. Recall A0 is the matrix obtained by column-scaling A. Note that the minimum non-zero
entry of A0 is ≥ ν/n.

I Lemma 6. D(Z,A0) ≤ ln(1 + 2nρ/ν) and D(Z,At) ≥ 0 for all t.

Proof. By definition,

D(Z,A(t)) = 1
h

m∑
j=1

n∑
i=1

Zij ln
(
Zij

A
(t)
ij

)
= 1
h

m∑
j=1

cj
n∑
i=1

Zij
cj

ln
(
Zij

A
(t)
ij

)

For a fixed j, the vectors
(
Z1j
cj ,

Z2j
cj , . . . ,

Znj
cj

)
and

(
A

(t)
1j

cj ,
A

(t)
2j

cj , . . . ,
A

(t)
nj

cj

)
are probability

vectors, and therefore the above is a sum of cj-weighted KL-divergences which is always
non-negative. For the upper bound, one can use the fact (Inequality 27, [31]) that for any
two distributions p and q, D(p||q) ≤ ln(1 + ||p−q||22

qmin
) ≤ ln(1 + 2

qmin
) where qmin is the smallest

non-zero entry of q. For our purpose, we note that the minimum non-zero probability of the
A

(0)
j distribution being ≥ ν/nρ. Therefore, the second summand is at most ln(1 + 2nρ/ν)

giving us D(Z,A(0)) ≤ 1
h

∑m
j=1 cj · ln(1 + 2nρ/ν) = ln(1 + 2nρ/ν). J

3 The KL-divergence is normally stated between two distributions and doesn’t have the 1/h factor. Also
the logarithms are usually base 2.

SOSA 2018

4:6 Error Analysis of the Sinkhorn-Knopp Algorithm for Matrix Scaling

I Lemma 7.

D(Z,A(t))−D(Z,B(t)) = DKL(πr||π(t)
r) and D(Z,B(t))−D(Z,A(t+1)) = DKL(πc||π(t)

c)

Proof. The LHS of the first equality is simply

1
h

m∑
j=1

n∑
i=1

Zij ln
(
B

(t)
ij

A
(t)
ij

)
= 1

h

m∑
j=1

n∑
i=1

Zij ln
(

ri
r(t)
i

)

= 1
h

n∑
i=1

ln
(

ri
r(t)
i

)
m∑
j=1

Zij

=
n∑
i=1

(ri
h

)
· ln
(

ri/h
r(t)
i /h

)

since
∑m
j=1 Zij = ri. The last summand is precisely DKL(πr||π(t)

r). The other equation
follows analogously. J

The above two lemmas easily imply the theorem. If for all 0 ≤ t ≤ T , both DKL(πr||π(t)
r) > δ

and DKL(πc||π(t)
c) > δ, then substituting in Lemma 7 and summing we get D(Z,A(0)) −

D(Z,A(T+1)) > Tδ > ln(1 + 2nρ/ν) contradicting Lemma 6. J

Theorem 1 follows from Theorem 5 using connections between the KL-divergence and
the `1 and `2 norms. One is the following famous Pinsker’s inequality which allows us to
easily prove part 1 of Theorem 1. Given any two probability distributions p, q,

DKL(p||q) ≥ 1
2 · ||p− q||

2
1 (Pinsker)

Proof of Theorem 1, Part 1. Apply (Pinsker) on the vectors πr and π(t)
r to get

DKL(πr||π(t)
r) ≥ 1

2h2 ||r
(t) − r||21

Set δ := ε2

2h2 and apply Theorem 5. In O
(
h2 ln(nρ/ν)

ε2

)
time we would get a matrix with

δ > DKL(πr||π(t)
r) which from the above inequality would imply ||r(t) − r||1 ≤ ε. J

To prove Part 2, we need a way to relate the `2 norm and the KL-divergence. In order
to do so, we prove a different lower bound which implies Pinsker’s inequality (with a worse
constant), but is significantly stronger in certain regimes. To the best of our knowledge this
is a new bound which may be of independent interest in other domains. Below we state the
version which we need for the proof of Theorem 1, part 2. This is an instantiation of the
general inequality Lemma 9 whcih we prove in Section 3.

I Lemma 8. Given any pair of probability distributions p, q over a finite domain, define
A := {i : qi > 2pi} and B := {i : qi ≤ 2pi}. Then,

DKL(p||q) ≥ (1− ln 2) ·
(∑
i∈A
|qi − pi|+

∑
i∈B

(qi − pi)2

pi

)
(KL vs `1/`2)

Proof of Theorem 1, Part 2. We apply Lemma 8 on the vectors πr and π
(t)
r . Lemma 8

gives us

D. Chakrabarty and S. Khanna 4:7

DKL(πr||π(t)
r) ≥ C ·

(
1
h

∑
i∈A
|r(t)
i − ri| + 1

h

∑
i∈B

(r(t)
i − ri)2

ri

)

≥ C

h

(∑
i∈A
|r(t)
i − ri| + 1

ρ

∑
i∈B

(r(t)
i − ri)2

)

where C = 1−ln 2. If the second summand in the parenthesis of the RHS is≥ 1
2 ||r

(t)−r||22, then
we get DKL(πr||π(t)

r) ≥ C
2ρh ||r

(t) − r||22. Otherwise, we have DKL(πr||π(t)
r) ≥ C√

2h ||r
(t) − r||2,

where we used the weak fact that the sum of some positive numbers is at least the square-root
of the sum of their squares. In any case, we get the following

DKL(πr||π(t)
r) ≥ min

(
C

2ρh ||r
(t) − r||22,

C√
2h
||r(t) − r||2

)
(2)

To complete the proof of part 2 of Theorem 1, set δ := C

2ρh(1
ε+ 1

ε2) and apply Theorem 5.

In O
(
ρh ln (nρ/ν) ·

(1
ε + 1

ε2

))
time we would get a matrix with δ ≥ DKL(πr||π(t)

r). If the
minimum of the RHS of (2) is the first term, then we get ||r(t) − r||22 ≤ ε2 implying the
`2-error is ≤ ε. If the minimum is the second term, then we get ||r(t) − r||2 ≤ ε√

2ρ < ε since
ρ ≥ 1. J

3 New Lower Bound on the KL-Divergence

We now establish a new lower bound on KL-divergence which yields (KL vs `1/`2) as a
corollary.

I Lemma 9. Let p and q be two distributions over a finite n-element universe. For any fixed
θ > 0, define the sets Aθ := {i ∈ [n] : qi ≥ (1 + θ)pi} and Bθ = [n] \ Aθ = {i ∈ [n] : qi ≤
(1 + θ)pi}. Then we have the following inequality

DKL(p||q) ≥
(

1− ln(1 + θ)
θ

)
·

(∑
i∈Aθ

|qi − pi|+
1
θ

∑
i∈Bθ

pi

(
qi − pi
pi

)2
)

(3)

When θ = 1, we get (KL vs `1/`2).

A Comparison of (Pinsker) and (KL vs `1/`2): To see why (KL vs `1/`2) generalizes
(Pinsker) with a weaker constant, note that

||p− q||21 =
(∑
i∈A
|qi − pi|+

∑
i∈B
|qi − pi|

)2

≤ 2
(∑
i∈A
|qi − pi|

)2

+ 2
(∑
i∈B

pi
|qi − pi|
pi

)2

The first parenthetical term above, since it is ≤ 1, is at most the first summation in the
parenthesis of (KL vs `1/`2). The second parenthetical term above, by Cauchy-Schwarz, is at
most the second summation in the parenthesis of (KL vs `1/`2). Thus (KL vs `1/`2) implies
DKL(p||q) ≥ (1−ln 2)

2 ||p− q||21. On the other hand, the RHS of (KL vs `1/`2) can be much
larger than that of (Pinsker). For instance, suppose pi = 1/n for all i, q1 = 1/n+ 1/

√
n, and

for i 6= 1, qi = 1/n− 1
(n−1)

√
n
. The RHS of (Pinsker) is Θ(1/n) while that of (KL vs `1/`2)

is Θ(1/
√
n) which is the correct order of magnitude for DKL(p||q).

SOSA 2018

4:8 Error Analysis of the Sinkhorn-Knopp Algorithm for Matrix Scaling

Proof of Lemma 9: We need the following fact which follows from calculus; we provide a
proof later for completeness.

I Lemma 10. Given any θ > 0, define aθ := ln(1+θ)
θ and bθ := 1

θ

(
1− ln(1+θ)

θ

)
. Then,

For t ≥ θ, (1 + t) ≤ eaθt
For t ≤ θ, (1 + t) ≤ et−bθt2

Define ηi := qi−pi
pi

. Note that Aθ = {i : ηi > θ} and Bθ is the rest. We can write the
KL-divergence as follows

DKL(p||q) :=
n∑
i=1

pi ln(pi/qi) = −
n∑
i=1

pi ln(1 + ηi)

For i ∈ Aθ, since ηi > θ, we upper bound (1 + ηi) ≤ eaθηi using Fact 10. For i ∈ Bθ, that is
ηi ≤ θ, we upper bound (1 + ηi) ≤ eηi−bθη

2
i using Fact 10. Lastly, we note

∑
i piηi = 0 since

p, q both sum to 1, implying
∑
i∈Bθ piηi = −

∑
i∈Aθ piηi. Putting all this in the definition

above we get

DKL(p||q) ≥ −aθ ·
∑
i∈Aθ

piηi −
∑
i∈Bθ

piηi + bθ
∑
i∈Bθ

piη
2
i = (1− aθ)

∑
i∈Aθ

piηi + bθ
∑
i∈Bθ

piη
2
i

The proof of inequality (3) follows by noting that bθ = 1−aθ
θ . J

Proof of Lemma 10. The proof of both facts follow by proving non-negativity of the relevant
function in the relevant interval. Recall aθ = ln(1 + θ)/θ and bθ = 1

θ (1− aθ). We start with
the following three inequalities about the log-function.

For all z > 0, z + z2/2 > (1 + z) ln(1 + z) > z and ln(1 + z) > z − z2/2 (4)

The third inequality in (4) implies aθ > 1− θ/2 and thus, bθ < 1/2. The first inequality in
(4) implies aθ <

1+ θ
2

1+θ which in turn implies bθ > 1/2(1 + θ). For brevity, henceforth let us
lose the subscript on aθ and bθ.

Consider the function f(t) = eat − (1 + t). Note that f ′(t) = aeat − 1 which is increasing
in t since a > 0. So, for any t ≥ θ, we have f ′(t) ≥ aeaθ − 1 = (1+θ) ln(1+θ)

θ − 1 ≥ 0, by the
second inequality in (4). Therefore, f is increasing when t ≥ θ. The first part of Fact 10
follows since f(θ) = 0 by definition of a.

Consider the function g(t) = et(1−bt) − (1 + t). Note that g(0) = g(θ) = 0. We break the
argument in two parts: we argue that g(t) is strictly positive for all t ≤ 0, and that g(t) is
strictly positive for t ∈ (0, θ). This will prove the second part of Fact 10.

The first derivative is g′(t) = (1− 2bt)et(1−bt) − 1 and the second derivative is g′′(t) =
et(1−bt)

(
(1− 2bt)2 − 2b

)
. Since b < 1/2, we have 2b < 1, and thus for t ≤ 0, g′′(t) > 0.

Therefore, g′ is strictly increasing for t ≤ 0. However, g′(0) = 0, and so g′(t) < 0 for all t < 0.
This implies g is strictly decreasing in the interval t < 0. Noting g(0) = 0, we get g(t) > 0
for all t < 0. This completes the first part of the argument.

For the second part, we first note that g′(θ) < 0 since b > 1
2(1+θ) . That is, g is strictly

decreasing at θ. On the other hand g is increasing at θ. To see this, looking at g′ is not
enough since g′(0) = 0. However, g′′(0) > 0 since b < 1/2. This means that 0 is a strict
(local) minimum for g implying g is increasing at 0. In sum, g vanishes at 0 and θ, and is
increasing at 0 and decreasing at θ. This means that if g does vanish at some r ∈ (0, θ),
then it must vanish once again in [r, θ) for the it to be decreasing at θ. In particular, g′
must vanish three times in (0, θ) and thus four times in [0, θ) since g′(0) = 0. This in turn

D. Chakrabarty and S. Khanna 4:9

implies g′′ vanishes three times in [0, θ) which is a contradiction since g′′ is a quadratic in t
multiplied by a positive term.

We end by proving (4). This also follows the same general methodology. Define p(z) :=
(1 + z) ln(1 + z)− z and q(z) := p(z)− z2/2. Differentiating, we get p′(z) = ln(1 + z) > 0
for all z > 0, and q′(z) = ln(1 + z) − z < 0 for all z > 0. Thus, p is increasing, and q is
decreasing, in (0,∞). The first two inequalities of (4) follow since p(0) = q(0) = 0. To see
the third inequality, define r(z) = ln(1 + z)− z+ z2/2 and observe r′(z) = 1

1+z − 1 + z = z2

1+z
which is > 0 if z > 0. Thus r is strictly increasing, and the third inequality of (4) follows
since r(0) = 0. J

References
1 Scott Aaronson. Quantum computing and hidden variables. Phys. Rev. A, 71:032325, Mar

2005. doi:10.1103/PhysRevA.71.032325.
2 Zeyuan Allen Zhu, Yuanzhi Li, Rafael Oliveira, and Avi Wigderson. Much faster algorithms

for matrix scaling. 58th IEEE Annual Symposium on Foundations of Computer Science,
FOCS, 2017. URL: http://arxiv.org/abs/1704.02315.

3 Zeyuan Allen Zhu and Lorenzo Orecchia. Using optimization to break the epsilon barrier:
A faster and simpler width-independent algorithm for solving positive linear programs in
parallel. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, San Diego, CA, USA, pages 1439–1456, 2015.

4 Michael Bacharach. Estimating nonnegative matrices from marginal data. International
Economic Review, 6(3):294–310, 1965. URL: http://www.jstor.org/stable/2525582.

5 H. Balakrishnan, Inseok Hwang, and C. J. Tomlin. Polynomial approximation algorithms
for belief matrix maintenance in identity management. In 2004 43rd IEEE Conference
on Decision and Control (CDC) (IEEE Cat. No.04CH37601), volume 5, pages 4874–4879
Vol.5, Dec 2004. doi:10.1109/CDC.2004.1429569.

6 R.B. Bapat and T.E.S. Raghavan. An extension of a theorem of Darroch and Ratcliff in
loglinear models and its application to scaling multidimensional matrices. Linear Algebra
and its Applications, 114:705–715, 1989. Special Issue Dedicated to Alan J. Hoffman. doi:
10.1016/0024-3795(89)90489-8.

7 L.M. Bregman. The relaxation method of finding the common point of convex sets and
its application to the solution of problems in convex programming. USSR Computational
Mathematics and Mathematical Physics, 7(3):200–217, 1967. doi:10.1016/0041-5553(67)
90040-7.

8 Richard A Brualdi, Seymour V Parter, and Hans Schneider. The diagonal equivalence
of a nonnegative matrix to a stochastic matrix. Journal of Mathematical Analysis and
Applications, 16(1):31–50, 1966. doi:10.1016/0022-247X(66)90184-3.

9 Michael B. Cohen, Aleksander Madry, Dimitris Tsipras, and Adrian Vladu. Matrix scaling
and balancing via box constrained newton’s method and interior point methods. 58th
IEEE Annual Symposium on Foundations of Computer Science, FOCS, 2017. URL: http:
//arxiv.org/abs/1704.02310.

10 Imre Csiszar. I-divergence geometry of probability distributions and minimization problems.
Ann. Probab., 3(1):146–158, 02 1975. doi:10.1214/aop/1176996454.

11 Imre Csiszar. A geometric interpretation of darroch and ratcliff’s generalized iterative
scaling. Ann. Statist., 17(3):1409–1413, 09 1989. doi:10.1214/aos/1176347279.

12 W. Edwards Deming and Frederick F. Stephan. On a least squares adjustment of a
sampled frequency table when the expected marginal totals are known. Ann. Math. Statist.,
11(4):427–444, 12 1940. doi:10.1214/aoms/1177731829.

SOSA 2018

http://dx.doi.org/10.1103/PhysRevA.71.032325
http://arxiv.org/abs/1704.02315
http://www.jstor.org/stable/2525582
http://dx.doi.org/10.1109/CDC.2004.1429569
http://dx.doi.org/10.1016/0024-3795(89)90489-8
http://dx.doi.org/10.1016/0024-3795(89)90489-8
http://dx.doi.org/10.1016/0041-5553(67)90040-7
http://dx.doi.org/10.1016/0041-5553(67)90040-7
http://dx.doi.org/10.1016/0022-247X(66)90184-3
http://arxiv.org/abs/1704.02310
http://arxiv.org/abs/1704.02310
http://dx.doi.org/10.1214/aop/1176996454
http://dx.doi.org/10.1214/aos/1176347279
http://dx.doi.org/10.1214/aoms/1177731829

4:10 Error Analysis of the Sinkhorn-Knopp Algorithm for Matrix Scaling

13 Joel Franklin and Jens Lorenz. On the scaling of multidimensional matrices. Linear Algebra
and its Applications, 114:717–735, 1989. Special Issue Dedicated to Alan J. Hoffman. doi:
10.1016/0024-3795(89)90490-4.

14 Leonid Gurvits and Peter N. Yianilos. The deflation-inflation method for certain semidefin-
ite programming and maximum determinant completion problems. Technical report, NEC
Research Institute, 4 Independence Way, Princeton, NJ 08540, 1998.

15 Martin Idel. A review of matrix scaling and Sinkhorn’s normal form for matrices and
positive maps. ArXiv e-prints, 2016. arXiv:1609.06349.

16 Bahman Kalantari and Leonid Khachiyan. On the rate of convergence of deterministic
and randomized RAS matrix scaling algorithms. Oper. Res. Lett., 14(5):237–244, 1993.
doi:10.1016/0167-6377(93)90087-W.

17 Bahman Kalantari and Leonid Khachiyan. On the complexity of nonnegative-matrix scal-
ing. Linear Algebra and its Applications, 240:87–103, 1996. doi:10.1016/0024-3795(94)
00188-X.

18 Bahman Kalantari, Isabella Lari, Federica Ricca, and Bruno Simeone. On the complexity of
general matrix scaling and entropy minimization via the RAS algorithm. Technical Report,
n.24, Department of Statistics and Applied probability, La Sapienza University, Rome, 2002.

19 Bahman Kalantari, Isabella Lari, Federica Ricca, and Bruno Simeone. On the complexity of
general matrix scaling and entropy minimization via the RAS algorithm. Math. Program.,
112(2):371–401, 2008. doi:10.1007/s10107-006-0021-4.

20 Nathan Linial, Alex Samorodnitsky, and Avi Wigderson. A deterministic strongly polyno-
mial algorithm for matrix scaling and approximate permanents. Combinatorica, 20(4):545–
568, 2000. doi:10.1007/s004930070007.

21 Michael Luby and Noam Nisan. A parallel approximation algorithm for positive linear pro-
gramming. In S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors, Proceedings
of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May 16-18, 1993,
San Diego, CA, USA, pages 448–457. ACM, 1993. doi:10.1145/167088.167211.

22 Sally M Macgill. Theoretical properties of biproportional matrix adjustments. Environment
and Planning A, 9(6):687–701, 1977. doi:10.1068/a090687.

23 Michael W. Mahoney, Satish Rao, Di Wang, and Peng Zhang. Approximating the Solu-
tion to Mixed Packing and Covering LPs in Parallel O(ε−3) Time. In 43rd International
Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016,
Rome, Italy, pages 52:1–52:14, 2016.

24 MV Menon. Reduction of a matrix with positive elements to a doubly stochastic matrix.
Proceedings of the American Mathematical Society, 18(2):244–247, 1967.

25 Arkadi Nemirovskii and Uriel Rothblum. On complexity of matrix scaling. Linear Algebra
and its Applications., 302:435–460, 1999.

26 Juan de Dios Ortúzar and Luis G. Willumsen. Modelling Transport. John Wiley & Sons,
Ltd, 2011. doi:10.1002/9781119993308.fmatter.

27 T.E.S. Raghavan. On pairs of multidimensional matrices. Linear Algebra and its Applica-
tions, 62:263–268, 1984. doi:10.1016/0024-3795(84)90101-0.

28 Günter Rote and Martin Zachariasen. Matrix scaling by network flow. In Proceedings of
the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, pages
848–854, Philadelphia, PA, USA, 2007. Society for Industrial and Applied Mathematics.
URL: http://dl.acm.org/citation.cfm?id=1283383.1283474.

29 Uriel Rothblum and Hans Schneider. Scalings of matrices which have prespecified row sums
and column sums via optimization. Linear Algebra and its Applications, 114:737–764, 1989.
Special Issue Dedicated to Alan J. Hoffman.

30 Ludger Ruschendorf. Convergence of the iterative proportional fitting procedure. Ann.
Statist., 23(4):1160–1174, 1995. doi:10.1214/aos/1176324703.

http://dx.doi.org/10.1016/0024-3795(89)90490-4
http://dx.doi.org/10.1016/0024-3795(89)90490-4
http://arxiv.org/abs/1609.06349
http://dx.doi.org/10.1016/0167-6377(93)90087-W
http://dx.doi.org/10.1016/0024-3795(94)00188-X
http://dx.doi.org/10.1016/0024-3795(94)00188-X
http://dx.doi.org/10.1007/s10107-006-0021-4
http://dx.doi.org/10.1007/s004930070007
http://dx.doi.org/10.1145/167088.167211
http://dx.doi.org/10.1068/a090687
http://dx.doi.org/10.1002/9781119993308.fmatter
http://dx.doi.org/10.1016/0024-3795(84)90101-0
http://dl.acm.org/citation.cfm?id=1283383.1283474
http://dx.doi.org/10.1214/aos/1176324703

D. Chakrabarty and S. Khanna 4:11

31 Igal Sason and Sergio Verdú. Upper bounds on the relative entropy and rényi divergence
as a function of total variation distance for finite alphabets. In 2015 IEEE Information
Theory Workshop - Fall (ITW), Jeju Island, South Korea, October 11-15, 2015, pages 214–
218. IEEE, 2015. doi:10.1109/ITWF.2015.7360766.

32 Erwin Schrödinger. Über die umkehrung der naturgesetze. Preuss. Akad. Wiss., Phys.-
Math. Kl., 1931.

33 Richard Sinkhorn. Diagonal equivalence to matrices with prescribed row and column sums.
The American Mathematical Monthly, 74(4):402–405, 1967. URL: http://www.jstor.org/
stable/2314570.

34 Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly stochastic
matrices. Pacific J. Math., 21(2):343–348, 1967. URL: https://projecteuclid.org:
443/euclid.pjm/1102992505.

35 George W. Soules. The rate of convergence of sinkhorn balancing. Linear Algebra and its
Applications, 150:3–40, 1991. doi:10.1016/0024-3795(91)90157-R.

36 Neal E. Young. Sequential and parallel algorithms for mixed packing and covering. In 42nd
Annual Symposium on Foundations of Computer Science, FOCS, Las Vegas, Nevada, USA,
pages 538–546, 2001.

SOSA 2018

http://dx.doi.org/10.1109/ITWF.2015.7360766
http://www.jstor.org/stable/2314570
http://www.jstor.org/stable/2314570
https://projecteuclid.org:443/euclid.pjm/1102992505
https://projecteuclid.org:443/euclid.pjm/1102992505
http://dx.doi.org/10.1016/0024-3795(91)90157-R

Approximation Schemes for 0-1 Knapsack
Timothy M. Chan

Dept. of Computer Science, University of Illinois at Urbana-Champaign, USA
tmc@illinois.edu

Abstract
We revisit the standard 0-1 knapsack problem. The latest polynomial-time approximation scheme
by Rhee (2015) with approximation factor 1 + ε has running time near Õ(n+ (1/ε)5/2) (ignoring
polylogarithmic factors), and is randomized. We present a simpler algorithm which achieves the
same result and is deterministic.

With more effort, our ideas can actually lead to an improved time bound near Õ(n+(1/ε)12/5),
and still further improvements for small n.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases knapsack problem, approximation algorithms, optimization, (min,+)-
convolution

Digital Object Identifier 10.4230/OASIcs.SOSA.2018.5

1 Introduction

In the 0-1 knapsack problem, we are given a set of n items where the i-th item has weight
wi ≤W and profit pi > 0, and we want to select a subset of items with total weight bounded
by W while maximizing the total profit. In other words, we want to maximize

∑n
i=1 piξi

subject to the constraint that
∑n
i=1 wiξi ≤W over all ξ1, . . . , ξn ∈ {0, 1}.

This classic textbook problem is among the most fundamental in combinatorial optimiza-
tion and approximation algorithms, and is important for being one of the first NP-hard
problems shown to possess fully polynomial-time approximation schemes (FPTASs), i.e.,
algorithms with approximation factor 1 + ε for any given parameter ε ∈ (0, 1), taking time
polynomial in n and 1

ε .
Despite all the attention the problem has received, the “fine-grained complexity” of

FPTASs remains open: we still do not know the best running time as a function of n and 1
ε .

An O(1
εn

3)-time algorithm via dynamic programming is perhaps the most often taught in
undergraduate algorithm courses. The first published FPTAS by Ibarra and Kim [6] from
1975 required Õ(n + (1

ε)4) time, where the Õ notation hides polylogarithmic factors in n
and 1

ε . Lawler [12] subsequently obtained a small improvement, but only in the hidden
polylogarithmic factors. For a long time, the record time bound was Õ(n+ (1

ε)3) by Kellerer
and Pferschy [10]. Recently, in a (not-too-well-known) Master’s thesis, Rhee [14] described a
new randomized algorithm running in Õ(n+ (1

ε)2.5) time. (Note that improved time bounds
of this form tell us how much accuracy we can guarantee while keeping near-linear running
time; for example, Rhee’s result implies that a (1 + n−2/5)-approximate solution can be
found in Õ(n) time.)

In this paper, we give a new presentation of an algorithm that has the same running
time as Rhee’s, with the added advantages of being deterministic and simpler: One part
of Rhee’s algorithm relied on solving several linear programs with two constraints, using a
Lagrangian relaxation and some sophisticated form of randomized binary search (although
I suspect known low-dimensional linear programming techniques might help). In contrast,

© Timothy M. Chan;
licensed under Creative Commons License CC-BY

1st Symposium on Simplicity in Algorithms (SOSA 2018).
Editor: Raimund Seidel; Article No. 5; pp. 5:1–5:12

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SOSA.2018.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

5:2 Approximation Schemes for 0-1 Knapsack

Table 1 FPTASs for the 0-1 knapsack problem.

running time reference year
nO(1/ε) Sahni [15] 1975
O(n log n + (1

ε
)4 log 1

ε
) Ibarra and Kim [6] 1975

O(n log 1
ε

+ (1
ε
)4) Lawler [12] 1979

O(n log 1
ε

+ (1
ε
)3 log2 1

ε
) Kellerer and Pferschy [10] 2004

O(n log 1
ε

+ (1
ε
)5/2 log3 1

ε
) (randomized) Rhee [14] 2015

O(n log 1
ε

+ (1
ε
)5/2/2Ω(

√
log(1/ε))) (deterministic) Section 4

O(n log 1
ε

+ (1
ε
)12/5/2Ω(

√
log(1/ε))) (deterministic) Appendix A

O(1
ε
n2) Lawler [12] 1979

O((1
ε
)2n log 1

ε
) Kellerer and Pferschy [9] 1999

Õ(1
ε
n3/2) (randomized) Appendix B

O(((1
ε
)4/3n + (1

ε
)2)/2Ω(

√
log(1/ε))) (deterministic) Appendix B

our approach bypasses this part completely. Ironically, the “new” approach is just a simple
combination of two previous approaches. Along the way, we also notice that the hidden
polylogarithmic factors in the second term can be eliminated; in fact, we can get speedup
of a superpolylogarithmic factor (2Ω(

√
log(1/ε))) by using the latest results on (min,+)-

convolution [2, 16], if we give up on simplicity.
In research, simplifying previous solutions can often serve as a starting point to obtaining

new improved solutions. Indeed, by combining our approach with a few extra ideas, we
can actually obtain a faster FPTAS for 0-1 knapsack running in Õ(n+ (1

ε)2.4) time. These
extra ideas are interesting (relying on an elementary number-theoretic lemma), but since
the incremental improvement is small and the algorithm is more complicated, we feel it is of
secondary importance compared to the simpler Õ(n+ (1

ε)2.5) algorithm (in the true spirit
of SOSA), and thus defer that result to the appendix. The appendix also describes some
further improved bounds for small n (see the bottom half of Table 1).

In passing, we should mention two easier special cases. First, for the subset sum problem,
corresponding to the case when pi = wi, Kellerer et al. [8] obtained algorithms with Õ(1

εn)
and Õ(n+ (1

ε)2) running time. For the unbounded knapsack problem, where the variables
ξi are unbounded nonnegative integers, Jansen and Kraft [7] obtained an Õ(n+ (1

ε)2)-time
algorithm; the unbounded problem can be reduced to the 0-1 case, ignoring logarithmic
factors [5]. These methods do not adapt to the general 0-1 knapsack problem.

2 Preliminaries

First we may discard all items with pi ≤ ε
n maxj pj ; this changes the optimal value by at

most εmaxj pj , and thus at most a factor of 1 + ε. So we may assume that maxj pj

minj pj
≤ n

ε . By
rounding, we may assume that all pi’s are powers of 1 + ε. In particular, there are at most
m = O(1

ε log n
ε) distinct pi values.

We adopt a “functional” approach in presenting our algorithms, which does not need
explicit reference to dynamic programming, and makes analysis of approximation factors
more elegant:

T.M. Chan 5:3

Given input I = {(w1, p1), . . . , (wn, pn)}, we consider the more general problem of
approximating the function

fI(x) := max
{

n∑
i=1

piξi :
n∑
i=1

wiξi ≤ x, ξ1, . . . , ξn ∈ {0, 1}
}

for all x ∈ R. Note that fI is a monotone step function (in this paper, “monotone” always
means “nondecreasing”). It is more convenient to define approximation from below: we say
that a function f̃ approximates a function f with factor 1 + ε if 1 ≤ f(x)

f̃(x)
≤ 1 + ε for all

x ∈ R. We say that f̃ approximates f with additive error δ if 0 ≤ f(x)− f̃(x) ≤ δ.
We can merge fI functions by the following easy observation: if I is the disjoint union

of I1 and I2, then fI = fI1 ⊕ fI2 , where the operator ⊕ denotes the (max,+)-convolution,
defined by the formula

(f ⊕ g)(x) = max
x′∈R

(f(x′) + g(x− x′)).

In the “base case” when the pi’s are all equal to a common value p, the function fI is easy
to compute, by the obvious greedy algorithm: the function values are −∞, 0, p, 2p, . . . , np
and the x-breakpoints are 0, w1, w1 + w2, . . . , w1 + · · · + wn, after arranging the items in
nondecreasing order of wi. We say that a step function is p-uniform if the function values
are of the form −∞, 0, p, 2p, . . . , `p for some `. Furthermore, we say that a p-uniform
function is pseudo-concave if the sequence of differences of consecutive x-breakpoints is
nondecreasing. When the pi’s are all equal, fI is indeed uniform and pseudo-concave. Thus,
the original problem reduces to computing a monotone step function that is a (1 +O(ε))-
factor approximation of the ⊕ of m = O(1

ε log n
ε) uniform, pseudo-concave, monotone step

functions.
The following facts provides the building blocks for all our algorithms.

I Fact 1. Let f and g be monotone step functions with total complexity O(`) (i.e., with O(`)
steps). We can compute f ⊕ g in
(i) `2/2Ω(

√
log `) time if f and g are p-uniform;

(ii) O(`) time if f is p-uniform, and g is p-uniform and pseudo-concave;
(iii) O((` + `′ · p

′

p) log p′

p) time if f is p-uniform, and g is p′-uniform and pseudo-concave
with complexity `′, and p′ is a multiple of p.

Proof. Without loss of generality, assume that the ranges of f and g are {−∞, 0, 1, 2, . . . , `}.
(i) Define f−1(y) to be the smallest x with f(x) = y (if no such x exists, define f−1(y) to

be supremum of all x with f(x) < y). Define g−1(y) similarly. Both f−1 and g−1 can be
generated in O(`) time. We can compute the (min,+)-convolution

(f ⊕ g)−1(y) = min
y′∈{0,1,...,`}

(f−1(y′) + g−1(y − y′))

for all y ∈ {0, 1, . . . , 2`} in O(`2) time naively. From (f ⊕ g)−1, we can obtain f ⊕ g in
O(`) time.
A slight speedup to `2/2Ω(

√
log `) time is known for the (min,+)-convolution problem, by

using Bremner et al.’s reduction to (min,+)-matrix multiplication [2] and Williams’ algo-
rithm for the latter problem [16] (which was originally randomized but was derandomized
later [4]). This improvement is not simple, however.

SOSA 2018

5:4 Approximation Schemes for 0-1 Knapsack

(ii) For this part, Kellerer and Pferschy [10] have already described an O(` log `)-time
algorithm (the extra logarithmic factor does not matter to us in the end), but actually
we can directly reduce to a standard matrix searching problem [1]: computing the row
minima in an O(`)×O(`) matrix A satisfying the Monge property. To compute the above
(min,+)-convolution, we can set A[y, y′] = f−1(y) + g−1(y′ − y), and observe that the
Monge property A[y, y′] + A[y + 1, y′ + 1] ≤ A[y, y′ + 1] + A[y + 1, y′] is equivalent to
g−1(y′− y)− g−1(y′− y− 1) ≤ g−1(y′− y+ 1)− g−1(y′− y), which corresponds precisely
to the definition of pseudo-concavity of g. The well-known SMAWK algorithm [1] solves
the matrix searching problem in O(`) time.

(ii′) This part can be directly reduced to (ii) as follows. Say that a function h is shifted-p-
uniform if h+ a is p-uniform for some value a. The upper envelope of h1, . . . , hm refers
to the function h(x) = max{h1(x), . . . , hm(x)}.
We can express the given p-uniform function f as an upper envelope of p′

p shifted-p′-
uniform functions fi, each with complexity O(` pp′). For each i, we can compute fi ⊕ g
by (ii) (after shifting fi) in O(` pp′ + `′) time. The total time is O(p

′

p · (`
p
p′ + `′)). We

can then return the upper envelope of all these functions fi ⊕ g. Note that the upper
envelope of p

′

p step functions can be constructed in time linear in their total complexity
times log p

p′ , by sweeping the breakpoints from left to right, using a priority queue to
keep track of the current maximum. J

3 Two Known Methods with Exponent 3

We begin with two simple approximation approaches, one of which uses Fact 1(i) and the
other uses Fact 1(ii′).

I Lemma 1. Let f and g be monotone step functions with total complexity ` and ranges con-
tained in {−∞, 0}∪ [A,B]. Then we can compute a monotone step function that approximates
f ⊕ g with factor 1 +O(ε) and complexity Õ(1

ε) in
(i) O(`) + Õ((1

ε)2/2Ω(
√

log(1/ε))) time in general;
(ii) O(`) + Õ(1

ε) time if g is p-uniform and pseudo-concave.1

Proof. For a given b ∈ [A,B], we first describe how to compute an approximation2 of
min{f ⊕ g, b} with additive error O(εb) and complexity O(1

ε):
(i) In the general case, we just round the function values of min{f, b} and min{g, b} down

to multiples of εb (in O(`) time). The new functions min{f, b} and min{g, b} are (εb)-
uniform with complexity O(1

ε). We can then compute min{f ⊕ g, b} by Fact 1(i) in
O((1

ε)2/2Ω(
√

log(1/ε))) time.
(ii) In the case when g is p-uniform and pseudo-concave, we consider two subcases:

Case 1: p ≥ εb. We may assume that p is a multiple of εb, by adjusting ε by an
O(1) factor. We round the function values of min{f, b} down to multiples of εb. The
new function f is (εb)-uniform. We can then compute min{f ⊕ g, b} by Fact 1(ii′) in
Õ(1

ε + b
p ·

p
εb) = Õ(1

ε) time.

1 Throughout, we use the Õ notation to hide polylogarithmic factors not just in n and 1
ε , but also other

parameters such as B
A and 1

δ0
. Eventually, these parameters will be set to values which are polynomial

in n and 1
ε .

2 min{f, b} denotes the function F with F (x) = min{f(x), b}.

T.M. Chan 5:5

Case 2: εb > p. We may assume that εb is a multiple of p, by adjusting ε by an
O(1) factor. We can round the function values of min{g, b} down to multiples of εb
while preserving pseudo-concavity (since each difference of consecutive x-breakpoints
in the new function is the sum of εbp differences in the old function); the rounding
causes additive error O(εb). We have now effectively made p equal to εb, and so Case
1 applies.

To finish the proof of (i) or (ii), we apply the above procedure to every b ∈ [A,B] that is
a power of 2, and return the upper envelope of the resulting O(log B

A) functions. This gives
a (1 +O(ε))-factor approximation of f ⊕ g (since in the case when the function value lies
between b/2 and b, the O(εb) additive error for min{f ⊕ g, b} implies approximation factor
1 +O(ε)). The running time increases by a factor of O(log B

A). J

I Lemma 2. Let f1, . . . , fm be monotone step functions with total complexity O(n) and
ranges contained in {−∞, 0} ∪ [A,B]. Then we can compute a monotone step function that
approximates f1 ⊕ · · · ⊕ fm with complexity Õ(1

ε) in
(i) O(n) + Õ((1

ε)2m/2Ω(
√

log(1/ε))) time in general;
(ii) O(n) + Õ(1

εm
2) time if every fi is pi-uniform and pseudo-concave for some pi.

Proof.
(i) We use a simple divide-and-conquer algorithm: recursively approximate f1 ⊕ · · · ⊕ fm/2

and fm/2+1 ⊕ · · · ⊕ fm, and return a (1 + O(ε))-factor approximation of the ⊕ of the
two resulting functions, by using Lemma 1(i). Since the recursion tree has O(m) nodes
each with cost Õ((1

ε)2/2Ω(
√

log(1/ε))) (except for the leaf nodes, which have a total
additional cost O(n)), the total time is O(n) + Õ(m(1

ε)2/2Ω(
√

log(1/ε))). However, since
the depth of the recursion is logm, the approximation factor increases to (1+O(ε))logm =
1 +O(ε logm). We can adjust ε by a factor of logm, which increases the running time
only by polylogarithmic factors.

(ii) We use a simple incremental algorithm: initialize f = f1; for each i = 2, . . . ,m, compute
a (1 +O(ε))-factor approximation of f ⊕ fi, by using Lemma 1(ii), and reset f to this
new function. The total time is O(n) + Õ(m · 1

ε). However, the approximation factor
increases to (1 +O(ε))m = 1 +O(εm). We can adjust ε by a factor of m, which increases
the running time to O(n) + Õ(m · 1

ε/m). J

Both the divide-and-conquer and incremental methods in Lemmas 2(i) and (ii) are known,
or are reinterpretations of known methods [9, 10, 14]. The divide-and-conquer method is
similar to the “merge-and-reduce” technique often used in streaming (and in fact immediately
implies a space-efficient streaming algorithm for the 0-1 knapsack problem). As m = Õ(1

ε),
both method happen to yield an 0-1 knapsack algorithm with roughly the same time bound,
near Õ(n+ (1

ε)3).

4 A Simpler Algorithm with Exponent 5/2

To improve the running time, we use a very simple idea: just combine the two methods!

I Theorem 3. Let f1, . . . , fm be monotone step functions with total complexity O(n) and
ranges contained in {−∞, 0} ∪ [A,B]. If every fi is pi-uniform and pseudo-concave for some
pi, then we can compute a monotone step function that approximates f1 ⊕ · · · ⊕ fm with
factor 1 +O(ε) and complexity Õ(1

ε) in O(n) + Õ((1
ε)3/2m/2Ω(

√
log(1/ε))) time.

SOSA 2018

5:6 Approximation Schemes for 0-1 Knapsack

Proof. Divide the set of given functions into r subsets of mr functions, for a parameter r to
be specified later. For each subset, approximate the ⊕ of its m

r pseudo-concave functions
by Lemma 2(ii). Finally, return an approximation of the ⊕ of the r resulting functions, by
using Lemma 2(i). The total time is

O(n) + Õ

(
r

1
ε

(m
r

)2
+ (r − 1)

(
1
ε

)2
/ 2Ω(

√
log(1/ε))

)
.

Setting r =
⌈√

εm2c
√

log(1/ε)
⌉
for a sufficiently small constant c yields the theorem. J

I Corollary 4. There is a (1 + ε)-approximation algorithm for 0-1 knapsack with running
time O(n log 1

ε + (1
ε)5/2/2Ω(

√
log(1/ε))).

Proof. We apply the theorem with m = Õ(1
ε) and B

A = O(n
2

ε). Initial sorting of the wi’s
takes O(n logn) time. (Note that we may assume n ≤ (1

ε)O(1), for otherwise we can switch
to Lawler’s algorithm [12]. In particular, logn = O(log 1

ε).) J

This completes the description of our new simpler algorithm.

5 Closing Remarks

We have described how to compute approximations of the optimal value, but not a corre-
sponding subset of items. To output the subset, we can modify the algorithms to record extra
information whenever we apply Fact 1 to compute the ⊕ of two functions f and g. Namely,
for each step in the step function f ⊕ g, we store the corresponding steps from f and g that
define its y-value. Then a solution achieving the returned profit value can be retrieved by
proceeding backwards in a straightforward way (as in most dynamic programming algorithms).
Since we have performed a total of Õ(m) ⊕ operations to functions with complexity Õ(1

ε),
the total space usage is O(n) + Õ(1

εm) = O(n) + Õ((1
ε)2). (The space bound can probably

be reduced by known space-reduction techniques [13, 9] on dynamic programming.)
The main open question is whether the running time can be improved to near O(n+(1

ε)2).
Our improvements in the appendix will hopefully inspire future work. Note that any
improved subquadratic algorithm for (min,+)-convolution would automatically lead to
further improvements on the time bounds of our algorithms. The truly subquadratic
algorithm by Chan and Lewenstein [3] for bounded monotone integer sequences does not
seem applicable here for arbitrary weights, unfortunately. In the opposite direction, a variant
of a recent reduction of Cygan et al. [5] or Künnemann et al. [11] shows that there is no
algorithm for 0-1 (or unbounded) knapsack with O((n+ 1

ε)2−δ) running time, assuming the
conjecture that there is no truly subquadratic algorithm for (min,+)-convolution.

References

1 Alok Aggarwal, Maria M. Klawe, Shlomo Moran, Peter W. Shor, and Robert E. Wilber.
Geometric applications of a matrix-searching algorithm. Algorithmica, 2:195–208, 1987.
doi:10.1007/BF01840359.

2 David Bremner, Timothy M. Chan, Erik D. Demaine, Jeff Erickson, Ferran Hurtado, John
Iacono, Stefan Langerman, Mihai Patrascu, and Perouz Taslakian. Necklaces, convolutions,
and X+Y. Algorithmica, 69(2):294–314, 2014. doi:10.1007/s00453-012-9734-3.

http://dx.doi.org/10.1007/BF01840359
http://dx.doi.org/10.1007/s00453-012-9734-3

T.M. Chan 5:7

3 Timothy M. Chan and Moshe Lewenstein. Clustered integer 3sum via additive combina-
torics. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA,
June 14-17, 2015, pages 31–40. ACM, 2015. doi:10.1145/2746539.2746568.

4 Timothy M. Chan and Ryan Williams. Deterministic apsp, orthogonal vectors, and more:
Quickly derandomizing razborov-smolensky. In Robert Krauthgamer, editor, Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,
Arlington, VA, USA, January 10-12, 2016, pages 1246–1255. SIAM, 2016. doi:10.1137/
1.9781611974331.ch87.

5 Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On problems
equivalent to (min, +)-convolution. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian
Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80
of LIPIcs, pages 22:1–22:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.
doi:10.4230/LIPIcs.ICALP.2017.22.

6 Oscar H. Ibarra and Chul E. Kim. Fast approximation algorithms for the knapsack and
sum of subset problems. J. ACM, 22(4):463–468, 1975. doi:10.1145/321906.321909.

7 Klaus Jansen and Stefan Erich Julius Kraft. A faster FPTAS for the unbounded knapsack
problem. In Zsuzsanna Lipták and William F. Smyth, editors, Combinatorial Algorithms -
26th International Workshop, IWOCA 2015, Verona, Italy, October 5-7, 2015, Revised Se-
lected Papers, volume 9538 of Lecture Notes in Computer Science, pages 274–286. Springer,
2015. doi:10.1007/978-3-319-29516-9_23.

8 Hans Kellerer, Renata Mansini, Ulrich Pferschy, and Maria Grazia Speranza. An efficient
fully polynomial approximation scheme for the subset-sum problem. J. Comput. Syst. Sci.,
66(2):349–370, 2003. doi:10.1016/S0022-0000(03)00006-0.

9 Hans Kellerer and Ulrich Pferschy. A new fully polynomial time approximation scheme
for the knapsack problem. J. Comb. Optim., 3(1):59–71, 1999. doi:10.1023/A:
1009813105532.

10 Hans Kellerer and Ulrich Pferschy. Improved dynamic programming in connection with
an FPTAS for the knapsack problem. J. Comb. Optim., 8(1):5–11, 2004. doi:10.1023/B:
JOCO.0000021934.29833.6b.

11 Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. On the fine-grained com-
plexity of one-dimensional dynamic programming. In Ioannis Chatzigiannakis, Piotr Indyk,
Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata,
Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80
of LIPIcs, pages 21:1–21:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.
doi:10.4230/LIPIcs.ICALP.2017.21.

12 Eugene L. Lawler. Fast approximation algorithms for knapsack problems. Math. Oper.
Res., 4(4):339–356, 1979. doi:10.1287/moor.4.4.339.

13 M. J. Magazine and O. Oguz. A fully polynomial approximation algorithm for the 0-1
knapsack problem. Europ. J. Oper. Res., 123:325–332, 2000. doi:10.1016/0377-2217(84)
90286-8.

14 Donguk Rhee. Faster fully polynomial approximation schemes for knapsack problems.
Master’s thesis, MIT, 2015. URL: https://dspace.mit.edu/bitstream/handle/1721.
1/98564/920857251-MIT.pdf.

15 Sartaj Sahni. Approximate algorithms for the 0/1 knapsack problem. J. ACM, 22(1):115–
124, 1975. doi:10.1145/321864.321873.

16 Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In David B. Shmoys,
editor, Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 -
June 03, 2014, pages 664–673. ACM, 2014. doi:10.1145/2591796.2591811.

SOSA 2018

http://dx.doi.org/10.1145/2746539.2746568
http://dx.doi.org/10.1137/1.9781611974331.ch87
http://dx.doi.org/10.1137/1.9781611974331.ch87
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.22
http://dx.doi.org/10.1145/321906.321909
http://dx.doi.org/10.1007/978-3-319-29516-9_23
http://dx.doi.org/10.1016/S0022-0000(03)00006-0
http://dx.doi.org/10.1023/A:1009813105532
http://dx.doi.org/10.1023/A:1009813105532
http://dx.doi.org/10.1023/B:JOCO.0000021934.29833.6b
http://dx.doi.org/10.1023/B:JOCO.0000021934.29833.6b
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.21
http://dx.doi.org/10.1287/moor.4.4.339
http://dx.doi.org/10.1016/0377-2217(84)90286-8
http://dx.doi.org/10.1016/0377-2217(84)90286-8
https://dspace.mit.edu/bitstream/handle/1721.1/98564/920857251-MIT.pdf
https://dspace.mit.edu/bitstream/handle/1721.1/98564/920857251-MIT.pdf
http://dx.doi.org/10.1145/321864.321873
http://dx.doi.org/10.1145/2591796.2591811

5:8 Approximation Schemes for 0-1 Knapsack

A An Improved Algorithm with Exponent 12/5

In the appendix, we show how the ideas in our Õ(n+ (1
ε)5/2) algorithm can lead to further

improvements.
In what follows, we make an extra input assumption that all the pi’s are within a

constant factor of each other. This case is sufficient to solve the general problem, because
we can divide the input items into O(log n

ε) classes with the stated property, and then
merge via Lemma 2(i). By rescaling, we assume that all pi’s are in [1, 2]. In this case, the
optimal fractional solution approximates the optimal integral solution with O(1) additive
error (since rounding the fractional solution causes the loss of at most one item), and the
optimal fractional solution can be found by the standard greedy algorithm. In other words,
with O(1) additive error, we can approximate fI by the step function with function values
−∞, 0, p1, p1 + p2, . . . , p1 + · · ·+ pn and the x-breakpoints 0, w1, w1 +w2, . . . , w1 + · · ·+wn,
after arranging the items in nondecreasing order of wi/pi. A solution with O(1) additive
error has approximation factor 1 +O(ε) if the optimal value is Ω(1

ε). Thus, we may assume
that the optimal value is upper-bounded by B = O(1

ε).

A.1 Refining the Second Method
To obtain further improvement, we will refine the second incremental method in Lemma 2(ii).
Recall that the inefficency of that method is due to the need to round in every iteration. We
observe that if all the pi’s are integer multiples of a small set of values, we do not need to
round as often, as explained in the following lemma.

For a set ∆, we say that p is a ∆-multiple if it is a multiple of δ for some δ ∈ ∆.

I Lemma 5. Let f1, . . . , fm be monotone step functions and ranges contained in {−∞, 0} ∪
[1, B]. Let ∆ ⊂ [δ0, 2δ0] and let b ∈ [1, B]. If every fi is pi-uniform and pseudo-concave for
some pi ∈ [1, 2] which is a ∆-multiple, then we can compute a monotone step function that
approximates min{f1 ⊕ · · · ⊕ fm, b} with additive error O(|∆|δ0) in Õ(1

δ0
bm) time.

Proof. We use a simple incremental algorithm: Initialize f = −∞. In each iteration, take
one δ ∈ ∆. Round the function values of min{f, b} down to multiples of δ, which incurs
an additive error of O(δ) = O(δ0). The new function min{f, b} is now δ-uniform, with
complexity O(bδ). For each not-yet-considered function fi with pi being a multiple of δ, reset
f to min{f⊕fi, b}, which can be computed exactly by Lemma 1(ii′) in Õ(bδ + b

pi
· pi

δ) = Õ(bδ0)
time. Repeat for the next δ ∈ ∆. The total time is Õ(bδ0m). The total additive error is
O(|∆|δ0). J

A.2 A Number-Theoretic Lemma
To use the above lemma efficiently, we need the following combinatorial/number-theoretic
lemma, stating that all numbers can be approximated well by integer multiples of a small set
of values.

I Lemma 6. Given ε < δ0 < 1, there exists a set ∆ ⊂ [δ0, 2δ0] of size Õ(δ0ε), such that every
value p ∈ [1, 2] can be approximated by a ∆-multiple with additive error O(ε).

The set can be constructed in Õ(1
ε) time by a randomized algorithm.

Proof. Let P = {1, 1 + ε, 1 + 2ε, 1 + 3ε, . . . , 1 + b 1
εcε}. Then |P | = O(1

ε). In the stated
property, it suffices to consider only values p in P .

T.M. Chan 5:9

Given p ∈ P and δ ∈ [δ0, 2δ0], p is approximated by a multiple of δ with additive error ε
iff 0 ≤ p− iδ ≤ ε for some integer i, i.e., iff δ lies in the set

Ip := [δ0, 2δ0] ∩
⋃
i

[
p− ε
i

,
p

i

]
where the union is over all integers i between 1−ε

2δ0 and 2
δ0
. Our goal is to find a small set ∆

of size Õ(δ0ε) that hits Ip for all p ∈ P .
Now, each set Ip is a union of Θ(1

δ0
) disjoint intervals of length Θ(ε

1/δ0) = Θ(εδ0) and thus
has measure Θ(ε). Thus, a uniformly distributed δ ∈ [δ0, 2δ0] lies in Ip with probability Θ(εδ0).
For a simple randomized construction, we can just choose O(δ0ε log |P |) values uniformly
from [δ0, 2δ0] and obtain a set ∆ that hits every Ip with high probability 1−O(1

|P |c) for any
constant c > 1. This yields a Monte Carlo algorithm, but it can be converted to Las Vegas,
since we can verify correctness of ∆ by generating and sorting all ∆-multiples in [1, 2] in
Õ(|∆| 1

δ0
) = Õ(1

ε) time. J

A.3 Putting the Refined Second Method Together
Applying Lemma 5 together with Lemma 6 now gives the following new result:

I Lemma 7. Let f1, . . . , fm be monotone step functions with ranges contained in {−∞, 0} ∪
[1, B]. If every fi is pi-uniform and pseudo-concave for some pi ∈ [1, 2], then we can compute
a monotone step function that approximates min{f1 ⊕ · · · ⊕ fm, B} with factor 1 +O(ε) and
complexity Õ(1

ε) in Õ(1
ε

√
Bm) expected time, assuming B = Õ(1

ε).

Proof. For a given b ∈ [1, B], we first describe how to compute an approximation of
min{f1 ⊕ · · · ⊕ fm, b} with additive error O(εb) and complexity O(1

ε):
Construct the set ∆ of size Õ(δ0ε) from Lemma 6 in Õ(1

ε) expected time for some parameter
δ0 > ε to be specified later. Generate and sort all ∆-multiples in [1, 2] in Õ(|∆| 1

δ0
) = Õ(1

ε)
time. For each pi, round it down to a ∆-multiple with additive error O(ε) (e.g., by
binary search) and change fi accordingly. This multiplies the approximation factor by
1 +O(ε), and thus increases the additive error by at most O(εb). Now apply Lemma 5.
The additive error is O(|∆|δ0) = O(δ

2
0
ε) = O(εb) by choosing δ0 := ε

√
b. The running

time is Õ(1
δ0
bm) = Õ(1

ε

√
bm). Note that the complexity of the resulting function can be

reduced to O(1
ε) by rounding down to multiples of εb.

To finish, we apply the above procedure to every b ∈ [1, B] that is a power of 2, and
then return the upper envelope of the resulting O(logB) functions. This gives a (1 +O(ε))-
factor approximation of min{f1 ⊕ · · · ⊕ fm, B}. The running time increases by a factor of
O(logB). J

As m = Õ(1
ε) and B = O(1

ε) in our application, the above lemma immediately gives an
alternative algorithm with near Õ(n+ (1

ε)5/2) running time. Notice that this alternative is
based solely on the second incremental method, without combining with the first divide-and-
conquer method. Naturally, it suggests the possibility that a combination might lead to a
further improvement. . .

A.4 Putting Everything Together
To this end, we first show that if the size of ∆ could be reduced (from O(δ0ε) to, say, O(δ0rε))
for some particular choice of δ0, then Lemma 7 could be improved (from Õ(1

ε

√
Bm) time to

Õ(1
r1/4ε

√
Bm)), by bootstrapping:

SOSA 2018

5:10 Approximation Schemes for 0-1 Knapsack

I Lemma 8. Let f1, . . . , fm be monotone step functions with ranges contained in {−∞, 0} ∪
[1, B]. Let ∆ ⊂ [δ0, 2δ0] be a set of size O(δ0rε) for some r ∈ [1, B2] where δ0 := r1/4ε

√
B. If

every fi is pi-uniform and pseudo-concave for some pi ∈ [1, 2] which is a ∆-multiple, then we
can compute a monotone step function that approximates min{f1 ⊕ · · · ⊕ fm, B} with factor
1 +O(ε) and complexity Õ(1

ε) in Õ(1
r1/4ε

√
Bm) expected time, assuming B = Õ(1

ε).

Proof.
1. First compute an approximation of min{f1 ⊕ · · · ⊕ fm, B/s} with factor 1 + O(ε) and

complexity Õ(1
ε) by Lemma 7 in Õ(1

ε

√
B/sm) time, for some parameter s ≥ 1 to be

specified later.
2. Next compute an approximation of min{f1 ⊕ · · · ⊕ fm, B} with additive error O(εB/s).

This can be done by applying Lemma 5. The additive error is O(|∆|δ0) = O(δ
2
0
rε) =

O(εB/s) by choosing δ0 := ε
√

(r/s)B. The running time is Õ(1
δ0
Bm) = Õ(1

ε

√
(s/r)Bm).

To finish, we return the upper envelope of the two resulting functions. This gives a (1+O(ε))-
factor approximation of min{f1 ⊕ · · · ⊕ fm, B} (since in the case when the function value
exceeds B/s, the O(εB/s) additive error in the second function implies 1+O(ε) approximation
factor). Note that the complexity of the resulting function can be reduced to Õ(1

ε) by rounding
down to powers of 1 + ε, which multiplies the approximation factor by 1 +O(ε).

The total running time

Õ

(
1
ε

√
B/sm+ 1

ε

√
(s/r)Bm

)
is Õ(1

r1/4ε

√
Bm) by setting s :=

√
r. J

To reduce the size of ∆, we combine the above with the first divide-and-conquer method
from Lemma 2(ii), which finally leads to our new improved result after fine-tuning the choice
of parameters:

I Theorem 9. Let f1, . . . , fm be monotone step functions with ranges contained in {−∞, 0}∪
[A,B]. If every fi is pi-uniform and pseudo-concave with pi ∈ [1, 2], then we can compute a
monotone step function that approximates min{f1 ⊕ · · · ⊕ fm, B} with factor 1 +O(ε) and
complexity Õ(1

ε) in Õ((1
ε)12/5/2Ω(

√
log(1/ε))) expected time if m,B = Õ(1

ε).

Proof. Construct the set ∆ of size Õ(δ0ε) from Lemma 6 with δ0 := r1/4ε
√
B for some

parameter r to be specified later. Generate and sort all ∆-multiples in [1, 2] in Õ(|∆| 1
δ0

) =
Õ(1

ε) time. For each pi, round it down to a ∆-multiple with additive error O(ε) and change
fi accordingly. This multiplies the approximation factor by 1 +O(ε).

Divide ∆ into r subsets ∆1, . . . ,∆r each of size Õ(δ0rε). For each subset ∆j , approximate
the ⊕ of all not-yet-considered functions fi with pi being a ∆j-multiple, by Lemma 8. Finally,
return an approximation of the ⊕ of the resulting r functions by using Lemma 2(i). The
total time is

Õ

(
1

r1/4ε

√
Bm + r

(
1
ε

)2
/ 2Ω(

√
log(1/ε))

)
= Õ

(
1
r1/4

(
1
ε

)5/2
+ r

(
1
ε

)2
/ 2Ω(

√
log(1/ε))

)
.

(1)

Setting r =
⌈
(1
ε)2/52c

√
log(1/ε)

⌉
and δ0 = ε2/52(c/3)

√
log(1/ε) for a sufficiently small constant

c yields the theorem. J

T.M. Chan 5:11

I Corollary 10. There is a (1 + ε)-approximation algorithm for 0-1 knapsack with expected
running time O(n log 1

ε + (1
ε)12/5/2Ω(

√
log(1/ε))).

Proof. In the case when all pi ∈ [1, 2], we apply the theorem with m = Õ(1
ε) and B = O(1

ε).
In addition, we take the greedy approximation and return the upper envelope of the two
resulting functions. As noted earlier, the general case reduces to the pi ∈ [1, 2] case, by
merging O(log n

ε) functions via Lemma 2(i), taking additional (1
ε)2/2Ω(

√
log(1/ε)) time. Initial

sorting takes O(n logn) time. (As before, we may assume n ≤ (1
ε)O(1), for otherwise we can

switch to Lawler’s algorithm.) J

A.5 Derandomization
Our algorithm is randomized because of Lemma 6. In the proof of Lemma 6, instead of
random sampling, we can run the standard greedy algorithm for hitting set, with O(δ0ε log |P |)
iterations. We gather all the intervals of Ip over all p ∈ P . In each iteration, we find a deepest
point λ, i.e., a point that hits the most intervals, and delete the intervals in all the sets Ip
that are hit by λ. Initially, the total number of intervals is O(1

δ0
|P |) = O(1

δ0ε
), and this

bounds the total number of deletions as well. It is not difficult to design a data structure
that supports deletions, searching for the deepest point, and searching for the intervals hit
by a given point, all in logarithmic time per operation. Thus, the total time is Õ(1

δ0ε
), which

is at most Õ((1
ε)2).

This adds an Õ((1
ε)2) term to the time bounds of Lemmas 7 and 8, and an Õ(r(1

ε)2) to (1),
which slightly affects the final bound in the extra superpolylogarithmic factors. We can fix
this by modifying the proof of Lemma 7: if b ≥ (1

ε)0.1, we proceed as before and notice that
the construction time for ∆ is Õ(1

δ0ε
) ≤ O(1

ε2−Ω(1)); but if b < (1
ε)0.1, we can switch to using

a singleton set ∆ = {ε} with δ0 = ε, which leads to running time Õ(1
ε bm) ≤ Õ((1

ε)1.1m).
All this adds an extra Õ((1

ε)1.1m+ r · (1
ε)2−Ω(1)) term to (1), which does not affect the final

bound.

I Corollary 11. The algorithm in Corollary 10 can be made deterministic.

As before, the algorithm can be modified to compute not just an approximation of the
optimal value but also a corresponding subset of items.

B Variants for Small n

We note two further results which are better when n is small relative to 1
ε .

I Corollary 12. There is a (1 + ε)-approximation algorithm for 0-1 knapsack with expected
running time Õ(1

εn
3/2).

Proof. In the case when all pi ∈ [1, 2], an Õ(1
εn

3/2) time bound follows directly from
Lemma 7, since the number of distinct pi values is m ≤ n, and a trivial upper bound for the
maximum optimal value is B ≤ 2n.

As noted earlier, the general case reduces to the pi ∈ [1, 2] case, by merging O(log n
ε)

functions via Lemma 2(i), taking additional (1
ε)2/2Ω(

√
log(1/ε)) time. To avoid the merging

cost, we need to bypass Lemma 2(i). First, we can easily generalize Lemmas 5 and 7 to
compute f ⊕ f1 ⊕ · · · ⊕ fm for an arbitrary monotone step function f with complexity Õ(1

ε).
We can then apply Lemma 7 iteratively, with each iteration handling all pi ∈ [2j , 2j+1] (which
can be rescaled to [1, 2]), in increasing order of j. The approximation factor increases to
(1 + ε)O(log B

A) = 1 +O(ε log B
A). We can adjust ε by a logarithmic factor. J

SOSA 2018

5:12 Approximation Schemes for 0-1 Knapsack

I Corollary 13. There is a (1 + ε)-approximation algorithm for 0-1 knapsack with running
time O(((1

ε)4/3n+ (1
ε)2)/2Ω(

√
log(1/ε))).

Proof. Divide the input items into r subsets of nr items each. For each subset, apply the
method from Corollary 12. Finally, return an approximation of the ⊕ of the resulting r
functions by using Lemma 2(i). The total time is

Õ

(
r

1
ε

(n
r

)3/2
+ r

(
1
ε

)2
/2Ω(
√

log(1/ε))

)
.

Setting r =
⌈
ε2/3n2c

√
log(1/ε)

⌉
for a sufficiently small constant c yields the corollary. This

algorithm can be made deterministic as in Section A.5. The derandomization adds an extra
Õ((1

ε)1.1m+ r · (1
ε)2−Ω(1)) term, which does not affect the final bound. J

Corollary 12 gives the current best bound for n � (1
ε)2/3, and Corollary 13 gives the

current best bound for (1
ε)2/3 � n� (1

ε)16/15. For example, when n = 1
ε , Corollary 13 gives

Õ((1
ε)7/3), which is a little better than Õ((1

ε)12/5). This case is of interest, since for certain
related problems such as subset-sum or unbounded knapsack (but unfortunately not for the
general 0-1 knapsack problem), there are efficient preprocessing algorithms that can reduce
the input size n to Õ(1

ε).

Counting Solutions to Polynomial Systems via
Reductions∗

Richard Ryan Williams

MIT CSAIL & EECS, Cambridge, MA, USA
rrw@mit.edu

Abstract
This paper provides both positive and negative results for counting solutions to systems of poly-
nomial equations over a finite field. The general idea is to try to reduce the problem to counting
solutions to a single polynomial, where the task is easier. In both cases, simple methods are
utilized that we expect will have wider applicability (far beyond algebra).

First, we give an efficient deterministic reduction from approximate counting for a system
of (arbitrary) polynomial equations to approximate counting for one equation, over any finite
field. We apply this reduction to give a deterministic poly(n, s, log p)/ε2-time algorithm for
approximately counting the fraction of solutions to a system of s quadratic n-variate polynomials
over Fp (the finite field of prime order p) to within an additive ε factor, for any prime p. Note
that uniform random sampling would already require Ω(s/ε2) time, so our algorithm behaves as
a full derandomization of uniform sampling. The approximate-counting algorithm yields efficient
approximate counting for other well-known problems, such as 2-SAT, NAE-3SAT, and 3-Coloring.
As a corollary, there is a deterministic algorithm (with analogous running time) for producing
solutions to such systems which have at least εpn solutions.

Second, we consider the difficulty of exactly counting solutions to a single polynomial of
constant degree, over a finite field. (Note that finding a solution in this case is easy.) It has
been known for over 20 years that this counting problem is already NP-hard for degree-three
polynomials over F2; however, all known reductions increased the number of variables by a
considerable amount. We give a subexponential-time reduction from counting solutions to k-
CNF formulas to counting solutions to a degree-kO(k) polynomial (over any finite field of O(1)
order) which exactly preserves the number of variables. As a corollary, the Strong Exponential
Time Hypothesis (even its weak counting variant #SETH) implies that counting solutions to
constant-degree polynomials (even over F2) requires essentially 2n time. Similar results hold for
counting orthogonal pairs of vectors over Fp.

1998 ACM Subject Classification G.1.5 Numerical Analysis – Roots of Nonlinear Equations,
I.1.2 Symbolic and Algebraic Manipulation – Algorithms

Keywords and phrases counting complexity, polynomial equations, finite field, derandomization,
strong exponential time hypothesis

Digital Object Identifier 10.4230/OASIcs.SOSA.2018.6

1 Introduction

A canonical problem in pseudorandomness is:

Given a class C of Boolean circuits, is there a deterministic and efficient method for
approximately counting the fraction of satisfying assignments to any circuit from C?

∗ Supported by NSF CAREER Grant CCF-1741615. A talk on an early version of this work can be found
at https://youtu.be/gJxpUhc1Gfc

© Richard Ryan Williams;
licensed under Creative Commons License CC-BY

1st Symposium on Simplicity in Algorithms (SOSA 2018).
Editor: Raimund Seidel; Article No. 6; pp. 6:1–6:15

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SOSA.2018.6
https://youtu.be/gJxpUhc1Gfc
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

6:2 Counting Solutions to Polynomial Systems via Reductions

By uniformly random sampling Θ(1/ε2) inputs to a given circuit, we can easily obtain an
additive ε-approximation to the fraction of satisfying assignments, with high probability.
Thus the above problem amounts to deterministically achieving what trivial random sampling
can provide in a natural setting, with the target of reaching poly(n)/ε2 time (or perhaps
even better in some cases where randomness can also achieve more, such as approximately
counting knapsack solutions [20]).

The general problem of finding such algorithms has been studied for decades. Of most
relevance to this paper are the prior results for AC0 circuits [2, 30, 8], for CNF/DNF of
bounded or unbounded width [28, 23, 32, 21], and for Fq polynomials of constant degree [29,
6, 7, 33]. Approximate counting algorithms with only a 1/ε2 dependence in the running time
are not known for any of these problems except in the case of degree-two polynomials, where
one can exactly count solutions over a finite field in polynomial time (see the Preliminaries).
We would like to “lift” this nice algorithm to more expressive representations.

In the first part of this paper, we study approximate counting for an NP-hard problem in
algebra:

Counting Solutions to Multivariate Quadratic Systems (#MQS)
Given: A system of degree-two polynomials over Fp[x1, . . . , xn], for some prime p
Output: The number of solutions to the system.

The decision version of #MQS (“is there a solution?”) is well-known to be NP-hard,
and is of interest in several theoretical and practical areas (see [27] for references). With
regards to approximating #MQS, the best deterministic algorithm in the literature is due to
Viola [33], who gave a pseudorandom generator for fooling a degree-d polynomial with seed
length at least d logn+ d2d log(1/ε). Since the Fourier spectrum of the AND function has
low `1-norm (see for example [9]), a pseudorandom generator for a single polynomial extends
to a system of polynomials, yielding a deterministic approximation algorithm for the fraction
of #MQS solutions with running time poly(n) · ε−8.

Approximately Solving #MQS

The first main result of this paper is that the 1/ε2 dependence of the random sampling
algorithm for #MQS can be matched in a deterministic way.

I Theorem 1. For every prime p, there is a deterministic algorithm running in
poly(n, s, log p)/ε2 time for approximately counting the fraction of solutions to a system
of s quadratic equations in n variables over Fp.

As a corollary, one can also efficiently and deterministically find solutions to any system
of quadratic equations, provided there are many solutions:

I Corollary 2. For every prime p, there is a deterministic algorithm running in
poly(n, s, log p)/ε2 time which, given any system of s quadratic equations in n variables
over Fp with at least εpn solutions, outputs a solution.

Recalling that more common counting problems such as #2-SAT and #NAE-3-SAT can
easily be expressed as an instance of #MQS with no increase in the number of variables,
Theorem 1 implies improved approximation algorithms (in terms of ε) for those problems
as well: the best known approximate counting algorithm for general k-SAT is that of
Trevisan [32] which has an 1/εk2k ln(4) dependence in the running time. (Note that Viola’s

R. R. Williams 6:3

PRG is slightly faster in terms of ε.) For a non-binary example, the 3-coloring problem
can be represented as a system of quadratic polynomials over F3 (for each edge (i, j) in
your graph, include a polynomial P (xi, xj) which is 0 if and only if xi 6= xj). In general,
constraint satisfaction problems over a prime-order domain and two variables per constraint
are handled by Theorem 1.

The key to Theorem 1 is a reduction from approximate counting for a system of degree-d
polynomials to approximate counting for a single polynomial:

I Theorem 3. For all primes p, integers d > 0, and ε ∈ (0, 1), there exists a deterministic
poly(n, s, log p)-time reduction from approximately counting solutions to systems of degree-d
equations over Fp to within an ε factor, to approximately counting solutions to one degree-d
equation over Fp to within a Θ(ε3/s2) factor.

Theorem 3 is appealing for several reasons.1
First, it is somewhat surprising at first glance. For example, detecting feasibility of a
system of quadratic polynomials (over any field) is NP-hard, but detecting the feasibility
of only one such polynomial is trivial. Thus in some cases, our reduction efficiently
reduces an NP-hard problem to an easy one — but only for the task of approximate
counting.
Second, the proof is extremely simple in hindsight. The central idea consists of applying
the known constructions of small-biased sets in just the right way to solve the problem.
We also show how such sets yield new schemes for approximating the intersection of a set
family.
Third, Theorem 3 is extremely generic, in comparison with its application (Theorem 1):
it works for any polynomial system of any degree.

Theorem 1 follows from applying the reduction of Theorem 3 and an exact counting
algorithm for #MQS instances with only one equation. We certainly do not obtain a
pseudorandom generator in this way, but we do get a considerably different perspective on
approximate counting in this domain. (We also do not use any algebraic geometry tools,
which often appear in the literature on counting solutions to polynomial systems.)

SETH-Hardness of Exactly Counting Roots of One O(1)-Degree Polynomial

Complementing the above approximation algorithm, we use similar ideas to give a strong
hardness reduction for exactly counting solutions (zeroes) of degree-d polynomials over a
finite field of constant order, for constant d > 2. Finding a solution to such a polynomial is
not hard: by a variant of the Schwartz-Zippel-DeMillo-Lipton lemma (see for example [36]),
a not-identically-zero polynomial p of degree-d is nonzero on at least a 1/2d-fraction of points
in {0, 1}n, so it is easy to find a nonzero of p with randomness over any small field. (It is
also easy to find a zero of p in {0, 1}n as well, by considering the polynomial 1− pq−1 where
q is the order of the field.)

Ehrenfeucht and Karpinski [17] showed that the solution-counting problem is already
NP-hard for a single degree-3 polynomial over F2. However, all reductions from k-SAT to
the counting problem (to our knowledge) increased the number of variables by a polynomial

1 Note that over the real numbers, it is easy to reduce a system of polynomial equations {pi(x1, . . . , xn) =
0} of degree d to a single equation of degree 2d, by simply taking the sum of squares of the pi. This is
not useful for us, since (1) it does not work over a finite field and (2) in order for the approximation
algorithm to work, we need a reduction that does not increase the degree.

SOSA 2018

6:4 Counting Solutions to Polynomial Systems via Reductions

factor; in the worst case, Ω(n) new variables are introduced. Here we give a much improved
reduction in terms of the number of variables, sacrificing a bit in the degree:

I Theorem 4. Let q be a prime power and ε > 0 be arbitrarily small. There is an O(qεn)-time
deterministic reduction from #k-SAT instances with n variables to the problem of counting
roots to a Fq-polynomial of degree q(k/ε)O(k) with n variables.

In fact, the proof of Theorem 4 provides a subexponential-time reduction from the
problem of exactly counting solutions to systems of O(n) degree-k equations to that of exactly
counting the zeros of one polynomial of degree q(k/ε)O(k), similarly to how Theorem 3 gives
a polynomial-time reduction from approximate counting a degree-k system to approximate
counting for a single degree-k polynomial. The high-level structure of the two reductions
are similar as well: both reductions output a linear combination of the outputs of their
oracle calls. However, the actual oracle calls themselves are quite different. Theorem 3 uses
small-biased sets to construct a polynomial number of oracle calls, and obtain an approximate
solution count; Theorem 4 uses a multiplication trick so that the number of oracle calls is
only subexponential, while preserving the exact count. (The multiplication trick is the reason
why the degree of the underlying polynomials increases to q(k/ε)O(k).)

From Theorem 4, it follows that the Strong Exponential Time Hypothesis (even its
counting variant #SETH) predicts that for all ε > 0, there is a constant dε > 2 such that
counting Boolean solutions to degree-dε polynomials (even over F2) cannot be done in (2−ε)n
time.2

Under #ETH (the hypothesis that counting 3-SAT solutions requires 2Ω(n) time), it is
known (for example) that counting the number of independent sets of size n/3 in an n-node
graph requires 2Ω(n) time [24], #2-SAT requires 2Ω(n) time [15], the permanent of n × n
Boolean matrices requires 2Ω(n) [15], and counting the number of perfect matchings in graphs
with m edges requires 2Ω(m) time [14]. The reductions proving these conditional lower bounds
generally introduce a minor (linear) increase in the relevant parameter n. Theorem 4 gives a
tight lower bound for counting solutions to polynomials, under SETH.

Hardness for Counting Orthogonal Vectors over Fp

Let p be any (small) prime. To demonstrate the range of the simple ideas in our reductions,
we also use them to show that exactly counting pairs of O(logn)-dimensional vectors with
inner product zero modulo p (among a given set of n vectors) requires n2−o(1) time under
SETH. This follows from the theorem:

I Theorem 5. Let p be prime, and let ` ∈ [1, d] be an integer dividing d. There is an
Õ(n · `2d/` · p`)-time reduction from #OV with n vectors in d dimensions to p` instances of
#OVp, each with n vectors in `2d/` + 1 dimensions.

I Corollary 6. Let ε > 0 be sufficiently small. There is an Õ(n1+ε · pO(c/ε))-time reduction
from #OV with n vectors in c logn dimensions to nε instances of #OVp, each with n vectors
in O(pc/ε log(n)) dimensions.

2 The Strong Exponential Time Hypothesis [12] (SETH) states that for every ε > 0, there is a k > 2
such that k-SAT cannot be solved in (2− ε)n time; it is a vast strengthening of P 6= NP and a mild
strengthening of ETH [25] which states that there is an ε > 0 such that 3-SAT cannot be solved in
(1 + ε)n time. The “counting variant” #SETH states the same strong lower bound for the problem of
counting the number of solutions to a k-SAT instance.

R. R. Williams 6:5

This reduction is in stark contrast with the fact that detecting a pair of vectors with inner
product zero modulo p can be accomplished in nearly-linear time when the vectors have no(1)

dimension [35]. One can either view this result as evidence that the counting problem is
hard, or as (yet) another angle towards refuting SETH.

2 Preliminaries

Exact counting for degree-two equations

Our approximate counting algorithm will use the fact that the exact counting problem for a
single degree-two equation over a finite field Fq is polynomial-time solvable:

I Theorem 7 (Woods [37], p.6). For every prime power q, there is a deterministic n3 ·
poly(log q)-time algorithm for counting the number of solutions to a given degree-two polyno-
mial over Fq.

Ehrenfeucht and Karpinski [17] covered the case of F2, and showed that exact counting
for a degree-three polynomial is already NP-hard. Cai, Chen, Lipton, and Lu [10] gave
an algorithm for the counting problem that works over Zm, for any fixed integer m > 1.
Woods remarks that his algorithm essentially follows from placing the matrices defining the
degree-two polynomial in Jordan canonical form, in which case the number of solutions can
be more-or-less read off from the form obtained.

Small-bias sets

For our approximation algorithm, we need explicit constructions of small sets of vectors
which closely approximate the uniform distribution of vectors, with respect to inner products
over a finite field.

I Definition 8. A set S ⊆ Fnq is ε-biased if for all u ∈ Fnq and r ∈ Fnq ,∣∣∣∣ Pr
v∈S

[〈u, v〉 = r]− Pr
v∈Fn

q

[〈u, v〉 = r]
∣∣∣∣ ≤ ε.

(Note that sometimes a more general definition is given, involving the characters of Fnp ,
but the above simple condition is implied by it. See [18].) The following simple consequences
of being ε-biased will be important:

Prv∈S [〈~0, v〉 = 0] = 1, where ~0 is the all-zeroes vector.
For all u 6= ~0 and r ∈ Fq, Prv∈S [〈u, v〉 = r] ∈ (1/q − ε, 1/q + ε).

We also use deterministic explicit constructions of ε-biased sets over Fp, for every prime p.

I Theorem 9 ([4, 18, 5]). For every prime p, and every ε ∈ (0, 1/pn), there is a
(poly(n, log p)/ε2)-time constructible set of vectors S ⊆ Fnp of cardinality O(n2/ε2) that
is ε-biased.

It will be important that the ε-dependencies in the above theorem are only 1/ε2, but this
can be achieved. For example, the constructions based on linear feedback shift registers of [4]
(which are easily generalized to Fp, see [18]) take all vectors x, y ∈ Fdp, where d = logp(n/ε)
and y corresponds to the coefficient vector of a monic irreducible Fp-polynomial of degree d.
The n-length vector vx,y of the ε-biased set S is generated by repeatedly computing inner
products of y with vectors made up of previously computed inner products, up to n times.

SOSA 2018

6:6 Counting Solutions to Polynomial Systems via Reductions

To construct this set S, the main difficulty is constructing the y’s, which we can do by
enumerating all monic Fp-polynomials of degree d, and throwing out those with non-trivial
divisors. Rabin’s test for irreducibility ([31]) would take O(d2 ·poly(logn, log p)) time. There
are O(n/ε) such polynomials to enumerate, and since ε ≥ 1/pn we have d ≤ O(n), so this step
takes O(n3/ε) · poly(logn, log p) time. The remaining list of monic irreducible polynomials
(paired up with all possible vectors x ∈ Fdp) forms our ε-biased S, and each component of
each n-length vector vx,y in S is just an inner product of two known d-length vectors. The
running time of this construction is therefore O(n4/ε2) (omitting poly(log p) factors).

3 Approximating #MQS: Reduction and Algorithm

We begin with the proof of Theorem 3, which reduces the counting problem for a system of
equations to the counting problem for a single equation.

Let S = {v1, . . . , vm} ⊆ Fsp be an ε-biased set of vectors. Let {p1(y) = 0, . . . , ps(y) = 0}
be a system of degree-d equations over Fp in n variables, and let A ⊆ Fnp be the set of
solutions to the system. For each i = 1, . . . ,m, define the polynomial

Pi(y) =
∑
j

vi[j] · pj(y).

We observe two distinct properties of solutions and non-solutions to the original system:
(a) Every y ∈ A is a solution of the equation Pi(y) = 0 and not of the equation Pi(y) = 1,

for all i = 1, . . . ,m. This follows because for all y ∈ A, p1(y) = · · · = ps(y) = 0.
(b) For every y /∈ A, there are integers N0, N1 ∈ [m(1/p− ε),m(1/p+ ε)] such that y is a

solution to N0 of the m equations Pi(y) = 0 and is a solution to N1 of the m equations
Pi(y) = 1. To see this, note that for y /∈ A, the vector u = [p1(y), . . . , ps(y)] is not
all-zeroes. Thus for any r ∈ Fp we have Pri∈[m][〈u, vi〉 = r] ∈ (1/p+ ε, 1/p− ε), because
S is ε-biased.
Given the ability to count solutions to one degree-d equation, here is an algorithm for

approximately counting solutions to a system of equations:

1. Construct the ε-biased set S = {v1, . . . , vm} ⊂ Fsp.
2. Count the number of solutions to the equation Pi(y) = 0, for all i = 1, . . . ,m.

Let Z be the sum of all these numbers.
3. Count the number of solutions to the equation Pi(y) = 1, for all i = 1, . . . ,m.

Let O be the sum of all these numbers.
4. Output (Z −O)/m.

Now we analyze the algorithm. Let Zi (respectively, Oi) be the number of solutions to
the equation Pi(y) = 0 (respectively, Pi(y) = 1), for all i, . . . ,m. Our algorithm outputs the
quantity:

1
m

(∑
i

Zi −
∑
i

Oi

)
. (1)

By property (a), every y ∈ A contributes 1 to the sum 1
m ·
∑
i Zi, and contributes 0 to the

sum
∑
iOi. By property (b), every y /∈ A contributes a value zy ∈ [1/p− ε, 1/p+ ε] to the

R. R. Williams 6:7

sum 1
m ·
∑
i Zi, and contributes a value oy ∈ [1/p− ε, 1/p+ ε] to the sum 1

m ·
∑
iOi. We can

therefore re-express (1) as:

1
m

(∑
i

Zi −
∑
i

Oi

)
= |A|+

∑
y/∈A

(zy − oy).

Given the bounds on zy’s and oy’s, we can easily upper-bound and lower-bound (1):

|A|+
∑
y/∈A

(zy − oy) ≤ |A|+
∑
y/∈A

((1/p+ ε)− (1/p− ε)) = |A|+ |A| · 2ε

and

|A|+
∑
y/∈A

(zy − oy) ≥ |A|+
∑
y/∈A

((1/p− ε)− (1/p+ ε)) = |A| − |A| · 2ε.

It follows that the algorithm outputs a number that approximates the fraction of solutions
to within ±2ε.

Moreover, observe that to obtain an approximate answer, we do not need an exact
algorithm for counting solutions to one equation: if our algorithm for one equation always
outputs approximations that are within ε/(2m) of the exact count, then each of the 2m
Zi and Oi terms will be computed to within an ε/(2m) factor, and the output will still be
within ±3ε of the exact fraction. This completes the proof of Theorem 3.

To obtain the final algorithm (Theorem 1) for approximately computing #MQS, we
simply apply Theorem 7 to count the number of satisfying assignments to a single quadratic
equation over Fp in n3 · poly(log p) time. Using this algorithm in the above reduction, we get
an approximate counting algorithm running in time Õ(s2/ε2 · (n3 + s) + t(s, 1/ε, p)), where
t(s, 1/ε, p) is the time needed to construct an ε-biased set over Fsp. This completes the proof
of Theorem 1.

3.1 A succinct approximate inclusion-exclusion
The reduction of Theorem 3 works by approximately representing the cardinality of the
intersection of s equations by a linear combination of cardinalities on single Fp-equations.
Along the lines of the work of Linial and Nisan [26] on approximate inclusion-exclusion
via low-degree polynomials over the reals, the ideas of Theorem 3 imply a variant of the
inclusion-exclusion principle. However, unlike Linial and Nisan, our approximation of the
cardinality of the intersection has only polynomially many terms.

To simplify the discussion, here we consider just the case of F2, and consider unions instead
of intersections. Over F2, we will demonstrate how a small-bias set lets us “approximately”
express the cardinality of a union of a set collection as a short linear combination of
cardinalities of what one might call “oddtersections” of sub-collections of sets.

Let (x mod 2) : Z → {0, 1} map integers to bits in the natural way. In Theorem 3, we
are effectively using a representation of the AND function as a short linear combination of
PARITY functions (see, for instance, Alon and Bruck [3]). Below is a representation of the
OR function (which is analogous):

I Lemma 10. For all n ∈ N and ε ∈ (0, 1), there is a (poly(n)/ε2)-time constructible
collection of subsets S1, . . . , Sm ⊆ [n], with m ≤ O(n2/ε2), such that for every x ∈ {0, 1}n,∣∣∣∣∣∣

(
n∨
i=1

xi

)
−

m∑
i=1

2
m
·

∑
j∈Si

xj mod 2

∣∣∣∣∣∣ ≤ ε. (2)

SOSA 2018

6:8 Counting Solutions to Polynomial Systems via Reductions

Proof. Let S = {S1, . . . , Sm} ⊆ [n] be a set family whose corresponding indicator vectors in
{0, 1}n form an (ε/2)-biased set. By Theorem 9, we can take m ≤ O(n2/ε2). Observe:

If (x1, . . . , xn) = ~0 then for all i = 1, . . . ,m, (
∑
j∈Si

xj mod 2) = 0, so
∑m
i=1

2
m ·(∑

j∈Si
xj mod 2

)
= 0.

If (x1, . . . , xn) 6= ~0 then by properties of (ε/2)-biased sets, the number of i ∈ [m] such
that

∑
j∈Si

xj 6= |Si| (mod 2) is in the interval [m/2 − εm/2,m/2 + εm/2]. So in this
case,

m∑
i=1

2
m
·

∑
j∈Si

xj mod 2

 ∈ [2
m
·
(
m− εm

2

)
,

2
m
·
(
m+ εm

2

)]
= [1− ε, 1 + ε] .

This completes the proof. J

Let A1, . . . , Ak be any sets over a finite universe U , and define their oddtersection to be⊕
i

Ai = {x ∈ U | x appears in an odd number of the Ai’s}.

The upshot of Lemma 10 is that we can write:∣∣∣∣∣⋃
i

Ai

∣∣∣∣∣ ≈ε
m∑
i=1

1
m
·

∣∣∣∣∣∣
⊕
j∈Si

Aj

∣∣∣∣∣∣ , (3)

where the ≈ε means that the two quantities are within ε|U | of each other. (Note that | ∪iAi|
is the sum over all y ∈ U of

∨
i=1[y ∈ Ai], where [y ∈ Ai] is 1 if y ∈ A, and 0 otherwise.

Invoking (2) on each term in this sum, we obtain the right-hand side of (3) to within an
additive ±ε|U | factor.) Thus we can approximately represent the cardinality of a union
of sets in a sparse way, as “oddities” of various sub-collections. It seems likely that this
observation has more applications. For example, equation (3) immediately implies that we
can reduce approximate counting for k-DNF formulas (with additive error) to approximate
counting for degree-k polynomials over F2 (with additive error), by letting Ai be the set of
satisfying assignments to the ith clause of a DNF.

3.2 Producing a solution when there are many
Given Theorem 1, one can obtain a deterministic algorithm for producing a solution to a
quadratic system given that it has many solutions, using a self-reducibility argument.3

Reminder of Corollary 2. For every prime p, constant k, and fraction ε ∈ [1/pn, 1], there
is a deterministic algorithm running in poly(n, s, log p)/ε2 time which, given any system of s
quadratic equations in n variables over Fp with at least εpn solutions, outputs a solution.

Proof. Suppose we are given a system over the variables x1, . . . , xn with S ≥ ε · pn solutions,
where ε ≥ 1/pn.

3 This reduction is apparently folklore. See also Goldreich [19, Theorem 3.5] for a generic reduction from
“search-to-decision” in this setting.

R. R. Williams 6:9

For each a ∈ Fp, assign x1 := a in all equations of the system, and run the polynomial-time
approximate counting algorithm of Theorem 1 with error parameter α := ε/(2n). Let x1 := a1
be the assignment that yields the largest count from the algorithm. (If the count returned is
zero for all a ∈ Fp, return fail.) Analogously, set the variables x2 := a2, . . . , xn−k := an−k
one at a time, for k = 2 logp(1/ε), always taking the assignment that yields the largest count.
Finally, try all pk = p2 logp(1/ε) ≤ 1/ε2 assignments on the remaining k variables, and return
any solution found.

Given Theorem 1, it is clear that the algorithm runs in the desired time. Now we turn
to correctness. The algorithm began with a guarantee of S solutions. At least one setting
of the variable x1 yields a system on n − 1 variables with at least S/p solutions. So after
setting x1 to maximize the number of solutions returned by the algorithm, the number of
solutions in the remaining (n− 1)-variable system is at least S1 = S/p− α · pn−1. Similarly,
after setting x1 and x2 appropriately, the number of solutions in the remaining system on
n− 2 variables is at least

S2 = S1/p− α · pn−2 = S/p2 − α · pn−2 − α · pn−2 = S/p2 − 2α · pn−2.

After setting x1, . . . , xi for i = 1, . . . , n, we are inductively guaranteed that the number of
remaining solutions in the system is at least

Si = Si−1/p− α · pn−i = S/pi − α · i · pn−i.

For i = n− 2 logp(1/ε), the number of solutions remaining is at least

εpn/pi − α · i · pn−i ≥ ε · p2 logp(1/ε) − α · np2 logp(1/ε) ≥ (ε− αn) · 1/ε2.

For α = ε/(2n), the number of solutions remaining after setting x1, . . . , xi is at least
1/ε2 · (ε/2) ≥ 1/(2ε), i.e., the number is non-zero. Therefore the algorithm returns a solution,
if there are at least εpn solutions. J

4 From Counting k-SAT to Counting Roots to Polynomials of
O(1)-Degree

Reminder of Theorem 4. Let q be a prime power and ε > 0 be arbitrarily small. There
is an O(qεn)-time deterministic reduction from #k-SAT instances with n variables to the
problem of counting roots to a Fq-polynomial of degree q(k/ε)O(k) with n variables.

Imagining q and k as fixed constants, and ε as a tiny parameter, we obtain a 2O(εn) time
reduction from #k-SAT on n variables to counting roots of an Fq-polynomial on n variables
of degree poly(1/ε).

Proof. Let ε > 0 be arbitrarily small. We are given a k-CNF formula F in n variables
x1, . . . , xn, and we want to reduce it to a single low-degree polynomial. We will in fact reduce
the counting problem for F to a (sub-exponential) number of calls to counting roots of a
single low-degree polynomial.

First, by the Sparsification Lemma [25, 11] (the counting version of which appears
in [15]), we may assume without loss of generality that the k-CNF formula F has at most
m ≤ (k/ε)O(k)n clauses, with 2εn-time overhead.

Second, we can express F as a system of m polynomial equations in the obvious way,
where each equation contains at most k variables (and therefore each equation has degree at

SOSA 2018

6:10 Counting Solutions to Polynomial Systems via Reductions

most k). For all i = 1, . . . , n, add the degree-two equations xi · (1− xi) = 0 to the system
(these equations simply force all solutions to be Boolean). Call the overall system of m+ n

equations G, and note the number of solutions to G equals the number of SAT assignments
to F .

Arbitrarily partitionG into εn subsystems of equationsG1, . . . , Gεn, where each subsystem
has at most (k/ε)O(k) equations. Our next move is to write each Gj as a single polynomial
over the finite field Fq. More precisely, given that Gj contains the t = (k/ε)O(k) equations

p1(x1, . . . , xn) = 0, . . . , pt(x1, . . . , xn) = 0,

define the (q − 1)(k/ε)O(k)-degree polynomial

Pj(x1, . . . , xn) := 1−
t∏
i=1

(1− pi(x1, . . . , xn)q−1).

Note that for all (a1, . . . , an) ∈ Fnq , Pj(a1, . . . , an) = 0 if and only if pi(a1, . . . , an) = 0 for
each i with 1 ≤ i ≤ t. Furthermore, since each pi has at most k variables, there are at most
kt variables in Pj . So by repeatedly applying the identity xqi = xi over Fq, it takes no more
than qO(kt) ≤ q(k/ε)O(k) time to express the polynomial Pj as a sum of monomials, for all
j = 1, . . . , εn.

Finally, we wish to exactly count the number of solutions to the system

P1(x1, . . . , xn) = 0, . . . , Pεn(x1, . . . , xn) = 0 (4)

where each Pj has (k/ε)O(k) variables and degree at most q(k/ε)O(k). Here, we reason
similarly to the earlier approximate counting algorithm (namely, the reduction of Theorem 3),
except instead of using small-biased sets of size polynomial in n, we simply use all qεn possible
linear combinations of the Pj ’s to exactly count.

For every β ∈ Fεnq , suppose we count the number of zeroes to the polynomial

Qβ(x1, . . . , xn) :=
εn∑
j=1

βj · Pj(x1, . . . , xn)

and suppose we count the number of solutions to the polynomial Rβ := 1−Qβ . Note for all
β, the degree of Qβ is at most q(k/ε)O(k). We want to show that a linear combination of
these O(qεn) zero-counts will tell us the number of solutions to the original k-CNF F .

Suppose (a1, . . . , an) ∈ Fnq is a solution to the system G. Then it is also a solution to
the system (4). Hence Pj(a1, . . . , an) = 0 for all j, and therefore Qβ(a1, . . . , an) = 0 for all
β ∈ Fεnq . That is, (a1, . . . , an) is a zero for all qεn polynomials Qβ , and is never a zero for
any Rβ .

On the other hand, if (a1, . . . , an) ∈ Fnq is not a solution to G, then Pj(a1, . . . , an) 6= 0
for some j. So we can think of each Qβ(a1, . . . , an) as the inner product of the vector β
with a fixed non-zero vector. Therefore in this case, Qβ(a1, . . . , an) = 0 for exactly qεn/q
polynomials Qβ , and Rβ(a1, . . . , an) = 0 for exactly qεn/q polynomials Rβ .

Combining these observations, we conclude that

(total number of zeros to all Qβ) − (total number of zeros to all Rβ)
qεn

equals the number of solutions to G. So we can solve #k-SAT by making O(qεn) calls to
counting solutions to a single degree-q(k/ε)O(k) polynomial over Fq. (Note that by tweaking
ε slightly, we can write the number of calls as O(2εn).) J

R. R. Williams 6:11

We observe that the proof of Theorem 4 also provides a subexponential-time reduction
from

exact counting for a system of O(n) degree-O(1) equations

to

exact counting for one degree-O(1) equation.

(Referring back to the proof, even if each pi depended on all n variables but had degree only
k, each polynomial Pi would have n variables and degree at most q(k/ε)O(k), so it would
take at most nq(k/ε)O(k) time to expand each Pi into a sum of monomials.) To compare,
Theorem 3 gave a polynomial-time reduction for the respective approximation versions (but
from a degree-k system to a single degree-k polynomial).

4.1 A consequence for fine-grained counting complexity
The reduction method in the proof of Theorem 4 extends nicely to results on the fine-grained
counting complexity of simple polynomial-time problems. Here we demonstrate this claim
on the problem of counting the number of orthogonal pairs among a set of Boolean vectors:

#Orthogonal Vectors (#OV)
Given: vectors v1, . . . , vn, w1, . . . , wn ∈ {0, 1}d
Output: The number of pairs (i, j) such that 〈vi, wj〉 = 0.

Note that #OV is trivially solvable in O(n2d) time, although faster algorithms are known
for certain ranges of d [22, 13]. The detection problem OV (determining if there is at least
one orthogonal pair) is widely studied. Finding a significantly faster algorithm for OV will
already be challenging, as it is known that (for example) a n1.9 · 2o(d) time algorithm for OV
would contradict SETH [34]. A minor variant of OV studies the problem modulo a fixed
prime p:

Orthogonal Vectors Mod p (OVp)
Given: vectors v1, . . . , vn, w1, . . . , wn ∈ Fdp
Decide: Are there i, j such that 〈vi, wj〉 = 0 mod p?

Williams and Yu [35] showed that OVp is apparently much easier than OV for constant
p: it is solvable in O(n · dp−1) time.

One can similarly define #OVp, in which the task is to count the number of i, j such
that 〈vi, wj〉 = 0 mod p. Recently, Dell and Lapinskas [16] show how to use the algorithm
for OVp to approximately compute #OVp efficiently. In particular, they show that for any
ε > 0, given an #OVp instance with number of solutions N , one can output a value v such
that |v −N | ≤ εN in Õ(ε−4n · dp−1) time.

Interestingly, a minor modification of Theorem 4 shows that exactly computing #OVp is
as hard as #OV itself:

Reminder of Theorem 5. Let p be prime, and let ` ∈ [1, d] be an integer that divides d.
There is an Õ(n · `2d/` · p`)-time reduction from #OV with n vectors in d dimensions to p`
instances of #OVp, each with n vectors in `2d/` + 1 dimensions.

SOSA 2018

6:12 Counting Solutions to Polynomial Systems via Reductions

Proof. The idea of the reduction is analogous to Theorem 4, except we need to be slightly
more abstract in our construction. We start with vectors v1, . . . , vn, w1, . . . , wn ∈ {0, 1}d,
and we want to compute #OV on them. Partition the components of all vectors into ` parts,
where each part has d/` components. For each vector vi, let vi,1, . . . , vi,` ∈ {0, 1}d/` be its
decomposition into parts; define vectors wi,j similarly.

For each j = 1, . . . , `, make a 2d/`-bit vector ai,j which has a 1 in the component
corresponding to the d/`-bit vector vi,j , and 0s in all other components. Also for each
j = 1, . . . , `, make a 2d/`-bit vector bi,j which has a 1 for each d/`-bit vector x such that
〈x,wi,j〉 6= 0, and 0s everywhere else. (This is similar to “embedding 3” of Ahle, Pagh,
Razenshteyn and Silvestri [1, Lemma 3].) Taking the vectors

ai := (ai,1, . . . , ai,`) ∈ {0, 1}`2
d/`

, bi := (bi,1, . . . , bi,`) ∈ {0, 1}`2
d/`

,

over all i = 1, . . . , n, we have 〈vi, wj〉 = 0 if and only if 〈ai, bi〉 = 0. Furthermore, notice that
for all j = 1, . . . , `, 〈ai,j , bi,j〉 ∈ {0, 1}, so for all primes p and for all j, we have 〈ai,j , bi,j〉 = 0
if and only if 〈ai,j , bi,j〉 = 0 mod p.4

We now build 2p` instances of #OVp as follows. For every β ∈ F`p, construct the 2n
vectors

aβi = (β1ai,1, . . . , β`ai,`), bi := (bi,1, . . . , bi,`),

and let Nβ be the number of pairs (aβi , bi′) which are orthogonal modulo p, for all i, i′ =
1, . . . , n. Also construct

cβi = (1, β1ai,1, . . . , β`ai,`), di := (1, bi,1, . . . , bi,`),

and let Mβ be the number of pairs (cβi , di′) which are orthogonal modulo p. Our algorithm
for #OV outputs the quantity∑

β∈p`

(Nβ −Mβ)/p`.

It is easy to see that this reduction has the desired running time and number of oracle
calls. We need to show that the reduction outputs the correct number of orthogonal pairs.
For an orthogonal pair vi, wj in the original instance, we know that 〈ai, bj〉 = 0, and therefore
〈ai,j , bi,j〉 = 0 for all j. So for every vector β, 〈aβi , bj〉 = 0 mod p as well. That is, every
orthogonal pair vi, wj is counted p` times in the sum

∑
β(Nβ −Mβ).

For an non-orthogonal pair vi, wj , we know that 〈ai,j , bi,j〉 6= 0 for some j. In particular,
recalling that all 〈ai,j , bi,j〉 are either 0 or 1, we have that the `-dimensional vector

abi,j = (〈ai,1, bi,1〉, . . . , 〈ai,`, bi,`〉)

is not the all-zero vector over Fp. Observing that

〈aβi , bj〉 = 〈β, abi,j〉 mod p

and

〈cβi , dj〉 = 1 + 〈β, abi,j〉 mod p,

it follows that there are exactly p`−1 choices of β for which 〈aβi , bj〉 = 0 mod p, and p`−1

choices of β for which 〈cβi , dj〉 = 0 mod p. Therefore every non-orthogonal pair has a net
contribution of zero to the sum

∑
β(Nβ −Mβ)/p`. J

4 Note [1] use the fact that 〈ai, bi〉 ∈ {0, 1, . . . , `} to give a non-trivial inapproximability result for
computing the maximum inner product between two vector sets.

R. R. Williams 6:13

Setting ` := dε logp(n)e for tiny ε > 0, we obtain:

Reminder of Corollary 6. Let ε > 0 be sufficiently small. There is an Õ(n1+ε ·pO(c/ε))-time
reduction from #OV with n vectors in c logn dimensions to nε instances of #OVp, each
with n vectors in O(pc/ε log(n)) dimensions.

Therefore an algorithm for counting orthogonal-mod-2 pairs in n1.9 · 2o(d) time would
yield a similar algorithm for counting orthogonal pairs, refuting SETH.

Acknowledgements. I am grateful to the Simons Institute at UC Berkeley for inviting me
to the workshop on “Proving and Using Pseudorandomness” in Spring 2017. There, I got a
chance to think more carefully about the ideas in the approximate counting algorithm. I
also thank the reviewers of SOSA for some helpful comments, and Holger Dell for telling me
about his work on approximate counting; the conversation prompted me to work out the
details for Theorem 5.

References
1 Thomas Dybdahl Ahle, Rasmus Pagh, Ilya P. Razenshteyn, and Francesco Silvestri. On

the complexity of inner product similarity join. In Tova Milo and Wang-Chiew Tan, edit-
ors, Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, PODS 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages
151–164. ACM, 2016. doi:10.1145/2902251.2902285.

2 Miklós Ajtai and Avi Wigderson. Deterministic simulation of probabilistic constant depth
circuits. Advances in Computing Research, 5:199–222, 1989.

3 Noga Alon and Jehoshua Bruck. Explicit constructions of depth-2 majority circuits
for comparison and addition. SIAM J. Discrete Math., 7(1):1–8, 1994. doi:10.1137/
S0895480191218496.

4 Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple construction of
almost k-wise independent random variables. Random Struct. Algorithms, 3(3):289–304,
1992. doi:10.1002/rsa.3240030308.

5 Yossi Azar, Rajeev Motwani, and Joseph Naor. Approximating probability distributions
using small sample spaces. Combinatorica, 18(2):151–171, 1998. doi:10.1007/PL00009813.

6 Andrej Bogdanov and Emanuele Viola. Pseudorandom bits for polynomials. SIAM J.
Comput., 39(6):2464–2486, 2010. doi:10.1137/070712109.

7 Andrej Bogdanov and Emanuele Viola. Pseudorandom bits for polynomials. SIAM J.
Comput., 39(6):2464–2486, 2010. doi:10.1137/070712109.

8 Mark Braverman. Polylogarithmic independence fools AC0 circuits. J. ACM, 57(5):28:1–
28:10, 2010. doi:10.1145/1754399.1754401.

9 Jehoshua Bruck and Roman Smolensky. Polynomial threshold functions, acˆ0 functions,
and spectral norms. SIAM J. Comput., 21(1):33–42, 1992. doi:10.1137/0221003.

10 Jin-yi Cai, Xi Chen, Richard J. Lipton, and Pinyan Lu. On tractable exponential
sums. In Der-Tsai Lee, Danny Z. Chen, and Shi Ying, editors, Frontiers in Algorithmics,
4th International Workshop, FAW 2010, Wuhan, China, August 11-13, 2010. Proceed-
ings, volume 6213 of Lecture Notes in Computer Science, pages 148–159. Springer, 2010.
doi:10.1007/978-3-642-14553-7_16.

11 Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. A duality between clause
width and clause density for SAT. In 21st Annual IEEE Conference on Computational
Complexity (CCC 2006), 16-20 July 2006, Prague, Czech Republic, pages 252–260. IEEE
Computer Society, 2006. doi:10.1109/CCC.2006.6.

SOSA 2018

http://dx.doi.org/10.1145/2902251.2902285
http://dx.doi.org/10.1137/S0895480191218496
http://dx.doi.org/10.1137/S0895480191218496
http://dx.doi.org/10.1002/rsa.3240030308
http://dx.doi.org/10.1007/PL00009813
http://dx.doi.org/10.1137/070712109
http://dx.doi.org/10.1137/070712109
http://dx.doi.org/10.1145/1754399.1754401
http://dx.doi.org/10.1137/0221003
http://dx.doi.org/10.1007/978-3-642-14553-7_16
http://dx.doi.org/10.1109/CCC.2006.6

6:14 Counting Solutions to Polynomial Systems via Reductions

12 Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfiab-
ility of small depth circuits. In Jianer Chen and Fedor V. Fomin, editors, Parameterized
and Exact Computation, 4th International Workshop, IWPEC 2009, Copenhagen, Den-
mark, September 10-11, 2009, Revised Selected Papers, volume 5917 of Lecture Notes in
Computer Science, pages 75–85. Springer, 2009. doi:10.1007/978-3-642-11269-0_6.

13 Timothy M. Chan and Ryan Williams. Deterministic apsp, orthogonal vectors, and more:
Quickly derandomizing razborov-smolensky. In Robert Krauthgamer, editor, Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,
Arlington, VA, USA, January 10-12, 2016, pages 1246–1255. SIAM, 2016. doi:10.1137/
1.9781611974331.ch87.

14 Radu Curticapean. Parity separation: A scientifically proven method for permanent weight
loss. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide San-
giorgi, editors, 43rd International Colloquium on Automata, Languages, and Programming,
ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 47:1–47:14. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.47.

15 Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin Wahlen. Exponen-
tial time complexity of the permanent and the tutte polynomial. ACM Trans. Algorithms,
10(4):21:1–21:32, 2014. doi:10.1145/2635812.

16 Holger Dell and John Lapinskas. Fine-grained reductions from approximate counting to
decision. CoRR, abs/1707.04609, 2017. arXiv:1707.04609.

17 Andrej Ehrenfeucht and Marek Karpinski. The computational complexity of (xor, and)-
counting problems. Technical Report TR-90-031, International Computer Science Institute,
Berkeley, 1990. URL: http://www.icsi.berkeley.edu/pubs/techreports/tr-90-033.
pdf.

18 Guy Even, Oded Goldreich, Michael Luby, Noam Nisan, and Boban Velickovic. Approx-
imations of general independent distributions. In S. Rao Kosaraju, Mike Fellows, Avi
Wigderson, and John A. Ellis, editors, Proceedings of the 24th Annual ACM Symposium on
Theory of Computing, May 4-6, 1992, Victoria, British Columbia, Canada, pages 10–16.
ACM, 1992. doi:10.1145/129712.129714.

19 Oded Goldreich. In a world of p=bpp. In Oded Goldreich, editor, Studies in Complexity
and Cryptography. Miscellanea on the Interplay between Randomness and Computation
- In Collaboration with Lidor Avigad, Mihir Bellare, Zvika Brakerski, Shafi Goldwasser,
Shai Halevi, Tali Kaufman, Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan, Luca
Trevisan, Salil Vadhan, Avi Wigderson, David Zuckerman, volume 6650 of Lecture Notes in
Computer Science, pages 191–232. Springer, 2011. doi:10.1007/978-3-642-22670-0_20.

20 Parikshit Gopalan, Adam R. Klivans, Raghu Meka, Daniel Stefankovic, Santosh Vempala,
and Eric Vigoda. An FPTAS for #knapsack and related counting problems. In Rafail
Ostrovsky, editor, IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 817–826. IEEE Computer
Society, 2011. doi:10.1109/FOCS.2011.32.

21 Parikshit Gopalan, Raghu Meka, and Omer Reingold. DNF sparsification and a faster
deterministic counting algorithm. Computational Complexity, 22(2):275–310, 2013. doi:
10.1007/s00037-013-0068-6.

22 Ben Gum and Richard J. Lipton. Cheaper by the dozen: Batched algorithms. In Vipin
Kumar and Robert L. Grossman, editors, Proceedings of the First SIAM International
Conference on Data Mining, SDM 2001, Chicago, IL, USA, April 5-7, 2001, pages 1–11.
SIAM, 2001. doi:10.1137/1.9781611972719.23.

23 Edward A. Hirsch. A fast deterministic algorithm for formulas that have many satisfying
assignments. Logic Journal of the IGPL, 6(1):59–71, 1998. doi:10.1093/jigpal/6.1.59.

http://dx.doi.org/10.1007/978-3-642-11269-0_6
http://dx.doi.org/10.1137/1.9781611974331.ch87
http://dx.doi.org/10.1137/1.9781611974331.ch87
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.47
http://dx.doi.org/10.1145/2635812
http://arxiv.org/abs/1707.04609
http://www.icsi.berkeley.edu/pubs/techreports/tr-90-033.pdf
http://www.icsi.berkeley.edu/pubs/techreports/tr-90-033.pdf
http://dx.doi.org/10.1145/129712.129714
http://dx.doi.org/10.1007/978-3-642-22670-0_20
http://dx.doi.org/10.1109/FOCS.2011.32
http://dx.doi.org/10.1007/s00037-013-0068-6
http://dx.doi.org/10.1007/s00037-013-0068-6
http://dx.doi.org/10.1137/1.9781611972719.23
http://dx.doi.org/10.1093/jigpal/6.1.59

R. R. Williams 6:15

24 Christian Hoffmann. Exponential time complexity of weighted counting of independent
sets. In Venkatesh Raman and Saket Saurabh, editors, Parameterized and Exact Compu-
tation - 5th International Symposium, IPEC 2010, Chennai, India, December 13-15, 2010.
Proceedings, volume 6478 of Lecture Notes in Computer Science, pages 180–191. Springer,
2010. doi:10.1007/978-3-642-17493-3_18.

25 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.
2001.1774.

26 Nathan Linial and Noam Nisan. Approximate inclusion-exclusion. Combinatorica,
10(4):349–365, 1990. doi:10.1007/BF02128670.

27 Daniel Lokshtanov, Ramamohan Paturi, Suguru Tamaki, R. Ryan Williams, and Huacheng
Yu. Beating brute force for systems of polynomial equations over finite fields. In Philip N.
Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 2190–
2202. SIAM, 2017. doi:10.1137/1.9781611974782.143.

28 Michael Luby and Boban Velickovic. On deterministic approximation of DNF. Algorithmica,
16(4/5):415–433, 1996. doi:10.1007/BF01940873.

29 Michael Luby, Boban Velickovic, and Avi Wigderson. Deterministic approximate counting
of depth-2 circuits. In Second Israel Symposium on Theory of Computing Systems, ISTCS
1993, Natanya, Israel, June 7-9, 1993, Proceedings, pages 18–24. IEEE Computer Society,
1993. doi:10.1109/ISTCS.1993.253488.

30 Noam Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 11(1):63–70,
1991. doi:10.1007/BF01375474.

31 Michael O. Rabin. Probabilistic algorithms in finite fields. SIAM J. Comput., 9(2):273–280,
1980. doi:10.1137/0209024.

32 Luca Trevisan. A note on approximate counting for k-dnf. In Klaus Jansen, Sanjeev
Khanna, José D. P. Rolim, and Dana Ron, editors, Approximation, Randomization, and
Combinatorial Optimization, Algorithms and Techniques, 7th International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2004, and
8th International Workshop on Randomization and Computation, RANDOM 2004, Cam-
bridge, MA, USA, August 22-24, 2004, Proceedings, volume 3122 of Lecture Notes in Com-
puter Science, pages 417–426. Springer, 2004. doi:10.1007/978-3-540-27821-4_37.

33 Emanuele Viola. The sum of D small-bias generators fools polynomials of degree D. Com-
putational Complexity, 18(2):209–217, 2009. doi:10.1007/s00037-009-0273-5.

34 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357–365, 2005. doi:10.1016/j.tcs.2005.09.023.

35 Ryan Williams and Huacheng Yu. Finding orthogonal vectors in discrete structures. In
Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages
1867–1877. SIAM, 2014. doi:10.1137/1.9781611973402.135.

36 Virginia Vassilevska Williams, Joshua R. Wang, Richard Ryan Williams, and Huacheng
Yu. Finding four-node subgraphs in triangle time. In Piotr Indyk, editor, Proceedings
of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015,
San Diego, CA, USA, January 4-6, 2015, pages 1671–1680. SIAM, 2015. doi:10.1137/1.
9781611973730.111.

37 Alan R. Woods. Unsatisfiable systems of equations, over a finite field. In 39th Annual
Symposium on Foundations of Computer Science, FOCS ’98, November 8-11, 1998, Palo
Alto, California, USA, pages 202–211. IEEE Computer Society, 1998. doi:10.1109/SFCS.
1998.743444.

SOSA 2018

http://dx.doi.org/10.1007/978-3-642-17493-3_18
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1007/BF02128670
http://dx.doi.org/10.1137/1.9781611974782.143
http://dx.doi.org/10.1007/BF01940873
http://dx.doi.org/10.1109/ISTCS.1993.253488
http://dx.doi.org/10.1007/BF01375474
http://dx.doi.org/10.1137/0209024
http://dx.doi.org/10.1007/978-3-540-27821-4_37
http://dx.doi.org/10.1007/s00037-009-0273-5
http://dx.doi.org/10.1016/j.tcs.2005.09.023
http://dx.doi.org/10.1137/1.9781611973402.135
http://dx.doi.org/10.1137/1.9781611973730.111
http://dx.doi.org/10.1137/1.9781611973730.111
http://dx.doi.org/10.1109/SFCS.1998.743444
http://dx.doi.org/10.1109/SFCS.1998.743444

On Sampling Edges Almost Uniformly
Talya Eden1 and Will Rosenbaum2

1 Tel Aviv University, Tel Aviv, Israel
talyaa01@gmail.com

2 Tel Aviv University, Tel Aviv, Israel
will.rosenbaum@gmail.com

Abstract
We consider the problem of sampling an edge almost uniformly from an unknown graph, G =
(V,E). Access to the graph is provided via queries of the following types: (1) uniform vertex
queries, (2) degree queries, and (3) neighbor queries. We describe a new simple algorithm that
returns a random edge e ∈ E using Õ(n/

√
εm) queries in expectation, such that each edge e is

sampled with probability (1± ε)/m. Here, n = |V | is the number of vertices, and m = |E| is the
number of edges. Our algorithm is optimal in the sense that any algorithm that samples an edge
from an almost-uniform distribution must perform Ω(n/

√
m) queries.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity, F.2.2
Nonnumerical Algorithms and Problems, G.2.2 Graph Theory

Keywords and phrases Sublinear Algorithms, Graph Algorithms, Sampling Edges, Query Com-
plexity

Digital Object Identifier 10.4230/OASIcs.SOSA.2018.7

1 Introduction

Suppose G = (V,E) is a very large graph—too large to store in our local memory. Access to
G is granted in accordance with the standard bounded degree graph query model of Goldreich
and Ron [5] via queries of the following types: (1) sample a uniformly random vertex (vertex
queries), (2) query for the ith neighbor of a vertex v (neighbor queries), and (3) query the
degree of a given vertex1 (degree queries).2 The query access model readily gives access to
uniformly random vertices, but what if we are interested in sampling a uniformly random
edge from E? How many queries are necessary and sufficient?

We describe an Õ(n/
√
εm) time algorithm for sampling an edge in a graph such that

each edge is sampled with almost equal probability. Our main result shows that it is possible
to sample edges from a distribution which has bias at most ε, a notion formalized in the
following definition.

I Definition 1. Let Q be a fixed probability distribution on a finite set Ω. We say that a
probability distribution P is pointwise ε-close to Q if for all x ∈ Ω,

|P (x)−Q(x)| ≤ εQ(x) , or equivalently 1− ε ≤ P (x)
Q(x) ≤ 1 + ε .

If Q = U , the uniform distribution on Ω, then we say that P has bias at most ε.

1 We note that degree queries can be implemented by performing O(log n) neighbor queries per degree
query.

2 One may also consider the more powerful “general graph model” of Parnas and Ron [8] that additionally
allows pair queries. Indeed, our lower bound holds in the general graph model. Interestingly, our tight
upper bound does not require the additional computational power afforded by pair queries.

© Talya Eden and William B.Rosenbaum;
licensed under Creative Commons License CC-BY

1st Symposium on Simplicity in Algorithms (SOSA 2018).
Editor: Raimund Seidel; Article No. 7; pp. 7:1–7:9

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SOSA.2018.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

7:2 On Sampling Edges Almost Uniformly

I Theorem 2. Let G = (V,E) be an arbitrary graph with n vertices and m edges. There
exists an algorithm that given n, 0 < ε < 1

2 and access to vertex, degree, and neighbor queries
returns an edge with probability at least 2/3, such that each returned edge is sampled according
to a distribution P that has bias at most ε. The expected query complexity and running time
of the algorithm are Õ(n/

√
εm).

The strength of the approximation guarantee of the algorithm in Theorem 2 allows us to
obtain the following corollary for sampling weighted edges in graphs.

I Corollary 3. Let G = (V,E) and ε be as in Theorem 2, and let w : E → R be an arbitrary
function. Let P be the distributions on edges induced by the algorithm of Theorem 2. Then∣∣∣ E

e∼P
(w(e))− E

e∼U
(w(e))

∣∣∣ ≤ ε ∣∣∣ E
e∼U

(w(e))
∣∣∣ .

In Section 5, we show that the algorithm of Theorem 2 is essentially optimal, in the
sense that any algorithm which returns an edge from E almost uniformly must use Ω(n/

√
m)

queries. This lower bound applies in the strictly more powerful general graph query model
of Parnas and Ron [8], and even if the algorithm is only required to sample edges from a
distribution that is close to uniform in total variational distance.

1.1 Related work
An algorithm for sampling an edge in a graph almost uniformly was first suggested by [7].
In [7], Kaufman et al. use random edge samples in order to test if a graph is bipartite. In
particular, they devise a subroutine that guarantees that all but a small fraction of the edges
are each sampled with probability Ω(1/m). More recently, in [1], Eden et al. use random
edge sampling as a subroutine in their algorithm for approximating the number of triangles
in a graph. A similar subroutine for random edge sampling is employed in [2], where the
authors use edge sampling to approximate moments of the degree distribution of a graph. In
all of the works [7, 1, 2], the authors avoid the “difficult task of selecting random edges from
the entire graph,” [1] by instead sampling edges from a smaller subgraph.

Our algorithm improves upon and simplifies the edge sampling procedures in the works
cited above. Our approximation guarantee in terms of pointwise distance to uniformity is
strictly stronger than the guarantees of any of these papers. In particular, the previous
subroutines do not return edges with two high degree endpoints in the case of highly irregular
graphs. However, such edges may be of significant interest in practice. Further, the subgraph
sampling strategy used in these subroutines is memory intensive—a fairly large set of vertices
must be sampled (and stored), and a random edge incident to the set is sampled. In contrast,
each query made by our algorithm depends only on a constant number of previous queries.
Thus our algorithm can be implemented using poly-logarithmic space, and can easily be
parallelized.

1.2 Overview of the algorithm
We treat each undirected edge {u, v} as a pair of directed edges, (u, v) and (v, u). For each
vertex u, let d(u) denote its (undirected) degree, and let m =

∑
u∈V d(u) = 2|E| be the

number of directed edges. Consider the following two process for sampling edges:
Process 1 Choose a vertex u uniformly at random, and choose v uniformly from u’s neighbors.

Return (u, v).
Process 2 Choose a vertex u uniformly at random and i uniformly from {1, . . . , n− 1}. If

i ≤ d(u), return (u, v) where v is u’s ith neighbor. Otherwise, fail.

T. Eden and W.Rosenbaum 7:3

In Process 1, each (directed) edge (u, v) is sampled with probability 1/(nd(u)), thus biasing
the sample towards edges originating from vertices with low degrees. Process 2 eliminates
this bias, as each edge is sampled with probability 1/n(n − 1). However, Process 2 only
succeeds with probability m/n(n− 1). We can improve the success probability of Process 2
by sampling i ∈ [θ] for θ < n− 1, with the caveat that some edges incident with high-degree
nodes will never be sampled. The idea of our algorithm is to choose θ =

√
m/ε and sample

edges emanating from high and low degree vertices separately.
We call a vertex v light if d(v) ≤

√
m/ε, and heavy otherwise. Similarly a directed edge

(u, v) is light (resp. heavy) if u is light (resp. heavy). We attempt to sample a light edge by
using the modified Process 2 above with θ =

√
m/ε, and failing if the sampled vertex u is

heavy. Thus, each light edge (u, v) is sampled with probability 1/(n
√
m/ε).

In order to sample a heavy edge we use the following procedure. We first sample a light
edge (u, v) as described above. If v is heavy, we then query for a random neighbor w of v. The
probability of hitting some specific heavy edge (v, w) is dL(v)

n
√

m/ε
· 1

d(v) , where d
L(v) denotes

the number of light neighbors of v. The threshold
√
m/ε is set as to ensure that for every

heavy vertex, at most an ε-fraction of its neighbors are heavy. It follows that dL(v) ≈ d(v),
and thus each heavy edge (v, w) is chosen with probability roughly 1/(n

√
m/ε).

Our algorithm invokes the procedures for sampling light and heavy edges, each with equal
probability, sufficiently many times to ensure that an edge is returned with large constant
probability. In our analysis, we show that the induced distribution on edges has bias at
most ε.

1.3 Overview of the lower bound

The construction of the lower bound is similar to the lower bound construction of [4]. For an
arbitrary graph G′ on n′ vertices with m′ edges, let G be the graph obtained by adding a
clique on Θ(

√
m′) vertices to G′. Since the clique contains a constant fraction of G’s edges,

any almost-uniform edge sampler must return a clique edge with constant probability. The
probability of sampling a clique vertex is O(

√
m/n), so any algorithm that returns an edge

according to an almost uniform distribution must perform Ω(n/
√
m) queries.

2 Preliminaries

Let G = (V,E) be an undirected graph with n = |V | vertices. We treat each undirected edge
{u, v} in E as pair of directed edges (u, v), (v, u) from u to v and from v to u, respectively.
We denote the (undirected) degree of a vertex v ∈ V by d(v). Thus, the number of (directed)
edges in G is m =

∑
v∈V d(v) = 2|E|. For v ∈ V , we denote the set of neighbors of v by

Γ(v). We assume that each v has an arbitrary but fixed order on Γ(v) so that we may refer
unambiguously to v’s ith neighbor for i = 1, 2, . . . , d(v).

We partition V and E into sets of light and heavy elements depending on their degrees.

I Definition 4. We say that a vertex u is a light vertex if d(u) ≤
√
m/ε and otherwise we

say that it is a heavy vertex. We say that an edge is a light edge if it originates from a
light vertex. A heavy edge is defined analogously. Finally, we denote the sets of light and
heavy vertices by L and H respectively, and the sets of light and heavy edges by EL and EH
respectively.

SOSA 2018

7:4 On Sampling Edges Almost Uniformly

Note that for a fixed undirected edge {u, v}, it may be the case that one of the corre-
sponding directed edges, say (u, v), is light while the other, (v, u), is heavy. Specifically, this
will occur if u is a light vertex and v is a heavy vertex.

The algorithms we consider access a graph G via queries. Our algorithm uses the following
queries:
1. Vertex query: returns a uniformly random vertex v ∈ V .
2. Degree query: given a vertex v ∈ V , returns d(v).
3. Neighbor query: given v ∈ V and i ∈ N, return v’s ith neighbor; if i > d(v), this operation

returns fail.
Our lower bounds apply additionally to a computational model that allows pair queries.
4. Pair query: given v, w ∈ V , returns true if (v, w) ∈ E; otherwise returns false.

The (expected) query cost of an algorithm A is the (expected) number of queries that A
makes before terminating. We make no restrictions on the computational power of A except
for the number of queries A makes to G. The query complexity of a task is the minimum
query cost of any algorithm which performs the task.

We will require the following lemma, which gives sufficient conditions for a probability
distribution P to have bias at most ε (recall Definition 1).

I Lemma 5. Let P be a probability distribution over a finite set Ω which satisfies

1− ε ≤ P (x)
P (y) ≤ 1 + ε for all x, y ∈ Ω .

Then P has bias at most ε.

Proof. Suppose P satisfies the hypothesis of the lemma. Then

1− ε ≤ P (x)
P (y) ≤ 1 + ε =⇒ (1− ε)P (y)

U(x) ≤
P (x)
U(x) ≤ (1 + ε)P (y)

U(x) .

Summing the second expression over all y ∈ Ω gives

(1− ε) 1
U(x) ≤

P (x)
U(x) ·

1
U(x) ≤ (1 + ε) 1

U(x) .

The factor of 1/U(x) appears in the middle term because we sum over |Ω| = 1/U(x) terms.
Hence P has bias at most ε. J

3 The Basic Algorithm

We start by presenting our main algorithm – Sample-edge-almost-uniformly– that samples a
random edge in E almost uniformly with high probability. The algorithm is given query
access to G and takes n,m and ε as parameters. For simplicity of presentation, we assume
that m is known precisely. In Section 4, we show that this assumption is unnecessary.

We defer the statement of the lemma and proof regarding the correctness of the algorithm
to the end of the section, and first present the two subroutines used in the algorithm
Sample-light-edge and Sample-heavy-edge, for sampling a uniform light edge and an almost
uniform heavy edge, respectively.

I Lemma 6. The procedure Sample-light-edge performs a constant number of queries and
succeeds with probability |EL| /(n

√
m/ε). In the case where Sample-light-edge succeeds, the

edge returned is uniformly distributed in EL.

T. Eden and W.Rosenbaum 7:5

Algorithm 1 Sample-edge-almost-uniformly(n,m, ε)
1. For i = 1 to q = 10n

(1−ε)
√

εm
do:

a. With probability 1/2 invoke Sample-light-edge(m) and with probability 1/2
invoke Sample-heavy-edge(m).

b. If an edge (u, v) was returned, then return (u, v).
2. Return fail.

Algorithm 2 Sample-light-edge(m)
1. Sample a vertex u ∈ V uniformly at random and query for its degree.
2. If d(u) >

√
m/ε return fail.

3. Choose a number j ∈
[√

m/ε
]
uniformly at random.

4. Query for the jth neighbor of u.
5. If no vertex was returned then return fail. Otherwise, let v be the returned

vertex.
6. Return (u, v).

Algorithm 3 Sample-heavy-edge(m)
1. Sample a vertex u ∈ V uniformly at random and query for its degree.
2. If d(u) >

√
m/ε return fail.

3. Choose a number j ∈
[√

m/ε
]
uniformly at random.

4. Query for the jth neighbor of u.
5. If no vertex was returned or if the returned vertex is light then return fail.

Otherwise, let v be the returned vertex.
6. Sample w a random neighbor of v.
7. Return (v, w).

Proof. Suppose a light vertex u is sampled in Step 1 of the procedure. Then the probability
that we obtain a neighbor of u in Step 4 is d(u)/

√
m/ε. Hence,

Pr[Success] =
∑
u∈L

1
n
· d(u)√

m/ε
= |EL|
n
√
m/ε

.

In any invocation of the algorithm, the probability that a particular (directed) edge e is
returned is 1/(n

√
m/ε) if e is light, and 0 otherwise. Thus, each light edge is returned with

equal probability. J

I Lemma 7. The procedure Sample-heavy-edge performs a constant number of queries and

succeeds with probability in
[
(1− ε) |EH|

n
√

m/ε
, |EH|

n
√

m/ε

]
. In the case where Sample-heavy-edge

succeeds, the edge returned is distributed according to a distribution P that has bias at most
ε.

Proof. Since each v ∈ H satisfies d(v) >
√
m/ε, we have |H| < m/

√
m/ε =

√
εm. For every

vertex v ∈ H, let dL(v) denote the cardinality of Γ(v) ∩ L, the set of light neighbors of v.
Similarly, let dH(v) denote |Γ(v) ∩H|. Thus, dH(v) ≤ |H| <

√
εm < εd(v).

Since dL(v) + dH(v) = d(v) for every v, we have

dL(v) > (1− ε) d(v) . (1)

SOSA 2018

7:6 On Sampling Edges Almost Uniformly

Each vertex v ∈ H is chosen in Step 5 with probability dL(v)/(n
√
m/ε). Therefore, the

probability that e = (v, w) is chosen in Step 6 satisfies

Pr[e is returned] = dL(v)
n
√
m/ε

· 1
d(v) >

(1− ε)
n
√
m/ε

, (2)

where the inequality follows from Equation (1). On the other hand, dL(v) ≤ d(v) implies
that Pr[e is returned] ≤ 1/

(
n
√
m/ε

)
. Finally, we bound the success probability by

Pr[Success] = Pr
[⋃

e∈EH

{e is returned}
]

=
∑

e∈EH

Pr[e is returned] > (1− ε) |EH|
n
√
m/ε

.

The second equality holds because the events {e is returned} are disjoint, while the inequality
holds by Equation (2). J

Assuming that m is known to the algorithm Sample-edge-almost-uniformly, Theorem 2 is
an immediate consequence of the following lemma. In Section 4, we consider the case where
m is not initially known to the algorithm and prove Theorem 2 in its full generality.

I Lemma 8. For any ε satisfying 0 < ε < 1/2, Sample-edge-almost-uniformly returns an
edge with probability at least 2/3. If an edge is returned, then it is distributed according to a
distribution P that has bias at most 2ε.

Proof. We first prove that the induced distribution on edges has bias at most 2ε. By
Lemmas 6 and 7, the probability of successfully returning an edge in Step 1a satisfies

Pr[Success] = 1
2 Pr[Sample-light-edge succeeds] + 1

2 Pr[Sample-heavy-edge succeeds]

>
1
2 ·

|EL|
n
√
m/ε

+ 1
2 ·

(1− ε) |EH|
n
√
m/ε

≥ (1− ε) m

2n
√
m/ε

.

The second inequality holds because |EL| + |EH| = m. Also by Lemmas 6 and 7, the
probability, pe, that a specific edge e is returned satisfies

1− ε
2n
√
m/ε

≤ pe ≤
1

2n
√
m/ε

.

Thus, the distribution on sampled edges satisfies

1− ε ≤ P (e)
P (e′) ≤

1
1− ε ≤ 1 + 2ε , for all e, e′ ∈ E.

Therefore, P has bias at most 2ε by Lemma 5.
We now prove that the algorithm returns an edge with probability at least 2/3. Let χi

be the indicator variable for the event that an edge (u, v) was returned in the ith step of the
for loop of the algorithm. By Lemmas 6 and 7,

Pr[χi = 0 for all i] ≤
(

1− (1− ε)
√
εm

2n

) 10n
(1−ε)

√
εm

< 1/3.

Finally, since every invocation of Sample-light-edge and Sample-heavy-edge takes a constant
number of queries, the query complexity and running time of the algorithm are O(n/

√
εm).

J

T. Eden and W.Rosenbaum 7:7

4 Sampling Edges with Unknown m

In the previous section, we assumed that the value of m (or more specifically,
√
m/ε) was

known to the algorithm. In this section, we argue that such an assumption is unnecessary.
In particular, it is sufficient to have any estimate m̂ ∈ [m, cm] for a fixed constant c. Such
an estimate can be obtained with high probability using Õ(n/

√
m) expected queries by

employing an algorithm of Goldreich and Ron [6].3

I Theorem 9 (Goldreich & Ron [6]). Let G = (V,E) be a graph with n vertices and m

edges. There exists an algorithm that uses Õ(n/
√
m) vertex, degree, and neighbor queries

in expectation and outputs an estimate m̂ of m that with probability at least 2/3 satisfies
m ≤ m̂ ≤ 2m.

Analogues of Lemmas 6 and 7 hold for any estimate m̂ of m, with the threshold between
light and heavy vertices redefined to be

√
m̂/ε. In particular, if m̂ is an overestimate—i.e.,

m̂ > m—then the approximation guarantees of both lemmas are still satisfied. However,
an overestimate results in a smaller success probability (by a factor of

√
m/m̂). It is

straightforward to verify that so long as m ≤ m̂ ≤ 2m, the conclusion of Lemma 8 still
holds (for complete details please see the full version of the paper [3]). Using Lemma 8 and
Theorem 9, we can prove Theorem 2 in its full generality.

Proof of Theorem 2. Let m̂ be an estimate of m. We call m̂ a good estimate if it satisfies
m ≤ m̂ ≤ 2m. By repeating the algorithm of Goldreich & Ron (Theorem 9) O(log(n/ε))
times, then taking m̂ to be the median value reported, a straightforward application of
Chernoff bounds guarantees that m̂ is good with probability at least 1 − ε/2n2. If m̂ is
good, by Lemma 8, calling Sample-edge-almost-uniformly(n, m̂, ε/4) will successfully return
an edge e with probability at least 2/3, and the returned edge is distributed according to a
distribution P which has bias at most ε/2.

Let Q be the distribution of returned edges. If m̂ is not good, we have no guarantee of
the success probability of returning an edge, nor of the distribution from which the edge is
drawn. However, since m̂ is bad with probability at most ε/2n2, for each e we can bound

|Q(e)− U(e)| ≤ |Q(e)− P (e)|+ |P (e)− U(e)| ≤ ε

2n2 + ε

2m ≤
ε

m
= εU(e).

Thus Q has bias at most ε.
We now turn to analyze the expected query cost of the algorithm. By Theorem 9, the

expected query cost of Goldreich and Ron’s algorithm is Õ(n/
√
m). By Lemmas 6 and 7,

the procedures Sample-light-edge and Sample-heavy-edge each perform a constant number of
queries per invocation. Hence, the query cost of the algorithm is O(q) = Õ

(
n/
√
εm̂
)
. If

m̂ is good then q is at most Õ (n/
√
εm), and otherwise it is at most O(n). Since m is good

with probability at least 1− ε/2n2, it follows that the expected query cost is Õ(n/
√
εm). J

5 A Lower Bound

In this section we prove a lower bound on the number of queries necessary to sample an
edge from an almost-uniform distribution over E. Specifically we show that any algorithm

3 An earlier result of Feige [4] would also suffice, but we found the result of Goldreich and Ron simpler to
apply.

SOSA 2018

7:8 On Sampling Edges Almost Uniformly

A that samples an edge almost uniformly must perform Ω (n/
√
m) queries, even if A is

given m. Thus, the algorithm we present is asymptotically optimal (up to poly-logarithmic
factors). Further our lower bound applies to (1) strictly weaker approximation to the uniform
distribution (by total variational distance), and (2) to algorithms which are additionally
allowed “pair queries” at unit cost.

We first recall the definition of the total variational distance between two distributions.

I Definition 10. Let P and Q be probability distributions over a finite set Ω. We denote
the total variational distance or statistical distance between P and Q by

distTV(P,Q) = 1
2 ‖P −Q‖1 = 1

2
∑
x∈Ω
|P (x)−Q(x)| .

Observe that if P and Q are pointwise ε-close, then distTV(P,Q) ≤ ε, but the converse is
not true in general.

I Theorem 11. Let ε < 1/2 be fixed and suppose A is an algorithm that performs q = q(n,m)
vertex, degree, neighbor, or pair queries and with probability at least 2/3 returns an edge
e ∈ E sampled according to a distribution P over E. If for all G = (V,E), P satisfies
distTV(P,U) < ε, then q = Ω(n/

√
m).

Proof. The result is trivial if m = Ω(n2), so we assume that m = o(n2). Suppose there
exists an algorithm A that performs t queries and with probability at least 2/3 returns an
edge sampled from a distribution P satisfying distTV(P,U) ≤ ε. Let G′ be an arbitrary
graph, and let n′ and m′ denote the number of vertices and edges, respectively, in G′. Let K
be a clique on k =

√
2m′ nodes. Let G = G′ ∪K be the disjoint union of G′ and K, and

let VK and EK denote the vertices and edges of K in G. Thus G has n = n′ + k nodes,
m > 2m′ edges, and EK contains at least m/2 edges. The remainder of the proof formalizes
the intuition that since A makes relatively few queries, it is unlikely to sample vertices in
VK . Thus A must sample edges from EK with probability significantly less than 1/2.

Assume that the vertices are assigned distinct labels from [n] uniformly at random,
independently of any decisions made by the algorithm A. Let q1, . . . , qt denote the set of
queries that the algorithm performs, and let a1, . . . , at denote the corresponding answers.
We say that a query-answer pair (qi, ai) is a witness pair if (1) qi is a degree query of v ∈ VK ,
or (2) qi is a neighbor query for some v ∈ Vk, or (3) qi is a pair query for some (v, w) ∈ EK .
For i ∈ [t] let NWi denote that event that (q1, a1), . . . , (qi, ai) are not witness pairs, and let
NW = NWt. Let AK be the event that A returns some edge e ∈ EK . Since distTV(P,U) < ε,
we must have |PrP [AK]− PrU [AK]| ≤ ε. Since |EK | ≥ m/2, we have PrU [AK] ≥ 1/2, hence

Pr
P

[Ak] ≥ 1
2 − ε. (3)

The law of total probability gives

Pr
P

[AK] = Pr
P

[NW] · Pr
P

[AK | NW] + Pr
P

[NWc] · Pr
P

[AK | NWc] , (4)

where NWc denotes the complement of the event NW.
Claim. PrP [AK | NW] = o(1).
Proof of Claim. Suppose the event NW occurs, i.e., A does not observe a witness pair after

t queries. Thus, if A returns an edge e = (u, v) ∈ EK , it cannot have made queries
involving u or v. We can therefore bound

Pr
P

[AK | NW] ≤ |EK |
1

(n− 2t)2 ≤
m

2(n− 2t)2 ≤
2m
n2 .

T. Eden and W.Rosenbaum 7:9

The first inequality holds because the identities of any u, v ∈ VK are uniformly distributed
among the (at least) n − 2t vertices not queried by A. The second inequality holds
assuming t < n/4. The claim follows from the assumption that m = o(n2).

Combining the result of the claim with equations (3) and (4) gives

1
2 − ε ≤ Pr

P
[Ak] = Pr

P
[NW] ·Pr

P
[AK | NW] + Pr

P
[NWc] ·Pr

P
[AK | NWc] ≤ Pr

P
[NWc] + o(1) . (5)

We bound PrP [NWc] by

Pr[NWc] = Pr

⋃
i≤t

{(qi, ai) is the first witness pair}

=
∑
i≤t

Pr[(qi, ai) is a witness pair | NWi−1]

≤
∑
i≤t

2k
n− 2i ≤

4kt
n
≤ t4

√
2m
n

.

Combining this bound with (5) and solving for t gives 2
3
(1

2 − ε− o(1)
)

n
4
√

2m
< t . The factor

of 2/3 is because A returns an edge with probability at least 2/3. Thus, t = Ω(n/
√
m), as

desired. J

Acknowledgments. We are very grateful to Dana Ron and Oded Goldreich for valuable
discussions and comments.

References
1 Talya Eden, Amit Levi, Dana Ron, and C. Seshadhri. Approximately counting triangles in

sublinear time. SIAM J. Comput., 46(5):1603–1646, 2017. doi:10.1137/15M1054389.
2 Talya Eden, Dana Ron, and C. Seshadhri. Sublinear time estimation of degree distribution

moments: The degeneracy connection. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian
Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages,
and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs,
pages 7:1–7:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/
LIPIcs.ICALP.2017.7.

3 Talya Eden and Will Rosenbaum. On sampling edges almost uniformly. CoRR,
abs/1706.09748, 2017. arXiv:1706.09748.

4 Uriel Feige. On sums of independent random variables with unbounded variance and
estimating the average degree in a graph. SIAM J. Comput., 35(4):964–984, 2006.
doi:10.1137/S0097539704447304.

5 Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. In Frank Thom-
son Leighton and Peter W. Shor, editors, Proceedings of the Twenty-Ninth Annual ACM
Symposium on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages
406–415. ACM, 1997. doi:10.1145/258533.258627.

6 Oded Goldreich and Dana Ron. Approximating average parameters of graphs. Random
Struct. Algorithms, 32(4):473–493, 2008. doi:10.1002/rsa.20203.

7 Tali Kaufman, Michael Krivelevich, and Dana Ron. Tight bounds for testing bipar-
titeness in general graphs. SIAM J. Comput., 33(6):1441–1483, 2004. doi:10.1137/
S0097539703436424.

8 Michal Parnas and Dana Ron. Testing the diameter of graphs. Random Struct. Algorithms,
20(2):165–183, 2002. doi:10.1002/rsa.10013.

SOSA 2018

http://dx.doi.org/10.1137/15M1054389
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.7
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.7
http://arxiv.org/abs/1706.09748
http://dx.doi.org/10.1137/S0097539704447304
http://dx.doi.org/10.1145/258533.258627
http://dx.doi.org/10.1002/rsa.20203
http://dx.doi.org/10.1137/S0097539703436424
http://dx.doi.org/10.1137/S0097539703436424
http://dx.doi.org/10.1002/rsa.10013

A Simple PTAS for the Dual Bin Packing Problem
and Advice Complexity of Its Online Version∗

Allan Borodin1, Denis Pankratov2, and Amirali Salehi-Abari3

1 University of Toronto, Toronto, Canada
bor@cs.toronto.edu

2 University of Toronto, Toronto, Canada
denisp@cs.toronto.edu

3 Faculty of Business and IT, University of Ontario Institute of Technology,
Oshawa, Canada
abari@uoit.ca

Abstract
Recently, Renault (2016) studied the dual bin packing problem in the per-request advice model
of online algorithms. He showed that given O(1/ε) advice bits for each input item allows approx-
imating the dual bin packing problem online to within a factor of 1 + ε. Renault asked about the
advice complexity of dual bin packing in the tape-advice model of online algorithms. We make
progress on this question. Let s be the maximum bit size of an input item weight. We present
a conceptually simple online algorithm that with total advice O

(
s+logn
ε2

)
approximates the dual

bin packing to within a 1 + ε factor. To this end, we describe and analyze a simple offline PTAS
for the dual bin packing problem. Although a PTAS for a more general problem was known prior
to our work (Kellerer 1999, Chekuri and Khanna 2006), our PTAS is arguably simpler to state
and analyze. As a result, we could easily adapt our PTAS to obtain the advice-complexity result.

We also consider whether the dependence on s is necessary in our algorithm. We show that if s
is unrestricted then for small enough ε > 0 obtaining a 1+ε approximation to the dual bin packing
requires Ωε(n) bits of advice. To establish this lower bound we analyze an online reduction that
preserves the advice complexity and approximation ratio from the binary separation problem
due to Boyar et al. (2016). We define two natural advice complexity classes that capture the
distinction similar to the Turing machine world distinction between pseudo polynomial time
algorithms and polynomial time algorithms. Our results on the dual bin packing problem imply
the separation of the two classes in the advice complexity world.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases dual bin packing, PTAS, tape-advice complexity

Digital Object Identifier 10.4230/OASIcs.SOSA.2018.8

1 Introduction

Given a sequence of items of weights w1, . . . , wn and m bins of unit capacity, the dual bin
packing problem asks for the maximum number of items that can be packed into the bins
without exceeding the capacity of any bin.1 The search version of this problem is to find a
good packing. In the online version of this problem, the items are presented one at a time in

∗ Research is supported by NSERC.
1 This terminology is somewhat unfortunate, because the dual bin packing problem is not the dual to the

natural integer programming formulation of the bin packing problem. For some early results on the
latter see [1, 10].

© Allan Borodin, Denis Pankratov, and Amirali Salehi-Abari;
licensed under Creative Commons License CC-BY

1st Symposium on Simplicity in Algorithms (SOSA 2018).
Editor: Raimund Seidel; Article No. 8; pp. 8:1–8:12

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SOSA.2018.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

8:2 PTAS and Online Advice Complexity of the Dual Bin Packing Problem

some adversarial order and the algorithm needs to make an irrevocable decision into which
(if any) bin to pack the current item. The dual bin packing problem has a substantial history
in both the offline and online settings starting with Coffman et al. [14]. The performance
of the online algorithm is measured by its competitive ratio; that is, the worst-case ratio
between the value of an offline optimal solution and the value of the solution obtained by
the algorithm. It is known that the online dual packing problem does not admit a constant
competitive ratio even for randomized algorithms [8, 11]. The assumption that the online
algorithm does not see the future at all is quite restrictive and in many cases impractical.
It is often the case that some information about the input sequence is known in advance,
e.g., its length, the largest weight of an item, etc. An information-theoretic way of capturing
this side knowledge is given by the tape-advice model [3]. In this model, an all powerful
oracle that sees the entire input sequence creates a short advice string. The algorithm uses
the advice string in processing the online nodes. The main object of interest here is the
tradeoff between the size of advice and the competitive ratio of an online algorithm. Often,
a short advice string results in a dramatic improvement of the best competitive ratio that is
achievable by an online algorithm. Of course, a short advice string can be computationally
difficult to obtain since the oracle is allowed unlimited power.

A related advice model is the per-request advice model [13]. In this model, prior to seeing
the ith input item, the algorithm receives the ith advice string. Unlike the tape-advice
model, the overall length of advice is always lower bounded by n in this model. Both of
these advice models have recently received considerable attention in the research community
(see Boyer et al [5] for an extensive survey on this topic). Recently, Renault [16] studied
the dual bin packing problem in the per-request advice model. He designed an algorithm
that with 1 bit of advice per request achieves a 3/2 competitive ratio. He also showed that
with O(1/ε) bits of advice per request it is possible to achieve a 1 + ε competitive ratio.2
In [16] Renault explicitly asked, as an open problem, to analyze the advice complexity of
the dual bin packing problem in the tape advice model. In this paper, we make progress on
the advice complexity needed for achieving a (1 + ε) competitive ratio for the online dual
bin packing problem. Specifically, let s be the maximum bit size of a weight of an input
item. In particular, the overall input size is O(ns) bits. We present an online algorithm that
with O(s+logn

ε2) bits of advice achieves a (1 + ε) competitive ratio for the dual bin packing
problem. Note that it is trivial to achieve optimality with n log2 m advice bits by specifying
for each input item into which bin it should be placed. When stated in the tape advice model,
Renault’s bound for a (1 + ε) competitive ratio is Θ(n/ε). Our advice bound for achieving a
(1 + ε) approximation is exponentially smaller for the regime of constant ε and s = O(logn).
When the n item weights have s = n bits of precision, we show that the dependence on s is
necessary by exhibiting an Ωε(n) lower bound on the advice necessary to achieve a (1 + ε)
approximation.

Our main result heavily relies on a simple polynomial time approximation scheme (PTAS)
for the dual bin packing problem, which constitutes the technical core of this paper. Dual
bin packing is a special case of the multiple knapsack problem (MKP). In the MKP, each of
the n items is described by its weight (number in (0, 1]) and its value (an integer). There are
m knapsacks each with their own capacity. The goal is to pack a subset of items such that

2 Renault states the approximation as 1/(1 − ε) whereas we will use (1 + ε) which is justified since
1/(1 − ε) ≤ 1 + ε for all ε ≤ 2/3. Also without loss of generality, we will sometimes say that the
approximation is 1 + Θ(ε) since our advice bounds are asymptotic and we can replace ε by ε/c for some
suitable c.

A. Borodin, D. Pankratov, and A. Salehi-Abari 8:3

all items fit into the knapsacks without violating weight constraints and the total value of
packed items is as large as possible. In the uniform MKP, capacities of the bins are equal,
and, are taken to be 1 without loss of generality. Thus, the dual bin packing problem can be
seen as the uniform MKP with all values being 1. It is known [9] that the dual bin packing,
and consequently the MKP, is strongly NP-hard even for m = 2, which effectively rules out
an FPTAS for these problems. This is in contrast to the standard knapsack problem and the
makespan problem for a fixed number of machines where FPTAS are possible. Significant
progress in the study of the MKP was made by Kellerer [15] who showed that the uniform
MKP admits a PTAS. Subsequently, Chandra and Khanna [9] gave a PTAS for the general
MKP. Clearly, these results also give PTAS algorithms for the dual bin packing problem.
However, the PTAS algorithms provided by Kellerer, and Chekuri and Khanna, are relatively
complicated algorithms with a technically detailed analysis of correctness. Our goal is to
provide a simple online advice algorithm for the dual bin packing problem based on a simpler
PTAS for the dual bin packing problem . Thus, as a first step, we provide a simpler PTAS
and analysis for the case of the dual bin packing problem. In the second step, we use the
simplified PTAS to derive our result for the tape advice-complexity of the online dual bin
packing. One of the key steps in our PTAS is a dynamic programming algorithm for the
dual bin packing problem with few distinct weights instead of the IP solver as in Kellerer’s
PTAS or the LP solver as in Chekuri and Khanna. This dynamic programming algorithm is
essentially the same as the one used in the solution of the makespan problem with a bounded
number of different processing times. Our PTAS and its analysis are self-contained and easy
to follow. Our work highlights one of the important aspects of simple algorithms, namely,
they are usually easier to modify and adapt to other problems and situations. In particular,
we are able to easily adapt our simple PTAS to the setting of online tape-advice algorithms.

2 Preliminaries

The dual bin packing instance is specified by a sequence of n item weights w1, w2, . . . , wn
and m ∈ N bins, where wi ∈ (0, 1]. The goal is to pack a largest subset of items into m bins
such that for each bin the total weight of items placed in that bin is at most 1. The problem
can be specified as an integer program as follows (notation [n] stands for {1, . . . , n}):

max.
n∑
i=1

m∑
j=1

xij

subj. to
n∑
i=1

xijwi ≤ 1 for all j ∈ [m]

m∑
j=1

xij ≤ 1 for all i ∈ [n]

xij ∈ {0, 1} for all i ∈ [n], j ∈ [m]

The online First Fit algorithm FF constructs a solution by processing items in the given
order w1, w2, . . . , wn and placing a given item into the first bin into which it fits. First Fit
Increasing algorithm FFI first orders the items by increasing weight. Let σ : [n]→ [n] be the
corresponding permutation. Then FFI runs FF on the items in the order given by σ, i.e.,
wσ(1) ≤ wσ(2) ≤ · · · ≤ wσ(n). It is easy to see that FF has an unbounded approximation (i.e.,
competitive) ratio whereas Coffman et al [14] show that FFI has a 4/3 approximation ratio

SOSA 2018

8:4 PTAS and Online Advice Complexity of the Dual Bin Packing Problem

for the dual packing problem. Note that the weights only enter the above integer program
as constraints and are not part of the objective function. Thus, it is easy to see that the
items in an optimal solution are, without loss of generality, a prefix of wσ(1), wσ(2), . . . , wσ(n)
packed into appropriate bins.

Throughout this paper we shall always write n to mean the number of input items, m
the number of bins, and s the maximum bit size of an input item (s can be thought of as the
“word size” of a computer, on which the given input sequence should be processed).

An online algorithm ALG is said to achieve a competitive ratio c for a maximization
problem if there exists a constant α such that for all input sequences I we have OPT(I) ≤
cALG(I) + α, where ALG(I) is the value of the objective that the algorithm achieves on I
and OPT(I) is the value achieved by an offline optimal solution. If α ≤ 0, we say that ALG
achieves a strict competitive ratio c.

3 A Simple PTAS for the Dual Bin Packing Problem

Fix ε > 0. In what follows, for simplicity we shall assume that ε is “nice”, i.e., 1/ε is an
integer, mε is an integer, etc. We note that an arbitrary small nice ε can always be found.
Let S = {i | wi ≤ ε} be the set of small input items, and let L = {i | wi > ε} be the set of
large input items. The goal is to pack as many items from S ∪ L into m bins as possible.
Our first observation is that if the FFI algorithm fills m bins (i.e., does not allow any more
items to be packed) using only small items then it already achieves a 1 + ε approximation.

I Lemma 1. Suppose that when the FFI algorithm terminates, it has filled all bins with
items of weight at most ε. Then FFI achieves 1 + ε approximation ratio on this instance.

Proof. If FFI packs all items then it clearly finds an optimal solution. Suppose that FFI
rejects some items. Let w be the smallest weight of a rejected item. Thus the total remaining
free space among all m bins is < wm in the FFI packing. Thus, OPT can pack at most
m− 1 more items, since it can only add items of weight ≥ w. Let N be the number of items
packed by FFI. Then we have

OPT
FFI <

N +m

N
≤ m/ε+m

m/ε
= 1 + ε,

where the second inequality follows from N ≥ m/ε, since the FFI packing uses only items of
weight ≤ ε. J

Thus, the whole difficulty in designing a PTAS for this problem lies in the handling
of large items. If FFI terminates before packing all of S, then the condition of Lemma 1
holds and hence from now on, we consider the case when FFI packs all of S. In this case
an optimal solution is to pack all of S together with some subset of smallest items from L.
The strategy for our algorithm is to pack a largest subset F of L that still leaves enough
room to pack all of S. This means that w(F) ≤ m−w(S), but we also want to pack all of S
efficiently. This can be guaranteed by leaving slightly more room while packing F . Namely,
w(F) ≤ m(1− ε)− w(S) guarantees that all of S can be packed efficiently after packing F .

I Lemma 2 (Kellerer [15]). Suppose that we have a packing of F ⊆ L such that w(F) ≤
m(1 − ε) − w(S). Then running FFI with the packing of F as a starting point results in
packing all of S.

Proof. Initially, we have w(F) ≤ m(1 − ε) − w(S) ≤ m(1 − ε). Thus, by the pigeonhole
principle there is a bin with ≥ ε free space. Thus, we can pack the first item s1 from S. Now,

A. Borodin, D. Pankratov, and A. Salehi-Abari 8:5

we have w(F) ≤ m(1− ε)−w(S) ≤ m(1− ε)−w(s1), i.e., w(F) +w(s1) ≤ m(1− ε). Again,
by the pigeonhole principle there is a bin with ≥ ε free space, so we can pack the second
item from S, and so on. J

I Remark. Note that the argument in the above lemma does not use the increasing property
of FFI. Therefore, even FF can be used to complete the partial packing F with all of S.

The next lemma shows that the extra “breathing room” that we leave to guarantee an
efficient packing of S does not hurt the approximation ratio.

I Lemma 3. Let F be the largest subset of L that can be packed into m bins with total weight
≤ m(1− ε)− w(S). Then

OPT
|F |+ |S| ≤ 1 + 3ε.

Proof. If F = L then we are done. Otherwise, let w > ε be the smallest weight of an item
from L \F . Then |S| ≥ w(S)/ε ≥ w(S)/w and |F | ≥ m(1−ε)−w(S)

w . Thus, |F |+ |S| ≥ m(1−ε)
w .

The total free space after packing F ∪ S is ≤ εm. Thus, OPT can pack at most εm
w more

items than |F |+ |S|. Combining all of the above, we have

OPT
|F |+ |S| ≤

|F |+ |S|+ εm/w

|F |+ |S| ≤ m(1− ε)/w + εm/w

m(1− ε)/w = 1
1− ε ≤ 1 + 3ε,

where the last inequality holds for small ε; i.e., ε ≤ 2/3. J

We shall refer to the problem of finding F as in the above lemma as the LFP (“the large
F problem”).
I Remark. Suppose that F is an approximation to the LFP with an additive εm term, i.e.
|F | ≥ OPTLFP − εm. Then an argument similar to the one used in the above lemma shows
that F together with S still gives 1 + Θ(ε) approximation to the original dual bin packing
problem. Thus, it suffices to find a good enough F .

Before we show how to find a good approximation to the LFP, we show how to solve
the dual bin packing optimally in polynomial time when the number of distinct weights of
the input items is fixed. As previously stated, this follows from the known PTAS for the
makespan problem. (See section 10.2 of the Vazirani text [17].)

I Lemma 4. We can solve the dual bin packing problem optimally in time O(n2km) where
k is the number of distinct weights of the input items.

Proof. The algorithm is a simple dynamic programming. Let w1, . . . , wk be the distinct
weights appearing in the input. The entire input sequence can be described by a k-tuple
(n1, . . . , nk), where ni is the number of items of weight wi and n =

∑
i ni. Note that the

number of different possible k-tuples with n items is O(nk). Let K be the set of distinct
k-tuples such that each of its element fits entirely in a single bin, i.e., (`1, . . . , `k) such
that

∑
i `iwi ≤ 1. The dynamic programming table D is going to be indexed by the

number of available bins m′ and a possible k-tuple (`1, . . . , `k) such that 0 ≤ `i ≤ ni.
The value D[(`1, . . . , `k),m′] is going to indicate the maximum number of items that can
be packed from the input sequence described by the state (`1, . . . , `k) in m′ bins. Let
L(`1, . . . , `k) = {(`′1, . . . , `′k) | ∀i 0 ≤ `′i ≤ `i}. An optimal solution to the subproblem indexed
by (`1, . . . , `k) and m′ consists of a packing of some element from L into a single bin, and
packing the remaining input items into m′ − 1 bins:

D[(`1, . . . , `k),m′] = max
(`′1,...,`′k)∈K∩L(`1,...,`k)

∑
i

`′i +D[(`1 − `′1, . . . , `k − `′k),m′ − 1].

SOSA 2018

8:6 PTAS and Online Advice Complexity of the Dual Bin Packing Problem

Algorithm 1 Our PTAS for the dual bin packing.
procedure Dual Bin Packing PTAS(w1 ≤ · · · ≤ wn,m, ε)

Let S = {i | wi ≤ ε}
if FFI(S,m) packs < |S| items then return FFI(S,m)
Let L′ = {|S| + 1, . . . , |S| + `} be the indices of the largest subset of L such that

w(L′) ≤ m(1− ε)− w(S)
Let k = `/(mε)
Let w̃ denote new weights where items with indices {|S|+ (i− 1)mε+ 1, . . . , |S|+ imε}

all receive weight w|S|+imε
Use the algorithm of Lemma 4 to obtain a packing of items F ′ with modified weights w̃
Regard F ′ as a packing with the original weights
Run FF on S with the packing of F ′ as a starting point

return the resulting packing

The base case is given by the states where either m′ = 0 or
∑
i `i = 0, in which case we

cannot pack any items. The overall runtime of this algorithm is O(n2km) since the dynamic
programming table has O(nkm) entries and each entry can be computed in time O(nk) with
appropriate preprocessing of the input data. As usual, this dynamic program can be easily
modified to return the actual packing rather than the number of packed items. J

Let L′ be the subset of the smallest items from L such that |L′| is as large as possible
subject to w(L′) ≤ m(1 − ε) − w(S). We would like to find F by running the dynamic
programming algorithm on L′. Unfortunately, L′ can have too many distinct inputs. The
idea is to group items of L′ into few groups depending only on ε, reassign all weights of
elements within a single group to the weight of the largest element in that group, and run
the dynamic programming algorithm on the new problem instance. Then, we will need to
argue that the resulting solution is an additive εm approximation to the LFP.

Let ` = |L′|. We can assume ` > m otherwise there is a trivial way to pack ` items
into m bins. Assume for simplicity that mε is an integer and that k = `/(mε) is also an
integer. Then, we split L′ into k groups of mε elements each. Let wj1 ≤ wj2 ≤ · · · ≤ wj` be
the weights of elements in L′. Define Li to be the ith group consisting of items of weights
wj1+(i−1)mε , . . . , wjimε . Reassign the weights of elements in Li to be wjimε . Let w̃ denote the
modified weights. Thus, we get an instance with k distinct weights, where k = `/(mε). Note
that ` ≤ m/ε since we are dealing with large items ≥ ε. We conclude that k ≤ 1/ε2. Thus,
we can solve this instance in time O(n2/ε2

m) by Lemma 4. Let F ′ denote this solution. Let
F denote an optimal solution to LFP with the original weights. Then, we have the following.

I Lemma 5. F ′ is feasible with respect to weights w and |F ′| ≥ |F | − εm.

Proof. Since F ′ is feasible with weights w̃ and w̃ ≥ w, we immediately conclude that F ′ is
feasible with respect to w. Rather than directly showing |F ′| ≥ |F | − εm, we show how to
construct a set F ′′ from F such that |F ′′| ≥ |F | − εm and F ′′ is feasible with respect to w̃.
This will prove the lemma, since F ′ is a maximum cardinality set that satisfies the feasibility
constraints (i.e., |F ′| ≥ |F ′′|). To construct such F ′′, we can simply drop all items from
F ∩ L1 and replace all items from F ∩ Li by arbitrary items from Li−1 for i ≥ 2. Note that
|F ′′| = |F \ L1| ≥ |F | − εm. Moreover, F ′′ is feasible with respect to w̃ since we are always
replacing large weight items by smaller weight items. J

A. Borodin, D. Pankratov, and A. Salehi-Abari 8:7

This completes the argument that approximately solving the LFP using the reassigned
weights and the dynamic programming followed by FFI on small items gives a 1 + Θ(ε)
approximation. The running time of the dynamic programming is O(n2/ε2

m). One can
run FFI in O(n logn + nm) time. The overall running time of our PTAS algorithm is
O(n2/ε2

m+ n logn), which is clearly polynomial when ε is fixed. Algorithm 1 describes this
PTAS.

Summarizing, in this section we proved the following theorem.

I Theorem 6. Algorithm 1 is a PTAS for the dual bin packing problem.

4 Advice Complexity of the Online Dual Bin Packing Problem for
Bounded Bit Size of Input Items

In this section, we consider the online version of the dual bin packing problem in the tape-
advice model. Let s be the maximum bit-size of an input item weight. Then the input
bit-length is O(sn). Based on the PTAS in Algorithm 1, we develop an online algorithm that
achieves 1 + ε approximation to the dual bin packing problem with O

(
s+logn
ε2

)
bits of advice.

Before we prove the main result of this section, we need to modify Lemma 1 to work in the
online setting. Recall that Lemma 1 detects when FFI is already successful enough that
we don’t need to do any extra work to obtain a 1 + ε approximation. An online algorithm
does not have the ability to sort the input items, thus we would like to obtain a version of
Lemma 1 that detects when FF obtains a 1 + ε approximation. The restricted subsequence
first fit (RSFF) algorithm given by Renault [16] is what we need. Let W = w1, . . . , wn be
the sequence of weights given to the online algorithm. For a value η we define Wη to be the
subsequence (wi | wi ≤ η). The RSFF algorithm finds the largest value of η such that FF
packs all items in Wη and then returns FF(Wη). Without loss of generality, we may assume
that η is one of the wi.

I Lemma 7 (Implicit in Renault [16]). If RSFF identifies an η such that η ≤ ε then RSFF
achieves a 1 + ε approximation ratio.

By replacing FFI with RSFF in the first step of Algorithm 1, we obtain the main result
of this section.

I Theorem 8. There is an online algorithm achieving a 1 + Θ(ε) strict competitive ratio
for the dual bin packing problem with O

(
s+logn
ε2

)
bits of advice, where s is the maximum

bit-size of an input item.

Proof. The advice is obtained by slightly modifying the PTAS from Section 3. At first, the
oracle writes down the value of η identified by running RSFF on the input sequence. For
later convenience, we rename η by w̃0. This takes O(s) bits of advice. This is analogous to
running FFI in the original PTAS. Recall that the PTAS creates k ≤ 1/ε2 groups of large
input items Li for i ∈ [k] with the corresponding rounded weights w̃i for i ∈ [k]. The oracle
appends |Li| together with w̃i for i ∈ [k] to the advice string. This completes the specification
of the advice string. The length of the advice string is O(s+ k log |Li|+ ks) = O

(
s+logn
ε2

)
.

It is left to see that with this advice string an online algorithm can compute a 1 + Θ(ε)
approximate solution to the instance of the dual bin packing problem. Observe that if
w̃0 ≤ ε then by Lemma 7 the solution obtained by running FF on all items of weight ≤ w̃0
achieves 1 + ε approximation, since this gives us exactly the packing produced by RSFF.
From now on, we consider the case w̃0 > ε. Then an optimal solution might use large items.

SOSA 2018

8:8 PTAS and Online Advice Complexity of the Dual Bin Packing Problem

Recall that the PTAS creates a solution to the rounded instance encoded by (|L1|, . . . , |Lk|)
and weights (w̃1, . . . , w̃k), replaces this solution with actual weights of the corresponding
items and fills the rest in FF fashion with the rest of the items (see the remark immediately
following Lemma 2). Thus, knowing (|L1|, . . . , |Lk|) and weights (w̃1, . . . , w̃k) from the advice,
our online algorithm can reserve place holders for items in bins according to the dynamic
programming solution. We refer to this space as the preallocated space, and we refer to the
complement of it as the remaining space. For example, if dynamic programming solution says
that bin 1 contains `i items of weight w̃i then the online algorithm reserves `i slots of weight
w̃i in bin 1. The preallocated space in bin 1 is

∑
i `iw̃i and the remaining space in bin 1 is

1−
∑
i `iw̃i. Now, the algorithm is ready to process the items in the online fashion. When

the algorithm receives an input item of weight ≤ ε it packs it in the remaining space in FF
fashion. When the algorithm receives an item of weight ∈ (w̃i−1, w̃i], it packs it into the first
available preallocated slot of weight w̃i. By the construction of advice, we are guaranteed
that when the algorithm is done processing the inputs, all preallocated slots are occupied
and all small items are packed. By Theorem 6 this solution is a 1 + ε approximation. J

5 Advice Complexity of the Online Dual Bin Packing Problem for
General Weights

In this section we show that the online dual bin packing without any restrictions on s requires
Θε(n) advice to approximate OPT within 1 + ε. Observe that the upper bound O(n/ε)
immediately follows from the result of Renault [16] in the per-request advice model. A
somewhat stronger upper bound, (1−Ω(ε))n, follows by observing that the dual bin packing
belongs to the advice complexity class AOC defined by Boyar et al. [6] and then using the
results from [6]. Thus, we only need to prove that in the case of unrestricted s the lower
bound of Ωε(n) holds. For sufficiently small ε, we show a nearly matching lower bound
of (1 − O(ε log(1/ε)))n = Ωε(n) in the tape-advice model. We establish our lower bound
by providing a reduction (that preserves the precision, advice and competitive ratio) from
an online problem known to require a lot of advice to the dual bin packing problem. The
starting point is the binary separation problem defined by Boyar et al. [7].

I Definition 9 (Boyar et al. [7]). The binary separation problem is the online problem with
input I = (n1, y1, . . . , yn) consisting of n = n1 + n2 positive values which are revealed one
by one. There is a fixed partitioning of the set of items into a subset of n1 large items and
a subset of n2 small items, so that all large items are greater than all small items. Upon
receiving an item yi, an online algorithm for the problem must guess if y belongs to the set
of small or large items. After the algorithm has made a guess, it is revealed whether the
guess was correct. The goal is to maximize the number of correct guesses.

Boyar et al. [7] establish a lower bound on the advice needed to achieve competitive ratio
c for the binary separation problem.

I Theorem 10 (Boyar et al. [7]). Assume that an online algorithm solves the binary separation
problem on sequences I = (n1, y1, . . . , yn) where the yi are n bit numbers and does so using
at most b(n) bits of advice while making at most r(n) mistakes. Set α = (n − r(n))/n. If
α ∈ [1/2, 1) then b(n) ≥ (1−H(α))n where H(p) = p log(1/p) + (1− p) log(1/(1− p)).

Moreover, Boyar et al. [7] provide a reduction from the binary separation problem to the
standard bin packing problem to show that achieving competitive ratio < 9/8 requires an
online algorithm to receive Ω(n) bits of advice. A simple adaptation of this reduction allows

A. Borodin, D. Pankratov, and A. Salehi-Abari 8:9

us to derive a similar result for the dual bin packing problem. We present the details below
for completeness.

I Theorem 11. An online algorithm achieving a competitive ratio 1 + ε for the dual bin
packing problem with unrestricted bit size of input weights requires (1−O(ε log(1/ε)))n = Ωε(n)
bits of advice, provided ε < 1/19.

Proof. We show how to reduce the binary separation problem to the dual bin packing
problem while preserving the size of advice and the competitive ratio.

Let ALG be an algorithm for the dual bin packing problem that achieves competitive
ratio c and uses advice b(n). Let I = (n1, (y1, . . . , yn)) be an input to the binary separation
problem. We define ALG′ for solving I as follows. ALG′ constructs an instance of the dual
bin packing problem in the online fashion. It will use decisions and the advice string of ALG
to make decisions about its own inputs yi. Let δmax > δmin > 0 be small enough numbers.
Suppose that we have a strictly decreasing function f : R → (δmin, δmax). ALG′ invokes
ALG with n bins and 2n items. ALG′ constructs input weights to ALG in three phases.
Phase 1 (preprocessing): the first n1 weights are defined as 1/2 + δmin. This is generated

by ALG′ prior to any inputs seen from I.
Phase 2 (online): when yi arrives, ALG′ defines a new input item to ALG of weight 1/2−

f(yi). In this phase ALG′ uses decisions of ALG to handle its own inputs. If ALG
packs the current item into a bin that contains 1/2 + δmin item from phase 1 then ALG′
declares yi to be large. Otherwise, ALG′ declares the item to be small. We shall refer
to 1/2− f(yi) weight items corresponding to truly small (large) yi as small items (large
items).

Phase 3 (post processing): once ALG′ has processed the entire sequence I, it appends
weights 1/2 + f(yi) for all truly small yi from I. We refer to these weights as the
complementary weights of small items.

First observe that OPT for the constructed instance of the dual bin packing packs all 2n
items into n bins: the n1 weights corresponding to the large items can be paired up with the
n1 items from phase 1, and the n2 weights corresponding to the small items can be paired
up with their complementary weights from phase 3 in the remaining n2 = n− n1 bins.

Clearly, the advice complexity and the precision of the input items are preserved by this
reduction. Thus, to finish the argument we need to analyze how many mistakes ALG′ does.
We bound the number of mistakes in terms of the number of items unpacked by ALG. We
define the following variables.

Let p1 be the number of items from phase 1 that were not packed by ALG.
Let `2 be the number of large items from phase 2 that were not packed by ALG.
Let s2 be the number of small items from phase 2 that were not packed by ALG.
Let p3 be the number of items from phase 3 that were not packed by ALG.

The overall number of items that were not packed by ALG is p1 + `2 + s2 + p3 ≤ c−1
c 2n.

Observe that the complementary weights can only be paired up with the corresponding small
item weights, and phase 1 items can only be paired up with large or small phase 2 items.

The number of bins containing phase 1 items is n1 − p1. The number of bins containing
phase 3 items is n2 − p3. Due to the above observations, all these bins have to be distinct.
Thus, the number of bins that do not contain either phase 1 or phase 3 items is p1 + p3. Call
these the leftover bins. The are two types of mistakes that ALG′ can do: (1) it classifies
a large item as being small, and (2) it classifies a small item as being large. Since large
items can only be paired either with phase 1 items or be placed in the leftover bins, type
(1) mistakes occur only when large items are placed in the leftover bins or when large items

SOSA 2018

8:10 PTAS and Online Advice Complexity of the Dual Bin Packing Problem

remain unpacked. There can be at most 2(p1 + p3) large items in the leftover bins. Thus,
ALG′ makes at least g1 := n1 − p1 − 2(p1 + p3) − `2 correct guesses for large items. A
type (2) mistake happens only when a small item is paired up with a phase 1 item. Since
there can be at most n1 − p1 − g1 = 2(p1 + p3) + `2 phase 1 items not paired up with
large items, there can be at most that many type (2) mistakes. Thus, ALG′ makes at
least g2 = n2 − s2 − 2(p1 + p3)− `2 correct guesses for small items. Overall, ALG′ makes
g1 + g2 = n1 + n2− s2− p1− 4(p1 + p3)− 2`2 ≥ n1 +n2− 5(p1 + `2 + s2 + p3) ≥ n− 10 c−1

c n

good guesses. The fraction of good guesses is then n−10(c−1)n/c
n = 10−9c

c . By Theorem 10, it
follows that b(n) ≥ (1−H((10− 9c)/c))n. Observe that (10− 9c)/c ∈ (1/2, 1) provided that
c ∈ (1, 20/19). In particular, if ε is a small positive constant, then achieving a competitive
ratio c = 1 + ε for the dual bin packing problem requires (1 − H((1 − 9ε)/(1 + ε)))n =
(1−H(O(ε)))n = (1−O(ε log(1/ε)))n = Ωε(n) bits of advice. J

All in all, the dual bin packing problem admits short advice in case of s bounded by a
slowly growing function of n, but requires long advice when s is unrestricted. This is akin
to the distinction between the polynomial time vs pseudo-polynomial time in the regular
Turing machine world. One of the conceptual contributions of this paper is a demonstration
that “pseudo-short” advice and “truly short” advice are provably different. To make this
idea precise, we introduce two natural classes of efficient advice problems.

I Definition 12. The class EAC (efficient advice complexity) consists of online problems P
such that an input to P is given by n items, and the advice complexity of achieving 1 + ε

competitive ratio for P is Oε(poly(logn)).
Denoting the maximum bit size of an input item to P by s, we define a superclass WEAC

(weakly efficient advice complexity) of EAC to consist of those online problems P such that
the advice complexity of achieving 1 + ε competitive ratio for P is Oε(poly(logn, s)).

EAC class is defined by analogy with communication complexity where O(poly(logn))
communication is considered efficient (see Babai et al. [2]). WEAC class is also natural. The
advice length bound of algorithms for WEAC problems suggests that the advice can consist
of a short description of combinatorial parameters of a problem (e.g., length of a stream,
index into a stream, which take O(logn) bits to describe) plus a small (polylogarithmic)
number of actual data items from the stream.

In light of the above definitions and the main result of this section and Section 4, the
dual bin packing problem witnesses the following class separation theorem.

I Theorem 13. WEAC6=EAC.

6 Conclusion

We presented a simple PTAS for the dual bin packing problem. Although a PTAS for a more
general multiple knapsack problem was already known, our PTAS is arguably simpler to
state and analyze. Its simplicity helped us to adapt it to the tape-advice model of online
algorithms. We showed that a 1 + ε competitive ratio for the dual bin packing problem
is achievable with O

(
s+logn
ε2

)
bits of tape advice. We showed that the dependence on s

is necessary to obtain such small advice, as the dual bin packing problem requires Ωε(n)
when ε > 0 is small enough, s is unrestricted, and m is part of the input. We introduced
two natural advice complexity classes EAC and WEAC. The conceptual distinction between
the classes WEAC and EAC is similar to the Turing machine world distinction between
pseudo-polynomial time and strongly polynomial time. EAC captures problems that can be

A. Borodin, D. Pankratov, and A. Salehi-Abari 8:11

approximated to within 1 + ε with Oε(poly logn) bits of advice, whereas WEAC captures
problems that can be approximated to within 1 + ε with Oε(poly(logn, s)) bits of advice.
Our results on the dual bin packing problem imply that WEAC 6=EAC.

One immediate question left open by our work is whether there is an small advice
algorithm for small s which requires less advice bits. More specifically, does there exist
a 1 + ε approximation using oε(s) + Oε(logn) advice bits for s = o(n)? In this paper we
exclusively studied the dual bin packing in the regime of obtaining 1 + ε competitive ratio
when ε is small and m is part of the input. Are there sublinear advice algorithms for large
ε, e.g., ε = 1/2? Also, does the dual bin packing admit sublinear advice algorithms when
m is a small constant? It is also interesting to see whether or not results for the dual bin
packing problem can be extended to more general problems such as when bins have different
capacities, and more generally to the multiple knapsack problem, while preserving conceptual
simplicity. Last and perhaps a most important question is whether or not there exist online
algorithms with efficiently computable (i.e., linear or even online computable as in [12, 4])
advice for the dual bin packing problem achieving a constant competitive ratio.

Acknowledgements. We thank the anonymous reviewers, especially reviewer 2, for their
helpful comments.

References
1 Susan F. Assmann, David S. Johnson, Daniel J. Kleitman, and Joseph Y.-T. Leung. On

a dual version of the one-dimensional bin packing problem. J. Algorithms, 5(4):502–525,
1984. doi:10.1016/0196-6774(84)90004-X.

2 Laszlo Babai, Peter Frankl, and Janos Simon. Complexity classes in communication com-
plexity theory. In Proc. of the 27th Symp. on Found. of Comput. Sci., SFCS ’86, pages
337–347, 1986.

3 Hans-Joachim Böckenhauer, Dennis Komm, Rastislav Královič, Richard Královič, and To-
bias Mömke. On the advice complexity of online problems. Algorithms and Computation,
pages 331–340, 2009.

4 Allan Borodin, Denis Pankratov, and Amirali Salehi-Abari. On conceptually simple al-
gorithms for variants of online bipartite matching. In WAOA’17: The 15th workshop on
approximation and online algorithms (To appear), 2017.

5 Joan Boyar, Lene M Favrholdt, Christian Kudahl, Kim S Larsen, and Jesper W Mikkelsen.
Online algorithms with advice: a survey. ACM SIGACT News, 47(3):93–129, 2016.

6 Joan Boyar, Lene M. Favrholdt, Christian Kudahl, and Jesper W. Mikkelsen. The advice
complexity of a class of hard online problems. Theory of Comput. Sys., 2016.

7 Joan Boyar, Shahin Kamali, Kim S. Larsen, and Alejandro López-Ortiz. Online bin packing
with advice. Algorithmica, 74(1):507–527, Jan 2016.

8 Joan Boyar, Kim S. Larsen, and Morten N. Nielsen. The accommodating function: A
generalization of the competitive ratio. SIAM J. on Comput., 31(1):233–258, 2001.

9 Chandra Chekuri and Sanjeev Khanna. A polynomial time approximation scheme for the
multiple knapsack problem. SIAM J. on Comput., 35(3):713–728, 2005.

10 János Csirik and V. Totik. Online algorithms for a dual version of bin packing. Discrete
Applied Mathematics, 21(2):163–167, 1988. doi:10.1016/0166-218X(88)90052-2.

11 Marek Cygan, Lukasz Jez, and Jirí Sgall. Online knapsack revisited. Theory Comput. Sys.,
58(1):153–190, 2016.

12 Christoph Dürr, Christian Konrad, and Marc Renault. On the Power of Advice and Ran-
domization for Online Bipartite Matching. In Proc. of ESA, pages 37:1–37:16, 2016.

SOSA 2018

http://dx.doi.org/10.1016/0196-6774(84)90004-X
http://dx.doi.org/10.1016/0166-218X(88)90052-2

8:12 PTAS and Online Advice Complexity of the Dual Bin Packing Problem

13 Yuval Emek, Pierre Fraigniaud, Amos Korman, and Adi Rosén. Online computation with
advice. Theoretical Computer Science, 412(24):2642–2656, 2011.

14 Edward G. Coffman Jr., Joseph Y.-T. Leung, and D. W. Ting. Bin packing: Maximizing
the number of pieces packed. Acta Inf., 9:263–271, 1978.

15 Hans Kellerer. A polynomial time approximation scheme for the multiple knapsack problem.
In Proc. of RANDOM-APPROX, volume 1671, pages 51–62. Springer, 1999.

16 Marc P Renault. Online algorithms with advice for the dual bin packing problem. Central
Eur. J. of Op. Res., pages 1–14, 2016.

17 Vijay V. Vazirani. Approximation algorithms. Springer, 2001.

Simple and Efficient Leader Election
Petra Berenbrink1, Dominik Kaaser2, Peter Kling3, and
Lena Otterbach4

1 Universität Hamburg, Germany
berenbrink@informatik.uni-hamburg.de

2 Universität Hamburg, Germany
dominik.kaaser@uni-hamburg.de

3 Universität Hamburg, Germany
peter.kling@uni-hamburg.de

4 Universität Hamburg, Germany
otterbach@informatik.uni-hamburg.de

Abstract
We provide a simple and efficient population protocol for leader election that uses O(logn) states
and elects exactly one leader in O

(
n · (logn)2) interactions with high probability and in expec-

tation. Our analysis is simple and based on fundamental stochastic arguments. Our protocol
combines the tournament based leader elimination by Alistarh and Gelashvili, ICALP’15, with
the synthetic coin introduced by Alistarh et al., SODA’17.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity, G.3.16
Stochastic Processes

Keywords and phrases population protocols, leader election, distributed, randomized

Digital Object Identifier 10.4230/OASIcs.SOSA.2018.9

1 Introduction

We consider the leader election problem for population protocols introduced by [4], where
one seeks a simple, distributed protocol that establishes a leader in a system of n initially
identical agents. In this problem, in each round a pair of randomly chosen agents interact.
The interacting agents observe each other’s state and update their own state according to a
simple deterministic rule, which is identical for each agent. A protocol’s quality is measured
by the number of interactions until a unique leader is found and by the number of states per
agent required by the protocol. A key aspect of this model is that a unique leader must be
found eventually. In particular, the protocol may not fail even with negligible probability.

Related Work. We give an overview of recent results in population protocols, with a focus
on the leader election problem. We refer to [6] or the more recent [1] for a general survey on
population protocols.

[4] introduce the population protocol model. They present protocols that stably compute
any predicate definable via Pressburger arithmetic, which includes fundamental distributed
tasks like leader election or consensus. [5, 6] show that predicates stably computable by
population protocols are semi-linear. These early results restrict the number of states per
agent to a constant and focus on what can and cannot be computed (in contrast to what can
be computed efficiently). [8] prove that any population protocol that elects a leader with a
constant number of states requires an expected number of Ω

(
n2) interactions. Under some

natural protocol assumptions (met, as far as we know, by all known population protocols), [1]
© Petra Berenbrink, Dominik Kaaser, Peter Kling, and Lena Otterbach;
licensed under Creative Commons License CC-BY

1st Symposium on Simplicity in Algorithms (SOSA 2018).
Editor: Raimund Seidel; Article No. 9; pp. 9:1–9:11

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SOSA.2018.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

9:2 Simple and Efficient Leader Election

strengthen this lower bound by showing that population protocols using less than 1/2·log logn
states need an expected number of Ω

(
n2/ polylogn

)
interactions to elect a leader (their lower

bound holds also for a broader class of problems).
To beat this polynomial lower bound on the time to elect a leader, recent results consider

population protocols with polylogarithmically many states. [3] present a tournament based
protocol that elects a leader in O

(
n · (logn)3) expected interactions using O

(
(logn)3) states.

This protocol is quite intuitive and simple: Each leader candidate has a counter that is
increased whenever it interacts with another agent. When a leader candidate meets an agent
with a larger counter, it becomes a minion. Minions copy the largest counter seen so far.
The main idea of the analysis is to show that, after O

(
n · (logn)3) interactions, one of the

remaining leaders, say v, has a counter that exceeds any other leader’s counter by Θ(logn).
This head start allows v to broadcast its counter to all other remaining leaders before their
counters catch up.

[1] decrease the number of states to O
(
(logn)2) at the cost of an increased number of

O
(
n · (logn)5.3 · log logn

)
expected interactions and a much more involved protocol. A key

part of their protocol is the use of synthetic coins, which allow agents to access a random bit.
More precisely, each agent has a bit that is flipped at the end of each interaction. One can
show that, after roughly a linear number of interactions, about half of the agents have their
bit set. Thus, by accessing the bit of its interaction partner (which is chosen uniformly at
random), an agent has access to an almost uniformly random bit.

Three very recent, yet unpublished results [7, 2, 9] further improve upon these bounds. [7]
present a protocol that requires O

(
n · (logn)2) interactions in expectation and O

(
(logn)2)

states. [2] reduce the number of states to O(logn) while maintaining the number of required
interactions. Finally, [9] further reduce the number of states to O(log logn), matching the
lower bound mentioned above. All these protocols and analysis are rather involved. In
particular, [2, 9] are based on a phase clock to actively synchronize the behavior of the agents.

Our Contribution. We introduce a natural and simple leader election protocol that elects
a single leader in O

(
n · (logn)2) expected interactions and uses O(logn) states. Our analysis

is simple and based on fundamental stochastic arguments. It combines the tournament based
leader elimination from [3] with the synthetic coin introduced in [1]. Using the synthetic coin,
we initially mark n/ logn agents. Since an agent’s interaction partners are chosen uniformly
at random, this effectively gives each agent access to a (1/ logn)-coin. This allows agents
participating in the tournament to increase their counter only with a probability of 1/ logn.
As a result, we can show that an agent only needs a constant head start to broadcast its
counter to all other remaining leaders before their counters can catch up. Our analysis relies
on a simplified and slightly stronger analysis of the synthetic coin from [1].

Formally, we show the following theorem.

I Theorem 1. With high probability1 and in expectation, the protocol defined in Algorithm 1
elects exactly one leader in O

(
n · (logn)2) interactions. Furthermore, the protocol eventually

reaches and stays in a configuration where exactly one leader contender is left with probability 1.

2 Model and Protocol

We consider a population of n agents2, also referred to as nodes. A population protocol
specifies a set of possible states, the initial state of each agent, and an update rule. The

1 The expression with high probability refers to a probability of 1− n−Ω(1).
2 All our results assume n to be larger than a suitable constant.

P. Berenbrink, D. Kaaser, P. Kling, and L. Otterbach 9:3

(deterministic) update rule is defined from the perspective of a single agent that knows its
own state and the state of its communication partner. All agents start in the same initial
state and use the same update rule. In every round a pair of agents is activated uniformly
at random. In such an interaction the two activated nodes observe each other’s state and
apply the update rule. The goal is to reach a configuration where exactly one agent’s state
labels the agent as a (potential) leader and all other agents know that they are not a leader.
Additionally, we require that every following configuration also have exactly one leader.

Protocol
We start with an informal description of our protocol. Every node has a counter and uses it
to compete with other nodes. In the beginning some nodes will be marked. Leader candidates
only increment their counter if they interact with a marked node. To initially mark a small
fraction of nodes the protocol is split into two phases: the marking phase and the tournament
phase.

Marking Phase. In the first phase, Θ(n/ logn) nodes get marked, see Section 3. To derive
this, each node is equipped with an additional bit, the flip bit, that is flipped at the end of
each interaction. After its first 3 log logn activations, a node starts to study the flip bits
of its interaction partners. It marks itself if and only if all of its next log logn interaction
partners have their flip bits set. We refer to these at most log logn crucial interactions as a
node’s marking trials. After a node’s marking trials, it enters the tournament.

Tournament Phase. The second phase is responsible for electing a unique leader, see
Section 4. At the beginning of its tournament phase every node is a possible leader and
regards itself as a contender. Contenders count the number of their interactions with marked
nodes. Whenever a contender interacts with another agent having a larger counter, it sets its
role to minion. Minions carry the largest counter seen so far. Since the counter values never
decrease we always have at least one contender left (see Lemma 6). The single remaining
contender will be the unique leader.

Below, we summarize the parameters that constitute the state of a node v.
role r(v) ∈ { contender, minion }. Each node starts as a contender.
flip bit f(v) ∈ { 0, 1 }. Initially the flip bit is set to 0. The flip bit will be used to
approximate a random coin which is zero or one with probability 1/2.
marker m(v) ∈ { 0, 1 }. Initially the marker is set to 0 for unmarked. Nodes that mark
themselves after their marking trials set this marker to 1. The marked nodes will be used
in the tournament phase to approximate a random coin with a probability 1/ logn to be
one.
phase p(v) ∈ { marking, tournament }. Each node starts in the marking phase.
counter c(v) ∈ { 0, . . . ,O(logn) }. The counter, initialized to 0, is used in both phases:
In the marking phase to skip the first 3 log logn activations and then count the marking
trials. In the tournament phase, the counter is used to determine the winner of an
encounter.

In the following we assume c(v) to be a variable that may count up to O(logn). Hence, c(v)
can assume O(logn) different values. Each of the parameters role, flip bit, marker, and phase
only doubles the state space. Therefore, the total number of states per node is O(logn).

For the case that all nodes reach the maximal possible counter value before all but one
contender are eliminated, we let contenders with equal counter compete via their flip bits.

SOSA 2018

9:4 Simple and Efficient Leader Election

Algorithm leader-election(node v, node u)
marking phase

if phase p(v) = marking then
if counter c(v) ≥ 3 log logn and flip bit f(u) = 0 then

phase p(v)← tournament; /* leave phase unmarked */
else

increment counter c(v)← c(v) + 1;

if counter c(v) = 4 log logn then
marker m(v)← 1;
phase p(v)← tournament; /* leave phase marked */

tournament phase
if phase p(v) = tournament then

if role r(v) = contender then
if marker m(u) = 1 and counter c(v) ≤ U logn then

increment counter c(v)← c(v) + 1;

if c(v) < c(u) then
role r(v)← minion; /* lose the duel due to the counter */

if r(u) = contender and c(v) = c(u) and f(v) < f(u) then
role r(v)← minion; /* lose the duel due to the flip bit */

update counter c(v)← max { c(u), c(v) }; /* adopt the maximum counter */

flip the flip bit f(v) = 1− f(v);

Algorithm 1 The leader election algorithm from the perspective of a single node v upon an
interaction with communication partner u. Here, U is a large enough constant.

The complete update rule from the viewpoint of a node v interacting with a node u is formally
defined in Algorithm 1. To avoid concurrency issues, we assume that node v operates on
values of node u as they were before the interaction.

3 Analysis of the Marking Phase

In the first part of the analysis, our goal is to prove the following proposition, which states
that after the marking phase, roughly n/ logn nodes are marked. We use this in Section 4 to
prove our main result.

I Proposition 2. With high probability, after 4 lnn interactions Θ(n/ logn) nodes are marked
and all nodes are in the tournament phase.

The proof of Proposition 2 works as follows: A node marks itself if and only if all
communication partners of its log logn marking trials have their bit set. If the bit of an
interaction partner were set with probability 1/2, this would imply that v marks itself with
probability 1/2log logn = 1/ logn and the desired result would follow via Chernoff bounds.
The major difficulty is to show that, when a node starts its marking trials, the probability
that a flip bit is set is close to 1/2. We prove this in Section 3.1. Additionally, we have to
show that not too many nodes start their marking trials before the balancing of the flip
bits has finished. This is done in Section 3.2. The proof of Proposition 2 is finally given in
Section 3.3.

P. Berenbrink, D. Kaaser, P. Kling, and L. Otterbach 9:5

3.1 Concentration of the 1/2-Coin
As described in the overview, the major technical tool to prove Proposition 2 is the following
concentration result for the number of flip bits set:

I Lemma 3. Let a > 0 and consider an interaction t with n · ln(log logn)/2 ≤ t ≤ na. The
number of flip bits that equal zero at the beginning of interaction t lies with probability at
least 1− n−a in (1± 1/ log logn) · n/2.

The flip bit of a node is set if and only if the node attended an odd number of interactions.
Observe that the number of interactions a node attended can be modeled by a balls into
bins game: Nodes correspond to bins and activations to balls. For each interaction, we
throw two balls into two random bins. Nodes with flip bit equal zero correspond to bins
with an even load. Analyzing the number of such bins directly is difficult, since the bins’
loads are correlated. However, we can use the Poisson approximation technique (see, e.g.,
the textbook [11, Chap. 5.4]).

More formally, assume we throw m balls independently and uniformly at random into
n bins. Let Xi be the resulting load of bin i for i ∈ { 1, 2, . . . , n }. Additionally, let Yi for
i ∈ { 1, 2, . . . , n } denote independent Poisson random variables with parameter m/n. We
call (X1, . . . , Xn) the exact case and (Y1, . . . , Yn) the Poisson case. The following well-known
result relates these processes:

I Known Result 1 (Corollary 5.9, [11]). Any event that takes place with probability p in the
Poisson case takes place with probability at most pe

√
m in the exact case.

Recall that we are interested in the number of bins with even load. This can be easily
bounded in the Poisson case:

I Lemma 4. Let a > 0 and Y1, . . . , Yn be independent Poisson random variables, each with
parameter λ ≥ 2. Define α := min {λ, lnn/8 }. The number of variables that are even lies
with probability at least 1− n−a in (1± e−α) · n/2.

Proof. One easily verifies that the probability for Yi to be even is

Pr[Yi is even] = 1
2 ·
(
1 + e−2λ), (1)

see Appendix A. Let the indicator random variable Zi be 1 if and only if Yi is even and 0
otherwise. By construction Z1, . . . Zn are independent 0-1 random variables and Z =

∑n
i=1 Zi

is the number of variables that are even. By Equation (1), E[Z] = n ·
(
1 + e−2λ)/2. Set

δ := e−2α and note that, since λ ≥ max { 2, α }, we have
(
1 + e−2λ) · (1 + δ) ≤ (1 + e−α) and(

1 + e−2λ) · (1− δ) ≥ (1− e−α). Thus, standard Chernoff bounds (Lemma 11) yield

Pr
[
Z ≥ n

2 (1 + e−α)
]
≤ Pr[Z ≥ (1 + δ) · E[Z]] ≤ e−E[Z]δ2/3 ≤ n−a

2 and

Pr
[
Z ≤ n

2 (1− e−α)
]
≤ Pr[Z ≤ (1− δ) · E[Z]] ≤ e−E[Z]δ2/2 ≤ n−a

2 .

(2)

Combining both bounds gives the desired statement. J

Proof of Lemma 3. Fix an interaction t with n · ln(log logn)/2 ≤ t ≤ na and set α :=
min { 2t/n, lnn/8 }. Note that α ≥ ln(log logn). Let X denote the number of nodes that
have their flip bit equal 0. As mentioned above, X also equals the number of bins with an
even load when we throw 2t balls into n bins chosen independently and uniformly at random

SOSA 2018

9:6 Simple and Efficient Leader Election

in the exact case. Let Y be the number of bins with an even load in the Poisson case (that
is, each of the independent n Poisson random variables has parameter λ = 2t/n). By Known
Result 1, we know that for any set A ⊆ { 0, 1, . . . , n } Pr[X ∈ A] ≤ e

√
2t · Pr[Y ∈ A]. Let

A := [0, (1− e−α) · n/2) ∪ ((1 + e−α) · n/2, n]. By Lemma 4, e
√

2t · Pr[Y ∈ A] ≤ n−a. Using
that e−α ≤ 1/ log logn, we get the desired statement. J

3.2 Bounding the Number of Early Marking Trials
By Lemma 3 we know that if a node starts its marking trials after (global) interaction
n · ln(log logn)/2, the fraction of flip bits equal zero in the system is very close to 1/2. In
the following, we bound the number of nodes that start their marking trials earlier.

I Lemma 5. Let a > 0. With probability 1−n−a, at most n/ logn nodes start their marking
trials before the

(
n · ln(log logn)/2

)
-th (global) interaction.

Proof. Fix interaction T0 := n · ln(log logn)/2 and consider the number of nodes that start
their marking trials before T0. We analyze this number using the Poisson approximation
technique.

Performing T0 global interactions corresponds to throwing 2T0 balls. Hence, we consider
independent Poisson random variables Y1, . . . , Yn, each with parameter λ := 2T0/n =
ln(log logn). A node starts its marking trials once it got activated t := 3 log logn times. The
Chernoff bound for Poisson random variables (Lemma 12) gives

Pr[Yi ≥ t] ≤
e−λ(eλ)t

tt
= 1

log logn

(
e ln(log logn)

3 log logn

)3 log logn

≤ 1
log logn

(
1
2

)3 log logn
≤ 1

(logn)3 ,

(3)

where the second inequality follows from ln(x)/x ≤ 1/2 for any x > 0. Now consider
binary random variables Zi that are 1 if and only if Yi ≥ t and let Z :=

∑n
i=1 Zi. It is

E[Z] ≤ n/(logn)3 ≤ n/(2 logn). Lemma 11 implies for δ := 1

Pr
[
Z ≥ n

logn

]
≤ Pr[Z ≥ (1 + δ) · E[Z]] ≤ e−n/(3(logn)3) ≤ e−(a+2) lnn = n−(a+2). (4)

As in the proof of Lemma 3, we can now apply Known Result 1 to get the same guarantee for
the exact case with probability n−a. Therefore, with probability 1− n−a, at most n/ logn
nodes have been activated more than 3 log logn times before the T0-th interaction, finishing
the proof. J

3.3 Proof of Proposition 2
We show that, with high probability, after T := 4n lnn interactions all nodes are in their
tournament phase and at least n · (1− 1/ logn) of them have marking probability Θ(1/ logn).
We conclude that the expected number of marked nodes is Θ(n/ logn) and use Chernoff to
get the same result with high probability.

A node v enters the tournament phase at the latest when it was activated 4 log logn
times. Let N denote the number of interactions in which v was activated at the end of
interaction T . Then E[N] = 2T/n = 8 lnn. Set δ := 1/

√
2 and note that 4 log logn ≤

2 lnn ≤ (1− 1√
2)8 lnn = (1− δ) · E[N]. Hence, Lemma 11 implies

Pr[N ≤ 4 log logn] ≤ e−E[N]·δ2/2 = e−2 lnn = n−2. (5)

P. Berenbrink, D. Kaaser, P. Kling, and L. Otterbach 9:7

A union bound over all nodes yields that, with high probability, all nodes are in the
tournament phase after interaction T .

Lemma 3 implies that at the end of any interaction t with T ≥ t ≥ T0 := n · ln(log logn)/2
the number of flip bits set lies in n− (1± 1/ log logn) · n/2 with probability at least 1− n−3.
Thus, via a union bound over the T − T0 < 4n lnn many interactions in the interval [T0, T],
with high probability the number of flip bits set lies in n− (1± 1/ log logn) · n/2 during the
whole interval [T0, T]. We use E to denote this event. Now consider a node v that has all
of its marking trials during [T0, T] and let Mv be the event that v leaves its marking phase
marked. Using that (1− 1/ log logn)log logn ≥ 1/(2e) and (1 + 1/ log logn)log logn ≤ e we get

1
2e logn ≤ Pr[Mv | E] ≤ e

logn. (6)

By Lemma 5, with high probability there are no more than n/ logn nodes that start their
marking trials before interaction T0. Denote this high probability event with E ′. The two
worst case scenarios are that all or non of the early nodes get marked. Let M be the number
of marked nodes after T interactions. With the above argumentation we obtain

n

6 logn ≤
(
n− n

logn

)
· 1

2e logn ≤ E[M | E , E ′] ≤ n · e

logn + n

logn ≤
4n

logn. (7)

Applying Lemma 11 with δ = 1/4 and δ = 5/6, respectively, yields

Pr
[
M ≥ 5n

logn

∣∣∣∣ E , E ′] ≤ e− n
288 logn and Pr

[
M ≤ n

logn

∣∣∣∣ E , E ′] ≤ e− 25n
432 logn . (8)

Thus, using the law of total probability and the fact that the events E , E ′ happen with high
probability, we get that M ∈ Θ(n/ logn) with high probability, finishing the proof. J

4 Analysis of the Main Algorithm

In the following section we analyze the tournament phase of our protocol. First we show
that, at the beginning of any interaction, at least one node will have the contender role.

I Lemma 6. At the beginning of any interaction, there will be at least one contender.

Proof. Let M = max { c(v) } be the maximum counter value of all nodes. We observe that
from the definition of the protocol in Algorithm 1 it follows that a node’s counter cannot
decrease. We show by an induction over the number of interactions that there always exists
at least one contender which has the largest counter.

Initially, all nodes have the role contender and counter value 0. Therefore the base of the
induction holds. For the induction step consider an arbitrary but fixed interaction between v
and u. W.l.o.g. assume that c(v) ≥ c(u). We distinguish the following two cases, depending
on the status of v and u before the interaction.

Case 1: c(v) = M .
If node v is a contender, it can only become a minion upon interaction with another contender
u with c(u) = M and f(u) = 1 while f(v) = 0. In this case, however, u remains a contender
with maximal counter. It might also happen that the maximal counter value increases to
M + 1 while v still has c(v) = M . In that case, however, u will have c(u) = M + 1 and thus
u will be a contender with maximal counter value.

SOSA 2018

9:8 Simple and Efficient Leader Election

Case 2: c(v) < M .
Since both v and u do not have maximal counter value, the number of contenders having
maximal counters cannot decrease.

Together, these two cases yield the induction step and the lemma follows. J

It is easy to see that the maximum counter values are spread through the system like
messages in the case of push/pull broadcasting (see, e.g., [10]). The following observation is
an adaption of the results for randomized broadcasting algorithms to our setting.

For any interaction t let C(t) and C(t) denote the maximal and minimal counter value of
all nodes after interaction t.

I Observation 7. Fix an interaction t. With probability at least 1−n−3 the maximal counter
is broadcast to all nodes in 4n logn interactions: C(t+ 4n logn) ≥ C(t).

We use this observation to obtain the following corollary.

I Corollary 8. Fix an interaction t. Let Et be the event that C(t + 4n logn) < C(t). We

have Pr
[⋃Θ(n·(logn)2)

t=1 Et
]
≤ 1/n.

Proof. Note that for an interaction t the event Et is precisely the complementary event from
the one characterized in Observation 7. Therefore, Pr[Et] ≤ n−3. The corollary follows from
union bound over the Θ

(
n · (logn)2) interactions. J

From Observation 7 and Corollary 8 we obtain that whenever a contender increments its
counter, after at most 4n logn interactions, all nodes have at least the same value.

I Lemma 9. Let v1, v2 with v1 6= v2 be two contenders which are both in the tournament
phase. With constant probability pL9 = Θ(1) one of the two contenders becomes a minion
after 8n logn interactions.

Proof. W.l.o.g. assume that c(v1) ≥ c(v2). We split the 8n logn interactions into two parts
and show that with constant probability v1 increments its counter in the first part, while v2
does not increment its counter at all in both parts.

In each interaction, the probability that v1 is selected interacts with a marked node is
Θ(1/(n logn)). This follows directly from the number of marked nodes, see Proposition 2.
Let p1 be the probability that v interacts with a marked node in 4n logn interactions. For
the complementary event we get

p1 = 1− p1 =
(

1−Θ
(

1
n logn

))4n logn
= e−Θ(1)

and thus p1 = Θ(1).
Let p2 be the probability that v2 does not interact with a marked node and thus does

not increment its counter in all 8n logn interactions. The numbers of interactions of node v1
and node v2 are not independent, they are negatively correlated. To obtain a lower bound on
p2, we assume that in the worst case v1 does not interact at all. Under this assumption, the
probability that v2 is selected is 2/(n− 1) and thus the probability that v2 does not interact
with a marked node is at least

p2 ≥
(

1− 2
n− 1 ·Θ

(
1

logn

))8n logn
= Θ(1).

P. Berenbrink, D. Kaaser, P. Kling, and L. Otterbach 9:9

From Corollary 8 we obtain that in the second part of the 8n logn interactions v2 will see
a counter value which is as least as large as the counter value of v1 after the first part of the
interactions, with high probability. We use union bound on above probabilities and the result
from Corollary 8 and conclude that with constant probability pL9 ≥ p1 · p2 − 1/n = Θ(1) the
node v2 becomes a minion. J

Together with Lemma 6 and Corollary 8, the above lemma forms the basis for the proof
of our main theorem, Theorem 1. Our main result is restated as follows.

I Theorem 1. With high probability and in expectation, the protocol defined in Algorithm 1
elects exactly one leader in O

(
n · (logn)2) interactions. Furthermore, the protocol eventually

reaches and stays in a configuration where exactly one leader contender is left with probability 1.

Proof. Let v1 and v2 be an arbitrary but fixed pair of contenders. We denote the first
interaction when both v1 and v2 have entered the tournament phase as t0. From Proposition 2
we obtain that with high probability t0 = O(n logn). Starting with interaction t0, we consider
5/ log(1/(1 − pL9)) · logn = Θ(logn) so-called periods consisting of 8n logn interactions
each. More precisely, the i-th period consists of interactions in [ti−1, ti) for 1 ≤ i ≤
5/ log(1/(1− pL9)) · logn, where ti = t0 + i · 8n logn.

From Lemma 9 we know that with constant probability pL9 either v1 or v2 becomes a
minion in each period. Therefore, with constant probability 1− pL9 both nodes v1 and v2
remain contenders in one period. After 5/ log(1/(1 − pL9)) · logn = Θ(logn) periods, the
probability that v1 and v2 both remain contenders is at most 1/n5.

We take the union bound over all n2 pairs of nodes and obtain a probability of at least
1− 1/n3 that from each pair at least one node becomes a minion. From Lemma 6 we know
that we always have at least one contender. Obviously, in any pair of nodes this contender
cannot be the one to become a minion. Together, this implies that we have at least one
contender and after t0 + Θ(logn) · 8n logn = O

(
n · (logn)2) interactions we have exactly

one remaining contender, with high probability. All other nodes become minions with high
probability, which shows the first part of the theorem.

To argue that the claimed run time also holds in expectation, we observe that the
definition of the algorithm includes a backup protocol based on the flip bits. Observe that a
similar approach to use a backup protocol has also been described in [3] and in [7]. Intuitively,
whenever two contenders with the same counter value interact, there is a constant probability
that one of them becomes a minion due to the flip bits. This backup protocol reduces the
number of contenders to one in O

(
n2 logn

)
interactions in expectation. This follows from

the coupon collector’s problem. Since the probability that our main protocol fails and thus
the backup protocol is actually needed is at most O

(
1/n3), we obtain that our result also

holds in expectation.
Finally, to show that the protocol eventually reaches a state where exactly one contender –

the leader – is left, we observe the following. From any state of the system which is reachable
over a sequence of interactions from the initial configuration, it is straight forward to specify
a finite sequence of interactions such that all but one nodes become a minion. That means,
at any time we have a positive probability to reach a stable state within finitely many
interactions, and thus with probability 1 eventually only one contender will be left. J

SOSA 2018

9:10 Simple and Efficient Leader Election

References

1 Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L. Rivest. Time-
Space Trade-offs in Population Protocols. In Proc. SODA, pages 2560–2579, 2017.

2 Dan Alistarh, James Aspnes, and Rati Gelashvili. Space-optimal majority in population
protocols. CoRR, abs/1704.04947, 2017.

3 Dan Alistarh and Rati Gelashvili. Polylogarithmic-Time Leader Election in Population
Protocols. In Proc. ICALP, pages 479–491, 2015.

4 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Com-
putation in networks of passively mobile finite-state sensors. Distributed Computing,
18(4):235–253, 2006.

5 Dana Angluin, James Aspnes, and David Eisenstat. Stably Computable Predicates Are
Semilinear. In Proc. PODC, pages 292–299, New York, NY, USA, 2006.

6 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational
power of population protocols. Distributed Computing, 20(4):279–304, 2007.

7 Andreas Bilke, Colin Cooper, Robert Elsässer, and Tomasz Radzik. Population protocols
for leader election and exact majority with O(log2 n) states and O(log2 n) convergence time.
CoRR, abs/1705.01146, 2017.

8 David Doty and David Soloveichik. Stable leader election in population protocols requires
linear time. CoRR, abs/1502.04246, 2015.

9 Leszek Gasieniec and Grzegorz Stachowiak. Fast Space Optimal Leader Election in Popu-
lation Protocols. CoRR, abs/1704.07649, 2017.

10 Richard Karp, Christian Schindelhauer, Scott Shenker, and Berthold Vöcking. Randomized
Rumor Spreading. In Proc. FOCS, pages 565–574, 2000.

11 Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, 2005.

A Appendix

Let N be the natural numbers including zero.

I Definition 10 (Poisson Random Variable). A discrete Poisson random variable Y with
parameter λ is given by the following probability distribution on N: Pr[Y = k] = e−λλk/k!
for all k ∈ N.

I Lemma 11 (Chernoff Bounds [11] (Th. 4.4, Th. 4.5)). Let Z1, . . . , Zn be independent
Poisson trials such that Pr(Zi) = pi. Let Z =

∑n
i=1 Zi and µL ≤ E[Z] ≤ µU .3 Then,

Pr[Z ≥ (1 + δ)µU] ≤ e−µUδ2/3 for 0 < δ ≤ 1 and
Pr[Z ≤ (1− δ)µL] ≤ e−µLδ2/2 for 0 < δ < 1.

I Lemma 12 (Chernoff for Poisson Variables [11] (Th. 5.4)). Let X be a Poisson random
variable with parameter λ.

If x > λ, then Pr(X ≥ x) ≤ e−λ(eλ)x
xx .

If x < λ, then Pr(X ≤ x) ≤ e−λ(eλ)x
xx .

3 While [11] states these bounds in terms of µ = E[Z], it is easy to see and also mentioned in [11] that
the Chernoff bounds hold also for suitable lower and upper bounds on E[Z].

P. Berenbrink, D. Kaaser, P. Kling, and L. Otterbach 9:11

Proof of Equation (1). Let Y be a Poisson random variable with parameter λ. Using the
Taylor series ex =

∑
k∈N

xk

k! , we obtain

Pr[Y is even] =
∑
k∈N

Pr[Y = 2k] =
∑
k∈N

e−λλ2k

(2k)!

= e−λ

2

(∑
k∈N

λ2k

(2k)! +
∑
k∈N

λ2k

(2k)!

)

= e−λ

2

(∑
k∈N

λ2k

(2k)! +
∑
k∈N

λ2k+1

(2k + 1)! +
∑
k∈N

λ2k

(2k)! −
∑
k∈N

λ2k+1

(2k + 1)!

)

= e−λ

2

(∑
k∈N

λk

(k)! +
∑
k∈N

(−λ)k

(k)!

)

= e−λ

2 (eλ + e−λ)

= 1
2(1 + e−2λ) . J

SOSA 2018

A Simple Algorithm for Approximating the
Text-To-Pattern Hamming Distance∗

Tsvi Kopelowitz1 and Ely Porat2

1 University of Waterloo, Waterloo, Canada
kopelot@gmail.com

2 University of Bar-Ilan, Ramat Gan, Israel
porately@cs.biu.ac.il

Abstract
The algorithmic task of computing the Hamming distance between a given pattern of lengthm and
each location in a text of length n, both over a general alphabet Σ, is one of the most fundamental
algorithmic tasks in string algorithms. The fastest known runtime for exact computation is
Õ(n
√
m). We recently introduced a complicated randomized algorithm for obtaining a 1 ± ε

approximation for each location in the text in O(nε log 1
ε logn logm log |Σ|) total time, breaking a

barrier that stood for 22 years. In this paper, we introduce an elementary and simple randomized
algorithm that takes O(nε logn logm) time.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Pattern Matching, Hamming Distance, Approximation Algorithms

Digital Object Identifier 10.4230/OASIcs.SOSA.2018.10

1 Introduction

One of the most fundamental family of problems in string algorithms is to compute the
distance between a given pattern P of length m and each location in a given larger text T
of length n, both over alphabet Σ, under some string distance metric (See [24, 20, 2, 25, 8,
6, 3, 7, 29, 12, 28, 26, 9, 11, 31, 27, 19, 10, 15, 18, 17, 16, 5, 4, 30]). One of the most useful
distance metrics in this setting is the Hamming Distance of two strings, which is the number
of aligned character mismatches between the strings. Let HAM(X,Y) denote the Hamming
distance of two strings X and Y . Abrahamson [1] showed an algorithm whose runtime is
O(n
√
m logm). The task of obtaining a faster upper bound seems to be very challenging,

and indeed there is a folklore matching conditional lower bound for combinatorial algorithms
based on the hardness of combinatorial Boolean matrix multiplication (see [14]). However,
for constant sized alphabets the runtime is solvable in O(n logm) using a constant number
of convolution computations (which are implemented via the FFT algorithm) [20].

The challenge in beating Abrahamson’s algorithm naturally lead to approximation
algorithms for computing the Hamming distance in this setting, which is the problem
that we consider here and is defined as follows. Denote Tj = T [j, . . . , j + m − 1]. In the
pattern-to-text approximate Hamming distance problem the input is a parameter ε > 0, T ,
and P . The goal is to compute for all locations i ∈ [1, n − m + 1] a value δi such that
(1−ε)HAM(Ti, P) ≤ δi ≤ (1+ε)HAM(Ti, P). For simplicity we assume without loss of generality
that Σ is the set of integers {1, 2, . . . , |Σ|}.

∗ This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No 683064).

© Tsvi Kopelowitz and Ely Porat;
licensed under Creative Commons License CC-BY

1st Symposium on Simplicity in Algorithms (SOSA 2018).
Editor: Raimund Seidel; Article No. 10; pp. 10:1–10:5

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SOSA.2018.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

10:2 A Simple Algorithm for Approximating the Text-To-Pattern Hamming Distance

Karloff in [22] utilized the efficiency of the algorithm for constant sized alphabets to
introduce a beautiful randomized algorithm for solving the pattern-to-text approximate
Hamming distance problem, by utilizing projections of Σ to binary alphabets. Karloff’s
algorithm runs in Õ(nε2) time, and is correct with high probability.

Communication complexity lower bounds

One of the downsides of Karloff’s algorithm is the dependence on 1
ε2 . In particular, if one is

interested in a one percent approximation guarantee, then this term becomes 10000, which
is extremely large for many applications. Remarkably, many believed that beating the
runtime of Karloff’s algorithm is not possible, mainly since there exist qualitatively related
lower bounds for estimating the Hamming distance of two equal length strings (for a single
alignment). In particular, Woodruff [32] and later Jayram, Kumar and Sivakumar [21]
showed that obtaining a (1± ε) approximation for two strings in the one-way communication
complexity model requires sending Ω(1/ε2) bits of information. The lower bounds were
extended to the two-way communication complexity model as well [13].

In [23] we showed that this belief was flawed, by introducing an Õ(nε) time algorithm
that succeeds with high probability. In particular, we proved the following.

I Theorem 1 ([23]). There exists an algorithm that with high probability solves the pattern-
to-text approximate Hamming distance problem and runs in O(nε log 1

ε logn logm log |Σ|)
time.

Our algorithm in [23] turned out to be rather complicated and borrows ideas from sparse
recovery and constructions of specialized families of hash functions.

A simpler algorithm

In this paper we show how to solve the pattern-to-text approximate Hamming distance
problem faster (in terms of logarithmic factors) and simpler. The rest of this paper is devoted
to proving the following theorem.

I Theorem 2 ([23]). There exists an algorithm that with high probability solves the pattern-
to-text approximate Hamming distance problem and runs in O(nε logn logm) time.

2 The Algorithm

For a function h : Σ→ Σ′ and for any string S = s1s2 . . . sk, let h(S) = h(s1)h(s2) . . . h(sk).

Local versus global operations

The operations that our algorithm performs during the approximation of the Hamming
distance at some location j are partitioned into two types. The first type is local operations
which are independent of the computations performed for other locations in T . The second
type is global operations, which are operations that for efficiency purposes are computed
as a batch for all of the alignments in T . In particular, all of the global operations in our
algorithm are to compute HAM(h(Tj), h(P)) where h : Σ →

[2
ε

]
. Such a computation

will make use of the following Theorem (which uses the FFT algorithm; see [20]), and is
summarized in Corollary 4.

T. Kopelowitz and E. Porat 10:3

Algorithm 1 The new algorithm.

ApproxHAM(Tj , P, ε)
1 for i = 1 to c logn
2 do Pick a random h : Σ→ {1, 2, . . . , 2

ε }.
3 compute xi = HAM(h(Tj), h(P))
4 return max1≤i≤c logn{xi}

I Theorem 3. Given a binary text T of size n and a binary pattern P of size m, there exists
an O(n logm) time algorithm that computes for all locations j in T the number of times that
a 1 in Tj is aligned with a 1 in P .

I Corollary 4. Given a text T of size n and a pattern P of size m both over alphabet Σ,
there exists an O(|Σ| · n logm) time algorithm that computes HAM(Tj , P) for all locations j
in T .

The algorithm for Corollary 4 is implemented by considering a separate binary text and
binary pattern for each character σ ∈ Σ. For character σ in this set, occurrences of σ in T
are assigned to 1, while occurrences of other characters are assigned to 0. On the other hand,
occurrences of σ in P are assigned to 0, while occurrences of other characters are assigned
to 1. Applying Theorem 3 on the binary text and pattern defined by σ enables computing
for every location j the number of times character σ in Tj contributes to HAM(Tj , P). A
summation over all the mismatches for all the characters in Σ completes the computation
of HAM(Tj , P). Since Theorem 3 is applied |Σ| times, the Corollary follows. Notice that
when the algorithm of Corollary 4 is applied, then each location in the text is charged an
O(|Σ| logm) (global) time cost.

The algorithm

With the goal of easing the presentation of our algorithm, we focus on estimating the
Hamming distance between Tj and P , and count the cost of global and local operations for
this location. Since we are interested in algorithms that succeed with high probability (at
least 1− 1

nΘ(1)) then it suffices to show that with high probability the algorithm succeeds at
location j. The pseudo-code for the algorithm is given in Algorithm 1.

Time complexity

Computing the Hamming distance between the projected text and projected pattern in Line 3
takes place by applying the algorithm from Corollary 4 where the alphabet is

[2
ε

]
. Thus, the

total time cost for location j is O(1
ε logn logm), and so the overall time cost for all locations

is O(nε logn logm).

Correctness

Let d = HAM(Tj , P). The goal of the algorithm is to approximate d. Notice that the
expected value of xi is E[xi] = (1− ε

2)d, since each mismatch in the original text and pattern
remains a mismatch after the projection obtained by applying h with probability 1− ε

2 . Thus,

SOSA 2018

10:4 A Simple Algorithm for Approximating the Text-To-Pattern Hamming Distance

E[d− xi] = εd
2 , and so by the Markov inequality,

Pr[xi < (1− ε)d] = Pr[d− xi > εd] ≤ E[d− xi]
εd

= 1
2 .

Since the algorithm returns the largest xi value, the only way in which the algorithm
fails is if all of the xi values are less than (1 − ε)d. Since the choices of the projections is
independent, this happens with probability at most n−c.

References
1 K. Abrahamson. Generalized string matching. In SIAM J. Computing 16 (6), page

1039–1051, 1987.
2 A. Amir, O. Lipsky, E. Porat, and J. Umanski. Approximate matching in the l1 metric. In

CPM, pages 91–103, 2005.
3 Amihood Amir, Yonatan Aumann, Gary Benson, Avivit Levy, Ohad Lipsky, Ely Porat,

Steven Skiena, and Uzi Vishne. Pattern matching with address errors: rearrangement
distances. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006, pages 1221–1229,
2006.

4 Amihood Amir, Yonatan Aumann, Piotr Indyk, Avivit Levy, and Ely Porat. Efficient
computations of l1 and linfinity rearrangement distances. In String Processing and Infor-
mation Retrieval, 14th International Symposium, SPIRE 2007, Santiago, Chile, October
29-31, 2007, Proceedings, pages 39–49, 2007.

5 Amihood Amir, Yonatan Aumann, Oren Kapah, Avivit Levy, and Ely Porat. Approximate
string matching with address bit errors. In Combinatorial Pattern Matching, 19th Annual
Symposium, CPM 2008, Pisa, Italy, June 18-20, 2008, Proceedings, pages 118–129, 2008.

6 Amihood Amir, Estrella Eisenberg, and Ely Porat. Swap and mismatch edit distance. In
Algorithms - ESA 2004, 12th Annual European Symposium, Bergen, Norway, September
14-17, 2004, Proceedings, pages 16–27, 2004.

7 Amihood Amir, Tzvika Hartman, Oren Kapah, Avivit Levy, and Ely Porat. On the cost
of interchange rearrangement in strings. In Algorithms - ESA 2007, 15th Annual European
Symposium, Eilat, Israel, October 8-10, 2007, Proceedings, pages 99–110, 2007.

8 Amihood Amir, Moshe Lewenstein, and Ely Porat. Approximate swapped matching. In
Foundations of Software Technology and Theoretical Computer Science, 20th Conference,
FST TCS 2000 New Delhi, India, December 13-15, 2000, Proceedings., pages 302–311, 2000.

9 Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Polylogarithmic approxi-
mation for edit distance and the asymmetric query complexity. In 51th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las
Vegas, Nevada, USA, pages 377–386, 2010.

10 A. Backurs and P. Indyk. Edit distance cannot be computed in strongly subquadratic time
(unless SETH is false). In Accepted to 56th IEEE Symposium on Foundations of Computer
Science (FOCS), 2015.

11 Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. Approximating edit
distance efficiently. In 45th Symposium on Foundations of Computer Science (FOCS 2004),
17-19 October 2004, Rome, Italy, Proceedings, pages 550–559, 2004.

12 Ayelet Butman, Noa Lewenstein, Benny Porat, and Ely Porat. Jump-matching with errors.
In String Processing and Information Retrieval, 14th International Symposium, SPIRE
2007, Santiago, Chile, October 29-31, 2007, Proceedings, pages 98–106, 2007.

13 Amit Chakrabarti and Oded Regev. An optimal lower bound on the communication com-
plexity of gap-hamming-distance. SIAM J. Comput., 41(5):1299–1317, 2012.

T. Kopelowitz and E. Porat 10:5

14 Raphael Clifford. Matrix multiplication and pattern matching under ham-
ming norm. http://www.cs.bris.ac.uk/Research/Algorithms/events/BAD09/BAD09/
Talks/BAD09-Hammingnotes.pdf. Retrieved August 2015.

15 Raphaël Clifford, Klim Efremenko, Benny Porat, Ely Porat, and Amir Rothschild. Mis-
match sampling. Information and Computation, 214:112–118, 2012.

16 Raphaël Clifford, Klim Efremenko, Ely Porat, and Amir Rothschild. From coding theory to
efficient pattern matching. In Proceedings of the Twentieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2009, New York, NY, USA, January 4-6, 2009, pages 778–
784, 2009. URL: http://dl.acm.org/citation.cfm?id=1496770.1496855.

17 Raphaël Clifford, Klim Efremenko, Ely Porat, and Amir Rothschild. Pattern matching with
don’t cares and few errors. Journal of Computer System Science, 76(2):115–124, 2010.

18 Raphaël Clifford and Ely Porat. A filtering algorithm for k-mismatch with don’t cares. Inf.
Process. Lett., 110(22):1021–1025, 2010. doi:10.1016/j.ipl.2010.08.012.

19 Graham Cormode and S. Muthukrishnan. The string edit distance matching problem
with moves. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, January 6-8, 2002, San Francisco, CA, USA., pages 667–676, 2002.

20 M.J. Fischer and M.S. Paterson. String matching and other products. r.m. karp (ed.),
complexity of computation. In SIAM–AMS Proceedings, vol. 7,, page 113–125, 1974.

21 T. S. Jayram, Ravi Kumar, and D. Sivakumar. The one-way communication complexity of
hamming distance. Theory of Computing, 4(1):129–135, 2008.

22 H. Karloff. Fast algorithms for approximately counting mismatches. In Inf. Process. Lett.
48 (2), pages 53–60, 1993.

23 Tsvi Kopelowitz and Ely Porat. Breaking the variance: Approximating the hamming
distance in 1/ε time per alignment. In IEEE 56th Annual Symposium on Foundations of
Computer Science, FOCS, pages 601–613, 2015.

24 Vladimir Levenshtein. Binary codes capable of correcting spurious insertions and deletions
of ones. In Probl. Inf. Transmission 1, page 8–17, 1965.

25 O. Lipsky and E. Porat. Approximated pattern matching with the l1, l2 and linfinit metrics.
In SPIRE, pages 212–223, 2008.

26 R. Lowrance and R. A. Wagner. An extension of the string-to-string correction problem.
J. of the ACM, pages 177–183, 1975.

27 Benny Porat and Ely Porat. Exact and approximate pattern matching in the streaming
model. In 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2009, October 25-27, 2009, Atlanta, Georgia, USA, pages 315–323, 2009.

28 Benny Porat, Ely Porat, and Asaf Zur. Pattern matching with pair correlation distance. In
String Processing and Information Retrieval, 15th International Symposium, SPIRE 2008,
Melbourne, Australia, November 10-12, 2008. Proceedings, pages 249–256, 2008.

29 Ely Porat and Klim Efremenko. Approximating general metric distances between a pattern
and a text. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2008, San Francisco, California, USA, January 20-22, 2008, pages
419–427, 2008.

30 Ely Porat and Ohad Lipsky. Improved sketching of hamming distance with error correcting.
In Combinatorial Pattern Matching, 18th Annual Symposium, CPM 2007, London, Canada,
July 9-11, 2007, Proceedings, pages 173–182, 2007.

31 Ariel Shiftan and Ely Porat. Set intersection and sequence matching. In String Process-
ing and Information Retrieval, 16th International Symposium, SPIRE 2009, Saariselkä,
Finland, August 25-27, 2009, Proceedings, pages 285–294, 2009.

32 David P. Woodruff. Optimal space lower bounds for all frequency moments. In Proceedings
of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, New
Orleans, Louisiana, USA, January 11-14, 2004, pages 167–175, 2004.

SOSA 2018

http://www.cs.bris.ac.uk/Research/Algorithms/events/BAD09/BAD09/Talks/BAD09-Hammingnotes.pdf
http://www.cs.bris.ac.uk/Research/Algorithms/events/BAD09/BAD09/Talks/BAD09-Hammingnotes.pdf
http://dl.acm.org/citation.cfm?id=1496770.1496855
http://dx.doi.org/10.1016/j.ipl.2010.08.012

Compact LP Relaxations for Allocation Problems∗

Klaus Jansen1 and Lars Rohwedder2

1 Christian-Albrechts-Universität, Kiel, Germany
kj@informatik.uni-kiel.de

2 Christian-Albrechts-Universität, Kiel, Germany
lro@informatik.uni-kiel.de

Abstract
We consider the restricted versions of Scheduling on Unrelated Machines and the Santa
Claus problem. In these problems we are given a set of jobs and a set of machines. Every job j
has a size pj and a set of allowed machines Γ(j), i.e., it can only be assigned to those machines.
In the first problem, the objective is to minimize the maximum load among all machines; in
the latter problem it is to maximize the minimum load. For these problems, the strongest LP
relaxation known is the configuration LP. The configuration LP has an exponential number of
variables and it cannot be solved exactly unless P = NP.

Our main result is a new LP relaxation for these problems. This LP has only O(n3) variables
and constraints. It is a further relaxation of the configuration LP, but it obeys the best bounds
known for its integrality gap (11/6 and 4).

For the configuration LP these bounds were obtained using two local search algorithm. These
algorithms, however, differ significantly in presentation. In this paper, we give a meta algorithm
based on the local search ideas. With an instantiation for each objective function, we prove the
bounds for the new compact LP relaxation (in particular, for the configuration LP). This way,
we bring out many analogies between the two proofs, which were not apparent before.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Linear programming, unrelated machines, makespan, max-min, restric-
ted assignment, santa claus

Digital Object Identifier 10.4230/OASIcs.SOSA.2018.11

1 Introduction

We consider the problem of allocating jobs J to machinesM. A popular variation is the
restricted case, where j ∈ J has a size pj and can only be assigned to Γ(j) ⊆ M. Two
natural objective functions are to minimize the maximum load or to maximize the minimum
load among all machines, where the load of a machine is defined as the sum of the sizes over
the jobs assigned to it. The first objective will be referred to as Makespan and the latter as
Max-min. These problems are special cases of Scheduling on Unrelated Machines and
the Santa Claus problem.

Recent breakthroughs in both problems can be attributed to the study of the exponential
size configuration LP which started with [4]. It was shown for the Max-Min problem that the
LP has an integrality gap of at most 4 [3], which was the first constant factor guarantee there.
Later, Svensson transferred these ideas to the Makespan problem and proved an upper bound
of 33/17 for the integrality gap in this case [11], thereby giving the first improvement over

∗ Research was supported by German Research Foundation (DFG) project JA 612/15-2

© Klaus Jansen and Lars Rohwedder;
licensed under Creative Commons License CC-BY

1st Symposium on Simplicity in Algorithms (SOSA 2018).
Editor: Raimund Seidel; Article No. 11; pp. 11:1–11:19

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SOSA.2018.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

11:2 Compact LPs for Allocation Problems

the classical 2-approximation (see [9]). This has since been improved to 11/6 by us [7]. The
known lower bounds for the approximation ratio assuming P 6= NP are are 3/2 (Makespan) [9]
and 2 (Max-min) [5]. This matches the known instances with the highest integrality gap
for the configuration LP. Such instances can be derived by easy modification of the lower
bounds given in this paper later on. Note that all of the upper bounds mentioned above
are non-constructive, i.e., they do not give an efficient algorithm to compute the integral
solution of the respective quality. A significant amount of research has gone into making
these proofs constructive [10, 2, 8, 1], but this is not the focus of this paper.

In this paper, we show that these upper bounds can already be achieved by a weaker
LP relaxation, which has polynomial size. First, we show a necessary condition for the
existence of a fractional solution of a certain value. Then, we use this condition together
with a local search algorithm similar to those used to prove the bounds for the configuration
LP. This local search algorithm might not terminate in polynomial time; hence the result
is non-constructive. We present the local search algorithms and their analysis in a unified
way for both problems. In previous literature, many similarities between the problems were
hidden by the different presentations of the algorithms. The algorithm in this paper is given
in a natural way like in some physical system and uses much less technical definitions than in
the previous papers. Starting with an arbitrary allocation, jobs are repelled or attracted by
certain machines. This depends for example on whether a machine has too much or too little
load. Based on these rules, they are moved away from machines by which they are repelled
or towards machines by which they are attracted. The allocation eventually converges to
one that has the desired properties. This is also significant change in the technical aspects,
in particular compared to the previous algorithm for Max-min. There, jobs were always
considered in large sets and such a set can only be exchanged altogether for a disjoint set of
jobs. Our approach is more fine-grained by arguing over the jobs individually, which is also
how it was traditionally done in the Makespan case.

One advantage of the small linear program is that it is much simpler to solve. An optimal
solution can be computed directly and efficiently by an LP solver. The configuration LP on
the other hand cannot be solved exactly in polynomial time, unless P=NP (see Appendix A),
and even approximating it requires non-trivial techniques. A detailed description can be
found in [4].

Furthermore, this paper improves the understanding of the configuration LP by pointing
out which properties are necessary and which are not to obtain the currently known bounds
for the integrality gap. This points to aspects of the configuration LP that should be
investigated in order to reduce the bound on the integrality gap further. The compact
linear program we give in this paper works by enforcing some properties of the configuration
LP only on jobs greater than a certain threshold. It is intuitive that the integrality gap
approaches that of the configuration LP as this threshold tends to 0, but it is surprising that
we get the exact same bounds and this even with a rather large threshold.

It is also a direction of further research to investigate if efficient rounding procedures for
the weaker linear program exist, since now it is clear that it has the potential for them.

Notation

Throughout the paper we will encounter numerous occasions, where one inequality (e.g.,
a ≤ b) holds for Makespan objective and the opposite holds for Min-max (e.g., a ≥ b). To
save space, we will write a ≤ (≥) b in that case. The first symbol always refers to the
Makespan objective and the latter one to Max-min.

K. Jansen and L. Rohwedder 11:3

For a set of jobs A ⊆ J , we write p(A) in place of
∑
j∈A pj . For other variables indexed

by jobs, we may do the same. An allocation is a function σ : J →M, where σ(j) ∈ Γ(j) for
all j ∈ J . We write σ−1(i) for the set of all jobs j which have σ(j) = i.

1.1 Linear programming relaxations
All of the LPs presented below do not have an objective function. Instead, they are
parameterized by a value T ∈ [0, n ·maxj∈J pj] and the optimum is the lowest T (Makespan)
or highest T (Max-min) for which the LP is feasible. If the LP can be solved in polynomial
time, such a T can be found in polynomial time using a binary search.

First, we define the allocation polytope, which captures every legal (fractional) allocation
of jobs.

I Definition 1 (Allocation polytope).∑
i∈Γ(j)

xi,j ≥ (≤) 1 ∀j ∈ J (1)

∑
i/∈Γ(j)

xi,j = 0 ∀j ∈ J (2)

xi,j ∈ [0, 1] ∀j ∈ J , i ∈M

Here the variable xi,j specifies if job j is assigned to machine i. Note that it would perhaps
be more intuitive to enforce equality in (1), but this would make certain upcoming arguments
more lengthy than necessary. In general, a solution that does not satisfy equality can be
converted without loss to one that does.

It remains to add constraints that guarantee every machine has a load of at most T
(Makespan) or at least T (Max-min). We give these constraints in an indirect form. This is
to improve comparability between these relaxations. In Section 2 we will give an explicit
version of LPr, which is the polynomial linear program this paper focuses on.

I Definition 2 (Assignment LP). The straight forward method is to ensure for all i ∈ M
that

∑
j∈J pjxi,j ≤ (≥) T holds. This can also be written as

(xi,j)j∈J ∈ {χ ∈ [0, 1]J : pTχ ≤ (≥) T} ∀i ∈M. (3)

This basic relaxation goes back to [9]. For Makespan it has an integrality gap of exactly 2;
for Max-min the integrality gap is unbounded.

I Definition 3 (Configuration LP). For the configuration LP it is required that the assignment
of jobs to a particular machine is a convex combination of so-called configurations (sets of
jobs that do not exceed T in size or have size of at least T), i.e.,

(xi,j)j∈J ∈ conv{χ ∈ {0, 1}J : pTχ ≤ (≥) T} ∀i ∈M. (4)

Note that it is not necessary to require χj = 0 for all j ∈ J with i /∈ Γ(j) (which is typical for
the definition of the configurations), since this is already implied by the allocation polytope.
The common definition of the configuration LP uses an exponential number of variables.
Wiese and Verschae observed that the definition above is equivalent [12]. Clearly these
constraints imply those from the assignment LP. Hence, the configuration LP is the stronger
of the two.

SOSA 2018

11:4 Compact LPs for Allocation Problems

I Definition 4 (LPr). As a natural intermediate between assignment LP and configuration
LP, for a constant r ∈ N0 we propose the following constraint.

(xi,j)j∈J ∈ conv{χ ∈ [0, 1]J : pTχ ≤ (≥) T, χj ∈ {0, 1} if pj · r > T} ∀i ∈M. (5)

To our best knowledge, the cases where 0 < r <∞ have not been considered in literature.

1.2 Other related work

The Graph Balancing problem is the special case of Makespan minimization where
|Γ(j)| = 2 for all j ∈ J . For this problem a strong polynomial size LP relaxation is already
known. This is the assignment LP with the additional constraint that

∑
j∈J :pj>T/2 xi,j ≤ 1

for all i ∈M. It was shown to have an integrality gap of exactly 1.75 for Graph Balancing,
but for arbitrary restrictions it only gives 2 [6]. This LP can be written as the points in the
allocation polytope that satisfy

(xi,j)j∈J ∈ conv{χ ∈ [0,∞)J : pTχ ≤ T and χj ∈ {0, 1} if pj · 2 > T} ∀i ∈M.

In this form we see clearly the similarities to LP2. Interestingly, LP2 remains strong even for
arbitrary restrictions.

1.3 Our contribution

I Theorem 5. For r ≥ 2 there is a linear program with O(nr+1) variables and constraints
(Makespan) or O(nr+2) (Max-min) that is equivalent to LPr, where n = |J |+ |M|.

I Theorem 6. LP2 for Makespan has an integrality gap between 10/6 and 11/6.

I Theorem 7. LP4 for Max-min has an integrality gap between 2.5 and 4.

With some optimization in the Max-min case, we can further reduce the size of LP4 (see
Appendix B).

I Corollary 8. For Makespan (Max-min) objective there is a linear programming relaxation
with O(n3) variables and constraints that approximates the problem with a ratio of 11/6
(respectively, 4).

Notable is that the lower bounds are higher than those known for the configuration LP. There,
the worst instances known give an integrality gap of 2 (Max-min) and 9/6 (Makespan). This
means for LP2 / LP4 we are closer to a full understanding. It also shows that, assuming that
the integrality gap of the configuration LP is indeed the respective lower bound, proving
it will require utilizing constraints that are not already implied by LP2 (Makespan) or LP4
(Max-min).

I Corollary 9. There exists an 11/6-estimation (4-estimation) algorithm for the Makespan
objective (respectively, the Max-min objective).

The estimation algorithm is based on computing the optimum of the relaxation. This
improves on the 11/6 + ε (4 + ε) rate previously known. The error of ε in the previous result
comes from the fact that the configuration LP can only be solved approximately.

K. Jansen and L. Rohwedder 11:5

2 Compact linear program

In this section, we present a polynomial size linear program, which is feasible if and only if
LPr is feasible. Note that in order to meet the claimed size, we need to eliminate unnecessary
variables, which is discussed in 2.1.

For simplicity of notation, define big jobs JB := {j ∈ J : r · pj > T} and small jobs
JS := J \ JB . In the first part, we write an LP for the big jobs and only then deal with the
small ones. We write the set of big configurations as CB(T) = {χ ∈ {0, 1}JB}.

The convexity constraint for LPr implies that (xi,j)j∈JB
∈ conv(CB(T)) for every i ∈M.

In other words, there exist ai,χ ≥ 0 (i ∈M, χ ∈ CB(T)) such that
∑
χ∈CB(T) ai,χ = 1 (∗) for

every i ∈ M and xi,j =
∑
χ∈CB(T) χjai,χ for every i ∈ M, j ∈ J . With this idea in mind,

we construct an LP by using variables ai,χ, the constraint (∗), and the allocation LP where
we substitute every occurrence of xi,j for

∑
χ∈CB(T) χjai,χ.∑

χ∈CB(T)

ai,χ = 1 ∀i ∈M (6)

∑
i∈Γ(j)

∑
χ∈CB(T)

χjai,χ ≥ (≤) 1 ∀j ∈ JB (7)

∑
i/∈Γ(j)

∑
χ∈CB(T)

χjai,χ = 0 ∀j ∈ JB (8)

ai,χ ≥ 0

In the following, we will show how to cope with small jobs. For every j ∈ JS , i ∈M, and
χ ∈ CB(T) we use a variable bj,i,χ that describes how much of j is used on machine i together
with χ. Here bj,i,χ = ai,χ means it is fully used and bj,i,χ = 0 means it is not used at all.

∑
i∈Γ(j)

∑
χ∈CB(T)

bj,i,χ ≥ (≤) 1 ∀j ∈ JS (9)

∑
i/∈Γ(j)

∑
χ∈CB(T)

bj,i,χ = 0 ∀j ∈ JS (10)

∑
j∈JS

pjbj,i,χ ≤ (≥) (T −
∑
j∈JB

pjχj)ai,χ ∀i ∈M, χ ∈ CB(T) (11)

0 ≤ bj,i,χ ≤ ai,χ

2.1 Restricting the variables
We denote by supp(χ) the non-zero components of χ ∈ CB(T). Observe that in the makespan
case, a configuration χ ∈ CB(T) with |supp(χ)| ≥ r cannot be used, i.e., ai,χ = 0 must
hold for a feasible solution. Otherwise, the right hand side of (11) is negative. Hence,
we can throw away such variables and the number of remaining configurations is at most∑r−1

k=0
(
n
k

)
= O(nr−1). It is easy to see that O(nr+1) variables and constraints are left.

For Max-min, we notice that when a configuration χ ∈ CB(T) has |supp(χ)| ≥ r, then
(11) is trivially satisfied. If a configuration χ ∈ CB(T) with |supp(χ)| > r is used, then we
can shift its value to any χ′ ≤ χ (component-wise) where |supp(χ)| = r. Hence, if there
is a feasible solution, then there is also one that uses only configurations χ ∈ CB(T) with
|supp(χ)| ≤ r. This gives a total of O(nr) relevant configurations and thus O(nr+2) variables
and constraints.

SOSA 2018

11:6 Compact LPs for Allocation Problems

2.2 Equivalence to LPr

I Lemma 10. If the compact linear program is feasible, then LPr is feasible.

Proof. Consider a feasible solution a, b. Recall, we have that each machine is assigned a
combination of configurations in CB(T). We will extend these configurations by adding
small jobs to them. For this purpose, define for every i ∈ M and χ ∈ CB(T) a vector
f(i, χ) ∈ [0, 1]J by

f(i, χ)j :=

χj if j ∈ JB ,
bj,i,χ/ai,χ if j ∈ JS and ai,χ > 0,
0 otherwise.

Note that since bj,i,χ ≤ ai,χ, we have f(i, χ)j ∈ [0, 1]. We define the solution x for LPr on
every machine as a convex combination of these vectors, more formally

xi,j :=
∑

χ∈Cr(T)

ai,χ · f(i, χ)j .

It follow directly from the constraints in the compact linear program that x is in the allocation
polytope. Let us verify that x satisfies the convexity constraint for i. Since

∑
χ∈Cr(T) ai,χ = 1,

it is sufficient to show that for every i ∈M, χ ∈ CB(T) with ai,χ > 0,

f(i, χ) ∈ {χ ∈ [0, 1]J : pTχ ≤ (≥) T and χj ∈ {0, 1} if pj · r > T}.

By definition we have f(i, χ)j ∈ {0, 1} if pj · r > T (i.e., j ∈ JB) and using constraint (11)
we find,

pT f(i, χ) =
∑
j∈JB

pjχj+
∑
j∈JS

pjbj,i,χ/ai,χ ≤ (≥)
∑
j∈JB

pjχj+(T−
∑
j∈JB

pjχj)ai,χ/ai,χ = T.J

I Lemma 11. If LPr is feasible, then the compact linear program is feasible.

Proof. Let x be a solution for LPr and define

K = {χ ∈ [0, 1]J : pTχ ≤ (≥) T, χj ∈ {0, 1} if pj · r > T}.

Let i ∈ M. Then by the convexity constraint, there exist (λχ)χ∈K non-negative with∑
χ∈K λχ = 1 and xi,j =

∑
χ∈K λχχj for all j ∈ J .

Let ψ ∈ CB(T) and let K(ψ) ⊆ K denote those χ ∈ K which have χj = ψj for all j ∈ JB .
We define the variables for i and ψ as ai,ψ =

∑
χ∈K(ψ) λχ and bi,j,ψ =

∑
χ∈K(ψ) λχχj for all

j ∈ JS . Note that∑
ψ∈CB(T)

bi,j,ψ =
∑

ψ∈CB(T)

∑
χ∈K(ψ)

λχχj =
∑
χ∈K

λχχj = xi,j .

With that in mind, the constraints except for (11) are straight-forward. Moreover, we show
said constraint as follows.∑

j∈JB

pjψj + 1
ai,ψ

∑
j∈JS

pjbj,i,ψ =
∑
j∈JB

pjψj + 1
ai,ψ

∑
j∈JS

[pj
∑

χ∈K(ψ)

λχχj]

=
∑

χ∈K(ψ)

[λχ
ai,ψ︸ ︷︷ ︸

=1

∑
j∈JB

pj χj︸︷︷︸
=ψj

] +
∑

χ∈K(ψ)

[λχ
ai,ψ

∑
j∈JS

pjχj]

=
∑

χ∈K(ψ)

λχ
ai,ψ

pTχ ≤ (≥) T. J

K. Jansen and L. Rohwedder 11:7

k−1
k

pj · 1
2 ·

k
k−1

k times once k − 1 times

Figure 1 Fractional and integral solution for lower bound (Makespan)

3 Lower bound (Makespan)

Here, we give a lower bound of 5/3 for LP3 (in particular, for the weaker LP2) in the
Makespan case. A similar construction for the Max-min case is given in the appendix.

Let k be an even number and consider an instance with k machines, i.e., k/2 pairs of
machines, and 3k+1 jobs. For each of the k/2 pairs (i1, i2) let there be 6 jobs j with pj = 1/3
and Γ(j) = {i1, i2}. Furthermore let there be one job jB with pjB

= 1 and Γ(jB) =M, i.e.,
it can be assigned anywhere.

Assume toward contradiction that there is a schedule with makespan strictly less than
5/3. jB has to be assigned somewhere and we denote this machine by i. There can be at
most one job of size 1/3 that is assigned to i as well. Hence, 5 jobs of size 1/3 must be
assigned to the other machine in this pair; thus the load on that machine is at least 5/3. A
contradiction.

Next, we show that LP2 is feasible for T = k/(k − 1). For every i ∈M let xi,jB
= 1/k,

i.e., the big job is distributed evenly across all machines. For every other job j, split it across
the two machines it is allowed on. More formally, let xi1,j = xi2,j = 1/2 with {i1, i2} = Γ(j).
Clearly x is in the allocation polytope. Let i ∈M. We need to verify that

(xi,j)j∈J ∈ conv{χ ∈ [0, 1]J : pTχ ≤ k/(k − 1) and χj ∈ {0, 1} if pj · 3 > k/(k − 1)}.

We define one vector for the big job and one for each machine:

χ
(jB)
j :=

{
1 if j = jB ,

0 otherwise,
and χ(i)

j :=
{

1
2 ·

k
k−1 if pj = 1/3 and i ∈ Γ(j),

0 otherwise.

Note that we have pTχ(jB) = pjB
= 1 ≤ k

k−1 = T as well as pTχ(i) = 6 · 13 ·
1
2 ·

k
k−1 = k

k−1 = T .
The integrality constraint is satisfied for jB and since 1/3 · 3 = 1 ≤ k/(k − 1), it is not
necessary for the small jobs. Also, it holds that (xi,j)j∈J = 1/k · χ(jB) + (k − 1)/k · χ(i), as
shown below.

xi,j =

1/k · 1 + (1− 1/k) · 0 = 1/k · χ(jB)

j + (k − 1)/k · χ(i)
j if j = jB ,

1/k · 0 + k−1
k ·

1
2 ·

k
k−1 = 1/k · χ(jB)

j + (k − 1)/k · χ(i)
j if pj = 1/3 and i ∈ Γ(j),

1/k · 0 + (1− 1/k) · 0 = 1/k · χ(jB)
j + (k − 1)/k · χ(i)

j otherwise.

For this instance, we get a gap that approaches 5/3 as k tends to infinity. This construction
does not work for LP4 and higher, since in those cases integrality constraints are enforced

SOSA 2018

11:8 Compact LPs for Allocation Problems

for the jobs of size 1/3 as well. However, similar constructions work when using 10 jobs of
size 1/5, 14 jobs of size 1/7, etc. The lower bound becomes weaker the smaller the size is
chosen, but it always stays strictly above 3/2, the best lower bound for the configuration LP.

4 Proof of integrality gap

The proof for the integrality gap is by using a potentially exponential time approximation
algorithm. The algorithm takes as an input T and returns a solution of value αT , where α
is the bound on the integrality gap, or proves that LP2 (Makespan) or LP4 (Max-min) is
infeasible w.r.t. T .

In 4.1, we prove a criterion for the infeasibility of LPr. In previous literature, for the
configuration LP a similar criterion was derived from its dual. In fact, if r tends to infinity
(i.e., pj · r > T for all j ∈ J), our criterion is equivalent to that one.

In the proofs for the configuration LP, our criterion can replace the previous one in a
straight-forward way and give the integrality gap for LP2 (Makespan) or LP4 (Max-min).

4.1 Criterion for infeasibility
The criterion is derived from the LPr in another equivalent representation and by using
the duality theorem (e.g., unbounded dual implies infeasible primal). For this purpose, we
construct a representation of LPr, where we do not care about its size, but the goal is to
obtain a rather simple dual.

I Lemma 12. LPr is infeasible w.r.t. T if there are y ∈ RM≥0 and z ∈ RJ≥0 with
∑
j∈J zj >

(<)
∑
i∈M yi such that for every i ∈M, χ ∈ [0, 1]J with

1. pTχ ≤ (≥) T ,
2. χj ∈ {0, 1} for every j ∈ J with pj · r > T , and
3. χj = 0 for every j ∈ J with i /∈ Γ(j),
it holds that zTχ ≤ (≥) yi.

For this lemma even equivalence holds. To conserve space we will only show this direction.

Proof of Lemma 12. Recall for the compact linear program, the big jobs were assigned to
machines in configurations. We want to include the (fractional) allocation of small jobs in
those configurations as well. The natural approach is to define

C(T) := {χ ∈ [0, 1]J : pTχ ≤ (≥) T, χj ∈ {0, 1} if pj · r > T}.

Then a representation of LPr is the following.

min(max) 0 (12)∑
χ∈C(T)

aχ,i = 1 ∀i ∈M (13)

∑
i∈Γ(j)

∑
χ∈C(T)

χj · aχ,i ≥ (≤) 1 ∀j ∈ J (14)

∑
i/∈Γ(j)

∑
χ∈C(T)

χj · aχ,i = 0 ∀j ∈ J (15)

aχ,i ≥ 0

K. Jansen and L. Rohwedder 11:9

There is, however, an issue with this definition. Since C(T) can have infinitely many elements,
the dimension of the LP is potentially infinite. This means, we cannot simply apply results
from LP duality. Thus, we will first show that a finite number of variables is suffices.

Recall that the constraint for LPr is (xi,j)j∈J ∈ conv(C(T)). We will show that
conv(C(T)) = conv(V (T)) for some finite V (T) ⊆ C(T). This means, we can substitute
C(T) for V (T).

Observe that C(T) is a union of polytopes, where each polytope corresponds to one
integral allocation of the big jobs. More formally, let χB ∈ {0, 1}JB . Then the set of vectors
in C(T) where the values for big jobs equal χB are exactly

{χ ∈ [0, 1]J : pTχ ≤ (≥) T and (χj)j∈JB
= χB}.

For each of these χB , this is clearly a polytope, which can be written as the convex hull of
finitely many basic solutions. Let V (T) be the set of all basic solutions for all allocations χB
of big jobs. Then (xi,j)j∈J ∈ conv(C(T)) is equivalent to (xi,j)j∈J ∈ conv(V (T))

We substitute C(T) for V (T) in the LP above and, for an easier dual, we multiply (13)
by −1. Then the dual is the following:

max(min)
∑
j∈J

zj −
∑
i∈M

yi∑
j∈J :i∈Γ(j)

χj · zj +
∑

j∈J :i/∈Γ(j)

χj · zj ≤ (≥) yi ∀i ∈M, χ ∈ V (T)

zj ≥ 0
zj , yi ∈ R

Now consider the values z, y from Lemma 12 and set zj to a negative (Makespan) or positive
(Max-min) number of very large magnitude for all j ∈ J . Then this is a feasible solution
for the dual: Let i ∈ M and χ ∈ V (T). If χj = 0 for all j ∈ J with i /∈ Γ(j), then the
constraint is satisfied by definition of z and y. Otherwise, the constraint holds when zj is
chosen sufficiently small (large).

The solution has a positive (negative) objective value and we can scale it by any constant
and construct a new feasible solution. This way we can obtain any positive (negative) objective
value, i.e., the dual is unbounded. By duality this implies the primal is infeasible. J

4.2 Local search algorithm
I Definition 13 (Good and bad machines). Given an allocation σ : J → M, we call a
machine i bad, if

∑
j∈σ−1(i) pj > 11/6 · T (Makespan) or

∑
j∈σ−1(i) pj < 1/4 · T (Max-min).

A machine is good, if it is not bad.

The local search algorithm starts with an arbitrary allocation and moves jobs until all
machines are good, or it can prove that LP2 (Makespan) or LP4 (Max-min) is infeasible
w.r.t. T . During this process, a machine that is already good will never be made bad.

The central data structure of the algorithm is an ordered list of moves L = (L1, L2, . . . , L`).
Here, every component Lk = (j, i), j ∈ J and i ∈ Γ(j), stands for a move the algorithm
wants to perform. It will not perform the move, if this would create a bad machine, i.e.,
p(σ−1(i)) + pj > 11/6 · T (Makespan) or p(σ−1(σ(j)))− pj < 1/4 · T (Max-min). If it does
not create a bad machine, we say that the move (j, i) is valid. For every 0 ≤ k ≤ ` define
L≤k := (L1, . . . , Lk), the first k elements of L (with L≤0 being the empty list).

SOSA 2018

11:10 Compact LPs for Allocation Problems

Algorithm 1 Local search meta-algorithm
1. Let σ be an arbitrary allocation;
2. `← 0; // length of the list of moves L
3. while there is a bad machine do

a. if there exists a valid move (j, i) ∈ L then
i. Let 0 ≤ k ≤ ` be minimal such that
(Makespan) j is repelled by σ(j) w.r.t. L≤k;
(Max-min) j is attracted by i w.r.t. L≤k;

ii. σ(j)← i;
iii. L← L≤k; `← k; // Forget moves Lk+1, . . . , L`

b. else
i. Choose a move (j, i) /∈ L, j ∈ J and i ∈ Γ(j), with pj minimal and
(Makespan) j is repelled by σ(j) and not repelled by i w.r.t. L;
(Max-min) j is not attracted by σ(j) and attracted by i w.r.t. L;

ii. L`+1 ← (j, i); ` = `+ 1; // Append (j, i) to L

Depending on the current schedule σ and list of moves L, we define for every machine i
which jobs are repelled or not repelled (Makespan). In the Max-min case we use the term
attracted instead of not repelled; not attracted instead of repelled. This is only to make
the definitions easier to read. The definition of repelled/attracted jobs differs in the two
algorithms and is given in Section 4.2.1. The algorithm will only add a new move (j, i) to
the current list L, if j is repelled (not attracted) by its current machine and not repelled
(attracted) by the target i w.r.t. L.

4.2.1 Repelled and attracted jobs
Here, we will start with the Max-min case, since it is the simpler one.

Max-min

Depending on the current schedule σ and the current set of moves L = L≤`, we define which
jobs are attracted by which machines. We call a job j ∈ J big, if pj > 1/4 · T and small
otherwise. The first two rules are that bad machines attract all jobs and that rules are
propagated from prefixes of the list.
(initialization) If ` = 0, every bad machine i attracts every job j.
(monotonicity) If ` > 0 and i attracts j w.r.t. L≤`−1, then i attracts j w.r.t. L≤`.
For the remaining rules, assume ` > 0, and let (j`, i`) := L` be the last move added. We will
define which new rules this move adds to the existing ones.

We can assume that all moves in L≤`−1 are not valid, since otherwise the algorithm
would execute them instead of adding a new one. Since i` tries to steal j` from σ(j`), but
the move is not valid, the machine σ(j`) should attract jobs in order to make (j`, i`) valid.
More precisely,
(small-all) if j` is small, σ(j`) attracts all jobs and
(big-big) if j` is big, σ(j`) attracts all big jobs.

This misses one important case. Suppose that j` is big. Intuitively, σ(j`), should also
collect small jobs to make the move (j`, i`) valid. However, the straight-forward way (σ(j)
attracts all small jobs as well) does not work out in the analysis. Hence, a more sophisticated
strategy is required.

K. Jansen and L. Rohwedder 11:11

For i ∈M define Si(L) to be all small jobs j which have either σ(j) = i or which have
i ∈ Γ(j) and are not attracted by their current machine, σ(j), w.r.t. the rules above. The
intuition behind Si(L) is the following. In the best case, i could collect all jobs from Si(L).
If p(Si(L)) < 1/4 · T , then we cannot expect i to satisfy its demand only using small jobs.
On the other hand, if it gets a big job, then this job alone satisfies its demand. Hence, i
should not attract small jobs. More formally,
(big-all) if j` is big and p(Sσ(j`)(L)) ≥ 1/4 · T , then σ(j`) attracts all jobs.

Makespan

Here, we define big jobs to be those j ∈ J that have pj > 1/2 · T and small jobs all others.
(initialization) If ` = 0, every bad machine i repels every job j.
(monotonicity) If ` > 0 and i repels j w.r.t. L≤`−1, then i repels j w.r.t. L≤`.
Again, the remaining rules regard ` > 0 and we define (j`, i`) := L`, i.e., the last move added.
In order to make space for j`, the machine i` should repel jobs.
(small-all) If j` is small, i` repels all jobs.
This still leaves one case to resolve. If j` is big, which jobs does i` repel? It helps to imagine
that the algorithm is a lazy one: It repels jobs only if it is really necessary.

For i ∈ M define Si(L) to be those small jobs j which have σ(j) = i and which are
repelled by all other potential machines, i.e., Γ(j) \ {i}, w.r.t. the rules above. The intuition
behind Si(L) is that we do not expect that i can get rid of any of the jobs in Si(L).

Next, define a threshold t(L, (j`, i`)) as the minimum t ≥ 0 such that Si and all big jobs
below this threshold are already too large to add j`:

p({j ∈ σ−1(i`) : j ∈ Si`(L) or 1/2 < pj ≤ t}) + pj`
> 11/6 · T,

or t(L, (j`, i`)) =∞ if no such t exists. In order to make (j`, i`) valid, it is necessary (although
not always sufficient) to remove one of the big jobs with size at most t(L, (j`, i`)). Hence, we
define,
(big-all) if j` is big and t(L, (j`, i`)) =∞, then i` repels all jobs and
(big-big) if j` is big and t(L, (j`, i`)) < ∞, then i` repels Si`(L) and all jobs j with

1/2 < pj ≤ t(L, (j`, i`)).
Note that repelling Si`(L) seems unnecessary, since those jobs do not have any machine to
go to. However, this definition simplifies the analysis. It is also notable that the special case
where t(L, (j`, i`)) = 0 is equivalent to p(Si`(L)) + pj`

> 11/6 · T and here the algorithm
gives up making (j`, i`) valid. Finally, we want to highlight the following counter-intuitive
(but intentional) aspect of the algorithm. It might happen that some job of size greater
than t(L, (j`, i`)) is moved to i`, only to be removed again later on, when t(L, (j`, i`)) has
increased.

4.3 Analysis (Max-min)
For completeness, we give the analysis for the Makespan case in the appendix. It is not
included here so as to avoid repetitive arguments.

To verify the correctness of the algorithm, it has to be shown that (1) it terminates and
(2) in each iteration of the main loop, there is either a valid move in L or some move that
can be added to L.

I Theorem 14. The algorithm terminates after finitely many iterations of the main loop.

SOSA 2018

11:12 Compact LPs for Allocation Problems

Proof. As before, let ` denote the current length of L. We define a potential function

Φ(L) = (b, s0, s1, s2, . . . , s`,∞),

where b is the number of bad machines and sk is the number of pairs (i, j) ∈M×J where
i attracts j w.r.t. L≤k and σ(j) 6= i. Intuitively, the algorithm makes progress when this
number decreases.

Note that the length of Φ(L) is bounded by |M| · |J |+ 2 and every component can only
have |M| · |J |+ 1 many different values. Thus, the range of the potential function is finite.

We will show that the vector decreases lexicographically after every iteration of the main
loop; hence the running time is bounded by the number of such vectors times the maximum
number of operations in one iteration and, in particular, is finite. For the lexicographic
decrease consider two cases. Either a new move is added, which decreases the potential
function by replacing the last component with some finite value, or a move is performed. If
a move turns a bad machine good, b decreases and so does the lexicographic value of Φ(L).
Otherwise, let `′ ≤ ` be the length of the list after a move (j, i) is performed. Recall the
algorithm prevents jobs attracted by their current machine from being moved, i.e., j is not
attracted by its previous machine w.r.t. L≤`′ . Moreover, observe that the attracted jobs
w.r.t. L≤0, . . . , L≤`′ do not change. This can be seen from the definition of attracted jobs.
Therefore s0, . . . , s`′ do not increase. Finally, since j is attracted by i w.r.t. L≤`′ and after
the move σ(j) = i holds, the value of s`′ has decreased. J

I Theorem 15. If LP4 is feasible w.r.t. T , the algorithm always has an operation it can
perform.

Proof. As in the algorithm, call a job j small, if pj < 1/4 · T = 1/r · T and big otherwise.
Suppose toward contradiction, there are bad machines, no move in L is valid, and no move
can be added to L. We will construct values (zj)j∈J , (yi)i∈M with the properties as in
Lemma 12 and thereby show that LP4 is infeasible w.r.t. T .

Define yi = 3/4 for every i ∈ M where i is bad or (j′, i′) ∈ L for some j′ ∈ J with
σ(j′) = i. For all other machines i define yi = 0. Furthermore, define zj = 3/4 if j is big and
attracted by σ(j); define zj = pj/T if j is small and attracted by σ(j); and zj = 0 if j is not
attracted by σ(j). We proceed to show that these values indeed satisfy the properties as in
Lemma 12.

I Fact 16. Let j be a job attracted by some machine i ∈ Γ(j) (not necessarily σ(j)). Then
zj = 3/4 if j is big and zj = pj/T , otherwise.

We need to show that j is attracted by σ(j). If σ(j) = i, then this holds trivially. If σ(j) 6= i,
then either j is attracted by σ(j) or (j, i) ∈ L, since no moves can be added. In the latter
case σ(j) attracts at least all big jobs if j is big and all jobs if j is small. In either case σ(j)
attracts j and therefore Fact 16 holds.

Let i ∈ M and χ ∈ [0, 1]J with pTχ ≥ T , χj ∈ {0, 1} for every big job, and χj = 0 if
i /∈ Γ(j). We must show that zTχ ≥ yi.

If yi = 0 then zTχ ≥ yi, since zTχ is non-negative. Hence, assume w.l.o.g. that yi = 3/4.
By definition of attracted jobs, this means i attracts at least all big jobs. Moreover, the
inequality holds trivially if χj = 1 for some big job j, since zj = 3/4 (Fact 16). Because
for big jobs j we have χj ∈ {0, 1} and the case χj = 1 is trivial, the only interesting case is
where χj = 0 for all big jobs j. We note that this is the only argument in which we use the
integrality of some component in χ.

Define Si(L≤k) for all 0 ≤ k ≤ ` as in the algorithm. Because yi = 3/4, we know that
there is a (jk, ik) = Lk (k ≤ `) such that σ(jk) = i. Then there are two cases.

K. Jansen and L. Rohwedder 11:13

1. Case: i attracts all jobs. Since χj = 0 is assumed for all big jobs j and i attracts all
jobs, by Fact 16 we get zTχ = pTχ/T ≥ 1 > yi.

2. Case: i attracts only big jobs. Then jk must be big and p(Si(L≤k)) < 1/4 · T (rule
big-big). Note that zj = pj/T for every small job j /∈ Si(L≤`)) with i ∈ Γ(j), since by
definition j is attracted by σ(j) w.r.t. L≤k (in particular, w.r.t. L≤`). Hence,

zTχ ≥
∑

j∈J\Si(L)

zjχj =
∑

j∈J\Si(L)

pjχj/T ≥ (pTχ−p(Si(L)))/T > (T−1/4 ·T)/T = yi.

It remains to show that
∑
j∈J zj <

∑
i∈M yi. We show that, with amortization, good

machines satisfy z(σ−1(i)) ≤ yi and for bad machines strict inequality holds.
Let i be a bad machine. A bad machine cannot have a big job assigned to it. Moreover,

all jobs (in particular those in σ−1(i)) are attracted by i. Hence,

z(σ−1(i)) = p(σ−1(i))/T < 1/4 < yi.

Let i be a good machine. If yi = 0, then i attracts no jobs and therefore z(σ−1(i)) = 0. For
the remaining part, assume that yi = 3/4, that is to say, there exists a move (jk, ik) = Lk
(k ≤ `) such that σ(jk) = i.

Case (big-big): i attracts only big jobs. Then jk must be big and since (jk, ik) is not valid,
it must be the only big job on i. Thus,

z(σ−1(i)) = zjB
= 3/4 = yi.

Case (big-all): i attracts all jobs and jk is big. Since (jk, ik) is not valid, we have
p(σ−1(i) \ {jk}) < 1/4 · T . In particular, σ−1(i) \ {jk} does not contain another big job.
Thus,

z(σ−1(i)) = zjk
+ z(σ−1(i) \ {jk}) = zjB

+ p(σ−1(i) \ {jk})/T < 3/4 + 1/4 = yi + 1/4.

Case (small-all): i attracts all jobs and jk is small. Again, (jk, ik) is not valid. In partic-
ular, σ−1(i) cannot contain a big job. Hence,

z(σ−1(i)) = p(σ−1(i))/T = (p(σ−1(i))− pjk
)/T + pjk

/T < 1/4 + 1/4 = yi − 1/4.

It is easy to see that cases (big-all) and (small-all) are disjoint: Once a machine attracts all
jobs, no new move will be added for a job assigned to it.

I Fact 17. There are at least as many machines of case (small-all) as there are of case
(big-all).

The proof of Fact 17 is postponed to the end. With Fact 17, we can amortize those two cases
and get∑

j∈J
zj =

∑
i∈M

z(σ−1(i)) <
∑
i∈M

yi. J

Proof of Fact 17. Let Lb1 , Lb2 , . . . , Lbh
be the moves that correspond to case (big-all) ma-

chines, i.e., for each (jk, ik) = Lbk
(k ≤ h), σ(jk) attracts all jobs and jk is big.

We argue that there are Ls1 , Ls2 , . . . , Lsh
such that b1 < s1 < b2 < s2 < . . . bh < sh,

where for each (jk, ik) = Lsk
(k ≤ h), jk is small and therefore σ(jk) is a case (small-all)

machine.

SOSA 2018

11:14 Compact LPs for Allocation Problems

Let k ≤ h. A critical argument is that the algorithm prefers moves of small jobs over
those of big jobs. In particular, when Lbk+1 is added, there does not exist a small job move
that it can add instead. However, we have that p(Sσ(jk)(L≤bk

)) ≥ 1/4 · T and since (jk, ik)
is and was not valid, the load of small jobs on σ(jk) is strictly less than 1/4 · T . Hence, there
exists a small job j in Sσ(jk)(L≤bk

) which is not assigned to σ(jk). If no small move was
added after Lbk

and before Lbk+1 , then (j, σ(jk)) would have been preferred over Lbk+1 . J

References
1 Chidambaram Annamalai. Lazy local search meets machine scheduling. CoRR,

abs/1611.07371, 2016. arXiv:1611.07371.
2 Chidambaram Annamalai, Christos Kalaitzis, and Ola Svensson. Combinatorial algorithm

for restricted max-min fair allocation. In Piotr Indyk, editor, Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA,
USA, January 4-6, 2015, pages 1357–1372. SIAM, 2015. doi:10.1137/1.9781611973730.
90.

3 Arash Asadpour, Uriel Feige, and Amin Saberi. Santa claus meets hypergraph matchings.
ACM Trans. Algorithms, 8(3):24:1–24:9, 2012. doi:10.1145/2229163.2229168.

4 Nikhil Bansal and Maxim Sviridenko. The santa claus problem. In Jon M. Kleinberg,
editor, Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seattle,
WA, USA, May 21-23, 2006, pages 31–40. ACM, 2006. doi:10.1145/1132516.1132522.

5 Ivona Bezáková and Varsha Dani. Allocating indivisible goods. SIGecom Exchanges,
5(3):11–18, 2005. doi:10.1145/1120680.1120683.

6 Tomás Ebenlendr, Marek Krcál, and Jirí Sgall. Graph balancing: A special case of
scheduling unrelated parallel machines. Algorithmica, 68(1):62–80, 2014. doi:10.1007/
s00453-012-9668-9.

7 Klaus Jansen and Lars Rohwedder. On the configuration-lp of the restricted assignment
problem. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, Janu-
ary 16-19, pages 2670–2678. SIAM, 2017. doi:10.1137/1.9781611974782.176.

8 Klaus Jansen and Lars Rohwedder. A quasi-polynomial approximation for the restricted
assignment problem. In Friedrich Eisenbrand and Jochen Könemann, editors, Integer Pro-
gramming and Combinatorial Optimization - 19th International Conference, IPCO 2017,
Waterloo, ON, Canada, June 26-28, 2017, Proceedings, volume 10328 of Lecture Notes in
Computer Science, pages 305–316. Springer, 2017. doi:10.1007/978-3-319-59250-3_25.

9 Jan Karel Lenstra, David B. Shmoys, and Éva Tardos. Approximation algorithms for
scheduling unrelated parallel machines. Math. Program., 46:259–271, 1990. doi:10.1007/
BF01585745.

10 Lukás Polácek and Ola Svensson. Quasi-polynomial local search for restricted max-min
fair allocation. ACM Trans. Algorithms, 12(2):13:1–13:13, 2016. doi:10.1145/2818695.

11 Ola Svensson. Santa claus schedules jobs on unrelated machines. SIAM J. Comput.,
41(5):1318–1341, 2012. doi:10.1137/110851201.

12 José Verschae and Andreas Wiese. On the configuration-lp for scheduling on unrelated
machines. J. Scheduling, 17(4):371–383, 2014. doi:10.1007/s10951-013-0359-4.

A NP-Hardness of the configuration-LP

The following reduction uses a typical idea for these kind of problems and we doubt that it
is novel. We include it here only for the sake of completeness.

I Theorem 18. Solving the configuration LP is NP-hard.

http://arxiv.org/abs/1611.07371
http://dx.doi.org/10.1137/1.9781611973730.90
http://dx.doi.org/10.1137/1.9781611973730.90
http://dx.doi.org/10.1145/2229163.2229168
http://dx.doi.org/10.1145/1132516.1132522
http://dx.doi.org/10.1145/1120680.1120683
http://dx.doi.org/10.1007/s00453-012-9668-9
http://dx.doi.org/10.1007/s00453-012-9668-9
http://dx.doi.org/10.1137/1.9781611974782.176
http://dx.doi.org/10.1007/978-3-319-59250-3_25
http://dx.doi.org/10.1007/BF01585745
http://dx.doi.org/10.1007/BF01585745
http://dx.doi.org/10.1145/2818695
http://dx.doi.org/10.1137/110851201
http://dx.doi.org/10.1007/s10951-013-0359-4

K. Jansen and L. Rohwedder 11:15

Proof. We give the proof w.r.t. the Makespan objective. For Max-min the proof is analogous.
Consider the NP-hard Partition problem: Given a set of natural numbers a1, . . . , an, decide
if there exists A ⊆ {a1, . . . , an} with

∑
j∈A aj = 1/2 ·

∑n
j=1 aj .

We construct the following instance for Makespan minimization and show that solving
the configuration LP it is equivalent to the problem above.

Let there be two machines i1, i2 and for each aj a job j with Γ(j) = {i1, i2} and
pj = aj . There exists such a subset if and only if the optimum of the configuration LP is
1/2 ·

∑n
j=1 aj . Recall that the configuration LP for makespan T assigns to each machine a

convex combination of configurations, i.e., sets of jobs that do not exceed T in size. If there
exists a solution for the Partition problem, then the optimum of the configuration LP is
1/2 ·

∑n
j=1 aj . We will assign one configuration with the solution of the Partition problem

to one machine and one configuration with all remaining jobs to the other. If the optimum
of the configuration LP is 1/2 ·

∑n
j=1 aj , then take the biggest configuration that is used. It

must have a size of 1/2 ·
∑n
j=1 aj , or else the optimum would be lower. This configuration is

a solution for the Partition problem. J

B Reducing the size of LP4 (Max-min)

We have shown that LP4 is strong for the Max-min case. In the Makespan case, already LP2
gives the best bounds, which is much smaller than LP4. In order to achieve a similar size, we
will show that after a simple preprocessing step of the Max-min instance, the linear program
can be reduced to O(n3) variables and constraints.

Let I be an instance of Max-min with job sizes pj . Construct a new instance IT by
changing the size of each job j ∈ J to

pTj :=
{
T if pj > T/4,
pj otherwise.

Recall that in the LP, the configurations for big jobs JB (that have size > T/4) are defined
as CB(T) := {χ ∈ {0, 1}JB}.

The argument for restricting the support of these configurations was that we do not need
a configuration χ if there is a χ′ ≤ χ (component-wise) with |supp(χ′)| < |supp(χ)| and
pTχ′ ≥ T . It is easy to see that after rounding the sizes, the relevant configuration have at
most one non-zero component. Hence, there are only O(n) many, which gives a total size of
O(n3) for the compact LP. Now we need to show that after rounding the sizes, we still get a
ratio of 4. In other words,

1
4OPT(LP4(IT)) ≤ OPT(I) ≤ OPT(LP4(IT)).

Since the sizes have only increased, the relaxation can only have gotten weaker, i.e.,
OPT(LP4(IT)) ≥ OPT(LP4(I)) ≥ OPT(I).

Let T > 4 · OPT(I). We need to show that LP4(IT) is infeasible w.r.t. T . Notice
how OPT(IT) = OPT(I): Given the optimal allocation for IT , the machine that has the
minimum load cannot have any jobs j with pj ≥ T/4 > OPT(I). Otherwise this allocation
would yield a higher value for I than OPT(I). Hence, on the machine with minimum load
the jobs have the same size in I and IT . This means the solution has the same value for I.
Since LP4 has an integrality gap of at most 4, we get

1
4OPT(LP4(IT)) ≤ OPT(IT) = OPT(I).

In other words, the highest value for which LP4(IT) is feasible is 4 ·OPT(IT) < T .

SOSA 2018

11:16 Compact LPs for Allocation Problems

1
2

k
k−1

pj
k−1
k

k times k − 1 times once

Figure 2 Fractional and integral solution for lower bound (Max-min)

C Lower bound (Max-min)

Here, we give a lower bound of 2.5 for LP4 (in particular, LP3, LP2) for Max-min.
Let k be an even number and consider an instance with k machines, i.e., k/2 pairs of

machines, and 6k−1 jobs. For each of the k/2 pairs (i1, i2) let there be 5 jobs j with pj = 1/5
and Γ(j) = {i1, i2}. Furthermore let there be k/2− 1 jobs j with pj = 1 and Γ(j) =M, i.e.,
they can be assigned anywhere.

Assume toward contradiction that there is a schedule with makespan strictly more than
2/5. There must be at least one pair of machines (i1, i2) that do not have a job of size 1
assigned to them. Since there are only 5 jobs of size 1/5 that are allowed on i1 and i2, one
of the two machines has at most two. A contradiction.

Next, we show that LP4 is feasible for T = (k − 1)/k. For every i ∈ M and every
job jB of size 1, let xi,jB

= 1/k, i.e., the big job is distributed evenly across all machines.
For every other job j, split it across the two machines it is allowed on. More formally, let
xi1,j = xi2,j = 1/2 with {i1, i2} = Γ(j). Clearly x is in the allocation polytope. Let i ∈M.
We need to verify that

(xi,j)j∈J ∈ conv{χ ∈ [0, 1]J : pTχ ≥ (k − 1)/k and χj ∈ {0, 1} if pj · 4 > (k − 1)/k}.

We define one vector for every jB ∈ J with pjB
= 1 and one vector for the small jobs, which

depends on the machine it is used for.

χ
(jB)
j :=

{
1 if j = jB ,

0 otherwise,
and χ(i)

j :=
{
k−1
k if pj = 1/5 and i ∈ Γ(j),

0 otherwise.

Note that we have pTχ(jB) = pjB
= 1 ≥ k−1

k = T as well as pTχ(i) = 5 · 1
5 ·

k−1
k = k−1

k = T .
The integrality constraint is satisfied for all jobs of size 1 and since 1/5 · 4 ≤ (k − 1)/k, for
sufficiently large k, it is not necessary for the small jobs. Also, it holds that (xi,j)j∈J =∑
jB∈J :pjB

=1 1/k · χ(jB) + 1/2 · k/(k − 1) · χ(i), as shown below.
Let jB be a job of size 1. Then all vectors but χ(jB) have 0 for jB , hence xi,jB

= 1/k ·χ(jB)
jB

.
Next, let j be a job of size 1/5. Then xi,j = 1/2 = 1/2 · k/(k − 1) · χ(i)

j if i ∈ Γ(j) and
xi,j = 0 = 1/2 · k/(k − 1) · χ(i)

j , otherwise.
For this instance, we get a gap that approaches 5/2 as k tends to infinity. Similar

constructions work when using 14 jobs of size 1/7, 18 jobs of size 1/9, etc. The lower bound

K. Jansen and L. Rohwedder 11:17

becomes weaker the smaller the size is chosen, but it always stays strictly above 4, the best
lower bound known for the configuration LP.

D Analysis (Makespan)

I Theorem 19. The algorithm terminates after finitely many iterations of the main loop.

Proof. Let ` be the length of L. We define a potential function

Φ(L) = (g, s0, s1, s2, . . . , s`,−1),

where g is the number of good machines and sk is the number of pairs (i, j) ∈M×J where
i repels j w.r.t. L≤k and σ(j) 6= i. Note that the length of Φ(L) is bounded by |M| · |J |+ 2
and every component is an integer between −1 and |J | · |M|. Thus, the range of the potential
function is finite.

We will show that the vector increases lexicographically after every iteration of the main
loop; hence the running time is bounded by the number of such vectors times the maximum
number of operations in an iteration and is in particular finite. For the lexicographic increase,
consider two cases. Either a new move is added, which increases the potential function by
replacing the last component with some non-negative value, or a move is performed.

If the move turns a bad machine good, g increases and thereby Φ(L) increases lexicograph-
ically as well. Otherwise, let `′ ≤ ` be the length of the list after a move (j, i) is performed.
Recall the algorithm prevents jobs repelled by a machine from being moved there, i.e., j is
not repelled by i machine w.r.t. L≤`′ . Moreover, the set of repelled jobs by some machine
w.r.t. L≤0, . . . , L≤`′ can only grow. This can be observed from the definition of repelled jobs.
It follows that s0, . . . , s`′ do not decrease. Finally, since j is repelled by its previous machine
i′ w.r.t. L≤`′ and after the move σ(j) 6= i′ holds, the value of s`′ has increased. J

I Theorem 20. If LP2 is feasible, the algorithm always has an operation to perform.

Proof. As in the algorithm, call a job j small if pj < 1/2 · T = 1/r · T and big otherwise.
Suppose toward contradiction, there are bad machines, no move in L is valid, and no move
can be added to L. We will construct values (zj)j∈J , (yi)i∈M with the properties as in
Lemma 12 and thereby show that LP2 is infeasible.

For every j ∈ J let zj = min{pj/T, 5/6} if j is repelled by σ(j) and zj = 0 otherwise.
Let yi := 1 if i ∈M repels all jobs and yi = z(σ−1(i)) otherwise.

I Fact 21. Let j be a small job not repelled by i ∈ Γ(j). Then zj = 0.

If i = σ(j), this is by definition. In the other case, assume toward contradiction zj 6= 0, i.e. j
is repelled by σ(j). (j, i) cannot be in L or else i would repel small jobs. Since (j, i) also
cannot be added to L, i must repel j. A contradiction.

Let i ∈ M and χ ∈ [0, 1]J with pTχ ≤ T , χj ∈ {0, 1} for every big job, and χj = 0 if
i /∈ Γ(j). We must show that zTχ ≤ yi.

If yi = 1 it holds because of zTχ ≤ pTχ/T ≤ 1. We assume w.l.o.g. that i does not repel
all jobs and thus yi = z(σ−1(i)). In particular, i does not repel small jobs that are on other
machines. If χj = 0 or zj = 0 for all big jobs j, then with Fact 21 we get zTχ ≤ z(σ−1(i)).
Also, there can be at most one big job jB with χjB

= 1, since it has pjB
> 1/2 · T and thus

pTχ would be greater than T , otherwise.
We recap: The only interesting case is when yi = z(σ−1(i)), there is one big job jB with

χjB
zjB

= min{pjB
/T, 5/6}, and all other big jobs j′B have χj′

B
zj′

B
= 0.

SOSA 2018

11:18 Compact LPs for Allocation Problems

1. Case: jB is repelled by i. This must be because there is some move (jk, ik) = Lk such
that t(L≤k, (jk, ik)) ≥ pjB

(big-big). Recall that t(L≤k, (jk, ik)) is the minimum t with

p({j ∈ σ−1(i) : j ∈ Si(L≤k) or 1/2 < pj ≤ t}) + pjk
> 11/6.

In particular, there must be a big job j′B ∈ σ−1(i) with t(L≤k, (jk, ik)) = pj′
B
≥ pjB

and
j′B is also repelled by i (big-big). Using Fact 21 we get

zTχ =
∑
j∈J

zjχj ≤ z(Si(L)) + zjB
≤ z(Si(L)) + zj′

B
≤ z(σ−1(i)) = yi.

2. Case: jB is not repelled by i. Then (jB , i) must already be in L, i.e., Lk = (jB , i) for
some k ≤ `, and since i does not repel all jobs, rule (big-big) must apply for this move.
Let R = {j ∈ σ−1(i) : j ∈ Si(L≤k) or 1/2 < pj ≤ t(L≤k, (jB , i))}. Then

p(R) + pjB
> 11/6 · T ≥ pTχ+ 5/6 · T.

Furthermore, all jobs in R are also repelled by i. If zj′
B

= 5/6 for some j′B ∈ R, like in
the previous case we get zTχ ≤ z(Si(L)) + zjB

≤ z(Si(L)) + zj′
B
≤ z(σ−1(i)). Otherwise,

we have zj′ = pj′/T for all j′ ∈ R. Thus,

zTχ = zjB
+

∑
j∈J\{jB}

zjχj ≤ zjB
+

∑
j∈J\{jB}

pjχj/T = zjB
+ (pTχ− pjB

)/T

< zjB
+ (p(R) − 5/6 · T)/T ≤ p(R)/T ≤ z(σ−1(i)).

It remains to show that
∑
j∈J zj >

∑
i∈M yi. We prove that, with amortization, good

machines satisfy z(σ−1(i)) ≥ yi and on bad machines strict inequality holds.
Let i be a bad machine. Then i repels all jobs (in particular those in σ−1(i)). Hence,

z(σ−1(i)) ≥ 5/6 · p(σ−1(i))/T > 55/36 > yi.

For good machines that do not repel all jobs, equality holds by definition. We will partition
those good machines that do repel all jobs into those i ∈M which have (j, i) ∈ L for a small
job j (case small-all) and those that do not (case big-all).

I Fact 22. There are at least as many machines of case (small-all) as there are of case
(big-all).

The proof of Fact 22 is postponed until after the main proof. Let i be a machine of case
(big-all). Then there is a big job jB with (jB , i) ∈ L and this move is not valid. Either there
is a job j ∈ σ−1(i) with zj = 5/6 or zj = pj/T for all j ∈ σ−1(i). Thus,

z(σ−1(i)) ≥ min{5/6, p(σ−1(i))/T}
≥ min{5/6, 11/6− pjB

/T}
≥ 5/6 = yi − 1/6.

Next, let i be a machine of case (small-all). Then there is a move (jS , i) ∈ L with jS small.
Of course, this move is not valid. In the following, we distinguish between the cases where
σ−1(i) has no job j with zj = 5/6, one such job, or at least two. Note that these jobs have
pj ≤ T .

z(σ−1(i)) ≥ min{p(σ−1(i))/T, (p(σ−1(i))− T)/T + 5/6, 10/6}
≥ min{11/6− pjS

/T − 1/6, 10/6}
≥ 7/6 = yi + 1/6.

K. Jansen and L. Rohwedder 11:19

Because of Fact 22, we can amortize case (small-all) and case (big-all) and get∑
j∈J

zj =
∑
i∈M

z(σ−1(i)) >
∑
i∈M

yi. J

Proof of Fact 22. Let Lb1 , Lb2 , . . . , Lbh
be the moves that correspond to case (big-all) ma-

chines, i.e., for each (jk, ik) = Lbk
(k ≤ h), ik repels all jobs and jk is big.

We argue that there are Ls1 , Ls2 , . . . , Lsh
such that b1 < s1 < b2 < s2 < . . . bh < sh,

where for each (jk, ik) = Lsk
(k ≤ h), jk is small and therefore ik is a case (small-all) machine.

Let k ≤ h. A critical argument is that the algorithm prefers moves of small jobs over
those of big jobs. In particular, when Lbk+1 is added, there does not exist a small job move
that it can add instead. Either Lbk

has already been subject to rule (big-all) when it was
added or it turned to this after a repelled job was removed. Either way, at this time it was
the last move in L and we had that

p({j ∈ σ−1(ik) : pj > 1/2}) + p(Sik (L≤bk
)) + pjk

≤ 11/6 · T < p(σ−1(ik)) + pjk
,

where the first inequality comes from rule (big-all) and the second one from the fact that
(jk, ik) is and was not valid. Hence, there must be a small job j in σ−1(i) which is not in
Sik (L≤bk

). By definition of Sik (L≤bk
), j has a machine i ∈ Γ(j) by which it was not repelled.

Therefore there has been a small job move that could be added. This means Lbk+1 was only
added after a small job move has been. J

SOSA 2018

Just Take the Average!
An Embarrassingly Simple 2n-Time Algorithm for
SVP (and CVP)

Divesh Aggarwal∗1 and Noah Stephens-Davidowitz†2

1 CQT and Department of Computer Science, NUS, Singapore
dcsdiva@nus.edu.sg

2 New York University, New York, USA
noahsd@gmail.com

Abstract
We show a 2n+o(n)-time (and space) algorithm for the Shortest Vector Problem on lattices (SVP)
that works by repeatedly running an embarrassingly simple “pair and average” sieving-like pro-
cedure on a list of lattice vectors. This matches the running time (and space) of the current
fastest known algorithm, due to Aggarwal, Dadush, Regev, and Stephens-Davidowitz (ADRS, in
STOC, 2015), with a far simpler algorithm. Our algorithm is in fact a modification of the ADRS
algorithm, with a certain careful rejection sampling step removed.

The correctness of our algorithm follows from a more general “meta-theorem,” showing that
such rejection sampling steps are unnecessary for a certain class of algorithms and use cases. In
particular, this also applies to the related 2n+o(n)-time algorithm for the Closest Vector Problem
(CVP), due to Aggarwal, Dadush, and Stephens-Davidowitz (ADS, in FOCS, 2015), yielding a
similar embarrassingly simple algorithm for γ-approximate CVP for any γ = 1 + 2−o(n/ log n).
(We can also remove the rejection sampling procedure from the 2n+o(n)-time ADS algorithm for
exact CVP, but the resulting algorithm is still quite complicated.)

1998 ACM Subject Classification F.2.2 Nonnumerical algorithms and problems – Geometrical
problems and computations

Keywords and phrases Lattices, SVP, CVP

Digital Object Identifier 10.4230/OASIcs.SOSA.2018.12

1 Introduction

A lattice L ⊂ Rn is the set of all integer linear combinations of some linearly independent
basis vectors b1, . . . , bn ∈ Rn,

L :=
{ n∑

i=1
zibi : zi ∈ Z

}
.

The two most important computational problems on lattices are the Shortest Vector
Problem (SVP) and the Closest Vector Problem (CVP). Given a basis b1, . . . , bn for a lattice

∗ The first author was supported by the Singapore Ministry of Education and the National Research
Foundation, also through the Tier 3 Grant “Random numbers from quantum processes" MOE2012-T3-
1-009.

† The second author was supported by the National Science Foundation (NSF) under Grant No. CCF-
1320188, and the Defense Advanced Research Projects Agency (DARPA) and Army Research Office
(ARO) under Contract No. W911NF-15-C-0236.

© Divesh Aggarwal and Noah Stephens-Davidowitz;
licensed under Creative Commons License CC-BY

1st Symposium on Simplicity in Algorithms (SOSA 2018).
Editor: Raimund Seidel; Article No. 12; pp. 12:1–12:19

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SOSA.2018.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

12:2 Just Take the Average!

L ⊂ Rn, SVP asks us to find a shortest non-zero vector in L, and CVP asks us to find
a closest lattice vector to some target vector t ∈ Rn. (Throughout this paper, we define
distance in terms of the Euclidean, or `2, norm.) CVP seems to be the harder of the two
problems, as there is an efficient reduction from CVP to SVP that preserves the dimension
n [17], but both problems are known to be NP-hard [36, 3]. They are even known to be hard
to approximate for certain approximation factors [24, 14, 21, 18].

Algorithms for solving these problems, both exactly and over a wide range of approxima-
tion factors, have found innumerable applications since the founding work by Lenstra, Lenstra,
and Lovász in 1982 [23]. (E.g., [23, 19, 34, 20, 13].) More recently, following the celebrated
work of Ajtai [4] and Regev [31], a long series of works has resulted in many cryptographic
constructions whose security is based on the assumed worst-case hardness of approximating
these (or closely related) problems. (See [29] for a survey of such constructions.) And, some
of these constructions are now nearing widespread deployment. (See, e.g., [28, 7, 11].)

Nearly all of the fastest known algorithms for lattice problems – either approximate
or exact – work via a reduction to either exact SVP or exact CVP (typically in a lower
dimension). Even the fastest known polynomial-time algorithms (which solve lattice problems
only up to large approximation factors) work by solving exact SVP on low-dimensional
sublattices [33, 15, 27]. Therefore, algorithms for exact lattice problems are of particular
importance, both theoretically and practically (and both for direct applications and to aid in
the selection of parameters for cryptography). Indeed, much work has gone into improving
the running time of these algorithms (e.g., [20, 5, 6, 30, 25, 26]), culminating in 2n+o(n)-time
algorithms for both problems based on the technique of discrete Gaussian sampling, from
our joint work with Dadush and Regev [1] and follow-up work with Dadush [2].

In order to explain our contribution, we first give a high-level description of the SVP
algorithm from [1], which we refer to as the ADRS algorithm. (The presentation below does
not represent the way that we typically view that algorithm.)

1.1 Sieving by averages
One can think of the ADRS algorithm as a rather strange variant of randomized sieving. Recall
that the celebrated randomized sieving technique due to Ajtai, Kumar, and Sivakumar [5]
starts out with a list of 2O(n) not-too-long random vectors X1, . . . ,XM sampled from some
efficiently samplable distribution. The sieving algorithm then repeatedly (1) searches for
pairs of vectors (Xi,Xj) that happen to be remarkably close together; and then (2) replaces
the old list of vectors with the differences of these pairs Xi −Xj .

The ADRS algorithm similarly starts with a randomly chosen collection of 2n+o(n) not-
too-long vectors X1, . . . ,XM and repeatedly (1) selects pairs of vectors according to some
rule; and (2) replaces the old list of vectors with some new vectors generated from these
pairs. However, instead of taking the differences Xi −Xj of pairs (Xi,Xj), the ADRS
algorithm takes averages, (Xi + Xj)/2.

Notice that the average (Xi + Xj)/2 of two lattice vectors Xi,Xj ∈ L will not generally
be in the lattice. In fact, this average will be in the lattice if and only if the two vectors are
equivalent mod 2L, i.e., Xi ≡Xj mod 2L. Therefore, at a minimum, the ADRS algorithm
should select pairs that lie in the same coset mod 2L. (Notice that there are 2n possible
cosets.) I.e., the simplest possible version of “sieving by averages” just repeats Procedure 1
many times (starting with a list of 2n+o(n) vectors, which is sufficient to guarantee that we
can pair nearly every vector with a different unique vector in the same coset). The ADRS
algorithm is more complicated than this, but it still only uses the cosets of the vectors mod
2L when it decides which vectors to pair.

It might seem like a rather big sacrifice to only look at a vector’s coset, essentially ignoring
all geometric information. For example, the ADRS algorithm (and our variant) is likely to

D. Aggarwal and N. Stephens-Davidowitz 12:3

Procedure 1: The basic “pair and average” procedure, which computes the averages
(Xi + Xj)/2 of disjoint pairs (Xi,Xj) satisfying Xi ≡Xj mod 2L.
Pair_and_Average (X1, . . . ,XM)
Input : List of vectors Xi ∈ L − t

Output : List of vectors Y i ∈ L − t

for each unpaired vector Xi do
if there exists an unpaired vector Xj with Xj ≡Xi mod 2L then

add (Xi + Xj)/2 to the output
end

end

Procedure 2: The “reject and average” sieving procedure, which repeatedly applies
some rejection sampling procedure f according to the cosets of the Xi mod 2L and
then applies Procedure 1 (Pair_and_Average) to the “accepted” vectors. Here, f is
some (possibly randomized) function that maps a list of cosets (c1, . . . , cM) mod
2L to a set of “accepted” indices {j1, . . . , jm} ⊆ {1, . . . ,M}.
Reject-and-Average Sieve (`; X1, . . . ,XM)
Input : Number of steps `, list of vectors Xi ∈ L − t

Output : List of vectors Y i ∈ L − t

for i = 1, . . . , ` do
for j = 1, . . . ,M do

set cj to be the coset of Xj mod 2L
end
{j1, . . . , jm} ← f(c1, . . . , cM)
(X1, . . . ,XM ′)← Pair_and_Average(Xj1 , . . . ,Xjm)
M ←M ′

end
output (X1, . . . ,XM).

miss many opportunities to pair two vectors whose average is very short. But, in exchange
for this sacrifice, we get very strong control over the distribution of the vectors at each step.
In particular, before applying Procedure 1, the ADRS algorithm uses a careful rejection
sampling procedure over the cosets to guarantee that at each step of the algorithm, the
vectors are distributed as independent samples from a distribution that we understand very
well (the discrete Gaussian, which we describe in Section 1.3). I.e., at each step, the algorithm
randomly throws away many of the vectors in each coset according to some rule that depends
only on the list of cosets, and it only runs Procedure 1 on the remaining vectors, as shown in
Procedure 2. This rejection sampling procedure is so selective that, though the algorithm
starts out with 2n+o(n) vectors, it typically finishes with only about 2n/2 vectors.

This does seem quite wasteful (since the algorithm typically throws away the vast majority
of its input vectors) and a bit naive (since the algorithm ignores, e.g., the lengths of the
vectors). But, because we get such good control over the output distribution, the result is
still the fastest known algorithm for SVP.1 (The algorithm for CVP in [2], which we refer

1 There are various “heuristic” sieving algorithms for SVP that run significantly faster (e.g., in time
(3/2)n/2 [10]) but do not have formal proofs of correctness. One of the reasons that these algorithms
lack proofs is because we do not understand their output distributions.

SOSA 2018

12:4 Just Take the Average!

to as the ADS algorithm, relies on the same core idea, plus a rather complicated recursive
procedure that converts an approximate CVP algorithm with certain special properties into
an exact CVP algorithm.)

1.2 Our contribution
Our main contribution is to show that the rejection sampling procedure used in the ADRS
algorithm is unnecessary! Indeed, informally, we show that “any collection of vectors that can
be found via such a procedure (when the input vectors are sampled independently from an
appropriate distribution) can also be found without it.” (We make this precise in Theorem 9.)
In particular, the SVP algorithm in [1] can be replaced by an extremely simple algorithm,
which starts with a list of 2n+o(n) vectors sampled from the right distribution and then just
runs Procedure 1 repeatedly. (Equivalently, it runs Procedure 2 with f taken to be the trivial
function that always outputs all indices, {1, . . . ,M}.)

I Theorem 1 (SVP, informal). There is a 2n+o(n)-time (and space) algorithm for SVP that
starts with 2n+o(n) vectors sampled from the same distribution as the ADRS algorithm and
then simply applies Procedure 1 repeatedly, ` = O(logn) times.

The situation for CVP is, alas, more complicated because Procedure 2 is not the most
difficult part of the exact CVP algorithm from [2]. Indeed, while this algorithm does run
Procedure 2 and we do show that we can remove the rejection sampling procedure, the
resulting algorithm retains the complicated recursive structure of the original algorithm.
However, [2] also shows a much simpler non-recursive version of the algorithm that solves
CVP up to an extremely good approximation factor. If we are willing to settle for such an
algorithm, then we get the same result for CVP.

I Theorem 2 (CVP, informal). There is a 2n+o(n)-time (and space) algorithm that approx-
imates CVP up to an approximation factor γ for any γ = 1 + 2−o(n/ log n) that starts with
2n+o(n) vectors from the same distribution as the ADS algorithm and then simply applies
Procedure 1 repeatedly, ` = o(n/ logn) times.

In practice, such a tiny approximation factor is almost always good enough for applications.

1.3 Proof techniques
To describe the technical ideas behind our result, we now define the discrete Gaussian
distribution, which plays a fundamental role in the algorithms in [1, 2] and a big part in our
analysis. For any vector x ∈ Rn and parameter s > 0, we define its Gaussian mass as

ρs(x) := exp(−π‖x‖2/s2) ,

and we extend this definition to a shift of a lattice L ⊂ Rn with shift vector t ∈ Rn in the
natural way,

ρs(L − t) :=
∑
y∈L

ρs(y − t) .

The discrete Gaussian distribution DL−t,s is the probability distribution over L − t induced
by this measure, given by

Pr
X∼DL−t,s

[X = y − t] := ρs(y − t)
ρs(L − t)

for any y ∈ L.

D. Aggarwal and N. Stephens-Davidowitz 12:5

For very large parameters s > 0, we can sample from the discrete Gaussian DL−t,s

efficiently [16, 12]. (Notice that DL−t,s tends to concentrate on shorter vectors as the
parameter s > 0 gets smaller. In particular, [1] showed that about 1.38n independent samples
from the discrete Gaussian DL,s with an appropriately chosen parameter s will contain a
shortest non-zero lattice vector with high probability. See Proposition 16.) So, in [1, 2], we
use Procedure 2 with a carefully chosen rejection sampling procedure f in order to convert
many independent samples from DL−t,s with a relatively large parameter s to some smaller
number of independent samples from DL−t,s/2`/2 .

This rejection sampling is certainly necessary if we wish to use Procedure 1 to sample
from the discrete Gaussian distribution. Our new observation is that, even when we do
not do this rejection sampling, the output of Procedure 1 still has a nice distribution. In
particular, if we fix the coset mod 2L of a pair of discrete Gaussian vectors (Xi,Xj) with
parameter s > 0, then their average will be distributed as a mixture of discrete Gaussians
with parameter s/

√
2 over the cosets of 2L. I.e., while the probability of their average landing

in any particular coset will not in general be proportional to the Gaussian mass of the coset,
the distribution inside each coset will be exactly Gaussian. (See Lemma 6.)

This observation is sufficient to prove that no matter what rejection sampling procedure
f we use in Procedure 2, if the input consists of independent samples from DL−t,s, the
output will always be distributed as some mixture of samples from D2L+c−t,s/2`/2 over the
cosets c ∈ L/(2L). I.e., while the output distribution might distribute weight amongst the
cosets differently, if we condition on a fixed number of vectors landing in each coset, the
output will always be distributed as independent discrete Gaussian vectors with parameter
s/2`/2. It follows immediately that “rejection sampling cannot help us.” In particular, the
probability that the output of Procedure 2 will contain a particular vector (say a shortest
non-zero vector) with any rejection sampling procedure f will never be greater than the
probability that we would see that vector without rejection sampling (i.e., when f is the
trivial function that outputs {1, . . . ,M}).2 See Corollary 8 and Theorem 9 for more detail.

1.4 An open problem – towards a 2n/2-time algorithm
Our result shows that all known applications of the 2n+o(n)-time discrete Gaussian sampling
algorithms in [1, 2] work just as well if we remove the rejection sampling procedure from
these algorithms. This in particular includes the SVP application mentioned in Theorem 1
and the approximate CVP application mentioned in Theorem 2. (More generally, we can
remove the rejection sampling procedure from any application that simply relies on finding a
set of vectors with a certain property in the output distribution, such as a shortest non-zero
vector, all shortest non-zero vectors, a vector that is close to a shortest lattice vector in L− t,
etc.)

However, [1] also presents a 2n/2+o(n)-time algorithm that samples from DL−t,s as long as
the parameter s > 0 is not too small. (In particular, we need s ≥

√
2η1/2(L), where η1/2(L)

is the smoothing parameter of the lattice. See [1] or [35] for the details.) This algorithm is
similar to the 2n+o(n)-time algorithms in that it starts with independent discrete Gaussian
vectors with some high parameter, and it gradually lowers the parameter using a rejection
sampling procedure together with a procedure that takes the averages of pairs of vectors that
lie in the same coset modulo some sublattice. But, it fails for smaller parameters specifically

2 Notice that this property is far from obvious without the observation that the output distribution is
always a mixture of Gaussians over the cosets. For example, if we modified Procedure 2 so that f acted
on the Xi themselves, rather than just their cosets mod 2L, then this property would no longer hold.

SOSA 2018

12:6 Just Take the Average!

because the rejection sampling procedure that it uses must throw out too many vectors in
this case. (In [35], we use a different rejection sampling procedure that never throws away
too many vectors, but we do not know how to implement it in 2n/2+o(n) time for small
parameters s <

√
2η1/2(L).) If we could find a suitable variant of this algorithm that works

for small parameters, we would be able to solve SVP in 2n/2+o(n) time.
So, we are naturally very interested in understanding what happens when we simply

remove the rejection sampling procedure from this algorithm. And, the fact that this works
out so nicely for the 2n+o(n)-time algorithm works seems quite auspicious! Unfortunately,
we are unable to say very much at all about the resulting distribution in the 2n/2+o(n)-time
case.3 So, we leave the study of this distribution as an open problem.

Organization
In Section 2, we review a few basic facts necessary to prove our main “meta-theorem,”
Theorem 9, which shows that “rejection sampling is unnecessary.” In Section 3, we finish this
proof. In particular, this implies Theorem 1 and 2. For completeness, in the appendix, we
prove these theorems more directly and show the resulting algorithms in full detail.

2 Preliminaries

We write N := {0, 1, . . .} for the natural numbers (including zero). We make little to no
distinction between a random variable and its distribution. For x = (x1, . . . , xn) ∈ Rn,
we write ‖x‖ := (x2

1 + · · · + x2
n)1/2 for the Euclidean norm of x. For any set S, we write

S∗ := {(x1, . . . , xM) : xi ∈ S} for the set lists over S of finite length. (The order of elements
in a listM∈ S∗ will never concern us. We could therefore instead use multisets.)

2.1 Lattices
A lattice L ⊂ Rn is the set of integer linear combinations

L := {a1b1 + · · ·+ anbn : ai ∈ Z}

of some linearly independent basis vectors B := (b1, . . . , bn). We sometimes write L(B) for
the lattice spanned by B.

We write L/(2L) for the set of cosets of L over 2L. E.g., if b1, . . . , bn is a basis for L, then
each coset c ∈ L/(2L) corresponds to a unique vector a1b1 + · · ·+ anbn with ai ∈ {0, 1}, and
this correspondence is a bijection. Notice that the cosets in L/(2L) have a group structure
under addition that is isomorphic to Zn

2 .

2.2 The discrete Gaussian
For a parameter s > 0 and vector x ∈ Rn, we write

ρs(x) := exp(−π‖x‖2/s2)

3 After one step of “pairing and averaging,” we know exactly the distribution that we get, and it is a
weighted combination of Gaussians over the cosets of a certain sublattice! This seems quite auspicious.
Unfortunately, the particular sublattice is not the same sublattice that we use to pair the vectors in the
next step, and we therefore are unable to say much at all about what happens even after two steps.

D. Aggarwal and N. Stephens-Davidowitz 12:7

for the Gaussian mass of x with parameter s > 0. Up to scaling, the Gaussian mass is the
unique function on Rn that is invariant under rotations and a product function. In particular,
it satisfies the following nice rotation identity,

ρs(x)ρs(y) = ρ√2s(x + y)ρ√2s(x− y) (1)

for any parameter s > 0 and vectors x,y ∈ Rn. This identity is fundamental to the results
of [1, 2]. (See [32, 35] for a more detailed description of this connection and some additional
results.)

We extend the Gaussian mass to a shift t ∈ Rn of a lattice L ⊂ Rn in the natural way,

ρs(L − t) :=
∑
y∈L

ρs(y − t) ,

and we call this the Gaussian mass of L − t with parameter s.
We will need the following identity from [2]. (See [32, 35] for a much more general

identity.)

I Lemma 3. For any lattice L ⊂ Rn, shift t, and parameter s > 0, we have∑
c∈L/(2L)

ρs(2L+ c− t)2 = ρs/
√

2(L)ρs/
√

2(L − t) .

Proof. We have∑
c∈L/(2L)

ρs(2L+ c− t)2 =
∑

c∈L/(2L)

∑
y1,y2∈L

ρs(2y1 + c− t)ρs(2y2 + c− t)

=
∑

c∈L/(2L)

∑
y1,y2∈L

ρs/
√

2(y1 + y2 + c− t)ρs/
√

2(y1 − y2)

=
∑

c∈L/(2L)

∑
w,y1∈L

ρs/
√

2(2y1 −w + c− t)ρs/
√

2(w)

= ρs/
√

2(L − t)
∑
w∈L

ρs/
√

2(w)

= ρs/
√

2(L − t)ρs/
√

2(L) ,

as needed. J

2.3 Dominating distributions
Intuitively, we say that some random listM∈ S∗ dominates another random listM′ ∈ S∗ if
for every fixed list S ∈ S∗, “M is at least as likely to contain S as a subsequence asM′ is.”

I Definition 4 (Dominating distribution). For some finite set S (which we identify with
{1, . . . , N} without loss of generality) and two random listsM := (X1, . . . , XM) ∈ S∗ and
M′ := (X ′1, . . . , X ′M ′) ∈ S∗ (where M and M ′ might themselves be random variables), we
say thatM dominates M′ if for any (k1, . . . , kN) ∈ NN ,

Pr[|{j : Xj = i}| ≥ ki, ∀i] ≥ Pr[|{j : X ′j = i}| ≥ ki, ∀i] .

We note the following basic facts about dominant distributions, which show that domina-
tion yields a partial order over random variables on S∗, and that this partial order behaves
nicely under taking sublists.

SOSA 2018

12:8 Just Take the Average!

I Fact 5. For any finite set S and random variable M ∈ S∗ that dominates some other
random variableM′ ∈ S∗,
1. M dominates itself;
2. ifM′ dominates some random variableM′′ ∈ S∗, thenM also dominatesM′′; and
3. for any function f : S∗ → S∗ that maps a list of elements to a sublist, M dominates

f(M′).

3 No need for rejection!

We now show our main observation: if X1 ∈ L − t and X2 ∈ L − t are sampled from the
discrete Gaussian over a fixed coset 2L + c − t for some c ∈ L/(2L), then their average
(X1 +X2)/2 is distributed as a mixture of Gaussians over the cosets 2L+d−t for d ∈ L/(2L)
with parameter lowered by a factor of

√
2.

I Lemma 6. For any lattice L ⊂ Rn, shift t ∈ Rn, parameter s > 0, coset c ∈ L/(2L),
s > 0, and y ∈ L, we have

Pr
X1,X2∼D2L+c−t,s

[(X1 + X2)/2 = y − t] = ρs/
√

2(y − t) ·
ρs/
√

2(2L+ c + y)
ρs(2L+ c− t)2 .

In particular, for any d ∈ L/(2L) and y ∈ 2L+ d,

Pr
X1,X2∼D2L+c−t,s

[(X1 +X2)/2 = y− t | (X1 +X2)/2 ∈ 2L+d− t] =
ρs/
√

2(y − t)
ρs/
√

2(2L+ d− t) .

Proof. We have

ρs(2L+ c− t)2 · Pr
X1,X2∼D2L+c−t,s

[(X1 + X2)/2 = y − t]

=
∑

x∈2L+c

ρs(x− t)ρs(2y − x− t)

= ρs/
√

2(y − t)
∑

x∈2L+c

ρs/
√

2(x− y) (Eq. (1))

= ρs/
√

2(y − t)ρs/
√

2(2L+ c + y) ,

as needed. The “in particular” then follows from the fact that ρs/
√

2(2L + c + y) =
ρs/
√

2(2L+ c + d) is constant for y ∈ 2L+ d for some fixed d ∈ L/(2L). J

Lemma 6 motivates the following definition, which captures a key property of the distribution
described in Lemma 6.

I Definition 7. For a lattice L ⊂ Rn, shift t ∈ Rn, and parameter s > 0 we say that the
random list (X1, . . . ,XM) ∈ (L − t)∗ is a mixture of independent Gaussians over L − t

with parameter s if the “distributions within the cosets of 2L” are independent Gaussians
with parameter s. I.e., for any list of cosets (c1, . . . , cM) ∈ ((L − t)/(2L))∗ mod 2L, if we
condition on Xi ∈ 2L+ ci for all i, then the Xi are independent with Xi ∼ D2L+ci,s.

We call (2L+ X1, . . . , 2L+ XM) the coset distribution of the Xi. We say that a mixture
of independent GaussiansM over L− t with parameter s > 0 dominates another,M′, if the
coset distribution ofM dominates the coset distribution ofM′ (as in Definition 4).

In other words, mixtures of independent Gaussians are exactly the distributions obtained
by first sampling (c1, . . . , cM) ∈ ((L− t)/(2L))∗ from some arbitrary coset distributions and
then sampling Xi ∼ DL+ci,s independently for each i. We now list some basic facts that
follow from what we have done so far.

D. Aggarwal and N. Stephens-Davidowitz 12:9

I Corollary 8 (Properties of mixtures of Gaussians and Procedure 1). For any lattice L ⊂ Rn,
shift t ∈ Rn, and parameter s > 0,
1. a mixture of independent Gaussians over L− t with parameter s is uniquely characterized

by its coset distribution;
2. if we apply Procedure 1 to a mixture of independent Gaussians over L− t with parameter

s, the result will be a mixture of Gaussians over L − t with parameter s/
√

2;
3. Procedure 1 preserves domination – i.e., if we apply Procedure 1 to two mixturesM,M′

of Gaussians over L − t with parameter s and M dominates M′, then the output of
Procedure 1 on inputM will dominate that ofM′; and

4. if X1,X2 are a mixture of independent Gaussians over L− t with parameter s with coset
distribution given by X1 ≡X2 mod 2L and

Pr[2L+ X1 + t = c] = ρs(2L+ c− t)2∑
d∈L/(2L) ρs(2L+ d− t)2

for any c ∈ L/(2L), then their average (X1 + X2)/2 is distributed exactly as DL−t,s/
√

2.

Proof. Item 1 follows immediately from the definition of a mixture of Gaussians. Items 2
and 3 are immediate consequences of Lemma 6.

For Item 4, we apply Lemma 6 to see that for any y ∈ L,

Pr[(X1 + X2)/2 = y − t] =
ρs/
√

2(y − t)∑
d∈L/(2L) ρs(2L+ d− t)2

∑
c∈L/(2L)

ρs/
√

2(2L+ c + y)

=
ρs/
√

2(y − t)∑
d∈L/(2L) ρs(2L+ d− t)2 · ρs/

√
2(L) .

The result then follows from Lemma 3. (Indeed, summing the left-hand side and the
right-hand side over all y ∈ L gives a proof of Lemma 3.) J

In [1, 2], we performed a careful rejection sampling procedure f in Procedure 2 so that,
at each step of the algorithm, the output was distributed exactly as DL−t,s/2i/2 (up to
some small statistical distance). In particular, we applied the rejection sampling procedure
guaranteed by Theorem 12 to obtain independent vectors distributed as in Item 4, which
yield independent Gaussians with a lower parameter when combined as in Procedure 1. But,
Corollary 8 makes this unnecessary. Indeed, Corollary 8 shows that “any collection of vectors
that can be found with any rejection sampling procedure can be found without it.” The
following meta-theorem makes this formal.

I Theorem 9. For any (possibly randomized) rejection function f mapping lists of cosets
modulo 2L to a subset of indices (as in Procedure 2), let A be the algorithm defined in
Procedure 2. Let A′ be the same algorithm with f replaced by the trivial function that just
outputs all indices (i.e., A′ just repeatedly runs Procedure 1 with no rejection).

Then, for any lattice L ⊂ Rn, shift vector t ∈ Rn, parameter s > 0, if A and A′ are each
called on input ` ≥ 1 and a list of M ≥ 2 independent samples from DL−t,s, the resulting
output distributions will be mixtures of independent Gaussians over L − t with parameter
s/2`/2. Furthermore, the distribution corresponding to A′ will dominate the distribution
corresponding to A. In particular, for any finite set S ⊂ L− t,

Pr
X1,...,XM∼DL−t,s

[S ⊆ A(`,X1, . . . ,XM)] ≤ Pr
X1,...,XM∼DL−t,s

[S ⊆ A′(`,X1, . . . ,XM)] .

SOSA 2018

12:10 Just Take the Average!

Proof. Notice that, since f only acts on the cosets of the Xi, f “preserves mixtures of
independent Gaussians.” I.e., if (X1, . . . ,XM ′) is some mixture of independent Gaussians
over L − t with parameter s′ > 0 and (j1, . . . , jm) ← f(2L + X1, . . . , 2L + XM ′), then
(Xj1 , . . . ,Xjm) is also a mixture of independent Gaussians over L − t with parameter s′.
(Notice that this would not be true if f acted on vectors, rather than cosets.) Similarly, by
Item 2, Procedure 1 maps mixtures of independent Gaussians over L− t with parameter s′
to mixtures with parameter s′/

√
2. It follows that for both A and A′, after the ith step of

the algorithm, the list of vectors is a mixture of Gaussians over L − t with parameter s/2i/2.
And, the same holds after the application of f in algorithm A. Therefore, the only question
is the coset distributions.

By Fact 5, we see that (X1, . . . ,XM) dominates (Xj1 , . . . ,Xjm). Therefore, by Item 3,
the distribution of vectors corresponding to A′ dominates the distribution of A after the
first step. If we assume for induction that, after the (i− 1)st step, the distribution of vectors
corresponding to A′ dominates the distribution corresponding to A, then the exact same
argument together with another application of Fact 5 shows that the same holds after step i.
The result follows. J

Theorem 9, together with the corresponding algorithms in [1, 2], immediately implies
Theorems 1 and 2. For completeness, we give more direct proofs of these theorems in the
appendix, more-or-less recreating the corresponding proofs in [1, 2].

Acknowledgments. We thank Oded Regev and Daniel Dadush for many helpful discussions.

References
1 Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. Solving

the Shortest Vector Problem in 2n time via discrete Gaussian sampling. In STOC, 2015.
2 Divesh Aggarwal, Daniel Dadush, and Noah Stephens-Davidowitz. Solving the Closest

Vector Problem in 2n time— The discrete Gaussian strikes again! In FOCS, 2015.
3 Miklós Ajtai. The shortest vector problem in L2 is NP-hard for randomized reductions

(extended abstract). In Jeffrey Scott Vitter, editor, Proceedings of the Thirtieth Annual
ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998,
pages 10–19. ACM, 1998. doi:10.1145/276698.276705.

4 Miklós Ajtai. Generating hard instances of lattice problems. In Complexity of computations
and proofs, volume 13 of Quad. Mat., pages 1–32. Dept. Math., Seconda Univ. Napoli,
Caserta, 2004. Preliminary version in STOC’96.

5 Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice
vector problem. In Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis, editors,
Proceedings on 33rd Annual ACM Symposium on Theory of Computing, July 6-8, 2001,
Heraklion, Crete, Greece, pages 601–610. ACM, 2001. doi:10.1145/380752.380857.

6 Miklós Ajtai, Ravi Kumar, and D. Sivakumar. Sampling short lattice vectors and the
closest lattice vector problem. In CCC, pages 41–45, 2002.

7 Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum key
exchange — A new hope. In USENIX Security Symposium, 2016.

8 László Babai. On lovász’ lattice reduction and the nearest lattice point problem. Combin-
atorica, 6(1):1–13, 1986. doi:10.1007/BF02579403.

9 Wojciech Banaszczyk. New bounds in some transference theorems in the geometry of
numbers. Mathematische Annalen, 296(4):625–635, 1993. doi:10.1007/BF01445125.

10 Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest
neighbor searching with applications to lattice sieving. In SODA, 2016.

http://dx.doi.org/10.1145/276698.276705
http://dx.doi.org/10.1145/380752.380857
http://dx.doi.org/10.1007/BF02579403
http://dx.doi.org/10.1007/BF01445125

D. Aggarwal and N. Stephens-Davidowitz 12:11

11 Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria
Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the ring! Practical,
quantum-secure key exchange from LWE. In CCS, 2016.

12 Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical
hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum,
editors, Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA,
June 1-4, 2013, pages 575–584. ACM, 2013. doi:10.1145/2488608.2488680.

13 R. de Buda. Some optimal codes have structure. Selected Areas in Communications, IEEE
Journal on, 7(6):893–899, Aug 1989.

14 Irit Dinur, Guy Kindler, Ran Raz, and Shmuel Safra. Approximating CVP to within
almost-polynomial factors is NP-hard. Combinatorica, 23(2):205–243, 2003.

15 Nicolas Gama and Phong Q. Nguyen. Finding short lattice vectors within Mordell’s in-
equality. In STOC, 2008.

16 Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In STOC, pages 197–206, 2008.

17 Oded Goldreich, Daniele Micciancio, Shmuel Safra, and Jean-Pierre Seifert. Approximating
shortest lattice vectors is not harder than approximating closest lattice vectors. Inf. Process.
Lett., 71(2):55–61, 1999. doi:10.1016/S0020-0190(99)00083-6.

18 Ishay Haviv and Oded Regev. Tensor-based hardness of the Shortest Vector Problem to
within almost polynomial factors. Theory of Computing, 8(23):513–531, 2012. Preliminary
version in STOC’07.

19 Hendrik W. Lenstra Jr. Integer programming with a fixed number of variables. Math. Oper.
Res., 8(4):538–548, 1983. doi:10.1287/moor.8.4.538.

20 Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper.
Res., 12(3):415–440, 1987. doi:10.1287/moor.12.3.415.

21 Subhash Khot. Hardness of approximating the Shortest Vector Problem in lattices. Journal
of the ACM, 52(5):789–808, 2005. Preliminary version in FOCS’04.

22 Philip Klein. Finding the closest lattice vector when it’s unusually close. In SODA, 2000.
23 A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational

coefficients. Math. Ann., 261(4):515–534, 1982. doi:10.1007/BF01457454.
24 Daniele Micciancio. The Shortest Vector Problem is NP-hard to approximate to within

some constant. SIAM Journal on Computing, 30(6):2008–2035, 2001. Preliminary version
in FOCS 1998.

25 Daniele Micciancio and Panagiotis Voulgaris. Faster exponential time algorithms for the
Shortest Vector Problem. In SODA, 2010.

26 Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential time al-
gorithm for most lattice problems based on Voronoi cell computations. SIAM Journal on
Computing, 42(3):1364–1391, 2013.

27 Daniele Micciancio and Michael Walter. Practical, predictable lattice basis reduction. In
Eurocrypt, 2016.

28 NIST post-quantum standardization call for proposals. http://csrc.nist.gov/groups/
ST/post-quantum-crypto/cfp-announce-dec2016.html, 2016. Accessed: 2017-04-02.

29 Chris Peikert. A decade of lattice cryptography. Foundations and Trends in Theoretical
Computer Science, 10(4):283–424, 2016.

30 Xavier Pujol and Damien Stehlé. Solving the Shortest Lattice Vector Problem in time
22.465n. IACR Cryptology ePrint Archive, 2009:605, 2009.

31 Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J.
ACM, 56(6):34:1–34:40, 2009. doi:10.1145/1568318.1568324.

32 Oded Regev and Noah Stephens-Davidowitz. An inequality for Gaussians on lattices.
SIDMA, 2017.

SOSA 2018

http://dx.doi.org/10.1145/2488608.2488680
http://dx.doi.org/10.1016/S0020-0190(99)00083-6
http://dx.doi.org/10.1287/moor.8.4.538
http://dx.doi.org/10.1287/moor.12.3.415
http://dx.doi.org/10.1007/BF01457454
http://csrc.nist.gov/groups/ST/post-quantum-crypto/cfp-announce-dec2016.html
http://csrc.nist.gov/groups/ST/post-quantum-crypto/cfp-announce-dec2016.html
http://dx.doi.org/10.1145/1568318.1568324

12:12 Just Take the Average!

33 Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms.
Theor. Comput. Sci., 53:201–224, 1987. doi:10.1016/0304-3975(87)90064-8.

34 Adi Shamir. A polynomial-time algorithm for breaking the basic merkle-hellman cryptosys-
tem. IEEE Trans. Information Theory, 30(5):699–704, 1984. doi:10.1109/TIT.1984.
1056964.

35 Noah Stephens-Davidowitz. On the Gaussian Measure Over Lattices. PhD thesis, New
York University, 2017.

36 Peter van Emde Boas. Another NP-complete problem and the complexity of computing
short vectors in a lattice. Technical report, University of Amsterdam, Department of
Mathematics, Netherlands, 1981. Technical Report 8104.

A Additional preliminaries

We will need some additional preliminaries. We write

λ1(L) := min
y∈L\{0}

‖y‖

for the length of the shortest non-zero vector in the lattice. And, for a target vector t ∈ Rn,
we write

dist(t,L) := min
y∈L
‖y − t‖

for the distance from t to the lattice. Notice that this is the same as the length of the shortest
vector in L − t.

A.1 Some known algorithms
We will need the famous result of Lenstra, Lenstra, and Lovász [23].

I Theorem 10 ([23]). There is an efficient algorithm that take as input a lattice L ⊂ Rn

and outputs λ̃ > 0 with

λ1(L) ≤ d̃ ≤ 2n/2λ1(L) .

We will also need the following celebrated result due to Babai [8].

I Theorem 11 ([8]). There is an efficient algorithm that takes as input a lattice L ⊂ Rn

and a target t ∈ Rn and outputs d̃ > 0 with

dist(t,L) ≤ d̃ ≤ 2n/2 dist(t,L) .

A.2 The distribution of disjoint pairs
Recall that Procedure 1 takes the Ti elements from the ith coset and converts them into
bTi/2c disjoint pairs. Therefore, for a listM := (X1, . . . , XM) ∈ S∗ over some finite set S,
we write bM/2c for the random variable obtained as in Procedure 1. I.e., up to ordering
(which does not concern us), bM/2c := (X ′1, . . . , X ′M ′) ∈ (S × S)∗ is defined by

|{j : X ′j = (s, s)}| = b|{j : Xj = s}|/2c

for each s ∈ S.

http://dx.doi.org/10.1016/0304-3975(87)90064-8
http://dx.doi.org/10.1109/TIT.1984.1056964
http://dx.doi.org/10.1109/TIT.1984.1056964

D. Aggarwal and N. Stephens-Davidowitz 12:13

I Theorem 12 ([1, Theorem 3.3]). For any probabilities, p1, . . . , pN ∈ [0, 1] with
∑
pi = 1,

integer M , and κ ≥ Ω(logM) (the confidence parameter) with M ≥ 10κ2/pmax, let M =
(X1, . . . , XM) ∈ {1, . . . , N}M be the distribution obtained by sampling each Xj independ-
ently from the distribution that assigns to element i probability pi. Then, there exists a
rejection sampling procedure that, up to statistical distance exp(−Ω(κ)), maps M to the
distribution M′ := (X ′1, . . . , X ′M) ∈ {(1, 1), . . . , (N,N)}M ′ obtained by sampling each pair
Xj independently from the distribution that assigns to the pair (i, i) probability p2

i /pcol, where

M ′ :=
⌈
M · pcol

32κpmax

⌉
,

pmax := max pi, and pcol :=
∑
p2

i .

I Corollary 13. For any probabilities, p1, . . . , pN ∈ [0, 1] with
∑
pi = 1, integer M , and

κ ≥ Ω(logM) (the confidence parameter) with M ≥ 10κ2/pmax, let M := (X1, . . . , XM) ∈
{1, . . . , N}M be the distribution obtained by sampling each Xj independently from the distribu-
tion that assigns to element i probability pi. LetM′ := (X ′1, . . . , X ′M ′) ∈ {(1, 1), . . . , (N,N)}M ′

be the distribution obtained by sampling each pair X ′j independently from the distribution
that assigns to the pair (i, i) probability p2

i /pcol, where

M ′ :=
⌈
M · pcol

32κpmax

⌉
,

pmax := max pi, and pcol :=
∑
p2

i . Then,M dominatesM′.

A.3 Additional facts about the discrete Gaussian
We will also need some additional facts about the discrete Gaussian.

I Lemma 14 ([9]). For any lattice L ⊂ Rn, parameter s ≥ 1, and shift t ∈ Rn, ρs(L − t) ≤
snρ(L).

The following theorem shows that, if the parameter s is appropriately small, then
DL−t,s + t will be an approximate closest vector to t, with approximation factor roughly
1 +
√
ns/dist(t,L). (This is a basic consequence of Banaszczyk’s celebrated theorem [9].)

I Proposition 15 ([35, Corollary 1.3.11], see also [2, Corollary 2.8]). For any lattice L ⊂ Rn,
parameter s > 0, shift t ∈ Rn, and radius r >

√
n/(2π) · s, with r > dist(t,L) and

r2 > dist(t,L)2 + ns2

π
· log(2π dist(t,L)2/(ns2)) ,

we have

Pr
X∼DL−t,s

[‖X‖ > r] < (2e)n/2+1 exp(−πy2/2) ,

where y :=
√
r2 − dist(t,L)2/s.

The next theorem shows that exponentially many samples from DL,s with s ≈ λ1(L)/
√
n

is sufficient to find a shortest non-zero lattice vector.

I Proposition 16 ([1, Proposition 4.3]). For any lattice L ⊂ Rn, and parameter

s :=
√

20.198πe/n · λ1(L) ,

we have

Pr
X∼DL,s

[‖X‖ = λ1(L)] ≥ 1.38−n−o(n) .

SOSA 2018

12:14 Just Take the Average!

The next corollary follows immediately from Proposition 16 and Lemma 14.

I Corollary 17. For any lattice L ⊂ Rn, and parameter√
20.198πe/n · λ1(L) ≤ s ≤ 1.01 ·

√
20.198πe/n · λ1(L) ,

we have

Pr
X∼DL,s

[‖X‖ = λ1(L)] ≥ 1.4−n−o(n) .

We will also need the following result from [2], which is an immediate consequence of the
main identity in [32]. (See also [35].)

I Lemma 18 ([2, Corollary 3.3]). For any lattice L ⊂ Rn, shift t ∈ Rn, and parameter s > 0,
we have

max
c∈L/(2L)

ρs(2L+ c− t)2 ≤ ρs/
√

2(L) max
c∈L

ρs/
√

2(2L+ c− t) .

From this, we derive the following rather technical-looking inequality, which is implicit
in [2]. (This inequality comes up naturally in the proof of Corollary 21. We separate it out
here to make that proof cleaner.)

I Corollary 19. For any lattice L ⊂ Rn, shift t ∈ Rn, parameter s > 0, and integer ` ≥ 0,
we have

`−1∏
i=0

ρs/2(i+1)/2(L − t)ρs/2(i+1)/2(L)
ρs/2i/2(L − t) ·maxc∈L/(2L) ρs/2i/2(2L+ c− t)

≥
ρs/2`/2(L − t)

maxc∈L/(2L) ρs/2`/2(2L+ c− t) ·
maxc∈L/(2L) ρs(2L+ c− t)

ρs(L − t) .

Proof. From Lemma 18, we see that for all i,

ρs/2(i+1)/2(L)
maxc∈L/(2L) ρs/2i/2(2L+ c− t) ≥

maxc∈L/(2L) ρs/2i/2(2L+ c− t)
maxc∈L/(2L) ρs/2(i+1)/2(2L+ c− t) .

Therefore, the product in the statement of the corollary is at least

`−1∏
i=0

ρs/2(i+1)/2(L − t) ·maxc∈L/(2L) ρs/2i/2(2L+ c− t)
ρs/2i/2(L − t) ·maxc∈L/(2L) ρs/2(i+1)/2(2L+ c− t)

=
ρs/2`/2(L − t)

maxc∈L/(2L) ρs/2`/2(2L+ c− t) ·
maxc∈L/(2L) ρs(2L+ c− t)

ρs(L − t) ,

where we have used the fact that this is a telescoping product. J

B Running Procedure 1 on Gaussian input

I Theorem 20. For any lattice L ⊂ Rn, shift t ∈ Rn, parameter s > 0, integer M , and
confidence parameter κ ≥ Ω(logM), if X1, . . . ,XM are sampled independently from DL−t,s

with

M ≥ 10κ2 · ρs(L − t)
maxc∈L/(2L) ρs(2L+ c− t) ,

D. Aggarwal and N. Stephens-Davidowitz 12:15

then the output of Procedure 1 applied to the Xi will be a mixture of independent Gaussians
with parameter s/

√
2 that dominates the distribution of

M ′ :=
⌈
M

32κ ·
ρs/
√

2(L − t) · ρs/
√

2(L)
ρs(L − t) ·maxd∈L/(2L) ρs(2L+ d− t)

⌉
independent samples from DL−t,s/

√
2, up to statistical distance exp(−Ω(κ)).

Proof. By Item 2 of Corollary 8, the resulting distribution will in fact be a mixture of
independent Gaussians over L − t with parameter s/

√
2. Notice that, if M is the coset

distribution of (X1, . . . ,XM), then Procedure 1 first maps the Xi into the mixture of
independent Gaussians over L − t with parameter s and coset distribution bM/2c and then
takes the averages of the corresponding pairs of these vectors.

We wish to apply Corollary 13 over the coset distribution, with the probabilities pi :=
p2L+c taken to be the weights of the cosets in the original distribution discrete Gaussian,

p2L+c := ρs(2L+ c− t)
ρs(L − t) .

Notice that, by Lemma 3,

M ′ =
⌈
M · pcol

32κpmax

⌉
,

which is exactly what is needed to apply Corollary 13. By the corollary, up to statistical
distance exp(−Ω(κ)) this distribution dominates the mixture of independent Gaussians over
L − t with parameter s whose coset distribution is given by c2k−1 = c2k for 1 ≤ k ≤ M ′,
with the odd-indexed cosets c2k−1 sampled independently from the distribution that assigns
to coset c ∈ L/(2L) probability

pi

pcol
= ρs(2L+ c− t)2∑

d∈L/(2L) ρs(2L+ d− t)2 .

Notice that this “squared” distribution” (so-called because the cosets are given weight
proportional to their square) is simply M ′ independent copies of the distribution from Item 4
of Corollary 8. So, if we run Procedure 1 on this “squared” distribution, the output will be
exactly M ′ independent samples from DL−t,s/

√
2.

Finally, by Fact 5, we see that, since the actual pairs dominate these “squared” pairs
(up to statistical distance exp(−Ω(κ))), the output must dominate M ′ independent samples
from DL−t,s/

√
2. J

I Corollary 21. For any lattice L ⊂ Rn, shift t ∈ Rn, parameter s > 0, integer M ≥ 2, and
confidence parameter κ ≥ Ω(logM), if X1, . . . ,XM are sampled independently from DL−t,s

with

M ≥ (10κ)2` · ρs(L − t)
maxc∈L/(2L) ρs(2L+ c− t) ,

and we apply Procedure 1 repeatedly to the Xi a total of ` ≥ 1 times, the result will be a
mixture of independent Gaussians with parameter s/2`/2 that dominates the distribution of

M ′ :=
⌈

M

(32κ)`
·

`−1∏
i=0

ρs/2(i+1)/2(L − t)ρs/2(i+1)/2(L)
ρs/2i/2(L − t) ·maxc∈L/(2L) ρs/2i/2(2L+ c− t)

⌉
independent samples from DL−t,s/2`/2 , up to statistical distance ` exp(−Ω(κ)).

SOSA 2018

12:16 Just Take the Average!

Proof. By Item 2 of Corollary 8, the output will in fact be a mixture of independent Gaussians
over L − t with parameter s/2`/2. The only question is what the coset distribution is.

To show that the coset distribution is as claimed, the idea is to simply apply Theorem 20
` times. In particular, we prove the result via induction on `. When ` = 1, this is exactly
Theorem 20. For ` > 1, we assume the statement is true for ` − 1. In particular, before
applying Procedure 1 the `th time, we have a mixture of independent Gaussians with
parameter s/2`/2 that dominates

M̂ :=
⌈

M

(32κ)`
·

`−2∏
i=0

ρs/2(i+1)/2(L − t)ρs/2(i+1)/2(L)
ρs/2i/2(L − t) ·maxc∈L/(2L) ρs/2i/2(2L+ c− t)

⌉

≥ 10κ2 · ρs(L − t)
maxc∈L/(2L) ρs(L+ c− t) ·

`−2∏
i=0

ρs/2(i+1)/2(L − t)ρs/2(i+1)/2(L)
ρs/2i/2(L − t) ·maxc∈L/(2L) ρs/2i/2(2L+ c− t)

independent Gaussians up to statistical distance (`− 1) exp(−Ω(κ)).
By Fact 5, it suffices to prove that the output of Procedure 1 on these M̂ samples

dominates M ′ independent samples from DL−t,s/2`/2 up to statistical distance exp(−Ω(κ)).
Indeed, this is exactly what Theorem 20 says, provided that

M̂ ≥ 10κ2 ·
ρs/2(`−1)/2(L − t)

maxc∈L/(2L) ρs/2(`−1)/2(2L+ c− t) .

And, this inequality follows immediately from Corollary 19 together with the assumed lower
bound on M̂ . J

C The initial distribution

The following theorem was proven by Ajtai, Kumar, and Sivakumar [5], building on work of
Schnorr [33].

I Theorem 22 ([33, 5]). There is an algorithm that takes as input a lattice L ⊂ Rn and
u ≥ 2 and outputs an un/y-reduced basis of L in time exp(O(u)) · poly(n), where we say that
a basis B = (b1, . . . , bn) of a lattice L is γ-reduced for some γ ≥ 1 if
1. ‖b1‖ ≤ γ · λ1(L); and
2. π{b1}⊥(b2), . . . , π{b1}⊥(bn) is a γ-reduced basis of π{b1}⊥(L).

This next theorem is originally due to [16], based on analysis of an algorithm originally
studied by Klein [22]. We present a slightly stronger version due to [12] for convenience.

I Theorem 23 ([12, Lemma 2.3]). There is a probabilistic polynomial-time algorithm that
takes as input a basis B for a lattice L ⊂ Rn with n ≥ 2, a shift t ∈ Rn, and ŝ > C

√
logn·‖B̃‖

and outputs a vector that is distributed exactly as DL−t,ŝ, where ‖B̃‖ := max‖b̃i‖.

I Proposition 24 ([2, Proposition 4.5]). There is an algorithm that takes as input a lattice
L ⊂ Rn, shift t ∈ Rn, r > 0, and parameter u ≥ 2, such that if

r ≥ un/u(1 +
√
nun/u) · dist(t,L) ,

then the output of the algorithm is y ∈ L and a basis B′ of a (possibly trivial) sublattice
L′ ⊆ L such that all vectors from L−t of length at most r/un/u−dist(t,L) are also contained
in L′ − y − t, and ‖B̃

′
‖ ≤ r. The algorithm runs in time poly(n) · 2O(u).

D. Aggarwal and N. Stephens-Davidowitz 12:17

Proof. On input a lattice L ⊂ Rn, t ∈ Rn, and r > 0, the algorithm behaves as follows.
First, it calls the procedure from Theorem 22 to compute a un/u-HKZ basis B = (b1, . . . , bn)
of L. Let (b̃1, . . . , b̃n) be the corresponding Gram-Schmidt vectors. Let k ≥ 0 be maximal
such that ‖b̃i‖ ≤ r for 1 ≤ i ≤ k, and let B′ = (b1, . . . , bk). Let πk = π{b1,...,bk}⊥ and
M = πk(L). The algorithm then calls the procedure from Theorem 22 again with the same s
and input πk(t) andM, receiving as output x =

∑n
i=k+1 aiπk(bi) where ai ∈ Z, a

√
nun/u-

approximate closest vector to πk(t) inM. Finally, the algorithm returns y = −
∑n

i=k+1 aibi

and B′ = (b1, . . . , bk).
The running time is clear, as is the fact that ‖B̃′‖ ≤ r. It remains to prove that L′−y− t

contains all sufficiently short vectors in L− t. If k = n, then L′ = L and y is irrelevant, so we
may assume that k < n. Note that, since B is a un/u-HKZ basis, λ1(M) ≥ ‖b̃k+1‖/un/u >

r/un/u. In particular, λ1(M) > (1 +
√
n · un/u) · dist(t,L) ≥ (1 +

√
n · un/u) · dist(πk(t),M).

So, there is a unique closest vector to πk(t) in M, and by triangle inequality, the next
closest vector is at distance greater than

√
n · un/u dist(πk(t),M). Therefore, the call to the

subprocedure from Theorem 22 will output the exact closest vector x ∈M to πk(t).
Let w ∈ L \ (L′ − y) so that πk(w) 6= πk(−y) = x. We need to show that w − t is

relatively long. Since B is a sn/s-HKZ basis, it follows that

‖πk(w)− x‖ ≥ λ1(M) > r/un/u .

Applying triangle inequality, we have

‖w − t‖ ≥ ‖πk(w)− πk(t)‖ ≥ ‖πk(w)− x‖ − ‖x− πk(t)‖ > r/un/u − dist(t,L) ,

as needed. J

I Corollary 25 ([2, Corollary 4.6]). There is an algorithm that takes as input a lattice L ⊂ Rn

with n ≥ 2, shift t ∈ Rn, M ∈ N (the desired number of output vectors), and parameters
u ≥ 2 and ŝ > 0 and outputs y ∈ L, a (possibly trivial) sublattice L′ ⊆ L, and M vectors
from L′ − y − t such that if

ŝ ≥ 10
√
n logn · u2n/u · dist(t,L) ,

then the output vectors are distributed as M independent samples from DL′−y−t,ŝ, and
L′ − y − t contains all vectors in L − t of length at most ŝ/(10un/u

√
logn). The algorithm

runs in time poly(n) · 2O(u) + poly(n) ·M . (And, if t = 0, then y = 0.)

Proof. The algorithm first calls the procedure from Proposition 24 with input L, t, and

r := 10ŝ√
logn

≥ un/u(1 +
√
nun/u) · dist(t,L) ,

receiving as output y ∈ L and a basis B′ of a sublattice L′ ⊂ L. It then runs the algorithm
from Theorem 23 M times with input L′, y + t, and ŝ and outputs the resulting vectors, y,
and L′.

The running time is clear. By Proposition 24, L′ − y − t contains all vectors of length
at most r/un/u − dist(t,L) ≥ ŝ/(10un/u

√
logn) in L− t, and ‖B̃

′
‖ ≤ r ≤ Cŝ/

√
logn. So, it

follows from Theorem 23 that the output has the correct distribution. J

D Finishing the proof

I Theorem 26 (SVP algorithm). For any lattice L ⊂ Rn, the output of Procedure 3 on input
L will be a shortest non-zero vector in L except with probability at most exp(−Ω(n)).

SOSA 2018

12:18 Just Take the Average!

Procedure 3: The final 2n+o(n)-time SVP algorithm. Here M = 2n+Θ(log2 n),
u = Θ(n), and ` = Θ(logn).
SVP (L)
Input : A lattice L ⊂ Rn

Output : A vector y ∈ L with ‖y‖ = λ1(L)
Use the procedure from Thereom 10 to compute λ̂ with λ1(L) ≤ λ̂ ≤ 2n/2λ1(L).
for i = 1, . . . , 200n do

Set L′ ⊆ L and X1, . . . ,XM ∈ L to be the output of Corollary 25 on input L,
t := 0, u, and si := 1.01−i · λ̂.

for j = 1, . . . , ` do
(X1, . . . ,XM ′)← Pair_and_Average(X1, . . . ,XM)
M ←M ′

end
Y i ← arg minXj 6=0 ‖Xj‖.

end
Output arg min ‖Y i‖.

Proof. The running time is clear. Let κ = Θ(n). Let i such that si/2`/2 satisfies the
inequality in Corollary 17. By Corollary 25, the (X1, . . . ,XM) corresponding to this i
will be distributed exactly as DL′,si

where L′ ⊆ L contains all vectors of length at most
λ1(L). So, λ1(L′) = λ1(L), and it suffices to argue that we will find a shortest vector in L′.
By Corollary 21, the output distribution (X1, . . . , XM) will be a mixture of independent
Gaussians over L′ with parameter si/2`/2 that dominates the distribution of

M ′ =

 M

(32κ)`
·

`−1∏
j=0

ρsi/2(j+1)/2(L′)2

ρsi/2j/2(L′) · ρsi/2(j+2)/2(L′)

independent samples from DL′,si/2`/2 up to statistical distance exp(−Ω(κ)), where we have
applied Lemma 14 to show that the coset with maximal mass is the central coset. Noting
that this product is telescoping, we have

M ′ =
⌈

M

(32κ)`
·
ρsi/

√
2(L′)

ρsi
(L′) ·

ρsi/2`/2(L′)
ρsi/2(`+1)/2(L′)

⌉
≥ 2n/2 ,

where we have applied Lemma 14. The result then follows from Corollary 17, together with
the fact that

√
2 > 1.4. J

D. Aggarwal and N. Stephens-Davidowitz 12:19

Procedure 4: The final 2n+o(n)-time SVP algorithm. Here M = 2n+Θ(n/ log n),
u = Θ(n), and ` = Θ(n/ log2 n).
CVP (L, t)
Input : A lattice L ⊂ Rn and target t ∈ Rn

Output : A vector y ∈ L with ‖y − t‖ ≤ (1 + 2−n/ log2 n) · dist(t,L)
Use the procedure from Thereom 11 to compute d̂ with
dist(L, t) ≤ d̂ ≤ 2n/2 dist(t,L).

for i = 1, . . . , n do
Set L′ ⊆ L, y ∈ L, and X1, . . . , XM ∈ L′ − y − t to be the output of Corollary 25
on input L, t, u, and si := 20n2 · 2−i · d̂.

for j = 1, . . . , ` do
(X1, . . . ,XM ′)← Pair_and_Average(X1, . . . ,XM)
M ←M ′

end
Y i ← arg minXj

‖Xj‖.
end
Output t + arg min ‖Y i‖.

I Theorem 27 (CVP algorithm). For any lattice L ⊂ Rn and t ∈ Rn, the output of Procedure 4
on input L and t will a vector y ∈ L with ‖y − t‖ ≤ (1 + exp(−Ω(n/ log2 n))) · dist(t,L),
except with probability at most exp(−Ω(n)).4

Proof. The running time is clear. Let κ = Θ(n). Let i such that

10
√
n logn · u2n/u · dist(t,L) ≤ si ≤ 20

√
n logn · u2n/u · dist(t,L) .

By Corollary 25, the (X1, . . . ,XM) corresponding to this i will be distributed exactly as
DL′−y−t,si where L′ − y − t ⊆ L− t contains all vectors of length at most dist(t,L). So, it
suffices to argue that we will find a (1 + 2−n/ log2 n)-approximate shortest vector in L′−y− t.
By Corollary 21, the output distribution (X1, . . . , XM) will be a mixture of independent
Gaussians over L′ − y − t with parameter si/2`/2 that dominates the distribution of

M ′ =

 M

(32κ)`
·

`−1∏
j=0

ρsi/2(j+1)/2(L′ − y − t)ρsi/2(j+1)/2(L)
ρsi/2j/2(L′ − y − t) ·maxc∈L′/(2L′) ρsi/2j/2(2L′ + c− y − t)

 ≥ 1

independent samples from DL′−y−t,si/2`/2 up to statistical distance exp(−Ω(κ)), where we
have applied Corollary 19.

Notice that si/2`/2 < exp(−Ω(n/ log2 n)) dist(t,L). The result then follows from Propos-
ition 15, which says that, except with probability exp(−Ω(n)) a sample from DL′−y−t,si/2`/2

will be a (1 + exp(−Ω(n/ log2 n)))-approximate shortest vector in L′ − y − t. J

4 It is immediate from the proof that this result can be extended to work for any approximation factor γ
with γ > 1 + exp(−o(n/ logn)), by taking ` = o(n/ logn) and M = 2n+o(n) to be slightly larger.

SOSA 2018

Complex Semidefinite Programming and
Max-k-Cut∗

Alantha Newman

CNRS–Université Grenoble Alpes, F-38000, Grenoble, France
alantha.newman@grenoble-inp.fr

Abstract
In a second seminal paper on the application of semidefinite programming to graph partitioning
problems, Goemans and Williamson showed how to formulate and round a complex semidefinite
program to give what is to date still the best-known approximation guarantee of .836008 for
Max-3-Cut [5]. (This approximation ratio was also achieved independently by De Klerk et
al. [2].) Goemans and Williamson left open the problem of how to apply their techniques to
Max-k-Cut for general k. They point out that it does not seem straightforward or even possible
to formulate a good quality complex semidefinite program for the general Max-k-Cut problem,
which presents a barrier for the further application of their techniques.

We present a simple rounding algorithm for the standard semidefinite programmming relaxa-
tion of Max-k-Cut and show that it is equivalent to the rounding of Goemans and Williamson
in the case of Max-3-Cut. This allows us to transfer the elegant analysis of Goemans and Willi-
amson for Max-3-Cut to Max-k-Cut. For k ≥ 4, the resulting approximation ratios are about
.01 worse than the best known guarantees. Finally, we present a generalization of our rounding
algorithm and conjecture (based on computational observations) that it matches the best-known
guarantees of De Klerk et al.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases Graph Partitioning, Max-k-Cut, Semidefinite Programming

Digital Object Identifier 10.4230/OASIcs.SOSA.2018.13

1 Introduction

In the Max-k-Cut problem, we are given an undirected graph, G = (V,E), with non-negative
edge weights. Our objective is to divide the vertices into at most k disjoint sets, for some
given positive integer k, so as to maximize the weight of the edges whose endpoints lie
in different sets. When k = 2, this problem is known simply as the Max-Cut problem.
The approximation guarantee of 1 − 1/k can be achieved for all k by placing each vertex
uniformly at random in one of k sets. For all values of k ≥ 2, this simple algorithm yielded
the best-known approximation ratio until 1994. In that year, Goemans and Williamson
gave a .87856-approximation algorithm for the Max-Cut problem based on semidefinite
programming (SDP), thereby introducing this method as a successful new technique for
designing approximation algorithms [4].

Frieze and Jerrum subsequently developed an algorithm for the Max-k-Cut problem
that can be viewed as a generalization of Goemans and Williamson’s algorithm for Max-Cut
in the sense that it is same algorithm when k = 2 [3]. Although the rounding algorithm
of Frieze and Jerrum is arguably simple and natural, the analysis is quite involved. Their

∗ Supported in part by LabEx PERSYVAL-Lab (ANR-11-LABX-0025).

© Alantha Newman;
licensed under Creative Commons License CC-BY

1st Symposium on Simplicity in Algorithms (SOSA 2018).
Editor: Raimund Seidel; Article No. 13; pp. 13:1–13:11

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SOSA.2018.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

13:2 Complex SDP and Max-k-Cut

approximation ratios improved upon the previously best-known guarantees of 1− 1/k for
k ≥ 3 and are shown in Table 1. A few years later, Andersson, Engebretsen and Håstad
also used semidefinite programming to design an algorithm for the more general problem of
Max-E2-Lin mod k, in which the input is a set of 2-variable equations or inequations mod
k (e.g. x− y ≡ c mod k) and the objective is to assign an integer from the range [0, k − 1]
to each variable so that the maximum number of equations are satisfied [1]. They proved
that the approximation guarantee of their algorithm is at least f(k) more than that of the
simple randomized algorithm, where f(k) is a (small) linear function of k. In the special
case of Max-k-Cut, they showed that the performance ratio of their algorithm is no better
than that of Frieze and Jerrum. Although they did not show the equivalence of these two
algorithms, they stated that numerical evidence suggested that the two algorithms have the
same approximation ratio. Shortly thereafter, De Klerk, Pasechnik and Warners presented an
algorithm for Max-k-Cut with improved approximation guarantees for all k ≥ 3, shown in
Table 1. Additionally, they showed that their algorithm has the same worst-case performance
guarantee as that of Frieze and Jerrum [2].

Around the same time, Goemans and Williamson independently presented another
algorithm for Max-3-Cut based on complex semidefinite programming (CSDP) [5]. For this
problem, they improved the best-known approximation guarantee of .832718 due to Frieze
and Jerrum to .836008, the same approximation ratio proven by De Klerk, Pasechnik and
Warners. Goemans and Williamson showed that their algorithm is equivalent to that of
Andersson, Engebretsen and Håstad and to that of Frieze and Jerrum (and therefore to that
of De Klerk, Pasechnik and Warners) in the case of Max-3-Cut [5]. However, they argued
that their decision to use complex semidefinite programming and, specifically, their choice
to represent each vertex by a single complex vector resulted in “cleaner models, algorithms,
and analysis than the equivalent models using standard semidefinite programming.”

One issue noted by Goemans and Williamson with respect to their elegant new model
was that it is not clear how to apply their techniques to Max-k-Cut for k ≥ 4. Their
approach seemed to be tailored specifically to the Max-3-Cut problem. This is because
one cannot model, say, the Max-4-Cut problem directly using a complex semidefinite
program. This limitation is discussed in Section 8 of [5]. In fact, as they point out, a direct
attempt to model Max-k-Cut with a complex semidefinite program would only result in a
(1− 1/k)-approximation for k ≥ 4. De Klerk et al. also state that there is no obvious way to
extend the approach based on CSDP to Max-k-Cut for k > 3. (See page 269 in [2].)

1.1 Our Contribution
In this paper, we make the following contributions.
1. We present a simple rounding algorithm based on the standard semidefinite programming

relaxation of Max-k-Cut and show that it can be analyzed using the tools from [5].
For k = 3, this results in an implementation of the Goemans-Williamson algorithm
that avoids complex semidefinite programming.
For k ≥ 4, the resulting approximation ratios are slightly worse than the best-known
guarantees.

2. We present a simple generalization of this rounding algorithm and conjecture that it
yields the best-known approximation ratios.

Thus, the main contribution of this paper is to show that, despite its limited modeling
power, we can still apply the tools from complex semidefinite programming developed by
Goemans and Williamson to Max-k-Cut. In fact, we obtain the following worst-case

A. Newman 13:3

Table 1 Approximation guarantees for Max-k-Cut.

k [4] [3] [5] [2] This paper

k = 2 .878956 - - - -

k = 3 - .832718 .836008 .836008 -

k = 4 - .850304 - .857487 .846478

k = 5 - .874243 - .876610 .862440

k = 10 - .926642 - .926788 .915885

approximation guarantee for the Max-k-Cut problem for all k, which is the same bound
they achieve for k = 3:

φk = k − 1
k

+ k

4π2

[
arccos2

((
1

k − 1

)
cos
(

2π
k

))
− arccos2

(
1

k − 1

)]
. (1)

We note that for k ≥ 4, the approximation ratio φk is about .01 worse than the approximation
ratio proved by Frieze and Jerrum. See Table 1 for a comparison. However, given the technical
difficulty of Frieze and Jerrum’s analysis, we believe that it is beneficial to present an
alternative algorithm and analysis that yields a similiar approximation guarantee. Moreover,
we wish to take a closer look at the techniques used by Goemans and Williamson for Max-3-
Cut since these tools have not been widely applied in the area of approximation algorithms,
in sharp contrast to the tools used to solve the Max-Cut problem. In fact, we are aware
of only two papers that use the main tools of [5]: The first is for a generalization of the
Max-3-Cut problem [6] and the second is for an optimization problem in which the variables
are to be assigned complex vectors [8].

While Goemans and Williamsons’ framework of complex semidefinite programming does
result in an elegant formulation and analysis for Max-3-Cut, it also to some extent obscures
the geometric structure that is apparent when one views the same algorithm from the
viewpoint of standard semidefinite programming. Specifically, in the latter framework, their
complex semidefinite program is equivalent to modeling each vertex with a 2-dimensional
circle or disc of vectors. In our opinion, their main technical contribution is a formula for the
exact distribution of the difference of the angles resulting when a normal vector is projected
onto two of these discs that are correlated in a particular way. (See Lemma 8 in [5].) Thus,
while the limitation in modeling Max-k-Cut with complex semidefinite programming comes
from the fact that we cannot model the general problem with these 2-dimensional discs, we
can circumvent this barrier in the following way. We construct 2-dimensional discs using the
vectors obtained from a solution to the standard semidefinite program. We then show that a
pair of these 2-dimensional discs (i.e. one disc for each vertex) are correlated in the same
way as those produced in the case of Max-3-Cut. Then we can apply and analyze the same
algorithm used for Max-3-Cut.

In some cases, e.g. Max-3-Cut, using the distribution of the angle between two elements
is stronger than using the expected angle, which is what is used for Max-Cut. It therefore
seems that this tool has unexplored potential applications for other optimization problems,
for which it may also be possible to overcome the modeling limitations of complex semidefinite
programming in a similiar manner as we do here. On a high level, the idea of constructing
the “complex” vectors from a solution to a standard semidefinite program was used for a
circular arrangement problem [7].

Finally, we remark that the approach used in Section 4 to create a disc from a vector
is reminiscent of Zwick’s method of outward rotations in which he combines hyperplane

SOSA 2018

13:4 Complex SDP and Max-k-Cut

rounding and independent random assignment [9]. For each unit vector vi from an SDP
solution, he computes a disc in the plane spanned by vi and ui, where the ui’s form a set of
pairwise orthogonal vectors that are also orthogonal to the vi’s, and chooses a new vector
from this disc based on a predetermined angle. Thus, the goal is to rotate each vector vi to
obtain a new set of unit vectors, which are then given as input to a now standard rounding
algorithm, such as random-hyperplane rounding. In contrast, our goal is to use the actual disc
in the rounding, as done originally by Goemans and Williamson in the case of Max-3-Cut.

1.2 Organization
We give some background on the (standard) semidefinite programming relaxation used by
Frieze and Jerrum and discuss their algorithm for Max-k-Cut in Section 2. In Section 3,
we present Goemans and Williamson’s algorithm for Max-3-Cut from the viewpoint of
standard semidefinite programming. In Section 4, we show how to create a 2-dimensional disc
for each vertex given a solution to the standard semidefinite program for Max-k-Cut. We
do not wish to formally prove the relationship between these discs and the complex vectors.
Thus, in Section 5, we simply prove that if two discs are correlated in a specified way, then
the distribution of the angle is equivalent to a distribution already computed exactly by
Goemans and Williamson in [5]. We can then easily prove that the 2-dimensional discs we
create for the vertices have the required pairwise correlation. This results in a closed form
approximation ratio for general k, Theorem 6.

2 Frieze and Jerrum’s Algorithm

Consider the following integer program for Max-k-Cut:

max
∑
ij∈E

(1− vi · vj)
k − 1
k

vi · vi = 1, ∀i ∈ V,
vi ∈ Σk, ∀i ∈ V. (P)

Here, Σk are the vertices of the equilateral simplex, where each vertex is represented by
a k-dimensional vector, and each pair of vectors corresponding to a pair of vertices has
dot product −1/(k − 1). If we relax the dimension of the vectors, we obtain the following
semidefinite relaxation, where n = |V |:

max
∑
ij∈E

(1− vi · vj)
k − 1
k

vi · vi = 1, ∀i ∈ V,

vi · vj ≥ −
1

k − 1 , ∀i, j ∈ V,

vi ∈ Rn, ∀i ∈ V. (Q)

Frieze and Jerrum used this semidefinite relaxation to obtain an algorithm for the Max-k-
Cut problem [3]. Specifically, they proposed the following rounding algorithm: Choose k
random vectors, g1, g2, . . . , gk ∈ Rn, with each entry of each vector chosen from the normal
distribution N (0, 1). For each vertex i ∈ V , consider the k dot products of vector vi with
each of the k random vectors, vi ·g1, vi ·g2, . . . , vi ·gk. One of these dot products is maximum.
Assign the vertex the label of the random vector with which it has the maximum dot product.

A. Newman 13:5

v

v

g

θ

i

ivi
2

3

1

i gθj

v

v3
j

1
jv2

j

0

π/2

π

3π/2

θij

i

j

0

π/2

π

3π/2

θ
u

v

ij

Figure 1 Three vectors v1
i , v

2
i and v3

i lie on a 2-dimensional plane corresponding to vertex i. The
vector g is projected onto the disc for element i to obtain θi. Angle θij is the difference between
angles θi and θj .

In other words, if vi ·gh = maxk`=1{vi ·g`}, then vertex i is assigned to to cluster h. Frieze and
Jerrum were able to prove a lower bound on the approximation guarantee of this algorithm
for every k. See Table 1 for some of these ratios.

3 Goemans-Williamson Algorithm for Max-3-Cut

Goemans and Williamson gave an algorithm for Max-3-Cut in which they first modeled the
problem as a complex semidefinite program, i.e. each element is represented by a complex
vector. It is not too difficult to see that these complex vectors are equivalent to 2-dimensional
discs or sets of unit vectors. For example, here is an equivalent semidefinite program for
Max-3-Cut. The input is an undirected graph G = (V,E) with non-negative edge weights
{wij}.

max
∑
ij∈E

wij(1− v1
i · v1

j)2
3 (2)

vai · vbi = −1/2, ∀i ∈ V, a 6= b ∈ [3], (3)
vai · vbj = va+c

i · vb+cj , ∀i, j ∈ V, a, b, c ∈ [3], (4)

vai · vbj ≥ −1/2, ∀i, j ∈ V, a, b ∈ [3], (5)
vai · vai = 1, ∀i ∈ V, a ∈ [3], (6)

vai ∈ R3n, ∀i ∈ V, a ∈ [3]. (7)

Consider a set of 3n unit vectors forming a solution to this semidefinite program. Note
that for a fixed vertex i ∈ V , the vectors v1

i , v
2
i and v3

i are in the same two dimensional
plane, since they are constrained to be pairwise 120◦ apart. In an “integer” solution for this
semidefinite program, all these discs would be constrained to be in the same 2-dimensional
space and each angle of rotation of the discs would be constrained to be 0, 2π/3 or 4π/3,
where each angle would correspond to a partition. In a solution to the above relaxation,
these discs are no longer constrained to be in 2 dimensions.

SOSA 2018

13:6 Complex SDP and Max-k-Cut

In the rounding algorithm of Goemans and Williamson, we first pick a vector g ∈ R3n

such that each entry is chosen according to the normal distribution N (0, 1). Then for each
vertex i ∈ V , we project this vector g onto its corresponding disc. This gives an angle θi in
the range [0, 2π) for each element i. (Note that without loss of generality, we can assume
that θi is the angle in the clockwise direction between the projection of g and the vector
v3
i .) We can envision the angles {θi} for each i ∈ V embedded onto the same disc. Then we
randomly partition this disc into three equal pieces, each of length 2π/3, i.e. we choose an
angle ψ ∈ [0, 2π) and let the three angles of partition be ψ,ψ + 2π/3 and ψ + 4π/3. These
three pieces correspond to the three sets in the partition.

The angle θij is the angle θj − θj modulo 2π. The probability that an edge ij is cut in
this partitioning scheme is equal to 3θij/2π if θij < 2π/3 and 1 otherwise. In expectation,
the angle θij is equal to arccos (v1

i · v1
j). (This can be shown using the techniques in [4]. See

Lemma 3 in [7].) But using the expected angle is not sufficient to obtain an approximation
guarantee better than 2/3; If angle θij is 2π/3 in expectation, then one third of the time it
could be zero (not cut) and two thirds of the time it could be π (cut). However, it contributes
one to the objective function. The exact probability Pr[edge ij is cut] that edge ij is cut is:

2π/3∑
γ=0

Pr[θij = θ]× θ

2π/3 +
4π/3∑

γ=2π/3

Pr[θij = θ] +
2π∑

θ=4π/3

Pr[θij = θ]× 2π − θ
2π/3 .

Therefore, we must compute Pr[θij = θ] for all θ ∈ [0, 2π). One of the main technical
contributions of Goemans and Williamson [5] is that they compute the exact probability
that θij < δ for all δ ∈ [0, 2π). This can be found in Lemma 8 [5]. This enables them to
compute the probability that an edge is cut, resulting in their approximation guarantee.

4 Algorithm for Max-k-Cut

As previously mentioned, we cannot model Max-k-Cut as an integer program directly using
2-dimensional discs as we do for Max-3-Cut, because any rotation corresponding to an
angle of at least 2π/k should contribute one to the objective function. Note that in the case
of Max-3-Cut, there are two possible non-zero rotations in an integer solution: 2π/3 and
4π/3 and both of the contribute the same amount (one) to the objective function. Since it
seems impossible to penalize all angles greater than 2π/k at the same cost, it seems similiarly
impossible to model the problem directly with a complex semidefinite program.

We now present our approach for rounding the semidefinite programming relaxation (Q)
for Max-k-Cut. After solving the semidefinite program, we obtain a set of vectors {vi}
corresponding to each vertex i ∈ V . We can assume these vectors to be in dimension n. Let
0 represent the vector with n zeros. For each vertex i ∈ V , we construct the following two
orthogonal vectors:

vi := (vi,0), v⊥i := (0, vi). (8)

Each vertex i ∈ V now corresponds to a 2-dimensional disc spanned by vectors vi and v⊥i .
Specifically, this 2-dimensional disc consists of the (continuous) set of vectors defined for
φ ∈ [0, 2π):

vi(φ) = vi cosφ+ v⊥i sinφ. (9)

Now that we have constructed a 2-dimensional disc for each element, we can use the same
rounding scheme due to Goemans and Williamson described in the previous section: First,

A. Newman 13:7

v

v

i

g

θi

T

i

i

i

θi

π/2

0 θj
j

i

θi

π/2

0 θj
j

Figure 2 A 2-dimensional plane for vertex i spanning vi and v⊥
i . After projecting θi and θj onto

the same disc, we partion the disc into k = 4 equal sized pieces.

we choose a vector g ∈ R2n in which each coordinate is randomly chosen according to the
normal distribution N (0, 1). For each i ∈ V , we project this vector g onto the disc {vi(φ)},
which results in an angle θi, where:

g · vi(θi) = max
0≤φ<2π

g · vi(φ).

Note that we do not have to compute infinitely many dot products, since, for example, if
g · vi, g · v⊥i ≥ 0, then:

θi = arctan
(
g · v⊥i
g · vi

)
,

and the three other cases depending on the sign of g ·vi and g ·v⊥i can be handled accordingly.
After we find an angle θi for each i ∈ V , we can assign each element to a position

corresponding to its angle θi on a single disc and divide this disc (randomly) into k equal
sections of size 2π/k. Specifically, choose a random angle ψ and use the partition ψ + c·2π

k

for all integers c ∈ [0, k), where angles are taken modulo 2π. These are the k partitions of
the vertices in the k-cut.

5 Analysis

We prove that the distribution of the angle θij is the same as Lemma 8 of [5]. This implies
that we can use the analysis that Goemans and Williamson use for Max-3-Cut to obtain
an analogous approximation ratio for Max-k-Cut.

I Lemma 1. Given two sets of vectors xi = {xi(φ)} and xj = {xj(φ)} defined on φ ∈ [0, 2π),
where

xi(φ) = (cosφ, sinφ, 0, 0),
xj(φ) = (cos θ cosφ, cos θ sinφ, sin θ cosφ, sin θ sinφ).

Let γ ∈ [0, 2π) denote the angle θj − θi after the vector g ∈ N (0, 1)2n is projected onto xi
and xj. Then for δ ∈ [0, 2π),

Pr[0 ≤ γ < δ] = 1
2π

(
δ + r sin δ√

1− r2 cos2 δ
arccos (−r cos δ)

)
. (10)

Proof. Note that the set of vectors xj is 2-dimensional, since the angle between xj(φ1) and
xj(φ2) for φ2 > φ1 is φ2 − φ1. Thus, the rounding algorithm in Section 4 is well defined.

SOSA 2018

13:8 Complex SDP and Max-k-Cut

Recall that each coordinate of the vector g is chosen according to the normal distribution
N (0, 1). Even though the vector g has 2n dimensions, we only need to consider the first four,
g = (g1, g2, g3, g4). This vector is chosen equivalently to choosing α, β uniformly in [0, 2π)
and p1, p2 according to the distribution:

f(y) = ye−y
2/2.

In other words, the vector g is equivalent to:

g = (p1 cosβ, p1 sin β, p2 cosα, p2 sinα).

Let r = cos θ and let s = sin θ. We will show that the probability that γ ∈ [0, δ) for δ ≤ π is:

Pr[0 ≤ γ < δ] = 1
2π

[
δ +

∫ π

δ

Pr
[
p2 · s
sin δ ≤

p1 · r
sin (α− δ)

]
dα

]
. (11)

Lemma 8 in [5] shows this is equivalent to probability in (10).
First, let us consider the case when θ ∈ [0, π/2], or cos θ ≥ 0. Without loss of generality,

assume that the projection of g onto the 2-dimensional disc xi occurs at φ = 0. Then we can
see that

xi(0) · g = p1.

In other words, we can assume that θi = 0. As previously mentioned, α is chosen uniformly
in the range [0, 2π). However, if γ < δ, then α < π. If α < δ, then the projection of g onto
xj , namely θj (which equals θij in this case, because we have assumed that θi = 0), is less
than δ. The probability that γ ≤ δ if α ∈ [δ, π) is equal to the probability that:

p2 · s
sin δ ≤

p1 · r
sin (α− δ) ⇐⇒

p2 · s ≤
p1 · r

sin (α− δ) · sin δ.

(See Figure 3 in [5].) If θ ∈ (π/2, pi) and r = cos θ < 0, then the probability that γ is in [0, δ)
is the probability that γ is in [π, π + δ), which is δ/(2π). And the probability that γ is in
[δ, π) is the probability that γ is in [π + δ, 2π) for −r. This is:

p2 · s ≤
p1 · (−r)

sin (α− δ) · sin (π + δ). (12)

However, since sin (π + δ) = − sin δ, we have:

p2 · s ≤
p1 · r

sin (α− δ) · sin δ. (13)

Thus for all δ < π, we have proved the expression in (11). In Lemma 8 of [5], they show that
Equation (11) is equivalent to Equation (10) when δ < π. Then they argue by symmetry
that Equation (10) also holds when π ≤ δ < 2π. J

I Lemma 2. Suppose vi · vj = cos θ for two unit vectors vi and vj. Let vi(φ) and vj(φ) be
defined as in equation (9). Then, we can assume that:

vi(φ) = (cosφ, sinφ, 0, 0),
vj(φ) = (cos θ cosφ, cos θ sinφ, sin θ cosφ, sin θ sinφ).

A. Newman 13:9

Proof. From the definition (in Equation (9)) of vi(φ), we can see that:

vi(φ1) · vj(φ2) = (vi cosφ1 + v⊥i sinφ1) · (vj cosφ2 + v⊥j sinφ2)
= vi · vj cosφ1 cosφ2 + v⊥i · v⊥j sinφ1 sinφ2

+ vi · v⊥j cosφ1 sinφ2 + v⊥i · vj sinφ1 cosφ2

= cos θ(cosφ1 cosφ2 + sinφ1 sinφ2).

Note that vi ·v⊥j = v⊥i ·vj = 0 since each vi vector has n zeros in the second half of the entries
and each v⊥i vector has n zeros in the first half of the entries. If we compute vi(φ1) · vj(φ2)
using the assumption in the lemma, then we get the same dot product. Thus, the two sets
are equivalent. J

Since the distribution of the angle is the same, we can use the same analysis of [5]
(generalized from 3 to k) to prove the following Lemma. Although it is essentially the exact
same proof, we include it here for completeness. As in Corollary 9 of [5], we define:

g(r, δ) = 1
2π

(
δ + r sin δ√

1− r2 cos2 δ
arccos (−r cos δ)

)
.

In other words, g(r, δ) is the probability that angle θij obtained by projecting g onto the two
discs {vi(φ)} and {vj(φ)}, correlated by r = vi · vj , is less than δ.

I Lemma 3. Let r = vi · vj and let yi ∈ [0, 1, 2, . . . k) be the integer assignment of vertex i
to its partition. Then the probability that the equation yi − yj ≡ c (mod k) is satisfied is

1
k

+ k

8π2

[
2 arccos2

(
−r cos

(
2πc
k

))
− arccos2

(
−r cos

(
2π(c+ 1)

k

))
− arccos2

(
−r cos

(
2π(c− 1)

k

))]
.

Proof. Pr[yi − yj ≡ c (mod k) satisfied]

= k

2π

∫ k
2π

0
Pr
γ

[
2πc
k
− τ ≤ γ < 2π(c+ 1)

k
− τ
]
dτ

= k

2π

∫ 2π
k

0

(
g

(
τ,

2π(c+ 1)
k

− τ)− g(τ, 2πc
k
− τ
))

dτ

= k

2π

∫ 2π(c+1)
k

2πc
k

g(r, ν)dν − k

2π

∫ 2πc
k

2π(c−1)
k

g(r, ν)dν

SOSA 2018

13:10 Complex SDP and Max-k-Cut

= k

2π
1

2π

∫ 2π(c+1)
k

2πc
k

νdν −
[

1
2 arccos2 (−r cos ν)

] 2π(c+1)
k

2πc
k

−
∫ 2πc

k

2π(c−1)
k

νdν +
[

1
2 arccos2 (−r cos ν)

] 2πc
k

2π(c−1)
k

)

= k

8π2

[(
2π(c+ 1)

k

)2
+
(

2π(c− 1)
k

)2
− 2

(
2πc
k

)2
]

+ k

8π2

[
2 arccos2

(
−r cos

(
2πc
k

))
− arccos2

(
−r cos

(
2π(c+ 1)

k

))
− arccos2

(
−r cos

(
2π(c− 1)

k

))]
= 1
k

+ k

8π2

[
2 arccos2

(
−r cos

(
2πc
k

))
− arccos2

(
−r cos

(
2π(c+ 1)

k

))
− arccos2

(
−r cos

(
2π(c− 1)

k

))]
. J

I Lemma 4. Let r = vi · vj. The probability that edge ij is not cut by our algorithm is:

1
k

+ k

4π2

[
arccos2 (−r)− arccos2

(
−r cos

(
2π
k

))]
.

Proof. In the case of Max-k-Cut, we set c = 0. By Lemma 3, we have the probability that
edge ij is not cut is:

1
k

+ k

8π2

[
2 arccos2 (−r)− arccos2

(
−r cos

(
2π
k

))
− arccos2

(
−r cos

(
−2π
k

))]
= 1
k

+ k

8π2

[
2 arccos2 (−r)− 2 arccos2

(
−r cos

(
2π
k

))]
= 1
k

+ k

4π2

[
arccos2 (−r)− arccos2

(
−r cos

(
2π
k

))]
. J

I Lemma 5. Let r = vi · vj. The probability that edge ij is cut by our algorithm is:

k − 1
k

+ k

4π2

[
arccos2

(
−r · cos

(
2π
k

))
− arccos2 (−r)

]
. (14)

Proof. By Lemma 4 and the previously stated assumption that r = vi · vj = cos (θij), we
have:

1−
[

1
k

+ k

4π2

[
arccos2 (−r)− arccos2

(
−r cos

(
2π
k

))]]
= k − 1

k
− k

4π2

[
arccos2 (−r)− arccos2

(
−r cos

(
2π
k

))]
= k − 1

k
+ k

4π2

[
arccos2

(
−r cos

(
2π
k

))
− arccos2 (−r)

]
. J

I Theorem 6. The worst case approximation ratio of our algorithm for Max-k-Cut is:

φk = k − 1
k

+ k

4π2

[
arccos2

((
1

k − 1

)
cos
(

2π
k

))
− arccos2

(
1

k − 1

)]
.

Proof. As a function of r in the range [1,−1/(k − 1)], the expression in Equation 14 is
minimized when r = −1/(k − 1). Thus, if we do an edge-by-edge analysis, the worst case
approximation ratio is obtained when vi · vj = −1/(k − 1) for all edges ij ∈ E. J

A. Newman 13:11

6 Another Rounding Algorithm

The algorithm presented in Section 4 can be restated as the following rounding scheme. Let
w1, w2 and w3 denote vectors in R2 with pairwise dot product −1/2. In other words, w1, w2
and w3 are the vertices of the simplex Σ3. Now take two random gaussians g1, g2 ∈ Rn and
set xi = g1 · vi, yi = g2 · vi. To assign the vertex i to one of the three partitions, we simply
assign it to j such that wj · (xi, yi) is maximized.

We can generalize this approach by choosing k − 1 random gaussians, g1, . . . , gk−1. For
each vertex i, we obtain the vector (g1 · vi, g2 · vi, . . . , gk−1 · vi) in Rk−1. This vector is
assigned to the closest vertex of Σk. Computationally, this rounding scheme seems to yield
approximation ratios that match those of De Klerk et al.

Acknowledgements. Thanks to Moses Charikar, Anupam Gupta, R. Ravi and Madhur
Tulsiani for helpful discussions and comments on the presentation.

References
1 Gunnar Andersson, Lars Engebretsen, and Johan Håstad. A new way of using semidefinite

programming with applications to linear equations mod p. J. Algorithms, 39(2):162–204,
2001. doi:10.1006/jagm.2000.1154.

2 Etienne de Klerk, Dmitrii V. Pasechnik, and Joost P. Warners. On approximate graph col-
ouring and max-k-cut algorithms based on the theta-function. J. Comb. Optim., 8(3):267–
294, 2004. doi:10.1023/B:JOCO.0000038911.67280.3f.

3 Alan M. Frieze and Mark Jerrum. Improved approximation algorithms for MAX k-cut and
MAX BISECTION. Algorithmica, 18(1):67–81, 1997. doi:10.1007/BF02523688.

4 Michel X. Goemans and David P. Williamson. Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–
1145, 1995. doi:10.1145/227683.227684.

5 Michel X. Goemans and David P. Williamson. Approximation algorithms for max-3-cut and
other problems via complex semidefinite programming. J. Comput. Syst. Sci., 68(2):442–
470, 2004. doi:10.1016/j.jcss.2003.07.012.

6 Ai-fan Ling. Approximation algorithms for max 3-section using complex semidefinite pro-
gramming relaxation. In Ding-Zhu Du, Xiaodong Hu, and Panos M. Pardalos, editors,
Combinatorial Optimization and Applications, Third International Conference, COCOA
2009, Huangshan, China, June 10-12, 2009. Proceedings, volume 5573 of Lecture Notes in
Computer Science, pages 219–230. Springer, 2009. doi:10.1007/978-3-642-02026-1_20.

7 Konstantin Makarychev and Alantha Newman. Complex semidefinite programming re-
visited and the assembly of circular genomes. In Bernard Chazelle, editor, Innova-
tions in Computer Science - ICS 2010, Tsinghua University, Beijing, China, January
7-9, 2011. Proceedings, pages 444–459. Tsinghua University Press, 2011. URL: http:
//conference.itcs.tsinghua.edu.cn/ICS2011/content/papers/27.html.

8 Shuzhong Zhang and Yongwei Huang. Complex quadratic optimization and semidefin-
ite programming. SIAM Journal on Optimization, 16(3):871–890, 2006. doi:10.1137/
04061341X.

9 Uri Zwick. Outward rotations: A tool for rounding solutions of semidefinite programming
relaxations, with applications to MAX CUT and other problems. In Jeffrey Scott Vitter,
Lawrence L. Larmore, and Frank Thomson Leighton, editors, Proceedings of the Thirty-
First Annual ACM Symposium on Theory of Computing, May 1-4, 1999, Atlanta, Georgia,
USA, pages 679–687. ACM, 1999. doi:10.1145/301250.301431.

SOSA 2018

http://dx.doi.org/10.1006/jagm.2000.1154
http://dx.doi.org/10.1023/B:JOCO.0000038911.67280.3f
http://dx.doi.org/10.1007/BF02523688
http://dx.doi.org/10.1145/227683.227684
http://dx.doi.org/10.1016/j.jcss.2003.07.012
http://dx.doi.org/10.1007/978-3-642-02026-1_20
http://conference.itcs.tsinghua.edu.cn/ICS2011/content/papers/27.html
http://conference.itcs.tsinghua.edu.cn/ICS2011/content/papers/27.html
http://dx.doi.org/10.1137/04061341X
http://dx.doi.org/10.1137/04061341X
http://dx.doi.org/10.1145/301250.301431

A Simple, Space-Efficient, Streaming Algorithm
for Matchings in Low Arboricity Graphs
Andrew McGregor1 and Sofya Vorotnikova2

1 College of Computer and Information Sciences, University of Massachusetts,
Amherst, MA, USA
mcgregor@cs.umass.edu

2 College of Computer and Information Sciences, University of Massachusetts,
Amherst, MA, USA
svorotni@cs.umass.edu

Abstract
We present a simple single-pass data stream algorithm using O(ε−2 logn) space that returns a
(α+ 2)(1 + ε) approximation to the size of the maximum matching in a graph of arboricity α.

1998 ACM Subject Classification F.2 Analysis of Algorithms & Problem Complexity

Keywords and phrases data streams, matching, planar graphs, arboricity

Digital Object Identifier 10.4230/OASIcs.SOSA.2018.14

1 Introduction

We present a data stream algorithm for estimating the size of the maximum matching of a
low arboricity graph. Recall that a graph has arboricity α if its edges can be partitioned into
at most α forests and that a planar graph has arboricity α = 3. Estimating the size of the
maximum matching in such graphs has been a focus of recent data stream research [1–4,6,8].
See also [7] for a survey of the general area of graph algorithms in the stream model.

A surprising result on this problem was recently proved by Cormode et al. [4]. They
designed an ingenious algorithm that returned a (22.5α+ 6)(1 + ε) approximation using a
single pass over the edges of the graph (ordered arbitrarily) and O(ε−3 · α · log2 n) space1.
We improve the approximation factor to (α+ 2)(1 + ε) via a simpler and tighter analysis and
show that, with a modification and simplification of their algorithm, the space required can
be reduced to O(ε−2 logn).

2 Results

Let match(G) be the maximum size of a matching in a graph G and let Eα be the set of
edges uv where the number of edges incident to u or v that appear in the stream after uv
are both at most α.

2.1 A Better Approximation Factor
We first show a bound for match(G) in terms of |Eα|. Cormode et al. proved a similar but
looser bound via results on the size of matchings in bounded degree graphs.

1 Here, and throughout, space is specified in words and we assume that an edge or a counter (between 0
and α) can be stored in one word of space.

© Andrew McGregor and Sofya Vorotnikova;
licensed under Creative Commons License CC-BY

1st Symposium on Simplicity in Algorithms (SOSA 2018).
Editor: Raimund Seidel; Article No. 14; pp. 14:1–14:4

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SOSA.2018.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

14:2 Matchings in Low Arboricity Graphs

I Theorem 1. match(G) ≤ |Eα| ≤ (α+ 2) match(G).

Proof. We first prove the right inequality. To do this define ye = 1/(α+ 1) if e is in Eα and
0 otherwise. Note that {ye}e∈E is a fractional matching with maximum weight 1/(α+ 1).
A corollary of Edmonds’ Matching Polytope Theorem [5] implies that its total weight is at
most (α+ 2)/(α+ 1) larger than the maximum integral matching. This corollary is likely
well known but, for completeness, we include a proof of the corollary in the appendix. Hence,

|Eα|
α+ 1 =

∑
e

ye ≤
α+ 2
α+ 1 ·match(G) .

It remains to prove the left inequality. Define H to be the set of vertices with degree
α+ 1 or greater. We refer to these as the heavy vertices. For u ∈ V , let Bu be the set of the
last α+ 1 edges incident to u that arrive in the stream.

Say an edge uv is good if uv ∈ Bu ∩Bv and wasted if uv ∈ Bu ⊕Bv, i.e., the symmetric
difference. Then |Eα| is exactly the number of good edges. Define

w = number of good edges with no end points in H ,

x = number of good edges with exactly one end point in H ,

y = number of good edges with two end points in H ,

z = number of wasted edges with two end points in H ,

and note that |Eα| = w + x+ y.
We know x + 2y + z = (α + 1)|H| because Bu contains exactly α + 1 edges if u ∈ H.

Furthermore, z + y ≤ α|H| because the graph has arboricity α. Therefore

x+ y ≥ (α+ 1)|H| − α|H| = |H| .

Let EL be the set of edges with no endpoints in H. Since every edge in EL is good, w = |EL|.
Hence, |Eα| ≥ |H|+ |EL| ≥ match(G) where the last inequality follows because at most one
edge incident to each heavy vertex can appear in a matching. J

Let Gt be the graph defined by the stream prefix of length t and let Etα be the set of
good edges with respect to this prefix, i.e., all edges uv from Gt where the number of edges
incident to u or v that appear after uv in the prefix are both at most α. By applying the
theorem to Gt, and noting that maxt |Etα| ≥ |Eα| and match(Gt) ≤ match(G), we deduce
the following corollary:

I Corollary 2. Let E∗ = maxt |Etα|. Then match(G) ≤ E∗ ≤ (α+ 2) match(G).

2.2 A Simpler Algorithm using Smaller Space
See Figure 1 for an algorithm that approximates E∗ to a (1 + ε)-factor in the insert-only
graph stream model. The algorithm is a modification of the algorithm for estimating |Eα|
designed by Cormode et al. [4]. The basic idea is to independently sample edges from Etα
with probability that is high enough to obtain an accurate approximation of |Etα| and yet
low enough to use a small amount of space. For every sampled edge e = uv, the algorithm
stores the edge itself and two counters cue and cve for degrees of its endpoints in the rest of the
stream. If we detect that a sampled edge is not in Etα, i.e., either of the associated counters
exceed α, it is deleted.

Cormode et al. ran multiple instances of this basic algorithm corresponding to sampling
probabilities 1, (1 + ε)−1, (1 + ε)−2, . . . in parallel; terminated any instance that used too

A. McGregor and S. Vorotnikova 14:3

Algorithm 1 Approximating E∗ Algorithm.
1. Initialize S ← ∅, p = 1, estimate = 0
2. For each edge e = uv in the stream:

a. With probability p add e to S and initialize counters cue ← 0 and cve ← 0
b. For each edge e′ ∈ S, if e′ shares endpoint w with e:

Increment cwe′

If cwe′ > α, remove e′ and corresponding counters from S

c. If |S| > 40ε−2 logn:
p← p/2
Remove each edge in S and corresponding counters with probability 1/2

d. estimate← max(estimate, |S|/p)
3. Return estimate

much space; and returned an estimate based on one of the remaining instantiations. Instead,
we start sampling with probability 1 and put a cap on the number of edges stored by the
algorithm. Whenever the capacity is reached, the algorithm halves the sampling probability
and deletes every edge currently stored with probability 1/2. This modification saves a factor
of O(ε−1 logn) in the space use and update time of the algorithm. We save a further O(α)
factor in the analysis by using the algorithm to estimate E∗ rather than |Eα|.

I Theorem 3. With high probability, Algorithm 1 outputs a (1 + ε) approximation of E∗.

Proof. Let k be such that 2k−1τ ≤ E∗ < 2kτ where τ = 20ε−2 logn. First suppose we toss
O(logn) coins for each edge in Etα and say that an edge e is sampled at level i if at least
the first i− 1 coin tosses at heads. Hence, the probability that an edge is sampled at level
i is pi = 1/2i and that the probability an edge is sampled at level i conditioned on being
sampled at level i− 1 is 1/2. Let sti be the number of edges sampled. It follows from the
Chernoff bound that for i ≤ k,

P
[
|sti − pi|Etα|| ≥ εpiE∗

]
≤ exp

(
−ε

2E∗pi
4

)
≤ exp

(
−ε

2E∗pk
4

)
≤

≤ exp
(
−ε

2τ

8

)
= 1

poly(n) .

By the union bound, with high probability, sti/pi = |Etα| ± εE∗ for all 0 ≤ i ≤ k, 1 ≤ t ≤ αn.
The algorithm initially maintains the edges in Etα sampled at level i = 0. If the number

of these edges exceeds the threshold, we subsample these to construct the set of edges
sampled at level i = 1. If this set of edges also exceeds the threshold, we again subsample
these to construct the set of edges at level i = 2 and so on. If i never exceeds k, then
the above calculation implies that the output is (1± ε)E∗. But if stk is bounded above by
(1 + ε)E∗/2k < (1 + ε)τ for all t with high probability, then i never exceeds k. J

It is immediate that the algorithm uses O(ε−2 logn) space since this is the maximum
number of edges stored at any one time. By Corollary 2, E∗ is an (α+ 2) approximation of
match(G) and hence we have proved the following theorem.

I Theorem 4. The size of the maximum matching of a graph with arboricity α can be
(α+ 2)(1 + ε)-approximated with high probability using a single pass over the edges of G given
O(ε−2 logn) space.

SOSA 2018

14:4 Matchings in Low Arboricity Graphs

Acknowledgement. In an earlier version of the proof of Theorem 3, we erroneously claimed
that, conditioned on the current sampling rate being 1/2j , edges in Etα had been sampled at
that rate. Thanks to Sepehr Assadi, Vladimir Braverman, Michael Dinitz, Lin Yang, and
Zeyu Zhang for catching this mistake.

References
1 Sepehr Assadi, Sanjeev Khanna, and Yang Li. On Estimating Maximum Matching Size

in Graph Streams. In Proceedings of the Twenty-Eigth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2017, January 16-19, 2017, pages 1723-1742, 2017.

2 Marc Bury and Chris Schwiegelshohn. Sublinear estimation of weighted matchings in
dynamic data streams. In Algorithms - ESA 2015 - 23rd Annual European Symposium,
September 14-16, 2015, Proceedings, pages 263–274, 2015.

3 Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, An-
drew McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling
with applications to finding matchings and related problems in dynamic graph streams. In
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, January 10-12, 2016, pages 1326–1344, 2016.

4 Graham Cormode, Hossein Jowhari, Morteza Monemizadeh, S. Muthukrishnan. The Sparse
Awakens: Streaming Algorithms for Matching Size Estimation in Sparse Graphs. In Al-
gorithms - ESA 2017 - 25th Annual European Symposium, September 4-6, 2017, Proceed-
ings, 2017.

5 Jack Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Journal of Re-
search of the National Bureau of Standards, 69:125-130, 1965.

6 Hossein Esfandiari, Mohammad Taghi Hajiaghayi, Vahid Liaghat, Morteza Monemizadeh,
and Krzysztof Onak. Streaming algorithms for estimating the matching size in planar
graphs and beyond. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2015, January 4-6, 2015, pages 1217–1233, 2015.

7 Andrew McGregor. Graph stream algorithms: a survey. SIGMOD Record, 43(1):9–20,
2014.

8 Andrew McGregor and Sofya Vorotnikova. Planar Matching in Streams Revisited. AP-
PROX, 2016.

A Corollary of Edmonds’ Theorem

For completeness, we include a simple corollary of Edmonds’ Theorem used to prove Theorem
1. Recall that Edmonds’ Theorem implies that if the weight of a fractional matching on any
induced subgraph G(U) is at most (|U | − 1)/2, then the weight on the entire graph is at
most match(G).
I Lemma 5. Let {ye}e∈E be a fractional matching where the maximum weight is ε. Then,∑

e

ye ≤ (1 + ε) match(G) .

Proof. Let U be an arbitrary subset of vertices and let E(U) be the edges in the induced
subgraph on U . Let t = |U |. Then since |E(U)| ≤ t(t− 1)/2,∑

e∈E(U)

ye ≤ min
(
t

2 , ε|E(U)|
)
≤ t− 1

2 ·min
(

t

t− 1 , εt
)
≤ t− 1

2 · (1 + ε) .

Hence, the fractional matching defined by ze = ye/(1 + ε) satisfies
∑
e ze ≤ match(G).

Therefore,
∑
e ye ≤ (1 + ε)

∑
e ze ≤ (1 + ε) match(G). J

Simple Analyses of the Sparse
Johnson-Lindenstrauss Transform∗

Michael B. Cohen†1, T. S. Jayram2, and Jelani Nelson‡3

1 MIT, 32 Vassar Street, Cambridge, MA 02139, USA
micohen@mit.edu

2 IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA
jayram@us.ibm.com

3 Harvard John A. Paulson School of Engineering and Applied Sciences,
29 Oxford Street, Cambridge, MA 02138, USA
minilek@seas.harvard.edu

Abstract
For every n-point subset X of Euclidean space and target distortion 1+ε for 0 < ε < 1, the Sparse
Johnson Lindenstrauss Transform (SJLT) of [19] provides a linear dimensionality-reducing map
f : X → `m2 where f(x) = Πx for Π a matrix with m rows where (1) m = O(ε−2 logn), and
(2) each column of Π is sparse, having only O(εm) non-zero entries. Though the constructions
given for such Π in [19] are simple, the analyses are not, employing intricate combinatorial
arguments. We here give two simple alternative proofs of the main result of [19], involving
no delicate combinatorics. One of these proofs has already been tested pedagogically, requiring
slightly under forty minutes by the third author at a casual pace to cover all details in a blackboard
course lecture.

1998 ACM Subject Classification F.2.0 General

Keywords and phrases dimensionality reduction, Johnson-Lindenstrauss, Sparse Johnson-Lin-
denstrauss Transform

Digital Object Identifier 10.4230/OASIcs.SOSA.2018.15

1 Introduction

A widely applied technique to gain speedup and reduce memory footprint when processing
high-dimensional data is to first apply a dimensionality-reducing map which approximately
preserves the geometry of the input in a pre-processing step. One cornerstone result along
these lines is the following Johnson-Lindenstrauss (JL) lemma [16].

I Lemma 1 (JL lemma). For all 0 < ε < 1, integers n, d > 1, and X ⊂ Rd with |X| = n,
there exists f : X → Rm with m = O(ε−2 logn) such that

∀y, z ∈ X, (1− ε)‖y − z‖2 ≤ ‖f(y)− f(z)‖2 ≤ (1 + ε)‖y − z‖2. (1)

∗ The last two authors dedicate this work to the first author, who in this work and other interactions was
a constant source of energy and intellectual enthusiasm.

† M.B. Cohen is supported by NSF grants CCF-1111109 and CCF-1553428, and by a National Defense
Science and Engineering Graduate Fellowship.

‡ J. Nelson is supported by NSF grant IIS-1447471 and CAREER award CCF-1350670, ONR Young
Investigator award N00014-15-1-2388 and DORECG award N00014-17-1-2127, an Alfred P. Sloan
Research Fellowship, and a Google Faculty Research Award.

© Michael B. Cohen, T. S. Jayram, and Jelani Nelson;
licensed under Creative Commons License CC-BY

1st Symposium on Simplicity in Algorithms (SOSA 2018).
Editor: Raimund Seidel; Article No. 15; pp. 15:1–15:9

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SOSA.2018.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

15:2 Simple Analyses of the Sparse Johnson-Lindenstrauss Transform

The target dimension m given by the JL lemma is optimal for nearly the full range of
n, d, ε; in particular, for any n, d, ε, there exists a point set X ⊂ Rd with |X| = n such
that any (1 + ε)-distortion embedding of X into Rm under the Euclidean norm must have
m = Ω(min{n, d, ε−2 log(ε2n)}) [21, 5]. Note that an isometric embedding (i.e. ε = 0) is
always achievable into dimension m = min{n− 1, d}, and thus the lower bound is optimal
except potentially for ε close to 1/

√
n.

All known proofs of the JL lemma instantiate f as a linear map. The original proof in
[16] picked f(x) = Πx where Π ∈ Rm×d was an appropriately scaled orthogonal projection
onto a uniformly random m-dimensional subspace. It was then shown that as long as
m = Ω(ε−2 log(1/δ)),

∀x ∈ Rd such that ‖x‖2 = 1, P
Π

(|‖Πx‖22 − 1| > ε) < δ. (2)

The JL lemma then followed by setting δ < 1/
(
n
2
)
and considering x = (y − z)/‖y − z‖2 for

each pair y, z ∈ X, and adjusting ε by a constant factor. It is known that this bound of m
for attaining (2) is tight; that is, m must be Ω(min{d, ε−2 log(1/δ)}) [15, 17].

One should typically think of applying dimensionality reduction techniques for applications
as being a two-step process: first (1) one applies the dimension-reducing map f to the data,
then (2) one runs some algorithm on the lower dimensional data f(X). While reducing m
typically speeds up the second phase, in order to speed up the first phase it is necessary to
give an f which can be both found and applied to data quickly. To this end, Achlioptas
showed Π can be chosen with i.i.d. entries where Πi,j = 0 with probability 2/3, and otherwise
Πi,j is uniform in ±1/

√
m/3 [1]. This was accomplished without increasing m by even

a constant factor over previous best analyses of the JL lemma. Thus essentially a 3x
speedup in step (2) is obtained without any loss in the quality of dimensionality reduction.
Later, Ailon and Chazelle developed the FJLT [2] which uses the Fast Fourier Transform
to implement a JL map Π with m = O(ε−2 logn) supporting matrix-vector multiplication
in time O(d log d + m3). Later work of [3] gave a different construction which, for the
same m, improved the multiplication time to O(d log d+m2+γ) for arbitrarily small γ > 0.
More recently, a sequence of works give embedding time O(d log d) but with a suboptimal
embedding dimension m = O(ε−2 logn · poly(log logn)) [4, 20, 22, 6, 12].

Note that the line of work beginning with the FJLT requires Ω(d log d) embedding time
per point, which is worse than the O(m · ‖x‖0) time to embed x using a dense Π if x is
sufficiently sparse. Here ‖x‖0 denotes the number of non-zero entries in x. Motivated by
speeding up dimensionality reduction further for sparse inputs, Kane and Nelson in [19],
following [10, 18, 7], introduced the SJLT with m = O(ε−2 logn), and with s = O(εm) non-
zero entries per column. This reduced the embedding time to compute Πx from O(m · ‖x‖0)
to O(s · ‖x‖0) = O(εm · ‖x‖0). The original analysis of the SJLT in [19] showed Equation (2)
for m = O(ε−2 log(1/δ)), s = O(ε−1 log(1/δ)) via the moment method. Specifically, the
analysis there for ‖x‖2 = 1 defined

Z = ‖Πx‖22 − 1 (3)

then used Markov’s inequality to yield P(|Z| > ε) < ε−q · EZq for some large even integer
q (specifically q = Θ(log(1/δ))). The bulk of the work was in bounding EZq, which was
accomplished by expanding Zq as a polynomial with exponentially many terms, grouping
terms with similar combinatorial structure, then employing intricate combinatorics to achieve
a sufficiently good bound.

M.B. Cohen, T. S. Jayram, and J. Nelson 15:3

Our Main Contribution. We give two new analyses of the SJLT of [19], both of which avoid
expanding Zq into many terms and employing intricate combinatorics. As mentioned in the
abstract, one of these proofs has already been tested pedagogically, requiring slightly under
forty minutes by the third author at a casual pace to cover all details in a blackboard lecture.

2 Preliminaries

We say f(x) . g(x) if f(x) = O(g(x)), and f(x) ' g(x) denotes f(x) = Θ(g(x)). For
random variable X and q ∈ R, ‖X‖q denotes (E |X|q)1/q. Minkowski’s inequality, which we
repeatedly use, states that ‖ · ‖q is a norm for q ≥ 1. If X depends on many random sources,
e.g. X = X(a, b), we use ‖X‖Lq(a), say, to denote the q-norm over the randomness in a (and
thus the result will be a random variable depending only on b). A Bernoulli-Rademacher
random variable X = ησ with parameter p is such that η is a Bernoulli random variable
(on {0, 1}) with E η = p and σ is a Rademacher random variable, i.e. uniform in {−1, 1}.
Overloading notation, a random vector X whose coordinates are i.i.d. Bernoulli-Rademacher
with parameter p will also be called by the same name. For a square real matrix A, let A◦
be obtained by zeroing out the diagonal of A. Throughout this paper we use ‖ · ‖F to denote
Frobenius norm, and ‖ · ‖ to denote `2 → `2 operator norm.

Both our SJLT analyses in this work show Eq. (2) by analyzing tail bounds for the
random variable Z defined in Eq. (3). We continue to use the same notation, where x ∈ Rd
of unit norm is as in Eq. (3). Our first SJLT analysis uses the following moment bounds for
the binomial distribution and for quadratic forms with Rademacher random variables.

I Lemma 2 ([14]). For Y distributed as Binomial(N,α) for integer N ≥ 1 and α ∈ (0, 1),
let 1 ≤ p ≤ N and define B := p/(αN). Then

‖Y ‖p .

{
p

logB if B ≥ e
p
B if B < e

A more modern, general proof of the below Hanson-Wright inequality can be found in
[23].

I Theorem 3 (Hanson-Wright inequality [11]). For σ1, . . . , σn independent Rademachers and
A ∈ Rn×n, for all q ≥ 1

‖σTAσ − EσTAσ‖q .
√
q · ‖A‖F + q · ‖A‖.

Our second analysis uses a standard decoupling inequality; a proof is in [25, Remark
6.1.3]

I Theorem 4 (Decoupling). Let A ∈ Rn×n be arbitrary, and X1, . . . , Xn be independent and
mean zero. Then, for every convex function F : R→ R

EF (
∑
i6=jj

Ai,jXiXj) ≤ EF (4 ·
∑
i,j

Ai,jXiX
′
j)

where the X ′i are independent copies of the Xi.

Before describing the SJLT, we describe the related CountSketch of [8], which was shown to
satisfy Eq. (3) in [24]. In this construction for Π, one picks a hash function h : [d]→ [m] from
a pairwise independent family, and a function σ : [d]→ {−1, 1} from a 4-wise independent
family. Then for each i ∈ [d], Πh(i),i = σ(i), and the rest of the ith column is 0. It was shown

SOSA 2018

15:4 Simple Analyses of the Sparse Johnson-Lindenstrauss Transform

0

0 m

0
0

0

0 m
0

0
(i) (ii)

Figure 1 Both distributions have s non-zeroes per column, with each non-zero being independent
in ±1/

√
s. In (i), they are in random locations, without replacement. (ii) is the CountSketch (with

s > 1), whose rows are grouped into s blocks of size m/s each, with one non-zero per block per
column in a uniformly random location, independent of other blocks; in this example, m = 8, s = 4.

in [24] that this distribution satisfies Eq. (3) for m = Ω(1/(ε2δ)). Note that the column
sparsity s equals 1. The analysis is simply via Chebyshev’s inequality, i.e. bounding the
second moment of Z.

The reason for the poor dependence in m on the failure probability δ is that we use
Chebyshev’s inequality. This is avoided by bounding a higher moment (as in [19], or our first
analysis in this work), or by analyzing the moment generating function (MGF) (as in our
second analysis in this work). To improve the dependence of m on 1/δ, we allow ourselves to
increase s.

Now we describe the SJLT. This is a JL distribution over Π having exactly s non-zero
entries per column where each entry is a scaled Bernoulli-Rademacher. Specifically, in the
SJLT, the random Π ∈ Rm×d satisfies Πr,i = ηr,iσr,i/

√
s for some integer 1 ≤ s ≤ m. The

σr,i are independent Rademachers and jointly independent of the Bernoulli random variables
ηr,i satisfying:
(a) For any i ∈ [d],

∑m
r=1 ηr,i = s. That is, each column of Π has exactly s non-zero entries.

(b) For all r ∈ [m], i ∈ [d], E ηr,i = s/m.
(c) The ηr,i are negatively correlated: ∀ S ⊂ [d] × [n], E

∏
(r,i)∈S ηr,i ≤

∏
(r,i)∈S E ηr,i =

(s/m)|S|.
See Figure 1 for at least two natural distributions satisfying the above requirements. Thus

‖Πx‖22 = 1
s

m∑
r=1

d∑
i,j=1

ηr,iηr,jσr,iσr,jxixj .

Using (a) above we have (1/s) ·
∑
r

∑
i ηr,ix

2
i = ‖x‖22 = 1, so that

Z = ‖Πx‖22 − 1 = 1
s

m∑
r=1

∑
i 6=j

ηr,iηr,jσr,iσr,jxixj . (4)

I Remark. In both our analyses, item (a) above is only used to remove the diagonal i = j

terms from eq. (4). Thenceforth, it turns out in both analyses of SJLT that (b) and (c) imply
we can assume the ηr,i are fully independent, i.e., the entries of Π are fully independent. This
is not the same as saying we can replace the sketch matrix Π with fully independent entries
because then part (a) would be violated and it is important for only the “cross” terms in the
quadratic form representing Z to be present. In the analysis we justify this assumption by
considering the integer moments of Z which we show here cannot decrease by replacement
with fully independent entries. For each integer q, each monomial in the expansion of
Zq has expectation equal to s−qxd1

α1
· · ·xdt

αt
· (E

∏
(r,i)∈S ηr,i) whenever all the dj are even,

M.B. Cohen, T. S. Jayram, and J. Nelson 15:5

and S contains all the distinct (r, i) such that ηr,i appears in the monomial; otherwise the
expectation equals 0. Now, s−qxd1

α1
· · ·xdt

αt
is nonnegative, and E

∏
(r,i)∈S ηr,i ≤ (s/m)|S|.

Thus monomials’ expectations are term-by-term dominated by the case that all ηr,i are i.i.d.
Bernoulli with expectation s/m.

3 Proof Overview

Hanson-Wright analysis. Note Z can be written as the quadratic form σTAx,ησ, where
Ax,η is block diagonal with m blocks, where the rth block is (1/s)x(r)(x(r))T but with the
diagonal zeroed out. Here x(r) is the vector with (x(r))i = ηr,ixi. To apply Hanson-Wright,
we must then bound ‖‖Ax,η‖F ‖p and ‖‖Ax,η‖‖p, over the randomness of η. This was done
in [19], but suboptimally, leading to a simple proof there but of a weaker result (namely, the
bound on s proven there was suboptimal by a

√
log(1/ε) factor). As already observed in [19],

a simple calculation shows ‖Ax,η‖ ≤ 1/s with probability 1. In this work we improve the
analysis of ‖‖Ax,η‖F ‖p by a simple combination of the triangle and Bernstein inequalities to
yield a tight analysis.

MGF analysis. We apply the Chernoff-Rubin bound P(|Z| > ε) ≤ 2e−tε E cosh(tZ), so that
we must bound E cosh(tZ) (for t in some bounded range) then optimize the choice of t. We
accomplish our analysis by writing Z = XTA◦X for an appropriate matrix A where X is
a Bernoulli-Rademacher vector, by Taylor expansion of cosh and considerations similar to
Remark 2. We then bound E cosh(tXTA◦X) using decoupling followed by arguments similar
to [13, 23]. We note one can also recover an MGF-based analysis by specializing the analysis
of [9] for analyzing sparse oblivious subspace embeddings to the case of “1-dimensional
subspaces”, though the resulting proof would be quite different from the one presented here.
We believe the MGF-based analysis we give in this work appeals to more standard arguments,
although the analysis in [9] does provide the advantage that it yields tradeoff bounds for
s,m.

4 Our SJLT analyses

4.1 A first analysis: via the Hanson-Wright inequality
I Theorem 5. For Π coming from an SJLT distribution, as long as m ' ε−2 log(1/δ) and
s ' εm,

∀x : ‖x‖2 = 1, P
Π

(|‖Πx‖22 − 1| > ε) < δ.

Proof. As noted, we can write Z as a quadratic form

Z = ‖Πx‖22 − 1 = 1
s

m∑
r=1

∑
i6=j

ηr,iηr,jσr,iσr,jxixj
def= σTAx,ησ,

Set q = Θ(log(1/δ)) = Θ(s2/m). By Hanson-Wright and the triangle inequality,

‖Z‖q ≤ ‖
√
q · ‖Ax,η‖F + q · ‖Ax,η‖‖q ≤

√
q · ‖‖Ax,η‖F ‖q + q · ‖‖Ax,η‖‖q,

where Ax,η is defined in Section 3. Since Ax,η is block-diagonal, its operator norm is the
largest operator norm of any block. The eigenvalue of the rth block is at most (1/s) ·

SOSA 2018

15:6 Simple Analyses of the Sparse Johnson-Lindenstrauss Transform

max{‖x(r)‖22, ‖x(r)‖2∞} ≤ 1/s, and thus ‖Ax,η‖ ≤ 1/s with probability 1. Next, define
Qi,j =

∑m
r=1 ηr,iηr,j so that

‖Ax,η‖2F = 1
s2

∑
i6=j

x2
ix

2
j ·Qi,j .

Suppose ηr1,i, . . . , ηrs,i = 1 for distinct rt and write Qi,j =
∑s
t=1 Yt, where Yt is an indicator

random variable for the event ηrt,j = 1. By Remark 2 we may assume the Yt are independent,
in which case Qi,j is distributed as Binomial(s, s/m). Then by Lemma 2, ‖Qi,j‖q . q. Thus,

‖‖Ax,η‖F ‖q = ‖‖Ax,η‖2F ‖
1/2
q/2

≤ ‖ 1
s2

∑
i 6=j

x2
ix

2
j ·Qi,j‖1/2q

≤ 1
s

∑
i 6=j

x2
ix

2
j · ‖Qi,j‖q

1/2

(triangle inequality)

≤ 1√
m

Then by Markov’s inequality and the settings of q, s,m,

P(|‖Πx‖22 − 1| > ε) = P(|σTAx,ησ| > ε) < ε−q · Cq(m−q/2 + s−q) < δ. J

I Remark. Less general bounds than Lemma 2 would have still sufficed for our purposes. For
example, Bernstein’s inequality and the triangle inequality together imply ‖Y ‖p . αN + p

for any p ≥ 1, which suffices for our application since we were interested in the case p = αN .

4.2 A second analysis: bounding the MGF
In this analysis we show the following bound on the symmetrized MGF of the error:

E cosh(tZ) ≤ exp
(
K2t2

m

)
, for |t| ≤ s

K , where K = 4
√

2 (5)

Using the above, we obtain tail estimates in a standard manner. By the generic Chernoff-
Rubin bound:

P(|Z| > ε) ≤ 2e−tε E cosh(tZ) ≤ 2 exp
(
K2t2

m − tε
)
, for all 0 ≤ t ≤ s

K

Optimizing over the choice of t, we obtain the tail bound:

P(|Z| > ε) ≤ 2 max
{

exp(−C2ε2m), exp(−Cεs)
}
, where C = 1

8
√

2

I Remark. The cross-over point for the two bounds is when s
m = Θ(ε). To obtain a failure

probability of δ, this yields the desired s = O
(1
ε log

(1
δ

))
and m = O

(1
ε2 log

(1
δ

))
.

Our goal now is to prove eq. (5) for t satisfying |t| ≤ s
K . Now by Taylor expansion, we

have E cosh(tZ) =
∑

even q
|t|q
q! · EZ

q. Therefore, by section 2, we may assume that the ηr,i
are fully independent to bound E cosh(tZ) from above. Now E cosh(tZ) = 1

2 (E exp(tZ) +
E exp(−tZ)) ≤ max

{
E exp(tZ),E exp(−tZ)

}
, for all t ∈ R. Let B def= 1

sxx
T. Let Π = 1

sH

and let Y1, Y2, . . . , Ym denote the rows of H. Then Z =
∑m
r=1 Y

T
r B
◦Yr. By the independence

M.B. Cohen, T. S. Jayram, and J. Nelson 15:7

assumption, Yi are i.i.d. Bernoulli-Rademacher vectors. Letting Y denote an identical copy
of a single row of H,

E exp(±tZ) =
∏
r

E exp(±tY T
r B
◦Yr) =

(
E exp(±tY TB◦Y)

)m
, for all t ∈ R (6)

Let Y ′ be an independent copy of Y . By decoupling (Theorem 4),

E exp(tY TB◦Y) ≤ E exp(4tY TBY ′) = E exp(Y TB̃Y ′), for all t ∈ R, where B̃ def= 4tB (7)

We show below that

E exp(Y TB̃Y ′) ≤ 1 + K2t2

m2 , provided |t| ≤ s
K , where K = 4

√
2 (8)

Substituting this bound in eq. (7) and combining with eq. (6), we obtain:

E exp(±tZ) ≤
(
1 + K2t2

m2

)m ≤ exp
(
K2t2

m

)
, provided |t| ≤ s

K , where K = 4
√

2,

which completes the proof of (5) as desired. It remains to prove eq. (8).

Bilinear forms of Bernoulli-Rademacher random variables.
The MGF of a Bernoulli-Rademacher random variable X = ησ with parameter p equals
E exp(tX) = 1− p+ pE exp(tσ) ≤ 1− p+ p exp(t2/2), for all t ∈ R.

Let λ(z) def= exp(z) − 1. Rewriting the above, we have E λ(tX) ≤ p λ(t2/2) = pE λ(tg),
where g ∼ N (0, 1). We show an analogous replacement inequality for Bernoulli-Rademacher
vectors.

I Lemma 6. Let Y be a Bernoulli-Rademacher vector with parameter p. Then:

E λ(bTY) ≤ p λ(‖b‖2/2) = pE λ(bTg) for all vectors b, where g ∼ N (0, In)

Proof. By stability of Gaussians, E exp(bTg) = exp(‖b‖22/2), demonstrating the last equality
above. Let g(t) def=

∑
S 6=∅ t

|S|−1∏
i∈S λ(b2i /2) for t ≥ 0. We have

∏
i

(
1+ t λ(b2i /2)

)
= 1 + tg(t).

Now:

E exp(bTY) =
∏
i

E exp(biYi) =
∏
i

(
1 + E λ(biYi)

)
≤
∏
i

(
1 + p λ(b2i /2)

)
= 1 + pg(p)

Thus, E λ(bTY) ≤ pg(p) ≤ pg(1), since g(t)↑. To conclude, we claim that g(1) = λ(‖b‖22/2).
Indeed:

1 + g(1) =
∏
i

(1 + λ(b2i /2)) =
∏
i

exp(b2i /2) = exp
(∑
i

b2i /2
)

= 1 + λ
(
‖b‖22/2

)
J

Let p def= s
m . In the left side of eq. (8), we have E exp(Y TB̃Y ′) = 1 + E λ(Y TB̃Y ′). By

the law of total expectation:

E
Y,Y ′

λ(Y TB̃Y ′) = E
Y
E
Y ′

[λ((Y TB̃)Y ′) | Y] ≤ p · E
Y
E
g′

[λ((Y TB̃)g′) | Y]

(by lemma 6, applied to Y ′)

Exchange the order of expectations of Y and g′ via Fubini-Tonelli’s theorem. Now apply
lemma 6, this time to Y . Finish using the law of total expectation which yields an upper
bound of p2 · E λ(gTB̃g′). Thus:

E exp(Y TB̃Y ′) ≤ 1 + p2 · E λ(gTB̃g′) (9)

SOSA 2018

15:8 Simple Analyses of the Sparse Johnson-Lindenstrauss Transform

In order to be self-contained we include a standard proof of the following lemma, though
note that the lemma itself is equivalent to the Hanson-Wright inequality for gaussian random
variables since it gives a bound on the MGF of decoupled quadratic forms in gaussian random
variables.

I Lemma 7. E exp(gTQg′) ≤ exp
(
‖Q‖2F

)
for independent g, g′ ∼ N (0, In), provided ‖Q‖ ≤

1√
2 .

Proof. Let Q = UΣV T, where Σ = diag(s1, . . . , sn). So E exp(gTQg′) = E exp(gTUΣV Tg′).
Since U is orthonormal, by rotational invariance, UTg ∼ N (0, In) and is independent
of V Tg′ ∼ N (0, In). Therefore, E exp(gTQg′) = E exp(gTΣg′). Now gTΣg′ =

∑
i sigig

′
i,

therefore:

E exp(gTΣg′) =
∏
i

EE[exp(sigig′i) | gi] =
∏
i

E exp(s2
i g

2
i /2) =

∏
i

1√
1−s2

i

Now s2
i ≤ ‖Q‖2 ≤ 1

2 for each i. Use the bound e−x ≤
√

1− x for x ≤ 1
2 so that:

E exp(gTQg′) ≤
∏
i

exp(s2
i) = exp(

∑
i

s2
i) = exp

(
‖Q‖2F

)
J

Note that ‖B̃‖F = 4t‖B‖F and ‖B̃‖ = 4t‖B‖. Now B = 1
sxx

T, so that ‖B‖F = ‖B‖ = 1
s .

Using the above proposition in the right side of eq. (9) with Q = B̃, we obtain:

E exp(Y TB̃Y ′) ≤ 1 + p2 · λ
(
K2t2

2s2

)
, provided |t| ≤ s

K , where K = 4
√

2

In the right side above, use the bound λ(x) ≤ 2x, which holds for x ≤ 1
2 , and substitute

p = s
m so that

E exp(Y TB̃Y ′) ≤ 1 + K2t2

m2 , provided |t| ≤ s
K , where K = 4

√
2

This yields the desired bound stated in eq. (8).

References
1 Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with

binary coins. J. Comput. Syst. Sci., 66(4):671–687, 2003.
2 Nir Ailon and Bernard Chazelle. The fast Johnson-Lindenstrauss transform and approxim-

ate nearest neighbors. SIAM J. Comput., 39(1):302–322, 2009.
3 Nir Ailon and Edo Liberty. Fast dimension reduction using Rademacher series on dual

BCH codes. Discrete & Computational Geometry, 42(4):615–630, 2009.
4 Nir Ailon and Edo Liberty. An almost optimal unrestricted fast Johnson-Lindenstrauss

transform. ACM Trans. Algorithms, 9(3):21:1–21:12, 2013.
5 Noga Alon and Bo’az Klartag. Optimal compression of approximate inner products and

dimension reduction. In Proceedings of the 58th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), 2017.

6 Jean Bourgain. An improved estimate in the restricted isometry problem. Geometric
Aspects of Functional Analysis, Lecture Notes in Mathematics Volume 2116:65–70, 2014.

7 Vladimir Braverman, Rafail Ostrovsky, and Yuval Rabani. Rademacher chaos, random
Eulerian graphs and the sparse Johnson-Lindenstrauss transform. CoRR, abs/1011.2590,
2010.

8 Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. Finding frequent items in
data streams. Theor. Comput. Sci., 312(1):3–15, 2004.

M.B. Cohen, T. S. Jayram, and J. Nelson 15:9

9 Michael B. Cohen. Nearly tight oblivious subspace embeddings by trace inequalities. In
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 278–287, 2016.

10 Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós. A sparse Johnson-Lindenstrauss trans-
form. In Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC), pages
341–350, 2010.

11 David Lee Hanson and Farroll Tim Wright. A bound on tail probabilities for quadratic
forms in independent random variables. Ann. Math. Statist., 42:1079–1083, 1971.

12 Ishay Haviv and Oded Regev. The restricted isometry property of subsampled Fourier
matrices. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 288–297, 2016.

13 Piotr Indyk and Assaf Naor. Nearest-neighbor-preserving embeddings. ACM Trans. Al-
gorithms, 3(3):31, 2007.

14 Meena Jagadeesan. Simple analysis of sparse, sign-consistent JL. CoRR, abs/1708.02966,
2017.

15 T. S. Jayram and David P. Woodruff. Optimal bounds for Johnson-Lindenstrauss trans-
forms and streaming problems with subconstant error. ACM Trans. Algorithms, 9(3):26:1–
26:17, 2013.

16 William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a
Hilbert space. Contemporary Mathematics, 26:189–206, 1984.

17 Daniel M. Kane, Raghu Meka, and Jelani Nelson. Almost optimal explicit Johnson-
Lindenstrauss families. In Proceedings of the 15th International Workshop on Random-
ization and Computation (RANDOM), pages 628–639, August 2011.

18 Daniel M. Kane and Jelani Nelson. A derandomized sparse Johnson-Lindenstrauss trans-
form. CoRR, abs/1006.3585, 2010.

19 Daniel M. Kane and Jelani Nelson. Sparser Johnson-Lindenstrauss transforms. J. ACM,
61(1):4, January 2014. Preliminary version in SODA 2012.

20 Felix Krahmer and Rachel Ward. New and improved Johnson-Lindenstrauss embeddings
via the Restricted Isometry Property. SIAM J. Math. Anal., 43(3):1269–1281, 2011.

21 Kasper Green Larsen and Jelani Nelson. Optimality of the Johnson-Lindenstrauss lemma.
In Proceedings of the 58th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), 2017.

22 Jelani Nelson, Eric Price, and Mary Wootters. New constructions of RIP matrices with fast
multiplication and fewer rows. In Proceedings of the 25th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1515–1528, 2014.

23 Mark Rudelson and Roman Vershynin. Hanson-Wright inequality and sub-gaussian con-
centration. Electronic Communications in Probability, 18:1–9, 2013.

24 Mikkel Thorup and Yin Zhang. Tabulation-based 5-independent hashing with applications
to linear probing and second moment estimation. SIAM J. Comput., 41(2):293–331, 2012.

25 Roman Vershynin. High-Dimensional Probability. May 2017. Last accessed at http:
//www-personal.umich.edu/~romanv/papers/HDP-book/HDP-book.pdf on August 22,
2017.

SOSA 2018

http://www-personal.umich.edu/~romanv/papers/HDP-book/HDP-book.pdf
http://www-personal.umich.edu/~romanv/papers/HDP-book/HDP-book.pdf

	p000-Frontmatter
	Preface
	Organisation

	p001-Cao
	Introduction
	The algorithm
	An improved running time

	p002-Chekuri
	Introduction
	Iterated rounding for EC-SNDP
	Counting Argument

	Connections between Hypergraph-SNDP, EC-SNDP and Elem-SNDP
	Reducing Elem-SNDP to problem of covering skew-supermodular functions by graphs
	Approximating Hypergraph-SNDP

	p003-Chekuri
	Introduction
	Background on multiroute flows
	Multipath routing via multiroute flows
	Short paths and improved congestion via local lemma
	Choosing paths from a given collection

	p004-Chakrabarty
	Introduction
	Perspective

	Entropy Minimization Viewpoint of the Sinkhorn-Knopp Algorithm
	New Lower Bound on the KL-Divergence

	p005-Chan
	Introduction
	Preliminaries
	Two Known Methods with Exponent 3
	A Simpler Algorithm with Exponent 5/2
	Closing Remarks
	An Improved Algorithm with Exponent 12/5
	Refining the Second Method
	A Number-Theoretic Lemma
	Putting the Refined Second Method Together
	Putting Everything Together
	Derandomization

	Variants for Small n

	p006-Williams
	Introduction
	Preliminaries
	Approximating #MQS: Reduction and Algorithm
	A succinct approximate inclusion-exclusion
	Producing a solution when there are many

	From Counting k-SAT to Counting Roots to Polynomials of O(1)-Degree
	A consequence for fine-grained counting complexity

	p007-Eden
	Introduction
	Related work
	Overview of the algorithm
	Overview of the lower bound

	Preliminaries
	The Basic Algorithm
	Sampling Edges with Unknown m
	A Lower Bound

	p008-Borodin
	Introduction
	Preliminaries
	A Simple PTAS for the Dual Bin Packing Problem
	Advice Complexity of the Online Dual Bin Packing Problem for Bounded Bit Size of Input Items
	Advice Complexity of the Online Dual Bin Packing Problem for General Weights
	Conclusion

	p009-Berenbrink
	Introduction
	Model and Protocol
	Analysis of the Marking Phase
	Concentration of the 1/2-Coin
	Bounding the Number of Early Marking Trials
	Proof of the Marking Proposition

	Analysis of the Main Algorithm
	Appendix

	p010-Kopelowitz
	Introduction
	The Algorithm

	p011-Jansen
	Introduction
	Linear programming relaxations
	Other related work
	Our contribution

	Compact linear program
	Restricting the variables
	Equivalence to LP_r

	Lower bound (Makespan)
	Proof of integrality gap
	Criterion for infeasibility
	Local search algorithm
	Repelled and attracted jobs

	Analysis (Max-min)

	NP-Hardness of the configuration-LP
	Reducing the size of LP_4 (Max-min)
	Lower bound (Max-min)
	Analysis (Makespan)

	p012-Aggarwal
	Introduction
	Sieving by averages
	Our contribution
	Proof techniques
	An open problem – towards a 2n/2-time algorithm

	Preliminaries
	Lattices
	The discrete Gaussian
	Dominating distributions

	No need for rejection!
	Additional preliminaries
	Some known algorithms
	The distribution of disjoint pairs
	Additional facts about the discrete Gaussian

	Running Procedure 1 on Gaussian input
	The initial distribution
	Finishing the proof

	p013-Newman
	Introduction
	Our Contribution
	Organization

	Frieze and Jerrum's Algorithm
	Goemans-Williamson Algorithm for Max-3-Cut
	Algorithm for Max-k-Cut
	Analysis
	Another Rounding Algorithm

	p014-McGregor
	Introduction
	Results
	A Better Approximation Factor
	A Simpler Algorithm using Smaller Space

	Corollary of Edmonds' Theorem

	p015-Cohen
	Introduction
	Preliminaries
	Proof Overview
	Our SJLT analyses
	A first analysis: via the Hanson-Wright inequality
	A second analysis: bounding the MGF

