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Preface

Running and optimizing transportation systems give rise to very complex and large-scale
optimization problems requiring innovative solution techniques and ideas from mathematical
optimization, theoretical computer science, and operations research. Since 2000, the series of
Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS)
workshops brings together researchers and practitioners who are interested in all aspects
of algorithmic methods and models for transportation optimization and provides a forum
for the exchange and dissemination of new ideas and techniques. The scope of ATMOS
comprises all modes of transportation.

The 18th ATMOS workshop (ATMOS’18) was held in connection with ALGO’18 and
hosted by Aalto University in Helsinki, Finland, on August 23-24, 2018. Topics of interest
were all optimization problems for passenger and freight transport, including, but not limited
to, demand forecasting, models for user behavior, design of pricing systems, infrastructure
planning, multi-modal transport optimization, mobile applications for transport, conges-
tion modelling and reduction, line planning, timetable generation, routing and platform
assignment, vehicle scheduling, route planning, crew and duty scheduling, rostering, delay
management, routing in road networks, traffic guidance, and electro mobility. Of particular
interest were papers applying and advancing techniques like graph and network algorithms,
combinatorial optimization, mathematical programming, approximation algorithms, methods
for the integration of planning stages, stochastic and robust optimization, online and real-time
algorithms, algorithmic game theory, heuristics for real-world instances, and simulation tools.

There were twenty-nine submissions from eighteen countries. All of them were reviewed
by at least three referees in ninety-one reviews, among them five external ones, and judged
on their originality, technical quality, and relevance to the topics of the workshop. Based
on the reviews, the program committee selected sixteen submissions to be presented at
the workshop (acceptance rate: 55%), which are collected in this volume in the order in
which they were presented. Together, they quite impressively demonstrate the range of
applicability of algorithmic optimization to transportation problems in a wide sense. In
addition, Dennis Huisman kindly agreed to complement the program with an invited talk on
Railway Disruption Management: State-of-the-Art in Practice and New Research Directions.

Based on the reviews, Ralf Borndorfer, Marika Karbstein, Christian Liebchen, and Niels
Lindner won the Best Paper Award of ATMOS’18 with their paper A Simple Way to Compute
the Number of Vehicles That Are Required to Operate a Periodic Timetable. In addition, we
awarded Tomas Lidén the Best VGI Paper Award of ATMOS’18 for his paper Reformulations
for Integrated Planning of Railway Traffic and Network Maintenance.

We would like to thank the members of the Steering Committee of ATMOS for giving us
the opportunity to serve as Program Chairs of ATMOS’18, all the authors who submitted
papers, Dennis Huisman for accepting our invitation to present an invited talk, the members
of the Program Committee and the additional reviewers for their valuable work in selecting
the papers appearing in this volume, our sponsors MODAL, TomTom, and VGlIscience for
their support of the prizes, and the local organizers for hosting the workshop as part of
ALGO’18. We acknowledge the use of the EasyChair system for the great help in managing
the submission and review processes, and Schloss Dagstuhl for publishing the proceedings of
ATMOS’18 in its OASIcs series.

August 2018 Ralf Borndorfer
Sabine Storandt
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Reformulations for Integrated Planning of Railway
Traffic and Network Maintenance

Tomas Lidén
Linképing University, Department of Science and Technology
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—— Abstract

This paper addresses the capacity planning problem of coordinating train services and network

maintenance windows for a railway system. We present model reformulations, for a mixed in-
teger linear optimization model, which give a mathematically stronger model and substantial
improvements in solving performance — as demonstrated with computational experiments on a
set of synthetic test instances. As a consequence, more instances can be solved to optimality
within a given time limit and the optimality gap can be reduced quicker.

2012 ACM Subject Classification Applied computing — Transportation
Keywords and phrases Railway scheduling, Maintenance planning, Optimization
Digital Object Identifier 10.4230/0ASIcs. ATMOS.2018.1

Funding This research is funded by the Swedish Transport Administration with the grant TRV
2013/55886 and conducted within the national research program “Capacity in the Railway Traffic
System”.

Acknowledgements The work was performed during a research visit to University of Newcas-
tle, Australia, where Thomas Kalinowski and Hamish Waterer gave invaluable help, ideas and
inspiration.

1 Introduction

Scheduling access to a railway infrastructure, commonly termed capacity planning, is the
core tactical planning problem for all railway systems and can be seen as a resource planning
for the infrastructure components (stations, lines, yards, tracks, switches, signalling blocks
etc). Capacity planning includes producing a timetable for the train traffic and access (or
possession) plans for maintenance and work tasks. Timetables and possession plans will in
turn form the basis for other resource plans, such as rolling stock plans and crew schedules for
the train operators as well as equipment and work force plans for maintenance and renewal
contractors.

Train services and maintenance tasks should ideally be planned together, but have
mostly been treated as separate planning problems. While planning of train operations has
been extensively studied in the research literature [2, 3, 4, 5, 6], there has been much less
focus on maintenance planning [8]. As for the joint planning of train services and network
maintenance there are a few examples, which consider the introduction of a small number of
work possessions into an existing train timetable [7, 11] or operative plan [1], by allowing
different types of adjustments to the trains.

This research focuses on the long term tactical coordination of a large volume of main-
tenance windows and train services on a railway network. An example of how such plans

© Tomas Lidén;
37 licensed under Creative Commons License CC-BY
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Figure 1 Train and work graph example.

might look is given in Figure 1, as a train and work graph. The geographic distance and
sectioning into links is shown on the vertical axis while time is on the horizontal axis. Train
services are shown as tilted lines while maintenance windows are shown as yellow boxes. In
this case no trains are allowed to run “through” the maintenance windows.

An initial MILP model that solves this coordination problem to optimality has been
presented in [9]. Model extensions for assigning maintenance crew resources and considering
their costs and limitations regarding spatial availability as well as work and rest time
regulations are treated in [10]. The latter model also has a stronger formulation for the train
and maintenance window scheduling, but that paper only briefly summarizes these model
improvements. In this paper we describe and compare the two formulations more closely.

The original model, which we here denote with ORG, uses cumulative train entry/exit
variables (for each link and time period) and implicit link usage variables for the train
scheduling. The improved model, which we denote with IMP, instead uses binary train
entry/exit detection variables and explicit link usage variables. These changes increase the
number of variables and decrease the number of constraints. The linear relaxation does
not become tighter, but the MILP solver benefits from having more binary variables to
branch on, a better linking of constraints and some possibilities for pruning due to the binary
restrictions.

The main improvement in IMP concerns the maintenance scheduling part. First of all,
some coupling constraints have been aggregated, but more importantly a tighter formulation
has been used for the maintenance work and window start variables — according to the
modelling for bounded up/down sequences as presented in [12, section 11.4, pp 341-343] and
mathematically analysed in [13]. These improvements do make the linear relaxation tighter
and in addition the MILP solver presolve method is able to reduce the size more effectively.

The net effect of these model improvements is that the solution performance gets better,
more instances can be solved to optimality within a given time limit and the optimality gap
can be reduced quicker.

The remainder of the paper is organised as follows: Section 2 gives the mathematical
formulation by first introducing the necessary notation and giving an overview of the model
structure. Then the reformulation for the train scheduling part is described, followed by the
changes for the maintenance window scheduling part. The computational experiments are
presented in Section 3 after which some concluding remarks are made.
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2 Mathematical formulation

2.1 Notation and model structure

The railway network is modelled by a link set L, where a subset of links L™ C L shall have
maintenance windows. The scheduling problem has a planning horizon of length H, divided
into a sequence T' = {0, ..., H — 1} of unit size time periods ¢ € T, each covering real-valued
event times between t and ¢ + 1.

For each link [ € LM a required number of time periods shall have maintenance windows.

The scheduling shall be done according to a set W; of window options where each option
o € W, is defined by a tuple o = (1,,6,) that gives the required number 7, of maintenance
windows to schedule, and the window length 6, expressed as an integer number of time
periods. As an example, W; = {(1,3),(2,2)} means that either one window of length three
or two windows of length two shall be scheduled on link {.

For the train traffic we have a set S of train services. Each train service s € S has a set
R, of possible routes. Each route r € R, implies a sequence L, of links, and the set L, of all
possible links that train service s can traverse is given by the union of the sets L, for all
r € Rs. The scheduling of trains shall be done by selecting one route r € R, and deciding
entry and exit times for each link in that route, such that all event times are within the
scheduling window defined by Ts C T.

The model has two groups of variables. The main variables for scheduling train services
are:

Zsr route choice: whether train service s uses route 7 or not

el e event time: entry(+)/exit(—) time for service s on link [

xh,,x,;, link entry/exit: whether train service s enters/exits link [ in time period ¢ or not
Uslt link usage: whether train service s uses link [ in time period ¢ or not

nh number of train services traversing link [ in direction h during time period ¢

The ORG formulation uses cumulative x variables, which we denote by :Ejl 1+ T, and implicit
u variables, while the IMP formulation uses binary x variables and explicit u. The variables
for scheduling maintenance windows are:

Wio maintenance window option choice: whether link [ is maintained with window
option o or not

Yit maintenance work: whether link [ is maintained in time period ¢ or not

Viot work start: whether maintenance on link [ according to window option o is

started in time period ¢ or not

The model can be summarized as follows:

minimize c(z,e,y, V)

route

[\

subject to A(z,e,x,u)
A(Z e) trains
)
A(W y V) maintenance
'Y
A(u, n, y) capacity

variable types and bounds

AAAA/—\
ot w
= I =z =

where ¢(..) is the objective function and A(..) are linear constraint functions over one or
more of the indicated variables. The objective (1) is a linear combination of the train and
maintenance scheduling variables, while the constraints enforce: (2) correct (feasible) bounds

1:3
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Figure 2 Variable and constraint graph — ORG formulation.

on the train events and linking of entry / exit and usage variables according to the selected
route, (3) sufficient travel durations and dwell times along the chosen route, (4) sufficient
maintenance windows scheduled according to the chosen option, and (5) that the available
network capacity is respected.

The ORG and IMP formulations differ regarding constraints (2) and (4), which will be
described in the following sections. For the details regarding the objective function and other
constraints, we refer to [10].

2.2 Train scheduling

The ORG formulation uses cumulative variables i‘jlt, Z_;,, which takes value 1 if train service
s has entered/exited link [ in time period ¢ or earlier. The link usage is given by the implicit
variables ugy 1=z}, — T, 4, with the convention that z5, , ; =0 for ¢ = 0.

The constraint set (2) for ORG is:

R Vse S,leLs,teTs,ae{+,—} (2.1a)
TG last(T,) = Z Zsr Vse S,l € Lg,ae {+,—} (2.2a)
rERs:IEL,
el > Y LBHEY, — 14, 1) Vse S leLgac{+,—} (2.3a)
teTy
el < Y UBHMh, — 2%, ) Vse S leLgac{+,—} (2.4a)
teTs

where LBy and UB} are the lower and upper bound time values for entry and exit in time
period t. The constraints enforce: (2.1a) the cumulative property, (2.2a) that all links in the
selected route will be visited, and (2.3a—2.4a) correct lower and upper bounds for the event
variables.

The structure of this model is illustrated in Figure 2 as a constraint (or co-occurrence)
graph with vertices for the variables and edges connecting variables that occur in the same
constraint. The constraints correspond to cliques in the graph as indicated in the figure.
jlt, x;, to track whether service s
enters or exits link [ in time period t or not. These variables correspond to the cumulative z
variables in the ORG formulation as follows

The IMP formulation uses binary detection variables x

a _ =—a —a
L1t = Tsig — Lsit—1

This relation is illustrated in Figure 3, both for the binary case and for a linear relaxation.
Using the expression

—a § a
Tsip = Lsigr

v Tt/ <t
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jslt i‘slt

Binary case Linear relaxation

Zegp = 14---------- Zgpd=mmmmmmmm e =

Tslt'+1
Tsi it
xsl,t’—lI

first(T) .. ¢ ..

T

last(T,) ¢t

T

ﬁrst‘(Ts) ot last(Ts) t

Figure 3 Relation between cumulative variables £ and detection variables z.

(2.3b-2.4D)

¢ s h Y
(2.2b) LT g 5y L5 1) e (5 ) 2

Figure 4 Variable and constraint graph — IMP formulation.

we transform constraints (2.2a-2.4a) and introduce explicit u variables to get the IMP
formulation of (2):

Z Tl = Z Zsr Vse S,l € Lg,a€ {+,—} (2.2b)
teTs rER,:EL,
eq > Z LB}z, Vse S,l € Lg,a € {+,—} (2.3b)
teTs
el < > UBfaY, Vse S,l€Lyac{+ —} (2.4b)
teT,
var = Y Thy— D Ty, VseS,leLyteT, (2.5b)
€Tyt <t teTy:t! <t—1
Note that the cumulative constraints disappear, but that we have new constraints

(2.5b) for the usage variables. The IMP formulation will have |S||Ls||Ts| more variables
but |S||Ls||Ts| less constraints as compared to ORG. Also the train counting constraints

(nl =" ug,) will operate on the explicit u variables and hence contain fewer elements in
IMP as compared to ORG.

The increase in variables might be a drawback, but also gives the MILP solver an
opportunity for more pruning (due to the binary restriction of u) and another set of variables
to branch on during the branch and bound procedure.

The constraint graph for the IMP formulation is shown in Figure 4.

1:5

ATMOS 2018



1:6 Reformulations for Railway Traffic and Maintenance Planning

2.3 Maintenance scheduling

In the following we study the formulation differences between ORG and IMP for the

maintenance scheduling constraints (4). In the ORG formulation we have

> wp =1 Vie LM

oeW;

Zvlot 2 NoWio Vi € LJW, oe W

teT

Viot + 1 2 Y1y — Yi,4—1 + wio VieIM oeW,teT
Viot < Wio VieILM oeW,teT
Viot < Yt VieLMoeW,teT
Vot <1 =y VieLMoeW,teT

t+6,

>y = Oovior VieLM oeW,teT

t'=t

Constraint (4.1) ensures that exactly on window option is used, while (4.2) ascertain

a sufficient number of maintenance windows. Constraints (4.3a—4.6a) ensure the correct

coupling of work start variables (v.), window choice (w;,) and work variables (y;;), while

constraint (4.7a) imposes the required maintenance window lengths.

The coupling constraints (4.3a,4.5a,4.6a) can be aggregated, by utilising the fact that
exactly one window option must be selected. Hence, since only one v;,; variable for each [,
combination can be non-zero, IMP uses summations over the window options, as follows:

Z Viot 2 Yit — Yl,t—1 VieIM teT

oeW;

> vior <y vieLM teT

oeW;

D vt S1- VieLlMteT
Viot = Yi,t—1 € RS

oeW;

(4.3b)
(4.5b)

(4.6b)

Next, we make use of a model for bounded on/off sequences, presented in [13], where the
formulation describes the convex hull. Thus there is no tighter formulation for that set of
variables. We extend this model with the window option choice w;, and can then replace

(4.7a) with the following constraints:

t
Z[ Z vlot/‘|<ylt vieIM teT

oceW;, Lt'=t+1-6,
t
Z Vot + 1 2 yir + wio VieLlM oeW,teT
t'=t+1-0,
Zvlotg]-*yl,t—l VieLMteT
oeW;
t+MS,

Z Viot! 2 Wio — Yit VielM oeW,t=1,...,H—-MS,
t=t+1

(4.7b)

(4.8b)

(4.9b)

(4.10Db)
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The constraints (4.7b)-(4.8b) enforce that each window should span exactly 6, time
periods. Constraint (4.9b) enforces at least one time period between two maintenance
windows, but since it is precisely the same as (4.6b) and hence redundant it is not needed. If
there would be requirements for larger separation between windows on each link, the LHS
should be a suitable forward going sum over v;,¢. Constraint (4.10b) will make sure that the
maximum separation (MS,) between windows is respected. This constraint and (4.8b) will
only be active for the chosen window option. Here we can only aggregate over the window
options for constraints (4.7b) (and (4.9b)).

3 Computational results

The same set of synthetic test instances as in [9] has been used for evaluating the efficiency
of the different formulations. The data instances are available as JSON files together with
a set of Python parsers at https://github.com/TomasLiden/mwo-data.git. The test set
consists of nine line instances (L1-L9) and five network instances (N1-N5), having a planning
horizon of five hours to one week divided into 1 h periods and with 20 to 350 train services.
All line instances except one (L4) are single track, while the network instances have a mixture
of single and double track links. The trains are uniform with no runtime or cost differences —
only the preferred departure times differ. These simplifications, which make the trains almost
indistinguishable for the solver, are used in order to test the scalability and solvability of the
models. Real-life instances will of course use more realistic settings for costs and runtimes.

The evaluations have been done in two steps. First, various alternatives for the train
scheduling formulation have been tested. These tests were made with Gurobi 6.0.5 as MIP
solver on a MacBook Pro with a 2,6 GHz Intel Core i5 processor, 8 GB 1600 MHz DDR3
memory and OSX 10.10.5. The formulation with the best performance, as presented in Section
2.2, was then used when evaluating various alternatives for the maintenance scheduling part.
The latter tests were made with Gurobi 6.5 as MIP solver on a Dell PowerEdge R710 rack
server with dual hex core 3.06GHz Intel Xeon X5675 processors and 96GB RAM running
Red Hat Enterprise Linux 6. For all tests, a maximum computation time of 3600 seconds
have been used. Most tests have a relative MIP gap tolerance of 0.001 (0.1%) while some of
the smaller instances (L1-L5 and N1-N2) have 0.01%. All other options have been left at
their default values.

The computational results are presented in Table 1, where the left part gives instance
properties, the middle part lists solution statistics for the four alternatives
(a) ORG - the original formulation, run with Gurobi 6.0.5
(b) T60 - the improved train scheduling formulation with Gurobi 6.0.5
(c) T65 - the improved train scheduling formulation with Gurobi 6.5
(d) IMP - the complete improved formulation with Gurobi 6.5
and the right part lists the absolute improvement in initial LP value as compared to the
ORG formulation.

There is a clear improvement in solving performance — both solution times and remaining
MIP gaps are reduced. Also, we see that IMP is tighter since the initial LP value is increasing
(the small increases for some T65 instances are caused by a more efficient pre-solve).

To further illustrate the improvements, performance profile plots are used which show
the accumulated number of instances (on the vertical axis) reaching a certain level of quality
measure (on the logarithmic horizontal axis) — normalised as a factor of the best outcome for
all alternatives. Thus an alternative have better performance when being above (= more
instances) and to the left (= better quality) of another curve. In Figure 5 the time for
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Table 1 Instances, properties, performance (time (seconds) to reach optimality or else remaining
gap after 3600 seconds) and improvement in initial LP value vs ORG.

Properties Performance (sol. time / rem. gap) LP improvement
Case | |[L| |T] |S] | ORG T60 T65 IMP T60 T65 IMP
L1 4 5 20 66 15 3 4 0 0 0
L2 4 5 20 181 18 4 4 0 0 0
L3 4 12 40 | 0.15% 255 102 46 0 0 0.6
14 4 12 40 2 4 2 1 0 0 0.4
L5 9 24 40 | 0.16% 2878 3415 1796 0 0 075
L6 9 48 80 | 0.77% 0.50% 0.21% 0.13% 0 0 095
L7 18 24 80 | 31.0% 1.24% 0.90% 0.53% 0 0 1.35
L8 18 96 160 | 32.0% 17.6% 1.62% 1.14% 0 0 0.55
L9 25 168 350 | 265% 201%  170% 64.4% 0 0 2.76
N1 9 5 20 7 9 5 3 0 0.02 0.02
N2 9 24 50 42 25 6 5 0 0.12 0.27
N3 9 48 100 97 179 193 23 0 0 0.98
N4 9 96 200 | 1209 535 435 264 0 0.01 0.28
N5 9 168 350 | 0.14% 0.13% 3600 907 0 0 0.92
& 10 M —
< ] N
.,f% o IMP
B —— T65
2 5 1 |—— T60
2 —=-ORG
g
2 L L
10° 10 102
Solution time, factor of best
Figure 5 Performance profile — time to reach optimality.
2 14 ‘ — o &
: I | i
2 12 | |— IMP
B —— T65
2 10 - |—— T60
_q.é 8‘ —= ORG
10° 10! 102

Figure 6 Performance profile — final MIP gap.

MIP gap, factor of best
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reaching optimality is the quality measure, while Figure 6 shows the remaining MIP gap for
those instances that have not been solved to optimality. The improvement obtained for each
step is clear — including the performance gain when changing solver version and computer
platform.

The net result is that three more instances (L3, L5, N5) are solved to optimality, the
optimal solutions are reached quicker (with a speed up between 2 and 10 times) and two more
instances (L7, L8) are solved to a MIP gap < 1.5%, which can be considered an acceptable
solution quality for the cost factors being used.

4 Concluding remarks

We have investigated and found reformulations that substantially improve the solving
performance for an optimization model that jointly schedules train services and network
maintenance windows. The reformulations include the removal of cumulative variables,
making implicit variables explicit, using aggregation where appropriate but most importantly
to use a tighter model for bounded up/down sequences (according to [13]).

These improvements have made it possible to extend the model with maintenance resource
considerations (see [10]), and in recent work the models have also been applied to real world
problems of realistic size — which will be reported in the presentation. In the latter work cyclic
scheduling is used, which unfortunately destroys the integral properties of the previously
mentioned model for bounded up/down sequences. Hence, the mathematical properties
of cyclic on/off sequences are currently being studied with the aim of finding methods for
strengthening such models.
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A multiobjective modeling approach for managing large scale railway infrastructure asset renewal
is presented. An optimized intervention project schedule is obtained considering operational
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minimizing total cost, minimizing work start postponements on higher priority railway sections.
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1 Introduction

The railway has recognized economic, energy and environmental benefits [2], as well as lower
operating externalities when compared to road infrastructure [13]. In recent years, the need
to provide for a rising demand of rail services has prompted infrastructure managers to
intensify maintenance actions, leading to a range of planning problems [1, 4, 6, 9, 11, 12, 14].

The European Commission, in view of these advantages, has been taking measures
to increase the use of this mode of transport, by opening up the market to competition,
creating new infrastructure and improving the interoperability and safety of existing networks.
Ensuring the safety of people and goods, as well as the normal running of rail services, requires
maintenance of the existing railway, much of it degraded after decades of disinvestment.
In the context of maintenance, it is important to distinguish between current maintenance
and renewal interventions. Current maintenance refers to frequent minor works aiming at
maintaining an adequate level of service of the infrastructure, whereas renewal actions are
typically more extensive and restore (or modernize) the infrastructure [5].

In this article a multiobjective methodology to plan renewal interventions in the railroad is
presented, taking into account three objectives: to spread out investment expenses, as evenly
as possible, over project years; to minimize the total renewal costs; to minimize work start
postponements on the higher priority railway lines. Equitable distribution is required since
large-scale renewal actions require a very considerable financial effort from the infrastructure
management company, and it is desirable that this effort is diluted as much as possible over
multiple years. Achieving a balanced annual investment plan, without compromising the
total financial effort or excessively postponing the execution of the priority works, was the
motivation for pursuing the research which is now presented. For recent research concerning
other aspects (not just financial) of resource levelling in project management see e.g. [3, 8].
It should be noted that the objectives, as well operational constraints to be respected, were
defined by an infrastructure management company operating at national scale, which also
provided field data for one of the case studies, as well as model parameter calibrations.
Indeed, the proposed model stemmed from interaction between a research institution and a
railway infrastructure management company, and therefore authors are strongly convinced of
its practical usefulness, given it provides a scientific methodology to deal with a real problem
in corporate asset management.

2  Multi-objective model

Following the terminology of [7], “renewal” refers to background interventions subsequent to
the natural wear and tear of the infrastructure, “line” refers to major railway lines connecting
principal stations, and “section” to parts of a line between two geographic landmarks. These
marks are usually stations or junctions but may also be mere kilometer points. Sections are
often heterogeneous, in which case they are divided into homogeneous subsections. Sections
are what undergoes renewal works.

The model is suitable for treating renewal actions which do not involve prolonged track
closure or re-routing of the circulation through multiple alternative routes. Typically these
are large-scale, extensive interventions on rails, ballasts, sleepers, etc. and may involve
upgrading rail assets. Interventions on other asset types (e.g. catenaries, sub-base) may
be included provided they do not lead to prolonged blockades. While a section is under
intervention, trains must run at reduced speed, causing delays in services. The model cannot,
therefore, allow for an accumulation of works on the same line which may cause excessively
large delays. Similarly, the lines do not all have the same socio-economic importance or
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service intensity, making it is necessary to prioritize the sections to be renewed. The model
takes these issues into account and considers two periods of accounting as well, monthly
and annual, the first to schedule the field works and the second for budgeting. Both can be
changed without affecting the structure of the model.

Indices:
i =1,..., M railway line sections to be renovated.
j=1,..., N spanning months.
k=1,..., P spanning years; N = 12P.
l=1,...,Q railway lines. Each section belongs to a railway line.

Parameters: (units)

CI cost of renewing section i (monetary unit MU).

C,f;.M extra maintenance cost of section 4 if it is not renewed as of month j (MU). These
costs are active until the repair works end.

P; priority for renewing section ¢ (adimensional). Active until repair works on that section
are completed. This can also be seen as service inconvenience of not renewing the section.

T; time span needed for renewing section i (months).

D; delay caused to railway traffic from having section ¢ under renewal(minutes).

B;; 1 if section ¢ belongs to line I, 0 otherwise (binary). Note: in the case studies, no section
belongs to two lines, but that is not forbidden.

M; max delay tolerable for line ! (minutes).

Decision variables:

x;; 1 if section 4 starts to be renewed in month j, 0 otherwise (binary).
F maximum yearly investment (real positive variable).

Auxiliary variables:
A;; 1if section ¢ is being renewed in month j, 0 otherwise (binary).
U;; 1 if the renewal of section ¢ is not yet finished by month j, 0 otherwise (binary).

Model:
min O1=F (1)
min ngZCﬁ—i—ZCﬁMUM (2)
i ij
min ngZPiUij (3)
j
Subject to:

Z[Eij = 1, Vi (4)
J
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2ij =0, Yi:j>N-T, (5)

j
Aij = Yo my, Vi (6)

J'=j-Ti+1,j'>1

N

Uj= Y. iy, Yij (7)

J'=j—Ti+1,j'21

12(k—1)+12 OR

> lz (ngij + cg.MUij> < F, Vij (8)
j=12(k—1)+1 L i ¢
ZDiAijBil <M, Vjl 9)

Objective O is implemented by equations formulas (1) and (8), where the 1st member
of (8) is the annual investment. The extra costs CgM are active until the end of the work,
but these costs can be considered in other ways, such as e.g. being active up until halfway
the work completion. Objective Os has a fixed and a variable part and was thus defined to
give the decision maker a better notion of the final values. As for Os, sections accumulate
priority values, month after month, until their respective renewal is complete. The more a
high-priority work is postponed, the more it builds up in O3. Equations (4) and (5) enforce
that the works are started at some stage, and in time to finish before the last year ends.
Equations (6) and (7) define auxiliary variables and equation (9) are operational constraints
which avoid excessive delays in train circulation when a line undergoes multiple works at the
same time.

It should be noted that the structure of the operational restrictions (9) allows to model
some cases of track closure, namely those in which the movement of people and goods along
the closed track section is made by alternative transportation. The only modification is the
D; value, which is usually higher than that caused by reduced speed circulation. In highly
congested lines, or lines with feeder branches, the D; delays may eventually cause knock-on
effects (bottlenecks) in circulation. This does not happen in case study 1, but if such effects
are plausible in other instances, modifications to (9) might need to be considered.

3 Case studies and results

3.1 Case study 1 — real data

Case study 1 consists of M = 20 sections to be renewed, over P = 5 years (N = 60 months)
and belonging to Q = 17 lines. The parameters that characterize the sections were obtained
by averaging values of their constituent homogeneous subsections, weighted by the length of
the latter. The infrastructure management company provided all the data and validated the
parameterization mentioned below.
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The extra maintenance cost structure considers a negative exponential degradation of
the infrastructure, which leads to extra maintenance costs of +3.5% per year on the current
maintenance cost, for each year in which the renewal exceeds the recommended term, i.e. for
every month j belonging to year k one has Cﬁ»M = Cpase X [(1 4 0.35) (@i 14k) x0(as —14k) _ 1],
with a; the number of years for which renewal is overdue and 6(x) the unit step function. In
the case study «; was 10 years, on average.

Priorities were defined considering the type of service provided by the line (TS) to which
each section belongs, the sections present conservation status (CS) and freight traffic volume
(FT). Values of 100/90/75/50 for TS and CS, and 100/90/75/50/40 for FT were considered
and the final value for priorities was defined by P; = 0.57'S + 0.3CS + 0.2F7T. All these
parameter values were suggested by the infrastructure management company.

Finally, delays in circulation were calculated considering the length of the sections and
maximum train speed under works. Maximum values M; and works duration T; were obtained
directly from the infrastructure management company.

The Pareto front of the case study was obtained by the epsilon-constraint method (Cohon,
1978) using the IBM CPLEX 12.7 solver, running on a quad-core @ 2.6 GHz CPU. Starting
from solutions with O; restricted to its smallest possible value and gradually relaxing
this value until reaching unrestricted O;, two solutions were generated for each O; value,
respectively minimizing Os and Os. Solutions near O; optima took a few hours to derive,
and were used as starting point for sequent runs, which gradually finished faster, down to
just a few seconds per solution. The total CPU time was less than 1 day, for 312 runs. It
was found that in all the solutions obtained, the value of O2 never exceeded its optimum
by more than 1%, so this objective was discarded, giving rise to the front of Fig. 1 below
(values in percentage, for confidentiality reasons, with optimum = 100%):

As can be seen, the front shows a relatively regular behavior, allowing the decision maker
to analyse the trade-offs between equitably distributing the investment and accelerating the
renewals. The non-dominated solutions that form the front may, for field works planning
purposes, be displayed as Gantt schedules. Fig. 2 below shows the schedule for the solution
with O; <120%, min O3. Several non-dominated solutions, including this one, were presented
to the infrastructure management company and are currently under evaluation for field
implementation.

3.2 Case study 2 — large-sized theoretical problem

A large instance was generated, reflecting a problem of size similar to the USA railway
network. This is the largest network in the world [10] so it is not expected that considerably
larger problems appear in real life. In practice the US market is highly fragmented, i.e. split
into several, independent infrastructure management companies, so this instance is purely
hypothetical. It was carried out not only to stress-test the model in terms of CPU times,
and thus unravel eventual limits to the computational performance of the model, but also to
find out under what circumstances objective Os becomes important. Field data associated
to railway network was randomly generated and the same parameterization of case study 1
was used. However, for case study 2 the a; were distributed so as to have an average of 25
years backlog and a P = 10 years of project horizon was considered. Despite the very large
increase in the number of decision variables (now about 600000), the CPU time increase
was not very significant, with most runs taking in the range of seconds and runs close to O,
optimum taking more CPU time (in fact only 4 solutions required more than 20 seconds:
20.7, 22.3, 415.6 and 1412.6 seconds), which was already the case for case study 1. This is a
reasonable increase for a problem that is almost 200 times as large. It is thus expectable that
just about any real-life problem can be treated in a modern computer, regardless of size.
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Figure 1 Pareto front for the case study (O2 not displayed).

As compared to case study 1, in case study 2 optimizing O now leads to greater (percent-
wise) degradation of Oy and Os, whereas optimizing O, and O3 lead to similar pay-off values.
Objective Oz is now relevant, fluctuating between 100% and 210% (rather than just the
1% of case study 1), showing all objectives are important when the infrastructure is ageing,
and the backlog is large. Indeed, if the railway infrastructure is very degraded, objective Og
should be included in the analysis, especially if the renewal plans span for many years.

Figure 3 shows that if the decision maker allows some increase in max yearly investment
(i.e. degradation of Oy), solutions improve considerably in the remaining two objectives. It
also shows that, for each value of the Oy restriction, Oy and O3 can only fluctuate in a narrow
range of values, making O; a very important objective, whose value has a big influence on
the two other.

4 Conclusions and summary

In this paper, a multiobjective methodology was proposed for renewal of railway networks
planning. The model is linear, soluble in reasonably time and provides a range of solutions
for the analysis of trade-offs by the decision maker, each one being translatable in Gantt
schedules for later implementation on the field. The methodology is strongly inspired by a
real case study and reflects the practice of an infrastructure management company, so it
may be especially useful as an asset management tool. It is also easily generalizable to other
types of infrastructure, such as highways.
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Figure 2 Gantt chart for solution min O3 with O; < 120%.
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Case Study 2 - Pareto Front
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Figure 3 Results for the large-sized instance.
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—— Abstract

The general problem of scheduling activities subject to temporal and resource constraints as well
as a deadline emerges naturally in numerous application domains such as project management,
production planning, and public transport. The schedules often have to be implemented in an
uncertain environment, where disturbances cause deviations in the duration, release date or dead-

line of activities. Since these disruptions are not known in the planning phase, we must have
schedules that are robust, i.e., capable of absorbing the disturbances without large deteriorations
of the solution quality. Due to the complexity of computing the robustness of a schedule directly,
many surrogate robustness measures have been proposed in literature. In this paper, we propose
new robustness measures, and compare these and several existing measures with the results of a
simulation study to determine which measures can be applied in practice to obtain good approx-
imations of the true robustness of a schedule with deadlines. The experiments are performed
on schedules generated for real-world scheduling problems at the shunting yards of the Dutch
Railways (NS).
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1 Introduction

For the shunting yards operated by the Dutch Railways (NS), the largest passenger railway
operator in the Netherlands, human planners create daily shunting plans describing all the
activities that have to be performed, such as cleaning, maintenance, parking, and movements
of trains. The objective for the planners is to construct a schedule in which all service
activities on a train are completed before its deadline, which is the scheduled departure time.
However, since arriving trains might be delayed, and performing a service activity can take
longer than expected in practice, a shunting plan that is feasible with respect to the nominal
timetable and activity durations may become infeasible during operation if a departure from
the shunting yard is delayed due to disturbances.
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Since the exact disturbances that will occur during the execution of a schedule are not
known in advance, a practical strategy to handle the uncertainty is to construct a baseline
schedule and a simple scheduling policy that adapts the initial schedule to the disruptions.
The baseline schedule of a shunting plan of the NS is a partial order schedule of all activities,
with precedence relations to ensure that any execution of the plan is resource feasible. The
scheduling policy for the shunting plans is the Earliest Start Time (EST) or Right Shift
policy, which assigns activities to their earliest start time in the baseline schedule, and, in
case of disruptions during operation, delays activities that have not yet started as much as
necessary while maintaining the ordering in the baseline schedule. Operational disturbances
that cannot be absorbed by the shunting plan with the EST policy have to be handled by
the human planners. The Dutch Railways prefers robust shunting plans that require little
rescheduling during the operational phase, as the ad-hoc modifications to the schedule made
by human planners often have a cascading effect in other parts of the shunting plan. A
quantitative metric of this preference is the probability that the execution of a baseline plan
will result in a delayed train departure.

In order to find robust baseline schedules for scheduling problems with deadlines, we
have to determine a priori whether a schedule will perform well in the uncertain operational
environment. However, the robustness of a schedule depends heavily on the available
knowledge of the uncertainty: which elements in the scheduling problem can be disrupted by
uncontrollable factors, and what are the distributions of those events? Often, the uncertain
elements are known during the planning stage, but data on the distribution of the uncertainty
are lacking. As a result, the robustness of a schedule is hard to compute in general, and
assumptions on the uncertainty have to be made.

An approach often used to estimate the robustness is to simulate the performance of
the schedule in many different scenarios sampled from the (assumed) distributions of the
uncertainty. Although simulation is a powerful and versatile tool that gives an accurate
estimate if a sufficient number of samples is used, it tends to be a computationally expensive
technique. As solution methods for scheduling problems typically evaluate a large number of
schedules to find the (near-)optimal solution, using simulation as a subroutine in the solution
method might not be feasible. Therefore, several robustness measures that act as a surrogate
for the sampled robustness of a schedule have been developed in the past few decades.

The contribution of this paper is to identify robustness measures that both properly
predict the robustness of a schedule subject to deadlines, and can be evaluated efficiently. To
this end, we generate a large number of schedules for real-world instances of the shunting yards
operated by the NS. We perform a Monte Carlo simulation of schedules with uncertainty to
obtain a good approximation of the robustness, and compare the outcome with the predictions
of the robustness measures to determine if any of the estimations show a strong correlation
with the sampled robustness. We base the comparison on two performance metrics, which
are the fraction of delayed schedules, and the average lateness of the schedules.

The remainder of this paper is organized as follows. We start in Section 2 with a review
of related work on robustness in resource-constrained project management, followed by a
brief summary of the common concepts and notation in this paper in Section 3. We provide
in Section 4 an overview of several robustness measures from literature, and propose some
new, path-based measures. The instances provided by the NS as well as the setup of the
Monte Carlo simulation study are discussed in Section 5. We compare the predictions of the
robustness measures with the results of the simulation study in Section 6, and finish with
concluding remarks and potential directions for further research in Section 7.
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2 Literature overview

Most of the robustness measures proposed in literature are for resource-constrained project
scheduling problems, where the standard objective is to minimize the makespan of the
schedule. These measures are mainly based on the concept of slack. The total slack is defined
as the the maximum amount of time that we can delay an activity without increasing the
makespan of the total schedule, whereas free slack is the amount of time by which an activity
can be delayed without delaying any other activity in the schedule.

A simple slack-based robustness estimation, proposed by [6], is to compute the average
of the total slacks of all activities. By simulating many realizations of job shop schedules,
[6] showed that a large percentage of the variation in the realized makespan was explained
by the average slack of the schedule. Similarly, [1] proposed the sum of free slacks as a
robustness measure.

Based on the observation that, in addition to the total amount of slack, the distribution
of the slack over the schedule affects the robustness as well, [3] proposed several variants of
the sum of free slacks. These robustness measures weigh the free slack by the number of
successors, and substitute the free slack with a binary slack indicator function or an upper
bound on the slack based on the activity duration.

The relation of a number of existing and newly proposed robustness measures to the
fraction of feasible schedule realizations in a Monte Carlo simulation has been investigated
by [5]. For instances of the discrete time/cost trade-off problem, they reported high values
(> 0.91) of the coefficient of determination for the sum of total slacks measure and successor-
weighted variants of it.

A similar comparison of robustness metrics in a Monte Carlo simulation was performed
by [2]. In contrast to the work of [5], their results showed that summing the unweighted slack
of the activities has at best a weak correlation with the expected makespan of the schedule.

When scheduling activities subject to deadlines, the primary objective is to find a feasible
schedule. However, the concepts of free and total slack do not fully capture the slack of a
schedule with respect to its deadline. To quantify this type of slack, we can view a schedule
with deadlines as a special case of a Simple Temporal Network (STN), which is a directed
graph with both minimum and maximum time lags on the arcs that was introduced by [4].
For this type of graph, there are flexibility metrics that aggregate the slack with respect
to all the temporal constraints, including the deadlines. The naive flexibility of an STN
is the sum of the difference between the latest and earliest start time of each activity, i.e.,
the total slack relative to the deadline instead of the makespan of the schedule. Analog to
the free slack of an activity, [15] proposed the concurrent flexibility metric, which is based
on interval schedules. An interval schedule specifies for each activity an interval such that
every activity can start at any time within its interval independently of the other events,
and without exceeding the deadline of the schedule. The concurrent flexibility of an STN is
defined as the maximal sum of the interval lengths over all possible interval schedules. A
linear programming formulation was proposed by the authors to compute the concurrent
flexibility. It was shown in [14] that a schedule with a high flexibility is not always robust to
disruptions.

The limitations of the sum of free slacks metric were discussed by [8], and they proposed
to use the minimum free slack over all activities as a robustness measure for schedules with a
deadline, and provided an algorithm that maximizes the minimum free slack by distributing
the free slack evenly over the schedule. Their approach is essentially the concurrent flexibility
metric, proposed by [15], with as objective to maximize the minimum interval length instead
of the sum of the intervals.
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An extensive comparison of robustness measures can be found in the paper of [7]. They
investigated the correlation between the surrogate robustness measures and the probability
that the completion time of a schedule exceeds its nominal makespan, which was approximated
using a Monte Carlo simulation. Their results showed that the strongest correlation (R? >
0.64) with the robustness performance metric in the simulation was achieved with a robustness
measure that computes the slack sufficiency, which is based on the ratio between the free
slack and the processing time of an activity.

Despite the many surrogate robustness measures in literature, there is no consensus on
which of these provides a good approximation of the true robustness of a schedule. In the
simulation studies of [6], [5], [2] and [7], only schedules without deadlines are considered,
focusing mainly on the expected makespan and related performance metrics. However, a
good expected makespan of a schedule constrained by a deadline does not necessarily imply
that the schedule will respect its deadline. Therefore, additional research is required to verify
their results for schedules with deadlines.

3 Preliminaries

In this paper, we consider the general resource-constrained scheduling problem with deadlines.
For a scheduling problem with activities 1 to n, and a deadline at time T for all activities, we
define a baseline schedule o as a pair (Sy, POS, ), where S, = {0,...,n+ 1} is the activity
set, and POS,, a partial order schedule of these activities:

POS, ={i < j|Vi,j €S, :idirectly precedes j in o}.

In this schedule, the activities 0 and n + 1 are dummy activities representing the start and
end of the schedule, respectively; the precedence relations needed to ensure that all activities
take place between the start and the end activity are contained in the partial ordering.

Each activity ¢ has a nominal processing time p; € R, with pg = p,4+1 = 0. We assume
that the release date of each activity is equal to 0, and that all activities, in particular n + 1,
have to be finished before the deadline T'. Note that scheduling problems with an individual
release date or deadline of activity ¢ can still be modeled in the schedule by adding a dummy
activity between ¢ and the start or end activity, respectively.

From the baseline schedule o, we can compute for each activity ¢ the time window in
which it has to be processed. The earliest start time est? is the earliest possible time at
which all predecessor activities can be finished. Similarly, the latest finish time [ft7 is equal
to the latest possible completion time of activity ¢ such that the schedule remains feasible
with respect to the deadline. The latest start time lst{ and earliest finish time eft] can be
derived from the latest or earliest counterpart by subtracting or adding the processing time
pi, respectively. The earliest finish time of activity n + 1 is known as the makespan or Clax.

The concept of slack is commonly used to quantify the robustness of a schedule. We define
the total slack ts? of activity ¢ in schedule o as the maximum amount of time by which we can
delay the activity such that no deadlines are exceeded in the schedule. Equivalently, the slack
is the difference between the earliest and latest start time of the activity, ts{ = Ist{ — est{.
Note that this definition differs slightly from the formulation given in 2, where the total slack
is computed with respect to the makespan instead of the schedule deadline. However, for
each activity in the schedule, the difference in slack between the two definitions is a constant,
namely T — Chax. A different type of slack is the free slack fs?, which is the maximum

70

amount of time that activity ¢ can be delayed without affecting any other activity. That is,
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we define the free slack as

fs7 = min {est;} —eft;, (1)
jEsuces (1)
where succ, (i) are the successor activities of ¢ in the schedule.
An intuitive graph-based representation of the partial ordering can be constructed by
modeling each activity ¢ in activity set as a vertex v;, and adding for every precedence relation
i < j € POS an arc from v; to v; to the graph. The result is a digraph G, = (V5, 4,), in

which a directed path represents a set of activities that have to be performed sequentially.

Similar to slack of an activity, we define the slack of a path = = (m,...,7) as

sy =1fty, —esty — Zpi,

1ET

which is the maximal amount of time we can delay activities on the path without exceeding
the deadline of 7.

Shunting plans

The schedules that we use our experiments are solutions to a scheduling problem of the
Dutch Railways that arises at shunting yards, which are networks of tracks connected by
switches that contain facilities providing services such as cleaning and maintenance to the
trains. In this scheduling problem, which is a variant of the Train Unit Shunting Problem
described in [13], we have a number of train units that arrive during the evening on the
shunting yard. These arrivals happen according to a static timetable, which lists the arrival
time as well as the train — a sequence of coupled train units — in which each train unit
arrives. The train units have to leave the shunting yard the next morning, again based on
the timetable. Note that the arrival train of a train unit is not necessarily the same as the
departure train. During their stay at the shunting yard, the train units have to move through
different facilities to receive service tasks such as cleaning and maintenance, and must be
parked on an appropriate track to wait until departure.

The scheduling problem at the shunting yards is then to construct a shunting plan, which
is a schedule that describes all the activities on the shunting yard such as coupling and
decoupling train units, service tasks and train movements, such that the service tasks of each
train unit in a departing train are completed before the departure time, and none of the
resource capacity constraints are exceeded in the shunting plan. A more in-depth description
of the scheduling problem can be found in [13].

4 Robustness measures

In this section we discuss the robustness measures that we will compare in our experiments.

Surrogate robustness measures that rely heavily on the exact distribution of the uncertainty
in a schedule might produce accurate predictions of the robustness, but their applicability to
real-world scheduling problems is limited, since quantitative data of the uncertainty are often
scarce in practice. Therefore, robustness measures with a low dependency of the available
knowledge of the uncertainty are preferred.

Robustness measures are usually created with the assumption that the nominal or expected
processing time of the activities is known. If a robustness measure does not rely on any other
information about the uncertainty, the robustness is solely estimated from the structure of
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the baseline schedule. The two robustness measures applied most often in literature, namely
the sum of total slacks ([6]),

RMy(0) =Y ts7, (2)
and the sum of free slacks ([1]),

RM,(0) = Z fs7, (3)

are examples of measures that depend only on the nominal activity durations. Furthermore,
the standard resource-constrained scheduling objective, the makespan or, equivalently, the
minimum total slack,

RMs5(o) = mints?, (4)

can be viewed as an expectation-only robustness measure as well.

Another robustness measure of this type that was shown by [7] to provide good estimations
of the robustness of a schedule was based on slack sufficiency, which compares the free slack
of an activity to a fraction of the duration of that activity or one of its predecessors in the
schedule. In the work of [7], this robustness measure is defined as

RMy(0) = Z i |j € prec(i) U{i}, fsi = Ap;}| ()

where prec, (i) are the predecessors of activity 7 in the schedule and 0 < A < 1. The authors
suggested that A\ should be set to the expected deviation from the nominal processing time
of the activities due to disruptions.

A more complex robustness measure depending only on the expected activity duration is
the interval schedule based approach of [15]. It finds the maximal assignment of intervals to
activities such that each activity ¢ can be scheduled within its interval (e;, ;) independently
of the other activities. To achieve this, the intervals are computed with the linear program

RMs5(o) :maxz (li —ei)

subject to (6)
est] <e; <s; <lst] Vi
li +pi < e Vi < j € POS,.

As an alternative to solving this linear program, [10] formulated a matching problem based
on the dual problem.

Analog to the work of [8], we can change the objective of the linear program of [15]
to maximize the minimum interval, which will result in a more evenly distributed interval
schedule. The linear program then becomes

RMg (o) =maxmin (I; — e;)

subject to (7)
est! <e; <I; <lIst] Vi
li+pi <ej Vi < j € POS,.
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In contrast to the previous surrogate robustness measures, the measure of [15] focuses on
the entire graph structure instead of just the slack of the individual activities. However, an
optimal solution to the linear program is an interval schedule that assigns large intervals to
concurrent activities, and, consequently, only small intervals to sequential activities, thus
overemphasizing parallel activities.

A compromise between activity-based and schedule-based measures is to predict the
robustness of a schedule from the paths in the partial ordering. Without any knowledge of the
uncertainty, it is reasonable to assume that the likelihood of a disruption on a path increases
with the number of activities of the path. Therefore, we propose to use the minimum over
all paths of the path slack divided by the number of activities on the path as a robustness
measure,

g

RMx(0) = min {8”} : 8)

x|
Although the number of paths can be exponentially large, we can evaluate this robustness
measure efficiently by computing for each &k = 1 to n + 2 the shortest path in the schedule
with exactly k activities.

In many cases, a reasonable estimate of the variance of the uncertainty can be made
as well, even if the exact distribution of the uncertainty is unknown. We can exploit this
additional information by making the assumption that the duration of each activity is
normally distributed, as normal distributions can be characterized solely by their mean and
variance. Although this assumption might be wrong for the distribution of the duration of a
single activity, if follows from the central limit theorem that the sum of activity durations
does resemble a normal distribution. Therefore, we can approximate the uncertainty in the
duration of a path in the schedule.

We can utilize this approximation as the basis for several robustness measures. Firstly,
we propose another path-based robustness measure. Analog to the minimum weighted path
slack in RM7, we use the minimum probability that a path can be completed within the
deadline, computed over all the possible paths in the graph. That is, we compute for each
path 7 the normal distribution approximation X, of the duration of the path by summing the
processing time distributions of activities on that path, and report the minimum probability
of completion before the deadline:

RM(e) = min (P (X; < T)}) ()

Although the paths in the schedule are connected by precedence relations, they are assumed
to be independent by this robustness measure.

In contrast to RM7, we might have to evaluate all the paths in the schedule to compute
the distribution-based robustness measure RMg, since the usual graph-theoretical properties
of paths, such as the property that any sub-path of a shortest path is again a shortest path,
do not hold in this case. To keep the computation tractable, we construct in topological
order for each activity 7 the set of paths in schedule ¢ ending at i, from the paths ending at
the immediate predecessors of i:

I = {(z',...,7%4) | 3j =i € POS, : (x',....7%) € II;}. (10)

Furthermore, we compute the distribution X, of the duration of each 7 € II; by summing
the normal distributions of the activities on the path. We can then reformulate RMg to

RMg(o)= min P(X,<T). (11)

wellp 41
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To avoid the exponential growth of II;, we repeatedly remove the path 7 from II; with the
smallest probability of exceeding any other path in II;, until the set of paths is at most size
K. Ties are broken randomly in this pruning procedure, and a maximum size of K = 8
was shown to be sufficiently large to achieve a good robustness estimation in preliminary
experiments.

Another approach is to estimate the distribution of total makespan of the schedule. Many
approximation algorithms have been proposed in literature, see [9] for a comparison of several
techniques. An efficient method to construct an approximation of the makespan distribution
is to evaluate the activities in topological order, computing the makespan distribution Y; up
to each activity ¢ as the distribution of the maximum over the makespan distributions of the
immediate predecessors of 4

Y; = a Y, D; 12
! j<irg7>}(§sg{ i} + Di, (12)
where D; is the normal approximation of the activity duration of ¢, and the maximum over
the predecessor distributions is approximated with a normal distribution as proposed by [11].
The robustness measure, which is proposed in the work of [12], is then

RMy(0) = P (Yoy1 < T). (13)

5 Experimental setup

The main application of surrogate robustness measures is in the comparison of schedules,
since these can estimate the true robustness of a schedule far more efficiently than other
approaches such as simulation. However, we need to investigate whether the estimations
correctly reflect the relative ordering of schedules according to their robustness to verify
that the robustness estimators are actually suitable for this purpose. To accomplish this,
we construct empirical makespan distributions of a set of realistic schedules in a simulation
study, and search for robustness estimators that show a strong correlation with the empirical
results.

We have selected two real-world instances of the shunting problem described in Section 3
as the basis of our simulation study. The first one originates from “Kleine Binkchorst (KBH)”,
which is a shunting yard of the NS near the central station of The Hague. It consists of a
single night during which 19 train units arrive at the yard. These train units need to receive
internal cleaning and a maintenance inspection; three of them need to be washed as well.
Due to all the necessary train movements, shunting plans of problem instance typically have
close to 160 activities, with 250 to 300 precedence relations. The other instance is obtained
from a shunting yard near Utrecht, named “OZ”, which contains, contrary to the KBH, many
dead-end tracks. As a result, the main difficulty in the scheduling problem is the parking
order of the trains. This instance has 16 train units and a total of 27 service activities. The
number of activities in the corresponding shunting plans ranges from 140 to 160 activities,
and roughly 300 precedence relations.

For each of these two scheduling problems, we generated 500 feasible shunting plans with
a local search algorithm that, starting with an infeasible initial solution, iteratively alters the
current solution to resolve conflicts in the shunting plan. The meta-heuristic used in the local
search framework is simulated annealing, which is a stochastic optimization technique that
accepts with a small probability some deteriorations in the solution quality — the number of
conflicts — due to local modifications. Initial solutions are generated by scheduling the service
activities in a random order and assigning the trains to random parking tracks. Furthermore,
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the objective that is optimized by the local search consists only of the sum of the (weighted)
conflicts, and the search process stops when a feasible shunting plan is found. Due to the
stochastic nature of the solution method, this generation process produces a diverse set of
shunting plans. See [13] for more details of the local search algorithm.

The main components of the uncertainty in the execution of a shunting plan are the arrival
time of trains and the duration of service activities and train movements. Disturbances in
the arrival time of a train are modeled with a uniform distribution with the mean equal to
the scheduled arrival time, and an interval size of 10 minutes. The service activities and
train movements always have a nonnegative duration, and the size of the disruptions are
usually proportional to the duration of the activities. Therefore, we model the uncertainty
in these activities with log-normal distribution with the nominal duration as the mean, and
a standard deviation equal to 0.1 times the nominal duration. Robustness measures RM;
to RM7 use only the nominal durations in their computation, while RMg and RMjy require
the standard deviation of the distributions as well. Although for RMy, the slack sufficiency
measure, we can pick any value between zero and one for the fraction A\, we set it equal to the
standard deviation of the uncertainty of the service and movement activities, i.e., A = 0.1, as
is suggested in [7].

The schedules are then evaluated by each of the surrogate robustness measures listed in
Section 4 to generate their predictions of the robustness of the schedules. The predictions are
compared with the results of a Monte Carlo simulation, which is a technique that repeatedly
draws samples from the distribution of the uncertainty — thus simulating different realizations
of the scheduling problem — to approximate the makespan distribution of the schedule. To
obtain an accurate empirical distribution of the makespan, we collect 20000 samples per
schedule.

Since the objective of the shunting yard planners at the NS is to find feasible shunting
plans that minimize the probability of delayed departures, we use the fraction of samples
in which the schedule realization resulted in the delay as the primary performance metric.
Additionally, we compute the average lateness of the empirical makespan distribution to get
a better understanding of the problem structure.

The correlation between the performance metrics and the robustness measures is in-
vestigated in the following section by computing both the Pearson correlation coefficient
(r), and Spearman’s rank correlation coefficient (p). If the robustness of a schedule can be
approximated by a robustness measure, then a high value of the measure should indicate
a low delayed fraction and average lateness, and we expect that the robustness measure
will have a correlation coefficient close to —1 with either of the performance metrics. A
coefficient of —1 for the Pearson correlation means that there is a perfect linear relation
between the robustness measure and the performance metric, and a robustness measure with
a Spearman correlation of —1 will rank the schedules perfectly according to the performance
metric. The Spearman correlation coefficient is particularly suitable for our experiments,
since the purpose of the robustness measures is to compare schedules efficiently.

In addition to the two robustness performance metrics, we record the time required by
each robustness measure to evaluate the schedules to compare the computational efficiency
of the measures. To obtain reliable estimates of these computation times, we evaluated each
of the 500 schedules 100 times with every robustness measure, and compute the average
computation time per evaluation.
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Figure 1 Scatter plots for the 9 robustness measures, showing the computed value of the measure
(vertical axis) and the fraction of delayed samples (horizontal axis) of the KBH instances.

Table 1 The Spearman (p) and Pearson (r) correlation coefficients, as well as the average
computation time, for the KBH instances. Coefficients close to —1 indicate that the robustness
measure is a good approximation of the schedule robustness.

Fraction delayed

Average Lateness

Computation

p r p r Time (ms)
RM; -0.840 -0.663 -0.840 -0.828 0,01
RM> 0.456 0.357 0.470 0.491 0,02
RMs; -0.955 -0.838 -0.972 -0.990 0,01
RM, 0.457 0.290 0.479 0.507 0,54
RMs -0.298 -0.293 -0.321 -0.326 3,95
RMg -0.964 -0.718 -0.955 -0.889 6,64
RM7; -0.963 -0.719 -0.953 -0.887 0,87
RMg -0.982 -0.969 -0.972 -0.835 0,57
RMy -0.981 -0.971 -0.971 -0.846 0,23
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(vertical axis) and the average lateness over the samples (horizontal axis) of the KBH instances.

Table 2 The Spearman (p) and Pearson (r) correlation coefficients, as well as the average
computation time, for the OZ instances. Coefficients close to —1 indicate that the robustness

measure is a good approximation of the schedule robustness.

Fraction delayed

Average Lateness

Computation

P T p r Time (ms)
RM; -0.933 -0.831 -0.943 -0.962 0,01
RM>  0.544 0.510 0.542 0.606 0,01
RMs3 -0.975 -0.876 -0.980 -0.989 0,01
RM,  0.156 0.132 0.161 0.270 0,53
RMs -0.118 -0.117 -0.127 -0.151 3,81
RMs -0.969 -0.840 -0.976 -0.972 6,28
RM, -0.968 -0.841 -0.975 -0.972 0,83
RMg -0.977 -0.959 -0.971 -0.818 0,60
RMy -0.972 -0.910 -0.960 -0.896 0,25
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6 Empirical results

The relations between the robustness measures and the fraction of samples in which trains
departed with a delay in the simulation study are shown in Figure 1 for the Kleine Binckhorst
test set. Figure 2 shows the results for the average lateness performance metric of same
instances. Tables 1 and 2 list the correlation coefficients of the robustness measures and
the two performance metrics, as well as the average computation time, of the KBH and OZ
instances.

The two robustness measures based on normal approximations, RMg and RMy, appear
to have the strongest rank correlation with both the performance metrics, clearly showing
the advantage of exploiting the additional information of the variance of the uncertainty.
Furthermore, both measures show a high Pearson correlation coefficient with the delayed
fraction metric, as can be seen in Figure 1. If we take the computation time into account
as well, then the approximation of makespan distribution, RMg, would be the preferred
robustness measure in a practical application.

When knowledge of the variance is not available, robustness measures that rely only on
the nominal processing time of activities have to be used. Of those measures, RMj3, RMg
and RM7; are good choices in practice due to their high correlation with both performance
metrics. In particular, the minimum total slack RMs, which is equivalent to the makespan of
a schedule, shows a remarkably strong Spearman correlation with the robustness performance
metrics, and the correlation appears to be linear with the average lateness metric, which
is an alternative formulation of the expected makespan. Given that the makespan can be
computed more efficiently than the normal approximation methods, this robustness measure
will most likely be sufficient to obtain robust solutions to scheduling problems with deadlines.

Contrary to the result of [7], the robustness measure RMy, RM, and RMs, which are
based on maximizing the sum of the free slacks, correlate poorly to either of the performance
metrics. This result is supported by the random scattering of the three measures in Figures 1
and 2. In the case of RMy and RMy, the probability of delays in the schedule actually
increases with the total amount of free slack in the schedule. Although the cause of this
relation remains to be investigated, one possible explanation might be that free slack in these
shunting plans mostly arises when a train is scheduled to wait until a route or a resource
is available for its movement or service activity. Therefore, if a shunting plan contains
many waiting trains, then the infrastructure or resources at the shunting yard are not used
effectively, and the schedule will likely have a large makespan.

7 Conclusion

In this paper, we have studied robustness measures for shunting plans, which are solutions to
the scheduling problem with deadlines that arises at shunting yards. The goal of the research
is to identify measures that can accurately and efficiently estimate the robustness of a shunting
plan, which is the likelihood that all trains depart on time from the shunting yard when
disruptions occur in the operational phase. To achieve this goal, we have proposed new path-
based robustness measures, and compared these, as well as several existing measures, with
the results of a Monte Carlo simulation study on shunting plans for two real-world shunting
problems of the Dutch Railways. We have shown that the new and existing robustness
measures that utilize normally distributed approximations of the activity durations are
strongly correlated with robustness of the schedules. Despite its simplicity, the makespan is
also a good indicator of the robustness for schedules with deadlines. Contrary to earlier results
on schedules without deadlines, the free slack has a poor predictive value of the robustness
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of shunting plans. Further research should be conducted to investigate the differences in

robustness in scheduling problems that are subject to deadlines, and those that require the
minimization of the makespan.
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—— Abstract

Providing attractive and efficient public transport services is of crucial importance due to higher
demands for mobility and the need to reduce air pollution and to save energy. The classical
planning process in public transport tries to achieve a reasonable compromise between service
quality for passengers and operating costs. Service quality mostly considers quantities like average
travel time and number of transfers. Since daily public transport inevitably suffers from delays
caused by random disturbances and disruptions, robustness also plays a crucial role.

While there are recent attempts to achieve delay-resistant timetables, comparably little work
has been done to systematically assess and to compare the robustness of transport plans from a
passenger point of view. We here provide a general and flexible framework for evaluating public
transport plans (lines, timetables, and vehicle schedules) in various ways. It enables planners
to explore several trade-offs between operating costs, service quality (average perceived travel
time of passengers), and robustness against delays. For such an assessment we develop several
passenger-oriented robustness tests which can be instantiated with parameterized delay scenarios.
Important features of our framework include detailed passenger flow models, delay propagation
schemes and disposition strategies, rerouting strategies as well as vehicle capacities.

To demonstrate possible use cases, our framework has been applied to a variety of public
transport plans which have been created for the same given demand for an artificial urban grid
network and to instances for long-distance train networks. As one application we study the
impact of different strategies to improve the robustness of timetables by insertion of supplement
times. We also show that the framework can be used to optimize waiting strategies in delay
management.

© Markus Friedrich, Matthias Miiller-Hannemann, Ralf Riickert, Alexander Schiewe, and
5v Anita Schébel;

licensed under Creative Commons License CC-BY
18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2018).
Editors: Ralf Borndorfer and Sabine Storandt; Article No. 4; pp.4:1-4:17

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:markus.friedrich@isv.uni-stuttgart.de
mailto:muellerh@informatik.uni-halle.de
https://orcid.org/0000-0001-6976-0006
mailto:rueckert@informatik.uni-halle.de
mailto:a.schiewe@math.uni-goettingen.de
mailto:schoebel@math.uni-goettingen.de
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

4:2

Robustness as a Third Dimension for Evaluation

2012 ACM Subject Classification Applied computing — Transportation, Mathematics of com-
puting — Graph algorithms, Theory of computation — Network optimization

Keywords and phrases robustness, timetabling, vehicle schedules, delays
Digital Object Identifier 10.4230/0ASIcs.ATMOS.2018.4

Funding This work has been supported by DFG grants for the research group FOR 2083.

1 Introduction

The design of attractive and efficient public transport services is a challenging problem of
fundamental importance. The overall planning process is complex and involves many stages.
We here focus on the planning stage where the basic infrastructure (stops, available tracks
or roads) is already fixed and planners are interested in the design of a public transport
plan, i. e. the design of a line network with a corresponding timetable and vehicle schedule.
Traditionally, the primary optimization goals for public transport plans are operating costs
on the one side, and service quality criteria like perceived travel time and number of transfers
on the other. Robustness issues addressing the effect of possible disturbances on passengers,
are often not considered at this stage of the planning process.

Goals and contribution. In this paper, we provide a general framework for the analysis
of public transport plans, applicable to transport networks of all scales (city, regional, and
long-distance) and different means of public transport (trains, trams, busses). Based on given
passenger demands, our goal is to analyze robustness indicators which allow for a comparison
of different line plans, timetables and vehicle schedules with respect to their vulnerability to
delays. The results of robustness tests shall provide planners with a detailed account of the
strengths and weaknesses of their public transport plans with respect to three dimensions:
operating costs, service quality, and robustness. We provide an extension of the preliminary
robustness tests introduced in ATMOS 2017 [12]. In that work, we considered three different
types of isolated delay scenarios: delays of individual vehicles, delays caused by slow-downs
on segments, and delays caused by blockings at stops. In this paper, we complement these
robustness tests to cover specific characteristics of a public transport in a more realistic way.
The overall robustness test framework has been designed to model public transport in a fairly
realistic way. Important features and enhancements include the following:

Passengers choose routes according to a generic cost model for perceived travel times.

We consider vehicle schedules in two ways: as base for computing operating costs and for

the propagation of delays over consecutive trips of the same vehicle.

We apply a more realistic model by considering limited vehicle capacities. In our

simulations, passengers are forbidden to enter fully occupied vehicles.

In practice, waiting and disposition strategies are used to reduce passenger delays. Typical

strategies can be studied within our framework.

We compare timetables that have been optimized with different strategies to increase

robustness by inserting time supplements (buffer times).

We apply random delays in simulations which are based on historical observations.

We aim at answering the following questions:
Do we observe a trade-off between robustness and travel times on the basis of timetables
which are optimized with respect to travel time for the respective line plan?
Can we detect shortcomings with respect to robustness of specific transport plans?
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What is the benefit of time supplements? Where should supplements be inserted and how
large should they be to get a reasonable compromise between robustness and travel time?
How different are the outcomes of the robustness tests? If we rank all solutions decreasingly
by their robustness, do we obtain consistent rankings for the proposed robustness tests?

Related work. Parbo et al. [20] provide a recent literature review on passenger perspectives
in railway timetabling. They argue that there is a gap between passengers’ perception of
railway operations and the way timetables are designed. In particular, they observe that
a discrepancy exists between how rail operations are planned with the main focus being
on the trains and how passengers actually perceive and respond to railway performances.
Punctuality of public transport is of high importance for passengers. Therefore, a plenitude
of methods exist to quantify the deviation of the realized schedule from the planned schedule.
Reports often provide the percentage of arrivals on time, where being on time is defined as to
arrive not later than within a given margin (e.g., 5 or 15 minutes for long-distance trains) of
the planned arrival time. In a Dagstuhl seminar in 2016 ( http://www.dagstuhl.de/16171),
Dennis Huisman coined the phrase “passenger punctuality 2.0” for measuring the (weighted)
total passenger delay at the destination for all passengers. The latter definition has been
used by [24, 15, 9, 8, 10] and others. Less sophisticated indicators include the mere number
of delayed departure and arrival events [7]. Alternatively, Acuna-Agost et al. [1] propose to
count every time unit of delay at every planned stop and at the last stop. Robust planning
has been studied intensively, see Lusby et al. [18] for a very recent survey, and Josyula and

Tornquist Krasemann [16] for a review of passenger-oriented railway rescheduling strategies.

In robust timetabling it is desirable from an operational point of view that a timetable can
absorb delays and recover quickly (thus avoiding penalties for the operator). To achieve
this, inserting time supplements may help to reduce the effect of disturbances, but may
have a negative effect on average travel times. Not only the total amount of supplements
times, but also their distribution along the line routes is important. These aspects have
been studied intensively in operations research. For example, Kroon et al. [17] use stochastic
optimization to allocate time supplements to make the timetable maximally robust against

stochastic disturbances. They use the expected weighted delay of the trains as indicator.

To increase delay tolerance, Amberg et al. [2, 3] consider the redistribution and insertion of
supplement times in integrated vehicle and crew scheduling for public bus transport. Using
mixed integer linear programming, Sels et al. [28] improve punctuality for passenger trains in

Belgium by minimizing the total passenger travel time as expected in practice. Besinovi¢ et.

al. [5] optimized the trade-off between travel times and maximal robustness using an integer
linear programming formulation which includes a measure for delay recovery computed by an

integrated delay propagation model. In these works, the line network is usually already fixed.

Robustness of timetables was empirically investigated (with respect to different robustness
concepts) in [14], robustness of lines has been studied in [13] and [27]. A general survey of
line planning in public transport can be found in [25]. A recent integrated approach combines
line planning, timetabling, and vehicle scheduling, but without considering robustness [26].

Overview. In Section 2, we present our algorithmic framework and motivate different
robustness tests for public transport plans. To evaluate them, we explore in Section 3 four
transport plans for German long-distance trains. Moreover, we consider 60 different transport
plans for an artificial grid network. All test instances mainly differ in the strategy by which
supplement times are incorporated into the timetable. Finally, we summarize and conclude
with future work.
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2 Simulation framework and robustness tests

In this section, we first sketch the basics of our simulation framework. Afterwards, we
introduce several robustness tests.

2.1 Simulation framework

Basic definitions. In this paper we use the following definitions to describe the movements
of vehicles and passengers:
Service run: Movement of a vehicle between the start and terminal node of a line route.
A service run has a scheduled arrival and departure time at every stop.
Route: Movement of a passenger between an origin and a destination stop. A route (a.k.a.
itinerary or connection) describes a passenger trip consisting of a sequence of trip legs,
i. e. transfer-free segments of a trip. Every trip leg uses one particular service run and
has a defined departure and arrival time. A route requires transfers between trip legs.
Routing: A process to determine the route of a passenger. Rerouting is necessary, if the
planned route of a passenger fails. This happens if service runs are late or overloaded.

Event-activity network. To represent a public transport timetable with its corresponding
vehicle schedule, we use a so-called event-activity network (EAN) N = (V, A), i.e. a directed
acyclic graph with vertex set V and arc set A. The vertices of the network correspond to
the set of all arrival and departure events of the given timetable. Each event is equipped
with several attributes: its type (arrival or departure), the id of the corresponding service,
the stop, and several timestamps. In this context we distinguish between the planned event
time according to schedule, and the realized time after the event has occurred. In an online
scenario, one also has to consider the estimated event times with respect to the current delay
scenario. Arcs of the network model order relations between events. We distinguish between
different types of arcs (“activities”):

driving arcs, modeling the driving of a specific vehicle from one stop to its very next stop,

dwelling arcs, modeling a vehicle standing at a platform and allowing passengers to enter

or leave it,

transfer arcs, modeling the possibility for passengers to change from one vehicle to another,

and

vehicle circulation arcs, modeling the usage of the same physical vehicle in subsequent

services.
Every arc (activity) has an attribute specifying its minimum duration. For driving arcs
we thereby model the catch-up potential between two stops under optimal conditions. For
dwelling arcs the minimum duration corresponds to the minimum time needed for boarding
and deboarding. For transfer arcs, the minimum duration models the time which a passenger
will need for the transfer. For vehicle circulation arcs, the minimum duration specifies the
time needed between two services.

Disposition policies. For all non-direct travelers, the effect of some delay on their arrival
time at the destination depends on the chosen delay management policy of the responsible
transport operator. Waiting time rules specify how long a vehicle will wait at most for a
delayed feeder service. Such rules may depend on the involved lines, the time when to be
applied, and other criteria. Our basic framework follows in spirit those of PANDA [22], a tool
originally developed for optimized passenger-friendly train disposition. It can be instantiated
in a flexible way with almost arbitrary fixed waiting time strategies, in particular with the
extreme cases of NO-WAIT and ALWAYS-WAIT.
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Delay propagation. Delay scenarios are specified by a set of source delays. Given some
source delay, the delay is propagated from the current event to forthcoming events of the
same service, and possibly to subsequent services of the same vehicle. Depending on the
disposition policy (waiting strategies), it may also influence services provided by other vehicles.
Delay propagation due to capacity restrictions of the infrastructure is not considered. New
timestamps for events are derived through a propagation in breadth-first search order in the
event activity network [19].

Vehicle capacities. An important optional feature of our framework is to incorporate vehicle
capacities into our simulations. Every vehicle has a maximum capacity for transporting
passengers. When capacity limitations are applied, passengers can only board if the given
capacity is not exceeded. Otherwise, they have to wait for the next service or to look for
an alternative route. If too many passengers compete for the remaining capacity, we choose
randomly who can enter the vehicle.

Passenger routing and rerouting. In our framework, we assume that passengers prefer
shortest routes with few transfers. We use a generic cost function to evaluate travel time on
routes which penalizes every transfer by an equivalent of five minutes of extra travel time in
the grid network and ten minutes in the long-distance train network, subsequently referred
to as perceived travel time. In our model passengers behave always rational and have access
to full information about all current delays. That means, passengers can send route queries
to an online server, but it seems reasonable to assume that they check their route only in
certain specific situations:

1. Whenever passengers wait at a stop and the next vehicle they intend to board is late,
they also check for a better connection and take a new route if this choice reduces their
travel time compared to the delayed previous choice.

2. Likewise, if passengers sit in a vehicle and notice that it has caught some delay, they will
actively check the feasibility of the current route and switch to a new route if necessary.

3. While we assume that a central server has full information about current delays, the
passenger load in each vehicle is unknown. Therefore, it may happen that passengers
choose a route which later turns out to be infeasible due to limited capacities. In such
cases, passengers notice that a particular vehicle is full and cannot be used only when
they try to board it. As a consequence, they also have to adapt their route.

Table 1 summarize the different possibilities which require routing requests. Our frame-
work is flexible in the sense that some rerouting actions can be switched off (last column of
Table 1).

In some cases passengers miss the last connection of a day. Such passengers are treated
separately. They either have to use a different means of transportation (for example, a taxi)
or they have to spend a night in a hotel in case of a long-distance journey. We penalize
such cases with a fixed delay of four hours. We assume for simplicity that passengers choose
alternative routes again with the same principle (minimum perceived travel time). Such
routes can efficiently be computed by some variant of Dijkstra’s algorithm, see [4] for a
recent survey on fast approaches. For large networks with many origin-destination pairs, a
sufficiently fast method is needed to achieve reasonable simulation times.

Composition of framework. The framework consists of several modules which can be
instantiated in a flexible way. Figure 1 provides an overview of the overall robustness test
framework, its modules and interfaces.
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Table 1 Classification of cases for passenger rerouting.

. . Point in time for Rerouting
Situation .
next rerouting mandatory?
first vehicle .
. planned time for departure no
on route is late
next vehicle to current time of arrival o
board is late event before transfer
future transfer current time of arrival node
.. . no
is invalid before next transfer
. . current time of arrival node
current transfer invalid yes
before transfer
current capacity while .
.. . current time of departure event | yes
boarding invalid

Robustness Test Framework

Delay propagation
model

Passenger behavior
model

# Vehicle capacities /

}‘ Delay distribution

Disposition strategies

OD-matrix or
passenger-flow
i / Event activity

/ timetable data ’ network ‘

Gobustnessindicatua ( Service quality ) ( Cost indicators )

Figure 1 Modules of the robustness framework.

(empirical or

and rerouting module artificial)

Passenger routing ‘ ’ Robustness test

2.2 Robustness tests

As discussed in the introduction, robustness of transport plans can be measured in many
ways. In the following, we focus on small to moderate delays and take a passenger-oriented
view. That means, we want to quantify the effect of delays and disturbances on passengers.
We propose the following four robustness tests.

Robustness test RT-1: Delays of single service runs (initial vehicle delay). The first
robustness test considers the effect of the delay of a single service run in isolation. We
evaluate many distinct scenarios, one for each service run of the given timetable. Every
service run is delayed by x; minutes at its first stop. Such a delay may occur due to technical
problems of some specific vehicle or due to the late arrival of some feeder vehicle causing a
departing vehicle to wait for changing passengers.

Robustness test RT-2: Slow-down of single network sections (track delay). A second
robustness test models scenarios where some network section invokes a certain delay. For
example, temporary speed restrictions may occur because of construction work or for safety
reasons. Whenever a service run passes this section, it catches a delay of x5 minutes.
Optionally, this test can be refined by either considering bidirectional or unidirectional delays
on the network section.

Robustness test RT-3: Temporary blocking of single stop (stop disruption). We model
the temporary blocking of a whole stop. Such a disturbance has a starting point ts:,,+ and a
duration x3. During the blocking phase, we assume that vehicles may still enter the stop
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but no vehicle can leave it. For simplicity, we further assume that the capacity to hold all
vehicles at the stop is sufficient. For long-term blockings, a more detailed model would be
required. When the blocking phase is over, vehicles restart from this stop one after another
in the order of their scheduled departure with a constant headway of headway minutes.

Robustness test RT-4: Empirical delay distributions. We use data from past observations
for source delay distributions on network sections and start delays of trips. For the initial
departure event of each service and for all intermediate arrival events, we draw random
independent source delays from these distributions. These source delays are then propagated
through the network. Since the resulting delay scenarios are randomly drawn, the tests have
to be repeated many times. From several pretests we learned that 50 repetitions are sufficient
to yield stable means of our test indicators in practice.

3 Experiments

In order to evaluate the proposed robustness tests, we perform a number of experiments. In

this section, we will first describe the chosen test instances and how they have been generated.

Then, we discuss the choice of parameters used within the robustness tests. Then, in the
main part we present the results. As indicators for robustness we use the total delay and
the fraction of affected passengers. By total delay we refer to the sum of delays at their
destinations experienced by all passengers across all separate parts of one robustness test.

3.1 Test data and parameters

In this paper, we use two types of instances: (1) instances based on a simplified version of the
German long-distance (high-speed) train network, and (2) variations of artificial instances on
a grid network as proposed in [11] for studying different planning strategies.

Construction of transport plans. Various public transport plans have been created using
the LinTim-framework [13, 23]. For choosing the lines and their frequencies, a cost-based
approach was chosen, see [25]. This approach starts with a line pool and assigns a frequency
to each line in the pool. Lines with a frequency of zero are not chosen. The objective is to
minimize the costs, i.e., to cover the demand, but using as few lines and as low frequencies
as possible. From the resulting lines, we construct an event-activity network in which the
timetabling step is performed. To this end, every driving, dwelling and transfer activity
receives a minimum duration to which we add supplement times. To increase robustness we
require for specific activities a certain minimum supplement (details below). For computing
the timetable we used the fast MATCH approach introduced in [21]. After rolling out the
periodic timetable for the day, a vehicle schedule is computed using a basic IP-based approach,
see [6], to minimize the overall vehicle scheduling costs.

Long-distance train instances. We study four instances based on a simplified version of the
German long-distance train network containing major stations in Germany and stations of
neighbouring countries (Figure 2). For this network we used an artificial demand containing
380k passengers. This matches the average number of passengers travelling on long-distance
trains in Germany. The four instances are based on different minimum time supplements,
specified for driving sections or for dwelling activities at busy (i.e. highly used) stops:

(A) no minimum supplement times (“no__buffer”)

(B) supplement time is at least 3 minutes at busy stops (“3_min_busy_stops”)

4:7
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Figure 3 Grid instances: Common line network of all instances with line frequencies per hour (in
brackets) and the passengers’ travel demand.

(C) supplement time is at least 5% of driving time (“5_percent_drive buffer”)

(D) supplement time is at least 10% of driving time (“10_percent_ drive_buffer”)
Note that every periodic timetable has some intrinsic slack (due to the periodicity), i.e.,
usually there will be some arcs with a larger slack than the required time supplement.

Grid instances. In [12] many different line plans were tested concerning their robustness
to similar tests. Based on a comparatively robust line plan (Figure 3a) we created 60
schedules that implement different strategies to distribute supplement times to further
improve robustness. Figure 3b shows the travel demand (in morning peak hours) common to
all instances. The demand is defined for every pair of origin and destination and every hour
of the day containing 19500 passengers in total. Each vehicle is assumed to operate with
a capacity of 65 passengers. All instances were created in an effort to minimize perceived
travel time, number of transfers and operating costs.

Recall that we aim at studying to which extent we can increase robustness by inserting
additional time supplements. With this goal in mind, we created ten different classes of
instances described in Table 2. For every class we created six instances with different time
supplements concerning their circulation time supplement (commonly also referred to as
free layover time or supplement on turn-around). Namely, these six instances of each class
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Table 2 Time supplement classes for grid network.

undisturbed
Class | constraints for driving and dwelling times mean travel time
A | no supplements 20.08 min
B | 3 minutes supplements at the 5% most frequently used stops 20.19 min
C | 1 minute supplement for driving sections of central north-south axis 20.31 min
D | 2 minutes supplement for driving sections of central north-south axis 20.54 min
E | 3 minutes supplement for driving sections of central north-south axis 20.76 min
F | 3 minutes supplements at 10% most frequently used stops 20.84 min
G | 3 minutes supplements at 15% most frequently used stops 21.06 min
H | 3 minutes supplements at the 5% most frequently used driving sections 22.61 min
1 3 minutes supplements at the 10% most frequently used driving sections 23.48 min
J | 3 minutes supplements at the 15% most frequently used driving sections 23.85 min

have at least circulation time supplements of 0,1,3,5,7 and 9 minutes. The circulation time
supplement influences the vehicle schedule. The larger this supplement, the more vehicles are
required. The timetable, however, remains unchanged for each instance of the same class. In
Table 2, the instance classes are ordered increasingly with respect of the mean undisturbed
travel times of passengers.

The operating costs of a transport plan are calculated in a simple model as the sum
of two components as follows. For each used vehicle we consider the amount of travelled
distance in kilometers (including empty trips) and apply a cost factor of 1.5€/km. For each
used vehicle, the operating time (regular and empty trips) is multiplied with a cost factor of
50€/h which includes personal costs, depreciation and maintenance of the vehicle.

3.2 Setup of the robustness tests

For each robustness test, a certain range of parameters has to be chosen. We decided to vary
the parameters in the following ranges.

Test RT-1: x; = 1..18 min initial vehicle delay

Test RT-2: 29 = 1..10 min delay for crossing disturbed edge

Test RT-3: x3 = 10..20 min blocking time for disturbed station

Test RT-4 applies an empirical delay distribution. We use observed delay data of German
long-distance trains from a dataset of 2016-2017 containing over 28 million events for
ICE and IC trains. Based on these data, we derive empirical, discrete delay distributions
for two types of source delays. The first type is the starting delay of a vehicle at its
first departure of a trip. The second type of delay is the additional delay of a vehicle on
any driving edge (see Figures 4a and 4b). Both delay distributions are truncated to the
interval between 0 and 10 minutes of delay.

Let us briefly discuss the rationale behind our parameter choices for the experiments
with the grid instances. For the first test RT-1, an initial delay of more than 20 minutes
would result in a simultaneous departure of the delayed vehicle and the next trip of the same
line. Therefore, we choose 18 minutes as maximal delay. For experiments with the second
robustness test RT-2 we choose 10 minutes as a maximum delay for a similar reason. Even
larger delays would significantly decrease the number of service runs per day (unless there
is enough catch-up potential). For experiments with robustness test RT-3 we choose upper
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Figure 4 Empirical delay distributions for long-distance trains.

limits of a disruption to be 20 minutes. If the duration of the disruption is too high and
every vehicle in the network passing a central station is hit by it, the propagation of delays
would be too large and thus making an evaluation of resulting effects on passengers pointless.

3.3 Experiments with long-distance train network

Next we present the results of applying our robustness tests to the four instances of long-
distance train networks. In a first experiment, we are interested in the impact of different
delay parameters in the robustness tests RT-1 to RT-3. For robustness test RT-1, Figure 5
(left) shows the total delay of all passengers depending on different delay parameters x1. The
total delay seems to increase almost linearly with the size of the vehicle delay parameter
for all instances. When we look at the results of RT-1, it seems as if there are clear
differences between the four instances. Indeed, in terms of total delay instance (A) without
time supplements is always worst. The slowest increase rate occurs for instance (B) with
supplement times for busy stations. The ranking of the other instances changes when
increasing the delay parameter. However, it is very important to note that the total delay is
fairly small in absolute terms for all instances. Thus, all instances are quite robust against
delays of single vehicles. Robustness tests RT-2 and RT-3 show a linear dependence on the
delay parameters and yield the same ranking for all tested parameters (Figures 5 and 6). The
relative gap between the instance with no time supplement and the three other instances in
RT-2 (Figure 5, right) is significantly larger than in the two other experiments, and the gap
is increasing with the size of the delay. For the robustness test RT-4 based on empirical delay
distributions, the resulting delays for passenger routes are quite significant. We observe an
average delay of 12 minutes per passenger in our instance (A) having no time supplements,
about 8 minutes for instance (B), about 6 minutes for instance (C) and only 4.5 minutes for
instance (D). Figure 6 (right part) shows that instance (C) has the best tradeoff between
mean delay per passenger and planned travel time.
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Figure 5 Robustness tests RT-1 and RT2 on long-distance train network.
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Disposition strategies. The next experiment compares fixed waiting strategies for the
timetables of the long-distance train network. By a fized waiting time strategy we mean the
following. In case of a delayed feeder train, the departing trains waits for up to x minutes
if this helps to save a planned transfer for at least one passenger. In our experiment, we
compare different strategies with « € {0,1,2,3,4,5} where 2z = 0 means NO-WAIT.
Figure 7 shows several interesting findings:
The mean delay per passenger differs significantly for instances (A)-(D): the smallest
delay occurs for timetable (D) with 10% time supplement on driving sections, second best
is the timetable (C) with 5% time supplement on driving sections, followed by timetable
(B) with a 3-minute-supplement on busy stations. Not surprisingly, the instance (A)
without extra supplement times performs worst.
The best performing fixed waiting strategy depends on the timetable. The larger the
time supplements are, the longer one can afford to wait for delayed trains.
Using a fixed waiting time strategy the mean delay per passenger can be reduced by up
to about 25% in comparison with NO-WAIT strategy.

3.4 Experiments with grid instances

Comparison of supplement time strategies. For each of the robustness tests RT1-RT3, we
obtain a ranking of the 60 grid instances with respect to the observed total delay (with rank
1 being the best). An obvious question is to ask whether we do observe different or consistent
rankings for different parameters and robustness tests. If we compare the rankings of the
robustness shown in Figure 8, one can see that the instances where the time supplements are
placed on the driving arcs have best ranks among all classes independent from the circulation
time supplement. The class of instances where the time supplements are placed at every stop
rank second and the instances where the supplements are placed at the most frequently used
stops rank third. We expect that circulation time supplements become more important for
delay scenarios with larger delay parameters. This is confirmed in Figure 8 where rankings
of instances with 9 minutes of required circulation time supplements clearly outperform
those without such a required supplement. Instances with a circulation time supplement of 9
minutes in most cases improve their ranking with increasing disturbances, while instances
with no circulation time supplement tend to fall off in their ranking.

Trade-off between travel time and robustness. We also have to compare the average time
it takes passengers to reach their destination on an undisturbed day of traffic with the results
from the robustness test. We can see this trade-off for a fixed robustness test and parameter
on Figure 9 (left). Although the instances (H)-(J) have superior robustness, their tradeoff
between robustness and perceived travel-time is worse than the tradeoff between the other
classes of instances. In Figure 9 (right) one can see, that the costs of these solutions are
significantly higher than for instances (A)-(F). These evaluations were made for one specific
set of delay parameters, but tests with other sets of parameters yield similar results.

Choosing turn-around time supplements. One other question we would like to answer is:
How to choose a good turn-around time supplement? And what is the trade-off between the
corresponding increased costs and reduced delays? Figure 9 can provide several insights to this
question for a fixed delay parameter of x5 = 5 minutes in RT-2. For the relatively cheap classes
of schedules (A) to (F), it seems worth to invest 3 to 5 minutes of turn-around supplements.
Schedules within the class (G) to (J), however, do not require such turn-around supplements.
These schedules can already make use of other time supplements. The magnitude of regular
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Figure 9 Instances are denoted by class (A-J) and the required minimum circulation time
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minutes. The y-axis shows the observed delay relative to the instance with maximum delay. Right:
We show the tradeoff between average undisturbed travel time (x-axis) and relative operating costs.

disruption determines the need for a turn-around time supplement. However, for small
to medium disruptions the trade-off between benefit and cost for introduction of time
supplements up to 3 minutes was always good for instances (A) to (F).

Three-dimensional trade-offs. We now face the challenge of evaluating transport plans to
several factors simultaneously and to show their mutual trade-offs. We consider
C — operational cost,
T — average travel time of passengers, and
R - robustness measured as total delay for the passengers in our robustness tests. As
combined robustness measure we take the average performance with respect to robustness
tests RT1-RT3 with the delay parameters set to a medium value (RT-1 with z; = 8
minutes, RT-2 with x5 = 5 minutes and RT-3 with 3 = 15 minutes).
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Figure 10 Comparison of operational cost C, average travel-time T, and the combined robustness
R with respect to robustness tests RT1-RT3 for instances (A)-(J).
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Figure 11 Comparison of robustness test RT-1 with and without vehicle circulations arcs for the
grid instances.

In order to visualize the trade-off between different features we use a special form of a radar
or spider chart (Figure 10). The center point of one triangle corresponds to the worst solution,
while the corners represent the best value of one instance in the respective attribute. In the
following comparison we concentrate on only those instances with the same circulation time
supplement of 9 minutes. Instances (D), (E), (F) have a large triangle area, which can be
interpreted as being good solutions over all criteria. Instance (I), however, seems to be the
worst instance.

Impact of vehicle circulations. In another experiment, we studied how important it is to
consider vehicle circulations. Therefore, we conducted tests with activated and deactivated
vehicle circulation arcs in the EAN. As one example, we show in Figure 11 results of robustness
test RT-1 with the grid instances (using zero minutes of circulation time supplement). The
measured total delay is clearly significantly larger for the EAN with circulation arcs enabled
than for without. It can be larger by up to a factor of 1.5. Moreover, the difference between
the instance classes (A)-(J) increases with the initial delay parameter of this test. We
conclude that vehicle circulation arcs should be considered.
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Figure 12 Experiments with vehicle capacities in the range 55-80.

Impact of vehicle capacities. One important aspect covered by our model is to consider
the impact of vehicle capacities in public transport. As mentioned earlier we assume hard
capacities of at most 65 passengers per vehicle in our simulations. This number was used
in the creation of the instances using LinTim. In the following experiment we study the
dependence of experienced delays subject to different capacities. Would smaller vehicles
or more passengers have an effect on our results? To answer this question we simulated
undisturbed days of traffic with constant demand, and varied the maximum capacity of all
vehicles. We consider the range of vehicle capacities between 55 and 80.

Figure 12 displays the fraction of passengers which for a given vehicle capacity are affected
by congestion in a way that they have to adapt their planned route as they cannot board a
full vehicle. We observe that for all considered timetables our assumed vehicle capacity of 65

passengers per vehicle leads to less than 1% of all passengers being affected by congestion.

Limiting the capacity further or increasing the number of passengers would decrease the
robustness of the instance due to vehicle capacity constraints.

4 Summary

We have presented a general and flexible framework for performing and evaluating robustness
tests with varying parameters. Extending earlier work in [12], our refined model now includes
circulation arcs, vehicle capacities, a generic cost function for choosing passenger routes, and
disposition strategies. Robustness tests RT1-RT3 provide public transport planners with a
tool for comparing timetables without empirical delay data. By varying the delay parameters
of these tests, it is possible to study the dependence of the robustness on the severeness of
the delay scenario. When empirical delay data is available, the robustness test RT-4 provides
realistic expected average delays. Exploring a set of instances applying different strategies
for distributing time supplements, we have been able to analyze strengths and weaknesses of

all instances. An interesting use case of our framework is to optimize waiting time strategies.

In future work we would like to further improve our simulations by including more
information about the network infrastructure and applying sophisticated models for passenger
behaviour in case of disruptions. Another extension may consider soft vehicle capacity
constraints where passenger satisfaction is degraded when vehicles become too crowded.
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—— Abstract

We develop a fast method to compute an optimal robust shortest path in large networks like road
networks, a fundamental problem in traffic and logistics under uncertainty.

In the robust shortest path problem we are given an s-t-graph D(V, A) and for each arc a
nominal length c(a) and a maximal increase d(a) of its length. We consider all scenarios in which
for the increased lengths c(a) 4 d(a) we have d(a) < d(a) and Y aca % < I'. Each path is
measured by the length in its worst-case scenario. A classic result [6] minimizes this path length
by solving (|A|+ 1)-many shortest path problems. Easily, (|A|4 1) can be replaced by |0|, where
© is the set of all different values d(a) and 0. Still, the approach remains impractical for large
graphs.

Using the monotonicity of a part of the objective we devise a Divide and Conquer method
to evaluate significantly fewer values of ©. This methods generalizes to binary linear robust
problems. Specifically for shortest paths we derive a lower bound to speed-up the Divide and
Conquer of ©. The bound is based on carefully using previous shortest path computations. We
combine the approach with non-preprocessing based acceleration techniques for Dijkstra adapted
to the robust case.

In a computational study we document the value of different accelerations tried in the algo-
rithm engineering process. We also give an approximation scheme for the robust shortest path
problem which computes a (14 €)-approximate solution requiring O (log(d/(1+¢))) computations
of the nominal problem where d := max d(A)/ min(d(A) \ {0}).
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1 Introduction

We develop an algorithm for the cost-robust shortest path problem that significantly reduces
the time needed to compute such paths on road networks in practice.

Finding a shortest path from a source s to a sink ¢ in a graph with arc lengths c¢(a) is a
basic algorithmic problem with numerous applications, prominently involving navigation in
road networks. Dijkstra’s algorithm is the backbone of most navigation applications, but
it requires modern acceleration techniques to find within fractions of seconds a route in
a network with several hundred thousands or millions of arcs, e.g., in the European road
network.

? Christoph Hanskngcht, Alexander .Richter, and Sebastian Stiller;
5v icensed under Creative Commons License CC-BY
18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS

2018).
Editors: Ralf Borndorfer and Sabine Storandt; Article No. 5; pp. 5:1-5:21

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:c.hansknecht@tu-braunschweig.de
mailto:a.richter@tu-braunschweig.de
mailto:sebastian.stiller@tu-braunschweig.de
http://dx.doi.org/10.4230/OASIcs.ATMOS.2018.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

5:2

Fast Robust Shortest Path Computations

Unfortunately, input data in real-world applications is usually subject to changes, uncer-
tainty or error. For travel times on roads, i.e., arc lengths in shortest path calculations, the
change of data is often caused by varying traffic. Several approaches have been proposed
to address this problem, including prediction of traffic, leading to time dependent travel
times, as well as stochastic models. In this paper we study the classical cost-robust shortest
path problem introduced by Bertsimas and Sim. Cost-robust optimization is an alternative
approach to handle varying and uncertain data. It minimizes the cost a solution attains in
its specific worst-case scenario out of a given set of scenarios. The advantage of the robust
approach is that — within the limits of the scenario set — the objective is a deterministic,
guaranteed upper bound on the actual travel time.

The scenario set for cost-robustness introduced by Bertsimas and Sim allows each cost
coefficient ¢(a) of a linear cost function to deviate up to a — individual for each variable z, —
maximal deviation d(a). In addition, the number of deviations in a scenario is limited by an
input parameter I'. This is equivalent to limiting by I" the sum of the fractions of maximal
deviations occurring in a scenario. Formally, for a given set of binary variables {z,,a € A}
and vectors ¢ and d in N4 the scenario set for the cost-functions is:

{chJ:OgJ(a)gd(a),VaeA/\Zg(agI‘}. (1)

For this scenario set the cost-robust counterpart of any binary linear program can be solved
by solving at most (|A| + 1)-many identical binary linear programs with different linear cost
functions. More precisely, let © contain 0 and all d(a). Then one has to solve the problem
for each § € © and the cost function I'0 + > , z4(c(a) + max(d(a) — 6,0)). Intuitively, the
0 enumerates over the smallest deviation d(a) occurring in the scenario. This highly cited
result by Bertsimas and Sim applies to cost-robust shortest path, which can thus be found
by solving one standard shortest path problem for each arc in the graph.

For a road network with several hundred thousand or millions of arcs this is impractical
even when using fast shortest path algorithms. Therefore, we devise a method to significantly
reduce the computational effort.

Starting from the Bertsimas and Sim result we use three ways towards practically useful
cost-robust shortest path methods. First we reduce the number of #-values to be examined.
Second, we use fast shortest path methods. Third, we reuse previous computations for
bounds and goal-directed search, further accelerating the shortest path computations.

It has been proposed [21] that a cost-robust binary problem can be solved by I'-many
copies of the nominal problem. Unfortunately, this result contains a subtle error. We give
a counter-example in the appendix which hints to our conviction that essentially |©|-many
shortest path computations are needed in general.

Accelerated shortest path methods differ on whether they use preprocessing of the graph
or not. In this paper, we restrict ourselves to not preprocess the graph. We instead use
goal-directed and bidirectional search and adapt both to the cost-robust setting. The high
deviations in the arc length in the robust case inhibit the use of traditional preprocessing
techniques used for deterministic shortest paths.

1.1 OQur contribution

We give an approximation scheme for general robust combinatorial optimization problems
which can be used to compute a (1 + €)-approximate solution using O(log(d/(1 + €)))
computations of the original problem.
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We introduce a Divide and Conquer approach together with lower bounds for general
robust combinatorial optimization problems which can be used to reduce the number
of computations of the original problem. The reduction of computations is achieved by
carefully reducing the number of #-values to be considered.

When applying this to the robust shortest path problem we additionally accelerate
the computations of individual shortest paths using pruning and a goal-directed search
tailored to the robust shortest path problem.

We give an efficient method to obtain lower bounds for the length of shortest paths with
respect to cy. We use these bounds to speed up the Divide and Conquer approach.

We conduct a computational study showing the effectiveness of our techniques.

1.2 Organization of this paper

We begin by formally introducing the robust shortest path problem in Section 2. We restate
the main theorem by Bertsimas and Sim and devise an approximation scheme for the robust
shortest path problem. In Section 3 we propose a general framework designed to reduce the
number of computations of shortest path computations required to solve a robust shortest
path problem. The framework relies on Theorem 3 which is based on the fact that the costs
of arcs are non-increasing with respect to . We augment this framework by applying shortest
path acceleration techniques to the robust shortest path problem. These techniques are
search pruning (see Section 4) and goal-direction (see Section 5). The Divide and Conquer
framework relies on lower bounds in order to remove dominated values. In Section 6 we devise
a method to derive lower bounds of high quality based on information obtained from previous
shortest path computations. We include these lower bounds into our Divide and Conquer
approach. In order to show the effectiveness of our approach we conduct a computational
experiment in Section 7.

1.3 Related work

Robust optimization evolved as a vivid research field during the past decade and shows a
broad range of applications, for recent surveys we refer to [5] and [13]. The popularity of
robust optimization is in part due to a large area of applications such as network design and
routing problems. Network design problem in particular suffer from uncertainty with respect
to demands and construction costs. These uncertainties can be treated by adding robustness
to the underlying model [3, 20]. Robustness against demand uncertainty is also an important
topic in problems such as vehicle routing [11] and lot sizing [22].

An important question with respect to robust optimization is whether or not tractability
is preserved for the robust counterparts of polynomially solvable problems. Whether or not
this is the case depends on properties of the nominal problem as well as on the employed
robust model. For some choices of models, such as minmax regret models, nominally
tractable problems become NP-hard (see for example [12]). In contrast, in [6] Bertsimas and
Sim introduced a very general robust model which can be applied to many combinatorial
optimization problems while preserving tractability.

The model of Bertsimas and Sim has gained wide acceptance and formed a basis for the
study of robust combinatorial optimization problems, in particular regarding problems related
to the robustness of shortest paths. Biising considered the problem of robustness and robust
recoverability in [8, 7]. In this setting, after a robust scenario has been realized it is still
possible to perform some modifications of the previously chosen path in order to recover from
the incurring robust costs. The authors of [19] considered the robust shortest path problem
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with respect to robust costs corresponding to a product of two factors attained according
to the model of Bertsimas and Sim. In [21], Poss considered combinatorial problems which
can be solved with a dynamic programming approach. The author claimed that the robust
counterparts of such problems can be solved with a dynamic program with a size increased
by at most I'. Unfortunately the proof contains a subtle error and the result does not hold.
We give a counter-example in the appendix.

Since the ordinary shortest path problem has many real-world applications, considerable
effort was put into an accelerated computation. Over the years, different preprocessing
techniques such as arc flags [18] and contraction hierarchies [14] were introduced (see [4]
for a summary). Preprocessing techniques require an initial offline phase which is used to
augment the underlying problem in order to speed up queries in a subsequent online phase.
The techniques perform very well in practice, decreasing query times by several orders of
magnitude. It was shown in [1] that the query time with respect to preprocessing techniques
decreases asymptotically for graphs with low highway dimension, a requirement generally
satisfied for road networks. A related area of research considers large-scale networks which
occur for example in social graphs. Such networks can comprise more than a billion vertices
some of which having extremely large degrees. Conventional preprocessing techniques can’t
be applied in this case. The authors of [9, 16] introduced an inexact preprocessing based on
landmarks which is comparable to the approach in [15] for road networks. In contrast the
authors of [2] considered a preprocessing technique which either answers the query correctly
(in more than 99 % of the queries conducted in their experiments) and fails otherwise.

2  The robust shortest path problem

The robust shortest path problem is defined on a directed graph D = (V, A) with n vertices
and m arcs. Each arc a € A has costs ¢(a) € N and deviations d(a) € N. A parameter I' € N
governs the conservatism in accordance with the model of Bertsimas and Sim. Specifically,
consider a path P given as a sequence of arcs. A worst-case scenario in the scenario set
defined by (1) can be assumed to increase the costs on I of the arcs belonging to P to the
upper bound d, yielding a total cost of

Z c(a) + max Z d(a). (2)

a€P |S\_§F a€sS

The following theorem shows that the robust shortest path problem can be solved in
polynomial time. This theorem and its proof will form the basis of this paper.

» Theorem 1 (Bertsimas and Sim in [6]). The robust shortest path problem can be solved
using at most m + 1 computations of nominal shortest paths.

Proof. We are attempting to find a path minimizing the cost given by (2). We first consider
a fixed path P and rewrite the inner optimization problem in terms of variables denoting
membership in the set S:

0<z(a)<1l VaeP
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This program has the following dual:

min I'0 + Z y(a)
acP
s.t. y(a)+60 >d(a) YaeP (4)

0,y(a) >0 Ya € P

It is easy to see that y(a) can be fixed to max(d(a) — 6,0). As a result, minimizing (2) is
equivalent to finding a path P minimizing

grer%lggo o+ Z ¢(a) + max(d(a) — 6,0) (5)
= acP

The function 6 — max(d(a) — 0, 0) is piecewise linear with a break point at d(a). Therefore
the function

0 — glel% o+ ; ¢(a) + max(d(a) — 6,0) (6)

has break points at d(a) for each a € A. It will therefore attain its minimum either at 0 or at
some d(a). Thus, a robust shortest path can be found with at most m + 1 nominal shortest
path computations according to the costs defined by the corresponding values of 6. |

Even though the shortest path problem is easily solvable in practice, the overhead of solving
m + 1 variants renders the robust counterpart intractable in practice. Observe that the
number of shortest path computations required in total does not actually depend on the
number of arcs but rather on the cardinality of the set

O :={0}U{d(a) | a € A}. (7)

This suggests an approximation scheme based on solving an instance with a lower number of
deviations:

» Theorem 2. Let d := max d(A)/ min(d(A) \ {0}), € > 0. A (1 + €)-approzimate solution
of the robust shortest path problem can be computed with O(log(d/(1 + €))) computations of
the nominal shortest path problem.

Proof. Let d : M + Rxq be the values of d rounded up to the next power of (1 + ¢):
d(a) == (1 + e)llosr @) vy g ¢ A, (8)

There are only O(log(d/(1 + ¢))) different values for 6 with respect to d, which implies that
we have to solve only that many instances of the original problem in order to obtain a robust
optimum with respect to d. Let P be a solution of the robust problem with respect to the
deviations d. Let S C P be the set of at most I' entries causing the robust cost contribution
to P with respect to d. In the worst case, every d(a) increases by a factor of less than (1 + ¢)
from d to d. Thus, the robust cost contribution with respect to d is again caused by the
entries in S, increasing the cost of P by less than (1 + €). <

» Remark.

1. The approximation guarantee is tight: Consider an instance of the robust shortest path
problem given by a digraph consisting of two parallel arcs with pairs of costs and deviations
of (¢/2,(1+¢€)k +¢/2) and (0, (1+¢€)k*1), a parameter of k € N-g and T’ = 1. The robust
shortest path has a cost of € + (1 + €)*, whereas a robust shortest path for the rounded
instance costs (1 + €)¥*! in the original instance. As k — 0o a ratio of 1 + € is achieved.
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(0,4) ” (0,4)
\ (0,2)

(2,5)

Figure 1 An example for robust shortest paths not forming a tree. Pairs of numbers on arcs
represent costs and deviations.

2. Bertsimas and Sim show that robust minimum cost network flow problems can be
approximated to a factor of (1 + €) in O(log(mf/e)), where § = max,ca uqd, for
capacities u. However, robust network flows are not generally integral for integral
capacities. Specifically, a robust network flow of one unit no longer corresponds to a path.

3. Recall that the shortest paths problem exhibits an optimal substructure: All shortest
paths leaving a common source vertex s can be chosen to form a tree in the underlying
graph. This does no longer hold for robust shortest paths, as shown in Figure 1: For
I" = 2 the unique robust shortest path from s to ¢ leads past vertex u, causing a cost of 8.
The robust shortest (s,v) path consists solely of the lower arc.

3 Divide and Conquer

In this section we will describe the main idea used to reduce the number of §-values which

have to be considered to compute a robust shortest path based on Theorem 1. We define

co(a) == c(a) + max(d(a) — 6,0) and observe that this term is non-increasing in 6. The same

holds for the cost of a path P defined as cg(P) =} . p co(a). For a fixed 6 we let

cP@) == min cp(P). 9

(0) = ,min _ eo(P) 9)

Since ¢°P*(f) is the minimum of non-increasing functions, it is non-increasing as well. In

order to find a robust shortest path we will minimize the function

CT(6) =T0 + °P*(9). (10)

If CT(6) were a convex function in 6, we could use binary search or similar techniques in
order to reduce the number of required shortest path computations. Unfortunately C* (6)
is not generally convex. We can however derive the following theorem from the fact that
c°PY(#) is non-increasing:

» Theorem 3. Let Opnin < Omax be in O and 6 € © N (Oimin, Omax)-

1. If c®PY(Omin) = P (Omax), then it holds that CT(0) > C' (Opmayx)-

2. Let 6* be in ©. IfT0 + P (Onax) > C’g*, then the minimum over CY is not attained in
[97 emax) .

Proof. For the first part note that since c°P! is non-increasing we have that c°P*(6) =

P (Opnin) = °P*(Omax ). The result then follows from the definition of CT. Turning to the
second part, we let 0’ € [0, 01ax). We know that CT (') > '8 + c°P(Opay) > CT(0*) and
therefore CT' () is at least CT (6*). <

Both cases of Theorem 3 enable us to discard an interval of possible values for 6. We
therefore use a Divide and Conquer approach as a general framework to speed up computations.
The approach works as follows: We maintain a set of intervals of values in © together with
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Algorithm 1: A Divide and Conquer algorithm for the robust shortest path problem.

Algorithm DivIDEANDCONQUER
Input: Digraph D, costs ¢, deviations d, parameter I, vertices s,

Output: A robust shortest (s,t)-path
S+ {6}
0* + The value of min(0), max(©) with lower C*
while S # () do
Lnin < The interval I from S with the lowest min(C" (min(7)), C* (max(1)))
if I, can be discarded then
L continue

Inin < Remove dominated values from I,

(Tiow Inign) < Intervals such that liow U Inigh = Imin; [fiow N Inigh| = 1, and
[ ow| — gl < 1

Omedian < The median value, single element in Jiow N Ihigh

0* < The value of 8%, Opedian With lower CT

S+ SuU {I]ow7 Ihigh}

return The path corresponding to 6*

the currently best (w.r.t. C) known value §*. We also ensure that the shortest paths with
respect to the minimum / maximum of each interval are computed before the interval is
considered. At each step of the algorithm we select the interval which has the lowest value of
C"' at an endpoint. We first use Theorem 3 to try to discard the interval. If the interval can’t
be discarded we proceed to remove any dominated values. We split the resulting interval
into two halves which share exactly one value in ©, compute the shortest path with respect
to that value and decide whether or not to replace #*. We then add the two intervals to the
set and continue. The details are outlined in Algorithm 1.

Note also that Theorems 3 and 2 (and therefore also Algorithm 1) work for arbitrary
robust combinatorial optimization problems.

4 Search pruning

Dijkstra’s algorithm explores a graph by labeling and settling vertices. A vertex is labeled
when it is first explored. As soon as a shortest path connecting the vertex is known, the
vertex is declared to be settled. Since we compute shortest (s,t)-paths for multiple cost
functions cg, we reuse information we have gathered from previous computations in order to
decrease the number of vertices which have to be labeled / settled in subsequent iterations of
Dijkstra’s algorithm. The following theorem gives a sufficient condition for excluding vertices
during searches:

» Theorem 4. Let v be a vertex and 6 < 0" where 6,6' € ©. Let Py, Py be (s,v)-paths that
are optimal with respect to cy respectively cg:. Let

0+ co(Py) > F9/+Cg/(P9/). (11)
Then a robust shortest (s,t)-path is either attained for a value # 0 or it does not contain v.

Proof. The proof may be found in Appendix A. <
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We can make the most of this theorem when we evaluate the values of # in a decreasing
fashion. During these computations we maintain a map C : V — R>p. Think of C (v) as a
known upper bound on the cost of a robust (s,v)-path which we initialize to C = co. When
we settle a vertex u # t during the search for a shortest path with respect to ¢y we investigate
each outgoing arc (u,v) € A. The path leading to u together with (u,v) forms a path P
leading to v yielding a value T'0 + cg(P). If T'9 4 co(P) > C(v) we do not have to label v.
Otherwise we label v and decrease C(v) to T'0 + co(P).

5 Goal-direction

A common extension of Dijkstra’s algorithm is known as goal-directed search, introduced
in [17]. It is based on a potential 7 : V' — R>( such that the corresponding reduced costs
™ (u,v) = c(u,v) — m(u) + w(v) are non-negative for each (u,v) € A. It is possible to derive
a potential while searching for a shortest path. Consider a search from ¢ in the direction of s.
The resulting (partial) shortest-path tree T'= (V(T), A(T)) is rooted at t and contains all
settled vertices. For each v € V(T') we obtain a path P(v,t) leading from v to the ¢. Let
¢max(T) be the maximum value of ¢(P(v,t)) for v € V(T'). It is then easy to see that the
following function is a potential:

r0) {C(P(U,t)) for v € V(T) 12

Cmax(T)  otherwise.

In the robust setting, a potential with respect to cg is also a potential for cos with 6’ < 6
(since cgr > cg). We use this observation in the following way: We first compute the potential
(12) with respect to Omax while finding the corresponding path using a backward search. In
subsequent forward searches with respect to smaller values in © we use this potential. If
the costs with respect to € and 6,,,« coincide, the arcs in the backward tree will have zero
reduced cost. If all other arcs have nonzero reduced cost, then only the arcs in the shortest
paths will have to be settled, greatly decreasing computation time. Intuitively, if 8 and 6,.x
are close, then the potential computed from 6, is an excellent choice for the search with
respect to 6.

6 Divide and Conquer for robust shortest paths

We refine Algorithm 1 by exploiting structural properties of the robust shortest path problem.
We present our results for a unidirectional search here. In the appendix we show an extension
to goal-directed and bidirectional searches in a more general setting.

Consider some interval I := [Opin, Omax] Which appears in the course of Algorithm 1. As
an invariant we have completed the Dijkstra search for ,;,. We want to reuse labeling
information of this search to derive lower bounds on C’go for some 0y € I. If such a lower
bound exceeds the best known upper bound for C*, we disregard 6. In order to accelerate
the computation of a robust shortest path, the computation of the lower bound for C’go must
be significantly faster than a computation of the path for cq,.

We argue about a hypothetical (s,t)-path P and its cost cy(P). The cost is non-increasing
and piecewise linear as a function in 6. It has breakpoints whenever 6 increases beyond d(a)
for some a € P. From this point on the cost ¢,(#) stays constant at c¢(a). We know the
values P! (Opnin) and c®P*(6) for some values ' > Opax. Whatever the value of cp, (P), the
cost of P cannot decrease below these amounts when evaluated at the respective values (see
Figure 2).
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Cg(P) A

COpt (emax) T ~—-- =

COpt (emin) T ~—--

Gmin 90 amax 0
Figure 2 The cost cg(P) of some P. The cost at §p has to be consistent with ¢ (Gumin), c°pt(9max).
We go on to formulate a mixed integer program (shown in (13)) to choose an arc set

minimizing cp,. To make the formulation as strong as possible we choose the smallest possible
set of arcs to include into this program: Let M C A be the set of scanned arcs, i.e. arcs

having a tail which has been settled throughout the search for the shortest (s, t)-path for €,,,.
C M be the restriction of M to active arcs i.e. arcs with d(a) > Omin.

Furthermore, let My
It turns out to be sufficient to consider the arcs in My,_, to obtain a lower bound on ¢, .

min —

We introduce a binary variable x, for each a € A denoting whether or not a is contained
in P. The variable y models a lower bound on the cost cg, . (P) of P yielding (13b). The

negative slope of ¢p(P) at the point €, corresponds to the number of active arcs in P.

In the worst case we have co(P) =y — > cr,  Ta(min(d(a),0) — Omin) by subtracting

from y the contribution of the active arcs. In this case the objective (13a) equals ¢y (P).

However, not all active arcs from My
of co/(P) might violate our observations of shortest path lengths for ¢°P*(#"). Thus we must
raise the variable y to have cg:(P) > ¢°P*(¢’). Using the expression for cs(P) from above we
obtain (13c) and altogether the following theorem:

can occur in P because for such a path P the value

min

» Theorem 5. Given an arc set M of scanned arcs during a completed unidirectional search
for cp,,., then a lower bound Og, < c°P*(0y) is given by

Op, = min y — Zﬂca - (min(d(a), 8p) — Omin) (13a)
a€Mp_ ..
st. y > P (Omin) (13b)
y— Z 7, - (min(d(a), ') — Omin) > c°P4(0)
a€Mo_; (13C)
V¢ > 6 with known cP*(¢')
y >0,z € {0, 1} omn (13d)

The theorem can in fact be further generalized to the bidirectional, goal-directed case. The
generalized Theorem 9 and its proof may be found in Appendix A.

The following theorem states that bounds Oy obtained for multiple # by Theorem 5 are
nonincreasing in 6. This observation can reduce the number of necessary bound computations

throughout our algorithm. A proof follows from the more general Theorem 10 in Appendix A.

» Theorem 6. For each Opin < 0y < 01 we have c°P (Opin) > O, > Op, > c°PH(O') for all
0’ that were considered in (13c) for both Og, and Oy, .

It is too time-consuming to solve (13) in order to compute a single bound. We therefore
consider a relaxation of the program which can be solved a lot faster while still providing
sufficient bounds. Observe that the program has the structure of a multi-dimensional
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knapsack problem once we fix some value of y. We first relax the integrality of x towards
z € [0,1]Momin and consider a single value 6’ = 0.y for (13c). What remains is a fractional
one-dimensional knapsack problem where arcs correspond to knapsack items:

max Z Zq(min(d(a),00) — Omin) — y
aEMgmin
s.t. copt emin <
(Omin) <y 14)
> ze(min(d(a), max) — Omin) < Y — P (Brnax)
aekjemin
x € [0, 1]M9min

Suppose we fix y = ¢°?*(O;n). The optimum of the relaxation can be obtained by selecting
items greedily w.r.t. their gain, i.e. gain(a) := (min(d(a),8p) —Omin)/(min(d(a), Omax) — Omin)-
This leaves exactly one split item a with fractional value for x,. We argue that increasing y
further is not beneficial: An increase of y by € will increase the capacity of the knapsack by
€ and thereby lead to increased z, in a greedy optimum. The objective function changes
by e(gain(a) — 1) which is nonpositive because gain(a) < 1 for all arcs. It is therefore never
advisable to increase y and we only have to sort the arcs in My, w.r.t. their gain in order
solve problem (14) and obtain a bound Og,. Observe that

(90 - omin)/(emax - omin) 1f d(a) Z Gmax
gain(a’) = (00 - omin)/(d(a) - emin) if d(a) < emax and d(a) Z 00 (15)
(d(a) — Omin)/(d(a) — Omin) =1 if d(a) < Omax and d(a) < 6

Thus the value gain(a) decreases as d(a) increases and it is sufficient to sort the arcs in
My, .. once according to d(a) in order to compute Oy, for each 8y € O N (Omin, Omax). We
incorporate this relaxed knapsack bound (RKB) into the Divide and Conquer approach and
apply the generalization of Theorem 5 to goal-directed and bidirectional search.

» Remark (Preprocessing). As mentioned above, preprocessing techniques for the ordinary
shortest path problem have been extensively studied in the past. Specifically, successful
attempts have been made [10] to adapt preprocessing techniques to problems with time-
dependent cost functions. Therefore it seems obvious to investigate these techniques with
respect to applicability to the robust shortest path problem.

Existing preprocessing techniques operating on problems with changing cost functions
generally rely on the ability to provide reasonable bounds on the values attained by the cost
functions in order to prune the search space efficiently. Unfortunately, the costs of arcs vary
widely between ¢ and ¢ + d in the robust shortest path problem, making it impossible to
derive meaningful bounds. As a result we were not able to find preprocessing techniques
leading to a significant decrease in query time.

7 Computational experiments

7.1 Experimental network

Due to the long history of experimental evaluations of shortest path algorithms, instances of
road networks are ready at hand. However, these networks generally lack data necessary to
determine deviation values. Furthermore, shortest path experimentation is conducted on
continent-sized networks which are as of yet too large to allow for the computation of robust
shortest paths.
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We therefore chose to construct a road network ourselves. To this end, we considered a
subnetwork of the German road network given by the region of Lower Saxony!. We performed
the following preprocessing steps in order to obtain a network suitable for routing purposes:
1. We filtered the file to only include ways with highway tags, excluding certain highway

types such as tracks / service road etc. This process yielded 1.93M nodes and 0.36M

ways.

2. We constructed a graph by replacing ways with sequences of arcs, adjusting for one-way
restrictions. The resulting graph has 1.93M vertices and 2.17M arcs.

3. We removed directed and undirected chains from the graph. Chains occur frequently as
they are used to model the curvature of roads. Therefore the resulting graph shrinks to
0.37M vertices and 0.50M arcs.

4. Since queries for robust paths in an insufficiently connected graph skew computational
results we extracted the largest (in terms of the number of vertices) strongly connected
component which has 0.15M vertices and 0.23M arcs.

We defined the values of ¢ and d on the network as follows: The nominal length c is

defined as the time needed to traverse a segment in accordance with the legal speed limit.

To define d we assumed that a certain number of segments is affected by situations such as
traffic accidents or road works. If a segment «a is affected, the traveling speed drops from
the legal speed limit to a value of at most 10 km/h. The value d is chosen such that ¢+ d
corresponds to the travel time according to a speed of at most 10 km/h (where d(a) = 0 if
the speed limit of a is already at most 10 km/h). To avoid numerical problems we rounded
both ¢ and d to the nearest second, resulting in |©| = 1,043 different deviation values®. We
further assumed that at most I' = 5 road segments suffer from additional congestion.

7.2 Experimental methodology

In order to judge the performance of a shortest path algorithm, the query time of the

algorithm is compared to that of Dijkstra’s algorithm without any preprocessing applied.

This approach raises the following issue: The time to answer a query for a shortest (s, t)-path
using Dijkstra’s algorithm is highly dependent on the choice of the vertices s and t: If the
distance of s and t w.r.t. ¢ is small compared to the diameter of D, then the search explores
only a small part of D and finishes quickly. If on the other hand s and ¢ are far apart, then
almost the entire graph is explored before a path is found.

This issue can be addressed with the notion of a Dijkstra rank: A search from a fixed

source s using Dijkstra’s algorithm will settle the vertices in D in the order® s = vy, va, ..., .

We define the Dijkstra rank of v; with respect to s as the value j. Note that the distance
from s to v; is non-decreasing and the query time using Dijkstra’s algorithm is increasing in
the Dijkstra rank. For a pair (s,t) of vertices we define the Dijkstra rank of (s,t) by the
Dijkstra rank of ¢ with respect to s.

In order to evaluate the performance of different robust shortest path algorithms we

recorded the query time for randomly chosen pairs of vertices with similar Dijkstra ranks.

More specifically, we selected pairs of vertices with ranks in [l - n,u - n) where [ and u form
intervals of size of 10 % of |V]|.

! The initial data was obtained from the OpenStreetMap project,

see https://www.openstreetmap.org.
2 The accompanying data may be found at 10.6084/m9.figshare.c.4193588.
3 We assume that ties are broken consistently.
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For each interval we measured the average query time for a sample of 500 random pairs
of vertices in order to reduce measurement errors. All query times were obtained using an
implementation in the C++ programming language compiled using the GNU C++ compiler
with the optimizing option “-O2”. All measurements were taken on an Intel Core i7-965
processor clocked at 3.2 GHz. We implemented Dijkstra’s algorithm using binary heaps.
Depending on the Dijkstra rank of a pair of vertices, the running time of a shortest path
query ranges up to ~ 35 ms.

7.3 Results regarding search accelerations

As a first step we evaluated the previously introduced approaches to accelerate individual
searches without using the Divide and Conquer approach. The results are depicted in
Figure 3a. We remark the following:

1. In order to achieve the best results regarding the goal-directed search we occasionally
recompute the potential from scratch. Specifically, we keep track of how many vertices
are settled during the recomputation of the potential as well as how many vertices are
settled during each subsequent goal-directed search. If the latter amount is within a
fraction of « of the former, we reuse the potential in the search to be carried out in the
next iteration. Otherwise, we mark the potential to be recomputed during the next query.
We found experimentally that a factor of a = 0.15 yields the best results.

2. Regarding the bidirectional goal-directed search: We found that the best choice for the
combined potential is the average of the two potentials computed during the forward
and backward search respectively. Additionally, we found that in order to obtain more
accurate potentials it is worth the effort to compute the entire search tree from s to ¢ in
the forward search and vice versa in the backward search.

3. Both improvements over Dijkstra’s algorithm, the pruning and the goal-directed search,
can be combined to speed up the computation even more.

Our findings show that while all approaches lead to reduced computation time, the goal-
directed approaches works best, beating a plain evaluation using Dijkstra’s algorithm by
almost an order of magnitude.

7.4 Results regarding the Divide and Conquer approach

We proceed to consider the impact of the Divide and Conquer approach on the query time
(results are shown in Figure 3b). Combining Dijkstra’s algorithm with the generic Divide
and Conquer approach (Algorithm 1) seems to have little effect on its own. Using the relaxed
knapsack bound introduced in Subsection 6 however shows significant improvements. The
combination of relaxed knapsack bounds and goal-direction yields the best results with a
speedup factor ranging from 34 to 45 with an average of 38. A major contribution to this
speed up is due to the fact that the Divide and Conquer approach cuts down on the required
number of shortest path computations (see Figure 4): Dijkstra’s algorithm alone requires
|©]-many shortest path computations regardless of the distance between source and target.
The value is more than halved using the Divide and Conquer approach, it is cut down to less
than ten percent if the relaxed knapsack bound is incorporated.
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8 Conclusion

We have presented an approximation scheme and a Divide and Conquer approach for general
robust combinatorial optimization problems. The approximation scheme can be used to
trade solution quality and running time. We introduced multiple techniques to accelerate
the computation of robust shortest paths without abandoning solution quality ranging from
the acceleration of individual queries to augmenting the Divide and Conquer approach by
adding efficiently computable lower bounds of high quality. We evaluated our approaches by
performing computational experiments on a digraph corresponding to a reasonable large road
network. We found that a combination of the acceleration techniques decreased computation
time by a factor of up to 45.

As the result for only I' many shortest path computations does not hold and similar
results seem unattainable in light of the counter-example, we give a currently best possible
practical approach to solve the fundamental problem of shortest path in the classic Bertsimas
Sim model for robustness.
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Proofs

We begin by giving the proof of Theorem 4, which was stated as follows:

» Theorem 4. Let v be a vertex and 6 < 0" where 6,0' € ©. Let Py, Py be (s,v)-paths that
are optimal with respect to cy respectively co. Let

F9+CG(PQ) >F91+Cg/(P9/). (].].)

Then a robust shortest (s,t)-path is either attained for a value # 6 or it does not contain v.
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Proof. Assume for a contradiction a shortest robust (s,t)-path P is attained for 6 and P
contains v. P consists of two subpaths, i.e. Py and a path P, leading from v to t. We let P’
be the (s, t)-path which consists of Py and P,. We have:

CF(G) =T6+ cy(FPy) + co(Py)
>T6 + Cg/(Pg/) + Cg(Pv)
> T0 + co (Pyr) + cor (Py)
> T + co (P

(16)

We have used here that ¢y > ¢y which follows from 6 < #’. This inequality implies that P’
is a robust (s,t)-path which is shorter than P which is clearly a contradiction. |

We go on to present a more general variant of Theorem 5: We assume that we used a
version of Dijkstra’s algorithm with respect to reduced costs ¢j obtained from a potential
7 computed while conducting a search for ¢°P*(6,,;,). During the execution of the search we
settled vertices and obtained information regarding the shortest paths for the part of the
graph we have explored: In a most general situation, this information is accessible via a fixed
arc set M C A and various subsets B C M together with bounds A(B) fulfilling

A(B) <cg  (PNM)VPeP(st) with B C P. (17)
We give some examples for this abstract setting, but first observe that M should contain
the arc set corresponding to some s — ¢ cut to yield a bound A(f) > 0. Otherwise the
right hand side of the inequality (17) is equal to 0 for some path P with PN M = (. In
case that a shortest path search completes, it determines c2P*(¢) as the length of a shortest
(s,t)-path for ¢j  , which leads to c®P"(0min) = c**(t) + 7(s) — m(t). This allows us to infer
A(0) = ®P*(Opin) — 7(s) + w(t) for the set M containing all scanned arcs. As before we let
My,... € M be the restriction to arcs a with d(a) > Omin.

min

» Example 7. If we stop unidirectional search prematurely we can use for M the set of
arcs, that have a head with settled label and A(f)) can be chosen as the last settled distance
label from the search. This situation applies to Theorem 5. Additionally, for some arc
a=(u,v) € My,
a lower bound on cj (PN M) for any (s,t)-path P that contains a.

we can infer A({a}) as the label that v received from u via a because it is

» Example 8. If some bidirectional Dijkstra search has been stopped prematurely, then let
M?# be the set of arcs that have their head settled by the search from s, and let M* contain
the arcs with their tail settled by the search from ¢. We can use M = M*® U M? and for
A(0) the sum of both lastly settled distance labels in the searches from s and ¢. For some
B = {es,e1} es € M®, es € MY, es # e; we get for A(B) the sum of the head label from e,
the tail label from e;, and both arc costs c¢j_ (es) + ¢ (e;). Similar bounds for singleton

min

B can be derived as well.

The idea of Theorem 9 is to compute a bound for c°*(6y) using the abstract bound information.
In a suitable program we optimize over the arcs in My_. that an imaginary path P could
contain to minimize cg,(P). The program also makes use of values ¢°?*(#') known from
previous computations if 6/ > 6.

min

» Theorem 9. Given a potential 7, an arc set M, and a collection B C 2Mowmin | such that
bounds A(B) fulfilling (17) can be obtained for each B in B, then for each 6y > Omin, such
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that  is also feasible for cq,, we obtain a bound Op, < c°P*(0y) where Oy, is an optimum of

min Yy — Z Zq(min(d(a),bp) — Omin) (18a)
aeMenllI)
s.t. AB) +7(s) —7(t) [[ zo < v VBeB  (18b)
beB
Y — Z 2o (min(d(a),d) — Omin) > cPH(0")
aEMgmin
VO 1 0y < 0 with c°P'(0) known (18¢)
variables: y >0, z € {0,1}Momin (18d)

Proof. Let P be any (s,t)-path. We show that cg, (P) > O, holds: Let us consider the arc
sets P/, P C P given by P’ :== PN M and P = P\ P.

We claim that setting x, := 1 if and only if « € P’ N My,_. together with y := ¢,
co, (P) constitutes a feasible solution to (18) and the cost of this solution is then a lower
bound on ¢y, (P). To get the lower bound we can first write cg,(P’) in terms of cq_,, (P’):

min

min

coo(P') = c(P') + > max{d(a) — 00,0} + cg,,,, (P) = Co,, (P")
a€P’:d(a)>0min

P+ Z max{d(a) — 0o,0} + co,,, (P’)
a€P’:d(a)>0min

_ C(P/) -+ Z max{d(a) — Omin, 0}

a€P’:d(a)>0min (19)

Ouin (P) + Z (max{d(a) — 09,0} — max{d(a) — Omin, 0})
a€P’:d(a)>0min

= Cp (P') = Y _(min(d(a),0p) — Omin)

a€P’:d(a)>0min

Ormin Zma (min(d(a), 0p) — Omin)

aEI\/Ig

min

Here, the last equality holds, because by its definition P’ is fully contained in M and all of
its arcs with d(a) > Omin are contained in My, . . With this expression we obtain

COU(P) = 090(13) +090(Pl)

= cp, (P) + co,,,, (P Zza min(d(a),00) — Omin)
a€My
(20)
=Yy- Z zq(min(d(a), o) — Omin)
a€Mp_ ;.
> Oy,

where the last inequality only holds if z,y is a feasible solution of (18). To prove this
feasibility, we first consider (18b) and let B € B. If B ¢ PN My, ., then the corresponding
Inequality (18b) has its left hand side equal to zero by the definition of x and is feasible. So
let B C PN M,,,, which means that [[,.zx, = 1. Feasibility of (18b) in this case then

min

(P)+
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follows from the feasibility of 7 for cg,, we first have:

Y = Copn (P') + co,(P)
= (@) +m(u) —w(v)) + > (cf, (a) + 7(u) — 7(v))

a=(u,v)EP’ a=(u,v)EP

(21)
> (@) +7(w) = 7)) + Y (n(uw) —7(v))
a=(u,v)EP’ a=(u,v)EP
— () + 7(5) — ()

Here the last equality follows from resolving the telescope sum for the (s,t)-path P = P’ U P.
Since B € PN M we can use the bound ¢ (P') = cj (PN M) > A(B) which now
implies (18b).

To show that Inequalities (18c) are satisfied, let 8" > 6y and °P*(#') be known. We
know that c°P*(6’) < ¢y (P) because P is an (s,t)-path. So we are interested in bounding

cor (P) = cg/(P) + co/(P') against the left hand side of (18c). Because 6’ > 0y, holds, we
can do a similar calculation as before to express cg (P’) in terms of cg,,, (P'):

co(P') = €g,,, (P') = Y _ za(min(d(a),0') — Ornin)

aeMemin
This implies
) < e (P)
= co/(P) + co/(P')
= co(P) + co,,, (P) — Z Zq(min(d(a), 0") — Omin)

a€My

i (22)
< oy (P) + € (P) = Y wa(min(d(a), ') — Opmin)
(LGMgmin
=y— Y wa(min(d(a),0') — Ounin)
aeMemin
where the last inequality holds because 6 > 6 implies cg (P) < cg, (P). <

» Theorem 10. For each Onin < 0y < 61 such that 7 is also feasible for cg, and cy, we have
P (Omin) = Op, > Og, > c°PH (@) for all ' that were considered in (18¢) for both Op, and
Oy, .

Proof. We consider the definitions of (18) for 6y and 6; respectively. Observe that the sets
May,...., the bounds A(B) as well as constraints (18b) and (18c) are independent of ¢y and
thus both programs for Og, and Op, optimize over the same set of feasible solutions. The
only difference is the objective function, where for some a € My,_,  its coefficient for 61 is less
or equal than its coefficient for 6. This implies Oy, > Op, but also c°P*(fin) > Op,: Note
that Oy, is well-defined and contains only variable y because Mp_, = 0. An optimum is
given by y = ¢°P*(Oin) and thus P (Opin) > Oy, > Op, because 0y > O, Finally, it

min —

holds for some ¢’ which was considered in (18b), that

Op, =y — Z Zq(min(d(a),61) — Omin)

a€My

min

min

>y — Z 24 (min(d(a),0") — Omin)

acEMy

min

> c°PH(G). <
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(1,3) (1,2)
(1.5,1)

Figure 5 A counter-example to a claim regarding robust combinatorial optimization. Numbers
on arcs represent costs and deviations.

B A counter-example to a claim regarding robust combinatorial
optimization

We consider a claim made in [21] regarding a type of combinatorial optimization problems
solvable by a dynamic programming (DP) algorithm. A combinatorial optimization problem
is solvable by a DP algorithm if it can be expressed using a set of functional equations. More
specifically, it is assumed that there is a set of states denoted by S with a subset O of initial
states and a final state N. The optimal cost of state s € S is given by F(s), the set of
variables set to 1 in state s is denoted by ¢(s). The state p(s,7) € S is set to be the previous
state of s where s is obtained from p(s,¢) by fixing variable ¢ € ¢(s) to 1. The relationship
between the states is assumed to be governed by the following set of functional equations:

F(s) = min;eq){ F(p(s,7)) +¢i}, s€S\O (23)

F(s) =0, s€0

In order to solve this problem the functional equation is applied to determine the optimal
cost of new states until the optimal cost of the final state is determined. The question is
whether the robust counterpart of such a problem can be solved in a similar manner using
functional equations.

» Theorem 11 (Theorem 6 in the original article). Consider an instance of a combinatorial
optimization problem which can be solved in O(7) for some 7 : N — N by using the functional
equations (23). Then, its robust version can be solved in O(I'1) using the following functional
equations:

F(s,a) = min;eqs){max(F(p(s,1), ) + c;, F(p(s, i), — 1) +¢; + d;)},

s€S\NO0,1<a<T
F(s,0) = min;eqs){F (p(s,1),0) +ci}, s€S\O
F(s,a) =0, 0<a<T,se0O

(24)

As an example of such a problem the authors consider the shortest path in a directed graph
with conservative arc costs. It is well known that in this case the Bellman-Ford algorithm
finds a shortest path by solving a dynamic program. As a counter-example to the claim
stated above, we consider the graph in Figure 5 together with a parameter of I' = 1. It should
be apparent, that the robust shortest path in this case is the lower path with a total cost
of 4.5. In order to compute the shortest path we start evaluating the functional equations
for a = 0. In this the coefficients coincide with those of the original problem. The graph
corresponding to these functional equations is shown in Figure 6. Unfortunately, the path
resulting from applying the functional equations is the upper path which has total costs of 5.
The failure is due to the fact that the equations do not take into account that the first arc
on the upper path has a high value of d.
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Fast Robust Shortest Path Computations

Figure 6 A depiction of the functional equations applied to the robust shortest path problem in
Figure 5.

C Figures and tables

The following table contains the average query time plotted in Figures 3a and 3b. Regarding
the distribution of the values: As is usually the case when it comes to the evaluation of
running times, there is a certain variance in the recorded data. Figure 7 shows the distribution
of running times for vertices with large Dijkstra ranks. Note that while the minimum /
maximum query times are spread far apart, many of the individual values fall into much
smaller intervals around the average. This behavior is consistent throughout the data and
justifies the comparison based on the average query time.
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Table 1 Average query time in seconds for various algorithms with respect to different ranks

Dijkstra rank over n

Algorithm 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Dijkstra’s algorithm 0.00 12,51 15.08 15.74 20.95 22.94 30.43 35.63 34.85 35.62
Simple pruning 3.87 7.59 10.37 14.69 21.40 24.25 27.93 28.56 27.21 29.27
Bidirectional, pruning 0.00 13.02 18.84 18.96 19.90 19.99 24.29 27.23 29.20 27.95
Goal-directed 0.00 280 3.30 3.96 5.17 548 6.35 729 7.29 7.66
Bidirectional, goal-directed 0.01 893 10.50 11.06 15.06 15.61 20.06 23.14 22.55 26.38
Goal-directed, pruning 0.00 577 426 4.28 6.35 687 7.08 6.55 649 7.14
Dijkstra’s algorithm, interval 0.00 7.23 11.37 14.98 21.89 25.31 33.38 40.12 44.22 40.64
Goal-directed, interval 0.00 7.21 11.01 13.19 18.92 20.04 22.36 26.31 25.29 24.94
Dijkstra’s algorithm, RKB 0.01 098 1.83 256 345 3.64 388 4.53 6.62 5.53
Bidirectional, RKB 0.00 154 195 1.98 207 198 197 217 234 237
Goal-directed, RKB 0.02 037 040 044 058 0.67 074 0.80 0.82 0.99

Dijkstra’s algorithm }—‘:I:l—{
Simple pruning }—‘:Ij }
Bidirectional, pruning } Elj }
Goal-directed }—D:’—{
Bidirectional, goal-directed }—‘:lj }
Goal-directed, pruning }—D]—{
Dijkstra’s algorithm, interval } :l: }
Goal-directed, interval }—‘:I:l—{
Dijkstra’s algorithm, RKB }—m—{

Bidirectional, RKB FHJ—{

Goal-directed, RKB

=

10 20 30 40 50 60 70 80
Query time (s)

Figure 7 Distribution of the recorded running times. The boxes show minimum, first quartile,
average, third quartile, and maximum for a rank of 0.9 - n.
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—— Abstract

This paper proposes an algorithm that decomposes the Periodic Event Scheduling Problem
(PESP) into trees that can efficiently be solved. By identifying at an early stage which par-
tial solutions can lead to a feasible solution, the decomposed components can be integrated back
while maintaining feasibility if possible. If not, the modifications required to regain feasibility

can be found efficiently. These techniques integrate dynamic programming into standard search
methods.

The performance of these heuristics are very satisfying, as the problem using publicly available
benchmarks can be solved within a reasonable amount of time, in an alternative way than the
currently accepted leading-edge techniques. Furthermore, these heuristics do not necessarily rely
on linearity of the objective function, which facilitates the research of timetabling under nonlinear
circumstances.
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1 Introduction

In many countries with an advanced transport network, the planning process of the transport
provider is an extremely complicated and time-consuming procedure. Due to the applications
of the algorithms proposed in this paper, we focus mainly on the train timetabling process,
although the algorithms presented in this paper are not restricted to this setting. From a
high-level point of view, the planning process for train networks, can be divided into the
following tasks [1]:

1. Network planning: constructing the infrastructure of the railway network.

2. Line planning: determining the routes (and frequencies) of trains within the railway
network.

3. Train timetable generation: determining the arrival and departure times of trains, includ-
ing their routes through the infrastructure/stations.

4. Rolling stock and personnel planning: assigning the available rolling stock and personnel
to the trips.

5. Real time traffic: ensuring the realization of the planning by solving irregularities (e.g.,
delays) on an operational level.

This paper focuses on a part of the third step within this hierarchy, the design of train

timetables (excluding routing through the infrastructure). Due to the numerous constraints

that are involved in a timetable, it is practically undesirable or even impossible to construct a

feasible timetable manually, which motivates the research for automated timetable generation.
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A considerable part of this research is based on the Periodic Event Scheduling Problem
(PESP), as initially proposed in [16]. One of the earlier and more influential solution methods
in a railway timetabling context is found in [15], which briefly will be described further.
Moreover, an overview of the operations research of railway timetabling can be found in [3],
while an overview for the PESP in particular (including extensions) can be found in [5].

Overview

As opposed to the modern solution methods that are based on mathematical programming,
this research combines dynamic programming based methods with heuristics to find feasible
and optimal solutions within the PESP framework. In Section 2, the PESP model will be
discussed, alongside its complexity and differences between the model within this paper and
the models in the literature.

Section 4 considers a special case of the PESP which can be solved efficiently using
dynamic programming, even when a (possibly non-linear) optimization function is used
(the standard PESP is a feasibility problem). This dynamic provides the required insights
to understand several heuristics that will be proposed in Section 5, whose performance is
described in the experimental results in Section 6 and the method is concluded in Section 7.
Sections 1 to 3 contains work that for a large part already has been discussed and/or noted
in the current literature, while Sections 4 until 7 concern own work.

2 Problem description

2.1 The Periodic Event Scheduling Problem

The Periodic Event Scheduling Problem (PESP) aims to schedule a number of events within
a cyclic framework of length T, i.e., all events occur exactly once every cycle. In a railway
timetabling context, examples of such events can be the departure, pass-through or arrival of
a train at a station.

Define V' as the set of events that need to be scheduled, and decision variable v; € [0,T")
as the time at which event i takes place for all ¢ € V. Within the standard PESP model
with constraint set A, every constraint a € A may only induce a lower and upper bound,
respectively L, and U,, on the scheduled time difference of two events i and j. Therefore,
constraints can be formulated as:

(vj —v;) mod T € [Lq, U] (1)

for every (i,j) € A. Thus, every constraint can be specified by two events and two constants.
For example, if 7 and j represent the departure of two different trains from the track, safety
regulations could require the trains to depart at least 3 minutes after each other. In this case,
L, =3 and U, = 57 to prevent trains (from possibly different cycles) to coincide, assuming
T = 60.

A PESP instance can be transformed and visualized in a directed graph D = (V, A), where
n = |V| is the number of vertices/variables, and m = | A| is the number of arcs/constraints.
For every constraint a, an arc ¢ — j is introduced and labeled with [L,, U,]. For convenience,
vertices and variables are used as synonyms throughout this paper. The same holds for
constraints and arcs. See Figure 1 for a simple example with only three constraints.
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Figure 1 Example of a PESP instance visualized in a graph (T = 60).

As a notational remark: x mod T is abbreviated to ()7, where x can be a number, but
also an interval (that will be scaled within the interval [0,7"). Since the graph formulation is
slightly preferred in the literature, this paper adopts the same notation, which allows the
problem to be formally defined as follows.

PERIODIC EVENT SCHEDULING PROBLEM (PESP)

Given: A directed graph D = (V, A), a feasible interval [Lq,U,] for every a = (i,5) € A
and a cycle time T

Goal:  Find a v € [0,T)" such that v; — v; € [La,Ua] for every a = (4,5) € A, or state
infeasibility.

Trivially, it is assumed that L, < U, as the instance is infeasible otherwise, and that
U, — L, < T, since the constraint would be redundant otherwise. Moreover, all L, and
U, are assumed to be integer, which is practically justified because timetables are usually
published in minutes (integers). Using this assumption, [10] proved that every feasible
PESP-instance then has an integer solution.

Note that by the cyclicity of PESP, the orientation of the arcs can be reversed by
“mirroring” the corresponding interval with 7'/2 as the center, i.e., constraints of the type in
Equation 1 is equivalent to

(Uj — Ui)T S [T — Ua,T — La] . (2)

2.2 Complexity of PESP

For T = 2, PESP can be solved in polynomial time, for which an algorithm is given
in [13]. However, the PESP is strongly NP-complete for T > 3. At least three proofs
are currently known, being reductions from the LINEAR ORDERING PROBLEM [6], the

HAMILTONIAN CYCLE PROBLEM [8] and the K-VERTEX COLORABILITY PROBLEM [10].

Hence, no (pseudo)polynomial time algorithm can be found to solve the PESP, unless P =
NP.

2.3 Handling the modulo operator

Even though the modulo operator follows naturally from the cyclicity of the model, most
standard mathematical optimization techniques (such as Branch and Bound) are unable to
handle this operator. For this reason, constraints of the type as in Equation 1 are alternatively
in the literature formulated as:

Lagvj_”i+T'pij§Ua (3)

at the cost of one extra integer variable p;; per constraint (in similar other models, p;; can
also be a binary variable). Here, p;; € Z indicates the cycle difference between ¢ and j. In
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these constraints, p;; is also referred to as the modulo parameter of the constraint. The
model now has become suitable for Mixed Integer Linear Programming (MIP) methods.

Using this integer variable, one can implicitly define non-convex intervals, even though
the interval [L,, U,] for every constraint a is convex. This follows from the possibility in the
model to allow multiple constraints between a pair of events, and because L, and U, do not
necessarily need to be in [0,7). For instance, the two constraints:

(Uj — 'Ui)T € [0,45] and (Uj — Ui)T € [30, 72}

result in a feasible difference interval between v; and v; of [0,12] U [30, 45], by the cyclicity of
the model. Even though this model is used widely in the literature, this is not the model to
be used in this paper, but will be referred to further in this paper for comparison.

2.4 Cost optimization

Although PESP is originally formulated as a feasibility problem, an objective function can be
added without complications. One of the easiest, but also practically most useful, objective
functions can be deduced from the constraints. In many cases, the lower bound L, of the
constraint is an optimal value to obtain from an efficiency perspective.

For example, if arc a = (4,7) corresponds to the constraint that the changeover time
between two trains (that correspond to variables ¢ and j) should lie in [Lq, U,], the waiting
time is minimized if v; —v; = L,. If w, denotes the cost of every time unit that all travellers
need to wait longer at the changeover corresponding to the constraint, one could add the
term:

2q(v) = ((Uj —v;)7 — La) (4)

to an objective function. The objective function, referred to as the weighted slack function,
can then be expressed as z(v) = D, c 4 Wa - Za (V).

We focus in this paper on this weighted slack function. Other objective functions are
discussed in [13] and [7], such as minimization of passenger travel time, required rolling stock,
or the number of violated constraints (in case of an infeasible instance), while maximization
functions include the profit or robustness.

2.5 Related work

This paper focuses for a large part on heuristics, but will use efficient combinatorial optimiz-
ation algorithms to solve subproblems if possible. The PESP was originally formulated in
[16], where directly several algorithms were proposed. These are primarily searching methods
where the modulo parameters are solved first. To this aim, a minimum spanning tree is
initially constructed, where the interval cardinalities are used as weights on the arc. The
idea is that a solution is found that satisfied the n — 1 of the tightest (and therefore expected
to be the hardest to fulfill) constraints beforehand, but similar techniques might lead to a
brute-force algorithm in an early stage.

Exact methods

A large part of the methods in the current literature focus on the PESP as a feasibility
problem, rather than an optimization problem. One of the first solution methods in a
railway timetabling context has been implemented by [15] by solving the Mixed Integer
Linear Program (MILP) using constraints of the type as in Equation 3. With the aid of the
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commercial optimization software package CPLEX, solutions for practical railway timetabling
instances can be found with the aid of searching algorithms and adjustable parameters within
the software package. Other papers that focus on solving the MILP can be found in [11], [12],
[7] and [13], using cutting planes and similar other mathematical optimization techniques.
A relevant approach, but different perspective is presented in [14], where feasible railway
timetables can be found with minimal deviations from the original constraints in case no
feasible timetable exists.

Heuristics

A few heuristics already exist that output only very few violated constraints for real-world
instances, for example in [4], where cuts and/or local improvements are used to improve the
original heuristic from [16]. Although the performance may be relatively good in practice,
many of the currently known heuristics struggle with the task of restoring an infeasible
solution, without using brute-force early.

The work presented in this paper is similar to the modulo simplex algorithm, firstly
presented in [9], and improved by [2], by exploiting advanced methods in the modulo simplex
tableau and larger classes of cuts to escape from local optima. This method currently
performs best on many benchmarks that are also used for this paper. Still, more ways to
backtrack a solution and escape local optima are searched for in the current literature. This
paper aspires to contribute to this concept from a difference perspective.

3 State- and search space reduction techniques

From a practical point of view, it may be computationally very beneficial to reduce the state-
and search space without excluding feasible solutions. This usually can be achieved fairly
simple indeed, especially within a railway timetabling context. In the following paragraphs,
several state- and search space reduction techniques are discussed, of which most are also
(partially) noted in [7]. Even though most of these methods are straightforward, it is useful
to mention these methods (informally) to provide an intuition for the complexity of the
reduced problem.

3.1 Intersecting feasible intervals

As also noted in Subsection 2.3, multiple constraints between a pair of variables i and j can be
constructed to implicitly define a constraint with a non-convex feasible interval. When using
MILP methods, it is essential that a single constraint induces a convex interval. However, the
heuristics explained in this paper are not MILP methods, and are not affected by whether
these intervals are convex or not. This allows to combine all constraints between a specific
pair of variables, into one constraint. To elaborate the possibilities, the following simple
definition is introduced for notational convenience.

» Definition 1. The feasible interval A;; between variables ¢ and j are the values v; — v;
such that all constraints a € A with ¢ € a and j € a are satisfied.

Initializing A;; can simply be done as follows. For every constraint, scale the feasible interval
[La,U,] within the cycle [0,T) and call this new interval A,. For example, [30, 75] will be
scaled to [0, 15] U [30, 59]. Then, let A;; = N(; j)eaQa. Note that A;; instead of A, now may
be used as notation, since there exists only one constraint including both variables ¢ and j.
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For this reason, constraints are referred to either (4,7, A;;) or (7,7, As). In Subsection 2.1
was argued that the orientation of arcs can simply be redirected, which implies that at most
1

5n(n — 1) constraints have to be considered.

3.2 Eliminating variables

Variables can be eliminated in two ways.

For every constraint (i, 7, A;;) where |A;;| = 1, either variable v; or v; does not have to
be considered for optimization, as its value completely depends on the other variable.
Let d;; be the only value in A;;. Assuming v; will be deleted, all constraints of the type
(4, k,Aji) can be replaced by (i, k, (Ajx + 6;5) mod T'). A similar shift can be done for
constraints of the type (k, 7, Aji). After solving the model without x;, its value can easily
be determined by v; = (v; + d;;) mod T

If a variable v; is contained in only one constraint (i, 7, A;;), the constraint always can
be satisfied. After all, consider the problem without v;. Once v; is determined, one can
afterwards choose |A;;| different values for v; such that the constraint is satisfied.

3.3 Propagating constraints

Constraint propagation refers to the method of tightening the feasible interval between
variable ¢ and j, A;;, by combining a series of Ay, ..., Ay, where i >k — ... > k' — j is
a path from ¢ to j in the PESP graph.

Reconsider the example in Figure 1. There is one direct constraint which initializes Aj3
to [20, 35]. However, using constraints (1,2, [10,20]) and (2, 3, [15,20]), it is easy to see this
sequence induces a constraint between variable 1 and 3 with feasible interval:

[10,20] @ [15, 20] = [25, 40]

Hence, A;3 can be reduced to [20,35] N [25,40] = [25, 35]. To describe the method informally,
let P C A be a path from ¢ to j. To reduce the feasible interval A;;, consider all possible
paths P between ¢ and j and verify whether ®,cpA, reduces the feasible interval A;;.
Indeed, the number of possible paths between i and j may be exponential, but a precise
description on how to propagate constraints efficiently can be found in [7].

4  The Restricted Periodic Event Scheduling Problem

This section defines and analyzes a special case of the PESP, the so-called Restricted Periodic
Event Scheduling Problem (RPESP), which provides the basis for heuristic methods for the
PESP in this paper. Even though these heuristics will be explained in detail in the next
section, it is helpful to provide a motivation for the upcoming heuristics in a later section, in
order to understand the intuition behind the problem considered in this section.

4.1 Motivation

The heuristics in this paper are based on the concept of decomposing a PESP instance into
components that each contain a subset of the variables (and therefore also a subset of the
constraints), which separately will be solved. Trees are large components, for which will be
shown that these can be efficiently solved, and even optimized. To clarify the concept, a few
definitions will be introduced first.
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Figure 2 Example of restrictions while integrating components.

» Definition 2. A PESP instance C, = (V,,, 4,) is a component of PESP instance D = (V, A)
iV, CVand A, = {(i,j) € A:i,j € V, ).

It is important to see that whenever a problem D = (V, A) is decomposed into k disjoint
subproblems C1, ..., Cy with U_,V, = V| that A is not necessarily equal to UX_, A,. After
all, constraints/arcs that connect two components in the original instance D are not included
in Al,...,Ak.

» Definition 3. The bridging constraints B,, between two components Cy = (V,, 4,) and
Cy = (Vy, Ay) with respect to D = (V, A) are all constraints (¢, j) € A for which ¢ € V, and
JjEeV,.

With this definition, note that A = (UF_; A,) U (Uk_, UE__ .| B,,). In particular, given two
components (or subproblems) C, and C, w.r.t. D, the combined subproblem is denoted by
Copy =V, UV, A, UA, U By,).

When two components are solved separately, it is likely that the combined solution does not
correspond to a feasible solution with respect to D, because the bridging constraints cannot
be satisfied. If so, one prefers to make as few adjustments as possible to the components,
such that two solutions can be integrated. This idea provides the basis for the heuristics in
this paper, and also motivates the consideration of trees because of the following concept.

Suppose that the solution values of the variables in a component C, are fixed, and

one wants to integrate this component, with another component, a tree C, = (V,,, 4,).

The solution within C, might induce several constraints on the values in C, (the bridging
constraints). Basically, these bridging constraints induce restrictions on the exact values of
the variables in Cy, alongside the constraints that already were in Cy. See Figure 2 for an
example.

The graph contains 8 variables and 9 constraints. An already solved component C,, is
the subgraph containing variables v; to v4. The dashed lines correspond to the bridging
constraints, which are not considered when the components are solved individually.

Based on these values, an algorithm needs to determine whether the fixed solution
(v1,...,v4) w.r.t. C, can be extended to a feasible solution (v1,...,vs) w.r.t. D. To do so,

the algorithm needs to solve Cy based on the values vy, ...,vs and the bridging constraints.
In this case, one can easily see that at least vs € [15,20] N [12,17] = [15,17] and vg € [26, 27].

These constraints need to be taken as a starting point for solving Cy, in order to determine

whether a solution for the entire problem can be found with the starting solution for C,,.

Such constraints are referred to as exact variable restrictions X; for variable v;. This concept
motivates the subproblem defined in the following subsection.
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4.2 Problem description

» Lemma 4. A PESP instance for which the underlying graph D = (V, A) is a tree can be
solved in linear time.

To see the correctness of this lemma, take an arbitrary vertex i € V and fix v; with any value
(e.g., v; = 0). The possible values from the adjacent variables can be determined directly
from the constraints corresponding to the arc. This procedure can be repeated for unfixed
variables adjacent to fixed variables, until all variable values are fixed.

As argued in the motivation, so-called variable restrictions will be added to the problem,
meaning that every variable v; might be bound to a specific set of values X;. This notation
allows the RPESP to become formulated as follows.

RESTRICTED PERIODIC EVENT SCHEDULING PROBLEM (RPESP)

Given: A directed, cycle-free graph D = (V, A), a cycle time T, a feasible interval A;; C
{0,...,T — 1} for all (,j) € A and variable restrictions X; C {0,...,T — 1} for all
ieV.

Goal:  Find awv € [0,T)" such v; —v; € Ay; for all (¢,5) € Aand v; € X; foralli € V, or
state infeasibility.

Note that due to the addition of variable restrictions, the problem has become non-trivial
and a different algorithm is required.

4.3 Optimizing RPESP
» Theorem 5. RPESP can be optimized in O(nT?) time.

Theorem 5 is fundamental for the heuristic in this paper, and will be proven using dynamic
programming. To this aim, label a vertex of choice as the root r of the tree, and define d(7)
as the minimum number of arcs required from vertex ¢ to reach the root r. A vertex j is a
child of ¢ if d(j) — d(i) = 1 and there exists an arc between ¢ and j. Similarly, 7 is the parent
of j, which is denoted by i | j.

The dynamic program starts with the vertices at the bottom of the tree (i.e., the vertices
without children), and proceeds in a bottom-up fashion by considering in every iteration a
vertex of which all children have been considered earlier. Because the graph contains no
cycles, such a vertex always exists.

At vertex i, the dynamic program enumerates all feasible solution values for v; € X;
and determines for which of these values a feasible solution exists, considering only the
constraints and variables in the subtree rooted at 4 (i.e., a subproblem is considered). Using
the mentioned model and definitions, the dynamic program will use the following function:

) minimum cost of a feasible solution of the subproblem rooted at
fl,z) = vertex ¢, while x € X; and v; =z

with initialization for the leaves as:
fi,z) = _
oo otherwise
In other words, the subproblem rooted at vertex 7 using x; = t is infeasible if and only if
f(i,x) = co. The recursive identity that solves the dynamic program is:

f(l,l’) = (Z‘L) vje{(g.l.i.I,lel} (f(]a Uj) + Zij(viavj))
jiilg
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for x; € X. This correctness of the recursion of the dynamic program can be inductively
argued as follows. One wants to know the optimal solution value of the subproblem rooted
at ¢, when v; is fixed at x. Prior to this stage, the dynamic program has determined
for all children j of ¢ determined what the optimal value f(j,v;), for every possible value
v; =0,...,T — 1 of the individual subproblems rooted at its children j. Whenever vertex
i is added to the subproblem, more terms in the objective function need to be considered.
However, by the assumption at the beginning of this section, only terms to the objective
function are added between i and its children (i.e., the terms z;;(v;,v;) for all j). Since a
fixed v; = x is considered for evaluating f(7,2) and the subproblems rooted at the children
of 7 can be optimized independently of each other, one can simply iterate in linear time what
the optimal value for v; is, including also the terms in z;;(v;, v;)

The running time of this dynamic program is as follows. Let ¢; be the number of children
of vertex i. Note that ), ,, ¢; = n — 1, because every vertex, apart from the root, is
a child of exactly one other vertex. Computing one value for f(i,z) takes O(c;W) time,
because for every child j = 1,...,n; of i, for exactly |A;;| = O(W) values need to be
verified whether there exists a v; such that (v; —x) mod T € A;;. Since f(i,x) needs to
be calculated for at most W values for every vertex ¢ € V, the running time concludes to
O(W-Y,cv W) =0((X ey ¢i) W?) = O(nW?). This proves Theorem 5.

Finally note that the dynamic program can be terminated earlier if it detects for a vertex
¢ that there exists no f(i,x) < oo, as this implies there is no solution for the subproblem
rooted at 4 (and therefore the RPESP instance).

5 Tree decomposition heuristics

Decomposing the PESP into trees is the key technique for heuristics used in this paper to
solve PESP instances. The intuition behind this method has been explained in Subsection 4.1:
the problem is decomposed in subproblems which are solved independently, and integrated
afterwards. If integration is not possible, it is desirable to make a few changes as possible to
enable integration. This is elaborated in the next subsections.

5.1 Decomposing a PESP graph into trees

An important part of the algorithm concerns the decomposing of the original graph D into
trees. Clearly, this can be done in numerous ways for realistic instances. For this research,
a simple greedy heuristic has been applied based on the feasible intervals A;;. To describe
the method informally, a component C' will be initialized by adding the two vertices ¢ and j
that correspond to the arc with minimal |A;;|. Subsequently, a vertex is added to C if its
addition will not lead to a cycle within the component.

The resulting tree graphs, which by definition are components, are denoted as C1, ..., Ck.
As mentioned earlier, the original graph D is not equal to N¥_ C;, since the bridging
constraints are not considered. Indeed, when all trees are optimized individually, the
bottleneck lies in satisfying the bridging constraints.

5.2 Requirements for partial solutions

» Remark. Given two components C, and Cy, w.r.t. D, a given solution v* can be extended
to a feasible solution for the (merged) component C,, = (V, UV,, A, U A, U By,) if
and only if there exists a solution to the RPESP instance C, with variable restrictions
X; = N(i,j)eALeV, ((v; ® A,’j) mod T), for all v; € Vy.
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To emphasize the difference, v* is a partial solution to D, but a complete solution to C,.
It is of interest whether v* can be extended to a feasible solution for the merged subproblem
Cyy, including the bridging constraints.

To see the correctness of Remark 2, note that by definition, all constraints in A, are
satisfied by definition of v*. Moreover, by construction of X;, the bridging constraints B,
are fulfilled if the variable restrictions are satisfied. Hence, the remaining constraints A, are
fulfilled if there exists a solution to the RPESP instance using these variable restrictions.

Note that the dynamic program explained in Subsection 4.3 can answer the question
whether a partial solution v* can be extended to a feasible solution for C,,. Moreover,
optimization of an objective can be taken into account to retrieve the best solution for Cy,
given v*. This justifies more formally the consideration of the RPESP. Indeed, the next step
is to integrate a feasible solution for Cy, to a solution for a larger component.

L ..., v* such that v®* UvY is a

Using this concept, one needs to find partial solutions v
feasible solution for Cyy forallz =1,...,kand y=x +1,... k.

Clearly, a prerequisite for every partial solution v* w.r.t. D is that it can be extended to
a solution for the merged subproblem C,, for all y = 1,...,k. If not, then v* clearly cannot
be extended to a solution for the original problem D = (V, A). One can verify in O(knT?)
time whether a solution can be extended to a solution for merged subproblems, using the

dynamic program.

5.3 Identifying non-extendable partial solutions

The idea will firstly be illustrated informally by reconsidering the example in Figure 2.
Given the solution v! = (0,12,14,18) for C;, the bridging constraints impose variable
restrictions X5 = {15,16,17} and X = {26,27}. It turns out that, given the solution v*
for C1, that C5 in fact has become infeasible. After all, the constraint as; demands that
vy € {15,...,27}, while ag; demands that vy € {28,29, 30}, making the feasible region for v;
equal to {15,...,27} N {28,30} = 0.

Even though the full PESP-instance is feasible, e.g., v = (0, 10, 10, 15, 15, 23, 25, 35), no
feasible solution v? for Cy can be found given the variable restrictions imposed by solution
v!. This clearly means that a different solution for C; needs to be found. While attempting
to solve Cy, the dynamic program will note this as well, since f(7,z) will be FALSE for
all . Informally, the dynamic program needs to send feedback to C7 on how to find a
feasible solution (that can be extended to a feasible solution for C5), by imposing additional
constraints on finding a solution for v! for Cy.

In this specific example, note that a change has to be made in the subset (vi,ve,v4);
a feasible value for vz can instantly be found due to the tree structure. Thus, one needs
to analyze the possible values for (vi,vs,v4) and identify which combinations of values can
never lead to a feasible solution for C. This procedure will be formalized in the next section.

5.4 Fixing non-extendable partial solutions

» Definition 6. A subset ban (Y;,...,Y};), with ¥; C {0,..., T —1} for j =4,...,k,isa
set of variable values for which any combination (v;,...,vx) € Y;, ..., Yx can never extend to
feasible solution.

Subset bans basically form an administration of combinations of variables from which the
dynamic program already concluded that this leads to guaranteed infeasibility. In this way,
an earlier found partial solution for a component C, can never be considered again, if it has
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Table 1 Results of the tree decomposition for the PESP using the PESLIib datasets.

Dataset | Variables | Constraints | Trees | Sol. value | Best value | % Difference
R1L1 3664 6385 5 36.1 31.1 +16.0%
R1L2 3668 6543 4 38.3 31.7 +20.8%
R1L3 4184 7031 5 35.0 30.5 +14.8%
R1L4 4760 8528 4 31.9 27.9 +14.3%
R2L1 4156 7361 4 48.8 42.5 +14.8%
R2L2 4204 7563 5 50.1 43.1 +16.2%
R2L3 5048 8286 4 42.9 39.9 +7.5%
R2L4 7660 13173 4 40.1 33.0 +21.5%
R3L1 4516 9145 5 55.4 454 +22.0%
R3L2 4452 9251 5 54.7 46.2 +18.4%
R3L3 5724 11169 5 56.5 43.0 +31.4%
R3L4 8180 15657 5 N/A 35.5 N/A
R4L1 4932 10262 5 61.2 51.7 +18.3%
R4L2 5048 10735 5 64.6 52.0 +24.4%
R4L3 6368 13238 6 N/A 45.8 N/A
R4L4 8384 17754 4 N/A 38.8 N/A

been proven to be non-extendable to another component. When finding a feasible solution
from the dynamic program described in 5, one can easily determine a value that fulfills these
bans by picking a value x for a variable ¢ for which f(i,z) < co and v; ¢ X;.

To complete the heuristic, suppose v* can be extended to a solution v* U v¥ for Cy,, and
v® can also be extended to a solution v* U v* for Cj ., where v¥ and v* can be deduced
from the dynamic programs. Having found these solutions, this does not necessarily mean
that v¥ U v? is a solution for C, (the constraints in B,, have not been considered). This
directly implies that v* Uv¥ Uv? is not necessarily a solution to Cyy.. This is indeed where
exponentiality theoretically can occur. Once multiple trees are integrated in a component
C, but are not able to be integrated with another tree C,, there may be subset bans in C
spanning multiple trees. Note that this problem occurs more if the trees are connected to
each other, which occurs less in a railway timetabling framework due the railway network
(variables/trains in a specific part of the country are less related to variables/trains at the
far other end of the country).

6 Experimental results

For this research, the 16 railway timetabling instances from publicly available PESP bench-
mark library PESPlib! have been used. The upper bound for the running time has been set
to 1 hour, though if a possible solution can be found, it is usually done within minutes. The
remainder of the running time is spent on optimizing the objective function. The results are
summarized in Table 1.

All experiments were conducted on a PC with an AMD Ryzen 5 1600 Six-Core Processor
(3.20 GHz) with 16 GB of RAM. The source code was written in Java. To clarify Table 1:

! http://num.math.uni-goettingen.de/ m.goerigk/pesplib/
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Trees is the number of trees are the minimum number of trees to which the variables

can be decomposed for the tree decomposition heuristic.

Sol. value is the solution value when using the tree decomposition heuristic presented

in this paper in millions. If no feasible solution could be found within the time bound,

N/A is given.

Best value is the currently best found solution value so far (also in millions), generally

by Goerigk & Liebchen.

% difference is the percentual difference between sol. value and best value.

Although the tree decomposition heuristic does not give the hoped results, the performance
on these datasets can still be satisfying and at least offer perspective for improvements.
Particularly the short duration of the tree decomposition method, for an entire timetable
with constraints of an entire country, is one of they key contributions of this paper. To the
best of the knowledge presented in this paper, there exists no method that can solve large
instances (after data reduction) within such a short amount of time.

Unfortunately, three of the datasets could not be solved by the tree decomposition
heuristic. This may be due to the higher number or constraints, or possibly a structure
within the constraints where the heuristic cannot deal properly with. Nevertheless, the
other 13 datasets could be solved, although the performance is about 20% worse on average
than the currently best found solutions. Still, since this method is a heuristic from a new
perspective, there is room for improvements and perhaps potential to improve the currently
known approaches.

7 Conclusions and future work

The PESP is a difficult problem for which the current literature is seeking more practical
methods to escape local optima, without applying brute force in an early stage. This paper
has proposed techniques for heuristics that decompose a PESP problems into trees. These
techniques are primarily based on dynamic programming, which allows the usage of a smart
objective function that heuristically maximizes the possibility that a solution for a component
can be extended to a solution for all other components. Experiments are performed using
online benchmarks, and the even though the heuristic performs on average about 20% worse
in terms of objective function, feasible solutions can still be found quickly.

Future research will be done in improving this method to find feasible and better solutions
in a faster way. Other future work concerns the incorporation of heuristics for the PESP into
parallel problems; current research includes the routing of trains through stations in parallel
to the optimization of the PESP. Due to the highly complex structure of both problems,
heuristics are likely to be more suitable than standard optimization techniques.
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—— Abstract

We consider the problem of frequency optimization in transit systems, whose objective is to
determine the time interval between subsequent buses for a set of public transportation lines. We
extend an existing single level model by adding a constraint on bus capacities, while maintaining
user choice on routes by means of an assignment sub-model. The resulting formulation is bilevel,
and is transformed into a mixed integer linear programming formulation (MILP) that can be
solved to optimality for small-sized problem instances, using standard MILP techniques. We
study different variants of the same formulation to better understand the bilevel nature of the
model and its application to real settings.
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1 Introduction

There are different stages for the design of a public transportation system based on buses.
The literature identifies fives stages [4] that are usually performed sequentially in real
systems: route network design, frequency setting, timetable design, fleet assignment and
crew assignment. The decisions taken at each stage influence the decisions that can be
taken at later stages, and they are taken considering different planning horizons, depending
on whether the context of the planning is strategic (long term), tactical (medium term)
or operational (short term). The frequency setting decisions are usually part of a tactical
planning [10], although at least an initial frequency setting is necessary to evaluate the
decisions taken during route network design, which happens on a strategic basis.
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The design of a public transportation system needs to consider monetary costs, that
range from fixed costs due to the construction of the infrastructure, to variable costs due to
the operation of the services. It must also consider the interest of the users, e.g., in providing
reasonable travel times, waiting times, and number of transfers. The frequency setting affects
directly both concerns, impacting the level of service provided to the users (waiting time,
capacity of the lines) and the costs that planners need to incur to run the system (the fleet
size is determined by the required frequency of the lines).

The user of a public transportation system usually behaves in an egoistic way, that is, in
such a manner as to minimize its individual total travel time (on-board time plus waiting
time). Therefore, in order to measure the performance of a transportation system from the
viewpoint of the users, models should take into consideration how the users behave when
faced with the choice of a specific line from a set of candidate bus lines that can take them
to their destinations. Such is the responsibility of an assignment sub-model, that by applying
a set of hypotheses on how the users behave selects the appropriate lines in order to satisfy
travel demands. The assignment model is in itself an optimization problem, usually having a
complex formulation and solution method, specially when the influence of the bus capacity
is considered in the modelling of the user behavior. Therefore, the complexity of the overall
frequency optimization model is strongly determined by the complexity of the underlying
assignment sub-model.

In several real settings, public transportation systems run over capacity, meaning that
the nominal frequencies of the transit lines are not respected due to lack of capacity. In this
context, the capacity is determined by the capacity of the vehicles and the frequencies of
the lines. To model these situations, capacity constraints should be taken into consideration
when representing the passenger behavior. Even though the problem of transit assignment
considering capacities has been properly addressed by the existing literature [15], the problem
of transit frequency optimization considering capacities has been more scarcely studied.

The consideration of the bus capacity constraint alongside an assignment sub-model
changes the nature of frequency optimization, turning a single level (uncapacitated) formula-
tion into a bilevel one [2]. In bilevel problems there is a constraint that establishes that one
or several decision variables must be part of the optimal solution of yet another optimization
problem, known as the lower level problem [2] [6]. Exactly two decision makers exist, and
the objectives of them do not necessarily coincide. Furthermore, the individual decision each
one can take influences the decisions of the other.

The bilevel nature of the frequency optimization problem stems from the fact that the
direct addition of bus capacities to the model, involving variables that affect both the planner
and the users of the system, would disrupt the underlying assignment sub-model by forcing
users to take sub-optimal paths to reach their destination.

The remainder of the article is organized as follows. In section 2 we present a review on
related literature and the contributions of this work. The mathematical model and proposed
formulation is described in detail in section 3, while in section 4 we present computational
experiments using a simple test case on alternative formulations. We conclude the work and
refer to future research directions in section 5.

2 Related literature and statement of contribution

In this section we review related relevant literature on frequency optimization in public
transportation systems, with a special focus in works that have incorporated either the
behavior of the users in an explicit manner (i.e., by means of an assignment sub-model) or
bus capacities.
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In [8] a nonlinear bilevel formulation for frequency optimization is proposed. It incor-
porates an explicit assignment model [24] in the lower level, while the upper level problem
represents the interest and constraints of the planner, who wants to provide a minimal overall
travel time for the users of the system while at the same time diminish the monetary costs
by constraining the fleet size. The authors propose a resolution method based on a gradient
descent, exploiting specific properties of the problem. The model is applied to several case
studies of small to medium sizes.

A bilevel model is proposed in [23], where the upper level seeks to improve an overall
cost function and the lower-level consists of the capacity constrained assignment problem
formulated in [9]. Tabu Search [17] is used as the heuristic search.

In [20] a MILP formulation is proposed that models user behavior by means of the optimal
strategies [24] assignment model. The objective is to minimize the overall travel time of
users (on-board travel time plus waiting time) while the operational cost is constrained with
an upper limit on the allowed fleet size. The model is solved exactly by using a commercial
solver on small instances; for larger instances, a metaheuristic based on Tabu Search is used.
The metaheuristic approach is tested using real case studies.

More recently, [18] propose two different integer programming formulations for the problem
of designing lines in a public transport system. As part of the line design, frequencies are
considered as decision variables to incorporate bus capacities into the model, however, the
waiting time of the users is not modeled. Exact solution methods are proposed, and a genetic
algorithm is used in order to solve large-scale instances.

The contributions of our work are:

We consider the passenger behavior as well as the bus capacity and the waiting time
of the users, into a single and explicit mathematical programming formulation for the
transit frequency optimization problem.

We propose a bilevel formulation that is converted to a mixed integer linear programming
(MILP) formulation suitable of being solved exactly by using commercial MILP solvers
for small-sized instances of the problem.

By applying the exact approach developed to small-sized cases, we are able to study the
sensitivity of the solutions with respect to certain aspects of the problem, and therefore,
to achieve a better understanding of its nature.

3 Mathematical model

We base our formulation on the one proposed in [20]. In order to model user behavior, it
incorporates an explicit assignment model [24].

We propose an extension of the model by adding the bus capacity constraint. This leads
us to consider a bilevel formulation that is able to capture the impact that constraints such
as the bus capacity, have on the nature of the problem.

3.1 Basic concepts and notation

Before presenting the proposed mathematical programming formulation, we need to provide
some concepts as well as a detailed explanation of the used representation.

We make use of a network represented as a directed graph G = (N, A) where nodes acting
as bus stops N¥ and street endpoints N° are included in the set N. The movement of the
buses along the street is represented by travel arcs (A7) that connect nodes of N¥. A fixed
nonnegative travel time ¢, is associated with each travel arc. Boarding (A?) and alighting
(AL) arcs are also contained in the set A, connecting nodes from N* to N and from N*® to
NP respectively.
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Graph model
Real elements

B Stop node

= Busstop @ Endpoint of street segment node
—> Bus line %Travcl‘arc
- =2 Boarding arc
—-—> Alighting arc

Figure 1 Graph model (extracted from [20]).

We assume that the demand is generated at the bus stops. The demand is represented
using an origin-destination matrix, where the set of OD pairs K is such that for a given pair
k € K, there are Oy, D}, € N¥ origin and destination nodes, respectively, and a nonnegative
value 0y that represents the amount of people (per time unit in a given time horizon) that
have a travel requirement on the pair k.

Lines are defined over the set of travel arcs A”. Each line | € L is composed of a sequence
of adjacent travel arcs. The round-trip time for a given line is defined as ), ., c,. Lines
are either circular, or composed by the concatenation of forward and backward travel arc
sequences. Figure 1 illustrates the graph model.

3.2 Assignment model

An assignment model determines user behavior, that is, the way in which users satisfy
their travel needs using the existing public transportation lines. Users of the system must
choose a line from a set of possible candidate lines that can bring them to their intended
destination. Since in order to measure the performance of the system, user satisfaction is of
great importance, the assignment model is a critical component of any model of frequency
optimization.

The factors that a user considers to make such a choice (i.e., minimize travel time, number
of transfers) and the amount of detail and information they have at their disposal (i.e., if
the infrastructure provides real time information) determines whether an assignment model
is appropriate for the real scenario under study. The way the users behave have a direct
influence on the calculation of measures such as the waiting time and occupancy of the buses
that end users experience.

The assignment model used in this work is the one proposed in [24], called optimal
strategies. A strategy is a set of rules that when applied, allow users to reach their destinations.
In particular, the model assumes that a given user selects the strategy that minimizes his or
her total travel time, including the waiting time at the bus stops. In order to achieve this, it
is assumed that users have knowledge of the on-board travel times and frequencies of all the
lines of the system. That information is then used to refine a set of attractive lines that can
be used to reach the desired destination from the origin. At the bus stop, a given user will
take the first bus belonging to the attractive set of lines that passes by that stop. Since the
model is probabilistic, an optimal strategy is defined as a strategy that minimizes the total
expected travel time.

The probabilistic nature of the model is evident when considering how the waiting
time of a passenger waiting on a stop is calculated, for a set of lines R = {rq,...,r,} with
corresponding frequencies F' = {f1, ..., fin}. As commonly accepted in the literature [10], the
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waiting time can then be modeled by a random variable of mean value E(tw) = 8/, g fi,
where  is a parameter which depends on assumptions concerning service regularity. Since
the model assumes that passengers take the first bus that arrives at the stop, the probability
of using the route r;, known as the frequency share rule, is P, = f;/ ereR fi-

For a single OD pair, the assignment model can be formulated as follows:

%nul} anva+ Z Wy, (1)

acA neNFP

s.t. Zvaf Zva:bn VnéeN, (2)
acAt acA,
Vg < fawn VnENP,aEA:, (3)
vg >0 Vaec A (4)

where w,, is the waiting time multiplied by the amount of demand at node n € N¥'| A are
incoming arcs to node n, v, is the amount of demand flowing through arc a € A, f, is the
frequency of the line corresponding to the boarding arc a, and b,, is a value equal to the
demand requirement at that node, that is, d if n = Oy, —dy if n = Dy, and 0 otherwise.

The objective function (1) states the intention of the users of the system, that is, to
minimize their total travel time (sum of on-board travel time and the waiting time at the
stops). The flow conservation constraint (2) guarantees that all users are able to reach their
destinations. Constraint (3) splits the demand among the different lines that belong to the
attractive set, and prohibits flow passing through arc a if the arc is not part of the optimal
strategy. If v, > 0 the arc must belong to some optimal strategy and the constraint verifies
with equality, restoring the frequency share rule expression.

This is a linear formulation that closely resembles a shortest path problem. The particu-
larities of the formulation consist of a new term in the objective function, representing the
waiting time at nodes, and constraint (3) that represents what is known as the split rule,
where demand is split among the attractive lines leading to the destination and passing by
the given stop. Due to the latter constraint, the solution of the assignment problem consists
of a hyperpath [22] representing different trajectories from origin to destination, instead of a
single path on the graph as it is the case when solving the shortest path problem.

The model presented above can be easily extended to consider demand generated (both
produced and attracted) in places other than the bus stop. This can be done by considering
centroid nodes (representing zones of the study region) which are connected to stop nodes
through walking arcs.

3.3 Frequency optimization model

The frequency optimization model proposed in [20] is based on the one proposed in [§],
which has a nonlinear bilevel formulation. Formulation (5 - 12) is a linear transformation of
that original model, where authors introduce a discretization of the domain of frequencies
© = {0;...0,,} where each element 6, is a nonnegative value representing a possible value
for the frequency of any line.
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Figure 2 Discretized domain of frequencies (extracted from [20]).

min SO Cavar + > wa) (5)

kEK a€A nENP

s.t. ZzefylecagB, (6)
IEL feo a€l
Zyzf=1 Viel, (7)
feoe
> Vak = Y Vak = bk VneNkek, (8)
acA)f acA,
Vak < Of(a)Wnk Vae Al ne NP keK, (9)
Vo > 0 Vac A ke K, (10)
Vak < OkYi(a)f(a) Vae AP ke K, (11)
s € {0,1} VieL feo. (12)

In doing this, the authors define a new structure of the graph G, where for each line
passing by a given bus stop node, there exists as many boarding arcs to that node as possible
values of ©. Figure 2 illustrates the changes introduced in the graph model by using a
discretized domain of frequencies.

The model is mixed integer, due to the introduction of the binary variable y; ¢, which takes
value 1 if frequency 6y is associated with the line {. To keep the planner costs bounded, the
parameter B is introduced, which represents an upper limit on the fleet size. To indicate the
line frequencies some notation is introduced: f(a) specifies the index in © of the frequency
associated with the arc a, while I(a) specifies the line that corresponds to that arc. Index k
is used to indicate OD pairs.

In formulation (5 - 12) the objective function is that of the users, which intend to minimize
their total travel times, while taking into account the interest of the planners that seek to
minimize operational costs (6). The assignment model is included in constraints (8 - 10), now
expanded to consider each demand pair k. Constraint (7) enforces the fact that each line
must have exactly one frequency associated, while constraint (11) prohibits flow on nodes
Var when the frequency associated with that boarding arc is not active (y;(q)f(a) = 0) and is
redundant otherwise.

This results in a mixed integer linear formulation, where the main source of complexity
is the existence of binary variables, and the fact that the discretization of the domain of
frequencies increases the size of the underlying graph model due of the addition of new
boarding arcs, one per possible frequency value.
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3.4 Adding the bus capacity constraint

The assignment sub-model embedded in formulation (5 - 12) assumes that there is sufficient
capacity to carry all the passengers that desire to use any line. Furthermore, there is no
additional constraint in the formulation that considers the capacity of the lines, which
is unrealistic in systems that exhibit high affluence of passengers. Upon introducing a
new parameter w that represents the capacity of a bus, and considering that line capacity
(measured in passengers per time unit) is defined as the product of its frequency by the
capacity of the bus, we can impose feasible line flows by adding the following constraint:

D vak < Y Yiaylpw Vae AT (13)

keK fel.m

However, this could result in solutions where the flow of a given OD pair is distributed
among;:

A shortest hyperpath comprising lines whose capacity is saturated, i.e., constraint (13) is
active for their corresponding travel arcs. This represents the optimal strategy.

Other alternative hyperpaths, whose cost according to expression (1) is higher than the
cost of the shortest one. This represents (sub-optimal) strategies that the users choose a
priori, knowing the existence of a shortest hyperpath which is saturated.

This leads us to the concepts of line planning with route assignment (LPRA) and line
planning with route choice (LPRC), first defined in [18]. LPRA models are widespread in the
literature, and assume that passengers can be steered by the public transportation planner,
an assumption that usually results in simpler but unrealistic models. The utilization of
assignment models such as the one used in this work imply a LPRC approach, where each
user chooses the route that best fits his or her expectations. Adding constraint (13) directly
into the formulation would violate the LPRC approach, as users would need to consider a
priori lines that must conform with the new constraint (planners concern) rather than choose
the lines in an egoistic way. In a general sense, the addition of any constraint that may
impact the variables that model user behavior, and that are not required by the hypothesis of
the considered assignment model, would defeat the purpose of the model, since users would
behave in a way such as to pursue the optimization of some global optimum that benefits
the formulation in place but not necessarily their own interests.

There are at least two ways of modeling the capacity of the buses in the frequency
optimization problem while honouring the expected user behavior:

Assuming that the planner ensures sufficient capacity on the lines that the users want to

use. This is done by setting appropriate values of frequencies on the corresponding lines.

Modeling a congested system, through an assignment sub-model which represents the
user behavior under a situation of lack of line capacity. In this case, it is assumed that
some users are forced to wait for the next bus of the line, with available capacity, or wait
for a different line.

The second one entails to consider an equilibrium assignment sub-model [5] [9] embedded
into the frequency optimization model, which is considerably more complex than the first
approach [13]. Furthermore, to the best of our knowledge, there is not a formal criterion to
decide between both approaches from the modeling point of view. In practice, constraints
related to capacity of infrastructure, budget and policy come into play to determine whether
it is possible to operate a not congested system. In this work we follow the first approach.
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3.4.1 Bilevel mathematical programming formulation

If constraint (13) is added to formulation (5 - 12) we would be considering decisions taken
by different actors in the same model. Variables y represent planner decisions in assigning
frequencies to lines, while variables v and w represent decisions of the users, that select which
lines to use to reach their destinations. Bilevel mathematical programs [2] [6] [12] are used
to model scenarios with similar characteristics.

In order to incorporate the bus capacity constraint in our model, we propose the following
bilevel formulation:

;I})I?U Z(Z CaVak + Z Wnk) (14)

keK acA neNP
s.t. ZZ&,yleca <B, (15)
leL feo a€l
> up=1 Viel, (16)
fee
Z Vak < Z Yi(a) 0w Vaec AT, (17)
keK jeo
yir €{0,1} VieL,feo, (18)
rggl Z (Z CqUak + Z wnk) (19)
" k€K a€A neENF
s.t. Z Vak — Z Vak = bnk VneNkeK, (20)
acAf acA;;
Vak < Of(a)Wnk Vac Af,ne NP keK, (21)
Vak < 0kYi(a)f(a) Vaec AB keK, (22)
Vgl > 0 Vae AkeK. (23)

where the upper level (14)-(18) represents decisions of the planners while the lower level (19 -
23) represents decisions of the users, that is, the assignment sub-model with the input of
fixed frequencies 0¢(,). The objective function of both levels is the same, considering only
the objective of the users, which is to minimize the overall travel time. Arguably, the fleet
size constraint (15) could be modeled as another objective to minimize at the upper level,
which would lead us to consider a multi-objective bilevel formulation, probably increasing
the complexity of the formulation [16].

The planners can ensure sufficient capacity on the lines that the users want to use by
adjusting the frequencies according to constraint (17). In that manner, users are assumed to
perceive unlimited capacities on the lines they might take.

Formulation (14 - 23) is classified as Discrete Continuous Linear Bilevel (DCLB) [2] since
the upper level is linear with discrete variables while the lower level is linear with continuous
variables. Therefore, it can be reformulated into a MILP problem and in theory it could be
solved to optimality. Some commonly used reformulation strategies for doing this are:

Using the Karush-Kuhn-Tucker (KKT) conditions to substitute the lower level problem
and therefore removing the distinction among the different levels. Due to the comple-
mentarity term, that is not linear, the resulting reformulation would be a standard single
level nonlinear mathematical program that is suitable to be solved by some of the existing
nonlinear algorithms. Usually, the reformulation is combined with a linearization of the
complementary slackness term using the big-M method [12]. This approach has been
described and used in [2] [12].
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Figure 3 Illustrative example.

Primal-Dual reformulation. In this case the lower level problem is replaced by using its
dual constraints, primal (original) constraints, and the strong duality theorem equality
(equality between the lower and upper level objective functions), since the KKT conditions
are equivalent to the later conditions when the lower level problem is linear. This approach
has been used in [1] [3] [14].

In the present work formulation (14 - 23) was transformed into a single level formulation
using the first approach, that is, by replacing the lower level problem by the optimality
conditions given by its constraints, the constraints of its dual and the complementary slackness
constraints, which were linearized using the big-M method. In that way, by replacing the
lower level with its optimality conditions, variables which represent decisions of the users
(v and w) are restricted to take values which solve problem (19 - 23). Therefore, the whole
model will adjust the frequency values (variable y) so as to respect the constraints which are
directly included in the upper level (among them, bus capacity) as well as the optimality
conditions which represent the (uncapacitated) lower level problem.

After applying the KKT conditions, the resulting MILP model, equivalent to (14 - 23),
is (24 - 51), where (33 - 36) correspond to the constraints of the dual of problem (19 - 23)
Tnk, Vak, and ek are the dual variables corresponding to constraints (20), (21), and (22),
respectively, s}lk and sik are slack variables associated with inequality constraints (21) and
(22), respectively, and t}lk, tik and t%k are slack variables associated with the inequality
constraints (33), (34) and (35), respectively. The complementary slackness conditions are
linearized by applying the big-M method (37 - 46), obtaining in this manner a MILP single
level formulation.

)

4 Experiments for a small-sized example

In order to illustrate the application of the bilevel model explained in section 3, we show in
Figure 3 the small-sized case considered.

The numbers close to the arcs indicate their corresponding travel times. There are
two OD pairs, such that Oy =1, Oy = 2, D1 = Dy = 3 and §; = d2 = 5. We consider
values of fleet size B = 10, bus capacity w = 1.0 and the set of possible frequencies
© = {1.0,2.5,5.0,7.0,9.0}. The lines defined for this case are Iy = {(1,2),(2,3)} and
ls = {(1,3)}, both having symmetrical forward and backward itineraries.

Table 1 shows the results of applying three different variants of formulation (24 - 51) to
the example of Figure 3, where 7 (calculated in (24)) is the total travel time of the optimal
solution and 8 (calculated in (25)) its corresponding fleet size; it also shows the line capacity
(as defined in expression (13)) and the critical flow of each line (defined as the flow of the arc
Ve with maximum flow on the line). Even though the model has a large number of variables,
due to the small size of the instance, the execution time is negligible.
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Table 1 Impact of adding the bus capacity constraint.

Model cap. critical flow [; cap. lp | critical flow [» T B8
uncapacitated 9.0 9/10061 4+ 62 = 9.5 1.0 1/106; = 0.5 4.8 <10
cap. single-level 9.0 8/1061 + 02 = 9.0 1.0 2/106, = 1.0 5.3 <10
cap. bilevel 9.0 9/11.56; + 82 = 8.9 2.5 2.5/11.565 = 1.1 | <4.8 | 115
min CaVq W,
min k;(; ket ngp k) (24)
s.t. Z Z Oryiy an <B, (25)
leLl fe® a€l
>y =1 VieL, (26
feo
D vak <Y iayrfw Vac AT, (27
keK feo
> Vak = Y Vak = bnk VneNkeK, (28)
acA) acA,
Vak < Of(a)Wnk Vae Al ne NP ke K, (29)
Vg > 0 Vac A ke K, (30)
Vak < 0kYi(a)f(a) Vac AP ke K, (31)
yiy € 10,1} VieL feo, (32
Tik — Tjk < Ca Va=(i,j)e A-—AP ke K, (33)
ik — Tjk — Mak — Vak < Ca Va=(i,j) e AP ke K, (34)
> Opayvar <1 VneNkekK, (35)
acABT
Hak; Vak = 0 Vac AP ke K, (36)
0 f(ayWik — Var < 84 M Va=(i,j)e AP ke K, (37
Vak < (1 — 54 )M Vae AP ke K, (38
OkYi(a) f(a) = Vak < s2 M Vaec AP ke K, (39)
frak < (1= so) M Vaec AP ke K,  (40)
Ca — ik + ik < topM Va=(i,j) e A-AP ke K, (41)
Vak < (1=t )M Vac A-AP ke K, (42
Ca — it + Tk + Hak + Va < topM Va=(i,j) e AP ke K,  (43)
vak < (1= tax)M VacAB ke K,  (44)
1= )" Opayvar < oM VneNkeK, (45)
acABT
W < (1—t5,)M VneNkekK, (46)
sar € {0,1} VacAkeK, (47
s2p € {0,1} Vae AP ke K,  (48)
tor €{0,1} VacA—AP ke K, (49)
t, € {0,1} Vae AP ke K, (50)
t3, €{0,1} VneNkeK (51
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4.1 Experiment 1: comparison of uncapacitated and single level
capacitated models

The first line of Table 1 shows the results of applying the uncapacitated model (5 - 12).
When capacities are not considered, the entire flow of OD pair 2 uses [y, while the flow of
OD pair 1 is distributed between both lines (4.5 uses I; and 0.5 uses l3) due to the flow
splitting constraint (9).

When we consider bus capacities in the original uncapacitated model (second line of the
table), adding the constraint directly, we obtain the same setting of frequencies but with a
different assignment of flows. In this case, 1.0 units of the demand corresponding to OD
pair 1 uses l. This is because [; has capacity to accommodate only up to 9.0 units of flow.
The 0.5 units of flow corresponding to OD pair 1, which were moved from I to I represent
a set of users who are forced to use a sub-optimal hyperpath, knowing the existence of a
better one, that is, they behave in an unrealistic way. Moreover, we note that the model is
not able to represent this situation consistently, since it can not represent different waiting
times for passengers corresponding to the same OD pair at the same stop (variables wyy).

The example shows through a numerical application, the consequences of solving the
capacitated problem in a straightforward (not realistic) way. When we apply the bilevel
model (24 - 51) to the same case, we obtain no feasible solution. This is due to the fleet
size constraint, that does not allow for an increase of frequencies in order to accommodate
the demand on the lines that the users want to use; moreover, the model is not able to
change the frequencies in such a way as to redistribute the flows in order to respect the line
capacities. That difficulty was already noted in [7]. In order to overcome this difficulty, we
identify two approaches in the literature:

Soften the bus capacity constraint, by moving it as a term of the objective function [7].
Allow the model to increase the fleet size, by including its respective constraint in the
objective function [19].

By adopting the first approach, the solutions obtained may violate the bus capacity
constraint; the higher the violation, the less valid is the corresponding assignment of flows,
which is done assuming sufficient capacity. On the other hand, the second approach assumes
that the fleet size can be increased. This may be a reasonable assumption in the context of
strategic planning, where the model can be used to estimate the investment required to offer
a given level of service. In this case, by adding a new objective function the resulting model
becomes multi-objective, which requires a special treatment depending on how this nature
is represented: for example, by setting appropriate weights or calculating non-dominated
solutions [21].

4.2 Experiment 2: calculation of required fleet size

Considering the discussion above, another possible application of the bilevel model to the
capacitated case would be to state the fleet size minimization as upper level objective, subject
to a constraint of maximum travel time; that is, swapping objective function (14) and
constraint (15).

The results of applying this model to the small instance can be found in the third line
of Table 1, where we state a maximum travel time equal to 4.8 (the optimal value of the
uncapacitated model). The optimal value in this case (which corresponds to the fleet size),
is equal to 11.5. The interpretation of the result is that in order to obtain a setting of
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frequencies which respects the bus capacity constraint while at the same time producing a
total travel time which is no worse than the one corresponding to the uncapacitated case,
the fleet size should be increased in 15%.

5 Conclusions and further research

In the present work we propose a new bilevel formulation for transit frequency optimization,
based on the model presented in [20]. The proposed model considers individual passenger
route choice, using an assignment model [24], as well as considering the waiting time of the
users and the bus capacity when measuring the performance of the system. We derived a
mixed integer linear programming (MILP) formulation which is equivalent to the bilevel one,
that is susceptible of being solved by common solvers using standard MILP techniques, for
small-sized problem instances.

We have also explored the bilevel nature of the problem by applying different formulations
to the same example instance. The results obtained suggest that a true bilevel approach
should be considered whenever bus capacities are contemplated, and that uncapacitated
models are able to produce solutions that are not appropriate in contexts where the transit
system is operating over its capacity.

We note that all variants of the bilevel model discussed here maintain the DCLB structure.
This enables to apply exact solution methods. However, the existing (general purpose)
solution methods for this kind of bilevel problems [2] [3] [12] do not necessarily handle models
with many variables and constraints, as it is the case of frequency optimization problems.
Therefore, further research is needed in order to devise tailored solution methods for the
specific problem. An example of such an approach can be found in [18]. Metaheuristic
techniques may also aid in finding good solutions to solve the transit frequency optimization
problem. The Tabu Search [17] based metaheuristic presented in [20] to solve a single level
instance of the problem might also be extended to cope with a bilevel program. There are a
growing number of metaheuristic approaches that deal with bilevel problems. A good survey
can be found in [11].

It is also desirable to apply the proposed formulation to instances corresponding to real
cities of medium size, in order to study the scalability of the method and the improvements
obtained when compared to the current solutions of real transportation systems. The addition
of other constraints, such as enforcing a maximum waiting time for users of the transit system
may further help achieving solutions of good performance in real world contexts.

Regarding capacitated models, a formal criterion for switching between uncongested and
congested frequency optimization models would be desirable to establish.
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—— Abstract

In this paper we discuss what a cost-optimal public transport plan looks like, i.e., we determine
a line plan, a timetable and a vehicle schedule which can be operated with minimal costs while,
at the same time, allowing all passengers to travel between their origins and destinations. We
are hereby interested in an exact solution of the integrated problem. In contrast to a passenger-
optimal transport plan, in which there is a direct connection for every origin-destination pair,
the structure or model for determining a cost-optimal transport plan is not obvious and has not
been researched so far.

We present three models which differ with respect to the structures we are looking for. If lines
are directed and may contain circles, we prove that a cost-optimal schedule can (under weak
assumptions) already be obtained by first distributing the passengers in a cost-optimal way. We
are able to streamline the resulting integer program such that it can be applied to real-world
instances. The model gives bounds for the general case. In the second model we look for lines
operated in both directions, but allow only simplified vehicle schedules. This model then yields
stronger bounds than the first one. Our most realistic model looks for lines operated in both
directions, and allows all structures for the vehicle schedules. This model, however, is only
computable for small instances. Finally, the results of the three models and their respective
bounds are compared experimentally.
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1 Introduction

Public transport planning is a challenging task since it consists of several stages: network
design, line planning, timetabling, vehicle- and crew scheduling. In this paper we look for
a line plan in combination with a timetable and a vehicle schedule, i.e., a public transport
plan. Apart from the different subproblems that need to be solved in an integrated way,
there are also different objectives to be considered. A public transport plan should be
passenger-friendly (mostly reflected by a short traveling time for the passengers) but also
have low operating costs. For individual planning stages such as line planning or vehicle
scheduling there exist models and algorithms but finding an integrated solution to this
multi-stage problem is more challenging. Surprisingly, only few papers even evaluate both
cost and traveling time for integrated public transport plans. A first approach in which line
plans, timetables and vehicle schedules have been evaluated together under different criteria
has been given in [16]. More recently, [13] proposes to measure the costs and the traveling
time, and evaluates public transport plans under these criteria (cf. Figure 4).

The goal of integrated planning is to find the set of Pareto solutions with respect to costs
and traveling time and then to choose a solution from this set that is affordable and good for
the passengers. From an academic point of view it is interesting to find theoretical bounds
on the two objective function values of the Pareto solutions, i.e. finding the best achievable
traveling time for the passengers, and finding the minimal costs (under the condition that
all passengers can be transported). The former problem can be solved by a taxi-solution,
providing a direct and fast connection for each origin-destination pair. Nevertheless, what a
cost-optimal transportation plan would look like has not been studied so far and does not
seem to be obvious. Given a line pool, [4] determine a line plan such that all origin-destination
pairs can travel. The costs for the lines, however, are only approximated and not determined
by the vehicle schedule. Furthermore, capacities are neglected. In contrast to this work, we
now take an integrated point of view and propose models for finding cost-optimal public
transport plans, including lines, timetables, and vehicle schedules.

In this paper we propose models for finding cost-optimal public transport plans. More
precisely, we assume that the public transport network with its stops and direct connections
is given, and that the passengers’ demand is known in form of an origin-destination (OD)
matrix. For a homogeneous fleet with a given capacity for each vehicle we then design a line
plan, a timetable, and a vehicle schedule under the constraint that all passengers can be
transported, i.e., for each passenger there exists a possible (maybe non-optimal) connection
from their origin to their destination such that none of the vehicles is overloaded. We aim at
solving the integrated system exactly, meaning that we do not provide iterative heuristics as
in [7, 34, 37] or a sequential approach as the one in [25]. This becomes possible because we
neglect the traveling time and only look at the costs meaning that the computationally hard
step of timetabling becomes irrelevant.

For the single planning stages line planning, timetabling, and vehicle scheduling, models
and algorithms are well-researched. For line planning, cost-oriented models (e.g. [10, 18, 38])
and passenger-oriented models (e.g. [2, 8, 35]) are known, see [33] for a survey. (Periodic)
timetabling focuses on the passengers and is the hardest of the three problems. Exact
approaches to this problem can be found in [36, 23, 29, 19] and heuristics in [24, 17, 26] and
references therein. Integrating the passengers’ routes in timetabling is an ongoing problem,
see [3, 32, 15]. For vehicle scheduling we refer to the survey in [6].
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2 A cost-optimal LTS-plan

In this section we formally describe what a feasible public transport plan (LTS-plan),
consisting of a line plan (L), a timetable (T), and a vehicle schedule (S), is and how its
quality can be evaluated. We restrict ourselves to periodic LTS-plans (including the vehicle
scheduling) in this paper.

» Notation 1. The following input data is needed:

a public transport network PTN = (V| E) with a set of stops V' and direct connections E
between them,
for every edge e € E:

a length (in kilometers) length,,

a lower bound on the traveling time along the edge LI™ve,
a lower bound L% for the time vehicles have to wait at every stop,
a minimal turnaround time for vehicles L' denoting the minimal time a vehicle has to
wait at the end of a line. We assume that L¥ait < ptumn,
an OD-matrix W with entries W, for each pair of stops u,v € V', denoting how many
passengers want to travel from an origin u to the destination v in a representative time
period. A pair of stations u,v € V with Wy, > 0 is called an OD-pair.
a capacity Cap being the maximal number of passengers each vehicle can transport,
cost parameters

Ctime costs per hour for a vehicle driving,

Clength costs per kilometer for a vehicle driving.

We assume that the fixed costs (cost of a vehicle, administration, etc.) are included in the
costs per hour and the costs per kilometer, as is often done in practice.
With this input data we then look for an LTS-plan, whose objects are described next.

Line plan L

A line is a path through the PTN. A line plan is a set of lines £, each of them operated
once in the planning period (often an hour). A line plan is feasible if every passenger can be
transported, i.e., if for every OD-pair (u,v) there exist

a set of directed paths Py, from u to v, Pay = | P,,, and

u,veV
weights w,, for each path p € Py,
such that Zpe p,, Wp = Wy, and such that for every edge e it holds that

Z w, <Cap-{le L:ecl}| (1)

pEPan:e€p

Note that feasibility does not require the paths P,, to be good paths for the passengers, but
only that all passengers can be transported.

We furthermore assume that lines are simple paths and that every line is operated in both
directions. We do not forbid identical lines, i.e., there may be multiple lines with the same
path. In our setting we allow any path as a possible line (as also done in [2]) in contrast to
many papers which require a line pool of limited size.
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Timetable T

Given a set of lines £, a timetable assigns a time to every departure and arrival of each line
at its stops. Determining a (periodic) timetable is the hardest of the three problems line
planning, timetabling, and vehicle scheduling, and even finding a feasible timetable that
respects the upper and lower bounds on driving, waiting, transfer and turnaround activities
is intractable. Since we neglect the passengers, no upper bounds on transfer activities
are needed, and hence a feasible timetable exists for every possible line plan £ (since the
timetable for each line can then be determined separately.). Since we are only interested
in minimizing the costs we furthermore need not care about optimizing the traveling time
of the passengers, meaning that any feasible timetable is sufficient. More precisely, we can
neglect the timetabling as a separate planning stage in cost-optimal planning and simply use
the arrival and departure times which are determined by the vehicle schedule.

Vehicle schedule S

Given a line plan a vehicle schedule determines the number of vehicles and the exact routes
of the vehicles for operating the lines. We construct a set of trips £’ which contains two
directed lines for every (undirected) line I € £, one in forward and the other in backward
direction.

A route of a vehicle is given by the sequence of (directed) lines it passes,

r=(...,0), el

!

whereby we require that the [}, = 1,...,k are pairwise distinct. We assume that after

having taken the last trip I}, in a route, the vehicle starts again with 1}.

This sequence r is interpreted as follows: A vehicle starts with operating line I} at some
point in time, z. At the end of line I} it drives to the start point of line I, operates this
line, and so on. At the end of line I} the vehicle returns to the start point of I{ and starts
from the beginning of the next time period. In order to ensure the required periodicity of
the schedule, the vehicle needs to start after an integer multiple of the period T, i.e., at a
time y = x 4+ d,. - T, whereby the integer d,. is the number of periods needed for a complete
operation of the route r.

A vehicle schedule thus consists of a set of routes R. It is feasible if each directed line in £’
is contained in exactly one route, i.e., if

[{reR:l'er}|=1 V'eCL. (2)
With these assumptions in place we can then define what an LTS-plan is.

» Definition 2. An LTS-plan is a tuple (£, R), such that
L is a feasible line plan, i.e., it satisfies (1),

R is a feasible vehicle schedule for the directed lines £, i.e., it satisfies (2).

Costs of an LTS-plan

The costs of an LTS-plan are given by the distance driven by all vehicles and its total duration.
Since we compute a periodic schedule, we consider the costs per planning period 7.
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A vehicle route r consists of (directed) lines I’ € £'. Hence, we first determine time and
duration of a line I’, namely,

length, = length, (3)
ecl
dur, = (I = 1)L¥ 4 e, (4)
e€l

where |I| := {e € Ele € I} and (4) uses the fact that it is always cheaper to operate a line as
fast as possible. For the empty rides between a pair of lines I} and I}, we can use the PTN to
determine the parameters

lengthy, ;, = length when driving from the last station of [j to the first station of I

timey ;; = time for driving from the last station of line /] to the first station of 3

The minimum turnaround time (usually accounting for a driver’s break) has to be added to
the duration of an empty ride. This yields

__ rturn :
duI‘l/Ul/2 =1L + tlmel/l,l/z. (5)

The number of kilometers a given LTS-plan covers is determined by summing up the kilometers
of each single route, i.e.,

ey
length(£,R) = Z length;, + Z Z lengthlg’l;+1
vec r=(ly,..l;, JER i=1
= Z 2 -length; + Z Z lengthl’/“l;+1
leL r=(11,.ly, JER =1
with [, :=1j. The duration of a route r = (I1,...,l}, ) € R is measured by the number of

time periods dur, needed. This can be formally computed by

dur, = ’VZ dury + durl;,l(iﬂ-‘ (6)
T

=1

with [a]r := min{n € N|n-T > a} for any a € R and [}, |, := 1} . The overall duration is
hence given as

dur(L,R) = Z dur,. (7)

reER

Finally, the cost function is defined as
9(L,R) = ctime - dur(L, R) + Ciengsn - length(L, R). (8)

Note that the number of required vehicles is determined by the total duration, i.e., by
M. The fixed costs per vehicle v can be included by adding % tO Ctime. Since this
does not change the structure of the cost function we assume the vehicle costs to be already
included in ¢iime.

The cost function defined above allows us to define the optimization problem we are concerned

with in this paper.

Problem (cost-opt LTS): Given the input data from Notation 1, find a feasible
LTS-plan (£,R) with minimal costs g(£, R).
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Model 1: Load Generation

Model 2: Integrating up to Line Planning

Model 3: Integrating up to Timetabling and Vehicle Scheduling, i.e., solving it all

Figure 1 Three proposed models for solving (cost-opt LTS).

Traditionally, calculating an LTS-plan consists of solving a series of problems in a sequential
order, as can be seen in [9, 11, 21]. A sequential approach, however, is flawed, since the
costs are mainly determined by the vehicle schedule, which constitutes the last step of the
planning process. Nevertheless, this has been tackled in [25] by a heuristic approach. The
aim of our paper, however, is to find the exact cost minimum of the integrated problem. In
order to address this issue we present three different models for minimizing the costs of the
resulting LTS-plan (see Figure 1).

The first model aims at distributing the OD-pairs in a cost-optimal way (called load gen-
eration). Although it only concerns this very first step we can show that this determines
the minimal costs of an integrated LTS-plan under certain conditions. The second model
integrates load generation and line planning, minimizing a cost function that approximates
(now in greater detail) the costs of a resulting LTS-plan. Finally, the third model presents
an IP formulation for integrating load generation, line planning, timetabling, and vehicle
scheduling; it hence provides an exact model for (cost-opt LTS).

3 Model 1: Creating a cost-efficient load

Line planning is often decomposed into two steps. In the first step, all OD-pairs (u,v) are
routed through the PTN resulting in paths P,,, P = Uum cv Puv, and weights w), for every
path p € Py, (with ZpEPm, wp = Wyy). This data is then used to define the loads

min 1
=y Yr Cap

pEPan:e€p

specifying how often an edge e € E in the PTN has at least to be served by some vehicle. In
the second step, the line planning problem is solved using these minimal frequencies.
Normally the f™ are calculated assuming that all passengers travel on their shortest path in
the PTN to their destination. Since we are interested in finding a cost-minimal LTS-plan, we
do not want to work with that assumption. In our system we require just enough capacities
so that every passenger has some possibility to travel to their destination. We use this insight
to find a load that eventually even leads to a cost-minimal LTS-plan.

Of course, in this early planning stage we do not yet have all information to exactly determine
the costs of the resulting LTS-plan, since they depend on the line plan and the vehicle schedule.
Nevertheless, we can already approximate the costs with the following model.
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» Model 1. Given the input data from Notation 1, calculate a load (i.e., f™® for all e € E)
that aims at minimizing the cost of an LTS-plan.

min - Cgime - dur - 7' + Clength Z 2 -length, - fmin (9)
ecE
st Y 2fMn(Ldve 4 LYY < T dur (10)
eckE
> fgyu < fM-Cap Vi,j €V with {i,j} € E (11)
ueV
Z f(i,v),u = Wyo + Z f(v,i),u YVueV Vve V\{u} (12)
i€V{i,v}EE i€Vi{vi}eE
Z f(u,i),u = Z Wy YueV (13)
i€Vi{u,i}€E veV
Variables:

f(i.5),u — number of passengers starting from stop u € V traveling on arc (4, j) for some
i,j € V with {4, j} € E (non-negative, continuous)

fmin — how often edge e has to be covered (integer)

dur — total duration (counted in periods) (integer)

In this model we define from every stop w € V' in the PTN some passenger flow going to all
destinations v € V. In order not to mix up passengers starting from different stations we
accordingly have to define |V different flows. The constraints (12) and (13) describe the flow
conservation constraints. In order to restrict the number of passengers traveling on a certain
edge in the network we defined the capacity constraints (11). Note that the flow variables
f(i.j),u for u € V are defined on directed edges (4, j) whereas the minimal frequencies f™™
are defined on undirected edges {i,j} = e € E. Finally constraint (10) rounds the minimal
duration up to the next multiple of a time period 7" and the objective function gives the
costs which are needed in the best case, namely for a vehicle schedule without any empty
ride and as few time loss (through the periodicity) as possible.

The following theorem shows that Model 1 is indeed an approximation of (cost-opt LTS), as
its optimal solution yields a lower bound.

» Theorem 3. The optimal objective value of Model 1 is a lower bound on the optimal
objective value of (cost-opt LTS).

Proof. See Appendix B. <
For large problem instances a speed-up of the solution process is possible by adding the
following valid inequalities to Model 1.

» Lemma 4. Let (X, Y ) be some cut, i.e., some disjoint partition of all nodes in the PTN
with Ecyy = {{i,j} = e € Eli € X and j € Y} being all cut edges. Then it holds that

DD Wuw<Cap- > £

ueX veY e€Bcyt
Proof. See Appendix B. <
In the computational experiments (Section 6) we investigated adding these valid inequalities,
which resulted in an improvement of the runtime of up to 50%.

Model 1 does not only yield some lower bound, but we can even construct an optimal solution
to (cost-opt LTS) if a particular assumption is met.
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» Theorem 5. Let LVt = L™ qnd let the graph G = (V, E) with E = {e € E : f™" > 0}
for an optimal solution f™n" of Model 1 be connected. Then the optimal objective of Model 1
is equal to the optimal objective of (cost-opt LTS).

Proof. For every solution to Model 1, i.e., for some feasible f™ with e € E, we can construct
some feasible solution (£,R) to (cost-opt LTS) as follows: We define the line plan £ that
contains for each edge e € E exactly ™0 Jines containing exactly this one edge e, i.e.,
L:={e',...,ef"" 1 e € E}. Since f™" = |[{l € L|e € I}| and f™" admits a feasible load,
the line plan L is feasible.

For this line plan we now generate a vehicle schedule R that consists of only one large route.
To this end, we consider the resulting set of directed lines £’

£ = {6 GG G e = (i) € B

which contains f™" copies of both directions of every edge e € E. This is a set of directed
edges which creates a directed multigraph (V, £L"). Due to the assumption in the theorem,
this graph is strongly connected and every node in (V, £’) has the same indegree as outdegree.
Hence we can find an Eulerian Cycle on it (see e.g. [12]). This means that we can form a
route containing all directed lines r = (I{,...,1},) (with |r| = |£’|) such that lengthl£7l;+1 =0
and timey, ;= 0. So we set the vehicle schedule R = {r} to contain exactly this route r.
We hence have constructed some solution (£, R) to (cost-opt LTS) with

length(L£, R) Z length, + Z Zlength, i,

lec r=(,.. 1), JER i= 1%/—/
= Z 2 - length, = Z 2length, fmin
leL fmin={e€L|ecl} €EE
and
dur(£,R) Z dur, = ’VZ(durl + Lt‘”“)-‘
reR |’R| 1 1lel’ T

— ’VZ zfmm (Ldrlve + Lturn)-‘

fmin={ecLlecl} | c€F T

— ’72 2f;nin<L<eirive + Lwait)“ —dur-T.
T

~—
ecE

Lturn_—J wait

Hence, for every solution to Model 1 we can construct a solution (£, R) to (cost-opt LT'S) such
that g(£,R) = Ctimedur - T+ Clength ) _,c p 2length, - fmin Together with Theorem 3 (£, R)
is optimal for (cost-opt LTS)and hence Model 1 has the same objective value as (cost-opt
LTS). <

In case the assumption L¥#* = Lt does not hold, we still get a feasible solution and
therefore an upper bound for (cost-opt LTS), when we slightly modify Model 1.



J. Patzold, A. Schiewe, and A. Schobel

Figure 2 Solution of Model 1 for Example 9.

» Definition 6. We define an adjusted version of Model 1, where L™ is replaced by Lt"™
in constraint (10), to be Model 1*.

» Corollary 7. The solution (L, R) constructed in the proof of Theorem 5 is an upper bound
for (cost-opt LTS) and can be found by solving Model 1*.

If we allow that lines do not have to be bidirectional and simple paths in the PTN, we can
always obtain an optimal solution to (cost-opt LTS) by just solving Model 1. This can be

done by converting the Eulerian Cycle constructed the proof of Theorem 5 into one big line.

» Corollary 8. Let LWt < LYW Then the optimal objective value of Model 1 is equal to
the optimal objective of (cost-opt LTS) if we allow directed and non-simple lines.

This, of course, may lead to non-practical lines, as can be seen in the following example.

» Example 9. We examine the solution provided by Corollary 8 on a small example.

Consider the PTN given in Figure 2, with Cap passenger traveling from v; to vs and 1
passenger traveling from vs to vs. Then the solution provided by Model 1 is given by lower
bounds of [1,2,1,1] and the vehicle schedule of Corollary 8 is depicted in Figure 2, where
the edges are numbered in the order of their usage. As can be seen here, the resulting line
structure is not suitable for a practical public transport system, since it contains a cycle.

4 Model 2: Integrating load generation and line planning

Although we can already find a cost-optimal solution using Model 1, this only works in the
special case of LV#* = L' We have seen that for L8 < LW the resulting line plan
consists of directed lines (without their symmetric counterparts) and the lines may contain
circles. We therefore further explore the next steps for obtaining an LTS-plan in which the
lines satisfy the usual requirements. To this end, we combine the load generation of Model 1

with line planning to improve the approximation of the cost objective of the overall LTS-plan.

This idea is approached by the following model.

» Model 2. Given the input data from Notation 1, calculate a load f™® and a line plan £
that aim at minimizing the costs of an LTS-plan.
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L

min  Cime - dur - 7' =+ Clength Z Z 2z, length, (14)
=1 e€cFE

st. (11) - (13)

L
Z <zzl(Lturn _ Lwait) + Z 2(Lgrive + Lwait) . me,l) <dur-T (15)

=1 eeE
L
Sweiz [ Vee B (16)
=1
ey <z Vee EVlel[lL] (17)
Y wei >z ViEL] (18)
eck
Y meu<2 VseVVie[] (19)
ecE:sce
20 S yig+ Yy VIE [L]V(i,j)=e€ E (20)
Z Ys, | = Z Teq+2 Vle[L] (21)
seV ecE
Z ey <|C|—1 V circles C C E'VI € [L] (22)
(i,j)=e€E:ie€C and jeC
Coefficients:
L — maximal possible number of lines (integer) and [L] := {1, ..., L}.
Variables:

z; — is 1 iff line I is non-empty. (binary)

ys, — is 1 iff stop s is contained in line [. (binary)

Ze,y — is 1 iff edge e is contained in line {. (binary)

dur — total duration of all lines (counted in periods) (integer)

fmin — a5 in Model 1, including the variables f. ,, and constraints (11) - (13) from Model 1.

This model finds some feasible line plan. First the z;-variables determine if line number [ is a
line or empty. Constraint (17) and (18) ensure this. Now we need for every index ! that for
every stop of some line there are at most two incident edges (constraint (19)). This ensures
that the x.; variables form circles or paths. To ensure that they form only one connected
path we could consider them as flow variables. Here, we decided to add y-variables for every
visited stop and count the number of stops that a line visits. The y-variables are set to one
for the incident nodes of all edges the line visits in (20). We then can ensure that there is
some connected path by requiring that there exists exactly one more stop than edges in a line
in constraint (21). Finally we need to rule out subtours which is done by constraint (22) (As
usual they are added by constraint generation procedures). The variables f™io taken from
Model 1 help us to determine feasibility of the line plan, which is done by constraint (16).
Finally we round the duration up to the next multiple of a time period, which is done by (15).

The objective function is again a lower bound on the exact costs of an LTS-plan. This is
shown in the next theorem.



J. Patzold, A. Schiewe, and A. Schobel

Figure 3 Solution of Model 2.

» Theorem 10. The optimal objective value of Model 2 is a lower bound on the optimal
objective value of (cost-opt LTS) and an upper bound to the optimal objective value of Model 1.

Proof. See Appendix B. <

We can again construct a feasible solution for (cost-opt LTS) from the solution of Model 2 in
the case that we are only interested in line-pure vehicle schedules. In such schedules, every

vehicle serves the same line, alternating between its forward and its backward direction.

More formally:

» Definition 11. A solution to (cost-opt LTS) is called line-pure if R = {r; : I € L}, with
r; = (I,17) being the route that contains only the forward and backward direction of line
lel.

We now show that the following slight modification of Model 2 can find a cost-optimal
LTS-plan under the restriction that only line-pure vehicle schedules are allowed.

» Definition 12. Consider Model 2 and replace constraint (15) by

22 (L™ — LYY 4 > 2L + LYY 3y < dy - T VI € [L] (23)
ecE

L
Z d; = dur (24)
=1

with integer variables d; € N. We call this modified version Model 2*.

Restricting ourselves to a special structure of the vehicle schedules, we are still able to obtain
the optimal solution to (cost-opt LTS) (under some assumptions) by simply considering loads
and the lines. This is the main result of this section.

» Theorem 13. An optimal solution to Model 2% solves (cost-opt LTS) under the restriction
that only line-pure vehicle schedules are allowed.

Proof. See Appendix B. <

For the general case of (cost-opt LTS), Model 2* still finds a feasible solution and therefore
provides an upper bound to (cost-opt LTS).

» Corollary 14. The optimal objective value to Model 2* imposes an upper bound on the
optimal objective value of (cost-opt LTS).

» Example 15. We continue Example 9 and now consider the solution constructed in
Theorem 10. These now provide simple lines, resulting in the line-pure vehicle schedule
depicted in Figure 3, improving on the line structure of Example 9. The first line is depicted
in red, the second is dashed in green. The lines here look much more reasonable for practical
implementation than the solution which was obtained by Model 1*.

8:11

ATMOS 2018



8:12

Cost-Minimal Public Transport Planning

5 Model 3: Integrating timetabling and vehicle scheduling

In Model 1 and Model 2 we did not consider all subproblems of (cost-opt LTS), especially we
did not include a proper vehicle scheduling. With the following model we want to overcome
this issue and formulate the whole problem in an integrated way.

To formulate the integrated model, we need a notation for the event-activity network
N = (&, A) (see, e.g., [19, 21, 23, 27, 28]). The set of events £ consists of all departures
and all arrivals of all lines at all stops and two additional OD-events ((u, dep), (u,arr)) per
stop u for passengers to enter and leave the network, denoted as Eop. The set A connects
the events by driving, waiting and transfer activities. The OD-events are connected to each
departure event of the corresponding stop using OD-activities (Aopp). Using this, we can
now formulate the integrated model. Let further denote with A4, all activities in A\ Aop
that are included in a directed line I’ € £’.

» Model 3. Given the input data from Notation 1, find a feasible LTS-plan (£, R) with
minimal costs, i.e., minimizing g(£, R).

min E costy

veV
1
s.t. dur, > T Z/EZL/ xp - dury + ) %ﬁx(l&lé)ﬂ” ~dury i Vr € [R] (25)
length, > Z xy - length; + Z Ty 1), - lengthy ;o V€ [R] (26)
lec’ 1,lheLl!
oSty > Clength - length, + ctime - dur,  Vr € [R] (27)
Z T i<y,r = Tl r = Z T 1),r Vll S »CI, Vr e [R] (28)
el e
Z le/,,,. = Z xb(l/)’r Vl/ E £/ (29)
reR veV
Cap- Y apr > Y faue VI €L, Vac A (30)
reER u,veV
Z fa,(u,'u) = Z fa,(u,v) Vp € Pv v] eé& \ EOD (31)
icE ick:
(i,j)=a€cA (j,1)€A:
Z fa7(u,v) =Wy Yu,velV, Vj = (v,arr) € &op (32)
i€E&:
(i,7)=a€AoD
Z Ja,(uw) = Wuw  Yu,v €V, Vj = (u,dep) € Eop (33)
€€
(4,i)=a€Aop
Yo @y <U=1 YU C L x L, Vre[R] (34)
(15,15)eu’
dur, € N Vr € [R] (35)
Coefficients:

R: number of possible vehicle routes, we assume it to be sufficiently large
L'": the set of all possible directed lines in the network, b(I’) denotes the backwards
direction for a directed line I’, [ is the corresponding undirected line.
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Table 1 Properties of the examined datasets.

Instance Nodes Edges Passengers

Linear 5 4 141
Toy 8 8 2622
Grid 25 40 2546

Germany 250 326 385868

Variables:
xyp» —is 1 iff the directed line I’ is part of route r
z i), 1s 1 lines I} and I}, are served directly after each other in route r
cost, — the costs of route r
dur, — the duration of route r
length, — the length of route r
fa,(u,v) — the number of passenger traveling from u to v using activity a

This model finds a cost-optimal LTS-plan (i.e., line plan, timetable and vehicle schedules).
The f variables determine the passenger flow, satisfying the classical flow conservation
constraints ((31)-(33)) and creating coupling constraints for the vehicle routes r in (30),
determined by the z-variables. The duration and length of the routes are determined in (25)
and (26) and then combined in (27) to determine the costs. Of course, the vehicle routes need
to satisfy flow conservation as well (see (28)). (34) are the subtour elimination constraints.
Constraint (29) ensures that every line is served in both directions.

The model is too large to be solved for realistic instances. One possibility As can be seen in
Section 6, the integrated problem cannot be solved even for instances of small size. This is
due to its enormous number of variables including a trip for every possible line in the network.
Nevertheless, Model 3 can be used if enough variables are fixed. We hence can combine
it with Model 2 by fixing the lines in Model 3 to the optimal lines computed by Model 2.
This means that we only need to consider the constraints (25)-(28) and (34), additionally
guaranteeing that every trip in £’ is covered exactly once. The result is a tractable model
for medium-sized instances.

Other possibilities to reduce its size would be to start with a line pool of limited size (e.g. as
generated in [14] or from Model 2) or to use column generation approaches as in [2].

6 Experiments

In the computational experiments we implemented the three proposed models with the open
source library LinTim (see [1, 16, 31]) and tested them on four different datasets. These
datasets are described in in Table 1 and depicted in Figure 5, Appendix A.

We implemented Model 1, Model 1*, Model 2, Model 2* and Model 3 using Gurobi 8.0 as
MIP solver with default settings. We tested all implementations on a compute server (6
cores of Intel(R) Xeon(R) CPU X5650 @ 2.67GHz, 78 GB RAM) with a time limit of 3 hours
per test case. For each model and each instance we considered two different cases: Either
Lturn — [wait op piurn » pwait ¢4 distinguish the cases where Model 1* is able to find an
optimal solution and where it is not. We obtained the results depicted in Tables 2 and 3. A
symbol ° denotes that the problem has not been solved to optimality and hence only the
best found upper or lower bound is presented.

8:13
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Table 2 Objective values for the case of L' = [WVait,

Instance Model 1 Model 2 Model 3
Model 1  Model 1*  Model 2 Model 2* Ib ub
Linear 80 80 80 130 80 80
Toy 1424 1424 1424 1696 1270°  1460°
Grid 1034 1034 1034 1034 - -

Germany  73321° 84694° 54148° - - -

Table 3 Objective values for the case of L™™ > LWait,

Instance Model 1 Model 2 Model 3
Model 1  Model 1*  Model 2 Model 2* b ub
Linear 80 130 130 130 130 130
Toy 1424 1474 1424 1696 1288°  1539°
Grid 1034 1134 1030° 1140 — —

Germany  74462° 85612° 54148° - - -

For each of the three models there exist two columns. The left column contains a lower bound
to (cost-opt LTS), whereas the right column contains an upper bound, i.e., the objective
value of the best found feasible solution.

We observe for Model 1 that in the case L™™ = LY it almost always finds the optimal
objective value within the specified time limit of 3 hours. Only in our biggest instance we
cannot get an optimal solution within the time limit (we still have a gap of 13.7% here).
For the case L™ > LVt there exists a gap between the lower bound and upper bound of
Model 1, but this model still obtains the best solutions.

Model 2 can solve the two smallest instances easily, but starts having trouble with the time
limit for Grid. For Germany it is not able to find a feasible solution within the specified time
limit. Regarding the solution quality, we see that the lower bound given by Model 2 is only
in a single case sharper than the lower bound given by Model 1. On the other hand, the
upper bounds found by Model 2* never have smaller objective values than Model 1%*.
Model 3 is already on the toy instance not able to find an optimal solution within 3 hours.
The obtained objective values for Linear and the bounds for Toy are consistent with the
values given in Models 1 and 2. For the bigger instance, even the precomputation of the
complete line pool for Model 3 was not possible anymore.

We illustrate our results on the dataset Grid (see [13, 30]). Solutions are evaluated by their
costs and their traveling times. The solutions shown in Figure 4 are computed sequentially.
We see that the sequential solutions with smallest costs are A4 (computed in [25]) and
P5 (computed in [20].) The best possible costs of a feasible solution (computed by solving
Model 1) is depicted as a red line and improves the costs by 23%. Note that Model 1 computes
a solution with a periodic vehicle schedule, but as shown in [5] an aperiodic schedule would
not improve the costs.

The traveling time of the cost-minimal solution is hard to evaluate: Using the best possible
paths for the passengers as done for the other solutions in Figure 4 would lead to a traveling
time of only 20.57. We did not depict this objective value in the figure since in this solution
the passengers are far away from using the paths computed for them in Model 1 and hence
the solution would have heavily overloaded vehicles.
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Figure 4 Multiple solutions for Grid (see [30]), evaluated by their cost per hour and traveling

time (perceived journey time meaning traveling time plus a time penalty for every occurring transfer).

With our models we were able to find a cost-minimal solution. Its objective value is depicted by a
red line.

Table 4 Runtime improvements with Lemma 4 on Grid for L™ > LWait,

parameters no cuts cuts
Model 1  Model 1*  Model 1 Model 1*
Nodes explored 46557 26391 2398 3845
Runtime in sec 23.18 12.6 10.61 8.99

We finally investigate the influence of valid inequalities introduced in Lemma 4 on the runtime
of Model 1. We restricted this investigation to Grid, since the runtime for the smallest two
instances is already less than a second, and for Germany it is already non-trivial to determine
“good” cuts of the network. For Grid, however, we took all horizontal and all vertical cuts of
the network, whose PTN is depicted in Figure 5, into the model. With this improvement we
were able to speed up the solution process significantly with respect to runtime and number
of explored MIP nodes, as can be seen in Table 4.

7 Outlook

We propose three models to compute cost-optimal public transport plans. For the first
two models we derive optimality conditions and with the third model we present an IP
formulation for the integrated exact model. The computational experiments show that the
implementation of the models is computationally tractable.

Model 1 is able to compute cost-optimal solutions up to Grid outperforming previous
approaches to tackle this problem. For large networks the model provides bounds of good
quality in a reasonable amount of time. Model 2 finds optimal line-pure LTS-plans. Finally,
Model 3 yields a cost-optimal LTS-plan without requiring any further assumptions.

8:15
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For future work we plan to sharpen the formulation of Model 1 by identifying good cuts. It
would hopefully be the case that better cuts lead to a further decrease of the computation
time, especially for the large instances.

Furthermore it would be interesting to not only find a solution with minimal costs, but
to find a lexicographic solution, i.e., the cost-optimal solution with the best traveling time

for the passengers. To this end, we can include the passengers’ traveling time in Model 3

which will most likely further increase the computation time of the model. To use this model

effectively, more work in speed-up techniques is necessary. Promising ideas include column

generation and decomposition techniques, similar to the methods presented in [22].
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A  Figures

B Proofs

Proof of Theorem 3. Let (£, R) be some feasible solution to (cost-opt LTS). Since the line
plan is feasible we can construct some feasible flow from it by setting f™i* = |{l € L|e € I}|
and feu = cp i ccp Wp- Now we get for all 4, j € V with {i,j} € E

Y fpu= Y, wp = fin - Cap

ueV pePa:(ii)er  py (1)

by definition of feasibility of a line plan, i.e., constraint (11) is satisfied. Since the w,
correspond to paths in the PTN the flow conservation constraints (12) and (13) are also
satisfied. By setting

ZeeE 2fé'nin(Lgrive + Lwait)
T

dur =

we finally have constructed a feasible solution to Model 1.

We now show that the objective function value of the constructed solution is better than
9(L,R) = Ctime - dur(L, R) + Ciength - length(L, R).

We first consider length(£,R): We know that for the constructed solution it holds that
fmin = |f] € L]e € I}, hence

length(£,R) > ) lengthy, = » Y 2length, > Y _ 2length, ™.
l'el’ lel e€l ecFE
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(a) The Linear network.

(d) The Germany network.
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L1

(b) The Toy network.

(c) The Grid network.

Figure 5 The instances used in the experiments

For dur(£,R) we calculate

reER reER

ler

dur(£,R) Z dur, = Z {Z(dun/ + Ltum)-‘ > ’VZ Z(durl/ + Lt“m)-‘
T T

\:’/ ’VZ Z ( |l| _ 1 Lwalt turn + ZLdrlve
(4)

reRl'er

20

fmin=|{leLleel}| | ©F

> 2 min Ldrivc+Lwait —dur-T.
> [Se >L

reRler

),

(Lturn Lwalt + Z Ldrlve _‘_Lwalt))-‘
el T

> |V Lturn Lwalt +Z Ldrlve+Lwa1t)
lel

T
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Overall it holds that

9(L,R) = ctimedur(L, R) + Clengtnlength(L, R) > ctimedur - T + Ciength Z 2length, - fmin,
ecE

Thus every feasible solution to (cost-opt LTS) can be transformed to a solution for Model 1
whose objective is smaller than g(£,R). Hence, the optimal objective function value of
Model 1 yields a lower bound to (cost-opt LTS). <

Proof of Lemma 4. We start with constraint (12), i.e.,

Yo S =Wt Y funa Yu€eVVoe V\{u}

ieV:{ip}eE ieVi{v,i}eE

and argue that for any u € X it holds that

Z Z f(i,v)7u = Z Wuv + Z f(v,i),u

veY ieV:i{i,v}eFE veY ieVi{vi}eE
= Z Z f(i,v),u + Z f(i,v),u
V=XUY veY \ieX:{i,v}€eE i€Y:{i,v}eE

=(*)

= Z Wyw + Z fw,iyu + Z fw,i)u

veY i€eX:{v,i}eE i€Y:{v,i}€E —(x)
= Z Z f(i,v),u = Z W + Z f(v,i),u
(%) cancel out veY ieX:{i,v}EE veY i€eX:{v,i}€E

<~ Z f(i,v),u = Z Waw + Z f(v,i),u
veY,ieX: veY veY,ieX:
{7)7":}€Ecut {7)7i}€Ecut

Hence we can conclude
> flwya = Y Wuy VueX. (36)
1€X,weY {v,i}€Ecut veY

Thus we get that

Cap- Y fé“i“\Z/ S0 fiww

e€EFE .yt (11) 1€EX,WEY: ueV
{i,v}€Ecut
> § E f(i,'u),u > E E W
XCV ueX 1€eX,veY: ueX veY
= {i,v}€Ecu+ (36)

<

Proof of Theorem 10. Let (£,R) be some feasible solution to (cost-opt LTS). Then we
know that we can set f™" = |{l € Lle € I}| (and f., accordingly) as in the proof of
Theorem 3 to some feasible flow which satisfies (16). Furthermore we can enumerate all lines
with some bijective mapping ¢ : £ — [|£]] such that x. ) = 1 iff e € [ for all | € £ and
also y,,,) = 1 iff s € e for some e € [ and 2z; = 1 for all 7 € [|£|] and 0 else. Since £ was
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some feasible line plan all lines are simple paths and hence also constraints (17) to (22) are
fulfilled. Now for the objective function it holds that

kp—1
length(L, R) Z length,; + Z Z lengthlé,liﬂ
rec r=(ly,..l;, JER i=1
L
> Z Z 2length, = Z Z 2z, oylength, = Z Z 2z length,.
lel e€l lelL eeFE I=1eeFE

For the duration we get

k
dur(ﬁyR) - Z ’VZ durl; —+ durl’, /+1—‘ ’VZ Z durl/ + Lturn)-‘
=1 T

r=(l},....lj, JER reRler

\:// Z Z ((” - 1)Lwait + turn + ZLceirive>-‘

(4) reRler ecl’

— ’72 (Lturn _ Lwait + Z(L(eirive + Lwait)>—‘
el cel’ T
L

— ’VZ <2zl(Lturn _ Lwait) + Z Q(Lgrivc + Lwait) . me,l>—‘ >dur-T
=1 eckE T

Hence, by finally setting

T

dur =

we conclude that from any feasible solution (£,R) to (cost-opt LTS) we can construct some
feasible solution to Model 2 such that

L
g(ﬁ, R) 2 Ctimcdur -T + Clcngth Z Z 2xe,llengthea

l=1ecFE

which means that the objective function value of Model 2 is a lower bound to (cost-opt LTS).
On the other hand every feasible solution to Model 2 is a feasible solution to Model 1. This
can be seen by setting the three types of variables, f™" f.., and dur, that are contained
in both models, to be the same. Hence constraints (11) - (13) are satisfied, and also (10) is
satisfied since

dur-T > Z 22 Lturn Lwalt + Z Ldrlve + Lwalt) Te > Z 2fm1n Ldrlve_|_Lwa1t)
%,_/

=1 >0 eElR e€ElE

For the objective functions it additionally holds that

L
Z Z 2z length, = Z 2f™inength,.

I=1e€FE ecE

This means that every solution to Model 2 can be projected to a solution of Model 1 with
smaller objective value in Model 1, meaning that Model 2 is an upper bound to Model 1. <«
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Proof of Theorem 13. Let £, R be some line-pure feasible solution to (cost-opt LTS). For
the objective value of (£, R) we know that

length(L, R) = Z Z lengthy, +lengthy, = 2length; = Y > 2length,,

r=(lenly, JER =1 \—v—’ leL leL e€l
and that
dur(L,R) = {Z(dufz/ + Lt“m)w =" [2(dur + L™,
rcR | l'er T el

= Z ’V Lturn — wait) + Z Q(Lcelrivc + Lwait)

lel ecE:ecl T

We can extend the line plan £ to some feasible solution to Model 2* by again defining
a bijective mapping ¢ : £ — [|£|] such that z.,q) = 1iffe € [ forl € L foralle € E.
Analogously a solution z.; can be transformed into some feasible line plan £ by defining a
line [ to contain exactly all edges e € E if z.; = 1. Thus there exists a bijection between the
set of feasible solutions between (cost-opt LTS) and Model 2* as well as the same objective
function for both problems since

L
Z Z 2length, = Z Z 2z, oylength, = Z Z 2z length,

leL e€l leL ecE =1 e€F

and

Z ’72(Lturn - Lwait) + Z 2(LgTiVe + Lwait)-‘

el e€E:e€l T
L L
Z ’722 Lturn Lwalt + Z 2556 llength (Ldrlve + Lwalt —‘ — Z dj.
=1 eckE T =1

Hence their optimal objective values coincide. |
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—— Abstract

We study a combinatorial optimization problem that is motivated by the scenario of autonomous
cars driving on a multi-lane highway: some cars need to change lanes before the next intersection,
and if there is congestion, cars need to slow down to make space for those who are changing lanes.
There are two natural objective functions to minimize: (1) how long does it take for all traffic to
clear the road, and (2) the total number of maneuvers. In this work, we present an approximation
algorithm for solving these problems in the two-lane case and a hardness result for the multi-lane
case.
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1 Introduction

Consider a fleet of autonomous vehicles driving on a two-lane highway:

o2

Each car is labeled with a lane number, 1 or 2, indicating where it needs to be before the
next intersection. Our task is to instruct the cars to adjust their speed and change lanes so
that all cars with label ¢ are on lane £:

1 T T

We discretize the traffic by assuming that there is a grid of slots that is moving at some fixed
speed s (for example, s is the speed limit of the highway), and each car occupies one slot
(there are infinitely many free slots behind the last cars):

. T A s -
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If there are no steering maneuvers, each car will remain in its current slot (i.e., it is driving
along the current lane, at a constant speed s). We can use the following maneuvers to alter
the relative positions of the cars.

First, a car that is currently on the wrong lane can switch lanes, assuming there is
an empty slot next to it:

He | g | W | I

Second, any car can slow down a bit to move backwards relative to the traffic around
it, assuming there is an empty slot behind it:

oty

2| @ A

We emphasize that we do not allow cars that are on the right lane to switch lanes any
more; permitting such maneuvers would also give rise to an interesting problem formulation
to be studied in future work.

1.1 Objectives

It is easy to find a feasible solution by following a simple greedy strategy, e.g., for each car x
that is on the wrong lane, slow down all cars behind = on either lane to make space for = to
move to the right lane. However, this is not an optimal strategy in the general case.
We will consider the following objective functions that we would like to minimize:
Makespan: What is the last non-empty slot that is occupied by a car in the final
configuration? Intuitively, we measure here how much do we stretch the traffic, or
equivalently, how long does it take for all traffic to clear the road:

f makespan |

Total cost: What is the total number of steering maneuvers (switching lanes or slowing
down) that we need to solve the problem? Note that in our problem formulation, the
number of lane changes is simply equal to the number of cars on the wrong lane, so the
interesting question is the number of slow-down operations. Intuitively, we measure here
the average delay for the traffic.

To focus on the more interesting algorithmic aspects, we present our algorithms from the
perspective of a global omniscient entity that has a full control over all vehicles. However,
the same ideas can be applied in distributed and online settings.
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1.2 Contributions and open questions

We develop a polynomial-time algorithm for the two-lane version of the lane-changing
problem. The algorithm finds a solution that minimizes the makespan and that is also
a 1.5-approximation of the minimum total cost. Moreover, we show that a natural
multi-lane extension of the problem is NP-hard.

Our work also suggests the following natural question for further research: is it possible
to find an exact solution for the minimum-cost two-lane version in polynomial time?

2 Related work

Tile-sliding puzzles. We note the resemblance between the problem studied by us in this
work and combinatorial puzzles such as the “15-puzzle” [8,17], which is a game that considers
a four by four matrix that has 15 tiles, labeled with numbers from 1 to 15 in an arbitrary
order. The goal of the game is to slide the tiles so that the tiles are ordered. For large-scale
versions of the n-puzzle, finding an optimum solution is NP-hard [13,14]. Our problem can
also be seen as a tile-sliding puzzle, but differs from the 15-puzzle in the following aspects:
many tiles may have the same label, the label only determines the final row (and not column),
and our moves are more restricted (for example, tiles cannot slide right). Feigenbaum et
al. [3] formulated a number of graph problems for the semi-streaming model. Unlike their
model, our problem does not allow a pair of nearby agents to swap cells.

Vehicular control. Problems related to lane-change consider traffic streams from the point
of view of vehicular control [2,6,12], traffic flow control [9], the scheduling of lane changes for
autonomous vehicles [1], assessment of the situation before changing lane [15], and negotiation
before lane changing [16] to name a few. It is often the case, as in [12], that these problems
consider a small set of nearby vehicles that need to coordinate a single lane-change maneuver.
A number of recent efforts, such as the European project AutoNet2030 [16], considers the
need to perform lane changes in congested traffic situations, as we do in this paper. Their
study focuses on distributed mechanisms, i.e., the communication protocols, for enabling
coordinated lane changes whereas this work focuses on the algorithmic question of minimizing
the number of maneuvers.

Traffic models. Cellular automata are often used for microscopic traffic flow prediction [10].
These models resembles the one of the studied problem in the sense that each vehicle occupies
a single cell. However, Nagel [10] considers cellular automata that move the vehicles forward,
whereas our model considers vehicles that can merely change their current lanes or delay —
we do not aim at predicting traffic patterns and just aim at minimizing the number of delays
and lane changes. The systematic approach presented in [11] shows that their lane change
rules can provide “realistic results” with respect to the system ability to offer an accurate
traffic prediction. A complementary approach for studying the effect of lane-change behavior
via cellular automata [7] is the observation of driver behavior [4,18].

3 Preliminaries

Matrix notation. We will interpret the highway as a matrix with two rows and infinitely
many columns; rows correspond to lanes and matrix elements correspond to slots. The rows
are numbered 7 = 1,2 and the columns are numbered 7 = 1,2,.... We use values 1 and 2 to
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denote cars with target lanes 1 and 2, respectively, and we use the symbol o to emphasize
that a slot is empty. For example, the configuration

o2

is represented as a matrix
2 0o 2 2 o -
2 1 1 o o -’
which we may write for brevity simply as
2 o 2 2
2 1 1 of

Legal moves. In the lane-changing problem, we can apply the following operations to any
part of the configuration matrix.

Switch (switch lanes, i.e., move up or down):

BB

Delay (slow down, i.e., move right):

Pairs. A pair is one column of the configuration; an input pair is a column that occurs in
the input. For brevity, a column [} ] is called an (z, y)-pair.

Solution. A feasible configuration is a configuration in which all non-empty slots of row 1
contain label 1, and all non-empty slots of row 2 contain label 2. That is, each car is on its
target lane.

A feasible solution to the lane-changing problem is a sequence of legal moves that turns
the given input configuration into a feasible configuration. The cost of a solution is the
number of moves. The makespan of a solution is the largest j such that column j of the final
configuration contains a car.

4 Roadmap

Three problems. To develop an algorithm for solving the lane-changing problem, it will be

helpful to also consider two variants of it:

P0. The original lane-changing problem, as defined above.

P1. A restricted version of P0: a solution is feasible only if each car that was involved in a
(2,1)-input pair has been delayed at least once.

P2. A relaxed version of P1: multiple cars may occupy the same slot in intermediate
configurations.
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In P2 we will use notation 1%2° to denote a slot with a cars of label 1 and b cars of label 2.
A legal P2-move is hence, for example,

(1323 1525] — 1322 1526].

The final configuration in P2 has to be feasible in the usual sense: each slot contains at most
one car, and each car is in the right lane. Also note that one move can only change the
position of one car.

Simple examples. Consider the input

i

A feasible PO-solution might take, e.g., the following steps (cost 3, makespan 2):

R g R

This would not be a feasible P1-solution, though, as there is a car with label 2 that was part
of a (2,1)-pair in the input but the car was not delayed. A feasible P1-solution might take
the following steps (cost 4, makespan 2):

g T PO B T

In a feasible P2-solution we could also take the following route in which we have multiple
cars in one slot in an intermediate configuration (but this is not any cheaper; we still have
cost 4 and makespan 2):

- [d-[-F 9-F 3
1 12 2 2 o o 2
Preliminary observations. We emphasize that problems P1 and P2 are not interesting in
their own right; we only care about problem P0O. Both PO and P2 can be seen as relaxations
of P1, but they are relaxations of a very different nature:
A feasible solution to P1 is also a feasible solution to PO, but it might take some additional
steps that are only necessary to handle (2, 1)-pairs.
A feasible solution to P1 is also a feasible solution to P2, but it might take some additional
steps that are only necessary to ensure there is at most one car per slot.
At first, P2 and PO seem to be incomparable. A P2-solution is not necessarily a P0-solution,
or vice versa. But as we will see in this work, an algorithm for solving P2 can be a helpful
starting point in solving PO, too.

Key ideas. The key insights of our work are these results that we will prove:
For P2 there is always a solution that simultaneously minimizes both makespan and cost.
Problem P1 can be solved with the same makespan and cost as problem P2.
A makespan-optimal P1-solution is also a makespan-optimal P0-solution.
A cost-optimal P1-solution is also a 1.5-approximation of a cost-optimal P0-solution.
We will use the above ideas to solve problem PO as follows:
In Section 5.1, we design algorithm A2 that will find a P2-solution that is simultaneously
cost-optimal and makespan-optimal.
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In Section 5.2, we design algorithm A1 that finds a Pl-solution that has the same cost
and makespan as the P2-solution returned by A2. As P2 is a relaxation of P1, it follows
that Al returns a cost-optimal and makespan-optimal P1-solution.

Now it is clear that Al also returns a PO-solution, as PO is a relaxation of P1. However,
we will still need to prove that the solution returned by Al is a makespan-optimal
PO-solution and also a 1.5-approximation of a cost-optimal P0-solution. The proof is
given in Section 5.3.

5 Algorithm details

Notation. Let W be the total number of cars that are on the wrong lane in the input
configuration. Any feasible solution contains exactly W switch operations. Hence a minimum-
cost solution is a solution that minimizes the number of delay operations.

5.1 Solving problem P2

Flow equations. Let us first develop some necessary conditions that characterize feasible
solutions for P2 (and hence they are also necessary conditions for a feasible solution of P1).

Consider some feasible solution Y. Let £ = 1,2 be a label. We will consider the flow of
cars of label /:

se(j) is the number of cars of label ¢ in column j in the input configuration,

te(4) is the number of cars of label £ in column j in the final configuration,

fe(4) is the number of times a car of label ¢ is moved from column j to column j + 1.

Recall that the columns are numbered j = 1,2, ..., but for convenience, we also define
fe(0) = 0 so that we can always refer to fy(j — 1). Let us now define the grand total of flow
that we will need to handle at column j:

9e(4) = fe(G = 1) + s0(4)- (1)
As no car is lost or created, flow is conserved:

9e(3) = te(j) + fe(j)- (2)
In the final configuration we have got at most one car per slot:

te(j) < 1. 3)
Hence by (2) and (3) we necessarily have

fe(G) = 9e(5) — 1. (4)

By the definition of problem P1 (and hence P2), cars in (2, 1)-input pairs are always delayed
at least once. To capture this, define the indicator function p as follows:

pe(j) = 1 if there is a (2, 1)-input pair in column j in the input configuration.

Using this notation, we have for each j = 1,2, ...

fe(G) = pe(j)- ()



T. Petig, E. M. Schiller, and J. Suomela

Now ¢ and f may depend on the particular solution Y, but s and p only depend on the
input configuration. For any given input, we can recursively calculate a minimal flow f*
that satisfies (1), (4), and (5):

90() = fi(G—1) +s0(j) forall j =1,2,..., (6)
fi(5) = max{p.(4), 97 (j) — 1} forallj=1,2,.... (7)

Again we follow the convention that f;(0) = 0 so that f;(j — 1) is well-defined for every
column j. Note that for all £ and j and for any feasible flow f, we have by construction
fr(4) < fe(j). Hence we can make the following observations:

» Lemma 1. The cost of any feasible P2-solution is at least W + Zl,j £,

» Lemma 2. For all ¢ and j, if g;(j) > 0, then the makespan of any feasible P2-solution is
at least j.

Algorithm A2. Now it is sufficient to design an algorithm that moves cars precisely according
to the minimal flow f*; if we can do that, the solution will be both cost-optimal and makespan-
optimal.

But this is easy: First each car switches to the right lane; this takes W moves. Then we
follow (6)—(7) for columns j = 1,2, ... in ascending order: first we move f; (1) cars of label ¢
from column 1 to column 2, then we have g;(2) cars of label £ in column 2, etc. If we always
move first those cars that were already present in a given slot in the input configuration, we
will satisfy all constraints of problem P2, including the special rule about (2, 1)-pairs.

We have now algorithm A2 that finds simultaneously cost-optimal and makespan-optimal
solutions for P2. However, this is clearly not a solution for P1, as we may have multiple cars
in one slot in intermediate configurations.

5.2 Solving problem P1

Idea. We now develop algorithm A1l that follows the same minimal flow f*, but schedules
the operations differently so that it produces a feasible solution to problem P1:

Algorithm A2 “pushes” cars starting from the first cars.

Algorithm A1 “pulls” cars starting from the last cars.

Our basic idea is to show that — with a little bit of planning ahead — we can move cars
according to f* without putting multiple cars in one slot.

In the algorithm we will update s, p, f*, and ¢g* as we move cars around so that they
refer to the current configuration, and not the input configuration. Eventually all cars will
be in their final positions, there is no need to move anything, and f* will be zero.

Trivial and tricky pairs. A pair of type (o,1) or (2,0) is called a trivial pair. As the first
step of the algorithm, each trivial pair will switch lanes; hence we eliminate all trivial pairs.
Our algorithm will ensure that whenever we create new trivial pairs, they are also eliminated
immediately.

A pair of type (2,1) is called a tricky pair. We will make sure that the algorithm only
eliminates tricky pairs and never create new tricky pairs. We will use p to keep track of the
tricky pairs that were present in the input: Initially, p;(j) = p2(j) = 1 if we have a tricky
pair in column j. Then whenever we delay a car with label £ in column j, we set pg(j) < 0.
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Active and hot columns. We say that a column j is ¢-active if we have s,(j) > 0 and
fi(4) > 0. A column is active if it is l-active for some ¢.

A column is hot if it is the rightmost (last) active column. The hot column is called ¢-hot
if it is f-active. (Note that there is at most one hot column, and the hot column is 1-hot,
2-hot, or both. Also note that the rightmost 1-active column is not necessarily 1-hot, as
there might be a 2-active column that is further right, and vice versa.)

Intuitively, an active column contains some cars that are not in their final positions, and
the hot column contains the last cars that are not in their final positions. As long as f* is
somewhere nonzero, there has to be an active column, and hence also a hot column.

The following lemmas summarize the key properties that we use.

» Lemma 3. Assume that

there are no trivial pairs,

column j is £-hot,

slot (¢,7) contains a car with label £.
Then slot (¢,7 + 1) has to be empty.

Proof. Assume w.l.o.g. that £ = 1; the case of £ = 2 is analogous.

If column j 4+ 1 contains a car of label 1, then f;(j) + s1(j + 1) > 2, and therefore
fi(G+1) > 1. But this would mean that column j + 1 is active, which contradicts the
assumption that j is hot (i.e., the rightmost active column).

If column j +1 does not contain any car of label 1, but slot (¢, j+ 1) is not empty, the only
possibility is that column j + 1 contains a pair (2,2). But then we would have s3(j + 1) > 2
and f5(j +1) > 1 and again j + 1 would be active. <

» Lemma 4. Assume that
column j 1is hot,
column j contains a tricky pair.
Then column j + 1 has to be empty.

Proof. The tricky pair implies that f;(j) > 1 and f5(j) > 1. If column j + 1 contains a car
with label ¢ in the current configuration, we will have s¢(j + 1) > 1, and hence g;(j + 1) > 2
and f;(j+1) > 1. Therefore, column j + 1 would be active, which contradicts the assumption
that j is hot (i.e., the rightmost active column). <

Algorithm Al. If we do not have any hot columns, we are done. Otherwise, let j be an
£-hot column. Our goal is to show that the algorithm can make progress and delay at least
one car in the hot column. We have two cases:

1. Slot (¢,7) contains a car with label ¢: By Lemma 3, we can delay the car with label ¢ in

row /.
1
o . o 1 ’ T Yy . Ty
T Yy Ty 2 o o 2
This cannot create tricky or trivial pairs in column j 4 1. If this resulted in a trivial pair
in column j, the algorithm then eliminates it with a switch, e.g.:

IR
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2. Slot (£, 7) does not contain a car with label ¢: By the definition of an ¢-hot column, there
has to be a car £ somewhere in column j, and as we do not have trivial pairs, we must
have a tricky pair. By Lemma 4 column j + 1 is empty. Hence we can move car 1 from
column 5 to column j + 1, and this creates trivial pairs in both column j and column
j+ 1. Then we perform two switch operations to eliminate the trivial pairs:

RS g [ R g

(Note that here car 2 is not in its final position, p(5) is still nonzero, the column remains
active, it will eventually become hot, and the car will be moved right.)

Hence in all cases the algorithm can move at least one car, and we can calculate each
move efficiently. By construction, both the cost and the makespan of algorithm A1l are the
same as in the solution returned by algorithm A2:; as A2 solved P2 optimally, and P2 is a
relaxation of P1, we conclude that A1l solves P1 optimally.

5.3 Solving problem P0O

Recall that PO is a relaxation of P1. Hence we can directly use algorithm A1 to solve also PO.
The following lemma shows that any Pl-optimal solution is also a relatively good solution
for PO.

» Lemma 5. Assume that there is a solution X for PO that uses W switch operations and
D delay operations and has a makespan M. Then it is possible to find a solution Y for
P1 that uses W switch operations and at most D + min(D, W) delay operations and has a
makespan M.

To prove the lemma, we show how to modify X to construct Y. We begin with definitions.

Bad cars and bad blocks. Consider the trajectories of the cars in solution X.

We say that a car is switch-only if it only switches lanes once and is never delayed. For
example, a switch-only car with label 2 was initially in slot (1, 7) for some j, and in the final
configuration it is in slot (2, j) for the same j. Note that each column contains at most one
switch-only car.

We say that a switch-only car is bad if it is part of a (2, 1)-input pair. We may have such
in PO-solution X but we must not have them in P1-solution Y.

A bad block of type € is a range of columns j,j 4+ 1,...,k — 1 such that:

1. Column j contains a bad car with label 4.

2. Each of columns j + 1,...,k — 1 contains a switch-only car with label £. (Some of these
cars may also be bad.)

3. Column k does not contain any switch-only cars with label ¢. (Note that this column
may contain a switch-only car of the opposite type, and it may be bad.)

For brevity, we write [j, k) for the range of columns 7,5+ 1,...,k — 1. Note that if we have

a bad car in column j, we can always find some k such that [j, k) is a bad block.

Eliminating bad blocks. Our plan is that we identify the first bad block, and manipulate
the solution locally so that none of the columns [j, k) contain any bad cars. Then we repeat
this until there are no bad blocks (and hence no bad cars) left.
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Consider the first bad block [j, k) that we have not yet eliminated; we write L = k — j
for the length of the bad block. W.l.o.g., assume that the bad car in column j has label 2;
the other case is analogous. The input configuration of the bad block looks like

i g+ k—1
[2 2 2 ]
1 ?2 ... 2
and an output configuration of the block looks like
i g+ k—1
? 77
[ 2 2 .2 ] '

Consider the trajectory of the car 1 that was originally in column j; this is called the leading
car. The leading car was moved from column j to column j + 1 before the switch-only cars
in columns j and j + 1 moved. It was also moved from column j + 1 to column j 4 2 before
the switch-only cars in columns j + 1 and j + 2 moved, etc. In the final configuration the
leading car has to be outside the bad block. Inside the bad block, solution X performs at
least L switch operations (L switch-only cars) and at least L delay operations (one leading

car moved L times). Note that in our bookkeeping, we associate the cost of a delay operation
with the source column.

Case 1: Empty slot follows. Now first consider the possibility that slot (2, k) is empty in
the final configuration. Then we can eliminate all bad cars within the bad block with L
additional delay operations: delay the cars in (2,k — 1), (2,k —2), ..., (2,7) in this order.
In essence, we turn

i 41 k—1 k

? ? ? ?

2 2 2 o
into

i g+l k-1 k

? ? ? ?

o 2 ... 2 | 2]

Note that we modify column k which is outside the current bad block, and there might be
another bad block starting at column k. However, it can be verified that what we do with
block [4, k) is compatible with what we do with the block starting at k.

Case 2: Non-empty slot follows. Now assume that slot (2,%) is occupied in the final
configuration; let us call it the trailing car. It has to be a car with label 2:

i 1 k—1 k
YO U N I
2 2 ... 2 |2l

By definition, it is not a switch-only car. Also the trailing car was not there initially;
otherwise it would have blocked the path of the leading car.

Working backwards from the final position of the trailing car, we can see that the trailing

car had to be the last car that occupied slot (2,k — 1) before the switch-only car in column
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k — 1 moved there, and it also had to be the last car that occupied slot (2,k — 2) before
the switch-only car in column k& — 2 moved there, etc. The trailing car could not have been
originally position in any of these slots, as it would have blocked the way of the leading car.
Hence at some point the trailing car followed the path (2,7 —1) — (2,5) — ... = (2,k), and
in each column the switch-only cars moved only after the trailing car was gone.

To recap, we have got in total L + 1 cars with label 2 that were in some intermediate
configuration placed as follows; we denote the trailing car with 2*:

j—1 j j+1 k—1 k
2 2 2 ... 92|72 (8)
2 |2 2 .72 2|

The trailing car moves rightwards, and the switch-only car in column k — 1 switches lanes.
At some point we reach the following configuration; here 27 denotes a slot that is either
empty (a switch-only car has not switched yet) or it contains a car with label 2:

i1 § 441 k-1 &k
2?2 2 .. o |7
?2 122 27 ... 2 |o2¢|

Finally, the cars end up in the following positions:

(9)

j—1 J J+1
2 2 2 ... 2|
2 12 2 ... 2 ||

The key observation is this: at all points between configurations (8) and (9), the switch-
only cars and the trailing car together form a barrier that blocks both lanes. Let us make
this a bit more formal. Classify the cars in (8) as follows:

(10)

Jj=2 Jj—1 J Jj+1 k—1 k k+1
left left middle middle middle | right right
left middle | right right right | right right

Now left cars cannot move beyond column k — 2 until we reach configuration (9), while all
right cars will be in columns k, k + 1,... in configuration (9). The left and the right cars do
not interact between (8) and (9); they are always separated by the middle cars (which do
not move beyond column k).

Let us modify the solution as follows: we skip all moves related to left and middle cars
between (8) and (9); only right cars are permitted to move. We will reach the following
configuration instead of (9); note that we have cleared the part below the switch-only cars:

j-1  j 41 k-1 k&
? 2 2 2 ?
2% o o o o

Then we move the rightmost switch-only car down and right:

j—1  § 41 k-1 &
? 2 2 o ?
2% o o o 2|

We repeat this for each switch-only car in columns k — 2, k — 3, ..., j, and finally we move
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the trailing car right. We reach the following configuration:

j-1 41 k=1 k
? o o -+ o0 ?
o | 2* 2 ... 2 2
Now we have handled right cars (following their original schedule) and middle cars (following

a new schedule). Finally we perform all operations between (8) and (9) that were related to
the left cars, and we reach a configuration like this:

j—1  § o+ k-1 k&
? ? ?7 ... o ?
?ol2r 2 ... 2 | 2|
Then we continue with the operations after (9), skipping those related to the middle cars,
and we reach configuration of the following form:

i-1 i j+1 k-1 k&
? ? 77 ?
[? 22 ... 2 2]
The only difference in comparison with (10) is that the trailing car is left in column j, and
switch-only cars have moved right by one step. Hence none of them are bad any more.
Now let us see what we achieved. We constructed another solution in which one bad
block of length L was eliminated. We performed L additional delay operations with the

switch-only cars, but on the other hand we saved L delay operations with the trailing car;
hence the new solution has the same cost as the original solution.

Concluding the proof. For each bad block we do either L or 0 additional delay operations,
and the block already contained at least L delay and L switch operations. Summing over
all bad blocks, if they contain D delay and W switch operations in total, we do at most
min(D, W) additional delay operations. The claim related to the number of operations
follows.

Finally, we observe that the modified solution has the same makespan as the original
solution; note that if we have a bad block [j, k), then the makespan of the solution has to
be at least k, and we do not move any cars beyond column k. This concludes the proof of
Lemma 5.

» Corollary 6. Let Y be a solution for P1 that is simultaneously makespan-optimal and
cost-optimal. Then Y is also a feasible makespan-optimal solution for P0O. Furthermore, the
total number of moves in'Y is at most 1.5 times the total number of moves in a cost-optimal
PO solution.

Proof. If the optimum cost of PO is W + D moves, by Lemma 5 there is a solution for P1
with at most W + D + min(D, W) < 1.5(W + D) moves. Hence the optimum of P1 is at
most 1.5 times as expensive as the optimum of P0. By Lemma 5 we also have the same
makespan. |

In particular, if can use algorithm A1l to find an optimal P1-solution Y, and then apply
Corollary 6 to show that the solution is a good approximation also for PO.
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The 200

Xy

I Figure 1 Reduction from the minimum vertex cover problem in 3-regular graphs. For each node

(here labeled A, B, C, D) we construct a cavity that holds three orange cars, one per incident edge.

Blue and black cells are cars that are already on their target lanes and hence they can only move
right (delay). We label the edges arbitrarily with numbers 1,2,. .., m; these correspond to the lowest
m lanes. If edge number ¢ connects nodes u and v, then there is one orange car with label ¢ in cavity
u and one orange car with label £ in cavity v. These will need to reach lane £. There are two good
routes, shown with orange arrows, one that takes the orange car to column = and one that takes the
orange car to column y. To reach column x we will need to delay the black car that is blocking the
way. One of the cars has to reach column z; hence for each edge {u,v} we will need to move the
black car in front of cavity w or cavity v. The set of cavities in which we have moved black cars
forms a vertex cover; conversely, if we have a vertex cover of size k it is sufficient to move only k&
black cars. To complete the proof, one has to check that the blue “walls* are sufficiently thick so
that any solution that involves moving blue car is strictly worse than a solution that only moves
black and orange cars.
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6 Hardness of the multi-lane version

To conclude this work, we will briefly look at what happens when we generalize the lane-
changing problem from two lanes to multiple lanes. Assume that we have k lanes, and the
cars are labeled with targets {1,2,...,x}. The operations are a natural generalization of the
two-lane case: we can delay car if there is empty slot after it, and we can move an agent
sideways if there is empty space in an adjacent lane. We can only move agents sideways
towards their target lane, not away from it.

We will now show that minimizing the total cost for this generalization is NP-hard; we
only sketch the key ideas of the argument. The proof is by reduction from the minimum
vertex cover problem in 3-regular graphs — this special case of the vertex cover problem is
known to be NP-hard [5]. Given a 3-regular graph G with n nodes, we construct a multi-lane
instance as shown in Figure 1. If and only if there is a vertex cover of size at most k for
graph G, we can route the orange cars to their target lanes so that (1) none of the blue cars
are moved, (2) exactly k black cars are delayed once. The construction has sufficiently thick
“walls” formed by blue cars such that if we try to move blue cars to make space for orange
cars, the cost will be higher than the solution obtained by the above strategy for the trivial
vertex cover of size k = n.
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—— Abstract

We study a problem that models safely routing a convoy through a transportation network,
where any vertex adjacent to the travel path of the convoy requires additional precaution: Given
a graph G = (V, E), two vertices s,t € V, and two integers k, ¢, we search for a simple s-t-
path with at most k vertices and at most ¢ neighbors. We study the problem in two types of
transportation networks: graphs with small crossing number, as formed by road networks, and
tree-like graphs, as formed by waterways. For graphs with constant crossing number, we provide
a subexponential 29(V")_time algorithm and prove a matching lower bound. We also show a
polynomial-time data reduction algorithm that reduces any problem instance to an equivalent
instance (a so-called problem kernel) of size polynomial in the vertex cover number of the input
graph. In contrast, we show that the problem in general graphs is hard to preprocess. Regarding
tree-like graphs, we obtain a 200" . ¢2 . p_time algorithm for graphs of treewidth tw, show that
there is no problem kernel with size polynomial in tw, yet show a problem kernel with size
polynomial in the feedback edge number of the input graph.
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1 Introduction

Finding shortest paths is a fundamental problem in route planning and has extensively been
studied with respect to efficient algorithms, including data reduction and preprocessing [1].
In this work, we study the following NP-hard variant of finding shortest s-t-paths.

» Problem 1.1 (SHORT SECLUDED PATH (SSP)).

Input: An undirected, simple graph G = (V, E) with two distinct vertices s,t € V', and two
integers k > 2 and ¢ > 0.

Question: Is there an s-t-path P in G such that |[V(P)| < k and |[N(V(P))| < £?

Herein, V(P) denotes the set of vertices on path P and N(V(P)) denotes their set of
neighbors (not lying on P).

The problem can be understood as finding short and safe routes for a convoy through
a transportation network: each neighbor of the convoy’s travel path requires additional
precaution. Thus, we seek to minimize not only the length of the convoy’s travel path, but
also its number of neighbors. In our work, we study the above basic, unweighted variant, as
well as a weighted variant of the problem, in which each vertex has two weights: one counts
towards the path length, the other models the cost of precaution that has to be taken when
the vertex occurs as the neighbor of the travel path.

Almost planar and tree-like transportation networks. The focus of our work is two-fold.
Firstly, since the problem is NP-hard, we search for efficient algorithms in graphs that are likely
to occur as transportation networks: almost planar graphs, which occur as road networks,
and tree-like graphs, which arise as waterways (ignoring the few man-made canals, natural
river networks form forests [23]). Secondly, given the effect that preprocessing and data
reduction had to fundamental routing problems like finding shortest paths [1], we study the
possibilities of polynomial-time data reduction with provable performance guarantees for SSP.

In order to measure the running time of our algorithms with respect to the “degree
of planarity” or the “tree-likeness” of a graph, as well as to analyze the power of data
reduction algorithms, we employ parameterized complexity theory, which provides us with
the concepts of fized-parameter algorithms and problem kernelization [16, 20, 39, 12]. Fixed-
parameter algorithms have recently been applied to numerous NP-hard routing problems
[30, 28, 29, 27, 3, 42,41, 4, 15, 5, 26]. In particular, they led to subexponential-time algorithms
for fundamental NP-hard routing problems in planar graphs [33] and to algorithms for hard
routing problems that work efficiently on real-world data [3].

Fixed-parameter algorithms. The main idea of fixed-parameter algorithms is to accept the
exponential running time seemingly inherent to solving NP-hard problems, yet to restrict the
combinatorial explosion to a parameter of the problem, which can be small in applications.
We call a problem fized-parameter tractable if it can be solved in f(k) - n°(") time on inputs
of length n and some function f depending only on some parameter k. In contrast to an
algorithm that merely runs in polynomial time for fixed k, fixed-parameter algorithms can
solve NP-hard problems quickly if k£ is small.
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Table 1 Overview of our results. Herein, n, tw, vc, fes, cr, and A denote the number of vertices,
treewidth, vertex cover number, feedback edge number, the crossing number, and maximum degree
of the input graph, respectively. “const.” abbreviates “constant”.

On almost planar graphs (Sec. 2) on tree-like graphs (Sec. 3)

exact solution  2°V™ time in graphs with const. cr (Thm. 2.1) 294 . ¢2 . time (Thm. 3.2)
problem kernel  size vc©() in K, -free graphs (Thm. 2.5) size fes®® (Thm. 3.13)

lower bounds  No kernel with size poly(vc + r) in K, -free No kernel with size poly(tw +
graphs and WK[1]-hard when parameterized k + ¢) even in planar graphs
by vc + r (Thm. 2.14) with const. A (Thm. 3.10)

Provably effective polynomial-time data reduction. Kernelization allows for provably
effective polynomial-time data reduction. Note that a result of the form “our polynomial-
time data reduction algorithm reduces the input size by at least one bit, preserving optimality
of solutions” is impossible for NP-hard problems unless P = NP. In contrast, a kernelization
algorithm reduces a problem instance into an equivalent one (the problem kernel) whose
size depends only (ideally polynomially) on some problem parameter. Problem kernelization
has been successfully applied to obtain effective polynomial-time data reduction algorithms
for many NP-hard problems [25, 34] and also led to techniques for proving the limits of
polynomial-time data reduction [7, 38, 9].

1.1 OQur contributions

We study SSP (and a weighted variant) in two main classes of graphs: almost planar graphs
and tree-like graphs. We refer to Table 1 for an overview on our main results. Regarding
almost planar graphs, in graphs of constant crossing number, we show that (even the weighted
version of) SSP is solvable in subexponential 20(v)_time. Moreover, we prove that SSP
is not solvable in 2°(vV™)_time in planar graphs unless the Exponential Time Hypothesis fails.
In K, ,-free graphs, which comprise the graphs with crossing number O(r?®) [40], we show
a problem kernel for SSP with size vc®(") | where vc is the vertex cover number of the input
graph. We prove that, unless the polynomial-time hierarchy collapses, there is no problem
kernel of size polynomial in vc + r. Moreover, we prove that, unless the classes FPT and
WK]1] coincide, SSP does not even allow for Turing kernels with size polynomial in vc + r;
that is, we could not solve SSP in polynomial time even if we precomputed all answers to
subproblems of size polynomial in vc+ 7 and could look them up in constant time. Regarding
tree-like graphs, we prove that SSP is solvable in 29(*") . ¢2. , time in graphs of treewidth tw
and that there is no problem kernel with size polynomial in tw. Instead, we show a problem
O(l), where fes is the feedback edge number of the input graph.

Due to space constraints, results marked with (x) are deferred to a full version of the paper.

kernel of size fes

1.2 Related work

Several classical graph optimization problems have been studied in the “secluded” (small
closed neighborhood) and the “small secluded” (small set with small open neighborhood)
variants [2]. Luckow and Fluschnik [37] first defined SSP and analyzed its parameterized
complexity with respect to the parameters k and £. In contrast, we study problem parameters
that describe the structure of the input graphs and are small in transportation networks.
Chechik et al. [11] introduced the SECLUDED PATH problem, that, given an undirected
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graph G = (V, FE) with two designated vertices s,t € V, vertex-weights w : V' — N, and
two integers k, C' € N, asks whether there is an s-t-path P such that the size of the closed
neighborhood | N[V (P)]| < k and the weight of the closed neighborhood w(N[V (P)]) < C.
Fomin et al. [21], in particular, prove that SECLUDED PATH does not admit problem kernels
with size polynomial in the vertex cover number ve. Our negative results on kernelization for
SSP are significantly stronger: not only do we show that there is no problem kernel of size
polynomial in vc+ 7 even in bipartite K, ,-free graphs, we also show that SSP is WK][1]-hard
parameterized by ve + r. Golovach et al. [24] studied the “small secluded” scenario for
finding connected induced subgraphs parameterized by the size ¢ of the open neighborhood.
Their results obviously does not generalize to SSP, since SSP is NP-hard even for ¢ = 0 [37].

1.3 Preliminaries

Graph Theory. We use basic notation from graph theory [14]. We study simple, finite,
undirected graphs G = (V, E). We denote by V(G) := V the set of vertices of G and by
E(G) := FE the set of edges of G. We denote n := |V| and m := |E|. For any subset U CV
of vertices, we denote by Ng(U) = {w € V\U | Jv € U : {v,w} € E} the open neighborhood
of U in G. When the graph G is clear from the context, we drop the subscript G. Aset U CV
of vertices is a verter cover if every edge in F has an endpoint in U. The size of a minimum
vertex cover is called vertex cover number ve(G) of G. A set FF C E of edges is a feedback
edge set if the graph (G, E \ F) is a forest. The minimum size of a feedback edge set in
a connected graph is m — n + 1 and is called the feedback edge number fes(G) of G. The
crossing number cr(G) of G is the minimum number of crossings in any drawing of G into
the plane (where only two edges are allowed to cross in each point). A path P = (V, E)
is a graph with vertex set V' = {zo,x1,...,2,} and edge set E = {{z;,zi+1} | 0 < i < p}.
We say that P is an xg-zp-path of length p. We also refer to xg, z, as the end points of P,
and to all vertices V' \ {zo,z,} as the inner vertices of P. A K, , is a complete bipartite
graph G = (U WV, E) with |U| = |V| = r. We say that a graph is K, ,-free if it does not
contain K, , as a subgraph.

Parameterized Complexity Theory. For more details on parameterized complexity, we refer
to the text books [16, 20, 39, 12]. Let X be a finite alphabet. A parameterized problem L
is a subset L C ¥* x N. An instance (z,k) € ¥* x N is a yes-instance for L if and only
if (x,k) € L. We call x the input and k the parameter.

» Definition 1.2 (fixed-parameter tractability, FPT). A parameterized problem L C ¥* x N
is fized-parameter tractable if there is a fixed-parameter algorithm deciding (z,k) € L in time
f(k) - |z|°M. The complexity class FPT consists of all fixed-parameter tractable problems.

» Definition 1.3 (kernelization). Let L C ¥* x N be a parameterized problem. A kernelization
is an algorithm that maps any instance (z,k) € £* x N to an instance (z/, k') € ¥* x N in
poly(|z| + k) time such that

(i) (z,k)e L < (a/,k') € L', and

(ii) |2'| + &' < f(k) for some computable function f.
We call (2', k') the problem kernel and f its size.

Basic observations. We may assume our input graph to be connected due to the following
obviously correct and linear-time executable data reduction rule.

» Reduction Rule 1.4. If G has more than one connected component, then delete all but
the component containing both s and ¢ or return no if such a component does not exist.



R. van Bevern, T. Fluschnik, and O. Yu. Tsidulko

2  Almost planar graphs

Many transportation networks such as rail and street networks are planar or at least have
a small crossing number — the minimum number of edge crossings in a plane drawing of a
graph. Unfortunately, SSP remains NP-hard even in planar graphs with maximum degree
four and ¢ = 0 [37].

In this section, we present algorithms for SSP in graphs with constant crossing number.
These, in particular, apply to planar graphs. First, in Section 2.1, we present a subexponential-
time algorithm and a matching lower bound. Second, in Section 2.2, we present a provably
effective data reduction algorithm. Finally, in Section 2.3, we show the limits of data
reduction algorithms for SSP in graphs with small but non-constant crossing number.

2.1 A subexponential-time algorithm

In this section, we describe how to solve SSP in subexponential time in graphs with constant
crossing number.

» Theorem 2.1. SHORT SECLUDED PATH is solvable in 2°V™) time on graphs with constant
crossing number.

We will also see a matching lower bound. To prove Theorem 2.1, we exploit that graphs with
constant crossing number are H-minor free for some graph H.

» Definition 2.2 (graph minor). A graph H is a minor of a graph G if H can be obtained
from G by a sequence of vertex deletions, edge deletions, and edge contractions. If a graph G
does not contain H as a minor, then G is said to be H-minor free.

Bokal et al. [10] showed that, if a graph G contains K, , as a minor, then the crossing
number of G is cr(G) > 3(r —2)%. Thus, any graph G is K, ,-minor free for 7 > \/2cr(G) +2,
which goes in line with the well-known fact that planar graphs are K3 g-minor free [43)].
Demaine and Hajiaghayi [13] showed that, for any graph H, all H-minor free graphs have
treewidth tw € O(y/n).! To prove Theorem 2.1, it thus remains to show that SSP is solvable
in 20%) . poly(n) time, which is the main technical work deferred to Section 3.1.

Complementing Theorem 2.1, we can show a matching lower bound using the Exponential
Time Hypothesis (ETH).

» Conjecture 2.3 (Exponential Time Hypothesis (ETH), Impagliazzo et al. [32]). There is a
constant ¢ such that n-variable 3-SAT cannot be solved in 2°+™) time.

The ETH was introduced by Impagliazzo et al. [32] and since then has been used to prove
running time lower bounds for various NP-hard problems (we refer to Cygan et al. [12,
Chapter 14] for an overview). We use it to prove that Theorem 2.1 can be neither significantly
improved in planar graphs nor generalized to general graphs.

» Theorem 2.4. Unless the Fxponential Time Hypothesis fails, SHORT SECLUDED PATH
has no 2°Y™ _time algorithm in planar graphs and no 2°"t™ _time algorithm in general.

! In fact, they showed tw € O(/q) for any graph parameter g that is Q(p) on a (/p x /p)-grid and does
not increase when taking minors. For example, the vertex cover number or feedback vertex number.
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Proof. Assume that there is a 2°(vV™)_time algorithm for SSP in planar graphs and a 2°(")-
time algorithm for SSP in general graphs. Luckow and Fluschnik [37] give a polynomial-time
many-one reduction from HAMILTONIAN CYCLE to SSP that maintains planarity and
increases the number of vertices and edges by at most a constant. Thus, we get a 2°0vV™)_time
algorithm for HAMILTONIAN CYCLE in planar graphs and a 2°("*™)_time algorithm in general
graphs. This contradicts ETH [12, Theorems 14.6 and 14.9]. |

2.2 Effective data reduction

In the previous section, we have shown a subexponential-time algorithm for SSP in graphs
with constant crossing number. There, we exploited the fact that graphs with crossing
number cr are K, ,-minor free for r > V2cr + 2. Of course, this means that they neither
contain K., as subgraph (indeed, one can show this even for r > 3.145 - ¥/cr using bounds
from Pach et al. [40]).

In this section, we show how to reduce any instance of SSP in K, ,-free graphs to an
equivalent instance with size polynomial in the vertex cover number of the input graph. In
the next section, we prove that this does not generalize to general graphs.

» Theorem 2.5. For each constant r € N, SHORT SECLUDED PATH in K, .-free graphs
admits a problem kernel with size polynomial in the vertex cover number of the input graph.

The proof of Theorem 2.5 consists of three steps. First, in linear time, we transform an
n-vertex instance of SSP into an equivalent instance of an auxiliary vertex-weighted version of
SSP with O(vc") vertices. Second, using a theorem of Frank and Tardos [22], in polynomial
time, we reduce the vertex weights to 2°0”) so that the total instances size (in bits)
becomes O(ve?™). Finally, since SSP is NP-complete in planar, and, hence, in K3 3-free
graphs, we can, in polynomial time, reduce the shrunk instance back to an instance of the
unweighted SSP in K, ,-free graphs. Due to the polynomial running time of the reduction,
there is at most a polynomial blow-up of the instance size.

Our auxiliary variant of SSP allows each vertex to have two weights: one weight counts
towards the length of the path, the other counts towards the number of neighbors:

» Problem 2.6 (VERTEX-WEIGHTED SHORT SECLUDED PATH (VW-SSP)).

Input: An undirected, simple graph G = (V, E) with two distinct vertices s,t € V| two
integers k > 2 and ¢ > 0, and vertex weights k: V — Nand A: V — N.

Question: Does G have an s-t-path P with }_ i p) £(v) <k and 32, oy (py) Alv) < €7

Note that an instance of SSP can be considered to be an instance of VW-SSP with unit

weight functions k and A. Our data reduction will be based on removing twins.

» Definition 2.7 (twins). Two vertices u and v are called (false) twins if N(u) = N(v).

As the first step towards proving Theorem 2.5, we will show that the following data reduction
rule, when applied to a K, ,-free instance of SSP for constant r, leaves us with an instance
of VW-SSP with O(vc") vertices.

» Reduction Rule 2.8. Let (G, s,t,k,¢,k,\) be an VW-SSP instance with unit weights,
where G = (V, E) is a K, ,-free graph.

For each maximal set U C V' \ {s,t} of twins such that |[U| > r, delete |U| —r + 1
vertices of U from G, and, for an arbitrary remaining vertex v € U, set A(v) := |U| — r and
k(v) =k + 1.

» Lemma 2.9 (x). Reduction Rule 2.8 is correct and can be applied in linear time.
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We now prove a size bound for the instances remaining after Reduction Rule 2.8.

» Proposition 2.10. Applied to an instance of SSP with a K, ,-free graph with vertex
cover number vc, Reduction Rules 2.8 and 1.4 yield an instance of VW-SSP on at most
(ve+ 2) + r(ve+ 2)" vertices in linear time.

Proof. Let (G',s,t,k, £, N, k") be the instance obtained from applying Reduction Rules 2.8
and 1.4 to an instance (G, s,t,k,{, \, k).

Let C be a minimum-cardinality vertex cover for G’ that contains s and ¢, and let the
vertex set of G’ be V.= CWY. Since G’ is a subgraph of G, one has |C| < v¢(G') +2 <
ve(G) 4+ 2 = ve + 2. It remains to bound |Y|. To this end, we bound the number of vertices
of degree at least r in Y and the number of vertices of degree exactly ¢ in Y for each
i €{0,...,7 —1}. Note that vertices in Y have neighbors only in C.

Since Reduction Rule 1.4 has been applied, there are no vertices of degree zero in Y.

Since Reduction Rule 2.8 has been applied, for each i € {1,...,r—1} and each subset C’ C
C with |C’| = i, we find at most r vertices in Y whose neighborhood is C’. Thus, for
each i € {1,...,r — 1}, the number of vertices with degree 7 in Y is at most r - (‘?l).

Finally, since G is K, ,-free, any r-sized subset of the vertex cover C has at most
r — 1 common neighbors. Hence, since vertices in Y have neighbors only in C', the number of
vertices in Y of degree greater or equal to r is at most (r — 1) - (If‘). We conclude that

r—1

V| <IC|+ (r—1)- ('f') +rey (f) < (ve+2) +r(ve+2)". <

i=1

This completes the first step of the proof of Theorem 2.5. Note that our data reduction
works by “hiding” an unbounded number of twins in vertic