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Preface

Running and optimizing transportation systems give rise to very complex and large-scale
optimization problems requiring innovative solution techniques and ideas from mathematical
optimization, theoretical computer science, and operations research. Since 2000, the series of
Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS)
workshops brings together researchers and practitioners who are interested in all aspects
of algorithmic methods and models for transportation optimization and provides a forum
for the exchange and dissemination of new ideas and techniques. The scope of ATMOS
comprises all modes of transportation.

The 18th ATMOS workshop (ATMOS’18) was held in connection with ALGO’18 and
hosted by Aalto University in Helsinki, Finland, on August 23–24, 2018. Topics of interest
were all optimization problems for passenger and freight transport, including, but not limited
to, demand forecasting, models for user behavior, design of pricing systems, infrastructure
planning, multi-modal transport optimization, mobile applications for transport, conges-
tion modelling and reduction, line planning, timetable generation, routing and platform
assignment, vehicle scheduling, route planning, crew and duty scheduling, rostering, delay
management, routing in road networks, traffic guidance, and electro mobility. Of particular
interest were papers applying and advancing techniques like graph and network algorithms,
combinatorial optimization, mathematical programming, approximation algorithms, methods
for the integration of planning stages, stochastic and robust optimization, online and real-time
algorithms, algorithmic game theory, heuristics for real-world instances, and simulation tools.

There were twenty-nine submissions from eighteen countries. All of them were reviewed
by at least three referees in ninety-one reviews, among them five external ones, and judged
on their originality, technical quality, and relevance to the topics of the workshop. Based
on the reviews, the program committee selected sixteen submissions to be presented at
the workshop (acceptance rate: 55%), which are collected in this volume in the order in
which they were presented. Together, they quite impressively demonstrate the range of
applicability of algorithmic optimization to transportation problems in a wide sense. In
addition, Dennis Huisman kindly agreed to complement the program with an invited talk on
Railway Disruption Management: State-of-the-Art in Practice and New Research Directions.

Based on the reviews, Ralf Borndörfer, Marika Karbstein, Christian Liebchen, and Niels
Lindner won the Best Paper Award of ATMOS’18 with their paper A Simple Way to Compute
the Number of Vehicles That Are Required to Operate a Periodic Timetable. In addition, we
awarded Tomas Lidén the Best VGI Paper Award of ATMOS’18 for his paper Reformulations
for Integrated Planning of Railway Traffic and Network Maintenance.

We would like to thank the members of the Steering Committee of ATMOS for giving us
the opportunity to serve as Program Chairs of ATMOS’18, all the authors who submitted
papers, Dennis Huisman for accepting our invitation to present an invited talk, the members
of the Program Committee and the additional reviewers for their valuable work in selecting
the papers appearing in this volume, our sponsors MODAL, TomTom, and VGIscience for
their support of the prizes, and the local organizers for hosting the workshop as part of
ALGO’18. We acknowledge the use of the EasyChair system for the great help in managing
the submission and review processes, and Schloss Dagstuhl for publishing the proceedings of
ATMOS’18 in its OASIcs series.
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Tomas Lidén
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Abstract
This paper addresses the capacity planning problem of coordinating train services and network
maintenance windows for a railway system. We present model reformulations, for a mixed in-
teger linear optimization model, which give a mathematically stronger model and substantial
improvements in solving performance – as demonstrated with computational experiments on a
set of synthetic test instances. As a consequence, more instances can be solved to optimality
within a given time limit and the optimality gap can be reduced quicker.
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1 Introduction

Scheduling access to a railway infrastructure, commonly termed capacity planning, is the
core tactical planning problem for all railway systems and can be seen as a resource planning
for the infrastructure components (stations, lines, yards, tracks, switches, signalling blocks
etc). Capacity planning includes producing a timetable for the train traffic and access (or
possession) plans for maintenance and work tasks. Timetables and possession plans will in
turn form the basis for other resource plans, such as rolling stock plans and crew schedules for
the train operators as well as equipment and work force plans for maintenance and renewal
contractors.

Train services and maintenance tasks should ideally be planned together, but have
mostly been treated as separate planning problems. While planning of train operations has
been extensively studied in the research literature [2, 3, 4, 5, 6], there has been much less
focus on maintenance planning [8]. As for the joint planning of train services and network
maintenance there are a few examples, which consider the introduction of a small number of
work possessions into an existing train timetable [7, 11] or operative plan [1], by allowing
different types of adjustments to the trains.

This research focuses on the long term tactical coordination of a large volume of main-
tenance windows and train services on a railway network. An example of how such plans
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1:2 Reformulations for Railway Traffic and Maintenance Planning

Figure 1 Train and work graph example.

might look is given in Figure 1, as a train and work graph. The geographic distance and
sectioning into links is shown on the vertical axis while time is on the horizontal axis. Train
services are shown as tilted lines while maintenance windows are shown as yellow boxes. In
this case no trains are allowed to run “through” the maintenance windows.

An initial MILP model that solves this coordination problem to optimality has been
presented in [9]. Model extensions for assigning maintenance crew resources and considering
their costs and limitations regarding spatial availability as well as work and rest time
regulations are treated in [10]. The latter model also has a stronger formulation for the train
and maintenance window scheduling, but that paper only briefly summarizes these model
improvements. In this paper we describe and compare the two formulations more closely.

The original model, which we here denote with ORG, uses cumulative train entry/exit
variables (for each link and time period) and implicit link usage variables for the train
scheduling. The improved model, which we denote with IMP, instead uses binary train
entry/exit detection variables and explicit link usage variables. These changes increase the
number of variables and decrease the number of constraints. The linear relaxation does
not become tighter, but the MILP solver benefits from having more binary variables to
branch on, a better linking of constraints and some possibilities for pruning due to the binary
restrictions.

The main improvement in IMP concerns the maintenance scheduling part. First of all,
some coupling constraints have been aggregated, but more importantly a tighter formulation
has been used for the maintenance work and window start variables – according to the
modelling for bounded up/down sequences as presented in [12, section 11.4, pp 341–343] and
mathematically analysed in [13]. These improvements do make the linear relaxation tighter
and in addition the MILP solver presolve method is able to reduce the size more effectively.

The net effect of these model improvements is that the solution performance gets better,
more instances can be solved to optimality within a given time limit and the optimality gap
can be reduced quicker.

The remainder of the paper is organised as follows: Section 2 gives the mathematical
formulation by first introducing the necessary notation and giving an overview of the model
structure. Then the reformulation for the train scheduling part is described, followed by the
changes for the maintenance window scheduling part. The computational experiments are
presented in Section 3 after which some concluding remarks are made.
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2 Mathematical formulation

2.1 Notation and model structure
The railway network is modelled by a link set L, where a subset of links LM ⊆ L shall have
maintenance windows. The scheduling problem has a planning horizon of length H, divided
into a sequence T = {0, . . . ,H − 1} of unit size time periods t ∈ T , each covering real-valued
event times between t and t+ 1.

For each link l ∈ LM , a required number of time periods shall have maintenance windows.
The scheduling shall be done according to a set Wl of window options where each option
o ∈Wl is defined by a tuple o = (ηo, θo) that gives the required number ηo of maintenance
windows to schedule, and the window length θo expressed as an integer number of time
periods. As an example, Wl = {(1, 3) , (2, 2)} means that either one window of length three
or two windows of length two shall be scheduled on link l.

For the train traffic we have a set S of train services. Each train service s ∈ S has a set
Rs of possible routes. Each route r ∈ Rs implies a sequence Lr of links, and the set Ls of all
possible links that train service s can traverse is given by the union of the sets Lr for all
r ∈ Rs. The scheduling of trains shall be done by selecting one route r ∈ Rs and deciding
entry and exit times for each link in that route, such that all event times are within the
scheduling window defined by Ts ⊆ T .

The model has two groups of variables. The main variables for scheduling train services
are:

zsr route choice: whether train service s uses route r or not
e+

sl, e−
sl event time: entry(+)/exit(−) time for service s on link l

x+
slt, x−

slt link entry/exit: whether train service s enters/exits link l in time period t or not
uslt link usage: whether train service s uses link l in time period t or not
nh

lt number of train services traversing link l in direction h during time period t

The ORG formulation uses cumulative x variables, which we denote by x̄+
slt, x̄

−
slt, and implicit

u variables, while the IMP formulation uses binary x variables and explicit u. The variables
for scheduling maintenance windows are:

wlo maintenance window option choice: whether link l is maintained with window
option o or not

ylt maintenance work: whether link l is maintained in time period t or not
vlot work start: whether maintenance on link l according to window option o is

started in time period t or not

The model can be summarized as follows:

minimize c (z, e,y,v) (1)
subject to A(z, e,x,u) route (2)

A(z, e) trains (3)
A(w,y,v)maintenance (4)
A(u,n,y) capacity (5)
variable types and bounds

where c(..) is the objective function and A(..) are linear constraint functions over one or
more of the indicated variables. The objective (1) is a linear combination of the train and
maintenance scheduling variables, while the constraints enforce: (2) correct (feasible) bounds

ATMOS 2018



1:4 Reformulations for Railway Traffic and Maintenance Planning

zsr

easl

x̄aslt uslt nhlt ylt wlo

vlot

(2.2a)

(3) (2.3a–2.4a)

(5.1) (4)

(4)(4)

(5.2)

(2.1a)

Figure 2 Variable and constraint graph – ORG formulation.

on the train events and linking of entry / exit and usage variables according to the selected
route, (3) sufficient travel durations and dwell times along the chosen route, (4) sufficient
maintenance windows scheduled according to the chosen option, and (5) that the available
network capacity is respected.

The ORG and IMP formulations differ regarding constraints (2) and (4), which will be
described in the following sections. For the details regarding the objective function and other
constraints, we refer to [10].

2.2 Train scheduling
The ORG formulation uses cumulative variables x̄+

slt, x̄
−
slt, which takes value 1 if train service

s has entered/exited link l in time period t or earlier. The link usage is given by the implicit
variables uslt := x̄+

slt − x̄
−
sl,t−1, with the convention that x̄asl,t−1 = 0 for t = 0.

The constraint set (2) for ORG is:

x̄aslt ≥ x̄asl,t−1 ∀s ∈ S, l ∈ Ls, t ∈ Ts, a ∈ {+,−} (2.1a)

x̄asl,last(Ts) =
∑

r∈Rs:l∈Lr

zsr ∀s ∈ S, l ∈ Ls, a ∈ {+,−} (2.2a)

easl ≥
∑
t∈Ts

LBat (x̄aslt − x̄asl,t−1) ∀s ∈ S, l ∈ Ls, a ∈ {+,−} (2.3a)

easl ≤
∑
t∈Ts

UBat (x̄aslt − x̄asl,t−1) ∀s ∈ S, l ∈ Ls, a ∈ {+,−} (2.4a)

where LBat and UBat are the lower and upper bound time values for entry and exit in time
period t. The constraints enforce: (2.1a) the cumulative property, (2.2a) that all links in the
selected route will be visited, and (2.3a–2.4a) correct lower and upper bounds for the event
variables.

The structure of this model is illustrated in Figure 2 as a constraint (or co-occurrence)
graph with vertices for the variables and edges connecting variables that occur in the same
constraint. The constraints correspond to cliques in the graph as indicated in the figure.

The IMP formulation uses binary detection variables x+
slt, x

−
slt to track whether service s

enters or exits link l in time period t or not. These variables correspond to the cumulative x̄
variables in the ORG formulation as follows

xaslt = x̄aslt − x̄asl,t−1

This relation is illustrated in Figure 3, both for the binary case and for a linear relaxation.
Using the expression

x̄aslt =
∑

t′∈Ts:t′≤t
xaslt′
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Binary case

first(Ts) ... t′ ... last(Ts) t

zsr = 1

x̄slt

xsl,t′

Linear relaxation

first(Ts) ... t′ ... last(Ts) t

zsr

x̄slt

xsl,t′−1

xsl,t′

xsl,t′+1

Figure 3 Relation between cumulative variables x̄ and detection variables x.

zsr

easl

xaslt uslt nhlt ylt wlo

vlot

(2.2b)

(3) (2.3b–2.4b)

(2.5b) (5.1) (4)

(4)(4)

(5.2)

Figure 4 Variable and constraint graph – IMP formulation.

we transform constraints (2.2a–2.4a) and introduce explicit u variables to get the IMP
formulation of (2):

∑
t∈Ts

xaslt =
∑

r∈Rs:l∈Lr

zsr ∀s ∈ S, l ∈ Ls, a ∈ {+,−} (2.2b)

easl ≥
∑
t∈Ts

LBat x
a
slt ∀s ∈ S, l ∈ Ls, a ∈ {+,−} (2.3b)

easl ≤
∑
t∈Ts

UBat x
a
slt ∀s ∈ S, l ∈ Ls, a ∈ {+,−} (2.4b)

uslt =
∑

t′∈Ts:t′≤t
x+
slt′ −

∑
t′∈Ts:t′≤t−1

x−slt′ ∀s ∈ S, l ∈ Ls, t ∈ Ts (2.5b)

Note that the cumulative constraints disappear, but that we have new constraints
(2.5b) for the usage variables. The IMP formulation will have |S| |Ls| |Ts| more variables
but |S| |Ls| |Ts| less constraints as compared to ORG. Also the train counting constraints
(nhlt =

∑
uslt) will operate on the explicit u variables and hence contain fewer elements in

IMP as compared to ORG.

The increase in variables might be a drawback, but also gives the MILP solver an
opportunity for more pruning (due to the binary restriction of u) and another set of variables
to branch on during the branch and bound procedure.

The constraint graph for the IMP formulation is shown in Figure 4.

ATMOS 2018



1:6 Reformulations for Railway Traffic and Maintenance Planning

2.3 Maintenance scheduling
In the following we study the formulation differences between ORG and IMP for the
maintenance scheduling constraints (4). In the ORG formulation we have∑

o∈Wl

wlo = 1 ∀l ∈ LM (4.1)

∑
t∈T

vlot ≥ ηowlo ∀l ∈ LM , o ∈Wl (4.2)

vlot + 1 ≥ ylt − yl,t−1 + wlo ∀l ∈ LM , o ∈Wl, t ∈ T (4.3a)
vlot ≤ wlo ∀l ∈ LM , o ∈Wl, t ∈ T (4.4)
vlot ≤ ylt ∀l ∈ LM , o ∈Wl, t ∈ T (4.5a)
vlot ≤ 1− yl,t−1 ∀l ∈ LM , o ∈Wl, t ∈ T (4.6a)

t+θo∑
t′=t

ylt′ ≥ θovlot ∀l ∈ LM , o ∈Wl, t ∈ T (4.7a)

Constraint (4.1) ensures that exactly on window option is used, while (4.2) ascertain
a sufficient number of maintenance windows. Constraints (4.3a–4.6a) ensure the correct
coupling of work start variables (vlot), window choice (wlo) and work variables (ylt), while
constraint (4.7a) imposes the required maintenance window lengths.

The coupling constraints (4.3a,4.5a,4.6a) can be aggregated, by utilising the fact that
exactly one window option must be selected. Hence, since only one vlot variable for each l, t
combination can be non-zero, IMP uses summations over the window options, as follows:

∑
o∈Wl

vlot ≥ ylt − yl,t−1 ∀l ∈ LM , t ∈ T (4.3b)

∑
o∈Wl

vlot ≤ ylt ∀l ∈ LM , t ∈ T (4.5b)

∑
o∈Wl

vlot ≤ 1− yl,t−1 ∀l ∈ LM , t ∈ T (4.6b)

Next, we make use of a model for bounded on/off sequences, presented in [13], where the
formulation describes the convex hull. Thus there is no tighter formulation for that set of
variables. We extend this model with the window option choice wlo and can then replace
(4.7a) with the following constraints:

∑
o∈Wl

[
t∑

t′=t+1−θo

vlot′

]
≤ ylt ∀l ∈ LM , t ∈ T (4.7b)

t∑
t′=t+1−θo

vlot′ + 1 ≥ ylt + wlo ∀l ∈ LM , o ∈Wl, t ∈ T (4.8b)

∑
o∈Wl

vlot ≤ 1− yl,t−1 ∀l ∈ LM , t ∈ T (4.9b)

t+MSo∑
t′=t+1

vlot′ ≥ wlo − ylt ∀l ∈ LM , o ∈Wl, t = 1, . . . ,H −MSo (4.10b)
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The constraints (4.7b)-(4.8b) enforce that each window should span exactly θo time
periods. Constraint (4.9b) enforces at least one time period between two maintenance
windows, but since it is precisely the same as (4.6b) and hence redundant it is not needed. If
there would be requirements for larger separation between windows on each link, the LHS
should be a suitable forward going sum over vlot. Constraint (4.10b) will make sure that the
maximum separation (MSo) between windows is respected. This constraint and (4.8b) will
only be active for the chosen window option. Here we can only aggregate over the window
options for constraints (4.7b) (and (4.9b)).

3 Computational results

The same set of synthetic test instances as in [9] has been used for evaluating the efficiency
of the different formulations. The data instances are available as JSON files together with
a set of Python parsers at https://github.com/TomasLiden/mwo-data.git. The test set
consists of nine line instances (L1–L9) and five network instances (N1–N5), having a planning
horizon of five hours to one week divided into 1 h periods and with 20 to 350 train services.
All line instances except one (L4) are single track, while the network instances have a mixture
of single and double track links. The trains are uniform with no runtime or cost differences –
only the preferred departure times differ. These simplifications, which make the trains almost
indistinguishable for the solver, are used in order to test the scalability and solvability of the
models. Real-life instances will of course use more realistic settings for costs and runtimes.

The evaluations have been done in two steps. First, various alternatives for the train
scheduling formulation have been tested. These tests were made with Gurobi 6.0.5 as MIP
solver on a MacBook Pro with a 2,6 GHz Intel Core i5 processor, 8 GB 1600 MHz DDR3
memory and OSX 10.10.5. The formulation with the best performance, as presented in Section
2.2, was then used when evaluating various alternatives for the maintenance scheduling part.
The latter tests were made with Gurobi 6.5 as MIP solver on a Dell PowerEdge R710 rack
server with dual hex core 3.06GHz Intel Xeon X5675 processors and 96GB RAM running
Red Hat Enterprise Linux 6. For all tests, a maximum computation time of 3600 seconds
have been used. Most tests have a relative MIP gap tolerance of 0.001 (0.1%) while some of
the smaller instances (L1–L5 and N1–N2) have 0.01%. All other options have been left at
their default values.

The computational results are presented in Table 1, where the left part gives instance
properties, the middle part lists solution statistics for the four alternatives
(a) ORG - the original formulation, run with Gurobi 6.0.5
(b) T60 - the improved train scheduling formulation with Gurobi 6.0.5
(c) T65 - the improved train scheduling formulation with Gurobi 6.5
(d) IMP - the complete improved formulation with Gurobi 6.5
and the right part lists the absolute improvement in initial LP value as compared to the
ORG formulation.

There is a clear improvement in solving performance – both solution times and remaining
MIP gaps are reduced. Also, we see that IMP is tighter since the initial LP value is increasing
(the small increases for some T65 instances are caused by a more efficient pre-solve).

To further illustrate the improvements, performance profile plots are used which show
the accumulated number of instances (on the vertical axis) reaching a certain level of quality
measure (on the logarithmic horizontal axis) – normalised as a factor of the best outcome for
all alternatives. Thus an alternative have better performance when being above (= more
instances) and to the left (= better quality) of another curve. In Figure 5 the time for
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Table 1 Instances, properties, performance (time (seconds) to reach optimality or else remaining
gap after 3600 seconds) and improvement in initial LP value vs ORG.

Properties Performance (sol. time / rem. gap) LP improvement
Case |L| |T | |S| ORG T60 T65 IMP T60 T65 IMP
L1 4 5 20 66 15 3 4 0 0 0
L2 4 5 20 181 18 4 4 0 0 0
L3 4 12 40 0.15% 255 102 46 0 0 0.6
L4 4 12 40 2 4 2 1 0 0 0.4
L5 9 24 40 0.16% 2878 3415 1796 0 0 0.75
L6 9 48 80 0.77% 0.50% 0.21% 0.13% 0 0 0.95
L7 18 24 80 31.0% 1.24% 0.90% 0.53% 0 0 1.35
L8 18 96 160 32.0% 17.6% 1.62% 1.14% 0 0 0.55
L9 25 168 350 265% 201% 170% 64.4% 0 0 2.76
N1 9 5 20 7 9 5 3 0 0.02 0.02
N2 9 24 50 42 25 6 5 0 0.12 0.27
N3 9 48 100 97 179 193 23 0 0 0.98
N4 9 96 200 1209 535 435 264 0 0.01 0.28
N5 9 168 350 0.14% 0.13% 3600 907 0 0 0.92
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Figure 5 Performance profile – time to reach optimality.
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Figure 6 Performance profile – final MIP gap.
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reaching optimality is the quality measure, while Figure 6 shows the remaining MIP gap for
those instances that have not been solved to optimality. The improvement obtained for each
step is clear – including the performance gain when changing solver version and computer
platform.

The net result is that three more instances (L3, L5, N5) are solved to optimality, the
optimal solutions are reached quicker (with a speed up between 2 and 10 times) and two more
instances (L7, L8) are solved to a MIP gap < 1.5%, which can be considered an acceptable
solution quality for the cost factors being used.

4 Concluding remarks

We have investigated and found reformulations that substantially improve the solving
performance for an optimization model that jointly schedules train services and network
maintenance windows. The reformulations include the removal of cumulative variables,
making implicit variables explicit, using aggregation where appropriate but most importantly
to use a tighter model for bounded up/down sequences (according to [13]).

These improvements have made it possible to extend the model with maintenance resource
considerations (see [10]), and in recent work the models have also been applied to real world
problems of realistic size – which will be reported in the presentation. In the latter work cyclic
scheduling is used, which unfortunately destroys the integral properties of the previously
mentioned model for bounded up/down sequences. Hence, the mathematical properties
of cyclic on/off sequences are currently being studied with the aim of finding methods for
strengthening such models.
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Abstract
A multiobjective modeling approach for managing large scale railway infrastructure asset renewal
is presented. An optimized intervention project schedule is obtained considering operational
constraints in a three objectives model: evenly spreading investment throughout multiple years,
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1 Introduction

The railway has recognized economic, energy and environmental benefits [2], as well as lower
operating externalities when compared to road infrastructure [13]. In recent years, the need
to provide for a rising demand of rail services has prompted infrastructure managers to
intensify maintenance actions, leading to a range of planning problems [1, 4, 6, 9, 11, 12, 14].

The European Commission, in view of these advantages, has been taking measures
to increase the use of this mode of transport, by opening up the market to competition,
creating new infrastructure and improving the interoperability and safety of existing networks.
Ensuring the safety of people and goods, as well as the normal running of rail services, requires
maintenance of the existing railway, much of it degraded after decades of disinvestment.
In the context of maintenance, it is important to distinguish between current maintenance
and renewal interventions. Current maintenance refers to frequent minor works aiming at
maintaining an adequate level of service of the infrastructure, whereas renewal actions are
typically more extensive and restore (or modernize) the infrastructure [5].

In this article a multiobjective methodology to plan renewal interventions in the railroad is
presented, taking into account three objectives: to spread out investment expenses, as evenly
as possible, over project years; to minimize the total renewal costs; to minimize work start
postponements on the higher priority railway lines. Equitable distribution is required since
large-scale renewal actions require a very considerable financial effort from the infrastructure
management company, and it is desirable that this effort is diluted as much as possible over
multiple years. Achieving a balanced annual investment plan, without compromising the
total financial effort or excessively postponing the execution of the priority works, was the
motivation for pursuing the research which is now presented. For recent research concerning
other aspects (not just financial) of resource levelling in project management see e.g. [3, 8].
It should be noted that the objectives, as well operational constraints to be respected, were
defined by an infrastructure management company operating at national scale, which also
provided field data for one of the case studies, as well as model parameter calibrations.
Indeed, the proposed model stemmed from interaction between a research institution and a
railway infrastructure management company, and therefore authors are strongly convinced of
its practical usefulness, given it provides a scientific methodology to deal with a real problem
in corporate asset management.

2 Multi-objective model

Following the terminology of [7], “renewal” refers to background interventions subsequent to
the natural wear and tear of the infrastructure, “line” refers to major railway lines connecting
principal stations, and “section” to parts of a line between two geographic landmarks. These
marks are usually stations or junctions but may also be mere kilometer points. Sections are
often heterogeneous, in which case they are divided into homogeneous subsections. Sections
are what undergoes renewal works.

The model is suitable for treating renewal actions which do not involve prolonged track
closure or re-routing of the circulation through multiple alternative routes. Typically these
are large-scale, extensive interventions on rails, ballasts, sleepers, etc. and may involve
upgrading rail assets. Interventions on other asset types (e.g. catenaries, sub-base) may
be included provided they do not lead to prolonged blockades. While a section is under
intervention, trains must run at reduced speed, causing delays in services. The model cannot,
therefore, allow for an accumulation of works on the same line which may cause excessively
large delays. Similarly, the lines do not all have the same socio-economic importance or
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service intensity, making it is necessary to prioritize the sections to be renewed. The model
takes these issues into account and considers two periods of accounting as well, monthly
and annual, the first to schedule the field works and the second for budgeting. Both can be
changed without affecting the structure of the model.

Indices:
i = 1, . . . ,M railway line sections to be renovated.
j = 1, . . . , N spanning months.
k = 1, . . . , P spanning years; N = 12P .
l = 1, . . . , Q railway lines. Each section belongs to a railway line.

Parameters: (units)

CR
i cost of renewing section i (monetary unit MU).

CEM
ij extra maintenance cost of section i if it is not renewed as of month j (MU). These
costs are active until the repair works end.

Pi priority for renewing section i (adimensional). Active until repair works on that section
are completed. This can also be seen as service inconvenience of not renewing the section.

Ti time span needed for renewing section i (months).
Di delay caused to railway traffic from having section i under renewal(minutes).
Bil 1 if section i belongs to line l, 0 otherwise (binary). Note: in the case studies, no section

belongs to two lines, but that is not forbidden.
Ml max delay tolerable for line l (minutes).

Decision variables:

xij 1 if section i starts to be renewed in month j, 0 otherwise (binary).
F maximum yearly investment (real positive variable).

Auxiliary variables:
Aij 1 if section i is being renewed in month j, 0 otherwise (binary).
Uij 1 if the renewal of section i is not yet finished by month j, 0 otherwise (binary).

Model:

min O1=F (1)

min O2=
∑
i

CRi +
∑
ij

CEMij Uij (2)

min O3=
∑
ij

PiUij (3)

Subject to:

∑
j

xij = 1, ∀i (4)
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xij = 0, ∀i : j > N − Ti (5)

Aij =
j∑

j′=j−Ti+1,j′≥1
xij′ , ∀ij (6)

Uij =
N∑

j′=j−Ti+1,j′≥1
xij′ , ∀ij (7)

12(k−1)+12∑
j=12(k−1)+1

[∑
i

(
CRi
Ti
Aij + CEMij Uij

)]
≤ F, ∀ij (8)

∑
i

DiAijBil ≤Ml, ∀jl (9)

Objective O1 is implemented by equations formulas (1) and (8), where the 1st member
of (8) is the annual investment. The extra costs CEMij are active until the end of the work,
but these costs can be considered in other ways, such as e.g. being active up until halfway
the work completion. Objective O2 has a fixed and a variable part and was thus defined to
give the decision maker a better notion of the final values. As for O3, sections accumulate
priority values, month after month, until their respective renewal is complete. The more a
high-priority work is postponed, the more it builds up in O3. Equations (4) and (5) enforce
that the works are started at some stage, and in time to finish before the last year ends.
Equations (6) and (7) define auxiliary variables and equation (9) are operational constraints
which avoid excessive delays in train circulation when a line undergoes multiple works at the
same time.

It should be noted that the structure of the operational restrictions (9) allows to model
some cases of track closure, namely those in which the movement of people and goods along
the closed track section is made by alternative transportation. The only modification is the
Di value, which is usually higher than that caused by reduced speed circulation. In highly
congested lines, or lines with feeder branches, the Di delays may eventually cause knock-on
effects (bottlenecks) in circulation. This does not happen in case study 1, but if such effects
are plausible in other instances, modifications to (9) might need to be considered.

3 Case studies and results

3.1 Case study 1 – real data
Case study 1 consists of M = 20 sections to be renewed, over P = 5 years (N = 60 months)
and belonging to Q = 17 lines. The parameters that characterize the sections were obtained
by averaging values of their constituent homogeneous subsections, weighted by the length of
the latter. The infrastructure management company provided all the data and validated the
parameterization mentioned below.
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The extra maintenance cost structure considers a negative exponential degradation of
the infrastructure, which leads to extra maintenance costs of +3.5% per year on the current
maintenance cost, for each year in which the renewal exceeds the recommended term, i.e. for
every month j belonging to year k one has CEMij = Cbase×

[
(1 + 0.35)(αi−1+k)×θ(αi−1+k) − 1

]
,

with αi the number of years for which renewal is overdue and θ(x) the unit step function. In
the case study αi was 10 years, on average.

Priorities were defined considering the type of service provided by the line (TS) to which
each section belongs, the sections present conservation status (CS) and freight traffic volume
(FT). Values of 100/90/75/50 for TS and CS, and 100/90/75/50/40 for FT were considered
and the final value for priorities was defined by Pi = 0.5TS + 0.3CS + 0.2FT . All these
parameter values were suggested by the infrastructure management company.

Finally, delays in circulation were calculated considering the length of the sections and
maximum train speed under works. Maximum valuesMl and works duration Ti were obtained
directly from the infrastructure management company.

The Pareto front of the case study was obtained by the epsilon-constraint method (Cohon,
1978) using the IBM CPLEX 12.7 solver, running on a quad-core @ 2.6 GHz CPU. Starting
from solutions with O1 restricted to its smallest possible value and gradually relaxing
this value until reaching unrestricted O1, two solutions were generated for each O1 value,
respectively minimizing O2 and O3. Solutions near O1 optima took a few hours to derive,
and were used as starting point for sequent runs, which gradually finished faster, down to
just a few seconds per solution. The total CPU time was less than 1 day, for 312 runs. It
was found that in all the solutions obtained, the value of O2 never exceeded its optimum
by more than 1%, so this objective was discarded, giving rise to the front of Fig. 1 below
(values in percentage, for confidentiality reasons, with optimum = 100%):

As can be seen, the front shows a relatively regular behavior, allowing the decision maker
to analyse the trade-offs between equitably distributing the investment and accelerating the
renewals. The non-dominated solutions that form the front may, for field works planning
purposes, be displayed as Gantt schedules. Fig. 2 below shows the schedule for the solution
with O1 <120%, min O3. Several non-dominated solutions, including this one, were presented
to the infrastructure management company and are currently under evaluation for field
implementation.

3.2 Case study 2 – large-sized theoretical problem
A large instance was generated, reflecting a problem of size similar to the USA railway
network. This is the largest network in the world [10] so it is not expected that considerably
larger problems appear in real life. In practice the US market is highly fragmented, i.e. split
into several, independent infrastructure management companies, so this instance is purely
hypothetical. It was carried out not only to stress-test the model in terms of CPU times,
and thus unravel eventual limits to the computational performance of the model, but also to
find out under what circumstances objective O2 becomes important. Field data associated
to railway network was randomly generated and the same parameterization of case study 1
was used. However, for case study 2 the αi were distributed so as to have an average of 25
years backlog and a P = 10 years of project horizon was considered. Despite the very large
increase in the number of decision variables (now about 600000), the CPU time increase
was not very significant, with most runs taking in the range of seconds and runs close to O1
optimum taking more CPU time (in fact only 4 solutions required more than 20 seconds:
20.7, 22.3, 415.6 and 1412.6 seconds), which was already the case for case study 1. This is a
reasonable increase for a problem that is almost 200 times as large. It is thus expectable that
just about any real-life problem can be treated in a modern computer, regardless of size.
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Figure 1 Pareto front for the case study (O2 not displayed).

As compared to case study 1, in case study 2 optimizing O1 now leads to greater (percent-
wise) degradation of O2 and O3, whereas optimizing O2 and O3 lead to similar pay-off values.
Objective O2 is now relevant, fluctuating between 100% and 210% (rather than just the
1% of case study 1), showing all objectives are important when the infrastructure is ageing,
and the backlog is large. Indeed, if the railway infrastructure is very degraded, objective O2
should be included in the analysis, especially if the renewal plans span for many years.

Figure 3 shows that if the decision maker allows some increase in max yearly investment
(i.e. degradation of O1), solutions improve considerably in the remaining two objectives. It
also shows that, for each value of the O1 restriction, O2 and O3 can only fluctuate in a narrow
range of values, making O1 a very important objective, whose value has a big influence on
the two other.

4 Conclusions and summary

In this paper, a multiobjective methodology was proposed for renewal of railway networks
planning. The model is linear, soluble in reasonably time and provides a range of solutions
for the analysis of trade-offs by the decision maker, each one being translatable in Gantt
schedules for later implementation on the field. The methodology is strongly inspired by a
real case study and reflects the practice of an infrastructure management company, so it
may be especially useful as an asset management tool. It is also easily generalizable to other
types of infrastructure, such as highways.
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Abstract
The general problem of scheduling activities subject to temporal and resource constraints as well
as a deadline emerges naturally in numerous application domains such as project management,
production planning, and public transport. The schedules often have to be implemented in an
uncertain environment, where disturbances cause deviations in the duration, release date or dead-
line of activities. Since these disruptions are not known in the planning phase, we must have
schedules that are robust, i.e., capable of absorbing the disturbances without large deteriorations
of the solution quality. Due to the complexity of computing the robustness of a schedule directly,
many surrogate robustness measures have been proposed in literature. In this paper, we propose
new robustness measures, and compare these and several existing measures with the results of a
simulation study to determine which measures can be applied in practice to obtain good approx-
imations of the true robustness of a schedule with deadlines. The experiments are performed
on schedules generated for real-world scheduling problems at the shunting yards of the Dutch
Railways (NS).
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1 Introduction

For the shunting yards operated by the Dutch Railways (NS), the largest passenger railway
operator in the Netherlands, human planners create daily shunting plans describing all the
activities that have to be performed, such as cleaning, maintenance, parking, and movements
of trains. The objective for the planners is to construct a schedule in which all service
activities on a train are completed before its deadline, which is the scheduled departure time.
However, since arriving trains might be delayed, and performing a service activity can take
longer than expected in practice, a shunting plan that is feasible with respect to the nominal
timetable and activity durations may become infeasible during operation if a departure from
the shunting yard is delayed due to disturbances.
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3:2 How to Measure the Robustness of Shunting Plans

Since the exact disturbances that will occur during the execution of a schedule are not
known in advance, a practical strategy to handle the uncertainty is to construct a baseline
schedule and a simple scheduling policy that adapts the initial schedule to the disruptions.
The baseline schedule of a shunting plan of the NS is a partial order schedule of all activities,
with precedence relations to ensure that any execution of the plan is resource feasible. The
scheduling policy for the shunting plans is the Earliest Start Time (EST) or Right Shift
policy, which assigns activities to their earliest start time in the baseline schedule, and, in
case of disruptions during operation, delays activities that have not yet started as much as
necessary while maintaining the ordering in the baseline schedule. Operational disturbances
that cannot be absorbed by the shunting plan with the EST policy have to be handled by
the human planners. The Dutch Railways prefers robust shunting plans that require little
rescheduling during the operational phase, as the ad-hoc modifications to the schedule made
by human planners often have a cascading effect in other parts of the shunting plan. A
quantitative metric of this preference is the probability that the execution of a baseline plan
will result in a delayed train departure.

In order to find robust baseline schedules for scheduling problems with deadlines, we
have to determine a priori whether a schedule will perform well in the uncertain operational
environment. However, the robustness of a schedule depends heavily on the available
knowledge of the uncertainty: which elements in the scheduling problem can be disrupted by
uncontrollable factors, and what are the distributions of those events? Often, the uncertain
elements are known during the planning stage, but data on the distribution of the uncertainty
are lacking. As a result, the robustness of a schedule is hard to compute in general, and
assumptions on the uncertainty have to be made.

An approach often used to estimate the robustness is to simulate the performance of
the schedule in many different scenarios sampled from the (assumed) distributions of the
uncertainty. Although simulation is a powerful and versatile tool that gives an accurate
estimate if a sufficient number of samples is used, it tends to be a computationally expensive
technique. As solution methods for scheduling problems typically evaluate a large number of
schedules to find the (near-)optimal solution, using simulation as a subroutine in the solution
method might not be feasible. Therefore, several robustness measures that act as a surrogate
for the sampled robustness of a schedule have been developed in the past few decades.

The contribution of this paper is to identify robustness measures that both properly
predict the robustness of a schedule subject to deadlines, and can be evaluated efficiently. To
this end, we generate a large number of schedules for real-world instances of the shunting yards
operated by the NS. We perform a Monte Carlo simulation of schedules with uncertainty to
obtain a good approximation of the robustness, and compare the outcome with the predictions
of the robustness measures to determine if any of the estimations show a strong correlation
with the sampled robustness. We base the comparison on two performance metrics, which
are the fraction of delayed schedules, and the average lateness of the schedules.

The remainder of this paper is organized as follows. We start in Section 2 with a review
of related work on robustness in resource-constrained project management, followed by a
brief summary of the common concepts and notation in this paper in Section 3. We provide
in Section 4 an overview of several robustness measures from literature, and propose some
new, path-based measures. The instances provided by the NS as well as the setup of the
Monte Carlo simulation study are discussed in Section 5. We compare the predictions of the
robustness measures with the results of the simulation study in Section 6, and finish with
concluding remarks and potential directions for further research in Section 7.



R.W. van den Broek, J. A. Hoogeveen, and J.M. van den Akker 3:3

2 Literature overview

Most of the robustness measures proposed in literature are for resource-constrained project
scheduling problems, where the standard objective is to minimize the makespan of the
schedule. These measures are mainly based on the concept of slack. The total slack is defined
as the the maximum amount of time that we can delay an activity without increasing the
makespan of the total schedule, whereas free slack is the amount of time by which an activity
can be delayed without delaying any other activity in the schedule.

A simple slack-based robustness estimation, proposed by [6], is to compute the average
of the total slacks of all activities. By simulating many realizations of job shop schedules,
[6] showed that a large percentage of the variation in the realized makespan was explained
by the average slack of the schedule. Similarly, [1] proposed the sum of free slacks as a
robustness measure.

Based on the observation that, in addition to the total amount of slack, the distribution
of the slack over the schedule affects the robustness as well, [3] proposed several variants of
the sum of free slacks. These robustness measures weigh the free slack by the number of
successors, and substitute the free slack with a binary slack indicator function or an upper
bound on the slack based on the activity duration.

The relation of a number of existing and newly proposed robustness measures to the
fraction of feasible schedule realizations in a Monte Carlo simulation has been investigated
by [5]. For instances of the discrete time/cost trade-off problem, they reported high values
(> 0.91) of the coefficient of determination for the sum of total slacks measure and successor-
weighted variants of it.

A similar comparison of robustness metrics in a Monte Carlo simulation was performed
by [2]. In contrast to the work of [5], their results showed that summing the unweighted slack
of the activities has at best a weak correlation with the expected makespan of the schedule.

When scheduling activities subject to deadlines, the primary objective is to find a feasible
schedule. However, the concepts of free and total slack do not fully capture the slack of a
schedule with respect to its deadline. To quantify this type of slack, we can view a schedule
with deadlines as a special case of a Simple Temporal Network (STN), which is a directed
graph with both minimum and maximum time lags on the arcs that was introduced by [4].
For this type of graph, there are flexibility metrics that aggregate the slack with respect
to all the temporal constraints, including the deadlines. The naive flexibility of an STN
is the sum of the difference between the latest and earliest start time of each activity, i.e.,
the total slack relative to the deadline instead of the makespan of the schedule. Analog to
the free slack of an activity, [15] proposed the concurrent flexibility metric, which is based
on interval schedules. An interval schedule specifies for each activity an interval such that
every activity can start at any time within its interval independently of the other events,
and without exceeding the deadline of the schedule. The concurrent flexibility of an STN is
defined as the maximal sum of the interval lengths over all possible interval schedules. A
linear programming formulation was proposed by the authors to compute the concurrent
flexibility. It was shown in [14] that a schedule with a high flexibility is not always robust to
disruptions.

The limitations of the sum of free slacks metric were discussed by [8], and they proposed
to use the minimum free slack over all activities as a robustness measure for schedules with a
deadline, and provided an algorithm that maximizes the minimum free slack by distributing
the free slack evenly over the schedule. Their approach is essentially the concurrent flexibility
metric, proposed by [15], with as objective to maximize the minimum interval length instead
of the sum of the intervals.
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An extensive comparison of robustness measures can be found in the paper of [7]. They
investigated the correlation between the surrogate robustness measures and the probability
that the completion time of a schedule exceeds its nominal makespan, which was approximated
using a Monte Carlo simulation. Their results showed that the strongest correlation (R2 >

0.64) with the robustness performance metric in the simulation was achieved with a robustness
measure that computes the slack sufficiency, which is based on the ratio between the free
slack and the processing time of an activity.

Despite the many surrogate robustness measures in literature, there is no consensus on
which of these provides a good approximation of the true robustness of a schedule. In the
simulation studies of [6], [5], [2] and [7], only schedules without deadlines are considered,
focusing mainly on the expected makespan and related performance metrics. However, a
good expected makespan of a schedule constrained by a deadline does not necessarily imply
that the schedule will respect its deadline. Therefore, additional research is required to verify
their results for schedules with deadlines.

3 Preliminaries

In this paper, we consider the general resource-constrained scheduling problem with deadlines.
For a scheduling problem with activities 1 to n, and a deadline at time T for all activities, we
define a baseline schedule σ as a pair (Sσ,POSσ), where Sσ = {0, . . . , n+ 1} is the activity
set, and POSσ a partial order schedule of these activities:

POSσ = {i ≺ j | ∀i, j ∈ Sσ : i directly precedes j in σ}.

In this schedule, the activities 0 and n+ 1 are dummy activities representing the start and
end of the schedule, respectively; the precedence relations needed to ensure that all activities
take place between the start and the end activity are contained in the partial ordering.

Each activity i has a nominal processing time pi ∈ R+, with p0 = pn+1 = 0. We assume
that the release date of each activity is equal to 0, and that all activities, in particular n+ 1,
have to be finished before the deadline T . Note that scheduling problems with an individual
release date or deadline of activity i can still be modeled in the schedule by adding a dummy
activity between i and the start or end activity, respectively.

From the baseline schedule σ, we can compute for each activity i the time window in
which it has to be processed. The earliest start time estσi is the earliest possible time at
which all predecessor activities can be finished. Similarly, the latest finish time lftσi is equal
to the latest possible completion time of activity i such that the schedule remains feasible
with respect to the deadline. The latest start time lstσi and earliest finish time eftσi can be
derived from the latest or earliest counterpart by subtracting or adding the processing time
pi, respectively. The earliest finish time of activity n+ 1 is known as the makespan or Cmax.

The concept of slack is commonly used to quantify the robustness of a schedule. We define
the total slack tsσi of activity i in schedule σ as the maximum amount of time by which we can
delay the activity such that no deadlines are exceeded in the schedule. Equivalently, the slack
is the difference between the earliest and latest start time of the activity, tsσi = lstσi − estσi .
Note that this definition differs slightly from the formulation given in 2, where the total slack
is computed with respect to the makespan instead of the schedule deadline. However, for
each activity in the schedule, the difference in slack between the two definitions is a constant,
namely T − Cmax. A different type of slack is the free slack fsσi , which is the maximum
amount of time that activity i can be delayed without affecting any other activity. That is,
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we define the free slack as

fsσi = min
j∈succσ(i)

{estj} − efti, (1)

where succσ(i) are the successor activities of i in the schedule.
An intuitive graph-based representation of the partial ordering can be constructed by

modeling each activity i in activity set as a vertex vi, and adding for every precedence relation
i ≺ j ∈ POS an arc from vi to vj to the graph. The result is a digraph Gσ = (Vσ, Aσ), in
which a directed path represents a set of activities that have to be performed sequentially.
Similar to slack of an activity, we define the slack of a path π = (π1, . . . , πk) as

sσπ = lftσπk − est
σ
π1
−
∑
i∈π

pi,

which is the maximal amount of time we can delay activities on the path without exceeding
the deadline of πk.

Shunting plans
The schedules that we use our experiments are solutions to a scheduling problem of the
Dutch Railways that arises at shunting yards, which are networks of tracks connected by
switches that contain facilities providing services such as cleaning and maintenance to the
trains. In this scheduling problem, which is a variant of the Train Unit Shunting Problem
described in [13], we have a number of train units that arrive during the evening on the
shunting yard. These arrivals happen according to a static timetable, which lists the arrival
time as well as the train – a sequence of coupled train units – in which each train unit
arrives. The train units have to leave the shunting yard the next morning, again based on
the timetable. Note that the arrival train of a train unit is not necessarily the same as the
departure train. During their stay at the shunting yard, the train units have to move through
different facilities to receive service tasks such as cleaning and maintenance, and must be
parked on an appropriate track to wait until departure.

The scheduling problem at the shunting yards is then to construct a shunting plan, which
is a schedule that describes all the activities on the shunting yard such as coupling and
decoupling train units, service tasks and train movements, such that the service tasks of each
train unit in a departing train are completed before the departure time, and none of the
resource capacity constraints are exceeded in the shunting plan. A more in-depth description
of the scheduling problem can be found in [13].

4 Robustness measures

In this section we discuss the robustness measures that we will compare in our experiments.
Surrogate robustness measures that rely heavily on the exact distribution of the uncertainty
in a schedule might produce accurate predictions of the robustness, but their applicability to
real-world scheduling problems is limited, since quantitative data of the uncertainty are often
scarce in practice. Therefore, robustness measures with a low dependency of the available
knowledge of the uncertainty are preferred.

Robustness measures are usually created with the assumption that the nominal or expected
processing time of the activities is known. If a robustness measure does not rely on any other
information about the uncertainty, the robustness is solely estimated from the structure of
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the baseline schedule. The two robustness measures applied most often in literature, namely
the sum of total slacks ([6]),

RM1(σ) =
∑
i

tsσi , (2)

and the sum of free slacks ([1]),

RM2(σ) =
∑
i

fsσi , (3)

are examples of measures that depend only on the nominal activity durations. Furthermore,
the standard resource-constrained scheduling objective, the makespan or, equivalently, the
minimum total slack,

RM3(σ) = min
i
tsσi , (4)

can be viewed as an expectation-only robustness measure as well.
Another robustness measure of this type that was shown by [7] to provide good estimations

of the robustness of a schedule was based on slack sufficiency, which compares the free slack
of an activity to a fraction of the duration of that activity or one of its predecessors in the
schedule. In the work of [7], this robustness measure is defined as

RM4(σ) =
∑
i

|{j | j ∈ precσ(i) ∪ {i}, fsi ≥ λpj}| (5)

where precσ(i) are the predecessors of activity i in the schedule and 0 < λ < 1. The authors
suggested that λ should be set to the expected deviation from the nominal processing time
of the activities due to disruptions.

A more complex robustness measure depending only on the expected activity duration is
the interval schedule based approach of [15]. It finds the maximal assignment of intervals to
activities such that each activity i can be scheduled within its interval (ei, li) independently
of the other activities. To achieve this, the intervals are computed with the linear program

RM5(σ) = max
∑
i

(li − ei)

subject to
estσi ≤ ei ≤ si ≤ lstσi ∀i
li + pi ≤ ej ∀i ≺ j ∈ POSσ.

(6)

As an alternative to solving this linear program, [10] formulated a matching problem based
on the dual problem.

Analog to the work of [8], we can change the objective of the linear program of [15]
to maximize the minimum interval, which will result in a more evenly distributed interval
schedule. The linear program then becomes

RM6(σ) = max min
i

(li − ei)

subject to
estσi ≤ ei ≤ li ≤ lstσi ∀i
li + pi ≤ ej ∀i ≺ j ∈ POSσ.

(7)
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In contrast to the previous surrogate robustness measures, the measure of [15] focuses on
the entire graph structure instead of just the slack of the individual activities. However, an
optimal solution to the linear program is an interval schedule that assigns large intervals to
concurrent activities, and, consequently, only small intervals to sequential activities, thus
overemphasizing parallel activities.

A compromise between activity-based and schedule-based measures is to predict the
robustness of a schedule from the paths in the partial ordering. Without any knowledge of the
uncertainty, it is reasonable to assume that the likelihood of a disruption on a path increases
with the number of activities of the path. Therefore, we propose to use the minimum over
all paths of the path slack divided by the number of activities on the path as a robustness
measure,

RM7(σ) = min
π

{
sσπ
|π|

}
. (8)

Although the number of paths can be exponentially large, we can evaluate this robustness
measure efficiently by computing for each k = 1 to n+ 2 the shortest path in the schedule
with exactly k activities.

In many cases, a reasonable estimate of the variance of the uncertainty can be made
as well, even if the exact distribution of the uncertainty is unknown. We can exploit this
additional information by making the assumption that the duration of each activity is
normally distributed, as normal distributions can be characterized solely by their mean and
variance. Although this assumption might be wrong for the distribution of the duration of a
single activity, if follows from the central limit theorem that the sum of activity durations
does resemble a normal distribution. Therefore, we can approximate the uncertainty in the
duration of a path in the schedule.

We can utilize this approximation as the basis for several robustness measures. Firstly,
we propose another path-based robustness measure. Analog to the minimum weighted path
slack in RM7, we use the minimum probability that a path can be completed within the
deadline, computed over all the possible paths in the graph. That is, we compute for each
path π the normal distribution approximation Xπ of the duration of the path by summing the
processing time distributions of activities on that path, and report the minimum probability
of completion before the deadline:

RM8(σ) = min
π
{P (Xπ ≤ T )} (9)

Although the paths in the schedule are connected by precedence relations, they are assumed
to be independent by this robustness measure.

In contrast to RM7, we might have to evaluate all the paths in the schedule to compute
the distribution-based robustness measure RM8, since the usual graph-theoretical properties
of paths, such as the property that any sub-path of a shortest path is again a shortest path,
do not hold in this case. To keep the computation tractable, we construct in topological
order for each activity i the set of paths in schedule σ ending at i, from the paths ending at
the immediate predecessors of i:

Πi =
{

(π1, . . . , πk, i) | ∃ j ≺ i ∈ POSσ : (π1, . . . , πk) ∈ Πj

}
. (10)

Furthermore, we compute the distribution Xπ of the duration of each π ∈ Πi by summing
the normal distributions of the activities on the path. We can then reformulate RM8 to

RM8(σ) = min
π∈Πn+1

P (Xπ ≤ T ) . (11)
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To avoid the exponential growth of Πi, we repeatedly remove the path π from Πi with the
smallest probability of exceeding any other path in Πi, until the set of paths is at most size
K. Ties are broken randomly in this pruning procedure, and a maximum size of K = 8
was shown to be sufficiently large to achieve a good robustness estimation in preliminary
experiments.

Another approach is to estimate the distribution of total makespan of the schedule. Many
approximation algorithms have been proposed in literature, see [9] for a comparison of several
techniques. An efficient method to construct an approximation of the makespan distribution
is to evaluate the activities in topological order, computing the makespan distribution Yi up
to each activity i as the distribution of the maximum over the makespan distributions of the
immediate predecessors of i

Yi = max
j≺i∈POSσ

{Yj}+Di, (12)

where Di is the normal approximation of the activity duration of i, and the maximum over
the predecessor distributions is approximated with a normal distribution as proposed by [11].
The robustness measure, which is proposed in the work of [12], is then

RM9(σ) = P (Yn+1 ≤ T ) . (13)

5 Experimental setup

The main application of surrogate robustness measures is in the comparison of schedules,
since these can estimate the true robustness of a schedule far more efficiently than other
approaches such as simulation. However, we need to investigate whether the estimations
correctly reflect the relative ordering of schedules according to their robustness to verify
that the robustness estimators are actually suitable for this purpose. To accomplish this,
we construct empirical makespan distributions of a set of realistic schedules in a simulation
study, and search for robustness estimators that show a strong correlation with the empirical
results.

We have selected two real-world instances of the shunting problem described in Section 3
as the basis of our simulation study. The first one originates from “Kleine Binkchorst (KBH)”,
which is a shunting yard of the NS near the central station of The Hague. It consists of a
single night during which 19 train units arrive at the yard. These train units need to receive
internal cleaning and a maintenance inspection; three of them need to be washed as well.
Due to all the necessary train movements, shunting plans of problem instance typically have
close to 160 activities, with 250 to 300 precedence relations. The other instance is obtained
from a shunting yard near Utrecht, named “OZ”, which contains, contrary to the KBH, many
dead-end tracks. As a result, the main difficulty in the scheduling problem is the parking
order of the trains. This instance has 16 train units and a total of 27 service activities. The
number of activities in the corresponding shunting plans ranges from 140 to 160 activities,
and roughly 300 precedence relations.

For each of these two scheduling problems, we generated 500 feasible shunting plans with
a local search algorithm that, starting with an infeasible initial solution, iteratively alters the
current solution to resolve conflicts in the shunting plan. The meta-heuristic used in the local
search framework is simulated annealing, which is a stochastic optimization technique that
accepts with a small probability some deteriorations in the solution quality – the number of
conflicts – due to local modifications. Initial solutions are generated by scheduling the service
activities in a random order and assigning the trains to random parking tracks. Furthermore,
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the objective that is optimized by the local search consists only of the sum of the (weighted)
conflicts, and the search process stops when a feasible shunting plan is found. Due to the
stochastic nature of the solution method, this generation process produces a diverse set of
shunting plans. See [13] for more details of the local search algorithm.

The main components of the uncertainty in the execution of a shunting plan are the arrival
time of trains and the duration of service activities and train movements. Disturbances in
the arrival time of a train are modeled with a uniform distribution with the mean equal to
the scheduled arrival time, and an interval size of 10 minutes. The service activities and
train movements always have a nonnegative duration, and the size of the disruptions are
usually proportional to the duration of the activities. Therefore, we model the uncertainty
in these activities with log-normal distribution with the nominal duration as the mean, and
a standard deviation equal to 0.1 times the nominal duration. Robustness measures RM1
to RM7 use only the nominal durations in their computation, while RM8 and RM9 require
the standard deviation of the distributions as well. Although for RM4, the slack sufficiency
measure, we can pick any value between zero and one for the fraction λ, we set it equal to the
standard deviation of the uncertainty of the service and movement activities, i.e., λ = 0.1, as
is suggested in [7].

The schedules are then evaluated by each of the surrogate robustness measures listed in
Section 4 to generate their predictions of the robustness of the schedules. The predictions are
compared with the results of a Monte Carlo simulation, which is a technique that repeatedly
draws samples from the distribution of the uncertainty – thus simulating different realizations
of the scheduling problem – to approximate the makespan distribution of the schedule. To
obtain an accurate empirical distribution of the makespan, we collect 20000 samples per
schedule.

Since the objective of the shunting yard planners at the NS is to find feasible shunting
plans that minimize the probability of delayed departures, we use the fraction of samples
in which the schedule realization resulted in the delay as the primary performance metric.
Additionally, we compute the average lateness of the empirical makespan distribution to get
a better understanding of the problem structure.

The correlation between the performance metrics and the robustness measures is in-
vestigated in the following section by computing both the Pearson correlation coefficient
(r), and Spearman’s rank correlation coefficient (ρ). If the robustness of a schedule can be
approximated by a robustness measure, then a high value of the measure should indicate
a low delayed fraction and average lateness, and we expect that the robustness measure
will have a correlation coefficient close to −1 with either of the performance metrics. A
coefficient of −1 for the Pearson correlation means that there is a perfect linear relation
between the robustness measure and the performance metric, and a robustness measure with
a Spearman correlation of −1 will rank the schedules perfectly according to the performance
metric. The Spearman correlation coefficient is particularly suitable for our experiments,
since the purpose of the robustness measures is to compare schedules efficiently.

In addition to the two robustness performance metrics, we record the time required by
each robustness measure to evaluate the schedules to compare the computational efficiency
of the measures. To obtain reliable estimates of these computation times, we evaluated each
of the 500 schedules 100 times with every robustness measure, and compute the average
computation time per evaluation.

ATMOS 2018
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Figure 1 Scatter plots for the 9 robustness measures, showing the computed value of the measure
(vertical axis) and the fraction of delayed samples (horizontal axis) of the KBH instances.

Table 1 The Spearman (ρ) and Pearson (r) correlation coefficients, as well as the average
computation time, for the KBH instances. Coefficients close to −1 indicate that the robustness
measure is a good approximation of the schedule robustness.

Fraction delayed Average Lateness Computation
ρ r ρ r Time (ms)

RM1 -0.840 -0.663 -0.840 -0.828 0,01
RM2 0.456 0.357 0.470 0.491 0,02
RM3 -0.955 -0.838 -0.972 -0.990 0,01
RM4 0.457 0.290 0.479 0.507 0,54
RM5 -0.298 -0.293 -0.321 -0.326 3,95
RM6 -0.964 -0.718 -0.955 -0.889 6,64
RM7 -0.963 -0.719 -0.953 -0.887 0,87
RM8 -0.982 -0.969 -0.972 -0.835 0,57
RM9 -0.981 -0.971 -0.971 -0.846 0,23



R.W. van den Broek, J. A. Hoogeveen, and J.M. van den Akker 3:11

−1500 −1000 −500 0

4e
+

05
6e

+
05

8e
+

05
1e

+
06

metric

M
ea

su
re

 1

−1500 −1000 −500 0

12
00

00
16

00
00

20
00

00

metric
M

ea
su

re
 2

−1500 −1000 −500 0

0
50

0
10

00
15

00

metric

M
ea

su
re

 3

−1500 −1000 −500 0

30
00

40
00

50
00

60
00

70
00

metric

M
ea

su
re

 4

−1500 −1000 −500 014
00

00
18

00
00

22
00

00

metric

M
ea

su
re

 5

−1500 −1000 −500 0

0
50

10
0

15
0

metric

M
ea

su
re

 6

−1500 −1000 −500 0

0
50

10
0

15
0

M
ea

su
re

 7

−1500 −1000 −500 0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

M
ea

su
re

 8

−1500 −1000 −500 0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M
ea

su
re

 9

Figure 2 Scatter plots for the 9 robustness measures, showing the computed value of the measure
(vertical axis) and the average lateness over the samples (horizontal axis) of the KBH instances.

Table 2 The Spearman (ρ) and Pearson (r) correlation coefficients, as well as the average
computation time, for the OZ instances. Coefficients close to −1 indicate that the robustness
measure is a good approximation of the schedule robustness.

Fraction delayed Average Lateness Computation
ρ r ρ r Time (ms)

RM1 -0.933 -0.831 -0.943 -0.962 0,01
RM2 0.544 0.510 0.542 0.606 0,01
RM3 -0.975 -0.876 -0.980 -0.989 0,01
RM4 0.156 0.132 0.161 0.270 0,53
RM5 -0.118 -0.117 -0.127 -0.151 3,81
RM6 -0.969 -0.840 -0.976 -0.972 6,28
RM7 -0.968 -0.841 -0.975 -0.972 0,83
RM8 -0.977 -0.959 -0.971 -0.818 0,60
RM9 -0.972 -0.910 -0.960 -0.896 0,25
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6 Empirical results

The relations between the robustness measures and the fraction of samples in which trains
departed with a delay in the simulation study are shown in Figure 1 for the Kleine Binckhorst
test set. Figure 2 shows the results for the average lateness performance metric of same
instances. Tables 1 and 2 list the correlation coefficients of the robustness measures and
the two performance metrics, as well as the average computation time, of the KBH and OZ
instances.

The two robustness measures based on normal approximations, RM8 and RM9, appear
to have the strongest rank correlation with both the performance metrics, clearly showing
the advantage of exploiting the additional information of the variance of the uncertainty.
Furthermore, both measures show a high Pearson correlation coefficient with the delayed
fraction metric, as can be seen in Figure 1. If we take the computation time into account
as well, then the approximation of makespan distribution, RM9, would be the preferred
robustness measure in a practical application.

When knowledge of the variance is not available, robustness measures that rely only on
the nominal processing time of activities have to be used. Of those measures, RM3, RM6
and RM7 are good choices in practice due to their high correlation with both performance
metrics. In particular, the minimum total slack RM3, which is equivalent to the makespan of
a schedule, shows a remarkably strong Spearman correlation with the robustness performance
metrics, and the correlation appears to be linear with the average lateness metric, which
is an alternative formulation of the expected makespan. Given that the makespan can be
computed more efficiently than the normal approximation methods, this robustness measure
will most likely be sufficient to obtain robust solutions to scheduling problems with deadlines.

Contrary to the result of [7], the robustness measure RM2, RM4 and RM5, which are
based on maximizing the sum of the free slacks, correlate poorly to either of the performance
metrics. This result is supported by the random scattering of the three measures in Figures 1
and 2. In the case of RM2 and RM4, the probability of delays in the schedule actually
increases with the total amount of free slack in the schedule. Although the cause of this
relation remains to be investigated, one possible explanation might be that free slack in these
shunting plans mostly arises when a train is scheduled to wait until a route or a resource
is available for its movement or service activity. Therefore, if a shunting plan contains
many waiting trains, then the infrastructure or resources at the shunting yard are not used
effectively, and the schedule will likely have a large makespan.

7 Conclusion

In this paper, we have studied robustness measures for shunting plans, which are solutions to
the scheduling problem with deadlines that arises at shunting yards. The goal of the research
is to identify measures that can accurately and efficiently estimate the robustness of a shunting
plan, which is the likelihood that all trains depart on time from the shunting yard when
disruptions occur in the operational phase. To achieve this goal, we have proposed new path-
based robustness measures, and compared these, as well as several existing measures, with
the results of a Monte Carlo simulation study on shunting plans for two real-world shunting
problems of the Dutch Railways. We have shown that the new and existing robustness
measures that utilize normally distributed approximations of the activity durations are
strongly correlated with robustness of the schedules. Despite its simplicity, the makespan is
also a good indicator of the robustness for schedules with deadlines. Contrary to earlier results
on schedules without deadlines, the free slack has a poor predictive value of the robustness
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of shunting plans. Further research should be conducted to investigate the differences in
robustness in scheduling problems that are subject to deadlines, and those that require the
minimization of the makespan.
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Abstract
Providing attractive and efficient public transport services is of crucial importance due to higher
demands for mobility and the need to reduce air pollution and to save energy. The classical
planning process in public transport tries to achieve a reasonable compromise between service
quality for passengers and operating costs. Service quality mostly considers quantities like average
travel time and number of transfers. Since daily public transport inevitably suffers from delays
caused by random disturbances and disruptions, robustness also plays a crucial role.

While there are recent attempts to achieve delay-resistant timetables, comparably little work
has been done to systematically assess and to compare the robustness of transport plans from a
passenger point of view. We here provide a general and flexible framework for evaluating public
transport plans (lines, timetables, and vehicle schedules) in various ways. It enables planners
to explore several trade-offs between operating costs, service quality (average perceived travel
time of passengers), and robustness against delays. For such an assessment we develop several
passenger-oriented robustness tests which can be instantiated with parameterized delay scenarios.
Important features of our framework include detailed passenger flow models, delay propagation
schemes and disposition strategies, rerouting strategies as well as vehicle capacities.

To demonstrate possible use cases, our framework has been applied to a variety of public
transport plans which have been created for the same given demand for an artificial urban grid
network and to instances for long-distance train networks. As one application we study the
impact of different strategies to improve the robustness of timetables by insertion of supplement
times. We also show that the framework can be used to optimize waiting strategies in delay
management.
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1 Introduction

The design of attractive and efficient public transport services is a challenging problem of
fundamental importance. The overall planning process is complex and involves many stages.
We here focus on the planning stage where the basic infrastructure (stops, available tracks
or roads) is already fixed and planners are interested in the design of a public transport
plan, i. e. the design of a line network with a corresponding timetable and vehicle schedule.
Traditionally, the primary optimization goals for public transport plans are operating costs
on the one side, and service quality criteria like perceived travel time and number of transfers
on the other. Robustness issues addressing the effect of possible disturbances on passengers,
are often not considered at this stage of the planning process.

Goals and contribution. In this paper, we provide a general framework for the analysis
of public transport plans, applicable to transport networks of all scales (city, regional, and
long-distance) and different means of public transport (trains, trams, busses). Based on given
passenger demands, our goal is to analyze robustness indicators which allow for a comparison
of different line plans, timetables and vehicle schedules with respect to their vulnerability to
delays. The results of robustness tests shall provide planners with a detailed account of the
strengths and weaknesses of their public transport plans with respect to three dimensions:
operating costs, service quality, and robustness. We provide an extension of the preliminary
robustness tests introduced in ATMOS 2017 [12]. In that work, we considered three different
types of isolated delay scenarios: delays of individual vehicles, delays caused by slow-downs
on segments, and delays caused by blockings at stops. In this paper, we complement these
robustness tests to cover specific characteristics of a public transport in a more realistic way.
The overall robustness test framework has been designed to model public transport in a fairly
realistic way. Important features and enhancements include the following:

Passengers choose routes according to a generic cost model for perceived travel times.
We consider vehicle schedules in two ways: as base for computing operating costs and for
the propagation of delays over consecutive trips of the same vehicle.
We apply a more realistic model by considering limited vehicle capacities. In our
simulations, passengers are forbidden to enter fully occupied vehicles.
In practice, waiting and disposition strategies are used to reduce passenger delays. Typical
strategies can be studied within our framework.
We compare timetables that have been optimized with different strategies to increase
robustness by inserting time supplements (buffer times).
We apply random delays in simulations which are based on historical observations.

We aim at answering the following questions:
Do we observe a trade-off between robustness and travel times on the basis of timetables
which are optimized with respect to travel time for the respective line plan?
Can we detect shortcomings with respect to robustness of specific transport plans?

http://dx.doi.org/10.4230/OASIcs.ATMOS.2018.4
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What is the benefit of time supplements? Where should supplements be inserted and how
large should they be to get a reasonable compromise between robustness and travel time?
How different are the outcomes of the robustness tests? If we rank all solutions decreasingly
by their robustness, do we obtain consistent rankings for the proposed robustness tests?

Related work. Parbo et al. [20] provide a recent literature review on passenger perspectives
in railway timetabling. They argue that there is a gap between passengers’ perception of
railway operations and the way timetables are designed. In particular, they observe that
a discrepancy exists between how rail operations are planned with the main focus being
on the trains and how passengers actually perceive and respond to railway performances.
Punctuality of public transport is of high importance for passengers. Therefore, a plenitude
of methods exist to quantify the deviation of the realized schedule from the planned schedule.
Reports often provide the percentage of arrivals on time, where being on time is defined as to
arrive not later than within a given margin (e.g., 5 or 15 minutes for long-distance trains) of
the planned arrival time. In a Dagstuhl seminar in 2016 ( http://www.dagstuhl.de/16171),
Dennis Huisman coined the phrase “passenger punctuality 2.0” for measuring the (weighted)
total passenger delay at the destination for all passengers. The latter definition has been
used by [24, 15, 9, 8, 10] and others. Less sophisticated indicators include the mere number
of delayed departure and arrival events [7]. Alternatively, Acuna-Agost et al. [1] propose to
count every time unit of delay at every planned stop and at the last stop. Robust planning
has been studied intensively, see Lusby et al. [18] for a very recent survey, and Josyula and
Törnquist Krasemann [16] for a review of passenger-oriented railway rescheduling strategies.
In robust timetabling it is desirable from an operational point of view that a timetable can
absorb delays and recover quickly (thus avoiding penalties for the operator). To achieve
this, inserting time supplements may help to reduce the effect of disturbances, but may
have a negative effect on average travel times. Not only the total amount of supplements
times, but also their distribution along the line routes is important. These aspects have
been studied intensively in operations research. For example, Kroon et al. [17] use stochastic
optimization to allocate time supplements to make the timetable maximally robust against
stochastic disturbances. They use the expected weighted delay of the trains as indicator.
To increase delay tolerance, Amberg et al. [2, 3] consider the redistribution and insertion of
supplement times in integrated vehicle and crew scheduling for public bus transport. Using
mixed integer linear programming, Sels et al. [28] improve punctuality for passenger trains in
Belgium by minimizing the total passenger travel time as expected in practice. Bešinović et.
al. [5] optimized the trade-off between travel times and maximal robustness using an integer
linear programming formulation which includes a measure for delay recovery computed by an
integrated delay propagation model. In these works, the line network is usually already fixed.
Robustness of timetables was empirically investigated (with respect to different robustness
concepts) in [14], robustness of lines has been studied in [13] and [27]. A general survey of
line planning in public transport can be found in [25]. A recent integrated approach combines
line planning, timetabling, and vehicle scheduling, but without considering robustness [26].

Overview. In Section 2, we present our algorithmic framework and motivate different
robustness tests for public transport plans. To evaluate them, we explore in Section 3 four
transport plans for German long-distance trains. Moreover, we consider 60 different transport
plans for an artificial grid network. All test instances mainly differ in the strategy by which
supplement times are incorporated into the timetable. Finally, we summarize and conclude
with future work.
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2 Simulation framework and robustness tests

In this section, we first sketch the basics of our simulation framework. Afterwards, we
introduce several robustness tests.

2.1 Simulation framework
Basic definitions. In this paper we use the following definitions to describe the movements
of vehicles and passengers:

Service run: Movement of a vehicle between the start and terminal node of a line route.
A service run has a scheduled arrival and departure time at every stop.
Route: Movement of a passenger between an origin and a destination stop. A route (a.k.a.
itinerary or connection) describes a passenger trip consisting of a sequence of trip legs,
i. e. transfer-free segments of a trip. Every trip leg uses one particular service run and
has a defined departure and arrival time. A route requires transfers between trip legs.
Routing: A process to determine the route of a passenger. Rerouting is necessary, if the
planned route of a passenger fails. This happens if service runs are late or overloaded.

Event-activity network. To represent a public transport timetable with its corresponding
vehicle schedule, we use a so-called event-activity network (EAN) N = (V, A), i.e. a directed
acyclic graph with vertex set V and arc set A. The vertices of the network correspond to
the set of all arrival and departure events of the given timetable. Each event is equipped
with several attributes: its type (arrival or departure), the id of the corresponding service,
the stop, and several timestamps. In this context we distinguish between the planned event
time according to schedule, and the realized time after the event has occurred. In an online
scenario, one also has to consider the estimated event times with respect to the current delay
scenario. Arcs of the network model order relations between events. We distinguish between
different types of arcs (“activities”):

driving arcs, modeling the driving of a specific vehicle from one stop to its very next stop,
dwelling arcs, modeling a vehicle standing at a platform and allowing passengers to enter
or leave it,
transfer arcs, modeling the possibility for passengers to change from one vehicle to another,
and
vehicle circulation arcs, modeling the usage of the same physical vehicle in subsequent
services.

Every arc (activity) has an attribute specifying its minimum duration. For driving arcs
we thereby model the catch-up potential between two stops under optimal conditions. For
dwelling arcs the minimum duration corresponds to the minimum time needed for boarding
and deboarding. For transfer arcs, the minimum duration models the time which a passenger
will need for the transfer. For vehicle circulation arcs, the minimum duration specifies the
time needed between two services.

Disposition policies. For all non-direct travelers, the effect of some delay on their arrival
time at the destination depends on the chosen delay management policy of the responsible
transport operator. Waiting time rules specify how long a vehicle will wait at most for a
delayed feeder service. Such rules may depend on the involved lines, the time when to be
applied, and other criteria. Our basic framework follows in spirit those of PANDA [22], a tool
originally developed for optimized passenger-friendly train disposition. It can be instantiated
in a flexible way with almost arbitrary fixed waiting time strategies, in particular with the
extreme cases of NO-WAIT and ALWAYS-WAIT.
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Delay propagation. Delay scenarios are specified by a set of source delays. Given some
source delay, the delay is propagated from the current event to forthcoming events of the
same service, and possibly to subsequent services of the same vehicle. Depending on the
disposition policy (waiting strategies), it may also influence services provided by other vehicles.
Delay propagation due to capacity restrictions of the infrastructure is not considered. New
timestamps for events are derived through a propagation in breadth-first search order in the
event activity network [19].

Vehicle capacities. An important optional feature of our framework is to incorporate vehicle
capacities into our simulations. Every vehicle has a maximum capacity for transporting
passengers. When capacity limitations are applied, passengers can only board if the given
capacity is not exceeded. Otherwise, they have to wait for the next service or to look for
an alternative route. If too many passengers compete for the remaining capacity, we choose
randomly who can enter the vehicle.

Passenger routing and rerouting. In our framework, we assume that passengers prefer
shortest routes with few transfers. We use a generic cost function to evaluate travel time on
routes which penalizes every transfer by an equivalent of five minutes of extra travel time in
the grid network and ten minutes in the long-distance train network, subsequently referred
to as perceived travel time. In our model passengers behave always rational and have access
to full information about all current delays. That means, passengers can send route queries
to an online server, but it seems reasonable to assume that they check their route only in
certain specific situations:
1. Whenever passengers wait at a stop and the next vehicle they intend to board is late,

they also check for a better connection and take a new route if this choice reduces their
travel time compared to the delayed previous choice.

2. Likewise, if passengers sit in a vehicle and notice that it has caught some delay, they will
actively check the feasibility of the current route and switch to a new route if necessary.

3. While we assume that a central server has full information about current delays, the
passenger load in each vehicle is unknown. Therefore, it may happen that passengers
choose a route which later turns out to be infeasible due to limited capacities. In such
cases, passengers notice that a particular vehicle is full and cannot be used only when
they try to board it. As a consequence, they also have to adapt their route.

Table 1 summarize the different possibilities which require routing requests. Our frame-
work is flexible in the sense that some rerouting actions can be switched off (last column of
Table 1).

In some cases passengers miss the last connection of a day. Such passengers are treated
separately. They either have to use a different means of transportation (for example, a taxi)
or they have to spend a night in a hotel in case of a long-distance journey. We penalize
such cases with a fixed delay of four hours. We assume for simplicity that passengers choose
alternative routes again with the same principle (minimum perceived travel time). Such
routes can efficiently be computed by some variant of Dijkstra’s algorithm, see [4] for a
recent survey on fast approaches. For large networks with many origin-destination pairs, a
sufficiently fast method is needed to achieve reasonable simulation times.

Composition of framework. The framework consists of several modules which can be
instantiated in a flexible way. Figure 1 provides an overview of the overall robustness test
framework, its modules and interfaces.
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Table 1 Classification of cases for passenger rerouting.

Situation Point in time for
next rerouting

Rerouting
mandatory?

first vehicle
on route is late planned time for departure no

next vehicle to
board is late

current time of arrival
event before transfer no

future transfer
is invalid

current time of arrival node
before next transfer no

current transfer invalid current time of arrival node
before transfer yes

current capacity while
boarding invalid current time of departure event yes

Figure 1 Modules of the robustness framework.

2.2 Robustness tests
As discussed in the introduction, robustness of transport plans can be measured in many
ways. In the following, we focus on small to moderate delays and take a passenger-oriented
view. That means, we want to quantify the effect of delays and disturbances on passengers.
We propose the following four robustness tests.

Robustness test RT-1: Delays of single service runs (initial vehicle delay). The first
robustness test considers the effect of the delay of a single service run in isolation. We
evaluate many distinct scenarios, one for each service run of the given timetable. Every
service run is delayed by x1 minutes at its first stop. Such a delay may occur due to technical
problems of some specific vehicle or due to the late arrival of some feeder vehicle causing a
departing vehicle to wait for changing passengers.

Robustness test RT-2: Slow-down of single network sections (track delay). A second
robustness test models scenarios where some network section invokes a certain delay. For
example, temporary speed restrictions may occur because of construction work or for safety
reasons. Whenever a service run passes this section, it catches a delay of x2 minutes.
Optionally, this test can be refined by either considering bidirectional or unidirectional delays
on the network section.

Robustness test RT-3: Temporary blocking of single stop (stop disruption). We model
the temporary blocking of a whole stop. Such a disturbance has a starting point tstart and a
duration x3. During the blocking phase, we assume that vehicles may still enter the stop
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but no vehicle can leave it. For simplicity, we further assume that the capacity to hold all
vehicles at the stop is sufficient. For long-term blockings, a more detailed model would be
required. When the blocking phase is over, vehicles restart from this stop one after another
in the order of their scheduled departure with a constant headway of headway minutes.

Robustness test RT-4: Empirical delay distributions. We use data from past observations
for source delay distributions on network sections and start delays of trips. For the initial
departure event of each service and for all intermediate arrival events, we draw random
independent source delays from these distributions. These source delays are then propagated
through the network. Since the resulting delay scenarios are randomly drawn, the tests have
to be repeated many times. From several pretests we learned that 50 repetitions are sufficient
to yield stable means of our test indicators in practice.

3 Experiments

In order to evaluate the proposed robustness tests, we perform a number of experiments. In
this section, we will first describe the chosen test instances and how they have been generated.
Then, we discuss the choice of parameters used within the robustness tests. Then, in the
main part we present the results. As indicators for robustness we use the total delay and
the fraction of affected passengers. By total delay we refer to the sum of delays at their
destinations experienced by all passengers across all separate parts of one robustness test.

3.1 Test data and parameters
In this paper, we use two types of instances: (1) instances based on a simplified version of the
German long-distance (high-speed) train network, and (2) variations of artificial instances on
a grid network as proposed in [11] for studying different planning strategies.

Construction of transport plans. Various public transport plans have been created using
the LinTim-framework [13, 23]. For choosing the lines and their frequencies, a cost-based
approach was chosen, see [25]. This approach starts with a line pool and assigns a frequency
to each line in the pool. Lines with a frequency of zero are not chosen. The objective is to
minimize the costs, i.e., to cover the demand, but using as few lines and as low frequencies
as possible. From the resulting lines, we construct an event-activity network in which the
timetabling step is performed. To this end, every driving, dwelling and transfer activity
receives a minimum duration to which we add supplement times. To increase robustness we
require for specific activities a certain minimum supplement (details below). For computing
the timetable we used the fast MATCH approach introduced in [21]. After rolling out the
periodic timetable for the day, a vehicle schedule is computed using a basic IP-based approach,
see [6], to minimize the overall vehicle scheduling costs.

Long-distance train instances. We study four instances based on a simplified version of the
German long-distance train network containing major stations in Germany and stations of
neighbouring countries (Figure 2). For this network we used an artificial demand containing
380k passengers. This matches the average number of passengers travelling on long-distance
trains in Germany. The four instances are based on different minimum time supplements,
specified for driving sections or for dwelling activities at busy (i.e. highly used) stops:

(A) no minimum supplement times (“no_buffer”)
(B) supplement time is at least 3 minutes at busy stops (“3_min_busy_stops”)
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4:8 Robustness as a Third Dimension for Evaluation

Figure 2 Long-distance train network used in this paper.

(a) Line network. (b) Travel demand.

Figure 3 Grid instances: Common line network of all instances with line frequencies per hour (in
brackets) and the passengers’ travel demand.

(C) supplement time is at least 5% of driving time (“5_percent_drive_buffer”)
(D) supplement time is at least 10% of driving time (“10_percent_drive_buffer”)

Note that every periodic timetable has some intrinsic slack (due to the periodicity), i.e.,
usually there will be some arcs with a larger slack than the required time supplement.

Grid instances. In [12] many different line plans were tested concerning their robustness
to similar tests. Based on a comparatively robust line plan (Figure 3a) we created 60
schedules that implement different strategies to distribute supplement times to further
improve robustness. Figure 3b shows the travel demand (in morning peak hours) common to
all instances. The demand is defined for every pair of origin and destination and every hour
of the day containing 19500 passengers in total. Each vehicle is assumed to operate with
a capacity of 65 passengers. All instances were created in an effort to minimize perceived
travel time, number of transfers and operating costs.

Recall that we aim at studying to which extent we can increase robustness by inserting
additional time supplements. With this goal in mind, we created ten different classes of
instances described in Table 2. For every class we created six instances with different time
supplements concerning their circulation time supplement (commonly also referred to as
free layover time or supplement on turn-around). Namely, these six instances of each class
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Table 2 Time supplement classes for grid network.

undisturbed
Class constraints for driving and dwelling times mean travel time
A no supplements 20.08 min
B 3 minutes supplements at the 5% most frequently used stops 20.19 min
C 1 minute supplement for driving sections of central north-south axis 20.31 min
D 2 minutes supplement for driving sections of central north-south axis 20.54 min
E 3 minutes supplement for driving sections of central north-south axis 20.76 min
F 3 minutes supplements at 10% most frequently used stops 20.84 min
G 3 minutes supplements at 15% most frequently used stops 21.06 min
H 3 minutes supplements at the 5% most frequently used driving sections 22.61 min
I 3 minutes supplements at the 10% most frequently used driving sections 23.48 min
J 3 minutes supplements at the 15% most frequently used driving sections 23.85 min

have at least circulation time supplements of 0,1,3,5,7 and 9 minutes. The circulation time
supplement influences the vehicle schedule. The larger this supplement, the more vehicles are
required. The timetable, however, remains unchanged for each instance of the same class. In
Table 2, the instance classes are ordered increasingly with respect of the mean undisturbed
travel times of passengers.

The operating costs of a transport plan are calculated in a simple model as the sum
of two components as follows. For each used vehicle we consider the amount of travelled
distance in kilometers (including empty trips) and apply a cost factor of 1.5e/km. For each
used vehicle, the operating time (regular and empty trips) is multiplied with a cost factor of
50e/h which includes personal costs, depreciation and maintenance of the vehicle.

3.2 Setup of the robustness tests
For each robustness test, a certain range of parameters has to be chosen. We decided to vary
the parameters in the following ranges.

Test RT-1: x1 = 1..18 min initial vehicle delay
Test RT-2: x2 = 1..10 min delay for crossing disturbed edge
Test RT-3: x3 = 10..20 min blocking time for disturbed station
Test RT-4 applies an empirical delay distribution. We use observed delay data of German
long-distance trains from a dataset of 2016-2017 containing over 28 million events for
ICE and IC trains. Based on these data, we derive empirical, discrete delay distributions
for two types of source delays. The first type is the starting delay of a vehicle at its
first departure of a trip. The second type of delay is the additional delay of a vehicle on
any driving edge (see Figures 4a and 4b). Both delay distributions are truncated to the
interval between 0 and 10 minutes of delay.

Let us briefly discuss the rationale behind our parameter choices for the experiments
with the grid instances. For the first test RT-1, an initial delay of more than 20 minutes
would result in a simultaneous departure of the delayed vehicle and the next trip of the same
line. Therefore, we choose 18 minutes as maximal delay. For experiments with the second
robustness test RT-2 we choose 10 minutes as a maximum delay for a similar reason. Even
larger delays would significantly decrease the number of service runs per day (unless there
is enough catch-up potential). For experiments with robustness test RT-3 we choose upper
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(b) Delays on driving sections.

Figure 4 Empirical delay distributions for long-distance trains.

limits of a disruption to be 20 minutes. If the duration of the disruption is too high and
every vehicle in the network passing a central station is hit by it, the propagation of delays
would be too large and thus making an evaluation of resulting effects on passengers pointless.

3.3 Experiments with long-distance train network

Next we present the results of applying our robustness tests to the four instances of long-
distance train networks. In a first experiment, we are interested in the impact of different
delay parameters in the robustness tests RT-1 to RT-3. For robustness test RT-1, Figure 5
(left) shows the total delay of all passengers depending on different delay parameters x1. The
total delay seems to increase almost linearly with the size of the vehicle delay parameter
for all instances. When we look at the results of RT-1, it seems as if there are clear
differences between the four instances. Indeed, in terms of total delay instance (A) without
time supplements is always worst. The slowest increase rate occurs for instance (B) with
supplement times for busy stations. The ranking of the other instances changes when
increasing the delay parameter. However, it is very important to note that the total delay is
fairly small in absolute terms for all instances. Thus, all instances are quite robust against
delays of single vehicles. Robustness tests RT-2 and RT-3 show a linear dependence on the
delay parameters and yield the same ranking for all tested parameters (Figures 5 and 6). The
relative gap between the instance with no time supplement and the three other instances in
RT-2 (Figure 5, right) is significantly larger than in the two other experiments, and the gap
is increasing with the size of the delay. For the robustness test RT-4 based on empirical delay
distributions, the resulting delays for passenger routes are quite significant. We observe an
average delay of 12 minutes per passenger in our instance (A) having no time supplements,
about 8 minutes for instance (B), about 6 minutes for instance (C) and only 4.5 minutes for
instance (D). Figure 6 (right part) shows that instance (C) has the best tradeoff between
mean delay per passenger and planned travel time.
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Figure 5 Robustness tests RT-1 and RT2 on long-distance train network.
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Disposition strategies. The next experiment compares fixed waiting strategies for the
timetables of the long-distance train network. By a fixed waiting time strategy we mean the
following. In case of a delayed feeder train, the departing trains waits for up to x minutes
if this helps to save a planned transfer for at least one passenger. In our experiment, we
compare different strategies with x ∈ {0, 1, 2, 3, 4, 5} where x = 0 means NO-WAIT.
Figure 7 shows several interesting findings:

The mean delay per passenger differs significantly for instances (A)-(D): the smallest
delay occurs for timetable (D) with 10% time supplement on driving sections, second best
is the timetable (C) with 5% time supplement on driving sections, followed by timetable
(B) with a 3-minute-supplement on busy stations. Not surprisingly, the instance (A)
without extra supplement times performs worst.
The best performing fixed waiting strategy depends on the timetable. The larger the
time supplements are, the longer one can afford to wait for delayed trains.
Using a fixed waiting time strategy the mean delay per passenger can be reduced by up
to about 25% in comparison with NO-WAIT strategy.

3.4 Experiments with grid instances
Comparison of supplement time strategies. For each of the robustness tests RT1-RT3, we
obtain a ranking of the 60 grid instances with respect to the observed total delay (with rank
1 being the best). An obvious question is to ask whether we do observe different or consistent
rankings for different parameters and robustness tests. If we compare the rankings of the
robustness shown in Figure 8, one can see that the instances where the time supplements are
placed on the driving arcs have best ranks among all classes independent from the circulation
time supplement. The class of instances where the time supplements are placed at every stop
rank second and the instances where the supplements are placed at the most frequently used
stops rank third. We expect that circulation time supplements become more important for
delay scenarios with larger delay parameters. This is confirmed in Figure 8 where rankings
of instances with 9 minutes of required circulation time supplements clearly outperform
those without such a required supplement. Instances with a circulation time supplement of 9
minutes in most cases improve their ranking with increasing disturbances, while instances
with no circulation time supplement tend to fall off in their ranking.

Trade-off between travel time and robustness. We also have to compare the average time
it takes passengers to reach their destination on an undisturbed day of traffic with the results
from the robustness test. We can see this trade-off for a fixed robustness test and parameter
on Figure 9 (left). Although the instances (H)-(J) have superior robustness, their tradeoff
between robustness and perceived travel-time is worse than the tradeoff between the other
classes of instances. In Figure 9 (right) one can see, that the costs of these solutions are
significantly higher than for instances (A)-(F). These evaluations were made for one specific
set of delay parameters, but tests with other sets of parameters yield similar results.

Choosing turn-around time supplements. One other question we would like to answer is:
How to choose a good turn-around time supplement? And what is the trade-off between the
corresponding increased costs and reduced delays? Figure 9 can provide several insights to this
question for a fixed delay parameter of x2 = 5 minutes in RT-2. For the relatively cheap classes
of schedules (A) to (F), it seems worth to invest 3 to 5 minutes of turn-around supplements.
Schedules within the class (G) to (J), however, do not require such turn-around supplements.
These schedules can already make use of other time supplements. The magnitude of regular
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Figure 8 Comparison of timetables with respect to robustness ranking for different tests.
Instances are denoted by class (A-J) and required circulation time supplement (0 or 9 minutes).

20 21 22 23 24 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RT−2 − trac delay
Parameter 6 min

undisturbed travel time [in minutes]

de
la

y 
re

la
tiv

e 
to

 m
ax

im
um

0

0

0
0

0

0

0

0 0
0

9

9

9
9

9

9

9

9 9

9

B

A

C D
E

F

G
H I

J

20 21 22 23 24 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

instance cost

undisturbed travel time [in minutes]

in
st

an
ce

 c
os

t r
el

at
iv

e 
to

 m
ax

im
um

00 0 0 0

0

0

0 0 0
99 9 9 9

9

9 9
9

9

BA C D E

F
G

H I J

Figure 9 Instances are denoted by class (A-J) and the required minimum circulation time
supplement of 0 or 9 minutes. Left: We compare the robustness trade-off for all instance classes
of the grid instances with respect to robustness test RT-2 with a slowdown parameter of x2 = 5
minutes. The y-axis shows the observed delay relative to the instance with maximum delay. Right:
We show the tradeoff between average undisturbed travel time (x-axis) and relative operating costs.

disruption determines the need for a turn-around time supplement. However, for small
to medium disruptions the trade-off between benefit and cost for introduction of time
supplements up to 3 minutes was always good for instances (A) to (F).

Three-dimensional trade-offs. We now face the challenge of evaluating transport plans to
several factors simultaneously and to show their mutual trade-offs. We consider

C – operational cost,
T – average travel time of passengers, and
R – robustness measured as total delay for the passengers in our robustness tests. As
combined robustness measure we take the average performance with respect to robustness
tests RT1-RT3 with the delay parameters set to a medium value (RT-1 with x1 = 8
minutes, RT-2 with x2 = 5 minutes and RT-3 with x3 = 15 minutes).
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Figure 11 Comparison of robustness test RT-1 with and without vehicle circulations arcs for the
grid instances.

In order to visualize the trade-off between different features we use a special form of a radar
or spider chart (Figure 10). The center point of one triangle corresponds to the worst solution,
while the corners represent the best value of one instance in the respective attribute. In the
following comparison we concentrate on only those instances with the same circulation time
supplement of 9 minutes. Instances (D), (E), (F) have a large triangle area, which can be
interpreted as being good solutions over all criteria. Instance (I), however, seems to be the
worst instance.

Impact of vehicle circulations. In another experiment, we studied how important it is to
consider vehicle circulations. Therefore, we conducted tests with activated and deactivated
vehicle circulation arcs in the EAN. As one example, we show in Figure 11 results of robustness
test RT-1 with the grid instances (using zero minutes of circulation time supplement). The
measured total delay is clearly significantly larger for the EAN with circulation arcs enabled
than for without. It can be larger by up to a factor of 1.5. Moreover, the difference between
the instance classes (A)-(J) increases with the initial delay parameter of this test. We
conclude that vehicle circulation arcs should be considered.
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Figure 12 Experiments with vehicle capacities in the range 55-80.

Impact of vehicle capacities. One important aspect covered by our model is to consider
the impact of vehicle capacities in public transport. As mentioned earlier we assume hard
capacities of at most 65 passengers per vehicle in our simulations. This number was used
in the creation of the instances using LinTim. In the following experiment we study the
dependence of experienced delays subject to different capacities. Would smaller vehicles
or more passengers have an effect on our results? To answer this question we simulated
undisturbed days of traffic with constant demand, and varied the maximum capacity of all
vehicles. We consider the range of vehicle capacities between 55 and 80.

Figure 12 displays the fraction of passengers which for a given vehicle capacity are affected
by congestion in a way that they have to adapt their planned route as they cannot board a
full vehicle. We observe that for all considered timetables our assumed vehicle capacity of 65
passengers per vehicle leads to less than 1% of all passengers being affected by congestion.
Limiting the capacity further or increasing the number of passengers would decrease the
robustness of the instance due to vehicle capacity constraints.

4 Summary

We have presented a general and flexible framework for performing and evaluating robustness
tests with varying parameters. Extending earlier work in [12], our refined model now includes
circulation arcs, vehicle capacities, a generic cost function for choosing passenger routes, and
disposition strategies. Robustness tests RT1-RT3 provide public transport planners with a
tool for comparing timetables without empirical delay data. By varying the delay parameters
of these tests, it is possible to study the dependence of the robustness on the severeness of
the delay scenario. When empirical delay data is available, the robustness test RT-4 provides
realistic expected average delays. Exploring a set of instances applying different strategies
for distributing time supplements, we have been able to analyze strengths and weaknesses of
all instances. An interesting use case of our framework is to optimize waiting time strategies.

In future work we would like to further improve our simulations by including more
information about the network infrastructure and applying sophisticated models for passenger
behaviour in case of disruptions. Another extension may consider soft vehicle capacity
constraints where passenger satisfaction is degraded when vehicles become too crowded.
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Abstract
We develop a fast method to compute an optimal robust shortest path in large networks like road
networks, a fundamental problem in traffic and logistics under uncertainty.

In the robust shortest path problem we are given an s-t-graph D(V,A) and for each arc a
nominal length c(a) and a maximal increase d(a) of its length. We consider all scenarios in which
for the increased lengths c(a) + d̄(a) we have d̄(a) ≤ d(a) and

∑
a∈A

d̄(a)
d(a) ≤ Γ. Each path is

measured by the length in its worst-case scenario. A classic result [6] minimizes this path length
by solving (|A|+1)-many shortest path problems. Easily, (|A|+1) can be replaced by |Θ|, where
Θ is the set of all different values d(a) and 0. Still, the approach remains impractical for large
graphs.

Using the monotonicity of a part of the objective we devise a Divide and Conquer method
to evaluate significantly fewer values of Θ. This methods generalizes to binary linear robust
problems. Specifically for shortest paths we derive a lower bound to speed-up the Divide and
Conquer of Θ. The bound is based on carefully using previous shortest path computations. We
combine the approach with non-preprocessing based acceleration techniques for Dijkstra adapted
to the robust case.

In a computational study we document the value of different accelerations tried in the algo-
rithm engineering process. We also give an approximation scheme for the robust shortest path
problem which computes a (1+ε)-approximate solution requiring O(log(d̂/(1+ε))) computations
of the nominal problem where d̂ := max d(A)/min(d(A) \ {0}).
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1 Introduction

We develop an algorithm for the cost-robust shortest path problem that significantly reduces
the time needed to compute such paths on road networks in practice.

Finding a shortest path from a source s to a sink t in a graph with arc lengths c(a) is a
basic algorithmic problem with numerous applications, prominently involving navigation in
road networks. Dijkstra’s algorithm is the backbone of most navigation applications, but
it requires modern acceleration techniques to find within fractions of seconds a route in
a network with several hundred thousands or millions of arcs, e.g., in the European road
network.
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Unfortunately, input data in real-world applications is usually subject to changes, uncer-
tainty or error. For travel times on roads, i.e., arc lengths in shortest path calculations, the
change of data is often caused by varying traffic. Several approaches have been proposed
to address this problem, including prediction of traffic, leading to time dependent travel
times, as well as stochastic models. In this paper we study the classical cost-robust shortest
path problem introduced by Bertsimas and Sim. Cost-robust optimization is an alternative
approach to handle varying and uncertain data. It minimizes the cost a solution attains in
its specific worst-case scenario out of a given set of scenarios. The advantage of the robust
approach is that – within the limits of the scenario set – the objective is a deterministic,
guaranteed upper bound on the actual travel time.

The scenario set for cost-robustness introduced by Bertsimas and Sim allows each cost
coefficient c(a) of a linear cost function to deviate up to a – individual for each variable xa –
maximal deviation d(a). In addition, the number of deviations in a scenario is limited by an
input parameter Γ. This is equivalent to limiting by Γ the sum of the fractions of maximal
deviations occurring in a scenario. Formally, for a given set of binary variables {xa, a ∈ A}
and vectors c and d in N|A| the scenario set for the cost-functions is:{

c+ d̄ : 0 ≤ d̄(a) ≤ d(a),∀a ∈ A ∧
∑
a∈A

d̄(a)
d(a) ≤ Γ

}
. (1)

For this scenario set the cost-robust counterpart of any binary linear program can be solved
by solving at most (|A|+ 1)–many identical binary linear programs with different linear cost
functions. More precisely, let Θ contain 0 and all d(a). Then one has to solve the problem
for each θ ∈ Θ and the cost function Γθ +

∑
A xa(c(a) + max(d(a)− θ, 0)). Intuitively, the

θ enumerates over the smallest deviation d(a) occurring in the scenario. This highly cited
result by Bertsimas and Sim applies to cost-robust shortest path, which can thus be found
by solving one standard shortest path problem for each arc in the graph.

For a road network with several hundred thousand or millions of arcs this is impractical
even when using fast shortest path algorithms. Therefore, we devise a method to significantly
reduce the computational effort.

Starting from the Bertsimas and Sim result we use three ways towards practically useful
cost-robust shortest path methods. First we reduce the number of θ-values to be examined.
Second, we use fast shortest path methods. Third, we reuse previous computations for
bounds and goal-directed search, further accelerating the shortest path computations.

It has been proposed [21] that a cost-robust binary problem can be solved by Γ-many
copies of the nominal problem. Unfortunately, this result contains a subtle error. We give
a counter-example in the appendix which hints to our conviction that essentially |Θ|-many
shortest path computations are needed in general.

Accelerated shortest path methods differ on whether they use preprocessing of the graph
or not. In this paper, we restrict ourselves to not preprocess the graph. We instead use
goal-directed and bidirectional search and adapt both to the cost-robust setting. The high
deviations in the arc length in the robust case inhibit the use of traditional preprocessing
techniques used for deterministic shortest paths.

1.1 Our contribution
We give an approximation scheme for general robust combinatorial optimization problems
which can be used to compute a (1 + ε)-approximate solution using O(log(d̂/(1 + ε)))
computations of the original problem.
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We introduce a Divide and Conquer approach together with lower bounds for general
robust combinatorial optimization problems which can be used to reduce the number
of computations of the original problem. The reduction of computations is achieved by
carefully reducing the number of θ-values to be considered.
When applying this to the robust shortest path problem we additionally accelerate
the computations of individual shortest paths using pruning and a goal-directed search
tailored to the robust shortest path problem.
We give an efficient method to obtain lower bounds for the length of shortest paths with
respect to cθ. We use these bounds to speed up the Divide and Conquer approach.
We conduct a computational study showing the effectiveness of our techniques.

1.2 Organization of this paper
We begin by formally introducing the robust shortest path problem in Section 2. We restate
the main theorem by Bertsimas and Sim and devise an approximation scheme for the robust
shortest path problem. In Section 3 we propose a general framework designed to reduce the
number of computations of shortest path computations required to solve a robust shortest
path problem. The framework relies on Theorem 3 which is based on the fact that the costs
of arcs are non-increasing with respect to θ. We augment this framework by applying shortest
path acceleration techniques to the robust shortest path problem. These techniques are
search pruning (see Section 4) and goal-direction (see Section 5). The Divide and Conquer
framework relies on lower bounds in order to remove dominated values. In Section 6 we devise
a method to derive lower bounds of high quality based on information obtained from previous
shortest path computations. We include these lower bounds into our Divide and Conquer
approach. In order to show the effectiveness of our approach we conduct a computational
experiment in Section 7.

1.3 Related work
Robust optimization evolved as a vivid research field during the past decade and shows a
broad range of applications, for recent surveys we refer to [5] and [13]. The popularity of
robust optimization is in part due to a large area of applications such as network design and
routing problems. Network design problem in particular suffer from uncertainty with respect
to demands and construction costs. These uncertainties can be treated by adding robustness
to the underlying model [3, 20]. Robustness against demand uncertainty is also an important
topic in problems such as vehicle routing [11] and lot sizing [22].

An important question with respect to robust optimization is whether or not tractability
is preserved for the robust counterparts of polynomially solvable problems. Whether or not
this is the case depends on properties of the nominal problem as well as on the employed
robust model. For some choices of models, such as minmax regret models, nominally
tractable problems become NP-hard (see for example [12]). In contrast, in [6] Bertsimas and
Sim introduced a very general robust model which can be applied to many combinatorial
optimization problems while preserving tractability.

The model of Bertsimas and Sim has gained wide acceptance and formed a basis for the
study of robust combinatorial optimization problems, in particular regarding problems related
to the robustness of shortest paths. Büsing considered the problem of robustness and robust
recoverability in [8, 7]. In this setting, after a robust scenario has been realized it is still
possible to perform some modifications of the previously chosen path in order to recover from
the incurring robust costs. The authors of [19] considered the robust shortest path problem
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with respect to robust costs corresponding to a product of two factors attained according
to the model of Bertsimas and Sim. In [21], Poss considered combinatorial problems which
can be solved with a dynamic programming approach. The author claimed that the robust
counterparts of such problems can be solved with a dynamic program with a size increased
by at most Γ. Unfortunately the proof contains a subtle error and the result does not hold.
We give a counter-example in the appendix.

Since the ordinary shortest path problem has many real-world applications, considerable
effort was put into an accelerated computation. Over the years, different preprocessing
techniques such as arc flags [18] and contraction hierarchies [14] were introduced (see [4]
for a summary). Preprocessing techniques require an initial offline phase which is used to
augment the underlying problem in order to speed up queries in a subsequent online phase.
The techniques perform very well in practice, decreasing query times by several orders of
magnitude. It was shown in [1] that the query time with respect to preprocessing techniques
decreases asymptotically for graphs with low highway dimension, a requirement generally
satisfied for road networks. A related area of research considers large-scale networks which
occur for example in social graphs. Such networks can comprise more than a billion vertices
some of which having extremely large degrees. Conventional preprocessing techniques can’t
be applied in this case. The authors of [9, 16] introduced an inexact preprocessing based on
landmarks which is comparable to the approach in [15] for road networks. In contrast the
authors of [2] considered a preprocessing technique which either answers the query correctly
(in more than 99 % of the queries conducted in their experiments) and fails otherwise.

2 The robust shortest path problem

The robust shortest path problem is defined on a directed graph D = (V,A) with n vertices
and m arcs. Each arc a ∈ A has costs c(a) ∈ N and deviations d(a) ∈ N. A parameter Γ ∈ N
governs the conservatism in accordance with the model of Bertsimas and Sim. Specifically,
consider a path P given as a sequence of arcs. A worst-case scenario in the scenario set
defined by (1) can be assumed to increase the costs on Γ of the arcs belonging to P to the
upper bound d, yielding a total cost of∑

a∈P
c(a) + max

S⊆P
|S|≤Γ

∑
a∈S

d(a). (2)

The following theorem shows that the robust shortest path problem can be solved in
polynomial time. This theorem and its proof will form the basis of this paper.

I Theorem 1 (Bertsimas and Sim in [6]). The robust shortest path problem can be solved
using at most m+ 1 computations of nominal shortest paths.

Proof. We are attempting to find a path minimizing the cost given by (2). We first consider
a fixed path P and rewrite the inner optimization problem in terms of variables denoting
membership in the set S:

max
∑
a∈P

x(a) · d(a)

s.t.
∑
a∈P

x(a) ≤ Γ

0 ≤ x(a) ≤ 1 ∀a ∈ P

(3)
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This program has the following dual:

min Γθ +
∑
a∈P

y(a)

s.t. y(a) + θ ≥ d(a) ∀a ∈ P
θ, y(a) ≥ 0 ∀a ∈ P

(4)

It is easy to see that y(a) can be fixed to max(d(a)− θ, 0). As a result, minimizing (2) is
equivalent to finding a path P minimizing

min
θ∈R≥0

Γθ +
∑
a∈P

c(a) + max(d(a)− θ, 0) (5)

The function θ 7→ max(d(a)− θ, 0) is piecewise linear with a break point at d(a). Therefore
the function

θ 7→ min
P∈P

Γθ +
∑
a∈P

c(a) + max(d(a)− θ, 0) (6)

has break points at d(a) for each a ∈ A. It will therefore attain its minimum either at 0 or at
some d(a). Thus, a robust shortest path can be found with at most m+ 1 nominal shortest
path computations according to the costs defined by the corresponding values of θ. J

Even though the shortest path problem is easily solvable in practice, the overhead of solving
m + 1 variants renders the robust counterpart intractable in practice. Observe that the
number of shortest path computations required in total does not actually depend on the
number of arcs but rather on the cardinality of the set

Θ := {0} ∪ {d(a) | a ∈ A}. (7)

This suggests an approximation scheme based on solving an instance with a lower number of
deviations:

I Theorem 2. Let d̂ := max d(A)/min(d(A) \ {0}), ε > 0. A (1 + ε)-approximate solution
of the robust shortest path problem can be computed with O(log(d̂/(1 + ε))) computations of
the nominal shortest path problem.

Proof. Let d̄ : M 7→ R≥0 be the values of d rounded up to the next power of (1 + ε):

d̄(a) := (1 + ε)dlog1+ε(d(a))e ∀ a ∈ A. (8)

There are only O(log(d̂/(1 + ε))) different values for θ with respect to d̄, which implies that
we have to solve only that many instances of the original problem in order to obtain a robust
optimum with respect to d̄. Let P be a solution of the robust problem with respect to the
deviations d. Let S ⊆ P be the set of at most Γ entries causing the robust cost contribution
to P with respect to d. In the worst case, every d(a) increases by a factor of less than (1 + ε)
from d to d. Thus, the robust cost contribution with respect to d is again caused by the
entries in S, increasing the cost of P by less than (1 + ε). J

I Remark.
1. The approximation guarantee is tight: Consider an instance of the robust shortest path

problem given by a digraph consisting of two parallel arcs with pairs of costs and deviations
of (ε/2, (1 + ε)k + ε/2) and (0, (1 + ε)k+1), a parameter of k ∈ N>0 and Γ = 1. The robust
shortest path has a cost of ε+ (1 + ε)k, whereas a robust shortest path for the rounded
instance costs (1 + ε)k+1 in the original instance. As k →∞ a ratio of 1 + ε is achieved.
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s

u

v t

(0, 4) (0, 4)

(2, 5)

(0, 2)

Figure 1 An example for robust shortest paths not forming a tree. Pairs of numbers on arcs
represent costs and deviations.

2. Bertsimas and Sim show that robust minimum cost network flow problems can be
approximated to a factor of (1 + ε) in O(log(mθ̄/ε)), where θ̄ := maxa∈A uada for
capacities u. However, robust network flows are not generally integral for integral
capacities. Specifically, a robust network flow of one unit no longer corresponds to a path.

3. Recall that the shortest paths problem exhibits an optimal substructure: All shortest
paths leaving a common source vertex s can be chosen to form a tree in the underlying
graph. This does no longer hold for robust shortest paths, as shown in Figure 1: For
Γ = 2 the unique robust shortest path from s to t leads past vertex u, causing a cost of 8.
The robust shortest (s, v) path consists solely of the lower arc.

3 Divide and Conquer

In this section we will describe the main idea used to reduce the number of θ-values which
have to be considered to compute a robust shortest path based on Theorem 1. We define
cθ(a) := c(a) + max(d(a)− θ, 0) and observe that this term is non-increasing in θ. The same
holds for the cost of a path P defined as cθ(P ) :=

∑
a∈P cθ(a). For a fixed θ we let

copt(θ) := min
P∈P(s,t)

cθ(P ). (9)

Since copt(θ) is the minimum of non-increasing functions, it is non-increasing as well. In
order to find a robust shortest path we will minimize the function

CΓ(θ) := Γθ + copt(θ). (10)

If CΓ(θ) were a convex function in θ, we could use binary search or similar techniques in
order to reduce the number of required shortest path computations. Unfortunately CΓ(θ)
is not generally convex. We can however derive the following theorem from the fact that
copt(θ) is non-increasing:

I Theorem 3. Let θmin < θmax be in Θ and θ ∈ Θ ∩ (θmin, θmax).
1. If copt(θmin) = copt(θmax), then it holds that CΓ(θ) ≥ CΓ(θmax).
2. Let θ∗ be in Θ. If Γθ + copt(θmax) ≥ CΓ

θ∗ , then the minimum over CΓ is not attained in
[θ, θmax).

Proof. For the first part note that since copt is non-increasing we have that copt(θ) =
copt(θmin) = copt(θmax). The result then follows from the definition of CΓ. Turning to the
second part, we let θ′ ∈ [θ, θmax). We know that CΓ(θ′) ≥ Γθ + copt(θmax) ≥ CΓ(θ∗) and
therefore CΓ(θ) is at least CΓ(θ∗). J

Both cases of Theorem 3 enable us to discard an interval of possible values for θ. We
therefore use a Divide and Conquer approach as a general framework to speed up computations.
The approach works as follows: We maintain a set of intervals of values in Θ together with
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Algorithm 1: A Divide and Conquer algorithm for the robust shortest path problem.
Algorithm DivideAndConquer

Input: Digraph D, costs c, deviations d, parameter Γ, vertices s, t
Output: A robust shortest (s, t)-path
S ← {Θ}
θ∗ ← The value of min(Θ), max(Θ) with lower CΓ

while S 6= ∅ do
Imin ← The interval I from S with the lowest min(CΓ(min(I)), CΓ(max(I)))
if Imin can be discarded then

continue
Imin ← Remove dominated values from Imin
(Ilow, Ihigh)← Intervals such that Ilow ∪ Ihigh = Imin, |Ilow ∩ Ihigh| = 1, and
||Ilow| − |Ihigh|| ≤ 1
θmedian ← The median value, single element in Ilow ∩ Ihigh
θ∗ ← The value of θ∗, θmedian with lower CΓ

S ← S ∪ {Ilow, Ihigh}
return The path corresponding to θ∗

the currently best (w.r.t. CΓ) known value θ∗. We also ensure that the shortest paths with
respect to the minimum / maximum of each interval are computed before the interval is
considered. At each step of the algorithm we select the interval which has the lowest value of
CΓ at an endpoint. We first use Theorem 3 to try to discard the interval. If the interval can’t
be discarded we proceed to remove any dominated values. We split the resulting interval
into two halves which share exactly one value in Θ, compute the shortest path with respect
to that value and decide whether or not to replace θ∗. We then add the two intervals to the
set and continue. The details are outlined in Algorithm 1.

Note also that Theorems 3 and 2 (and therefore also Algorithm 1) work for arbitrary
robust combinatorial optimization problems.

4 Search pruning

Dijkstra’s algorithm explores a graph by labeling and settling vertices. A vertex is labeled
when it is first explored. As soon as a shortest path connecting the vertex is known, the
vertex is declared to be settled. Since we compute shortest (s, t)-paths for multiple cost
functions cθ, we reuse information we have gathered from previous computations in order to
decrease the number of vertices which have to be labeled / settled in subsequent iterations of
Dijkstra’s algorithm. The following theorem gives a sufficient condition for excluding vertices
during searches:

I Theorem 4. Let v be a vertex and θ < θ′ where θ, θ′ ∈ Θ. Let Pθ, Pθ′ be (s, v)-paths that
are optimal with respect to cθ respectively cθ′ . Let

Γθ + cθ(Pθ) > Γθ′ + cθ′(Pθ′). (11)

Then a robust shortest (s, t)-path is either attained for a value 6= θ or it does not contain v.

Proof. The proof may be found in Appendix A. J
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We can make the most of this theorem when we evaluate the values of θ in a decreasing
fashion. During these computations we maintain a map C̄ : V → R≥0. Think of C̄(v) as a
known upper bound on the cost of a robust (s, v)-path which we initialize to C̄ ≡ ∞. When
we settle a vertex u 6= t during the search for a shortest path with respect to cθ we investigate
each outgoing arc (u, v) ∈ A. The path leading to u together with (u, v) forms a path P
leading to v yielding a value Γθ + cθ(P ). If Γθ + cθ(P ) > C̄(v) we do not have to label v.
Otherwise we label v and decrease C̄(v) to Γθ + cθ(P ).

5 Goal-direction

A common extension of Dijkstra’s algorithm is known as goal-directed search, introduced
in [17]. It is based on a potential π : V → R≥0 such that the corresponding reduced costs
cπ(u, v) := c(u, v)− π(u) + π(v) are non-negative for each (u, v) ∈ A. It is possible to derive
a potential while searching for a shortest path. Consider a search from t in the direction of s.
The resulting (partial) shortest-path tree T = (V (T ), A(T )) is rooted at t and contains all
settled vertices. For each v ∈ V (T ) we obtain a path P (v, t) leading from v to the t. Let
cmax(T ) be the maximum value of c(P (v, t)) for v ∈ V (T ). It is then easy to see that the
following function is a potential:

π(v) :=
{
c(P (v, t)) for v ∈ V (T )
cmax(T ) otherwise.

(12)

In the robust setting, a potential with respect to cθ is also a potential for cθ′ with θ′ < θ

(since cθ′ ≥ cθ). We use this observation in the following way: We first compute the potential
(12) with respect to θmax while finding the corresponding path using a backward search. In
subsequent forward searches with respect to smaller values in Θ we use this potential. If
the costs with respect to θ and θmax coincide, the arcs in the backward tree will have zero
reduced cost. If all other arcs have nonzero reduced cost, then only the arcs in the shortest
paths will have to be settled, greatly decreasing computation time. Intuitively, if θ and θmax
are close, then the potential computed from θmax is an excellent choice for the search with
respect to θ.

6 Divide and Conquer for robust shortest paths

We refine Algorithm 1 by exploiting structural properties of the robust shortest path problem.
We present our results for a unidirectional search here. In the appendix we show an extension
to goal-directed and bidirectional searches in a more general setting.

Consider some interval I := [θmin, θmax] which appears in the course of Algorithm 1. As
an invariant we have completed the Dijkstra search for θmin. We want to reuse labeling
information of this search to derive lower bounds on CΓ

θ0
for some θ0 ∈ I. If such a lower

bound exceeds the best known upper bound for C∗, we disregard θ0. In order to accelerate
the computation of a robust shortest path, the computation of the lower bound for CΓ

θ0
must

be significantly faster than a computation of the path for cθ0 .
We argue about a hypothetical (s, t)-path P and its cost cθ(P ). The cost is non-increasing

and piecewise linear as a function in θ. It has breakpoints whenever θ increases beyond d(a)
for some a ∈ P . From this point on the cost ca(θ) stays constant at c(a). We know the
values copt(θmin) and copt(θ′) for some values θ′ ≥ θmax. Whatever the value of cθ0(P ), the
cost of P cannot decrease below these amounts when evaluated at the respective values (see
Figure 2).
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cθ(P )

θθmaxθmin θ0

copt(θmax)

copt(θmin)

Figure 2 The cost cθ(P ) of some P . The cost at θ0 has to be consistent with copt(θmin), copt(θmax).

We go on to formulate a mixed integer program (shown in (13)) to choose an arc set
minimizing cθ0 . To make the formulation as strong as possible we choose the smallest possible
set of arcs to include into this program: Let M ⊂ A be the set of scanned arcs, i.e. arcs
having a tail which has been settled throughout the search for the shortest (s, t)-path for θmin.
Furthermore, let Mθmin ⊆M be the restriction of M to active arcs i.e. arcs with d(a) > θmin.
It turns out to be sufficient to consider the arcs in Mθmin to obtain a lower bound on cθ0 .

We introduce a binary variable xa for each a ∈ A denoting whether or not a is contained
in P . The variable y models a lower bound on the cost cθmin(P ) of P yielding (13b). The
negative slope of cθ(P ) at the point θmin corresponds to the number of active arcs in P .
In the worst case we have cθ(P ) = y −

∑
a∈Mθmin

xa(min(d(a), θ) − θmin) by subtracting
from y the contribution of the active arcs. In this case the objective (13a) equals cθ′(P ).
However, not all active arcs from Mθmin can occur in P because for such a path P the value
of cθ′(P ) might violate our observations of shortest path lengths for copt(θ′). Thus we must
raise the variable y to have cθ′(P ) ≥ copt(θ′). Using the expression for cθ(P ) from above we
obtain (13c) and altogether the following theorem:

I Theorem 5. Given an arc set M of scanned arcs during a completed unidirectional search
for cθmin , then a lower bound Oθ0 ≤ copt(θ0) is given by

Oθ0 = min y −
∑

a∈Mθmin

xa · (min(d(a), θ0)− θmin) (13a)

s.t. y ≥ copt(θmin) (13b)

y −
∑

a∈Mθmin

xa · (min(d(a), θ′)− θmin) ≥ copt(θ′)

∀ θ′ > θ0 with known copt(θ′)
(13c)

y ≥ 0, x ∈ {0, 1}Mθmin (13d)

The theorem can in fact be further generalized to the bidirectional, goal-directed case. The
generalized Theorem 9 and its proof may be found in Appendix A.

The following theorem states that bounds Oθ obtained for multiple θ by Theorem 5 are
nonincreasing in θ. This observation can reduce the number of necessary bound computations
throughout our algorithm. A proof follows from the more general Theorem 10 in Appendix A.

I Theorem 6. For each θmin < θ0 < θ1 we have copt(θmin) ≥ Oθ0 ≥ Oθ1 ≥ copt(θ′) for all
θ′ that were considered in (13c) for both Oθ0 and Oθ1 .

It is too time-consuming to solve (13) in order to compute a single bound. We therefore
consider a relaxation of the program which can be solved a lot faster while still providing
sufficient bounds. Observe that the program has the structure of a multi-dimensional
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knapsack problem once we fix some value of y. We first relax the integrality of x towards
x ∈ [0, 1]Mθmin and consider a single value θ′ = θmax for (13c). What remains is a fractional
one-dimensional knapsack problem where arcs correspond to knapsack items:

max
∑

a∈Mθmin

xa(min(d(a), θ0)− θmin)− y

s.t. copt(θmin) ≤ y∑
a∈Mθmin

xa(min(d(a), θmax)− θmin) ≤ y − copt(θmax)

x ∈ [0, 1]Mθmin

(14)

Suppose we fix y = copt(θmin). The optimum of the relaxation can be obtained by selecting
items greedily w.r.t. their gain, i.e. gain(a) := (min(d(a), θ0)−θmin)/(min(d(a), θmax)−θmin).
This leaves exactly one split item a with fractional value for xa. We argue that increasing y
further is not beneficial: An increase of y by ε will increase the capacity of the knapsack by
ε and thereby lead to increased xa in a greedy optimum. The objective function changes
by ε(gain(a)− 1) which is nonpositive because gain(a) ≤ 1 for all arcs. It is therefore never
advisable to increase y and we only have to sort the arcs in Mθmin w.r.t. their gain in order
solve problem (14) and obtain a bound Oθ0 . Observe that

gain(a) =


(θ0 − θmin)/(θmax − θmin) if d(a) ≥ θmax

(θ0 − θmin)/(d(a)− θmin) if d(a) < θmax and d(a) ≥ θ0

(d(a)− θmin)/(d(a)− θmin) = 1 if d(a) < θmax and d(a) < θ0

(15)

Thus the value gain(a) decreases as d(a) increases and it is sufficient to sort the arcs in
Mθmin once according to d(a) in order to compute Oθ0 for each θ0 ∈ Θ ∩ (θmin, θmax). We
incorporate this relaxed knapsack bound (RKB) into the Divide and Conquer approach and
apply the generalization of Theorem 5 to goal-directed and bidirectional search.
I Remark (Preprocessing). As mentioned above, preprocessing techniques for the ordinary
shortest path problem have been extensively studied in the past. Specifically, successful
attempts have been made [10] to adapt preprocessing techniques to problems with time-
dependent cost functions. Therefore it seems obvious to investigate these techniques with
respect to applicability to the robust shortest path problem.

Existing preprocessing techniques operating on problems with changing cost functions
generally rely on the ability to provide reasonable bounds on the values attained by the cost
functions in order to prune the search space efficiently. Unfortunately, the costs of arcs vary
widely between c and c + d in the robust shortest path problem, making it impossible to
derive meaningful bounds. As a result we were not able to find preprocessing techniques
leading to a significant decrease in query time.

7 Computational experiments

7.1 Experimental network
Due to the long history of experimental evaluations of shortest path algorithms, instances of
road networks are ready at hand. However, these networks generally lack data necessary to
determine deviation values. Furthermore, shortest path experimentation is conducted on
continent-sized networks which are as of yet too large to allow for the computation of robust
shortest paths.
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We therefore chose to construct a road network ourselves. To this end, we considered a
subnetwork of the German road network given by the region of Lower Saxony1. We performed
the following preprocessing steps in order to obtain a network suitable for routing purposes:
1. We filtered the file to only include ways with highway tags, excluding certain highway

types such as tracks / service road etc. This process yielded 1.93M nodes and 0.36M
ways.

2. We constructed a graph by replacing ways with sequences of arcs, adjusting for one-way
restrictions. The resulting graph has 1.93M vertices and 2.17M arcs.

3. We removed directed and undirected chains from the graph. Chains occur frequently as
they are used to model the curvature of roads. Therefore the resulting graph shrinks to
0.37M vertices and 0.50M arcs.

4. Since queries for robust paths in an insufficiently connected graph skew computational
results we extracted the largest (in terms of the number of vertices) strongly connected
component which has 0.15M vertices and 0.23M arcs.

We defined the values of c and d on the network as follows: The nominal length c is
defined as the time needed to traverse a segment in accordance with the legal speed limit.
To define d we assumed that a certain number of segments is affected by situations such as
traffic accidents or road works. If a segment a is affected, the traveling speed drops from
the legal speed limit to a value of at most 10 km/h. The value d is chosen such that c+ d

corresponds to the travel time according to a speed of at most 10 km/h (where d(a) = 0 if
the speed limit of a is already at most 10 km/h). To avoid numerical problems we rounded
both c and d to the nearest second, resulting in |Θ| = 1, 043 different deviation values2. We
further assumed that at most Γ = 5 road segments suffer from additional congestion.

7.2 Experimental methodology
In order to judge the performance of a shortest path algorithm, the query time of the
algorithm is compared to that of Dijkstra’s algorithm without any preprocessing applied.
This approach raises the following issue: The time to answer a query for a shortest (s, t)-path
using Dijkstra’s algorithm is highly dependent on the choice of the vertices s and t: If the
distance of s and t w.r.t. c is small compared to the diameter of D, then the search explores
only a small part of D and finishes quickly. If on the other hand s and t are far apart, then
almost the entire graph is explored before a path is found.

This issue can be addressed with the notion of a Dijkstra rank: A search from a fixed
source s using Dijkstra’s algorithm will settle the vertices in D in the order3 s = v1, v2, . . . , vk.
We define the Dijkstra rank of vj with respect to s as the value j. Note that the distance
from s to vj is non-decreasing and the query time using Dijkstra’s algorithm is increasing in
the Dijkstra rank. For a pair (s, t) of vertices we define the Dijkstra rank of (s, t) by the
Dijkstra rank of t with respect to s.

In order to evaluate the performance of different robust shortest path algorithms we
recorded the query time for randomly chosen pairs of vertices with similar Dijkstra ranks.
More specifically, we selected pairs of vertices with ranks in [l · n, u · n) where l and u form
intervals of size of 10 % of |V |.

1 The initial data was obtained from the OpenStreetMap project,
see https://www.openstreetmap.org.

2 The accompanying data may be found at 10.6084/m9.figshare.c.4193588.
3 We assume that ties are broken consistently.
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For each interval we measured the average query time for a sample of 500 random pairs
of vertices in order to reduce measurement errors. All query times were obtained using an
implementation in the C++ programming language compiled using the GNU C++ compiler
with the optimizing option “-O2”. All measurements were taken on an Intel Core i7-965
processor clocked at 3.2 GHz. We implemented Dijkstra’s algorithm using binary heaps.
Depending on the Dijkstra rank of a pair of vertices, the running time of a shortest path
query ranges up to ≈ 35 ms.

7.3 Results regarding search accelerations

As a first step we evaluated the previously introduced approaches to accelerate individual
searches without using the Divide and Conquer approach. The results are depicted in
Figure 3a. We remark the following:

1. In order to achieve the best results regarding the goal-directed search we occasionally
recompute the potential from scratch. Specifically, we keep track of how many vertices
are settled during the recomputation of the potential as well as how many vertices are
settled during each subsequent goal-directed search. If the latter amount is within a
fraction of α of the former, we reuse the potential in the search to be carried out in the
next iteration. Otherwise, we mark the potential to be recomputed during the next query.
We found experimentally that a factor of α = 0.15 yields the best results.

2. Regarding the bidirectional goal-directed search: We found that the best choice for the
combined potential is the average of the two potentials computed during the forward
and backward search respectively. Additionally, we found that in order to obtain more
accurate potentials it is worth the effort to compute the entire search tree from s to t in
the forward search and vice versa in the backward search.

3. Both improvements over Dijkstra’s algorithm, the pruning and the goal-directed search,
can be combined to speed up the computation even more.

Our findings show that while all approaches lead to reduced computation time, the goal-
directed approaches works best, beating a plain evaluation using Dijkstra’s algorithm by
almost an order of magnitude.

7.4 Results regarding the Divide and Conquer approach

We proceed to consider the impact of the Divide and Conquer approach on the query time
(results are shown in Figure 3b). Combining Dijkstra’s algorithm with the generic Divide
and Conquer approach (Algorithm 1) seems to have little effect on its own. Using the relaxed
knapsack bound introduced in Subsection 6 however shows significant improvements. The
combination of relaxed knapsack bounds and goal-direction yields the best results with a
speedup factor ranging from 34 to 45 with an average of 38. A major contribution to this
speed up is due to the fact that the Divide and Conquer approach cuts down on the required
number of shortest path computations (see Figure 4): Dijkstra’s algorithm alone requires
|Θ|-many shortest path computations regardless of the distance between source and target.
The value is more than halved using the Divide and Conquer approach, it is cut down to less
than ten percent if the relaxed knapsack bound is incorporated.
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(a) Average query time for different search acceler-
ations.
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Figure 3 Average query time for different robust shortest path algorithms.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9100

101

102

103

Dijkstra rank over n

Av
er
ag
e
nu

m
be

r
of

ev
al
ua

tio
ns

Dijsktra’s algorithm, interval
Dijkstra’s algorithm, RKB
Bidirectional, RKB

Figure 4 Average number of shortest path computations for different variants of the Divide and
Conquer approach. The naive algorithm consistently requires |Θ| = 1, 043 evaluations.
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8 Conclusion

We have presented an approximation scheme and a Divide and Conquer approach for general
robust combinatorial optimization problems. The approximation scheme can be used to
trade solution quality and running time. We introduced multiple techniques to accelerate
the computation of robust shortest paths without abandoning solution quality ranging from
the acceleration of individual queries to augmenting the Divide and Conquer approach by
adding efficiently computable lower bounds of high quality. We evaluated our approaches by
performing computational experiments on a digraph corresponding to a reasonable large road
network. We found that a combination of the acceleration techniques decreased computation
time by a factor of up to 45.

As the result for only Γ many shortest path computations does not hold and similar
results seem unattainable in light of the counter-example, we give a currently best possible
practical approach to solve the fundamental problem of shortest path in the classic Bertsimas
Sim model for robustness.
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A Proofs

We begin by giving the proof of Theorem 4, which was stated as follows:

I Theorem 4. Let v be a vertex and θ < θ′ where θ, θ′ ∈ Θ. Let Pθ, Pθ′ be (s, v)-paths that
are optimal with respect to cθ respectively cθ′ . Let

Γθ + cθ(Pθ) > Γθ′ + cθ′(Pθ′). (11)

Then a robust shortest (s, t)-path is either attained for a value 6= θ or it does not contain v.
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Proof. Assume for a contradiction a shortest robust (s, t)-path P is attained for θ and P
contains v. P consists of two subpaths, i.e. Pθ and a path Pv leading from v to t. We let P ′
be the (s, t)-path which consists of Pθ′ and Pv. We have:

CΓ(θ) = Γθ + cθ(Pθ) + cθ(Pv)
> Γθ′ + cθ′(Pθ′) + cθ(Pv)
≥ Γθ′ + cθ′(Pθ′) + cθ′(Pv)
≥ Γθ′ + cθ′(P ′)

(16)

We have used here that cθ ≥ cθ′ which follows from θ < θ′. This inequality implies that P ′
is a robust (s, t)-path which is shorter than P which is clearly a contradiction. J

We go on to present a more general variant of Theorem 5: We assume that we used a
version of Dijkstra’s algorithm with respect to reduced costs cπθmin

obtained from a potential
π computed while conducting a search for copt(θmin). During the execution of the search we
settled vertices and obtained information regarding the shortest paths for the part of the
graph we have explored: In a most general situation, this information is accessible via a fixed
arc set M ⊆ A and various subsets B ⊆M together with bounds λ(B) fulfilling

λ(B) ≤ cπθmin
(P ∩M) ∀ P ∈ P(s, t) with B ⊆ P . (17)

We give some examples for this abstract setting, but first observe that M should contain
the arc set corresponding to some s − t cut to yield a bound λ(∅) > 0. Otherwise the
right hand side of the inequality (17) is equal to 0 for some path P with P ∩M = ∅. In
case that a shortest path search completes, it determines coptπ (t) as the length of a shortest
(s, t)-path for cπθmin

, which leads to copt(θmin) = coptπ (t) + π(s)− π(t). This allows us to infer
λ(∅) = copt(θmin)− π(s) + π(t) for the set M containing all scanned arcs. As before we let
Mθmin ⊆M be the restriction to arcs a with d(a) > θmin.

I Example 7. If we stop unidirectional search prematurely we can use for M the set of
arcs, that have a head with settled label and λ(∅) can be chosen as the last settled distance
label from the search. This situation applies to Theorem 5. Additionally, for some arc
a = (u, v) ∈Mθmin we can infer λ({a}) as the label that v received from u via a because it is
a lower bound on cπθmin

(P ∩M) for any (s, t)-path P that contains a.

I Example 8. If some bidirectional Dijkstra search has been stopped prematurely, then let
Ms be the set of arcs that have their head settled by the search from s, and let M t contain
the arcs with their tail settled by the search from t. We can use M = Ms ∪M t and for
λ(∅) the sum of both lastly settled distance labels in the searches from s and t. For some
B = {es, et} es ∈Ms, et ∈M t, es 6= et we get for λ(B) the sum of the head label from es,
the tail label from et, and both arc costs cπθmin

(es) + cπθmin
(et). Similar bounds for singleton

B can be derived as well.

The idea of Theorem 9 is to compute a bound for copt(θ0) using the abstract bound information.
In a suitable program we optimize over the arcs in Mθmin that an imaginary path P could
contain to minimize cθ0(P ). The program also makes use of values copt(θ′) known from
previous computations if θ′ > θ.

I Theorem 9. Given a potential π, an arc set M , and a collection B ⊂ 2Mθmin , such that
bounds λ(B) fulfilling (17) can be obtained for each B in B, then for each θ0 > θmin, such
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that π is also feasible for cθ0 , we obtain a bound Oθ0 ≤ copt(θ0) where Oθ0 is an optimum of

min y −
∑

a∈Mθmin

xa(min(d(a), θ0)− θmin) (18a)

s.t. (λ(B) + π(s)− π(t))
∏
b∈B

xb ≤ y ∀B ∈ B (18b)

y −
∑

a∈Mθmin

xa(min(d(a), θ′)− θmin) ≥ copt(θ′)

∀θ′ : θ0 < θ′ with copt(θ′) known (18c)
variables: y ≥ 0, x ∈ {0, 1}Mθmin (18d)

Proof. Let P be any (s, t)-path. We show that cθ0(P ) ≥ Oθ0 holds: Let us consider the arc
sets P ′, P̄ ⊆ P given by P ′ := P ∩M and P̄ := P \ P ′.

We claim that setting xa := 1 if and only if a ∈ P ′ ∩Mθmin together with y := cθmin(P ′) +
cθ0(P̄ ) constitutes a feasible solution to (18) and the cost of this solution is then a lower
bound on cθ0(P ). To get the lower bound we can first write cθ0(P ′) in terms of cθmin(P ′):

cθ0(P ′) = c(P ′) +
∑

a∈P ′:d(a)>θmin

max{d(a)− θ0, 0}+ cθmin(P ′)− cθmin(P ′)

= c(P ′) +
∑

a∈P ′:d(a)>θmin

max{d(a)− θ0, 0}+ cθmin(P ′)

−

c(P ′) +
∑

a∈P ′:d(a)>θmin

max{d(a)− θmin, 0}


= cθmin(P ′) +

∑
a∈P ′:d(a)>θmin

(max{d(a)− θ0, 0} −max{d(a)− θmin, 0})

= cθmin(P ′)−
∑

a∈P ′:d(a)>θmin

(min(d(a), θ0)− θmin)

= cθmin(P ′)−
∑

a∈Mθmin

xa(min(d(a), θ0)− θmin)

(19)

Here, the last equality holds, because by its definition P ′ is fully contained in M and all of
its arcs with d(a) > θmin are contained in Mθmin . With this expression we obtain

cθ0(P ) = cθ0(P̄ ) + cθ0(P ′)

= cθ0(P̄ ) + cθmin(P ′)−
∑

a∈Mθmin

xa(min(d(a), θ0)− θmin)

= y −
∑

a∈Mθmin

xa(min(d(a), θ0)− θmin)

≥ Oθ0

(20)

where the last inequality only holds if x, y is a feasible solution of (18). To prove this
feasibility, we first consider (18b) and let B ∈ B. If B * P ∩Mθmin then the corresponding
Inequality (18b) has its left hand side equal to zero by the definition of x and is feasible. So
let B ⊆ P ∩Mθmin which means that

∏
b∈B xb = 1. Feasibility of (18b) in this case then
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follows from the feasibility of π for cθ0 , we first have:

y = cθmin(P ′) + cθ0(P̄ )

=
∑

a=(u,v)∈P ′
(cπθmin

(a) + π(u)− π(v)) +
∑

a=(u,v)∈P̄

(cπθ0
(a) + π(u)− π(v))

≥
∑

a=(u,v)∈P ′
(cπθmin

(a) + π(u)− π(v)) +
∑

a=(u,v)∈P̄

(π(u)− π(v))

= cπθmin
(P ′) + π(s)− π(t)

(21)

Here the last equality follows from resolving the telescope sum for the (s, t)-path P = P ′ ∪ P̄ .
Since B ⊆ P ∩M we can use the bound cπθmin

(P ′) = cπθmin
(P ∩M) ≥ λ(B) which now

implies (18b).
To show that Inequalities (18c) are satisfied, let θ′ ≥ θ0 and copt(θ′) be known. We

know that copt(θ′) ≤ cθ′(P ) because P is an (s, t)-path. So we are interested in bounding
cθ′(P ) = cθ′(P̄ ) + cθ′(P ′) against the left hand side of (18c). Because θ′ > θmin holds, we
can do a similar calculation as before to express cθ′(P ′) in terms of cθmin(P ′):

cθ′(P ′) = cθmin(P ′)−
∑

a∈Mθmin

xa(min(d(a), θ′)− θmin)

This implies

copt(θ′) ≤ cθ′(P )
= cθ′(P̄ ) + cθ′(P ′)

= cθ′(P̄ ) + cθmin(P ′)−
∑

a∈Mθmin

xa(min(d(a), θ′)− θmin)

≤ cθ0(P̄ ) + cθmin(P ′)−
∑

a∈Mθmin

xa(min(d(a), θ′)− θmin)

= y −
∑

a∈Mθmin

xa(min(d(a), θ′)− θmin)

(22)

where the last inequality holds because θ′ > θ0 implies cθ′(P̄ ) ≤ cθ0(P̄ ). J

I Theorem 10. For each θmin < θ0 < θ1 such that π is also feasible for cθ0 and cθ1 we have
copt(θmin) ≥ Oθ0 ≥ Oθ1 ≥ copt(θ′) for all θ′ that were considered in (18c) for both Oθ0 and
Oθ1 .

Proof. We consider the definitions of (18) for θ0 and θ1 respectively. Observe that the sets
Mθmin , the bounds λ(B) as well as constraints (18b) and (18c) are independent of θ0 and
thus both programs for Oθ0 and Oθ1 optimize over the same set of feasible solutions. The
only difference is the objective function, where for some a ∈Mθmin its coefficient for θ1 is less
or equal than its coefficient for θ0. This implies Oθ0 ≥ Oθ1 but also copt(θmin) ≥ Oθ0 : Note
that Oθmin is well-defined and contains only variable y because Mθmin = ∅. An optimum is
given by y = copt(θmin) and thus copt(θmin) ≥ Oθmin ≥ Oθ0 because θ0 > θmin. Finally, it
holds for some θ′ which was considered in (18b), that

Oθ1 = y −
∑

a∈Mθmin

xa(min(d(a), θ1)− θmin)

≥ y −
∑

a∈Mθmin

xa(min(d(a), θ′)− θmin)

≥ copt(θ′). J
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Figure 5 A counter-example to a claim regarding robust combinatorial optimization. Numbers
on arcs represent costs and deviations.

B A counter-example to a claim regarding robust combinatorial
optimization

We consider a claim made in [21] regarding a type of combinatorial optimization problems
solvable by a dynamic programming (DP) algorithm. A combinatorial optimization problem
is solvable by a DP algorithm if it can be expressed using a set of functional equations. More
specifically, it is assumed that there is a set of states denoted by S with a subset O of initial
states and a final state N . The optimal cost of state s ∈ S is given by F (s), the set of
variables set to 1 in state s is denoted by q(s). The state p(s, i) ∈ S is set to be the previous
state of s where s is obtained from p(s, i) by fixing variable i ∈ q(s) to 1. The relationship
between the states is assumed to be governed by the following set of functional equations:{

F (s) = mini∈q(s){F (p(s, i)) + ci}, s ∈ S \ O
F (s) = 0, s ∈ O

(23)

In order to solve this problem the functional equation is applied to determine the optimal
cost of new states until the optimal cost of the final state is determined. The question is
whether the robust counterpart of such a problem can be solved in a similar manner using
functional equations.

I Theorem 11 (Theorem 6 in the original article). Consider an instance of a combinatorial
optimization problem which can be solved in O(τ) for some τ : N→ N by using the functional
equations (23). Then, its robust version can be solved in O(Γτ) using the following functional
equations:

F (s, α) = mini∈q(s){max(F (p(s, i), α) + ci, F (p(s, i), α− 1) + ci + di)},
s ∈ S \ O, 1 ≤ α ≤ Γ

F (s, 0) = mini∈q(s){F (p(s, i), 0) + ci}, s ∈ S \ O
F (s, α) = 0, 0 ≤ α ≤ Γ, s ∈ O

(24)

As an example of such a problem the authors consider the shortest path in a directed graph
with conservative arc costs. It is well known that in this case the Bellman-Ford algorithm
finds a shortest path by solving a dynamic program. As a counter-example to the claim
stated above, we consider the graph in Figure 5 together with a parameter of Γ = 1. It should
be apparent, that the robust shortest path in this case is the lower path with a total cost
of 4.5. In order to compute the shortest path we start evaluating the functional equations
for α = 0. In this the coefficients coincide with those of the original problem. The graph
corresponding to these functional equations is shown in Figure 6. Unfortunately, the path
resulting from applying the functional equations is the upper path which has total costs of 5.
The failure is due to the fact that the equations do not take into account that the first arc
on the upper path has a high value of d.
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O O

α = 0 α = 1

1

1 2

2.5

2.5 4

Figure 6 A depiction of the functional equations applied to the robust shortest path problem in
Figure 5.

C Figures and tables

The following table contains the average query time plotted in Figures 3a and 3b. Regarding
the distribution of the values: As is usually the case when it comes to the evaluation of
running times, there is a certain variance in the recorded data. Figure 7 shows the distribution
of running times for vertices with large Dijkstra ranks. Note that while the minimum /
maximum query times are spread far apart, many of the individual values fall into much
smaller intervals around the average. This behavior is consistent throughout the data and
justifies the comparison based on the average query time.
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Table 1 Average query time in seconds for various algorithms with respect to different ranks

Dijkstra rank over n

Algorithm 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Dijkstra’s algorithm 0.00 12.51 15.08 15.74 20.95 22.94 30.43 35.63 34.85 35.62
Simple pruning 3.87 7.59 10.37 14.69 21.40 24.25 27.93 28.56 27.21 29.27
Bidirectional, pruning 0.00 13.02 18.84 18.96 19.90 19.99 24.29 27.23 29.20 27.95
Goal-directed 0.00 2.80 3.30 3.96 5.17 5.48 6.35 7.29 7.29 7.66
Bidirectional, goal-directed 0.01 8.93 10.50 11.06 15.06 15.61 20.06 23.14 22.55 26.38
Goal-directed, pruning 0.00 5.77 4.26 4.28 6.35 6.87 7.08 6.55 6.49 7.14
Dijkstra’s algorithm, interval 0.00 7.23 11.37 14.98 21.89 25.31 33.38 40.12 44.22 40.64
Goal-directed, interval 0.00 7.21 11.01 13.19 18.92 20.04 22.36 26.31 25.29 24.94
Dijkstra’s algorithm, RKB 0.01 0.98 1.83 2.56 3.45 3.64 3.88 4.53 6.62 5.53
Bidirectional, RKB 0.00 1.54 1.95 1.98 2.07 1.98 1.97 2.17 2.34 2.37
Goal-directed, RKB 0.02 0.37 0.40 0.44 0.58 0.67 0.74 0.80 0.82 0.99

10 20 30 40 50 60 70 80

Goal-directed, RKB

Bidirectional, RKB

Dijkstra’s algorithm, RKB

Goal-directed, interval

Dijkstra’s algorithm, interval

Goal-directed, pruning

Bidirectional, goal-directed

Goal-directed

Bidirectional, pruning

Simple pruning

Dijkstra’s algorithm

Query time (s)

Figure 7 Distribution of the recorded running times. The boxes show minimum, first quartile,
average, third quartile, and maximum for a rank of 0.9 · n.

ATMOS 2018





Tree Decomposition Methods for the Periodic
Event Scheduling Problem
Irving van Heuven van Staereling
Centrum Wiskunde & Informatica
Science Park 123, Amsterdam, Netherlands
heuven@cwi.nl / i.i.van.heuvenvanstaereling@vu.nl

Abstract
This paper proposes an algorithm that decomposes the Periodic Event Scheduling Problem
(PESP) into trees that can efficiently be solved. By identifying at an early stage which par-
tial solutions can lead to a feasible solution, the decomposed components can be integrated back
while maintaining feasibility if possible. If not, the modifications required to regain feasibility
can be found efficiently. These techniques integrate dynamic programming into standard search
methods.

The performance of these heuristics are very satisfying, as the problem using publicly available
benchmarks can be solved within a reasonable amount of time, in an alternative way than the
currently accepted leading-edge techniques. Furthermore, these heuristics do not necessarily rely
on linearity of the objective function, which facilitates the research of timetabling under nonlinear
circumstances.
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1 Introduction

In many countries with an advanced transport network, the planning process of the transport
provider is an extremely complicated and time-consuming procedure. Due to the applications
of the algorithms proposed in this paper, we focus mainly on the train timetabling process,
although the algorithms presented in this paper are not restricted to this setting. From a
high-level point of view, the planning process for train networks, can be divided into the
following tasks [1]:

1. Network planning: constructing the infrastructure of the railway network.
2. Line planning: determining the routes (and frequencies) of trains within the railway

network.
3. Train timetable generation: determining the arrival and departure times of trains, includ-

ing their routes through the infrastructure/stations.
4. Rolling stock and personnel planning: assigning the available rolling stock and personnel

to the trips.
5. Real time traffic: ensuring the realization of the planning by solving irregularities (e.g.,

delays) on an operational level.
This paper focuses on a part of the third step within this hierarchy, the design of train
timetables (excluding routing through the infrastructure). Due to the numerous constraints
that are involved in a timetable, it is practically undesirable or even impossible to construct a
feasible timetable manually, which motivates the research for automated timetable generation.
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6:2 Tree Decomposition Methods for the Periodic Event Scheduling Problem

A considerable part of this research is based on the Periodic Event Scheduling Problem
(PESP), as initially proposed in [16]. One of the earlier and more influential solution methods
in a railway timetabling context is found in [15], which briefly will be described further.
Moreover, an overview of the operations research of railway timetabling can be found in [3],
while an overview for the PESP in particular (including extensions) can be found in [5].

Overview

As opposed to the modern solution methods that are based on mathematical programming,
this research combines dynamic programming based methods with heuristics to find feasible
and optimal solutions within the PESP framework. In Section 2, the PESP model will be
discussed, alongside its complexity and differences between the model within this paper and
the models in the literature.

Section 4 considers a special case of the PESP which can be solved efficiently using
dynamic programming, even when a (possibly non-linear) optimization function is used
(the standard PESP is a feasibility problem). This dynamic provides the required insights
to understand several heuristics that will be proposed in Section 5, whose performance is
described in the experimental results in Section 6 and the method is concluded in Section 7.
Sections 1 to 3 contains work that for a large part already has been discussed and/or noted
in the current literature, while Sections 4 until 7 concern own work.

2 Problem description

2.1 The Periodic Event Scheduling Problem
The Periodic Event Scheduling Problem (PESP) aims to schedule a number of events within
a cyclic framework of length T , i.e., all events occur exactly once every cycle. In a railway
timetabling context, examples of such events can be the departure, pass-through or arrival of
a train at a station.

Define V as the set of events that need to be scheduled, and decision variable vi ∈ [0, T )
as the time at which event i takes place for all i ∈ V . Within the standard PESP model
with constraint set A, every constraint a ∈ A may only induce a lower and upper bound,
respectively La and Ua, on the scheduled time difference of two events i and j. Therefore,
constraints can be formulated as:

(vj − vi) mod T ∈ [La, Ua] (1)

for every (i, j) ∈ A. Thus, every constraint can be specified by two events and two constants.
For example, if i and j represent the departure of two different trains from the track, safety
regulations could require the trains to depart at least 3 minutes after each other. In this case,
La = 3 and Ua = 57 to prevent trains (from possibly different cycles) to coincide, assuming
T = 60.

A PESP instance can be transformed and visualized in a directed graph D = (V,A), where
n = |V | is the number of vertices/variables, and m = |A| is the number of arcs/constraints.
For every constraint a, an arc i→ j is introduced and labeled with [La, Ua]. For convenience,
vertices and variables are used as synonyms throughout this paper. The same holds for
constraints and arcs. See Figure 1 for a simple example with only three constraints.
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] [15, 20]

[20, 35]

Figure 1 Example of a PESP instance visualized in a graph (T = 60).

As a notational remark: x mod T is abbreviated to (x)T , where x can be a number, but
also an interval (that will be scaled within the interval [0, T ). Since the graph formulation is
slightly preferred in the literature, this paper adopts the same notation, which allows the
problem to be formally defined as follows.

Periodic Event Scheduling Problem (PESP)

Given: A directed graph D = (V, A), a feasible interval [La, Ua] for every a = (i, j) ∈ A

and a cycle time T .
Goal: Find a v ∈ [0, T )n such that vj − vi ∈ [La, Ua] for every a = (i, j) ∈ A, or state

infeasibility.

Trivially, it is assumed that La ≤ Ua as the instance is infeasible otherwise, and that
Ua − La < T , since the constraint would be redundant otherwise. Moreover, all La and
Ua are assumed to be integer, which is practically justified because timetables are usually
published in minutes (integers). Using this assumption, [10] proved that every feasible
PESP-instance then has an integer solution.

Note that by the cyclicity of PESP, the orientation of the arcs can be reversed by
“mirroring” the corresponding interval with T/2 as the center, i.e., constraints of the type in
Equation 1 is equivalent to

(vj − vi)T ∈ [T − Ua, T − La] . (2)

2.2 Complexity of PESP
For T = 2, PESP can be solved in polynomial time, for which an algorithm is given
in [13]. However, the PESP is strongly NP-complete for T ≥ 3. At least three proofs
are currently known, being reductions from the Linear Ordering Problem [6], the
Hamiltonian Cycle Problem [8] and the k-Vertex Colorability Problem [10].
Hence, no (pseudo)polynomial time algorithm can be found to solve the PESP, unless P =
NP.

2.3 Handling the modulo operator
Even though the modulo operator follows naturally from the cyclicity of the model, most
standard mathematical optimization techniques (such as Branch and Bound) are unable to
handle this operator. For this reason, constraints of the type as in Equation 1 are alternatively
in the literature formulated as:

La ≤ vj − vi + T · pij ≤ Ua (3)

at the cost of one extra integer variable pij per constraint (in similar other models, pij can
also be a binary variable). Here, pij ∈ Z indicates the cycle difference between i and j. In
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these constraints, pij is also referred to as the modulo parameter of the constraint. The
model now has become suitable for Mixed Integer Linear Programming (MIP) methods.

Using this integer variable, one can implicitly define non-convex intervals, even though
the interval [La, Ua] for every constraint a is convex. This follows from the possibility in the
model to allow multiple constraints between a pair of events, and because La and Ua do not
necessarily need to be in [0, T ). For instance, the two constraints:

(vj − vi)T ∈ [0, 45] and (vj − vi)T ∈ [30, 72]

result in a feasible difference interval between vi and vj of [0, 12]∪ [30, 45], by the cyclicity of
the model. Even though this model is used widely in the literature, this is not the model to
be used in this paper, but will be referred to further in this paper for comparison.

2.4 Cost optimization
Although PESP is originally formulated as a feasibility problem, an objective function can be
added without complications. One of the easiest, but also practically most useful, objective
functions can be deduced from the constraints. In many cases, the lower bound La of the
constraint is an optimal value to obtain from an efficiency perspective.

For example, if arc a = (i, j) corresponds to the constraint that the changeover time
between two trains (that correspond to variables i and j) should lie in [La, Ua], the waiting
time is minimized if vj − vi = La. If wa denotes the cost of every time unit that all travellers
need to wait longer at the changeover corresponding to the constraint, one could add the
term:

za(v) = ((vj − vi)T − La) (4)

to an objective function. The objective function, referred to as the weighted slack function,
can then be expressed as z(v) =

∑
a∈A wa · za(v).

We focus in this paper on this weighted slack function. Other objective functions are
discussed in [13] and [7], such as minimization of passenger travel time, required rolling stock,
or the number of violated constraints (in case of an infeasible instance), while maximization
functions include the profit or robustness.

2.5 Related work
This paper focuses for a large part on heuristics, but will use efficient combinatorial optimiz-
ation algorithms to solve subproblems if possible. The PESP was originally formulated in
[16], where directly several algorithms were proposed. These are primarily searching methods
where the modulo parameters are solved first. To this aim, a minimum spanning tree is
initially constructed, where the interval cardinalities are used as weights on the arc. The
idea is that a solution is found that satisfied the n− 1 of the tightest (and therefore expected
to be the hardest to fulfill) constraints beforehand, but similar techniques might lead to a
brute-force algorithm in an early stage.

Exact methods

A large part of the methods in the current literature focus on the PESP as a feasibility
problem, rather than an optimization problem. One of the first solution methods in a
railway timetabling context has been implemented by [15] by solving the Mixed Integer
Linear Program (MILP) using constraints of the type as in Equation 3. With the aid of the
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commercial optimization software package CPLEX, solutions for practical railway timetabling
instances can be found with the aid of searching algorithms and adjustable parameters within
the software package. Other papers that focus on solving the MILP can be found in [11], [12],
[7] and [13], using cutting planes and similar other mathematical optimization techniques.
A relevant approach, but different perspective is presented in [14], where feasible railway
timetables can be found with minimal deviations from the original constraints in case no
feasible timetable exists.

Heuristics

A few heuristics already exist that output only very few violated constraints for real-world
instances, for example in [4], where cuts and/or local improvements are used to improve the
original heuristic from [16]. Although the performance may be relatively good in practice,
many of the currently known heuristics struggle with the task of restoring an infeasible
solution, without using brute-force early.

The work presented in this paper is similar to the modulo simplex algorithm, firstly
presented in [9], and improved by [2], by exploiting advanced methods in the modulo simplex
tableau and larger classes of cuts to escape from local optima. This method currently
performs best on many benchmarks that are also used for this paper. Still, more ways to
backtrack a solution and escape local optima are searched for in the current literature. This
paper aspires to contribute to this concept from a difference perspective.

3 State- and search space reduction techniques

From a practical point of view, it may be computationally very beneficial to reduce the state-
and search space without excluding feasible solutions. This usually can be achieved fairly
simple indeed, especially within a railway timetabling context. In the following paragraphs,
several state- and search space reduction techniques are discussed, of which most are also
(partially) noted in [7]. Even though most of these methods are straightforward, it is useful
to mention these methods (informally) to provide an intuition for the complexity of the
reduced problem.

3.1 Intersecting feasible intervals
As also noted in Subsection 2.3, multiple constraints between a pair of variables i and j can be
constructed to implicitly define a constraint with a non-convex feasible interval. When using
MILP methods, it is essential that a single constraint induces a convex interval. However, the
heuristics explained in this paper are not MILP methods, and are not affected by whether
these intervals are convex or not. This allows to combine all constraints between a specific
pair of variables, into one constraint. To elaborate the possibilities, the following simple
definition is introduced for notational convenience.

I Definition 1. The feasible interval ∆ij between variables i and j are the values vj − vi

such that all constraints a ∈ A with i ∈ a and j ∈ a are satisfied.

Initializing ∆ij can simply be done as follows. For every constraint, scale the feasible interval
[La, Ua] within the cycle [0, T ) and call this new interval ∆a. For example, [30, 75] will be
scaled to [0, 15]∪ [30, 59]. Then, let ∆ij = ∩(i,j)∈A∆a. Note that ∆ij instead of ∆a now may
be used as notation, since there exists only one constraint including both variables i and j.
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For this reason, constraints are referred to either (i, j,∆ij) or (i, j,∆a). In Subsection 2.1
was argued that the orientation of arcs can simply be redirected, which implies that at most
1
2n(n− 1) constraints have to be considered.

3.2 Eliminating variables
Variables can be eliminated in two ways.

For every constraint (i, j,∆ij) where |∆ij | = 1, either variable vi or vj does not have to
be considered for optimization, as its value completely depends on the other variable.
Let δij be the only value in ∆ij . Assuming vj will be deleted, all constraints of the type
(j, k,∆jk) can be replaced by (i, k, (∆jk + δij) mod T ). A similar shift can be done for
constraints of the type (k, j,∆jk). After solving the model without xj , its value can easily
be determined by vj = (vi + δij) mod T .
If a variable vi is contained in only one constraint (i, j,∆ij), the constraint always can
be satisfied. After all, consider the problem without vi. Once vj is determined, one can
afterwards choose |∆ij | different values for vi such that the constraint is satisfied.

3.3 Propagating constraints
Constraint propagation refers to the method of tightening the feasible interval between
variable i and j, ∆ij , by combining a series of ∆ik, . . . ,∆k′j , where i→ k → ...→ k′ → j is
a path from i to j in the PESP graph.

Reconsider the example in Figure 1. There is one direct constraint which initializes ∆13
to [20, 35]. However, using constraints (1, 2, [10, 20]) and (2, 3, [15, 20]), it is easy to see this
sequence induces a constraint between variable 1 and 3 with feasible interval:

[10, 20]⊕ [15, 20] = [25, 40]

Hence, ∆13 can be reduced to [20, 35]∩ [25, 40] = [25, 35]. To describe the method informally,
let P ⊆ A be a path from i to j. To reduce the feasible interval ∆ij , consider all possible
paths P between i and j and verify whether ⊕a∈P ∆a reduces the feasible interval ∆ij .
Indeed, the number of possible paths between i and j may be exponential, but a precise
description on how to propagate constraints efficiently can be found in [7].

4 The Restricted Periodic Event Scheduling Problem

This section defines and analyzes a special case of the PESP, the so-called Restricted Periodic
Event Scheduling Problem (RPESP), which provides the basis for heuristic methods for the
PESP in this paper. Even though these heuristics will be explained in detail in the next
section, it is helpful to provide a motivation for the upcoming heuristics in a later section, in
order to understand the intuition behind the problem considered in this section.

4.1 Motivation
The heuristics in this paper are based on the concept of decomposing a PESP instance into
components that each contain a subset of the variables (and therefore also a subset of the
constraints), which separately will be solved. Trees are large components, for which will be
shown that these can be efficiently solved, and even optimized. To clarify the concept, a few
definitions will be introduced first.
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Figure 2 Example of restrictions while integrating components.

I Definition 2. A PESP instance Cx = (Vx, Ax) is a component of PESP instance D = (V,A)
if Vx ⊂ V and Ax = {(i, j) ∈ A : i, j ∈ Vx}.

It is important to see that whenever a problem D = (V,A) is decomposed into k disjoint
subproblems C1, . . . , Ck with ∪k

x=1Vx = V , that A is not necessarily equal to ∪k
x=1Ax. After

all, constraints/arcs that connect two components in the original instance D are not included
in A1, . . . , Ak.

I Definition 3. The bridging constraints Bxy between two components Cx = (Vx, Ax) and
Cy = (Vy, Ay) with respect to D = (V,A) are all constraints (i, j) ∈ A for which i ∈ Vx and
j ∈ Vy.

With this definition, note that A =
(
∪k

x=1Ax

)
∪
(
∪k

x=1 ∪k
y=x+1 Bxy

)
. In particular, given two

components (or subproblems) Cx and Cy w.r.t. D, the combined subproblem is denoted by
Cxy = (Vx ∪ Vy, Ax ∪Ay ∪Bxy).

When two components are solved separately, it is likely that the combined solution does not
correspond to a feasible solution with respect to D, because the bridging constraints cannot
be satisfied. If so, one prefers to make as few adjustments as possible to the components,
such that two solutions can be integrated. This idea provides the basis for the heuristics in
this paper, and also motivates the consideration of trees because of the following concept.

Suppose that the solution values of the variables in a component Cx are fixed, and
one wants to integrate this component, with another component, a tree Cy = (Vy, Ay).
The solution within Cx might induce several constraints on the values in Cy (the bridging
constraints). Basically, these bridging constraints induce restrictions on the exact values of
the variables in Cy, alongside the constraints that already were in Cy. See Figure 2 for an
example.

The graph contains 8 variables and 9 constraints. An already solved component Cx is
the subgraph containing variables v1 to v4. The dashed lines correspond to the bridging
constraints, which are not considered when the components are solved individually.

Based on these values, an algorithm needs to determine whether the fixed solution
(v1, . . . , v4) w.r.t. Cx can be extended to a feasible solution (v1, . . . , v8) w.r.t. D. To do so,
the algorithm needs to solve Cy based on the values v1, . . . , v4 and the bridging constraints.
In this case, one can easily see that at least v5 ∈ [15, 20] ∩ [12, 17] = [15, 17] and v6 ∈ [26, 27].
These constraints need to be taken as a starting point for solving Cy, in order to determine
whether a solution for the entire problem can be found with the starting solution for Cx.
Such constraints are referred to as exact variable restrictions Xi for variable vi. This concept
motivates the subproblem defined in the following subsection.
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4.2 Problem description
I Lemma 4. A PESP instance for which the underlying graph D = (V,A) is a tree can be
solved in linear time.

To see the correctness of this lemma, take an arbitrary vertex i ∈ V and fix vi with any value
(e.g., vi = 0). The possible values from the adjacent variables can be determined directly
from the constraints corresponding to the arc. This procedure can be repeated for unfixed
variables adjacent to fixed variables, until all variable values are fixed.

As argued in the motivation, so-called variable restrictions will be added to the problem,
meaning that every variable vi might be bound to a specific set of values Xi. This notation
allows the RPESP to become formulated as follows.

Restricted Periodic Event Scheduling Problem (RPESP)

Given: A directed, cycle-free graph D = (V, A), a cycle time T , a feasible interval ∆ij ⊆
{0, . . . , T − 1} for all (i, j) ∈ A and variable restrictions Xi ⊆ {0, . . . , T − 1} for all
i ∈ V .

Goal: Find a v ∈ [0, T )n such vj − vi ∈ ∆ij for all (i, j) ∈ A and vi ∈ Xi for all i ∈ V , or
state infeasibility.

Note that due to the addition of variable restrictions, the problem has become non-trivial
and a different algorithm is required.

4.3 Optimizing RPESP
I Theorem 5. RPESP can be optimized in O(nT 2) time.

Theorem 5 is fundamental for the heuristic in this paper, and will be proven using dynamic
programming. To this aim, label a vertex of choice as the root r of the tree, and define d(i)
as the minimum number of arcs required from vertex i to reach the root r. A vertex j is a
child of i if d(j)− d(i) = 1 and there exists an arc between i and j. Similarly, i is the parent
of j, which is denoted by i ↓ j.

The dynamic program starts with the vertices at the bottom of the tree (i.e., the vertices
without children), and proceeds in a bottom-up fashion by considering in every iteration a
vertex of which all children have been considered earlier. Because the graph contains no
cycles, such a vertex always exists.

At vertex i, the dynamic program enumerates all feasible solution values for vi ∈ Xi

and determines for which of these values a feasible solution exists, considering only the
constraints and variables in the subtree rooted at i (i.e., a subproblem is considered). Using
the mentioned model and definitions, the dynamic program will use the following function:

f(i, x) =
minimum cost of a feasible solution of the subproblem rooted at
vertex i, while x ∈ Xi and vi = x

with initialization for the leaves as:

f(i, x) =
{

0 if x ∈ Xi

∞ otherwise

In other words, the subproblem rooted at vertex i using xi = t is infeasible if and only if
f(i, x) =∞. The recursive identity that solves the dynamic program is:

f(i, x) =
∑

(j:i↓j)

min
vj∈{0,...,T−1}

(f(j, vj) + zij(vi, vj))
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for xi ∈ X. This correctness of the recursion of the dynamic program can be inductively
argued as follows. One wants to know the optimal solution value of the subproblem rooted
at i, when vi is fixed at x. Prior to this stage, the dynamic program has determined
for all children j of i determined what the optimal value f(j, vj), for every possible value
vj = 0, . . . , T − 1 of the individual subproblems rooted at its children j. Whenever vertex
i is added to the subproblem, more terms in the objective function need to be considered.
However, by the assumption at the beginning of this section, only terms to the objective
function are added between i and its children (i.e., the terms zij(vi, vj) for all j). Since a
fixed vi = x is considered for evaluating f(i, x) and the subproblems rooted at the children
of i can be optimized independently of each other, one can simply iterate in linear time what
the optimal value for vj is, including also the terms in zij(vi, vj)

The running time of this dynamic program is as follows. Let ci be the number of children
of vertex i. Note that

∑
i∈V ci = n − 1, because every vertex, apart from the root, is

a child of exactly one other vertex. Computing one value for f(i, x) takes O(ciW ) time,
because for every child j = 1, . . . , ni of i, for exactly |∆ij | = O(W ) values need to be
verified whether there exists a vj such that (vj − x) mod T ∈ ∆ij . Since f(i, x) needs to
be calculated for at most W values for every vertex i ∈ V , the running time concludes to
O
(
W ·

∑
i∈V ciW

)
= O(

(∑
i∈V ci

)
W 2) = O(nW 2). This proves Theorem 5.

Finally note that the dynamic program can be terminated earlier if it detects for a vertex
i that there exists no f(i, x) < ∞, as this implies there is no solution for the subproblem
rooted at i (and therefore the RPESP instance).

5 Tree decomposition heuristics

Decomposing the PESP into trees is the key technique for heuristics used in this paper to
solve PESP instances. The intuition behind this method has been explained in Subsection 4.1:
the problem is decomposed in subproblems which are solved independently, and integrated
afterwards. If integration is not possible, it is desirable to make a few changes as possible to
enable integration. This is elaborated in the next subsections.

5.1 Decomposing a PESP graph into trees
An important part of the algorithm concerns the decomposing of the original graph D into
trees. Clearly, this can be done in numerous ways for realistic instances. For this research,
a simple greedy heuristic has been applied based on the feasible intervals ∆ij . To describe
the method informally, a component C will be initialized by adding the two vertices i and j
that correspond to the arc with minimal |∆ij |. Subsequently, a vertex is added to C if its
addition will not lead to a cycle within the component.

The resulting tree graphs, which by definition are components, are denoted as C1, . . . , Ck.
As mentioned earlier, the original graph D is not equal to ∩k

i=1Ci, since the bridging
constraints are not considered. Indeed, when all trees are optimized individually, the
bottleneck lies in satisfying the bridging constraints.

5.2 Requirements for partial solutions
I Remark. Given two components Cx and Cy w.r.t. D, a given solution vx can be extended
to a feasible solution for the (merged) component Cxy = (Vx ∪ Vy, Ax ∪ Ay ∪ Bxy) if
and only if there exists a solution to the RPESP instance Cy with variable restrictions
Xj = ∩(i,j)∈A:i∈Vx

((vi ⊕∆ij) mod T ), for all vj ∈ Vy.
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To emphasize the difference, vx is a partial solution to D, but a complete solution to Cx.
It is of interest whether vx can be extended to a feasible solution for the merged subproblem
Cxy, including the bridging constraints.

To see the correctness of Remark 2, note that by definition, all constraints in Ax are
satisfied by definition of vx. Moreover, by construction of Xi, the bridging constraints Bxy

are fulfilled if the variable restrictions are satisfied. Hence, the remaining constraints Ay are
fulfilled if there exists a solution to the RPESP instance using these variable restrictions.

Note that the dynamic program explained in Subsection 4.3 can answer the question
whether a partial solution vx can be extended to a feasible solution for Cxy. Moreover,
optimization of an objective can be taken into account to retrieve the best solution for Cxy

given vx. This justifies more formally the consideration of the RPESP. Indeed, the next step
is to integrate a feasible solution for Cxy to a solution for a larger component.

Using this concept, one needs to find partial solutions v1, . . . , vk such that vx ∪ vy is a
feasible solution for Cxy for all x = 1, . . . , k and y = x+ 1, . . . , k.

Clearly, a prerequisite for every partial solution vx w.r.t. D is that it can be extended to
a solution for the merged subproblem Cxy for all y = 1, . . . , k. If not, then vx clearly cannot
be extended to a solution for the original problem D = (V,A). One can verify in O(knT 2)
time whether a solution can be extended to a solution for merged subproblems, using the
dynamic program.

5.3 Identifying non-extendable partial solutions
The idea will firstly be illustrated informally by reconsidering the example in Figure 2.
Given the solution v1 = (0, 12, 14, 18) for C1, the bridging constraints impose variable
restrictions X5 = {15, 16, 17} and X6 = {26, 27}. It turns out that, given the solution v1

for C1, that C2 in fact has become infeasible. After all, the constraint a57 demands that
v7 ∈ {15, . . . , 27}, while a67 demands that v7 ∈ {28, 29, 30}, making the feasible region for v7
equal to {15, . . . , 27} ∩ {28, 30} = ∅.

Even though the full PESP-instance is feasible, e.g., v = (0, 10, 10, 15, 15, 23, 25, 35), no
feasible solution v2 for C2 can be found given the variable restrictions imposed by solution
v1. This clearly means that a different solution for C1 needs to be found. While attempting
to solve C2, the dynamic program will note this as well, since f(7, x) will be False for
all x. Informally, the dynamic program needs to send feedback to C1 on how to find a
feasible solution (that can be extended to a feasible solution for C2), by imposing additional
constraints on finding a solution for v1 for C1.

In this specific example, note that a change has to be made in the subset (v1, v2, v4);
a feasible value for v3 can instantly be found due to the tree structure. Thus, one needs
to analyze the possible values for (v1, v2, v4) and identify which combinations of values can
never lead to a feasible solution for C2. This procedure will be formalized in the next section.

5.4 Fixing non-extendable partial solutions
I Definition 6. A subset ban (Yi, . . . , Yk), with Yj ⊆ {0, . . . , T − 1} for j = i, . . . , k, is a
set of variable values for which any combination (vi, . . . , vk) ∈ Yi, . . . , Yk can never extend to
feasible solution.

Subset bans basically form an administration of combinations of variables from which the
dynamic program already concluded that this leads to guaranteed infeasibility. In this way,
an earlier found partial solution for a component Cx can never be considered again, if it has
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Table 1 Results of the tree decomposition for the PESP using the PESLlib datasets.

Dataset Variables Constraints Trees Sol. value Best value % Difference
R1L1 3664 6385 5 36.1 31.1 +16.0%
R1L2 3668 6543 4 38.3 31.7 +20.8%
R1L3 4184 7031 5 35.0 30.5 +14.8%
R1L4 4760 8528 4 31.9 27.9 +14.3%
R2L1 4156 7361 4 48.8 42.5 +14.8%
R2L2 4204 7563 5 50.1 43.1 +16.2%
R2L3 5048 8286 4 42.9 39.9 +7.5%
R2L4 7660 13173 4 40.1 33.0 +21.5%
R3L1 4516 9145 5 55.4 45.4 +22.0%
R3L2 4452 9251 5 54.7 46.2 +18.4%
R3L3 5724 11169 5 56.5 43.0 +31.4%
R3L4 8180 15657 5 N/A 35.5 N/A
R4L1 4932 10262 5 61.2 51.7 +18.3%
R4L2 5048 10735 5 64.6 52.0 +24.4%
R4L3 6368 13238 6 N/A 45.8 N/A
R4L4 8384 17754 4 N/A 38.8 N/A

been proven to be non-extendable to another component. When finding a feasible solution
from the dynamic program described in 5, one can easily determine a value that fulfills these
bans by picking a value x for a variable i for which f(i, x) <∞ and vi /∈ Xi.

To complete the heuristic, suppose vx can be extended to a solution vx ∪ vy for Cxy, and
vx can also be extended to a solution vx ∪ vz for Cx,z, where vy and vz can be deduced
from the dynamic programs. Having found these solutions, this does not necessarily mean
that vy ∪ vz is a solution for Cyz (the constraints in Byz have not been considered). This
directly implies that vx ∪ vy ∪ vz is not necessarily a solution to Cxyz. This is indeed where
exponentiality theoretically can occur. Once multiple trees are integrated in a component
C, but are not able to be integrated with another tree Cx, there may be subset bans in C
spanning multiple trees. Note that this problem occurs more if the trees are connected to
each other, which occurs less in a railway timetabling framework due the railway network
(variables/trains in a specific part of the country are less related to variables/trains at the
far other end of the country).

6 Experimental results

For this research, the 16 railway timetabling instances from publicly available PESP bench-
mark library PESPlib1 have been used. The upper bound for the running time has been set
to 1 hour, though if a possible solution can be found, it is usually done within minutes. The
remainder of the running time is spent on optimizing the objective function. The results are
summarized in Table 1.

All experiments were conducted on a PC with an AMD Ryzen 5 1600 Six-Core Processor
(3.20 GHz) with 16 GB of RAM. The source code was written in Java. To clarify Table 1:

1 http://num.math.uni-goettingen.de/ m.goerigk/pesplib/
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Trees is the number of trees are the minimum number of trees to which the variables
can be decomposed for the tree decomposition heuristic.
Sol. value is the solution value when using the tree decomposition heuristic presented
in this paper in millions. If no feasible solution could be found within the time bound,
N/A is given.
Best value is the currently best found solution value so far (also in millions), generally
by Goerigk & Liebchen.
% difference is the percentual difference between sol. value and best value.
Although the tree decomposition heuristic does not give the hoped results, the performance

on these datasets can still be satisfying and at least offer perspective for improvements.
Particularly the short duration of the tree decomposition method, for an entire timetable
with constraints of an entire country, is one of they key contributions of this paper. To the
best of the knowledge presented in this paper, there exists no method that can solve large
instances (after data reduction) within such a short amount of time.

Unfortunately, three of the datasets could not be solved by the tree decomposition
heuristic. This may be due to the higher number or constraints, or possibly a structure
within the constraints where the heuristic cannot deal properly with. Nevertheless, the
other 13 datasets could be solved, although the performance is about 20% worse on average
than the currently best found solutions. Still, since this method is a heuristic from a new
perspective, there is room for improvements and perhaps potential to improve the currently
known approaches.

7 Conclusions and future work

The PESP is a difficult problem for which the current literature is seeking more practical
methods to escape local optima, without applying brute force in an early stage. This paper
has proposed techniques for heuristics that decompose a PESP problems into trees. These
techniques are primarily based on dynamic programming, which allows the usage of a smart
objective function that heuristically maximizes the possibility that a solution for a component
can be extended to a solution for all other components. Experiments are performed using
online benchmarks, and the even though the heuristic performs on average about 20% worse
in terms of objective function, feasible solutions can still be found quickly.

Future research will be done in improving this method to find feasible and better solutions
in a faster way. Other future work concerns the incorporation of heuristics for the PESP into
parallel problems; current research includes the routing of trains through stations in parallel
to the optimization of the PESP. Due to the highly complex structure of both problems,
heuristics are likely to be more suitable than standard optimization techniques.
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Abstract
We consider the problem of frequency optimization in transit systems, whose objective is to
determine the time interval between subsequent buses for a set of public transportation lines. We
extend an existing single level model by adding a constraint on bus capacities, while maintaining
user choice on routes by means of an assignment sub-model. The resulting formulation is bilevel,
and is transformed into a mixed integer linear programming formulation (MILP) that can be
solved to optimality for small-sized problem instances, using standard MILP techniques. We
study different variants of the same formulation to better understand the bilevel nature of the
model and its application to real settings.
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1 Introduction

There are different stages for the design of a public transportation system based on buses.
The literature identifies fives stages [4] that are usually performed sequentially in real
systems: route network design, frequency setting, timetable design, fleet assignment and
crew assignment. The decisions taken at each stage influence the decisions that can be
taken at later stages, and they are taken considering different planning horizons, depending
on whether the context of the planning is strategic (long term), tactical (medium term)
or operational (short term). The frequency setting decisions are usually part of a tactical
planning [10], although at least an initial frequency setting is necessary to evaluate the
decisions taken during route network design, which happens on a strategic basis.
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7:2 A Bilevel Approach to Transit Frequency Optimization

The design of a public transportation system needs to consider monetary costs, that
range from fixed costs due to the construction of the infrastructure, to variable costs due to
the operation of the services. It must also consider the interest of the users, e.g., in providing
reasonable travel times, waiting times, and number of transfers. The frequency setting affects
directly both concerns, impacting the level of service provided to the users (waiting time,
capacity of the lines) and the costs that planners need to incur to run the system (the fleet
size is determined by the required frequency of the lines).

The user of a public transportation system usually behaves in an egoistic way, that is, in
such a manner as to minimize its individual total travel time (on-board time plus waiting
time). Therefore, in order to measure the performance of a transportation system from the
viewpoint of the users, models should take into consideration how the users behave when
faced with the choice of a specific line from a set of candidate bus lines that can take them
to their destinations. Such is the responsibility of an assignment sub-model, that by applying
a set of hypotheses on how the users behave selects the appropriate lines in order to satisfy
travel demands. The assignment model is in itself an optimization problem, usually having a
complex formulation and solution method, specially when the influence of the bus capacity
is considered in the modelling of the user behavior. Therefore, the complexity of the overall
frequency optimization model is strongly determined by the complexity of the underlying
assignment sub-model.

In several real settings, public transportation systems run over capacity, meaning that
the nominal frequencies of the transit lines are not respected due to lack of capacity. In this
context, the capacity is determined by the capacity of the vehicles and the frequencies of
the lines. To model these situations, capacity constraints should be taken into consideration
when representing the passenger behavior. Even though the problem of transit assignment
considering capacities has been properly addressed by the existing literature [15], the problem
of transit frequency optimization considering capacities has been more scarcely studied.

The consideration of the bus capacity constraint alongside an assignment sub-model
changes the nature of frequency optimization, turning a single level (uncapacitated) formula-
tion into a bilevel one [2]. In bilevel problems there is a constraint that establishes that one
or several decision variables must be part of the optimal solution of yet another optimization
problem, known as the lower level problem [2] [6]. Exactly two decision makers exist, and
the objectives of them do not necessarily coincide. Furthermore, the individual decision each
one can take influences the decisions of the other.

The bilevel nature of the frequency optimization problem stems from the fact that the
direct addition of bus capacities to the model, involving variables that affect both the planner
and the users of the system, would disrupt the underlying assignment sub-model by forcing
users to take sub-optimal paths to reach their destination.

The remainder of the article is organized as follows. In section 2 we present a review on
related literature and the contributions of this work. The mathematical model and proposed
formulation is described in detail in section 3, while in section 4 we present computational
experiments using a simple test case on alternative formulations. We conclude the work and
refer to future research directions in section 5.

2 Related literature and statement of contribution

In this section we review related relevant literature on frequency optimization in public
transportation systems, with a special focus in works that have incorporated either the
behavior of the users in an explicit manner (i.e., by means of an assignment sub-model) or
bus capacities.
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In [8] a nonlinear bilevel formulation for frequency optimization is proposed. It incor-
porates an explicit assignment model [24] in the lower level, while the upper level problem
represents the interest and constraints of the planner, who wants to provide a minimal overall
travel time for the users of the system while at the same time diminish the monetary costs
by constraining the fleet size. The authors propose a resolution method based on a gradient
descent, exploiting specific properties of the problem. The model is applied to several case
studies of small to medium sizes.

A bilevel model is proposed in [23], where the upper level seeks to improve an overall
cost function and the lower-level consists of the capacity constrained assignment problem
formulated in [9]. Tabu Search [17] is used as the heuristic search.

In [20] a MILP formulation is proposed that models user behavior by means of the optimal
strategies [24] assignment model. The objective is to minimize the overall travel time of
users (on-board travel time plus waiting time) while the operational cost is constrained with
an upper limit on the allowed fleet size. The model is solved exactly by using a commercial
solver on small instances; for larger instances, a metaheuristic based on Tabu Search is used.
The metaheuristic approach is tested using real case studies.

More recently, [18] propose two different integer programming formulations for the problem
of designing lines in a public transport system. As part of the line design, frequencies are
considered as decision variables to incorporate bus capacities into the model, however, the
waiting time of the users is not modeled. Exact solution methods are proposed, and a genetic
algorithm is used in order to solve large-scale instances.

The contributions of our work are:

We consider the passenger behavior as well as the bus capacity and the waiting time
of the users, into a single and explicit mathematical programming formulation for the
transit frequency optimization problem.
We propose a bilevel formulation that is converted to a mixed integer linear programming
(MILP) formulation suitable of being solved exactly by using commercial MILP solvers
for small-sized instances of the problem.
By applying the exact approach developed to small-sized cases, we are able to study the
sensitivity of the solutions with respect to certain aspects of the problem, and therefore,
to achieve a better understanding of its nature.

3 Mathematical model

We base our formulation on the one proposed in [20]. In order to model user behavior, it
incorporates an explicit assignment model [24].

We propose an extension of the model by adding the bus capacity constraint. This leads
us to consider a bilevel formulation that is able to capture the impact that constraints such
as the bus capacity, have on the nature of the problem.

3.1 Basic concepts and notation
Before presenting the proposed mathematical programming formulation, we need to provide
some concepts as well as a detailed explanation of the used representation.

We make use of a network represented as a directed graph G = (N,A) where nodes acting
as bus stops NP and street endpoints NS are included in the set N . The movement of the
buses along the street is represented by travel arcs (AT ) that connect nodes of NS . A fixed
nonnegative travel time ca is associated with each travel arc. Boarding (AB) and alighting
(AL) arcs are also contained in the set A, connecting nodes from NP to NS and from NS to
NP , respectively.
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Figure 1 Graph model (extracted from [20]).

We assume that the demand is generated at the bus stops. The demand is represented
using an origin-destination matrix, where the set of OD pairs K is such that for a given pair
k ∈ K, there are Ok, Dk ∈ NP origin and destination nodes, respectively, and a nonnegative
value δk that represents the amount of people (per time unit in a given time horizon) that
have a travel requirement on the pair k.

Lines are defined over the set of travel arcs AT . Each line l ∈ L is composed of a sequence
of adjacent travel arcs. The round-trip time for a given line is defined as

∑
a∈l ca. Lines

are either circular, or composed by the concatenation of forward and backward travel arc
sequences. Figure 1 illustrates the graph model.

3.2 Assignment model
An assignment model determines user behavior, that is, the way in which users satisfy
their travel needs using the existing public transportation lines. Users of the system must
choose a line from a set of possible candidate lines that can bring them to their intended
destination. Since in order to measure the performance of the system, user satisfaction is of
great importance, the assignment model is a critical component of any model of frequency
optimization.

The factors that a user considers to make such a choice (i.e., minimize travel time, number
of transfers) and the amount of detail and information they have at their disposal (i.e., if
the infrastructure provides real time information) determines whether an assignment model
is appropriate for the real scenario under study. The way the users behave have a direct
influence on the calculation of measures such as the waiting time and occupancy of the buses
that end users experience.

The assignment model used in this work is the one proposed in [24], called optimal
strategies. A strategy is a set of rules that when applied, allow users to reach their destinations.
In particular, the model assumes that a given user selects the strategy that minimizes his or
her total travel time, including the waiting time at the bus stops. In order to achieve this, it
is assumed that users have knowledge of the on-board travel times and frequencies of all the
lines of the system. That information is then used to refine a set of attractive lines that can
be used to reach the desired destination from the origin. At the bus stop, a given user will
take the first bus belonging to the attractive set of lines that passes by that stop. Since the
model is probabilistic, an optimal strategy is defined as a strategy that minimizes the total
expected travel time.

The probabilistic nature of the model is evident when considering how the waiting
time of a passenger waiting on a stop is calculated, for a set of lines R = {r1, . . . , rm} with
corresponding frequencies F = {f1, . . . , fm}. As commonly accepted in the literature [10], the
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waiting time can then be modeled by a random variable of mean value E(tw) = β/
∑

ri∈R fi,
where β is a parameter which depends on assumptions concerning service regularity. Since
the model assumes that passengers take the first bus that arrives at the stop, the probability
of using the route ri, known as the frequency share rule, is Pi = fi/

∑
rj∈R fj .

For a single OD pair, the assignment model can be formulated as follows:

min
v,w

∑
a∈A

cava +
∑

n∈NP

wn (1)

s.t.
∑

a∈A+
n

va −
∑

a∈A−
n

va = bn ∀ n ∈ N, (2)

va ≤ fawn ∀ n ∈ NP , a ∈ A+
n , (3)

va ≥ 0 ∀ a ∈ A (4)

where wn is the waiting time multiplied by the amount of demand at node n ∈ NP , A−n are
incoming arcs to node n, va is the amount of demand flowing through arc a ∈ A, fa is the
frequency of the line corresponding to the boarding arc a, and bn is a value equal to the
demand requirement at that node, that is, δk if n = Ok, −δk if n = Dk, and 0 otherwise.

The objective function (1) states the intention of the users of the system, that is, to
minimize their total travel time (sum of on-board travel time and the waiting time at the
stops). The flow conservation constraint (2) guarantees that all users are able to reach their
destinations. Constraint (3) splits the demand among the different lines that belong to the
attractive set, and prohibits flow passing through arc a if the arc is not part of the optimal
strategy. If va > 0 the arc must belong to some optimal strategy and the constraint verifies
with equality, restoring the frequency share rule expression.

This is a linear formulation that closely resembles a shortest path problem. The particu-
larities of the formulation consist of a new term in the objective function, representing the
waiting time at nodes, and constraint (3) that represents what is known as the split rule,
where demand is split among the attractive lines leading to the destination and passing by
the given stop. Due to the latter constraint, the solution of the assignment problem consists
of a hyperpath [22] representing different trajectories from origin to destination, instead of a
single path on the graph as it is the case when solving the shortest path problem.

The model presented above can be easily extended to consider demand generated (both
produced and attracted) in places other than the bus stop. This can be done by considering
centroid nodes (representing zones of the study region) which are connected to stop nodes
through walking arcs.

3.3 Frequency optimization model

The frequency optimization model proposed in [20] is based on the one proposed in [8],
which has a nonlinear bilevel formulation. Formulation (5 - 12) is a linear transformation of
that original model, where authors introduce a discretization of the domain of frequencies
Θ = {θ1 . . . θm} where each element θi is a nonnegative value representing a possible value
for the frequency of any line.
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Figure 2 Discretized domain of frequencies (extracted from [20]).

min
y,v,w

∑
k∈K

(
∑
a∈A

cavak +
∑

n∈NP

wnk) (5)

s.t.
∑
l∈L

∑
f∈Θ

θfylf

∑
a∈l

ca ≤ B, (6)

∑
f∈Θ

ylf = 1 ∀ l ∈ L, (7)

∑
a∈A+

n

vak −
∑

a∈A−
n

vak = bnk ∀ n ∈ N, k ∈ K, (8)

vak ≤ θf(a)wnk ∀ a ∈ A+
n , n ∈ NP , k ∈ K, (9)

vak ≥ 0 ∀ a ∈ A, k ∈ K, (10)
vak ≤ δkyl(a)f(a) ∀ a ∈ AB , k ∈ K, (11)
ylf ∈ {0, 1} ∀ l ∈ L, f ∈ Θ. (12)

In doing this, the authors define a new structure of the graph G, where for each line
passing by a given bus stop node, there exists as many boarding arcs to that node as possible
values of Θ. Figure 2 illustrates the changes introduced in the graph model by using a
discretized domain of frequencies.

The model is mixed integer, due to the introduction of the binary variable ylf , which takes
value 1 if frequency θf is associated with the line l. To keep the planner costs bounded, the
parameter B is introduced, which represents an upper limit on the fleet size. To indicate the
line frequencies some notation is introduced: f(a) specifies the index in Θ of the frequency
associated with the arc a, while l(a) specifies the line that corresponds to that arc. Index k
is used to indicate OD pairs.

In formulation (5 - 12) the objective function is that of the users, which intend to minimize
their total travel times, while taking into account the interest of the planners that seek to
minimize operational costs (6). The assignment model is included in constraints (8 - 10), now
expanded to consider each demand pair k. Constraint (7) enforces the fact that each line
must have exactly one frequency associated, while constraint (11) prohibits flow on nodes
vak when the frequency associated with that boarding arc is not active (yl(a)f(a) = 0) and is
redundant otherwise.

This results in a mixed integer linear formulation, where the main source of complexity
is the existence of binary variables, and the fact that the discretization of the domain of
frequencies increases the size of the underlying graph model due of the addition of new
boarding arcs, one per possible frequency value.
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3.4 Adding the bus capacity constraint
The assignment sub-model embedded in formulation (5 - 12) assumes that there is sufficient
capacity to carry all the passengers that desire to use any line. Furthermore, there is no
additional constraint in the formulation that considers the capacity of the lines, which
is unrealistic in systems that exhibit high affluence of passengers. Upon introducing a
new parameter ω that represents the capacity of a bus, and considering that line capacity
(measured in passengers per time unit) is defined as the product of its frequency by the
capacity of the bus, we can impose feasible line flows by adding the following constraint:

∑
k∈K

vak ≤
∑

f∈1..m

yl(a)fθfω ∀a ∈ AT (13)

However, this could result in solutions where the flow of a given OD pair is distributed
among:

A shortest hyperpath comprising lines whose capacity is saturated, i.e., constraint (13) is
active for their corresponding travel arcs. This represents the optimal strategy.
Other alternative hyperpaths, whose cost according to expression (1) is higher than the
cost of the shortest one. This represents (sub-optimal) strategies that the users choose a
priori, knowing the existence of a shortest hyperpath which is saturated.

This leads us to the concepts of line planning with route assignment (LPRA) and line
planning with route choice (LPRC), first defined in [18]. LPRA models are widespread in the
literature, and assume that passengers can be steered by the public transportation planner,
an assumption that usually results in simpler but unrealistic models. The utilization of
assignment models such as the one used in this work imply a LPRC approach, where each
user chooses the route that best fits his or her expectations. Adding constraint (13) directly
into the formulation would violate the LPRC approach, as users would need to consider a
priori lines that must conform with the new constraint (planners concern) rather than choose
the lines in an egoistic way. In a general sense, the addition of any constraint that may
impact the variables that model user behavior, and that are not required by the hypothesis of
the considered assignment model, would defeat the purpose of the model, since users would
behave in a way such as to pursue the optimization of some global optimum that benefits
the formulation in place but not necessarily their own interests.

There are at least two ways of modeling the capacity of the buses in the frequency
optimization problem while honouring the expected user behavior:

Assuming that the planner ensures sufficient capacity on the lines that the users want to
use. This is done by setting appropriate values of frequencies on the corresponding lines.
Modeling a congested system, through an assignment sub-model which represents the
user behavior under a situation of lack of line capacity. In this case, it is assumed that
some users are forced to wait for the next bus of the line, with available capacity, or wait
for a different line.

The second one entails to consider an equilibrium assignment sub-model [5] [9] embedded
into the frequency optimization model, which is considerably more complex than the first
approach [13]. Furthermore, to the best of our knowledge, there is not a formal criterion to
decide between both approaches from the modeling point of view. In practice, constraints
related to capacity of infrastructure, budget and policy come into play to determine whether
it is possible to operate a not congested system. In this work we follow the first approach.
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3.4.1 Bilevel mathematical programming formulation
If constraint (13) is added to formulation (5 - 12) we would be considering decisions taken
by different actors in the same model. Variables y represent planner decisions in assigning
frequencies to lines, while variables v and w represent decisions of the users, that select which
lines to use to reach their destinations. Bilevel mathematical programs [2] [6] [12] are used
to model scenarios with similar characteristics.

In order to incorporate the bus capacity constraint in our model, we propose the following
bilevel formulation:

min
y,v,w

∑
k∈K

(
∑
a∈A

cavak +
∑

n∈NP

wnk) (14)

s.t.
∑
l∈L

∑
f∈Θ

θfylf

∑
a∈l

ca ≤ B, (15)

∑
f∈Θ

ylf = 1 ∀ l ∈ L, (16)

∑
k∈K

vak ≤
∑
f∈Θ

yl(a)fθfω ∀ a ∈ AT , (17)

ylf ∈ {0, 1} ∀ l ∈ L, f ∈ Θ, (18)

min
v,w

∑
k∈K

(
∑
a∈A

cavak +
∑

n∈NP

wnk) (19)

s.t.
∑

a∈A+
n

vak −
∑

a∈A−
n

vak = bnk ∀ n ∈ N, k ∈ K, (20)

vak ≤ θf(a)wnk ∀ a ∈ A+
n , n ∈ NP , k ∈ K, (21)

vak ≤ δkyl(a)f(a) ∀ a ∈ AB , k ∈ K, (22)
vak ≥ 0 ∀ a ∈ A, k ∈ K. (23)

where the upper level (14)-(18) represents decisions of the planners while the lower level (19 -
23) represents decisions of the users, that is, the assignment sub-model with the input of
fixed frequencies θf(a). The objective function of both levels is the same, considering only
the objective of the users, which is to minimize the overall travel time. Arguably, the fleet
size constraint (15) could be modeled as another objective to minimize at the upper level,
which would lead us to consider a multi-objective bilevel formulation, probably increasing
the complexity of the formulation [16].

The planners can ensure sufficient capacity on the lines that the users want to use by
adjusting the frequencies according to constraint (17). In that manner, users are assumed to
perceive unlimited capacities on the lines they might take.

Formulation (14 - 23) is classified as Discrete Continuous Linear Bilevel (DCLB) [2] since
the upper level is linear with discrete variables while the lower level is linear with continuous
variables. Therefore, it can be reformulated into a MILP problem and in theory it could be
solved to optimality. Some commonly used reformulation strategies for doing this are:

Using the Karush-Kuhn-Tucker (KKT) conditions to substitute the lower level problem
and therefore removing the distinction among the different levels. Due to the comple-
mentarity term, that is not linear, the resulting reformulation would be a standard single
level nonlinear mathematical program that is suitable to be solved by some of the existing
nonlinear algorithms. Usually, the reformulation is combined with a linearization of the
complementary slackness term using the big-M method [12]. This approach has been
described and used in [2] [12].
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Figure 3 Illustrative example.

Primal-Dual reformulation. In this case the lower level problem is replaced by using its
dual constraints, primal (original) constraints, and the strong duality theorem equality
(equality between the lower and upper level objective functions), since the KKT conditions
are equivalent to the later conditions when the lower level problem is linear. This approach
has been used in [1] [3] [14].

In the present work formulation (14 - 23) was transformed into a single level formulation
using the first approach, that is, by replacing the lower level problem by the optimality
conditions given by its constraints, the constraints of its dual and the complementary slackness
constraints, which were linearized using the big-M method. In that way, by replacing the
lower level with its optimality conditions, variables which represent decisions of the users
(v and w) are restricted to take values which solve problem (19 - 23). Therefore, the whole
model will adjust the frequency values (variable y) so as to respect the constraints which are
directly included in the upper level (among them, bus capacity) as well as the optimality
conditions which represent the (uncapacitated) lower level problem.

After applying the KKT conditions, the resulting MILP model, equivalent to (14 - 23),
is (24 - 51), where (33 - 36) correspond to the constraints of the dual of problem (19 - 23),
πnk, νak, and µak are the dual variables corresponding to constraints (20), (21), and (22),
respectively, s1

ak and s2
ak are slack variables associated with inequality constraints (21) and

(22), respectively, and t1ak, t2ak and t3nk are slack variables associated with the inequality
constraints (33), (34) and (35), respectively. The complementary slackness conditions are
linearized by applying the big-M method (37 - 46), obtaining in this manner a MILP single
level formulation.

4 Experiments for a small-sized example

In order to illustrate the application of the bilevel model explained in section 3, we show in
Figure 3 the small-sized case considered.

The numbers close to the arcs indicate their corresponding travel times. There are
two OD pairs, such that O1 = 1, O2 = 2, D1 = D2 = 3 and δ1 = δ2 = 5. We consider
values of fleet size B = 10, bus capacity ω = 1.0 and the set of possible frequencies
Θ = {1.0, 2.5, 5.0, 7.0, 9.0}. The lines defined for this case are l1 = {(1, 2), (2, 3)} and
l2 = {(1, 3)}, both having symmetrical forward and backward itineraries.

Table 1 shows the results of applying three different variants of formulation (24 - 51) to
the example of Figure 3, where τ (calculated in (24)) is the total travel time of the optimal
solution and β (calculated in (25)) its corresponding fleet size; it also shows the line capacity
(as defined in expression (13)) and the critical flow of each line (defined as the flow of the arc
va with maximum flow on the line). Even though the model has a large number of variables,
due to the small size of the instance, the execution time is negligible.
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Table 1 Impact of adding the bus capacity constraint.

Model cap. l1 critical flow l1 cap. l2 critical flow l2 τ β

uncapacitated 9.0 9/10δ1 + δ2 = 9.5 1.0 1/10δ1 = 0.5 4.8 ≤ 10
cap. single-level 9.0 8/10δ1 + δ2 = 9.0 1.0 2/10δ1 = 1.0 5.3 ≤ 10

cap. bilevel 9.0 9/11.5δ1 + δ2 = 8.9 2.5 2.5/11.5δ2 = 1.1 ≤ 4.8 11.5

min
y,v,w

∑
k∈K

(
∑
a∈A

cavak +
∑

n∈NP

wnk) (24)

s.t.
∑
l∈L

∑
f∈Θ

θfylf

∑
a∈l

ca ≤ B, (25)

∑
f∈Θ

ylf = 1 ∀ l ∈ L, (26)

∑
k∈K

vak ≤
∑
f∈Θ

yl(a)fθfω ∀ a ∈ AT , (27)

∑
a∈A+

n

vak −
∑

a∈A−
n

vak = bnk ∀ n ∈ N, k ∈ K, (28)

vak ≤ θf(a)wnk ∀ a ∈ A+
n , n ∈ NP , k ∈ K, (29)

vak ≥ 0 ∀ a ∈ A, k ∈ K, (30)
vak ≤ δkyl(a)f(a) ∀ a ∈ AB , k ∈ K, (31)
ylf ∈ {0, 1} ∀ l ∈ L, f ∈ Θ, (32)
πik − πjk ≤ ca ∀ a = (i, j) ∈ A−AB , k ∈ K, (33)
πik − πjk − µak − νak ≤ ca ∀ a = (i, j) ∈ AB , k ∈ K, (34)∑
a∈AB+

n

θf(a)νak ≤ 1 ∀ n ∈ N, k ∈ K, (35)

µak, νak ≥ 0 ∀ a ∈ AB , k ∈ K, (36)
θf(a)wik − vak ≤ s1

akM ∀ a = (i, j) ∈ AB , k ∈ K, (37)
νak ≤ (1− s1

ak)M ∀ a ∈ AB , k ∈ K, (38)
δkyl(a)f(a) − vak ≤ s2

akM ∀ a ∈ AB , k ∈ K, (39)
µak ≤ (1− s2

ak)M ∀ a ∈ AB , k ∈ K, (40)
ca − πik + πjk ≤ t1akM ∀ a = (i, j) ∈ A−AB , k ∈ K, (41)
vak ≤ (1− t1ak)M ∀ a ∈ A−AB , k ∈ K, (42)
ca − πik + πjk + µak + νak ≤ t2akM ∀ a = (i, j) ∈ AB , k ∈ K, (43)
vak ≤ (1− t2ak)M ∀ a ∈ AB , k ∈ K, (44)

1−
∑

a∈AB+
n

θf(a)νak ≤ t3nkM ∀ n ∈ N, k ∈ K, (45)

wnk ≤ (1− t3nk)M ∀ n ∈ N, k ∈ K, (46)
s1

ak ∈ {0, 1} ∀ a ∈ A, k ∈ K, (47)
s2

ak ∈ {0, 1} ∀ a ∈ AB , k ∈ K, (48)
t1ak ∈ {0, 1} ∀ a ∈ A−AB , k ∈ K, (49)
t2ak ∈ {0, 1} ∀ a ∈ AB , k ∈ K, (50)
t3nk ∈ {0, 1} ∀ n ∈ N, k ∈ K (51)
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4.1 Experiment 1: comparison of uncapacitated and single level
capacitated models

The first line of Table 1 shows the results of applying the uncapacitated model (5 - 12).
When capacities are not considered, the entire flow of OD pair 2 uses l1, while the flow of
OD pair 1 is distributed between both lines (4.5 uses l1 and 0.5 uses l2) due to the flow
splitting constraint (9).

When we consider bus capacities in the original uncapacitated model (second line of the
table), adding the constraint directly, we obtain the same setting of frequencies but with a
different assignment of flows. In this case, 1.0 units of the demand corresponding to OD
pair 1 uses l2. This is because l1 has capacity to accommodate only up to 9.0 units of flow.
The 0.5 units of flow corresponding to OD pair 1, which were moved from l1 to l2 represent
a set of users who are forced to use a sub-optimal hyperpath, knowing the existence of a
better one, that is, they behave in an unrealistic way. Moreover, we note that the model is
not able to represent this situation consistently, since it can not represent different waiting
times for passengers corresponding to the same OD pair at the same stop (variables wnk).

The example shows through a numerical application, the consequences of solving the
capacitated problem in a straightforward (not realistic) way. When we apply the bilevel
model (24 - 51) to the same case, we obtain no feasible solution. This is due to the fleet
size constraint, that does not allow for an increase of frequencies in order to accommodate
the demand on the lines that the users want to use; moreover, the model is not able to
change the frequencies in such a way as to redistribute the flows in order to respect the line
capacities. That difficulty was already noted in [7]. In order to overcome this difficulty, we
identify two approaches in the literature:

Soften the bus capacity constraint, by moving it as a term of the objective function [7].
Allow the model to increase the fleet size, by including its respective constraint in the
objective function [19].

By adopting the first approach, the solutions obtained may violate the bus capacity
constraint; the higher the violation, the less valid is the corresponding assignment of flows,
which is done assuming sufficient capacity. On the other hand, the second approach assumes
that the fleet size can be increased. This may be a reasonable assumption in the context of
strategic planning, where the model can be used to estimate the investment required to offer
a given level of service. In this case, by adding a new objective function the resulting model
becomes multi-objective, which requires a special treatment depending on how this nature
is represented: for example, by setting appropriate weights or calculating non-dominated
solutions [21].

4.2 Experiment 2: calculation of required fleet size
Considering the discussion above, another possible application of the bilevel model to the
capacitated case would be to state the fleet size minimization as upper level objective, subject
to a constraint of maximum travel time; that is, swapping objective function (14) and
constraint (15).

The results of applying this model to the small instance can be found in the third line
of Table 1, where we state a maximum travel time equal to 4.8 (the optimal value of the
uncapacitated model). The optimal value in this case (which corresponds to the fleet size),
is equal to 11.5. The interpretation of the result is that in order to obtain a setting of
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frequencies which respects the bus capacity constraint while at the same time producing a
total travel time which is no worse than the one corresponding to the uncapacitated case,
the fleet size should be increased in 15%.

5 Conclusions and further research

In the present work we propose a new bilevel formulation for transit frequency optimization,
based on the model presented in [20]. The proposed model considers individual passenger
route choice, using an assignment model [24], as well as considering the waiting time of the
users and the bus capacity when measuring the performance of the system. We derived a
mixed integer linear programming (MILP) formulation which is equivalent to the bilevel one,
that is susceptible of being solved by common solvers using standard MILP techniques, for
small-sized problem instances.

We have also explored the bilevel nature of the problem by applying different formulations
to the same example instance. The results obtained suggest that a true bilevel approach
should be considered whenever bus capacities are contemplated, and that uncapacitated
models are able to produce solutions that are not appropriate in contexts where the transit
system is operating over its capacity.

We note that all variants of the bilevel model discussed here maintain the DCLB structure.
This enables to apply exact solution methods. However, the existing (general purpose)
solution methods for this kind of bilevel problems [2] [3] [12] do not necessarily handle models
with many variables and constraints, as it is the case of frequency optimization problems.
Therefore, further research is needed in order to devise tailored solution methods for the
specific problem. An example of such an approach can be found in [18]. Metaheuristic
techniques may also aid in finding good solutions to solve the transit frequency optimization
problem. The Tabu Search [17] based metaheuristic presented in [20] to solve a single level
instance of the problem might also be extended to cope with a bilevel program. There are a
growing number of metaheuristic approaches that deal with bilevel problems. A good survey
can be found in [11].

It is also desirable to apply the proposed formulation to instances corresponding to real
cities of medium size, in order to study the scalability of the method and the improvements
obtained when compared to the current solutions of real transportation systems. The addition
of other constraints, such as enforcing a maximum waiting time for users of the transit system
may further help achieving solutions of good performance in real world contexts.

Regarding capacitated models, a formal criterion for switching between uncongested and
congested frequency optimization models would be desirable to establish.
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Abstract
In this paper we discuss what a cost-optimal public transport plan looks like, i.e., we determine
a line plan, a timetable and a vehicle schedule which can be operated with minimal costs while,
at the same time, allowing all passengers to travel between their origins and destinations. We
are hereby interested in an exact solution of the integrated problem. In contrast to a passenger-
optimal transport plan, in which there is a direct connection for every origin-destination pair,
the structure or model for determining a cost-optimal transport plan is not obvious and has not
been researched so far.
We present three models which differ with respect to the structures we are looking for. If lines
are directed and may contain circles, we prove that a cost-optimal schedule can (under weak
assumptions) already be obtained by first distributing the passengers in a cost-optimal way. We
are able to streamline the resulting integer program such that it can be applied to real-world
instances. The model gives bounds for the general case. In the second model we look for lines
operated in both directions, but allow only simplified vehicle schedules. This model then yields
stronger bounds than the first one. Our most realistic model looks for lines operated in both
directions, and allows all structures for the vehicle schedules. This model, however, is only
computable for small instances. Finally, the results of the three models and their respective
bounds are compared experimentally.
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8:2 Cost-Minimal Public Transport Planning

1 Introduction

Public transport planning is a challenging task since it consists of several stages: network
design, line planning, timetabling, vehicle- and crew scheduling. In this paper we look for
a line plan in combination with a timetable and a vehicle schedule, i.e., a public transport
plan. Apart from the different subproblems that need to be solved in an integrated way,
there are also different objectives to be considered. A public transport plan should be
passenger-friendly (mostly reflected by a short traveling time for the passengers) but also
have low operating costs. For individual planning stages such as line planning or vehicle
scheduling there exist models and algorithms but finding an integrated solution to this
multi-stage problem is more challenging. Surprisingly, only few papers even evaluate both
cost and traveling time for integrated public transport plans. A first approach in which line
plans, timetables and vehicle schedules have been evaluated together under different criteria
has been given in [16]. More recently, [13] proposes to measure the costs and the traveling
time, and evaluates public transport plans under these criteria (cf. Figure 4).

The goal of integrated planning is to find the set of Pareto solutions with respect to costs
and traveling time and then to choose a solution from this set that is affordable and good for
the passengers. From an academic point of view it is interesting to find theoretical bounds
on the two objective function values of the Pareto solutions, i.e. finding the best achievable
traveling time for the passengers, and finding the minimal costs (under the condition that
all passengers can be transported). The former problem can be solved by a taxi-solution,
providing a direct and fast connection for each origin-destination pair. Nevertheless, what a
cost-optimal transportation plan would look like has not been studied so far and does not
seem to be obvious. Given a line pool, [4] determine a line plan such that all origin-destination
pairs can travel. The costs for the lines, however, are only approximated and not determined
by the vehicle schedule. Furthermore, capacities are neglected. In contrast to this work, we
now take an integrated point of view and propose models for finding cost-optimal public
transport plans, including lines, timetables, and vehicle schedules.

In this paper we propose models for finding cost-optimal public transport plans. More
precisely, we assume that the public transport network with its stops and direct connections
is given, and that the passengers’ demand is known in form of an origin-destination (OD)
matrix. For a homogeneous fleet with a given capacity for each vehicle we then design a line
plan, a timetable, and a vehicle schedule under the constraint that all passengers can be
transported, i.e., for each passenger there exists a possible (maybe non-optimal) connection
from their origin to their destination such that none of the vehicles is overloaded. We aim at
solving the integrated system exactly, meaning that we do not provide iterative heuristics as
in [7, 34, 37] or a sequential approach as the one in [25]. This becomes possible because we
neglect the traveling time and only look at the costs meaning that the computationally hard
step of timetabling becomes irrelevant.

For the single planning stages line planning, timetabling, and vehicle scheduling, models
and algorithms are well-researched. For line planning, cost-oriented models (e.g. [10, 18, 38])
and passenger-oriented models (e.g. [2, 8, 35]) are known, see [33] for a survey. (Periodic)
timetabling focuses on the passengers and is the hardest of the three problems. Exact
approaches to this problem can be found in [36, 23, 29, 19] and heuristics in [24, 17, 26] and
references therein. Integrating the passengers’ routes in timetabling is an ongoing problem,
see [3, 32, 15]. For vehicle scheduling we refer to the survey in [6].
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2 A cost-optimal LTS-plan

In this section we formally describe what a feasible public transport plan (LTS-plan),
consisting of a line plan (L), a timetable (T), and a vehicle schedule (S), is and how its
quality can be evaluated. We restrict ourselves to periodic LTS-plans (including the vehicle
scheduling) in this paper.

I Notation 1. The following input data is needed:
a public transport network PTN = (V,E) with a set of stops V and direct connections E
between them,
for every edge e ∈ E:

a length (in kilometers) lengthe,
a lower bound on the traveling time along the edge Ldrive

e ,
a lower bound Lwait for the time vehicles have to wait at every stop,
a minimal turnaround time for vehicles Lturn, denoting the minimal time a vehicle has to
wait at the end of a line. We assume that Lwait ≤ Lturn.
an OD-matrix W with entries Wuv for each pair of stops u, v ∈ V , denoting how many
passengers want to travel from an origin u to the destination v in a representative time
period. A pair of stations u, v ∈ V with Wuv > 0 is called an OD-pair.
a capacity Cap being the maximal number of passengers each vehicle can transport,
cost parameters
ctime costs per hour for a vehicle driving,
clength costs per kilometer for a vehicle driving.

We assume that the fixed costs (cost of a vehicle, administration, etc.) are included in the
costs per hour and the costs per kilometer, as is often done in practice.
With this input data we then look for an LTS-plan, whose objects are described next.

Line plan L

A line is a path through the PTN. A line plan is a set of lines L, each of them operated
once in the planning period (often an hour). A line plan is feasible if every passenger can be
transported, i.e., if for every OD-pair (u, v) there exist

a set of directed paths Puv from u to v, Pall =
⋃
u,v∈V Puv, and

weights wp for each path p ∈ Puv
such that

∑
p∈Puv

wp = Wuv and such that for every edge e it holds that

∑
p∈Pall:e∈p

wp ≤ Cap · |{l ∈ L : e ∈ l}|. (1)

Note that feasibility does not require the paths Puv to be good paths for the passengers, but
only that all passengers can be transported.
We furthermore assume that lines are simple paths and that every line is operated in both
directions. We do not forbid identical lines, i.e., there may be multiple lines with the same
path. In our setting we allow any path as a possible line (as also done in [2]) in contrast to
many papers which require a line pool of limited size.
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Timetable T

Given a set of lines L, a timetable assigns a time to every departure and arrival of each line
at its stops. Determining a (periodic) timetable is the hardest of the three problems line
planning, timetabling, and vehicle scheduling, and even finding a feasible timetable that
respects the upper and lower bounds on driving, waiting, transfer and turnaround activities
is intractable. Since we neglect the passengers, no upper bounds on transfer activities
are needed, and hence a feasible timetable exists for every possible line plan L (since the
timetable for each line can then be determined separately.). Since we are only interested
in minimizing the costs we furthermore need not care about optimizing the traveling time
of the passengers, meaning that any feasible timetable is sufficient. More precisely, we can
neglect the timetabling as a separate planning stage in cost-optimal planning and simply use
the arrival and departure times which are determined by the vehicle schedule.

Vehicle schedule S

Given a line plan a vehicle schedule determines the number of vehicles and the exact routes
of the vehicles for operating the lines. We construct a set of trips L′ which contains two
directed lines for every (undirected) line l ∈ L, one in forward and the other in backward
direction.
A route of a vehicle is given by the sequence of (directed) lines it passes,

r = (l′1, . . . , l′k), l′i ∈ L′

whereby we require that the l′i, i = 1, . . . , k are pairwise distinct. We assume that after
having taken the last trip l′k in a route, the vehicle starts again with l′1.

This sequence r is interpreted as follows: A vehicle starts with operating line l′1 at some
point in time, x. At the end of line l′1 it drives to the start point of line l′2, operates this
line, and so on. At the end of line l′k the vehicle returns to the start point of l′1 and starts
from the beginning of the next time period. In order to ensure the required periodicity of
the schedule, the vehicle needs to start after an integer multiple of the period T , i.e., at a
time y = x+ dr · T , whereby the integer dr is the number of periods needed for a complete
operation of the route r.

A vehicle schedule thus consists of a set of routes R. It is feasible if each directed line in L′
is contained in exactly one route, i.e., if

| {r ∈ R : l′ ∈ r} | = 1 ∀l′ ∈ L′. (2)

With these assumptions in place we can then define what an LTS-plan is.

I Definition 2. An LTS-plan is a tuple (L,R), such that
L is a feasible line plan, i.e., it satisfies (1),
R is a feasible vehicle schedule for the directed lines L′, i.e., it satisfies (2).

Costs of an LTS-plan

The costs of an LTS-plan are given by the distance driven by all vehicles and its total duration.
Since we compute a periodic schedule, we consider the costs per planning period T .
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A vehicle route r consists of (directed) lines l′ ∈ L′. Hence, we first determine time and
duration of a line l′, namely,

lengthl =
∑
e∈l

lengthe (3)

durl = (|l| − 1)Lwait +
∑
e∈l

Ldrive
e , (4)

where |l| := {e ∈ E|e ∈ l} and (4) uses the fact that it is always cheaper to operate a line as
fast as possible. For the empty rides between a pair of lines l′1 and l′2 we can use the PTN to
determine the parameters

lengthl′1,l′2 = length when driving from the last station of l′1 to the first station of l′2
timel′1,l′2 = time for driving from the last station of line l′1 to the first station of l′2

The minimum turnaround time (usually accounting for a driver’s break) has to be added to
the duration of an empty ride. This yields

durl′1,l′2 = Lturn + timel′1,l′2 . (5)

The number of kilometers a given LTS-plan covers is determined by summing up the kilometers
of each single route, i.e.,

length(L,R) =
∑
l′∈L′

lengthl′ +
∑

r=(l′1,...,l′kr
)∈R

kr∑
i=1

lengthl′
i
,l′

i+1

=
∑
l∈L

2 · lengthl +
∑

r=(l′1,...,l′kr
)∈R

kr∑
i=1

lengthl′
i
,l′

i+1

with l′kr+1 := l′1. The duration of a route r = (l′1, . . . , l′kr
) ∈ R is measured by the number of

time periods durr needed. This can be formally computed by

durr =
⌈
kr∑
i=1

durl′
i

+ durl′
i
,l′

i+1

⌉
T

(6)

with daeT := min{n ∈ N|n · T ≥ a} for any a ∈ R and l′kr+1 := l′1 . The overall duration is
hence given as

dur(L,R) =
∑
r∈R

durr. (7)

Finally, the cost function is defined as

g(L,R) := ctime · dur(L,R) + clength · length(L,R). (8)

Note that the number of required vehicles is determined by the total duration, i.e., by
dur(L,R)

T . The fixed costs per vehicle γ can be included by adding γ
T to ctime. Since this

does not change the structure of the cost function we assume the vehicle costs to be already
included in ctime.
The cost function defined above allows us to define the optimization problem we are concerned
with in this paper.

Problem (cost-opt LTS): Given the input data from Notation 1, find a feasible
LTS-plan (L,R) with minimal costs g(L,R).
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Model 1: Load Generation

Model 2: Integrating up to Line Planning

Model 3: Integrating up to Timetabling and Vehicle Scheduling, i.e., solving it all

Figure 1 Three proposed models for solving (cost-opt LTS).

Traditionally, calculating an LTS-plan consists of solving a series of problems in a sequential
order, as can be seen in [9, 11, 21]. A sequential approach, however, is flawed, since the
costs are mainly determined by the vehicle schedule, which constitutes the last step of the
planning process. Nevertheless, this has been tackled in [25] by a heuristic approach. The
aim of our paper, however, is to find the exact cost minimum of the integrated problem. In
order to address this issue we present three different models for minimizing the costs of the
resulting LTS-plan (see Figure 1).
The first model aims at distributing the OD-pairs in a cost-optimal way (called load gen-
eration). Although it only concerns this very first step we can show that this determines
the minimal costs of an integrated LTS-plan under certain conditions. The second model
integrates load generation and line planning, minimizing a cost function that approximates
(now in greater detail) the costs of a resulting LTS-plan. Finally, the third model presents
an IP formulation for integrating load generation, line planning, timetabling, and vehicle
scheduling; it hence provides an exact model for (cost-opt LTS).

3 Model 1: Creating a cost-efficient load

Line planning is often decomposed into two steps. In the first step, all OD-pairs (u, v) are
routed through the PTN resulting in paths Puv, Pall =

⋃
u,v∈V Puv, and weights wp for every

path p ∈ Puv (with
∑
p∈Puv

wp = Wuv). This data is then used to define the loads

fmin
e =


∑

p∈Pall:e∈p
wp ·

1
Cap


specifying how often an edge e ∈ E in the PTN has at least to be served by some vehicle. In
the second step, the line planning problem is solved using these minimal frequencies.
Normally the fmin

e are calculated assuming that all passengers travel on their shortest path in
the PTN to their destination. Since we are interested in finding a cost-minimal LTS-plan, we
do not want to work with that assumption. In our system we require just enough capacities
so that every passenger has some possibility to travel to their destination. We use this insight
to find a load that eventually even leads to a cost-minimal LTS-plan.
Of course, in this early planning stage we do not yet have all information to exactly determine
the costs of the resulting LTS-plan, since they depend on the line plan and the vehicle schedule.
Nevertheless, we can already approximate the costs with the following model.
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I Model 1. Given the input data from Notation 1, calculate a load (i.e., fmin
e for all e ∈ E)

that aims at minimizing the cost of an LTS-plan.

min ctime · dur · T + clength
∑
e∈E

2 · lengthe · fmin
e (9)

s.t.
∑
e∈E

2fmin
e (Ldrive

e + Lwait) ≤ T · dur (10)∑
u∈V

f(i,j),u ≤ fmin
e · Cap ∀i, j ∈ V with {i, j} ∈ E (11)∑

i∈V :{i,v}∈E

f(i,v),u = Wuv +
∑

i∈V :{v,i}∈E

f(v,i),u ∀u ∈ V ∀v ∈ V \{u} (12)

∑
i∈V :{u,i}∈E

f(u,i),u =
∑
v∈V

Wuv ∀u ∈ V (13)

Variables:
f(i,j),u – number of passengers starting from stop u ∈ V traveling on arc (i, j) for some
i, j ∈ V with {i, j} ∈ E (non-negative, continuous)
fmin
e – how often edge e has to be covered (integer)
dur – total duration (counted in periods) (integer)

In this model we define from every stop u ∈ V in the PTN some passenger flow going to all
destinations v ∈ V . In order not to mix up passengers starting from different stations we
accordingly have to define |V | different flows. The constraints (12) and (13) describe the flow
conservation constraints. In order to restrict the number of passengers traveling on a certain
edge in the network we defined the capacity constraints (11). Note that the flow variables
f(i,j),u for u ∈ V are defined on directed edges (i, j) whereas the minimal frequencies fmin

e

are defined on undirected edges {i, j} = e ∈ E. Finally constraint (10) rounds the minimal
duration up to the next multiple of a time period T and the objective function gives the
costs which are needed in the best case, namely for a vehicle schedule without any empty
ride and as few time loss (through the periodicity) as possible.

The following theorem shows that Model 1 is indeed an approximation of (cost-opt LTS), as
its optimal solution yields a lower bound.

I Theorem 3. The optimal objective value of Model 1 is a lower bound on the optimal
objective value of (cost-opt LTS).

Proof. See Appendix B. J

For large problem instances a speed-up of the solution process is possible by adding the
following valid inequalities to Model 1.

I Lemma 4. Let (X, Y ) be some cut, i.e., some disjoint partition of all nodes in the PTN
with Ecut = {{i, j} = e ∈ E|i ∈ X and j ∈ Y } being all cut edges. Then it holds that∑

u∈X

∑
v∈Y

Wuv ≤ Cap ·
∑

e∈Ecut

fmin
e .

Proof. See Appendix B. J

In the computational experiments (Section 6) we investigated adding these valid inequalities,
which resulted in an improvement of the runtime of up to 50%.
Model 1 does not only yield some lower bound, but we can even construct an optimal solution
to (cost-opt LTS) if a particular assumption is met.
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I Theorem 5. Let Lwait = Lturn and let the graph G = (V, Ē) with Ē = {e ∈ E : fmin
e > 0}

for an optimal solution fmin
e of Model 1 be connected. Then the optimal objective of Model 1

is equal to the optimal objective of (cost-opt LTS).

Proof. For every solution to Model 1, i.e., for some feasible fmin
e with e ∈ E, we can construct

some feasible solution (L,R) to (cost-opt LTS) as follows: We define the line plan L that
contains for each edge e ∈ E exactly fmin

e lines containing exactly this one edge e, i.e.,
L := {e1, . . . , ef

min
e : e ∈ E}. Since fmin

e = |{l ∈ L|e ∈ l}| and fmin
e admits a feasible load,

the line plan L is feasible.
For this line plan we now generate a vehicle schedule R that consists of only one large route.
To this end, we consider the resulting set of directed lines L′

L′ =
{

(i, j)1, . . . , (i, j)f
min
e , (j, i)1, . . . , (j, i)f

min
e : e = {i, j} ∈ E

}
which contains fmin

e copies of both directions of every edge e ∈ E. This is a set of directed
edges which creates a directed multigraph (V,L′). Due to the assumption in the theorem,
this graph is strongly connected and every node in (V,L′) has the same indegree as outdegree.
Hence we can find an Eulerian Cycle on it (see e.g. [12]). This means that we can form a
route containing all directed lines r = (l′1, . . . , l′k) (with |r| = |L′|) such that lengthl′

i
,l′

i+1
= 0

and timel′
i
,l′

i+1
= 0. So we set the vehicle schedule R = {r} to contain exactly this route r.

We hence have constructed some solution (L,R) to (cost-opt LTS) with

length(L,R) =
∑
l∈L′

lengthl +
∑

r=(l′1,...,l′kr
)∈R

kr∑
i=1

lengthl′
i
,l′

i+1︸ ︷︷ ︸
=0

=
∑
l∈L

2 · lengthl =︸︷︷︸
fmin

e ={e∈L|e∈l}

∑
e∈E

2lengthefmin
e

and

dur(L,R) =
∑
r∈R

durr =︸︷︷︸
|R|=1

⌈∑
l∈L′

(durl + Lturn)
⌉
T

=︸︷︷︸
fmin

e ={e∈L|e∈l}

⌈∑
e∈E

2fmin
e (Ldrive

e + Lturn)
⌉
T

=︸︷︷︸
Lturn=Lwait

⌈∑
e∈E

2fmin
e (Ldrive

e + Lwait)
⌉
T

= dur · T.

Hence, for every solution to Model 1 we can construct a solution (L,R) to (cost-opt LTS) such
that g(L,R) = ctimedur · T + clength

∑
e∈E 2lengthe · fmin

e . Together with Theorem 3 (L,R)
is optimal for (cost-opt LTS)and hence Model 1 has the same objective value as (cost-opt
LTS). J

In case the assumption Lwait = Lturn does not hold, we still get a feasible solution and
therefore an upper bound for (cost-opt LTS), when we slightly modify Model 1.
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v1 v2 v3 v4 v5

1 8

7

2 3 4

56910

Figure 2 Solution of Model 1 for Example 9.

I Definition 6. We define an adjusted version of Model 1, where Lwait is replaced by Lturn

in constraint (10), to be Model 1*.

I Corollary 7. The solution (L,R) constructed in the proof of Theorem 5 is an upper bound
for (cost-opt LTS) and can be found by solving Model 1*.

If we allow that lines do not have to be bidirectional and simple paths in the PTN, we can
always obtain an optimal solution to (cost-opt LTS) by just solving Model 1. This can be
done by converting the Eulerian Cycle constructed the proof of Theorem 5 into one big line.

I Corollary 8. Let Lwait ≤ Lturn. Then the optimal objective value of Model 1 is equal to
the optimal objective of (cost-opt LTS) if we allow directed and non-simple lines.

This, of course, may lead to non-practical lines, as can be seen in the following example.

I Example 9. We examine the solution provided by Corollary 8 on a small example.
Consider the PTN given in Figure 2, with Cap passenger traveling from v1 to v5 and 1
passenger traveling from v2 to v3. Then the solution provided by Model 1 is given by lower
bounds of [1, 2, 1, 1] and the vehicle schedule of Corollary 8 is depicted in Figure 2, where
the edges are numbered in the order of their usage. As can be seen here, the resulting line
structure is not suitable for a practical public transport system, since it contains a cycle.

4 Model 2: Integrating load generation and line planning

Although we can already find a cost-optimal solution using Model 1, this only works in the
special case of Lwait = Lturn. We have seen that for Lwait < Lturn the resulting line plan
consists of directed lines (without their symmetric counterparts) and the lines may contain
circles. We therefore further explore the next steps for obtaining an LTS-plan in which the
lines satisfy the usual requirements. To this end, we combine the load generation of Model 1
with line planning to improve the approximation of the cost objective of the overall LTS-plan.
This idea is approached by the following model.

I Model 2. Given the input data from Notation 1, calculate a load fmin
e and a line plan L

that aim at minimizing the costs of an LTS-plan.

ATMOS 2018
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min ctime · dur · T + clength

L∑
l=1

∑
e∈E

2xe,llengthe (14)

s.t. (11) - (13)
L∑
l=1

(
2zl(Lturn − Lwait) +

∑
e∈E

2(Ldrive
e + Lwait) · xe,l

)
≤ dur · T (15)

L∑
l=1

xe,l ≥ fmin
e ∀e ∈ E (16)

xe,l ≤ zl ∀e ∈ E ∀l ∈ [L] (17)∑
e∈E

xe,l ≥ zl ∀l ∈ [L] (18)∑
e∈E:s∈e

xe,l ≤ 2 ∀s ∈ V ∀l ∈ [L] (19)

2xe,l ≤ yi,l + yj,l ∀l ∈ [L] ∀(i, j) = e ∈ E (20)∑
s∈V

ys,l =
∑
e∈E

xe,l + zl ∀l ∈ [L] (21)∑
(i,j)=e∈E:i∈C and j∈C

xe,l ≤ |C| − 1 ∀ circles C ⊆ E ∀l ∈ [L] (22)

Coefficients:
L – maximal possible number of lines (integer) and [L] := {1, ..., L}.

Variables:
zl – is 1 iff line l is non-empty. (binary)
ys,l – is 1 iff stop s is contained in line l. (binary)
xe,l – is 1 iff edge e is contained in line l. (binary)
dur – total duration of all lines (counted in periods) (integer)
fmin
e – as in Model 1, including the variables fe,u and constraints (11) - (13) from Model 1.

This model finds some feasible line plan. First the zl-variables determine if line number l is a
line or empty. Constraint (17) and (18) ensure this. Now we need for every index l that for
every stop of some line there are at most two incident edges (constraint (19)). This ensures
that the xe,l variables form circles or paths. To ensure that they form only one connected
path we could consider them as flow variables. Here, we decided to add y-variables for every
visited stop and count the number of stops that a line visits. The y-variables are set to one
for the incident nodes of all edges the line visits in (20). We then can ensure that there is
some connected path by requiring that there exists exactly one more stop than edges in a line
in constraint (21). Finally we need to rule out subtours which is done by constraint (22) (As
usual they are added by constraint generation procedures). The variables fmin

e taken from
Model 1 help us to determine feasibility of the line plan, which is done by constraint (16).
Finally we round the duration up to the next multiple of a time period, which is done by (15).

The objective function is again a lower bound on the exact costs of an LTS-plan. This is
shown in the next theorem.
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v1 v2 v3 v4 v5

1 2 3 4

5678

1

2

Figure 3 Solution of Model 2.

I Theorem 10. The optimal objective value of Model 2 is a lower bound on the optimal
objective value of (cost-opt LTS) and an upper bound to the optimal objective value of Model 1.

Proof. See Appendix B. J

We can again construct a feasible solution for (cost-opt LTS) from the solution of Model 2 in
the case that we are only interested in line-pure vehicle schedules. In such schedules, every
vehicle serves the same line, alternating between its forward and its backward direction.
More formally:

I Definition 11. A solution to (cost-opt LTS) is called line-pure if R = {rl : l ∈ L}, with
rl = (l+, l−) being the route that contains only the forward and backward direction of line
l ∈ L.

We now show that the following slight modification of Model 2 can find a cost-optimal
LTS-plan under the restriction that only line-pure vehicle schedules are allowed.

I Definition 12. Consider Model 2 and replace constraint (15) by

2zl(Lturn
e − Lwait

e ) +
∑
e∈E

2(Ldrive
e + Lwait

e ) · xe,l ≤ dl · T ∀l ∈ [L] (23)

L∑
l=1

dl = dur (24)

with integer variables dl ∈ N. We call this modified version Model 2*.

Restricting ourselves to a special structure of the vehicle schedules, we are still able to obtain
the optimal solution to (cost-opt LTS) (under some assumptions) by simply considering loads
and the lines. This is the main result of this section.

I Theorem 13. An optimal solution to Model 2* solves (cost-opt LTS) under the restriction
that only line-pure vehicle schedules are allowed.

Proof. See Appendix B. J

For the general case of (cost-opt LTS), Model 2* still finds a feasible solution and therefore
provides an upper bound to (cost-opt LTS).

I Corollary 14. The optimal objective value to Model 2* imposes an upper bound on the
optimal objective value of (cost-opt LTS).

I Example 15. We continue Example 9 and now consider the solution constructed in
Theorem 10. These now provide simple lines, resulting in the line-pure vehicle schedule
depicted in Figure 3, improving on the line structure of Example 9. The first line is depicted
in red, the second is dashed in green. The lines here look much more reasonable for practical
implementation than the solution which was obtained by Model 1*.
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5 Model 3: Integrating timetabling and vehicle scheduling

In Model 1 and Model 2 we did not consider all subproblems of (cost-opt LTS), especially we
did not include a proper vehicle scheduling. With the following model we want to overcome
this issue and formulate the whole problem in an integrated way.

To formulate the integrated model, we need a notation for the event-activity network
N = (E ,A) (see, e.g., [19, 21, 23, 27, 28]). The set of events E consists of all departures
and all arrivals of all lines at all stops and two additional OD-events ((u,dep), (u, arr)) per
stop u for passengers to enter and leave the network, denoted as EOD. The set A connects
the events by driving, waiting and transfer activities. The OD-events are connected to each
departure event of the corresponding stop using OD-activities (AOD). Using this, we can
now formulate the integrated model. Let further denote with Al′ all activities in A \ AOD
that are included in a directed line l′ ∈ L′.

I Model 3. Given the input data from Notation 1, find a feasible LTS-plan (L,R) with
minimal costs, i.e., minimizing g(L,R).

min
∑
v∈V

costv

s.t. durr ≥
1
T
·
∑
l′∈L′

xl′,r · durl +
∑

l′1,l
′
2∈L′

x(l′1,l′2),r · durl′1,l′2 ∀r ∈ [R] (25)

lengthr ≥
∑
l′∈L′

xl′,r · lengthl +
∑

l′1,l
′
2∈L′

x(l′1,l′2),r · lengthl′1,l′2 ∀r ∈ [R] (26)

costr ≥ clength · lengthr + ctime · durr ∀r ∈ [R] (27)∑
l∗∈L′

x(l′,l∗),r = xl′,r =
∑
l∗∈L′

x(l∗,l′),r ∀l′ ∈ L′, ∀r ∈ [R] (28)∑
r∈R

xl′,r =
∑
v∈V

xb(l′),r ∀l′ ∈ L′ (29)

Cap ·
∑
r∈R

xl′,r ≥
∑
u,v∈V

fa,(u,v) ∀l′ ∈ L′, ∀a ∈ Al′ (30)

∑
i∈E

(i,j)=a∈A

fa,(u,v) =
∑
i∈E:

(j,i)∈At

fa,(u,v) ∀p ∈ P, ∀j ∈ E \ EOD (31)

∑
i∈E:

(i,j)=a∈AOD

fa,(u,v) = Wuv ∀u, v ∈ V, ∀j = (v, arr) ∈ EOD (32)

∑
i∈E:

(j,i)=a∈AOD

fa,(u,v) = Wuv ∀u, v ∈ V, ∀j = (u,dep) ∈ EOD (33)

∑
(l′1,l′2)∈U ′

x(l′1,l′2),r ≤ |U ′| − 1 ∀U ′ ( L′ × L′, ∀r ∈ [R] (34)

durr ∈ N ∀r ∈ [R] (35)

Coefficients:
R: number of possible vehicle routes, we assume it to be sufficiently large
L′: the set of all possible directed lines in the network, b(l′) denotes the backwards
direction for a directed line l′, l is the corresponding undirected line.
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Table 1 Properties of the examined datasets.

Instance Nodes Edges Passengers

Linear 5 4 141
Toy 8 8 2622
Grid 25 40 2546

Germany 250 326 385868

Variables:
xl′,r – is 1 iff the directed line l′ is part of route r
x(l′1,l′2),r: is 1 iff lines l′1 and l′2 are served directly after each other in route r
costr – the costs of route r
durr – the duration of route r
lengthr – the length of route r
fa,(u,v) – the number of passenger traveling from u to v using activity a

This model finds a cost-optimal LTS-plan (i.e., line plan, timetable and vehicle schedules).
The f variables determine the passenger flow, satisfying the classical flow conservation
constraints ((31)-(33)) and creating coupling constraints for the vehicle routes r in (30),
determined by the x-variables. The duration and length of the routes are determined in (25)
and (26) and then combined in (27) to determine the costs. Of course, the vehicle routes need
to satisfy flow conservation as well (see (28)). (34) are the subtour elimination constraints.
Constraint (29) ensures that every line is served in both directions.
The model is too large to be solved for realistic instances. One possibility As can be seen in
Section 6, the integrated problem cannot be solved even for instances of small size. This is
due to its enormous number of variables including a trip for every possible line in the network.
Nevertheless, Model 3 can be used if enough variables are fixed. We hence can combine
it with Model 2 by fixing the lines in Model 3 to the optimal lines computed by Model 2.
This means that we only need to consider the constraints (25)-(28) and (34), additionally
guaranteeing that every trip in L′ is covered exactly once. The result is a tractable model
for medium-sized instances.
Other possibilities to reduce its size would be to start with a line pool of limited size (e.g. as
generated in [14] or from Model 2) or to use column generation approaches as in [2].

6 Experiments

In the computational experiments we implemented the three proposed models with the open
source library LinTim (see [1, 16, 31]) and tested them on four different datasets. These
datasets are described in in Table 1 and depicted in Figure 5, Appendix A.
We implemented Model 1, Model 1*, Model 2, Model 2* and Model 3 using Gurobi 8.0 as
MIP solver with default settings. We tested all implementations on a compute server (6
cores of Intel(R) Xeon(R) CPU X5650 @ 2.67GHz, 78 GB RAM) with a time limit of 3 hours
per test case. For each model and each instance we considered two different cases: Either
Lturn = Lwait or Lturn > Lwait to distinguish the cases where Model 1* is able to find an
optimal solution and where it is not. We obtained the results depicted in Tables 2 and 3. A
symbol ◦ denotes that the problem has not been solved to optimality and hence only the
best found upper or lower bound is presented.
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Table 2 Objective values for the case of Lturn = Lwait.

Instance Model 1 Model 2 Model 3
Model 1 Model 1∗ Model 2 Model 2∗ lb ub

Linear 80 80 80 130 80 80
Toy 1424 1424 1424 1696 1270◦ 1460◦

Grid 1034 1034 1034 1034 – –
Germany 73321◦ 84694◦ 54148◦ – – –

Table 3 Objective values for the case of Lturn > Lwait.

Instance Model 1 Model 2 Model 3
Model 1 Model 1∗ Model 2 Model 2∗ lb ub

Linear 80 130 130 130 130 130
Toy 1424 1474 1424 1696 1288◦ 1539◦

Grid 1034 1134 1030◦ 1140 – –
Germany 74462◦ 85612◦ 54148◦ – – –

For each of the three models there exist two columns. The left column contains a lower bound
to (cost-opt LTS), whereas the right column contains an upper bound, i.e., the objective
value of the best found feasible solution.
We observe for Model 1 that in the case Lturn = Lwait it almost always finds the optimal
objective value within the specified time limit of 3 hours. Only in our biggest instance we
cannot get an optimal solution within the time limit (we still have a gap of 13.7% here).
For the case Lturn > Lwait there exists a gap between the lower bound and upper bound of
Model 1, but this model still obtains the best solutions.
Model 2 can solve the two smallest instances easily, but starts having trouble with the time
limit for Grid. For Germany it is not able to find a feasible solution within the specified time
limit. Regarding the solution quality, we see that the lower bound given by Model 2 is only
in a single case sharper than the lower bound given by Model 1. On the other hand, the
upper bounds found by Model 2* never have smaller objective values than Model 1*.
Model 3 is already on the toy instance not able to find an optimal solution within 3 hours.
The obtained objective values for Linear and the bounds for Toy are consistent with the
values given in Models 1 and 2. For the bigger instance, even the precomputation of the
complete line pool for Model 3 was not possible anymore.
We illustrate our results on the dataset Grid (see [13, 30]). Solutions are evaluated by their
costs and their traveling times. The solutions shown in Figure 4 are computed sequentially.
We see that the sequential solutions with smallest costs are A4 (computed in [25]) and
P5 (computed in [20].) The best possible costs of a feasible solution (computed by solving
Model 1) is depicted as a red line and improves the costs by 23%. Note that Model 1 computes
a solution with a periodic vehicle schedule, but as shown in [5] an aperiodic schedule would
not improve the costs.
The traveling time of the cost-minimal solution is hard to evaluate: Using the best possible
paths for the passengers as done for the other solutions in Figure 4 would lead to a traveling
time of only 20.57. We did not depict this objective value in the figure since in this solution
the passengers are far away from using the paths computed for them in Model 1 and hence
the solution would have heavily overloaded vehicles.
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Figure 4 Multiple solutions for Grid (see [30]), evaluated by their cost per hour and traveling
time (perceived journey time meaning traveling time plus a time penalty for every occurring transfer).
With our models we were able to find a cost-minimal solution. Its objective value is depicted by a
red line.

Table 4 Runtime improvements with Lemma 4 on Grid for Lturn > Lwait.

parameters no cuts cuts
Model 1 Model 1* Model 1 Model 1*

Nodes explored 46557 26391 2398 3845
Runtime in sec 23.18 12.6 10.61 8.99

We finally investigate the influence of valid inequalities introduced in Lemma 4 on the runtime
of Model 1. We restricted this investigation to Grid, since the runtime for the smallest two
instances is already less than a second, and for Germany it is already non-trivial to determine
“good” cuts of the network. For Grid, however, we took all horizontal and all vertical cuts of
the network, whose PTN is depicted in Figure 5, into the model. With this improvement we
were able to speed up the solution process significantly with respect to runtime and number
of explored MIP nodes, as can be seen in Table 4.

7 Outlook

We propose three models to compute cost-optimal public transport plans. For the first
two models we derive optimality conditions and with the third model we present an IP
formulation for the integrated exact model. The computational experiments show that the
implementation of the models is computationally tractable.
Model 1 is able to compute cost-optimal solutions up to Grid outperforming previous
approaches to tackle this problem. For large networks the model provides bounds of good
quality in a reasonable amount of time. Model 2 finds optimal line-pure LTS-plans. Finally,
Model 3 yields a cost-optimal LTS-plan without requiring any further assumptions.
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For future work we plan to sharpen the formulation of Model 1 by identifying good cuts. It
would hopefully be the case that better cuts lead to a further decrease of the computation
time, especially for the large instances.
Furthermore it would be interesting to not only find a solution with minimal costs, but
to find a lexicographic solution, i.e., the cost-optimal solution with the best traveling time
for the passengers. To this end, we can include the passengers’ traveling time in Model 3
which will most likely further increase the computation time of the model. To use this model
effectively, more work in speed-up techniques is necessary. Promising ideas include column
generation and decomposition techniques, similar to the methods presented in [22].
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A Figures

B Proofs

Proof of Theorem 3. Let (L, R) be some feasible solution to (cost-opt LTS). Since the line
plan is feasible we can construct some feasible flow from it by setting fmin

e = |{l ∈ L|e ∈ l}|
and fe,u =

∑
p∈Pall:e∈p wp. Now we get for all i, j ∈ V with {i, j} ∈ E

∑
u∈V

f(i,j),u =
∑

p∈Pall:(i,j)∈p

wp ≤︸︷︷︸
by (1)

fmin
e · Cap

by definition of feasibility of a line plan, i.e., constraint (11) is satisfied. Since the wp
correspond to paths in the PTN the flow conservation constraints (12) and (13) are also
satisfied. By setting

dur =
⌈∑

e∈E 2fmin
e (Ldrive

e + Lwait)
T

⌉

we finally have constructed a feasible solution to Model 1.
We now show that the objective function value of the constructed solution is better than
g(L,R) = ctime · dur(L,R) + clength · length(L,R).
We first consider length(L,R): We know that for the constructed solution it holds that
fmin
e = |{l ∈ L|e ∈ l}|, hence

length(L,R) ≥
∑
l′∈L′

lengthl′ =
∑
l∈L

∑
e∈l

2lengthe ≥
∑
e∈E

2lengthefmin
e .
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(a) The Linear network. (b) The Toy network. (c) The Grid network.

(d) The Germany network.

Figure 5 The instances used in the experiments.

For dur(L,R) we calculate

dur(L,R) =
∑
r∈R

durr =
∑
r∈R

⌈∑
l′∈r

(durl′ + Lturn)
⌉
T

≥

⌈∑
r∈R

∑
l′∈r

(durl′ + Lturn)
⌉
T

=︸︷︷︸
(4)

⌈∑
r∈R

∑
l′∈r

(
(|l| − 1)Lwait + Lturn +

∑
e∈l′

Ldrive
e

)⌉
T

=
⌈∑
l′∈L

(
Lturn − Lwait +

∑
e∈l′

(Ldrive
e + Lwait)

)⌉
T

≥


∑
l∈L

2

(Lturn − Lwait︸ ︷︷ ︸
≥0

) +
∑
e∈l

(Ldrive
e + Lwait)


T

≥︸︷︷︸
fmin

e =|{l∈L|e∈l}|

⌈∑
e∈E

2fmin
e (Ldrive

e + Lwait)
⌉
T

= dur · T. ATMOS 2018
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Overall it holds that

g(L,R) = ctimedur(L,R) + clengthlength(L,R) ≥ ctimedur · T + clength
∑
e∈E

2lengthe · fmin
e .

Thus every feasible solution to (cost-opt LTS) can be transformed to a solution for Model 1
whose objective is smaller than g(L,R). Hence, the optimal objective function value of
Model 1 yields a lower bound to (cost-opt LTS). J

Proof of Lemma 4. We start with constraint (12), i.e.,∑
i∈V :{i,v}∈E

f(i,v),u = Wuv +
∑

i∈V :{v,i}∈E

f(v,i),u ∀u ∈ V ∀v ∈ V \{u}

and argue that for any u ∈ X it holds that

∑
v∈Y

∑
i∈V :{i,v}∈E

f(i,v),u =
∑
v∈Y

Wuv +
∑

i∈V :{v,i}∈E

f(v,i),u


⇔︸︷︷︸

V=X∪Y

∑
v∈Y

 ∑
i∈X:{i,v}∈E

f(i,v),u +
∑

i∈Y :{i,v}∈E

f(i,v),u︸ ︷︷ ︸
=(∗)



=
∑
v∈Y

Wuv +
∑

i∈X:{v,i}∈E

f(v,i),u +
∑

i∈Y :{v,i}∈E

f(v,i),u︸ ︷︷ ︸
=(∗)


⇔︸︷︷︸

(∗) cancel out

∑
v∈Y

∑
i∈X:{i,v}∈E

f(i,v),u =
∑
v∈Y

Wuv +
∑

i∈X:{v,i}∈E

f(v,i),u


⇔

∑
v∈Y,i∈X:
{v,i}∈Ecut

f(i,v),u =
∑
v∈Y

Wuv +
∑

v∈Y,i∈X:
{v,i}∈Ecut

f(v,i),u

Hence we can conclude∑
i∈X,v∈Y :{v,i}∈Ecut

f(i,v),u ≥
∑
v∈Y

Wuv ∀u ∈ X. (36)

Thus we get that

Cap ·
∑

e∈Ecut

fmin
e ≥︸︷︷︸

(11)

∑
i∈X,v∈Y :
{i,v}∈Ecut

∑
u∈V

f(i,v),u

≥︸︷︷︸
X⊆V

∑
u∈X

∑
i∈X,v∈Y :
{i,v}∈Ecut

f(i,v),u ≥︸︷︷︸
(36)

∑
u∈X

∑
v∈Y

Wuv.

J

Proof of Theorem 10. Let (L,R) be some feasible solution to (cost-opt LTS). Then we
know that we can set fmin

e = |{l ∈ L|e ∈ l}| (and fe,u accordingly) as in the proof of
Theorem 3 to some feasible flow which satisfies (16). Furthermore we can enumerate all lines
with some bijective mapping ϕ : L → [|L|] such that xe,ϕ(l) = 1 iff e ∈ l for all l ∈ L and
also ys,ϕ(l) = 1 iff s ∈ e for some e ∈ l and zi = 1 for all i ∈ [|L|] and 0 else. Since L was
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some feasible line plan all lines are simple paths and hence also constraints (17) to (22) are
fulfilled. Now for the objective function it holds that

length(L,R) =
∑
l′∈L′

lengthl′ +
∑

r=(l′1,...,l′kr
)∈R

kr−1∑
i=1

lengthl′
i
,l′

i+1

≥
∑
l∈L

∑
e∈l

2lengthe =
∑
l∈L

∑
e∈E

2xe,ϕ(l)lengthe =
L∑
l=1

∑
e∈E

2xe,llengthe.

For the duration we get

dur(L,R) =
∑

r=(l′1,...,l′kr
)∈R

⌈
k∑
i=1

durl′
i

+ durl′
i
,l′

i+1

⌉
T

≥

⌈∑
r∈R

∑
l′∈r

(durl′ + Lturn)
⌉
T

=︸︷︷︸
(4)

⌈∑
r∈R

∑
l′∈r

(
(|l| − 1)Lwait + Lturn +

∑
e∈l′

Ldrive
e

)⌉
T

=
⌈∑
l′∈L

(
Lturn − Lwait +

∑
e∈l′

(Ldrive
e + Lwait)

)⌉
T

=
⌈

L∑
l=1

(
2zl(Lturn − Lwait) +

∑
e∈E

2(Ldrive
e + Lwait) · xe,l

)⌉
T

≥ dur · T

Hence, by finally setting

dur =
⌈∑L

l=1
(
2zl(Lturn − Lwait) +

∑
e∈E 2(Ldrive

e + Lwait) · xe,l
)

T

⌉

we conclude that from any feasible solution (L,R) to (cost-opt LTS) we can construct some
feasible solution to Model 2 such that

g(L,R) ≥ ctimedur · T + clength

L∑
l=1

∑
e∈E

2xe,llengthe,

which means that the objective function value of Model 2 is a lower bound to (cost-opt LTS).
On the other hand every feasible solution to Model 2 is a feasible solution to Model 1. This
can be seen by setting the three types of variables, fmin

e , fe,u and dur, that are contained
in both models, to be the same. Hence constraints (11) - (13) are satisfied, and also (10) is
satisfied since

dur·T ≥
L∑
l=1

2zl (Lturn − Lwait)︸ ︷︷ ︸
≥0

+
∑
e∈E

2(Ldrive
e + Lwait) · xe,l

 ≥∑
e∈E

2fmin
e (Ldrive

e +Lwait).

For the objective functions it additionally holds that

L∑
l=1

∑
e∈E

2xe,llengthe =
∑
e∈E

2fmin
e lengthe.

This means that every solution to Model 2 can be projected to a solution of Model 1 with
smaller objective value in Model 1, meaning that Model 2 is an upper bound to Model 1. J
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Proof of Theorem 13. Let L,R be some line-pure feasible solution to (cost-opt LTS). For
the objective value of (L,R) we know that

length(L,R) =
∑

r=(l′1,...,l′kr
)∈R

kr∑
i=1

lengthl′
i
+ lengthl′

i
,l′

i+1︸ ︷︷ ︸
=0

=
∑
l∈L

2lengthl =
∑
l∈L

∑
e∈l

2lengthe,

and that

dur(L,R) =
∑
r∈R

⌈∑
l′∈r

(durl′ + Lturn)
⌉
T

=
∑
l∈L

⌈
2(durl + Lturn)

⌉
T

=
∑
l∈L

⌈
2(Lturn − Lwait) +

∑
e∈E:e∈l

2(Ldrive
e + Lwait)

⌉
T

.

We can extend the line plan L to some feasible solution to Model 2* by again defining
a bijective mapping ϕ : L → [|L|] such that xe,ϕ(l) = 1 iff e ∈ l for l ∈ L for all e ∈ E.
Analogously a solution xe,l can be transformed into some feasible line plan L by defining a
line l to contain exactly all edges e ∈ E if xe,l = 1. Thus there exists a bijection between the
set of feasible solutions between (cost-opt LTS) and Model 2* as well as the same objective
function for both problems since

∑
l∈L

∑
e∈l

2lengthe =
∑
l∈L

∑
e∈E

2xe,ϕ(l)lengthe =
L∑
l=1

∑
e∈E

2xe,llengthe

and

∑
l∈L

⌈
2(Lturn − Lwait) +

∑
e∈E:e∈l

2(Ldrive
e + Lwait)

⌉
T

=
L∑
l=1

⌈
2zl(Lturn − Lwait) +

∑
e∈E

2xe,llengthe(Ldrive
e + Lwait)

⌉
T

=
L∑
l=1

dl.

Hence their optimal objective values coincide. J
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Abstract
We study a combinatorial optimization problem that is motivated by the scenario of autonomous
cars driving on a multi-lane highway: some cars need to change lanes before the next intersection,
and if there is congestion, cars need to slow down to make space for those who are changing lanes.
There are two natural objective functions to minimize: (1) how long does it take for all traffic to
clear the road, and (2) the total number of maneuvers. In this work, we present an approximation
algorithm for solving these problems in the two-lane case and a hardness result for the multi-lane
case.
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1 Introduction

Consider a fleet of autonomous vehicles driving on a two-lane highway:

1

22

2

2

1

1:

2:
.

Each car is labeled with a lane number, 1 or 2, indicating where it needs to be before the
next intersection. Our task is to instruct the cars to adjust their speed and change lanes so
that all cars with label ` are on lane `:

1

222 2

11:

2:
.

We discretize the traffic by assuming that there is a grid of slots that is moving at some fixed
speed s (for example, s is the speed limit of the highway), and each car occupies one slot
(there are infinitely many free slots behind the last cars):

1:

2: 1
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2

2

1
s
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If there are no steering maneuvers, each car will remain in its current slot (i.e., it is driving
along the current lane, at a constant speed s). We can use the following maneuvers to alter
the relative positions of the cars.

First, a car that is currently on the wrong lane can switch lanes, assuming there is
an empty slot next to it:

1:

2: 1

22

2

2

1
.

Second, any car can slow down a bit to move backwards relative to the traffic around
it, assuming there is an empty slot behind it:

1:

2: 1

22

2

21

.

We emphasize that we do not allow cars that are on the right lane to switch lanes any
more; permitting such maneuvers would also give rise to an interesting problem formulation
to be studied in future work.

1.1 Objectives

It is easy to find a feasible solution by following a simple greedy strategy, e.g., for each car x
that is on the wrong lane, slow down all cars behind x on either lane to make space for x to
move to the right lane. However, this is not an optimal strategy in the general case.

We will consider the following objective functions that we would like to minimize:
Makespan: What is the last non-empty slot that is occupied by a car in the final
configuration? Intuitively, we measure here how much do we stretch the traffic, or
equivalently, how long does it take for all traffic to clear the road:

1:

2:

1

222 2

1

makespan .

Total cost: What is the total number of steering maneuvers (switching lanes or slowing
down) that we need to solve the problem? Note that in our problem formulation, the
number of lane changes is simply equal to the number of cars on the wrong lane, so the
interesting question is the number of slow-down operations. Intuitively, we measure here
the average delay for the traffic.

To focus on the more interesting algorithmic aspects, we present our algorithms from the
perspective of a global omniscient entity that has a full control over all vehicles. However,
the same ideas can be applied in distributed and online settings.
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1.2 Contributions and open questions
We develop a polynomial-time algorithm for the two-lane version of the lane-changing
problem. The algorithm finds a solution that minimizes the makespan and that is also
a 1.5-approximation of the minimum total cost. Moreover, we show that a natural
multi-lane extension of the problem is NP-hard.

Our work also suggests the following natural question for further research: is it possible
to find an exact solution for the minimum-cost two-lane version in polynomial time?

2 Related work

Tile-sliding puzzles. We note the resemblance between the problem studied by us in this
work and combinatorial puzzles such as the “15-puzzle” [8,17], which is a game that considers
a four by four matrix that has 15 tiles, labeled with numbers from 1 to 15 in an arbitrary
order. The goal of the game is to slide the tiles so that the tiles are ordered. For large-scale
versions of the n-puzzle, finding an optimum solution is NP-hard [13,14]. Our problem can
also be seen as a tile-sliding puzzle, but differs from the 15-puzzle in the following aspects:
many tiles may have the same label, the label only determines the final row (and not column),
and our moves are more restricted (for example, tiles cannot slide right). Feigenbaum et
al. [3] formulated a number of graph problems for the semi-streaming model. Unlike their
model, our problem does not allow a pair of nearby agents to swap cells.

Vehicular control. Problems related to lane-change consider traffic streams from the point
of view of vehicular control [2,6,12], traffic flow control [9], the scheduling of lane changes for
autonomous vehicles [1], assessment of the situation before changing lane [15], and negotiation
before lane changing [16] to name a few. It is often the case, as in [12], that these problems
consider a small set of nearby vehicles that need to coordinate a single lane-change maneuver.
A number of recent efforts, such as the European project AutoNet2030 [16], considers the
need to perform lane changes in congested traffic situations, as we do in this paper. Their
study focuses on distributed mechanisms, i.e., the communication protocols, for enabling
coordinated lane changes whereas this work focuses on the algorithmic question of minimizing
the number of maneuvers.

Traffic models. Cellular automata are often used for microscopic traffic flow prediction [10].
These models resembles the one of the studied problem in the sense that each vehicle occupies
a single cell. However, Nagel [10] considers cellular automata that move the vehicles forward,
whereas our model considers vehicles that can merely change their current lanes or delay –
we do not aim at predicting traffic patterns and just aim at minimizing the number of delays
and lane changes. The systematic approach presented in [11] shows that their lane change
rules can provide “realistic results” with respect to the system ability to offer an accurate
traffic prediction. A complementary approach for studying the effect of lane-change behavior
via cellular automata [7] is the observation of driver behavior [4, 18].

3 Preliminaries

Matrix notation. We will interpret the highway as a matrix with two rows and infinitely
many columns; rows correspond to lanes and matrix elements correspond to slots. The rows
are numbered i = 1, 2 and the columns are numbered j = 1, 2, . . . . We use values 1 and 2 to
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9:4 Changing Lanes on a Highway

denote cars with target lanes 1 and 2, respectively, and we use the symbol ◦ to emphasize
that a slot is empty. For example, the configuration

1

22

2

2

1

1:

2:

is represented as a matrix[
2 ◦ 2 2 ◦ · · ·
2 1 1 ◦ ◦ · · ·

]
,

which we may write for brevity simply as[
2 ◦ 2 2
2 1 1 ◦

]
.

Legal moves. In the lane-changing problem, we can apply the following operations to any
part of the configuration matrix.

Switch (switch lanes, i.e., move up or down):[
2
◦

]
7→
[
◦
2

]
,

[
◦
1

]
7→
[
1
◦

]
.

Delay (slow down, i.e., move right):[
1 ◦

]
7→
[
◦ 1

]
,
[
2 ◦

]
7→
[
◦ 2

]
.

Pairs. A pair is one column of the configuration; an input pair is a column that occurs in
the input. For brevity, a column [ x

y ] is called an (x, y)-pair.

Solution. A feasible configuration is a configuration in which all non-empty slots of row 1
contain label 1, and all non-empty slots of row 2 contain label 2. That is, each car is on its
target lane.

A feasible solution to the lane-changing problem is a sequence of legal moves that turns
the given input configuration into a feasible configuration. The cost of a solution is the
number of moves. The makespan of a solution is the largest j such that column j of the final
configuration contains a car.

4 Roadmap

Three problems. To develop an algorithm for solving the lane-changing problem, it will be
helpful to also consider two variants of it:
P0. The original lane-changing problem, as defined above.
P1. A restricted version of P0: a solution is feasible only if each car that was involved in a

(2, 1)-input pair has been delayed at least once.
P2. A relaxed version of P1: multiple cars may occupy the same slot in intermediate

configurations.
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In P2 we will use notation 1a2b to denote a slot with a cars of label 1 and b cars of label 2.
A legal P2-move is hence, for example,[

1323 1525] 7→ [
1322 1526] .

The final configuration in P2 has to be feasible in the usual sense: each slot contains at most
one car, and each car is in the right lane. Also note that one move can only change the
position of one car.

Simple examples. Consider the input[
2
1

]
.

A feasible P0-solution might take, e.g., the following steps (cost 3, makespan 2):[
2
1

]
7→
[
2 ◦
◦ 1

]
7→
[
◦ ◦
2 1

]
7→
[
◦ 1
2 ◦

]
.

This would not be a feasible P1-solution, though, as there is a car with label 2 that was part
of a (2, 1)-pair in the input but the car was not delayed. A feasible P1-solution might take
the following steps (cost 4, makespan 2):[

2
1

]
7→
[
2 ◦
◦ 1

]
7→
[
◦ ◦
2 1

]
7→
[
◦ 1
2 ◦

]
7→
[
◦ 1
◦ 2

]
.

In a feasible P2-solution we could also take the following route in which we have multiple
cars in one slot in an intermediate configuration (but this is not any cheaper; we still have
cost 4 and makespan 2):[

2
1

]
7→
[
◦
12

]
7→
[
1
2

]
7→
[
◦ 1
2 ◦

]
7→
[
◦ 1
◦ 2

]
.

Preliminary observations. We emphasize that problems P1 and P2 are not interesting in
their own right; we only care about problem P0. Both P0 and P2 can be seen as relaxations
of P1, but they are relaxations of a very different nature:

A feasible solution to P1 is also a feasible solution to P0, but it might take some additional
steps that are only necessary to handle (2, 1)-pairs.
A feasible solution to P1 is also a feasible solution to P2, but it might take some additional
steps that are only necessary to ensure there is at most one car per slot.

At first, P2 and P0 seem to be incomparable. A P2-solution is not necessarily a P0-solution,
or vice versa. But as we will see in this work, an algorithm for solving P2 can be a helpful
starting point in solving P0, too.

Key ideas. The key insights of our work are these results that we will prove:
For P2 there is always a solution that simultaneously minimizes both makespan and cost.
Problem P1 can be solved with the same makespan and cost as problem P2.
A makespan-optimal P1-solution is also a makespan-optimal P0-solution.
A cost-optimal P1-solution is also a 1.5-approximation of a cost-optimal P0-solution.

We will use the above ideas to solve problem P0 as follows:
In Section 5.1, we design algorithm A2 that will find a P2-solution that is simultaneously
cost-optimal and makespan-optimal.

ATMOS 2018
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In Section 5.2, we design algorithm A1 that finds a P1-solution that has the same cost
and makespan as the P2-solution returned by A2. As P2 is a relaxation of P1, it follows
that A1 returns a cost-optimal and makespan-optimal P1-solution.
Now it is clear that A1 also returns a P0-solution, as P0 is a relaxation of P1. However,
we will still need to prove that the solution returned by A1 is a makespan-optimal
P0-solution and also a 1.5-approximation of a cost-optimal P0-solution. The proof is
given in Section 5.3.

5 Algorithm details

Notation. Let W be the total number of cars that are on the wrong lane in the input
configuration. Any feasible solution contains exactlyW switch operations. Hence a minimum-
cost solution is a solution that minimizes the number of delay operations.

5.1 Solving problem P2
Flow equations. Let us first develop some necessary conditions that characterize feasible
solutions for P2 (and hence they are also necessary conditions for a feasible solution of P1).

Consider some feasible solution Y . Let ` = 1, 2 be a label. We will consider the flow of
cars of label `:

s`(j) is the number of cars of label ` in column j in the input configuration,
t`(j) is the number of cars of label ` in column j in the final configuration,
f`(j) is the number of times a car of label ` is moved from column j to column j + 1.

Recall that the columns are numbered j = 1, 2, . . . , but for convenience, we also define
f`(0) = 0 so that we can always refer to f`(j − 1). Let us now define the grand total of flow
that we will need to handle at column j:

g`(j) = f`(j − 1) + s`(j). (1)

As no car is lost or created, flow is conserved:

g`(j) = t`(j) + f`(j). (2)

In the final configuration we have got at most one car per slot:

t`(j) ≤ 1. (3)

Hence by (2) and (3) we necessarily have

f`(j) ≥ g`(j)− 1. (4)

By the definition of problem P1 (and hence P2), cars in (2, 1)-input pairs are always delayed
at least once. To capture this, define the indicator function p as follows:

p`(j) = 1 if there is a (2, 1)-input pair in column j in the input configuration.

Using this notation, we have for each j = 1, 2, . . .

f`(j) ≥ p`(j). (5)
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Now t and f may depend on the particular solution Y , but s and p only depend on the
input configuration. For any given input, we can recursively calculate a minimal flow f∗

that satisfies (1), (4), and (5):

g∗
` (j) = f∗

` (j − 1) + s`(j) for all j = 1, 2, . . . , (6)
f∗

` (j) = max
{
p`(j), g∗

` (j)− 1
}

for all j = 1, 2, . . . . (7)

Again we follow the convention that f∗
` (0) = 0 so that f∗

` (j − 1) is well-defined for every
column j. Note that for all ` and j and for any feasible flow f , we have by construction
f∗

` (j) ≤ f`(j). Hence we can make the following observations:

I Lemma 1. The cost of any feasible P2-solution is at least W +
∑

`,j f
∗
` (j).

I Lemma 2. For all ` and j, if g∗
` (j) > 0, then the makespan of any feasible P2-solution is

at least j.

Algorithm A2. Now it is sufficient to design an algorithm that moves cars precisely according
to the minimal flow f∗; if we can do that, the solution will be both cost-optimal and makespan-
optimal.

But this is easy: First each car switches to the right lane; this takes W moves. Then we
follow (6)–(7) for columns j = 1, 2, . . . in ascending order: first we move f∗

` (1) cars of label `
from column 1 to column 2, then we have g∗

` (2) cars of label ` in column 2, etc. If we always
move first those cars that were already present in a given slot in the input configuration, we
will satisfy all constraints of problem P2, including the special rule about (2, 1)-pairs.

We have now algorithm A2 that finds simultaneously cost-optimal and makespan-optimal
solutions for P2. However, this is clearly not a solution for P1, as we may have multiple cars
in one slot in intermediate configurations.

5.2 Solving problem P1
Idea. We now develop algorithm A1 that follows the same minimal flow f∗, but schedules
the operations differently so that it produces a feasible solution to problem P1:

Algorithm A2 “pushes” cars starting from the first cars.
Algorithm A1 “pulls” cars starting from the last cars.

Our basic idea is to show that – with a little bit of planning ahead – we can move cars
according to f∗ without putting multiple cars in one slot.

In the algorithm we will update s, p, f∗, and g∗ as we move cars around so that they
refer to the current configuration, and not the input configuration. Eventually all cars will
be in their final positions, there is no need to move anything, and f∗ will be zero.

Trivial and tricky pairs. A pair of type (◦, 1) or (2, ◦) is called a trivial pair. As the first
step of the algorithm, each trivial pair will switch lanes; hence we eliminate all trivial pairs.
Our algorithm will ensure that whenever we create new trivial pairs, they are also eliminated
immediately.

A pair of type (2, 1) is called a tricky pair. We will make sure that the algorithm only
eliminates tricky pairs and never create new tricky pairs. We will use p to keep track of the
tricky pairs that were present in the input: Initially, p1(j) = p2(j) = 1 if we have a tricky
pair in column j. Then whenever we delay a car with label ` in column j, we set p`(j)← 0.
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Active and hot columns. We say that a column j is `-active if we have s`(j) > 0 and
f∗

` (j) > 0. A column is active if it is `-active for some `.
A column is hot if it is the rightmost (last) active column. The hot column is called `-hot

if it is `-active. (Note that there is at most one hot column, and the hot column is 1-hot,
2-hot, or both. Also note that the rightmost 1-active column is not necessarily 1-hot, as
there might be a 2-active column that is further right, and vice versa.)

Intuitively, an active column contains some cars that are not in their final positions, and
the hot column contains the last cars that are not in their final positions. As long as f∗ is
somewhere nonzero, there has to be an active column, and hence also a hot column.

The following lemmas summarize the key properties that we use.

I Lemma 3. Assume that
there are no trivial pairs,
column j is `-hot,
slot (`, j) contains a car with label `.

Then slot (`, j + 1) has to be empty.

Proof. Assume w.l.o.g. that ` = 1; the case of ` = 2 is analogous.
If column j + 1 contains a car of label 1, then f∗

1 (j) + s1(j + 1) ≥ 2, and therefore
f∗

1 (j + 1) ≥ 1. But this would mean that column j + 1 is active, which contradicts the
assumption that j is hot (i.e., the rightmost active column).

If column j+1 does not contain any car of label 1, but slot (`, j+1) is not empty, the only
possibility is that column j + 1 contains a pair (2, 2). But then we would have s2(j + 1) ≥ 2
and f∗

2 (j + 1) ≥ 1 and again j + 1 would be active. J

I Lemma 4. Assume that
column j is hot,
column j contains a tricky pair.

Then column j + 1 has to be empty.

Proof. The tricky pair implies that f∗
1 (j) ≥ 1 and f∗

2 (j) ≥ 1. If column j + 1 contains a car
with label ` in the current configuration, we will have s`(j + 1) ≥ 1, and hence g∗

` (j + 1) ≥ 2
and f∗

` (j+1) ≥ 1. Therefore, column j+1 would be active, which contradicts the assumption
that j is hot (i.e., the rightmost active column). J

Algorithm A1. If we do not have any hot columns, we are done. Otherwise, let j be an
`-hot column. Our goal is to show that the algorithm can make progress and delay at least
one car in the hot column. We have two cases:
1. Slot (`, j) contains a car with label `: By Lemma 3, we can delay the car with label ` in

row `.[
1 ◦
x y

]
7→
[
◦ 1
x y

]
,

[
x y

2 ◦

]
7→
[
x y

◦ 2

]
This cannot create tricky or trivial pairs in column j + 1. If this resulted in a trivial pair
in column j, the algorithm then eliminates it with a switch, e.g.:[

1 ◦
1 y

]
7→
[
◦ 1
1 y

]
7→
[
1 1
◦ y

]
.
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2. Slot (`, j) does not contain a car with label `: By the definition of an `-hot column, there
has to be a car ` somewhere in column j, and as we do not have trivial pairs, we must
have a tricky pair. By Lemma 4 column j + 1 is empty. Hence we can move car 1 from
column j to column j + 1, and this creates trivial pairs in both column j and column
j + 1. Then we perform two switch operations to eliminate the trivial pairs:[

2 ◦
1 ◦

]
7→
[
2 ◦
◦ 1

]
7→
[
◦ ◦
2 1

]
7→
[
◦ 1
2 ◦

]
.

(Note that here car 2 is not in its final position, p2(j) is still nonzero, the column remains
active, it will eventually become hot, and the car will be moved right.)

Hence in all cases the algorithm can move at least one car, and we can calculate each
move efficiently. By construction, both the cost and the makespan of algorithm A1 are the
same as in the solution returned by algorithm A2; as A2 solved P2 optimally, and P2 is a
relaxation of P1, we conclude that A1 solves P1 optimally.

5.3 Solving problem P0
Recall that P0 is a relaxation of P1. Hence we can directly use algorithm A1 to solve also P0.
The following lemma shows that any P1-optimal solution is also a relatively good solution
for P0.

I Lemma 5. Assume that there is a solution X for P0 that uses W switch operations and
D delay operations and has a makespan M . Then it is possible to find a solution Y for
P1 that uses W switch operations and at most D + min(D,W ) delay operations and has a
makespan M .

To prove the lemma, we show how to modify X to construct Y . We begin with definitions.

Bad cars and bad blocks. Consider the trajectories of the cars in solution X.
We say that a car is switch-only if it only switches lanes once and is never delayed. For

example, a switch-only car with label 2 was initially in slot (1, j) for some j, and in the final
configuration it is in slot (2, j) for the same j. Note that each column contains at most one
switch-only car.

We say that a switch-only car is bad if it is part of a (2, 1)-input pair. We may have such
in P0-solution X but we must not have them in P1-solution Y .

A bad block of type ` is a range of columns j, j + 1, . . . , k − 1 such that:
1. Column j contains a bad car with label `.
2. Each of columns j + 1, . . . , k − 1 contains a switch-only car with label `. (Some of these

cars may also be bad.)
3. Column k does not contain any switch-only cars with label `. (Note that this column

may contain a switch-only car of the opposite type, and it may be bad.)
For brevity, we write [j, k) for the range of columns j, j + 1, . . . , k − 1. Note that if we have
a bad car in column j, we can always find some k such that [j, k) is a bad block.

Eliminating bad blocks. Our plan is that we identify the first bad block, and manipulate
the solution locally so that none of the columns [j, k) contain any bad cars. Then we repeat
this until there are no bad blocks (and hence no bad cars) left.

ATMOS 2018



9:10 Changing Lanes on a Highway

Consider the first bad block [j, k) that we have not yet eliminated; we write L = k − j
for the length of the bad block. W.l.o.g., assume that the bad car in column j has label 2;
the other case is analogous. The input configuration of the bad block looks like

j j+1 k−1[ ]
2 2 · · · 2
1 ? · · · ?

,

and an output configuration of the block looks like
j j+1 k−1[ ]
? ? · · · ?
2 2 · · · 2

.

Consider the trajectory of the car 1 that was originally in column j; this is called the leading
car. The leading car was moved from column j to column j + 1 before the switch-only cars
in columns j and j + 1 moved. It was also moved from column j + 1 to column j + 2 before
the switch-only cars in columns j + 1 and j + 2 moved, etc. In the final configuration the
leading car has to be outside the bad block. Inside the bad block, solution X performs at
least L switch operations (L switch-only cars) and at least L delay operations (one leading
car moved L times). Note that in our bookkeeping, we associate the cost of a delay operation
with the source column.

Case 1: Empty slot follows. Now first consider the possibility that slot (2, k) is empty in
the final configuration. Then we can eliminate all bad cars within the bad block with L

additional delay operations: delay the cars in (2, k − 1), (2, k − 2), . . . , (2, j) in this order.
In essence, we turn

j j+1 k−1 k[ ]
? ? · · · ? ?
2 2 · · · 2 ◦

into
j j+1 k−1 k[ ]
? ? · · · ? ?
◦ 2 · · · 2 2

.

Note that we modify column k which is outside the current bad block, and there might be
another bad block starting at column k. However, it can be verified that what we do with
block [j, k) is compatible with what we do with the block starting at k.

Case 2: Non-empty slot follows. Now assume that slot (2, k) is occupied in the final
configuration; let us call it the trailing car. It has to be a car with label 2:

j j+1 k−1 k[ ]
? ? · · · ? ?
2 2 · · · 2 2

.

By definition, it is not a switch-only car. Also the trailing car was not there initially;
otherwise it would have blocked the path of the leading car.

Working backwards from the final position of the trailing car, we can see that the trailing
car had to be the last car that occupied slot (2, k − 1) before the switch-only car in column
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k − 1 moved there, and it also had to be the last car that occupied slot (2, k − 2) before
the switch-only car in column k − 2 moved there, etc. The trailing car could not have been
originally position in any of these slots, as it would have blocked the way of the leading car.
Hence at some point the trailing car followed the path (2, j − 1)→ (2, j)→ . . .→ (2, k), and
in each column the switch-only cars moved only after the trailing car was gone.

To recap, we have got in total L+ 1 cars with label 2 that were in some intermediate
configuration placed as follows; we denote the trailing car with 2∗:

j−1 j j+1 k−1 k[ ]
? 2 2 · · · 2 ?
2∗ ? ? · · · ? ?

. (8)

The trailing car moves rightwards, and the switch-only car in column k − 1 switches lanes.
At some point we reach the following configuration; here 2? denotes a slot that is either
empty (a switch-only car has not switched yet) or it contains a car with label 2:

j−1 j j+1 k−1 k[ ]
? ? ? · · · ◦ ?
? 2? 2? · · · 2 2∗

. (9)

Finally, the cars end up in the following positions:
j−1 j j+1 k−1 k[ ]
? ? ? · · · ? ?
? 2 2 · · · 2 2∗

. (10)

The key observation is this: at all points between configurations (8) and (9), the switch-
only cars and the trailing car together form a barrier that blocks both lanes. Let us make
this a bit more formal. Classify the cars in (8) as follows:

j−2 j−1 j j+1 k−1 k k+1[ ]
· · · left left middle middle · · · middle right right · · ·
· · · left middle right right · · · right right right · · ·

.

Now left cars cannot move beyond column k − 2 until we reach configuration (9), while all
right cars will be in columns k, k + 1, . . . in configuration (9). The left and the right cars do
not interact between (8) and (9); they are always separated by the middle cars (which do
not move beyond column k).

Let us modify the solution as follows: we skip all moves related to left and middle cars
between (8) and (9); only right cars are permitted to move. We will reach the following
configuration instead of (9); note that we have cleared the part below the switch-only cars:

j−1 j j+1 k−1 k[ ]
? 2 2 · · · 2 ?
2∗ ◦ ◦ · · · ◦ ◦

.

Then we move the rightmost switch-only car down and right:
j−1 j j+1 k−1 k[ ]
? 2 2 · · · ◦ ?
2∗ ◦ ◦ · · · ◦ 2

.

We repeat this for each switch-only car in columns k − 2, k − 3, . . . , j, and finally we move
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the trailing car right. We reach the following configuration:
j−1 j j+1 k−1 k[ ]
? ◦ ◦ · · · ◦ ?
◦ 2∗ 2 · · · 2 2

.

Now we have handled right cars (following their original schedule) and middle cars (following
a new schedule). Finally we perform all operations between (8) and (9) that were related to
the left cars, and we reach a configuration like this:

j−1 j j+1 k−1 k[ ]
? ? ? · · · ◦ ?
? 2∗ 2 · · · 2 2

.

Then we continue with the operations after (9), skipping those related to the middle cars,
and we reach configuration of the following form:

j−1 j j+1 k−1 k[ ]
? ? ? · · · ? ?
? 2∗ 2 · · · 2 2

.

The only difference in comparison with (10) is that the trailing car is left in column j, and
switch-only cars have moved right by one step. Hence none of them are bad any more.

Now let us see what we achieved. We constructed another solution in which one bad
block of length L was eliminated. We performed L additional delay operations with the
switch-only cars, but on the other hand we saved L delay operations with the trailing car;
hence the new solution has the same cost as the original solution.

Concluding the proof. For each bad block we do either L or 0 additional delay operations,
and the block already contained at least L delay and L switch operations. Summing over
all bad blocks, if they contain D delay and W switch operations in total, we do at most
min(D,W ) additional delay operations. The claim related to the number of operations
follows.

Finally, we observe that the modified solution has the same makespan as the original
solution; note that if we have a bad block [j, k), then the makespan of the solution has to
be at least k, and we do not move any cars beyond column k. This concludes the proof of
Lemma 5.

I Corollary 6. Let Y be a solution for P1 that is simultaneously makespan-optimal and
cost-optimal. Then Y is also a feasible makespan-optimal solution for P0. Furthermore, the
total number of moves in Y is at most 1.5 times the total number of moves in a cost-optimal
P0 solution.

Proof. If the optimum cost of P0 is W +D moves, by Lemma 5 there is a solution for P1
with at most W + D + min(D,W ) ≤ 1.5(W + D) moves. Hence the optimum of P1 is at
most 1.5 times as expensive as the optimum of P0. By Lemma 5 we also have the same
makespan. J

In particular, if can use algorithm A1 to find an optimal P1-solution Y , and then apply
Corollary 6 to show that the solution is a good approximation also for P0.
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Figure 1 Reduction from the minimum vertex cover problem in 3-regular graphs. For each node
(here labeled A, B, C, D) we construct a cavity that holds three orange cars, one per incident edge.
Blue and black cells are cars that are already on their target lanes and hence they can only move
right (delay). We label the edges arbitrarily with numbers 1, 2, . . . , m; these correspond to the lowest
m lanes. If edge number ` connects nodes u and v, then there is one orange car with label ` in cavity
u and one orange car with label ` in cavity v. These will need to reach lane `. There are two good
routes, shown with orange arrows, one that takes the orange car to column x and one that takes the
orange car to column y. To reach column x we will need to delay the black car that is blocking the
way. One of the cars has to reach column x; hence for each edge {u, v} we will need to move the
black car in front of cavity u or cavity v. The set of cavities in which we have moved black cars
forms a vertex cover; conversely, if we have a vertex cover of size k it is sufficient to move only k

black cars. To complete the proof, one has to check that the blue “walls“ are sufficiently thick so
that any solution that involves moving blue car is strictly worse than a solution that only moves
black and orange cars.
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6 Hardness of the multi-lane version

To conclude this work, we will briefly look at what happens when we generalize the lane-
changing problem from two lanes to multiple lanes. Assume that we have κ lanes, and the
cars are labeled with targets {1, 2, . . . , κ}. The operations are a natural generalization of the
two-lane case: we can delay car if there is empty slot after it, and we can move an agent
sideways if there is empty space in an adjacent lane. We can only move agents sideways
towards their target lane, not away from it.

We will now show that minimizing the total cost for this generalization is NP-hard; we
only sketch the key ideas of the argument. The proof is by reduction from the minimum
vertex cover problem in 3-regular graphs – this special case of the vertex cover problem is
known to be NP-hard [5]. Given a 3-regular graph G with n nodes, we construct a multi-lane
instance as shown in Figure 1. If and only if there is a vertex cover of size at most k for
graph G, we can route the orange cars to their target lanes so that (1) none of the blue cars
are moved, (2) exactly k black cars are delayed once. The construction has sufficiently thick
“walls” formed by blue cars such that if we try to move blue cars to make space for orange
cars, the cost will be higher than the solution obtained by the above strategy for the trivial
vertex cover of size k = n.
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Abstract
We study a problem that models safely routing a convoy through a transportation network,
where any vertex adjacent to the travel path of the convoy requires additional precaution: Given
a graph G = (V,E), two vertices s, t ∈ V , and two integers k, `, we search for a simple s-t-
path with at most k vertices and at most ` neighbors. We study the problem in two types of
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1 Introduction

Finding shortest paths is a fundamental problem in route planning and has extensively been
studied with respect to efficient algorithms, including data reduction and preprocessing [1].
In this work, we study the following NP-hard variant of finding shortest s-t-paths.

I Problem 1.1 (Short Secluded Path (SSP)).
Input: An undirected, simple graph G = (V,E) with two distinct vertices s, t ∈ V , and two

integers k ≥ 2 and ` ≥ 0.
Question: Is there an s-t-path P in G such that |V (P )| ≤ k and |N(V (P ))| ≤ `?
Herein, V (P ) denotes the set of vertices on path P and N(V (P )) denotes their set of
neighbors (not lying on P ).

The problem can be understood as finding short and safe routes for a convoy through
a transportation network: each neighbor of the convoy’s travel path requires additional
precaution. Thus, we seek to minimize not only the length of the convoy’s travel path, but
also its number of neighbors. In our work, we study the above basic, unweighted variant, as
well as a weighted variant of the problem, in which each vertex has two weights: one counts
towards the path length, the other models the cost of precaution that has to be taken when
the vertex occurs as the neighbor of the travel path.

Almost planar and tree-like transportation networks. The focus of our work is two-fold.
Firstly, since the problem is NP-hard, we search for efficient algorithms in graphs that are likely
to occur as transportation networks: almost planar graphs, which occur as road networks,
and tree-like graphs, which arise as waterways (ignoring the few man-made canals, natural
river networks form forests [23]). Secondly, given the effect that preprocessing and data
reduction had to fundamental routing problems like finding shortest paths [1], we study the
possibilities of polynomial-time data reduction with provable performance guarantees for SSP.

In order to measure the running time of our algorithms with respect to the “degree
of planarity” or the “tree-likeness” of a graph, as well as to analyze the power of data
reduction algorithms, we employ parameterized complexity theory, which provides us with
the concepts of fixed-parameter algorithms and problem kernelization [16, 20, 39, 12]. Fixed-
parameter algorithms have recently been applied to numerous NP-hard routing problems
[30, 28, 29, 27, 3, 42, 41, 4, 15, 5, 26]. In particular, they led to subexponential-time algorithms
for fundamental NP-hard routing problems in planar graphs [33] and to algorithms for hard
routing problems that work efficiently on real-world data [3].

Fixed-parameter algorithms. The main idea of fixed-parameter algorithms is to accept the
exponential running time seemingly inherent to solving NP-hard problems, yet to restrict the
combinatorial explosion to a parameter of the problem, which can be small in applications.
We call a problem fixed-parameter tractable if it can be solved in f(k) · nO(1) time on inputs
of length n and some function f depending only on some parameter k. In contrast to an
algorithm that merely runs in polynomial time for fixed k, fixed-parameter algorithms can
solve NP-hard problems quickly if k is small.
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Table 1 Overview of our results. Herein, n, tw, vc, fes, cr, and ∆ denote the number of vertices,
treewidth, vertex cover number, feedback edge number, the crossing number, and maximum degree
of the input graph, respectively. “const.” abbreviates “constant”.

On almost planar graphs (Sec. 2) on tree-like graphs (Sec. 3)

exact solution 2O(
√

n) time in graphs with const. cr (Thm. 2.1) 2O(tw) · `2 · n time (Thm. 3.2)

problem kernel size vcO(r) in Kr,r-free graphs (Thm. 2.5) size fesO(1) (Thm. 3.13)

lower bounds No kernel with size poly(vc + r) in Kr,r-free
graphs and WK[1]-hard when parameterized
by vc + r (Thm. 2.14)

No kernel with size poly(tw +
k + `) even in planar graphs
with const. ∆ (Thm. 3.10)

Provably effective polynomial-time data reduction. Kernelization allows for provably
effective polynomial-time data reduction. Note that a result of the form “our polynomial-
time data reduction algorithm reduces the input size by at least one bit, preserving optimality
of solutions” is impossible for NP-hard problems unless P = NP. In contrast, a kernelization
algorithm reduces a problem instance into an equivalent one (the problem kernel) whose
size depends only (ideally polynomially) on some problem parameter. Problem kernelization
has been successfully applied to obtain effective polynomial-time data reduction algorithms
for many NP-hard problems [25, 34] and also led to techniques for proving the limits of
polynomial-time data reduction [7, 38, 9].

1.1 Our contributions
We study SSP (and a weighted variant) in two main classes of graphs: almost planar graphs
and tree-like graphs. We refer to Table 1 for an overview on our main results. Regarding
almost planar graphs, in graphs of constant crossing number, we show that (even the weighted
version of) SSP is solvable in subexponential 2O(

√
n)-time. Moreover, we prove that SSP

is not solvable in 2o(
√

n)-time in planar graphs unless the Exponential Time Hypothesis fails.
In Kr,r-free graphs, which comprise the graphs with crossing number O(r3) [40], we show
a problem kernel for SSP with size vcO(r), where vc is the vertex cover number of the input
graph. We prove that, unless the polynomial-time hierarchy collapses, there is no problem
kernel of size polynomial in vc + r. Moreover, we prove that, unless the classes FPT and
WK[1] coincide, SSP does not even allow for Turing kernels with size polynomial in vc + r;
that is, we could not solve SSP in polynomial time even if we precomputed all answers to
subproblems of size polynomial in vc+ r and could look them up in constant time. Regarding
tree-like graphs, we prove that SSP is solvable in 2O(tw) · `2 ·n time in graphs of treewidth tw
and that there is no problem kernel with size polynomial in tw. Instead, we show a problem
kernel of size fesO(1), where fes is the feedback edge number of the input graph.

Due to space constraints, results marked with (?) are deferred to a full version of the paper.

1.2 Related work
Several classical graph optimization problems have been studied in the “secluded” (small
closed neighborhood) and the “small secluded” (small set with small open neighborhood)
variants [2]. Luckow and Fluschnik [37] first defined SSP and analyzed its parameterized
complexity with respect to the parameters k and `. In contrast, we study problem parameters
that describe the structure of the input graphs and are small in transportation networks.
Chechik et al. [11] introduced the Secluded Path problem, that, given an undirected

ATMOS 2018
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graph G = (V,E) with two designated vertices s, t ∈ V , vertex-weights w : V → N, and
two integers k,C ∈ N, asks whether there is an s-t-path P such that the size of the closed
neighborhood |N [V (P )]| ≤ k and the weight of the closed neighborhood w(N [V (P )]) ≤ C.
Fomin et al. [21], in particular, prove that Secluded Path does not admit problem kernels
with size polynomial in the vertex cover number vc. Our negative results on kernelization for
SSP are significantly stronger: not only do we show that there is no problem kernel of size
polynomial in vc+ r even in bipartite Kr,r-free graphs, we also show that SSP is WK[1]-hard
parameterized by vc + r. Golovach et al. [24] studied the “small secluded” scenario for
finding connected induced subgraphs parameterized by the size ` of the open neighborhood.
Their results obviously does not generalize to SSP, since SSP is NP-hard even for ` = 0 [37].

1.3 Preliminaries
Graph Theory. We use basic notation from graph theory [14]. We study simple, finite,
undirected graphs G = (V,E). We denote by V (G) := V the set of vertices of G and by
E(G) := E the set of edges of G. We denote n := |V | and m := |E|. For any subset U ⊆ V
of vertices, we denote by NG(U) = {w ∈ V \U | ∃v ∈ U : {v, w} ∈ E} the open neighborhood
of U in G. When the graph G is clear from the context, we drop the subscript G. A set U ⊆ V
of vertices is a vertex cover if every edge in E has an endpoint in U . The size of a minimum
vertex cover is called vertex cover number vc(G) of G. A set F ⊆ E of edges is a feedback
edge set if the graph (G,E \ F ) is a forest. The minimum size of a feedback edge set in
a connected graph is m − n + 1 and is called the feedback edge number fes(G) of G. The
crossing number cr(G) of G is the minimum number of crossings in any drawing of G into
the plane (where only two edges are allowed to cross in each point). A path P = (V,E)
is a graph with vertex set V = {x0, x1, . . . , xp} and edge set E = {{xi, xi+1} | 0 ≤ i < p}.
We say that P is an x0-xp-path of length p. We also refer to x0, xp as the end points of P ,
and to all vertices V \ {x0, xp} as the inner vertices of P . A Kr,r is a complete bipartite
graph G = (U ] V,E) with |U | = |V | = r. We say that a graph is Kr,r-free if it does not
contain Kr,r as a subgraph.

Parameterized Complexity Theory. For more details on parameterized complexity, we refer
to the text books [16, 20, 39, 12]. Let Σ be a finite alphabet. A parameterized problem L

is a subset L ⊆ Σ∗ × N. An instance (x, k) ∈ Σ∗ × N is a yes-instance for L if and only
if (x, k) ∈ L. We call x the input and k the parameter.

I Definition 1.2 (fixed-parameter tractability, FPT). A parameterized problem L ⊆ Σ∗ × N
is fixed-parameter tractable if there is a fixed-parameter algorithm deciding (x, k) ∈ L in time
f(k) · |x|O(1). The complexity class FPT consists of all fixed-parameter tractable problems.

I Definition 1.3 (kernelization). Let L ⊆ Σ∗×N be a parameterized problem. A kernelization
is an algorithm that maps any instance (x, k) ∈ Σ∗ × N to an instance (x′, k′) ∈ Σ∗ × N in
poly(|x|+ k) time such that
(i) (x, k) ∈ L ⇐⇒ (x′, k′) ∈ L′, and
(ii) |x′|+ k′ ≤ f(k) for some computable function f .

We call (x′, k′) the problem kernel and f its size.

Basic observations. We may assume our input graph to be connected due to the following
obviously correct and linear-time executable data reduction rule.

I Reduction Rule 1.4. If G has more than one connected component, then delete all but
the component containing both s and t or return no if such a component does not exist.
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2 Almost planar graphs

Many transportation networks such as rail and street networks are planar or at least have
a small crossing number – the minimum number of edge crossings in a plane drawing of a
graph. Unfortunately, SSP remains NP-hard even in planar graphs with maximum degree
four and ` = 0 [37].

In this section, we present algorithms for SSP in graphs with constant crossing number.
These, in particular, apply to planar graphs. First, in Section 2.1, we present a subexponential-
time algorithm and a matching lower bound. Second, in Section 2.2, we present a provably
effective data reduction algorithm. Finally, in Section 2.3, we show the limits of data
reduction algorithms for SSP in graphs with small but non-constant crossing number.

2.1 A subexponential-time algorithm
In this section, we describe how to solve SSP in subexponential time in graphs with constant
crossing number.

I Theorem 2.1. Short Secluded Path is solvable in 2O(
√

n) time on graphs with constant
crossing number.

We will also see a matching lower bound. To prove Theorem 2.1, we exploit that graphs with
constant crossing number are H-minor free for some graph H.

I Definition 2.2 (graph minor). A graph H is a minor of a graph G if H can be obtained
from G by a sequence of vertex deletions, edge deletions, and edge contractions. If a graph G
does not contain H as a minor, then G is said to be H-minor free.

Bokal et al. [10] showed that, if a graph G contains Kr,r as a minor, then the crossing
number of G is cr(G) ≥ 1

2 (r−2)2. Thus, any graph G is Kr,r-minor free for r >
√

2cr(G)+2,
which goes in line with the well-known fact that planar graphs are K3,3-minor free [43].
Demaine and Hajiaghayi [13] showed that, for any graph H, all H-minor free graphs have
treewidth tw ∈ O(

√
n).1 To prove Theorem 2.1, it thus remains to show that SSP is solvable

in 2O(tw) · poly(n) time, which is the main technical work deferred to Section 3.1.
Complementing Theorem 2.1, we can show a matching lower bound using the Exponential

Time Hypothesis (ETH).

I Conjecture 2.3 (Exponential Time Hypothesis (ETH), Impagliazzo et al. [32]). There is a
constant c such that n-variable 3-Sat cannot be solved in 2c(n+m) time.

The ETH was introduced by Impagliazzo et al. [32] and since then has been used to prove
running time lower bounds for various NP-hard problems (we refer to Cygan et al. [12,
Chapter 14] for an overview). We use it to prove that Theorem 2.1 can be neither significantly
improved in planar graphs nor generalized to general graphs.

I Theorem 2.4. Unless the Exponential Time Hypothesis fails, Short Secluded Path
has no 2o(

√
n)-time algorithm in planar graphs and no 2o(n+m)-time algorithm in general.

1 In fact, they showed tw ∈ O(√q) for any graph parameter q that is Ω(p) on a (√p×√p)-grid and does
not increase when taking minors. For example, the vertex cover number or feedback vertex number.
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Proof. Assume that there is a 2o(
√

n)-time algorithm for SSP in planar graphs and a 2o(n)-
time algorithm for SSP in general graphs. Luckow and Fluschnik [37] give a polynomial-time
many-one reduction from Hamiltonian Cycle to SSP that maintains planarity and
increases the number of vertices and edges by at most a constant. Thus, we get a 2o(

√
n)-time

algorithm for Hamiltonian Cycle in planar graphs and a 2o(n+m)-time algorithm in general
graphs. This contradicts ETH [12, Theorems 14.6 and 14.9]. J

2.2 Effective data reduction
In the previous section, we have shown a subexponential-time algorithm for SSP in graphs
with constant crossing number. There, we exploited the fact that graphs with crossing
number cr are Kr,r-minor free for r >

√
2cr + 2. Of course, this means that they neither

contain Kr,r as subgraph (indeed, one can show this even for r ≥ 3.145 · 3
√
cr using bounds

from Pach et al. [40]).
In this section, we show how to reduce any instance of SSP in Kr,r-free graphs to an

equivalent instance with size polynomial in the vertex cover number of the input graph. In
the next section, we prove that this does not generalize to general graphs.

I Theorem 2.5. For each constant r ∈ N, Short Secluded Path in Kr,r-free graphs
admits a problem kernel with size polynomial in the vertex cover number of the input graph.

The proof of Theorem 2.5 consists of three steps. First, in linear time, we transform an
n-vertex instance of SSP into an equivalent instance of an auxiliary vertex-weighted version of
SSP with O(vcr) vertices. Second, using a theorem of Frank and Tardos [22], in polynomial
time, we reduce the vertex weights to 2O(vc3r) so that the total instances size (in bits)
becomes O(vc4r). Finally, since SSP is NP-complete in planar, and, hence, in K3,3-free
graphs, we can, in polynomial time, reduce the shrunk instance back to an instance of the
unweighted SSP in Kr,r-free graphs. Due to the polynomial running time of the reduction,
there is at most a polynomial blow-up of the instance size.

Our auxiliary variant of SSP allows each vertex to have two weights: one weight counts
towards the length of the path, the other counts towards the number of neighbors:

I Problem 2.6 (Vertex-Weighted Short Secluded Path (VW-SSP)).
Input: An undirected, simple graph G = (V,E) with two distinct vertices s, t ∈ V , two

integers k ≥ 2 and ` ≥ 0, and vertex weights κ : V → N and λ : V → N.
Question: Does G have an s-t-path P with

∑
v∈V (P ) κ(v) ≤ k and

∑
v∈N(V (P )) λ(v) ≤ `?

Note that an instance of SSP can be considered to be an instance of VW-SSP with unit
weight functions κ and λ. Our data reduction will be based on removing twins.

I Definition 2.7 (twins). Two vertices u and v are called (false) twins if N(u) = N(v).

As the first step towards proving Theorem 2.5, we will show that the following data reduction
rule, when applied to a Kr,r-free instance of SSP for constant r, leaves us with an instance
of VW-SSP with O(vcr) vertices.

I Reduction Rule 2.8. Let (G, s, t, k, `, κ, λ) be an VW-SSP instance with unit weights,
where G = (V,E) is a Kr,r-free graph.

For each maximal set U ⊆ V \ {s, t} of twins such that |U | > r, delete |U | − r + 1
vertices of U from G, and, for an arbitrary remaining vertex v ∈ U , set λ(v) := |U | − r and
κ(v) := k + 1.

I Lemma 2.9 (?). Reduction Rule 2.8 is correct and can be applied in linear time.
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We now prove a size bound for the instances remaining after Reduction Rule 2.8.

I Proposition 2.10. Applied to an instance of SSP with a Kr,r-free graph with vertex
cover number vc, Reduction Rules 2.8 and 1.4 yield an instance of VW-SSP on at most
(vc + 2) + r(vc + 2)r vertices in linear time.

Proof. Let (G′, s, t, k, `, λ′, κ′) be the instance obtained from applying Reduction Rules 2.8
and 1.4 to an instance (G, s, t, k, `, λ, κ).

Let C be a minimum-cardinality vertex cover for G′ that contains s and t, and let the
vertex set of G′ be V = C ] Y . Since G′ is a subgraph of G, one has |C| ≤ vc(G′) + 2 ≤
vc(G) + 2 = vc + 2. It remains to bound |Y |. To this end, we bound the number of vertices
of degree at least r in Y and the number of vertices of degree exactly i in Y for each
i ∈ {0, . . . , r − 1}. Note that vertices in Y have neighbors only in C.

Since Reduction Rule 1.4 has been applied, there are no vertices of degree zero in Y .
Since Reduction Rule 2.8 has been applied, for each i ∈ {1, . . . , r−1} and each subset C ′ ⊆

C with |C ′| = i, we find at most r vertices in Y whose neighborhood is C ′. Thus, for
each i ∈ {1, . . . , r − 1}, the number of vertices with degree i in Y is at most r ·

(|C|
i

)
.

Finally, since G is Kr,r-free, any r-sized subset of the vertex cover C has at most
r− 1 common neighbors. Hence, since vertices in Y have neighbors only in C, the number of
vertices in Y of degree greater or equal to r is at most (r − 1) ·

(|C|
r

)
. We conclude that

|V ′| ≤ |C|+ (r − 1) ·
(
|C|
r

)
+ r ·

r−1∑
i=1

(
|C|
i

)
≤ (vc + 2) + r(vc + 2)r. J

This completes the first step of the proof of Theorem 2.5. Note that our data reduction
works by “hiding” an unbounded number of twins in vertices of unbounded weights. The
second step is thus reducing the weights of an VW-SSP instance. To this end, we are going
to apply a theorem by Frank and Tardos [22], which was successfully applied in kernelizing
weighted problems before [17].

I Proposition 2.11 (Frank and Tardos [22]). There is an algorithm that, on input w ∈ Qd

and integer N , computes in polynomial time a vector w̄ ∈ Zd with ‖w̄‖∞ ≤ 24d3
Nd(d+2) such

that sign(w>b) = sign(w̄>b) for all b ∈ Zd with ‖b‖1 ≤ N − 1, where

sign(x) =


+1 if x > 0,

0 if x = 0, and
−1 if x < 0.

I Observation 2.12. For N ≥ 2, Proposition 2.11 gives sign(w>ei) = sign(w̄>ei) for
each i ∈ {1, . . . , d}, where ei ∈ Zd is the vector that has 1 in the i-th coordinate and zeroes
in the others. Thus, one has sign(wi) = sign(w̄i) for each i ∈ {1, . . . , d}. That is, when
reducing a weight vector from w to w̄, Proposition 2.11 maintains the signs of weights.

We apply Proposition 2.11 and Observation 2.12 to the weights of VW-SSP.

I Lemma 2.13. An instance I = (G, s, t, k, `, λ, κ) of VW-SSP on an n-vertex graph G =
(V,E) can be reduced in polynomial time to an instance I ′ = (G, s, t, k′, `′, λ′, κ′) of VW-SSP
such that
i) {k′, κ′(v), `′, λ′(v)} ⊆ {0, . . . , 24(n+1)3 · (n+ 2)(n+1)(n+3)}, for each vertex v ∈ V , and
ii) I is a yes-instance if and only if I ′ is a yes-instance.
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Proof. In this proof, we will conveniently denote the weight functions λ, λ′, κ, and κ′ as
vectors in Nn such that λi = λ(i) for each i ∈ V , and similarly for the other weight functions.

We apply Proposition 2.11 with d = n+ 1 and N = n+ 2 to the vectors (λ, `) ∈ Nn+1

and (κ, k) ∈ Nn+1 to obtain vectors (κ′, k′) ∈ Zn+1 and (λ′, `′) ∈ Zn+1 in polynomial time.
(i) This follows from Proposition 2.11 with d = n + 1 and N = n + 2, and from

Observation 2.12 since (λ, `) and (κ, k) are vectors of nonnegative numbers.
(ii) Consider an arbitrary s-t-path P in G and two associated vectors x, y ∈ Zn, where

xv =
{

1 if v ∈ N(V (P )),
0 otherwise,

yv =
{

1 if v ∈ V (P ) and
0 otherwise.

Observe that ‖(x,−1)‖1 ≤ n + 1 and ‖(y,−1)‖1 ≤ n + 1. Since n + 1 ≤ N − 1, Pro-
position 2.11 gives sign((λ, `)>(x,−1)) = sign((λ′, `′)>(x,−1)) and sign((κ, k)>(y,−1)) =
sign((κ′, k′)>(y,−1)), which is equivalent to∑
v∈N(V (P ))

λ(v) ≤ ` ⇐⇒
∑

v∈N(V (P ))

λ′(v) ≤ `′ and
∑
v∈P

κ(v) ≤ k ⇐⇒
∑
v∈P

κ′(v) ≤ k′. J

We have finished two steps towards the proof of Theorem 2.5: we reduced SSP in Kr,r-free
graphs for constant r to instances of VW-SSP with O(vcr) vertices using Proposition 2.10
and shrunk its weights to encoding-length O(vc3r) using Lemma 2.13. To finish the proof of
Theorem 2.5, it remains to reduce VW-SSP back to SSP on Kr,r-free graphs.

2.3 Limits of data reduction
In Section 2.2, we have seen that SSP allows for problem kernels with size polynomial in vc
if the input graph is Kr,r-free for some constant r. A natural question is whether one can
loosen the requirement of r being constant.

The following Theorem 2.14(i) shows that, under reasonable complexity-theoretic as-
sumptions, this is not the case: we cannot get problem kernels whose size bound depends
polynomially on both vc and r. Moreover, the following Theorem 2.14(ii) shows that, unless
WK[1] = FPT, SSP does not even have Turing kernels with size polynomial in vc + r [31].
That is, we could not even solve SSP in polynomial time if we had precomputed all answers
to SSP instances with size polynomial in vc + r and could look them up in constant time.

Both results come surprisingly: finding a standard shortest s-t-path is easy, whereas
finding a short secluded path in general graphs is so hard that not even preprocessing helps.

I Theorem 2.14 (?). Even in bipartite graphs, Short Secluded Path
i) has no problem kernel with size polynomial in vc + r unless coNP ⊆ NP/poly and
ii) is WK[1]-hard when parameterized by vc + r,

where vc is the vertex cover number of the input graph and r is the smallest number such
that the input graph is Kr,r-free.

The proof exploits that Multicolored Clique is WK[1]-hard parameterized by k logn [31]:

I Problem 2.15 (Multicolored Clique).
Input: A k-partite n-vertex graph G = (V,E), where V =

⊎k
i=1 Vi for independent sets Vi.

Question: Does G contain a clique of size k?
We transfer the WK[1]-hardness of Multicolored Clique to SSP using the following type
of reduction [31]:
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Figure 2.1 Illustration of the polynomial parameter transformation. Non-black (green) vertices
indicate the vertices in the vertex cover.

I Definition 2.16 (polynomial parameter transformation). Let L,L′ ⊆ Σ∗×N be two paramet-
erized problems. A polynomial parameter transformation from L to L′ is an algorithm that
maps any instance (x, k) ∈ Σ∗×N to an instance (x′, k′) ∈ Σ∗×N in poly(|x|+k) time such that
(i) (x, k) ∈ L ⇐⇒ (x′, k′) ∈ L′, and
(ii) k′ ≤ poly(k).
Our polynomial parameter transformation of Multicolored Clique into SSP uses the
following gadget.

I Definition 2.17 (z-binary gadget). A z-binary gadget for some power z of two is a set B =
{u1, u2, . . . , u(2 log z)} of vertices. We say that a vertex v is p-connected to B for some p ∈
{0, . . . , z− 1} if v is adjacent to uq ∈ B if and only if there is a “1” in position q of the string
that consists of the binary encoding of p followed by its complement.

I Example 2.18. The binary encoding of 5 followed by its complement is 101010. Thus,
a vertex v is 5-connected to an 8-binary gadget {u1, . . . , u6} if and only if v is adjacent
to u1, u3, and u5. Also observe that, if a vertex v is q-connected to a z-binary gadget B,
then v is adjacent to exactly half of the vertices of B, that is, to log z vertices of B.

The following reduction from Multicolored Clique to SSP is illustrated in Figure 2.1.

I Construction 2.19. Let G = (V,E) be a Multicolored Clique instance, where |V | = n

and V = V1 ] V2 ] · · · ] Vk. Without loss of generality, assume that Vi = {v1
i , v

2
i , . . . , v

ñ
i } for

each i ∈ {1, . . . , k}, where ñ is some power of two (we can guarantee this by adding isolated
vertices to G). We construct an equivalent instance (G′, s, t, k′, `′) of SSP, where

k′ :=
(
k

2

)
+ 1, `′ := |E| −

(
k

2

)
+ k log ñ,

and the graph G′ = (V ′, E′) is as follows. The vertex set V ′ consists of vertices s, t, a vertex ve

for each edge e ∈ E, vertices wh for h ∈ {1, . . . ,
(

k
2
)
− 1}, and mutually disjoint ñ-binary

vertex gadgets B1, . . . , Bk, each vertex in which has `′+1 neighbors of degree one. We denote

E∗ := {ve ∈ V ′ | e ∈ E} B := B1 ]B2 ] · · · ]Bk,

Eij := {v{x,y} ∈ E∗ | x ∈ Vi, y ∈ Vj}, and W := {wh | 1 ≤ h ≤
(

k
2
)
− 1}.
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The edges of G′ are as follows. For each edge e = {vp
i , v

q
j} ∈ E, vertex ve ∈ Eij of G′ is

p-connected to Bi and q-connected to Bj . Vertex s ∈ V ′ is adjacent to all vertices in E1,2 and
vertex t ∈ V ′ is adjacent to all vertices in Ek−1,k. Finally, to describe the edges incident to
vertices in W , consider any ordering of pairs {(i, j) | 1 ≤ i < j ≤ k}. Then, vertex wh ∈W
is adjacent to all vertices in Eij and to all vertices in Ei′j′ , where (i, j) is the h-th pair in
the ordering and (i′, j′) is the (h+ 1)-st. This finishes the construction.

To prove Theorem 2.14, we show that Construction 2.19 is a polynomial-time many-one
reduction that generates bipartite Kr,r-free graphs with r + vc ∈ poly(k logn).

I Lemma 2.20. The graph created by Construction 2.19 from an n-vertex instance G =
(V1]V2]. . . Vk, E) of Multicolored Clique is bipartite, Kr,r-free for r := 2k logn+

(
k
2
)
+2,

and admits a vertex cover of size r − 1.

Proof. The constructed graph G′ = (V ′, E′) is bipartite with V ′ = X ] Y , where

X = {s, t} ∪W ∪B and Y = N(B) ∪ E∗.

Hence, X is a vertex cover of size at most r − 1 in G′. Finally, consider any Kr,r whose
vertex set is partitioned into two independent sets X ′ ] Y ′ ⊆ V ′. Since |X ′| = |Y ′| = r,
|X ′ ∩X| ≤ r − 1, and |Y ′ ∩X| ≤ r − 1, we find u ∈ X ′ ∩ Y and v ∈ Y ′ ∩ Y . Observe that
{u, v} is an edge in the Kr,r but not in G′. Thus, the Kr,r is not a subgraph of G′. J

I Lemma 2.21. Construction 2.19 is a polynomial parameter transformation of Multi-
colored Clique parameterized by k logn into SSP in Kr,r-free graphs parameterized by
vc + r.

Proof. Let I ′ := (G′, s, t, k′, `′) be the SSP instance created by Construction 2.19 from
an Multicolored Clique instance G = (V,E). In Lemma 2.20, we already showed
vc + r ∈ poly(k logn). Thus, it remains to show that G is a yes-instance if and only if I ′ is.

(⇒) Let C be the edge set of a clique of size k in G. For each 1 ≤ i < j ≤ k, C contains
exactly one edge e between Vi and Vj . Thus, EC := {ve ∈ E∗ | e ∈ C} is a set of

(
k
2
)
vertices

– exactly one vertex of Eij for each 1 ≤ i < j ≤ k. Thus, by Construction 2.19, G′ contains
an s-t-path P = (VP , EP ) with |VP | ≤ k′: its inner vertices are EC ∪W , alternating between
these two sets. To show that I ′ is a yes-instance, it remains to show |N(VP )| ≤ `′.

Since P contains all vertices of W , one has N(VP ) ⊆ B ∪ (E∗ \ EC), where |E∗ \ EC | =
|E| −

(
k
2
)
. To show |N(VP )| ≤ `′, it remains to show that |N(VP )∩B| ≤ k log ñ. To this end,

we show that |N(VP ) ∩Bi| ≤ log ñ for each i ∈ {1, . . . , k}.
The vertices in W ∪ {s, t} have no neighbors in B. Thus, consider arbitrary ver-

tices ve1 , ve2 ∈ EC such that N(ve1) ∩ Bi 6= ∅ and N(ve2) ∩ Bi 6= ∅ for some i ∈ {1, . . . , k}
(possibly, e1 = e2). Then, e1 = {vp

i , v
q
j} and e2 = {vp′

i , v
q′

j′ }. Since C is a clique, e1 and e2
are incident to the same vertex of Vi. Thus, we have p = p′. Both ve1 and ve2 are therefore
p-connected to Bi and hence have the same log ñ neighbors in Bi. It follows that N(VP ) ≤ `′
and, consequently, that I ′ is a yes-instance.

(⇐) Let P = (VP , EP ) be an s-t-path in G′ with |VP | ≤ k′ and |N(VP )| ≤ `′. The
path P does not contain any vertex of B, since each of them has `′ + 1 neighbors of degree
one. Thus, the inner vertices of P alternate between vertices in W and in E∗ and we get
N(VP ) = (E∗ \VP )∪ (N(VP )∩B). Since P contains one vertex of Eij for each 1 ≤ i < j ≤ k,
we know |E∗ \ VP | = |E| −

(
k
2
)
. Thus, since |N(VP )| ≤ `′, we have |N(VP ) ∩ B| ≤ k log ñ.

We exploit this to show that the set C := {e ∈ E | ve ∈ VP ∩ E∗} is the edge set of a clique
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in G. To this end, it is enough to show that, for each i ∈ {1, . . . , k}, any two edges e1, e2 ∈ C
with e1 ∩ Vi 6= ∅ and e2 ∩ Vi 6= ∅ have the same endpoint in Vi: then C is a set of

(
k
2
)
edges

on k vertices and thus forms a k-clique.
For each 1 ≤ i < j ≤ k, P contains exactly one vertex v ∈ Eij , which has exactly

log ñ neighbors in each of Bi and Bj . Thus, from |N(VP )∩B| ≤ k log ñ follows |N(VP )∩Bi| =
log ñ for each i ∈ {1, . . . , k}. It follows that, if two vertices ve1 and ve2 on P both have
neighbors in Bi, then both are p-connected to Bi for some p, which means that the edges e1
and e2 of G share endpoint vp

i .
We conclude that C is the edge set of a clique of size k in G. Hence, G is a yes-instance. J

To prove Theorem 2.14, it is now a matter of putting together Lemma 2.21 and the fact that
Multicolored Clique parameterized by k logn is WK[1]-complete.

Proof of Theorem 2.14. By Lemma 2.21, Construction 2.19 is a polynomial parameter
transformation from Multicolored Clique parameterized by k logn to SSP parameterized
by vc + r in Kr,r-free graphs.

Multicolored Clique parameterized by k logn is known to be WK[1]-complete [31]
and hence, does not admit a polynomial-size problem kernel unless coNP ⊆ NP/poly. From
the polynomial parameter transformation in Construction 2.19, it thus follows that SSP is
WK[1]-hard parameterized by vc + r and does not admit a polynomial-size problem kernel
unless coNP ⊆ NP/poly. J

3 Tree-like graphs

In this section, we present results for SSP in tree-like graphs. Such graphs naturally arise
as waterways: when ignoring the few man-made canals, the remaining, natural waterways
usually form a forest [23].

Moreover, graphs of small treewidth (formally defined in Section 3.1) are interesting since,
as described in Section 2.1, graphs with constant crossing number have treewidth at most√
q for many graph parameters q. Thus, one can derive subexponential-time algorithms for

these parameters from single-exponential algorithms for treewidth, like we did in Section 2.1.
First, in Section 3.1, we describe an algorithm that efficiently solves SSP on graphs of

small treewidth. Second, in Section 3.2, we show that SSP allows for no problem kernel with
size polynomial in the treewidth of the input graph. Third, in Section 3.3, we complement
this negative result by a problem kernel with size polynomial in the feedback edge number of
the input graph.

3.1 Fixed-parameter algorithm for graphs with small treewidth
In this section, we sketch a 2O(tw) · `2 · n-time algorithm for SSP in graphs of treewidth tw,
which will also conclude the proof of the 2O(

√
n)-time algorithm for SSP in graphs with

constant crossing number (Theorem 2.1). Before describing the algorithm, we formally
introduce the treewidth concept.

I Definition 3.1 (tree decomposition, treewidth). A tree decomposition T = (T, β) of a
graph G = (V,E) consists of a tree T and a function β : V (T ) → 2V that associates each
node x of the tree T with a subset Bx := β(x) ⊆ V , called a bag, such that
i) for each vertex v ∈ V , there is a node x of T with v ∈ Bx,
ii) for each edge {u, v} ∈ E, there is a node x of T with {u, v} ⊆ Bx,
iii) for each v ∈ V the nodes x with v ∈ Bx induce a subtree of T .
The width of T is w(T) := maxx∈V (T ) |Bx| − 1. The treewidth of G is tw(G) := min{w(T) |
T is a tree decomposition of G}.
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I Theorem 3.2. Short Secluded Path is solvable in 2O(tw) · `2 · n time in graphs of
treewidth tw.

Bodlaender et al. [8] proved that a tree decomposition of width O(tw(G)) of a graph G

is computable in 2O(tw) · n-time. Applying the following Proposition 3.3 to such a tree
decomposition yields Theorem 3.2:

I Proposition 3.3 (?). Vertex-Weighted Short Secluded Path is solvable in n · `2 ·
twO(1) · (2 + 12 · 2ω)tw time when a tree decomposition of width tw is given, where ω < 2.2373
is the matrix multiplication exponent.

To prove Theorem 3.2, it thus remains to prove Proposition 3.3. Note that Proposition 3.3
actually solves the weighted problem VW-SSP (Problem 2.6), where the term `2 is only
pseudo-polynomial for VW-SSP. It is a true polynomial for SSP since we can assume ` ≤ n.

3.1.1 Assumptions on the tree decomposition
Our algorithm will work on simplified tree decompositions, which can be obtained from a
classical tree decomposition of width tw in n · twO(1) time without increasing its width [6].

IDefinition 3.4 (nice tree decomposition). A nice tree decomposition T is a tree decomposition
with one special bag r called the root and in which each bag is of one of the following types.

Leaf node: a leaf x of T with Bx = ∅.
Introduce vertex node: an internal node x of T with one child y such that Bx = By ∪ {v}

for some vertex v /∈ By. This node is said to introduce vertex v.
Introduce edge node: an internal node x of T labeled with an edge {u, v} ∈ E and with

one child y such that {u, v} ⊆ Bx = By. This node is said to introduce edge {u, v}.
Forget node: an internal node x of T with one child y such that Bx = By \ {v} for some

node v ∈ By. This node is said to forget v.
Join node: an internal node x of T with two children y and z such that Bx = By = Bz.
We additionally require that each edge is introduced at most once and make the following,
problem specific assumptions on tree decompositions.

I Assumption 3.5. When solving VW-SSP, we will assume that the source s and destina-
tion t of the sought path are contained in all bags of the tree decomposition and that the
root bag contains only s and t. This ensures that

every bag contains vertices of the sought solution, and that
s and t are never forgotten nor introduced.

Such a tree decomposition can be obtained from a nice tree decomposition by rooting it at a
leaf (an empty bag) and adding s and t to all bags. This will increase the width of the tree
decomposition by at most two.

Our algorithm will be based on computing partial solutions for subgraphs induced by a node
of a tree decomposition by means of combining partial solutions for the subgraphs induced
by its children. Formally, these subgraphs are the following.

I Definition 3.6 (subgraphs induced by a tree decomposition). Let G = (V,E) be a graph
and T be a nice tree decomposition for G with root r. Then, for any node x of T,

Vx := {v ∈ V | v ∈ By for a descendant y of x}, and
Gx := (Vx, Ex), where Ex = {e ∈ E | e is introduced in a descendant of x}.

Herein, we consider each node x of T to be a descendent of itself.

Having defined subgraphs induced by subtrees, we can define partial solutions in them.
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G− Vx

Gx

Dz De Di N

s t

Figure 3.1 Illustration of a partial solution: the (blue) thick edges are an overall solution, where
the darker edges are the part of the solution in Gx. The (red) dashed edges are forbidden to exist.

3.1.2 Partial solutions
Assume that we have a solution path P to VW-SSP. Then, the part of P in Gx is a
collection P of paths (some might consist of a single vertex). When computing a partial
solution for a parent y of x, we ideally want to check which partial solutions for x can be
continued to partial solutions for y. However, we cannot try all possible partial solutions
for Gx – there might be too many. Moreover, this is not necessary: by Definition 3.1(ii)–(iii),
vertices in bag By cannot be vertices of and cannot have edges to vertices of Vx \Bx. Thus,
it is enough to know the states of vertices in bag Bx in order to know which partial solutions
of x can be continued to y. The state of such vertices is characterized by

which vertices of Bx are end points of paths in P, inner vertices of paths in P, or paths
of zero length in P,
which vertices of Bx are allowed to be neighbors of the solution path P ,
how many neighbors the solution path P is allowed to have in Gx, and
which vertices of Bx belong to the same path of P.

I Definition 3.7 (partial solution). Let (G, s, t, k, `, κ, λ) be an instance of VW-SSP. For a
set P of paths in G and a set N of vertices in G, let

Λ(P, N) :=
∑
P∈P

∑
v∈N(V (P ))

λ(v) +
∑
v∈N

λ(v) and K(P) :=
∑
P∈P

∑
v∈V (P )

κ(v).

Moreover, let T be a tree decomposition for G, x be a node of T, Dz ]De ]Di ]N ⊆ Bx

such that {s, t} ⊆ Dz ∪De, p be a partition of D := Dz ∪De ∪Di, and l ≤ `.
Then, we call (Dz, De, Di, N, l) a pre-signature and S = (Dz, De, Di, N, l, p) a solution

signature at x. A set P of paths in Gx is a partial solution of cost K(P) for S if
i) Dz are exactly the vertices of zero-length paths P ∈ P,
ii) De are exactly the end points of non-zero-length paths P ∈ P,
iii) Di are exactly those vertices in Bx that are inner vertices of paths P ∈ P,
iv) for each path P ∈ P, N(V (P )) ∩Bx ⊆ N ,
v) Λ(P, N) ≤ l, and
vi) P consists of exactly |p| paths such that each two vertices u, v ∈ D belong to the same

path of P if and only if they are in the same set of the partition p.
For a solution signature S at a node x, we denote

Ex(S) := {P | P is a partial solution for S},
minKx(S) := min{K(P) | P ∈ Ex(S)}.
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Because of Assumption 3.5, our input instance to VW-SSP is a yes-instance if and only if

minKr(∅, {s, t}, ∅, ∅, `, {{s, t}}) ≤ k. (3.1)

Therefore, our aim is computing this cost. The naive dynamic programming approach is:
compute minKx(S) for each solution signature S and each leaf node x,
compute minKx(S) for each solution signature S and each inner node x under the
assumptions that minKy(S′) has already been computed for all solution signatures S′ at
children y of x.

However, this approach is not suitable to prove Proposition 3.3, since the number of possible
solution signatures is too large: the number of different partitions p of tw vertices is the
tw-th Bell number, whose best known upper bound is O(twtw/ log tw).

3.1.3 Reducing the number of partitions
To reduce the number of needed partitions, we use an approach developed by Bodlaender
et al. [6], which also proved its effectivity in experiments [18]. We will replace the task of
computing (3.1) for all possibly partitions by computing only sets of weighted partitions
containing the needed information.

I Definition 3.8 (sets of weighted partitions). Let Π(U) be the set of all partitions of U .
A set of weighted partitions is a set A ⊆ Π(U)× N. For a weighted partition (p, w) ∈ A, we
call w its weight.

Using sets of weighted partitions, we can reformulate our task of computing minKx(S)
for all bags Bx and all solution signatures S as follows. Consider a pre-signature S =
(Dz, Di, De, N, l) for a node x of a tree decomposition. Then, for each p ∈ Π(Dz ∪Di ∪De),
(S, p) is a solution signature. Thus, we can consider

Ax(S) :=
{(

p, min
P∈Ex(S,p)

K(P)
) ∣∣∣ p ∈ Π(Dz ∪Di ∪De) ∧ Ex(S, p) 6= ∅

}
. (3.2)

Now, our problem of verifying (3.1) at the root node r of a tree decomposition is equivalent
to checking whether Ar(∅, {s, t}, ∅, ∅, `) contains a partition {{s, t}} of weight at most k.
Thus we can, in a classical dynamic programming manner

compute Ax(S) for each pre-signature S and each leaf node x,
compute Ax(S) for each pre-signature S and each inner node x under the assumption
that Ay(S′) has already been computed for all pre-signatures S′ at children y of x.

Yet we will not work with the full sets Ax(S) but with “representative” subsets of size 2O(tw).
Since the number of pre-signatures is 2O(tw) · `, this will allow us to prove Proposition 3.3.

In order to describe the intuition behind representative sets of weighted partitions, we
need some notation.

I Definition 3.9 (partition lattice). The set Π(U) is semi-ordered by the coarsening relation v,
where p v q if every set of p is included in some set of q. We also say that q is coarser than p
and that p is finer than q.

For two partitions p, q ∈ Π(U), by p t q we denote the (unique) finest partition that is
coarser than both p and q.

To get an intuition for the p t q operation, recall from Definition 3.7 that we will use a
partition p to represent connected components of partial solutions: two vertices are connected
if and only if they are in the same set of p. In these terms, if p ∈ Π(U) are the vertex sets



R. van Bevern, T. Fluschnik, and O. Yu. Tsidulko 10:15

of the connected components of a graph (U,E) and q ∈ Π(U) are the vertex sets of the
connected components of a graph (U,E′), then p t q are the vertex sets of the connected
components of the graph (U,E ∪ E′).

Now, assume that there is a solution P to VW-SSP in a graph G and consider an
arbitrary node x of a tree decomposition. Then, the subpaths P of P that lie in Gx are
a partial solution for some solution signature (Dz, De, Di, N, l, p) at x. The partition p

of D := Dz ∪ De ∪ Di consists of the sets of vertices of D that are connected by paths
in P. Since, in the overall solution P , the vertices in D are all connected, the vertices of D
are connected in G \ Ex according to a partition q of D such that p t q = {D}. Now, if
in P , we replace the subpaths P by any other partial solution P ′ to a solution signature
(Dz, De, Di, N, l, p

′) such that K(P ′) ≤ K(P) and p′ t q = {D}, then we obtain a solution P ′
for G with at most the cost of P . Thus, one of the two weighted partitions (p,K(p))
and (p′,K(p′)) in Ax(Dz, De, Di, N, l) is redundant.

This concept of redundancy can be formalized as representative sets and representative
sets of size 2O(tw) can be efficiently computed using results of Bodlaender et al. [6]. To prove
Proposition 3.3, it is enough to derive a recurrence relation for (3.2) that plays well together
with the framework of Bodlaender et al. [6].

3.2 Hardness of kernelization for graphs of small treewidth
In the previous section, we have seen that SSP is efficiently solvable in tree-like graphs,
namely, in graphs of small treewidth. We can complement this result as follows.

I Theorem 3.10 (?). Short Secluded Path has no problem kernel with size polynomial
in tw + k + `, even on planar graphs with maximum degree six, where tw is the treewidth,
unless coNP ⊆ NP/poly and the polynomial-time hierarchy collapses to the third level.

To prove Theorem 3.10, we use a special kind of reduction called cross composition [9].

I Definition 3.11 (cross composition). A polynomial equivalence relation ∼ is an equivalence
relation over Σ∗ such that

there is an algorithm that decides x ∼ y in polynomial time for any two instances x, y ∈ Σ∗,
and such that
the number of equivalence classes of ∼ over any finite set S ⊆ Σ∗ is polynomial in
maxx∈S |x|.

A language K ⊆ Σ∗ cross-composes into a parameterized language L ⊆ Σ∗ × N if there is
a polynomial-time algorithm, called cross composition, that, given a sequence x1, . . . , xp

of p instances that are equivalent under some polynomial equivalence relation, outputs an
instance (x∗, k) such that

k is bounded by a polynomial in maxp
i=1 |xi|+ log p and

(x∗, k) ∈ L if and only if there is an i ∈ {1, . . . , p} such that xi ∈ K.
Cross compositions can be used to rule out problem kernels of polynomial size using the
following result of Bodlaender et al. [9].

I Proposition 3.12 (Bodlaender et al. [9]). If a NP-hard language K ⊆ Σ∗ cross-composes
into the parameterized language L ⊆ Σ∗ × N, then there is no polynomial-size problem kernel
for L unless coNP ⊆ NP/poly and the polynomial-time hierarchy collapses to the third level.

Using a cross composition, Luckow and Fluschnik [37] proved that SSP on planar graphs
of maximum degree six does not admit a problem kernel with size polynomial in k + `. To
prove Theorem 3.10, one can show that the graph created by their cross composition has
treewidth at most 3n+ 3, where n is the number of vertices in each input instance to their
cross composition.
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3.3 Effective data reduction for graphs with small feedback edge set

In the previous section, we have seen that SSP has no problem kernel with size polynomial in
the treewidth of the input graph. We can complement this result by proving a polynomial-size
problem kernel for another parameter that measures the tree-likeness of a graph: the feedback
edge number of a graph is the smallest number of edges one has to delete to obtain a forest.
Formally, we can prove the following theorem.

I Theorem 3.13 (?). Short Secluded Path has a problem kernel with size polynomial in
the feedback edge number of the input graph.

The outline of the proof of Theorem 3.13 is similar that of the proof of Theorem 2.5: we first,
in linear time, produce a weighted instance with O(fes) vertices, then reduce the weights
using Lemma 2.13, and finally transform the weighted instance back into an instance for SSP.

Towards the first step, we apply data reduction rules that reduce the number of degree-one
vertices and the length of paths of degree-two vertices to O(fes). Because of Reduction
Rule 1.4, the graph without the fes edges of a feedback edge set is a tree. Thus, its overall
number of vertices and edges will be bounded by O(fes).

4 Conclusion

Concluding, we point out that our algorithms for VW-SSP on graphs of bounded treewidth
(Theorem 3.2) can easily be generalized to a problem variant where also edges have a weight
counting towards the path length, and so can our subexponential-time algorithms in planar
graphs (Theorem 2.1). Moreover, the technique of Bodlaender et al. [6] that our algorithm
is based on has experimentally been proven to be practically implementable [18].

In contrast, we observed SSP to be a problem for which provably effective polynomial-
time data reduction is rather hard to obtain (Theorems 2.14 and 3.10). Therefore, studying
relaxed models of data reduction with performance guarantees like approximate [36, 19] or
randomized kernelization [35] seems worthwhile.

Indeed, our few positive results on kernelization, that is, our problem kernels of size
vcO(r) in Kr,r-free graphs and of size fesO(1) in graphs of feedback edge number fes for SSP
(Theorems 2.5 and 3.13), for now, can be mainly seen as a proof of concept, since they
employ the quite expensive weight reduction algorithm of Frank and Tardos [22] and we
have no “direct” way of reducing VW-SSP back to SSP. On the positive side, our solution
algorithms also work for VW-SSP, so that reducing weights or reducing back to SSP may
be unnecessary from a practical point of view.
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component effectively explores the search space in order to discover a set of interesting routes.
The second recombines the discovered routes into high-quality solutions. Experimentations on
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1 Introduction

Freight transportation is a key factor underpinning economic growth. However, it is also a
major nuisance, especially in urban areas where congestion and environmental effects disturb
people’s well-being. As demand for freight transportation increases, new transport policies
and better traffic management become essential to limit its effects. The concept of city
logistics is one approach to solving the problem. It aims to optimize freight transportation
within city areas while considering traffic congestion and environmental issues as well as
costs and benefits to the freight shippers [18]. Some of the most used models in city logistics
are multi-echelon distribution systems, especially two-echelon systems.

In a two-echelon distribution system, delivery from one or more depots to the customers is
managed by shipping and consolidating freight through intermediate depots called satellites.
Freight is first moved from the depots to the satellites using large trucks. Then, freight is
delivered from the satellites to the customers using smaller vehicles. Proceeding like this
allows to shape more conveniently the fleet of vehicles to be used, as larger trucks are more
cost efficient whereas smaller ones are preferable in city centers. Because the flow of freight
in each echelon depends on that in the other echelon, routing problems arising in two-echelon
distribution systems must be studied as a whole; they cannot be merely decomposed into
two separate sub-problems. The problem that studies how to efficiently route freight in such
systems is known as the Two-Echelon Vehicle Routing Problem (2E-VRP).

In this paper, we consider the basic version of the 2E-VRP. It is characterized by a single
depot and a set of satellites. A fleet of homogeneous vehicles of known size is available at
each echelon. Vehicle capacities are limited. Only one type of product is to be shipped and
split deliveries are only allowed at the first level. The objective is to minimize the total
routing cost in both levels.

To address this problem, we propose a hybrid heuristic that relies on two components
embedded in an iterative framework. The first component aims to generate a set of promising
routes using destroy and repair operators combined with an efficient local search procedure.
The second component recombines the generated routes by solving a set covering problem to
obtain a high quality solution. Computational experiments conducted on the test instances of
the literature show the performances of our approach, as it reached high quality solutions in
short computing times, and was able to improve the current best known solution for several
large instances.

The remainder of this paper is organized as follows. In Section 2, an overview of the
related literature is given. The problem is described in Section 3, and the proposed approach
is explained in Section 4. Section 5 presents computational results and compares them to the
best known solutions of the literature. Finally, Section 6 concludes and discusses possible
directions for future research.

2 Related work

The first definition of the Two-Echelon Vehicle Routing Problem (2E-VRP) was introduced
by Perboli et al. [11, 12] who proposed a flow-based formulation, and solved the problem using
a Branch-&-Cut algorithm (B&C). Since then, several exact methods have been developed to
solve the 2E-VRP. Jepsen et al. [9] presented a different model for the 2E-VRP and solved
it using a B&C that relies on a MILP relaxation of the problem, a feasibility test, and a
specialized branching scheme to branch on infeasible solutions. Santos et al. [15] developed
two Branch-&-Price (B&P) algorithms to solve the 2E-VRP. The first considers routes that
satisfy elementary constraints while the second relaxes such conditions when pricing. Later,
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Santos et al. [16] implemented a Branch-&-Cut-&-Price algorithm by incorporating valid
inequalities into their B&P. Currently, the best exact method for the 2E-VRP was introduced
in [1] and solves the problem by decomposing it into a set of Multi-Depot VRP with side
constraints. It relies on a new integer linear programming (ILP) formulation, a bounding
procedure based on dynamic programming, and a dual ascent method.

Various heuristics were also proposed to solve the 2E-VRP. Crainic et al. [3, 4] addressed
the 2E-VRP by separating the first and the second echelon into two sub-problems, and
then solving them sequentially. Components of these heuristics were later used in a hybrid
GRASP with path re-linking in [5]. Hemmelmayr et al. [8] implemented an Adaptive Large
Neighborhood Search (ALNS) that uses various repair and destroy operators specifically
designed to solve the 2E-VRP. They also introduced new large instances on which they
tested their algorithm. Zeng et al. [20] presented a hybrid two phase heuristic composed
of a GRASP and Variable Neighborhood Descent (VND). Breunig et al. [2] developed a
Large Neighborhood Search (LNS) for the 2E-VRP that was able to improve the best known
solutions for several instances of the literature. More recently, Wang et al. [19] implemented
a hybrid algorithm for the 2E-VRP with Environmental Considerations (2E-CVRP-E). Their
algorithm comprises of a Variable Neighborhood Search (VNS) followed by a post optimization
step based on the resolution of a linear program. Their algorithm further improves some
best known solutions for 2E-VRP instances.

Related work may include other variants of the 2E-VRP (see [7, 17, 21]), and similar
problems like the Two-Echelon Location Routing Problem (2E-LRP) and the Truck and
Trailer Routing Problem (TTRP). For a more detailed survey on the subject, we invite the
reader to refer to Cuda et al. [6].

3 Problem definition

The 2E-VRP is defined on a weighted undirected graph G = (V,A), where V is the set of
nodes and A the set of arcs. Set V is partitioned as V = {v0}∪Vsat∪Vcust. Node v0 represents
the depot, subset Vsat contains nsat satellites and subset Vcust contains ncust customers. Set
A = A1 ∪A2 is divided into two subsets. A1 = {(i, j) : i, j ∈ {v0} ∪ Vsat, i 6= j} contains the
arcs that can be taken by first level vehicles: trips between the depot and the satellites and
trips between pairs of satellites. A2 = {(i, j) : i, j ∈ Vsat ∪ Vcust, (i, j) /∈ Vsat × Vsat, i 6= j}
contains the arcs that can be taken by second level vehicles: trips between customers and
satellites and trips between pairs of customers. A travel cost cij , (i, j) ∈ A, is associated
with each arc. We assume that the matrix (cij) satisfies the triangle inequality.

Each customer i ∈ Vcust demands di units of freight to be delivered. The demand of a
customer cannot be split among several vehicles, that is, a customer must be served exactly
once. Moreover, customer demands cannot be delivered by direct shipping from the depot
and must be consolidated at a satellite. Satellite demands are not explicitly given but
considered to be the sum of all the customer demands that are served trough the satellite.
We assume that it can exceed vehicle capacity and thus, we allow for it to be split among
different vehicles e.i. a satellite can be served by more than one vehicle. A satellite may also
have a demand equal to zero and, in this case, not be visited by any vehicle. Consolidating
shipments at satellite s ∈ Vsat incurs handling costs equal to hs times the quantity of handled
goods.

A fleet f1 of m1 identical vehicles of capacity Q1 is located at the depot v0 and is used to
deliver goods to the satellites. Additionally, a fleet f2 of m2 identical vehicles of capacity Q2
is available for serving the customers. Each of the m2 vehicles can be located at any satellite
s ∈ Vsat as long as the number of vehicles at one satellite does not exceed a limit ks.
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Depot

Satellite

Customer

1st echelon route

2nd echelon route

Figure 1 Example of a 2E-VRP solution.

We define a first-level route as a route performed by a first-level vehicle that starts at the
depot, visits one or several satellites then returns to the depot. In a same way, we define a
second-level route as a route run by a second-level vehicle that starts at satellite s ∈ Vsat,
visits a subset of customers before returning to s. Routes must respect vehicle capacities,
that is, the sum of deliveries made by a first-level route to the satellites it visits must not
exceed Q1 and the total demand of the customers visited by a second-level route must not
exceed Q2. Each vehicle performs only one tour, and each route has a cost equal to the sum
of the costs of the arcs used.

The objective of the 2E-VRP is to find a set of routes at both levels such that each
costumer is visited exactly once, the capacity constraints are respected, the quantity delivered
to costumers from each satellite is equal to the quantity received from the depot, and the
total routing and handling costs are minimized. Figure 1 shows a solution example for the
2E-VRP.

4 Solution method

We propose a hybrid heuristic that relies on a neighborhood search to generate good feasible
solutions, and a integer programming (IP) method to recombine the routes from those
solutions into a better one. Algorithm 1 summarizes the steps of our method.

At each iteration of the algorithm, the route generation heuristic takes an initial solution
S and tries to improve it while exploring the solution space and storing new routes in the
pool. After that, the recombination component uses the discovered routes to construct a
better solution by solving a Set Cover based formulation of the 2E-VRP. If the recombination
fails to produce a better solution, the algorithm constructs a different one from scratch and
uses it as initial solution for the route generation heuristic during the next iteration. The
idea of the approach is to use the integer program as a mean to find better quality solutions
missed by the route generation heuristic while guiding the search process towards different
regions of the solution space.

Exact models are usually used as post-optimization techniques after the heuristic resolution
process as was done in [14, 19]. This is due to the exponential worst case performance of
the model. What is new in our proposal is that we iteratively apply a Set Cover (SC) based
formulation of the problem as a refinement technique rather than focusing on the local search
results. We show that is possible to combine efficiently heuristic and exact algorithms to
explore the search space within short runtimes.
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Algorithm 1 Neighborhood Search and Set Cover hybrid heuristic for the 2E-VRP.
1 S_best := BestInsertionHeuristic ();
2 S := S_best ;
3 pool := {};
4 While (! Stopping criteria ) Do
5 Begin
6 S := RouteGenerationHeuristic (S,pool );
7 If (cost(S) < cost( S_best )) Then
8 S_best := S;
9

10 S := RouteRecombination (pool );
11 If (cost(S) < cost( S_best )) Then
12 S_best := S;
13 Else
14 S := GreedyInsertionHeuristic (); /* Restart */
15 End;
16 Return S_best ;

4.1 Route generation heuristic
The neighborhood search we use to explore the solution space is based on the destroy-and-
repair principle. At each iteration, a part of the solution is destroyed by removing a limited
number of customers using a destroy operator. The removed customers are then re-inserted
into the solution with a repair operator. The structure of this heuristic is described in
Algorithm 2.

Starting from an initial solution, a random number η ∈ [1, τ ] of customers is removed from
the second echelon. The maximum number of customers to be removed τ is first initialized
to τmin and then increased after each non-improving iteration until it reaches τmax. As
soon as an improvement is found, τ is reset to τmin. Slowly varying the value of τ during
the execution allows to intensify the search around promising solutions and then to slowly
increase diversification as the search converges toward a local optima. Once the solution is
destroyed, the removed customers are reinserted using a repair operator and the obtained
solution is passed to a local search to improve the second echelon routes. After that, the
satellite demands are computed and the first echelon routes are constructed to obtain a
complete solution. If the new solution has a better objective value than S, it is accepted
as the new incumbent. Moreover, after imax consecutive iterations without improving the
incumbent solution, the best-known solution is updated and the configuration of the available
satellites is modified using perturb(S) to allow the search procedure to explore a different
region of the solution space. The solution obtained after the perturbation becomes the new
incumbent. The algorithm ends after iterrepeat consecutive iterations have been performed
without improving the best-found solution.

4.1.1 Destruction
The destroy procedure only considers the second level routes. At each iteration, it randomly
chooses one of the following operators and removes a random number of customers η in [1, τ ].

a. Random removal operator: removes η randomly chosen customers from the solution.
b. Worst removal operator: removes the customers with the highest increase in solution

cost. More precisely, it calculates for each customer k located between i and j a saving
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Algorithm 2 Route generation heuristic.
1 S := S_0; /* Initial solution */
2 S_best := S;
3 tau := tau_min ; iter := 0;
4 Repeat
5 i := 1;
6 While (i < i_max) Do
7 Begin
8 S_tmp := destroy (S,tau );
9 S_tmp := localSearch ( repair (S_tmp ));

10 S_tmp := firstLevelReconstruction (S_tmp );
11 pool := update (pool ,S_tmp ); /* Add routes to pool */
12 If(cost(S_tmp) < cost(S)) Then
13 Begin
14 S:= S_tmp;
15 i := 1;
16 tau := tau_min ;
17 End;
18 Else
19 Begin
20 i := i + 1;
21 increment (tau );
22 End;
23 End;
24 If(cost(S) < cost( S_best )) Then
25 Begin
26 S_best := S;
27 iter := 0;
28 End;
29 Else iter := iter + 1;
30
31 S := perturb (S);
32
33 Until (iter >= iter_repeat );
34 Return S_best ;

value cik + ckj − cij . Savings are then normalized by the average cost of the incident arcs
of the corresponding customer and altered by a random factor between 0.8 and 1.2 as
in [8]. Finally, customers are sorted in decreasing order of their normalized savings and
the η first customers are removed from the solution. Normalizing the savings serves to
avoid repeatedly removing the customers that are isolated from the others.

c. Sequence removal operator: removes a sequence of η consecutive customers from a
randomly chosen route. If η is larger than the chosen route, the whole route is destroyed
and the remaining number of customers is removed from a second route.

4.1.2 Repair and first level reconstruction
Repair is performed by using two heuristics : Best Insertion Heuristic (BIH) and Greedy
Insertion Heuristic (GIH). When repairing an incomplete solution, we first use BIH. This
constructive heuristic identifies among all the unrouted customers the one that increases the
least the total solution cost and inserts it at its best position. It repeats the process until



Y. Amarouche, R.N. Guibadj, and A. Moukrim 11:7

all customers are routed. If one or more customers remain unrouted because their demands
are higher than the largest remaining capacity of any vehicle, the repair process is restarted
using GIH. The Greedy Insertion Heuristic inserts customers in a random order one after
the other at their cheapest possible position in the solution. If the GIH fails, the customers
are randomly reordered and the heuristic restarts. We observed that proceeding this way is
sufficient to achieve feasible solutions after a small number of tries. These repair heuristics
consider feasible insertions in already existing routes. If the maximum number of vehicles is
not yet reached, the creation of new empty routes from open satellites is also tested.

The construction of the first-echelon routes is achieved by means of a heuristic similar
to GIH. The heuristic starts by creating for each satellite with a demand greater than Q1
enough back-and-forth trips so that its remaining demand becomes smaller than Q1. Once it
is done, the heuristic proceeds to insert of the remaining demands the same way as GIH.

4.1.3 Local search
The local search procedure consists of the following operators : 2−opt, 2−opt∗, Relocate(λ),
and Swap(λ1, λ2) with λ, λ1, λ2 ∈ {1, 2}. The 2 − opt operator [10] removes arcs (i, i + 1)
and (j, j + 1) from the same route and reconnects arcs (i, j) and (i+ 1, j + 1). The 2− opt∗
operator [13] is performed on each pair of routes u and v originating from the same satellite.
It replaces arcs (i, i + 1) from u and (j, j + 1) from v by arcs (i, j + 1) and (j, i + 1) or
by arcs (i, j) and (i + 1, j + 1). Relocate moves sequences of λ customers to their best
positions in the solution. Finally, Swap exchanges the positions of two sequences of λ1 and
λ2 customers from the same route or from two different routes. At each iteration, the local
search procedure randomly applies one of the above operators. If the chosen operator does
not improve the solution, it is discarded, otherwise the set of operators is reset. The process
continues until all operators have been discarded. Moves from each operator are performed
in a first-improvement manner until no improving move can be found in the neighborhood.

4.1.4 Perturbation
In order to explore different regions of the search space, we temporarily close satellites and
reopen them using the Close Satellites and Open Satellites operators.

a. Close Satellites: randomly chooses one satellite among the open ones having at least
one route originating from them and closes it. The routes of the chosen satellite are
reassigned to an open satellite that keeps their cost to a minimum. When the number
of open satellites becomes less than the minimum required to serve all customers, the
operator chooses a random satellite among the closed ones and opens it.

b. Open Satellites: chooses a random number of satellites among those that are closed
and opens them. In order to allow the number of open satellites to decrease, especially at
the beginning when most of them are open, the number of satellites to be opened can be
nil.

4.2 Recombination method
The route recombination component uses a pool of routes collected during the search process
and recombines them to obtain a high-quality solution by solving a set cover based formulation
of the problem. In the following, we introduce the notations used in the IP model.

LetM be the set of all the possible first level routes, andMs ⊆M the subset of first-level
routes that serve satellite s ∈ Vsat. We note gr the cost of route r ∈M. Let R be the set of
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all the possible second-level routes, and Rs the subset or routes passing through s ∈ Vsat, thus
R =

⋃
s∈Vsat

Rs. We associate to each route r ∈ R a cost cr, and a load wr =
∑

c∈r dc equal
to the total demand of customers visited in route r. The binary parameter δri is equal to 1
if and only if route r ∈ R visits customer i ∈ Vcust, and 0 otherwise. The second-level routes
having been extracted from valid solutions, they all satisfy the vehicle capacity constraints.

Let yr ∈ {0, 1} be a binary decision variable equal to 1 if and only if first-level route
r ∈ M is in the solution, xr ∈ {0, 1} a binary decision variable equal to 1 if and only if
second-level route r ∈ R is in the solution, and qsr a non-negative variable representing the
amount of goods delivered by route r ∈ M to satellite s ∈ Vsat. We assume that qsr = 0
if satellite s is not visited in route r. Parameter hs represents handling costs at satellite
s ∈ Vsat. The route recombination model can be formulated as follows:

min z =
∑
r∈R

cr · xr +
∑

r∈M
gr · yr +

∑
s∈Vsat

∑
r∈Ms

hs · qsr (1)

s.t.
∑
r∈R

δri · xr ≥ 1 , ∀i ∈ Vcust (2)∑
r∈Rs

xr ≤ ks , ∀s ∈ Vsat (3)

∑
r∈R

xr ≤ m2 (4)∑
r∈M

yr ≤ m1 (5)∑
r∈Ms

qsr =
∑

r∈Rs

wr · xr , ∀s ∈ Vsat (6)

∑
s∈Vsat

qsr ≤ Q1 · yr , ∀r ∈M (7)

xr ∈ {0, 1}, r ∈ R (8)
yr ∈ {0, 1}, r ∈M (9)
qsr ∈ R+, s ∈ Vsat, r ∈M (10)

The objective function (1) states to minimize routing costs on both levels plus handling
costs at each satellite. Constraints (2) ensure that each customer is visited at least once.
Constraints (3) limit the number of second-level vehicles per satellite. Constraints (4) and
(5) impose upper bounds on the number of vehicles used to implement first and second level
routes. Balance between the quantity delivered by first-level routes to a satellite and the
customer demands supplied from said satellite is imposed by constraints (6). Constraints (7)
ensure that the capacity of first-level vehicles in not exceeded. Because the total amount of
goods that need to be supplied to each satellite is not known beforehand, we cannot assume
that capacity constraints are respected by first-level routes like we did for second-level routes.
We need to explicitly state them in the formulation. Finally, constraints (8), (9), and (10)
define the values domain for the decision variables.

Note that the model we use in our recombination component is a relaxation of the 2E-VRP.
Constraints (2) require that each customer is visited at least once, instead of exactly once.
However, since the distance matrix satisfies the triangle inequality, the two formulations
remain equivalent as the resolution process will naturally lean towards solutions with the
least possible amount of visits to a same customer. If the pool contains all the possible
routes, solving the formulation with the relaxed model will still result in an optimal solution
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where each customer is visited exactly once. The idea of relaxing the problem stems from the
fact that the recombination pool only contains a limited subset of routes, thus the solutions
it finds may be few. To increase the number of combinations that can be made, we choose
to allow combining routes that share common customers, as it can lead to better objective
values. Even though the resulting combination may not be a valid solution to the 2E-VRP,
removing the extra visits to each customer makes it feasible while producing new routes and
further lowering the objective value.

4.2.1 Pool management and initialization
The performance of the route recombination component strongly depends on the size of
the pool of routes. A larger size increases the chances of finding high-quality solutions but
also induces higher computation times, whereas a small size reduces computation times but
makes finding improved solutions less likely. Thus, pool size must be fixed in order to offer a
good trade-off between solution quality and computation efforts. Furthermore, to account
for the lesser number of available routes, it is better to keep inside the pool only routes that
are more likely to be in high-quality solutions. To this end, we assign each route a priority
based on the cost of the solution it was extracted from, thus favoring routes that belong to
the best found solutions. When the pool capacity is reached, routes with lower priority are
removed and replaced by the new ones. If a route already exists inside the pool, its priority
is updated if it is extracted from a better solution.

The pool is initialized with the routes of x different solutions generated by the Greedy
Insertion Heuristic described in Section 4.1.2 and improved with the local search procedure
described in Section 4.1.3. Furthermore, for each satellite s we add m1 copies of round trip
routes to s from the depot to account for the possibility of it being served more than once.

4.2.2 Correcting heuristic
When the route recombination model is solved, some customers might be visited more than
once. In this case, we use a correcting heuristic to remove the extra visits and produce a
valid solution. The algorithm starts by establishing the set Vcm of customers that are visited
more than once. It then computes for each visit v of each customer i ∈ Vcm its removal
gain δiv, removes the visit with the highest gain and updates the gains for the remaining
ones. When the number of visits to a customer drops to one, it is removed from Vcm. The
procedure is repeated until Vcm becomes empty. During our tests, we observed that only a
few customers tend to be visited multiple times. Thus, this simple heuristic proves to be
enough to provide good results with limited computational effort.

5 Computational results

Our algorithm was coded in C++ using the Standard Template Library (STL) for data
structures, and IBM ILOG CPLEX 12.6.3 to solve the IP. The algorithm is compiled with
the GNU GCC compiler in a Linux environment and tested on an Intel Xeon E5-2670v2
CPU at 2.50GHz with similar performance to the ones used in the literature.

We conducted extensive computational experiments on the benchmark instances for the
2E-VRP. There are currently six instance sets available. The size of the instances ranges from
12 customers and 2 satellites, to 200 customers and 10 satellites. The main characteristics of
the benchmark instances are listed in Table 5 of Appendix A. Note that the small instances
of Set 1 are no longer used for testing, thus they are not included. For our tests we used the
files provided by Breunig et al. [2].
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Table 1 Parameter settings.

Parameter Description Value
imax max. nb. of non-improving iterations before perturbing the

solution
0.2n

iterrepeat max. nb. of non-improving iterations for the route generation 10
τmin, τmax max. nb. of customers to be removed 0.15n, 0.45n
Spool size of the pool

∑
dc

m2 ∗ 15
Nalgo max. nb. of non-improving iterations in the global algorithm n

5.1 Parameter tuning
The proposed approach has six parameters: (1) imax, iterrepeat, τmin and τmax in the route
generation heuristic; (2) the size of the pool (Spool) in the route recombination component; and
(3) the stopping criterion of the iterative framework. We carried out a series of preliminary
experiments to set the parameter values: we tested our algorithm on a subset of instances
while varying parameter values, and kept those that offered the best trade-off between
solution quality and runtime. The stopping criteria is set according to previous literature.
Breunig et al. [2] set the maximum runtime of their algorithm to 60s for small instances and
900s for larger ones. Wang et al. [19] use the maximum runtime and the maximum number
of iterations Nalgo without improving the best found solution as stopping rules. They set
them so that the maximum runtime of their algorithm does not exceed 1500s. To show the
performance of our method we restrict our runtime to 60s and 900s as do Breunig et al. [2].
The remaining parameter settings are given in Table 1.

5.2 Comparison with the literature
In order to investigate the effectiveness of the proposed algorithm, we compare its performance,
when applicable, with that of the ALNS by Hemmelmayr et al. [8], the LNS by Breunig
et al. [2] and the VNS by Wang et al. [19] as well as the current best-known solution for
each instance from the literature. All the results were obtained through five independent
runs of the algorithm and are summarized in Table 2. The results of our Neighborhood
Search and Set Cover Hybrid Heuristic are listed in column “NS-SC”. The columns “ALNS”,
“LNS”, and “VNS” show the results of the methods proposed by Hemmelmayr et al. [8],
Breunig et al. [2], and Wang et al. [19], respectively. The average and the best objective
value of the five runs are given in columns “Avg. 5” and “Best 5”, respectively. Column
“CPU” shows the average runtime of the algorithm in seconds. The column “BKS” refers
to the best-known solution of that set of instances. As was observed by Breunig et al. [2],
there exist some small differences in objective values that can be explained by a different
rounding convention or the small optimality gap of CPLEX. Table 3 summarizes the gaps
obtained by each algorithm on each benchmark. Columns “Avg. %” and “Best %” show the
average and best gap, respectively, expressed as a percentage. The overall gap is calculated
by considering the number of instances in each benchmark.

Instances in Sets 2 and 3, are relatively easy to solve and all algorithms are able to
find the best known solutions at least one time out of five. Instances in Set 4, while not
bigger than some instances of Sets 2 and 3, are more difficult to solve due to customer
distribution [2]. Our “NS-SC” only misses four of the current best known solutions, and still
achieves high quality solutions with gaps less than 0.04%. Instances of Set 5 are the largest
of the literature and those where the gaps and the runtimes are more important. On these
instances, all the algorithms fail to achieve the best known solutions for several instances,
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Table 3 Summary of average and best gaps on 2E-VRP benchmarks.

ALNS LNS VNS NS-SC
Avg. % Best % Avg. % Best % Avg. % Best % Avg. % Best %

Set 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Set 3 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00
Set 4a 0.01 0.00 0.07 0.02 0.04 0.00
Set 4b 0.30 0.26 0.01 0.00 0.05 0.02 0.03 0.00
Set 5 2.00 0.63 1.51 0.86 0.39 0.20 0.80 0.42
Set 6 A 0.16 0.04 0.06 0.02 0.07 0.02
Set 6 B 0.17 0.11 0.07 0.01 0.11 0.03
Overall 1.27 1.20 0.18 0.09 0.08 0.03 0.10 0.04

Table 4 New best known solution values found by NS-SC.

Instance |Vcust| |Vsat| m1 m2 Former best known New best known
Set 5 100-5-1b 100 5 5 15 1108.62 1103.55

100-10-1b 100 10 5 18 916.25 911.8
100-10-3b 100 10 5 17 850.92 849.73
200-10-1 200 10 5 62 1539.29 1538.35
200-10-1b 200 10 5 30 1186.78 1175.81
200-10-3 200 10 5 63 1780.67 1779.68
200-10-3b 200 10 5 30 1197.9 1196.93

mainly due to the bigger numbers of customers and satellites that constitute the instances.
The ALNS and the LNS can achieve an average relative gap of 2.00% and 1.51%, respectively.
The VNS achieves an average relative gap of 0.39%, but is slower than the other algorithms.
Our algorithm, on the other hand, offers good compromise between solutions quality and
runtime, as it achieves an average relative gap of 0.80% while being significantly faster than
both the LNS and the VNS. It was also able to improve the current best known solutions for
a total of seven instances from Set 5 during our experiments. Only Breunig et al. [2] and
Wang et al. [19] report results on the instances of Set 6. The LNS, the VNS, and our NS-SC
are all able to obtain very low average relative gaps on both Set 6a and Set 6b, but once
again our algorithm has a smaller runtime.

Overall, our algorithm is able to achieve the current best known solutions for 216 out
of 234 instances with an overall average relative gap of 0.10% and running times smaller
than those of the literature. During our experiments, NS-SC found seven new best known
solution values for the instances of Hemmelmayr et al. [8]. The values of these newly found
solutions are reported in Table 4. The Set designation and the names of the instances are
displayed in the first two columns. Column |Vcust| represents the number of customers in the
instance, |Vsat| is the number of satellites, and m1 and m2 indicate the number of available
first-level and second-level vehicles, respectively. Based on the above results, our approach is
very effective in solving the 2E-VRP.

6 Conclusions

In this paper, we presented a hybrid heuristic for the 2E-VRP. The algorithm uses an effective
neighborhood search to explore the solution space and discover high quality solutions. By
keeping trace of the exploration steps, the heuristic generates a set of routes which are then
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recombined using an integer programming model. Solving this model serves as way to find
better solutions that were missed by the neighborhood search procedure and to faster lead
the algorithm towards promising regions of the solution space. Computational experiments
on the standard benchmark instances demonstrate the competitiveness of our approach. Our
algorithm consistently achieves high quality solutions with an overall average relative gap of
0.10%, while requiring less running time than other algorithms, and improves the current
best known solutions for seven instances for which no optimal solution is known.

In summary, the results presented in this paper are encouraging for the application of our
approach to optimize other two-echelon routing problems. Its components can be adapted
and additional ones can be integrated to account for different constraints. Future work will
primarily focus on the extension of the algorithm to variants of the 2E-VRP and similar
routing problems, mainly to accommodate more practical constraints and more realistic cost
structures.
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A Benchmark instances for the 2E-VRP

There are six sets of benchmark instances for the Two-Echelon Vehicle Routing Problem
(2E-VRP). The size of the instances ranges from 12 customers and 2 satellites, to 200
customers and 10 satellites. For our tests, we used the instances provided by [2]. Table 5
displays the main characteristics of the different sets. Column Nb. represents the number
of instances of the set, |Vcust| is the number of customers, |Vsat| is the number of satellites,
m1 and m2 the number of available first-level and second-level vehicles, respectively, and ks

represents the maximum number of second-level routes per satellite. Note that the small
instances of set 1 are no longer used for testing, thus they are not included in the table.
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Table 5 Characteristics of the benchmark instances for the 2E-VRP.

Set Subset Nb. |Vcust| |Vsat| m1 m2 ks

Set 2 a 6 21 2 3 4 -
6 32 2 3 4 -

b 6 50 2 3 5 -
3 50 4 4 5 -

c 6 50 2 3 5 -
3 50 4 4 5 -

Set 3 a 6 21 2 3 4 -
6 32 2 3 4 -

b 6 50 2 3 5 -
c 6 50 2 3 5 -

Set 4 a 18 50 2 3 6 4
18 50 3 3 6 3
18 50 5 3 6 2

b 18 50 2 3 6 -
18 50 3 3 6 -
18 50 5 3 6 -

Set 5
-

6 100 5 5 [15, 32] -
6 100 10 5 [17, 35] -
6 200 10 5 [30, 63] -

Set 6 a 9 50 [4, 6] 2 50 -
9 75 [4, 6] 3 75 -
9 100 [4, 6] 4 100 -

b 9 50 [4, 6] 2 50 -
9 75 [4, 6] 3 75 -
9 100 [4, 6] 4 100 -
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Abstract
Nash flows over time describe the behavior of selfish users eager to reach their destination as
early as possible while traveling along the arcs of a network with capacities and transit times.
Throughout the past decade, they have been thoroughly studied in single-source single-sink net-
works for the deterministic queuing model, which is of particular relevance and frequently used
in the context of traffic and transport networks. In this setting there exist Nash flows over time
that can be described by a sequence of static flows featuring special properties, so-called ‘thin
flows with resetting’. This insight can also be used algorithmically to compute Nash flows over
time. We present an extension of these results to networks with multiple sources and sinks which
are much more relevant in practical applications. In particular, we come up with a subtle general-
ization of thin flows with resetting, which yields a compact description as well as an algorithmic
approach for computing multi-terminal Nash flows over time.
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1 Introduction

With the emergence of novel navigation and vehicle technologies (including, e.g., self-
driving/smart vehicles) along with the availability of massive amounts of data in todays and
future traffic and transportation networks, increasing attention is given to the mathematical
modeling and algorithmic solution of the interplay of individual agents in such networks. We
study the behavior of selfish users who wish to travel through a traffic or transportation
network. While there is already a vast amount of literature and results on steady states of
such systems (see, e.g., Roughgarden [13] and the references therein), much less is known
about the often more realistic but also much more complex situation of such systems evolving
and changing over time.
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12:2 Multi-Source Multi-Sink Nash Flows over Time

Flows over time. Flows over time provide an excellent mathematical model for agents
(flow particles) traveling through a network over time, with capacities and transit times
(delays) on the arcs. Flows over time have been introduced in a seminal paper by Ford and
Fulkerson [4] and can also be found in their classic textbook [5]. For a given single-source
single-sink network with capacities and transit times on the arcs and a given time horizon,
they show how to efficiently construct a maximum flow over time, that is, a way of sending
as much flow as possible from the source to the sink within the given time horizon. The
underlying algorithm is based on a static min-cost flow computation in the given network
where arc transit times are interpreted as costs. A decomposition of the static flow into flows
along source-sink-paths then provides an optimal strategy for sending flow over time from
the source to the sink by using each path as long as possible. Surprisingly, and in contrast to
the situation known for classic (i.e., static) network flows, the problem of balancing given
supplies and demands in a network with several sources and/or sinks by sending flow within
a given time horizon turns out to be considerably more difficult and complicated. Following
the work of Ford and Fulkerson, it took almost four decades before Hoppe and Tardos [8]
came up with an efficient algorithm for solving this transshipment over time problem; see also
Hoppe’s PhD thesis [7]. Their algorithm, however, while being theoretically efficient, relies on
parametric submodular function minimization, leading to unpleasant and usually unrealistic
running times for networks of practical sizes. Only recently, Schlöter and Skutella [14]
presented a slight improvement of this result. Another somewhat surprising evidence for the
increased difficulty of flow over time problems compared to static flow problems is the fact
that the computation of (fractional) multicommodity flows over time constitutes an NP-hard
problem [6]. We refer to [15] for a recent survey on and thorough introduction to flows over
time.

Nash equilibria for the deterministic queuing model. The flow over time problems dis-
cussed in the previous paragraph are all based on the assumption that flow particles are
controlled by a central authority who decides the route choices and schedules of the particles.
In most realistic traffic situations, however, the lack of coordination among flow particles
necessitates an additional game theoretic perspective. We assume that each flow particle
is an individual agent that seeks to arrive at a destination in the least possible time. Such
models have mostly been studied in the transportation literature; see, e.g., the book by Ran
and Boyce [12] for an overview.

In this paper we study Nash equilibria for flows over time in the deterministic queuing
model that is also at the core of many large-scale agent-based traffic simulations such as,
e.g., MATSim; see [9]. Here the actual transit time of a flow particle along an arc is the
sum of the arc’s free-flow transit time plus the waiting time spent in a queue that builds up
whenever more flow tries to use an arc than the arc’s capacity can handle. In particular, the
first-in-first-out (FIFO) principle holds. We refer to Section 3 for a detailed definition.

For a single-source single-sink network, Koch and Skutella [10] characterize Nash flows over
time featuring a special and very useful structure: Their derivatives are piece-wise constant,
therefore constituting a sequence of particular static source-sink flows, so-called thin flows
with resetting. Exploiting this key concept of thin flows with resetting, Cominetti, Correa,
and Larré [2] provide a constructive proof for the existence and uniqueness of equilibria
in this setting, using a fixed-point formulation. Furthermore, for the more general case of
multiple origin-destination pairs, they provide a non-constructive existence proof. For the
single-source single-sink setting, Cominetti, Correa, and Olver [3] show that, for networks
with sufficient capacity, a dynamic equilibrium reaches a steady state in finite time.
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Our contribution. Our structural and algorithmic understanding of Nash flows over time is
limited to the very restrictive special case of single-source single-sink networks. Moreover, in
contrast to the classical case of static flows, single-commodity flows over time in multi-source
multi-sink networks with given supplies and demands cannot easily be reduced by introducing
a super-source and a super-sink; see, e.g., the work of Hoppe and Tardos [8] discussed above.
Nevertheless, we show that such a reduction is possible, albeit non-trivial, when considering
a particularly meaningful model of Nash flows over time in such networks. This leads to
an interesting generalization of the structural and algorithmic results known for the single-
source single-sink case; see [10, 2, 3]. In particular, we present an appropriate generalization
of ‘thin flows with resetting’ and prove that a Nash flow over time can be described and
algorithmically obtained via a sequence of these static flows. As another interesting aspect
of this work, we show how to get rid of the identification of flow particles with the time
they enter the network which has been used in previous work on the single-source single-sink
case. In our more general model, all flow is waiting in front of the sources of the network
right from the beginning, a subtle point that turns out to be crucial for being able to handle
multiple source nodes.

Outline. In Section 2 we informally describe several different settings for dynamic routing
games with multiple sources and sinks and identify a suitable model for our purposes.
Section 3 introduces the necessary concepts and notations for describing Nash flows over
time. Then, Section 4 explains how to deal with multiple source nodes. Finally, in Section 5
multiple sinks are considered as well.

2 Settings for routing games with multiple sources and sinks

There are several different settings for dynamic routing games when considering multiple
sources and multiple sinks. We discuss the most meaningful interpretations in the following.

Nash flows over time are mainly motivated by dynamic traffic assignments which naturally
lead to the consideration of multiple commodities with independent origin-destination-
pairs (si, ti) and inflow rates ri ≥ 0, for i = 1, . . . , n. At each origin si, a flow enters
the network with rate ri and every infinitesimal small particle of this flow has the goal to
reach destination ti as early as possible while considering all other particles from the past
and the future. For every commodity, there are time dependent in- and outflow rates for
every arc that must satisfy flow conservation at every node. A dynamic equilibrium then
consists of a flow over time with n commodities, where each particle chooses a combination
of fastest routes from si to ti as strategy. Note that queues build up on arcs whenever
the inflow rate exceeds the arc’s capacity. This causes a delay of all subsequent particles,
therefore influencing the traversing time of all routes using this arc. Cominetti et al. [2]
prove that these dynamic equilibria exist by using variational inequalities for the path-
based formulation. Unfortunately, the known techniques for single commodity flows are not
sufficient for analyzing or algorithmically constructing such dynamic multi-commodity Nash
flows over time. The fact that each commodity has different earliest arrival times at the
nodes is the main difficulty as this causes cyclic interdependencies between the commodities.
Each particle entering the network has to take into account not only all flow that previously
entered the network, but also flow entering the network subsequently; an illustrative example
is given in the left part of Figure 1.

When we relax the pairing of origins and destinations, however, the route choice of each
particle only depends on flow that previously entered the network. We stick to individual
inflow rates for the sources, but instead of matching the sources to destinations, we consider
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Figure 1 Left: Illustration of cyclic interdependencies of commodities with different origin-
destination-pairs. The waiting times for flow from s1 to t1 within subnetwork G1 depend on flow
starting later from s2 to t2. The cyclic symmetry implies that a particle has to take into account
not only previous but also future flow from all sources. Right: An example of the setting considered
in this article. Each flow particle may choose whether to enter the network at s1 or s2, but the
flow is partitioned according to the demands at the sinks. Here one half of the flow has t1 as its
destination, one third wants to reach t2, and the rest of one sixth aims at t3.
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Figure 2 Assume that, at each point in time, the total inflow is equally divided according to the
demands. Then, in this symmetric instance, a possible dynamic equilibrium sends all flow from s1

to t1 and from s2 to t2 (a). Alternatively, the destinations might be swapped (b). Equilibrium (a),
however, heavily benefits sink t2 by serving it earlier as the path from s1 to t1 is longer than the
path from s2 to t2. Symmetrically, equilibrium (b) benefits t1. This is the reason for considering
queues in front of the sources such that a Nash flow over time is forced to behave symmetrically in
this instance, that is, sinks with the same demand are treated equally in every equilibrium; see (c).

m sinks t1, . . . , tm with demands d1, . . . , dm ≥ 0, such that d1 + · · ·+ dm = 1. The value dj
denotes the share of the total flow entering the network that has tj as destination. In terms
of traffic networks this means that each road user has a predetermined destination, but may
choose between multiple origins to enter the network; see right side of Figure 1. In order to
obtain well defined Nash flows over time with unique arrival times we exclude situations as
described in Figure 2 by considering queues in front of the sources. In other words, there is
essentially one flow R≥0 consisting of a continuum of infinitesimally small particles φ ∈ R≥0,
where each splittable particle chooses, in the order given by <, a convex combination of
fastest routes from the sources to the sinks as strategy. The sum of the coefficients of all
paths to sink tj has to be equal to demand dj . Each particle is then split according to these
coefficients and each part is sent along its route. How these choices of strategies can be
constructed, and what structure these Nash flows over time have, is discussed in this paper.

In the case of one source and multiple sinks with given demands, the two settings
presented above are equivalent: given a multi-origin-destination instance with one source but
n commodities, we can construct an equivalent multi-source multi-sink instance by setting
the inflow at the source to r := r1 + · · ·+ rn and the demand at sink tj to dj := rj/r. It is
easy to see that these settings are also equivalent in the case of multiple sources and one sink.
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u v
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ze(θ)

f+e (θ) f−e (θ)

Figure 3 A snapshot of arc e = uv at time θ, with transit time τe, capacity νe, inflowrate f+
e (θ),

outflowrate f−
e (θ), and queue ze(θ).

3 Flow dynamics

In this section we present all necessary definitions of a fluid queuing network. The model is a
modified version used by Koch and Skutella [10] and Cominetti et al. [1, 2, 3] that matches
the multi-source multi-sink setting.

Throughout this paper we consider a directed graph G = (V,E) with transit times τe ≥ 0
and capacities νe > 0 on every arc e ∈ E, a set of n ≥ 1 sources S+ = { s1, . . . , sn } ⊆ V

with inflow rates r1, . . . , rn > 0, and a set of m ≥ 1 sinks S− = { t1, . . . , tm } ⊆ V . The
corresponding demands will be introduced in Section 5. We assume that every node is
reachable by a source and can itself reach at least one sink. Furthermore, we assume that
the sum of transit times along every directed cycle is positive.

Flows over time. A flow over time is specified by locally integrable and bounded func-
tions f+

e : [0,∞)→ [0,∞) for every arc e. These inflow functions describe the rate of flow
entering the arcs for every point in time θ ∈ [0,∞). We set f+

e (θ) := 0 for θ < 0.
For every arc e there is a bottleneck given by its capacity νe at the head of the arc.1

When flow enters e it immediately starts to traverse this arc, which takes τe time. If the
rate of flow trying to leave e exceeds the capacity νe, the flow builds up a queue in front of
the bottleneck which is described by a function ze : [0,∞) → [0,∞). Note that the queue
does not have any physical dimension in the network, and is therefore called point queue.
Whenever there is a positive queue the outflow rate operates at capacity rate νe. This leads
to the following evolution of the queue starting with z(0) = 0,

z′e(θ) :=
{
f+
e (θ − τe)− νe if ze(θ) > 0

max { f+
e (θ − τe)− νe, 0 } if ze(θ) = 0.

(1)

This determines a unique queue function ze [2], which is characterized later on. The outflow
rate function f−e : [0,∞)→ [0,∞) is defined by

f−e (θ) :=
{
νe if ze(θ) > 0,
min { f+

e (θ − τe), νe } if ze(θ) = 0.
(2)

A flow over time is given by a family of inflow functions (f+
e )e∈E that conserve flow at

every v ∈ V \S−, which means that the following equation holds for almost all θ ∈ [0,∞):

∑
e∈δ+(v)

f+
e (θ)−

∑
e∈δ−(v)

f−e (θ) =
{

0 if v ∈ V \ S+,

ri if v = si ∈ S+.
(3)

1 The dynamics are exactly the same if the bottleneck is located at the tail of the arc or anywhere between
tail and head.
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12:6 Multi-Source Multi-Sink Nash Flows over Time

This ensures that the network does not leak at intermediate vertices and that the amount of
flow entering through source si matches the inflow rate ri.

The cumulative in- and outflow of an arc e is the total amount of flow that has entered
or left e up to some point in time θ and is defined by F+

e (θ) :=
∫ θ

0 f
+
e (ξ) dξ and F−e (θ) :=∫ θ

0 f
−
e (ξ) dξ. The amount of flow in the queue of an arc e at time θ equals the difference

between the amount of flow that has entered the queue before time θ and the flow that
has left the queue up to this point in time. The former can be described by the amount
of flow that has entered arc e at time θ − τe. In short, ze(θ) = F+

e (θ − τe) − F−e (θ); see
Lemma 14 in A.1. Since f+

e and f−e are bounded, the functions F+
e , F−e , and ze are Lipschitz

continuous, and therefore almost everywhere differentiable due to Rademacher’s theorem [11].
Considering that f+

e (θ) and f−e (θ) are non-negative and z′e(θ) ≥ −νe for all θ it follows that
F+
e and F−e are non-decreasing and ze cannot decrease faster than with slope −νe.
We identify the flow with the non-negative reals R≥0, that is, each φ ∈ R≥0 corresponds

to an infinitesimally small flow particle. The natural ordering ≤ corresponds to the priority
among the flow particles when entering the network, i.e., particle φ has priority over all φ′ > φ.
Consequently, all flow that wants to enter the network through the same source does this in
order of priority. Note that the flow represented by the non-negative reals has a width of 1.
That is, there is exactly one unit of flow associated with every unit interval [a, a+ 1] ⊆ R≥0.
To distinguish between flow and time we write R≥0 for the ordered set of flow particles,
mostly denoted by φ or ϕ, and [0,∞) for the time whose elements are points in time, often
denoted by θ or ϑ.

A family of locally integrable functions fi : R≥0 → [0, 1], for i = 1, . . . , n, is called inflow
distribution if

∑n
i=1 fi(φ) = 1 for almost all φ ∈ R≥0 and if each cumulative source inflow

Fi(φ) :=
∫ φ

0 fi(ϕ) dϕ is unbounded for φ→∞. The function fi(φ) describes the fraction of
particle φ that enters the network trough si. The cumulative source inflow functions have to
be unbounded in order to guarantee that the inflow rates at the sources never run dry.

Current shortest paths network. Given a flow over time (f+
e )e∈E together with an inflow

distribution (fi)ni=1, the arc travel time for arc e is the function Te : [0,∞) → [0,∞) that
maps the entrance time θ to the exit time Te(θ). More precisely, if a particle enters e at
time θ, it traverses the arc first, which takes τe time, and then queues up and has to wait
in line for ze(θ + τe)/νe time units. Hence, Te(θ) := θ + τe + ze(θ + τe)/νe. We require the
flow to satisfy the first in first out (FIFO) condition on every arc, that is, no particle can
overtake other flow on an arc or in a queue. Suppose flow particle φ enters e at time θ, then
the amount of flow which has entered e before φ is exactly the amount of flow that leaves e
before time Te(θ) when φ leaves the arc. In short F+

e (θ) = F−e (Te(θ)); see Lemma 14 in A.1.

For every i = 1, . . . , n, the source arrival time function maps each particle φ ∈ R≥0 to the
time it arrives at si and is given by Ti(φ) := Fi(φ)/ri. Given an si-v path P = (e1, e2, . . . , ek)
the arrival time function TP : R≥0 → [0,∞) maps the particle φ to the time at which φ

arrives at v if it traverses the path P , i.e., TP (φ) := Tek ◦ Tek−1 ◦ · · · ◦ Te1 ◦ Ti(φ). Since
the functions ze and Fi are Lipschitz continuous, the same holds for Te,Ti, and TP . Note
that the queue length ze cannot decrease faster than with slope −νe and, therefore all these
T -functions are nondecreasing. Furthermore, all T -functions go to infinity for φ→∞ since
the queue lengths ze are non-negative and the Fi are unbounded.

The earliest arrival time function `v : R≥0 → [0,∞) of node v ∈ V maps each particle φ
to the earliest time `v(φ) it can possibly reach node v. We have `v(φ) = minP∈Pv TP (φ),
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where Pv is the set of all paths from some source s ∈ S+ to v. Note that these node-labels
are also Lipschitz continuous, nondecreasing, and unbounded and that they are the unique
solutions to the following Bellman equations:

`si(φ) = min ({ Ti(φ) } ∪ { Te(`u(φ)) | e = usi ∈ E }) for i = 1, . . . , n,
`v(φ) = min

e=uv∈E
Te(`u(φ)) for v ∈ V \S+.

(4)

This is well defined since all cycles in G have by assumption positive travel times.
For a fixed particle φ we call an arc e = uv active for φ if `v(φ) = Te(`u(φ)) holds. With

E′φ we denote the set of all active arcs for particle φ and the subgraph G′φ = (V,E′φ) is called
the current shortest paths network. Note that the current shortest paths network is always
acyclic since the sum of transit times of each directed cycle is positive.

4 Multi-source single-sink Nash flows over time

For this section we only consider fluid queuing networks with exactly one sink t. A flow over
time together with an inflow distribution corresponds to a strategy profile, where the strategy
of each particle consists of a convex combination of S+-t-paths. The following definition
characterizes a Nash equilibrium.

I Definition 1 (Nash flow over time). A tuple f = ((f+
e )e∈E , (fi)ni=1) consisting of a flow

over time and an inflow distribution is a Nash flow over time, also called dynamic equilibrium,
if the following two Nash flow conditions hold:

`si(φ) = Ti(φ) for all i = 1, . . . , n and almost all φ ∈ R≥0, (N1)
f+
e (θ) > 0 ⇒ θ ∈ `u(Φe) for all arcs e = uv ∈ E and almost all θ ∈ [0,∞), (N2)

where Φe := {φ ∈ R≥0 | e ∈ E′φ } is the set of flow particles for which arc e is active.

Figuratively speaking, these two conditions mean, that entering the network through a
source si is always a fastest way to reach si (N1) and that a Nash flow over time uses only
active arcs (N2), and therefore only shortest paths to t. More precisely, particle φ reaches t
at time `t(φ) by using active arcs only, and `t(φ) is the earliest time φ can possibly reach t
under the assumption that the routes of all previous particles ϕ < φ are fixed. Since this is
true for all particles, a Nash flow over time is indeed a Nash equilibrium.

I Lemma 2. A tuple f = ((f+
e )e∈E , (fi)ni=1) of a flow over time and an inflow distribution is

a Nash flow over time if, and only if, we have F+
e (`u(φ)) = F−e (`v(φ)) and Fi(φ) = `si(φ) · ri

for all arcs e = uv ∈ E, every i = 1, . . . , n, and all particles φ ∈ R≥0.

Proof. “⇒”: Let ξ ∈ [0, φ] be the particle of largest value with F+
e (`u(ξ)) = F−e (`v(φ)).

This ξ exists because of the intermediate value theorem, together with the fact that F+
e ◦ `u

is continuous and the following inequality, which follows by the monotonicity of F−e and
Lemma 14:

F+
e (`u(0)) = 0 ≤ F−e (`v(φ)) ≤ F−e (Te(`u(φ))) = F+

e (`u(φ)).

Note that the second inequality is true because of `v(φ) ≤ Te(`u(φ)). In the case of ξ = φ

we are done since F−e (`v(φ)) = F+
e (`u(ξ)) = F+

e (`u(φ)). Suppose ξ < φ. For all particles
ϕ ∈ (ξ, φ] we know that Te(`u(ϕ)) 6= `v(φ) because, otherwise, we had with Lemma 14 (ii)
that F+

e (`u(ϕ)) = F−e (Te(`u(ϕ))) = F−e (`v(φ)) which would contradict the maximality
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of ξ. Hence, e is not active for particles in (ξ, φ] which implies f+
e (θ) = 0 for almost all

θ ∈ `u((ξ, φ]) = (`u(ξ), `u(φ)] since f is a Nash flow over time. This leads to

F+
e (`u(φ))− F−e (`v(φ)) = F+

e (`u(φ))− F+
e (`u(ξ)) =

∫ `u(φ)

`u(ξ)
f+
e (ϑ) dϑ = 0,

which finishes the first part. The second part follows directly from `si(φ) = Ti(φ) = Fi(φ)/ri
for all i = 1, . . . , n.

“⇐”: Given a particle φ and an arc e = uv such that e is not active for φ, i.e., `v(φ) <
Te(`u(φ)). The continuity of `v and Te ◦ `u implies that there is an ε > 0 with `v(φ+ ε) <
Te(`u(φ − ε)) and e is not active for all particles in [φ − ε, φ + ε]. This, the fact that f+

e

and f−e are non-negative, and Lemma 14 gives us

0 ≤
∫ `u(φ+ε)

`u(φ−ε)
f+
e (ϑ) dϑ =

∫ Te(`u(φ+ε))

Te(`u(φ−ε))
f−e (ϑ) dϑ ≤

∫ Te(`u(φ+ε))

`v(φ+ε)
f−e (ϑ) dϑ

= F−e (Te(`u(φ+ ε)))− F−e (`v(φ+ ε)) = F+
e (`u(φ+ ε))− F−e (`v(φ+ ε)) (ii)= 0.

Hence, f+
e (θ) = 0 for almost all θ ∈ [`u(φ − ε), `u(φ + ε)]. In other words, for almost all

θ ∈ [0,∞) it holds that θ 6∈ `u(Φe)⇒ f+
e (θ) = 0. This is true because for θ ≥ `u(0) we find

a particle φ with `u(φ) = θ, due to the fact, that `u is continuous and unbounded, and for
all θ < `u(0) we have f+

e (θ) = 0, since no flow can reach u faster than `u(0). Finally, we get
`si(φ) = Ti(φ) since `si(φ) · ri = Fi(φ) = Ti(φ) · ri for all i = 1, . . . , n. This shows that f is a
Nash flow over time, which finishes the proof. J

Lemma 2 motivates to consider the underlying static flow for every particle φ, which is
defined by xe(φ) := F+

e (`u(φ)) = F−e (`v(φ)) and xi(φ) := Fi(φ) = `si(φ) · ri. For a fixed φ
this is indeed a static S+-t-flow since the integral of (3) over [0, `v(φ)] yields

∑
e∈δ+(v)

xe(φ)−
∑

e∈δ−(v)

xe(φ) =
{

0 if v ∈ V \(S+ ∪ { t }),
`si(φ) · ri = xi(φ) if v = si ∈ S+.

(5)

Let x′e, x′i, and `′v denote the derivative functions, which exist almost everywhere, since the
x- and `-functions are Lipschitz continuous. It is possible to determine the inflow function
of every arc e = uv from these derivatives, since x′e(φ) = f+

e (`u(φ)) · `′u(φ). Moreover, the
inflow distribution is given by fi(φ) = `′si(φ) · ri. Consequently, a Nash flow over time is
completely characterized by these derivatives. Note that differentiating (5) yields that x′(φ)
also forms a static S+-t-flow, which has very specific properties that are characterized in the
following.

Thin flows with resetting for multiple sources and a single sink. A thin flow with resetting
is a static flow defined on a subgraph of G characterizing the strategies of particles in a flow
interval of a Nash flow over time. The definition of thin flows with resetting given in this
article generalizes the thin flows with resetting introduced in [10] and the normalized thin
flows with resetting from [2], in order to suit the multi-source setting.

Let E′ ⊆ E be a subset of arcs such that the subgraph G′ = (V,E′) is acyclic and every
node is reachable by a source within G′. Note that not every node needs to be able to reach
sink t. Additionally, we consider a subset of arcs E∗ ⊆ E′, called resetting arcs. Moreover,
let K(E′, x′1, . . . , x′n) be the set of all static S+-t-flows in G′ with inflow x′i at source si
for x′i ≥ 0 and x′1 + · · ·+ x′n = 1.



L. Sering and M. Skutella 12:9

I Definition 3 (Thin flow with resetting). A vector (x′i)ni=1, with x′i ≥ 0 and x′1 + · · ·+x′n = 1,
and a static flow (x′e)e∈E ∈ K(E′, x′1, . . . , x′n) together with a node labeling (`′v)v∈V is called
thin flow with resetting on E∗ ⊆ E′ if:

`′si = x′i/ri for all i = 1, . . . , n, (TF1)
`′si ≤ min

e=usi∈E′
ρe(`′u, x′e) for all i = 1, . . . , n, (TF2)

`′v = min
e=uv∈E′

ρe(`′u, x′e) for all v ∈ V \S+, (TF3)

`′v = ρe(`′u, x′e) for all e = uv ∈ E′ with x′e > 0, (TF4)

where ρe(`′u, x′e) :=
{
x′e/νe if e = uv ∈ E∗,
max { `′u, x′e/νe } if e = uv ∈ E′\E∗.

The next theorem states that the derivatives of a Nash flow over time f form almost
everywhere a thin flow with resetting on the arcs with positive queues. Recall that E′φ is the
subset of arcs that are active for φ, and let E∗φ := { e = uv ∈ E | ze(`u(φ) + τe) > 0 } be the
set of arcs where the particle φ would experience a queue.

I Theorem 4. For a Nash flow over time ((f+
e )e∈E , (fi)ni=1), the derivative labels (x′i(φ))ni=1

and (x′e(φ))e∈E′
φ
together with (`′v(φ))v∈V form a thin flow with resetting on E∗φ in the current

shortest paths network G′φ = (V,E′φ), for almost all φ ∈ R≥0.

The intuitive idea is that x′e/νe describes the congestion of arc e and ρe(`′u, x′e) is the
congestion of all paths to v using e. The higher this congestion is, the longer it will take for
following particles to reach v, which is captured by a high derivative of the earliest arrival
time `′v. If we have `′v < ρe(`′u, x′e) this means that e leaves the current shortest paths
network, and therefore it cannot be used by following particles, i.e., x′e = 0. A detailed proof
is given in A.2.

The reverse of Theorem 4 is also true in the sense that we can use thin flows with resetting
to construct a Nash flow over time. For this we first show that there always exists a thin
flow with resetting for any acyclic graph and any subset of resetting arcs.

I Theorem 5. Consider an acyclic graph G′ = (V,E′) with sources S+, sink t, capacities νe,
and a subset of arcs E∗ ⊆ E′ and suppose every node is reachable by a source. Then there
exists a thin flow ((x′i)ni=1, (x′e)e∈E , (`′v)v∈V ) with resetting on E∗.

The proof is essentially given in [2] and is only slightly modified to fit the new definition of a
thin flow with resetting. The key idea is to use a set-valued function in order to apply the
Kakutan’i fixed-point theorem.

Constructing Nash flows. Note that in a dynamic equilibrium no particle can overtake any
other particle, and therefore the choice of strategy for φ only depends on the strategies of
the particles in [0, φ). So we may assume that the particles decide in order of priority. More
precisely, given a Nash flow over time up to some φ ∈ R≥0, it is possible to extend it by
using a thin flow on the G′φ with resetting on E∗φ.

A restricted Nash flow over time on [0, φ] is a Nash flow over time where only the particles
in [0, φ] are considered, i.e., for i = 1, . . . , n we have fi(ϕ) = 0 for all ϕ > φ and for each
arc e = uv ∈ E we have fe(`u(θ)) = 0 for all θ > `u(φ). But the Nash flow conditions (N1)
and (N2) are satisfied for almost all particles in [0, φ] and almost all times in [0, `u(φ)].

Since all previous results carry over to restricted Nash flows over time, the earliest
arrival times (`v)v∈V are well-defined for particles in [0, φ], and therefore it is possible to
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determine G′φ = (V,E′φ) and E∗φ; see Lemma 15 in A.3. To extend a restricted Nash flow over
time, we first compute a thin flow on G′φ with resetting on E∗φ, and then extend the labels
linearly as follows. For some α > 0 we get for all v ∈ V , e ∈ E, i = 1, . . . , n, and ϕ ∈ (φ, φ+α]
that

`v(ϕ) := `v(φ) + (ϕ− φ) · `′v and
xe(ϕ) := xe(φ) + (ϕ− φ) · x′e,
xi(ϕ) := xi(φ) + (ϕ− φ) · x′i.

Based on this we can extend the inflow function and the inflow distribution, which gives us

f+
e (θ) := x′e

`′u
for θ ∈ (`u(φ), `u(φ+α)] and fi(ϕ) := x′i = `′si ·ri for ϕ ∈ (φ, φ+α]

for all e = uv ∈ E and all i = 1, . . . , n. Note that in the case of `′u = 0 the time interval is
empty. Furthermore, it turns out that f−e (θ) = x′e/`

′
v for all θ ∈ (`v(φ), `v(φ + α)], which

is formally shown in Lemma 16 in A.4. This extended flow over time together with the
extended inflow distribution is called α-extension and it extends the Nash flow over time as
long as the α stays within the the following bounds:

`v(φ)− `u(φ) + α(`′v − `′u) ≥ τe for all e = uv ∈ E∗ (6)
`v(φ)− `u(φ) + α(`′v − `′u) ≤ τe for all e = uv ∈ E\E′. (7)

The first inequality ensures that no flow can traverse an arc faster than its transit time. It
holds with equality when the queue of e vanishes at time `u(φ+ α). The second inequality
makes sure that all non-active arcs are unattractive for all particles in [φ, φ + α). When
it holds with equality the arc e becomes active for φ+ α. When such an event occurs we
must compute a new thin flow with resetting because either a resetting arc has become
non-resetting or a non-active arc has become active. It is easy to see that there exists
an α > 0 that satisfies these inequalities since `v(φ) > `u(φ) + τe for arcs e ∈ E∗φ and
`v(φ) < `u(φ) + τe for arcs e 6∈ E′φ, as it is stated in Lemma 15 in A.3.

I Lemma 6. The α-extension forms a flow over time and the extended `-labels coincide with
the earliest arrival times, i.e., satisfy the Bellman equations (4) for all ϕ ∈ (φ, φ+ α].

The flow conservation follows immediately from the flow conservation of x′ and the
Bellman equations are shown by distinguishing three cases. If the arc is non-active it stays
non-active during the extended interval. For active, but non-resetting arcs that do not build
up a queue, we obtain `v(φ+ ξ) ≤ Te(`u(φ+ ξ)) from (TF3) with equality if `′v = ρe(`′u, x′e).
The same is true for resetting arcs or arcs that build up a queue, even though, the proof is a
bit more technical. For a detailed proof we refer to A.5.

I Theorem 7. Given a restricted Nash flow over time ((f+
e )e∈E , (fi)ni=1) on [0, φ] and α > 0

satisfying (6) and (7), the α-extension is a restricted Nash flow over time on [0, φ+ α].

Proof. We have
∑n
i=1 fi(θ) =

∑n
i=1 x

′
i = 1 for all θ ∈ (φ, φ+α], which shows that (fi)ni=1 is a

restricted inflow distribution. Lemma 2 yields F+
e (`u(ϕ)) = F−e (`v(ϕ)) and Fi(ϕ) = `si(ϕ) ·ri

for all ϕ ∈ [0, φ], so for ξ ∈ (0, α] it holds that

F+
e (`u(φ+ ξ)) = F+

e (`u(φ)) + x′e/`
′
u · ξ · `′u = F−e (`v(φ)) + x′e/`

′
v · ξ · `′v = F−e (`v(φ+ ξ)),

Fi(φ+ ξ) = Fi(φ) + ξ · x′i = `si(φ) · ri + ξ · `′si · ri = `si(φ+ ξ) · ri.

Again with Lemma 2 we have that the α-extension is a restricted Nash flow on [0, φ+α]. J
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Finally, we show that this construction leads to a Nash flow over time.

I Theorem 8. There exists a Nash flow over time with multiple sources and a single sink.

Proof. In the first part we show that these α-extensions lead to a restricted Nash flow
on [0,∞). In the second part we prove, that all cumulative source inflow functions are
unbounded, which shows that we have, indeed, a Nash flow over time.

The process starts with the empty flow over time and the zero flow distribution, i.e., a
restricted Nash flow over time for [0, 0]. By applying Theorem 7 iteratively and choosing α
maximal according to (6) and (7), we obtain a sequence of restricted Nash flows over time f i
for [0, φi] for i = 1, 2, . . . , with strictly increasing (φi)∞i=1. In the case that this sequence has
a finite limit, say φ∞, we define a restricted Nash flow over time f∞ for [0, φ∞] by using
the point-wise limit of the x- and `-labels, which exists due to monotonicity and Lipschitz
continuity of these functions. Then the process can be restarted from this limit point.

Let PG be the set of all particles φ ∈ R≥0 for which there exists a restricted Nash flow over
time on [0, φ] constructed as described above. The set PG cannot have a maximal element
because this could be extended by using Theorem 7. But it also cannot have an upper bound
since the limit of any convergent sequence would be contained in this set. Therefore, there
exists an unbounded increasing sequence (φi)∞i=1 ∈ PG. From the corresponding restricted
Nash flows over time we can construct the restricted Nash flow over time f on [0,∞) by
taking the point-wise limit of the x- and `-labels.

It remains to show that the inflow distribution of this restricted Nash flow over time is
unbounded. For this we first show that the earliest arrival time `t is unbounded. There cannot
be an upper bound B on `t since the flow rate into t is bounded by N :=

∑
e∈δ−(t) νe and

with the FIFO principle we obtain that no particle φ > N ·B reaches t before time φ/N > B.
Next, we show that all `-labels are unbounded. Suppose this is not true. Since every node can
reach t there would be an arc e = uv, where `u is bounded and `v is not. Since Te is Lipschitz
continuous Te ◦ `u would be bounded as well. But this contradicts that `v(φ) ≤ Te(`u(φ))
goes to infinity for φ→∞. Hence, Fi(φ) = `si(φ) · ri is unbounded for every i = 1, . . . , n,
which completes the proof. J

5 Multiple sinks with demands

In this section we consider a graph G = (V,E) as before except that it can have multiple
sinks S− := { t1, . . . , tm } and demands d1, . . . , dm > 0 with d1 + · · ·+ dm = 1. We show how
to construct a Nash flow over time in G where a share of dj of the flow has tj as destination.

Sub-flow over time decomposition. In the following we define a sub-flow over time, which is,
intuitively, a colored proportion of a flow over time satisfying flow conservation. Given a flow
over time f = (f+

e )e∈E with queue functions (ze)e∈E , we consider a family of locally integrable
and bounded inflow functions g = (g+

e )e∈E with g+
e (θ) ≤ f+

e (θ) for almost all θ ∈ [0,∞).
The corresponding outflow functions are obtained by the following consideration. For a point
in time ϑ ∈ [0,∞) let T−1

e (ϑ) be all times at which a particle could enter e in order to leave
it at time ϑ. Whenever T−1

e (ϑ) is not a singleton it is a proper interval and by (11) we
have that f+

e (θ) = 0 for almost all θ ∈ T−1
e (ϑ). The sub-outflow function for arc e ∈ E is

defined as

g−e (ϑ) :=
{
f−e (ϑ) · g

+
e (θ)
f+
e (θ) if f+

e (θ) > 0 and T−1
e (ϑ) = { θ } ,

0 else.
(8)
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In other words, if g+
e (θ)/f+

e (θ) ∈ [0, 1] is the inflow share of g at time θ, then the outflow
share of g has the same value at time Te(θ). We call g = (g+

e )e∈E a sub-flow over time of f
if for every v ∈ V \S+ and almost all θ ∈ [0,∞) we have∑

e∈δ−(v)

g−e (θ)−
∑

e∈δ+(v)

g+
e (θ) ≤

∑
e∈δ−(v)

f−e (θ)−
∑

e∈δ+(v)

f+
e (θ). (9)

Intuitively, this means that at every non-source node v the sub-flow over time g can at most
“lose” as much flow as f does. Furthermore, we say g conserves flow at node v ∈ V \S+ if∑

e∈δ−(v) g
−
e (θ)−

∑
e∈δ+(v) g

+
e (θ) = 0 holds for almost all θ ∈ [0,∞). Note that if f conserves

flow at some node v, then g does so as well. We say g is an S+-tj-sub-flow over time if it
conserves flow at all nodes in V \ { tj }.

Given an inflow distribution (fi)ni=1 and a number γ ∈ [0, 1], a family of locally integrable
functions (gi)ni=1 with gi(φ) ≤ fi(φ) is called sub-inflow distribution of value γ if we have∑n
i=1 gi(φ) = γ for almost all φ ∈ R≥0. To ensure that sub-flow is conserved at the sources

we require the net flow leaving a source si at time Ti(φ) to be equal to the amount of flow
distributed to si at time Ti(φ), which is ri · gi(φ)/fi(φ) = gi(φ)/T ′i (φ), whenever fi(φ) > 0
and 0 otherwise. More precisely, we say a sub-inflow distribution matches a sub-flow over
time if for almost all φ ∈ R≥0 and all i = 1, . . . , n we have

T ′i (φ) ·

 ∑
e∈δ+(si)

g+
e (Ti(φ))−

∑
e∈δ−(si)

g−e (Ti(φ))

 = gi(φ).

In this case we also say that the sub-flow over time conserves flow at si and that the sub-flow
over time g has value γ.

I Definition 9 (Sub-flow over time decomposition). A family of sub-flows over time (gj+e )e∈E
and matching sub-inflow distributions (gji )ni=1 of value γj , for j = 1, . . . ,m, is called a sub-flow
over time decomposition of f with values γ1, . . . , γm if

∑m
j=1 γj = 1 and

g1+
e (θ) + · · ·+ gm+

e (θ) = f+
e (θ) for all e ∈ E and almost all θ ∈ [0,∞).

Note that (8) implies
∑m
j=1 g

j−
e (ξ) = f−e (ξ) for all e ∈ E and almost all ξ ∈ [0,∞).

Nash flows over time with multiple sinks and demands. These sub-flow over time decom-
positions allow us to formalize Nash flows over time in the setting of multiple sinks with
demands. Note that for the sake of clarity we omit the + and simply write fe and gje for the
inflow functions for the remaining of this paper.

I Definition 10 (Nash flow over time with demands). A tuple f = ((fe)e∈E , (fi)ni=1) consisting
of a flow over time and an inflow distribution is a Nash flow over time with demands d1, . . . , dm
if it satisfies the Nash flow conditions (N1) and (N2) from Definition 1 and, furthermore, has
a sub-flow over time decomposition ((gje)e∈E , (g

j
i )ni=1)mj=1, such that (gje)e∈E is an S+-tj-sub-

flow over time of value dj for all j = 1, . . . ,m.

To construct a Nash flow over time with demands we add a super sink t to the graph and
use a single-sink Nash flow over time as constructed in Section 4. For this let νmin := mine∈E νe
and rmin := mini=1,...,n ri be the minimal capacity/inflow rate and σ := min { νmin, rmin }.
For all j = 1, . . . ,m we define δj := mins∈S+ d(s, tj), where d(s, tj) is the length of a shortest
s-tj-path according to the transit times. Furthermore, let δmax := maxj=1,...,m δj be the



L. Sering and M. Skutella 12:13

maximal distance to some sink tj from its nearest source. We extend G by a super sink t
and m new arcs ej := (tj , t) with

τej := δmax − δj and νej := 1/2 · dj · σ. (10)

We denote the extended graph by Ḡ := (V̄ , Ē) with V̄ := V ∪{ t } and Ē := E∪{ e1, . . . , em }.
Note, that the new capacities are strictly smaller than all original capacities and all inflow

rates and that they are proportional to the demands. Furthermore, we choose the transit
times such that all new arcs are in the current shortest paths network for particle φ = 0.
The reason for the choice of σ is that for every thin flow with resetting (x′, `′) in G we have
`′v ≤ 1/σ for all v ∈ V , which is shown in Lemma 17 in A.6.

We obtain a Nash flow over time with demands f by using a single-sink Nash flow over
time f̄ in Ḡ, which exists due to Theorem 8. To prove this we first show that if all new arcs
are active for some particle φ then there is a static flow decomposition of the thin flow with
resetting x′ with x′ej = dj . This is formalized in the following lemma, where we write x′

∣∣
E

for the restriction of x′ to the original graph G and | · | for the flow value of a static flow.

I Lemma 11. Consider a thin flow with resetting (x′, `′) in Ḡ where { e1, . . . , em } ⊆ E′,
then there exists a static flow decomposition x′

∣∣
E

= x′1 + · · · + x′m such that each static
flow x′j conserves flow on all v ∈ V \(S+ ∪ { tj }) and

∣∣x′j∣∣ = dj for j = 1, . . . ,m.

Proof. Let P be the set of all S+-t-paths in the current shortest paths network G′ = (V,E′).
Note, that G′ is always acyclic and x′ can, therefore, be described by the path vector (x′P )P∈P
due to the well-known flow decomposition theorem. For j = 1, . . . ,m let Pj be the set of
all S+-t-paths that contain ej . These sets form a partition of P since every path has to
use exactly one of the new arcs. By setting x′j :=

∑
P∈Pj x

′
P

∣∣
E

we obtain the desired
decomposition of x′, because x′P

∣∣
E
for P ∈ Pj conserves flow on all nodes except the ones

in S+ ∪ { tj } and the same is true for their sums.
Since x′j sends

∣∣x′j∣∣ flow units from S+ over ej to tj we have
∣∣x′j∣∣ = x′ej . It remains to

show that x′ej = dj for all j = 1, . . . ,m. Suppose this is not true. Since x′ sends exactly
d1 + · · ·+ dm = 1 flow units from S+ to t, there has to be an index a ∈ { 1, . . . ,m } with
x′ea > da and an index b ∈ { 1, . . . ,m } with x′eb < db.

With Lemma 17 it follows that

`′tb ≤
1
σ

(10)
<

da
νea

<
x′ea
νea

(TF4)
≤ `′t as well as

x′eb
νeb

(10)=
x′eb
db︸︷︷︸
<1

· 2
σ
<
x′ea
da︸︷︷︸
>1

· 2
σ

(10)=
x′ea
νea

(TF4)
≤ `′t.

But this is a contradiction, because (TF3) yields that `′t = min
j=1,...,m

ρej (`′tj , x
′
ej ) and the last

two equations show ρeb(`′tb , x
′
eb

) < `′t. Hence, we have
∣∣x′j∣∣ = dj for all j = 1, . . . ,m, which

finishes the proof. J

I Lemma 12. In a Nash flow over time f̄ in Ḡ the new arcs e1, . . . , em are active for all
particles φ ∈ R≥0.

Proof. For particle φ = 0 there are no queues yet, and therefore the exit time for each
arc e is Te(θ) = θ + τe. Hence, `tj (0) = δj for all j = 1, . . . ,m and by construction we
have `t(0) = `tj (0) + τej = Tej (`tj (0)) for j = 1, . . . ,m. Therefore, all arcs ej are active
in the beginning and also during the first thin flow phase because by Lemma 11 we have
x′ej > 0 for the first thin flow with resetting which implies that ej stays active.
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Suppose now for contradiction that there are particles for which not all new arcs are
active. Let φ0 be the infimum of these particles. By the consideration above we have φ0 > 0
and Lemmas 17 and 11 imply

f+
ej (`tj (φ)) =

x′ej
`′tj
≥ x′ej · σ = dj · σ

(10)
> νej

for almost all φ ∈ [0, φ0) and all j = 1, . . . ,m. Hence, (1) yields z′ej (`tj (φ) + τej ) =
f+
ej (`tj (φ))− νej > 0 and, together with the fact that `′tj > 0 (due to the positive throughput
of x′ at tj), we obtain

d
dφzej (`tj (φ) + τej ) = z′ej (`tj (φ) + τej ) · `′tj > 0.

In other words, a queue is building up within [0, φ0), and therefore zej (`tj (φ0) + τej ) > 0 for
all j = 1, . . . ,m. But the continuity of zej implies that there will be positive queues for all
φ ∈ [φ0, φ0 + ε] for sufficiently small ε > 0. By Lemma 15 this implies that all new arcs are
active during this interval contradicting that φ0 is an infimum. J

By means of the previous lemmas we can finally prove that the Nash flow over time in Ḡ
induces a Nash flow over time with demands in G.

I Theorem 13. Let f̄ be a S+-t-Nash flow over time in Ḡ. The flow over time f := f̄
∣∣
E

on
the original network together with the inflow distribution of f̄ is a Nash flow over time with
demands d1, . . . , dm.

Proof. We have to show that the thin flow decompositions of the particles in R≥0 correspond
to a sub-flow over time decomposition of the Nash flow over time. Throughout this proof we
denote δ−(v) and δ+(v) for the in- and out-going arcs of v within the original network G.
Let I := [a, b) be an interval such that the thin flow with resetting is constant (x′, `′) for all
particles in I. For every node v we denote by Iv := [`v(a), `v(b)) the interval of local times
of particles in I. By Lemma 12 all new arcs e1, . . . , em are active. Let x′1, . . . , x′m be the
thin flow decomposition given by Lemma 11. The corresponding decomposition for the Nash
flow over time with demands is constructed by setting

gje(θ) := x′je
`′u

for θ ∈ Iu

gji (φ) :=
∑

e∈δ+(si)

x′je −
∑

e∈δ−(si)

x′je for ϕ ∈ I

for all j = 1, . . . ,m, every e = uv ∈ E, and all i = 1, . . . , n. Note that if `′u = 0 we have
`u(a) = `u(b), and therefore Iu is empty. By setting gje(θ) := 0 for all θ < `u(0) we obtain
well-defined functions gje.

First, we show that gj satisfies the sub-flow over time properties and conserves flow at all
nodes except S+ ∪ { tj } for all θ ∈ Iu.

Given an arc e = uv we obviously have for all θ ∈ Iu that

gje(θ) = x′je /`
′
u ≤ x′e/`′u = fe(θ).

If x′e > 0 we have fe(θ) = x′e/`
′
u > 0 for almost all θ ∈ Iu and by the definition of gj− we get

for almost all ξ ∈ Iv = Te(Iu) and θ ∈ Iu, the unique value with ξ = Te(`u(φ)), that

gj−e (ξ) = f−e (ξ) · g
j
e(θ)
fe(θ)

= x′e
`′v
· x
′j
e

`′u
· `
′
u

x′e
= x′je

`′v
.
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But this equality also holds if x′e = 0 because in this case it holds that fe(θ) = 0 for almost
all θ ∈ Iu, and therefore we have by definition that gj−e (ξ) = 0. The following equation shows
that gj conserves flow at all nodes v ∈ V \S+ ∪ { tj } for almost all θ ∈ Iv∑
e∈δ−(v)

gj−e (θ)−
∑

e∈δ+(v)

gje(θ) =
∑

e∈δ−(v)

x′je
`′v
−
∑

e∈δ+(v)

x′je
`′v

= 1
`′v
·

 ∑
e∈δ−(v)

x′je −
∑

e∈δ+(v)

x′je

 = 0,

where the last equality holds because of the flow conservation of x′j at v. To show (9) it
remains to prove it for tj , which is true because for all θ ∈ Itj we have∑

e∈δ−(tj)

gj−e (θ)−
∑

e∈δ+(tj)

gje(θ) =
xej
`′tj

= f̄ej (θ) =
∑

e∈δ−(tj)

f−e (θ)−
∑

e∈δ+(tj)

fe(θ).

Next, we show that (gji )ni=1 is a matching sub-inflow distribution for all j = 1, . . . ,m with
values dj for all φ ∈ I. In the case of T ′(φ) (N1)= `′si > 0 it holds that ∑

e∈δ+(si)

gje(`si(φ))−
∑

e∈δ−(si)

gj−e (`si(φ))

T ′i (φ) =

 ∑
e∈δ+(si)

x′je
`′si
−

∑
e∈δ−(si)

x′je
`′si

 `′si = gji (φ).

In the case of `′si = 0 this is also true since both sides are equal to 0. By Lemma 11 we
obtain for all φ ∈ I that

n∑
i=1

gji (φ) =
n∑
i=1

 ∑
e∈δ+(si)

x′je −
∑

e∈δ−(si)

x′je

 =
∣∣x′j∣∣ = dj .

Finally, we show that the family (gj)mj=1 together with the matching sub-inflow distributions
fulfills the sub-flow over time decomposition conditions for all θ ∈ Iu. Clearly,

∑m
j=1 dj = 1

and for all e = uv ∈ E we have
m∑
j=1

gje(θ) =
m∑
j=1

x′je
`′u

= x′e
`′u

= fe(θ).

Note that all these previous conditions hold for all φ ∈ R≥0 and all θ ∈ [0,∞) because either
θ < `v(0), where all in and out flow at v is 0, or θ is element of the local times Iu of some
particle interval I. Hence, (gj)j=1m is a sub-flow over time decomposition of f with values
d1, . . . , dm, where gj is an S+-tj-sub-flow over time. Since f̄ is a Nash flow over time f
satisfies the Nash flow conditions (N1) and (N2) as well, and therefore f is a Nash flow over
time with demands d1, . . . , dm. J

6 Conclusion and outlook

We showed that the Nash flow over time introduced in [10] can be extended to our multi-
terminal setting, for which we uncoupled the flow particles from their entering times and
introduced inflow distributions instead. Furthermore, the proper definition of a sub-flow-
structure and a super-sink-construction allowed us to have Nash flows over time with multiple
sinks and demands. Nonetheless the much more challenging question about the structure
of a dynamic equilibrium in a setting with multiple origin-destination-pairs remains open.
There are also further interesting aspects that are unsolved in the original setting, such as
the computational complexity of thin flows with resetting or the question if the number of
thin flow phases is finite within a Nash flow over time. Last but not least the very interesting
question if the price of anarchy is bounded or not remains open, despite some promising
progress in recent time.
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A Appendix

A.1 Cumulative flows and queues
I Lemma 14. For a given arc e = uv ∈ E the following is true for all times θ ≥ 0:
(i) ze(θ) = F+

e (θ − τe)− F−e (θ)
(ii) F+

e (θ) = F−e (Te(θ))

A proof can be found in [2, Section 2.2] and [10, Proposition 2].

A.2 Proof of Theorem 4
I Theorem 4. For a Nash flow over time ((f+

e )e∈E , (fi)ni=1), the derivative labels (x′i(φ))ni=1
and (x′e(φ))e∈E′

φ
together with (`′v(φ))v∈V form a thin flow with resetting on E∗φ in the current

shortest paths network G′φ = (V,E′φ), for almost all φ ∈ R≥0.
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Proof. In Lemma 15 we showed that G′φ and E∗φ satisfy the preconditions. Furthermore,
we have x′i(φ) = fi(φ) ≥ 0 for all i = 1, . . . , n and

∑n
i=1 x

′
i(φ) =

∑n
i=1 fi(φ) = 1 for almost

all φ ∈ R≥0. It remains to show that the equations (TF1) to (TF4) are satisfied for almost
all particles. For this let φ be a particle such that for all e = uv the derivatives of xe, `v, and
Te ◦ `u exist and x′e(φ) = f+

e (`u(φ)) · `′u(φ) = f−e (`v(φ)) · `′v(φ), which is almost everywhere.
From Lemma 2 follows (TF1) directly.

For (TF2) and (TF3) first note that since ze is Lipschitz continuous, so is Te. We thus
obtain from (1) that the derivative of Te(θ) is almost everywhere

T ′e(θ) =


f+
e (θ)
νe

if ze(θ + τe) > 0,
max

{
f+
e (θ)
νe

, 1
}

if ze(θ + τe) = 0.
(11)

In the case of ze(`u(φ) + τe) > 0 we have

d
dφTe(`u(φ)) = T ′e(`u(φ)) · `′u(φ) (11)=

(
f+
e (`u(φ))
νe

)
· `′u(φ) = x′e(φ)

νe

and if ze(`u(φ) + τe) = 0, it holds that

d
dφTe(`u(φ)) (11)= max

{
f+
e (`u(φ))
νe

, 1
}
· `′u(φ) = max

{
x′e(φ)
νe

, `′u(φ)
}
.

Since the first case is equivalent to e ∈ E∗φ and the second to e ∈ E′φ\E∗φ we obtain

d
dφTe(`u(φ)) = ρe(`′u(φ), x′e(φ)).

This equality together with the Bellman equations (4) and the differentiation rule for a
minimum, i.e., `′v(φ) = minuv∈E′

φ
T ′uv(φ), provides

`′si(φ) ≤ min
e=usi∈E′φ

ρe(`′u(φ), x′e(φ)) and `′v(φ) = min
e=uv∈E′

φ

ρe(`′u(φ), x′e(φ)).

For (TF4) suppose x′e(φ) = f−e (`v(φ)) · `′v(φ) > 0. With (2) we obtain

`′v(φ) = x′e(φ)
f−e (`v(φ))

=


x′e(φ)

min
{
f+
e (`u(φ)), νe

} if ze(`u + τe) = 0,

x′e(φ)
νe

else,

=


max

{
`′u,

x′e(φ)
νe

}
if e ∈ E′φ\E∗φ,

x′e(φ)
νe

if e ∈ E∗φ,

= ρe(`′u(φ), x′e(φ)).

This shows that the derivatives (x′i(φ))ni=1, (x′e(φ))e∈E′
φ
, and (`′v(φ))v∈V form a thin flow

with resetting. J

A.3 Characterization of active and resetting arcs
This lemma shows, among other facts, that every arc with a positive queue has to be active.
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I Lemma 15. Consider a Nash flow over time f with earliest arrival times (`v)v∈V . For
every particle φ ∈ R≥0, the following statements are true:
(i) E∗φ ⊆ E′φ
(ii) E′φ = { e = uv ∈ E | `v(φ) ≥ `u(φ) + τe }
(iii) E∗φ = { e = uv ∈ E | `v(φ) > `u(φ) + τe }
(iv) The graph G′φ = (V,E′φ) is acyclic and every node is reachable by a source.

For a proof we refer to [2, Proposition 2].

A.4 Extended outflow functions
I Lemma 16. Let ((f+

e )e∈E , (fi)ni=1) be a restricted Nash flow over time on [0, φ] and let
α > 0 satisfy (6) and (7). Then the outflow functions of the α-extension satisfy f−e (θ) = x′e

`′v

for all e = uv ∈ E and almost all θ ∈ (`v(φ), `v(φ+ α)] and f−e (θ) = 0 for θ > `v(φ+ α).

Proof. Note that throughout this proof `v(ϕ) for ϕ > φ is not the earliest arrival time, but
the linear extension `v(ϕ) := `v(φ) + (ϕ− φ) · `′v. Let I := (φ, φ+ α] be the flow of interest
and Iv := (`v(φ, `v(φ+ α)] for all nodes v. The particles in [0, φ] do not interfere with the
outflow function f+

v within Iv, since otherwise the restricted Nash flow over time would not
have chosen the fastest direction. We divide the proof into three cases.

Case 1: x′e = 0.
Since f+

e (θ) = x′e/`
′
u = 0 for all θ ∈ Iu we have that f−e (θ) = 0 = x′e/`

′
v for all θ ∈ Iv and

of course f−e (θ) = 0 for θ > `u(φ+ α).

Case 2: x′e > 0, e 6∈ E∗ and x′e/νe ≤ `′u.
We know that e is active during I and that f+

e (θ) = x′e/`
′
u ≤ νe for θ ∈ Iu. Furthermore,

there is no queue at the beginning and no queue is building up. Therefore, we have `v(φ) =
`u(φ) + τe. The definition of thin flows with resetting provides `′u = `′v and together with the
definition of the extension we obtain

`u(φ+ α) + τe = `u(φ) + α · `′u + τe = `v(φ) + α · `′v = `v(φ+ α).

Hence, the last flow entering e at time `u(φ+ α) leaves the edge at time `v(φ+ α) and since
the outflow rate at time θ ∈ Iv equals the inflow rate at time θ − τe ∈ Iu we get

f−e (θ) = f+
e (θ − τe) = x′e

`′u
= x′e
`′v
.

Furthermore, no flow enters e after `u(φ + α), and therefore the outflow function is zero
after `v(φ+ α).

Case 3: x′e > 0 and (e ∈ E∗ or x′e/νe > `′u).
This means there is either a queue at the beginning and throughout the phase or there is

no queue at the beginning but immediately after φ a queue will build up. In either case, e is
active for all particles in I and `′v = x′e/νe. The inflow rate is f+

e (θ) = x′e/`
′
u for all Iu, and

therefore the amount of flow entering e during this interval is

A := x′e/`
′
u · (`u(φ+ α)− `u(φ)) = x′e/`

′
u · (`u(φ) + α · `′u − `u(φ)) = x′e · α.
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Since φ leaves e at time `v(φ) and f−e operates at capacity rate the last particle φ+ α leaves
e at time

`v(φ) +A/νe = `v(φ) + α · x′e/νe = `v(φ) + α · `′v = `v(φ+ α).

Therefore, we have for all θ ∈ Iv that

f−e (θ) = νe = x′e
`′v
.

Since no flow is entering after `u(φ+ α) and particle φ+ α leaves e at time `v(φ+ α) the
outflow function is zero afterwards. This completes the proof. J

A.5 Proof of Lemma 6
I Lemma 6. The α-extension forms a flow over time and the extended `-labels coincide with
the earliest arrival times, i.e., satisfy the Bellman equations (4) for all ϕ ∈ (φ, φ+ α].

Proof. In order to prove that the α-extension forms a flow over time we have to show
that the flow conservation is fulfilled at every v ∈ V \ { t }, which is true because for all
θ ∈ (`v(φ), `v(φ+ α)] it holds that∑

e∈δ+(v)

f+
e (θ)−

∑
e∈δ−(v)

f−e (θ) =
∑

e∈δ+(v)

x′e/`
′
v −

∑
e∈δ−(v)

x′e/`
′
v

=
{

0 if v ∈ V \(S+ ∪ { t })
x′i/`

′
v = ri if v = si ∈ S+.

For θ > `v(φ+ α) all functions as well as the inflow rates are zero, and therefore the flow
conservation holds as well.

For the second part we show that the Bellman equations (4) for the earliest arrival times
hold. Given an arc e = uv ∈ E, we distinguish between three cases.

Case 1: e ∈ E\E′φ.
Since α satisfies equation (7) it is satisfied for all ξ ∈ (0, α] and hence,

`v(φ+ ξ) = `v(φ) + ξ · `′v
(7)
≤ `u(φ) + ξ · `′u + τe ≤ Te(`u(φ) + ξ · `′u) = Te(`u(φ+ ξ)).

Case 2: e ∈ E′φ\E∗φ and `′u ≥ x′e/νe.
Since e is active we have `v(φ) = Te(`u(φ)) = `u(φ)+τe and (TF3) implies `′v ≤ `′u. There

is no queue building up, which means ze(`u(φ+ ξ) + τe) = 0 for all ξ ∈ (0, α]. Combining
these yields

`v(φ+ ξ) = `v(φ) + ξ · `′v
(TF3)
≤ `u(φ) + τe + ξ · `′u = `u(φ+ ξ) + τe = Te(`u(φ+ ξ)).

Case 3: e ∈ E∗φ or (e ∈ E′φ and `′u < x′e/νe).
Again, e is active, which means `v(φ) = Te(`u(φ)) = `u(φ) + τe + ze(`u(φ) + τe)/νe.

Additionally, e ∈ E∗φ or x′e/`′u ≤ νe together with the thin flow condition (TF3) implies `′v ≤
x′e/νe. Since f+

e (`u(φ)) − νe = x′e/`
′
u − νe > 0, equation (1) implies z′e(`u(φ) + τe) =
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f+
e (`u(φ))−νe = x′e/`

′
u−νe. Rearranging gives us, x′e/νe = z′e(`u(φ)+τe) ·`′u/νe+`′u. Hence,

for all ξ ∈ (0, α] we obtain with (TF3) that

`v(φ+ ξ) = `v(φ) + ξ · `′v
≤ `v(φ) + ξ · x′e/νe
= `u(φ) + τe + ze(`u(φ) + τe)/νe + ξ · (z′(`u(φ) + τe) · `′u/νe + `′u)
= `u(φ+ ξ) + τe + ze(`u(φ) + τe + ξ · `′u)/νe
= Te(`u(φ+ ξ)).

This shows that there is no arc with an exit time earlier than the earliest arrival time, and
therefore the left hand side of the Bellman equations is always smaller or equal to the right
hand side. It remains to show that the equations hold with equality. For a source si we have
x′i = fi(φ) = ri · T ′i (φ), and therefore

`si(φ+ ξ) = `si(φ) + ξ · `′si = Ti(φ) + ξ · x′i/ri = Ti(φ) + ξ · T ′i (φ) = Ti(φ+ ξ)

for all ξ ∈ (0, α]. Hence, entering the network at a specific source is always a fastest option to
reach it. For every node v ∈ V \S+ there is at least one arc e ∈ E′ with `′v = ρ(`′u, x′e) in the
thin flow due to (TF3). No matter if this arc belongs to Case 2 or Case 3 the corresponding
equation holds with equality, which shows for all ξ ∈ (0, α] that

`v(φ+ ξ) = min
e=uv∈E

Te(`u(φ+ ξ)).

This completes the proof. J

A.6 Bound on node labels of thin flows with resetting
I Lemma 17. For every thin flow with resetting (x′, `′) in G we have `′v ≤ 1/σ for all v ∈ V .

Proof. It holds that `′si = x′i/ri and for v ∈ V \S+ the `′v labels are equal to `′u or x′e/νe for
some incoming arc e = uv. It follows that all `′ labels in the original graph are bounded
from above by

max
{(

max
i=1,...,n

x′i/ri

)
,

(
max
e∈E

x′e/νe

)}
≤ max { 1/rmin, 1/νmin } = 1/σ.

Note that all x′i and x′e are bounded by 1 from above since the flow value of x′ is 1. J
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bounding the number of traffic units entering an edge simultaneously. Additionally, a priority
policy on the set of players is publicly known with respect to which conflicts at intersections are
resolved. We prove the existence of a pure Nash equilibrium and show that it can be constructed
by sequentially computing an integral earliest arrival flow for each player. Moreover, we derive
several tight bounds on the price of anarchy and the price of stability in single source games.
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13:2 Oligopolistic Competitive Packet Routing

We model the network by a directed graph G = (V,E) whose edges correspond to the
links of the network. Each edge e ∈ E is equipped with a certain bandwidth ue > 0 denoting
the maximal number of packets that are allowed to enter edge e simultaneously, and a certain
transit time τe ≥ 0 denoting the time needed for a single packet to traverse e. Each packet
must be sent through the network from its origin si ∈ V to its destination ti ∈ V along a
single path Pi selected from the collection Pi ⊆ 2|E| of all simple si-ti-paths. We assume
that time is discrete and that all packets take their steps simultaneously. Thus, it suffices to
consider integral capacities and travel times. The corresponding packet routing problem is
to minimize the makespan of such a routing protocol, which is the latest point in time when
a packet reaches its destination vertex. This problem is also known under the name quickest
integral multi-commodity flow over time (see e.g. [4]).

When considering packet routing problems, like routing traffic in a road network, it is
natural to view these problems from a game-theoretical perspective. In particular, as it might
well be the case that there is no central authority which predescribes a routing protocol.
Instead, packets are routed through the network by selfish acting decision makers (“players”)
each of which aiming at sending the packets under her control as fast as possible from the
player-specific origin to the player-specific destination. Such situations can be modeled by
competitive packet routing games, a special class of non-cooperative strategic games. In a
competitive packet routing game, the network and the forwarding policy are publicly known.
Each of the players i ∈ N = {1, . . . , n} decides on the routes along which the ki packets
under her control are to be routed from origin si to destination ti.

Packet routing games usually restrict to the setting where each player controls exactly one
packet. In this paper, we consider the more general setting where each player i ∈ N controls
an arbitrary integral amount of ki packets which all need to be routed along paths in Pi. We
call these games oligopolistic competitive packet routing games to distinguish between our
model and the model of competitive packet routing games investigated in [6]. The individual
goal for each player is to minimize the average arrival time of the packets under her control,
which corresponds to the computation of an earliest arrival schedule [9]. As a forwarding
policy, we assume in our model that a global priority list π on the players is given according
to which conflicts at intersections are resolved. That is, when more packets seek to enter an
edge than the capacity allows for, packets belonging to players higher on the priority list go
first. In these games, we study the drawbacks of the absence of a central authority, and the
benefits of coordination between players. This analysis is motivated by future road traffic
scenarios where instead of individual cars, private companies own fleets with a large number
of autonomous vehicles. Similar to the development of the commercialization of the internet
(and the possible abolition of net neutrality), one can think of a system where higher paying
fleet owners gain benefits (priority) over non-paying fleet owners. As a city you are interested
in the performance of such a prioritized system.

Contributions

A strategy where no player can unilaterally deviate to decrease her cost is called a pure Nash
equilibrium (equilibrium, for short). In Section 3, we show that an equilibrium exists and that
it can be constructed within pseudo-polynomial time by sequentially computing an earliest
arrival flow for each player. In Section 4 and Section 5, we measure the efficiency of equilibria
by comparing the best and worst total cost under an equilibrium state with the minimal
total cost achievable by a central authority. The corresponding ratios are usually referred to
as Price of Stability (PoS) [cf. [1]] and the Price of Anarchy (PoA) [cf. [11]], respectively.
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In Section 4 we consider games in which all players share a common source and a common
sink (“single commodity games”). We prove that the PoS in single commodity games is
equal to 1, while the PoA is bounded from above by n. To show the tightness of the PoA,
we provide an example in which the PoA converges to n with increasing number of packets.
For the case where all players have identical demands, i.e., where ki = kj for all i, j ∈ N , we
prove that the PoA is bounded from above by 1

2 (n+ 1) and give a matching lower bound
example. Note that these bounds depend on the number of players, but are independent of
the number of packets to be routed through the network. Thus, even for a very high number
of packets we get a low price of anarchy if the number of players is small.

Lastly, in Section 5, we study games in which all players share a common source s, but
might have player-specific sinks ti (“single source games”). For single source games, we give
an example where the PoS grows to 2 with increasing number of packets. The PoA might also
be larger than for single commodity games. We even give an algorithm that computes, given
the demands of all players, an example maximizing the PoA for the given set of demands.

Related Work

Packet routing has received a vast amount of attention in the past decades. A break-through
result is due to Leighton, Maggs and Rao [13], who prove the existence of a routing protocol
for fixed paths, whose makespan is a constant-factor approximation in terms of the natural
lower bound (C + D)/2. Here, C denotes the congestion, i.e., the maximum number of
packets traversing the same edge, and D denotes the dilation, i.e., the length of the longest
path along which a packet is routed. This result has been improved and simplified several
times in the past (see, e.g., [19, 16, 7, 17]). For the more general problem where paths are
not fixed, Srinivasan and Teo [21] show that a constant factor approximation is still possible.
To prove this result they use the fact that it is sufficient to find paths which minimize the
sum of congestion and dilation. Koch et al. [10] extend this result to a more general setting,
where messages that consist of several packets need to be routed through a network. In
contrast to our model, they require that all packets of a message wait at the head of each
traversed link until the last packet of the message arrived.

A game-theoretic perspective on packet routing can be found in the pioneering work of
Hoefer et al. [8]. Here, they start with network congestion games (see Roughgarden [18]
for an introduction) and generalize this model to a variant over time. More details on this
development can be found in [8]. Similar to our competitive packet routing model, the model
in [8] considers players i ∈ N , and each player is associated with an origin vertex si, a
destination vertex ti, and a player-specific weight wi. However, in contrast to our model,
the capacity on each link does not bound the number of packets allowed to traverse the
link simultaneously at each integral time step. Rather, it bounds the total load on an edge
induced by packets traversing this edge at each point in time. The authors analyze four
different forwarding policies (FIFO, equal time sharing, (non-) preemptive global ranking),
they focus on the existence of Nash equilibria and the convergence of best responses. Kulkarni
et al. [12] extend the model of Höfer et al. and bound the price of anarchy, using LP duality.
Lastly, Harks et al. [6] investigates the special class of competitive packet routing in which
each player controls exactly one packet. They study existence, efficiency, and computability
of equilibria with respect to both local (i.e. edge-dependent) and global priority lists on the
players. For both forwarding policies, they analyze the existence of equilibria and establish
bounds on the price of anarchy and the price of stability using the techniques introduced by
Kulkarni et al [12]. A more detailed comparison can be found in the respective chapters.

ATMOS 2018
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2 Preliminaries

The Model

A multi commodity oligopolistic competitive packet routing game G is represented by the
tuple: G := (G,N, (si, ti, ki)i∈N , π), where G := (V,E, (τe)e∈E , (ue)e∈E) is a directed graph
that consists of a set of nodes V and edges E, where each edge e ∈ E is endowed with an
integral transit time τe ≥ 0 and an integral capacity ue > 0. The transit time of an edge
denotes the time it takes for each player to traverse this edge. The capacity is a limit on the
number of packets that can enter an edge at each integral time step. We use N to denote
the set of players, where each player i ∈ N has a player-specific source and sink si, ti ∈ V .
Additionally, each player has a set of ki identical packets she desires to send from si to ti.
We denote this set by Ki. Lastly, as a forwarding policy, we are given a priority list π ∈ Πn,
where Πn is the set of all different orderings on n players. Whenever more packets desire to
enter an edge than the capacity allows for, packets of players higher in the priority list can
go first. Without loss of generality, we assume that players are numbered according to their
position in the priority list π.

A feasible strategy xi of a player i ∈ N determines for every packet in Ki a simple
si-ti-path, together with a release time, i.e., the time the packet should start trying to
traverse its assigned path. That is, player i decides on a path vector Pi ∈ Pki

i , where Pi
denotes the set of all simple si-ti-paths. Additionally, player i decides on a release time for
every packet by selecting a release-time vector Ri ∈ Nki

≥0. Thus, the set of feasible strategies
of player i can be described as Si(ki) :=

{
xi = (Pi, Ri) | Pi ∈ Pki

i , Ri ∈ Nki

≥0

}
.

The combined strategy space is denoted by S :=
∏
i∈N Si(ki) and additionally we denote

by x := (xi)i∈N the overall strategy profile. In a strategy profile x, each packet ` ∈ Ki

travels over its assigned path to its destination. We let Ci,`(x) denote its arrival time at
sink ti. The goal of each player is to minimize the sum of the arrival times of her packets
Ci(x) :=

∑
`∈Ki

Ci,`(x). The social cost of strategy profile x ∈ S is C(x) =
∑
i∈N Ci(x),

i.e., the total cost of all players. A profile x ∈ S minimizing the social cost is called social
optimum.

Note that the arrival time of each packet is uniquely determined by embedding the
strategies of the players in graph G. We embed the players one by one in order of their
priority list and for every player we embed the packets in order of the strategy vector
(assuming a decreasing priority) starting at their respective release time. In our model,
packets are not allowed to wait at any intermediate node unless necessary. Thus, such an
embedding is unique.

As usual in game theory, for every i ∈ N , we write S−i(k−i) :=
∏
j 6=i Sj(kj) and

x = (xi, x−i) meaning that xi ∈ Si(ki) and x−i ∈ S−i(k−i). A strategy profile x is called
a Nash equilibrium whenever no player can unilaterally deviate and decrease her own cost,
i.e. Ci(xi, x−i) ≤ Ci(yi, x−i) for all yi ∈ Si(ki). A pair (x, (yi, x−i)) is called an improving
move when Ci(yi, x−i) < Ci(x). A strategy xi of player i is called a best response to x−i
whenever xi ∈ arg minyi∈Si(ki){Ci(yi, x−i)}. Thus, a profile x is a Nash equilibrium if and
only if there is no player that has an improving move, or equivalently, if each player plays a
best response.

I Example 1. Consider the single commodity game G on directed graph G depicted in
Figure 1, where the transit times are depicted in the picture, and the capacity of each edge
is equal to one. We consider two players, each controlling exactly one packet that needs to
be routed from the common source s to the common sink t. As stated before, we assume the
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players to be numbered according to their spot in the priority list, hence, player 1 has priority
over player 2. Note that the first player has three optimal strategies: she selects release
time zero and either uses one of the parallel paths (Figure 2) or the path that intersects
with both of these paths (Figure 3). If she chooses one of the parallel paths, the second
player can take the other parallel path, resulting in a socially optimal equilibrium x ∈ S with
C1(x) = C2(x) = 2. If she uses the the zig-zag path depicted in Figure 3 instead, she harms
player 2 who cannot arrive at t before time step 3. If, for example, the second player selects
release time zero, and travels along either path, we result in an equilibrium x′ with social
cost C1(x′) + C2(x′) = 2 + 3 = 5. Thus, PoS = 1 and PoA ≥ 5

4 .

The graph G depicted in Figure 1 is a well-known graph, famous from the Braess-paradox,
and is used several times to prove lower bounds on the price of anarchy, e.g. [12]. In the rest of
this paper we use this graph, and an extension of it several times. Therefore, we define BG(n)
as a graph on 2n+2 vertices with four types of edges EBG(n) = E1(n)∪E2(n)∪E3(n)∪E4(n),
where: E1(n) := {(1, v) | v ∈ {2, . . . , n + 1}, E2(n) := {(v, v + n) | v ∈ {2, . . . , n + 1},
E3(n) := {(v, v− n+ 1) | v ∈ {n+ 2, . . . , 2n}, E4(n) := {(v, 2n+ 2) | v ∈ {n+ 2, . . . , 2n+ 1}.
Note that graph BG(n) has n parallel paths from node 1 to 2n + 2, and one path that
intersects all n parallel paths. A visualisation of graph BG(n) can be found in Figure 4.

As stated in the model, players do not only choose a path in the network, but also a
release time for each packet, i.e., the time at which a packet starts traversing its assigned
path. This brings no advantage regarding the cost function of a player. Though, by allowing
players to set a release time for each packet, friendly players have the option not to congest
the network unnecessarily. Moreover, players might prefer to wait at the source instead of
waiting at intermediate nodes. As is proven in Section 3, it also allows us to compute social
optima in all single commodity games. We give an example that illustrates the use of setting
release times for packets: Consider the graph depicted in Figure 5, with four players owning
one packet each. The first edge has capacity two and the other edges have capacity one.
The transit times of the edges are depicted in the network. We denote the path taking the
lower edge (v, t) as p1 and the path taking the upper edge as p2. A possible equilibrium is
x1 = (p1, 0), x2 = (p1, 1), x3 = (p1, 2) and x4 = (p2, 0) realizing arrival times C1 = 1, C2 = 2,
C3 = 3 and C4 = 3. If players cannot choose release times, there is a unique equilibrium in
which all players choose p1, realizing arrival times C1 = 1, C2 = 2, C3 = 3 and C4 = 4.

ATMOS 2018
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s t

Figure 6 No PNE without global priority list.

Table 1 Three possible equilibria.

Strategy 1 Strategy 2 Strategy 3
(1, 1) (top,0) (top,0) (top,0)
(1, 2) (top,0) (bottom,0) (bottom,0)
(2, 1) (bottom,0) (top,0) (bottom,0)
(2, 2) (bottom,0) (bottom,0) (top,0)

In Section 3 we prove that, whenever we are given a priority list on the players, Nash
equilibria exist. In contrast, if the priority list is given on the set of packets instead of players,
the existence of equilibria cannot be guaranteed.

I Example 2. Consider an oligopolistic packet routing game on the graph depicted in Figure 6.
This graph has two edges: top and bottom, with both capacity and transit time equal to
one. We assume there are two players that both want to route two packets from source s to
sink t. Let (i, `) denote packet ` of player i. Assume that the priority over the packets is
π = ((1, 1), (2, 1), (1, 2), (2, 2)). Note that in this network no player can decrease her costs
by increasing the release time from zero. Further, note that in any equilibrium each edge
is used by exactly two packets. This implies that without loss of generality there are three
candidates for an equilibrium, which are depicted in Table 1.

Strategy 1 is not an equilibrium, as player 1 is better of by switching packet one to
the other edge. Strategy 2 is not an equilibrium, as player 2 is better of by interchanging
packet one and two. Strategy 3 is also not an equilibrium, as player 1 would be better of by
switching packet one and two around. Hence, this game does not have a Nash equilibrium.

Due to the simplicity of the example, it is sensible to restrict our research to priority lists on
players instead of packets.

Flows over time and earliest arrival flows

In an oligopolistic packet routing game, a player sends a set of ki packets from a source si to
a sink ti. Thus, every feasible strategy is an integral si-ti-flow over time of flow value ki. We
shortly introduce flows over time, also known under the name dynamic flows. For a more
detailed introduction on static and dynamic flows, we refer to Skutella [20].

I Definition 3. Given a graph G = (V,E, (τe)e∈E , (ue)e∈E) with transit times and capacities,
an integral s-t-flow over time is a set of functions fe : N≥0 → N≥0 for all e ∈ E satisfying
the following two constraints:

fe(θ) ≤ ue ∀e ∈ E, θ ∈ N≥0, (1)∑
e∈δ−(v)

ξ−τe∑
θ=0

fe(θ) ≥
∑

e∈δ+(v)

ξ∑
θ=0

fe(θ) ∀ξ ∈ Z≥0, v ∈ V \ {s, t}. (2)
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Here δ+(v) := {(v, u) ∈ E | u ∈ V } and δ−(v) := {(u, v) ∈ E | u ∈ V }. The first
inequality imposes the capacity constraint of the edges on the flow, and the second constraint
represents the flow conservation property. If Equation (2) is fulfilled with equality, we say
that strong flow conservation holds, implying that there is no waiting at intermediate nodes.

A special variant of flows over time are earliest arrival flows. Such an earliest arrival
flow (EAF) maximizes the flow value arriving at the sink at each integral time step θ ∈ N≥0.
To be more precise, we define A(f, T ) to be the amount of flow that arrives at t on or before
time T , e.g. A(f, T ) :=

∑T
θ=0 a(f, θ), where a(f, θ) denotes the amount of flow arriving at the

sink at time θ. We say that a feasible integral s-t-flow over time f fulfills the earliest arrival
property whenever A(f, θ) ≥ A(f ′, θ) for all feasible integral s-t-flows f ′ and all θ ∈ N≥0.
An integral s-t-flow over time that satisfies strong flow conservation and fulfills the earliest
arrival property is called an integral earliest arrival s-t-flow (s-t-EAF). Integral earliest
arrival flows are guaranteed to exist in a single commodity network [5]. In such networks, an
earliest arrival flow can be computed by Wilkinson’s algorithm [23] when the capacities do
not vary over time, and Tjandra’s algorithm when capacities do vary over time [22]. In a
multiple source, single sink setting, earliest arrival flows also exist, and can be computed
when capacities do not change over time [14, 15]. In a multi commodity setting there are
networks such that no earliest arrival flow exists [3].

3 Existence of Nash equilibria

Whenever each player has exactly one packet, Harks et al. [6] show that a pure Nash
equilibrium exists and can be found using a sequence of shortest path computations. We
prove the existence of pure Nash equilibria in multi commodity oligopolistic competitive
packet routing games by exploiting the connection to earliest arrival flows. We start by
showing how to compute a best response for player i by computing an si-ti-EAF in a network
with time-varying capacities. Afterwards, we prove that a pure Nash equilibrium can be
obtained by sequentially computing such an earliest arrival flow for each player, in order of
the priority list. Lastly, we show that in a single commodity game an earliest arrival flow
minimizes the social cost function.

I Theorem 4. In a multi commodity oligopolistic competitive packet routing game, a best
response of a player i ∈ N corresponds to an si-ti-earliest arrival flow with time-varying
capacities, and vice versa.

Proof. Fix a player i ∈ N and strategies x1, . . . , xi−1 of players higher in the priority list,
arbitrarily. As mentioned before, we assume that players are ordered according to the priority
list. Thus, players j ∈ {i+ 1, . . . , n} cannot influence the travel time of packets controlled
by player i. A best response of player i towards x−i is therefore a strategy choice (or flow)
xi minimizing

∑
`∈Ki

Ci,`(x), i.e., the sum of arrival times of all packets in Ki. Obviously,
this corresponds to minimizing the average arrival time 1

ki

∑
`∈Ki

Ci,`(x). In [9], it was
shown that minimizing 1

ki

∑
`∈Ki

Ci,`(x) is equivalent to maximizing
∑
θ∈N≥0

Ai(x, θ), where
Ai(x, θ) := |{` ∈ Ki | Ci,`(x) ≤ θ}| denotes the number of packets of player i arriving at
sink ti before time θ under strategy x. For sake of completeness, we present a proof for this
fact in Appendix A.

It is well-known, that every s-t-network admits an s-t-earliest arrival flow even for
the case of time-dependent capacities (cf. Tjandra [22]). By definition, an earliest arrival
flow (EAF) is a flow maximizing Ai(x, θ) for every time θ. Thus, such an EAF maximizes
the sum

∑
θ∈N≥0

Ai(x, θ) as well, and therefore corresponds to a best response of player i.

ATMOS 2018
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On the contrary, there can be no feasible flow other than an earliest arrival flow maximizing
this sum, since the earliest arrival flow maximizes every single summand. As a consequence,
every best response corresponds to an earliest arrival flow, and vice versa.

We can compute a best response xi as follows: We embed the strategies x1, . . . xi−1 of
players {1, . . . , i − 1} one by one in the network, in order of the priority list. Using the
algorithm of Tjandra [22], we compute an si-ti-EAF f in the resulting network with varying
capacities. We decompose flow f in ki paths (p`)`∈Ki

, where w.l.o.g. we assume that the
paths are ordered according to non-decreasing path lengths. Each packet l ∈ Ki is assigned
the release time r` according to its release time in the path decomposition of the earliest
arrival flow. To show that the strategy xi = (p`, r`)`∈Ki

is a feasible one, we prove that
packets never wait at intermediate nodes, unless the capacity of this edge is reduced due to a
preceding player, and that all paths are cycle-free. For a proof of the cycle-freeness, we refer
to the Appendix B. If all packets start according to their release dates, no packet of player i
has to wait for another packet of player i, since f is an earliest arrival flow. Particularly,
all packets take the same path and arrive at every intermediate node at the same point
in time as their correspondent in the earliest arrival flow. So, the arrival pattern of the
flow corresponding to xi has the earliest arrival property and thus xi is a best response for
player i. The priority rules in the model are obeyed since the players are embedded one by
one in order to the priority list. If a packet of a player i needs to wait due to a reduced
capacity, this corresponds to a packet of a player j < i using the edge. J

Thus, in order to compute a pure Nash equilibrium, we subsequently compute earliest
arrival flows for the players in the order of the priority lists according to Theorem 4.

I Corollary 5. Each multi commodity oligopolistic competitive packet routing game admits a
pure Nash equilibrium. Moreover, a pure Nash equilibrium can be computed by calculating
subsequently an earliest arrival flow for each player in the order of the priority list by using
the algorithm of Tjandra [22]. The running time is within O(|E| · |V | ·

∑
i∈N (S′i + ki)2 · ki),

where S′i is the length of a shortest si-ti-path in the underlying network with capacities adapted
according to the best responses of players in {1, . . . , i− 1}.

In order to achieve a social optimum, we assume there is one central authority who
coordinates all packets. Note that this central authority still needs to take the priority rules
into account. In single commodity games, we are able to compute a social optimum.

I Theorem 6. In single commodity oligopolistic competitive packet routing games, a social
optimum can be computed within pseudo-polynomial time.

Proof. First, we assume that there is a central authority controlling all K =
∑
i∈N ki

packets. According to Theorem 4, a strategy minimizing the social cost function for one
player corresponds to an earliest arrival flow. As capacities are constant over time, we
can compute an earliest arrival flow f by using Wilkinson’s algorithm [23]. Note that this
algorithm computes K shortest paths, and thus runs in pseudo-polynomial time. It is left to
decompose this strategy into player specific strategies and check if the player specific strategies
obey the priority rules. In order to do so, we find a path decomposition of flow f with a
corresponding release time for each packet: (pq, rq)1≤q≤K , where the tuples are numbered
according to the time the corresponding packet arrives at the sink. We define Fi :=

∑i−1
q=1 kq

and xi = (pq, rq)Fi<q≤Fi+ki
.

By the choice of the release times, we guarantee that a packet following the corresponding
successive shortest path can traverse the network without being delayed by other packets.
Hence, x realizes the arrival pattern of an earliest arrival flow while obeying the priority
rules. The paths are cycle-free due to Appendix B. J
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4 Efficiency in single commodity games

We discuss the price of stability (PoS) and the price of anarchy (PoA) in single commodity
games in this section, and in single source multiple sink games in the subsequent section.
First of all, similar as in the model of Harks et al. [6], it can easily be derived from Theorem 6
that the price of stability in single commodity games is equal to one.

I Corollary 7. Each single commodity oligopolistic competitive packet routing game admits
a socially optimal pure Nash equilibrium which can be computed via one earliest arrival flow
computation.

Proof. We compute a social optimum as described in the proof of Theorem 6, and prove that
the resulting strategies form a Nash equilibrium. Observe that strategy xi is a best response
for player i, as she cannot decrease the arrival times of her packets due to the earliest arrival
property of the total flow. Thus, strategy (xi)i∈N is an equilibrium minimizing the social
cost. J

We show that in the single commodity setting, the price of anarchy is bounded by n.
Furthermore, we introduce an example such that, when the number of packets grows large,
the price of anarchy in our example converges to n. We start by proving an upper bound on
the price of anarchy. The proof is based on the following insight.

I Lemma 8. Let NE be a Nash equilibrium for game G and let OPT be a socially optimal
strategy profile constructed as described in the proof of Theorem 6. Then, for every player i
and every packet ` ∈ Ki, it holds that: Ci,`(NE) ≤ i · Ci,`(OPT ).

A proof of Lemma 8 can be found in the Appendix C. Using Lemma 8 we prove an upper
bound on the price of anarchy in single commodity oligopolistic competitive packet routing
games.

I Theorem 9. In single commodity oligopolistic competitive packet routing games, the price
of anarchy is bounded from above by n.

Proof. Let NE be the Nash equilibrium for single commodity game G that maximizes the
social cost, and let OPT be a strategy profile that minimizes the social cost function. We
prove that C(NE)

C(OPT ) ≤ n. We use Lemma 8 to obtain:

C(NE) ≤
n∑
i=1

∑
`∈Ki

i · Ci,`(OPT ) ≤ n ·
n∑
i=1

∑
`∈Ki

Ci,`(OPT ) = n · C(OPT ).

Thus, the price of anarchy has an upper bound of n. J

In Theorem 10 we state an example of a single commodity game where, if the total
number of packets in the game grows large, the price of anarchy converges to n.

I Example 10. Consider a game with n players, where the first n− 1 players have only one
packet, and player n has kn packets. All players need to route their packets from s to t in
the Braess graph BG(n+ kn − 1) depicted in Figure 7.

In an optimal solution, all packets traverse the kn + n − 1 available parallel paths as
depicted in Figure 8, incurring a social cost of kn + n− 1. Note that it is also a viable option
for the first n− 1 players to traverse the path as depicted in Figure 9. The kn packets of
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player n cannot arrive before time n, incurring a social cost of 1
2n(n− 1) + nkn. Hence, in

this example the price of anarchy is:

PoA =
1
2n(n− 1) + nkn

kn + n− 1 = n−
1
2n(n− 1)
kn + n− 1 .

Note that when kn grows large, this ratio converges to n. Also observe that this result
generalizes the bound in [6], where all players own only one packet each (k = 1).

Hence, the bound we prove in Theorem 9 is tight. In this example, we exploit the fact
that the last player has far more packets than the others. Hence, it is reasonable to consider
the special case that all players have the same number of packets k, i.e. ki = kj for all
i, j ∈ N . We denote such a game as a symmetric game, since the strategy spaces of all the
players are identical. In a symmetric game the price of anarchy decreases to 1

2 (n+ 1). This is
an extension of the result of Harks et al. [6], which would give a price of anarchy of 1

2 (kn+ 1)
and coincide for k = 1. In order to prove this statement, we first show that 1

2 (n+ 1) is an
upper bound on the price of anarchy.

I Theorem 11. In symmetric oligopolistic competitive packet routing games the price of
anarchy is bounded from above by 1

2 (n+ 1).

Proof. Let S be the length of the shortest s-t-path in the network. Assume that in an
optimal strategy the first player has ap packets arriving at time S+p−1, where p ranges from
one up to some q1 ∈ N>0, where q1 = arg minp∈N>0{aq′ = 0,∀q′ > p}. Thus

∑q1
p=1 ap = k,

and within a time span of q1 all packets of player 1 reach the sink. We say that q1 is the
arrival spread of player 1. Note that 1 ≤ a1 ≤ a2 ≤ · · · ≤ aq1−1, as at least one packet of
player 1 can arrive at time S by taking the shortest path. Further, if ap packets arrive at
time S + p− 1 at least so many packets can arrive at S + p by choosing the same paths as
the packets arriving at S + p− 1 as long as there are enough packets left to fill up all paths.

As arrival times are increasing, the arrival times for all packets of the remaining n− 1
players are at least S + q1 − 1. Hence, we can find the following lower bound on the social
cost: C(OPT ) ≥ knS +

∑q1
p=1 ap(p− 1) + (q1 − 1)k(n− 1).

In order to find an upper bound on the worst Nash equilibrium, we give an upper bound
on the arrival times of the i’th player, in terms of the arrival times of the first player. We
show that player i can always copy the strategy of player 1, but increase the release times
by (i− 1)q1 time units. In general, we prove the following statement: if the first player has
ap packets arriving at S + p− 1 as described above, then the i’th player can play the same
strategy (i− 1)q1 time units later, with ap packets arriving at S + p− 1 + (i− 1)q1.

We prove this statement by induction. In order to do so, we use the even stronger
statement which says: player i can copy the strategy of the first player (i− 1)q1 time units
later, without being delayed by any other player. Assume the induction hypothesis holds for



B. Peis, B. Tauer, V. Timmermans, and L. Vargas Koch 13:11

the first i− 1 players. Then we show that the i’th player can play the strategy of the first
player, where the release times are increased by (i− 1)q1. Note that the arrival times of the
first i− 1 players are all strictly smaller than S + (i− 1)q1. On the contrary, we assume that
there exists a packet ` of player i that needs to wait for a packet `′ by a previous player. This
implies that, if packet `′ would not block packet `, then packet ` could arrive on the original
arrival time of packet `′, which is smaller than S+(i−1)q1. As packet ` can only depart from
s at release time (i− 1)q1, this would imply that the shortest s-t-path has a length smaller
than S, which contradicts the fact that S is the length of shortest path in the network. Hence,
player i can repeat the strategy of the first player (i− 1)q1 time units later without being
delayed and thus with ap packets arriving at S + p− 1 + (i− 1)q1. Furthermore, we know by
Theorem 4 that a best response is equivalent to an earliest arrival flow. This guarantees that
no packet of player i arrives later than S + q1 − 1 + (i− 1)q1. This gives us an upper bound
on the total cost of any Nash equilibrium: C(NE) ≤

∑n
i=1
∑q1
p=1 ap(S + p− 1 + (i− 1)q1).

As we have a lower bound on the social cost of an optimal solution, and an upper bound
of the cost in any Nash equilibrium, we can find an upper bound on the price of anarchy.

PoA ≤
∑n
i=1
∑q1
p=1 ap(S + p− 1 + (i− 1)q1)

knS +
∑q1
p=1 ap(p− 1) + (q1 − 1)k(n− 1)

.

This fraction is maximized whenever S = 1 and q1 = 1, therefore the price of anarchy is
bounded from above by 1

2 (n+ 1). The technical argument for this claim can be found in the
Appendix D. J

To observe that this result is tight, consider Braess graph BG(n) (see Figure 7), where each
edge has a capacity k. Assume that the edges leaving s have cost S. Since there are n disjoint
paths with capacity k, all packets of all players reach the sink simultaneously at time S in a
social optimal profile OPT (see Figure 8), resulting in a social cost C(OPT ) = nkS. However,
there is a profile in which all packets of each player take the path depicted in Figure 9, which
turns out to be a Nash equilibrium NE. Here, the arrival time is Ci,`(NE) = S + i− 1 for
all players i ∈ N and for all packets ` ∈ Ki. Therefore C(NE) = nk(S − 1) + k

∑n
i=1 i. If

we choose S = 1 we get the tight upper bound PoA = 1
2 (n+ 1). Observe that this result

generalizes the bound in [6], where all players own only one packet each (k = 1).

5 Efficiency in single source games

In this section, we consider games where players have a common source s, but player specific
sinks ti, i ∈ N . In general, earliest arrival flows do not necessarily exist in multi-commodity
games, even if all commodities share a common source (see, e.g., [2]).

I Example 12. Consider the graph depicted in Figure 10 with unit capacities and travel
times as shown in the picture. Assume one traffic unit needs to be send from s to t1, and one
unit from s to t2. In order to maximize the amount of flow arriving after two units of time,
we send one unit along edge (s, t1) and one unit along (s, v, t2) so that both units reach the
respective sink after two time units. This flow does obviously not maximize the amount of
flow reaching sink t1 at time step θ = 1. Thus, in this graph, no earliest arrival flow exists.

We extend this example to a single source competitive packet routing game on n players,
and show that, in contrast to single commodity games, single source games do not necessarily
admit socially optimal pure Nash equilibria.

I Theorem 13. In oligopolistic competitive packet routing games with a global source s and
player specific sinks t1, . . . , tn, the price of stability is bounded from below by 2.
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Proof. We consider the graph depicted in Figure 11, where the capacity of each edge is equal
to one. We assume there are n players, where the first n− 1 players control one packet, and
the last player controls n packets. Note that each of the first n− 1 players has two feasible
strategies. Either she takes her direct s-ti-route, or the path using the zero-length edges.
The last player has only one feasible strategy.

In the optimal solution OPT , the first n−1 players all take the direct s-ti-route, incurring
a total cost of n(n+ 1)− 1 for all players. In the unique Nash equilibrium NE, all players
use their indirect route, incurring a total cost of n(2n− 1). Hence, the price of stability is:

PoS = C(NE)
C(OPT ) = n(2n− 1)

n(n+ 1)− 1 ≥
2n− 1
n+ 1 = 2− 3

n+ 1 .

Note that the last term converges to 2 when the number of players grows to infinity. J

In the remaining part of this section we focus on the price of anarchy. We show that, in
contrast to single commodity games, the bound for the setting with equal demands coincides
with the general bound. The tight bound turns out to be a fraction that depends on the
number of packets ki of player i and the number of players n. We present an algorithm that
constructs a matching lower bound example for every given n and (ki)i∈N .

Similar as in the previous section, we define Si to be the length of a shortest s-ti-path in
(G, τ), i.e., Si := minP∈Pi

∑
e∈P τe. For each player i ∈ N , let OPTi be an optimal strategy

under the assumption that no other player exists, i.e., OPTi is an integral earliest arrival
flow with source s and sink ti. Clearly, under flow OPTi, at least one packet reaches the sink
at time Si. We are interested in the arrival spread qi of flow OPTi which is the length of the
time interval in which packets are arriving at the sink under flow OPTi. Here, q1 corresponds
to the arrival spread q1 we defined in the proof of Theorem 11. To be more precise, we let
Mi(OPTi) denote the makespan of player i in OPTi, i.e., the latest point in time when a
packet of player i reaches the sink. Then, we define qi := Mi(OPTi) − Si + 1 to be the
arrival spread of flow OPTi. Let Ci,l(OPTi) denote the arrival time of the packet l ∈ Ki

under flow OPTi.

I Theorem 14. Let NE be an arbitrary pure Nash equilibrium in a single source multiple
sink oligopolistic competitive packet routing game G. Then, if Ci,`(NE) denotes the arrival
time of packet l ∈ Ki under NE,

Ci,`(NE) ≤ Ci,`(OPTi) +
i−1∑
k=1

qk,

Proof. Recall that, under an equilibrium, each player i ∈ N plays a best response towards
the strategy choices of the players j ∈ {1, . . . , i− 1} higher in the priority list. We prove this
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Figure 12 Two player with origin s interact at a common edge e in the network.

theorem by induction. For the first player, the statement trivially holds, since a best response
corresponds to an s-t1-EAF, so C1,l(NE) = C1,l(OPT1) for each packet l ∈ K1 controlled by
the first player. Assume that Cj,`(NE) ≤ Cl,`(OPTj)+

∑j−1
k=1 qk holds for each packet l ∈ Kj

controlled by a player j ∈ {1, . . . , i− 1}. To show that Ci,`(NE) ≤ Ci,`(OPTi) +
∑i−1
k=1 qk

is true, it suffices to convince ourselves that player i could release all of her packets at
time

∑i−1
k=1 qk and follow the flow pattern of OPTi without ever being delayed by a packet of

players higher in the priority list.
For the sake of contradiction, we assume that a packet `i of player i has to wait for a

packet `j of player j < i. If this is the case, there must exist an edge e = (v, w) that is
traversed by both packets `i and `j (see Figure 12). Hence, packet `j could have started at
time

∑i−1
k=1 qk and arrive at node v at the same time as before, by taking the same s-v-path

as packet `i. By the induction hypothesis, the original arrival time of packet `j is smaller or
equal to Sj − 1 +

∑i−1
k=1 qk. Note that if packet `j takes the same s-v-path as packet `i, and

after that continues with its original v-tj route, it leaves s after time
∑i−1
k=1 qk and arrives

at tj before time
(
Sj − 1 +

∑i−1
k=1 qk

)
. Thus, the time that packet `j is in the network is

bounded from above by:(
Sj − 1 +

i−1∑
k=1

qk

)
−

i−1∑
k=1

qk = Sj − 1.

This contradicts the fact that Sj is the length of a shortest s-tj-path. Thus, all packets of
player i can leave s at time

∑i−1
j=1 qj , and arrive at ti using their optimal strategy, without

being delayed by previous players. Therefore:

Ci,`(NE) ≤ Ci,`(OPTi) +
i−1∑
k=1

qk.

Further, no packet of player i arrives later than Si − 1 +
∑i−1
j=1 qj since any best response of

a player is an earliest arrival flow by Theorem 4. Thus, in no best response a packet falls
behind a realizable time. J

I Corollary 15. For a single source competitive packet routing game G with n players,
demands (ki)i∈N and arrival spreads (qi)i∈N of the associated earliest arrival flows OPTi
for each i ∈ N , we have

PoA(G) ≤ 1 +
∑
i∈N

∑n
j=i+1 qikj∑

i∈N Ci(OPTi)
.

Proof. Assume that strategy OPT is a strategy that minimizes the social cost function.
Using Theorem 14 we obtain that for any Nash equilibrium NE, we have that:

C(NE)
C(OPT ) ≤

∑
i∈N Ci(OPTi) +

∑
i∈N

∑n
j=i+1 qikj∑

i∈N Ci(OPTi)
= 1 +

∑
i∈N

∑n
j=i+1 qikj∑

i∈N Ci(OPTi)
. J

We prove that this bound is actually tight.
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I Theorem 16. Let N be a set of n players and let (qi)i∈N and (ki)i∈N be arbitrary, but
fixed, sequences of non-negative integers such that qi ≤ ki for all i ∈ N . Then, there exists a
single source competitive packet routing game G̃ on n players with

PoA(G̃) = 1 +
∑
i∈N

∑n
j=i+1 qikj∑

i∈N Ci(OPTi)
= 1 +

∑
i∈N

∑n
j=i+1 qikj∑

i∈N
∑qi

j=1 ai,j(Si + j − 1)
.

The proof of this theorem can be found in Appendix E. In the rest of this paper we create
an algorithm that, for any set of players N with demands (ki)i∈N , can find arrival patterns
for each player that maximizes the price of anarchy. First note that our goal is to maximize
qi while minimizing Ci(OPTi) =

∑qi

j=1 ai,j(Si + j − 1).

I Lemma 17. For any player with ki packets and arrival spread of qi ≤ ki, her cost
Ci(OPTi) =

∑qi

j=1 ai,j(Si + j − 1) is minimized by Qi(Si, qi), where Qi(Si, 1) := kiSi and

Qi(Si, qi) := ki(Si − 1) +
⌊
ki − 1
qi − 1

⌋
· 1

2qi(qi − 1) +
qi∑

j=qi−(ki−1) mod (qi−1)

j.

Proof. Given a number of packets ki and an arrival spread qi, we determine the arrival
pattern (ai,p)p≤qi such that

∑qi

j=1 ai,j(Si + j − 1) is minimized. In order to get a feasible
arrival pattern we are restricted to arrival patterns where ai,1 ≤ · · · ≤ ai,qi−1. We choose
aqi = 1, and divide the ki − 1 leftover packets evenly over the qi − 1 leftover arrival times
such that ai,1 ≤ · · · ≤ ai,qi−1 . Thus:

ai,1 = · · · = ai,p =
⌊
ki − 1
qi − 1

⌋
, ai,p+1 = · · · = ai,qi−1 =

⌊
ki − 1
qi − 1

⌋
+ 1, ai,qi

= 1,

where p = qi − 1− ((ki − 1) mod (qi − 1)). The total cost that corresponds to this arrival
pattern is the Qi(Si, qi) described in the lemma. J

In order to find an example the expression mentioned in Theorem 16, we pick Si = 1 and
define Qi(qi) := Qi(1, qi) for each i ∈ N . Then, we use Lemma 17 and it is left to maximize

P ((qi)i∈N ) :=

∑
i∈N

(
Qi(qi) + qi

∑n
j=i+1 kj

)
∑
i∈N Qi(qi)

. (3)

Thus, in order to find an example that maximizes the price of anarchy, we only need to
decide on a qi for each player. In order to do so, we define µi,OPT (p) := Qi(p+ 1)−Qi(p)
and µi,NE(p) := Qi(p+ 1)−Qi(p) +

∑n
j=i+1 kj . Intuitively, if a player decides to increase

qi from p to p + 1, it would add a cost of µi,OPT (p) to the social optimum and a cost of
µi,NE(p) to the worst equilibrium. We state Algorithm 1 using µi,OPT (p) and µi,NE(p).

I Theorem 18. Given a set of players N , where each player has a demand ki. Then,
Algorithm 1 returns an sequence q := (qi)i∈N that maximizes P (q) as defined in (3).

Proof. First note, that by definition∑
i∈N

∑qi−1
p=0 µi,NE(p)∑

i∈N
∑qi−1
p=0 µi,OPT (p)

=

∑
i∈N

(
Qi(qi) + qi

∑n
j=i+1 kj

)
∑
i∈N Qi(qi)

.

Let q′ ∈ arg maxP (q) and let (qi)i∈N be the output of Algorithm 1. Assume (qi)i∈N is not
optimal, thus P (q′) > P (q). We first prove that q′i ≤ qi for all i ∈ N .

We define q−i to be the vector (qj)j∈N\{i}. For sake of contradiction, assume that there
exists an i ∈ N such that q′i > qi. We distinguish two cases:
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Algorithm 1: Creating an example with maximized price of anarchy.
Input: A set N consisting of n players with ki packets.
Output: A vector (qi)i∈N .

1 qi ← 1 for all i ∈ N ;
2 for i ∈ N do

3 pi ← arg maxqi≤p<ki

{ ∑p

q=qi
µi,NE(q)∑p

q=qi
µi,OP T (q)

}
;

4 Pi ← maxqi≤p<ki

{ ∑p

q=qi
µi,NE(q)∑p

q=qi
µi,OP T (q)

}
;

5 end
6 j ← arg maxi∈N{Pi};

7 while Pj >
∑

i∈N

(
Qi(qi)+qi

∑n

j=i+1
kj

)∑
i∈N

Qi(qi)
do

8 qj ← pj + 1;

9 pj ← arg maxqj≤p<kj

{ ∑p

q=qj
µj,NE(q)∑p

q=qj
µj,OP T (q)

}
;

10 Pj ← maxqj≤p<kj

{ ∑p

q=qj
µj,NE(q)∑p

q=qj
µj,OP T (q)

}
;

11 j ← arg maxi∈N{Pi};
12 end
13 return (qi)i∈N

1. P (q−i, q′i) > P (q). In this case the algorithm would not terminate. From the assumption
P (q−i, q′i) > P (q) we get that∑

i∈N
∑qi−1
p=0 µi,NE(p) +

∑q′i−1
p=qi

µi,NE(p)∑
i∈N

∑qi−1
p=0 µi,OPT (p) +

∑q′
i
−1

p=qi
µi,OPT (p)

>

∑
i∈N

∑qi−1
p=0 µi,NE(p)∑

i∈N
∑qi−1
p=0 µi,OPT (p)

.

Thus,∑q′i−1
p=qi

µi,NE(p)∑q′
i
−1

p=qi
µi,OPT (p)

> P (q),

is one candidate for Pj determined in line 10 of the algorithm. This candidate is already
larger than P (q), thus the algorithm would not terminate with q respectively P (q). Thus,
this contradicts the fact that Algorithm 1 outputs q.

2. P (q−i, q′i) ≤ P (q). In this case, (
∑q′i−1
p=qi

µi,NE(p))/(
∑q′i−1
p=qi

µi,OPT (p)) ≤ P (q) < P (q′).
Decreasing q′i to qi would increase the quotient of P (q′), which means P (q′−i, qi) > P (q′).
This is a contradiction to q′ ∈ arg maxP (q).

Thus, we have shown that if q is not optimal, q′i ≤ qi for all i ∈ N . It remains to show
that q′i < qi leads to a contradiction. Due to the initialization of qi = 1 which is minimal,
we know that qi is less or equal to q′i at the start of Algorithm 1. Assume that during the
execution of Algorithm 1, we obtain the following vectors for (qi)i∈N : ~1, q1, . . . , qk, q.

If there is a i ∈ N such that q′i < qi, during Algorithm 1 there needs to be a vector qb
such that qbj ≤ q′j for all j ∈ N and there is an i ∈ N such that qb+1

i > q′i and qb+1
j ≤ q′j

for all j ∈ N\{i}. This means qb+1 is the vector where for the first time in Algorithm 1 a
value of q is increased over a value of q′. By definition of Algorithm 1, we know that the
chosen value qb+1

i maximizes the quotient of marginal cost increase of Nash equilibrium over
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optimal solution among all alternative vectors. This means:∑qb+1
i
−1

p=qb
i

µi,NE(p)∑qb+1
i
−1

p=qb
i

µi,OPT (p)
≥ max

j∈N

∑q′j−1
p=qb

j

µj,NE(p)∑q′
j
−1

p=qb
j

µj,OPT (p)
. (4)

Furthermore, by the choice of q′ we know that:

P (q′) =

∑
i∈N

(∑qb
i−1
p=0 µi,NE(p) +

∑q′i−1
p=qb

i

µi,NE(p)
)

∑
i∈N

(∑qb
i
−1

p=0 µi,OPT (p) +
∑q′

i
−1

p=qb
i

µi,OPT (p)
) .

By definition of Algorithm 1:∑qb+1
i
−1

p=qb
i

µi,NE(p)∑qb+1
i
−1

p=qb
i

µi,OPT (p)
> P (qb) =

∑
i∈N

∑qb
i−1
p=0 µi,NE(p)∑

i∈N
∑qb

i
−1

p=0 µi,OPT (p)
. (5)

and by (4):∑qb+1
i
−1

p=qb
i

µi,NE(p)∑qb+1
i
−1

p=qb
i

µi,OPT (p)
≥

∑
i∈N

∑q′i−1
p=qb

i

µi,NE(p)∑
i∈N

∑q′
i
−1

p=qb
i

µi,OPT (p)
. (6)

Given a1
a2
, b1
b2
, c1
c2
∈ Q, then, whenever a1

a2
> b1

b2
and a1

a2
≥ c1

c2
, it holds that a1

a2
> b1+c1

b2+c2
. We use

this type of argumentation on (5) and (6) to obtain:∑qb+1
i
−1

p=qb
i

µi,NE(p)∑qb+1
i
−1

p=qb
i

µi,OPT (p)
> P (q′).

Hence, one could increase P (q′) by increasing q′i to qb+1
i . This contradicts the fact that q′

maximizes P (·). J

I Remark. The running time of the algorithm is polynomial in k1, . . . , kn and n.

Proof. In the initial phase we compute n times a maximum value which takes at most k3
i

time for every i ∈ N . In the while loop, we do the same computation. Note that in every
execution of the while loop one qi for i ∈ N is increased by at least one. Since the qi’s
are initialized as one and bounded from above by ki, the while loop takes at most

∑
i∈N ki

iterations. Hence, the running time of the algorithm is polynomial in (ki)i∈N and n. J

In Appendix F we apply this algorithm to a small example.
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A Technical details of the Proof of Theorem 4

We use ideas of [6] to prove that:

min
∑
`∈Ki

Ci,`(x) = max
∑
θ∈N>0

Ai(x, θ − 1).

Observe that:∑
`∈Ki

Ci,`(x)

=
∑
θ∈N>0

(Ai(x, θ)−Ai(x, θ − 1)) θ

=
∑
θ∈N>0

Ai(x, θ)θ −
∑
θ∈N>0

Ai(x, θ − 1)θ

=
∑
θ∈N>0

Ai(x, θ)θ −
∑
θ∈N>0

Ai(x, θ − 1)(θ − 1)−
∑
θ∈N>0

Ai(x, θ − 1).

Note that
∑
θ∈N>0

Ai(x, θ)θ =
∑
θ∈N>0

Ai(x, θ − 1)(θ − 1), as Ai(x, 0) = 0. Thus:

min
∑
`∈Ki

Ci,`(x) = min−

 ∑
θ∈N>0

Ai(x, θ − 1)

 = max
∑
θ∈N>0

Ai(x, θ − 1).

B Cycle free path decomposition

I Lemma 19. For any s-t-graph G, there exist an earliest arrival flow for varying capacities
that has a path decomposition where no flow is send along cycles.

Proof of Lemma 19. First we construct an earliest arrival flow by using the algorithm of
Tjandra [22]. The algorithm is roughly speaking a successive shortest path algorithm in a
network with varying capacities. We prove that there exists a sequence of shortest paths in
the successive shortest path algorithm such that the resulting flow does not contain cycles.
If no cycles occurs in the flow, then no cycles occur in any path decomposition of the earliest
arrival flow.

During the successive shortest path algorithm, cycles can arise in two different ways.
1. During the course of the algorithm, we choose a shortest path that contains a cycle. As

all transit times are non-negative, the length of the cycle is bounded from below by zero.
Hence, we can delete this cycle and use the resulting (shortest) path.

2. During the course of the algorithm, we add a shortest path P that closes a directed cycle
for the first time, by connecting some nodes u and v by forward edges. Thus, there needs
to be a directed sequence of edges connecting the nodes v and u. Instead of closing the
cycle, the path could also go along this forward edges as backwards edges. Since the cost
of the sequence of forward edges is lower bounded by zero and the cost of the backwards
edges is upper bounded by zero, this never increases the costs of the path. Thus, this is a
feasible choice for a shortest path.

Hence, there exists a sequence of shortest paths such that the resulting flow does not contain
any cycles. J
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C Proof of Lemma 8

Proof of Lemma 8. We prove this lemma by induction. Note that, as player 1 is not affected
by other players, C1,`(NE) = C1,`(OPT ). Hence, the lemma clearly holds for the first player.

Assume that the lemma holds for the first i−1 players (players with highest priority) then
we prove that Ci,`(NE) ≤ i · Ci,`(OPT ). As player i comes after player j on the priority list
for any player j < i, we have, by construction of OPT , that Ci,`(OPT ) ≥ Cj,`(OPT ).

Hence:
Cj,`(NE)
Ci,`(OPT ) ≤

Cj,`(NE)
Cj,`(OPT ) ≤ j,

where the last inequality holds as of our induction hypothesis. Therefore, we know that:

Cj,`(NE) ≤ j · Ci,`(OPT ). (7)

Observe that in the worst case, player i can play the same strategy as she did in the optimal
solution, but only after all previous players j < i have already left the network. Hence:

Ci,`(NE) ≤ max
j<i,`∈Kj

{Cj,`(NE)}+ Ci,`(OPT ). (8)

We combine inequalities (7) and (8) to obtain

Ci,`(NE) ≤ max
j<i,`∈Kj

{j · Ci,`(OPT )}+ Ci,`(OPT ).

Then, j · Ci,`(OPT ) is clearly maximized whenever j = i− 1. Hence, we obtain:

Ci,`(NE) ≤ (i− 1) · Ci,`(OPT ) + Ci,`(OPT ) = i · Ci,`(OPT ),

which proves the lemma. J

D Details of Theorem 11

In this appendix, one can find the technical details of the proof of Theorem 11. We formally
prove why:

PoA ≤
∑n
i=1
∑q1
p=1 ap(S + p− 1 + (i− 1)q1)

knS +
∑q1
p=1 ap(p− 1) + (q1 − 1)k(n− 1)

≤ 1
2(n+ 1).

Technical details. During the proof of Theorem 11 we established a lower bound on the cost
of a socially optimal profile:

C(OPT ) ≥ knS +
q1∑
p=1

ap(p− 1) + (q1 − 1)k(n− 1).

Furthermore, we bounded the cost of any equilibrium from above by:

C(NE) ≤
n∑
i=1

q1∑
p=1

ap(S + p− 1 + (i− 1)q1)

= n

(
q1∑
p=1

ap(S + p− 1)
)

+ 1
2q1kn(n− 1)

= knS + n

(
q1∑
p=1

ap(p− 1)
)

+ 1
2q1kn(n− 1).
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As we have a lower bound on the social cost, and an upper bound of the cost in any Nash
equilibrium, we can find an upper bound on the price of anarchy.

PoA ≤
knS + n

(∑q1
p=1 ap(p− 1)

)
+ 1

2q1kn(n− 1)

knS +
∑q1
p=1 ap(p− 1) + (q1 − 1)k(n− 1)

Note that for all n ≥ 1, k ≥ 1, we have that

n

(
q1∑
p=1

ap(p− 1)
)

+ 1
2q1kn(n− 1) ≥

(
q1∑
p=1

ap(p− 1)
)

+ (q1 − 1)k(n− 1) ≥ 0.

As k, n, S ≥ 1, the PoA is maximized when knS is minimal, which is the case when S = 1.
We obtain:

PoA ≤
kn+ n

(∑q1
p=1 ap(p− 1)

)
+ 1

2q1kn(n− 1)

kn+
∑q1
p=1 ap(p− 1) + (q1 − 1)k(n− 1)

=
n
(∑q1

p=1 pap

)
+ 1

2q1kn(n− 1)∑q1
p=1 pap + q1k(n− 1)

=
n
(∑q1

p=1 pap + q1k(n− 1)
)
− 1

2kq1n(n− 1)∑q1
p=1 pap + q1k(n− 1)

= n−
1
2q1kn(n− 1)∑q1

p=1 pap + q1k(n− 1)
.

Thus, it is left to minimize
( 1

2q1kn(n− 1)
)
/
(∑q1

p=1 pap + q1k(n− 1)
)
. Note that for any q1,∑q1

p=1 pap is maximized when ap = 1 for p ∈ {1, . . . , q1 − 1} and aq1 = k − q1 + 1. Hence, for
any q1,

q1∑
p=1

pap ≤ 1
2q1(q1 − 1) + q1(k − q1 + 1) = q1(k − 1

2 (q1 − 1)).

Thus,

n−
1
2q1kn(n− 1)∑q1

p=1 pap + q1k(n− 1)
≤ n−

1
2q1kn(n− 1)

q1(k − 1
2 (q1 − 1)) + q1k(n− 1)

= n−
1
2kn(n− 1)

kn− 1
2 (q1 − 1)

.

As q1 ≥ 1, the PoA is clearly maximized when q1 = 1. We obtain:

PoA ≤ n−
1
2kn(n− 1)

kn− 1
2 (1− 1)

= n−
1
2kn(n− 1)

kn
= 1

2 (n+ 1),

which proves the theorem. J
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Figure 13 Braess graph BG with player specific paths to individual sink.

E Proof of Theorem 16

Proof. We denote the arrival pattern of a player i in an optimal solution where player i
is the only player in the network by Ai := (ai,1, . . . , ai,qi

). Here ai,p denotes the number
of packets that arrive at time Si + p − 1. At time Si + qi − 1 the last packet of player i
arrives, i.e. player i has an arrival spread of qi := arg minp∈N>0{ai,q′ = 0,∀q′ > 0}, thus,∑qi

p=1 ai,p = ki. Again note that 1 ≤ ai,1 ≤ ai,2 ≤ . . . ≤ ai,qi−1. This holds true with a
simple following argumentation. If p packets arrive at time θ, p further packets can arrive at
time θ + 1 by following the first p packets.

Given a set of players N with (ki)i∈N and (qi)i∈N with ki ≥ qi, we can construct an
arrival pattern Ai := (ai,1, . . . , ai,qi

) for every player i realizing her ki and qi in the following
way:

ai,1 = · · · = ai,p =
⌊
ki − 1
qi − 1

⌋
, ai,p+1 = · · · = ai,qi−1 =

⌊
ki − 1
qi − 1

⌋
+ 1, ai,qi

= 1,

where p = qi − 1− ((ki − 1) mod (qi − 1)).
For every player i with arrival pattern Ai := (ai,p)1≤p≤qi

, we construct a corresponding
si-ti-graph GAi = (VAi , EAi) consisting of only parallel si-ti-edges, such that the arrival
pattern of the earliest arrival flow of GAi

matches Ai. In order to do so, we first define
ai,0 = 0. Then, we add max{ai,p − ai,p−1, 0} parallel edges of length S + p− 1 and capacity
one for all 1 ≤ p ≤ qi to graph GAi

for all i ∈ N .
We define K :=

∑
i∈N ki, and define BG(K) as in Section 2. We connect BK and GAi

by setting v ∈ VBG(K) equal to si ∈ VAi
for all i ∈ N as in Figure 13.

In a socially optimal solution, each player i ∈ N can enter their graph GAi
at time

zero, and thus arrive at sink ti according to arrival pattern Ai, resulting in a social cost∑
i∈N Ci(OPTi). In the worst Nash equilibrium, player i blocks graph BG(K) for qi

units of time, delaying all players j > i by qi time units. This results in a total cost of∑
i∈N

(
Ci(OPTi) +

∑n
j=i+1 qikj

)
. As this holds for all players i ∈ N , this gives us the

desired price of anarchy. J

F Example algorithm 1

I Example 20. For a better understanding of the algorithm we apply it to a small example.
We are given two players with a demand of four each, and we return a game that maximizes
the price of anarchy for the given demands. We start with q1 = q2 = 1. In the for loop of
Algorithm 1 pi and Pi are determined. We start with player 1: for increasing q1 from 1 to
2, we get a quotient of 7

3 , for increasing it to 3 we get 12
4 = 3 and for increasing it from 1
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s v

s1

s2

Figure 14 Example with price of anarchy of 30
14 .

to 4 we get 18
6 = 3. Thus, we obtain (p1, P1) = (3, 12

4 ). Similarly, for player 2 we obtain
(p2, P2) = (2, 1). Therefore, after the first for loop we choose j ← 1.

Since 12
4 > 4+4+4

4+4 we enter into the while loop. We increase q1 from 1 to 3. and update
the values of p1 and P1, (p1, P1)← (4, 6

2 ). Hence, again j ← 1.
Since 6

2 >
24
12 we enter the while loop a second time. We set q1 = 4 and update p1 and

P1. Since q1 cannot be increased, P1 = 0. Hence, j ← 2.
Since 1

1 >
30
14 is not correct, we do not enter the while loop again and return q = (4, 1).

This results in a price of anarchy of 30
14 . Note that this is larger than two and thus strictly

worse than in the single commodity case, where we established an upper bound of n. The
graph realizing this price of anarchy is depicted in Figure 14.

In the optimal solution, the arrival times of player 1 are 1, 2, 3, 4, and for player 2 we
obtain 1, 1, 1, 1, resulting in a total cost of 14. In the the worst Nash equilibrium, the arrival
times of player 1 are 1, 2, 3, 4, and the arrival times of player 2 are 5, 5, 5, 5, resulting in a
total cost of 30. Hence, the price of anarchy is indeed 30

14 .
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Abstract
The Hotspot Problem in Air Traffic Management consists of optimally rescheduling a set of
airplanes that are forecast to occupy an overcrowded region of the airspace, should they follow
their original schedule. We first provide a MILP model for the Hotspot Problem using a standard
big-M formulation. Then, we present a novel MILP model that gets rid of the big-M coefficients.
The new formulation contains only simple combinatorial constraints, corresponding to paths and
cycles in an associated disjunctive graph. We report computational results on a set of randomly
generated instances. In the experiments, the new formulation consistently outperforms the big-M
formulation, both in terms of running times and number of branching nodes.
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1 Introduction

An important task in Air Traffic Management is the dynamic (re)scheduling of flights in order
to preemptively avoid that regions of the airspace would become overcrowded at some point
in time after the flights have departed (the frequency at which this scheduling happens is not
important in this paper). This is necessary to avoid overburdened air traffic controllers. In
fact, in order to guarantee the safety of air travel in large regions, the airspace is partitioned
into small volumes called control sectors. At any time, each such sector is managed by one
or more air traffic controllers. Due to safety reasons, each controller can only watch up to
a certain number of airplanes. The maximum number of airplanes controllable in a given
sector is called capacity (of the sector). If too many airplanes occupy a sector at a given
time, then there is an hotspot (see, e.g. [1, 2]). Hotspots can be avoided by delaying some
flights, holding airplanes on the ground. Our objective is to compute a hotspot-free schedule
for a set of airplanes in a large region of the airspace while minimizing the total delay.

For our purposes, it suffices to describe the route of each airplane as an ordered sequence
of sectors, starting at the departure airport and ending at the arrival airport. Even if
airplanes can adjust their cruising speed to a certain extent, in this paper we assume that
such speed is fixed, which implies that the time to traverse a given sector is also fixed. This
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is in accordance with the standard subdivision of roles in air traffic management. In fact,
the speed of an airplane is monitored and possibly adjusted usually only by an air traffic
controller within his/her control sector. Instead, the schedule of a flight is assessed and
possibly recomputed many hours ahead its original departure time from a central authority
(e.g. in Europe, Eurocontrol). This procedure takes into consideration the official timetable
for all the flights traversing a region of the airspace and their associated routes. Already this
timetable can contain one or more hotspots. More typically, hotspots may emerge because of
some unpredicted event, such as a sudden delay in one or more aircraft ground operations,
bad weather conditions, or even the reduction of the capacity of one or more sectors.

When a hotspot is predicted, the authorities are required to implement some actions
to eliminate it. These actions generally consist of delaying the departure of some of the
airplanes. So, a natural problem arises: which airplanes should be held at the departure
airport, and for how long? Clearly we would like to minimize a measure of the overall delay
that is introduced with these actions. We call this the Hotspot Problem (HP).

A few recent papers address variants of the hotspot problem. In [6], the airspace is
subdivided into micro-cells of unit capacity, and airplanes can be delayed at the departure,
but only within the assigned time slot. A related problem, but on the side of the airlines
rather than of the controlling bodies, is addressed in [7]. Here, the authors assume that,
in order to mitigate congestion, the control authority issues a number of flight restrictions
(FCA) within feasible time slots for the flights of some airlines. The airline is then confronted
with the decision of how to modify flights trajectories in order to satisfy the FCAs. The
feasible trajectories are chosen in a predefined, finite set. Finally, in [5] an overarching,
time-indexed formulation is developed for a problem which includes, as subproblem, capacity
requirements in certain points in space.

All the above mentioned papers focus on modeling issues, using either constraint (CP) or
mixed integer (MIP) programming. The resulting formulations are then solved by invoking
a state-of-the-art CP or MIP solver. However, in our experience, this approach typically
does not suffice to tackle instances of practical size. Indeed, the standard formulations for
this kind of problems are the big-M and the time-indexed formulations. The former usually
provides weak bounds, and thus large search trees; the latter tends to grow to intractable
dimensions very quickly. In this paper we instead develop a new MILP formulation for the
Hotspot Problem that allows us to significantly improve over a standard big-M formulation.

2 A MILP big-M model for the Hotspot Problem

We start by introducing a standard big-M model for the Hotspot Problem. It extends the
model for job-shop scheduling problem with blocking and no-wait constraints introduced in
[4] and exploited in several papers for different transportation problems.

The Hotspot Problem is characterized by a set of sectors S (i.e., the airspace) and a set
of flights F . Each sector s ∈ S is associated with a maximum capacity cs. A route node is a
pair (f, s), where f ∈ F is a flight and s ∈ S is a sector. For each flight f ∈ F , we define its
flight route as an ordered sequence of route nodes:

(
(f, s1), (f, s2), . . . , (f, sq)

)
where s1, sq

are the sectors in which the departure and arrival airports are located, respectively, and
si−1, si are adjacent sectors, for i = 2, . . . , q. With some abuse of notation, we denote by
(f, s+1) the route node that immediately follows (f, s) in the flight route of f .

Let R be the set of all route nodes for all flights in F , D the set of all departure nodes,
and A the set of all arrival nodes. With each route node (f, s) ∈ R we associate the fixed
time Λ(f,s), that is the time flight f takes to traverse sector s. This time can be obtained
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from the the official flight schedule and mainly depends on the entry and exit point of the
airplane in that sector. Moreover, we indicate with Γf the minimum departure time of a
flight f in respect to a certain reference time that is common to all f ∈ F .

We can now start building the MILP model by associating a scheduling variable t(f,s) ∈ IR
to each route node (f, s) ∈ R, where t(f,s) represents the time flight f enters sector s. Note
that the time a flight exits a particular sector is equal to the time the flight enters the
subsequent sector in its route. We also introduce a fictitious variable to ∈ IR, which serves as
a reference time for all airplanes. Thus, we have

t(f,s) − to ≥ Γf , (f, s) ∈ D. (1)

Now let (f, s), (f, s+1) ∈ R be two consecutive route nodes in a particular flight route. Then
the following precedence constraints must hold:

t(f,s+1) − t(f,s) = Λ(f,s). (2)

In fact, we assume that each airplane travels at fixed speed throughout its route, but it is
allowed to delay its departure.

Now, for each pair of distinct flights f, g ∈ F , we denote by S(f, g) the shared sectors,
and for each s ∈ S(f, g) we introduce the binary quantity xsfg, which is 1 if and only if f and
g meet in s. Consider now a set of distinct flights F̄ ⊆ F traversing a sector s, and assume
that |F̄ | > cs. Then, the following hotspot constraints must hold:∑
{f,g}⊆K

xsfg ≤
(
cs + 1

2

)
− 1, K ⊆ F̄ , |K| = cs + 1, s ∈ S. (3)

It is easy to see that these constraints are enough to guarantee that at most cs flights meet
in sector s. This is indeed a straightforward application of the well-known Helly’s Theorem
in one dimension, which states that a set of intervals in IR (i.e., the time) has a nonempty
intersection if and only if every pair intersects.

Observe that, for a pair of distinct flights f, g traversing a sector s, exactly one of the
following three conditions must occur: a) flight f and g meet in sector s, or b) flight f
traverses sector s before flight g, or c) flight g traverses sector s before flight f . For each
ordered pair of flights (f, g) ∈ F̄ , we define ysfg to be equal to 1 if f exits s before g enters,
and 0 otherwise. Then, we have that

ysfg + ysgf + xsfg = 1, {f, g} ⊆ F̄ , s ∈ S. (4)

So, precisely one of the above three variables will be 1 in any feasible solution. Accordingly,
for every {f, g} ⊆ F̄ , s ∈ S, the schedule t will satisfy a family of disjunctive constraints that
can be modeled by means of a conjunction of big-M constraints as follows:

(i) t(g,s) − t(f,s+1) ≥ −M(1− ysfg),

(ii) t(f,s) − t(g,s+1) ≥ −M(1− ysgf ),

(iii) t(g,s+1) − t(f,s) ≥ −M(1− xsfg),

(iv) t(f,s+1) − t(g,s) ≥ −M(1− xsfg),

ysfg, y
s
gf , x

s
fg ∈ {0, 1},

(5)
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Algorithm 1 An algorithm for the big-M formulation.
P ← Set of precedence constraints
H ← ∅ . Set of hotspot constraints
D ← ∅ . Set of disjunctive constraints
M← min

y,x,t
c(t), subject to P,H, and D . MILP model for BF

(y, x, t)← incumbent solution ofM
while true do

SolveM
if y, x, t violates a disjunction constraint D then
D ← D ∪D . Row generation
continue

else if y, x, t violates a hotspot constraint H then
H ← H∪H . Row generation
continue

else
break . Found optimal!

where M is a suitably large positive constant, and t(h,s+1) is the time the flight h enters
the sector next to s in its route (i.e., the time h exits sector s). Indeed, if ysfg = 1 then (ii)
and (iii) and (iv) become redundant, whereas constraint (i) reduces to t(g,s) − t(f,s+1) ≥ 0,
which implies that f exits s before g enters s. Similarly, when (ii) is active, g exits s before
f enters. On the other hand, when xsfg = 1, then (i) and (ii) become redundant, whereas
(iii) and (iv) are active, implying that both f and g exit the sector s after the other flight
enters it (i.e., they meet in s).

In conclusion, a complete MILP formulation for the Hotspot Problem can be obtained
by considering constraints (1) and (2) for all routes, and constraints (3), (4), and (5) for all
sectors s ∈ S and all sets F̄ ⊆ F of flights exceeding the capacity cs of s. We call this the
big-M formulation (BF ).

Let P ⊂ IRp be the set of points (y, x, t) satisfying all such inequalities, then our problem
reduces to {min c(t) : (y, x, t) ∈ P}.

The objective c(t) may vary from instance to instance, but in this paper it will simply be
the (weighted) delay at destination.

In principle, formulation BF could be solved by resorting to any off-the-shelf MILP
solver. However, the families of constraints (3), (4) and (5) can grow very quickly1, making
the formulation impractical even for small-medium size realistic instances. A standard way
to tackle this issue is to make use of row generation. Namely, constraints are generated
dynamically and added to the model only if they are violated by the incumbent integer
feasible solution. An algorithm to solve formulation BF is presented in Algorithm 1.

3 A non-compact reformulation

In the previous section we presented a compact formulation that fully characterizes the
Hotspot Problem, and we presented an algorithm to solve it in a practical context. However,
BF still contains one major sources of complexity. In fact, in order to make the constraints in
(5) redundant for certain values of the binary variables, we made use in BF of the (in)famous

1 The total number of constraints is O(|S||F |cs ) in (3), and is O(|S| × |F |2) in (4) and (5).
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Figure 1 A disjunctive graph for a pair of flights f, g that meet in sector s. Note that, the
sector associated with the node (f, s+1) might be different from the sector associated with (g, s+1).
For each flight, the precedence edges enforce a fixed traversing time Λ in the corresponding sector.
Instead, the zero-weighted conflict edges are each associated to a binary variable, and they become
binding only if the corresponding binary variable is equal to 1.

big-M method. Unfortunately, including a large coefficient in the model usually makes the
formulation weak and prone to return poor bounds in the search trees, often leading to slow
solution times.

Our approach to tackle this problem and solve {min c(t) : (y, x, t) ∈ P} extends the
methodology first developed in [3]. In particular, we exploit a Benders-like decomposition to
obtain a (master) problem only in the binary variables, plus a few continuous variables to
represent the objective function. The decomposition allows us to get rid of big-M coefficients
(at the cost of an increased number of linear constraints). Moreover, the constraints of the
reformulated master correspond to basic graph structures in the so called disjunctive graph,
such as paths and cycles.

We sketch here how the reformulation is obtained. First, we consider the disjunctive
graph associated with our big-M formulation BF . This is a directed graph G = (V,E)
obtained by considering a vertex for every route node u ∈ R, plus an extra node: the origin
o. A directed edge (u, v) of length luv in the disjunctive graph represents an inequality
tv − tu ≥ luv, indicating that the minimum travel time from route node u to route node v is
luv. Therefore, we can add edges to G to represent some of the constraints of BF .

In particular, the origin is connected with a direct edge (o, df ) to the node df ∈ D,
corresponding to the departure node of flight f ∈ F . The length of edge (o, df ) equals the
minimum departure time of flight f ∈ F , Γf . Then we add an edge (u, v) of weight Λu and
an edge (v, u) of weight −Λu, for every constraint (2). These are called the precedence edges.

Consider now inequalities (5.i)-(5.iv). For every variable ysfg, we add the edge (u, v) with
length zero, where u, v are the route nodes associated with t(f,s+1), t(g,s), respectively. In
fact, if ysfg = 1 then t(g,s) − t(f,s+1) ≥ 0. These edges are called y-edges, and the set of
y-edges is denoted by Ky. Similarly, with every variable xsfg we associate two edges of length
zero: these edges are called x-edges, and the set of x-edges is denoted by Kx. For e ∈ Ky

(e ∈ Kx), we let ye (xe) be the y-variable (x-variable) that generates e. The set Ky ∪Kx is
the set of conflict edges.

Figure 1 shows how a disjunctive graph would look like for a couple of flights that meet
at least in one sector.
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Consider now a feasible solution (ȳ, x̄, t̄) to (2), (3), (4) and (5). Let G(ȳ, x̄) be the graph
obtained from the disjunctive graph by removing all the edges e ∈ Ky with ȳe = 0 and all
the edges e ∈ Kx with x̄e = 0. Note that the vector (ȳ, x̄) ∈ {0, 1}Ky∪Kx is the incidence
vector of the subset of conflict edges contained in G(ȳ, x̄), and we say that such edges are
selected by (ȳ, x̄). Then the following lemma holds.

I Lemma 1. i.) G(ȳ, x̄) does not contain strictly positive directed cycles. ii.) If (ȳ, x̄, t̄) is
an optimal solution, and t̄af

is the associated arrival time of flight f ∈ F , then t̄af
equals the

length of the longest path from the origin o to route node af ∈ A in G(ȳ, x̄).

Proof. When variables y, x are fixed, it is easy to see that the problem BF reduces to the
dual of a max-cost flow problem. Then, the result follows immediately from well-known
theorems of network theory. J

Note that our objective function is simply c(t) =
∑
a∈A ta, but the following results can be

immediately extended to any function non-decreasing with t.
The lemma has two straightforward consequences: any feasible solution corresponds to a

selection ȳ, x̄ of conflict edges such that G(ȳ, x̄) does not contain a strictly positive directed
cycle; and, for any feasible selection ȳ, x̄, the best possible scheduling corresponds to the
longest path tree in G(ȳ, x̄).

In this context, the Hotspot Problem (HP) can be stated as follows: find a feasible
selection y, x of conflict edges such that G(y, x) does not contain a strictly positive directed
cycle, the sum of the lengths of the longest paths from the origin o to the arrival nodes a ∈ A
is minimum, and the resulting schedule is hotspot-free.

Let us denote by C the set of strictly positive length di-cycles of G, and by L∗(y, x, u) the
length of the longest path from o to u in G(y, x). Then a new formulation for the Hotspot
Problem can be written as follows:

min
∑
u∈A

L∗(y, x, u)

s.t.

(i) ysfg + ysgf + xsfg = 1, {f, g} ∈ F, s ∈ S,

(ii)
∑

e∈C∩Ky

ye +
∑

e∈C∩Kx

xe ≤ |C ∩K| − 1, C ∈ C,

(iii)
∑

{f,g}⊆F̄
xsfg ≤

(|F̄ |
2
)
− 1, s ∈ S, F̄ ⊆ F, |F̄ | = cs + 1,

y ∈ {0, 1}|Ky|, x ∈ {0, 1}|Kx|.

(6)

Constraint (6.ii) ensures that one does not select all the conflict edges contained in a strictly
positive di-cycle. Equivalently we write

min
∑
u∈A

µu

s.t.

(i) ysfg + ysgf + xsfg = 1, {f, g} ∈ F, s ∈ S,

(ii)
∑

e∈C∩Ky

ye +
∑

e∈C∩Kx

xe ≤ |C ∩K| − 1, C ∈ C,

(iii)
∑

{f,g}⊆F̄
xsfg ≤

(|F̄ |
2
)
− 1, s ∈ S, F̄ ⊆ F, |F̄ | = cs + 1,

(iv) µu ≥ L∗(u, y, x), u ∈ A,

y ∈ {0, 1}|Ky|, x ∈ {0, 1}|Kx|, µ ∈ IR|A|.

(7)
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We can finally rewrite constraints (7.iv) in a way that can be immediately exploited in a row
generation algorithm. We denote by H the set of all G(y, x) for (y, x) satisfying (7.i), (7.ii),
(7.iii). If H ∈ H, then we denote by Pu(H) the (set of edges of a) longest path from o to u
in H, and by Lu(H) the length of Pu(H). The final reformulation can now be written as
follows:

min
∑
u∈A

µu

s.t.

(i) ysfg + ysgf + xsfg = 1, {f, g} ∈ F, s ∈ S,

(ii)
∑

e∈C∩Ky

ye +
∑

e∈C∩Kx

xe ≤ |C ∩K| − 1, C ∈ C,

(iii)
∑

{f,g}⊆F̄
xsfg ≤

(|F̄ |
2
)
− 1, s ∈ S, F̄ ⊆ F, |F̄ | = cs + 1,

(iv) Lu(H)(
∑

e∈Ky∩Pu(H)
ye +

∑
e∈Kx∩Pu(H)

xe

−|K ∩ Pu(H)|+ 1) ≤ µu, u ∈ A,H ∈ H,

y ∈ {0, 1}|Ky|, x ∈ {0, 1}|Kx|, µ ∈ IR|A|.

(8)

Indeed, consider a feasible solution (ȳ, x̄, µ̄) to (8). Let H̄ = G(ȳ, x̄) and let P̄u(H̄) be a
longest path from o to u in H̄. Then all conflict edges on P̄u(H̄) are selected by ȳ, x̄ and we
have

∑
e∈Ky∩P̄u(H̄)

ȳe +
∑

e∈Kx∩P̄u(H̄)

x̄e − |K ∩ P̄u(H̄)|+ 1 = 1

which in turn implies

µ̄u ≥ Lu(H̄) = L∗(ȳ, x̄, u).

On the other hand, when one or more edges in a path are not selected, then the constraint is
satisfied for any µu ≥ 0.

We call Problem (8) the Path&Cycle formulation (PC) of the Hotpot Problem and we
solve it with the algorithm described in Algorithm 2. Constraints (8.i) are called the selection
constraints, (8.ii) are called the cycle constraints, (8.iv) are called the path constraints, and
(8.iii) are called the hotspot constraints.

In short, the algorithm works by generating combinations of the x, y variables such
that

∑
u∈A µu is minimized. If a particular solution (ȳ, x̄) is such that G(ȳ, x̄) contains a

positive cycle or (8.1) is not satisfied, then the corresponding constraint is added the problem.
Otherwise, the longest paths Lu(G(ȳ, x̄)), u ∈ A are computed. If there exists a u ∈ A

such that Lu(G(ȳ, x̄)) > µu, then the corresponding path constraint is added to problem.
Otherwise, the algorithm is able to use variables x, y, µ to produce a schedule for the t
variables. If this schedule violates the capacity of any of the sectors, then the corresponding
hotspot constraint is added to the problem. Finally, if none of these inequalities needs to be
added, then we found the optimal solution.

4 Computational experiments

In this section we analyze the performance of the BF formulation versus the PC formulation
on randomly generated instances. Each instance represents a snapshot (in time) of the
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Algorithm 2 An algorithm for the Path&Cycle formulation.
G← disjunctive graph
S ← ∅,H ← ∅ . Sets of selection and hotspot constraints
C ← ∅,P ← ∅ . Sets of cycle and path constraints
M← min

y,x,µ
µT1, subject to S,H,C, and P . MILP model for PC

(y, x, µ)← incumbent solution ofM
while true do

while true do
SolveM
if y, x violates a selection constraint S then
S ← S ∪ S . Row generation
continue

else if y, x violates a cycle constraint C then
C ← C ∪ C . Row generation
continue

else
Find the longest paths in G(y, x)
if (y, x, µ) violate a path constraint P then
P ← P ∪ P . Row generation
continue

else
break

if x, y violates a hotspot constraint H then
H ← H∪H . Row generation
continue

else
break . Found optimal solution!

situation of an airspace made of 400 sectors where 20 airports are placed randomly and a
certain number of flights is scheduled (with random departure times) between two randomly
chosen airports (see Figure 2). We must say that real-life data is available, but we are not
allowed (yet) to use it. However, exploiting the information obtained from the real-life data,
we selected 30 “realistic” random instances2.

The algorithm has been implemented in C] and interfaced with CPLEX 12.8 using its
default parameters except for the following: the number of available threads was set to 1,
the advanced start switch was set to 0, and both dual reduction and dynamic search were
disabled. The information used for the advanced start (sometimes also called warm start) is
poorly exploited by CPLEX in our context, and led to inconsistent results. Instead, dual
reduction and dynamic search are automatically disabled by CPLEX when row generation is
implemented using callback functions.

The results of Table 1 show a consistent and sometimes dramatic improvement in the
solution time of the PC formulation. The strength of this new formulation (compared to the
BF formulation) is demonstrated particularly by the smaller number of branch and bound
nodes visited before reaching the optimal solution. This is mostly due to the absence of

2 The instances are available from the authors upon request.
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Figure 2 A snapshot of one of the instances where the sector capacity cs is equal to 3, and a
hotspot is highlighted in red. The orange number at the top left corner of each sector shows the
current occupancy of the sector. The shades of turquoise simply indicate the number of flight routes
traversing a particular sector, helping the visual analysis of an instance.

the large coefficient M in PC. In fact, the LP relaxation of BF at a particular node of the
search tree is usually very poor, preventing an effective pruning of the branches of the search
tree.

Overall, the Path&Cycle formulation for the Hotspot Problem proved to be very promising
when compared to a more common formulation. Moreover, this formulation can be easily
extended/modified to handle other job-shop scheduling problems.
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Table 1 Results on 30 randomly generated instances. The table shows the number of scheduled
flights, the capacity cs of the sectors (all the sectors have the same capacity), and how many hotspots
have been solved by each algorithm (curiously, for these instances they are all equal, although this is
not always the case since the hotspot constraints are added dynamically and each algorithm may
take a different path to reach the optimal solution). It also reports the total number of nodes visited
by the branch and bound algorithm, and the total time required to find the optimal solution. The
last column is the ratio between the computation time of BF and the computation time of P C, and
indicates the speed up obtained by using P C instead of BF .

ID |F | cs Solved hotspots Visited nodes Time (s) Speed up

PC BF PC BF PC BF

ATM1 122 3 13 13 1016 19175 1.06 4.99 4.7x
ATM2 137 3 13 13 3062 36806 1.35 10.38 7.7x
ATM3 131 3 8 8 109 774 0.18 0.28 1.5x
ATM4 142 3 13 13 833 40482 0.73 6.43 8.8x
ATM5 110 3 12 12 795 31117 0.39 7.38 18.8x
ATM6 127 3 5 5 79 570 0.16 0.17 1.1x
ATM7 115 3 1 1 0 5 0.05 0.05 1.0x
ATM8 120 3 4 4 2 97 0.05 0.10 1.8x
ATM9 131 3 4 4 42 554 0.08 0.16 2.1x
ATM10 143 3 8 8 76 2313 0.18 0.48 2.6x
ATM11 136 3 15 15 371 39300 0.31 14.90 47.3x
ATM12 142 3 9 9 274 1974 0.22 0.57 2.6x
ATM13 139 3 11 11 118 2217 0.19 0.94 5.1x
ATM14 126 3 7 7 60 2182 0.13 0.59 4.6x
ATM15 139 3 9 9 3625 172950 0.88 50.61 57.4x
ATM16 288 5 4 4 47 1579 0.27 0.71 2.6x
ATM17 289 5 9 9 113 12503 0.38 6.05 16.0x
ATM18 278 5 6 6 183 2188 0.37 1.23 3.3x
ATM19 259 5 3 3 0 296 0.15 0.20 1.4x
ATM20 254 5 5 5 55 1977 0.23 1.01 4.3x
ATM21 279 5 6 6 255 4175 0.32 2.10 6.6x
ATM22 287 5 3 3 0 985 0.11 0.32 2.8x
ATM23 259 5 6 6 37 2452 0.25 1.00 4.0x
ATM24 281 5 4 4 161 1350 0.47 0.60 1.3x
ATM25 296 5 4 4 71 1518 0.22 0.60 2.7x
ATM26 275 5 7 7 50 2872 0.41 1.32 3.2x
ATM27 256 5 5 5 464 5042 0.46 1.58 3.5x
ATM28 273 5 6 6 298 1542 0.60 0.91 1.5x
ATM29 274 5 6 6 193 104627 0.53 35.09 66.7x
ATM30 287 5 7 7 1306 9129 0.75 3.10 4.1x
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Abstract
We consider the following problem: given a set of lines in a public transportation network with
their round trip times and frequencies, a maximum number of vehicles and a maximum number of
lines that can be combined into a vehicle circulation, does there exist a set of vehicle circulations
that covers all lines given the constraints. Solving this problem provides an estimate of the costs
of operating a certain line plan, without having to compute a timetable first. We show that
this problem is NP-hard for any restriction on the number of lines that can be combined into a
circulation which is equal to or greater than three. We pay special attention to the case where at
most two lines can be combined into a circulation, which is NP-hard if a single line can be covered
by multiple circulations. If this is not allowed, a matching algorithm can be used to find the
optimal solutions, which we show to be a 16

15 -approximation for the case where it is allowed. We
also provide an exact algorithm that is able to exploit low tree-width of the so-called circulation
graph and small numbers of vehicles required to cover single circulations.

2012 ACM Subject Classification Applied computing → Transportation, Mathematics of com-
puting → Graph algorithms

Keywords and phrases Vehicle scheduling, integrated railway planning, (fractional) matching,
treewidth

Digital Object Identifier 10.4230/OASIcs.ATMOS.2018.15

1 Introduction

Traditionally, the planning of public transport services occurs in a number of steps. First,
a line plan is constructed where service routes, usually referred to as lines, are selected
such that high quality service is provided to the customers [5, 14]. In the second step, a
timetable is constructed that specifies the departure and arrival times along the stops of all
lines [6, 10]. In the final step, vehicles and possibly human resources are planned as they are
necessary resources to execute the services [1, 8, 11]. As the individual scheduling steps are
already quite challenging, the sequential planning approach is traditionally applied because
an integrated approach is computationally not tractable. The disadvantage of the sequential
approach is that the objectives of the subsequent steps are not taken into account when the
prior steps are solved. In particular, the line plan and timetable are usually optimized based
on passengers’ convenience, while the vehicle schedule is optimized based on the operator
costs. Therefore, the optimal solution for the combined problem is likely to be missed.

Recently, a number of authors have proposed ideas to integrate the separate planning
steps. One example, the eigenmodel [15], replaces a fixed order with an iterative approach
that takes a different route through the separate steps, controlling both the passengers’
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convenience and the operator costs during the process. Another approach [12] incorporates
penalties during the line planning phase for lines which can not be covered efficiently by a
vehicle in a periodic timetable. That is, assuming the cycle time is 60 minutes, a line with
frequency one for which a round trip takes 54 minutes (a downtime of 6 minutes) is given
a low penalty, while a line with frequency one for which a round trip takes 65 minutes (a
downtime of 55 minutes) is given a very high penalty.

In this paper, we consider the construction of vehicle schedules based on the line plan
without the intermediate step of constructing a timetable. One goal of this is to quickly assess
whether a line plan can be operated using a small number of vehicles. This allows public
transport operators to detect potential inefficiencies early in the planning process, without
having to compute a timetable first. The novel aspect of our approach is that we explicitly
consider the possibility to combine lines into larger vehicle circulations. To illustrate, while a
line that takes 65 minutes with a period of 60 minutes may seem inefficient by itself, it may
be a good option if we can combine it with a line of 55 minutes. Although combinations of
lines can help to reduce the number of vehicles required to operate a line plan, large and
complex combinations of lines may result in greater dependencies between the operations of
the different lines. Therefore, we provide a detailed examination of cases where at most two
lines can be combined in a vehicle schedule.

The remainder of this paper is organized as follows. In Section 2 we introduce the vehicle
circulation scheduling problem. In Section 3 we study the computational complexity of the
general case. In Section 4 we study the special case where only two lines can be combined in
a circulation. We conclude and discuss ideas for future research in Section 5.

2 Problem formulation

In this paper, we assume a line plan is already given and want to determine the minimum
number of vehicles that are required to operate the line plan without the intermediate step
of constructing a timetable. For the line plan, we have a fixed time period denoted by T and
a set of lines L where a line {v, u} ∈ L is an unordered pair of terminal stations of the line.
The line graph L = (V,L) has terminal stations V as vertices and the lines as edges. In the
line plan each line l ∈ L has a round trip time tl and an integer frequency fl assigned to it.
The round trip times specified by the line plan should at least include the minimum driving
and dwelling times required to execute the line, but can also include some slack to make
operations more robust against disruptions. The frequency defines the number of times the
line service must be executed by a vehicle within each time period of length T . If vehicles
are only allowed to operate a single line, the number of vehicles required for line l equals⌈
tl
T fl
⌉
. In order to reduce the number of vehicles required to operate the line plan, public

transport operators may consider circulations, which are a combination of lines that can
be executed by a single vehicle. Formally, a circulation c ⊆ L is a set of lines that can be
operated by one or more vehicles. We allow lines to be contained more than once in the set,
since this can be relevant if the line has a frequency greater than 1. We call the number of
times a line l is contained in a circulation the multiplicity of l in c. Furthermore, we assume
that a summation over the lines in the circulation includes a line multiple times if it has a
multiplicity greater than 1. An example of a situation where we want to assign the same line
to a circulation multiple times, is a line with a round trip time of T2 and a frequency of 2.
In that case, we want to consider a circulation where we execute the line twice during each
period.
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For this paper, we only consider circulations c such that the lines it contains form a
connected subgraph of L. As a consequence of this, the time tc needed to perform a single
round trip of a circulation c can be expressed as tc =

∑
l∈c tl. Furthermore, a circulation c

corresponds to a directed Eulerian tour in ←→L , where ←→L is the directed line graph, which is a
a symmetric directed graph derived from L where each edge of L is replaced by two arcs,
one for each direction. Let us now consider the correspondence between a connected subset
of L and the directed cycle in ←→L .

I Lemma 1. A connected subset c ⊆ L of lines in the line graph L corresponds to a directed
Eulerian sub-graph in the directed line graph ←→L . Thus, there always exists a directed cycle in←→
L that visits all arcs that correspond to both directions of the lines in c a number of times
that is exactly equal to the multiplicity of the lines in the circulation.

Proof. A directed graph contains a directed Eulerian cycle if two conditions hold: (1) for
every vertex the in-degree is equal to the out-degree, and (2) the graph is strongly connected.
Since the graph ←→L is symmetric, each vertex must have one outgoing arc for each incoming
arc, and thus condition (1) always holds. As c is a connected subset of lines, the corresponding
lines in ←→L must be connected as well. Since the graph is symmetric, this implies that it is
also strongly connected. J

Although more general concepts of circulations that do not enforce connectivity can be
considered, these would require dead-heading of vehicles as part of a line plan. While public
transport operators have to use dead-heading when operations start up, or frequencies of
lines are changed throughout the day, it is usually avoided as much as possible by public
transport operators during regular operations. As we focus on regular operations, we consider
those generalized concepts of circulations beyond the scope of this paper.

In the problem we consider we do not only need to decide which circulations should be
used, but we also have to decide how many vehicles must be assigned to each circulation
to cover the constraints of the line plan. Since a circulation c can have a round trip time
that is larger than T , we may need to assign multiple vehicles to it in order to enforce
that every line in the circulation is covered during every period. We define the number of
vehicles required to perform the circulation once in every period as kc = d tcT e. If we would
assign fewer vehicles than kc to a circulation, the vehicle is not finished with its circulation
when a new period starts and as a consequence no vehicle executes the circulation during
some periods. Furthermore, an upper bound on the number of vehicles that can be assigned
to a circulation c is given by the expression minl∈c flkc, as assigning more vehicles to the
circulation would imply that the line where the minimum was attained is executed with
greater frequency than the line plan prescribes. In the special case that all frequencies are 1,
kc itself is an upper bound on the number of vehicles that can be assigned to c.

Note that we do not enforce that each line is covered by a single circulation. For example,
suppose we have two lines a and b with round trip times ta = tb = 30, but different frequencies
fa = 3 and fb = 1, with a period time of T = 60. The most efficient way to cover these
lines is to have one vehicle circulation that executes line a two times each period, while a
second vehicle alternates between line a and line b, executing both lines once each period.
We investigate a strict version of the problem where a line can only be covered by a single
circulation in Section 4.2.

The goal of the problem studied in this paper is to find a set of circulations and the number
of vehicles assigned to each circulation such that all lines are covered. From a practical
point of view it is desirable that the selected circulations do not contain too many lines, as
this creates significant dependencies in the operations that make the operations extremely
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sensitive to minor disruptions. When a disruption occurs somewhere in a circulation, all
subsequent lines in the circulation are affected. Furthermore, very large circulations can only
be operated in practice if the timetables of all the lines in the circulation are synchronized.
This may lead to problems in the timetabling phase, especially if you want to offer good
transfer possibilities to passengers who want to follow different paths than the vehicles.

To avoid large circulations, we consider a restriction on the maximum number of lines
than can be included in a circulation. We call a circulation c an α-circulation if the number
of unique lines in c is α. A 1-circulation is also referred to as a fixed circulation and a
2-circulation is also referred to as a combined circulation. We introduce an input parameter κ
that restricts the number of unique lines that can be combined in a single circulation. With
this concept clearly defined, we can introduce the decision variant of our problem in a formal
way:

Vehicle Circulation Scheduling Problem (VCSP)
Instance: A line graph L = (V,L), a maximum number of of unique lines that are
allowed to exist in a single circulation κ and a maximum number of vehicles z
Question: Does there exist a set of circulations C, with for each circulation c ∈ C a
value assigned to the integer decision variable θc ∈ N that indicates how many vehicles
are assigned to circulation c, such that:
(1) the circulations cover all lines in every period, i.e. ∀l ∈ L : fl =

∑
c∈C:l∈c

θc

kc
,

(2) there are no α-circulations in C with α > κ, and
(3) at most z vehicles are required to execute all circulations, i.e.

∑
c∈C θc ≤ z.

The optimization version of this problem seeks to find the smallest z for a given line
graph and a given parameter κ, such that there exists a set of circulations C with integer
vehicle assignments θ that satisfy the conditions.

3 Computational complexity

First, we consider a lower bound on the number of vehicles that is needed in a given line graph.
Since we are not allowed to use dead-heading, we must consider the connected components
of a line graph separately, as no vehicle will be able to move from one component to another.
Thus without loss of generality we assume that a line graph is connected, since if it is not we
can decompose the problem into independent sub-problems. A lower bound on the number
of vehicles required can be computed by dividing the total running time by the cycle time.
As no fractional vehicles can be used, we can round the number of vehicles up. This gives
the following necessary condition to check if the instance can possibly be a YES-instance:

z ≥
⌈∑

l∈L tl · fl
T

⌉
(1)

If we have an instance of the problem where |L|-circulations are allowed, i.e. κ ≥ |L|, this
lower bound can be obtained by a single circulation that contains all lines as many times as
their frequency dictates. Thus all such instances are YES-instances.

If we are only allowed to used fixed circulations, i.e. κ = 1, the only way to cover all lines
is to use a fixed circulation for each line. In this case an instance is a YES-instance if and
only if z is sufficient for the sum over all fixed circulations:

z ≥
∑
l∈L

⌈
tl · fl
T

⌉
(2)
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I Theorem 2. Any instance with κ ≥ |L| for which the condition of Equation 1 holds is a
YES-instance. Any instance with κ = 1 is a YES-instance if and only if the condition of
Equation 2 holds.

As we noted earlier, circulations that do not contain too many lines are preferred as they
have many advantages. However, the number of vehicles required with fixed circulations can
be significantly greater than when any circulation is allowed. We can see this via application
of the following general identity for sums over ceiling functions. Suppose we have a sequence
a1, . . . an of n numbers with n ≥ 2, then it is straightforward to show that

n∑
i=1
daie −

⌈
n∑
i=1

ai

⌉
≤ n− 1 (3)

Thus, we can see that the difference between the lower bound of Equation 2 and Equation 1
can become as large as |L| − 1. If we allow 2-circulations, we are able to halve the number
of terms in Equation 2 which halves the worst case gap. It thus can be very beneficial
to consider restrictions on the circulation κ that are small but strictly greater than one.
Unfortunately, for any case with a fixed κ ≥ 3, we can show that the resulting problem
becomes NP-hard.

I Theorem 3. For any fixed κ ≥ 3, the Vehicle Circulation Scheduling Problem is NP-hard.

Proof. We show this by reduction from 3-partition. Let S = {s1, s2, . . . , sm} be a set of
integers such that

∑m
i=1 si = m

3 B and ∀1 ≤ i ≤ m : B4 < si <
B
2 . A 3-partition instance is a

YES-instance if it is possible to partition S into n = m
3 triplets S1, S2, . . . Sn such that each

triplet sums to B.
For the case where κ = 3, we reduce the 3-partition instance to a line graph L = (V,L)

where we have a central hub station v0 ∈ V and m external stations v1, . . . , vm ∈ V . This
line plan must be periodically operated in a period of T = B time units. Furthermore we
have a set of m lines where li ∈ L = {v0, vi}, with frequency fi = 1 and a round trip and
total time equal to si. As the sum of the round trip times is exactly mB, the only way to
execute this line plan with m vehicles is to have every circulation take B time. Otherwise,
at least one circulation will require two vehicles. Thus we set z = m. If the 3-partition
instance is a YES-instance, we can use the triplets to create 3-circulations with this precise
property. If the 3-partition instance is a NO-instance, we can not nicely divide the lines over
3-circulations and thus need at least one additional vehicle.

For cases where κ > 3, we scale the 3-partition instance by setting s′i = 4 · κ · si and
B′ = (κ− 3) + 4 · κ ·B. This way we make sure that B′

4 > κ− 3. We now introduce a set of
κ · n lines where lines l1, . . . , lm have round trip times s′1, . . . , s′m and lines lm+1, . . . , lκ·n all
have round trip time of 1. We define 1 + κ terminal stations and let lines i connect terminal
stations {v0, vi} in the same structure as the κ = 3 case. By construction, only circulations
that consist of κ− 3 lines with round trip time 1 and three other lines can sum up to B′.
This way it is enforced that it is a YES-instance if and only if the 3-partition instance is a
YES-instance. J

4 Fixed and combined circulations

Of special interest is the case of κ = 2 where we are only allowed to have fixed and combined
circulations, as this gives us some flexibility to decrease the number of vehicles required to
operate the line plan, while we still keep the number of lines in a circulation low. Since
all finite cases with κ > 2 are NP-hard, the κ = 2 case is also of particular interest from a
theoretical perspective.

ATMOS 2018



15:6 Vehicle Scheduling Based on a Line Plan

Figure 1 Example of a line graph with round trip times and the corresponding circulation graph.
The cycle time T is 60.

For the remainder of this section, we restrict ourselves to instances of the vehicle circulation
scheduling problem where the frequency of each line is 1. Although this restriction may seem
unrealistic, we can approximate instances with higher frequencies either by splitting up a line
l with a frequency higher than 1 into fl lines with frequency 1 and the same characteristics
or by increasing the round trip times as a function of the frequencies. The straightforward
approach increases the round trip times based on the frequency, i.e. the new round trip time
becomes fl · tl. More sophisticated approaches can add slack to model the periodicity in
more detail in order to increase the probability that a regular timetable exists, possibly at
the cost of requiring more vehicles to execute the line plan.

In case κ = 2 and fl = 1 for all lines, we can represent an instance of the VCSP by a
circulation graph G = (L, E). In this graph, the lines are the vertices and the edges are
the circulations. The set of edges consists of edges for the fixed circulations E1 and of the
2-circulations E2, thus E = E1 ∪ E2. The set E1 contains a self loop for every line li ∈ L.
The set E2 contains an edge between two lines li and lj if they have a common terminal
station. To ease notation, we denote a circulation {li} ∈ E1 simply as li.

An example of a VCSP instance represented by a circulation graph is given in Figure 1.
On the circulation graph, we also depict the kc value of each circulation c. For the self loops,
these values are depicted inside the nodes to make the graph more clear. For example, line
3 has a round trip time of 70 minutes, so k3 =

⌈ 70
60
⌉

= 2. Line 4 also needs 2 vehicles if
it is performed in a fixed circulation, but if lines 3 and 4 are combined only 3 vehicles are
required to operate both lines since k34 =

⌈ 70+100
60

⌉
= 3.

Using the circulation graph, we can formulate the following optimization problem for the
VCSP:

ν(L) = min
θ

∑
c∈E

θc (4)

s.t. 1
kl
θl +

∑
c∈E2|l∈c

1
kc
θc = 1 ∀l ∈ L, (5)

θc ≥ 0 and integer ∀c ∈ E, (6)

The objective is to minimize the number of used vehicles. We now consider how to rewrite
this problem to a maximization problem where the goal is to maximize the number of saving
circulations. First note that we can rewrite the summation in the objective of Equation 4 by
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splitting the summation over E into summations over E1 and E2, and that by definition a
summation over E1 is equal to a summation over L. We rewrite the objective as follows:

min
θ

∑
l∈L

θl +
∑
c∈E2

θc (7)

In the next step we make use of Constraints 5, which state that a line is included in a
sufficient number of circulations. As these constraints imply that θl = kl −

∑
c∈E2|l∈c

kl

kc
θc,

we can substitute the left term to obtain

min
θ

∑
l∈L

kl − ∑
c∈E2|l∈c

kl
kc
θc

+
∑
c∈E2

θc (8)

Note that the double summation over l ∈ L and c ∈ E2|l ∈ c can also be written as a double
summation over c ∈ E2 and l ∈ c. Rewriting the double summation and reshuffling some
terms gives:∑

l∈L

kl + min
θ

∑
c∈E2

(
θc −

∑
l∈c

kl
kc
θc

)
(9)

In the last step we factor out θc

kc
and Equations 4 – 6 are written as:

ν(L) =
∑
l∈L

kl + min
{∑
c∈E2

[
kc −

∑
l∈c

kl

]
θc
kc
, s.t. (5) – (6)

}
(10)

If we now apply Equation 3, it can be seen that
[
kc −

∑
l∈c kl

]
equals either -1 or 0. If the

term is -1, we call the circulation saving, otherwise we call it non-saving. For example, in
Figure 1, circulation {3, 4} is saving, while circulation {1, 2} is non-saving. If we let the set
of all saving circulations be denoted as ES2 , we have that ν(L) =

∑
l∈L kl − σ(L) where σ(L)

is the savings problem defined as follows:

σ(L) = max
θ

∑
c∈ES

2

θc
kc

s.t. (5) – (6)

 (11)

As such, it can be observed that minimizing the number of vehicles is equivalent with
maximizing the savings over a vehicle schedule that only uses fixed circulations. In the
remainder of this section, we use this observation to give a proof of the NP-hardness of
the VCSP with κ = 2 and fl = 1 for all lines, and to develop an exact algorithm and an
16
15 -approximation algorithm.

4.1 NP-hardness
Our proof depends on the fact that we can construct an arbitrary circulation graph from the
line graph if it is accompanied by auxiliary restrictions on which 2-circulations are allowed,
which are not part of the formal input to the VCSP. This can be seen from the fact that
a star-shaped line graph translates to a complete circulation graph, since we can combine
all pairs of lines. If we can provide auxiliary restrictions on which combinations can be
combined into circulations and which not, we have complete control over the structure of the
circulation graph. In practice, such restrictions are realistic, since the possibility to combine
lines into circulations does not only depend on the lines having a shared terminal station,
but also on the precise layout of the infrastructure at the terminal station, and whether there
exists a type of rolling stock that is able to operate both lines.
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Figure 2 Transformation of a N3DM instance to a VCSP instance represented by a circulation
graph.

I Theorem 4. The vehicle circulation scheduling problem with κ = 2 and auxiliary restrictions
on which 2-circulations are allowed is NP-hard.

Proof. Our proof is based on a reduction from the NP-complete numerical 3-dimensional
matching problem [9] to an instance of the vehicle circulation scheduling problem expressed
by means of a circulation graph. Since each circulation graph can be generated based on a
line graph with auxiliary restrictions, this is sufficient to prove the theorem.

The inputs to the N3DM are three multisets of integers X,Y, Z, each containing k

elements, and a bound b. An N3DM instance is a YES-instance if there exist k disjoint
triples (x, y, z) such that x+ y + z = b holds for every triple.

We transform this to the following instance of the VCSP. For every element in X,Y and
Z we create three lines in L, all with kl = 2. The three lines can be combined in saving
circulations (kc = 3) such that they form a triangle. One of the three lines serves as the
connect line, the other lines are referred to as dummy lines. For every triple (x, y, z) that
sums up to b (all such triples can be found in polynomial time), a triple line is created with
kl = 1, which can be combined in non-saving circulations (kc = 3) with the connect-lines
corresponding to x, y and z. Letting µ denote the number of triples that sum up to b, the
resulting VCSP instance has 9k + µ lines. We call the generated instance a YES-instance, if
the number of required vehicles is at most 14k + µ, equivalent to a saving σ(L) of at least
4k. In Figure 2, we visualized this transformation for a small N3DM instance.

We claim that the constructed VCSP instance is a YES-instance if and only if the N3DM
instance is a YES-instance.

(if) Each disjoint triple (x, y, z) can be used to generate a saving of 4 by assigning 1
vehicle to each of the 3 circulations combining the triple line with the connect lines (green in
Figure 2, 1 vehicle to each of the 6 circulations combining the triples lines with the dummy
lines (blue) and 2 vehicles to each of the circulations combining dummy lines (red). In every
triangle, this gives a saving of 4

3 , so the total saving generated by every disjoint triple equals
4. As such, if there are k disjoint triples, the total saving is 4k and the VCSP instance is
indeed a YES-instance.

(only if) Since only the combined circulations in the triangle are saving, if the instance is a
YES-instance, every triangle must generate a saving of 4

3 . This implies that in every triangle,
the circulations combining the triple lines and dummy lines are assigned 1 vehicle (blue in
Figure 2) and the circulations combining dummy lines are assigned 2 vehicles (red). As a
consequence, for every connect line, one of the circulations connecting the line with a triple
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line must be assigned 1 vehicle (otherwise the connect line would not be covered entirely).
Next, note that a triple line cannot be partially performed by combined circulations. Hence,
if one of the circulations combining a certain triple line and a connect-line is assigned a
vehicle, all three such circulations must be assigned a vehicle. So, as every connect line is
included in exactly one circulation with a triple line, and as every triple line is included in
either zero or three combined circulations, there must be k triple lines that are connected
with 3 connect lines. Clearly, the associated triples in the N3DM instance must be disjoint,
hence the N3DM instance must also be a YES-instance. J

4.2 The strict vehicle circulation scheduling problem
We define the strict version of the VCSP to state that each circulation c is either not executed
at all, or executed by exactly kc vehicles. We will now show that the strict version with κ = 2
and all frequencies equal to 1 can be solved exactly using an approach based on matching.

As in the non strict version, we have the relation that the minimum number of vehicles
required under the strictness assumption, denoted as ν̄(L), equals

∑
l∈L kl − σ̄(L), where

σ̄(L) denotes the strict savings problem, obtained by replacing θc

kc
with the binary variable

γc in the regular savings problem σ(L):

σ̄(L) = max
γ

∑
c∈ES

2

γc (12)

s.t. γl +
∑

c∈E2|l∈c

γc = 1 ∀l ∈ L, (13)

γc ∈ {0, 1} ∀c ∈ E, (14)

Constraints 13 now state that a line is either operated with a fixed circulation, or using
one of the combined circulations. Since the objective does not contain the γc variables for
the fixed circulations anymore, the γ-variables for these circulations can be viewed as slack
variables for the Constraints 13. Furthermore, since the non-saving circulations have zero
contribution to the objective, there always exists an optimal solution that does not contain
any non-saving circulations. As a consequence, Constraints 13 can be rewritten as:∑

c∈ES
2 |l∈c

γc ≤ 1 ∀l ∈ L (15)

Since the circulations in ES2 contain precisely two lines, the resulting formulation is equivalent
to a matching problem where we have to maximize the number of selected saving circulations.
Thus, we can compute ν̄(L) by computing the maximum matching in the graph that only
contains the edges from ES2 .

I Theorem 5. The strict Vehicle Circulation Scheduling Problem with κ = 2, fl = 1 for
each line l ∈ L is solvable in polynomial time.

4.3 The matching approximation
Since the strict vehicle circulation scheduling problem provides solutions that are also
feasible for the regular problem, it can be applied as a heuristic. In this section we derive
an approximation guarantee for this heuristic. Our approximation results are based on
the observation that the savings problem is a maximization problem and that the linear
programming relaxations of the savings problem and its strict version, denoted as σLP(L)
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Figure 3 Circulation graph of the instance used to show that the bound of Theorem 6 is tight.

and σ̄LP(L) respectively, are equal. This easily follows from the fact that the strict version is
obtained from the non strict version by performing a linear variable substitution, which does
not influence the value of the linear relaxation.

I Theorem 6. For any line plan it holds that ν̄(L) − ν(L) ≤
⌊
|L|
6

⌋
. Furthermore, there

exists an instance that attains this bound.

Proof. Note that we can consider the difference between the savings instead of the difference
between the number of vehicles, as ν̄(L) − ν(L) =

∑
l∈L kl − σ̄(L) −

∑
l∈L kl + σ(L) =

σ(L)− σ̄(L). For any graph it holds that the difference between the value of the maximum
fractional matching and the value of the maximum matching is at most n

6 , with n the
number of nodes [7]. This implies that σ̄LP(L)− σ̄(L) ≤ |L|6 . Since the linear programming
relaxations of the savings problem and its strict version are equal, it follows that σ(L)−σ̄(L) ≤
σLP(L)− σ̄(L) = σ̄LP(L)− σ̄(L) ≤ |L|6 . Furthermore, the right hand side of this equation
can be rounded down since the difference between savings must be integral.

To show that this bound is tight, consider the circulation graph depicted in Figure 3.
The example contains 2k + 1 triangles, where k is a positive integer, and one central node
connected to all triangles. The circulations between the lines in the triangles are saving.
The value σ̄(L) is equal to the size of the maximum matching in the graph induced by all
saving circulations, i.e. the graph with only the 2k + 1 triangles. Since we can pick only
one circulation in every triangle, we have that σ̄(L) = 2k + 1. The optimal unrestricted
solution is as follows. We can assign 1 vehicle to all green circulations, k vehicles to all
blue circulations and k + 1 vehicles to all red circulations. The objective attained with this
solution equals σ(L) =

∑
c∈ES

2

θc

kc
= (2k + 1)(k+k+k+1

2k+1 ) = 3k + 1.
Comparing the two objectives, we have that σ(L) − σ̄(L) = k. As the bound equals⌊

|L|
6

⌋
=
⌊

3(2k+1)+1
6

⌋
=
⌊
k + 4

6
⌋

= k, this circulation graph attains the bound for every k.
J

I Lemma 7. If σ(L)− σ̄(L) = k, the circulation graph contains at least 2k + 1 disjoint odd
cycles of saving circulations.

Proof. Every vertex x of the fractional matching polytope is half-integral, i.e. xe ∈ {0, 1
2 , 1}

[2]. Moreover, the edges with xe = 1 form a matching and the set of edges with xe = 1
2

form a set of disjoint odd cycles. If the optimal solution to the fractional matching problem
contains ω such odd cycles, the difference between the size of the fractional matching and
the size of the matching equals ω

2 , as a fractional matching in a single odd cycle can improve
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the objective only by 1
2 compared to an integer matching in the same cycle. As such, if

σ(L)− σ̄(L) = k, we certainly have that σ̄LP(L)− σ̄(L) ≥ k, implying that the circulation
graph contains at least 2k disjoint odd cycles of saving circulations.

We prove that the number of odd cycles of saving circulations should be one more than
2k by contradiction. As we have already established that the number of odd cycles is at least
2k, we assume that σ(L)− σ̄(L) = k while there are exactly 2k odd cycles. Note that an odd
cycle cannot contribute strictly more than 1

2 to the difference between σ(L) and σ̄(L), as this
violates the fact that fractional matching is the relaxation of the savings problem. Hence, it
must hold that every odd cycle contributes exactly 1

2 to the difference between savings.
However, we will now show that for the VCSP, every odd cycle can increase the difference

between σ(L) and σ̄(L) with strictly less than 1
2 . This is the case since it is not possible to

select all circulations in an odd cycle of saving circulations in the circulation graph with value
1
2 . To see this, note that if circulation c = {l,m} contributes 1

2 to the objective of the VCSP,
this implies that kc is even (e.g. kc = 4 and θc = 2). Furthermore, since kc = kl + km − 1
(the circulation is saving), it must hold that kl and km have a different parity (one of them
is odd, the other even). As such, if we do have an odd cycle in which every circulation is
selected with value 1/2, there must exists a 2-coloring of the vertices of the cycle. Since this
is clearly not possible for an odd cycle, we reach a contradiction. J

I Theorem 8. For any line plan it holds that ν̄(L)−ν(L)
ν(L) ≤ 1

15 . Furthermore, there exists an
instance where this bound is attained. This implies that ν̄(L) is a 16

15 -approximation algorithm
for the VCSP with κ = 2 and all frequencies 1.

Proof. First note that

max ν̄(L)− ν(L)
ν(L) = max σ(L)− σ̄(L)∑

l∈L kl − σ(L) . (16)

It follows from Lemma 7 that for a given value of ν̄(L) − ν(L) = k, the worst case ratio
must be attained by using 2k+1 cycles of 3 vertices (more or larger cycles only lead to larger
values in the denominator). Next to that, for a fixed numerator it is easily seen that the
denominator of the ratio is minimized by letting a single node connect all the cycles. This
implies that for a given value of ν̄(L)− ν(L) = k, the instance in Figure 3 gives the worst
case ration. Maximizing over k gives

max
k∈N

k

(2k + 1)(3k + 3) + k − (3k + 1) = 1
15 , (17)

with the maximum being attained at k = 1. J

4.4 An exact algorithm for bounded treewidth
In this section we consider how to solve the VCSP exactly with κ = 2 where the circulation
graph has a low treewidth. Treewidth is a graph property that was introduced by Robertson
and Seymour [13] that, informally, indicates how “similar to a tree” the graph is. Many
problems that are NP-hard on general graphs, such as independent and dominating set, are
solvable in polynomial time if the treewidth of the input graph is bounded by a constant.

Formally, the treewidth of a graph G is the smallest width for which there a exists
tree-decomposition of G with that width. A tree-decomposition of an undirected graph
G = (V,E) is a tree T , where each node n ∈ T is associated with a bag Xn ⊆ V and these
two properties hold: (1) the endpoints of each edge should occur simultaneously in at least
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one bag, i.e. for each edge {v, w} ∈ E there is a node n ∈ T such that both v ∈ Xn and
w ∈ Xn, and (2) for each vertex v ∈ V , all nodes n for which the associated bag contains v,
i.e. v ∈ Xn, are a connected subtree of T . The width of a tree decomposition T is equal
to maxn∈T |Xn| − 1. Although finding a tree-decomposition of the treewidth of a graph is
NP-hard, there is a linear time algorithm [3] for any fixed width. Furthermore, there are
algorithms that are able to efficiently find good tree decompositions in practice, e.g. [16].

One versatile approach in the design of algorithms that exploit bounded treewidth is
to perform dynamic programming on the tree-decomposition. Central to this idea is the
interpretation of every bag Xn in the tree-decomposition as a graph separator, which means
that if we remove the nodes in the bag from the graph, the graph splits up in different parts.
By moving up the the tree of the tree-decomposition, the algorithm looks at the current bag
of vertices of the graph, which separates the part of the graph that is already processed by
the algorithm from the part still needs to be processed, with the invariant that all connections
between the processed and unprocessed parts of the graph must go through the current bag.
In each state of the algorithm a state table is constructed for (combinations of) vertices in
the bag associated with the current node in the tree, under the assumption that optimal
decisions were made for the processed part of the graph.

A helpful way to design a dynamic programming algorithm based on the tree-decomposit-
ion is to assume it is a nice tree-decomposition [4]. Such a tree-decomposition has a root and
as a consequence the order in which the dynamic programming algorithm visits the nodes
of the tree is fixed: we start at the leaves and moves up to the root. In our description of
the algorithm, we say that the algorithm moves from parent nodes to child nodes. A nice
tree-decomposition distinguishes four types of nodes: create nodes which corresponds to
leaves in the tree that only have a single vertex in their bag, introduce nodes which introduce
a single new vertex into the bag of their parent, forget nodes which remove a single vertex
from the bag of their parents and join nodes which have the same bag as their two parents.
Thus in a nice tree-decomposition join nodes have two parents, leaf nodes have no parents and
the other nodes have a single parent. There exists a linear time algorithm that converts any
tree-decomposition into a nice tree-decomposition with O(|V |) nodes and the same width [4].

Our algorithm adopts this approach. For each bag a state table is constructed for all
partial covers of the lines in the current bag, based on the possible combinations of values
of the left hand sides of Constraints 5. In every step we are only allowed to increase the θc
values and thus the coverage of each line. Since each circulation c ∈ E can only be selected
an integer number of times, there is a finite number of fractions

∑
c∈δ(l)

θc

kc
that lie in the

range [0, 1] for each line l. The total number of combinations of values of the left hand sides
of Constraints 5 for a particular set of lines is at most the product of the possible number
of values for the individual constraints. This gives us an upper bound on the number of
states we need to maintain in a state table when we enumerate the optimal partial covers
for that bag. An upper bound on the number of possible fractional values for the left hand
side of the constraint of a line l is denoted by ρl. One (crude) upper bound for this can be
computed as 1 +

∏
c∈δ(l) kc. Note that if the circulations are short enough compared to T ,

which they often are in practice, this number will typically be small.
A single state in the state table for a bag Xn assigns a fraction ql to each line l ∈ Xn

where we have ql ∈ {0, 1
ρl
, . . . , ρl−1

ρl
, 1}. The state table for a node n ∈ T maps each state

to the minimum number of vehicles required to reach this state. If the algorithm generates
the same state multiple times, it is sufficient to store only the state for which the minimum
number of vehicles was required to reach the state. If we introduce ρ as the maximum ρl for
all lines l ∈ L, the size of the table is for a single bag is O(ρw+1).
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To conclude the description of the algorithm, we describe how the state table for each
of the four types of nodes in the tree-decomposition can be computed based on the state
tables of the parent(s). In a start node, only a single line l is introduced and thus only a
fixed circulation is considered, modeled by a self loop. This loop can be used at most ρl
times and may not be used at all. These state tables can be generated in O(ρ) time. In
an introduce node, a new line l is introduced to the state table of the parent. Due to this
introduction, we have to expand all states in the parent table with all possible multiplicities
of the circulations in δ(l), including multiplicities of zero. As the state table of the parent
contains O(ρw) states and there are O(w) circulations that connect the new line l to lines
in the current bag, each of which can be used at most ρ times in the expansion, we can
construct the state table for an introduce node in O(w · ρw+1) time. In a forget node, a line
l is removed from the state table of parent. This means that from this step onward, that
particular line is in the set of lines that have been processed by the algorithm and thus we
must make sure that it is fully covered. This can be achieved by removing all states from
the parent table where the ql of this line is not equal to 1, as the removal of line l implies
that these states are infeasible. This can be done in O(ρw+1) time as we only have to filter
the state table of the parent. Finally, in a join node we have two parent nodes with the
same bag, but potentially different states. We construct the new state table by either taking
the state and its associated number of vehicles from one of the two parents’ state table or
by taking a state from one table and combining it with a state from the second table, by
adding up the ql’s of both states and adding up the number of vehicles of the two states.
These combinations are only worth considering if none of the resulting ql’s exceeds 1. As
both parent tables can be of size ρw+1, there are ρ2w+2’ combinations that can be explored
in this step. This means the table for a join node can be computed in O(ρ2w+2) time.

When the algorithm is done, we can find the optimal solution to the VCSP in the root
node at the state where all ql’s are equal to one. Recall that the size of the tree-decomposition
is O(|L|) and each node in this decomposition can be processed in O(ρ2w+2) time.

I Theorem 9. The VCSP with κ = 2 and auxiliary constraints on the allowed circulations
can be solved in O(nρ2w+2) time where n = |L|, w is the tree-width of the circulation graph
and ρ = maxl∈L

∏
x∈{kc|c∈δ(l)} x.

5 Conclusions and further research

We have shown that the Vehicle Circulation Scheduling Problem is NP-hard for any finite
restriction on the number of lines that can be included in a circulation (κ) greater than
two. For the κ = 2 case we need to make the (realistic) additional assumption that we have
auxiliary restrictions on which lines can be combined in order to prove NP-hardness. For
the κ = 2 case we show that if we can cover each line by at most one unique circulation, a
matching algorithm yields the optimal solution. This solution provides a 16

15 -approximation
in case multiple circulations can be used. We also provide an exact algorithm that can
exploit low treewidth of the circulation graph, and a low number of vehicles required per
circulation. For future research, it makes sense to combine these algorithms with the line
planning process to see if it can help to make line plans that allow better vehicle schedules.
Furthermore, it is interesting to consider whether algorithms exist that are useful for cases
where κ is small, but greater than two. Finally, it is still an open question whether the κ = 2
case without auxiliary restrictions is NP-hard.
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1 Introduction

During the last decades, public transport has become one of the classic fields for applied
mathematical optimization [1]. Typically, the planning process is subdivided into line
planning, timetabling, vehicle scheduling etc. Timetabling, in particular computing a periodic
timetable for instance for bus networks, is still attracting several teams of researchers [2, 4,
5, 10].

The design of public transportation services is pursuing several objectives, of course. One
is operating efficiency, where a key performance indicator is the number of vehicles that are
required for operation.

In this paper, we restrain ourselves to the classical sequential approach of planning. In
particular, having fixed the line plan as well as the timetable, the next task is to compute a
vehicle schedule, in particular defining the number of vehicles required to operate the given
timetable. This is essentially what in [9] is denoted “the traditional approach”.

In more detail, we are considering the following setting, right as in [9]:
We restrict ourselves to periodic timetables, where we denote the common period time of
all lines as T .
For a given line plan and periodic timetable, we want to compute the number of required
vehicles, i.e., evaluate a so-called LTS-plan, according to [9].

We agree that in general a vehicle schedule is aperiodic. Hence, it makes most sense for
software providers such as IVU or GIRO to develop and promote highly specialized algorithms
on a commercial basis.

Yet, in our paper we show that the aperiodicity of optimum vehicle schedules is just a
result of aperiodic timetables. In practice, this may be due to extra peak-hour trips and/or
shorter trip durations during night hours. In contrast, as long as the underlying timetable is
fully periodic, we prove that one can always find a vehicle schedule with a minimal number
of vehicles, even when restricting the vehicle schedule to perform the very same turnaround
activities of the vehicles over the entire day. In a sense, this turns out to be a consequence
of the structure of bipartite matching polytopes. So, to compute the number of vehicles
that are required to operate a given periodic timetable, in contrast to the procedure that is
reported in [9], actually there is no need to expand (or, roll out) the periodic timetable for
the number N of periods that are needed to cover a whole planning horizon (e.g., a day),
and then perform a full vehicle schedule optimization from scratch, e.g., using a flow-based
model. Rather, staying with the much more compact periodic representation turns out
to be absolutely sufficient. Although we are aware that in several earlier contributions,
minimization of operating cost had been done pretty much in this way (e.g. [6, 8]), we were
not able to detect any justification in those papers that was equivalent to the one we are
proposing here.

Notice that with respect to practice, this result is not only relevant, if a timetable stays
the same over the entire day. Rather, if the peak in the number of vehicles was not induced
by some single trips without any periodically recurring “copies”, and if the trip lengths of
the lines are relatively small (e.g., at most two hours) compared to the duration of the peak
traffic time for which the periodic timetable is valid (say from 2 p.m. until 7 p.m.), already
then our result applies.

The paper is organized as follows: At first, we shortly recall the setting of periodic
timetabling. Second, we consider the task of periodic vehicle scheduling for a given fixed
periodic timetable. Our goal is to prove in Theorem 12 that there is no advantage to compute
the minimum number of vehicles on an expanded aperiodic network (as it is necessary for
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general vehicle scheduling), given that the underlying timetable is 100% periodic. To build
the bridge from the periodic model to the expanded aperiodic model, we consider an expanded
(or rolled-out) periodic version as an intermediate step, serving as a theoretical benchmark.
Let us emphasize that the attribute “simple” in the title of this paper refers to the result
itself rather than to the contents of its proof.

2 Periodic timetabling

The basis for our timetabling model is the periodic event scheduling problem (PESP) from
[12]. Since we are focusing on computing the number of vehicles that are required to operate
a periodic timetable, we are only considering activities that are associated with vehicles. The
main player is an event-activity network N = (G,T, `), where G is a directed graph with
node set V and arc set A satisfying the following properties:

Each node v ∈ V is either a departure node or an arrival node, so that the set of nodes of
G decomposes as V = Vdep

.
∪ Varr.

The set A of arcs is the disjoint union of a set Ad ⊆ Vdep × Varr of driving arcs and a set
At ⊆ Varr × Vdep of turnaround arcs. In particular, G is a bipartite graph.
Each departure node has exactly one outgoing arc, and arrival nodes have exactly one
ingoing arc, i.e., their respective driving arcs.

The event-activity network comes with a period time T ∈ N. Moreover, we consider for each
arc a = (v, w) ∈ A its time duration `a ∈ [0,∞). For a driving arc vw ∈ Ad, the quantity `vw
denotes the time required to travel along vw. Similarly, if vw ∈ At is a turnaround arc, then
`vw measures the waiting time from the arrival at v until the departure at w. We assume
that `vw > 0 holds for driving arcs, later we will even motivate `vw ∈ (0, T ].

A periodic timetable for an event-activity network N = (G,T, `) is a vector π ∈ [0, T )V
such that

πw − πv ≡ `vw mod T for all vw ∈ A.

In the case of technical minimum turnaround times (e.g., 3 min for subways), for a network
with T = 10 an arrival at πv = 5 and departure at πw = 6 could yield a value `vw = 11,
because the train that arrives at minute five is not ready for departure at minute six, and
thus has to wait until the next departure ten minutes later. This value is larger than the
period time and does not equal the positive immediate difference

πw − πv = 1 6= 11 = `vw > T = 10.

We therefore define the periodic offset of an arc vw ∈ A as

pvw := `vw − (πw − πv)
T

∈ Z≥0. (1)

An example of an event-activity network with a periodic timetable is given in Figure 1.
Notice that compared to periodic timetabling, where an optimal timetable is sought, here we
are using a kind of simplified notation. Since in the setting that we are investigating the
timetable is the input, and thus fixed, there is no need to elaborate on any minimum time
durations serving as timetabling constraints. In fact, our values `vw are just the well-known
periodic tensions [7].
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Figure 1 Example event-activity network (T = 10) with a periodic timetable.

3 Periodic vehicle scheduling

Let N = (G,T, `) be an event-activity network with a periodic timetable π. What is the
minimal number of vehicles required to operate the timetable?

To answer this question, we define a periodic vehicle schedule as a collection S of directed
cycles in G such that each driving arc a ∈ Ad is contained in exactly one cycle in S. Moreover,
we define the length resp. periodic offset of a directed cycle γ in G as

`(γ) :=
∑
a∈γ

`a resp. p(γ) :=
∑
a∈γ

pa.

I Lemma 1. Let N be an event-activity network and let γ = (v1, . . . , vk, v1) be a directed
cycle in G. If N admits a periodic timetable π, then `(γ) = p(γ) · T is a positive integer
multiple of T .

Proof. By definition of π and p,

`(γ) =
∑
a∈γ

`a = `v1v2 + · · ·+ `vk−1vk
+ `vkv1

= πv2 − πv1 + · · ·+ πvk
− πvn−1 + πv1 − πvk

+ Tpv1v2 + · · ·+ Tpvkv1

= T ·
∑
a∈γ

pa

= T · p(γ). J

In fact, this is a special case of the well-known cycle periodicity constraints in periodic
timetabling [7]. This means that a vehicle driving on a cycle γ of a periodic vehicle schedule
S can periodically continue after a time of `(γ). Since each driving arc has to be covered in
every period, the cycle γ requires in total `(γ)/T = p(γ) vehicles. The number of vehicles
n(S) associated to a periodic vehicle schedule S is thus

n(S) := 1
T

∑
γ∈S

`(γ) = 1
T

∑
γ∈S

∑
a∈γ

`a =
∑
γ∈S

∑
a∈A

pa =
∑
γ∈S

p(γ).

In other words, in any periodic schedule S we can obtain the number of required vehicles
either by summing up all cycle lengths and dividing by the period time, or by counting for
each cycle the “jumps” to the next period. Notice already, that later we will translate this
optimal compact periodic solution to optimal solutions for both, the expanded aperiodic
vehicle scheduling problem as well as the expanded periodic model as an intermediate step.
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The goal is now to compute a periodic vehicle schedule S such that n(S) is minimal.
We call this the minimal periodic vehicle schedule problem. This problem has an easy
reformulation as a minimum cost circulation problem, where the variables xa indicate
whether the arc a is used in the optimal vehicle schedule:

Minimize
∑
a∈A

paxa

s.t.
∑

u:uv∈A
xuv =

∑
w: vw∈A

xvw, v ∈ V,

xa = 1, a ∈ Ad,
xa ∈ {0, 1}, a ∈ At.

(2)

I Lemma 2. The integer program (2) solves the minimal periodic vehicle schedule problem.

Proof. This follows directly from plugging in the definitions of periodic vehicle schedules
and their minimal number of vehicles into the standard integer programming formulation for
minimum cost circulations. J

A closer inspection of the IP (2) yields the following: Since all driving arcs are covered
exactly once, their cost is fixed in the objective. As every driving arc a ∈ Ad requires at least⌊
`a

T

⌋
vehicles, we may assume w.l.o.g. that for any driving arc a ∈ Ad holds `a ∈ [0, T ), which

by (1) implies pa ∈ {0, 1}. In turn, we remember to add
⌊
`a

T

⌋
vehicles for each shortened

driving arc a. Furthermore, as any departure (arrival) node has only one outgoing (ingoing)
arc, which is a driving arc, the flow conservation conditions may be replaced by∑

u:uv∈At

xuv = 1, v ∈ Vdep,∑
w: vw∈At

xvw = 1, v ∈ Varr.

In the end, we arrive at the following minimum weight perfect matching problem:

Minimize
∑
a∈At

paxa +
∑
a∈Ad

pa

s.t.
∑

a∈At: v∈a
xa = 1, v ∈ V,

xa ∈ {0, 1}, a ∈ At.

(3)

In other words, we have established the following:

I Lemma 3. Let N = (G,T, `) be an event-activity network with periodic timetable π. Let
Gt = (V,At) be the subgraph of G where all driving arcs are removed. There is a one-to-one
correspondence

{perfect matchings in Gt} ↔
{

circulations in G covering
all driving arcs exactly once

}
.

Moreover, a minimum weight perfect matching w.r.t. ` (or p) in Gt corresponds to a minimum
cost circulation w.r.t. ` (or p) in G.

ATMOS 2018



16:6 The Number of Vehicles to Operate a Periodic Timetable

Note that the matching formulation is of rather local nature: It suffices to compute a perfect
matching for every weakly connected component of Gt. Since the turnaround arcs usually
stem from turnarounds at certain stations, this means that we can compute a minimal
periodic vehicle schedule by optimizing the transitions at every station. Of course, several
stations might be connected by longer unloaded trips.

The following theorem summarizes the different ways to solve the minimal periodic vehicle
schedule problem:

I Theorem 4. For an event-activity network N = (G,T, `) with periodic timetable π, the
number n(Smin) of vehicles of a minimal periodic vehicle schedule is given by:
(a) The cost of a minimum cost circulation in G w.r.t. ` covering all driving arcs exactly

once, divided by T .
(b) The sum of periodic offsets of the arcs occurring in a minimum cost circulation in G

w.r.t. ` covering all driving arcs exactly once.
(c) The sum of the weights `a of a minimum weight perfect matching of the turnaround arcs

in G w.r.t. ` plus the travel times of all driving arcs, divided by T .
(d) The sum of periodic offsets pa occurring in a minimum weight perfect matching of the

turnaround arcs in G w.r.t. ` plus the periodic offsets of all driving arcs.

4 Periodic expansion

In this section, we describe a procedure to expand an event-activity network in a periodic way.
This construction will be of use for the proof of our main result Theorem 12, the optimality
proof for a periodic vehicle scheduling solution in an expanded aperiodic context.

At first, we define for any x ∈ R and N ∈ N the expression [x]N as the unique real
number y ∈ [0, N) with x ≡ y mod N . For example, [−8]10 = 2.

Let N = (G,T, `) be an event-activity network with periodic timetable π. For any positive
integer N , we define another event-activity network, namely the N-th periodic expansion
N (N) = (G(N), T (N), `(N)) as follows:

The node set of G(N) is V (N) := V ×{0, 1, . . . , N − 1}. A node (v, i) is called a departure
(arrival) node iff v is a departure (arrival) node.
For each driving arc vw ∈ Ad, add to the arc set A(N) of G(N) the driving arcs

((v, i), (w, [i+ pvw]N )), i = 0, . . . , N − 1.

For each turnaround arc vw ∈ At, add to A(N) turnaround arcs

((v, i), (w, j)), i, j = 0, . . . , N − 1.

The duration of an arc ((v, i), (w, j)) ∈ A(N) is set to

`
(N)
(v,i),(w,j) := `vw + [j − i− pvw]N · T.

T (N) := N · T .

I Remark. Some observations:
(a) Up to notation, N (1) is the same as N .
(b) Each driving arc in N has N copies in N (N), whereas each turnaround arc has N2

copies. In fact, take a periodic turnaround arc vw ∈ At. For each of the N expanded
occurrences of its periodic arrival event v, we keep the possibility to continue on any
of the N copies of the respective expanded departure event w. At first sight, it could
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appear that some of these expanded arcs point backward in time. Yet, since N (N) is
still a periodic model, these arcs have positive durations, too, when considering their
actual endpoints one period N · T later.

(c) Let vw be an arc in N . Then the value of `(N) of any arc ((v, i), (w, j)) is at least `vw,
and the arcs ((v, i), (v, [i + pvw]N )) for i = 0, . . . , N − 1 are precisely the arcs whose
duration is exactly `vw.

Periodic timetables extend in a natural way to the N -th periodic expansion:

I Lemma 5. Let π be a periodic timetable for N . Define π(N) ∈ [0, N · T )V (N) via

π
(N)
(v,i) := πv + i · T, (v, i) ∈ V (N).

Then π(N) is a periodic timetable for N (N) for the periodic tension values `(N)
(v,i),(w,j).

Proof. Let ((v, i), (w, j)) ∈ A(N). We need to show that π(N)
(w,j) − π

(N)
(v,i) − `

(N)
(v,i),(w,j) is an

integer multiple of N · T . Plugging in the definitions,

π
(N)
(w,j) − π

(N)
(v,i) − `

(N)
(v,i),(w,j) = πw + j · T − πv − i · T − `vw − [j − i− pvw]N · T

= (j − i− pvw) · T − [j − i− pvw]N · T
≡ 0 mod N · T,

as i, j, pvw are all integers and π is a periodic timetable for N . J

In the remainder of this section, we establish that n(Smin) = n(S(N)
min ), where Smin denotes

a minimal vehicle schedule for N , S(N)
min a minimal vehicle schedule for the N -th periodic

expansion N (N) of N , and n(·) the number of vehicles of the respective schedules. We first
prove that n(S(N)

min) ≤ n(Smin).

I Lemma 6. Let N be an event-activity network with a periodic timetable π and a periodic
vehicle schedule S using n(S) vehicles. For any positive integer N , the timetable π(N) on
N (N) can be operated with n(S) vehicles.

Proof. Let M be a perfect matching of the turnaround arcs in G, resulting in a periodic
vehicle schedule S using n(S) vehicles. Then

M (N) := {((v, i), (w, [i+ pvw]N ) | vw ∈M, i = 0, . . . , N − 1}

is a perfect matching of the turnaround arcs in G(N). By the previous remark, the arcs of
M (N) have the same turnaround time as their counterpart in M . Moreover, every driving
arc in G has N copies with the same travel time in G(N). By Theorem 4, M (N) leads hence
to a periodic vehicle schedule whose number of vehicles is

1
N · T

 ∑
a∈M(N)

`(N)
a +

∑
a∈A(N)

d

`(N)
a

 = 1
N · T

(
N ·

∑
a∈M

`a +N ·
∑
a∈Ad

`a

)
= n(S). J

I Theorem 7. Let N be an event-activity network with a periodic timetable π. For any
positive integer N , the number of vehicles of a minimal periodic vehicle schedule w.r.t. π(N)

on N (N) equals the number of vehicles of a minimal periodic vehicle schedule w.r.t. π on N .
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Proof. By Lemma 6, here it remains to show that n(Smin) ≤ n(S(N)
min), where S(N)min

denotes a minimal periodic vehicle schedule w.r.t. π on N (N), and Smin for the initial
unexpanded periodic network N . By Theorem 4, S(N)

min induces a perfect matching M (N) of
the turnaround arcs, with corresponding binary variables x(N)

a for a ∈ A(N)
t set to 1 in the

integer programming formulation (3).
We define a – possibly fractional – periodic vehicle schedule Sfrac w.r.t. π on N as follows:

For each turnaround arc vw ∈ At, set the value of its matching variable xvw as

xvw := 1
N
·
N−1∑
i,j=0

x
(N)
(v,i),(w,j) (4)

By the definition of A(N) and by the matching property of M (N), Sfrac indeed constitutes
a – possibly fractional – periodic vehicle schedule w.r.t. π on N , i.e., a fractional perfect
matching in the bipartite graph of the turnaround arcs At of G. By Remark 4, the travel
time along any arc used by Sfrac is at most the travel time of any of its counterparts in S(N)

min .
This implies that the total cost of Sfrac is at most n(S(N)

min):

n(Sfrac) = 1
T

( ∑
vw∈Ad

`vw +
∑
vw∈At

xa`vw

)

(4)= 1
T

 ∑
vw∈Ad

1
N

N−1∑
i=0

`vw +
∑
vw∈At

1
N

N−1∑
i,j=0

x
(N)
(v,i),(w,j)`vw


≤ 1
T

 1
N

∑
vw∈Ad

N−1∑
i=0

`
(N)
(v,i),(v,[i+pvw]N ) + 1

N

∑
vw∈At

N−1∑
i,j=0

x
(N)
(v,i),(w,j)`

(N)
(v,i)(w,j)


= n(S(N)

min).

Recall several elementary results as they are collected, e.g., in the book of Schrijver [11]:
As the subgraph (V,At) of G is bipartite, the constraints xa ≥ 0 and

∑
a∈δ(v) xa = 1 (i.e.,

the incidence matrix) already determine the perfect matching polytope [11, Theorem 18.1].
The incidence matrix of any directed graph is totally unimodular [11, Theorem 13.9].
For a totally unimodular matrix together with an integer right-hand-side vector, their
associated polyhedron is integer [11, Theorem 5.20].

Now, due to the integrality of the perfect matching polytope (i.e., the assignment problem
polytope), we find an optimal integral perfect matching M in the bipartite graph of the
turnaround arcs At. This induces a minimal periodic vehicle schedule Smin w.r.t. π on N .
Since Sfrac is a fractional solution of this perfect matching polytope, we finally find

n(Smin) ≤ n(Sfrac) ≤ n(S(N)
min).

Since Lemma 6 asserts n(S(N)
min) ≤ n(Smin), this finishes the proof. J

5 Aperiodic vehicle scheduling

The standard way to compute the minimal number of vehicles required to operate a – not
necessarily periodic – timetable is to use a network flow model [3, Â§2.4]. For a periodic
timetable, the first step is to expand (or roll out) the timetable for a sufficient amount of
time, e.g., a day.
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Figure 2 The first N = 3 layers of the periodic expansion with selected turnaround activities of
the event-activity network in Figure 1 on the left, and its aperiodic counterpart on the right.

We formalize this process as follows: Starting from an event-activity network N with
periodic timetable π, we construct the N-th aperiodic expansion N [N ] = (G[N ], T [N ], `[N ])
with node set V [N ] and arc set A[N ] according to the following rules, see also Figure 2:

Initialize N [N ] as the N -th periodic expansion N (N).
Delete all arcs ((v, i), (w, j)) with p(N)

(v,i),(w,j) ≥ 1, i.e., those that leave the periodically
expanded graph at time N · T and re-enter it at time zero.
Remove departure nodes with out-degree zero and arrival nodes with in-degree zero,
together with any incident turnaround arcs.
Add a super-source s and arcs from s to all remaining departure nodes (v, i) with length
`

[N ]
s,(v,i) = π

(N)
(v,i).

Introduce a super-sink t. Add arcs from all remaining arrival nodes (w, j) to t with
`

[N ]
(w,j),t = N · T − π(N)

(w,j).
Finally make an extra arc (t, s) with `[N ]

ts = 0.

Deleting arcs with positive periodic offset p(N) means intuitively that all arcs ((v, i), (w, j))
with πv + i · T > πw + j · T (“backward in time”) are omitted, as well as arcs whose duration
`

(N)
(v,i),(w,j) is at least N · T (“jump to the next period”). If we delete a driving arc, then we

ATMOS 2018
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also remove the corresponding departure and arrival nodes. The arc (t, s) is the only arc
in the aperiodic expansion that is allowed to go “backward in time”. Moreover, think of
the deletion of a turnaround arc ((w, j), (v, i)) as a kind of replacing it with the new pull-in
arc ((w, j), t) together with the new pull-out arc (s, (v, i)).

I Remark.
(a) Every arc of the form ((v, i), (w, j)) ∈ A[N ] satisfies p(N)

(v,i),(w,j) = 0 and hence `(N)
(v,i),(w,j) =

π
(N)
(w,j) − π

(N)
(v,i) ∈ [0, N · T ).

(b) Suppose that γ is a directed cycle in N [N ] containing an arc of positive duration. Then
γ contains also the arc from t to s, as π(N) increases along γ and the arc (t, s) is the
only way to decrease π(N) again.

Define the sets of driving and turnaround arcs of N [N ] as A[N ]
d := A

(N)
d ∩ A[N ] and

A
[N ]
t := A

(N)
t ∩ A[N ], respectively. An aperiodic vehicle schedule is a collection S[N ] of

directed cycles in N [N ] such that each driving arc is contained in exactly one cycle of S[N ].
By the previous remark, a vehicle starts at s, visits departure nodes and arrival nodes

alternatingly until it reaches t, and finally goes back to s. The minimum number of vehicles
n(S[N ]) of an aperiodic vehicle schedule S[N ] is thus obtained by solving the following
minimum cost circulation problem, see [3, Â§2.4]:

Minimize xts

s. t.
∑

u:uv∈A[N]

xuv =
∑

w: vw∈A[N]

xvw, v ∈ V,

xa = 1, a ∈ A[N ]
d ,

xa ∈ Z≥0 a ∈ A[N ] \A[N ]
d .

(5)

The minimal aperiodic vehicle schedule problem is to solve the above integer program, still
for a given fixed timetable.

I Lemma 8. Let S[N ] be a minimal aperiodic vehicle schedule corresponding to an optimal
solution x to the integer program (5). Then the following numbers are equal:
(a) n(S[N ]),

(b)
1

N · T
∑

a∈A[N]

`[N ]
a xa,

(c) #A[N ]
d −#{a ∈ A[N ]

t | xa = 1},
(d) #A[N ]

d −#M , where M is a maximum cardinality matching of (V [N ], A
[N ]
t ),

(e)
∑
a=(s,v) xa =

∑
a=(w,t) xa.

Proof. If a feasible circulation x for (5) produces f units of flow on the t-s-arc, then it
also contains f arc-disjoint paths from s to t. Let q = (s, (v1, i1), . . . , (vk, ik), t) be such an
s-t-path. Then

`[N ](q) = `
[N ]
s,(v1,i1) +

k−1∑
j=1

`
[N ]
(vj ,ij),(vj+1,ij+1) + `

[N ]
(vk,ik),t

= π
(N)
(v1,i1) +

k−1∑
j=1

(
π

(N)
(vj+1,ij+1) − π

(N)
(vj ,ij)

)
+N · T − π(N)

(vk,ik) = N · T,

by the definition of N [N ]. In particular,
∑
a∈A[N] `

[N ]
a xa = f ·N · T . This shows (a) = (b).
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Each simple cycle in a feasible circulation uses the arc from t to s, proceeds to a departure
node, and then visits driving and turnaround activities alternatingly until it reaches its last
driving activity, from which it goes back to t. In particular, for each such cycle γ holds

#{a ∈ A[N ]
d | a ∈ γ} −#{a ∈ A[N ]

t | a ∈ γ} = 1.

A minimum cost circulation decomposes into precisely n(S[N ]) such cycles, and covers each
arc of A[N ]

d precisely once. Summing over these cycles, we obtain (a) = (c).
Observe that {a ∈ A[N ]

t | xa = 1} is a matching of (V [N ], A
[N ]
t ). Conversely, let M be

any matching in (V [N ], A
[N ]
t ). Consider the circulation consisting of the #A[N ]

d simple cycles
(s, (v, i), (w, j), t, s) for each driving arc ((v, i), (w, j)) ∈ A[N ]

d . For each a ∈M , connect the
cycles of the driving arcs incident to a, thereby reducing the value of flow by one. This yields
a circulation with value #A[N ]

d −#M .
Finally, (a) = (e) follows immediately from the structure of N [N ] and (5). J

I Remark. After N [N ] has been constructed, the number n(S[N ]) does neither depend on `
nor π. In other words, it is sufficient to look at feasible sequences of trips regardless of their
actual duration.

Now, let’s have a look at the cuts that are induced along the timelines (i+ 1)T − ε:

I Lemma 9. Let S[N ] be an aperiodic vehicle schedule with associated matching M [N ] of
(V [N ], A

[N ]
t ). Then for any i ∈ {0, . . . , N − 2},

n(S[N ]) ≥
∑
a∈Ad

pa + #{((v, i), (w, i+ 1)) ∈M [N ]}.

Proof. Let x be the corresponding solution to the IP (5). For small ε > 0, examine the flow
x on all arcs at time (i+ 1)T − ε: At this point, there is one unit of flow on each driving
arc departing before (i + 1)T and arriving at (i + 1)T or later. This means, there are pa
units of flow for each driving arc a ∈ Ad in N . Moreover, there is one unit of flow on each
turnaround arc matched by M [N ] with arrival before (i+ 1)T and departure at (i+ 1)T or
later. In particular, this comprises turnaround arcs starting at some (v, i) and ending at
some (w, i+ 1). Finally, there is a non-negative flow on pull-in or pull-out arcs. J

We turn now to the comparison of periodic and aperiodic expansions:

I Lemma 10. Let N be an event-activity network with periodic timetable π. Let S[N ]min be
a minimal aperiodic vehicle schedule on N [N ], and let S(N) be any periodic vehicle schedule
on N (N). Then n(S[N ]

min) ≤ n(S(N)).

Proof. LetM (N) be a perfect matching of the turnaround arcs in the N -th periodic expansion.
By Theorem 4,

n(S(N)) =
∑

a∈A(N)
d

p(N)
a +

∑
a∈M(N)

p(N)
a

≥ #{a ∈ A(N)
d | p(N)

a ≥ 1}+ #{a ∈M (N) | p(N)
a ≥ 1}

= #{a ∈ A(N)
d | p(N)

a ≥ 1}+M (N) −#{a ∈M (N) | p(N)
a = 0}

Since M (N) is a perfect matching and in every directed cycle driving and (matched) turn-
around arcs alternate, #M (N) = #A(N)

d , and we find

n(S(N)) ≥ 2#A(N)
d −#{a ∈ A(N)

d | p(N)
a = 0} −#{a ∈M (N) | p(N)

a = 0}

= 2#{a ∈ A(N)
d | p(N)

a ≥ 1}+ #{a ∈ A(N)
d | p(N)

a = 0}

−#{a ∈M (N) | p(N)
a = 0}.

(6)
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The intersectionM (N)∩A[N ]
t is some matching inN [N ]. We will compare this with a maximum

cardinality matching M [N ] of the turnaround arcs in the N -th aperiodic expansion N [N ].
The matching M (N) ∩A[N ]

t contains all arcs a from M (N) with p(N)
a = 0, except those being

incident to a driving arc a with p(N)
a ≥ 1. Since any such driving arc can be incident to two

turnaround arcs in M (N), this means

#M [N ] ≥ #M (N) ∩A[N ]
t ≥ #{a ∈M (N) | p(N)

a = 0} − 2#{a ∈ A(N)
d | p(N)

a ≥ 1}. (7)

Therefore, using (6) and (7), and then Lemma 8,

n(S(N)) ≥ #{a ∈ A(N)
d | p(N)

a = 0} −#M [N ] = #A[N ]
d −#M [N ] = n(S[N ]

min). J

The following lemma is an interesting fact about the interplay of minimum-weight perfect
matchings and maximum-weight matchings in the N -th periodic expansion. The proof makes
use of the structure of the 2-matching polytope of a bipartite graph.

I Lemma 11. Let M (N) be a minimum-weight perfect matching w.r.t. p(N) of the turnaround
arcs in the N -th periodic expansion N (N). Let q :=

⌈
log2

(∑
a∈At

pa + 1
)⌉
. If N ≥ 2q, then

M (N) maximizes #{a ∈M | p(N)
a = 0} among all matchings of turnaround arcs in N (N).

Proof. Let M (2) be any matching of the turnaround arcs in the second periodic expansion of
N , giving rise to an incidence vector x(2) ∈ {0, 1}A

(2)
t . Then the vector x ∈ {0, 1, 2}At with

xvw := x
(2)
(v,0),(w,0) + x

(2)
(v,0),(w,1) + x

(2)
(v,1),(w,0) + x

(2)
(v,1),(w,1), vw ∈ At,

is a 2-matching of the turnaround arcs in N . Since N is bipartite, the vertices of the
2-matching polytope correspond to matchings where each edge is taken twice [11, The-
orem 31.10]. In particular, a matching maximizing the number of arcs with p

(2)
a = 0 in

N (2) can be found by considering instead a matching in N . By construction of N (N),
any turnaround arc a ∈ At produces max(2 − pa, 0) copies in N (2) with offset 0. We are
hence interested in finding the maximum-weight matching in N w.r.t. the weight function
a 7→ max(2− pa, 0).

Repeating this process, we can analogously find for any k ∈ N the matching maximizing
the number of turnaround arcs with p(2k)

a = 0 in N (2k) by computing a maximum-weight
matching in N w.r.t. the weights max(2k − pa, 0), a ∈ At. If 2k ≥

∑
a∈At

pa + 1, then
such a matching is automatically a perfect matching M (1) minimizing the periodic offsets
p. Performing the construction of the proof of Lemma 6, we obtain from M (1) a perfect
matching M (2k) minimizing p(2k). By Theorem 7, the weight of M (1) w.r.t. p equals the
weight of M (2k) w.r.t. p(2k).

Finally let N = 2q +r for some r ∈ N. Extending M (1) even further to a perfect matching
M (N) in N (N) yields in total

∑
a∈At

(2q + r − pa) =
∑
a∈At

(2q − pa) + r#Ad arcs with
p

(N)
a = 0. If M is a matching in N (N) maximizing µ := #{a ∈ M | p(N)

a = 0}, then M

matches at most 2r#Ad vertices that do not appear in N (2k). As M (2k) is maximum in
N (2k), in particular µ− r#Ad ≤

∑
a∈At

(2q − pa), so that M has at most as many p(N)
a = 0

arcs as M (N). J

We present now our main result, stating that rolling out and solving the minimal aperiodic
vehicle schedule problem has no advantage over working on the periodic network itself:
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I Theorem 12. Let N be an event-activity network with periodic timetable π. Consider
(a) the number n(Smin) of vehicles of a minimal periodic vehicle schedule Smin on N w.r.t.

π,
(b) the number n(S(N)

min ) of vehicles of a minimal periodic vehicle schedule S(N)
min on the N -th

periodic expansion N (N) w.r.t. π(N), and
(c) the number n(S[N ]

min) of vehicles of a minimal aperiodic vehicle schedule S[N ]
min on the N -th

aperiodic expansion N [N ].
Then n(Smin) = n(S(N)

min) ≥ n(S[N ]
min). Moreover, n(Smin) = n(S(N)

min) = n(S[N ]
min) holds if

N ≥ 2q(2n(Smin) + 1), where q :=
⌈
log2

(∑
a∈At

pa + 1
)⌉
.

Proof. The equality n(Smin) = n(S(N)
min) has been established in Theorem 7. By Lemma 10,

n(S(N)
min) ≥ n(S[N ]

min). Thus it remains to show that n(S[N ]
min) ≥ n(Smin).

Fix a minimal aperiodic schedule S[N ]
min. Let M be a minimum-weight perfect matching of

the turnaround arcs in N w.r.t. the periodic offset p. Assume for the moment that

pa ∈ {0, 1} for all a ∈ At, and
M maximizes the number of arcs a with pa = 0 among all matchings in (V,At).

(8)

By Lemma 8, the aperiodic schedule S[N ]
min uses at most n(S[N ]

min) ≤ n(Smin) pull-out arcs and
at most n(S[N ]

min) ≤ n(Smin) pull-in arcs. Suppose now N ≥ 2n(Smin) + 1. Then, by the
pigeonhole principle, we find an i ∈ {0, . . . , N − 2} such that no vertex (v, i) is preceded by
a pull-out arc from s or followed by a pull-in arc to t.

Let M [N ] be the matching in (V [N ], A
[N ]
t ) corresponding to S[N ]

min. By Lemma 9,

n(S[N ]
min) ≥

∑
a∈Ad

pa + #{((v, i), (w, i+ 1)) ∈M [N ]}.

As there are neither pull-in nor pull-out arcs, all #Ad arrival vertices of the form (v, i) have
to be matched by M [N ]. Moreover, each matching partner (w, j) of (v, i) has either j = i or
j = i+ 1 due to the assumption pa ∈ {0, 1} in (8). Thus we can write

n(S[N ]
min) ≥

∑
a∈Ad

pa + #Ad − {((v, i), (w, i)) ∈M [N ]}.

The set {((v, i), (w, i)) ∈ M [N ]} yields naturally a matching in the unexpanded periodic
network N using only turnaround arcs a ∈ At with pa = 0. With #M = #Ad, the
assumptions (8) and Theorem 4,

n(S[N ]
min) ≥

∑
a∈Ad

pa + #Ad −#{a ∈M | pa = 0} =
∑
a∈Ad

pa +
∑
a∈M

pa = n(Smin).

Note that (8) might not be satisfied immediately. However, N can be replaced by its
2q-th periodic expansion N (2q), where q :=

⌈
log2

(∑
a∈At

pa + 1
)⌉
: Then 2q ≥ pa for each

a ∈ At, so that a minimum-weight perfect matching M (2q) constructed as in Lemma 6 uses
only arcs a with p(2q)

a ∈ {0, 1}. In particular, we can delete all arcs from N (2q) with p(2q)
a ≥ 2,

and still obtain the same perfect matching. Moreover, Lemma 11 now certifies the second
assumption. In particular, for N ≥ 2q(2n(Smin) + 1), we finally obtain

n(S[N ]
min) ≥ n(S(2q)

min ) = n(Smin). J
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6 Conclusion

To summarize, given that a public transportation network is to be operated with a purely
periodic timetable, in order to compute the number of vehicles that are required to operate
it, there is no need to expand the periodic network over time and solve a standard network
flow model for vehicle scheduling. Rather, our results justify to keep the compact periodic
structure and compute perfect matchings, where the graph is even likely to decompose and
make the actual computation even easier. Moreover, this insight justifies that minimizing
vehicle waiting time as early as in the step of optimizing the timetable itself, indeed points
the timetable solution into the direction of a favorable efficient use of vehicles – right as it
has already been common practice in several case studies.
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