
2018 Imperial College
Computing Student Workshop

ICCSW 2018, September 20–21, 2018
London, United Kingdom

Edited by

Edoardo Pirovano
Eva Graversen

OASIcs – Vo l . 66 – ICCSW 2018 www.dagstuh l .de/oas i c s

Editors
Edoardo Pirovano Eva Graversen
Department of Computing Department of Computing
Imperial College London Imperial College London
e.pirovano17@imperial.ac.uk e.graversen16@imperial.ac.uk

ACM Classification 2012
General and reference → General conference proceedings

ISBN 978-3-95977-097-2

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-097-2.

Publication date
January, 2019

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.ICCSW.2018.0

ISBN 978-3-95977-097-2 ISSN 2190-6807 http://www.dagstuhl.de/oasics

http://www.dagstuhl.de/dagpub/978-3-95977-097-2
http://www.dagstuhl.de/dagpub/978-3-95977-097-2
http://dnb.d-nb.de
http://dx.doi.org/10.4230/OASIcs.ICCSW.2018.0
http://www.dagstuhl.de/dagpub/978-3-95977-097-2
http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

0:iii

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 2190-6807

http://www.dagstuhl.de/oasics

ICCSW 2018

http://www.dagstuhl.de/dagpub/2190-6807
http://www.dagstuhl.de/oasics

Contents

Main Track

Speeding Up BigClam Implementation on SNAP
C. H. Bryan Liu and Benjamin Paul Chamberlain . 1:1–1:13

THRIFTY: Towards High Reduction In Flow Table memorY
Ali Malik, Benjamin Aziz, and Chih-Heng Ke . 2:1–2:9

Data-Driven Chinese Walls
Gulsum Akkuzu and Benjamin Aziz . 3:1–3:8

Comparison of Platforms for Recommender Algorithm on Large Datasets
Christina Diedhiou, Bryan Carpenter, and Ramazan Esmeli . 4:1–4:10

Towards Context-Aware Syntax Parsing and Tagging
Alaa Mohasseb, Mohamed Bader-El-Den, and Mihaela Cocea . 5:1–5:9

Evaluation of Rule-Based Learning and Feature Selection Approaches For
Classification

Fatima Chiroma, Mihaela Cocea, and Han Liu . 6:1–6:6

The iBUG Eye Segmentation Dataset
Bingnan Luo, Jie Shen, Yujiang Wang, and Maja Pantic . 7:1–7:9

Poster Track

Anomaly Detection for Big Data Technologies
Ahmad Alnafessah and Giuliano Casale . 8:1–8:1

A Novel Method for Event Detection using Wireless Sensor Networks
Ameer A. Al-Shammaa and A. J. Stocker . 9:1–9:1

Context-Aware Adaptive Biometrics System using Multiagents
Fatina Shukur and Harin Sellahewa . 10:1–10:1

Invited Talk

Harnessing AI For Research
Matthew Johnson . 11:1–11:1

2018 Imperial College Computing Student Workshop (ICCSW 2018).
Editors: Edoardo Pirovano and Eva Graversen

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

Preface

Welcome to the 2018 Imperial College Computing Student Workshop (ICCSW18), the seventh
workshop in its series. ICCSW was initiated with a “by students, for students” spirit: it is
a workshop organised by Imperial students and aims to give students of all universities a
chance to present their research work. The organising students gain valuable experience in
all the steps of organising a conference – from writing a call for papers to chairing a session.
On the other hand, the participating students benefit from interacting with other researchers
who are at an early stage in their career. It is also an opportunity for students to develop
skills presenting their work to a general audience of computer scientists working in a variety
of different areas.

This volume contains the seven papers presented at the 2018 Imperial College Computing
Student Workshop. It also includes abstracts of three of the posters presented during the
workshop’s poster session and an abstract of a fantastic invited talk given by Matthew
Johnson from Microsoft Research.

In addition to the talks and poster sessions, ICCSW18 included a social event which took
the students to visit Sky Garden on the Walkie-Talkie. Then, after a scenic walk taking us
past London sights including the Tower of London and Tower Bridge, we invited the students
to a meal at ASK Italian.

ICCSW18 has been a great success. We would like to thank everyone who participated
in making this the case – the ICCSW committee, the student authors, our sponsors and the
the department here at Imperial.

We wish the best of luck to the new committee. Until next year!

Edoardo Pirovano and Eva Graversen,
ICCSW18 Editors,
ACM Student Chapter 2017 – 2018

2018 Imperial College Computing Student Workshop (ICCSW 2018).
Editors: Edoardo Pirovano and Eva Graversen

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

Organisers

Organising Committee

In alphabetical order:

Ahmad Alnafessah

Pamela Bezerra

Donato Clun

Oana Cocarascu

Alastair Donaldson

Aydan Gasimova

Eva Graversen

Riccardo Moriconi

Simon Olofsson

Edoardo Pirovano

Linh Tran

Shale Xiong

Sponsors

2018 Imperial College Computing Student Workshop (ICCSW 2018).
Editors: Edoardo Pirovano and Eva Graversen

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

Speeding Up BigClam Implementation on SNAP
C. H. Bryan Liu1

Department of Computing, Imperial College London, United Kingdom
liu.ch.bryan@gmail.com

Benjamin Paul Chamberlain
Department of Computing, Imperial College London, United Kingdom
b.chamberlain14@imperial.ac.uk

Abstract
We perform a detailed analysis of the C++ implementation of the Cluster Affiliation Model
for Big Networks (BigClam) on the Stanford Network Analysis Project (SNAP). BigClam is a
popular graph mining algorithm that is capable of finding overlapping communities in networks
containing millions of nodes. Our analysis shows a key stage of the algorithm – determining
if a node belongs to a community – dominates the runtime of the implementation, yet the
computation is not parallelized. We show that by parallelizing computations across multiple
threads using OpenMP we can speed up the algorithm by 5.3 times when solving large networks
for communities, while preserving the integrity of the program and the result.

2012 ACM Subject Classification Computing methodologies → Concurrent algorithms

Keywords and phrases BigClam, Community Detection, Parallelization, Networks

Digital Object Identifier 10.4230/OASIcs.ICCSW.2018.1

Category Main Track

Acknowledgements The authors thank Marc P. Deisenroth for useful discussions and the an-
onymous reviewers for providing many improvements to the original manuscript.

1 Introduction

Networks can represent many systems including social interactions, transport systems,
financial transactions, communications infrastructure and biological functions. In all cases
they describe interactions (edges) between dependent entities (nodes). One of the most
important and best studied fields of network science is community detection [8, 13, 14]. A
community can be thought as a group of nodes having a higher density of internal than
external connections [4]. Early community detection algorithms partitioned small networks
into disjoint regions, assigning each node to a single community [1, 17]. Later algorithmic
advances both relax the disjointness requirement (allowing overlapping communities) and
scale to much larger networks. Overlapping community detection algorithms are more general
than partitioning methods, which they include as special cases [3, 18, 22]. Methods that
focus on scaling community detection have allowed communities to be detected in networks
with millions or even billions of nodes [2, 16, 24].

The Cluster Affiliation Model for Big Networks (BigClam), proposed by Yang and
Leskovec [26] is both scalable and discovers overlapping communities. Under BigClam, nodes
can be in multiple communities, and affiliation weight between a node and a community is
modeled as a positive continuous number. The right half of Figure 1 shows the affiliation

1 Now at ASOS.com, London, UK
© C. H. Bryan Liu and Benjamin Paul Chamberlain;
licensed under Creative Commons License CC-BY

2018 Imperial College Computing Student Workshop (ICCSW 2018).
Editors: Edoardo Pirovano and Eva Graversen; Article No. 1; pp. 1:1–1:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:liu.ch.bryan@gmail.com
mailto:b.chamberlain14@imperial.ac.uk
https://doi.org/10.4230/OASIcs.ICCSW.2018.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

1:2 Speeding Up BigClam Implementation on SNAP

1
2
3
4
5
6
7

A B

...

...

1

3

2 6

5

4

7

Network graph Community affiliationSmall, dense
weights matrix

...

...

1 2 3 4 5 6 7
1
2
3
4
5
6
7

≡

()

1
2
3
4
5
6
7

A B

...()T

Large, sparse
adjacency matrix

and its copy
transposed

...

≈

1 2 3 4 5 6 7

A B ...

...

≡

Figure 1 Illustration of community detection in a graph in terms of non-negative matrix factoriz-
ation. (Left half) It is common to represent a network graph by a large, sparse adjacency matrix.
(Right half) Yang and Leskovec proposed modeling community affiliations with a bipartite graph
between communities and nodes, with affiliation weights represented by a small, dense, non-negative
matrix [26]. (Middle two panels) By finding the most likely non-negative matrix, which when
multiplied with its transpose best resembles the given adjacency matrix, we can obtain the most
likely community affiliation w.r.t. the given network graph.

weights for seven nodes to two communities. This can be represented as a bipartite graph,
or an affiliation weights matrix. The graph of a network is usually represented by a sparse
binary adjacency matrix (left half). BigClam infers the affiliation weights matrix by applying
non-negative matrix factorization [6] to the adjacency matrix. The algorithm learns the
affiliation weights matrix that is best able to reconstruct the underlying adjacency matrix
subject to the constraints of positivity and local optimality.

BigClam is a popular and highly cited method that features in a number of lectures and
tutorials [10, 19]. The related software project [11] has attracted hundreds of GitHub stars.
Due to the popularity of this model amongst both researchers and practitioners, we perform
a rigorous analysis of the C++ implementation provided on the Stanford Network Analysis
Project (SNAP) [11]. Our analysis of the BigClam source code reveals that the algorithm
has three stages. In particular, the final Community Association (CA) stage, which makes
assignments of nodes to communities, generally dominates the runtime, yet its computation
is not parallelized across CPU threads. The runtime domination of CA is especially true
for networks with large numbers of communities, which is common in real networks (see
[9]). Not parallelizing computation where available results in lengthened runtime and wastes
available hardware resources as they are put on idle.

This motivates our work in parallelizing computation in the CA stage to speed up the
BigClam implementation on SNAP. Our major consideration is the parallelization must not
introduce race condition on shared objects that compromise the integrity of the results. We
parallelize the CA stage with OpenMP, a specification for high-level parallelism in C++
programs, and we show that the parallelization achieves as much as 5.3 times speed up
and saves as much as 12.8 hours when solving networks by Leskovec and Krevl [9] using an
eight-thread machine (Intel i7-4790 @ 3.60 GHz CPU).

To summarize, our contributions are as follow: (1) We profile the runtime of the BigClam
implementation on SNAP in terms of its three stages. (2) We show that the CA stage
dominates the runtime in current BigClam implementation on SNAP when solving networks
with large numbers of communities, which is common in real networks. (3) We provide a
detailed description, and the code implementation of how we parallelize computation on the
CA stage, with a comprehensive discussion on avoiding race conditions. We also provide
experimental results showing that the speed up is statistically significant, and preserves the
result’s integrity. 2

2 All code and experiment data are available on https://github.com/liuchbryan/snap/tree/master/
contrib/ICL-bigclam_speedup.

https://github.com/liuchbryan/snap/tree/master/contrib/ICL-bigclam_speedup
https://github.com/liuchbryan/snap/tree/master/contrib/ICL-bigclam_speedup

C.H. B. Liu and B. P. Chamberlain 1:3

Table 1 The average-case runtime complexity for the three stages of the BigClam community
detection algorithm. |V |, |E|, |C|, r, k, t∗ represents the number of nodes, edges, communities,
community affiliations per node, epochs, and the speed-up multiple achieved by parallelizing
computation across threads respectively. Derivations of the complexity are detailed in Appendix B.

Stage Conductance Test Gradient Ascent Community Association

Complexity O

(
|V |
(

|E|
|V |

)2
)

O

(
|V | kr

t∗

(
|E|
|V |

)2
)

O(|V ||C|)

Table 2 Number of nodes (|V |), communities (|C|), edges (|E|), and the average number of
affiliations (r) recorded in the networks by Leskovec and Krevl [9].

|V | |C| |E| r

Amazon product co-purchase network 334,863 75,149 925,872 6.78
DBLP collaboration network 317,080 13,477 1,049,866 2.27

LiveJournal online social network 3,997,962 287,512 34,681,189 1.79
Youtube online social network 1,134,890 8,385 2,987,624 0.113

2 SNAP Implementation: The Bottleneck

We first examine the BigClam community detection algorithm and identify the bottleneck(s)
in its implementation on SNAP. The core idea of BigClam is to find the affiliation weights
matrix F that maximizes the log-likelihood function.3 The mathematical formulation is
detailed in Appendix A.

By examining its implementation on SNAP, we observe that the community detection
algorithm has three stages: Conductance Test (CT), which initializes the affiliation strength
matrix; Gradient Ascent (GA), which finds the optimal affiliation weights matrix; and
Community Association (CA), which determines if an affiliation exists between a community
and a node based on the value of affiliation weight recorded under the said matrix in relation
to a pre-specified threshold.

We show the average-case runtime complexity of the three stages in Table 1. The full
derivation is available in Appendix B. It can be seen that the CA stage will dominate the
runtime if the number of communities is large, which we formalize as: |C| � kr

t∗

(
|E|
|V |

)2
,

where |V |, |E|, |C|, r, k, t∗ represents the number of nodes, edges, communities, community
affiliations per node, epochs, and the speed-up multiple achieved by parallelizing computation
across threads respectively (see Appendix A.1).

Networks satisfying the inequality above are common. For example, all networks with
ground-truth communities featured in Leskovec and Krevl [9] (shown in Table 2) satisfy
the inequality when k = 100 and t∗ = 4.4 We confirm this by running the BigClam
implementation on the networks shown in Table 2 using an eight-thread machine (Intel i7-
4790 @ 3.60 GHz CPU), and measure the proportion of runtime spent in each of the three
stages. Figure 2 shows the results of these experiments. While the time spent on the CT

3 The (u, c)th entry of F represents the strength of the community affiliation between user u and
community c in a network (see Figure 1 for an illustration).

4 A conservative estimate of the speed up achieved by parallelizing the GA stage across eight threads.

ICCSW 2018

1:4 Speeding Up BigClam Implementation on SNAP

amazon

dblp

lj

youtube

0% 25% 50% 75% 100%

Proportion of time spent in stage

ne
tw

or
k

Stage

Conductance Test

Gradient Ascent

Community Association

Figure 2 Average proportion of time spent on the three stages of the BigClam community
detection algorithm (From left to right: Conductance Test (red), Gradient Ascent (green), and
Community Association (blue)) in Leskovec and Sosič’s implementation [11] for the four networks
shown in Table 2. The implementation is tested on an eight-thread machine (Intel i7-4790 @
3.60 GHz CPU), with the number of communities to detect for each network set to that recorded in
Table 2.

stage is negligible, the time spent on the CA stage generally accounts for more than half of
the entire runtime.5

Thus, the CA stage is usually the bottleneck in the algorithm. We notice that unlike the
GA stage, in which computation is parallelized, the CA stage is not parallelized. Therefore, the
majority of the CPU resources and man-time is wasted by idling. Parallelizing computation
in the CA stage will better utilize available resources and hence improve scalability.

3 Speeding Up BigClam Via Parallel Computing

In this section we describe how to speed up BigClam with the use of OpenMP, a specification
for parallel programming [15] that is supported in C++ and currently used in SNAP. The
goal is to speed up the CA stage while ensuring that the input to output mapping is identical
to the non-parallelized version.

3.1 Requirements in Result Correctness

As with any parallel computing application, it is important to prevent race conditions between
threads from undermining the correctness of the result. In the context of speeding up the
CA stage of BigClam, this means that the parallelized version must produce the same set of
community affiliations as the unparallelized version given the same input F .

The theoretical representation of the communities returned by the algorithm is a set of
sets: M = {M1,M2, ...,Mc} where each community is itself a set Mc = {u1, u2,uk}. Two
runs of BigClam produce the same output if M (1) = M (2). However, the BigClam SNAP
implementation uses vectors of vectors (implemented as C++ STL-like objects) instead of
sets of sets and enforces additional ordering that is not present theoretically. We denote
the vector of vectors representation asM. Using this representation it is possible to have
M (1) = M (2) andM(1) 6=M(2) (see Figure 3).

5 The Youtube network is an exception: we believe the average number of affiliations per node estimated
by the BigClam algorithm is far greater than that recorded in the ground-truth (over 90% of the nodes
do not have any community affiliations). This results in a far greater value of r than that reported in
Table 2, which violates the inequality.

C.H. B. Liu and B. P. Chamberlain 1:5

A B

1 2 3 4 5 6 7
{ { 1, 2, 3, 4 } ,
 { 3, 4, 5, 6, 7 } }

{ { 4, 6, 5, 3, 7 }
 { 2, 4, 1, 3 } }

B A

12 34 56 7

(A)
(B)

(A)
(B)M(1):

M(2):

Theoretical representation
(set of sets):

SNAP representation
(C++ vector of vectors):

(A)
(B)

1
3

2
4

3
5

4
6 7M(1):

(A)
(B)

4
2

6
4

5
1

3
3

7
= ≠

M(2):

Figure 3 The two representations of the community affiliations. (Left) the underlying bipartite
graph. (Middle) the theoretical representation as a set of sets. (Right) the SNAP C++ STL-like
vector of vectors representation. In the theoretical representation the ordering is exchangeable, in
the SNAP representation it is not.

As the ordering of values in the inner vectors and the single outer vector does not matter,
we can allow race conditions between threads when performing append operations into these
vectors, and thus increase the degree of parallelism in our implementation.

3.2 Methodology
Algorithm 1 outlines the existing CA stage implementation. The algorithm is simplified
to include only operations related to scanning the matrix F and extracting community
affiliations.6 The algorithm is rewritten in pseudocode to enhance readability.

Algorithm 1 The existing implementation of the CA stage, simplified and rewritten in
pseudocode. F is the affiliation weights matrix, and δ is the minimum affiliation strength
threshold for a node to be considered a member of a community.
1: InitializeM as an empty vector
2: for all c ∈ C do
3: InitializeMc as an empty vector
4: for all u ∈ V do
5: if Fuc ≥ δ then
6: Append u toMc

7: end if
8: end for
9: AppendMc toM

10: end for
11: return M

As discussed in Section 3.1, we can spread the task of scanning a particular column of F
over multiple threads while maintaining correctness – all node IDs will be added to the correct
community vector, and with the proper synchronization mechanism (see discussion below)
all community vectors will be present in the final result. In the terminology of OpenMP, we
can parallelize the outer for loop over all communities, covering operations in lines 3–8 of
Algorithm 1.

To prevent unintended race conditions while maintaining the highest level of parallelism,
we declare a critical operation as any operation that involves objects that are shared between
threads. Each critical operations is controlled by a mutex that prevents multiple threads
from simultaneously writing to an object. It is safe to parallelize operations that involve only

6 We exclude operations such as 1) sorting the vector
(∑

u
Fuc

)
c∈C

and scan columns which have a
higher total affiliation strength first, and 2) excluding communities if it does not have enough members
from being included, as they are less computationally expensive than scanning the matrix.

ICCSW 2018

1:6 Speeding Up BigClam Implementation on SNAP

Table 3 Average time taken, in seconds, to run a) the community association (CA) stage b) the
entire BigClam community detection algorithm, without and with parallelization of the community
association stage. The implementations are tested on eight-thread machines with the same CPU
specifications (Intel i7-4790 @ 3.60 GHz CPU).

Networks CA stage Overall
Unparallelized Parallelized Unparallelized Parallelized

Amazon 1077.58 203.74 1505.38 610.23
DBLP 160.39 30.00 312.47 180.69

LiveJournal 55363.22 9233.02 100146.81 55259.48
Youtube 213.62 43.07 2965.12 2717.85

objects used by a single thread (a.k.a. private objects/variables) and read-only objects that
are shared between threads. In our case, the only object that is shared between threads and
involves write operations is the set of community affiliationsM. All other objects are either
shared and read-only, or private to a thread.

The affiliation weights matrix F is read-only by all threads
The lower affiliation weight threshold δ is defined as a C++ constant (which is unmodifiable
once defined), and hence is read-only
The vector / list used to keep track of current community’s members (Mc) is local in the
scope of the outer for loop, and hence is private to a thread according to the OpenMP
specification [15].

Therefore, the only operation that needs to be declared as critical is the append toM
in line 9 of Algorithm 1. Only one thread can appendMc toM at a time while all other
operations can be parallelized.

4 Experiments

We run a number of experiments to validate the methodology described in Section 3. We
show that parallelizing computation of the CA stage over multiple threads 1) reduces the
runtime in the CA stage (and hence the overall BigClam implementation), and 2) retains
the result correctness.

We use the datasets featured in Leskovec and Krevl [9] (see Table 2 for details of the
datasets), which are widely used to benchmark the runtime of overlapping community
detection algorithms [20, 22, 25, 27], including by BigClam itself [26].

4.1 Runtime Reduction
To demonstrate that parallelization reduces the algorithmic runtime, we run the unparallelized
and parallelized variants of BigClam on multiple machines with Intel i7-4790 @ 3.60 GHz
CPU (eight threads) for 100 epochs. Each machine runs only one of the variants at any time
to ensure all CPU threads are dedicated to one variant. For each run, the program detects
communities in the networks specified in Table 2, with the number of communities to detect
set to that specified by the table. We measure the runtime of each stage of the BigClam for
both the parallelized and unparallelized implementations across multiple runs.

The average runtime is reported in Table 3 and we perform a Welch’s t-test to determine
if the parallelized implementation achieves a significantly lower runtime for a) the CA stage,
and b) the entire BigClam program. We visualize the results of this experiment in Figure 4.

C.H. B. Liu and B. P. Chamberlain 1:7

●●

●

●

●●

●
●
●

0

500

1000

1500

FALSE TRUE

Parallelized computation

T
im

e
ta

ke
n

(s
)

−
 C

A
 s

ta
ge

(a) Amazon

●

●

●

●

0

100

200

300

400

500

FALSE TRUE

Parallelized computation
T

im
e

ta
ke

n
(s

)
−

 C
A

 s
ta

ge

(b) DBLP

●

●

●

●
●

●●●

●

●●●

●

0

20000

40000

60000

80000

FALSE TRUE

Parallelized computation

T
im

e
ta

ke
n

(s
)

−
 C

A
 s

ta
ge

(c) LiveJournal

●
●●●●

●

●●●

●

●●

●

●

●

●●

●

●●

●

●

●

0

100

200

300

400

FALSE TRUE

Parallelized computation

T
im

e
ta

ke
n

(s
)

−
 C

A
 s

ta
ge

(d) YouTube

Figure 4 Box plot of the time taken, in seconds, to run the community association stage on
different networks with ground-truth communities, without and with parallelization on the stage.
The time taken with parallelization on the stage is significantly lower.

It is clear from Table 3 and Figure 4 that our implementation produces a significant runtime
reduction in the CA stage for all networks shown in Table 2. With an eight-thread machine,
we achieve a 5.3 times speed up in the CA stage, and subsequently a 2.5 times speed up
in the overall BigClam algorithm for the Amazon product co-purchase network. For the
LiveJournal network the runtime of the CA stage is reduced by 46,130 seconds (or 12.8 hours)
on average.7

On the other hand, parallelizing the CA stage does not bring massive improvements
in runtime on networks with low numbers of communities (those that do not satisfy the
inequality in Section 2). We only achieve a 1.1 times speed up on the overall runtime solving
the Youtube network, despite achieving a 4.96 times speed up on the CA stage. The speedup
is not apparent in networks where the algorithm is dominated by the GA stage, where
parallelizing the computation in the CA stage brings only marginal improvements.

4.2 Verification of Result Correctness
To confirm that parallelization of the CA stage produces the same set of community affiliation
predictions as the unparallelized version we create a utility program. The program sorts the
node IDs in a community and the communities in the program output in lexicographical
order before comparing (strict) equality. This is necessary as common approaches to compare
program outputs (e.g. diff or MD5 check sum) will fail even if two sets of communities are
equal, as discussed in Section 3.1.

Our utility does not report any discrepancies between the program outputs produced by
the parallelized and unparallelized variants, hence we conclude that our parallelization in the
CA stage produces the same output, backed by a theoretical discussion in Section 3.2 and
experimental verification.

5 Conclusion

In this work we profile the runtime of the BigClam implementation on SNAP, a popular
overlapping community detection algorithm on an extensively used network analysis platform.
We are able to split the runtime of the algorithm into three stages – the conductance test

7 Yang and Leskovec state that, “with 20 threads, it takes about one day to fit BigClam to the LiveJournal
network” [26] – we are able to fit this network with only eight threads in less than 16 hours.

ICCSW 2018

1:8 Speeding Up BigClam Implementation on SNAP

(initialization) stage, the gradient ascent (optimization) stage and the community association
(extraction) stage – and provide an average-case runtime complexity for each stage.

We show the community association stage is dominating the runtime in the current
implementation when solving real networks, and parallelize its implementation to speed up
BigClam. We show the speed up is both statistically significant and of practical utility,
including a 5.3 times speed up on the community association stage (and 2.5 times overall)
when solving the Amazon product co-purchase network, and saving 12.8 hours on the
community association stage with an eight-thread machine. We release all relevant code and
experimental data on our GitHub repository so that the research community can immediately
benefit from our work and replicate our results.8

References

1 Reid Andersen, Fan Chung, and Kevin Lang. Local Graph Partitioning Using PageRank
Vectors. In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer
Science, FOCS ’06, pages 475–486, Washington, DC, USA, 2006. IEEE Computer Society.
doi:10.1109/FOCS.2006.44.

2 Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast
unfolding of communities in large networks. Journal of statistical mechanics: theory and
experiment, 2008(10):P10008, 2008.

3 T. S. Evans and R. Lambiotte. Line graphs of weighted networks for overlapping com-
munities. The European Physical Journal B, 77(2):265–272, September 2010. doi:
10.1140/epjb/e2010-00261-8.

4 Santo Fortunato. Community Detection in Graphs. Physics Reports, 486(3):75–174, 2010.
doi:10.1016/j.physrep.2009.11.002.

5 David F. Gleich and C. Seshadhri. Vertex Neighborhoods, Low Conductance Cuts, and
Good Seeds for Local Community Methods. In Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’12, pages 597–
605, New York, NY, USA, 2012. ACM. doi:10.1145/2339530.2339628.

6 Patrik O Hoyer. Non-negative matrix factorization with sparseness constraints. Journal of
Machine Learning Research, 5(Nov):1457–1469, 2004.

7 Ravi Kannan, Santosh Vempala, and Adrian Vetta. On Clusterings: Good, Bad and
Spectral. J. ACM, 51(3):497–515, May 2004. doi:10.1145/990308.990313.

8 Zhana Kuncheva and Giovanni Montana. Community Detection in Multiplex Networks
Using Locally Adaptive Random Walks. In Proceedings of the 2015 IEEE/ACM Interna-
tional Conference on Advances in Social Networks Analysis and Mining 2015, ASONAM
’15, pages 1308–1315, New York, NY, USA, 2015. ACM. doi:10.1145/2808797.2808852.

9 Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

10 Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of Massive Datasets.
Cambridge University Press, New York, NY, USA, 2nd edition, 2014.

11 Jure Leskovec and Rok Sosič. SNAP: A general-purpose network analysis and graph-mining
library. ACM Transactions on Intelligent Systems and Technology (TIST), 8(1):1, 2016.

12 C. H. Bryan Liu. On overlapping community-based networks: generation, detection, and
their applications. Master’s thesis, Imperial College London, London, United Kingdom,
June 2016.

8 https://github.com/liuchbryan/snap/tree/master/contrib/ICL-bigclam_speedup

http://dx.doi.org/10.1109/FOCS.2006.44
http://dx.doi.org/10.1140/epjb/e2010-00261-8
http://dx.doi.org/10.1140/epjb/e2010-00261-8
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1145/2339530.2339628
http://dx.doi.org/10.1145/990308.990313
http://dx.doi.org/10.1145/2808797.2808852
http://snap.stanford.edu/data
https://github.com/liuchbryan/snap/tree/master/contrib/ICL-bigclam_speedup

C.H. B. Liu and B. P. Chamberlain 1:9

13 M. E. J. Newman. Detecting community structure in networks. The European Physical
Journal B, 38(2):321–330, March 2004. doi:10.1140/epjb/e2004-00124-y.

14 M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks.
Phys. Rev. E, 69:026113, February 2004. doi:10.1103/PhysRevE.69.026113.

15 OpenMP Architecture Review Board. OpenMP application program interface version 4.5,
2015. URL: http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf.

16 Pascal Pons and Matthieu Latapy. Computing Communities in Large Networks Using
Random Walks. In Proceedings of the 20th International Conference on Computer and
Information Sciences, ISCIS’05, pages 284–293, Berlin, Heidelberg, 2005. Springer-Verlag.
doi:10.1007/11569596_31.

17 Alex Pothen. Graph Partitioning Algorithms with Applications to Scientific Computing.
In David E. Keyes, Ahmed Sameh, and V. Venkatakrishnan, editors, Parallel Numer-
ical Algorithms, pages 323–368, Dordrecht, 1997. Springer Netherlands. doi:10.1007/
978-94-011-5412-3_12.

18 Ioannis Psorakis, Stephen Roberts, Mark Ebden, and Ben Sheldon. Overlapping community
detection using Bayesian non-negative matrix factorization. Phys. Rev. E, 83:066114, June
2011. doi:10.1103/PhysRevE.83.066114.

19 Rik Sarkar. Community detection and cascades [Lecture]. http://www.inf.ed.ac.uk/
teaching/courses/stn/files1516/slides/community-continued.pdf, 2015. Lecture
slides from the course Social and Technological Networks (Autumn 2015), University of
Edinburgh.

20 Meng Wang, Chaokun Wang, Jeffrey Xu Yu, and Jun Zhang. Community Detection in
Social Networks: An In-depth Benchmarking Study with a Procedure-oriented Framework.
Proc. VLDB Endow., 8(10):998–1009, June 2015. doi:10.14778/2794367.2794370.

21 Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’ networks.
Nature, 393(6684):440–442, 1998.

22 Joyce Jiyoung Whang, David F Gleich, and Inderjit S Dhillon. Overlapping community de-
tection using seed set expansion. In Proceedings of the 22nd ACM international conference
on Conference on information & knowledge management, pages 2099–2108. ACM, 2013.

23 Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. An Empirical Evaluation
of In-memory Multi-version Concurrency Control. Proc. VLDB Endow., 10(7):781–792,
March 2017. doi:10.14778/3067421.3067427.

24 Reynold S. Xin, Joseph E. Gonzalez, Michael J. Franklin, and Ion Stoica. GraphX: A
resilient distributed graph system on spark. In First International Workshop on Graph
Data Management Experiences and Systems, GRADES ’13, pages 2:1–2:6, New York, NY,
USA, 2013. ACM. doi:10.1145/2484425.2484427.

25 J. Yang and J. Leskovec. Community-Affiliation Graph Model for Overlapping Network
Community Detection. In 2012 IEEE 12th International Conference on Data Mining, pages
1170–1175, December 2012. doi:10.1109/ICDM.2012.139.

26 Jaewon Yang and Jure Leskovec. Overlapping Community Detection at Scale: A Non-
negative Matrix Factorization Approach. In Proceedings of the Sixth ACM International
Conference on Web Search and Data Mining, WSDM ’13, pages 587–596, New York, NY,
USA, 2013. ACM. doi:10.1145/2433396.2433471.

27 Hongyi Zhang, Irwin King, and Michael R. Lyu. Incorporating Implicit Link Preference into
Overlapping Community Detection. In Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, AAAI’15, pages 396–402. AAAI Press, 2015. URL: http://dl.
acm.org/citation.cfm?id=2887007.2887063.

ICCSW 2018

http://dx.doi.org/10.1140/epjb/e2004-00124-y
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://dx.doi.org/10.1007/11569596_31
http://dx.doi.org/10.1007/978-94-011-5412-3_12
http://dx.doi.org/10.1007/978-94-011-5412-3_12
http://dx.doi.org/10.1103/PhysRevE.83.066114
http://www.inf.ed.ac.uk/teaching/courses/stn/files1516/slides/community-continued.pdf
http://www.inf.ed.ac.uk/teaching/courses/stn/files1516/slides/community-continued.pdf
http://dx.doi.org/10.14778/2794367.2794370
http://dx.doi.org/10.14778/3067421.3067427
http://dx.doi.org/10.1145/2484425.2484427
http://dx.doi.org/10.1109/ICDM.2012.139
http://dx.doi.org/10.1145/2433396.2433471
http://dl.acm.org/citation.cfm?id=2887007.2887063
http://dl.acm.org/citation.cfm?id=2887007.2887063

1:10 Speeding Up BigClam Implementation on SNAP

A Key Formulation of BigClam Community Detection Algorithm

In this section we first introduce the nomenclature of networks, before moving on to the
specifics of the BigClam community detection algorithm.

A.1 Network Preliminaries
A network is a data structure that contains a graph and a set of attributes. A graph G(V,E)
is composed of a set of nodes V and a set of edges E = (vi, vj) where vi, vj ∈ V that connect
two nodes. The graph can be represented by an adjacency matrix A ∈ {0, 1}|V |×|V | where
Aij is one if (vi, vj) ∈ E and zero otherwise. Attributes can apply to either edges or nodes.

We denote the set of communities C = {c1, c2, ..., cn}, where ci indexes the ith community.
The set of community affiliations is defined as a set of sets M = {Mc : c ∈ C}, where
Mc = {u1, u2, ..., uk} is a set containing the nodes affiliated to community c ∈ C.

We also denote N (u) as the set of neighbours of a node u in G, and the neighborhood
containing u and its neighbors N(u).

Part of our runtime analysis involves the average number of communities a node is
affiliated with, which we formally define as:

I Definition 1. Let Du = {c : u ∈ Mc} be the set of communities that node u ∈ V is
affiliated with. Then the average number of community affiliations for all nodes r is

r = 1
|V |

∑
u∈V

|Du| , (1)

where |Du| is the number of communities that node u is affiliated with.

A.2 BigClam Community Detection Algorithm
The core idea of the BigClam community detection algorithm is to find the community
affiliation weights matrix F = (Fuc)u∈V,c∈C , where the (u, c)th entry represents the strength
of the community affiliation between user u and community c in a network (see Figure 1
for an illustration), that maximizes the log-likelihood function. Yang and Leskovec [26] use
an iterative approach, where at each iteration they fix the affiliation weights for all but
one node (say u), and perform a gradient ascent on the affiliation weights for node u. The
log-likelihood for the corresponding row ~Fu = (Fuc)c∈C of F is specified as:

l(~Fu) =
∑

v∈N (u)

log
(

1− exp(− ~Fu
~Fv

T
)
)
−

∑
v 6∈N (u)

~Fu
~Fv

T
. (2)

We follow the original BigClam notation and so ~Fu
~Fv

T
is an inner product.

Differentiating Equation (2) w.r.t. ~Fu gives the gradient:

Ol(~Fu) =
∑

v∈N (u)

Fv
exp(− ~Fu

~Fv
T

)

1− exp(− ~Fu
~Fv

T
)
−

∑
v 6∈N (u)

~Fv (3)

=
∑

v∈N (u)

Fv
exp(− ~Fu

~Fv
T

)

1− exp(− ~Fu
~Fv

T
)
−

∑
v∈V

~Fv − ~Fu −
∑

v∈N (u)

~Fv

 . (4)

In Equation (4)
∑

v∈V
~Fv can be precomputed, and

∑
v∈N (u)

~Fv is computed on each gradient
evaluation. This results in a more computationally efficient formulation as network graphs
are usually sparse (i.e. |N (u)| � |V |).

C.H. B. Liu and B. P. Chamberlain 1:11

The BigClam community detection algorithm initializes F as:

F(u′)(N(u)) =

1 if u′ ∈ N(u) and N(u) is a locally

minimal neighborhood [5] of u
0 otherwise

, (5)

where N(u) represents u and its neighbours in G, and regards u ∈ V as a member of c ∈ C
from the most likely affiliation weights matrix F if:

Fuc ≥ δ =
√
− log(1− ε) , (6)

where ε = 2|E|
|V |(|V |−1) is the background probability for a random edge to form in the graph.

B SNAP Implementation: A Runtime Complexity Analysis

We observe the BigClam community detection algorithm has three stages: Conductance Test,
Gradient Ascent, and Community Association. Here we derive the runtime complexity for
each of the three stages.

B.1 The Conductance Test Stage

The algorithm begins by testing each node to see if it belongs to a locally minimal neigh-
borhood as defined by Gleich et al. [5]. The initial / seed communities are chosen to be the
locally minimal neighborhoods.

For each node u ∈ V we calculate the conductance of its neighborhood. The conductance
of an neighbourhood N(u) is the fraction of edges from nodes within N(u) to nodes in the
same neighborhood over that to nodes outside the neighborhood [7]. This involves traversing
each neighbor v ∈ N (u) and finding out how many members of N (v) are not in N(u). Hence
there are

∑
u∈V

∑
v∈N (u) |N (v)| operations involved.

We simplify the expression above by replacing |N (u)| ∀u ∈ V with the average number
of neighbors, and using the fact that it is by definition the average degree of the network
graph (|E|/|V |). This leads to an average-case complexity of O

(
|V | |E||V |

|E|
|V |

)
.

B.2 Gradient Ascent Stage

After initialization, the algorithm optimizes the affiliation weights matrix F to maximize the
log-likelihood function (see Equation (2)) using gradient ascent. To understand the runtime
complexity of the GA stage, we first look at the two building blocks – calculating the dot
product and summing ~Fv – and their runtime complexity in the implementation.

B.2.1 Dot Product Runtime Complexity

Calculating the dot product between two vectors ~Fu and ~Fv is required to calculate the
gradient given in Equation (3). This is performed on each pairs of connected nodes in G for
each epoch.

In a naïve implementation that sums the product of the corresponding (dense) vector
elements, the number of operations required scales with the length of ~Fu. Many such
operations in this context are unnecessary – a node u in real networks is likely to be affiliated

ICCSW 2018

1:12 Speeding Up BigClam Implementation on SNAP

with only a small number of communities,9 leading to a large number of entries in ~Fu being
set to zero (as u is unaffiliated to those communities).

The SNAP implementation stores ~Fu as a sparse vector, where only non-zero elements
are recorded along with its position. Using sparse vectors, the number of operations for a
dot product between Fu and Fv scales as:

dDP(u, v) , min (|Du|, |Dv|) , (7)

which is the minimum number of community affiliations possessed by the two nodes u and v.

B.2.2 Vector Sum Runtime Complexity
We then consider the number of elements to be traversed in each ~Fv when calculating the
sum of affiliation weights for all neighbors of a node u,

∑
v∈N (u)

~Fv. The sum is featured
in Equation (4) as part of the gradient calculation. Similar to the dot product calculation,
implementing ~Fv as sparse vectors means the algorithm need not consider all |C| affiliation
weights in ~Fv but only the weights associated with communities that the neighbor nodes are
a member of:

⋃
v∈N (u) Dv ⊆ C .

The cardinality of the set in the expression above is bounded above by

dVS(u) , |N (u)| max
v∈N (u)

(|Dv|), (8)

assuming all neighbors of node u belong to disjoint sets of communities.10

B.2.3 Overall Runtime Complexity of the GA Stage
We can now estimate the runtime complexity of the GA stage. In this stage the algorithm
iterates over the nodes multiple times, calculates the row gradient in Equation (3) and
updates the affiliation weights. This is done until the convergence criteria is met, or for a
pre-specified number of epochs.

Equation (3) shows that the gradient of the log-likelihood is the difference of two sum-
mations. The first summation involves calculating the vector sum and dot product over
each neighbor v ∈ N (u), and the second summation involves calculating the vector sum over
v /∈ N (u). This is made more efficient by Equation (4) as real graphs are sparse and so the
number of neighbors of a node is far less than the number of non-neighbors. The number of
operations required in calculating the row gradient is then bounded above by:

γ

 ∑
v∈N (u)

(dVS(u) + dDP(u, v)) +
∑

v∈N (u)

dVS(u)

 , (9)

where γ is a constant multiplier.
We notice that dVS(u) dominates dDP(u, v) ∀v ∈ N (u), and hence Expression (9) can be

further simplified to γ′ [|N (u)| dVS(u)], where γ′ is another constant multiplier.

9 Liu [12] has shown the the maximum number of affiliations for any node is 116 out of 75,149 possible
communities in the Amazon product co-purchase network, and 682 out of 957,154 possible communities
in the LiveJournal social network.

10 In practice the cardinality will be much smaller due to the “small world" phenomenon: a node’s neighbors
are likely to be connected themselves [21], which according to BigClam is due to them being mutual
members of one or more communities.

C.H. B. Liu and B. P. Chamberlain 1:13

We replace |N (u)| by |E|/|V |, just as we did in Section B.1. Furthermore we approximate
dVS(u) (see Equation (8)) in the average case by |E|/|V | × r.

We have to calculate the row gradient for all |V | nodes over k epochs (which we specify).
Moreover, the computation of the GA stage is parallelized onto t threads using OpenMP [15],
which will reduce the runtime by t∗ ≤ t folds due to synchronization overhead [23]. We arrive
at our average-case complexity of

O

(
k

t∗
|V | |E|
|V |
|E|
|V |

r

)
. (10)

Note that r in Expression (10) is the BigClam estimate of the average number of affiliations
per node, not the value realized in the ground-truth, and the two values can differ significantly.

B.3 Community Association Stage
The final stage of the algorithm takes the most likely community affiliation weights matrix F ,
and for each community c ∈ C and each node u ∈ V determines if u is affiliated to c by
examining the entry Fuc (see Equation (6)).

The implementation treats rows of F as dense vectors, and requires scanning through
all entries of F to determine all community affiliations. Hence, at least |C||V | comparisons
must be performed, leading to an average-case complexity of O (|C||V |).

ICCSW 2018

THRIFTY: Towards High Reduction In Flow Table
memorY
Ali Malik
School of Computing, University of Portsmouth, United Kingdom
ali.al-bdairi@port.ac.uk

Benjamin Aziz
School of Computing, University of Portsmouth, United Kingdom
benjamin.aziz@port.ac.uk

Chih-Heng Ke
Department of Computer Science and Information Engineering, National Quemoy University,
Taiwan
smallko@nqu.edu.tw

Abstract
The rapid evolution of information technology has compelled the ubiquitous systems and comput-
ing to adapt with this expeditious development. Because of its rigidity, computer networks failed
to meet that evolvement for decades, however, the recently emerged paradigm of software-defined
networks gives a glimpse of hope for a new networking architecture that provides more flexibil-
ity and adaptability. Fault tolerance is considered one of the key concerns with respect to the
software-defined networks dependability. In this paper, we propose a new architecture, named
THRIFTY, to ease the recovery process when failure occurs and save the storage space of forward-
ing elements, which is therefore aims to enhance the fault tolerance of software-defined networks.
Unlike the prevailing concept of fault management, THRIFTY uses the Edge-Core technique to
forward the incoming packets. THRIFTY is tailored to fit the only centrally controlled systems
such as the new architecture of software-defined networks that interestingly maintain a global
view of the entire network. The architecture of THRIFTY is illustrated and experimental study
is reported showing the performance of the proposed method. Further directions are suggested
in the context of scalability towards achieving further advances in this research area.

2012 ACM Subject Classification Networks → Network protocols

Keywords and phrases Source Routing, Resiliency, Fault Tolerance, SDN, TCAM

Digital Object Identifier 10.4230/OASIcs.ICCSW.2018.2

Category Main Track

1 Introduction

Computer networks play an essential role in changing the life style of modern society.
Nowadays, most of the Internet services are located in data centers, which are consisting
of thousands of computers that connected via large-scale data center networks. Typically,
wide-area networks interconnecting the data centers that distributed across the globe. The
Internet users are usually using their devices (i.e. computer, mobile, tablet, smart watch,
etc.) to access the various available services of Internet through different ways such as WiFi,
Ethernet and cellular networks. Traditionally, the distributed control systems in networking
devices along with a set of defined protocols (e.g. OSPF [16] and RIP [9]) constitute a
fundamental technology that have been adopted to send and receive data via networks

© Ali Malik, Benjamin Aziz, and Chih-Heng Ke;
licensed under Creative Commons License CC-BY

2018 Imperial College Computing Student Workshop (ICCSW 2018).
Editors: Edoardo Pirovano and Eva Graversen; Article No. 2; pp. 2:1–2:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ali.al-bdairi@port.ac.uk
mailto:benjamin.aziz@port.ac.uk
mailto:smallko@nqu.edu.tw
https://doi.org/10.4230/OASIcs.ICCSW.2018.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

2:2 THRIFTY: Towards High Reduction In Flow Table memorY

Traditional Network Software-Defined Network
Controller
machine

Programmable
switch

Control plane

Data plane

Switch

Figure 1 Traditional versus SDN architecture.

around the world in recent years. According to [2], these distributed protocols increase the
inflexibility of network management through making the network operators to lose their
visibility over their networks. Managing the networks efficiently to meet the requirements of
the Quality of Service (QoS) and the Service Level Agreements (SLA) are the core challenging
points of the computer networks, which need to be improved continuously in light of the
increasing number of devices that are connected to the Internet, which are currently estimated
to be in the range of 9 billion devices and expected to reach double that number by 2020.
Therefore, the Internet ossification is highly expected as stated in [12]. One possible solution
is to replace the complex/rigid networking system with an open and programmable network
instead. Software-Defined Networking (SDN) is a promising paradigm that resulted from a
long history of efforts aiming to simplify the computer networks management and control [5].
In SDN the control plane has been decoupled from the data plane and placed in a central
location usually called the network controller or the network operating system. Figure 1
illustrates the difference between the SDNs and conventional networks architecture. Such a
new networking architecture of SDN with much more flexibility comparing to the traditional
networks meant that SDNs are nowadays adopted by many of the well known pioneering
companies like Deutsche Telekom, Google, Microsoft, Verizon, and CISCO, which have
recently combined in 2011 to launch the Open Network Foundation (ONF) [18] as a nonprofit
consortium that aims to accelerate the adoption of SDN technologies.

Although SDNs have brought many advantages with dramatic network improvements,
this innovation has been accompanied by several challenges, such as the management of
network failures and updating of the network architecture [1].

2 Related Work

Since link and node failure is an issue almost as old as computer networks, so far, SDN follows
the traditional fundamental strategies of failure recovery (i.e. protection and restoration)
to recover from the data plane failures. However, the fault management in SDNs differs
from the legacy networks in the way of computing and update the routing tables. Instead of
the conventional way of reconfiguration in which each node makes the required changes to
update the routing table locally, the controller in SDN is responsible to handle the network
reconfiguration and instruct the relevant nodes on how to follow the new update, which
is therefore made globally. Protection and restoration are currently the only two ways to
reconfigure the network and mask failure incidents. However, each associated with some
drawbacks in terms of time and memory space consumption. In protection, the alternative
solutions (i.e. backups) are preplanned and installed in the relevant switches, however, in

A. Malik, B. Aziz, and C. Ke 2:3

restoration the possible solutions are not preplanned and will be calculated dynamically
when failure occurs. A large number of studies have considered the issue of network failures
and propose different contributions that are reviewed in [6]. Unfortunately, the current SDN
switches in the market have a limited capacity of flow table due to the small space of the
expensive Ternary Content-Addressable Memory (TCAM) [10]. Recently, this issue took
place in the proposed schemes of failure recovery as the new schemes should consider the
problem of TCAM limitation.

In this context, [19] propose SlickFlow, a source-based routing method to enhance the
scalability and fault tolerance in OpenFlow networks. In SlickFlow, the controller computes
the primary and the backup (disjoint) paths and then both are encoded in the packet header
in addition to an alternative bit, which indicates the current using path. When the primary
path is affected by link failure then, a switch will forward the packets through the backup
path and change the value of the alternative, which is necessary for the neighbor switch
to follow the backup as well. The packet header provides an additional limited segment
of information that can be used for the purpose of encoding path details [17], where the
alternative path should not exceed 16 hops.

The authors in [15] produce a protection scheme, as an extension to their previous work
in [14], that minimises TCAM consumption. The authors developed two routing strategies:
Backward Local Rerouting (BLR) and Forward Local Rerouting (FLR). In BLR, a node-
disjoint path is computed as a backup for every primary path in the network and when a
failure occurs, packets are sent back to the origin node to be rerouted over the pre-planned
backup towards the destination. In FLR, a backup route for each link in the primary path is
pre-computed. When a link failure occurs, the packets will be forwarded from the point of
failure towards the downstream switch in the primary path by following the backup path,
however, in case of there will be a multiple backups then, the one with least number of
switches will be chosen. Instead of using fast failover group type, the authors have extended
the OpenFlow protocol by adding an additional entry that called BACKUP_OUTPUT to the
ACTION SET of the flow table entries, so that the new added entry is responsible to set the
out put port when a link fails.

The authors in [23] propose a new flow tables compression algorithm as well as a
compression-aware routing concept to enhance the ratio of the gained compression rate. The
proposed algorithm reduces the consumed TCAM space by using the wildcard to match
the tables who shared the same output and packet modification operations and hence the
compression. The authors relied on their previous work [22] in which they proposed Plinko
as a new forwarding model where the forwarding table entries apply the same action.

The authors in [24] discuss the problem of the protection schemes and its impact on the
shortage of TCAM memory. The authors proposed Flow Entry Sharing Protection (FESP),
which is a greedy algorithm that selects the node with larger available flow entry capacity
and minimum backup flow entry. The study showed how the total number of flow entries
can be minimised where the experimental results revealed that the reduction ratio of flow
entries is up to 28.31% compared with the existing path and segment protection methods.
With respect to all contributions, some issues still exist such as the following:

1) The disjointness as constraint for the calculated backups will require a totally new set of
flow entries, which in turn will consume an additional TCAM space.

2) Compress flow tables using wildcard will affect the fine-grained per packet inspection and
therefore might lead to policy/security violations.

ICCSW 2018

2:4 THRIFTY: Towards High Reduction In Flow Table memorY

Edge

Controller

Edge

Edge

Core Core

Clique1 Clique 2

Figure 2 THRIFTY architecture.

3 Problem Statement

On one hand, protection solutions require an additional information, which have to be loaded
into the data plane elements, to tell the nodes how to perform when failure occurs. However,
the extra loaded information affects the storage memory of the network switches and therefore
the designed fault tolerance mechanisms should consider the limited space of flow table and
TCAM. On the other hand, it is very hard to meet the carrier-grade reliability requirements
(i.e. recover within 50 µs) in restoration [20, 21] because the infrastructure layer equipment
in SDN are dummy forwarding elements due to the split architecture, then, the central
controller is responsible for calculating the alternative paths and then installing the flow
entries (i.e. forwarding rules) in the relevant switches of each backup after detecting failures.

4 THRIFTY for SDNs

THRIFTY is a scalable fault tolerant system with aim to reduce the TCAM storage space of
forwarding elements as much as possible. THRIFTY has the following properties:

Edge-Core based routing: The idea of Edge-core design has been proposed in [4], in which
the complex control functions have been removed to the ingress switches and keep the
remain core switches as clean-slate. THRIFTY makes use the same idea of Edge-core
design and to be applied on the partitioned network topology, as an extension to our
previous work in [13] in which the network topology can be divided into N number of
cliques.
Fast recovery: Reacting to network link failures, THRIFTY is capable to recover from
single/multi link failures in a carrier-grade time scale (i.e. less than 50 µs).
Scalable to large-scale networks: As the size of network topology increases, the flow table
entries of data plane will be still manageable due to the designed architecture.
Single network controller : Network can be controlled by one controller and it is the entity
that responsible for the network activities and adjust the global policy of network.

4.1 Architecture

Figure 2 depicts THRIFTY architecture, the controller comprises three modules, each
responsible for a specific task as follows:

A. Malik, B. Aziz, and C. Ke 2:5

S4

Controller

S5

S1

S2

S3
1 2 1

3 2

1
2

2 3
1

2 1

Host 1
Host 2

Figure 3 Example topology.

1) Topology parser : is responsible for fetching the underlying network topology characteristics
and build a topological view in order to represent the gained network topology as a graph
G, we utilised the NetworkX [8] tool, which is a pure python package with a powerful set
of functions that can be used to manipulate and simplify network graphs.

2) Cliques producer : is responsible for partitioning the constructed network graph G into set
of sub-graphs by incorporating the well known community detection algorithm Girvan and
Newman [7] to produce a set of possible cliques (with any size). The densely connection
between the resulted cliques’ vertices is the main interesting feature of Girvan and Newman
algorithm, in other words, the strong connection among the nodes in each clique could
provide a multiple alternative paths that could be utilised when failures occur.

3) Edge-Core finder : Based on the resulted cliques, this module is responsible for dividing
the set of nodes, in each single clique, into two sets Edge and Core. Therefore, we will
have two kind of switches, namely Edge and Core. The key challenging point of this
module is to find the optimal number of Edge switches.

4.2 Prototype and Implementation

To demonstrate the feasibility of the proposed architecture, we provide a prototype imple-
mentation of THRIFTY. The current prototype is designed as a proof of concept as well as
to show how the proposed solution can be applied.

The current implementation of THRIFTY is prototyped with the recently proposed P4
language [3] using a software switch as a platform. We use the open source P41 as a packet
processing language to create a set of P4 switches in the specified topology of Figure 3 in
which Edge={S4, S5} and Core={S1, S2, S3}. We evaluate our THRIFTY prototype
using Mininet [11] as a virtual network emulator, which is suitable to generate customized
virtual network topologies in a single Linux machine. The current implementation is divided
into two schemes as follows:
1. Rules aggregation method (Scheme1)2

In this method, the necessary flow entries (from source to destination) of a particular
path are stored in Edge switches of the network in addition to add one more flow entry

1 P4 switch model available at: https://github.com/p4lang
2 The implementation can be found at:

http://csie.nqu.edu.tw/smallko/sdn/mysource_routing.htm

ICCSW 2018

2:6 THRIFTY: Towards High Reduction In Flow Table memorY

(a) Ping test. (b) Required rules.

Figure 4 Adding rules with Scheme1.

in each Edge switch for the purpose of changing the destination mac address. Therefore,
the number of required flow entries in this method can be calculated by:

The number of traversed switches in a path + 1
Figure 4 shows the preliminary results of this method. Although the scheme fails to
reduce the number of required rules, it is still of interest since it collects the required rules
in two locations (i.e. Edges) rather than distributed them over switches and therefore it
might increase the flexibility of updating the network.

2. Rules compression method (Scheme2)3
In this method, the entire flow entries from source to destination of a particular path are
reduced to one rule only, which also need to be stored in one of the path Edge switches.
For instance, in the given example topology the shortest path between Host1 and Host2
is:

Host1-S4-S2-S3-S5-Host2
we set the next couple of rules to indicate the routing information at the ingress switch
(S4):

table_add ipv4_lpm set_path 10.0.5.2/32 => 4 1 3 2 2 0 0 0 0 0
table_add ipv4_final dmac 10.0.4.1/32 => 00:00:00:00:04:01

While, in the egress switch (S5) we had the following;
table_add ipv4_lpm set_path 10.0.4.1/32 => 4 1 3 2 2 0 0 0 0 0

table_add ipv4_final dmac 10.0.5.2/32 => 00:00:00:00:05:02
Where 4 indicates that the shortest path between Host1 and Host2 contains 4 nodes (i.e.
3 hops). While, the rest of digits denotes the set of output ports for the switches along
the path as follow: 1 refers to the output port of S5, 3 refers to the output port of S3, 2
refers to the output port of S2 and the last 2 refers to the output port of S4.

In order to compare our proposed methods to traditional/existing method, we replicated
the same experimental procedure with POX controller where the openflow.discovery4 and

3 The implementation can be found at:
http://csie.nqu.edu.tw/smallko/sdn/mysource_routing2.htm

4 https://github.com/att/pox/blob/master/pox/openflow/discovery.py

A. Malik, B. Aziz, and C. Ke 2:7

(a) Ping test. (b) Required rules.

Figure 5 Adding rules with traditional scheme.

l2_multi5 modules have been utilised to discover and setup the shortest path from sender to
receiver. Figure 5 shows the number of rules required to forward the incoming packets from
Host1 to Host2. It is worth mentioning here that we took into account the only IP packets,
however, the arp packets have been discarded.

As a result, Figure 6 illustrates the total number of flow rules required by the three
simulated schemes (i.e. Scheme1, Scheme2 and traditional).

S1 S2 S3 S4 S5

0

2

4

0 0 0

5 5

0 0 0

2 2

0

2 2 2 2

Switches

N
o.

of
flo

w
en
tr
ie
s

Scheme1 Scheme2 Traditional

Figure 6 A comparison of three scenarios.

5 Conclusion and Future Work

In this paper, we presented the ongoing work in realising THRIFTY as a new solution to
tackle the TCAM limitation problem as well as to accelerate the recovery from link failures.
We showed how the proposed solution can be implemented using a couple of new schemes

5 https://github.com/att/pox/blob/master/pox/forwarding/l2_multi.py

ICCSW 2018

2:8 THRIFTY: Towards High Reduction In Flow Table memorY

that aggregate and compress the forwarding rules. As a future plan, the authors will proceed
to conduct failure scenarios in addition to extend the current piece of work by considering
the following aspects:

Building a general framework: THRIFTY uses Edge-Core architecture on the basis of
cliques concept with a view of dramatically simplifying the packet forwarding as well as
reducing the number of flow table entries that will enhance the SDN scalability.

Dependability attributes: Currently, THRIFTY only supports the scenario of data plane
link failures, however, our work envisions to include other attributes of dependability such as
security.

References
1 Ian F Akyildiz, Ahyoung Lee, Pu Wang, Min Luo, and Wu Chou. A roadmap for traffic

engineering in SDN-OpenFlow networks. Computer Networks, 71:1–30, 2014.
2 Theophilus Benson, Aditya Akella, and David A Maltz. Unraveling the Complexity of

Network Management. In NSDI, pages 335–348, 2009.
3 Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford,

Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al. P4: Programming
protocol-independent packet processors. ACM SIGCOMM Computer Communication Re-
view, 44(3):87–95, 2014.

4 Martin Casado, Teemu Koponen, Scott Shenker, and Amin Tootoonchian. Fabric: a retro-
spective on evolving SDN. In Proceedings of the first workshop on Hot topics in software
defined networks, pages 85–90. ACM, 2012.

5 Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to SDN: an intellectual
history of programmable networks. ACM SIGCOMM Computer Communication Review,
44(2):87–98, 2014.

6 Paulo Fonseca and Edjard Mota. A survey on fault management in software-defined net-
works. IEEE Communications Surveys & Tutorials, 2017.

7 Michelle Girvan and Mark EJ Newman. Community structure in social and biological
networks. Proceedings of the national academy of sciences, 99(12):7821–7826, 2002.

8 Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics,
and function using NetworkX. Technical report, Los Alamos National Lab.(LANL), Los
Alamos, NM (United States), 2008.

9 Charles L Hedrick. Routing information protocol. Technical report, Rutgers University,
1988. https://tools.ietf.org/html/rfc1058.

10 Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Christian Esteve Rothenberg,
Siamak Azodolmolky, and Steve Uhlig. Software-defined networking: A comprehensive
survey. Proceedings of the IEEE, 103(1):14–76, 2015.

11 Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop: rapid prototyping
for software-defined networks. In Proceedings of the 9th ACM SIGCOMM Workshop on
Hot Topics in Networks, page 19. ACM, 2010.

12 Pingping Lin, Jun Bi, Hongyu Hu, Tao Feng, and Xiaoke Jiang. A quick survey on selected
approaches for preparing programmable networks. In Proceedings of the 7th Asian Internet
Engineering Conference, pages 160–163. ACM, 2011.

13 Ali Malik, Benjamin Aziz, Chih-Heng Ke, Han Liu, and Mo Adda. Virtual topology par-
titioning towards an efficient failure recovery of software defined networks. In The 16th
International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2017.

A. Malik, B. Aziz, and C. Ke 2:9

14 Purnima Murali Mohan, Tram Truong-Huu, and Mohan Gurusamy. TCAM-aware local
rerouting for fast and efficient failure recovery in software defined networks. In Global
Communications Conference (GLOBECOM), 2015 IEEE, pages 1–6. IEEE, 2015.

15 Purnima Murali Mohan, Tram Truong-Huu, and Mohan Gurusamy. Fault tolerance in
TCAM-limited software defined networks. Computer Networks, 116:47–62, 2017.

16 John Moy. OSPF version 2. Technical report, Ascend Communications, Inc., 1998. ht-
tps://tools.ietf.org/html/rfc2328.

17 Giang TK Nguyen, Rachit Agarwal, Junda Liu, Matthew Caesar, P Godfrey, and Scott
Shenker. Slick packets. ACM SIGMETRICS Performance Evaluation Review, 39(1):205–
216, 2011.

18 ONF. Open Networking Foundation, 2018. https://www.opennetworking.org/.
19 Ramon Marques Ramos, Magnos Martinello, and Christian Esteve Rothenberg. Slickflow:

Resilient source routing in data center networks unlocked by openflow. In Local Computer
Networks (LCN), 2013 IEEE 38th Conference on, pages 606–613. IEEE, 2013.

20 Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet, and Piet Demeester. En-
abling fast failure recovery in OpenFlow networks. In Design of Reliable Communication
Networks (DRCN), 2011 8th International Workshop on the, pages 164–171. IEEE, 2011.

21 Dimitri Staessens, Sachin Sharma, Didier Colle, Mario Pickavet, and Piet Demeester. Soft-
ware defined networking: Meeting carrier grade requirements. In Local & Metropolitan Area
Networks (LANMAN), 2011 18th IEEE Workshop on, pages 1–6. IEEE, 2011.

22 Brent Stephens, Alan L Cox, and Scott Rixner. Plinko: Building provably resilient for-
warding tables. In Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks,
page 26. ACM, 2013.

23 Brent Stephens, Alan L Cox, and Scott Rixner. Scalable multi-failure fast failover via
forwarding table compression. In Proceedings of the Symposium on SDN Research, page 9.
ACM, 2016.

24 Xiaoning Zhang, Shui Yu, Zhichao Xu, Yichao Li, Zijing Cheng, and Wanlei Zhou. Flow
Entry Sharing in Protection Design for Software Defined Networks. In GLOBECOM 2017-
2017 IEEE Global Communications Conference, pages 1–7. IEEE, 2017.

ICCSW 2018

Data-Driven Chinese Walls

Gulsum Akkuzu
School of Computing, University of Portsmouth, United Kingdom
gulsum.akkuzu@port.ac.uk

Benjamin Aziz
School of Computing, University of Portsmouth, United Kingdom
benjamin.aziz@port.ac.uk

Abstract
Security policy and access control models are often based on qualitative attributes, e.g. security
labels, cryptographic credentials. In this paper, we enrich one such model, namely the Chinese
Walls model, with quantitative attributes derived from data. Therefore, we advocate a data-
driven approach that considers a quantitative definition of access we term, working relations.

2012 ACM Subject Classification Security and privacy → Access control

Keywords and phrases Access Control, Big Data, Security Policies, Chinese Walls Model

Digital Object Identifier 10.4230/OASIcs.ICCSW.2018.3

Category Main Track

1 Introduction

Organisations require controlling and monitoring the access of their information, shared
files and resources in order to ensure the security of information and assets. Access control
provides access rights to authorized users. Unauthorized users are refused to access to
information and assets. There are various access control models in the literature, including
mandatory access control, discretionary access control, role-based access control, lattice-based
information flow control and Chinese Wall Access Control (CWAC) [4, 10].

CWAC was introduced by Brewer and Nash [2] with the aim preventing information flows
that cause Conflicts of Interest (CoI) for consultants. It is considered in the commercial
domain in which consultants and analysts of organisations access sets of data resources from
different groups in companies that provide different types of services. CWAC prevents data
leaks from one company to another within the same CoI class.

CWAC, like many other models, lacks quantitative attributes and analysis that could
render the model more usable within data-driven domains. We therefore argue that such a
model should be enhanced with definitions that take into consideration statistical information
derived from available datasets. We introduce in this paper one such initial enhancement by
taking into account working relations of users towards computers they access. A working
relation represents persistent accesses that exceed some minimum number of times. We
define a new version of the simple secrecy property based on working relations. To the best
of our knowledge, this research is the first for incorporating quantitative aspects such as
probabilistic or stochastic variations of CWAC model.

© Gulsum Akkuzu and Benjamin Aziz;
licensed under Creative Commons License CC-BY

2018 Imperial College Computing Student Workshop (ICCSW 2018).
Editors: Edoardo Pirovano and Eva Graversen; Article No. 3; pp. 3:1–3:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gulsum.akkuzu@port.ac.uk
mailto:benjamin.aziz@port.ac.uk
https://doi.org/10.4230/OASIcs.ICCSW.2018.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

3:2 Data-Driven Chinese Walls

2 Related Work

Our work is closely related to the basic concept of CWAC. We provide an overview of the
most relevant works to the this paper in the followings. CWAC is a well known access control
for the secured sharing of commercial consultancy services. A concept analysis is introduced
which shows effects of lattice structure to classify the access permission of consultants based
on the CWAC. And also helps to understand the CWAC access permission of every consultant
depends on their level in the lattice structure [11].

A new way of thinking on Chinese Wall Model Security has been brought by Cheng and
et all [3], they address risk access control decisions on the CWAC and other security policies
where access decisions are based on the history. The new concept has been illustrated as a
Fuzzy Logic control system because of the uncertainty in security labels, risk modulating
factors and loss variance based access decision have effective roles on the access decisions.

CWAC is proposed to address the CoI problems in the decentralized work-flow environment
[13] . The modified CWAC for decentralized control that solves the various problems such
as, placing the task execution agents in same COI class’s, undesirable results that are similar
and tend to be in the wrong side of the Chinese Wall.

Formal Concept Analysis CWAC is modelled [12] , results show that the proposed method
is able to satisfy the limitation of the Chinese Wall Security Policy and its main properties
that are simple security (ss) and *-property. Similarities between CWAC security properties
and Multi-Level Security (MLS) policies’ security attributes are described by McLean [8].
Bella-LaPadula is one of the MLS policies, it has a simple security rules and *-property that
are partly similar to CWAC access rules .According to Gollmann [5], ss-property allows a
subject s to access an object o either only if object o has already been accessed by the user
or request is entirely different conflict of class. He describes *-property for restricting write
access; an object o can be accessed by a subject s only if s/he has no read access to any
conflict class object o’. All of the previous works mentioned so far, has not considered a
quantitative approach on Chinese Wall Security Model. We believe that our work is the only
work that redefines security formula of CWAC and approaches quantitative aspects of it.

3 An Overview of Chinese Wall Security Model

CWAC is one of the most common policy that is usually used in commercial organizations
[2]. The main idea behind this is that one is not allowed to access to two conflicting classes
or competitor organizations’ files at the same time. It can be described quite simply, object
that is the wrong side of the wall should not been allowed to be accessed by a subject.

CWAC has two access restriction properties; simple security rule and *-property. Simple
security rule gives an access a subject to an object if the object either is in the same company
datasets and object already accessed by subject or belongs to a completely different conflict of
interest class. Chinese Wall *-property comprises permissions on write access, it is permitted
if access is permitted by the simple security rule and object can not be read which is in
different organisation dataset than the one which write access is requested for [5].

Our model has similarities with the exist CWAC on the checking of the historical accesses
but also we have a new approach that is working relationship. In our case, if a user has
accessed to a computer more than n times then we think user has a working relationship
with that computer, hence if the user attempts to access a computer that belongs to the
CoI, then our property does not allow user. We explain our new model definitions in the
following section and we implement our new model on the real world dataset in Section 5.2.

G. Akkuzu and B. Aziz 3:3

4 A New Data-driven Chinese Walls Model

The existing Chinese Walls model [2] is based on the concept that a subject may have
accessed some object in the past that belonged to a conflicting organisation. However, the
model is coarsely defined as it relies on the single notion of access. There are no attempts in
literature to provide more refined definitions that would incorporate quantitative aspects such
as probabilistic or stochastic variations of this model. Therefore, we start with the definition
of a working relation between a subject and an object to capture such quantification in access
control. We start first by reviewing the basic concepts underlying the Chinese Walls model.

Subjects are defined as the set s, s′ . . . ∈ S. These could be users or computer machines.
Objects are defined as the set o, o′ . . . ∈ O. These could be individual files. Companies
(represented by their datasets) are defined as the set c, c′ . . . ∈ C. There are two labeling
operations on objects. The first is y : O → C, which defines for an object the company
(dataset) to which it belongs. The second labeling operation is x : O → ℘(C), which defines
for an object, the set of companies (datasets) that are in conflict with its owner. We call this
set, the conflict class for o.

Based on the above concepts, the history of subjects’ access to objects is defined as a
matrix N : S × O → B, where Ns,o = True means that s has accessed o in the past, and
Ns,o = False means it has not. However, in our model, we redefine the history of accesses as
a numeric concept rather than a Boolean one.

I Definition 1 (Numeric History of Accesses). We define the numeric history of accesses of
objects by subjects as a matrix, N : S × O → N, which returns for each subject a natural
number, n, representing the number of times a subject s has accessed an object o in the past:

Ns,o = n

Using this new definition of the history of accesses, we can define a new relation to capture
working relationships between users and computers.

I Definition 2 (Working Relations). We say that a subject s (e.g. a user) has a working
relation with an object o (e.g. a computer) written as a predicate, wr(s, o), if and only if,
based on some predefined minimum number of accesses, n, then:

Ns,o ≥ n

In other words, s, in its history, has accessed o at least n number of times. The choice of n

depends on the organisation or on the context in which the policy is deployed. By contrast,
the standard case where s is deemed to have only accessed o, is represented by the next
definition.

I Definition 3 (Standard Access). We say that a subject s (e.g. a user) has accessed an
object o (e.g. a computer) if and only if, based on some predefined minimum number of
accesses, n, then:

n > Ns,o ≥ 1

In other words, s, in its history, has at least accessed o once, but fewer times than n.
Therefore, s has accessed o but not have had a working relation with o. Finally, the case of
no access is defined simply as as follows.

ICCSW 2018

3:4 Data-Driven Chinese Walls

1, U1, C1
1, U1, C2
2, U2, C3
3, U3, C4
6, U4, C5
7, U4, C5
12, U8, C9

Figure 1 Example data lines.

I Definition 4 (No Access). We say that a subject s (e.g. a user) has not accessed an object
o (e.g. a computer) in its history, if and only if, the following holds true:

Ns,o = 0

We now introduce the new variation of the Chinese Wall accessibility property, based on the
definition of a working relation above.

I Property 1 (Working Relations-based Simple Security). A subject, s, can access an object,
o, if and only if, for all objects o′, it must be the case that:

(wr(s, o′) = True) ⇒ (y(o) = y(o′) ∨ y(o) /∈ x(o′))

This property weakens the original Simple Security property defined by Brewer and Nash
[2] in that it takes into account only that part of the history of the subject where accesses
to objects reached to some particular level of significance (i.e. n as defined in Definition 1).
Informally, this means that we are not worried with subjects who have accessed objects fewer
times that n in their history.

5 Case Example: LANL Dataset

5.1 Dataset Description

We use here the “User-Computer Authentication Associations in Time" (UCAAT) dataset
[6, 9] collected by the Los Alamos National Laboratory (LANL) [1], as our case example to
validate the ideas presented in the previous section. We used first five thousands data from
the dataset due to memory of the computer that is used for coding. The data ranges over 9
months and represents 708,304,516 successful authentication events from users to computers.
An example of some lines in the dataset is shown in Figure 1.

Each line contains three metadata elements; the first represents the time at which the
authentication event occurred, the second represents the user who logged in into the computer,
and the third the computer on which the login happened. The time epoch starts at 1 with a
resolution of 1 second. There are in total 11,362 users, represented by the pseudo values Ui
and 22,284 computers, represented by the pseudo values Cj, where i, j represent the number
of the user and the computer, respectively. To enhance anonymity, the time frame of the
actual data collection is not provided and some centralized computers (e.g. active directory
servers) and their associated authentication events have also been removed. The dataset is
available either as a single compressed file (size 2.3GB) or as a set of 9 individual files (sizes
ranging from 177MB to 273MB).

G. Akkuzu and B. Aziz 3:5

5.2 Model Implementation Based on the Dataset
We now instantiate our new data-driven Chinese Walls model using data from the UCAAT
dataset. Due to the size of the dataset, we selected as a proof-of-concept only the first 5000
entries. Initially, we find the number of times each user logged in to a specific machine.
Table 1 shows an example of such analysis.

Table 1 An example table showing the number of times users log in to computers.

User Name Computer Name Number of Login Times

U1 C1 2
C2 4
C978 2

U12 C54 62
C94 8
C801 3

U66 C1 18
C117 3
C133 1

U105 C113 2
C130 3
C160 37

U106 C136 8
U116 C155 32
U127 C155 41
U13 C14 21

C172 20
C282 20
C32 30

We applied clustering techniques to find the value of n (for definition of n see Section
4. Clustering is a technique that is used to group data together [7]. It is used to classify
each data point into a specific group. We give the number of login time, and classify them
into two groups. One of the common clustering algorithms is K-means which is a method
to partition a data set into k groups [14]. The clustering results are given in Figure 2. The
numbers are clustered into two groups and the boundary number of the numbers was 20.
Therefore, in our case (for first five thousands data) n value is 20. We use u instead of s,
similarly c instead of o. In this way, if

Nu,c ≥ 20

then we say user has a working relations with the computer. For example, U12 has working
relations with C54 because U12 has logged into C54 68 times. Table 2 represents the full list
of users with working relations to computers. Standard access value becomes as follows;

20 > Nu,c ≥ 1

For example, U1 has only standard access in relation to all the computers that have been
logged in to by U1, because Nu,c is between 1 and 20. On the other hand, U13 has working
relation with all computers (see Table 1), n is greater than 20. We use the same approach
with the Chinese Walls model simple security; In our case, if a user wants to login to the
computer and s/he has a working relation with a CoI group of computers, then our model

ICCSW 2018

3:6 Data-Driven Chinese Walls

(a) Clustering 1. (b) Clustering 2.

Figure 2 K means Clustering.

Table 2 The group of users who have working relations with computers.

User Name Computer Name User Name Computer Name

U12 C54,C13 U105 C160
U116 C155 U120 C164
U124 C168, C192 U127 C155
U128 C167, C176 U13 C14, C172, C282, C32, C42
U130 C179 U153 C207
U156 C161 U159 C160
U16 C17, C148 U179 C175
U184 C154 U188 C256
U197 C269 U202 C275
U204 C101 U21 C22
U211 C286 U216 C291
U29 C30 U39 C41
U53 C58 U6 C7
U60 C108, C173 U63 C234, C68
U66 C1 U67 C49
U68 C71 U77 C234, C78
U93 C107,C53 U92 C154
U95 C154 U97 C161
U105 C160 U116 C155
U120 C164 U9 C10
U96 C115 U97 C116, C161

G. Akkuzu and B. Aziz 3:7

does not allow her/him to access the computer. A user, s, can log into a computer, o, if and
only if, for all computers o′, it is the case that:

(wr(u, c′) = True) ⇒ (y(c) = y(c′) ∨ y(c) /∈ x(c′))

The property allows a user if and only if, s/he has either standard access or, has no access
which means that s/he has not logged-in to the computers. However, if a user has working
relation, then s/he can not be permitted access to computers that belong to a conflict class.
Table 2 represents the full list of users with working relations to computers.

6 Conclusion and Future Work

In this paper, we first defined a robust, quantitative model for Chinese Walls Access Control.
We showed that our new model is suitable to apply on the real world dataset, in our case,
we used the UCAAT dataset for implementing our quantitative Chinese Walls Model. We
then explained the way to find out the value of the n that shows boundary of access times by
applying clustering algorithms. Our model allows to put access restrictions on the sensitive
and personal information so that users cannot manipulate other users’ sensitive files for their
own advantages. There is an opportunity for the further work, we plan to extend this work
with quantitative description of *property. We also believe that our model can be applied
other Multi Level Security (MLS) models.

References
1 Los Alamos National Laboratory: Cyber Security Science. https://csr.lanl.gov/data/.

Accessed: 14-06-2018.
2 D.F.C. Brewer and M.J. Nash. The Chinese Wall Security Policy. In Proceedings of the

1989 IEEE Symposium on Security and Privacy, pages 206–214, Oakland, California, USA,
1989. IEEE Computer Society Press.

3 Pau–Chen Cheng, Pankaj Rohatgi, Claudia Keser, Paul A. Karger, Grant M. Wagner, and
Angela Schuett Reninger. Fuzzy Multi-Level Security:An experiment on quantified risk-
adaptive access control. In 2007 IEEE Symposium on Security and Privacy (S&P 2007),
20-23 May 2007, Oakland, California, USA, pages 222–230. IEEE Computer Society, 2007.
doi:10.1109/SP.2007.21.

4 Dhillon G. and G. Torkzadeh. Value-focused assessment of information system security in
organizations. Information Systems Journal, 16(3), 293-314, 2015.

5 Dieter Gollmann. Computer Security. John Wiley & Son Ltd, 1999.
6 Aric Hagberg, Alex Kent, Nathan Lemons, and Joshua Neil. Credential hopping in authen-

tication graphs. In 2014 International Conference on Signal-Image Technology Internet-
Based Systems (SITIS). IEEE Computer Society, 2014.

7 Anil K. Jain. Data clustering: 50 years beyond K-means. Pattern Recognition Letters,
31(8):651–666, 2010.

8 McLean John. The algebra of security. In In Security and Privacy, volume 1290, pages
2–7. IEEE Symposium, 1988.

9 Alexander D. Kent. User-Computer Authentication Associations in Time. Los Alamos
National Laboratory, 2014. doi:10.11578/1160076.

10 Butler Lampson. A note on the confinement problem. Communications of the ACM,
16(10):613–615, 1973.

11 S. C. Mouliswaran, C. A. Kumar, and C Chandrasekar. Modeling Chinese wall access
control using formal concept analysis. In 2014 International Conference on Contemporary
Computing and Informatics (IC3I). IEEE, 2014. doi:10.1109/IC3I.2014.7019619.

ICCSW 2018

https://csr.lanl.gov/data/
http://dx.doi.org/10.1109/SP.2007.21
http://dx.doi.org/10.11578/1160076

3:8 Data-Driven Chinese Walls

12 S. C. Mouliswaran, C. A. Kumar, and C Chandrasekar. Modeling Chinese wall access
control using formal concept analysis. In 2014 International Conference on Contemporary
Computing and Informatics (IC3I). IEEE, 2014. doi:10.1109/IC3I.2014.7019619.

13 Atluri Vijayalakshmi, Chun Soon, and Mazzoleni Pietro. A Chinese wall security model
for decentralized workflow systems. In CCS 2001, Proceedings of the 8th ACM Conference
on Computer and Communications Security, Philadelphia, Pennsylvania, USA, November
6-8, 2001., pages 48–57. ACM, 2001. doi:10.1145/501983.501991.

14 Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schrödl. Constrained k-means cluster-
ing with background knowledge. In Carla E. Brodley and Andrea Pohoreckyj Danyluk, ed-
itors, Proceedings of the Eighteenth International Conference on Machine Learning (ICML
2001), Williams College, Williamstown, MA, USA, June 28 - July 1, 2001, pages 577–584.
Morgan Kaufmann, 2001.

http://dx.doi.org/10.1109/IC3I.2014.7019619
http://dx.doi.org/10.1109/IC3I.2014.7019619
http://dx.doi.org/10.1145/501983.501991

Comparison of Platforms for Recommender
Algorithm on Large Datasets
Christina Diedhiou
School of Computing, University of Portsmouth, United Kingdom
christina.diedhiou@port.ac.uk

Bryan Carpenter
School of Computing, University of Portsmouth, United Kingdom
bryan.carpenter@port.ac.uk

Ramazan Esmeli
School of Computing, University of Portsmouth, United Kingdom
Ramazan.Esmeli@myport.ac.uk

Abstract
One of the challenges our society faces is the ever increasing amount of data. Among existing
platforms that address the system requirements, Hadoop is a framework widely used to store and
analyze “big data”. On the human side, one of the aids to finding the things people really want
is recommendation systems. This paper evaluates highly scalable parallel algorithms for recom-
mendation systems with application to very large data sets. A particular goal is to evaluate an
open source Java message passing library for parallel computing called MPJ Express, which has
been integrated with Hadoop. As a demonstration we use MPJ Express to implement collabor-
ative filtering on various data sets using the algorithm ALSWR (Alternating-Least-Squares with
Weighted-λ-Regularization). We benchmark the performance and demonstrate parallel speedup
on Movielens and Yahoo Music data sets, comparing our results with two other frameworks: Ma-
hout and Spark. Our results indicate that MPJ Express implementation of ALSWR has very
competitive performance and scalability in comparison with the two other frameworks.

2012 ACM Subject Classification Information systems→ Database management system engines

Keywords and phrases HPC, MPJ Express, Hadoop, Spark, Mahout

Digital Object Identifier 10.4230/OASIcs.ICCSW.2018.4

Category Main Track

1 Introduction

Over the last decade Apache Hadoop has established itself as a pillar in the ecosystem of
software frameworks for “big data” processing. As an open source, mostly Java-based Apache
project with many industrial contributors, it retains a commanding position in its field.

When first released Hadoop was a platform primarily supporting the MapReduce program-
ming model, and other projects built on top of MapReduce. Around 2014 with the release
of Hadoop 2.0 the platform was re-factored into a separate YARN (Yet Another Resource
Negotiator) resource allocation manager, with MapReduce now just one of multiple possible
distributed computation frameworks that could be supported on top of YARN. Several other
major big data projects rapidly migrated to allow execution on the Hadoop YARN platform
(for example Apache Spark [19], Apache Giraph [2], Apache Tez [13], and Microsoft Dryad
[9]). Around the same time the present authors envisaged adding our existing MPJ Express

© Christina Diedhiou, Bryan Carpenter, and Ramazan Esmeli;
licensed under Creative Commons License CC-BY

2018 Imperial College Computing Student Workshop (ICCSW 2018).
Editors: Edoardo Pirovano and Eva Graversen; Article No. 4; pp. 4:1–4:10

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:christina.diedhiou@port.ac.uk
mailto:bryan.carpenter@port.ac.uk
mailto:Ramazan.Esmeli@myport.ac.uk
https://doi.org/10.4230/OASIcs.ICCSW.2018.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

4:2 Comparison of Platforms for Recommender Algorithm on Large Datasets

framework for MPI-like computation in Java to that distinguished group, and developed a
version of our software that could also run under Hadoop YARN [17].

MPJ Express is a relatively conservative port of the standard MPI 1.2 parallel program-
ming interface to Java, and is provided with both “pure Java” implementations (based on
Java sockets and threads) and “native” implementations exploiting specific interconnect
interfaces, or implementations on top of standard MPI. The vision was thus to support MPJ
as one computational framework among many largely Java-based or JVM-based frameworks
that could be mixed and matched for different stages of complex big data processing, with
Hadoop and HDFS (the Hadoop Distributed File System) as the “glue” between stages.
More details on MPJ Express and Hadoop can be found in appendix A.

The main goal of the present paper is to provide evidence that such a scenario can be
realized and that it may be advantageous. We concentrate on one particular computationally
intensive “big data” problem - generating product recommendations through the collaborative
filtering algorithm ALSWR (Alternating Least Squares with Lambda Regularization). A
version of this algorithm is developed and evaluated using MPJ running under Hadoop. We
then go on to compare our implementation with two existing implementations of ALSWR that
can run under Hadoop – one taken from the Apache Mahout project using MapReduce, and
one using Apache Spark. Results suggest the MPJ approach can provide useful performance
gains over these other established Big Data frameworks on suitable compute-intensive kernels.

The rest of the paper is organized as follows. Section 2 gives an overview of the
collaborative filtering technique. Section 3 describes how we implement the collaborative
filtering with ALSWR in MPJ. The Section 4 evaluates and compare our results with Mahout
and Spark. Section 5 concludes the paper and discusses future work.

2 Collaborative Filtering Techniques

Recommender systems are software tools and techniques that provide suggestions to users to
help them find and evaluate items likely to match their requirements. Collaborative filtering
systems are based on users’ purchases or decisions histories. Assuming two individuals share
the same opinion on an item, they are also more likely to have similar taste on another
item. In our experiments we have opted for a model based approach and we specifically use
Alternating-Least-Squares with Weighted-λ-Regularization (ALSWR) algorithm.

In this section, we will often refer to items as “movies” due to the fact that one of our
datasets consist of ratings on movies. Assuming we have nu users and nm movies, and R is
the nu × nm matrix of input ratings. Usually each user can rate only few movies. Therefore
the matrix R will initially have many missing values or loosely speaking it will be sparse.
The problem is to predict the unknown elements of R from the known elements.

We model the preferences of users by assuming they have simple numeric level of preference
for each of a number nf of features to be found in movies; thus the behaviour of user i is
modelled by a vector ui of length nf . Similarly each movie is assumed to have each these
features to a simple numeric degree so each movie j is modelled by a vector mj of the
same size. The predicted preference of user i for movie j is the dot product ui ·mj . The
vectors are conveniently collected together in matrices U and M of size nu×nf and nm×nf

respectively. To fit the model to the known elements of R we use a least squares approach,
adding a regularization term parameter λ to the sum of square deviations to prevent the

C. Diedhiou, B. Carpenter, and R. Esmeli 4:3

model from overfitting the data. The penalty function ALSWR strives to minimize is:

f(U,M) =
∑
i,j

(rij − ui ·mj)2

+ λ

∑
i

nui
u2

i +
∑

j

nmj
m2

j

 (1)

where the first sum goes over i, j values where the element rij of R is known in advance, nui

is the number of items rated by a user i, and nmj is the number of users who have rated a
given movie j.

ALSWR is an iterative algorithm. It shifts between fixing two different matrices. While
one is fixed, the other one is updated hence solving a matrix factorization problem. The
same process goes through a certain number of iterations until a convergence is reached
which implies that there is little or no more change on either users and movies matrices. The
ALSWR algorithm as explained by Zhou et al [20] is as follows:

Step 1: Initialize matrix M in a pseudorandom way.
Step 2: Fix M , Solve U by minimizing the objective function (the sum of squared errors);
Step 3: Fix U , Solve M by minimizing the objective function similarly;

Steps 2 and 3 are repeated until a stopping criterion is satisfied. Step 2 is implemented by
Equation 2 where MIi

is the sub matrix of M , representing the selection of any column j in
the set of movies rated by a user i, H is a unit matrix of rank equal to nf and R(i, Ii) is the
row vector where columns j are chosen

ui = (MIi
MT

Ii
+ λnui

H)−1MIi
RT (i, Ii) (2)

Step 3 is implemented by a similar formula exchanging the roles of U and M .

3 MPJ Implementation of ALSWR

The basic strategy for distributing the ALSWR algorithm to run in parallel was already
described by the original proposers in [20]. All nodes of a cluster contain a certain subset of
the large, sparse, recommendations array, R. In particular it is convenient for the R array to
be stored in two ways across the cluster as a whole – divided across nodes by columns and
also by rows. This is illustrated in figure 1, where i is the subscript identifying users and j is
the subscript identifying items, and the two different forms of decomposition of R are used
in the two different steps. Step 2, as defined in equation 2, conveniently uses locally held R
decomposed by i to update locally owned elements ui of the user model. B is a block size
for the locally held subset of elements, approximately constant across the cluster for good
load balancing.

Because update of ui potentially involves any element of the item model m, to simplify
this step all elements of m should be stored locally, in globally replicated fashion. Step 2 has
a complementary structure, but now update of mj may require access to any element of u.
So between steps 1 and 2 all the locally computed elements of u must be gathered together
and broadcast to processing nodes. Similarly between step 2 and step 3 in the next iteration
of the algorithm, the locally computed elements of u must be gathered and broadcast. A
great benefit of the MPI style of programming is the use of collective communication This
is embodied here in the use of MPI_Allgather, that allows data to be gathered from each
process then to be distributed to all processes. In our program the data that we used for the
implementation of the ALSWR code consists of a sparse matrix of ratings, partitioned by

ICCSW 2018

4:4 Comparison of Platforms for Recommender Algorithm on Large Datasets

Figure 1 Visualization of an iteration of distributed ALSWR algorithm. “Processor space”
runs across the page, processes are labelled p0, p1, . . . and so on. Time runs down the pages with
distributed computational steps labelled as on page 3. Between computational stages there are
collective synchronizations in the form of “allgather” operations.

user or by item. Figure 6 in the appendices section illustrates the organization of the data.
In order to solve the symmetric positive definite matrix we use Cholesky decomposition from
the Intel Data Analytics Acceleration Library (DAAL) [8].

The code assumes each node holds numLocal elements of the distributed user model.
Within a node we run NUM_THREADS long lived threads (they are started at the beginning of
the program), where the NUM_THREADS parameter will be related to the number of cores on
the node. The variable me identifies a thread within the local node (not to be confused with
the MPI rank which identifies a node). Threads will be synchronized before MPI collective
operations using barriers implemented by java.util.concurrent.CyclicBarrier. The
MPI operations themselves are only executed by the me = 0 thread.

The ratings data for our MPJ code are read from the same HDFS text files as used by
the third party implementations of ALS discussed below. We use HDFS API to determine
the blocks that have replicas on nodes running MPJ processes. A heuristic is used to choose
a load balanced set of local replicas to read. The locally read ratings are then partitioned to
destination nodes using a variant of the CARI communication schedules introduced in [1].

4 Performance Evaluation and Comparison of MPJ Express, Mahout,
and Spark

This section details our experiments focusing on the comparative performance evaluation
of MPJ Express against well-known platforms including Hadoop, Mahout and Spark. The
performance evaluation compares their parallel speedup. More information on Apache

C. Diedhiou, B. Carpenter, and R. Esmeli 4:5

0 5 10 15 200

2

4

6

8

10

12

Number of Processes

Pa
ra
lle
lS

pe
ed
up

MPJE Computation Time
Spark

(a) Parallel Speedup MPJE vs Spark.

0 5 10 15 200
1
2
3
4
5
6
7
8
9

10

Number of Processes

T
im

e
in

m
in
ut
es

MPJE
Spark

(b) MPJE vs Spark.

Figure 2 Frameworks Performance Comparison MPJ Express with MovieLens dataset.

Mahout and Spark is provided in appendix B. For the purpose of performance evaluation,
we acquired our datasets from public domains. These consist of anonymous user ratings
from two different sources: MovieLens and Yahoo Music. Details on our datasets and test
environment are provided in Appendix C.

4.1 MovieLens 20M Ratings Experiments

Our ALSWR code is tested with 50 features, 10 iterations, 0.01 for the regularization
parameter lambda λ and 0.01 for the parameter epsilon ε that is used in the initial guess
for the item model. MPJ Express and Spark have both a good performance and parallel
speed up: as the number of cores increases the time decreases; Mahout does not show much
variances from four cores and above. Refer to Figure 5 in the Appendices section which
compares the performances between MPJ Express, Spark and Mahout on different number
of processes. Figure 2b focus on MPJ and Spark. MPJ Express has the best performance
amongst the 3 frameworks. It is, on average, 13.19 times faster than Mahout and on average
1.4 faster than Spark. Figure 2a represents the parallel speedup of MPJ Express and Spark.
With sixteen cores MPJ Express is almost 10 times faster than when it is run in sequence
while Spark is just about 4.5 times faster than its result with one process.

4.2 Yahoo Webscope 700M Ratings Experiments

Mahout was unable to cope with the large Yahoo dataset. For this reason, we have evaluated
only MPJ Express and Spark versions of the code for this dataset. Figure 3b shows a pattern
quite similar to figure 2b although this time our dataset is about 35 times bigger. A closer
look at figure 3a demonstrates a significant improvement regarding the parallel speedup of
MPJ Express which now runs more than 10.5 times faster on 16 cores than its sequential
time. The parallel speedup of Spark has also improved. It implements the ALS on Yahoo
dataset 7.5 times faster with 16 cores than when it is run in sequence. However from 16
cores onwards, the performance of the Spark version starts decreasing.

ICCSW 2018

4:6 Comparison of Platforms for Recommender Algorithm on Large Datasets

0 5 10 15 200
2
4
6
8

10
12
14

Number of Processes

Pa
ra
lle
lS

pe
ed
up

MPJE Computation Time
Spark

(a) Parallel Speedup MPJE vs Spark.

0 5 10 15 200
50

100
150
200
250
300
350
400
450

Number of Processes

T
im

e
in

m
in
ut
es

MPJE
Spark

(b) MPJE vs Spark.

Figure 3 Frameworks Performance Comparison MPJ Express with Yahoo dataset.

4.3 Analysis of the results

The Mahout implementation of ALS – not necessarily representative of the wider Mahout
project – is based on MapReduce. The performance limitations of MapReduce on iterative
algorithms are well documented, see for example [5]. According to pseudocode given in [19],
the Spark implementation uses a combination of its parallelize and collect operations to
reproduce the communication operation called MPI_Allgather here. We assume that the
MPI collective algorithms can implement this pattern more efficiently. There is a discussion
of efficient implementations of Allgather in [14] for example. Additionally there may be some
degradation of the performance of Spark when there is not enough memory (RAM) as the
storage has to be on disk when the program is running out of space.

5 Conclusion

Various computational frameworks have been adopted over the last few years for running
compute-intensive kernels of recommender algorithms on Hadoop platforms. These include
Apache Mahout, Apache Spark and Apache Giraph. In this paper we have added our
MPJ Express framework to this list, and provided evidence that it can outperform other
implementations of the central optimization algorithm. This additional performance certainly
comes at some cost in terms of programming complexity. For example the MPJ programmer
has to spend more time orchestrating communication between Hadoop nodes. Nevertheless
we argue that for some intensive and often used kernels, the extra investment in programming
may be justified by the potential performance gains. We see MPI-based processing stages as
one more resource in the armoury of big data frameworks that may be used in processing
pipelines run on Hadoop clusters. We also suggest that in this setting MPJ Express may be
a natural choice of MPI-like platform, given that many other such processing stages will be
coded in Java or JVM-based languages. On our future work we need to evaluate alternative
parallel organizations of the recommender code, like the rotational hybrid approach described
in [10]. Preliminary analysis suggests that implementation of similar schemes in MPI style
may benefit from extensions to the standard set of MPI collectives, currently embodied in
MPJ Express. Again such an extended library could form part of a future data centric version
of MPJ Express that builds on experiences of MPI processing in the Hadoop environment.

C. Diedhiou, B. Carpenter, and R. Esmeli 4:7

References

1 Wakeel Ahmad, Bryan Carpenter, and Aamir Shafi. Collective Asynchronous Remote Invoc-
ation (CARI): A High-Level and Efficient Communication API for Irregular Applications.
Procedia Computer Science, 4:26–35, 2011. International Conference On Computational
Science, ICCS 2011.

2 Apache Giraph. http://giraph.apache.org/, 2014. [accessed 19-January-2018].
3 Apache Mahout. https://mahout.apache.org/, 2017. [accessed 30-January-2018].
4 Spark RDD Operations-Transformation & Action with Example. https://data-

flair.training/blogs/spark-rdd-operations-transformations-actions/. [accessed 11-June-
2018].

5 Rui Maximo Esteves, Rui Pais, and Chunming Rong. K-means clustering in the cloud–a
Mahout test. In Advanced Information Networking and Applications (WAINA), 2011 IEEE
Workshops of International Conference on, pages 514–519. IEEE, 2011.

6 Datasets | GroupLens. http://grouplens.org/datasets/, 2015. [accessed 14-December-2016].
7 Rong Gu, Xiaoliang Yang, Jinshuang Yan, Yuanhao Sun, Bing Wang, Chunfeng Yuan, and

Yihua Huang. SHadoop: Improving MapReduce performance by optimizing job execution
mechanism in Hadoop clusters. Journal of parallel and distributed computing, 74(3):2166–
2179, 2014.

8 Data Analytics Acceleration Library. https://software.intel.com/en-us/Intel-daal, 2017. [ac-
cessed 21-October-2017].

9 Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: Dis-
tributed Data-parallel Programs from Sequential Building Blocks. In Proceedings of the
2nd ACM SIGOPS/EuroSys European Conference on Computer Systems 2007, EuroSys
’07, pages 59–72, New York, NY, USA, 2007. ACM.

10 Maja Kabiljo and Aleksandar Ilic. Recommending items to more than a billion people.
https://code.facebook.com, 2015. [accessed 30-December-2017].

11 Introduction to ALS Recommendations with Hadoop.
https://mahout.apache.org/users/recom-mender/intro-als-hadoop.html. [accessed 22-
June-2018].

12 MPJ Express. http://mpjexpress.org, 2015. [accessed 18-January-2018].
13 Bikas Saha, Hitesh Shah, Siddharth Seth, Gopal Vijayaraghavan, Arun Murthy, and Carlo

Curino. Apache tez: A unifying framework for modeling and building data processing
applications. In Proceedings of the 2015 ACM SIGMOD international conference on Man-
agement of Data, pages 1357–1369. ACM, 2015.

14 Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of collective commu-
nication operations in MPICH. The International Journal of High Performance Computing
Applications, 19(1):49–66, 2005.

15 Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 4th edition, 2015.
16 Webscope. https://research.yahoo.com/, 2006. [accessed 14-December-2016].
17 Hamza Zafar, Farrukh Aftab Khan, Bryan Carpenter, Aamir Shafi, and Asad Waqar Malik.

MPJ Express Meets YARN: Towards Java HPC on Hadoop Systems. Procedia Computer
Science, 51:2678–2682, 2015. International Conference On Computational Science, ICCS
2015. doi:10.1016/j.procs.2015.05.379.

18 Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th
USENIX conference on Networked Systems Design and Implementation, pages 2–2. USENIX
Association, 2012.

ICCSW 2018

http://dx.doi.org/10.1016/j.procs.2015.05.379

4:8 Comparison of Platforms for Recommender Algorithm on Large Datasets

19 Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica.
Spark: Cluster Computing with Working Sets. In Proceedings of the 2Nd USENIX Con-
ference on Hot Topics in Cloud Computing, HotCloud’10, pages 10–10, Berkeley, CA,
USA, 2010. USENIX Association. URL: http://dl.acm.org/citation.cfm?id=1863103.
1863113.

20 Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. Large-scale parallel
collaborative filtering for the netflix prize. Lecture Notes in Computer Science, 5034:337–
348, 2008.

A Description of Hadoop and MPJ Express

A.1 Hadoop Overview
Hadoop is a framework that stores and processes voluminous amounts of data in a reliable,
fault-tolerant manner [15].

Since Hadoop 2, YARN (Yet Another Resource Negotiator) has been integrated in
the infrastructure as the resource manager, enabling many other distributed frameworks
besides MapReduce to process their data on Hadoop cluster. YARN depends on three main
components to complete a task: a Resource Manager (RM), Node Managers (NMs), and an
Application Master (AM). The RM is responsible for managing and allocating the resources
across the cluster. NMs run on all nodes available in a cluster and report all the tasks to the
RM such as the number of cores and memory space. Each job that is started has an AM
specific to the processing framework that manages operation within containers and ensures
there are sufficient containers for the task. The communication between the master nodes
and slave nodes is achieved through the Heart Beat Mechanism [7].

A.2 MPJ Express
MPJ Express [12] is an open source Java MPI-like library that allows application developers
to write and execute parallel applications on multicore processors and compute clusters.
The MPJ Express software can be configured in cluster or multicore. Under the cluster
configuration, the MPJ Express software provides different communication devices that are
suitable for the underlying interconnect. Currently, there are four communication devices
available:
1. niodev - uses Java New I/O (NIO) Sockets
2. mxdev - uses Myrinet eXpress (MX) library for Myrinet networks
3. hybdev - for clusters of multicore processors
4. native - uses a native MPI library (like MPICH, MVAPICH, OpenMPI)

Since 2015, the MPJ Express software provides a YARN-based runtime that exploits the
niodev communication device to execute parallel Java code on Hadoop clusters. Under this
setting, HDFS is used as the distributed file system where application datasets, MPJ Express
libraries, and application programs are loaded to allow all processes to access the material.

B Description of Apache Mahout and Spark

Apache Mahout is a distributed linear algebra framework [3], widely used for its distributed
implementation on Apache Hadoop. This essentially means that datasets are stored on
the HDFS and various machine learning algorithms such as collaborative filtering can be

http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113

C. Diedhiou, B. Carpenter, and R. Esmeli 4:9

Figure 4 MPJ Express Integrated in YARN- 1) Submit YARN application- 2) Request container
allocation for AM- 3) AM generates a CLC and allocates container to each node- 4) Each mpj-yarn-
wrapper send outputs and error streams of the program to the MPJYarnClient.

0 5 10 15 200
5

10
15
20
25
30
35
40
45
50
55
60

Number of Processes

T
im

e
in

m
in
ut
es

MPJE
Spark
Mahout

Figure 5 MPJ Express, Spark and Mahout on MovieLens Dataset.

ICCSW 2018

4:10 Comparison of Platforms for Recommender Algorithm on Large Datasets

Figure 6 Sparse data structure to represent locally held ratings. This whole structure is duplicated,
once for ratings distributed by user and once for ratings distributed by items. In the “by user” case
the size of the base and num arrays is the total number of locally held users, with num[i] being the
number of ratings by user i; targets elements hold a global index of the rated item (index in the
gathered array of item models). In the “by item” case the size of the top arrays is the number of
locally held items, with num holding the number of ratings per item; a target element now holds
the global index of the user who made the rating.

applied to the data. The ALSWR implementation with Apache Mahout is done through
its machine learning library and more specifically the map-reduce implementation of ALS.
This last consists of two stages: a parallel matrix factorization phase followed up by some
recommendations. Both phases are detailed in [11].

Apache Spark is an open-source cluster-computing framework suitable for large scale data
processing. Since Hadoop 2, Spark has been integrated with Hadoop allowing its programs to
run on YARN. Spark can use memory and disk processing through its Resilient Distributed
Datasets (RDD). As explained in [18], the default is to keep the RDD in memory; when
there is no more space in the RAM, Spark stores the rest on disk. Shared variables and
parallel operations available in Spark are detailed in [19] and [4]. We have implemented ALS
on Spark through its standard machine learning library (MLlib).

C Description of Datasets and testing environment

The dataset obtained from MovieLens contains 20, 000, 263 ratings for 27, 278 movies, created
by 138, 493 users [6]. The dataset from Yahoo Music – that is much larger – contains over
717 millions ratings for 136 thousands songs rated by 1.8 million users [16]. The data from
Yahoo has been separated in training and test datasets. Our test environment includes a
Linux cluster composed of 4 nodes with 20 cores in total. The software used for the tests
consist of:

Java 1.7
Apache ant 1.6.2
Hadoop-2.7.3
MPJ Express (version 0.44), Mahout (version 0.12.2), and Spark (version 2.2.0)
Intel Data Analytics Acceleration Library (DAAL) 2017

Towards Context-Aware Syntax Parsing and
Tagging
Alaa Mohasseb
School of Computing, University of Portsmouth, United Kingdom
alaa.mohasseb@port.ac.uk

Mohamed Bader-El-Den
School of Computing, University of Portsmouth, United Kingdom
mohamed.bader@port.ac.uk

Mihaela Cocea
School of Computing, University of Portsmouth, United Kingdom
mihaela.cocea@port.ac.uk

Abstract
Information retrieval (IR) has become one of the most popular Natural Language Processing
(NLP) applications. Part of speech (PoS) parsing and tagging plays an important role in IR
systems. A broad range of PoS parsers and taggers tools have been proposed with the aim
of helping to find a solution for the information retrieval problems, but most of these are tools
based on generic NLP tags which do not capture domain-related information. In this research, we
present a domain-specific parsing and tagging approach that uses not only generic PoS tags but
also domain-specific PoS tags, grammatical rules, and domain knowledge. Experimental results
show that our approach has a good level of accuracy when applying it to different domains.

2012 ACM Subject Classification Computing methodologies → Natural language processing

Keywords and phrases Information Retrieval, Natural Language Processing, PoS Tagging, PoS
Parsing, Machine Learning

Digital Object Identifier 10.4230/OASIcs.ICCSW.2018.5

Category Main Track

1 Introduction

Parts-of-speech (PoS) tags play an important role in Natural Language Processing (NLP).
PoS tagging provides a large amount of information about words. PoS parsing and tagging
is one of the fundamental phases in text processing. Parsing has been used as a way to
identify the sentence structure by adding mark-ups which helps in organizing a sentence,
while tagging represent classes and features of words, in which each word will receive a tag
based upon its word class and the feature it holds.

A broad range of PoS parsing and tagging tools and approaches have been developed;
most of these tools and approaches are based on natural language. Furthermore, parsers and
taggers still suffer from the problem of domain adaptation [21],[13] since most of them are
based just on generic NLP tags which have a limited use in domains such as search engines,
question answering systems and social networks; knowing only the generic PoS tags will not
assist in identifying and retrieving relevant information since a lot of knowledge related to
most of these domains cannot be captured with generic PoS tags. Moreover, most parser
and tagger methods do not take inconsideration the syntax and grammatical structure of the
given text.

© Alaa Mohasseb, Mohamed Bader-El-Den, and Mihaela Cocea;
licensed under Creative Commons License CC-BY

2018 Imperial College Computing Student Workshop (ICCSW 2018).
Editors: Edoardo Pirovano and Eva Graversen; Article No. 5; pp. 5:1–5:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alaa.mohasseb@port.ac.uk
mailto:mohamed.bader@port.ac.uk
mailto:mihaela.cocea@port.ac.uk
https://doi.org/10.4230/OASIcs.ICCSW.2018.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

5:2 Towards Context-Aware Syntax Parsing and Tagging

In this paper, we propose a Domain Specific Syntax-based Parsing and Tagging (DSSPT)
approach. The aim of the research presented in this paper is to evaluate the influence of
using domain-specific grammatical rules categories on the the parsing and tagging process
and the classification performance. In addition, we aim to evaluate the use of DSSPT on two
different domains: query classification and question classification.

The rest of the paper is organized as follows. Section 2 outlines previous work in parsing
and tagging, including different proposed tools and approaches. Section 3 describes the
proposed parsing and tagging framework. The experiments setup and results are presented
in Section 4. Finally, Section 5 concludes the paper and outlines directions for future work.

2 Background

In this section we review previous work on parsing and tagging. Different methods of parsing
are outlined in Section 2.1, while Section 2.2 reviews previous work on tagging methods.

2.1 Parsing
Many recent studies proposed different parsing methods and models; some of these are based
on dependency parsing. Authors in [21] developed distant-supervised algorithms that use a
dependency grammar for Community Question Answering (CQA). In [32] authors developed
a graph-based and a transition-based dependency parser using beam-search, while in [8] a
simple semi-supervised method for training dependency parsers was presented. Authors in
[19] introduced MaltParser, a data-driven parser generator for dependency parsing. Some
works used machine learning algorithms. Authors in [3] proposed a dependency parser using
neural networks, while authors in [27] introduced algorithms to derive a query’s syntactic
structure from the dependency trees. Furthermore, in [26] authors proposed a general
compositional vector framework for transition based dependency parsing. Other works
introduced a semantic-based parser model. Works in [9] presented a semantic parsing model
for answering compositional questions. Moreover, in [30] authors presented a statistical
natural language semantic parsing modeling, while in [31] authors proposed a semantic
parsing framework for question answering. Authors in [24] introduced a Compositional
Vector Grammar (CVG), which combines probabilistic context-free grammar (PCFGs). In
[11] authors proposed an algorithm of text parsing which was demonstrated on data from
Twitter, while in [25] a recursive neural network architecture was introduced. Finally, authors
in [28] proposed a technique for improving parser portability.

2.2 Tagging
Most taggers and tagging approaches have been developed for general PoS tagging. Authors
in [20] proposed a tag-set that consists of twelve universal PoS categories. In [1] the authors
proposed a Trigrams’n’Tags (TnT) statistical PoS tagger. Moreover, work in [4] proposed a
PoS tagger based on Support Vector Machines (SVMT). Other works like [29] proposed a
PoS tagger using dependency network representation. In [10] authors presented a method
for unsupervised PoS tagging that considers a word type. Furthermore, few taggers have
been developed for specific domains. In [5] authors addressed the problem of PoS tagging for
English data from Twitter. In [7] a PoS tagging method for web search queries was proposed
using the sentence level morphological analysis, while in [22] a probabilistic tagging method
was proposed, which avoids the problems of Markov model based taggers. Finally, authors
in [12] introduced an approach for deep parsing of web search queries using a context-free
multiset generating grammar.

A. Mohasseb. M. Bader-El-Den, and M. Cocea 5:3

3 Proposed Approach

3.1 Tag-set
The tag-set was developed by [18] and updated by [17]. It was mainly created for the purpose
of identifying search queries by labelling each word in the query with its PoS tag and name
entity to help in the classification of the users’ intent. The tag-set has been tested on different
search engines’ queries datasets [17], [15], i.e. AOL 2006 data-set1 and the TREC 2009
Million Query Track data-set2. Furthermore, it has been used in other domains such as
question classification [16] and also has been tested on different questions datasets, i.e. Yahoo
Non-Factoid Question Dataset3, TREC 2007 question answering data4 and a Wikipedia
dataset5 that was generated by [23].

The tag-set consists of 10,440 different words that have been labelled with PoS tags
(categories) which include three levels of details from our grammar taxonomy: (1) Level 1
includes the seven major word classes in English, which are Verb (V), Noun (N), Determiner
(D), Adjective (Adj), Adverb (Adv), Preposition (P) and Conjunction (Conj) ; (2) Level 2
consists of sub-categories of level 1 – for example, Common Nouns (CN), Proper Nouns
(PN) and Action Verbs (AV); the six main question words: How, Who, When, Where, What
and Which have also been added to this level; (3) Level 3 consists of all the domain-specific
categories – for example, Proper Noun Celebrity (PNC) and Proper Noun Geographical Areas
(PNG). A list of all the syntactic categories and corresponding acronyms is displayed in
Appendix A.

3.2 Domain-specific syntax-based parsing and tagging
We proposed a Domain-Specific Syntax-based Parsing and Tagging (DSSPT), shown in
Figure 1, for the objective of assigning not just PoS tags but also domain specific ones to
help in the categorization and classification of text in different domains. The aim of this
approach is to create a simple parser and tagger that could easily be applied to different
domains by creating domain specific grammatical rules, in which each text is transformed to
a domain-specific category using these rules. The grammatical rules contain in addition to
typical categories of English grammar, domain-related grammatical categories. The domain
specific syntax based parsing and tagging (DSSPT) is described below.

Phase 1: Grammar: In this phase input text is analyzed using domain knowledge and
term taxonomy; this is done by identifying each keywords and phrases using the proposed
tag-set. Next, the grammar is generated by identifying terminal and non-terminals nodes;
the grammar in this phase is based on the Context-Free Grammar (CFG) which capture and
combine two different components, i.e. the sentence structure and domain knowledge.

The target in this paper is to use a simple version of the English grammar combined with
domain-specific syntactic categories since most domains do not follow entirely the formal
English grammar and natural language.

Creating the grammatical rules helps with the identification of ambiguous terms since two
different sentences may have similar terms but different structures, each having a different

1 http://www.researchpipeline.com/mediawiki/index.php?title=AOL_Search_Query_Logs
2 http://trec.nist.gov/data/million.query09.html
3 https://ciir.cs.umass.edu/downloads/nfL6/
4 http://trec.nist.gov/data/qa/t2007_qadata.html
5 https://www.cs.cmu.edu/~ark/QA-data

ICCSW 2018

http://www.researchpipeline.com/mediawiki/index.php?title=AOL_Search_Query_Logs
http://trec.nist.gov/data/million.query09.html
https://ciir.cs.umass.edu/downloads/nfL6/
http://trec.nist.gov/data/qa/t2007_qadata.html
https://www.cs.cmu.edu/~ark/QA-data

5:4 Towards Context-Aware Syntax Parsing and Tagging

Figure 1 Framework.

meaning, which may lead to different intents. For the given examples "Order Ed Sheeran
Albums" and "Ed Sheeran Albums Order", the grammatical rules will identify the structure
of the sentence at three levels: (1) at phrase level, (2) at words level which includes word
classes and sub-classes and (3) domain-specific level. At phrase level, "Order Ed Sheeran
Albums" consists of Verb Phrase and Noun Phrases, while at word level, it consists of Verb
(Action Verb) and Nouns (Proper Noun and Common Noun). At the domain specific level
it consists of Action Verb - Interact (AVI), Proper Noun - Celebrity (PNC) and Common
Noun - Other - Plural (CNOP). On the contrary, at phrase level, "Ed Sheeran Albums Order"
consists of Noun Phrases; at word level, it consists of Nouns (Proper Noun and Common
Nouns). At the domain-specific level it consists of Proper Noun - Celebrity (PNC), Common
Noun - Other - Plural (CNOP) and Common Noun - Other - singular (CNOS). The different
syntactical structure of the two sentence leads to different syntactical patterns, which result
in different meaning, intent and search results.

Phase 2: Parsing: This step is mainly responsible for extracting terms in the text to
help generate the grammar structure in the next phase to facilitate the tagging of each word
to the right term category. This is done by using the keywords and phrases that have been
identified from the previous phase; first, compound words will be parsed and extracted,
followed by single words.

Phase 3: Tagging: In this phase the text is transformed into a pattern of grammatical
terms by mapping each term to its grammar terminals; each term will be mapped to its
highest level of abstraction (word class, sub-class or domain-specific) and after mapping each
terms the grammatical pattern is formulated. Using the domain-specific grammar that has
been generated in Phase 1 (Grammar), terms will be tagged to their terminals.

Phase 4: Classification: In this phase the patterns generated in the tagging phase are used
for machine learning; the aim of this phase is to build a model for automatic classification.
The classification is done by following the standard process for machine learning, which
involves the splitting of the dataset into a training dataset and a test dataset. The training
dataset is used for building the model, and the test dataset is used to evaluate the performance
of the model.

A. Mohasseb. M. Bader-El-Den, and M. Cocea 5:5

4 Experimental Study and Results

The objective of the experimental study is to investigate the ability of our proposed parsing
and tagging approach to work on different domains. Two domains were used: classification
of search queries and classification of questions (for question-answering systems). To assess
the performance of the machine learning classifiers, the Weka6 software [6] was used. The
experiments were set up using the typical 10-fold cross validation and the effectiveness of
the classification was evaluated based on Precision, Recall and F-Measure. The results are
presented in the next sub-sections for the two domains.

4.1 Queries Classification
1953 labelled queries from [14] were used, and 4,047 queries were randomly selected from
AOL 2006 dataset. Queries were classified and labelled to three different categories; these
categories are based on Broder’s [2] classification of web queries, which are informational,
navigational and transactional.

4.1.1 Results
Table 1 presents the classification performance details (Precision, Recall and F-Measure) of
the Support Vector Machine (SVM) and Naive Bayes (NB) classifiers for query classification.
Results show that DSSPTSV M identified correctly (i.e. Recall) 99.6% of the questions,
while DSSPTNB correctly classified 95.5% of the query. DSSPTSV M misclassified 0.5% of
transactional queries as informational, while informational and navigational queries were 100%
correctly classified. Furthermore, DSSPTNB incorrectly classified 4.5% of the queries – 3.4%
of the informational queries were classified as transactional, and 8.5% of the transactional
queries were classified as informational.

Table 1 Performance of the classifiers for Query Classification.

DSSP TSV M DSSP TNB

Accuracy 99.6% 95.5%
Precision 0.996 0.955
Recall 0.996 0.955
F-score 0.996 0.955
Class: P R F P R F
Info. 0.997 0.998 0.998 0.955 0.966 0.96
Nav. 1.00 1.00 1.00 0.999 1.00 1.00
Trans. 0.972 0.955 0.964 0.935 0.915 0.925

4.2 Questions Classification
We used 1,160 questions that were randomly selected from Yahoo Non-Factoid Question
Dataset7, TREC 2007 Question Answering Data8 and a Wikipedia dataset9. Questions
were classified and labelled to six different categories, namely: causal, choice, confirmation
(Yes-No Questions), factoid (Wh-Questions), hypothetical and list. These classifications were
proposed by [16].

6 http://www.cs.waikato.ac.nz/ml/weka/
7 https://ciir.cs.umass.edu/downloads/nfL6/
8 http://trec.nist.gov/data/qa/t2007_qadata.html
9 https://www.cs.cmu.edu/~ark/QA-data

ICCSW 2018

http://www.cs.waikato.ac.nz/ml/weka/
https://ciir.cs.umass.edu/downloads/nfL6/
http://trec.nist.gov/data/qa/t2007_qadata.html
https://www.cs.cmu.edu/~ark/QA-data

5:6 Towards Context-Aware Syntax Parsing and Tagging

4.2.1 Results

Table 2 presents the classification performance details (Precision, Recall and F-Measure)
of the SVM and NB classifiers for question classification. Results show that DSSPTSV M

identified correctly (i.e. Recall) 88.6% of the questions, while DSSPTNB identified correctly
83.5% of the questions.

More specifically, looking at where the errors occur, when using DSSPTSV M , 3.2%
of the causal questions were misclassified as confirmation and 32.2% were misclassified as
factoid. From the choice questions, 41.7% were misclassified as confirmation and 33.3% were
misclassified as factoid. Similarly, 4% of the list questions were misclassified as confirmation
and 45.5% were misclassified as factoid. These results indicate that DSSPTSV M could not
distinguish between causal, choice and list types of questions and incorrectly classified most
of them as confirmation and factoid questions. Moreover, 1.6% of confirmation questions
were misclassified as factoid and less than 1% were misclassified as choice or list. For the
factoid questions 4.6% were misclassified as list, 1.2% were misclassified as causal, 1% were
misclassified as confirmation and less than 1% were misclassified as choice. In addition, most
of the hypothetical questions, i.e. 57.1%, were misclassified as factoid.

The DSSPTNB classifier incorrectly classified 6.5% of the causal questions as confirmation,
80.6% as factoid and 3.2% as list. Similar to DSSPTSV M classifier, DSSPTNB could not
identify choice questions and misclassified 41.7% as confirmation and 58.3% as factoid.
Furthermore, 0.9% of the confirmation questions were misclassified as choice, 3.4% as factoid,
2% as hypothetical and 0.9% as list. For the factoid questions, 1.3% were misclassified
as causal, 0.43% as choice, 2.5% as confirmation, 0.87% as hypothetical and 2.2% as list.
Moreover, 14.3% of the hypothetical questions were misclassified as causal and 57.1% as
factoid. For the list type of question DSSPTNB incorrectly classified 7% as confirmation
and 65.3% as factoid.

Table 2 Performance of the classifiers for Question Classification.

DSSP TSV M DSSP TNB

Accuracy: 88.6% 83.5%
Precision: 0.88 0.814
Recall: 0.886 0.835
F-score: 0.881 0.818
Class: P R F P R F
Causal 0.714 0.645 0.678 0.231 0.097 0.136
Choice 0.429 0.25 0.316 0.00 0.00 0.00
Conf. 0.948 0.972 0.96 0.906 0.928 0.917
Factoid 0.903 0.929 0.915 0.85 0.927 0.887
Hypo. 1.00 0.429 0.6 0.133 0.286 0.182
List 0.6 0.505 0.548 0.609 0.277 0.381

Unlike the previous approaches which focus only on the type of domain, our proposed
Domain-Specific Syntax-based Parsing and Tagging (DSSPT) is a general approach for
incorporating domain-specific tags, which exploits the structure of the text through using
domain-specific grammatical categories and rules. Moreover, the domain-specific grammar
could be easily integrated in different platforms. In addition, using syntactic categories
related to different domain-specific types enable the machine learning algorithms to better
differentiate between different queries/question types.

A. Mohasseb. M. Bader-El-Den, and M. Cocea 5:7

5 Conclusion and Future Work

In this paper, we proposed a domain specific syntax-based Parsing and tagging (DSSPT)
approach. The grammatical rules contain in addition to typical categories of English grammar,
domain-related grammatical categories. The results show that our solution led to a good
performance when applying it on two different domains.

The proposed framework can be applied to other domains with similar classification
problems, such as Twitter, which will be investigated in future work. In addition, we aim at
examining and analyzing more datasets from different domains to enrich the tag-set which
will extend the ability of our framework to be used in more domains.

References

1 Thorsten Brants. TnT: a statistical part-of-speech tagger. In Proceedings of the sixth confer-
ence on Applied natural language processing, pages 224–231. Association for Computational
Linguistics, 2000.

2 Andrei Broder. A taxonomy of web search. In ACM Sigir forum, volume 36(2), pages 3–10.
ACM, 2002.

3 Danqi Chen and Christopher Manning. A fast and accurate dependency parser using neural
networks. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pages 740–750, 2014.

4 Jesús Giménez and Lluis Marquez. Fast and accurate part-of-speech tagging: The SVM
approach revisited. Recent Advances in Natural Language Processing III, pages 153–162,
2004.

5 Kevin Gimpel, Nathan Schneider, Brendan O’Connor, Dipanjan Das, and Mills. Part-of-
speech tagging for twitter: Annotation, features, and experiments. In Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies, pages 42–47. Association for Computational Linguistics, 2011.

6 Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and
Ian H Witten. The WEKA data mining software: an update. ACM SIGKDD explorations
newsletter, 11(1):10–18, 2009.

7 Atsushi Keyaki and Jun Miyazaki. Part-of-speech tagging for web search queries using
a large-scale web corpus. In Proceedings of the Symposium on Applied Computing, pages
931–937. ACM, 2017.

8 Terry Koo, Xavier Carreras Pérez, and Michael Collins. Simple semi-supervised dependency
parsing. In 46th Annual Meeting of the Association for Computational Linguistics, pages
595–603, 2008.

9 Jayant Krishnamurthy, Pradeep Dasigi, and Matt Gardner. Neural semantic parsing with
type constraints for semi-structured tables. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, pages 1517–1527, 2017.

10 Yoong Keok Lee, Aria Haghighi, and Regina Barzilay. Simple type-level unsupervised POS
tagging. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language
Processing, pages 853–861. Association for Computational Linguistics, 2010.

11 EE Luneva, PI Banokin, VS Zamyatina, and SV Ivantsov. Natural language text parsing
for social network user sentiment analysis based on fuzzy sets. In Mechanical Engineering,
Automation and Control Systems (MEACS), 2015 International Conference on, pages 1–5.
IEEE, 2015.

12 Mehdi Manshadi and Xiao Li. Semantic tagging of web search queries. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint

ICCSW 2018

5:8 Towards Context-Aware Syntax Parsing and Tagging

Conference on Natural Language Processing of the AFNLP: Volume 2-Volume 2, pages
861–869. Association for Computational Linguistics, 2009.

13 David McClosky, Eugene Charniak, and Mark Johnson. Automatic domain adaptation
for parsing. In Human Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, pages 28–36. Associ-
ation for Computational Linguistics, 2010.

14 Marcelo Mendoza and Juan Zamora. Identifying the intent of a user query using sup-
port vector machines. In International Symposium on String Processing and Information
Retrieval, pages 131–142. Springer, 2009.

15 A. Mohasseb, M. Bader-El-Den, H. Liu, and M. Cocea. Domain specific syntax based ap-
proach for text classification in machine learning context. In 2017 International Conference
on Machine Learning and Cybernetics (ICMLC), volume 2, pages 658–663. IEEE Systems,
Man and Cybernetics, 2017.

16 Alaa Mohasseb, Mohamed Bader-El-Den, and Mihaela Cocea. Question categorization
and classification using grammar based approach. Information Processing & Management,
2018.

17 Alaa Mohasseb, Mohamed Bader-El-Den, Andreas Kanavos, and Mihaela Cocea. Web
Queries Classification Based on the Syntactical Patterns of Search Types. In International
Conference on Speech and Computer, pages 809–819. Springer, 2017.

18 Alaa Mohasseb, Maged El-Sayed, and Khaled Mahar. Automated Identification of Web
Queries using Search Type Patterns. In WEBIST (2), pages 295–304, 2014.

19 Joakim Nivre, Johan Hall, and Jens Nilsson. Maltparser: A data-driven parser-generator
for dependency parsing. In Proceedings of LREC, volume 6, pages 2216–2219, 2006.

20 Slav Petrov, Dipanjan Das, and Ryan McDonald. A universal part-of-speech tagset. arXiv
preprint arXiv:1104.2086, 2011.

21 Yuval Pinter, Roi Reichart, and Idan Szpektor. Syntactic Parsing of Web Queries with
Question Intent. In HLT-NAACL, pages 670–680, 2016.

22 Helmut Schmid. Probabilistic part-ofispeech tagging using decision trees. In New methods
in language processing, page 154, 2013.

23 Noah A Smith, Michael Heilman, and Rebecca Hwa. Question generation as a competit-
ive undergraduate course project. In Proceedings of the NSF Workshop on the Question
Generation Shared Task and Evaluation Challenge, 2008.

24 Richard Socher, John Bauer, Christopher D Manning, et al. Parsing with compositional
vector grammars. In Proceedings of the 51st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), volume 1, pages 455–465, 2013.

25 Richard Socher, Christopher D Manning, and Andrew Y Ng. Learning continuous phrase
representations and syntactic parsing with recursive neural networks. In Proceedings of the
NIPS-2010 Deep Learning and Unsupervised Feature Learning Workshop, pages 1–9, 2010.

26 Pontus Stenetorp. Transition-based dependency parsing using recursive neural networks.
In NIPS Workshop on Deep Learning. Citeseer, 2013.

27 Xiangyan Sun, Haixun Wang, Yanghua Xiao, and Zhongyuan Wang. Syntactic Parsing
of Web Queries. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pages 1787–1796, 2016.

28 Ivan Titov and James Henderson. Porting statistical parsers with data-defined kernels. In
Proceedings of the Tenth Conference on Computational Natural Language Learning, pages
6–13. Association for Computational Linguistics, 2006.

29 Kristina Toutanova, Dan Klein, Christopher D Manning, and Yoram Singer. Feature-
rich part-of-speech tagging with a cyclic dependency network. In Proceedings of the 2003
Conference of the North American Chapter of the Association for Computational Linguistics

A. Mohasseb. M. Bader-El-Den, and M. Cocea 5:9

on Human Language Technology-Volume 1, pages 173–180. Association for Computational
Linguistics, 2003.

30 Gökhan Tür, Minwoo Jeong, Ye-Yi Wang, Dilek Hakkani-Tür, and Larry P. Heck. Ex-
ploiting the semantic web for unsupervised natural language semantic parsing. In IN-
TERSPEECH 2012, 13th Annual Conference of the International Speech Communication
Association, Portland, Oregon, USA, September 9-13, 2012, pages 338–341. ISCA, 2012.

31 Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng Gao. Semantic Parsing via
Staged Query Graph Generation: Question Answering with Knowledge Base. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics, volume 1,
pages 1321–1331, 2015.

32 Yue Zhang and Stephen Clark. A tale of two parsers: investigating and combining graph-
based and transition-based dependency parsing using beam-search. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing, pages 562–571. Associ-
ation for Computational Linguistics, 2008.

A Appendix: Grammar terms and corresponding abbreviations

Category Name Abbreviation Category Name Abbreviation
Verbs V Action Verbs AV

Action Verb-Interact terms AV I Action Verb-Locate AV L

Action Verb- Download AV D Auxiliary Verb AuxV

Linking Verbs LV Adjective Free AdjF

Adjective Online AdjO Adjective Adj

Adverb Adv Determiner D

Conjunction Conj Preposition P

Domain Suffix DS Domain Prefix DP

Noun N Pronoun P ron

Numeral Numbers NN Ordinal Numbers NNO

Cardinal Numbers NNC Proper Nouns P N

Celebrities Name P NC Entertainment P NEnt

Newspapers, Magazines, Docu-
ments, Books

P NBDN Events P NE

Companies Name P NCO Geographical Areas P NG

Places and Buildings P NP B Institutions, Associations, Clubs,
Parties, Foundations and Organiza-
tions

P NIOG

Brand Names P NBN Software and Applications P NSA

Products P NP History and News P NHN

Religious Terms P NR Holidays, Days, Months P NHMD

Health Terms P NHLT Science Terms P NS

Common Noun CN Common Noun – Other- Singular CNOS

Common Noun- Other- Plural CNOP Database and Servers CNDBS

Advice CNA Download CND

Entertainment CNEnt File Type CNF ile

Informational Terms CNIF T Obtain Offline CNOF

Obtain Online CNOO History and News CNHN

Interact terms CNI Locate CNL

Site, Website, URL CNSW U Question Words QW

How QWHow What QWW hat

When QWW hen Where QWW here

Who QWW ho Which QWW hich

ICCSW 2018

Evaluation of Rule-Based Learning and Feature
Selection Approaches For Classification
Fatima Chiroma
School of Computing, University of Portsmouth, United Kingdom
fatima.chiroma@port.ac.uk

Mihaela Cocea
School of Computing, University of Portsmouth, United Kingdom
mihaela.cocea@port.ac.uk

Han Liu
School of Computer Science and Informatics, Cardiff University, United Kingdom
LiuH48@cardiff.ac.uk

Abstract
Feature selection is typically employed before or in conjunction with classification algorithms to
reduce the feature dimensionality and improve the classification performance, as well as reduce
processing time. While particular approaches have been developed for feature selection, such as
filter and wrapper approaches, some algorithms perform feature selection through their learning
strategy. In this paper, we are investigating the effect of the implicit feature selection of the
PRISM algorithm, which is rule-based, when compared with the wrapper feature selection ap-
proach employing four popular algorithms: decision trees, naïve bayes, k-nearest neighbors and
support vector machine. Moreover, we investigate the performance of the algorithms on target
classes, i.e. where the aim is to identify one or more phenomena and distinguish them from their
absence (i.e. non-target classes), such as when identifying benign and malign cancer (two target
classes) vs. non-cancer (the non-target class).

2012 ACM Subject Classification Computing methodologies → Feature selection

Keywords and phrases Feature Selection, Prism, Rule-based Learning, Wrapper Approach

Digital Object Identifier 10.4230/OASIcs.ICCSW.2018.6

Category Main Track

1 Introduction

The application of machine learning has been on the rise in recent years [10] as its various
techniques have been applied to different problem domains successfully. For example, in
medicine, machine learning techniques have been used to predict the effectiveness of drugs
in patients with depression [16] while in finance it was used to detect fraudulent activities
on credit cards [16], to mention a few. Furthermore, approaches used by machine learning
techniques differ. For example, rule-based learning is a machine learning technique that
makes its decisions based on a number of rules [15] - a popular rule-based algorithm is
Prism [8, 5, 18, 3], which works with the concept of target class and is capable of selecting
attributes based on their importance to a particular class.

Another machine learning technique is Feature selection. Its strategy is to select only the
attributes that are relevant and effective from a large number of features or attributes in a
data-set where the selected attribute determines the performance of the classification [6, 12].
These approaches will be explored in this study, especially their performance when applied

© Fatima Chiroma, Mihaela Cocea, and Han Liu;
licensed under Creative Commons License CC-BY

2018 Imperial College Computing Student Workshop (ICCSW 2018).
Editors: Edoardo Pirovano and Eva Graversen; Article No. 6; pp. 6:1–6:6

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fatima.chiroma@port.ac.uk
mailto:mihaela.cocea@port.ac.uk
mailto:LiuH48@cardiff.ac.uk
https://doi.org/10.4230/OASIcs.ICCSW.2018.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

6:2 Rule-Based Learning and Feature Selection Approaches For Classification

to classification problems; more specifically, we will investigate the performance of Prism,
which has implicit feature selection, in comparison with other feature selection approaches.

This paper is organized as follows: Section 1 introduces the background of the study;
section 2 reviews the related works that have been carried out by various researchers; Section
3 discusses the experimental approach; Section 4 comprises of the results and discussion; and
Section 5 concludes the study and presents the future work.

2 Related Work

Classification is one of the most popular machine learning tasks which typically involves
the training of an algorithm to build a model which is subsequently used to identify the
category of an unseen instance [8]. Various research relating to classification has been carried
out using several approaches. Rule-based learning and Feature selection are some of the
approaches that have been applied to classification problems.

Rule-based learning is an approach in which the model consists of a set of rules which
were learned from the data [15]. For example, Prism, which is a rule learning algorithm
learns from a set of rules that separates a specific class i.e. the target class from other classes
[8, 13]. Prism has been used by several researchers in classification problems. For example,
[5] who developed Prism, used it to identify types of contact lenses and the results have
shown that Prism has a higher classification accuracy than ID3, a decision tree learning
algorithm. Another study showed a 92% classification accuracy was achieved by Prism on
image segmentation data set for multi-task feature selection [13].

Feature selection can be done by following one of three approaches, i.e. filter, wrapper or
embedded approaches [17].The filter method does not require the application of a classification
algorithm to evaluate the quality of the features selected while the wrapper method is the
opposite [14], i.e. it is dependent on the classification algorithm to evaluate the quality of
selected features. The embedded method, on the other hand, performs its feature selection
as the optimal parameters are being learned [14].

A study was done by [17], where they compared the Naïve Bayes wrapper feature selection
with other filter feature selection algorithms on Human Activity Recognition machine learning
problem. The result of their study showed that the wrapper method outperformed all the
filter algorithms and they were also able to discover that features selected by the wrapper
method are efficiently usable with other machine learning algorithms.

The research that is most related to this study is the research done by [15]. They used
feature selection with wrapper approach based on ensemble learning on 13 data-sets using
two base learners: Decision Tree and Naïve Bayes. They were able to identify which wrapper
approach has better classification accuracy and their results showed that the forward selection
when applied to Decision Tree had the highest accuracy in their study.

Therefore, the aim of this study is to explore how the implicit feature selection within
Prism compares with the wrapper feature selection approach.

3 Data and Experimental Setup

The experiment was carried out using seven classification data-sets which were acquired
through the UCI Machine Learning repository [9] and Knowledge Extraction based on
Evolutionary Learning (KEEL) data-set repository [4].

Table 1 lists the data-sets used, as well as their properties, i.e. the number of instances,
the number of attributes, the type of attributes and the number of classes. We chose data-sets

F. Chiroma, M. Cocea, and H. Liu 6:3

Table 1 Data-sets Description.

S/N Name Instances Attributes Type Classes
1 Balance Scale 625 4 Integer 3
2 Breast Tissue 106 10 Real 4
3 Forest Type 198 27 Integer, Real 4
4 Heart Disease Cleveland 303 75 Integer, Real 5
5 Lymphography 148 18 Integer 4
6 Soybean 47 35 Integer 4
7 Website Phishing 1353 9 Integer 3

with at least 3 classes, as we focused our investigation on non-binary data-sets, where one or
more target classes need to be distinguished from one or more non-target classes.

All data-sets in Table 1 are classification data-sets with numeric data, that have already
been pre-processed before acquisition. However, due to the importance of pre-processing for
classification [8] additional pre-processing was done to ensure the data is clean, compatible
and ready for classification. These pre-processing includes the conversion of the label or
class attribute to string, filtration of attributes that are not relevant for the study, renaming
of important attribute names for better readability and easier identification, and also the
concatenation of data-sets with multiple files.

These data-sets were classified using five machine learning algorithms: Prism, Decision
Tree (DT), Naïve Bayes (NB), Library of Support Vector Machine (LibSVM) and K-Nearest
Neighbors (KNN). Prism is the target-classifier for this experiment and the remaining four
are subsequently going to be referred to as the other-classifiers.

Furthermore, the forward selection and backward elimination algorithms which are based
on the wrapper feature selection method, were applied to the data-sets using the other-
classifiers. The reason for using both the forward selection and the backward elimination
algorithm is due to the fact that the forward selection algorithm is known to improve
accuracy but only on some data-sets as it may not have any effect on others [10], while the
backward elimination allows for backtracking when it removes features therefore allowing for
the inclusion of previously eliminated features [15, 2].

For the evaluation, the 10-fold cross validation was applied to both the target-classifier
and other-classifiers. This validation technique was applied due to its ability to limit the
level of influence of randomly selected training sets on the overall results [8].

4 Results and Discussion

The results of the experiment have been presented in three tables for better comparison
across the machine classifiers and data-sets. Thus, we present the results across all classes
(Table 2) and across the target classes (Table 3), as well as the number of features selected
(Table 4). In terms of the performance of the algorithms, we report the F-measure (which is
the harmonic mean of precision 1 and recall 2) rather than accuracy, as it is less influenced
by an unbalanced distribution of instances across classes.

Table 2 shows the performance of the machine classifiers for each data-set.

1 Precision is the number of correctly identified instances from all instances
2 Recall is the number of correctly identified instances from the subset of relevant instances

ICCSW 2018

6:4 Rule-Based Learning and Feature Selection Approaches For Classification

Table 2 All Classes F-Measure Results.

Data-sets Prism DT NB KNN LibSVM
F S BE F S BE F S BE F S BE

Balance Scale 0.62 0.59 0.44 0.63 0.43 0.62 0.37 0.86 0.43
Breast Tissue 0.82 1.00 1.00 1.00 1.00 0.78 0.73 0.78 0.73
Forest Type 0.88 0.95 0.73 0.93 0.55 0.94 0.54 0.98 0.99
Heart Disease Cleveland 0.46 0.28 0.22 0.31 0.14 0.23 0.14 0.30 0.17
Lymphography 0.43 0.47 0.36 0.45 0.36 0.49 0.18 0.59 0.36
Soybean 0.98 0.98 0.84 0.94 0.84 1.00 0.67 1.00 0.73
Website Phishing 0.88 0.87 0.56 0.65 0.56 0.81 0.23 0.61 0.55

Table 3 Target Class F-Measure Results.

Data-sets Prism DT NB KNN LibSVM
F S BE F S BE F S BE F S BE

Balance Scale 0.93 0.87 0.66 0.95 0.64 0.92 0.56 0.95 0.675
Breast Tissue 0.83 1.00 1.00 1.00 1.00 0.72 0.44 0.67 0.39
Forest Type 0.89 0.95 0.74 0.94 0.47 0.96 0.48 0.98 0.69
Heart Disease Cleveland 0.37 0.17 0.09 0.18 0 0.12 0 0.17 0.03
Lymphography 0.58 0.62 0.62 0.67 0.48 0.65 0.65 0.79 0.79
Soybean 1.00 1.00 0.79 0.97 0.79 1.00 0.83 1.00 0.64
Website Phishing 0.86 0.86 0.41 0.53 0.41 0.76 0 0.47 0.40

The results show that Prism has the highest performance on two of the data-sets: Website
Phishing and Heart Disease Cleveland with an F-measure of 0.88 and 0.46, respectively.
Moreover, for the Heart Disease Cleveland data-set which has the highest number of attributes
(75) and classes (5), we notice that Prism outperforms all other wrapper approaches by a
very high margin.

For the other 5 data-sets, the results show that: (a) LibSVM is best on three of the
data-sets; (b) DT and NB are equally best on one data-set; (c) KNN and LibSVM are equally
best on one data-set.

The results also show that on the used data-sets the forward selection performance is
higher than the performance of the backward elimination approach – this is likely to be due
to the simplicity of forward selection and the ability to add only feature with the highest
performance[15].

Table 3 shows the performance results for the target classes i.e. the F-measure for only
the target classes. It shows that Prism also has the highest performance for the Heart Disease
Cleveland data-set with an F-measure of 0.37 but equal performance with Decision Tree for
the Website Phishing with an F-measure of 0.86 as well as the soybean data-set which has
an F-measure of 1.0 for Prism, Decision Tree, K-Nearest Neighbor and LibSVM. The 1.0
performance on the soybean data-sets obtained by the wrapper approaches was achieved
using the forward selection algorithm.

For the other four data-sets, we observe the following: (a) LibSVM and NB are equally
best on one data-set; (b) DT and NB are equally best on one data-set; (c) LibSVM is best
for two data-sets.

For classification, attributes can be redundant, irrelevant or problematic [15]. Therefore,
applying feature selection approaches ensures the selection of attributes that are relevant

F. Chiroma, M. Cocea, and H. Liu 6:5

Table 4 Number of Attributes.

Data-sets Total Prism DT NB KNN LibSVM
Attributes F S BE F S BE F S BE F S BE

Balance Scale 4 4 4 4 4 4 4 4 4 4
Breast Tissue 10 9 2 2 2 2 7 4 2 4
Forest Type 27 22 4 4 10 11 8 6 17 9
Heart Disease Cleveland 75 13 4 3 4 3 4 9 4 7
Lymphography 18 17 4 8 10 10 16 11 11 15
Soybean 35 4 2 2 2 2 2 2 2 2
Website Phishing 9 9 6 7 4 8 9 9 9 5

or important. Table 4 shows the total number of attributes selected to achieve the highest
performance for each classifier. These selected attributes are considered to be the most
relevant for the classification; however, these may vary across the different approaches.

Prism used the most number of attributes across all data-sets when compared with the
wrapper approaches. This seems to be an advantage in some situations, e.g. on the Heart
Disease Cleveland and the Website Phishing data-sets, but not in others.

Thus, Prism performed better with data-sets that have large instances or high number of
attributes.

Furthermore, the other-classifiers performed better with the forward selection algorithm
than the backward elimination. Also, Prism had higher performance than all the classifiers
for the backward elimination algorithm, except for LibSVM for the target classes, which has
an F-measure of 0.98 for the Lymphography data-sets.

Additionally, according to [15] one of the benefits of feature selection is the reduction of
run-time for large and multidimensional data-sets as well as increased accuracy. However,
on the used data-sets, LibSVM which is a library of Support Vector Machine [7], had the
longest processing time.

5 Conclusion and Future Work

In this paper, we explored how the implicit feature selection within prism compares with the
wrapper feature selection approach using four popular machine learning algorithms: Decision
Tree, Naïve Bayes, LibSVM and K-Nearest Neighbour. The results of the experiments have
shown that both Prism and the other-classifiers have varying performance. Therefore, we will
further extend this study by exploring the same approach and algorithms on text data-sets
to measure its performance for text classification. We will also further investigate what
properties of data make Prism more suitable for some classification problems than others.

Acknowledgements The authors would like to extend their gratitude to the Petroleum
Technology Development Fund for their support. Additionally, some of the data-sets used in
this study: the lymphography data-set was obtained by M. Zwitter and M. Soklic from the
University Medical Centre, Institute of Oncology, Ljubljana, Yugoslavia; the website phishing
data-set was compiled by [1]; the forest type by [11] and the Heart Disease Cleveland data-set
was provided by Robert Detrano, M.D., Ph.D. from the Cleveland Clinic Foundation.

ICCSW 2018

6:6 Rule-Based Learning and Feature Selection Approaches For Classification

References
1 Neda Abdelhamid, Aladdin Ayesh, and Fadi Thabtah. Phishing detection based Associative

Classification data mining. Expert Systems with Applications, 41(13):5948–5959, 2014.
2 Shigeo Abe. Modified backward feature selection by cross validation. In ESANN, pages

163–168, 2005.
3 Maher Aburrous, M Alamgir Hossain, Keshav Dahal, and Fadi Thabtah. Intelligent phish-

ing detection system for e-banking using fuzzy data mining. Expert systems with applica-
tions, 37(12):7913–7921, 2010.

4 Jesús Alcalá-Fdez, Alberto Fernández, Julián Luengo, Joaquín Derrac, Salvador García, Lu-
ciano Sánchez, and Francisco Herrera. Keel data-mining software tool: data set repository,
integration of algorithms and experimental analysis framework. Journal of Multiple-Valued
Logic & Soft Computing, 17, 2011.

5 Jadzia Cendrowska. PRISM: An algorithm for inducing modular rules. International
Journal of Man-Machine Studies, 27(4):349–370, 1987. doi:10.1016/S0020-7373(87)
80003-2.

6 Girish Chandrashekar and Ferat Sahin. A survey on feature selection methods. Computers
& Electrical Engineering, 40(1):16–28, 2014.

7 Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines.
ACM transactions on intelligent systems and technology (TIST), 2(3):27, 2011.

8 Fatima Chiroma, Han Liu, and Mihaela Cocea. Suicide Related Text Classification
with Prism Algorithm. International Conference on Machine Learning and Cybernetics
(ICMLC), pages 1–6, 2018.

9 Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017. URL:
http://archive.ics.uci.edu/ml.

10 Pedro Domingos. A few useful things to know about machine learning. Communications
of the ACM, 55(10):78–87, 2012.

11 Brian Johnson, Ryutaro Tateishi, and Zhixiao Xie. Using geographically weighted variables
for image classification. Remote sensing letters, 3(6):491–499, 2012.

12 Vipin Kumar and Sonajharia Minz. Feature selection. SmartCR, 4(3):211–229, 2014.
13 Han Liu, Mihaela Cocea, and Weili Ding. Multi-task learning for intelligent data processing

in granular computing context. Granular Computing, 3(3):257–273, 2017.
14 Mehdi Naseriparsa, Amir-Masoud Bidgoli, and Touraj Varaee. A hybrid feature selec-

tion method to improve performance of a group of classification algorithms. International
Journal of Computer Applications, 69(17):28–35, 2013.

15 Rattanawadee Panthong and Anongnart Srivihok. Wrapper feature subset selection for
dimension reduction based on ensemble learning algorithm. Procedia Computer Science,
72:162–169, 2015.

16 The Royal Society. Machine learning: the power and promise of computers that learn
by example. Online, April 2017. URL: https://royalsociety.org/~/media/policy/
projects/machine-learning/publications/machine-learning-report.pdf.

17 Jozsef Suto, Stefan Oniga, and Petrica Pop Sitar. Comparison of wrapper and filter feature
selection algorithms on human activity recognition. In Computers Communications and
Control (ICCCC), 2016 6th International Conference on, pages 124–129. IEEE, 2016.

18 Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann, 2016.

http://dx.doi.org/10.1016/S0020-7373(87)80003-2
http://dx.doi.org/10.1016/S0020-7373(87)80003-2
http://archive.ics.uci.edu/ml
https://royalsociety.org/~/media/policy/projects/machine-learning/publications/machine-learning-report.pdf
https://royalsociety.org/~/media/policy/projects/machine-learning/publications/machine-learning-report.pdf

The iBUG Eye Segmentation Dataset
Bingnan Luo
Intellignet Behaviour Understanding Group, Imperial College London, United Kingdom
bingnan.luo16@imperial.ac.uk

Jie Shen
Intellignet Behaviour Understanding Group, Imperial College London, United Kingdom
jie.shen07@imeprail.ac.uk

Yujiang Wang
Intellignet Behaviour Understanding Group, Imperial College London, United Kingdom
yujiang.wang14@imeprail.ac.uk

Maja Pantic
Intellignet Behaviour Understanding Group, Imperial College London, United Kingdom
m.pantic@imeprail.ac.uk

Abstract
This paper presents the first dataset for eye segmentation in low resolution images. Although
eye segmentation has long been a vital preprocessing step in biometric applications, this work is
the first to focus on low resolutions image that can be expected from a consumer-grade camera
under conventional human-computer interaction and/or video-chat scenarios. Existing eye data-
sets have multiple limitations, including: (a) datasets only contain high resolution images; (b)
datasets did not include enough pose variations; (c) a utility landmark ground truth did not be
provided; (d) high accurate pixel-level ground truths had not be given. Our dataset meets all
the above conditions and requirements for different segmentation methods. Besides, a baseline
experiment has been performed on our dataset to evaluate the performances of landmark mod-
els (Active Appearance Model, Ensemble Regression Tree and Supervised Descent Method) and
deep semantic segmentation models (Atrous convolutional neural network with conditional ran-
dom field). Since the novelty of our dataset is to segment the iris and the sclera areas, we evaluate
above models on sclera and iris only respectively in order to indicate the feasibility on eye-partial
segmentation tasks. In conclusion, based on our dataset, deep segmentation methods performed
better in terms of IOU-based ROC curves and it showed potential abilities on low-resolution eye
segmentation task.

2012 ACM Subject Classification Computing methodologies → Image segmentation

Keywords and phrases dataset, eye, segmentation, landmark, pixel-level

Digital Object Identifier 10.4230/OASIcs.ICCSW.2018.7

Category Main Track

1 Introduction

Eyes not only are the most vital sensory organ but also play a crucial role in conveying
a person’s emotional state and mental wellbeing [5]. Although there have been numerous
works on blink detection [1, 8, 10], we argue that accurate segmentation of sclera and iris can
provide much more information than blinks alone, thus allowing us to study the finer details
of eye movement such as cascade, fixation and other gaze patterns. As a pre-processing
step in iris recognition, iris segmentation in high resolution expression – less frontal face

© Bingnan Luo, Jie Shen, Yujiang Wang, and Maja Pantic;
licensed under Creative Commons License CC-BY

2018 Imperial College Computing Student Workshop (ICCSW 2018).
Editors: Edoardo Pirovano and Eva Graversen; Article No. 7; pp. 7:1–7:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bingnan.luo16@imperial.ac.uk
mailto:jie.shen07@imeprail.ac.uk
mailto:yujiang.wang14@imeprail.ac.uk
mailto:m.pantic@imeprail.ac.uk
https://doi.org/10.4230/OASIcs.ICCSW.2018.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

7:2 The iBUG Eye Segmentation Dataset

images have been well studied by the biometric community. However, the commonly used
Hough-transform-based method [14] does not work well on low-resolution images captured
under normal human-computer interaction (HCI) and/or video-chat scenarios, when the
boundary of eyes and iris are blurry and the shape of the eye can differ greatly due to pose
variation and facial expression. To our knowledge, this work presents the first effort in solving
the eye segmentation problem under such challenging conditions.

To investigate the topic of eye segmentation in low-resolution images, the first problem
we need to address is the lack of data. Albeit both biometric community and facial analysis
community published an abundance of datasets over the years, none can be used as is for
our purpose because the former category only contains high resolution eye scans while the
latter category lacks annotation of segmentation masks for sclera and iris. Therefore, during
the course this work, we created a sizable eye segmentation dataset by manually annotating
images selected from HELEN[9], 300VW[12], CVL[11] and Columbia Gaze[13] datasets.

After establish our dataset, it is necessary to evaluate how good performances are based
on two types of ground truths. Therefore, deformable and deep segmentation models
were chosen. Active Appearance Model(AAM)[3], Ensemble Regression Tree(ERT)[7] and
Supervised Descent Method(SDM)[15] were compared with deep semantic segmentation
methods(DeepLab[2] proposed): Atrous Neural Network with Conditional Random Field
(ACNN+CRF). For deformable models, the segmentation of non-frontal faces is a big challenge
because of occlusion, shape deformation and initializations. Therefore, the deep segmentation
methods can relatively compensate this shortcoming, whose performance can be more stable
especially on non-frontal faces. Otherwise, since we also want to know performances on iris-
only and sclera-only segmentations, all models were utilized and trained by iris-background
and sclera-background data samples. Finally, all segmentation results are evaluated and
discussed based on Interaction over Union(IOU) and Receiver operating characteristic(ROC)
curves. Based on that, the model with the best performance will be considered as the
potential model in eye segmentation researches.

2 Relative Works

Image segmentation is one of the oldest computer vision problems studied by the community.
Early approaches often rely on finding edges and/or specific shapes in the image or hand-
craft feature maps. Albeit dated, this kind of simple methods are still being used for eye
segmentation as a pre-processing step for iris recognition [14]. In this case, the eye and iris
are modeled respectively, by two parabolic curves and an ellipse. The parameters of the
curves are then determined using Hough transform performed on the image’s edge map.
Because this approach is sensitive to image noise and even slight shape variation caused by
head-pose and/or facial expressions, it cannot be use for eye segmentation in images captured
by consumer-grade camera under normal HCI/video-chat conditions.

On the other hand, various sparse 2D deformable-model-based methods, such as AAM,
SDM or ERT, have shown promising results in image segmentation, and in particular, facial
landmark localization. These methods work by finding a local minimum in the parametric
space that can optimally describe the object’s shapes and appearance. Since image intensity
space contains multiple local minimums so that it is uneasy to control which local minimum
it lies on. Moreover, the optimizing process of deformable models starts with the mean shape
of object’s intensity and geometry, thus the transformation of the landmark depends on
the initialization and integrity of objects. Therefore, they share many common limitations,
including sensitivities to initialization, occlusion, and out-of-plane rotation. In [3, 15, 7], the
profile face landmark tracking is still a challenge. Thus deformable models can experienced
as a candidate in our research, but the performance can be expectedly poor to profile faces.

B. Luo, J. Shen, Y. Wang, and M. Pantic 7:3

Table 1 dataset statistical information.

Name Value
Total number 3161
Non-frontal faces proportion 18.35%
low-resolution image proportion 66.97%
Number of bad illumination samples 10
Number of samples with glasses 185

The methods mentioned above rely on the prior knowledges (such as the number of point,
landmark shapes or curves expressions) so that they cannot adapt variant images and head
poses of eyes (profile faces or occlusions). To lighten the influences in the wild (illuminations
and etc.) and adapt to multiple situations (tricky head poses or occlusions), more recently,
various deep learning techniques have achieved impressive results in semantic segmentation
of natural images, which is widely-used because of its better adaptability of performances in
variant environments. In particular, DeepLab[2, 4] uses atrous convolutional neural network
based on VGG-16 and ResNet-101 architectures to generate segmentation masked, refined by
a fully-connected CRF layer with mean-field approximation for fast inference. The atrous
convolutional neural network is the innovation of DeepLab in order to increase the ability of
extracting global image features. They not only reduced the computational cost but also
improved the generalization.

In previous works, there is no existed low-resolution eye dataset. However, facial datasets
provide us a good sources to obtain eye images in different illuminations and pose variations.
HELEN dataset[9] contains high resolution facial images in different situations (multi-faces,
indoor/outdoor and etc.). 300VW[12] is a low-resolution facial video dataset captured in
the wild. CVL[11] and Columbia Gaze[13] are two facial dataset technically captured in lab
environment. Although these datasets cannot be utilized directly in our research, they can
also regard as sources of our proposed dataset.

3 Data Description

We create the iBUG eye segmentation dataset by annotating a total of 3161 images selected
from HELEN[9], 300VW[12], CVL[11] and Columbia Gaze[13] datasets. The dataset contains
faces under various poses. Specifically, faces who look ahead and with slight rotations are
frontal, the others are annotated sas non-frontal faces. We primarily focus on low resolution
images, but a small number of high resolution images are also included for completeness. The
distribution of eye-patch height is illustrated in Figure 1. Note that we use eye-patch height
as a measure for image resolution because the widely-used interocular distance measure can
be easily biased by face yaw. Last but not least, the dataset contains a small number of
examples featuring partial occlusion and bad illumination. The detailed statistics can be
found in Table 1.

Some examples of the annotated images are shown in Figure 2. The first row shows the
source image and the location of the control points, while the second row visualizes the
segmentation mask. Some extra statistical information has been presented in Table 1.

ICCSW 2018

7:4 The iBUG Eye Segmentation Dataset

Figure 1 Height distribution of eye regions.

Figure 2 Some annotated images in our dataset.

4 Baseline Methods

In this work, we utilized deformable model-based methods (AAM, ERT and SDM) and
DeepLab proposed Atrous CNN+CRF (CGG16+CRF and ResNet101+CRF) as the baseline
method.

4.1 Landmark Models
Before we discuss details of utilizations of baseline methods, we are going to introduce
some concepts about them. AAM, ERT and SDM are deformable statistic models which
were generally used in object localization and alignment. The shape and texture will be
transformed with a specific transformation function. Assume x = {x1, x2, ..., xi} indicates
shapes of images and g = {g1, g2, ..., gi} presents textures of images. x = x̄ + Qscs and
g = ḡ + Qgcg demonstrate the transformation methods in deformable model-based methods.
Qs and Qg are matrices describing the modes of variation derived from the training set. cs

is the shape model parameter and cg is the appearance model parameter, which control the
shape and texture gradient and the transforming directions. Thus, the aim of deformable
model-based methods is to find the optimized local minimum between current image and the
mean shape.

B. Luo, J. Shen, Y. Wang, and M. Pantic 7:5

Figure 3 eye initialization generation.

Figure 4 Flowchart of landmark models methodology.

Since deformable model-based methods are sensitive to initialization, the accuracy of
initializations affects algorithms’ performances. To generate an appropriate initialization,
the first step is eye localization. The procedure is shown in Figure 3. Firstly, face detection
method (fast RCNN[6]) was utilized to obtain the bounding box of each faces. Secondly, a
ridge regression model was trained to predict eyes’ bounding boxes based on facial bounding
boxes. Finally, landmark models can use mean shape as initialization lying into above located
bounding boxes. The procedure flowchart of deformable model-based method is shown in
Figure 4.

4.2 Deep Segmentation Method

Atrous convolutional neural network (ACNN) effectively enlarge the field of view of filters
without increasing the number of parameters or the amount of computation[2]. The method
adds ’holes’ to the convolution filter mask to better model the relationship between distant
pixels. With our dataset, we fine-tune the ACNN network to produce the initial per-pixel
probability score map from the input eye region RGB image. Note that at this stage, the
entire eye region (which contains both left and right eyes) are fed to the ACNN. Because
the shape and orientation of left and right eyes are highly correlated, the correlation can
be learned and exploited by ACNN to produce good score map for both eyes when face is
not in a frontal position so that one eye is more blurry/smaller than the other. Since the
boundaries of the sclera and the iris were too blur to accurately be segmented, a CRF was
utilized at the end of ACNN as post-processing in order to sharp boundaries. The procedure
of the experiment is as Figure 5.

ICCSW 2018

7:6 The iBUG Eye Segmentation Dataset

Figure 5 Flowchart of deep model methodology.

(a) Holistic eye.
(b) Iris of eye. (c) Sclera of eye.

Figure 6 Evaluation of all models.

5 Experiments

In this section, we evaluated deformable model-based methods and deep models according
to two criteria: (a) the performance of holistic, iris-only and sclera-only segmentation; (b)
robustness through comparing performances of frontal faces and non-frontal faces. Perform-
ances of landmark and deep models are evaluated in Figure 6. It is obvious that performances
of deep models on holistic eye and iris-only segmentation were better than deformable models.
For VGG-16 and ResNet101, ResNet101 performed better than VGG16, since ResNet101
has larger size of architecture in order to gain wispy features of the eye. On the other
hand, in sclera-only segmentation, the performance of ResNet101 was relatively worse than
other methods, because the dataset we built was not big enough for large-scale ResNet101.
Meanwhile, the overfitting was happened during ResNet101 training.

According to Figure 7 in appendix, the segmentation of profile faces is worse than frontal
faces. Even so, deep segmentation models still got higher performances than deformable
models on profile faces. On another aspect, the accuracy reduction of deep models is milder
than deformable methods, which means that deep models are more robust than deformable
methods under pose variation. Theoretically, for non-frontal faces, the face shape and texture
need to be transformed further than frontal faces during predictions of deformable methods,
so that it is difficult to find optimized local minimum from image intensity space. With
inaccuracy initializations, non-frontal faces are still challenges for landmark tracking. On the
other hand, the baseline methods we utilized in this research aims to evaluate the availability
of our dataset, meanwhile, the performance of experiments provide a preliminary research on
low-resolution eye segmentation. Although methods above are widely-used and may not be
state-of-art currently, it is enough for us to present the effectiveness of our dataset. Therefore,
this research indicates: (a) eye segmentation research can reasonably work on our dataset; (b)
deep models are more potential for eye segmentation compared with deformable model-based
methods.

B. Luo, J. Shen, Y. Wang, and M. Pantic 7:7

6 Conclusion

In conclusion, there are two contributions in this research. Firstly, we proposed a new
dataset for low-resolution eye segmentation. Our dataset provides two types of ground truths:
30-point landmarks and pixel-level ground truth. In terms of contents, the dataset contains
frontal and non-frontal faces in low resolution of eye region, under variant illuminations
and with/without glasses. Secondly, in order to evaluate the usability of our dataset and
provide a preliminary eye segmentation investigation on low-resolution eye segmentation,
we applied deformable model-based methods (AAM, SDM and ERT) and deep semantic
segmentation models (VGG16+CRF and ResNet101+CRF) as baseline methods. According
to the ROC curves of IOU accuracy, deep models got a better robustness than deformable
methods. Moreover, especially for non-frontal faces, performances of deep models can adapt
head poses variation. Otherwise, our dataset can be utilized for iris-only and sclera-only
segmentation. Based on experiments, deep models got better performances on our dataset
as well. Therefore, this research indicates that researchers can put more efforts to use deep
segmentation methods instead of deformable model-based methods in eye segmentation task.
Otherwise, existed models did not consider the shape refinement and shape prior of the
eye, thus in future researches plugging in shape prior and post-processing shape model can
extremely improve segmentation performance.

References
1 Michael Chau and Margrit Betke. Real time eye tracking and blink detection with usb

cameras. Technical report, Boston University Computer Science Department, 2005.
2 Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L

Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous con-
volution, and fully connected crfs. IEEE transactions on pattern analysis and machine
intelligence, 40(4):834–848, 2018.

3 Timothy F Cootes, Gareth J Edwards, and Christopher J Taylor. Active appearance models.
IEEE Transactions on Pattern Analysis & Machine Intelligence, pages 681–685, 2001.

4 Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

5 Bruce M Hood, J Douglas Willen, and Jon Driver. Adult’s eyes trigger shifts of visual
attention in human infants. Psychological Science, 9(2):131–134, 1998.

6 Huaizu Jiang and Erik Learned-Miller. Face detection with the faster R-CNN. In Automatic
Face & Gesture Recognition (FG 2017), 2017 12th IEEE International Conference on, pages
650–657. IEEE, 2017.

7 Vahid Kazemi and Josephine Sullivan. One millisecond face alignment with an ensemble of
regression trees. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1867–1874, 2014.

8 Marc Lalonde, David Byrns, Langis Gagnon, Normand Teasdale, and Denis Laurendeau.
Real-time eye blink detection with GPU-based SIFT tracking. In Computer and Robot
Vision, 2007. CRV’07. Fourth Canadian Conference on, pages 481–487. IEEE, 2007.

9 Vuong Le, Jonathan Brandt, Zhe Lin, Lubomir Bourdev, and Thomas S Huang. Interactive
facial feature localization. In European conference on computer vision, pages 679–692.
Springer, 2012.

10 Yuezun Li, Ming-Ching Chang, Hany Farid, and Siwei Lyu. In Ictu Oculi: Exposing AI
Generated Fake Face Videos by Detecting Eye Blinking. arXiv preprint arXiv:1806.02877,
2018.

ICCSW 2018

7:8 The iBUG Eye Segmentation Dataset

11 Peter Peer. Cvl face database. Computer vision lab., faculty of computer and information
science, University of Ljubljana, Slovenia. Available at http://www. lrv. fri. uni-lj. si/facedb.
html, 2005.

12 Jie Shen, Stefanos Zafeiriou, Grigoris G Chrysos, Jean Kossaifi, Georgios Tzimiropoulos,
and Maja Pantic. The first facial landmark tracking in-the-wild challenge: Benchmark
and results. In Proceedings of the IEEE International Conference on Computer Vision
Workshops, pages 50–58, 2015.

13 Brian A Smith, Qi Yin, Steven K Feiner, and Shree K Nayar. Gaze locking: passive eye
contact detection for human-object interaction. In Proceedings of the 26th annual ACM
symposium on User interface software and technology, pages 271–280. ACM, 2013.

14 Qi-Chuan Tian, Quan Pan, Yong-Mei Cheng, and Quan-Xue Gao. Fast algorithm and
application of hough transform in iris segmentation. In Machine Learning and Cybernetics,
2004. Proceedings of 2004 International Conference on, volume 7, pages 3977–3980. IEEE,
2004.

15 Xuehan Xiong and Fernando De la Torre. Supervised descent method and its applications
to face alignment. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 532–539, 2013.

B. Luo, J. Shen, Y. Wang, and M. Pantic 7:9

(a) Holistic eye of AAM (b) Iris of eye of AAM (c) Sclera of eye of AAM

(d) Holistic eye of ERT (e) Iris of eye of ERT (f) Sclera of eye of ERT

(g) Holistic eye of SDM (h) Iris of eye of SDM (i) Sclera of eye of SDM

(j) Holistic eye of VGG-16 (k) Iris of eye of VGG-16 (l) Sclera of eye of VGG-16

(m) Holistic eye of ResNet101 (n) Iris of eye of ResNet101 (o) Sclera of eye of ResNet101

Figure 7 Appendix: Robustness evaluation compared between profile and frontal faces.

ICCSW 2018

Anomaly Detection for Big Data Technologies
Ahmad Alnafessah
Department of Computing, Imperial College London, United Kingdom
a.alnafessah17@imperial.ac.uk

Giuliano Casale
Department of Computing, Imperial College London, United Kingdom
g.casale@imperial.ac.uk

Abstract
The main goal of this research is to contribute to automated performance anomaly detection for
large-scale and complex distributed systems, especially for Big Data applications within cloud
computing. The main points that we will investigate are:

Automated detection of anomalous performance behaviors by finding the relevant perform-
ance metrics with which to characterize behavior of systems.
Performance anomaly localization: To pinpoint the cause of a performance anomaly due to
internal or external faults.
Investigation of the possibility of anomaly prediction. Failure prediction aims to determine
the possible occurrences of catastrophic events in the near future and will enable system
developers to utilize effective monitoring solutions to guarantee system availability.
Assessment for the potential of hybrid methods that combine machine learning with tradi-
tional methods used in performance for anomaly detection.

The topic of this research proposal will offer me the opportunity to more deeply apply my
interest in the field of performance anomaly detection and prediction by investigating and using
novel optimization strategies. In addition, this research provides a very interesting case of utilizing
the anomaly detection techniques in a large-scale Big Data and cloud computing environment.
Among the various Big Data technologies, in-memory processing technology like Apache Spark
has become widely adopted by industries as result of its speed, generality, ease of use, and
compatibility with other Big Data systems. Although Spark is developing gradually, currently
there are still shortages in comprehensive performance analyses that specifically build for Spark
and are used to detect performance anomalies. Therefore, this raises my interest in addressing
this challenge by investigating new hybrid learning techniques for anomaly detection in large-
scale and complex systems, especially for in-memory processing Big Data platforms within cloud
computing.

2012 ACM Subject Classification Computing methodologies → Anomaly detection

Keywords and phrases Performance anomalies, Apache Spark, Neural Network, Resilient Dis-
tributed Dataset (RDD)

Digital Object Identifier 10.4230/OASIcs.ICCSW.2018.8

Category Poster Track

© Ahmad Alnafessah and Giuliano Casale;
licensed under Creative Commons License CC-BY

2018 Imperial College Computing Student Workshop (ICCSW 2018).
Editors: Edoardo Pirovano and Eva Graversen; Article No. 8; pp. 8:1–8:1

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a.alnafessah17@imperial.ac.uk
mailto:g.casale@imperial.ac.uk
https://doi.org/10.4230/OASIcs.ICCSW.2018.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

A Novel Method for Event Detection using
Wireless Sensor Networks
Ameer A. Al-Shammaa1

Department of Engineering, University of Leicester, United Kingdom
aambas2@le.ac.uk

A. J. Stocker2

Department of Engineering, University of Leicester, United Kingdom
sto@le.ac.uk

Abstract
Reliable event detection is one of the hottest research areas in the wireless sensor networks field
these days. Battlefield monitoring, fire detection, nuclear and chemical attack, and gas leak
detection are examples of the event detection applications. One of the main goals to WSNs is
transmitting the sensed data to the sink (Base station) in an efficient way with minimum energy
usage to achieve high degree of event detection reliability. Thus, Its very important to determine
the reliability degree to know the number of data that are required to receive at the sink to
achieve the desired reliability.

Most of the previous research works proposed different solutions for reliable event detection.
The idea of all these solutions is based on increasing the amount of the transmitted data to
the sink by controlling the sources reporting rate. However, rising the reporting rate may lead
to losing the transmitted data due to the network congestion and packets collision, and this is
related to the restricted resources capacity of the network’s sensor nodes.

Therefore, in this paper, a new indoor method to achieve quality based event reliability for
critical event detection have been implemented using hardware sensor nodes (Waspmote). The
idea of this method is depending on sending the sensed data to the sink using a node called
Cluster Head (CH) in a sequence according to their priority from the high to the low. The
network nodes have been deployed in the experiment area into clusters, and each cluster have
a CH node which work on collecting the cluster members readings and reorder it in descending
order to send it next to the sink. The probability to deliver the important data to detect the
event to the sink will increase by using this new method. The proposed mechanism intends to
improve the event detection reliability, minimize the end-to-end delay, and increase the network
lifetime. Experiments results show that the proposed method achieved a good the performance
in terms of packets delivery, event detection, and end-to-end delay.

2012 ACM Subject Classification Networks

Keywords and phrases Waspmote nodes, Critical events, Wireless Sensor Networks, Clustering

Digital Object Identifier 10.4230/OASIcs.ICCSW.2018.9

Category Poster Track

1 The work of Ameer A. Al-Shammaa is sponsored by the Ministry of Higher Education and Scientific
Research, Iraq. Ameer is currently pursuing a PhD in the Aerospace and Computational Engineering
research group at the University of Leicester, UK. He is also a staff member in the Training Department
at IT-RDC at the University of Kufa, Iraq (e-mail: ameer.alshammaa@uokufa.edu.iq).

2 Alan Stocker is an associate professor in the Department of Engineering at University of Leicester, UK.
He is a staff member in the Aerospace and Computational Engineering research group.

© Ameer A. Al-Shammaa and Alan J. Stocker;
licensed under Creative Commons License CC-BY

2018 Imperial College Computing Student Workshop (ICCSW 2018).
Editors: Edoardo Pirovano and Eva Graversen; Article No. 9; pp. 9:1–9:1

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aambas2@le.ac.uk
mailto:sto@le.ac.uk
https://doi.org/10.4230/OASIcs.ICCSW.2018.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

Context-Aware Adaptive Biometrics System using
Multiagents
Fatina Shukur
School of Computing, University of Buckingham, United Kingdom
fatinat.shukur@uokufa.edu.iq

Harin Sellahewa
School of Computing, University of Buckingham, United Kingdom
harin.sellahewa@buckingham.ac.uk

Abstract
Traditional biometric systems are designed and configured to operate in predefined circumstances
to address the needs of a particular application. The performance of such biometrics systems
tend to decrease because when they encounter varying conditions as they are unable to adapt to
such variations. Many real-life scenarios require identification systems to recognise uncooperative
people in uncontrolled environments. Therefore, there is a real need to design biometric systems
that are aware of their context and be able to adapt to changing conditions.

The context-awareness and adaptation of a biometric system are based on a set of factors
that include: the application (e.g. healthcare system, border control, unlock smart devices),
environment (e.g. quiet/noisy, indoor/outdoor), desired and pre-defined requirements (e.g. speed,
usability, reliability, accuracy, robustness to high/low quality samples), user of the system (e.g.
cooperative or non-cooperative), the chosen modality (e.g. face, speech, gesture signature), and
used techniques (e.g. pre-processing to normalise and clean biometrics data, feature extraction
and classification). These factors are linked and might affect each other, hence the system has
to work adaptively to meet its overall aim based to its operational context.

The aim of this research is to develop a multiagent based framework to represent a context-
aware adaptive biometric system. This is to improve the decision making process at each pro-
cessing step of traditional biometric identification systems. Agents will be used to provide the
system with intelligence, adaptation, flexibility, automation, and reliability during the identific-
ation process. The framework will accommodate at least five agents, one for each of the five
main processing steps of a typical biometric system (i.e. data capture, pre-processing, feature
extraction, classification and decision). Each agent can contribute differently towards its desig-
nated goal to achieve the best possible solution by selecting/ applying the best technique. For
example, an agent can be used to assess the quality of the input biometric sample to ensure the
important features can be extracted and processed in further steps. Another agent can be used to
pre-process the biometric sample if necessary. A third agent is used to select the appropriate set
of features followed by another to select a suitable classifier that works well in a given condition.

2012 ACM Subject Classification Security and privacy → Biometrics

Keywords and phrases Biometrics, Multiagents, Context-Aware

Digital Object Identifier 10.4230/OASIcs.ICCSW.2018.10

Category Poster Track

Acknowledgements The first author would like to thank HCED for supporting her PhD study.

© Fatina Shukur and Harin Sellahewa;
licensed under Creative Commons License CC-BY

2018 Imperial College Computing Student Workshop (ICCSW 2018).
Editors: Edoardo Pirovano and Eva Graversen; Article No. 10; pp. 10:1–10:1

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fatinat.shukur@uokufa.edu.iq
mailto:harin.sellahewa@buckingham.ac.uk
https://doi.org/10.4230/OASIcs.ICCSW.2018.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

Harnessing AI For Research
Matthew Johnson
Microsoft Research, Cambridge, United Kingdom
matjoh@microsoft.com

Abstract
Artificial Intelligence is increasingly being used to both augment existing fields of research and
open up new avenues of discovery. From quality control for imaging flow cytometry to compu-
tational musicology, modern AI is an exciting new tool for research and thus knowing how to
engineer AI systems in a research context is a vital new skill for RSEs to acquire. In this talk,
I will outline four different areas of AI: supervised learning, unsupervised learning, interactive
learning, and Bayesian learning. For each of these approaches, I will discuss how they typically
map to different research problems and explore best practices for RSEs via specific use cases. At
the end of the talk, you will have received a high-level overview of AI technologies and their use
in research, have seen some cool examples of how AI has been used in a wide range of research
areas, and have a good sense of where to go to learn more.

2012 ACM Subject Classification Computing methodologies → Artificial intelligence

Keywords and phrases Artificial intelligence

Digital Object Identifier 10.4230/OASIcs.ICCSW.2018.11

Category Invited Talk

© Matthew Johnson;
licensed under Creative Commons License CC-BY

2018 Imperial College Computing Student Workshop (ICCSW 2018).
Editors: Edoardo Pirovano and Eva Graversen; Article No. 11; pp. 11:1–11:1

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:matjoh@microsoft.com
https://doi.org/10.4230/OASIcs.ICCSW.2018.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

	p000-Frontmatter
	Preface
	Organisers

	p001-Liu
	Introduction
	SNAP Implementation: The Bottleneck
	Speeding Up BigClam Via Parallel Computing
	Requirements in Result Correctness
	Methodology

	Experiments
	Runtime Reduction
	Verification of Result Correctness

	Conclusion
	Key Formulation of BigClam Community Detection Algorithm
	Network Preliminaries
	BigClam Community Detection Algorithm

	SNAP Implementation: A Runtime Complexity Analysis
	The Conductance Test Stage
	Gradient Ascent Stage
	Dot Product Runtime Complexity
	Vector Sum Runtime Complexity
	Overall Runtime Complexity of the GA Stage

	Community Association Stage

	p002-Malik
	Introduction
	Related Work
	Problem Statement
	THRIFTY for SDNs
	Architecture
	Prototype and Implementation

	Conclusion and Future Work

	p003-Akkuzu
	Introduction
	Related Work
	An Overview of Chinese Wall Security Model
	A New Data-driven Chinese Walls Model
	Case Example: LANL Dataset
	Dataset Description
	Model Implementation Based on the Dataset

	Conclusion and Future Work

	p004-Diedhiou
	Introduction
	Collaborative Filtering Techniques
	MPJ Implementation of ALSWR
	Performance Evaluation and Comparison of MPJ Express, Mahout, and Spark
	MovieLens 20M Ratings Experiments
	Yahoo Webscope 700M Ratings Experiments
	Analysis of the results

	Conclusion
	Description of Hadoop and MPJ Express
	Hadoop Overview
	MPJ Express

	Description of Apache Mahout and Spark
	Description of Datasets and testing environment

	p005-Mohasseb
	Introduction
	Background
	Parsing
	Tagging

	Proposed Approach
	Tag-set
	Domain-specific syntax-based parsing and tagging

	Experimental Study and Results
	Queries Classification
	Results

	Questions Classification
	Results

	Conclusion and Future Work
	Appendix: Grammar terms and corresponding abbreviations

	p006-Chiroma
	Introduction
	Related Work
	Data and Experimental Setup
	Results and Discussion
	Conclusion and Future Work

	p007-Luo
	Introduction
	Relative Works
	Data Description
	Baseline Methods
	Landmark Models
	Deep Segmentation Method

	Experiments
	Conclusion

	p008-Alnafessah
	p009-Al-Shammaa
	p010-Shukur
	p011-Johnson

