
9th Workshop on Evaluation and
Usability of Programming
Languages and Tools

PLATEAU 2018, November 5, 2018,
Boston, Massachusetts, USA

Edited by

Titus Barik
Joshua Sunshine
Sarah Chasins

OASIcs – Vo l . 67 – PLATEAU 2018 www.dagstuh l .de/oas i c s

Editors
Titus Barik Joshua Sunshine Sarah Chasins
Microsoft Carnegie Mellon University University of California, Berkeley
titus.barik@microsoft.com sunshine@cs.cmu.edu schasins@berkeley.edu

ACM Classification 2012
Software and its engineering → Software notations and tools, Human-centered computing → Human
computer interaction (HCI)

ISBN 978-3-95977-091-0

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-091-0.

Publication date
January, 2019

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.PLATEAU.2018

ISBN 978-3-95977-091-0 ISSN 2190-6807 http://www.dagstuhl.de/oasics

http://www.dagstuhl.de/dagpub/978-3-95977-091-0
http://www.dagstuhl.de/dagpub/978-3-95977-091-0
http://dnb.d-nb.de
http://dx.doi.org/10.4230/OASIcs.PLATEAU.2018
http://www.dagstuhl.de/dagpub/978-3-95977-091-0
http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

0:iii

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 2190-6807

http://www.dagstuhl.de/oasics

PLATEAU 2018

http://www.dagstuhl.de/dagpub/2190-6807
http://www.dagstuhl.de/oasics

Contents

Preface
Titus Barik, Joshua Sunshine, and Sarah Chasins . 0:vii

Papers

A Randomized Controlled Trial on the Impact of Polyglot Programming in a
Database Context

Phillip Merlin Uesbeck and Andreas Stefik . 1:1–1:8

Understanding Java Usability by Mining GitHub Repositories
Mark J. Lemay . 2:1–2:9

Programming by Example: Efficient, but Not “Helpful”
Mark Santolucito, Drew Goldman, Allyson Weseley, and Ruzica Piskac 3:1–3:10

QDB: From Quantum Algorithms Towards Correct Quantum Programs
Yipeng Huang and Margaret Martonosi . 4:1–4:14

Identifying Barriers to Adoption for Rust through Online Discourse
Anna Zeng and Will Crichton . 5:1–5:6

Observing the Uptake of a Language Change Making Strings Immutable
Manuel Maarek . 6:1–6:8

9th Workshop on Evaluation and Usability of Programming Languages and Tools (PLATEAU 2018).
Editors: Titus Barik, Joshua Sunshine, and Sarah Chasins

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

Preface

Programming languages exist to enable programmers to develop software effectively. But
programmer efficiency depends on the usability of the languages and tools with which they
develop software. The aim of the Workshop on Evaluation and Usability of Programming
Languages and Tools (PLATEAU) is to discuss methods, metrics, and techniques for evalu-
ating the usability of languages and language tools. The supposed benefits of such languages
and tools cover a large space, including making programs easier to read, write, and maintain;
allowing programmers to write more flexible and powerful programs; and restricting programs
to make them more safe and secure.

The 9th Workshop on Evaluation and Usability of Programming Languages and Tools
(PLATEAU 2018) was held on November 5, 2018 in Boston, Massachusetts, USA, and
collocated with SPLASH 2018. The workshop gathered the intersection of researchers in the
programming language, programming tool, and human-computer interaction communities
to share their research and discuss the future of evaluation and usability of programming
languages and tools.

It is our pleasure to present this year’s proceedings. We are happy to report that we
received six paper submissions, and that all papers were accepted after a thorough review
process with at least two expert reviewers per paper. Together, these papers demonstrate
the remarkable scope and applicability of the workshop, with topics that include software
development techniques, software evolution, programming by example, and empirical studies
in human-computer interaction.

Our thanks go to the authors, reviewers, speakers, and attendees, without whom this
workshop would not have been possible.

Titus Barik, Joshua Sunshine, and Sarah Chasins
PLATEAU 2018 Co-Chairs

9th Workshop on Evaluation and Usability of Programming Languages and Tools (PLATEAU 2018).
Editors: Titus Barik, Joshua Sunshine, and Sarah Chasins

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

Program Committee

Kelly Blincoe
University of Auckland

Ravi Chugh
University of Chicago

Luke Church
University of Cambridge

Loris D’Antoni
University of Wisconsin–Madison

Elena Glassman
University of California, Berkeley

Austin Henley
University of Tennessee

Felienne Hermans
Leiden University

Brittany Johnson
University of Massachusetts

Manuel Maarek
Heriot-Watt University

Éric Tanter
University of Chile

9th Workshop on Evaluation and Usability of Programming Languages and Tools (PLATEAU 2018).
Editors: Titus Barik, Joshua Sunshine, and Sarah Chasins

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

A Randomized Controlled Trial on the Impact of
Polyglot Programming in a Database Context
Phillip Merlin Uesbeck
University of Nevada, Las Vegas
Las Vegas, NV, USA
uesbeck@unlv.nevada.edu

https://orcid.org/0000-0001-8182-9942

Andreas Stefik
University of Nevada, Las Vegas
Las Vegas, NV, USA
stefika@gmail.com

Abstract
Using more than one programming language in the same project is common practice. Often,
additional languages might be introduced to projects to solve specific issues. While the practice
is common, it is unclear whether it has an impact on developer productivity. In this paper, we
present a pilot study investigating what happens when programmers switch between program-
ming languages. The experiment is a repeated measures double-blind randomized controlled
trial with 3 groups with various kinds of code switching in a database context. Results provide
a rigorous testing methodology that can be replicated by us or others and a theoretical backing
for why these effects might exist from the linguistics literature.

2012 ACM Subject Classification Software and its engineering → Software development tech-
niques

Keywords and phrases human-factors, randomized controlled trial, polyglot programming

Digital Object Identifier 10.4230/OASIcs.PLATEAU.2018.1

Funding This work was partially funded by the NSF under grants 1644491, 1738259, and 1640131.

1 Introduction

Polyglot programming, using more than one computer language in the same programming
context, is common. Evidence from Tomassetti and Torchiano suggests that 97% of open
source projects on Github use two or more computer languages [19], with the number of
languages per project averaging about 5 [11, 19]. Seeing how common the use of multiple
programming languages is, the question of its productivity impact on developers at various
levels becomes salient. An obvious research question might be, "Does polyglot programming
have an impact on developer productivity, and if so, how large is it, what direction, and
in what context?" Given that software is a $407.3 billion industry [1] and that the median
salary for a software developer is $103,560 per year in the U.S. [12], productivity impacts are
expensive at scale. This broad question, which we investigate one specific aspect of in this
paper, guides our broader research direction.

One aspect of polyglot programming is repeated switching between languages, which
we will call code switching. Using the study presented in this paper, we aim to evaluate
whether code switching impacts developer productivity. Our running theory as to why this
might be is guided by evidence-based research in the field of linguistics, which investigates

© Phillip Merlin Uesbeck and Andreas Stefik;
licensed under Creative Commons License CC-BY

9th Workshop on Evaluation and Usability of Programming Languages and Tools (PLATEAU 2018).
Editors: Titus Barik, Joshua Sunshine, and Sarah Chasins; Article No. 1; pp. 1:1–1:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:uesbeck@unlv.nevada.edu
https://orcid.org/0000-0001-8182-9942
mailto:stefika@gmail.com
https://doi.org/10.4230/OASIcs.PLATEAU.2018.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

1:2 A Trial on the Impact of Polyglot Programming in a Database Context

the phenomenon of code switching in natural language [8, 10, 21]. Research in that context
has shown that there is a time cost to switching between the use of natural languages [13],
which begs the question of whether a time cost is measurable for switching between computer
languages. Given that neurological studies on program comprehension and natural language
comprehension seem to use the same areas of the brain [14], such a hypothesis seems plausible.

The specific aspect of the broader research line we are investigating is in the common
case of polyglot within a database programming context. Thus, we present here a small pilot
study of a double-blind randomized controlled trial with six programming tasks. To do this,
we created three different versions of a querying API, 1) one without polyglot (non), 2) one
where raw SQL is embedded (polyglot), and 3) a hybrid approach of our own design where
the embedded query is similar to the host language (hybrid). Our null-hypotheses is that
there is no relationship between code switching and productivity in the context of database
programming.

With guidance from this pilot study, our goal is to build up a research line in a systematic
way, increasing the sample size as we go and replicate the work rigorously each time. Finally,
many of the experiments our lab conducts are designed off of the work of Austin Bradford
Hill [6], who led pioneering work in medicine on how to design experiments and which later
helped lead to the CONSORT evidence standard. To our knowledge, the field of computer
science does not have an evidence standard for empirical work, so we adapted CONSORT
after discussions from Schloss Dagstuhl [15]. Put another way, while scholars sometimes
disagree about what should be reported with empirical work, or how it is reported, we
followed an existing evidence standard to provide an evidence-based structure on what we
should and should not report.

The rest of this paper is going to be structured as follows: First, we will discuss related
work. Then, we will go over the design of the experiment in section 3. Results will be shown
in subsection 4 and then discussed in section 5, finally the paper will end in a conclusion in
section 6.

2 Related Work

The benefits and drawbacks of polyglot programming on a human-factors level are under-
explored in the scientific literature. The main argument in favor of polyglot programming
is about “[...] choosing the right tool for the job" [2], a view that seems to drive the field
of domain specific language research which proposes using specialized languages for better
productivity and maintenance [20]. Claims have been made that the use of a more appropriate
language for a task leads to better productivity and easier maintenance by reducing the lines
of code of a project [7], but also that the need to learn more languages creates a strain on
the developers and that introduction of more languages to a project can reduce the pool of
developers able to maintain the project [7].

Programmer productivity is studied in a variety of aspects of programming. Studies range
from programming language features such as syntax [16] and type systems [9], over API
design [17] and the effect of errors [4] to studies trying to investigate the cognitive processes
involved [14, 5]. These studies on APIs, syntax, or others provided guidance to this work,
although there is little in the literature that contains measurements of polyglot programming
itself.

P.M. Uesbeck and A. Stefik 1:3

Listing 1 Task 1 as presented to the partici-
pants

package l i b r a r y ;

import l i b r a r y . ∗ ;

p u b l i c c l a s s Task1 {

/∗∗
∗ P l e a s e w r i t e t h i s method to r e t u r n a

↪→ Table o b j e c t c o n t a i n i n g
∗ a l l columns f o r a l l e n t r i e s with an i d

↪→ s m a l l e r than 32
∗ and s o r t e d from high s a l a r y to low s a l a r y

↪→ .
∗
∗ Table i n f o r m a t i o n :
∗
∗ − p r o f −
∗
∗ i d (i n t) | f i r s t n a m e (S t r i n g) | lastname

↪→ (S t r i n g) | s a l a r y (i n t)
∗
∗
∗
∗ Use the t e c h n i q u e shown to you i n the

↪→ samples g i v e n
∗
∗/

p u b l i c Table query (Table p r o f) throws
↪→ Exception {

// Your Code h e r e

r e t u r n n u l l ;
}

}

Listing 2 Task 1 Solution polyglot
Query q = new Query () ;

q . Prepare ("SELECT ∗ FROM p r o f e s s o r s " +
" WHERE i d < 32 ORDER BY s a l a r y DESC") ;

Table r = p r o f . Search (q) ;

r e t u r n r ;

Listing 3 Task 1 Solution non
Query q = new Query () ;

q . SortHighToLow (" s a l a r y ") ;
q . F i l t e r (q . Where (" i d ") . LessThan (3 2)) ;

Table r = p r o f . Search (q) ;

r e t u r n r ;

Listing 4 Task 1 Solution hybrid
Query q = new Query () ;

q . SortHighToLow (" s a l a r y ") ;
q . F i l t e r (" i d < 3 2 ") ;

Table r = p r o f . Search (q) ;

r e t u r n r ;

3 Methods

Study Design. We conducted a double-blind repeated measures randomized controlled trial
in which participants were randomly assigned to one of three experimental groups between
April and May 2018. Each participant was asked to solve 6 programming tasks.

While we chose this particular design for our study, where participants used a host
language with an embedded code, there are several other ways that it could have been
designed and we are looking to expand testing to such designs at a later time. Under
consideration was to have participants study one language in a task, then another in a second.
We also considered testing smaller code samples to isolate certain aspects of switching, like
just the one method where embedding occurs for polyglot. Ultimately we settled on a design
that we thought was balanced. Since embedding SQL into a host language is common, it has
some face validity as a common polyglot task and thus seemed like a reasonable place to
investigate first.

Study Population & Setting. Eligible were participants over the age of 18 who had some
programming experience. Recruitment occurred during class time via advertisement pamphlet
at the University of Nevada, Las Vegas. The pamphlet contained the URL to the website used
for the experiment which guided participants through the entire process of the experiment.
On the website, participants give consent, fill out a survey, and then solve the programming
tasks. A time limit of 45 minutes per task was given to limit the overall time commitment
for the experiment.

Intervention. Participants were randomly assigned to one of three groups and received a
different code sample depending on their group. Each group’s code sample demonstrated
enough code to let participants infer the solutions needed for the tasks. We designed the three
different groups to require different amounts of language switching while writing database

PLATEAU 2018

1:4 A Trial on the Impact of Polyglot Programming in a Database Context

queries in Java. The first group (polyglot) uses SQL strings as parameters in method calls
to create a query (see listing 2 and 5), requiring switches. The second group (non-polyglot)
had to create a query by building it from objects in a series of method calls in a more
object-oriented approach (see listing 3 and 6), requiring no switches, and lastly, the hybrid
group’s approach mixes the use of parts of SQL-style strings and method calls, using SQL
syntax for conditions and column names and method calls for the rest (see listing 4 and 7).

To solve the tasks, participants had to fill in the code provided to them in a way that
satisfied all unit tests. If an incomplete solution was submitted, compilation output was
displayed and work on the tasks continued until a successful solution was submitted or the
time ran out. The participants had to solve 3 SELECT , 1 UPDATE, 1 INSERT , and 1
JOIN task to cover a range of different uses of queries. While the UPDATE, INSERT ,
and JOIN tasks were kept standard, the 3 SELECT tasks varied in the complexity of their
conditions and whether a ORDER BY component was needed.

An example of what the tasks looked like can be seen in listing 1, which shows the empty
first task of all three groups. The instructional comments describe the structure of the table
object passed into the method. Possible solutions for each group to the first task can be seen
in listings 2, 3, and 4.

Outcomes. The difference of the start time and the end time of a task decided the dependent
variable time to solution. As a random factor, the platform also recorded the participants’
self-reported experience in using databases.

Randomization. Randomized assignment to the groups was handled by the website and
followed the covariate adaptive randomization approach [18]. The participants were assigned
to a experience category based on their college year. Group assignment was then conducted
randomly but balanced within experience categories.

Blinding. The assignment of participants to their group was done automatically and without
intervention by the researchers. Since the experiment was done using the website, there was
no direct interaction with the participants and therefore the proctors had fewer avenues to
accidentally or intentionally bias them. The participants were not informed about which
group they were assigned to or what the hypothesis of the study might be.

4 Results

Recruitment. We recruited 11 participants for this pilot study. Of the 11 participants,
5 identified themselves as female and 6 as male. On average, the participants were about
24 years old (M = 23.55, SD = 7.10). Six of the participants were sophomores, two were
juniors, two were seniors, and one was a graduate student. Four of the participants reported
that English is not their primary language. The polyglot group had 4 participants, the
non-polyglot group had 3, and the hybrid group had 4. The demographics can also be found
in table 1.

Baseline Data. All 11 of the participants completed all tasks. The data (all times in
seconds) can be found in table 2. Figure 1 shows the average task completion times between
the two groups. Figure 2 shows the task times by group in a boxplot.

P.M. Uesbeck and A. Stefik 1:5

Table 1 Demographics.

Metric Polyglot Non Hybrid
N 4 3 4

DB Experience 25.00% 33.33% 25.00%
Female 50.00% 66.66% 0.00%
Age 23.50 (SD = 5.74) 20.33 (SD = 1.53) 26.00 (SD = 10.74)

Native 75.00% 66.66% 100.00%

Table 2 Times per task in seconds.

Non Polyglot Hybrid Total
Task N mean SD N mean SD N mean SD mean SD
Task 1 3 1371.67 545.68 4 1380.50 700.38 4 999.25 668.48 1239.45 614.05
Task 2 3 676.33 143.39 4 782.00 641.35 4 848.50 368.77 777.36 416.42
Task 3 3 1006.67 533.35 4 1870.25 419.55 4 1363.50 965.22 1450.45 722.35
Task 4 3 438.67 220.18 4 268.00 134.39 4 357.50 215.69 347.09 184.75
Task 5 3 154.33 39.95 4 702.50 945.13 4 258.75 107.21 391.64 578.24
Task 6 3 663.00 412.94 4 787.00 437.08 4 337.25 47.33 589.64 367.10
Total 18 718.44 507.60 24 965.04 751.49 24 694.12 615.21 799.27 645.89

Analysis. To analyze the results, we ran a mixed designs repeated measures ANOVA using
the R programming language with respect to time to solution, using task as a within-subjects
variable and group and database experience as between-subjects variables. Sphericity was
tested using Mauchly’s test for Sphericity, which shows that the assumption of sphericity was
violated for the variable task. Following reported numbers are reported with Greenhouse-
Geisser corrections taken into account.

There is a significant effect at p < 0.5 for the within-subjects variable task, F (5, 25) =
7.065, p < 0.001 (η2

p = 0.479), but no significant effect for group, F (2, 5) = 0.889, p =
0.467 (η2

p = 0.110) or database experience, F (1, 5) = 0.973, p = 0.369 (η2
p = 0.064). None of

the interaction effects are significant. To test the differences between the tasks in more detail,
we ran a Bonferroni test. There are significant differences between task 1 and 4 (p = 0.011),
1 and 5 (p = 0.041), 3 and 4 (p = 0.009), 3 and 5 (p = 0.008), and 3 and 6 (p = 0.035).

Listing 5 Solution 6 polyglot
Query q = new Query () ;
q . Prepare ("SELECT id ,

↪→ f i r s t n a m e , lastname ,
↪→ clubname "+

"FROM s t u d e n t s JOIN clubmap
↪→ ON s t u d e n t s . i d =
↪→ clubmap . s t u d e n t i d ") ;

Table r = s t u d e n t s . Search (q ,
↪→ clubmap) ;

r e t u r n r ;

Listing 6 Solution 6 non
Query q = new Query () ;
q . AddField (" i d ")

. AddField (" f i r s t n a m e ")

. AddField (" lastname ")

. AddField (" clubname ") ;

q . Combine (s t u d e n t s , " i d " ,
↪→ clubmap , " s t u d e n t i d ") ;

Table r = s t u d e n t s . Search (q) ;
r e t u r n r ;

Listing 7 Solution 6 hybrid
Query q = new Query () ;
q . AddFields (" id , f i r s t n a m e ,

↪→ lastname , clubname ") ;

q . Combine (s t u d e n t s , " i d " ,
↪→ clubmap , " s t u d e n t i d ") ;

Table r = s t u d e n t s . Search (q) ;

r e t u r n r ;

5 Discussion

It is crucial to state that we found no significant differences overall in our pilot. This is what
we would expect with a sample size of 11 unless polyglot had a very large effect size. We
observed that η2

p = 0.110 for the group task, which means the polyglot effect explained about
11% of the variance. This needs to be confirmed or refuted at scale.

Besides the effect, which gives us clues toward what we might see in replications, we think
observations about the individual tasks are interesting. Note that the non-polyglot group
performed 3.50% slower than hybrid group across all tasks and that the polyglot group was

PLATEAU 2018

1:6 A Trial on the Impact of Polyglot Programming in a Database Context

●

●

●

●

0

500

1000

1500

2000

2500

Hybrid Poly Non

Group

T
im

e
[s

]
Group Hybrid Poly Non

Figure 1 Boxplot of results between the
groups.

●

●

●

●

0

500

1000

1500

2000

2500

1 2 3 4 5 6

Task

T
im

e
[s

]

Group Hybrid Poly Non

Figure 2 Boxplot of differences in time by
task.

39.0% slower than hybrid. For some tasks, the effects were more pronounced. Consider task
6, where the non-polyglot group performed 96.6% slower than the hybrid group and the fully
polyglot group was 133.4% slower than hybrid. This task is shown in listings 5, 6, and 7. We
highlight this task not because of its result, but because the differences in the code are quite
small. Given the large differences in human performance, this surprised us.

We think these observations teach us two lessons. First, polyglot programming is not
a simple concept. Claims made in the literature about the practice being good or bad,
without corresponding data, should be re-considered empirically. For example, after reading
the linguistics literature on code switching, while we hypothesized the non-polyglot group
might do very well, our polyglot hybrid seemed to have about the same impact. The study
presented in this article is only a first step towards investigating the issue and we hope that
the experimental design we presented can be a building block in future study of the impact
of polyglot programming. Secondly, the polyglot group did quite poorly, despite the fact
that we tested a commonly known case of polyglot programming. This might indicate, if
our results are confirmed at scale and under more conditions, that a conditional polyglotism
might be reasonable in programming languages. As the polyglot group uses two distinct
languages and the hybrid group mixes languages while the last group stays within the same
language, it appears that the distance from the host language could have an impact on
results. This might suggest that switching between semantically and syntactically similar
languages might be easier than switching between different ones.

Differences between tasks overall are explained by the differences in difficulty of the tasks
and a learning effect. Task 3, presents a spike in times as it was the conceptually hardest
task. It required participants to create a complex logical expression, compared to the ones
for task 1 and 2, while most other tasks are what could be considered standard versions of
their respective database commands.

Limitations. Every empirical study has limitations and ours is no exception. The most
obvious to our pilot study is that it is a low sample size experiment on student programmers.
We certainly make no claims about generalization, as this is not the point of a pilot study.

P.M. Uesbeck and A. Stefik 1:7

That said, it is important to discuss limitations not just in this sense, because generalization
can mean many things, but also what limits must be overcome to get a generalized grasp of
polyglot in practice.

First, we think to really understand polyglot in the wild, we would need a combination
of measures to sort out the effects. For example, non-native English speakers writing code
in English might have different results that need to be considered. On this same line of
thinking, children learning to program, with various levels of understanding of their native
tongue, would likely have different impacts as well. Similarly, professional programmers, or
perhaps more specifically experts in polyglot programming in databases, might have different
effects still. From our perspective, we think it is important to test all of these different kinds
of people to sort out the facts over time.

Second, while we used a randomized controlled trial in a lab setting because our hybrid
approach does not exist in the field, it is important to recognize that effects from a lab
setting may not match those in practice, although in programming languages they sometimes
do. Just as one example, studies on syntax [16] seem to provide similar results to those
on compiler errors in the field [3], which Bradford-Hill would call "coherence." That said,
there is no panacea in empirical work. Rigorous data gathering over time, through multiple
techniques, is often what settles difficult research questions.

6 Conclusion

In this paper, we described a pilot experiment on the impact of code switching on software
development productivity, which was motivated by the prevalence of the practice in the
field. Findings in linguistic research suggest that there is a time cost to switching between
natural languages, but to our knowledge this is the first randomized controlled trial on the
topic for programming languages. We conducted a pilot study with three groups, exploring
alternative designs for database programming, including polyglot, non-polyglot, and a hybrid
approach. Our study was a small pilot designed to evaluate our methodology, so the results
are not conclusive. That said, they do appear to provide a hint that the syntactic and
semantic distance between embedded languages, amongst other factors, could impact human
productivity in practice.

References
1 Gartner Says Worldwide Software Market Grew 4.8 Percent in 2013. https://www.

gartner.com/newsroom/id/2696317. Accessed: 2018-06-02.
2 Polyglot Programming. http://nealford.com/memeagora/2006/12/05/Polyglot_

Programming.html. Accessed: 2018-04-25.
3 Amjad Altadmri and Neil C.C. Brown. 37 Million Compilations: Investigating Novice

Programming Mistakes in Large-Scale Student Data. In Proceedings of the 46th ACM
Technical Symposium on Computer Science Education, SIGCSE ’15, pages 522–527, New
York, NY, USA, 2015. ACM. doi:10.1145/2676723.2677258.

4 Brett A Becker. A new metric to quantify repeated compiler errors for novice programmers.
In Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer
Science Education, pages 296–301. ACM, 2016.

5 Teresa Busjahn, Roman Bednarik, Andrew Begel, Martha Crosby, James H Paterson,
Carsten Schulte, Bonita Sharif, and Sascha Tamm. Eye movements in code reading: Relax-
ing the linear order. In Program Comprehension (ICPC), 2015 IEEE 23rd International
Conference on, pages 255–265. IEEE, 2015.

PLATEAU 2018

https://www.gartner.com/newsroom/id/2696317
https://www.gartner.com/newsroom/id/2696317
http://nealford.com/memeagora/2006/12/05/Polyglot_Programming.html
http://nealford.com/memeagora/2006/12/05/Polyglot_Programming.html
http://dx.doi.org/10.1145/2676723.2677258

1:8 A Trial on the Impact of Polyglot Programming in a Database Context

6 Richard Doll and A Bradford Hill. Smoking and carcinoma of the lung. British medical
journal, 2(4682):739, 1950.

7 Hans-Christian Fjeldberg. Polyglot programming. a business perspective. PhD thesis, Mas-
ter thesis, Norwegian University of Science and Technology, 2008.

8 Roberto R Heredia and Jeanette Altarriba. Bilingual language mixing: Why do bilinguals
code-switch? Current Directions in Psychological Science, 10(5):164–168, 2001.

9 Michael Hoppe and Stefan Hanenberg. Do developers benefit from generic types?: an
empirical comparison of generic and raw types in java. In Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming Systems Languages
& Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October
26-31, 2013, pages 457–474. ACM, 2013. doi:10.1145/2509136.2509528.

10 Ping Li. Spoken word recognition of code-switched words by Chinese–English bilinguals.
Journal of memory and language, 35(6):757–774, 1996.

11 Philip Mayer and Alexander Bauer. An empirical analysis of the utilization of multiple
programming languages in open source projects. In Proceedings of the 19th International
Conference on Evaluation and Assessment in Software Engineering, page 4. ACM, 2015.

12 Bureau of Labor Statistics. Software Developers - Summary. https://www.bls.gov/ooh/
computer-and-information-technology/software-developers.htm. Accessed: 2018-
04-20.

13 Daniel J Olson. Bilingual language switching costs in auditory comprehension. Language,
Cognition and Neuroscience, 32(4):494–513, 2017.

14 Janet Siegmund, Norman Peitek, Chris Parnin, Sven Apel, Johannes Hofmeister, Chris-
tian Kästner, Andrew Begel, Anja Bethmann, and André Brechmann. Measuring neural
efficiency of program comprehension. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, pages 140–150. ACM, 2017.

15 Andreas Stefik, Bonita Sharif, Brad. A. Myers, and Stefan Hanenberg. Evidence About
Programmers for Programming Language Design (Dagstuhl Seminar 18061). Dagstuhl
Reports, 8(2):1–25, 2018. doi:10.4230/DagRep.8.2.1.

16 Andreas Stefik and Susanna Siebert. An Empirical Investigation into Programming Lan-
guage Syntax. Trans. Comput. Educ., 13(4):19:1–19:40, November 2013.

17 Jeffrey Stylos and Brad AMyers. The implications of method placement on API learnability.
In Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of
software engineering, pages 105–112. ACM, 2008.

18 KP Suresh. An overview of randomization techniques: an unbiased assessment of outcome
in clinical research. Journal of human reproductive sciences, 4(1):8, 2011.

19 Federico Tomassetti and Marco Torchiano. An empirical assessment of polyglot-ism in
GitHub. In Proceedings of the 18th International Conference on Evaluation and Assessment
in Software Engineering, page 17. ACM, 2014.

20 Arie Van Deursen, Paul Klint, and Joost Visser. Domain-specific languages: An annotated
bibliography. ACM Sigplan Notices, 35(6):26–36, 2000.

21 W Quin Yow, Jessica SH Tan, and Suzanne Flynn. Code-switching as a marker of linguistic
competence in bilingual children. Bilingualism: Language and Cognition, pages 1–16, 2017.

http://dx.doi.org/10.1145/2509136.2509528
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
http://dx.doi.org/10.4230/DagRep.8.2.1

Understanding Java Usability by Mining
GitHub Repositories
Mark J. Lemay
Boston University, Boston, MA, USA
lemay@bu.edu

Abstract
There is a need for better empirical methods in programming language design. This paper
addresses that need by demonstrating how, by observing publicly available Java source code, we
can infer usage and usability issues with the Java language. In this study, 1,746 GitHub projects
were analyzed and some basic usage facts are reported.

2012 ACM Subject Classification Human-centered computing → Empirical studies in HCI

Keywords and phrases programming languages, usability, data mining

Digital Object Identifier 10.4230/OASIcs.PLATEAU.2018.2

Acknowledgements Thanks to my advisor Hongwei Xi for the encouragement to publish this
research, the anonymous reviews who provided immense constructive feedback and to Stephanie
Savir for correcting numerous errors.

1 Introduction

What makes a good programming language? While nearly every programmer has an opinion
on what makes a programming language good, finding objective answers to this question is
hard. While theoretical studies, like those in type theory, are important for the future of
programming, theoretical properties like type safety and powerful constructs like dependent
types have made little impact on mainstream software engineering. Theory may be necessary
for “good” programming languages, but it is clearly not sufficient.

Another approach to measuring the “goodness” of languages comes from user studies.
These studies generally take real people and have them perform some specific task using
the language technology in question. While this approach has significantly improved some
aspects of the mainstream programming experience[2], and hinted at interesting ways to
develop a language[16] the scope of user studies is necessarily limited.

This paper proposes another way to measure the quality of programming languages: by
analyzing publicly available source code artifacts such as those available on GitHub1. This
approach alleviates many of the problems with user studies: very large samples are possible,
the contributors are more likely to be experienced developers and projects are frequently
large and realistic2. However, the data mining approach brings about new issues. We cannot
directly ask users about their experiences, so there must be additional interpretation. Are
programmers avoiding some features they find confusing and error prone? Or are they using
an inconvenient feature frequently because the language is forcing them to? Aside from

1 https://github.com/, GitHub is popular site for open source projects based on the git version control
system

2 This study includes popular libraries like spring-boot, guava, selenium, jenkins, junit and projects from
organizations such as Netflix, Oracle, Paypal, Facebook and Google.

© Mark J. Lemay;
licensed under Creative Commons License CC-BY

9th Workshop on Evaluation and Usability of Programming Languages and Tools (PLATEAU 2018).
Editors: Titus Barik, Joshua Sunshine, and Sarah Chasins; Article No. 2; pp. 2:1–2:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lemay@bu.edu
https://doi.org/10.4230/OASIcs.PLATEAU.2018.2
https://github.com/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

2:2 Java Usability by Mining GitHub Repositories

this, the programming language features we are interested in analyzing maybe underutilized
for reasons other than their inherent usability: there might be a lack of education or
features might be used indirectly through libraries. For instance, when observing the looping
constructs of Java we see that the do while loop is very unpopular. This may be because of a
lack of awareness of the future, rather then its inherent awkwardness. While conducting this
research I found obscure Java features I was unaware of. Underlying language paradigms can
also drastically change the usability of a feature. For instance, Haskell has no inherent notion
of state, so a primitive “while” construct would not make sense. Hopefully data mining
can provide a vastly different perspective from usability studies and theory that can help
independently inform programming language design.

In this paper I mined the 1,746 most popular Java projects from GitHub. From this
sample we can conclude a number of basic but novel facts about Java language usage. These
facts will then be used to draw conclusions about the usability of different Java features,
and suggest pain points that future languages should address. Additionally this paper
demonstrates a simple method for analyzing Java files through the Eclipse IDE’s parser3.

2 Methodology

Java is one of the most popular programming languages and it has a large ecosystem of
projects that can be analyzed. This makes Java a good candidate for data mining4. In
addition, the Eclipse IDE’s Java parser allows very precise information to be drawn from
even very malformed files. Java is a relatively conservative language and invests heavily in
backwards compatibility, so projects using very old versions of Java can be analyzed with
little ambiguity.

In this study, the top Java GitHub repositories determined by star count5 were selected
by the GitHub search API and downloaded using an archive link. The most popular projects
where chosen to avoid the many forks and copies of projects, and because it is likely that
popular projects are more widely used and maintained by experienced developers. Some
projects were randomly skipped over because of pagination issues with the search API6. Every
repository that was available had each of its Java files parsed by the Eclipse IDE’s parser
into a traversable AST with the parser’s best guess at partial type information. Because the
Eclipse parser is designed to work with malformed files, it avoids several the issues other data
mining projects have suffered from. This includes needing to know how to build the project,
needing to resolve the correct version of library dependencies, and needing to find the correct
version of the Java run time and Java language version (which is often not disclosed by build
tools). Feature usages were then queried and aggregated.

3 Results

1,746 projects containing a total of 614,816 .java files and 97,758,514 lines of code was
analyzed. The average Java file is 159 lines long.

3 https://www.eclipse.org/jdt/core/
4 I spent several years as a Java developer so I was experienced in the nuances of the language and the

ecosystem.
5 At the time of the download the most popular project had 37432 stars. The least popular project had
52 Stars.

6 Fewer than 2% of projects were skipped. More careful scripts could avoid most of this error, but there
will always be potential issues pulling data that is changing in real time while also respecting GitHub’s
rate limit.

https://www.eclipse.org/jdt/core/

M. J. Lemay 2:3

Table 1 Control flow constructs.

Construct Count/Filea Count

Return 6.2 3,825,353

If 4.7 2,878,814

Throw 0.74 455,898

Try 0.72 442,698

Catch Clause 0.64 396,475

For 0.52 317,699

Enhanced Forb 0.44 271,766

Break 0.38 230,681

While 0.18 111,966

Switch 0.11 72,995

Continue 0.078 48,136

Synchronized 0.061 37,436

Do While 0.016 9,948

Labeled 0.0072 4,415

a This assumes that the count is averaged over all
files in the sample, it is very likely some features
are clustered together in non uniform ways.

b Added in Java 5, this variant of for loop allows
collections to be traversed by element without
an index.

R
et
ur
n If

T
hr
ow Tr
y

C
at
ch
C
la
us
e

Fo
r

En
ha

nc
ed

Fo
r

B
re
ak

W
hi
le

Sw
itc

h
C
on

tin
ue

Sy
nc
hr
on

iz
ed

D
o
W

hi
le

La
be

le
d

0

1

2

3

4

5

6

Figure 1 Control flow constructs, by Count/-
File

3.1 The Java Language

3.1.1 Control flow constructs
Java allows for several control flow constructs such as for loops, switch statements, throw
and catch statements, and return statements. Table 1 shows the count of each construct
from every .java file in the sample.

return is essentially required for writing Java functions, unsurprisingly it sees the heaviest
usage.

for loops are by far the most popular looping construct. while loops are much less
popular, though still used. Language authors should consider not including do while loops,
since they seem to be avoided in practice. The obscure loop labeling construct that allows
specific breaking of nested loops should be avoided in future languages.

It is interesting how much more popular the if statement is then the switch statement.
Though, since if statements can be chained together to have switch like behavior, a direct
comparison is questionable. This turns out not to be an issue, 82% of if statements have
no else block, another 16% of if’s only have an else (with no directly nested if). switch
statements eventually become more popular than if else chains, but usages of either is rare.
This may mean that language authors should consider not including a switch construct, or
instead include a more powerful pattern matching construct like those in functional languages
like Haskell or Scala.

PLATEAU 2018

2:4 Java Usability by Mining GitHub Repositories

Table 2 Literal Usage.

Kind of Literal Count/File Count

Number 11.9 7,335,479

String 11.7 7,195,704

Null 3.4 2,098,983

Boolean 2.4 1,479,122

Character 0.35 214,443

N
um

be
r

St
rin

g

N
ul
l

B
oo

le
an

C
ha

ra
ct
er

0

5

10

Figure 2 Literal Usage, by Count/File.

3.1.2 Literals
Literals are special syntactic constructs that a programmer may put in their code (for instance
"hello world", ’c’ , and 7). Table 2 shows the count of each literal.

Developers rarely specify character literals. In fact, strings of length 1, occur 3 times as
often as character literals. Language designers should consider not having special syntax for
characters, instead relying on string syntax (as Python does).

The popular usage of null is interesting, and we will revisit this later.

3.1.3 Operators
Java does not allow operator overloading, so the 19 infix operators provided by the language
are the only infix operators available. Were they well chosen? Table 3 shows the count of
each operator.

Arithmetic and logic operators are very popular, but the bitwise operators are relatively
unpopular. This is weak evidence that x ^ y might have been better used as the math power
operator (instead of the rarely used XOR operator), though calls to java.lang.Math::pow
occur less frequently.

3.1.4 Nulls
It turns out that the popularity of the null literal and the == operator are related.

In fact, over half of all equality checks are really null checks. This explains 59% of the
null literals that occur in practice. Further inspection of null literals shows that 13% are
used in method invocations, 13% are directly assigned or used in a declaration, and 7% are
used in return statements. This weakly supports the popular idea that null references are a
broken programming feature [8] and justifies special syntax for null checks in Kotlin, and
the Maybe monad in Haskell.

3.2 The Java Standard Library

3.2.1 Most common method calls
Table 5 shows the most popular method call by name followed by the type that was most often
resolved at the call site (methods with different signatures but the same name were counted
the same for the sake of simplicity). The table shows that the collections libraries and string

M. J. Lemay 2:5

Table 3 Infix operator usage.

Operator Count/File Count

x == y 1.98 1,216,367

x + y 1.89 1,164,466

x != y 1.39 855,485

x < y 0.70 430,412

x && y 0.68 415,305

x * y 0.58 355,789

x - y 0.56 342,409

x || y 0.38 231,446

x > y 0.31 189,792

x / y 0.24 149,703

x & y 0.15 92,747

x >= y 0.15 90,951

x <= y 0.12 74,888

x ^ y 0.08 46,641

x <�< y 0.06 35,205

x | y 0.04 26,638

x % y 0.04 23,412

x >�> y 0.03 18,899

x >�>�> y 0.02 11,860

x
=
=

y
x
+

y
x
!=

y
x
<

y
x
&
&

y
x
*
y

x
-y

x
||
y

x
>

y
x
/
y

x
&

y
x
>
=

y
x
<
=

y
x
^y

0

0.5

1

1.5

2

Figure 3 Infix operator usage, by Count/File.

Table 4 null checks.

Operatora Count/File Count

x != null 1.03 634,786

x == null 0.99 609,510

x == y 0.99 606,857

x != y 0.36 220,699

a x == null and null == x where
counted the same.

x
!=

nu
ll

x
=
=

nu
ll

x
=
=

y

x
!=

y

0.4

0.6

0.8

1

Figure 4 null checks, by Count/File.

PLATEAU 2018

2:6 Java Usability by Mining GitHub Repositories

Table 5 standard library calls.

Method Count/File Count Most Common Example Count/File Count

append 0.67 412,426 java.lang.StringBuilder::append 0.57 347,825

get 0.52 320,393 java.util.List::get 0.17 105,124

add 0.48 294,697 java.util.List::add 0.28 173,803

put 0.34 208,357 java.util.Map::put 0.26 160,172

equals 0.3 187,119 java.lang.String::equals 0.21 130,928

size 0.27 163,659 java.util.List::size 0.16 100,976

toString 0.21 131,916 java.lang.StringBuilder::toString 0.08 48,729

println 0.18 110,867 java.io.PrintStream::println 0.15 90,464

length 0.11 70,160 java.lang.String::length 0.09 55,591

getName 0.11 68,646 java.lang.Class::getName 0.08 47,940

valueOf 0.1 64,421 java.lang.String::valueOf 0.03 21,129

hashCode 0.09 57,261 java.lang.String::hashCode 0.05 32,212

format 0.09 56,865 java.lang.String::format 0.08 46,710

isEmpty 0.08 51,011 java.util.List::isEmpty 0.03 19,546

contains 0.08 50,778 java.lang.String::contains 0.03 19,271

asList 0.08 47,444 java.util.Arrays::asList 0.08 47,432

getMessage 0.07 46,099 java.lang.Exception::getMessage 0.04 22,045

substring 0.06 38,717 java.lang.String::substring 0.06 38,071

next 0.06 36,884 java.util.Iterator::next 0.05 30,500

remove 0.06 35,878 java.util.Map::remove 0.01 7,849

operations make up a large fraction of method calls, and should be considered important
for languages and standard libraries. Efficient string composition should be prioritized in
future languages: optimizing string concatenation (with the + operator) would have made
Java programs that use the appending function more readable. Almost every listed standard
library call was more popular than >>>, the least popular infix operation.

4 Threats to Validity

There are some reasons to be concerned with this analysis
Most software development is proprietary, and the open source projects on GitHub may
be unrepresentative of non-open source projects.
The most popular open source Java projects may not be representative of open source
projects in general. For instance there was at least one satirical project in the sample7.

7 https://github.com/EnterpriseQualityCoding/FizzBuzzEnterpriseEdition

https://github.com/EnterpriseQualityCoding/FizzBuzzEnterpriseEdition

M. J. Lemay 2:7

Though it is frowned upon to check in generated code, it is still likely to happen in
practice. Generated code could cause a bias in favor of constructs produced by the
generation procedure.
Projects that themselves try to parse Java (like the IntelliJ IDE8) will often include
pathological test cases that contain extreme examples of Java syntax.
It is also possible that some unknown bias was introduced though the Eclipse parser.
Results should be compared against future versions of the parser.

5 Prior Work

There has been a large amount of work in mining software repositories[4]. While most of this
work has focused on answering questions unrelated to language usability, there have been
some studies worth mentioning.

5.1 Notable Java data mining projects

In [11], Java projects from the open source repository SourceForge were mined to analyze
3rd party library usage and migration. This paper improves on their methodology by
using the Eclipse parser, so projects can be analyzed in a reliable way without needing
build information.
[9] analyzed 22,730 artifacts in the maven package repository, to understand the landscape
of the Java library ecosystem. Since projects in the maven system are expected to be
used as libraries and require some basic level of quality to be accepted, this may not be a
representative sample of Java projects in general.
The Boa infrastructure[6] has the most similar methodology to this paper. It uses the
Eclipse parser to analyze a snapshot of all Java projects with full git histories and uses
Hadoop9 to quickly mine large numbers of projects. The Boa infrastructure also includes
the Boa programming language designed for non-expert computer users as in interface
to the data mining infrastructure and Eclipse parser. The language and snapshots are
made publicly available online10. In [7] the Boa infrastructure was used to analyze the
adoption of Java features before Java 8. While Boa has some clear improvements over
the methodology in this paper in terms of speed and sample size, only [7] dealt with
Java usability directly. This paper does improve on a few details: Boa’s latest publicly
available snapshots are from 2015 at the time of this writing, while the projects in this
paper were pulled in August 2018.

5.2 Other studies that address usability through data mining

There are several papers that have looked into usability of specific language features. There
has been extensive research into usage of Java’s exception handling mechanism[10, 13, 1, 15, 3].
Dikstra’s skepticism of the goto construct[5] has been empirically tested with 384 C files from
GitHub[12]. The usage of Scala’s implicit parameter feature was analyzed in 120 GitHub
projects to inform how to extend the feature[14].

8 https://github.com/JetBrains/intellij-community
9 https://hadoop.apache.org/
10 http://boa.cs.iastate.edu/boa

PLATEAU 2018

https://github.com/JetBrains/intellij-community
https://hadoop.apache.org/
http://boa.cs.iastate.edu/boa

2:8 Java Usability by Mining GitHub Repositories

5.3 Unpublished work from 2015
In unpublished work from 2015, I used a similar methodology to scan 1,970 GitHub repositories
to understand adoption of Java 8. At the time only 14% of the projects had observably
adopted Java 8 (by using one of Java 8 features). Of those projects, there was a noticeable
decrease in single method anonymous classes, the Java 7 feature that most closely resembled
the lambdas that appeared in Java 8. Lambdas were by far the most popular syntactic
construct introduced by Java 8.

6 Future Work

There are a number of interesting directions to take this research
Compare language usage across project types. There are many different uses for Java
in practice: Java is heavily used in web development, Java was the primarily supported
language for phone development under Android, and Java is used extensively for analytics
with projects like Hadoop. It is now much easier to categorize project types since GitHub
added “topics” in 201711. Topics are tags that are generated automatically via machine
learning12 to project repositories and then curated by the project owner. This would
offer a straightforward way to see how different kinds of projects use a language and its
standard library differently.
Reproduce the results of this paper under the Boa infrastructure. This would help increase
confidence in this study as well as making the methodology more reproducible.
Extend the analysis to different languages and paradigms. It would be interesting to see
how Java usage compares to Python. It would be very interesting to see if a functional
language like Haskell has similar usage.
Run a similar analysis on popular libraries. Popular libraries like the Apache Commons13
might give insight into features that should be incorporated into future standard libraries
out of the box. An analysis like this could be very helpful for the library authors as well.
Observe changes in usage over time. Since git keeps a record of a repositories history
it would be interesting to see if some features become more or less popular over time.
Do users upgrade to newer versions of the language and libraries? How quickly are new
features adopted?
Analyze the “real” types of literals such as strings. In Java strings are often used to
to represent specific languages like regular expressions, SQL, or English. Analyzing the
string literal usage would allow language designers to know when or if these languages
should be made into separate first class languages, or should be handled in the standard
library with string interpolation.
More analysis should be done into the usage of null in practice. Does it very by project
type? and has it become less popular over time? It would also be interesting to see how
frequently the notNull annotation is used.

7 Conclusion

Data mining has the potential to inform many aspects of future language and library design;
this paper barely scratches the surface. Hopefully, these techniques will suggest how future
languages should be designed to make programming a more productive, safe, and enjoyable
experience.

11 https://help.github.com/articles/about-topics/
12 https://githubengineering.com/topics/
13 https://commons.apache.org/

 https://help.github.com/articles/about-topics/
https://githubengineering.com/topics/
https://commons.apache.org/

M. J. Lemay 2:9

References
1 Muhammad Asaduzzaman, Muhammad Ahasanuzzaman, Chanchal K Roy, and Kevin A

Schneider. How developers use exception handling in Java? In Proceedings of the 13th
International Conference on Mining Software Repositories, pages 516–519. ACM, 2016.

2 Steven Clarke. Chapter 29. How Usable Are Your APIs? In Andy Oram and Gregn Wilson,
editors, Making software: What really works, and why we believe it. O’Reilly Media, Inc.,
2010.

3 Roberta Coelho, Lucas Almeida, Georgios Gousios, and Arie van Deursen. Unveiling excep-
tion handling bug hazards in Android based on GitHub and Google code issues. In Mining
Software Repositories (MSR), 2015 IEEE/ACM 12th Working Conference on, pages 134–
145. IEEE, 2015.

4 Valerio Cosentino, Javier Luis, and Jordi Cabot. Findings from GitHub: methods, datasets
and limitations. In Proceedings of the 13th International Conference on Mining Software
Repositories, pages 137–141. ACM, 2016.

5 Edsger W Dijkstra. Letters to the editor: go to statement considered harmful. Communi-
cations of the ACM, 11(3):147–148, 1968.

6 Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. Boa: A Language
and Infrastructure for Analyzing Ultra-Large-Scale Software Repositories. In Proceedings
of the 35th International Conference on Software Engineering, ICSE’13, pages 422–431,
2013.

7 Robert Dyer, Hridesh Rajan, Hoan Anh Nguyen, and Tien N Nguyen. Mining billions of
AST nodes to study actual and potential usage of Java language features. In Proceedings
of the 36th International Conference on Software Engineering, pages 779–790. ACM, 2014.

8 Tony Hoare. Null references: The billion dollar mistake. Presentation at QCon London,
298, 2009.

9 Vassilios Karakoidas, Dimitris Mitropoulos, Panos Louridas, Georgios Gousios, and Dio-
midis Spinellis. Generating the blueprints of the Java ecosystem. In Proceedings of the 12th
Working Conference on Mining Software Repositories, pages 510–513. IEEE Press, 2015.

10 Mary Beth Kery, Claire Le Goues, and Brad A Myers. Examining programmer practices
for locally handling exceptions. In Mining Software Repositories (MSR), 2016 IEEE/ACM
13th Working Conference on, pages 484–487. IEEE, 2016.

11 Ralf Lämmel, Ekaterina Pek, and Jürgen Starek. Large-scale, AST-based API-usage anal-
ysis of open-source Java projects. In Proceedings of the 2011 ACM Symposium on Applied
Computing, pages 1317–1324. ACM, 2011.

12 Meiyappan Nagappan, Romain Robbes, Yasutaka Kamei, Éric Tanter, Shane McIntosh,
Audris Mockus, and Ahmed E Hassan. An empirical study of goto in C code from GitHub
repositories. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pages 404–414. ACM, 2015.

13 Suman Nakshatri, Maithri Hegde, and Sahithi Thandra. Analysis of exception handling
patterns in Java projects: An empirical study. In Proceedings of the 13th International
Conference on Mining Software Repositories, pages 500–503. ACM, 2016.

14 Martin Odersky, Olivier Blanvillain, Fengyun Liu, Aggelos Biboudis, Heather Miller, and
Sandro Stucki. Simplicitly: foundations and applications of implicit function types. Pro-
ceedings of the ACM on Programming Languages, 2(POPL):42, 2017.

15 Demóstenes Sena, Roberta Coelho, Uirá Kulesza, and Rodrigo Bonifácio. Understanding
the exception handling strategies of Java libraries: An empirical study. In Proceedings of
the 13th International Conference on Mining Software Repositories, pages 212–222. ACM,
2016.

16 Andreas Stefik and Susanna Siebert. An empirical investigation into programming language
syntax. ACM Transactions on Computing Education (TOCE), 13(4):19, 2013.

PLATEAU 2018

Programming by Example: Efficient, but Not
“Helpful”
Mark Santolucito1

Yale University, USA
mark.santolucito@yale.edu

Drew Goldman
Roslyn High School, USA
dgoldman19@roslynschools.org

Allyson Weseley
Roslyn High School, USA
aweseley@roslynschools.org

Ruzica Piskac2

Yale University, USA
ruzica.pikac@yale.edu

Abstract
Programming by example (PBE) is a powerful programming paradigm based on example driven
synthesis. Users can provide examples, and a tool automatically constructs a program that
satisfies the examples. To investigate the impact of PBE on real-world users, we built a study
around StriSynth, a tool for shell scripting by example, and recruited 27 working IT professionals
to participate. In our study we asked the users to complete three tasks with StriSynth, and the
same three tasks with PowerShell, a traditional scripting language. We found that, although our
participants completed the tasks more quickly with StriSynth, they reported that they believed
PowerShell to be a more helpful tool.

2012 ACM Subject Classification Software and its engineering → Programming by example

Keywords and phrases user study, scripting, programming by example

Digital Object Identifier 10.4230/OASIcs.PLATEAU.2018.3

1 Introduction

Scripting languages, such as PowerShell and bash, help IT professionals to more efficiently
complete tedious and repetitive tasks. Those tasks can include file manipulations and
organizing data, where a simple error can destroy users’ data. As an example, consider the
disastrous attempt to remove all backup emacs files with the command rm * ∼. Additionally,
small errors in the scripts can lead to malicious behavior, such as data loss [24]. Scripts can
be difficult for users to write by hand, requiring users to have extensive experience with
regular expressions, programming and domain expertise in the scripting language of their
choice. Depending on the application, a user may need to be able to write a very complicated
regular expression for a relatively simple task. Furthermore, users may not have access to
their scripting language of choice, depending on the operating system and software policies
used by their employer.

1 This research sponsored by NSF grants CCF-1302327, CCF-1553168 and CCF-1715387.
2 This research sponsored by NSF grants CCF-1302327, CCF-1553168 and CCF-1715387.

© Mark Santolucito, Drew Goldman, Allyson Weseley, and Ruzica Piskac;
licensed under Creative Commons License CC-BY

9th Workshop on Evaluation and Usability of Programming Languages and Tools (PLATEAU 2018).
Editors: Titus Barik, Joshua Sunshine, and Sarah Chasins; Article No. 3; pp. 3:1–3:10

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mark.santolucito@yale.edu
mailto:dgoldman19@roslynschools.org
mailto:aweseley@roslynschools.org
mailto:ruzica.pikac@yale.edu
https://doi.org/10.4230/OASIcs.PLATEAU.2018.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

3:2 Programming by Example: Efficient, but Not “Helpful”

For these reasons, many end-users search for help on online forums when they need to
write a script [3, 2, 4]. When users seek help in writing a script on forums, they will often
provide a few illustrative examples that convey the goal of the script. This observation was the
basis of StriSynth [13], a research tool that was proposed to make scripting easier and more
efficient by allowing users to program scripts by example. While scripting is a challenging
task, especially for novice programmers, providing examples of the intended behavior is a
more natural interface for scripting. StriSynth supports various types of functions, such as
transformations, filters, partitions, and merging strings.

In this work, we explore how scripting by example, specifically with StriSynth, is received
by the real-world target end-users. We designed a user study around StriSynth and recruited
27 IT professionals to participate in the study. In our study we asked users to complete
three tasks with StriSynth, and the same three tasks with PowerShell, a traditional scripting
language. When using StriSynth, users were statistically significantly faster at completing
tasks as compared with PowerShell. However, in a post-study survey when users were asked
which tool they perceived to be more “helpful”, users statistically significantly reported that
PowerShell, with the traditional scripting paradigm, was more helpful. This was counter-
intuitive result, as we expected that a faster should be considered to be more helpful by
users. While the formal methods community has largely taken efficiency of task completion
to be an indicator of a good language design, we explore our results here that show this is in
fact a more complex issue.

2 Background

Programming by example (PBE) [6, 23, 26, 7] is a form of program synthesis. It works by
automatically generating programs that coincide with the given examples. In this way, the
examples can be seen as an incomplete, but easily readable and understandable specification.
However, even if the synthesized program satisfies all the provided examples, it might not
correspond to user’s intentions, due to this incompleteness in the specification. In this case,
a user must provide further examples to the synthesis tool.

To address this issue, StriSynth was implemented as a live programming environment [5]
for PBE. In this way, a synthesized script can be refined with every new provided example,
and thus yields more interactive experience for the user. Interactive PBE allows end-users
to provide a single example at a time, rather than guessing at the full example set that is
necessary for synthesis.

In order to compare the PBE paradigm to more traditional scripting languages, we
have chosen to use the tool StriSynth [13]. StriSynth is an existing tool for automating file
manipulation tasks, in a similar style to Flash Fill’s [1] synthesis of spreadsheet manipulations.
While the use of scripting language such as sed, awk, Bash or PowerShell requires a certain
level of expertise, many tasks can be easily described using natural language or through
examples.

2.1 StriSynth example

To give some context for how StriSynth compares to traditional scripting language paradigms,
we give an example task that can be easily completed with StriSynth. This task comes from
a StackOverflow post, where the users discuss challenging regular expressions [3]. The user
asked for a script that will create a link from every item in a directory. To better illustrate
the goal of the script, the user provided two examples transformations:

M. Santolucito, D. Goldman, A. Weseley, and R. Piskac 3:3

Document1.docx
Document2.docx 	 Document1

Document2

To accomplish this transformation, other users on the forum suggested a solution based
on regular expressions in sed:

sed/\(^[a-zA-Z0-9]+\)\.\([a-z]+\)/\<a href\=\’\1\.\2\’ \>\1\<\/a\>/g

While it was very easy for the user to express the goal of the script by providing examples,
the resulting script is arguably less readable, even for such a simple problem. In contrast, to
solve this problem in StriSynth, a user provides an example showing what a script should do:

> NEW
> "f.docx" ==> "a"
> val F = TRANSFORM

The keyword NEW denotes the start for learning of a new script, after which the user
provides an example of the scripts desired behavior. Based on the provided example, StriSynth
learns a string transformer, and the user saves it with the next command. Every learned
function can be saved using the command val name = ... which creates a reference, name,
to the learned script. The user may then check how F works on different examples to confirm
the learned function is correct.

> F("Document1.docx")
Document1
> F("Document2.docx")
Document2

We observe that the learned transformer F is a function that exactly does what the user
asked initially. However, it only takes a single string as input, while the user wanted a script
that operates on a list of strings. To extend the learned transformer to work over a list, the
user can use the as map function.

> val finalScript = F as map

If a function G has a type signature G : T1 → T2, then applying the postfix operator as
map will result in G as map : List(T1)→ List(T2). With as map, the user creates the final
script which takes as input a list of file names and creates a list of HTML links.

Beyond the string transformation used above, StriSynth can also learn other types of
functions from examples. StriSynth supports a filter function that takes a list of strings as
input and removes some elements based on the filtering criterion. Similarly, StriSynth also
supports learning a partition function takes as input a list of strings, and divides them into
groups based on the partitioning criterion. Those groups are then returned as a list of lists
of strings. This functions can be used in any way by the user, but are particularly useful
for scripting tasks that require operations on certain types of files, or files matching some
naming pattern.

In addition, StriSynth can learn a reduce function that merges the elements in a list into
a single string. StriSynth’s split function does the opposite: it returns a list of strings from
the input string. These types of functions are especially useful for scripting tasks that apply
operations to collections of files.

PLATEAU 2018

3:4 Programming by Example: Efficient, but Not “Helpful”

3 Methodology

A recent survey of the key challenges facing formal methods cites the need for more user
studies, especially on real-world users [16]. To test the impact PBE on real users, we
recruited 27 IT professionals, all of whom were 18 years of age or older. All materials
for the study, as well as the raw data results from the study are available open source at
https://github.com/santolucito/StriSynthStudy.

Our study design consisted of four stages:
1. A tutorial on both PowerShell and StriSynth that introduced the paradigm and syntax
2. Complete three scripting tasks (Extract filenames from a directory listing, Move files

with *.png to imgs/, Printing pdfs from a list of various file types) in PowerShell
3. Complete the same three scripting tasks in StriSynth
4. A post-study survey

In the study, participants were told that they would be using the tools StriSynthA
and StriSynthB instead of StriSynth and PowerShell to avoid bias from participants’ prior
experience. The participants were randomly split into two groups, group A and group B,
where the two groups switched the order of steps 2 and 3 of the study to account for any
potential bias in earlier exposure to the tasks. Group A completed the tasks with PowerShell
first (N=12) and group B completed the tasks with StriSynth first (N=15). The entire study
generally took each participant 50 minutes, and the study was conducted in-person with a
researcher present. The scripting tasks were completed on the researcher’s laptop, which was
preloaded before each study with directories and files needed for the scripting tasks.

While each user was participating in the study, the researcher present recorded the overall
time that was used to complete each task. Following the completion of the six tasks, each
user was given a questionnaire. The questionnaire measured various responses: prior coding
experience, perceived helpfulness of each program as a whole, and perceived helpfulness of
each program for each specific task they completed.

4 Results

In this section we present the results of the user study described in Sec. 3. Overall, users
completed the tasks more quickly when using StriSynth as opposed to PowerShell. This is
good evidence that StriSynth is an efficient tool, especially as none of our users had used
StriSynth before this study, while some already had experience with PowerShell. However,
despite this concrete measure of efficiency for StriSynth, users said that they believe that
PowerShell is a more helpful tool.

4.1 Time to complete the user study tasks
To estimate the usefulness of the programming by example tool StriSynth, we recorded the
time it took for users to complete each task with both StriSynth and PowerShell. The results
are shown in Fig. 1. In addition, Fig. 1 also contains standard error, depicted with line bars.

In the case of the first task (extracting filenames), from in Fig. 1 the standard error bars
give us the intuition that true mean of the time it takes for overall population to complete
this task using PowerShell is between 170 and 210 seconds. The smaller the standard error,
the more likely is that we have achieved the exact, true value of the mean time, which it
takes for the entire population of IT professionals to complete the tasks.

We can see in Fig. 1 that overall the users took less time to complete the tasks with
StriSynth. However, our sample size was relatively small (N=27). Therefore, we wanted

https://github.com/santolucito/StriSynthStudy

M. Santolucito, D. Goldman, A. Weseley, and R. Piskac 3:5

Extract
Filenames

Move
Files

Printing
pdfs

Average over
all tasks

0

50

100

150

200
Se
co
nd

s
to

co
m
pl
et
e

PowerShell
StriSynth

Figure 1 The amount of the time each task took, as well as the average time over all tasks for
all users (N=27). The smaller bars indicate standard error.

to measure the confidence that our observations are reflective of the larger IT population
beyond our small sample size. To do this we ran a paired sample t-test [30].

When running the paired sample t-test, we are checking the null hypothesis that the
difference between the paired observations in the two samples is zero. Without going into
the details of statistical methods, we need to compute the p-value. Any p-value of less than
.05 is called statistically significant, indicating we have met a generally accepted threshold of
confidence in our results [30].

By running these tests on our samples, we learn that a statistically significant difference
was found in the Move Files (p = .03) and Printing pdfs (p = .02) tasks. The p-value of .03
means that, assuming StriSynth does not actually have any impact on time to complete the
Move Files task, there is only a 3% chance that we could have observed the timing difference
between StriSynth and PowerShell (or even some larger difference) presented Fig. 1. In other
words, using StriSynth does actually have the impact on time to complete the task.

All together, our results support the claim that, for small scripting tasks of the type we
presented to our users, PBE can be a more efficient programming paradigm.

4.2 Reported helpfulness
At the end of the study we asked users to report how “helpful” they found both StriSynth and
PowerShell. At this point, users did not know how long they took to complete the tasks with
each of the tools. Users were asked the rate the helpfulness only based on their experience of
using the tools during the study. The exact questions asked were “The following program was
helpful for scripting/completing Extract Filenames/etc...”, and users were asked to respond
on a scale from 1 (strongly disagree) - 7 (strongly agree). We show the results from this
survey question in Fig. 2, again with standard error bars. Users rated PowerShell as more
helpful in all three tasks, with the Move Files task showing the most significant difference
(p < .01).

PLATEAU 2018

3:6 Programming by Example: Efficient, but Not “Helpful”

Extract
Filenames

Move
Files

Printing
pdfs

Overall
rating

1

2

3

4

5

6

7

H
el
pf
un

es
s
ra
tin

g

PowerShell
StriSynth

Figure 2 Users’ (N=27) self reported measure of the helpfulness of each tool with standard error
bars.

The results in Fig. 2 show the surprising insight that, despite the efficiency of StriSynth as
demonstrated in Fig. 1, users perceived PowerShell to be the more helpful tool. Unfortunately,
as we did not anticipate such unexpected results, our study design did not include a more
detailed definition of helpfulness, or ask users to give a more detailed description of their
interpretation of what it means for a tool to be helpful. We can however, at least surmise
that efficiency is not a complete proxy measure for helpfulness.

4.3 Impact of prior user experience
Our study asked users to self-report their prior experience with scripting languages in a
post-study survey. The survey used a seven-point Likert scale for users assess the experience.
Fig. 3 shows the distribution of experience in three categories for all users.

To understand the impact of prior experience on how the users interacted with StriSynth,
we split our user population into two categories. We have the inexperienced user group,
which is the users who rated their prior experience with PowerShell as a 1 (unfamiliar), and
the complement set of users as the experienced user group, who rated their prior experience
with PowerShell as (≥ 2). In Fig. 4, we show how these two groups performed in the study.

Fig. 4 shows that both groups of users completed the tasks faster with StriSynth. A more
subtle and interesting insight is that inexperienced users had a greater relative speedup in
task completion when using StriSynth. That is, inexperienced users benefited more from
using StriSynth as compared to the benefit to experienced users. This provides evidence
for the widely stated perception that programming by example is a domain well-suited for
novice programmers.

4.4 Threats to Validity
In a usability study, it is important to avoid any possible selection bias in the call for
participants. Selection bias can be an issue if the set of users selected systematically differs

M. Santolucito, D. Goldman, A. Weseley, and R. Piskac 3:7

1 2 3 4 5 6 7
0

5

10

PowerShell
Experience

#
of

Pa
rt
ic
pa

nt
s

1 2 3 4 5 6 7
0

5

10

Bash
Experience

#
of

Pa
rt
ic
pa

nt
s

1 2 3 4 5 6 7
0

5

10

Other scripting
Experience

#
of

Pa
rt
ic
pa

nt
s

Figure 3 Users’ (N=27) self reported prior experience with various scripting languages from 1
(Unfamiliar) to 7 (Expert User).

from the target population. The results we have presented are from a set of users that work
as professional IT support specialists. We do not believe that we have any selection bias here
because in this work, we specifically wanted to explore the impact synthesis can have in the
real-world on such professionals.

A further potential threat to the validity of our results is in the social desirability bias,
or need-to-please phenomena, whereby users will subconsciously try to produce the results
they expect the researcher would like to see. This potential bias can occur when users are
asked to compare a tool that is a known standard with an alternative that the user knows
to be developed by the researcher. To do combat this issue, we presented StriSynth and
PowerShell as tools named StriSynthA and StriSynthB. In this way, we framed the study as
a comparison between two different tools that we had developed, eliminating the potential
need-to-please bias. This was a critical component to our study design that allowed us to
observe the disconnect between efficiency and users’ perceived helpfulness of each tool.

5 Application to Related Work

The results from our user study are specifically targeted at the impact of programming by
example systems for scripting in IT professional populations. We discuss here how our results
can be interpreted and extended to other PBE domains.

Gulwani et al. [12] show that PBE is an effective paradigm for industrial application in
spreadsheet manipulation, such as string transformations [1, 10, 9], table transformations [11]
and database look-ups [28]. Another approach is based on the abstraction of ’topes’ [27],
which lets users create abstractions for different data present in a spreadsheet. With topes, a
programmer uses a GUI to define constraints on the data, and to generate a context-free
grammar that is used to validate and reformat the data. These application domains of PBE
are focused on a similar population of non-expert programmers, and so it may be possible to
observe a similar efficiency vs helpfulness phenomena.

Unlike programming by example, in which the user provides input-output examples,
programming by demonstration is characterized by the user providing a complete trace
demonstration leading from the initial to the final state. There are several programming
by demonstration systems [6], such as Simultaneous Editing [25] for string manipulation,
SMARTedit [22] for text manipulation and Wrangler [17] for table transformations. As
programming by demonstration requires intermediate configurations instead of just input and

PLATEAU 2018

3:8 Programming by Example: Efficient, but Not “Helpful”

Experienced Inexperienced
0

50

100

150

200

250

Se
co
nd

s
to

co
m
pl
et
e

Experienced Inexperienced
1

2

3

4

5

6

7

H
el
pf
un

es
s
ra
tin

g

PowerShell
StriSynth

Figure 4 We grouped users as Experienced (PowerShell experience≥2, N=17) and Inexperienced
(PowerShell experience=1, N=10). We report average time to complete the tasks, and self reported
helpfulness of the tools, as separated by these two groups.

output examples, this paradigm is usually less flexible [21] than programming by example,
but the synthesis problem is easier. Based on our results here, it is possible that this reduced
flexibility may indicate users would rate programming by demonstration even less helpful
(but possible more efficient) than PBE in certain domains.

The Myth [26] and Λ2 [7] systems support PBE for inductively defined data-types in
functional languages. In contrast to StriSynth which focuses on scripting tasks, these tools
are focused on synthesis for more general purpose programming languages. The results from
our study may be cautiously extrapolated other domains - while the theme of PBE is the
same, interaction preference for users may differ when looking at general purpose languages.

Instead of providing specification in terms of examples or demonstrations, specification can
also be given in more formal and complete ways. InSynth [15, 14], CodeHint [8] and the C#
code snippets on demand [31] are systems that aim to provide code snippets based on context
such as the inferred type or the surrounding comments. Leon [20] and Comfusy [19, 18]
synthesize code snippets based on complete specifications, which are written in the same
language that is used for programming. Sketch [29] takes as input an incomplete program
with holes, and synthesizes code to complete the so that it meets the specification. These
techniques provide a more nuanced interface that may seem, from a perspective of helpfulness,
to be more similar to a traditional language paradigm.

6 Conclusions

Our study shows that users do not always correlate an efficient programming language with
a helpful language. A more thorough exploration of this finding requires a follow up study, in
particular to discover the definition of helpfulness that participants are using. A key question
to answer would be whether users had erroneously perceived PowerShell to be more efficient
and therefore helpful, or if users consciously have other metrics in mind that constitute the
helpfulness of language. One intuitive interpretation may be tied to the interface style of the

M. Santolucito, D. Goldman, A. Weseley, and R. Piskac 3:9

paradigm - StriSynth and other PBE tools are generally limited in their ability to directly
work with a traditional programming language and use familiar concepts such as variables
and loops. This may seem to make for a less helpful language for new users.

References
1 Flash Fill (Microsoft Excel 2013 feature). URL: http://research.microsoft.com/users/

sumitg/flashfill.html.
2 Stack Overflow: Auto increment a variable in regex. http://goo.gl/GPuZP3. Accessed:

2015-03-25.
3 Stack Overflow: What is the most difficult/challenging regular expression you have ever

written? http://goo.gl/LLJe0r. Accessed: 2015-03-24.
4 Super User: How to batch combine jpeg’s from folders into pdf’s? http://goo.gl/LnGYH7.

Accessed: 2015-05-13.
5 Sebastian Burckhardt, Manuel Fähndrich, Peli de Halleux, Sean McDirmid, Michal Moskal,

Nikolai Tillmann, and Jun Kato. It’s alive! Continuous feedback in UI programming. In
PLDI, 2013. doi:10.1145/2491956.2462170.

6 A. Cypher and D.C. Halbert. Watch what I Do: Programming by Demonstration. MIT
Press, 1993.

7 John Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing Data Structure Transformations
from Input-Output Examples. In PLDI, 2015.

8 Joel Galenson, Philip Reames, Rastislav Bodík, Björn Hartmann, and Koushik Sen.
CodeHint: dynamic and interactive synthesis of code snippets. In ICSE, 2014. doi:
10.1145/2568225.2568250.

9 Sumit Gulwani. Automating string processing in spreadsheets using input-output examples.
In POPL, 2011. doi:10.1145/1926385.1926423.

10 Sumit Gulwani. Synthesis from Examples. WAMBSE (Workshop on Advances in Model-
Based Software Engineering) Special Issue, Infosys Labs Briefings, 10(2), 2012. Invited talk
paper.

11 Sumit Gulwani. Synthesis from Examples: Interaction Models and Algorithms. In SYNASC,
2012. doi:10.1109/SYNASC.2012.69.

12 Sumit Gulwani, William R. Harris, and Rishabh Singh. Spreadsheet data manipulation
using examples. Commun. ACM, 55(8), 2012. doi:10.1145/2240236.2240260.

13 Sumit Gulwani, Mikael Mayer, Filip Niksic, and Ruzica Piskac. StriSynth: Synthesis for
Live Programming. In ICSE, 2015.

14 Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. Complete completion using
types and weights. In PLDI, 2013. doi:10.1145/2491956.2462192.

15 Tihomir Gvero, Viktor Kuncak, and Ruzica Piskac. Interactive Synthesis of Code Snippets.
In CAV, 2011. doi:10.1007/978-3-642-22110-1_33.

16 Reiner Hähnle and Marieke Huisman. 24 Challenges in Deductive Software Verification.
In Giles Reger and Dmitriy Traytel, editors, ARCADE 2017. 1st International Workshop
on Automated Reasoning: Challenges, Applications, Directions, Exemplary Achievements,
volume 51 of EPiC Series in Computing. EasyChair, 2017. doi:10.29007/j2cm.

17 Sean Kandel, Andreas Paepcke, Joseph M. Hellerstein, and Jeffrey Heer. Wrangler: in-
teractive visual specification of data transformation scripts. In CHI, 2011. doi:10.1145/
1978942.1979444.

18 Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter. Comfusy: A Tool for
Complete Functional Synthesis. In CAV, 2010. doi:10.1007/978-3-642-14295-6_38.

19 Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter. Complete functional
synthesis. In PLDI, 2010. doi:10.1145/1806596.1806632.

PLATEAU 2018

http://research.microsoft.com/users/sumitg/flashfill.html
http://research.microsoft.com/users/sumitg/flashfill.html
http://goo.gl/GPuZP3
http://goo.gl/LLJe0r
http://goo.gl/LnGYH7
http://dx.doi.org/10.1145/2491956.2462170
http://dx.doi.org/10.1145/2568225.2568250
http://dx.doi.org/10.1145/2568225.2568250
http://dx.doi.org/10.1145/1926385.1926423
http://dx.doi.org/10.1109/SYNASC.2012.69
http://dx.doi.org/10.1145/2240236.2240260
http://dx.doi.org/10.1145/2491956.2462192
http://dx.doi.org/10.1007/978-3-642-22110-1_33
http://dx.doi.org/10.29007/j2cm
http://dx.doi.org/10.1145/1978942.1979444
http://dx.doi.org/10.1145/1978942.1979444
http://dx.doi.org/10.1007/978-3-642-14295-6_38
http://dx.doi.org/10.1145/1806596.1806632

3:10 Programming by Example: Efficient, but Not “Helpful”

20 Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter. Software synthesis
procedures. Commun. ACM, 55(2), 2012. doi:10.1145/2076450.2076472.

21 Tessa Lau. Why Programming-By-Demonstration Systems Fail: Lessons Learned for Usable
AI. AI Magazine, 30(4), 2009. URL: http://www.aaai.org/ojs/index.php/aimagazine/
article/view/2262.

22 Tessa A. Lau, Pedro Domingos, and Daniel S. Weld. Learning programs from traces using
version space algebra. In K-CAP, 2003. doi:10.1145/945645.945654.

23 H. Lieberman. Your Wish Is My Command: Programming by Example. Morgan Kaufmann,
2001.

24 Karl Mazurak and Steve Zdancewic. ABash: Finding bugs in bash scripts. In In ACM
SIGPLAN Workshop on Programming Languages and Analysis for Security (PLAS), 2007.

25 Robert C. Miller and Brad A. Myers. Interactive Simultaneous Editing of Multiple Text
Regions. In USENIX, 2001. URL: http://www.usenix.org/publications/library/
proceedings/usenix01/miller.html.

26 Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed program synthesis.
In PLDI, 2015.

27 Christopher Scaffidi, Brad A. Myers, and Mary Shaw. Topes: reusable abstractions for
validating data. In ICSE, 2008. doi:10.1145/1368088.1368090.

28 Rishabh Singh and Sumit Gulwani. Learning Semantic String Transformations from Ex-
amples. PVLDB, 5(8), 2012. doi:10.14778/2212351.2212356.

29 Armando Solar-Lezama. Program Synthesis by Sketching. PhD thesis, UC Berkeley, 2008.
30 Ronald E Walpole, Raymond H Myers, Sharon L Myers, and Keying Ye. Probability and

statistics for engineers and scientists, volume 5. Macmillan New York, 1993.
31 Yi Wei, Youssef Hamadi, Sumit Gulwani, and Mukund Raghothaman. C# code snippets

on-demand, 2014. URL: http://codesnippet.research.microsoft.com.

http://dx.doi.org/10.1145/2076450.2076472
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2262
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2262
http://dx.doi.org/10.1145/945645.945654
http://www.usenix.org/publications/library/proceedings/usenix01/miller.html
http://www.usenix.org/publications/library/proceedings/usenix01/miller.html
http://dx.doi.org/10.1145/1368088.1368090
http://dx.doi.org/10.14778/2212351.2212356
http://codesnippet.research.microsoft.com

QDB: From Quantum Algorithms Towards Correct
Quantum Programs
Yipeng Huang1

Princeton University, USA
yipeng@cs.princeton.edu

https://orcid.org/0000-0003-3171-6901

Margaret Martonosi
Princeton University, USA
mrm@princeton.edu

Abstract
With the advent of small-scale prototype quantum computers, researchers can now code and run
quantum algorithms that were previously proposed but not fully implemented. In support of
this growing interest in quantum computing experimentation, programmers need new tools and
techniques to write and debug QC code. In this work, we implement a range of QC algorithms
and programs in order to discover what types of bugs occur and what defenses against those
bugs are possible in QC programs. We conduct our study by running small-sized QC programs
in QC simulators in order to replicate published results in QC implementations. Where possible,
we cross-validate results from programs written in different QC languages for the same problems
and inputs. Drawing on this experience, we provide a taxonomy for QC bugs, and we propose
QC language features that would aid in writing correct code.

2012 ACM Subject Classification Computer systems organization → Quantum computing

Keywords and phrases correctness, debugging

Digital Object Identifier 10.4230/OASIcs.PLATEAU.2018.4

1 Introduction

Quantum computing is reaching an inflection point. After years of work on both QC
algorithms and low-level QC devices, small but viable QC prototypes are now available to
run programs. These QC prototypes are increasing in size, with much research attention
being placed on improving their reliability and increasing the counts of qubits (quantum
bits), the fundamental building block for QC [11, 19, 31].

With small-scale machines available to run real code, a natural challenge lies in creating
correct and useful programs to run on them [3, 12]. Until recently, QC algorithms were
rarely programmed for actual execution, and therefore relatively little QC debugging has ever
occurred. Furthermore, QC debugging faces challenges beyond that of classical computing.
In particular, typical debugging approaches based on printing out variable values during
program execution do not easily apply to QC programs, because program states in QC
“collapse” to classical values when observed. Second, QC’s “no cloning rule” precludes us
from making a spare copy of variables to observe them elsewhere. Third, while we have
more freedom to observe states in QC simulations on classical computers, the massive state
spaces of QC executions limits this approach to small programs. Finally, even when limited
simulations are tractable, it can be difficult to interpret the simulation results.

1 This work is funded in part by EPiQC, an NSF Expedition in Computing, under grant 1730082

© Yipeng Huang and Margaret Martonosi;
licensed under Creative Commons License CC-BY

9th Workshop on Evaluation and Usability of Programming Languages and Tools (PLATEAU 2018).
Editors: Titus Barik, Joshua Sunshine, and Sarah Chasins; Article No. 4; pp. 4:1–4:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yipeng@cs.princeton.edu
https://orcid.org/0000-0003-3171-6901
mailto:mrm@princeton.edu
https://doi.org/10.4230/OASIcs.PLATEAU.2018.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

4:2 QDB: From Quantum Algorithms Towards Correct Quantum Programs

This paper surveys a range of QC algorithms and programs and offers a set of empirical
and experiential insights on today’s state-of-the-art in QC debugging. For three benchmarks
representing different application areas, we perform detailed debugging based on small-scale
simulations. For each, we give case studies of the types of bugs we found. Most importantly,
we use these experiences to assemble a set of “design patterns for QC programming” and
related best practices in QC debugging.

In particular, the contributions of this paper are as follows:
We specifically explore three major areas: quantum chemistry, integer factorization, and
database search. This is a broad spectrum of QC algorithms across not just application
domains, but also problem size and algorithm strategies. This allows us to point out
particular domain-specific challenges or opportunities.
Where available, we study the same algorithm implemented in different languages or
infrastructures. From this, we draw comparative insights regarding how programming
language or environment support can be useful in QC programming and debugging.
From these insights and experiences, we lay out a plan for debugging support in QC pro-
gramming environments to aid users in creating quantum code. These include assertions,
unit testing, code reuse, polymorphism, and QC-specific language types and syntax.

Overall, while QC programming has received significant prior attention and QC debugging
has received some as well, our work offers steps forward in its detailed and comparative
assessment across problem types and languages. We see our work offering useful insights for
QC programmers themselves, as well as language and system designers interested in building
next-generation compilers and debuggers.

2 Background on QC programming

First, we review the principles of quantum computing [14, 22, 23, 26], in order to understand
how writing correct quantum programs is different from classical programming.

2.1 Qubits, superpositions, and entanglement
The basic unit of information in QC is the qubit, which can take on values of |0〉 and |1〉 like
bits in classical computing, but can also be viewed as a probabilistic “superposition” between
the two values. Quantum computers can also “measure” the value of a qubit, forcing it to
collapse out of superposition into a classical value such as ‘0’ or ‘1’. Measurement disturbs
the values of variables in a quantum computer, so we cannot easily pause execution and
observe the values of qubits as a quantum program runs.

The state of individual qubits can be “entangled” together. For this reason, as more
qubits come into play in a quantum computer, the number of states that data can be in grows
exponentially. For example, a two-qubit system can take on the values |00〉 , |01〉 , |10〉 , |11〉,
along with superpositions among these values; furthermore, the two qubits can even be in a
state of entanglement where the two cannot be treated as independent pieces of information.
A three qubit system has potential superpositions of eight states, and so on. This exponential
growth of possible values underlies the power of QC.

As a result of this large number of possible states, running a quantum program in
simulation on a classical computer is costly. Naive simulation of a 20-qubit quantum
computer, for example, needs 220 or roughly one million floating point numbers just to store
the program state at any instant. For this reason, testing and debugging quantum programs
in simulation is only possible for toy-sized programs.

Y. Huang and M. Martonosi 4:3

U

q0

q1 C

q0

q1 B A

D
=

Figure 1 Decomposition of a simple QC program. Time flows left to right, showing sequences of
operations applied to qubits q0 and q1. The left program is a “controlled” arbitrary operation U ,
which means whether the operation U works on q1 is dependent on the value of q0. The left sequence
decomposes into the equivalent right sequence of more basic operations. The basic operations include
single-qubit “rotations” A through D that alter the probability distribution of qubit values. The
operations also include two two-qubit “CNOT” operations that flip a qubit (denoted ⊕) contingent
on the value of another qubit (denoted •) [26].

2.2 Quantum computer operations, programs, and a taxonomy for bugs
The process of quantum computing involves applying operations on qubits. We use diagrams
such as Figure 1 to represent sequences of quantum operations. Looking at Figure 1 we see
that quantum programs consist of three conceptual parts [8]:
1. Inputs to quantum algorithms include classical input parameters such as coefficients for

rotations A through D, and quantum initial values for qubits such as q0 and q1.
2. Operations, such as the specification of how a complex operation such as controlled

arbitrary operation U (Figure 1, left) decomposes into basic operations A through D and
CNOTs (Figure 1, right). Additionally, both basic and complex operations can be further
composed according to patterns such as iteration, recursion, and mirroring.

3. Outputs of quantum algorithms are the final classical measurement values of qubits such
as q0 and q1. Furthermore, any temporary variables used in the course of a program have
to be safely disentangled from the rest of the quantum state and discarded.

Bugs in quantum programs can crop up due to mistakes made in any of these three parts
of a QC program. We will give examples of each kind of bug along with how to prevent them,
using detailed case studies in the rest of this paper.

2.3 QC algorithm primitives, benchmarks, and open source frameworks
Given the rapid growth of QC infrastructure, we now have a chance to test a variety of
quantum algorithms written in many languages [18]. Many different quantum algorithms rely
on a handful of QC algorithm primitives to get speedups relative to classical algorithms [4, 24,
25]. Table 1 classifies canonical quantum algorithms according to their algorithm primitives,
and cites example implementations in different QC languages and tool chains.

This paper specifically focuses on program bugs and defenses in three areas: a quantum
chemistry problem that uses quantum phase estimation, integer factorization using Shor’s
order finding algorithm, and Grover’s database search algorithm.

Using programs written in the Scaffold language as a starting point [13], we compile
Scaffold code to OpenQASM, a QC assembly language [5]. Then, we simulate the programs
operation-by-operation in the QX simulator [15], in order to see their intermediate states and
outputs. We cross reference the programs’ results against implementations in other languages,
such as LIQUi|> [32], ProjectQ [10, 36] and Q# [37]. From this debugging experience we
identify possible bugs and defenses. Furthermore, we review the codes across languages to
understand the relative merits of different QC language features.

PLATEAU 2018

4:4 QDB: From Quantum Algorithms Towards Correct Quantum Programs

Table 1 Quantum algorithm primitives and open source benchmarks in open source tool chains.

Primitives Quantum algorithms Benchmark implementations

Entanglement
protocols

superdense coding /
quantum teleportation

Q# teleportation [37]
pyQuil teleportation [35]

Quantum
(random)
walks

tree traversal Scaffold / Quipper binary welded tree [6, 13, 39]
graph traversal Scaffold / Quipper triangle finding problem [6, 13, 39]
satisfiability Scaffold / Quipper Boolean formula [6, 13, 39]

Adiabatic
Ising spin model Scaffold / Q# adiabatic Ising model [13, 37]
quantum approximate
optimization algorithm

QISKit Aqua QAOA
pyQuil QAOA ansatz [35]

Variational
Quantum
Eigensolver

Hamiltonian simulation
QISKit Aqua quantum chemistry
Q# H2 simulation [37]
Rigetti Grove VQE [35]

Quantum
Fourier
Transform
(QFT)

phase estimation Scaffold / Quipper ground state estimation [6, 13, 39]
period finding Scaffold class number [13]
order finding Scaffold / ProjectQ / Q# Shor’s factoring [13, 36, 37]
hidden subgroup problem Quipper unique shortest vector [6, 39]
linear algebra Quipper quantum linear systems [6, 39]

Amplitude
amplification database search Scaffold square root [13]

ProjectQ / Q# Grover’s database search [36, 37]

3 Case study: Quantum chemistry

First, we discuss our experience building up and debugging a simple quantum chemistry
program. Quantum chemistry problems entail finding properties of molecules from theoretical
first principles [20, 27]. Researchers anticipate these will be the first applications for QC due
to the relatively few number of qubits they need to surpass classical computer algorithms.
Debugging these problems is distinctively challenging, due to the importance of getting a
large number of classical input parameters all correct, and because of the dearth of physically
meaningful intermediate states we can check in the course of algorithm execution.

3.1 Bug type 1: Incorrect classical input parameters
A key part of quantum chemistry programs is in correctly building up a “Hamiltonian”
subroutine that simulates inter-electron forces. The procedure for doing this was laid out in
detail by Whitfield [41]. We followed this procedure to create a subroutine for simulating
the hydrogen molecule, but we needed additional validation from several other sources to
get a bug-free subroutine [40]. These resources include raw chemistry data found in open
source repositories for the LIQUi|> framework2. The final parameters for actual operations
on qubits were validated against a follow-up paper [33] and an implementation in the
QISKit framework3. Because the procedure for preparing these quantum chemistry models
involves many steps and needs domain expertise, software packages such as OpenFermion
now automate this process [21]. Nonetheless, there is room for improvement in standardizing
input data formats to eliminate bugs in this process.

2 https://github.com/StationQ/Liquid/blob/master/Samples/h2_sto3g_4.dat
3 https://github.com/Qiskit/aqua/blob/master/test/H2-0.735.json

https://github.com/StationQ/Liquid/blob/master/Samples/h2_sto3g_4.dat
https://github.com/Qiskit/aqua/blob/master/test/H2-0.735.json

Y. Huang and M. Martonosi 4:5

Table 2 QC calculated energy for H2 (bond length = 73.48 pm) for different electron assignments.

Electron assignments QC calculated
energy (relative)Bonding Antibonding

↑ ↓ ↑ ↓
3rd excited state (E3) 0 0 1 1 -0.164

2nd excited state (E2) 0 1 1 0 -0.2171 0 0 1

1st excited state (E1) 0 1 0 1 -0.2441 0 1 0
Ground state (G) 1 1 0 0 -0.295

Once the Hamiltonian subroutine is built, we can use the model in a variety of quantum
algorithms spanning different primitives in Table 1. These include phase estimation (an
application of quantum Fourier transforms) [28], variational quantum eigensolvers [30], and
adiabatic algorithms [1]. In this paper, we use iterative phase estimation to find the ground
state energy of our H2 model, validating results published by Lanyon [17].

3.2 Bug type 2: Incorrect quantum initial values

The correct preparation of qubit initial values is important. Incorrect initial values would
cause the program to find solutions to different problems altogether. In this quantum
chemistry problem, the initial values control the locations of the two electrons in H2. As
shown in Table 2, we need the qubit assignment for finding the ground energy of H2, while
other assignments lead to results for other energy levels.

The symmetry of H2 allows us to perform a sanity check, to make sure the Hamiltonian
and the iterative phase estimation subroutines are working correctly. Though there are six
ways to assign two electrons to four locations, there are in fact only four distinct energy
levels, as shown in the experimental data. Checking that the two different ways to obtain E1
(and E2) give the same energy levels validates that the model correctly preserves symmetry.

3.3 Defense type 1: Assertions on algorithm preconditions

Given how important correct initial values are for all quantum algorithms, it is worthwhile
to explicitly check for these algorithm preconditions before continuing with execution or
simulation. What the preconditions should be depends on the type of algorithm. For example,
the phase estimation subroutine in this case study (along with other algorithms relying on
quantum Fourier transforms), expect inputs that are maximally in superposition among all
possible values. Likewise, “ancillary qubits” such as the inputs to the Hamiltonian subroutine
take on completely classical (integer) initial values. Lastly, quantum protocols often need to
start with entangled states. These required input states are among the few places in quantum
algorithms where we can check states for specific values. We can check these preconditions
by running or simulating programs up to the entry point of subroutines, and performing a
premature measurement to check for these anticipated states, finally restarting the program
knowing that execution is correct up to that point. Thus far, the Q# framework has the
most extensive support for precondition checking [37].

PLATEAU 2018

4:6 QDB: From Quantum Algorithms Towards Correct Quantum Programs

Table 3 Shor’s factorization algorithm subroutines [23, p. 25].

Program subroutine code Shared library code

Shor’s routine for factoring 15;
calculating powers of a number

controlled modular multiplication
controlled modular addition
controlled addition

quantum Fourier transform
controlled controlled rotation
controlled rotation
controlled swap
swap

3.4 Defense type 2: Assertions on algorithm progress

Unlike the other two case studies later in this paper, the debugging process for the quantum
chemistry benchmark is coarse-grained. That is because the Hamiltonian subroutine is a
monolithic block of code whose components do not have obvious expected outputs—its
components represent pair-wise electron interactions, and do not have inherent physical
meaning. So how do we debug this program? The preconditions in the last section make sure
the inputs to the algorithm are correct; the other observable state we have for debugging is
to check the behavior of the algorithm as a whole.

In this quantum chemistry program, we can check for two types of overall algorithm
behavior. One is the solution should converge to a steady value as finer Trotter time steps (a
kind of numerical approximation) are chosen; a lack of this type of convergence indicates
a bug in the Hamiltonian subroutine. The other algorithm behavior is when we vary the
precision of the phase estimation algorithm, the most significant bits of the measurement
output sequences should be the same—in other words, rounding the output of a high-precision
experiment should yield the same output as a lower-precision experiment. a lack of this
convergence indicates a bug in the iterative phase estimation subroutine. These checks for
expected algorithm progress also apply to other algorithms.

4 Case study: Shor’s algorithm for integer factorization

While our debugging strategy for quantum chemistry had to be coarse-grained, the debugging
process for Shor’s algorithm in this section allows us to look inside the program one subroutine
at a time, where we can compare the intermediate results against known expected values.

Shor’s factorization algorithm uses a quantum computer to factor a composite number
in polynomial time complexity, providing exponential speedup relative to the best known
classical algorithms [34]. We follow an example for an implementation that minimizes the
qubit cost [2], and replicate results for factoring 15, the simplest example [16] [26, p. 235].

4.1 Bug type 3: Incorrect operations and transformations

In order to correctly implement Shor’s algorithm we first have to build up the quantum
subroutines shown in Table 3. These basic subroutines can be tricky to get right. Take the
controlled rotation in Figure 1 as an example: Table 4 shows multiple ways to code the
decomposition of the controlled rotation, and small mistakes can lead to incorrect behavior.

Y. Huang and M. Martonosi 4:7

Table 4 Correct and incorrect code for rotation decomposition. Using the Scaffold language [13]
as an example, we code out the controlled operation U in Figure 1 where U is a rotation in just one
axis. Because only one axis is needed, we can drop either operation A or C, paying attention to the
sign on the angles. Reordering the lines of code or signs results in a rotation in the wrong direction.

Correct, operation A unneeded Correct, operation C unneeded Incorrect, angles flipped
Rz(q1,+angle/2); // C CNOT(q0,q1); Rz(q1,-angle/2);
CNOT(q0,q1); Rz(q1,-angle/2); // B CNOT(q0,q1);
Rz(q1,-angle/2); // B CNOT(q0,q1); Rz(q1,+angle/2);
CNOT(q0,q1); Rz(q1,+angle/2); // A CNOT(q0,q1);
Rz(q0,+angle/2); // D Rz(q0,+angle/2); // D Rz(q0,+angle/2); // D

Listing 1 Controlled adder subroutine using Fourier transform in the Scaffold language [13].
1// outputs a + b, where a is a ‘width ’ bit constant integer
2// b is an integer encoded on ‘width ’ qubits in Fourier space
3module cADD (
4const unsigned int c_width , // number of control qubits
5qbit ctrl0 , qbit ctrl1 , // control qubits
6const unsigned int width , const unsigned int a, qbit b[]
7) {
8for (int b_indx=width -1; b_indx >=0; b_indx --) {
9for (int a_indx=b_indx; a_indx >=0; a_indx --) {
10if ((a >> a_indx) & 1) { // shift out bits in constant a
11double angle = M_PI/pow(2,b_indx -a_indx); // rotation angle
12switch (c_width) {
13case 0: Rz (b[b_indx], angle); break;
14case 1: cRz (ctrl0 , b[b_indx], angle); break;
15case 2: ccRz (ctrl0 , ctrl1 , b[b_indx], angle); break;
16}}}}}

4.2 Defense type 3: Language support for subroutines / unit tests
An obvious defense against coding mistakes in basic subroutines is to use a library of shared
code. Doing so helps ensure program correctness by allowing programmers to exhaustively
validate small subroutines, in order to bootstrap larger subroutines. Unit testing is especially
important in QC as running or simulating large quantum programs is impossible for now.

An additional benefit is logically structured code allows compilers to select the best con-
crete implementation for the abstract functionality the programmer needs, based on hardware
constraints and input parameters [8]. For example, the most cost-efficient implementation for
modular exponentiation in Shor’s factorization algorithm depends on how many qubits are
available: the compiler can choose from minimum-qubit [2, 9, 38] or minimum-operation [29]
implementations for the arithmetic subroutines.

4.3 Bug type 4: Incorrect composition of operations using iteration
Once we have built our basic subroutines, a common pattern in quantum programs is to use
iterations to compose subroutines. Listing 1 shows the iteration code for a constant-value
adder, showing tricky places in lines 8 through 11 for bugs to crop up, including indexing
errors, bit shifting errors, endian confusion, and mistakes in rotation angles. In general this
type of iteration code is commonplace in programs that rely on quantum Fourier transforms.

PLATEAU 2018

4:8 QDB: From Quantum Algorithms Towards Correct Quantum Programs

Table 5 Correct classical input a and a−1 to Shor’s algorithm for factoring 15, using 7 as a guess.

k, the algorithm iteration 0 1 2 3 . . .
a = 72k

mod 15 7 4 1 1 . . .
a−1; a× a−1 ≡ 1 mod 15 13 4 1 1 . . .

4.4 Defense type 4: Language support for numerical data types

One way to defend against bugs in iteration code is to introduce QC data types for numbers,
providing greater abstraction than working with raw qubits. For example, ProjectQ has
quantum integer data types [36], while Q# [37] and Quipper [6, 39] offer both big endian
and little endian versions of subroutines involving iterations. These QC data types permit
useful operators (e.g., checking for equality) that help with debugging and writing assertions.

4.5 Bug type 5: Incorrect deallocation of qubits

Variable scoping is an important language feature in classical computing that ensures proper
data encapsulation. In QC, scoping is similarly important for temporary variables known
as “ancillary qubits.” Anything that happens to a subroutine’s ancillary qubits—such as
measurement, reinitialization, or lapsing into decoherence—may have unintended effects on
the subroutine’s outputs4. Because improper ancillary qubit deallocation can lead to wrong
results, it is important for subroutines to reverse their operations on their ancillary qubits,
so that they properly undo any entanglement between the ancillary and output qubits.

We can demonstrate a bug involving incorrect qubit deallocation, by deliberately making
a mistake while reversing operations in a subroutine. For example, Shor’s algorithm relies on
correct pairs modular inverse numbers as input parameters, such as those in Table 5. By
feeding an incorrect pair of inputs (e.g., replacing 13 with a 12), the algorithm proceeds to
possibly give us wrong output values, as shown in Table 6. At the same time, the mistake
prevents the modular multiplication operation from being properly reversed, which has the
effect of preventing the ancillary qubits from properly disentangling with other qubits, so
they fail to return to their initial values at the end of the algorithm.

4.6 Defense type 5: Assertions on algorithm postconditions

We can use postconditions at the end of algorithms to detect bugs that lead to incorrect
deallocation of ancillary qubits. Continuing with our example in Table 6, we see that the
cases where ancillary qubits collapse to anything other than zero correspond to cases where
the outputs are wrong. That is because the ancillary qubits remain improperly entangled
with the output qubits at the end of the algorithm. We can detect these buggy outputs by
asserting that ancillary qubits should always return to their initial values. The significance
of these observations is that when algorithms work correctly, we typically do not care to
measure the value of ancillary qubits as they do not contain information. But in buggy QC
algorithm implementations, they are useful side channels for debugging.

4 As an analogy in classical computing, it is as if accessing an out-of-scope variable can still affect program
state; while such behavior is unintuitive, it is a result of how entanglement works in QC.

Y. Huang and M. Martonosi 4:9

Table 6 Probability of measuring values of outputs and ancillary qubits of Shor’s algorithm, with
incorrect inputs (a−1 = 12 instead of 13 on first iteration). If the ancillary qubits collapse to zero
on measurement, the algorithm still succeeds, returning correct outputs of 0, 2, 4, 6 [26, p. 235].
However, the possibility of measuring non-zero for the ancillary qubits indicates a bug.

Probability Output measurement
0 1 2 3 4 5 6 7

Ancillary
0 1/8 0 1/8 0 1/8 0 1/8 0

qubit
2 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64

measurement
7 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64
8 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64

13 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64

Table 7 Grover’s amplitude amplification subroutine in two languages, showcasing QC-specific
language syntax for reversible computation (rows 2 & 6) and controlled operations (rows 3 & 5).

Scaffold (C syntax) [13] ProjectQ (Python syntax) [36]

1
int j;
qbit ancilla[n-1]; // scratch register
for(j=0; j<n-1; j++) PrepZ(ancilla[j],0);

reflection across
uniform superposition

2

// Hadamard on q
for(j=0; j<n; j++) H(q[j]);
// Phase flip on q = 0...0 so invert q
for(j=0; j<n; j++) X(q[j]);

with Compute(eng):
All(H) | q
All(X) | q

3

// Compute x[n-2] = q[0] and ... and q[n-1]
CCNOT(q[1], q[0], ancilla[0]);
for(j=1; j<n-1; j++)

CCNOT(ancilla[j-1], q[j+1], ancilla[j]);

with Control(eng, q[0:-1]):

4 // Phase flip Z if q=00...0
cZ(ancilla[n-2], q[n-1]);

Z | q[-1]

5

// Undo the local registers
for(j=n-2; j>0; j–)

CCNOT(ancilla[j-1], q[j+1], ancilla[j]);
CCNOT(q[1], q[0], ancilla[0]);

ProjectQ automatically
uncomputes control

6
// Restore q
for(j=0; j<n; j++) X(q[j]);
for(j=0; j<n; j++) H(q[j]);

Uncompute(eng)

5 Case study: Grover’s algorithm for database search

So far, we have presented defenses against bugs following two general strategies. One is
to use assertions to detect when and where the program has a bug. The other is to use
quantum-specific programming language features to prevent bugs altogether: these features
include support for subroutines and numerical types for quantum data. Here in this section,
we use the Grover’s benchmark to showcase two more language features for common QC
program patterns: reversible computation and controlled operations.

Grover’s search algorithm finds an entry that matches search criteria, among an input
data set of size N , with a time cost on the order of

√
N . That represents a polynomial

speedup relative to the linear time cost in a classical computer [7].
The Grover’s algorithm comprises three parts. First, the input qubits representing the

indices of the matching entries are put in a state of superposition, akin to querying all entries
at once. Second, the queries are put through a subroutine that checks for the search criteria.

PLATEAU 2018

4:10 QDB: From Quantum Algorithms Towards Correct Quantum Programs

In this case study, our criteria is to find the square root of a number in a Galois field of
two elements, a simple abstract algebra setting. Finally in the critical step, the amplitude
amplification algorithm primitive amplifies the index that matches the criteria while damping
out those that do not. The operations in this final step are prime examples of two QC
program patterns, reversible computation and controlled operations. We show in Table 7
how these code patterns are written in two languages, Scaffold [13] and ProjectQ [36].

5.1 Bug type 6: Incorrect composition of operations using mirroring
Section 4.5 discussed how bugs in deallocating ancillary qubits can happen due to bad
parameters. Here we see how bugs in deallocating ancillary qubits can happen due to
incorrect composition of operations following a mirroring pattern. For example, in Table 7,
the operations in rows 2 and 3 are respectively mirrored and undone in rows 6 and 5. These
lines of code need careful reversal of every loop and every operation.

5.2 Defense type 6: Language support for reversible computation
Syntax support for reversible computation, such as that in ProjectQ [36], automatically
mirrors and inverts sequences of operations, shortening code and reducing mistakes.

5.3 Bug type 7: Incorrect composition of operations using recursion
A common pattern in quantum programs involves performing operations (e.g., add), contingent
on a set of qubits known as control qubits. Without language support, this pattern needs
many lines of code and manual allocation of ancillary qubits. In the Scaffold code example
in Table 7, rows 3 and 5 are just computing the intersection of qubits q, with the help of
ancillary qubits initialized in row 1, in order to realize the controlled rotation operation in
row 4. Furthermore, quantum algorithms often need varying numbers of control qubits in
different parts of the algorithm, leading to replicated code from multiple versions of the same
subroutine differing only by the number of control qubits5.

5.4 Defense type 7: Language support for controlled operations
Language support for controlled operations (e.g, ProjectQ) shortens code, preventing mistakes.

6 Conclusion

For the first time, we have access to comprehensive and representative program benchmarks
for all major areas of quantum algorithms, implemented in multiple languages, along with
input datasets and outputs that are detailed enough to permit cross-validation. Using
our experience running and debugging these programs, we presented in this paper defense
strategies that facilitate writing bug-free QC code, summarized in Table 8. Successful
transplantation of these ideas from classical languages to QC languages can pave the way
towards correct and useful quantum programs.

5 An example appeared in the Shor’s case study Listing 1. The addition operation was contingent on
control qubits taken as parameters in lines 4 and 5. Depending on how many control qubits were needed,
the switch statement in lines 12 through 15 applied the correct operation.

Y. Huang and M. Martonosi 4:11

Table 8 Applicability of defense strategies (down) against location of QC program bugs (across).

input operations output
classical qubit basic iterate mirror recurse qubit
params. alloc. §4.1 §4.3 §5.1 §5.3 dealloc.
§3.1 §3.2 §4.5

QC
specific
lang.
features

unit testing §4.2 X X X X X X

data types §4.4 X

reverse comp. §5.2 X X X

controlled ops. §5.4 X X X

Assertion
checks

preconditions §3.3 X

algo progress §3.4 X X X X X X X

postconds. §4.6 X X X X X X X

References

1 R. Barends, A. Shabani, L. Lamata, J. Kelly, A. Mezzacapo, U. Las Heras, R. Babbush,
A. G. Fowler, B. Campbell, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey,
E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, P. J. J. O’Malley, C. Quin-
tana, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, E. Solano, H. Neven,
and John M. Martinis. Digitized adiabatic quantum computing with a superconducting
circuit. Nature, 534:222 EP–, June 2016. doi:10.1038/nature17658.

2 Stephane Beauregard. Circuit for Shor’s Algorithm Using 2N+3 Qubits. Quantum
Info. Comput., 3(2):175–185, March 2003. URL: http://dl.acm.org/citation.cfm?id=
2011517.2011525.

3 Frederic T. Chong, Diana Franklin, and Margaret Martonosi. Programming languages and
compiler design for realistic quantum hardware. Nature, 549:180 EP–, September 2017.
doi:10.1038/nature23459.

4 Patrick J. Coles, Stephan Eidenbenz, Scott Pakin, Adetokunbo Adedoyin, John Am-
brosiano, Petr M. Anisimov, William Casper, Gopinath Chennupati, Carleton Coffrin,
Hristo Djidjev, David Gunter, Satish Karra, Nathan Lemons, Shizeng Lin, Andrey Y.
Lokhov, Alexander Malyzhenkov, David Mascarenas, Susan M. Mniszewski, Balu Nadiga,
Dan O’Malley, Diane Oyen, Lakshman Prasad, Randy Roberts, Philip Romero, Nandak-
ishore Santhi, Nikolai Sinitsyn, Pieter Swart, Marc Vuffray, Jim Wendelberger, Boram
Yoon, Richard J. Zamora, and Wei Zhu. Quantum Algorithm Implementations for Begin-
ners. CoRR, abs/1804.03719, 2018. arXiv:1804.03719.

5 A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta. Open Quantum Assembly
Language. ArXiv e-prints, July 2017. arXiv:1707.03429.

6 Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît
Valiron. Quipper: A Scalable Quantum Programming Language. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’13, pages 333–342, New York, NY, USA, 2013. ACM. doi:10.1145/2491956.2462177.

7 Lov K Grover. From Schrödinger’s equation to the quantum search algorithm. Pramana,
56(2-3):333–348, 2001.

8 T. Häner, T. Hoefler, and M. Troyer. Using Hoare logic for quantum circuit optimization.
ArXiv e-prints, September 2018. arXiv:1810.00375.

9 Thomas Häner, Martin Roetteler, and Krysta M. Svore. Factoring Using 2N + 2 Qubits
with Toffoli Based Modular Multiplication. Quantum Info. Comput., 17(7-8):673–684, June
2017. URL: http://dl.acm.org/citation.cfm?id=3179553.3179560.

PLATEAU 2018

http://dx.doi.org/10.1038/nature17658
http://dl.acm.org/citation.cfm?id=2011517.2011525
http://dl.acm.org/citation.cfm?id=2011517.2011525
http://dx.doi.org/10.1038/nature23459
http://arxiv.org/abs/1804.03719
http://arxiv.org/abs/1707.03429
http://dx.doi.org/10.1145/2491956.2462177
http://arxiv.org/abs/1810.00375
http://dl.acm.org/citation.cfm?id=3179553.3179560

4:12 QDB: From Quantum Algorithms Towards Correct Quantum Programs

10 Thomas Häner, Damian S. Steiger, Mikhail Smelyanskiy, and Matthias Troyer. High Perfor-
mance Emulation of Quantum Circuits. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC ’16, pages 74:1–74:9,
Piscataway, NJ, USA, 2016. IEEE Press. URL: http://dl.acm.org/citation.cfm?id=
3014904.3015003.

11 Aram Harrow. Why Now is the Right Time to Study Quantum Computing. XRDS,
18(3):32–37, March 2012. doi:10.1145/2090276.2090288.

12 Thomas Häner, Damian S Steiger, Krysta Svore, and Matthias Troyer. A software method-
ology for compiling quantum programs. Quantum Science and Technology, 3(2):020501,
2018. URL: http://stacks.iop.org/2058-9565/3/i=2/a=020501.

13 Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, Frederic T.
Chong, and Margaret Martonosi. ScaffCC: A framework for compilation and analy-
sis of quantum computing programs. In Proceedings of the 11th ACM Conference on
Computing Frontiers, CF ’14, pages 1:1–1:10, New York, NY, USA, 2014. ACM. doi:
10.1145/2597917.2597939.

14 Phillip Kaye, Raymond Laflamme, and Michele Mosca. An Introduction to Quantum Com-
puting. Oxford University Press, Inc., New York, NY, USA, 2007.

15 N. Khammassi, I. Ashraf, X. Fu, C. G. Almudever, and K. Bertels. QX: A high-performance
quantum computer simulation platform. In Proceedings of the Conference on Design, Au-
tomation & Test in Europe, DATE ’17, pages 464–469, 3001 Leuven, Belgium, Belgium,
2017. European Design and Automation Association. URL: http://dl.acm.org/citation.
cfm?id=3130379.3130487.

16 B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri, D. F. V. James, A. Gilchrist,
and A. G. White. Experimental Demonstration of a Compiled Version of Shor’s Algorithm
with Quantum Entanglement. Phys. Rev. Lett., 99:250505, December 2007. doi:10.1103/
PhysRevLett.99.250505.

17 B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal,
J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G.
White. Towards quantum chemistry on a quantum computer. Nature Chemistry, 2:106
EP–, January 2010. doi:10.1038/nchem.483.

18 R. LaRose. Overview and Comparison of Gate Level Quantum Software Platforms. ArXiv
e-prints, July 2018. arXiv:1807.02500.

19 Norbert M. Linke, Dmitri Maslov, Martin Roetteler, Shantanu Debnath, Caroline Figgatt,
Kevin A. Landsman, Kenneth Wright, and Christopher Monroe. Experimental comparison
of two quantum computing architectures. Proceedings of the National Academy of Sciences,
114(13):3305–3310, 2017. doi:10.1073/pnas.1618020114.

20 S. McArdle, S. Endo, A. Aspuru-Guzik, S. Benjamin, and X. Yuan. Quantum computa-
tional chemistry. ArXiv e-prints, August 2018. arXiv:1808.10402.

21 J. R. McClean, I. D. Kivlichan, K. J. Sung, D. S. Steiger, Y. Cao, C. Dai, E. Schuyler
Fried, C. Gidney, B. Gimby, P. Gokhale, T. Häner, T. Hardikar, V. Havlíček, C. Huang,
J. Izaac, Z. Jiang, X. Liu, M. Neeley, T. O’Brien, I. Ozfidan, M. D. Radin, J. Romero,
N. Rubin, N. P. D. Sawaya, K. Setia, S. Sim, M. Steudtner, Q. Sun, W. Sun, F. Zhang, and
R. Babbush. OpenFermion: The Electronic Structure Package for Quantum Computers.
ArXiv e-prints, October 2017. arXiv:1710.07629.

22 N.D. Mermin. Quantum Computer Science: An Introduction. Cambridge University Press,
2007.

23 Tzvetan S. Metodi, Arvin I. Faruque, and Frederic T. Chong. Quantum Computing for
Computer Architects, Second Edition. Synthesis Lectures on Computer Architecture, 6(1):1–
203, 2011. doi:10.2200/S00331ED1V01Y201101CAC013.

http://dl.acm.org/citation.cfm?id=3014904.3015003
http://dl.acm.org/citation.cfm?id=3014904.3015003
http://dx.doi.org/10.1145/2090276.2090288
http://stacks.iop.org/2058-9565/3/i=2/a=020501
http://dx.doi.org/10.1145/2597917.2597939
http://dx.doi.org/10.1145/2597917.2597939
http://dl.acm.org/citation.cfm?id=3130379.3130487
http://dl.acm.org/citation.cfm?id=3130379.3130487
http://dx.doi.org/10.1103/PhysRevLett.99.250505
http://dx.doi.org/10.1103/PhysRevLett.99.250505
http://dx.doi.org/10.1038/nchem.483
http://arxiv.org/abs/1807.02500
http://dx.doi.org/10.1073/pnas.1618020114
http://arxiv.org/abs/1808.10402
http://arxiv.org/abs/1710.07629
http://dx.doi.org/10.2200/S00331ED1V01Y201101CAC013

Y. Huang and M. Martonosi 4:13

24 Ashley Montanaro. Quantum algorithms: an overview. npj Quantum Information, 2:15023,
2016.

25 Michele Mosca. Quantum algorithms. In Encyclopedia of Complexity and Systems Science,
pages 7088–7118. Springer, 2009.

26 Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, New York, NY, USA, 10th edition,
2011.

27 Jonathan Olson, Yudong Cao, Jonathan Romero, Peter Johnson, Pierre-Luc Dallaire-
Demers, Nicolas Sawaya, Prineha Narang, Ian Kivlichan, Michael Wasielewski, and Alán
Aspuru-Guzik. Quantum information and computation for chemistry. arXiv preprint
arXiv:1706.05413, 2017.

28 S. Patil, A. JavadiAbhari, C. Chiang, J. Heckey, M. Martonosi, and F. T. Chong. Char-
acterizing the performance effect of trials and rotations in applications that use Quantum
Phase Estimation. In 2014 IEEE International Symposium on Workload Characterization
(IISWC), pages 181–190, October 2014. doi:10.1109/IISWC.2014.6983057.

29 Archimedes Pavlidis and Dimitris Gizopoulos. Fast Quantum Modular Exponentiation
Architecture for Shor’s Factoring Algorithm. Quantum Info. Comput., 14:649–682, May
2014. URL: http://dl.acm.org/citation.cfm?id=2638682.2638690.

30 Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J.
Love, Alán Aspuru-Guzik, and Jeremy L. O’Brien. A variational eigenvalue solver on
a photonic quantum processor. Nature Communications, 5:4213 EP–, July 2014. doi:
10.1038/ncomms5213.

31 John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79, August
2018. doi:10.22331/q-2018-08-06-79.

32 M. Roetteler, K. M. Svore, D. Wecker, and N. Wiebe. Design automation for quantum
architectures. In Design, Automation Test in Europe Conference Exhibition (DATE), 2017,
pages 1312–1317, March 2017. doi:10.23919/DATE.2017.7927196.

33 Jacob T. Seeley, Martin J. Richard, and Peter J. Love. The Bravyi-Kitaev transforma-
tion for quantum computation of electronic structure. The Journal of Chemical Physics,
137(22):224109, 2012. doi:10.1063/1.4768229.

34 Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Log-
arithms on a Quantum Computer. SIAM J. Comput., 26(5):1484–1509, October 1997.
doi:10.1137/S0097539795293172.

35 R. S. Smith, M. J. Curtis, and W. J. Zeng. A Practical Quantum Instruction Set Architec-
ture. ArXiv e-prints, August 2016. arXiv:1608.03355.

36 Damian S. Steiger, Thomas Häner, and Matthias Troyer. ProjectQ: an open source soft-
ware framework for quantum computing. Quantum, 2:49, January 2018. doi:10.22331/
q-2018-01-31-49.

37 Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade, Bettina
Heim, Vadym Kliuchnikov, Mariia Mykhailova, Andres Paz, and Martin Roetteler. Q#:
Enabling Scalable Quantum Computing and Development with a High-level DSL. In Pro-
ceedings of the Real World Domain Specific Languages Workshop 2018, RWDSL2018, pages
7:1–7:10, New York, NY, USA, 2018. ACM. doi:10.1145/3183895.3183901.

38 Yasuhiro Takahashi and Noboru Kunihiro. A Quantum Circuit for Shor’s Factoring Algo-
rithm Using 2N + 2 Qubits. Quantum Info. Comput., 6(2):184–192, March 2006. URL:
http://dl.acm.org/citation.cfm?id=2011665.2011669.

39 Benoît Valiron, Neil J. Ross, Peter Selinger, D. Scott Alexander, and Jonathan M. Smith.
Programming the Quantum Future. Commun. ACM, 58(8):52–61, July 2015. doi:10.
1145/2699415.

PLATEAU 2018

http://dx.doi.org/10.1109/IISWC.2014.6983057
http://dl.acm.org/citation.cfm?id=2638682.2638690
http://dx.doi.org/10.1038/ncomms5213
http://dx.doi.org/10.1038/ncomms5213
http://dx.doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.23919/DATE.2017.7927196
http://dx.doi.org/10.1063/1.4768229
http://dx.doi.org/10.1137/S0097539795293172
http://arxiv.org/abs/1608.03355
http://dx.doi.org/10.22331/q-2018-01-31-49
http://dx.doi.org/10.22331/q-2018-01-31-49
http://dx.doi.org/10.1145/3183895.3183901
http://dl.acm.org/citation.cfm?id=2011665.2011669
http://dx.doi.org/10.1145/2699415
http://dx.doi.org/10.1145/2699415

4:14 QDB: From Quantum Algorithms Towards Correct Quantum Programs

40 Dave Wecker, Bela Bauer, Bryan K. Clark, Matthew B. Hastings, and Matthias Troyer.
Gate-count estimates for performing quantum chemistry on small quantum computers.
Phys. Rev. A, 90:022305, August 2014. doi:10.1103/PhysRevA.90.022305.

41 J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik. Simulation of electronic structure
Hamiltonians using quantum computers. Molecular Physics, 109:735–750, March 2011.
doi:10.1080/00268976.2011.552441.

http://dx.doi.org/10.1103/PhysRevA.90.022305
http://dx.doi.org/10.1080/00268976.2011.552441

Identifying Barriers to Adoption for Rust through
Online Discourse

Anna Zeng
Stanford University, USA

Will Crichton
Stanford University, USA

Abstract
Rust is a low-level programming language known for its unique approach to memory-safe systems
programming and for its steep learning curve. To understand what makes Rust difficult to adopt,
we surveyed the top Reddit and Hacker News posts and comments about Rust; from these online
discussions, we identified three hypotheses about Rust’s barriers to adoption. We found that
certain key features, idioms, and integration patterns were not easily accessible to new users.

2012 ACM Subject Classification Human-centered computing → Human computer interaction
(HCI)

Keywords and phrases rust, programming language usability

Digital Object Identifier 10.4230/OASIcs.PLATEAU.2018.5

1 Introduction

Rust is a new programming language designed to usher low-level programming into the
modern era. Rust uses strong type systems and functional programming to execute programs
efficiently while avoiding the many safety problems that plague C and C++. As an open-
source project with support from Mozilla, the Rust ecosystem has grown rapidly over the
last decade. Hundreds of companies deploy Rust in production, and thousands of developers
regularly use Rust in their projects. However, Rust has a notoriously steep learning curve. A
community survey in 2017 revealed that 25% of the people who tried Rust and dropped it felt
the language was “too intimidating, too hard to learn, or too complicated” [13]. Prominent
members of the Rust community have stated that Rust is supposed to be hard to learn:
“Rust has never claimed that it is something you can learn in half a week” [6]. Even still, the
learning curve is only one aspect of many (library support, tooling, compile times, etc. [9])
that influences the adoption of a programming language.

If Rust is hard to learn or use, the question becomes: how should its developers prioritize
language features to drive adoption, addressing the key challenges facing its current or
potential user base? A developer on the Rust compiler told us in an interview that these
decisions are usually made in an ad hoc way, based on the intuitions of the language developers
and occasional feedback from community members in a potpourri of online forums [14]. To
address this issue, we sought to understand the challenges of adopting Rust by analyzing
online discourse within the Rust community. We conducted a holistic survey of popular posts
and comment threads about Rust to identify beliefs of developers using Rust that highlight
ongoing issues in the practice of the language.

© Anna Zeng and Will Crichton;
licensed under Creative Commons License CC-BY

9th Workshop on Evaluation and Usability of Programming Languages and Tools (PLATEAU 2018).
Editors: Titus Barik, Joshua Sunshine, and Sarah Chasins; Article No. 5; pp. 5:1–5:6

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/OASIcs.PLATEAU.2018.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

5:2 Identifying Barriers to Adoption for Rust through Online Discourse

2 Methodology

Prior work on analyzing language adoption has focused on evaluating various languages
and tools through questionnaires, surveys, in-person interviews, and automated code base
analysis. For example, Meyerovich and Rabkin [9] combined all of the above to highlight
both empirical popularity trends as well as reported beliefs of developers about a wide range
of topics from types vs. tests to features vs. libraries. Christakis and Bird [2] used surveys
and interviews to understand the adoption of program analyzers, and Ray et al. [10] used
program analyzers to compare languages based on bugs detected in a large corpus of GitHub
repositories.

This study differs from previous work in two ways: First, we focused only on a single
language, Rust. While this focus potentially limits the generality of our insights, it allows us
to produce deeper insights via thorough consideration of the factors driving specifically Rust’s
adoption. Second, we performed a content analysis on the existing discourse on Rust rather
than creating a new survey. We observed that Rust is frequently written about on blogs, and
subsequently discussed online by the people developing Rust itself (henceforth referred to as
“Rust language developers”), by the people learning and using Rust (“Rust community”),
and by the broader tech community. In fact, a version of this ethnomethodological approach
[4] was already used by the Rust language developers to inform the Rust 2018 roadmap [12]
and also used to analyze other online communities like Mechanical Turk [7].

We gathered a corpus of articles and corresponding comments from Hacker News (HN), a
forum for general tech-centric discussions, and the /r/rust subreddit, a forum specifically
about Rust. We selected these two forums both because they are frequent hosts to discussions
about Rust and use upvote mechanisms to sort content. Upvotes act as a loose proxy for
what readers consider to be good contributions to the conversation or perspectives they
agree with, and have been shown to correlate with coarse notions of quality [11]. While
upvote-based filtering can reduce exposure to controversial opinions, given the vast amount
of possible content to read, we found it critical in improving the signal-to-noise ratio. To
select the final corpus, we filtered for HN articles with “Rust” in the title, and considered all
/r/rust articles. Then, we filtered for posts with at least 250/200 upvotes on HN/Reddit
respectively, a total of 424 posts. From there, we selected posts that we felt were most
relevant towards understanding user experiences in Rust, e.g. choosing “Three months of
Rust” and “Why I’m dropping Rust’ over “Announcing Rust 1.12”. This ad hoc filter was
not applied soundly or completely (we read as much as time permitted), so we do not claim
our survey is exhaustive. Our final corpus contains 50 posts, with corresponding comment
sections on both forums where applicable.

For each article, we performed a content analysis on both the document and at least the
top five comments by upvotes for each forum the article appeared on. Then we categorized
the articles (categories like “community”, “ergonomics”, “tooling”, “security”, etc.) and
looked for trends within each category, forming preliminary hypotheses about barriers to
adoption that were both novel and actionable to the Rust community. From the insights,
we formed hypotheses that help explain the experiences that users encounter in our corpus.
Concurrently, we interviewed three Rust language developers to help us contextualize our
findings and to understand prevailing attitudes towards Rust’s usability in the community.

3 Hypotheses

IHypothesis 1. Rust is primarily promoted for safety and speed; while those aspects matter to
users, the tooling around Rust is equally valuable, but its value is not as clearly communicated
by the language developers.

A. Zeng and W. Crichton 5:3

Potential users need to understand Rust’s features and goals in order to determine
whether to use it. The authoritative source of information on Rust is its official website,
https://rust-lang.org. On the front page and the FAQ, Rust is promoted as “a systems
programming language that runs blazingly fast, prevents segfaults, and guarantees thread
safety.” Laundry lists of language features including “zero-cost abstractions,” “pattern
matching,” and “type inference” are also provided. The standard library, the tooling, and
the ecosystem are all absent from this messaging [1].

To evaluate whether Rust users found the language useful for its claimed benefits, we
analyzed 12 experience reports (e.g. “Trying out Rust for Graphics Programming”) and 6
language comparisons (e.g. “Comparing Rust and Java”). Across the 18 articles, we counted
the reported pros/cons of Rust. The first and third most reported benefits of Rust were
elimination of runtime errors (7 articles) and data races (5 articles). Runtime errors include
both avoiding memory errors through Rust’s memory safety analyzer as well as avoiding
unhandled failures through sum types, e.g. Option<T>. This finding is consistent with Rust’s
messaging – users empirically self-report the utility of Rust’s safety guarantees.

By contrast, the second most reported benefit of Rust was Cargo, Rust’s build system
and dependency manager (6 articles). One article summarized the collective sentiment [8]:

Instead of having to invoke pkg-config by hand or with Autotools macros, wrangling
include paths for header files and library files, and basically depending on the user to
ensure that the correct versions of libraries are installed, you write a Cargo.toml file
which lists the names and versions of your dependencies. [...] It just works when you
cargo build.

The Rust language developers likely understand the importance of Rust’s tooling, being a
major part of the Rust 2017/18 roadmaps. However, because Rust’s promotional messaging
doesn’t clearly emphasize these features, this absence suggests a possible disconnect between
what the language developers and potential users consider the most important features of
Rust.

I Hypothesis 2. Complex pointer aliasing patterns are primarily implemented through
existing libraries built on unsafe code, but Rust users have a hard time discovering these
solutions.

To guarantee memory safety for low-level programs with direct access to memory, Rust
employs the “borrow checker”, a static analysis tool that prevents memory-unsafe operations,
e.g. returning a dangling pointer to a stack-allocated value. The borrow checker does not
permit mutable aliases, or holding two mutable pointers to the same piece of memory. Aliasing
patterns that violate this rule, like reference-counted pointers, can be implemented carefully
through Rust’s unsafe construct, often provided as libraries. However, this restriction is
often daunting to Rust novices because it disallows patterns that are easy to express in
other low-level languages, and it makes solutions difficult to find. Out of the 18 experience
reports and language comparisons, the complexity of the borrow checker was the second most
frequently mentioned complaint (only behind compiler version issues of stable vs. nightly).
For example, one user implementing a video codec found [5]:

Video codecs usually operate on planes and there you’d like to operate with different
chunks of the frame buffer (or plane) at the same time. Rust does not allow you to
mutably borrow parts of the same array even when it should be completely safe like
let mut a = &mut arr[0..pivot]; let mut b = &mut arr[pivot..];.

PLATEAU 2018

https://rust-lang.org

5:4 Identifying Barriers to Adoption for Rust through Online Discourse

Another user implementing a GUI framework found [3]:

For nanogui... each widget has a pointer to a parent and a vector of pointers to its
children. How does this concept map to Rust? There are several answers: 1. Use a
naive Vec<T> implementation. 2. Use Vec<*mut T>. 3. Use Vec<Rc<RefCell<T>>>.
4. Use C bindings. ... I have tried options 1 through 3 with several drawbacks, each
making them not fit for use. I’m currently looking at point 4 as my only remaining
option to use.

In both cases, Rust users encountered a particular memory access pattern (disjoint mutable
pointers to an array, widget trees with back pointers) that Rust disallowed. As with other
complex aliasing patterns like reference counting, the solution to these types of problems
is sufficiently complex that Rust users aren’t expected to implement it themselves, but
instead defer to external code. In both cases above, commenters pointed out standard library
functions (Vec::split_at_mut) and third-party libraries (petgraph) for solving these issues
respectively; however, the authors were not able to independently discover these solutions.
These experiences suggest that Rust needs better resources to help users identify common
aliasing patterns and understand what tools exist to solve those problems.

I Hypothesis 3. Although incremental migration of existing codebases into Rust seems
promising, Rust users aren’t pursuing this path because the cost of integrating Rust into a
different language ecosystem or toolchain is too great.

One important path to adoption of Rust is incremental migration, or gradually rewriting
components of a large software system from a host language (like C/C++) into Rust. Mozilla’s
initial motivation for Rust was to replace performance-critical parts of Firefox (Project Servo),
and others have begun exploring integrating with databases (Postgres) and operating systems
(Linux). However, the idea of incremental migration is almost entirely absent from the
discourse we studied. Only one of our 50 articles directly described experiences integrating
Rust into an existing system; most experience reports detailed new projects in Rust or
entire rewrites of existing projects. While lack of discourse doesn’t necessarily imply lack of
adoption, it still does not bode well for the path of incremental migration – issues out of
the public eye are unlikely to receive attention either from the Rust compiler developers in
prioritizing work, or from the Rust community in generating documentation and tooling.

A possible explanation is that the challenges of incremental migration of Rust may be
surmountable for larger teams, like those supporting Firefox, but are still too challenging
for most Rust users. Discussion of incremental migration in our corpus largely occurred
in scattered comments focused on describing challenges, not hailing great successes. For
example, a Servo developer described in an interview the challenges of bridging Rust, C++,
and Javascript in Firefox: the ease of accidentally invalidating a C++ reference when in
Rust, the challenge of managing macros across the language barriers, and the complexity of
tracking when each variable would be deallocated by which runtime [15].

Another example of a difficult challenge for most Rust users is working on Rust without
Cargo, a tool which reduces the overhead of starting (and maintaining) a new project
and reusing third-party Rust code. In low-level programming, build systems and package
management are traditionally relegated to a hodgepodge of tools like Make, Autotools,
CMake, and Apt; in contrast, the Rust community uses Cargo for both build process and
dependency management. While Cargo is not strictly required, all major libraries must be
built with Cargo. Developing Rust without Cargo means losing easy access to these libraries.
For example, Facebook’s Mononoke project, a rewrite of Mercurial in Rust, initially could

A. Zeng and W. Crichton 5:5

not use any packages outside the standard library due to integration requirements with
Facebook’s custom build system, which significantly slowed adoption of external libraries.
The lack of discourse around these issues suggest more resources should potentially be
dedicated to reducing these barriers to adoption for incremental migration into Rust.

4 Discussion

By applying an ethnomethodological approach to Rust’s online discourse, we identified
supporting evidence for three hypotheses about factors which meaningfully influence the
adoption of Rust. This methodology is neither fully precise nor conclusive, but it provides a
useful signal to direct further evaluation of these hypotheses. While online commenters are
not subject to the same level of rigor as peer-reviewed research, our experience suggests that
blog posts and forum threads still contain an enormous amount of collective wisdom that
is perhaps under-appreciated in academic literature. Much of the prior work has trended
towards precision through controlled experiments or breadth through surveys and code base
analyses. However, we believe that understanding these online communities can provide
valuable guidance to PL/HCI researchers seeking to address the key problems facing today’s
programmers.

To that end, one key question is this study’s replicability: could other researchers recreate
our results for Rust, or perform the same study on other programming languages? Due to
the time-consuming nature of manual content analysis, consistently filtering articles from
the larger corpus is important. Creating better filters would be simplified by looking at a
smaller domain of documents with more quantifiable filters, e.g. analyzing just experience
reports, or articles about security, or articles about language design decisions. Conversely,
studies that attempt to just categorize the discourse by identifying common topics can reduce
work done in later studies on any given category. Lastly, applying a consistent content
analysis methodology is challenging given the open-ended, free-form nature of synthesizing
connections in document surveys. Perhaps here the PL/HCI community could provide more
guidance on standard methodologies for ethnomethodological analyses.

The second question is the applicability of this study’s results: what further experiments
do our results suggest? We believe the logical next step is to develop surveys targeted towards
understanding the extent of the issues identified above. While usability surveys often resort
to generic questions like “where do you think Rust can improve?” (e.g. as in [13]), the
hypotheses above suggest more specific questions like:

How has your perception of Cargo’s value changed between starting with Rust and today?
What parts of Rust do you find most useful that you weren’t told about initially?
What are examples of times when you couldn’t solve an issue with the borrow checker
after several hours? If you eventually solved it, how did you solve it?
What factors influence your likelihood to adopt Rust into an existing non-Rust project?

Given feedback on these questions from the community, future work could explore controlled
experiments for more replicable identification of usability issues, as well as analyze how
insights gleaned from Rust can generalize to other programming language communities.

References
1 The Rust Programming Language. URL: https://www.rust-lang.org/en-US/.
2 Maria Christakis and Christian Bird. What developers want and need from program

analysis: an empirical study. In Automated Software Engineering (ASE), 2016 31st
IEEE/ACM International Conference on, pages 332–343. IEEE, 2016.

PLATEAU 2018

https://www.rust-lang.org/en-US/

5:6 Identifying Barriers to Adoption for Rust through Online Discourse

3 Michael de Lang. Why I’m dropping Rust, September 2016. URL: https://hackernoon.
com/why-im-dropping-rust-fd1c32986c88.

4 Harold Garfinkel. Studies in ethnomethodology. Prentice-Hall, 1967.
5 Kotsya. Rust: Not So Great for Codec Implementing, July 2017. URL: https://codecs.

multimedia.cx/2017/07/rust-not-so-great-for-codec-implementing/.
6 Manishearth. Rust severely disappoints me. Reddit, January 2017. URL: https://www.

reddit.com/r/rust/comments/5nl3fk/rust_severely_disappoints_me/.
7 David Martin, Benjamin V Hanrahan, Jacki O’Neill, and Neha Gupta. Being a turker. In

Proceedings of the 17th ACM conference on Computer supported cooperative work & social
computing, pages 224–235. ACM, 2014.

8 Federico Mena-Quintero. Rust things I miss in C, February 2018. URL: https://people.
gnome.org/~federico/blog/rust-things-i-miss-in-c.html.

9 Leo A Meyerovich and Ariel S Rabkin. Empirical analysis of programming language adop-
tion. ACM SIGPLAN Notices, 48(10):1–18, 2013.

10 Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. A large scale
study of programming languages and code quality in github. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering, pages
155–165. ACM, 2014.

11 Greg Stoddard. Popularity and quality in social news aggregators: A study of reddit and
hacker news. In Proceedings of the 24th international conference on world wide web, pages
815–818. ACM, 2015.

12 The Rust Core Team. Rust’s 2018 roadmap, March 2018. URL: https://blog.rust-lang.
org/2018/03/12/roadmap.html.

13 Jonathan Turner. Rust 2017 Survey Results, September 2017. URL: https://blog.
rust-lang.org/2017/09/05/Rust-2017-Survey-Results.html.

14 Anna Zeng, Will Crichton, and Niko Matsakis. Interview with Niko Matsakis, May 2018.
15 Anna Zeng and Josh Matthews. Interview with Josh Matthews, May 2018.

https://hackernoon.com/why-im-dropping-rust-fd1c32986c88
https://hackernoon.com/why-im-dropping-rust-fd1c32986c88
https://codecs.multimedia.cx/2017/07/rust-not-so-great-for-codec-implementing/
https://codecs.multimedia.cx/2017/07/rust-not-so-great-for-codec-implementing/
https://www.reddit.com/r/rust/comments/5nl3fk/rust_severely_disappoints_me/
https://www.reddit.com/r/rust/comments/5nl3fk/rust_severely_disappoints_me/
https://people.gnome.org/~federico/blog/rust-things-i-miss-in-c.html
https://people.gnome.org/~federico/blog/rust-things-i-miss-in-c.html
https://blog.rust-lang.org/2018/03/12/roadmap.html
https://blog.rust-lang.org/2018/03/12/roadmap.html
https://blog.rust-lang.org/2017/09/05/Rust-2017-Survey-Results.html
https://blog.rust-lang.org/2017/09/05/Rust-2017-Survey-Results.html

Observing the Uptake of a Language Change
Making Strings Immutable
Manuel Maarek
Heriot-Watt University, Edinburgh, Scotland, UK
m.maarek@hw.ac.uk

https://orcid.org/0000-0001-6233-6341

Abstract
To address security concerns, a major change was introduced to the OCaml language and compiler
which made strings immutable and introduced array of bytes as replacement for mutable strings.
The change is progressively being pushed so that ultimately strings will be immutable. We have
investigated the way OCaml package developers undertook the change. In this paper we report
on a preliminary observation of software code from the main OCaml package management system.
For this purpose we instrumented versions of the OCaml compiler to get precise information into
the uptake of safe strings.

2012 ACM Subject Classification Software and its engineering → Software evolution

Keywords and phrases software evolution, programming language evaluation, immutability, se-
cure programming

Digital Object Identifier 10.4230/OASIcs.PLATEAU.2018.6

1 Introduction

Following the LaFoSec study [6], a major change was introduced to the OCaml language
and compiler which splits the string data type into its now immutable version and a new
bytes data type representing arrays of bytes. The change is gradual and was initially made
in version 4.02.0 (see Table 1). The new immutable strings were available in the language
and standard library as well as the new array of bytes but the compiler would initially still
allow to mutate strings, issuing a warning to the developer. Immutable strings are now
default unless a specific option is set. In future versions of the compiler strings will only be
immutable.

The security rationale for the change was that any part of a code could alter a string value
it has access to regardless of encapsulation (e.g. string literals of the standard library could
be modified). The importance of the change and the fact the change is being carried out
gradually to retain backward compatibility during a period of time makes it an interesting
case to evaluate how developers perceive such changes and how they implement it within
their own development. As a starting point, we want to mechanically inspect the uptake
within developers’ codes. We have therefor developed versions of the compiler that observe
the uses of string, bytes, their associated operations, and the relevant compiler options. We
then run our observation compilers on openly accessible OCaml code. We chose to mine the
OCaml code that are provided through OCaml’s main package management system OPAM.
In this paper, we present the experiment setting and discuss our findings.

© Manuel Maarek;
licensed under Creative Commons License CC-BY

9th Workshop on Evaluation and Usability of Programming Languages and Tools (PLATEAU 2018).
Editors: Titus Barik, Joshua Sunshine, and Sarah Chasins; Article No. 6; pp. 6:1–6:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:m.maarek@hw.ac.uk
https://orcid.org/0000-0001-6233-6341
https://doi.org/10.4230/OASIcs.PLATEAU.2018.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

6:2 Observing the Uptake of a Language Change

Table 1 OCaml versions significant for string immutability.

OCaml version OPAM version Number of packages

Mutable strings 4.01.0 (2013-09) 1.1.2 (2014-06) 1382
Introduction of safe strings 4.02.0 (2014-08)
Last version of the 4.02 family 4.02.3 (2015-08) 1.2.1 (2015-03) 1699
Safe string as default 4.06.0 (2017-11)
Latest version 4.07.0 (2018-07) 1.2.2 (2015-04) 1921

Plan

In Section 2 we give more details about immutability, OCaml and LaFoSec which form the
context of this research. We present our experimental setting in Section 3 and the outcome
of our observations in Section 4. We finally conclude and discuss perspectives for this work
in Section 5.

2 Context

In this section we give the context to this research where we planned an observation of the
uptake of a security-induced change in the OCaml language.

2.1 Immutability

Mutability is a key feature of most programming language as it is a way for programmer to
represent the change of state of the system they develop. Some programming languages such
as functional languages prevent variable mutation, the state of the system is represented
by the arguments passed from operations to operations following the execution flows of the
program. An advantage of immutability is that it enables referential transparency which
means that a variable will always represent the same value within its scope: passing the
variable as argument to other operations or concurrent operations cannot modify its value. As
a result immutability is more secure as it brings certainty to the programmer. Mutability is a
source of vulnerability as the following CWEs (Common Weakness Enumeration) exemplify:
CWE-374: Passing Mutable Objects to an Untrusted Method1, CWE-471: Modification of
Assumed-Immutable Data (MAID)2. Immutability is increasingly available in programming
languages although immutability could cause usability challenges for developers used to
state-base programming paradigms [11, 3].

2.2 OCaml

OCaml3 is a functional language. While being a functional language, it offers some mutable
data structures and variable references. In OCaml, strings are mutable since the early
versions of the language. This design choice seems to have been made to allow for easy use
of strings as byte arrays where mutability is essential.

1 https://cwe.mitre.org/data/definitions/374.html
2 https://cwe.mitre.org/data/definitions/471.html
3 https://ocaml.org/

https://cwe.mitre.org/data/definitions/374.html
https://cwe.mitre.org/data/definitions/471.html
https://ocaml.org/

M. Maarek 6:3

OCaml is also a strongly typed programming which means that each expression is
associated to a unique type. Its inference system implemented with its type system in
the compiler, makes it unnecessary in most cases to annotate the source code with type
information.

2.3 LaFoSec study
The LaFoSec study [6] analysed the intrinsic security properties of functional languages and
OCaml in particular. It was preceded by a study on Java Security [5]. LaFoSec detailed the
features such as encapsulation which are essential for security development, and identified
ways in which they could be bypassed. It highlighted the security issue of immutable strings.
Let us consider the following example of a function returning the days of the week as strings
(using OCaml 4.01.0 version).
let weekday n =

match n with
| 1 -> " Monday "
| ...

val weekday : int -> string = <fun >
weekday 1
- : string = " Monday "

The string literal of the function could be changed by any piece of code executed outside of
the current module, e.g. by any code dynamically loaded.
let s = weekday 1; s.[0] <- ’F’; s.[1] <- ’r’; s.[2] <- ’i’;
weekday 1
- : string = " Friday "

To prevent such tempering, LaFoSec recommended to protect string literals by wrapping
them in a call to the String.copy function, which means that each call to weekday will issue
a new copy of the string literal. In addition, LaFoSec recommended to define an abstract
module wrapping strings and which only offers access operations that do not mutate strings.
These solutions were implemented in the secure XML validator prototype developed as part
of LaFoSec and presented in [4]. The issue the mutable strings could cause to the reliability
of higher level formal development is discussed in [1], highlighting that one can temper with
the output of a logical frameworks. And [2] is another example of a formal development
which required to rely on a custom string library for the system to retain security guarantees.

2.4 Change
The change introduced by the OCaml development team makes the values of the type string
immutable by default and introduce a new type bytes for byte arrays (distinguishing the
two common uses of strings). The change could imply additional operations and therefor a
performance cost when needing to use string operations on bytes values as discussed in [10].

The change means that the methods of the String module (of the standard library) which
were modifying strings in-place are now deprecated. When used, they raise a warning or
an error if the -safe-string option of the compiler is used. Here is an example of warning
issued by the 4.07.0 compiler when calling String.set.
String .set ;;
Warning 3: deprecated : Stdlib . String .set
Use Bytes.set instead .
- : bytes -> int -> char -> unit = <fun >

PLATEAU 2018

6:4 Observing the Uptake of a Language Change

Note that the String.set function, which remained for backward compatibility, is an now
alias to Bytes.set and expect as first argument a value of type bytes unless in unsafe mode.
Calling String.set with a value of type string raises by default a type error with OCaml
4.07.0 version (OCaml 4.02.3 version would allow it by default).

String .set " Monday ";;
Warning 3: deprecated : Stdlib . String .set
Use Bytes.set instead .
Error: This expression has type string but an expression was expected

of type bytes

The functions that are now deprecated following the change are String.set (which corresponds
to the s.[0] <- ’F’ syntax sugaring notation), String.create, String.copy, String.fill.
Note that unsafe_* variants of String methods existed and are still available. E.g.,
String.unsafe_get allows to access a character of a string by its index as String.get does,
but does it without runtime verification that the access is done within the boundaries of the
string (this is used for optimisation purposes).

3 Experimental Setup

Instrumented compilers

To observe the manner OCaml users have adopted the new immutable strings and its
mutable counterpart, we created variants of the OCaml compiler that records specific usage
information. These instrumented compilers record the compiling options, the occurrence
of expressions of type string and bytes, and the occurrence of calls to string and bytes
methods4.

Working within the compiler means that we have certainty about the information we
gather: type information has been inferred and checked by the compiler. An alternative
would have been to work at the source level where similar content could have different forms
(e.g. qualified forms vs. unqualified forms), where some information are not available (e.g.
type information, command line options), and noise needs to be filtered out (e.g. commented
code).

We developed three instrumented compilers (or observer compilers) for the OCaml
versions we listed in Table 1. We refer to the compiler for OCaml 4.01.0 version as 4.01.0
(resp. 4.02.3, 4.07.0) and to our instrumented compiler as 4.01.0+obs (resp. 4.02.3+obs,
4.07.0+obs). Note that the three versions of OCaml are not retrocompatible and therefore
require dedicated compilers.

OCaml being a compiled and strongly typed language, a compilation is necessary to
execute OCaml programs and the compilation process includes typing the program after
parsing and before code generation. The instrumentation we created are placed at the end of
the typing when a typed Abstract Syntax Tree (AST) of the program is available.

Note that our current instrumented compilers look for string/bytes expressions and
string/bytes methods without investing further the context of use or within the program
flows. We are considering making such finer grained investigation in later research.

4 Note that some of the information we collected could be obtained with the -annot option but would
have required additional processing.

M. Maarek 6:5

Code repository

We also decided to work within OCaml’s OPAM package management system5 as source
codes in such system come alongside compiling instructions. This means that we were able
to automate the process of gathering information about individual packages and files. While
using OPAM means that we could easily access compilation commands, it also implies that
the targeted audience are package developers who are more likely to be professionals or
experts rather than general users of OCaml.

OPAM makes it trivial to deploy such custom compiler and retaining the dependency of
packages of the original version.

Related work on code mining

A number of related works have been mining openly available code [9], or have investigated
version histories to observe change [12, 8], sometimes working on the AST rather than source
code [7].

4 Results of Observations

We identified packages that were available for each of the three versions of OCaml we wanted
to base our research on (see Table 1) highlighting stages of the gradual change. The number
of commonly available packages is 353. We have therefore used our observation versions
of the compilers to install these 353 packages as we were interested in seeing the changes
developer made since the introduction of immutable strings. Although we installed the same
packages for each compiler version, or more precisely the versions of the same packages that
corresponded to each compiler version, the number of files that were compiled successfully
varied depending of the version. Using the default compilers (4.01.0, 4.02.3, 4.07.0), some
compilations failed. This was in particular the case for 4.02.3 which could be explained
by the fact that 4.02 family saw a number of minor versions making packages maintenance
less effective. A package failing to compile meant that others could not be compiled due to
missing dependency. A small number of compilations which compiled successfully with the
default compiler failed or stalled with our instrumented compilers (4.01.0+obs, 4.02.3+obs,
4.07.0+obs). This was due to the instrumentation we designed with a compiler module to
iterate over the OCaml AST which would sometimes reach the stack limit. As Table 2 shows,
less files compiled successfully with version 4.02.3.

Table 2 Number of files compiled per version.

Version Number of packages installed successfully Number of files compiled successfully

4.01.0 212
4.01.0+obs 201 7211
4.02.3 46
4.02.3+obs 38 2253
4.07.0 224
4.07.0+obs 221 10032

5 https://opam.ocaml.org/

PLATEAU 2018

https://opam.ocaml.org/

6:6 Observing the Uptake of a Language Change

Use of unsafe string compiler option

We tracked the use of compiler options. This is only applicable to versions of the compiler
released after the change. The gradual transition meant that there was limited incentive for
the developers to use the safe compilation option in 4.02.3 version while 4.07.0 version does.
Table 3 shows that such change of behaviour by the compiler were followed by an uptake of
safer compiler options.

Table 3 Use of unsafe compiler option.

Version Package use of unsafe option File compiled with unsafe option

4.01.0+obs NA / 201 NA / 7211
4.02.3+obs 30 / 38 2100 / 2253
4.07.0+obs 0 / 221 0 / 10032

Expressions of type string and bytes

The observation compilers also counted the number of expressions of type string and bytes
as well as the overall number of expressions in the files that compiled successfully. This
information gives an estimate of the use of these types of expression although it did not
include functions with these types as either argument or output. Table 4 shows a slight
decrease of the number of bytes expressions in proportion to string expressions.

Table 4 Expressions of type string/bytes.

Version string expressions bytes expressions Ratio Total number of expressions

4.01.0+obs 732390 NA NA 7332863
4.02.3+obs 205165 3335 0.0162 2197761
4.07.0+obs 864876 13466 0.0155 9989802

Calls to unsafe String functions

The observation compilers record the usage of unsafe functions from the String module of
the standard library. This recording is not transitive, so if a call is made to a function which
is an alias to a unsafe String function, this will not be identified. Table 5 shows a decrease in
the number of calls to unsafe String functions, although for 4.02.3 version the decrease could
also be due to the set of packages that compiled rather than being due to the introduction of
the change.

Table 5 Call to unsafe String functions.

Version Packages with call to unsafe functions Files with call to unsafe functions

4.01.0+obs 43 / 201 153 / 7211 (2.12%)
4.02.3+obs 5 / 38 16 / 2253 (0.71%)
4.07.0+obs 2 / 221 4 / 10032 (0.03%)

Note that the few remaining cases of call to unsafe String methods with 4.07.0 version
are the consequence of syntax sugaring. The syntax sugaring notations to get (s.[2]) or set

M. Maarek 6:7

(s.[2] <- ’i’) a character are respectively translated into the following calls String.get s
and String.set s 2 ’i’. This is still the case for 4.07.0 version which results in the type
checker issuing a warning when identifying the String.set method and accepting its call
when the argument is of type bytes (see an illustration with the following two snippets of
code). This explains why for 4.07.0 version, the cases of call to String.set are compatible
with the the absence of use of unsafe string compiler option.

let s = " Monday ";;
val s : string = " Monday "
s.[2] <- ’i ’;;
Warning 3: deprecated : Stdlib . String .set
Use Bytes.set instead .
Error: This expression has type string but an expression was expected

of type bytes

let b = Bytes. of_string " Monday ";;
val b : bytes = Bytes. of_string " Monday "
b.[2] <- ’i ’;;
Warning 3: deprecated : Stdlib . String .set
Use Bytes.set instead .
- : unit = ()

5 Conclusion and Future Work

The purpose of our research is to understand how software developers refactor their code
in light of security focused language changes. In this paper we presented our compiler
instrumentation and initial findings into the uptake of a gradual change introduced in the
OCaml language and compiler to make strings immutable. We relied on the OCaml type
system and package management system to create instrumented compilers collecting accurate
information about the uptake. Although the study only looked at three versions of the
compiler, it shows a good uptake by the OCaml package developers.

As this is an initial experiment there are many ways it could be improved and expanded.
We aim to apply the same strategy to more versions of the compiler to get a clearer picture
of the uptake. We also would like to expand the investigation by looking at more diverse
repositories of code, and comparing with similar changes in other programming languages.

We have not investigate in details how individual development proceeded with their
change and would like to do so to categories these strategies. It would be interesting to
combine this code based investigation with the way the change and strategy were perceived
by OCaml developers. This could be the base to tailor such changes to optimise uptake or to
create adequate interventions to drive changes.

References
1 Mark Adams. Flyspecking Flyspeck. In Mathematical Software – ICMS 2014, Lecture

Notes in Computer Science, pages 16–20. Springer, Berlin, Heidelberg, August 2014. doi:
10.1007/978-3-662-44199-2_3.

2 David Cadé and Bruno Blanchet. Proved Generation of Implementations from Compu-
tationally Secure Protocol Specifications1. Journal of Computer Security, 23(3):331–402,
January 2015. doi:10.3233/JCS-150524.

PLATEAU 2018

http://dx.doi.org/10.1007/978-3-662-44199-2_3
http://dx.doi.org/10.1007/978-3-662-44199-2_3
http://dx.doi.org/10.3233/JCS-150524

6:8 Observing the Uptake of a Language Change

3 M. Coblenz, W. Nelson, J. Aldrich, B. Myers, and J. Sunshine. Glacier: Transitive Class
Immutability for Java. In 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE), pages 496–506, May 2017. doi:10.1109/ICSE.2017.52.

4 D. Doligez, C. Faure, T. Hardin, and M. Maarek. Avoiding Security Pitfalls with Func-
tional Programming: A Report on the Development of a Secure XML Validator. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, volume 2, pages
209–218, May 2015. doi:10.1109/ICSE.2015.149.

5 Éric Jaeger, Olivier Levillain, and Pierre Chifflier. Mind Your Language (s) – A Discussion
about Languages and Security (Long Version). In First Workshop on Language-Theoretic
Security (LangSec) at the IEEE CS Security & Privacy Workshops, 2014.

6 LaFoSec. Security and Functional Languages (Étude de La Sécurité Intrinsèque Des Lan-
gages Fonctionnels). Technical report, ANSSI (National Cybersecurity Agency of France),
Main authors: D. Doligez, C. Faure, T. Hardin, M. Maarek, 2011.

7 M. Martinez, L. Duchien, and M. Monperrus. Automatically Extracting Instances of Code
Change Patterns with AST Analysis. In 2013 IEEE International Conference on Software
Maintenance, pages 388–391, September 2013. doi:10.1109/ICSM.2013.54.

8 O. Meqdadi, N. Alhindawi, M. L. Collard, and J. I. Maletic. Towards Understanding Large-
Scale Adaptive Changes from Version Histories. In 2013 IEEE International Conference
on Software Maintenance, pages 416–419, September 2013. doi:10.1109/ICSM.2013.61.

9 Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. A Large Scale
Study of Programming Languages and Code Quality in Github. In Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE
2014, pages 155–165, New York, NY, USA, 2014. ACM. doi:10.1145/2635868.2635922.

10 Gerd Stolpmann. Immutable Strings in OCaml-4.02 (Blog on Camlcity.Org).
http://blog.camlcity.org/blog/bytes1.html, July 2014.

11 S. Weber, M. Coblenz, B. Myers, J. Aldrich, and J. Sunshine. Empirical Studies on the
Security and Usability Impact of Immutability. In 2017 IEEE Cybersecurity Development
(SecDev), pages 50–53, September 2017. doi:10.1109/SecDev.2017.21.

12 T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl. Mining Version Histories to Guide
Software Changes. IEEE Transactions on Software Engineering, 31(6):429–445, June 2005.
doi:10.1109/TSE.2005.72.

http://dx.doi.org/10.1109/ICSE.2017.52
http://dx.doi.org/10.1109/ICSE.2015.149
http://dx.doi.org/10.1109/ICSM.2013.54
http://dx.doi.org/10.1109/ICSM.2013.61
http://dx.doi.org/10.1145/2635868.2635922
http://dx.doi.org/10.1109/SecDev.2017.21
http://dx.doi.org/10.1109/TSE.2005.72

	p000-frontmatter
	Preface

	p001-Uesbeck
	Introduction
	Related Work
	Methods
	Results
	Discussion
	Conclusion

	p002-Lemay
	Introduction
	Methodology
	Results
	The Java Language
	Control flow constructs
	Literals
	Operators
	Nulls

	The Java Standard Library
	Most common method calls

	Threats to Validity
	Prior Work
	Notable Java data mining projects
	Other studies that address usability through data mining
	Unpublished work from 2015

	Future Work
	Conclusion

	p003-Santolucito
	Introduction
	Background
	StriSynth example

	Methodology
	Results
	Time to complete the user study tasks
	Reported helpfulness
	Impact of prior user experience
	Threats to Validity

	Application to Related Work
	Conclusions

	p004-Huang
	Introduction
	Background on QC programming
	Qubits, superpositions, and entanglement
	Quantum computer operations, programs, and a taxonomy for bugs
	QC algorithm primitives, benchmarks, and open source frameworks

	Case study: Quantum chemistry
	Bug type 1: Incorrect classical input parameters
	Bug type 2: Incorrect quantum initial values
	Defense type 1: Assertions on algorithm preconditions
	Defense type 2: Assertions on algorithm progress

	Case study: Shor's algorithm for integer factorization
	Bug type 3: Incorrect operations and transformations
	Defense type 3: Language support for subroutines / unit tests
	Bug type 4: Incorrect composition of operations using iteration
	Defense type 4: Language support for numerical data types
	Bug type 5: Incorrect deallocation of qubits
	Defense type 5: Assertions on algorithm postconditions

	Case study: Grover's algorithm for database search
	Bug type 6: Incorrect composition of operations using mirroring
	Defense type 6: Language support for reversible computation
	Bug type 7: Incorrect composition of operations using recursion
	Defense type 7: Language support for controlled operations

	Conclusion

	p005-Zeng
	Introduction
	Methodology
	Hypotheses
	Discussion

	p006-Maarek
	Introduction
	Context
	Immutability
	OCaml
	LaFoSec study
	Change

	Experimental Setup
	Results of Observations
	Conclusion and Future Work

