
2nd Symposium on Simplicity in
Algorithms

SOSA 2019, January 8–9, 2019, San Diego, CA, USA
Co-located with the 30th ACM-SIAM Symposium on Discrete
Algorithms (SODA 2019)

Edited by

Jeremy T. Fineman
Michael Mitzenmacher

OASIcs – Vo l . 69 – SOSA 2019 www.dagstuh l .de/oas i c s

Editors
Jeremy T. Fineman Michael Mitzenmacher
Georgetown University Harvard University
Washington, DC, USA Cambridge, MA, USA
jfineman@cs.georgetown.edu michaelm@eecs.harvard.edu

ACM Classification 2012
Theory of computation → Design and analysis of algorithms

ISBN 978-3-95977-099-6

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-099-6.

Publication date
January, 2019

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.SOSA.2019.0

ISBN 978-3-95977-099-6 ISSN 2190-6807 http://www.dagstuhl.de/oasics

http://www.dagstuhl.de/dagpub/978-3-95977-099-6
http://www.dagstuhl.de/dagpub/978-3-95977-099-6
http://dnb.d-nb.de
http://dx.doi.org/10.4230/OASIcs.SOSA.2019.0
http://www.dagstuhl.de/dagpub/978-3-95977-099-6
http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

0:iii

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 2190-6807

http://www.dagstuhl.de/oasics

SOSA 2019

http://www.dagstuhl.de/dagpub/2190-6807
http://www.dagstuhl.de/oasics

Contents

Preface
Jeremy T. Fineman and Michael Mitzenmacher . 0:vii

Organisation
. 0:ix

Regular Papers

Isotonic Regression by Dynamic Programming
Günter Rote . 1:1–1:18

An Illuminating Algorithm for the Light Bulb Problem
Josh Alman . 2:1–2:11

Simple Concurrent Labeling Algorithms for Connected Components
Sixue Liu and Robert E. Tarjan . 3:1–3:20

A Framework for Searching in Graphs in the Presence of Errors
Dariusz Dereniowski, Stefan Tiegel, Przemysław Uznański, and Daniel Wolleb-Graf 4:1–4:17

Selection from Heaps, Row-Sorted Matrices, and X + Y Using Soft Heaps
Haim Kaplan, László Kozma, Or Zamir, and Uri Zwick . 5:1–5:21

Approximating Optimal Transport With Linear Programs
Kent Quanrud . 6:1–6:9

LP Relaxation and Tree Packing for Minimum k-cuts
Chandra Chekuri, Kent Quanrud, and Chao Xu . 7:1–7:18

On Primal-Dual Circle Representations
Stefan Felsner and Günter Rote . 8:1–8:18

Asymmetric Convex Intersection Testing
Luis Barba and Wolfgang Mulzer . 9:1–9:14

Relaxed Voronoi: A Simple Framework for Terminal-Clustering Problems
Arnold Filtser, Robert Krauthgamer, and Ohad Trabelsi . 10:1–10:14

Towards a Unified Theory of Sparsification for Matching Problems
Sepehr Assadi and Aaron Bernstein . 11:1–11:20

A New Application of Orthogonal Range Searching for Computing Giant Graph
Diameters

Guillaume Ducoffe . 12:1–12:7

Simplified and Space-Optimal Semi-Streaming (2 + ε)-Approximate Matching
Mohsen Ghaffari and David Wajc . 13:1–13:8

Simple Greedy 2-Approximation Algorithm for the Maximum Genus of a Graph
Michal Kotrbčík and Martin Škoviera . 14:1–14:9

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy T. Fineman and Michael Mitzenmacher

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

0:vi Contents

A Note on Max k-Vertex Cover: Faster FPT-AS, Smaller Approximate Kernel
and Improved Approximation

Pasin Manurangsi . 15:1–15:21

Simple Contention Resolution via Multiplicative Weight Updates
Yi-Jun Chang, Wenyu Jin, and Seth Pettie . 16:1–16:16

A Simple Near-Linear Pseudopolynomial Time Randomized Algorithm for
Subset Sum

Ce Jin and Hongxun Wu . 17:1–17:6

Submodular Optimization in the MapReduce Model
Paul Liu and Jan Vondrak . 18:1–18:10

Compressed Sensing with Adversarial Sparse Noise via L1 Regression
Sushrut Karmalkar and Eric Price . 19:1–19:19

Approximating Maximin Share Allocations
Jugal Garg, Peter McGlaughlin, and Setareh Taki . 20:1–20:11

Preface

The first Symposium on Simplicity in Algorithms proved a remarkable success. Our goal in
the second year was to see if this excitement was limited or lasting, and if it was lasting, to
keep the momentum going.

We received 68 submissions, and accepted 20 papers. There was widespread feeling we
could have easily accepted at least five more papers without compromising the quality; in
the end, as is generally the case, we made some hard decisions. The high quality of the
submissions reflects that there needs to be a home for papers that other conferences may
dismiss for being “simple”. As described in last year’s preface, this workshop was established
with the idea of making simplicity and elegance in the design and analysis of algorithms its
main objectives. We believe this perspective continues to make this workshop a worthwhile
endeavor.

We do continue to struggle with determining what constitutes simplicity and elegance,
which leads to interesting discussions in the program committee! But generally with this
focus we seek to advance understanding of an algorithmic problem in a way that will make it
more accessible to a larger audience. In some cases, that may mean providing an argument
you could teach in an undergraduate course. In some cases, that may mean taking something
complex and of narrow interest, and making it less complex and of wider interest. We
therefore have papers that cover quite a range of topics and difficulty, but all are remarkably
interesting.

We would like to thank members of the program committee for putting in the hard work,
made somewhat harder by the process of this workshop continuing to find its identity. We
also thank the members of the steering committee for establishing this workshop; it has
provided something the community needed, but had somehow not managed to create.

We hope SOSA will continue for many years to come.

Michael Mitzenmacher
Jeremy T. Fineman
Program Committee Chairs

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy T. Fineman and Michael Mitzenmacher

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

Organisation

Program Committee

Susanne Albers, Technische Universität München
Chandra Chekuri, University of Illinois at Urbana-Champaign
Michael Dinitz, Johns Hopkins University
Jeff Erickson, University of Illinois at Urbana-Champaign
Martin Farach-Colton, Rutgers University
Jeremy T. Fineman (co-chair), Georgetown University
Michael Goodrich, University of California, Irvine
Philip Klein, Brown University
Andrew McGregor, University of Massachusetts, Amherst
Michael Mitzenmacher (co-chair), Harvard University
Jelani Nelson, Harvard University
Rasmus Pagh, IT University of Copenhagen
Ely Porat, Bar-Ilan University
Eric Price, University of Texas at Austin
Tim Roughgarden, Stanford University
Robert Sedgewick, Princeton University
Yaron Singer, Harvard University
Eva Tardos, Cornell University
Justin Thaler, Georgetown University

Steering Committee

Michael A. Bender, Stony Brook University
David Karger, MIT
Tsvi Kopelowitz, Bar-Ilan University
Seth Pettie, University of Michigan
Robert Tarjan, Princeton University
Mikkel Thorup, University of Copenhagen

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy T. Fineman and Michael Mitzenmacher

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

Isotonic Regression by Dynamic Programming
Günter Rote
Institut für Informatik, Freie Universität Berlin, Takustraße 9, 14195 Berlin, Germany
rote@inf.fu-berlin.de

https://orcid.org/0000-0002-0351-5945

Abstract
For a given sequence of numbers, we want to find a monotonically increasing sequence of the same
length that best approximates it in the sense of minimizing the weighted sum of absolute values
of the differences. A conceptually easy dynamic programming approach leads to an algorithm
with running time O(n logn). While other algorithms with the same running time are known, our
algorithm is very simple. The only auxiliary data structure that it requires is a priority queue.
The approach extends to other error measures.

2012 ACM Subject Classification Theory of computation→ Dynamic programming, Theory of
computation → Computational geometry, Mathematics of computing → Regression analysis

Keywords and phrases Convex functions, dynamic programming, convex hull, isotonic regression

Digital Object Identifier 10.4230/OASIcs.SOSA.2019.1

1 Problem Statement: Weighted Isotonic L1 Regression

Weighted isotonic L1 regression (or weighted isotonic median regression) is the following
problem:

Approximate a given sequence of numbers a = (a1, . . . , an) with weights wi > 0 by an
increasing sequence

z1 ≤ z2 ≤ · · · ≤ zn, (1)

minimizing the weighted L1-error
n∑

i=1
wi · |zi − ai|. (2)

If the input sequence (a1, . . . , an) has decreasing sections, the optimum solution values zi

tend to cluster together in runs or level sets of equal values zj = zj+1 = · · · = zk, see Figure 1.
This common value z is the weighted median of the corresponding elements aj , aj+1, . . . , ak,
because this is the value that minimizes

∑k
i=j wi|z − ai|.

Isotonic regression has applications in many fields, including statistics and production
planning. The problem has been studied for a long time, see [2] for an early monograph, and
there is a large literature that treats many variations of the problem. In particular, there are
algorithms that solve the weighted L1 regression problem in O(n logn) time [1, 8]. These
algorithms will be reviewed in Section 11.

2 Our Algorithm

We present a new algorithm that is based on the dynamic programming method. Our
approach differs somewhat from standard use of this technique, as the intermediate objects
of our dynamic programming recursion are real functions, and thus infinite objects.

© Günter Rote;
licensed under Creative Commons License CC-BY

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy Fineman and Michael Mitzenmacher; Article No. 1; pp. 1:1–1:18

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rote@inf.fu-berlin.de
https://orcid.org/0000-0002-0351-5945
https://doi.org/10.4230/OASIcs.SOSA.2019.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

1:2 Isotonic Regression by Dynamic Programming

ai

i

ai

i

|zi

Figure 1 The original data sequence (a1, . . . , an) is shown on the left. The crosses on the right
form a monotone approximation (z1, . . . , zn). It contains two runs that are longer than a single
element.

This is not a revolutionary idea. Historically, the concept of dynamic programming and
Bellman’s optimality principle applies also to continuous processes such as rocket flight.
And while the notion of “dynamic programming” has made an independent career as an
algorithmic design principle in computer science, it continues to be used in optimal control
and in discrete as well as continuous optimization.

Computer scientists, on the other hand, tend to shun continuous and infinite structures.
They need not be afraid: The functions that arise in our problem turn out to be piecewise
linear functions, and they can be treated as peaceful discrete objects. In the programming
contest literature, this approach is known under the name “convexity dynamic programming”,
see Section 12.

With the proper choice of representation, our approach leads to a simple algorithm
with running time O(n logn). The most sophisticated data structure that is needed for an
efficient implementation is a standard priority queue. Other merits of our algorithm are
discussed in Section 11.1. Despite its simplicity, the algorithm would be mysterious without
the conceptual background of its design (see Algorithm 3).

3 The Dynamic Programming Setup

We consider the subproblems

fk(x) := min
{ k∑

i=1
wi · |zi − ai| : z1 ≤ z2 ≤ · · · ≤ zk = x

}
(3)

for k = 1, . . . , n and a real parameter x. We get the following straightforward dynamic
programming recursion, including k = 0 as the base case:

fk(x) := min{ fk−1(z) : z ≤ x }+ wk · |x− ak| (k = 1, . . . , n; x ∈ R)
f0(x) := 0 (x ∈ R)

(4)

The following sections develop the details of how to implement this recursion.

4 The Functions fk

I Lemma 1.
(a) Each function fk is a piecewise linear convex function, for 0 ≤ k ≤ n.
(b) The breakpoints are located at a subset of the points a1, a2, . . . , ak.
(c) The leftmost piece has slope −

∑k
i=1 wi. The rightmost piece has slope wk.

G. Rote 1:3

fk−1(x)

x

y

pk−1

gk−1(x)

Figure 2 Constructing gk−1 from fk−1.

Proof. These properties are easily established by induction. The base cases (k = 0 and
k = 1) are obvious. We denote by

gk−1(x) := min{ fk−1(z) : z ≤ x }

the intermediate function in the transition from fk−1 to fk.
Let k ≥ 2, and let us assume by induction that all properties of the lemma hold for fk−1.

The function fk−1 is first monotonically decreasing to a minimum and then monotonically
increasing. We denote by pk−1 the (not necessarily unique) position where the minimum
occurs. The optimum of fk−1(z) under the constraint z ≤ x depends on the position of x
relative to pk−1: If x ≤ pk−1 then z = x is the optimum choice, and gk−1(x) = fk−1(x). If
x ≥ pk−1 then the optimum choice is z = pk−1, and gk−1(x) = fk−1(pk−1), see Figure 2.

As a consequence of this, we get the following relation between the values z∗k−1 and z∗k in
the optimal solution:

z∗k−1 = min{z∗k, pk−1} (5)

This will be useful for recovering the optimal regression after its objective function value,
i.e., the regression error, has been obtained.

In summary, the function gk−1 has the same decreasing pieces as fk−1 but the increasing
pieces are replaced by a horizontal piece of constant value fk−1(pk−1).

Finally, to obtain fk, we add the piecewise linear function wk · |x− ak| to gk−1. It is now
easy to see that fk has the claimed properties of the lemma. J

5 Representing Piecewise Linear Functions

The most natural representation for a continuous piecewise linear function f would be a
sorted list of breakpoints xi with their function values f(xi), plus the slopes of the two
unbounded pieces on the left and on the right. However, looking back at the discussion of
the previous paragraph, the recursion (4) involves the addition of a piecewise linear function
to another. The natural representation would then require all slopes to be updated.

We therefore prefer to maintain slope differences rather than the slopes themselves. We
represent a piecewise linear function as a list of breakpoints, see Figure 3. Each breakpoint
has a position – the x-value where it is located – and a value – the slope difference between

SOSA 2019

1:4 Isotonic Regression by Dynamic Programming

x

y = f(x)

y = s′x+ t′

y = s′′x+ t′′

y = sx+ t

x0

Figure 3 A piecewise linear function with four breakpoints. There is a breakpoint at position x0

with value s′′ − s′.

the right and the left adjacent pieces. The breakpoints are naturally ordered by position, but
for the time being, we leave it unspecified whether we want to store them as a sorted list or in
some other data structure. The function is convex if all breakpoints have nonnegative values.

The breakpoint data determine the function f only up to addition of an arbitrary linear
function. We must specify two further parameters. Since the transition from fk−1 to gk−1
involves inspections and modifications at the right end of the function, it is most convenient
to take the slope s and the intercept t of the rightmost linear piece y = sx+ t.

This determines f uniquely: We proceed from right to left, and across each breakpoint,
the value of the breakpoint gives us the slope ŝ of next linear piece y = ŝx+ t̂, and continuity
of f allows us to fix the intercept t̂.

Two functions are added by combining the list of breakpoints and adding the (s, t)
parameters. If several breakpoints have the same position, they might be merged into one
breakpoint, adding their values. However, this would require equal breakpoints to be found,
and is not necessary; our algorithm will handle equal breakpoints just as well.

6 Carrying out the Recursion (4)

Recall from Section 4 that the function gk−1 has the same decreasing pieces as fk−1 but the
increasing pieces are replaced by a horizontal piece of constant value fk−1(pk−1) and slope 0.

Algorithm 1 performs this transformation. It removes the increasing pieces from the right
end of fk−1 one by one.

In representing the functions, we have to deal only with the slope s of the rightmost
piece; the intercept t is not needed. Since the leftmost slope is negative, by Lemma 1c, the
while-loop will terminate, and the list of breakpoints will never become empty. If fk−1 has a
horizontal piece, the algorithm will arbitrarily choose the leftmost minimum pk−1.

Finally, to obtain fk, we must add the function wk · |x− ak| to gk−1: This amounts to
creating an additional breakpoint of value 2wk at position ak, and adding wk to s.

G. Rote 1:5

Algorithm 1: Converting fk−1 to gk−1.
Input: List of breakpoints of fk−1 and rightmost slope s
Result: Updated list of breakpoints of gk−1 and rightmost slope s; position pk−1 of

the (leftmost) minimum of fk−1
Let B be the rightmost breakpoint;
while s−B.value ≥ 0 do // next-to-last piece is not decreasing

s := s−B.value; // remove the last piece
Delete B from the list of breakpoints;
Let B be the rightmost remaining breakpoint;

pk−1 := B.position; // pk−1 is the position of the minimum of fk−1.
B.value := B.value− s; // make the rightmost piece horizontal
s := 0;

7 The Weighted Regression Algorithm

We see that the algorithm only needs to access the rightmost breakpoint, and potentially
delete it. A new breakpoint is inserted for each new data point ak. This calls for a (max-
)priority queue for storing the breakpoints, using position as the key. We use the standard
priority queue operations insert, findmax (taking constant time), and deletemax.

Algorithm 2 shows the complete algorithm that we can now put together. The organization
is slightly different from the recursion (4): an iteration of the main loop starts from gk−1,
turns it into fk, and then into gk. We start with the function g0(x) = 0. The algorithm
records the minimum position pk for each function fk. In the last loop iteration, the minimum
of fn is found as part of the construction of gn.

Finally, the optimum solution values zi are computed in a simple loop according to (5),
starting with the minimum zn = pn of the function fn.

The variable s is always 0 at the beginning of the loop. Hence we can simplify the
program. Also, it is advantageous to switch to the negative variable s̄ ≡ −s, because this
turns all remaining subtractions into additions and makes these operations more transparent.
The final computation of the optimal zi values needs no change. The modified Algorithm 3
is shown below. Its inner loop can now be interpreted as follows: the variable s̄ is initialized
with the value −wk; it accumulates and deletes the values from the top of the queue until
the total value becomes positive.

Figure 4 shows the algorithm at work. The values in the queue Q are shown at selected
times as if it were an ordered list with the highest keys ai at the top. The first two iterations
are not very interesting: A breakpoint of value 2wk is inserted and, since it is at the top
of Q, it is immediately reduced to wk. The iteration k = 3 is shown in more detail: After
2w3 is inserted, s̄ starts at −w3. s̄ is combined with the value w2 at the top of the list, but
the result, w2 − w3, is still negative. So it is combined with 2w3 to give w3 + w2, which is
positive, and the iteration is completed.

8 Runtime Analysis

In total, n elements are inserted in the queue Q. Each iteration of the while-loop removes an
element from Q, and therefore the overall number of executions of the while-loop is bounded
by n. With a heap data structure for Q, each operation deletemax or insert can be carried
out in O(logn) time. The findmax operation takes only constant time. The priority queue is
not affected by the manipulation of the values, since it is ordered by position. Hence, the
overall running time is O(n logn).

SOSA 2019

1:6 Isotonic Regression by Dynamic Programming

Algorithm 2: Dynamic Programming Algorithm for weighted isotonic L1 regression.
Q := ∅; // priority queue of breakpoints ordered by the key position
s := 0;
for k := 1, . . . , n do

// We start from gk−1.
Q.insert(new breakpoint B with B.position := ak, B.value := 2wk);
s := s+ wk; // We have computed fk.
B := Q.findmax;
while s−B.value ≥ 0 do

s := s−B.value;
Q.deletemax;
B := Q.findmax;

pk := B.position; // record the position of the minimum
B.value := B.value− s;
s := 0; // We have computed gk.

// compute the optimal solution z1, . . . , zn:
zn := pn;
for k := n− 1, n− 2, . . . , 1 do

zk := min{zk+1, pk};

Algorithm 3: Dynamic Programming Algorithm for weighted isotonic L1 regression,
simplified version.
Q := ∅; // priority queue of breakpoints ordered by the key position
for k := 1, . . . , n do

Q.insert(new breakpoint B with B.position := ak, B.value := 2wk);
s̄ := −wk;
B := Q.findmax;
while s̄+B.value ≤ 0 do

s̄ := s̄+B.value;
Q.deletemax;
B := Q.findmax;

B.value := s̄+B.value;
pk := B.position; // record the position of the minimum

// The solution z1, . . . , zn is computed in the same way as in Algorithm 2.

I Theorem 2. Algorithm 3 (the Dynamic Programming Algorithm) solves the weighted
isotonic L1 regression problem in O(n logn) time and O(n) space.

9 Unweighted Regression

In the unweighted case (wi ≡ 1), some steps can be simplified: The variable s̄ is always −1
before the while-loop. Thus, it can be eliminated and the while-loop turned into an if-loop.
Breakpoints have value 1 or 2. Algorithm 4 shows the simplified version. It is possible to

G. Rote 1:7

w1 w1

2w3

w2

w1

w3+w2

w1

w2

(−w3)

w1

w4

w5

w3+w2

w1

w4+w5−w6

w3+w2

2w6

w1

w4+w5

+w6−w7

w3+w2

2w7

w1 = 5

w2 = 10

w4 = 8

w3 = 12

w6 = 15

w7 = 2

w5 = 8

a7

a1

a3

a2

a6

a4

a5

Q Q QQ Q Q Q

︸ ︷︷ ︸
1 6 72 3 4 5

i

w1

2w3

(w2−w3)

Q

k=1 k=2 k=5 k=6 k=7k=3

Figure 4 Running Algorithm 3 on an example.

Algorithm 4: Unweighted isotonic L1 regression by dynamic programming.
Q := ∅; // priority queue of breakpoints ordered by the key position
for k := 1, . . . , n do

Q.insert(new breakpoint B with B.position := ak, B.value := 2);
B := Q.findmax;
if B.value = 1 then

Q.deletemax;
B := Q.findmax;

else
B.value := 1;

pk := B.position;
// The solution z1, . . . , zn is computed in the same way as in Algorithm 2.

write an even simpler algorithm by eliminating the value attribute altogether: Instead of a
breakpoint of value 2, we insert two (unweighted) breakpoints at the same position. The
resulting main loop has no if-statements and needs only five lines.

10 Other Error Measures: Weighted Isotonic L2 Regression

Instead of the L1-error, one can consider other objective functions, where the absolute value
is replaced by a different convex function h:

n∑
i=1

wi · h(zi − ai). (6)

More generally, one can allow a separate error measure hi for each data point:

n∑
i=1

hi(zi). (7)

SOSA 2019

1:8 Isotonic Regression by Dynamic Programming

In this setting, there is no need for ai and wi, because these data can be incorporated in hi.
The most commonly considered case is the (squared) L2-error:

E2 =
n∑

i=1
wi · (zi − ai)2 (8)

It is straightforward to extend our approach to this objective function.

Exercises.
1. Show that the functions fk defined in analogy to (3) for the L2-case are piecewise quadratic

convex functions. Explore their further properties, in analogy to Lemma 1.
2. Design an appropriate efficient data structure for representing this class of functions.
3. Show how to solve the dynamic programming recursion in O(n) overall time, using only

a stack as a data structure.
4. Explain which properties of the objective function, h(z − a) = |z − a| versus h(z − a) =

(z − a)2, are responsible for the difference between the runtime of O(n logn) versus O(n).
5. Compare your algorithm to the Incremental PAV Algorithm of Stout [8, Fig. 7 in

connection with Fig. 5] and find out whether the two algorithms carry out essentially the
same calculations.

6. Adapt the algorithm to the L4 error, h(x) = x4.
7. Show that the algorithm can be extended to handle arbitrary piecewise polynomial

functions hi in (7), provided they are convex.
8. Prove that the solution is unique if the functions hi are strictly convex.
See Appendix A for answers.

11 Other Algorithms

The most popular approach for the isotonic regression problem is the algorithm Pool Adjacent
Violators (PAV), see for example [2] or [8]. This classical method, which has often been
rediscovered, starts by combining adjacent values that are not monotone (ai > ai+1) into
pairs, and it further combines runs into larger runs as long as the weighted medians of
adjacent groups are out of order. This algorithm extends to quite general settings like (7),
provided that the functions hi are convex.

Ahuja and Orlin [1] gave the first O(n logn) algorithm for weighted isotonic L1 regression.
It is based on the PAV principle but uses scaling for speedup. The core of this Scaling PAV
algorithm is a procedure to turn a solution for the data bai/2c into a solution for the original
data ai in linear time (assuming that the ai are integral). To get a running time that is
independent of the range of values, the algorithm replaces the given values ai by 1, . . . , n
while keeping their relative order fixed.

Stout [8] has given a direct implementation of the PAV approach. I will refer to his
algorithm as the Incremental PAV algorithm, because it adds the elements one at a time
and completes the necessary PAV updates before looking at the next element. It requires
mergeable trees (for example, AVL trees or 2-3-trees, see [5]), to achieve a running time of
O(n logn).

Another natural approach is to model the problem as a minimum-cost network flow
problem, see Figure 5. (I could not track down a specific source for this in the literature.)
The unknown approximation values zi are flow values along a path. Each inequality zi ≤ zi+1
becomes a flow conservation constraint, with an additional entering arc taking the slack.
Since flow is nonnegative, we have to assume that all ai ≥ 0, which is no loss of generality. In

G. Rote 1:9

. . .

s

t

∞ | 0∞ | 0∞ | 0∞ | 0

z1 z2 zn

∞ | w1 ∞ | w2 ∞ | wn

a1 | −w1 a2 | −w2 an | −wn

capacity | cost

Figure 5 Minimum-cost network flow from s to t.

order to model the piecewise linear costs, each flow zi is distributed over two parallel edges:
a cheaper edge with bounded capacity and a more expensive edge with unbounded capacity.
We denote by zi the combined flow of these two edges. Then the cost of a flow (z1, . . . , zn)
in this network is

c(z1, . . . , zn) =
n∑

i=1

[
−wi min{zi, ai}+ wi max{zi − ai, 0}

]
=

n∑
i=1

[
−wi(min{zi − ai, 0}+ ai) + wi max{zi − ai, 0}

]
=

n∑
i=1

[
wi max{ai − zi, 0}+ wi max{zi − ai, 0} − wiai

]
=

n∑
i=1

wi max{ai − zi, zi − ai} −
n∑

i=1
wiai,

which differs from the original approximation error (2) just by the constant
∑n

i=1 wiai.
This network is series-parallel, and hence the minimum-cost flow can be found in O(n logn)

time by an algorithm of Booth and Tarjan [4]. However, this algorithm also relies on
mergeable trees, and moreover, it needs O(n log∗ n) space to recover the optimum solution.
So this approach is not preferable to Stout’s algorithm. The algorithm follows the dynamic
programming paradigm, and thus, in spirit, it is closer to the algorithm of this paper. We
suspect that a closer study of the algorithm for the specialized network structure of Figure 5,
instead of applying it out of the box, might have led to the discovery of our Dynamic
Programming Algorithm.

Ahuja and Orlin [1] mistakenly credit [6] for an earlier O(n logn) time algorithm, but
that paper has only an algorithm with O(n log2 n) runtime.

11.1 Comparison
11.1.1 Simplicity
The Incremental PAV Algorithm of Stout [8] involves tree data structures (for example,
AVL trees or 2-3-trees) augmented with weight information, and needs the nonstandard
merging operation: two trees of size m and n with m ≤ n have to be merged in O(m log n

m) =
O(log

(
m+n

n

)
) time.

If might be instructive to compare the algorithms on the example of Figure 4. After item
6 is added, items 4–6 form a run z4 = z5 = z6. In the Incremental PAV Algorithm, the
three elements have been combined into a mergeable tree, in order to compute their weighted

SOSA 2019

1:10 Isotonic Regression by Dynamic Programming

median. Our Dynamic Programming Algorithm, by contrast, has somehow taken note of the
run by forming the sum w4 + w5 − w6. On the other hand, it still keeps 2w6 as a separate
item. Thus, it is probably difficult to explain one algorithm in terms of the other, and the
distinction between the two algorithms is more fundamental.

The Scaling PAV Algorithm of Ahuja and Orlin [1], on the other hand, needs no data
structures beyond arrays and linked lists. The algorithm itself, however, is not so simple.
Moreover, it requires an initial sort of the elements.

The Dynamic Programming Algorithm is very simple and requires just a priority queue,
in which each element is inserted once and retrieved at most once. Thus, the priority queue
has to perform the same insert operations and fewer deletemax operations than would be
required for heapsort; one might expect that the Dynamic Programming Algorithm is finished
while the Scaling PAV Algorithm is still busy in its sorting phase.

11.1.2 Incremental Computation (Prefix Regression)
The Dynamic Programming Algorithm processes data as they arrive, producing the solution
for the first k items after reading them. (To have the objective function value (2) always
ready, the algorithm must be extended to deal with the intercept t in addition to the slope s.
The most convenient way to do this is to maintain the value fk(pk).)

Stout [8] has called this problem the prefix isotonic regression problem: solving the
regression problem for all prefixes of the input. His Incremental PAV Algorithm solves this
problem readily in O(n logn) time. Stout [8, p. 295] notes that this is optimal because prefix
isotonic regression can be used for sorting. He uses it as a subroutine for the unimodal
regression problem. Our algorithm can also be used for this purpose.

Ahuja and Orlin’s Scaling PAV Algorithm is not suitable for incremental computation.

11.1.3 Numerical Precision
The common solution value zi = zi+1 = · · · = zk of each run is the weighted median. Thus,
any algorithm that solves the problem necessarily has to compare sums of the form

∑
i∈I wi

in order to compute weighted medians.
In our algorithm, the k-th iteration inserts a new entry of value 2wk into the queue. In

addition, the starting value s̄ = −wk is added with some entries from the top of the queue.
Everything that is calculated is built from the ground set of 2n elements 2wi and −wi by
adding subsets of these elements together in some hierarchical order. All results that are
ever computed are therefore of the form 2wi or of the form

∑n
i=1 eiwi, where ei ∈ {0, 1,−1},

and the values of the latter form are compared with 0.
The term +wi in these expressions is formed by adding 2wi and −wi. This incurs a slight

loss of precision of 1 bit in terms of weights, when compared with the calculations that any
algorithm must necessarily perform for solving the problem.

11.1.4 Data Sensitivity
Another question is how the algorithm responds to input sequences that are almost sorted.
This is a natural assumption in statistical applications, where the data “ought” to be
monotone but is distorted by noise.

The Incremental PAV method will have an advantage, since values ai that are in the
correct order with respect to their neighbors and are approximated by themselves (zi = ai)
will be looked at only once. Moreover, runs will usually be short, and in the O(logn) bound
on the tree operations, the parameter n can be replaced by the run length.

G. Rote 1:11

The Scaling PAV Algorithm of Ahuja and Orlin [1], on the other hand, is completely
insensitive to the data: in addition to sorting, it will always perform Θ(logn) linear-time
sweeps over the data.

The Dynamic Programming Algorithm might potentially benefit from almost sorted data.
At least in the case when the input comes in truly sorted order, the algorithm will never call
deletemax. To take advantage of almost sorted data, one would need a priority queue where
it is cheaper to retrieve (by findmax) and delete elements that have been inserted recently.

12 Convexity Dynamic Programming

One referee has pointed out that the technique that we advocate is known in the programming
contest literature under the name “convexity dp” (for “convexity dynamic programming”).
In fact, the unweighted problem (Section 9) has become quite a standard problem in pro-
gramming contests: It was used as problem SEQUENCE in the 2004 Balkan Olympiad for
Informatics1, and was even solved during the contest by one high school student, Filip Wolski,
with an O(n logn) solution. Numerous programs that use just a few lines of code and imple-
ment the algorithm of Section 9 can be seen at the Codeforces programming contest platform2.

Another problem of the same flavor, which can also be solved using convexity, has been
posed in 2009 under the name CCROSSX – Cross Mountain Climb Extreme3. Here, the
approximating sequence is not required to be increasing, but it is restricted to have a bounded
difference between successive elements: |zi − zi+1| ≤ d, for some given bound d.

We are grateful to the referee for the pointers to the programming contest community.

References

1 R. K. Ahuja and J. B. Orlin. A fast scaling algorithm for minimizing separable convex
functions subject to chain constraints. Operations Research, 49:784–789, 2001. doi:10.
1287/opre.49.5.784.10601.

2 R. E. Barlow, D. J. Bartholomew, J. M. Bremner, and H. D. Brunk. Statistical Inference
under Order Restrictions. Wiley, 1972.

3 R. E. Barlow and H. D. Brunk. The Isotonic Regression Problem and its Dual. Journal
of the American Statistical Association, 67(337):140–147, 1972. doi:10.1080/01621459.
1972.10481216.

4 Heather Booth and Robert Endre Tarjan. Finding the minimum-cost maximum flow in a
series-parallel network. J. Algorithms, 15:416–446, 1993. doi:10.1006/jagm.1993.1048.

5 M. R. Brown and R. E. Tarjan. A fast merging algorithm. J. Assoc. Comp. Mach., 26:211–
226, 1979. doi:10.1145/322123.322127.

6 P. M. Pardalos, G. L. Xue, and Y. Li. Efficient computation of an isotonic median regression.
Applied Math. Letters, 8(2):67–70, March 1995. doi:10.1016/0893-9659(95)00013-G.

7 Franco P. Preparata and Michael Ian Shamos. Computational Geometry. An Introduction.
Springer, 1985.

8 Quentin F. Stout. Unimodal regression via prefix isotonic regression. Comp. Stat. and Data
Anal., 53:289–297, 2008. doi:10.1016/j.csda.2008.08.005.

1 http://www.boi2004.lv/Uzd_diena1.pdf
2 https://codeforces.com/contest/13/status/C
3 https://www.spoj.com/problems/CCROSSX/

SOSA 2019

http://dx.doi.org/10.1287/opre.49.5.784.10601
http://dx.doi.org/10.1287/opre.49.5.784.10601
http://dx.doi.org/10.1080/01621459.1972.10481216
http://dx.doi.org/10.1080/01621459.1972.10481216
http://dx.doi.org/10.1006/jagm.1993.1048
http://dx.doi.org/10.1145/322123.322127
http://dx.doi.org/10.1016/0893-9659(95)00013-G
http://dx.doi.org/10.1016/j.csda.2008.08.005
http://www.boi2004.lv/Uzd_diena1.pdf
https://codeforces.com/contest/13/status/C
https://www.spoj.com/problems/CCROSSX/

1:12 Isotonic Regression by Dynamic Programming

A Weighted Isotonic L2 Regression

We state without proof the properties of the functions fk that arise for the L2 objective
function.

I Lemma 3.
(a) fk is a piecewise quadratic convex function.
(b) The derivative f ′k(x) is a piecewise linear increasing and concave function. In particular,

it is continuous.
(c) The leftmost piece of f ′k(x) has slope 2

∑k
i=1 wi. The rightmost piece has slope 2wk.

In contrast to the L1 case (Lemma 1), the breakpoints are not restricted to the points ai.
The transition from fk−1 to gk−1 requires the elimination of the increasing part at the

right rim. It is easier to carry this out at the level of the derivative: To go from f ′k−1 to
g′k−1, we eliminate the positive part and replace it by the constant 0 function, see Figure 6.
Afterwards, in order to produce f ′k, we increment gk−1 by the derivative of wk(x − ak)2,
which is the linear function 2wk(x− ak).

If we represent the quadratic pieces of the form bx2 − 2cx + d by triplets (b, c, d), we
can arrange things so that the algorithm performs almost the same calculations as the
Incremental PAV Algorithm of Stout [8, Fig. 7].

Like for the case of the L1 norm (Section 5), the necessity to add functions suggests that
we store differences (∆b,∆c,∆d) between successive pieces instead of the values themselves.
In fact, the differences ∆d of the constant terms are redundant, because two adjacent
quadratic pieces must touch at some point where they have a common tangent. In other
words, the graph of the difference function ∆b · x2 − 2∆c · x+ ∆d must touch the x-axis, and
therefore ∆d = ∆c2/∆b. The fact that ∆d is irrelevant is also evident from the fact that fk,
its derivative being f ′k (Figure 6), is determined by f ′k up to one parameter, the integration
constant. The di coefficients don’t show up in f ′k, and therefore their differences play no role
in determining fk.

When cutting away the positive branch of the function f ′k−1, the algorithm must decide
whether the rightmost piece, y = 2b1x− 2c1, should be completely eliminated, see Figure 6.
This is the case if its intersection X with the second piece y = 2b2x− 2c2 lies to the right of
the intersection with the x-axis. As shown in the illustration, this amounts to the comparison
∆c
∆b ≥

c1
b1
.

Now, the (b, c) and (∆b,∆c) values are initially created from the quadratic functions
wkx

2 − 2wkak + a2
k = bx2 − 2cx + d, and thus (b, c) = (wk, wkak) During the algorithm,

adjacent (∆b,∆c) values are pooled together, and they become expressions of the form
∆b =

∑k
i=j wi, ∆c =

∑k
i=j wiai. These are the same as the quantities sumw and sumwy that

are maintained in [8, Fig. 7]. The test ∆c
∆b ≥

c1
b1

is nothing but a comparison of weighted
averages. Thus, indeed, the core of the Dynamic Programming Algorithm performs the same
calculations as Stout’s Incremental PAV Algorithm.

There are, however, some slight differences.
(i) The Incremental PAV Algorithm updates the optimal solution value E2 directly in one

step, after all positive parts of f ′k have been eliminated. For this purpose, it maintains
the variables sumwy2 =

∑k
i=j wia

2
i . In our Algorithm 3, the update of the objective

function is not detailed, but it would be most natural to update it with each iteration
of the while-loop.

G. Rote 1:13

y = 2b1x− 2c1

y =
2b2

x−
2c2

−2c1

−2c2

f ′k−1(x)

g′k−1(x)

c1
b1

c2−c1
b2−b1 = ∆c

∆b

x

X

y

Figure 6 Transforming f ′k−1 into g′k−1.

(ii) Another difference is the determination of the optimal solution z. Stout’s Incremental
PAV Algorithm is straightforward: it simply sets each variable zi to the weighted
average of its run. The Dynamic Programming Algorithm, on the other hand, computes
the solution by the formula (5) and achieves the same result in an indirect way, see the
last part of Algorithm 2.

The reason why the L1-regression requires O(n logn) time and the L2-regression does not
(Question 4 in Section 10) is that the absolute value function in the L1 objective inserts
breakpoints of its own, whereas the L2 objective function is smooth, and breakpoints are
created only at the right end when replacing the increasing part of fk by a flat part.

A.1 Geometric Interpretation: Lower Envelope and Lower Convex Hull

If we look at the area below the graphs fk and gk, the algorithm can be interpreted
geometrically as an alternating succession of the following two operations.

Intersect the area with the negative halfplane.
Apply an affine transformation (in particular, a shearing transformation).

We can eliminate the affine transformations and carry out all intersection operations in the
original coordinate system. The problem reduces to an intersection of lower halfplanes, which
result from applying the appropriate shearing transformation to the negative halfplanes, as
shown in Figure 7.

I Theorem 4. The weighted isotonic L2 regression problem of minimizing (8) subject to the
monotonicity constraints (1) can be solved by constructing the lower envelope of n+ 1 lines
F0, F1, . . . , Fn, which are given by

Fk : y = 2
k∑

i=1
wiai −

(
2

k∑
i=1

wi

)
x.

If two lines Fj and Fk form adjacent edges on the lower envelope, then the optimum solution
has a run zj+1 = zj+2 = · · · = zk of values that are equal to the x-coordinate of the
intersection point between Fj and Fk.

SOSA 2019

1:14 Isotonic Regression by Dynamic Programming

F0

F1

F2

F3

F4

F5

F6 F7

Figure 7 The L2 isotonic regression problem as the lower envelope of lines. The approximation
error E2 equals the shaded area, with the dark shaded area counted twice.

Moreover, the approximation error E2 of the lines can be expressed as a weighted sum
of certain face areas in the line arrangement. For a face in the arrangement, we record a
sequence of n + 1 pluses and minuses, depending on whether the face lies above Fk (+)
or below Fk (−). For example, the face marked by a cross in Figure 7 has the sequence
+++++−++. If there are r runs of consecutive pluses, then the area of this face is counted
with multiplicity max{r − 1, 0}.

This is of course not the best way to compute the approximation error E2. It can easily
be computed in linear time by substituting the optimal solution into (8). The program of
Stout [8, Fig. 7] computes the approximation error incrementally in a more direct way.

The above formula arose by working out how the objective function changes when k is
incremented. It turns out that one has to add a certain integral, which, in terms of the
arrangement of the lines Fi, equals the area that lies (i) above Fk, (ii) below Fk−1, and (iii)
above the lower envelope of F0, F1, . . . , Fk−1. Figure 7 shows this area for k = 6 with a heavy
outline. (Bear in mind that the line Fk or Fk−1, respectively, corresponds to the x-axis in
the original setting of Figure 6.) Pursuing this further, one can show that the approximation
error can be expressed as the sum of at most n− 1 triangle areas. This can be translated
into the weighted sum of face areas that was given above.

Using a well-known geometric duality transform, the lower-envelope problem turns into
the problem of computing the lower convex hull (or greatest convex minorant) of a set of
points: The line y = ax+ b becomes the point (−a, b) and the point (u, v) becomes the line
y = ux+ v. This duality preserves incidences and above/below relations. After canceling the
factor 2 from the point coordinates, we arrive at the following result, see Figure 8.

G. Rote 1:15

L7

w7

(
w1

w1a1

) (
w2

w2a2

)P1

P2

P4 = Q4

P8 P9
P10

P5

P6

P7

P11
P14 = Q14

P13

P12

(
w3

w3a3

)

Q5
Q6 Q7

(
w1

w1z∗
1

)
P3 = Q3

P0 = Q0

Q1

(
w13

w13z∗
13

)Q13

Q2

Figure 8 The regression problem as a lower convex hull. Some points Qi on the lower hull are
marked, together with two selected vectors Qi−1Qi; z∗i denotes the convex hull solution.

I Theorem 5. Consider a polygonal chain P0P1 . . . Pn whose segments are given by the
vectors Pi − Pi−1 =

(
wi

wiai

)
.

The weighted isotonic L2 regression problem of minimizing (8) subject to the monotonicity
constraints (1) can be solved by constructing the lower convex hull of the chain P0P1 . . . Pn.

If PjPk is an edge of the lower convex hull, then the optimum solution has a run
zj+1 = zj+2 = · · · = zk of values that are equal to the slope of the edge PjPk.

This surprising connection between an isotonic regression problem and a basic com-
putational geometry problem has been known for a long time [2, Section 1.2, mentioning
earlier sources in Section 1.6], see also [7, Section 4.2.2]. Barlow and Brunk [3, Section
4.1, the taut-string solution], derived it as an instance of convex-programmining duality:
The polygon P0P1 . . . Pn is called the cumulative sum diagram. The set of lower envelopes
Q0 . . . Qn of P0 . . . Pn with endpoints Q0 = P0 and Qn = Pn forms a cone which is dual to
the cone of increasing functions (1). From this, Theorem 5 (and the stronger inequality (11)
below) follows by easy duality arguments [3, Theorem 2.1, in particular (2.4)]. A streamlined
self-contained proof of Theorem 5, which does not depend on this background, is contained
in the monograph of Barlow, Bartholomew, Bremner, and Brunk [2, Theorem 1.1]. We
reproduce this proof in Appendix C. It appears as a clever algebraic manipulation, exploiting
the fact that the optimum solution is unchanged (zi = zi+1) whenever the lower hull passes
below Pi, see the complementarity condition (12) in Appendix C.

Since the vertices Pi are given in sorted order, the lower convex hull can be computed
in linear time. The standard incremental algorithm for this task becomes the same as the
Dynamic Programming Algorithm or Stout’s Incremental PAV method for this case.

The approximation error E2 is not so easy to figure out in this representation. One might
be tempted to believe that it is area of the pockets between the polygonal chain and its
convex hull, but this is not true: This area depends locally only linearly on the data, while the
error function is quadratic. Here is an attempt at a geometric interpretation of the objective
function: Enclose each edge Pi−1Pi in a vertical parallelogram, with two sides parallel to the
convex hull edge under Pi−1 and Pi. Figure 8 shows a few of these parallelograms. If such a
parallelogram has horizontal width wi and vertical edges of length Li, it contributes L2

iwi to
the objective function. The objective function is the total contribution of all n edges. This is
of course not a deep statement; we just measure the squared deviation of each step ai from
the average of each run, i.e., zi.

SOSA 2019

1:16 Isotonic Regression by Dynamic Programming

Qj=Rj=Pj

Qj+1

Rj+1

Qk

Rk

Pk

(a)

Pj+1

Qj=Rj

Rj+1

Qk=Pk

Rk

(b)

Rj′

Pj′

Qj+1

Qj′

Figure 9 (a) Case 1. zj+1 < z∗j+1. (b) Case 2. zj+1 > z∗j+1. The segments whose slopes are
compared in the proof are highlighted.

B Direct Proof of Theorem 5

For completeness, and for comparison, we give an independent elementary proof of the
correspondence between isotonic L2 regression and the convex hull (Theorem 5). This
pedestrian proof does not assume any optimization background, and I hope it gives some
more direct geometric insight into the correspondence.

The only tool that we need is the elementary fact that the best L2-approximation by a
run of equal values zj = zj+1 = · · · = zk = z is the weighted average:

I Proposition 6. Let µ =
∑k

i=j wiai/
∑k

i=j wi be the weighted average of the sequence
aj , . . . , ak. Then

k∑
i=j

wi(z − ai)2 =
k∑

i=j

wi(µ− ai)2 +
k∑

i=j

wi(z − µ)2 (9)

In particular, if we regard the left-hand side of (9) as a function of z, it is a quadratic
function with a unique minimum at z = µ.

If we start the polygonal chain at P0 =
(0

0
)
, the coordinates of the points Pi =

(
Wi

Ai

)
are the partial sums Wk =

∑k
i=1 wi and the weighted partial sums Ak =

∑k
i=1 wiai, for

0 ≤ k ≤ n. The crucial observation is that the weighted average of a subsequence aj , . . . , ak,
which plays a prominent role in Proposition 6, shows up as the slope of the segment Pj−1Pk.

We denote the claimed optimal solution by z∗i , and we set Z∗k =
∑k

i=1 wiz
∗
i . Then the

points Qi =
(

Wi

Z∗
i

)
form the lower convex hull Q0Q1 . . . Qn: The vector Qi−Qi−1 =

(
wi

wiz∗
i

)
has

slope z∗i , and Qi is the point where the vertical line through Pi intersects the lower hull, see
Figure 8. Accordingly, Z∗i ≤ Ai for i = 0, . . . , n. The endpoints are fixed to Q0 = P0 =

(0
0
)

and Qn = Pn, and thus, Z∗0 = A0 = 0 and Z∗n = An.
For comparison, we consider an arbitrary increasing sequence zi. We define accordingly

Zk =
∑k

i=1 wizi and the points Ri =
(

Wi

Zi

)
, forming the polygonal chain R0R1 . . . Rn.

We will now show that a sequence (z1, . . . , zn) 6= (z∗1 , . . . , z∗n) cannot be optimal. The
idea is to identify a subsequence of equal consecutive values and to show that they can be
jointly modified to improve the objective function, while keeping the sequence increasing.

Let us suppose that the two sequence agree up to zj . We distinguish whether zj+1 is
smaller or larger than z∗j+1.

G. Rote 1:17

Case 1. zj+1 < z∗j+1, and accordingly, Rj+1 lies below Qj+1, see Figure 9a. Let us take
the maximum k ≤ n such that zj+1 = zj+2 = · · · = zk. In other words, Rk is the next
vertex after Rj . The slope of RjRj+1 . . . Rk is the common value z = zj+1 = · · · = zk.
Since Rj . . . Rk forms a straight line segment and Qj . . . Qk is convex, Qk must lie above
Rk, and therefore Pk must also lie above Rk. Qj is a vertex of the lower hull because
z∗j+1 > zj+1 ≥ zj = z∗j . Thus, Qj = Rj = Pj . The weighted average of aj+1, . . . , ak,
which is the slope of the segment PjPk, is therefore larger than z (the slope of Rj . . . Rk).
It follows from Proposition 6 that the objective function can be improved by increasing
the common value z of zj+1 = zj+2 = · · · = zk. By the maximal choice of k, some small
increase of z is always possible without violating the monotonicity of the sequence.

Case 2. zj+1 > z∗j+1, and accordingly, Rj+1 lies above Qj+1, see Figure 9b. Then Rj must
be a vertex of the convex chain R0 . . . Rn, because zj+1 > z∗j+1 ≥ z∗j = zj .
We choose the largest k ≤ n such that z∗j = z∗j+1 = · · · = z∗k. In other words, Qk is the
next vertex after Qj on the lower hull, and thus Qk = Pk. Now we choose the smallest
j′ ≥ 0 such that zj′+1 = zj′+2 = · · · = zk. In other words, we extend the segment Rk−1Rk

to the left until we hit the previous vertex Rj′ of the convex chain. Since Rj is a vertex,
as just observed, we have j′ ≥ j. Since Pj′ lies on or above the segment QjQk,

slope(Pj′Pk) = slope(Pj′Qk) ≤ slope(QjQk). (10)

On the other hand, RjRj+1 . . . Rk branches off upwards from the segment QjQk and
forms a convex chain with increasing slopes. Thus, the slope of Rj′Rk is strictly larger
than the slope of QjQk. With (10), we conclude that the slope of Rj′Rk (the common
value z := zj′+1 = zj′+2 = · · · = zk) is larger than the slope of the segment Pj′Pk (the
weighted average of aj′+1, . . . , ak). Proposition 6 implies that the objective function can
be improved by decreasing z. By the minimal choice of j′, some small decrease of z is
possible without violating the monotonicity of the sequence.

We have thus shown that a sequence different from (z∗1 , . . . , z∗n) cannot be optimal. From
here, there are two ways to conclude the proof of Theorem 5. (a) By observing that the
objective function E2 is continuous and goes to infinity when the argument (z1, . . . , zn)
becomes unbounded, we establish that an optimum solution exists. Since (z∗1 , . . . , z∗n) is the
only solution that is not excluded by our arguments, it must be the optimum solution.

(b) If a constructive proof is preferred, one can extend the above argument with little
additional effort to a procedure that transforms any solution R0 . . . Rn into the lower hull
Q0 . . . Qn in O(n) steps without increasing the approximation error. J

C The proof of Barlow, Bartholomew, Bremner, and Brunk (1972)

For the convenience of the reader, and for comparison, we reproduce the short and elegant
proof of Theorem 5 from Barlow, Bartholomew, Bremner, and Brunk [2, Theorem 1.1, pp. 12–
13], translated to our notation, with a few more details and and with a minor correction and
improvement. They proved the following inequality:

n∑
i=1

wi · (zi − ai)2 ≥
n∑

i=1
wi · (z∗i − ai)2 +

n∑
i=1

wi · (zi − z∗i)2 (11)

To establish the optimality of z∗, we would only need to compare the L2-errors of an
arbitrary increasing sequence z against z∗ (the first two sums). The inequality (11) gives a
stronger statement than needed for this, because of the additional quadratic term on the
right, which measures the deviation between z and z∗. With this term, uniqueness of the
optimal solution follows directly.

SOSA 2019

1:18 Isotonic Regression by Dynamic Programming

We use the setup with the polygons P0 . . . Pn and Q0 . . . Qn and their coordinates Pi =(
Wi

Ai

)
and Qi =

(
Wi

Z∗
i

)
, which were introduced in Appendix B for the first proof. We will

need one more observation: If the lower hull lies strictly below Pi, then the hull edge passes
straight through Qi. In other words:

Z∗i < Ai =⇒ z∗i = z∗i+1 (12)

Let us now go into the calculation: The inequality (11) has the form
∑

(ui + vi)2 ≥∑
u2

i +
∑
v2

i , and the difference between the left side and the right side is 2
∑
uivi. In our

case, this is

D = 2
n∑

i=1
wi(z∗i − ai)(zi − z∗i) = 2

n∑
i=1

(z∗i − zi)(wiai − wiz
∗
i).

We want to show that this is nonnegative. We apply the partial summation formula

n∑
i=1

gi(Hi −Hi−1) =
n−1∑
i=1

(gi − gi+1)Hi + gnHn − g1H0 (13)

with gi = z∗i − zi and Hi −Hi−1 = wiai − wiz
∗
i , and therefore Hi = Ai − Z∗i . In our case,

H0 = A0 = Z∗0 = 0, and Hn = 0 because Z∗n = An. Thus, the two boundary terms in (13)
vanish, and we get

D = 2
n−1∑
i=1

[
(z∗i − zi)− (z∗i+1 − zi+1)

]
(Ai − Z∗i)

= 2
n−1∑
i=1

(zi+1 − zi)(Ai − Z∗i)− 2
n−1∑
i=1

(z∗i+1 − z∗i)(Ai − Z∗i).

The first sum is nonnegative because zi+1 ≥ zi and Ai ≥ Z∗i . The second sum is 0 because
of the complementarity relation (12). J

An Illuminating Algorithm for the Light Bulb
Problem
Josh Alman1

MIT CSAIL, Cambridge, MA, USA
jalman@mit.edu

Abstract
The Light Bulb Problem is one of the most basic problems in data analysis. One is given as input
n vectors in {−1, 1}d, which are all independently and uniformly random, except for a planted
pair of vectors with inner product at least ρ · d for some constant ρ > 0. The task is to find the
planted pair. The most straightforward algorithm leads to a runtime of Ω(n2). Algorithms based
on techniques like Locality-Sensitive Hashing achieve runtimes of n2−O(ρ); as ρ gets small, these
approach quadratic.

Building on prior work, we give a new algorithm for this problem which runs in time O(n1.582+
nd), regardless of how small ρ is. This matches the best known runtime due to Karppa et al. Our
algorithm combines techniques from previous work on the Light Bulb Problem with the so-called
‘polynomial method in algorithm design,’ and has a simpler analysis than previous work. Our
algorithm is also easily derandomized, leading to a deterministic algorithm for the Light Bulb
Problem with the same runtime of O(n1.582 + nd), improving previous results.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms,
Theory of computation → Randomness, geometry and discrete structures

Keywords and phrases Light Bulb Problem, Polynomial Method, Finding Correlations

Digital Object Identifier 10.4230/OASIcs.SOSA.2019.2

Acknowledgements The author would like to thank Vitaly Feldman, Michael P. Kim, Virginia
Vassilevska Williams, Ryan Williams, and anonymous reviewers for their comments on an earlier
draft.

1 Introduction

In this paper, we study the problem of finding correlated vectors. Finding correlations is one
of the most basic problems in data analysis. In many experiments, one gathers data about
a number of different variables, and then one would like to determine which variables are
correlated. By forming the vector of data points for each variable, this amounts to finding
which pairs of vectors are correlated.

The most basic formalization of this problem is the so-called Light Bulb Problem,
introduced by L. Valiant in 1988 [18]:

I Problem 1 (Light Bulb Problem). We are given as input a set S of n vectors from
{−1, 1}d, which are all independently and uniformly random except for two planted vectors
(the correlated pair) which have inner product at least ρ · d for some 0 < ρ ≤ 1. The goal is
to find the correlated pair.

1 Much of this work was done while the author was working at IBM Research Almaden.

© Josh Alman;
licensed under Creative Commons License CC-BY

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy Fineman and Michael Mitzenmacher; Article No. 2; pp. 2:1–2:11

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jalman@mit.edu
https://doi.org/10.4230/OASIcs.SOSA.2019.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

2:2 An Illuminating Algorithm for the Light Bulb Problem

The dimension d of the vectors is called the sample complexity of the problem, since, in
our data analysis application, it corresponds to the number of data points which must be
gathered about the variables in order to determine which are correlated. When d is too small,
then the problem is information-theoretically impossible. For instance, if d < log(n − 2),
then by the pigeonhole principle, two of the random vectors must be equal to each other,
and there is no way to distinguish them from the planted correlated pair we are trying to
find. By standard concentration inequalities, there is a constant c > 1 such that, whenever
d ≥ c logn, the correlated pair is the closest pair of vectors with high probability. We would
like to design algorithms for this d = O(logn) regime, so that we can find correlated pairs
without increasing the sample complexity above the information-theoretic requirement.

A naïve approach to the Light Bulb Problem is to compute the inner product of each pair,
which takes Ω(n2) time. However, in many applications, n is quite large, and quadratic time
is infeasible. For one example, in genome-wide association studies, scientists have gathered
data on millions of genetic markers, and determining which of these are correlated is key to
understanding their interactions in different biological mechanisms [13, 19].

It is not hard to see that the Light Bulb Problem is a special case of the (1+ε)−approximate
Hamming nearest neighbor problem. Using Indyk and Motwani’s famous Locality-Sensitive
Hashing framework [8], one can solve the Light Bulb Problem in time n2−O(ρ). For constant
ρ > 0, this gives a truly subquadratic runtime, but the runtime become quadratic as ρ→ 0.
This is undesirable, as in many data analysis applications, as well as in applications to other
areas like learning theory, we would like to quickly detect weak correlations with small ρ.
Later work [14, 5] improved the constants in the O(ρ) term, but still had the same asymptotic
dependence on ρ in the exponent.

In a breakthrough result, G. Valiant [17] gave an algorithm solving the Light Bulb
Problem in time O(n(5−ω)/(4−ω)+ε + nd) < O(n1.615 + nd), where ω < 2.373 is the matrix
multiplication constant, for any constant ρ > 0, no matter how small. Thereafter, Karppa
et al. [9] gave an improved algorithm with a runtime of O(n2ω/3+ε + nd) < O(n1.582 + nd).
Both of these algorithms work when the sample complexity d matches, up to a constant, the
information-theoretically necessary d = Θ(logn).

In this paper, we give an algorithm with a simple analysis which matches the best known
runtime and sample complexity.

I Theorem 2. For every ε, ρ > 0, there is a κ > 1 such that the Light Bulb Problem
for correlation ρ can be solved in randomized time O(n2ω/3+ε) whenever d = κ logn with
polynomially low error.

By leveraging our simpler analysis, we also give algorithms for several natural extensions
and generalizations of the Light Bulb Problem, which are sometimes much faster than the
algorithms from previous work.

1.1 Algorithm Overview
Our algorithm combines techniques from past work on subquadratic algorithms for the Light
Bulb Problem [17, 9, 10] with techniques for batch nearest neighbor algorithms using the
‘polynomial method in algorithm design’ [2, 1]. Our algorithm begins in a way common to
both methods: we partition S into m = n2/3 groups S = S1 ∪ · · · ∪ Sm. Our goal is then to
simultaneously check, for each pair (Si, Sj) of groups, whether there is a correlated pair of
vectors in Si×Sj . We will do this by, for each group Si, constructing two vectors Ai, Bi ∈ Rt,
for t ≈ n2/3, such that the inner product 〈Ai, Bj〉 is large if and only if there is a correlated
pair of vectors in Si × Sj . By using fast matrix multiplication, we can quickly compute all of
these inner products and find the correlated pair.

J. Alman 2:3

We differ from past work in how the Ai and Bi vectors are constructed. In [17, 9], a
sophisticated random sampling technique is used, including an involved probabilistic analysis
to keep t low, and in [10], that technique is derandomized. We instead use the polynomial
method: we first design a polynomial (see (3) below) which, it is not hard to show, has the
desired properties. We then convert it into Ai, Bi vectors by dividing it up into monomials.
By designing a polynomial whose degree is not too high, we get that the resulting number of
monomials, and hence t, is also not too high. Our proof of correctness is straightforward, and
it almost entirely avoids arguments about tail distributions of sums of dependent variables,
including a multitude of calculations and casework, which are prevalent in the past work.

That said, our algorithm can be seen as the ‘best of both worlds’: past work on the
polynomial method has focused on designing subquadratic time algorithms, but not on
optimizing how subquadratic the runtime is. We use ideas from past work on the Light Bulb
Problem (our overall approach to the problem comes from [17], and the last paragraph in
the proof of Theorem 2 uses a clever trick of [9]) in order to optimize our runtime here.

1.2 Deterministic Light Bulb Problem
In some cases, one would like a deterministic algorithm which is guaranteed to find correlations
in subquadratic time. Since our polynomial construction and evaluation process is entirely
deterministic, we can get such an algorithm easily. However, as the inputs to the Light Bulb
Problem come from a random distribution, we need to be careful about what a deterministic
algorithm means in this setting. For instance, there is a small chance that a random pair
of vectors will be just as correlated as the correlated pair, in which case a deterministic
algorithm has no hope of finding the true correlated pair.

Almost All Instances

One option is to design an algorithm which correctly solves almost all instances. This is the
notion which was introduced and used in the past work by Karppa et al. [10] on deterministic
algorithms for the Light Bulb Problem. We say that an algorithm is correct on almost all
instances if the probability of drawing an instance where the algorithm fails is 1/poly(n).
For this notion, we match the runtime of the best randomized algorithm:

I Theorem 3. For every ε, ρ > 0, there is a κ > 0 such that the Light Bulb Problem for
correlation ρ can be solved in deterministic time O(n2ω/3+ε) on almost all instances whenever
d = κ logn.

Our runtime of O(n2ω/3+ε) ≤ O(n1.582) is faster than the runtime of Karppa et al. [10],
which is at best O(n1.996). Our algorithm also uses more straightforward and elementary
techniques. The original algorithm of Karppa et al. relies heavily on random sampling. In
order to derandomize this, Karppa et al. use heavy-duty techniques including constructing
‘correlation amplifiers’ using the explicit expander graphs of Reingold, Vadhan, and Wigderson
[15]. We avoid any such complications, since our algorithm replaces random sampling with a
deterministic polynomial construction. In fact, one can view our polynomials in (3), below,
as a smaller, elementary construction of their notion of a correlation amplifier.

Our algorithm for Theorem 3 uses two ideas to derandomize the algorithm for Theorem
2 without changing the runtime. First, we use a standard technique in derandomization:
by examining the proof of correctness of Theorem 2, we will see that the random bits it
uses only need to be pairwise independent, rather than fully independent, which means only
O(polylogn) independent random bits are needed for the algorithm to succeed with high

SOSA 2019

2:4 An Illuminating Algorithm for the Light Bulb Problem

probability. Second, in the proof of Theorem 3, we use the fact that, with the exception of
the correlated pair of vectors, the vectors in the input set S of the Light Bulb Problem are
random vectors, and we can use them as the source of random bits we need. This technique of
using the input as a source of randomness has been used in a number of past derandomization
results; see eg. [7, 20].

Promise that random vectors aren’t too correlated

Although the algorithm of [10] is presented as working on almost all instances, it implicitly
works in a stronger regime. It solves a promise version of the Light Bulb Problem, which we
introduce here, in which we are guaranteed that no pair of random vectors is too correlated:

I Problem 4 (Promise Light Bulb Problem with parameter w). We are given as input a set S
of n vectors from {−1, 1}d, where two of the vectors (the correlated pair) have inner product
at least ρ · d for some 0 < ρ ≤ 1, and every other pair of vectors has inner product at most
w
√
d logn. The goal is to find the correlated pair.

To emphasize: the inputs to the Promise Light Bulb Problem are not necessarily chosen
randomly; they can be chosen adversarially as long as they satisfy the guarantee.

By a Chernoff bound, a random instance of the Light Bulb Problem will also satisfy
this guarantee with probability 1 − 1/poly(n), for a sufficiently large constant w. Hence,
deterministically solving the Promise Light Bulb Problem is sufficient to solve the Light Bulb
Problem on almost all instances, and this is the approach that [10] takes. One benefit of the
Promise Light Bulb Problem is that it doesn’t let us use the ‘artificial’ trick of using vectors
from a randomly chosen input as the source of randomness. Without using that trick, we
can nonetheless solve the Promise Light Bulb Problem deterministically, with running time
O(n4ω/5+ε) ≤ O(n1.8983):

I Theorem 5. There is a constant w > 0 such that, for every ε, ρ > 0, there is a κ > 0 such
that the Promise Light Bulb Problem with parameter w for correlation ρ can be solved in
deterministic time O(n4ω/5+ε) whenever d = κ logn.

While this algorithm is slower than our aforementioned algorithms, it is nonetheless still
faster than the previous best deterministic runtime [10] of O(n1.996), and it follows without
much more work from our deterministic polynomial construction.

1.3 Generality of the Light Bulb Problem
As the Light Bulb Problem is so basic, a number of other important problems can be reduced
to it as well. Here we give a couple of examples from prior work.

Correlations on the Euclidean Sphere

In all the above, we have been discussing finding correlated vectors from the domain {−1, 1}d.
What if we are more generally interested in finding correlated vectors from the d-dimensional
Euclidean sphere2? There is a randomized hashing algorithm by Charikar [3] that ‘rounds’
the Euclidean sphere to {−1, 1}d in such a way that all of our algorithms above will still work,
with ρ only decreasing by a constant factor. The hash function simply picks a uniformly
random hyperplane through the origin, and outputs 1 or −1 depending on which side of the

2 The d-dimensional Eucliedan sphere is the set of points x ∈ Rd such that x2
1 + · · ·+ x2

d = 1.

J. Alman 2:5

hyperplane a point lies on. Since our runtime for the Light Bulb Problem in Theorem 2 does
not change when ρ changes by a constant factor, we can thus achieve the same guarantees
for the Light Bulb Problem on the Euclidean sphere.

Learning Sparse Parities with Noise and More

L. Valiant [18] first introduced the Light Bulb Problem as a basic example of a correlated
learning problem. More generally, the Light Bulb Problem can be seen as a special case of
several different problems in learning theory, including learning sparse parities with noise,
learning sparse juntas with or without noise, and learning sparse DNFs. Surprisingly, Feldman
et al. [6] showed that all these more general learning problems can be reduced to the Light
Bulb Problem as well, and the fastest known algorithms for them come from applying this
reduction followed by the best Light Bulb Problem algorithms. Hence, our algorithm gives a
new, simpler algorithm matching the best known runtimes for these problems as well. We
refer to [17, Appendix A] for a more detailed discussion of these reductions.

2 Preliminaries

We assume familiarity with basic facts about combinatorics and probability, and in particular,
the union bound, Chernoff bound, and Chebyshev inequality. For an integer d ≥ 0, we write
[d] := {1, 2, . . . , d}. For a vector x ∈ {−1, 1}d, we will write xi to denote the ith entry of x
for any i ∈ [d], and xM :=

∏
i∈M xi for any M ⊆ [d].

Polynomial Multilinearization

For a multivariate polynomial p : Rd → R, its multilinearization is the polynomial p̂ : Rd → R
which one gets when one expands p into a sum of monomials, and then for each monomial,
and each variable in that monomial, one reduces the exponent of that variable mod 2 to
either 0 or 1. For instance, if p(x1, x2, x3) = x1x

5
2x

2
3 + 3x2

2, then p̂(x1, x2, x3) = x1x2 + 3.
Notice that x2

i = 1 whenever xi ∈ {−1, 1}, and so for any p, and any x ∈ {−1, 1}d, we always
have that p(x) = p̂(x). The number of multilinear monomials on d variables of degree exactly
r is

(
d
r

)
. Hence, if p has degree r, then the number of monomials in p̂ is at most

∑r
i=0
(
d
i

)
.

We will use the two bounds on binomial coefficients to bound the number of monomials
in p̂. First, if 0 ≤ k1 ≤ k2 ≤ n/2, then

(
n
k1

)
≤
(
n
k2

)
. Second, for any 1 ≤ k ≤ n, Stirling’s

approximation shows that(
n

k

)
≤ nk

k! ≤
(e · n

k

)k
. (1)

Matrix Multiplication Notation

LetM(a, b) denote the runtime to compute the product of an a×b matrix with a b×a matrix,
whose entries are integers of magnitude at most 2polylog(ab). For instance, M(n, n) ≤ O(nω)
where ω ≤ 2.373 [21, 11] is the matrix multiplication exponent. Since a n× n1+ε × n matrix
multiplication can be decomposed into nε different n× n× n multiplications, we see that for
ε ≥ 0,

M(n, n1+ε) ≤ O(nω+ε). (2)

SOSA 2019

2:6 An Illuminating Algorithm for the Light Bulb Problem

3 Algorithm for the Light Bulb Problem

In this section, we give our algorithm for the Light Bulb Problem, proving our main result,
Theorem 2.

I Theorem 2 (Restated). For every ε, ρ > 0, there is a κ > 0 such that the Light Bulb
Problem for correlation ρ can be solved in randomized time O(n2ω/3+ε) whenever d = κ logn
with polynomially low error.

For two constants γ, k > 0 to be determined, we will pick κ = γk2/ρ2. Let S ⊆ {−1, 1}d
be the set of input vectors, and let x′, y′ ∈ S denote the correlated pair which we are trying to
find. For distinct x, y ∈ S other than the correlated pair, the inner product 〈x, y〉 is a sum of
d uniform independent {−1, 1} values. Let v := γ(k/δ) logn. By a Chernoff bound, for large
enough γ, we have |〈x, y〉| ≤ v with probability at least 1− 1/n3. Hence, by a union bound
over all pairs of uncorrelated vectors, we have |〈x, y〉| ≤ v for all such x, y with probability
at least 1− 1/n. We assume henceforth that this is the case. Meanwhile, 〈x′, y′〉 ≥ ρd = kv.

Arbitrarily partition S into m := n2/3 groups S1, . . . , Sm of size g := n/m = n1/3 each.
We can compute the inner product between each pair of vectors which was assigned to the
same group in time O(m · g2 · d) = Õ(n4/3), and if we find the correlated pair, we can return
it and end the algorithm. Otherwise, we may assume the correlated vectors are in different
groups, and we continue.

For each x ∈ S, our algorithm picks a value ax ∈ {−1, 1} independently and uniformly
at random. For a constant τ > 0 to be determined, let r = dlogk(τn1/3)e, and define the
polynomial p : Rd → R by p(z1, . . . , zd) = (z1 + · · ·+ zd)r. Our goal is, for each (i, j) ∈ [m]2,
to compute the value

Ci,j :=
∑
x∈Si

∑
y∈Sj

ax · ay · p(x1y1, . . . , xdyd).

Solving the problem using Ci,j

Let us first explain why we are interested in computing Ci,j . Denote p(x, y) := p(x1y1, . . . ,

xdyd). Intuitively, p(x, y) is computing an amplification of 〈x, y〉. Ci,j is then summing these
amplified inner products for all pairs (x, y) ∈ Si × Sj . We will pick our parameters so that
the amplified inner product of the correlated pair is large enough to stand out from the sums
of inner products of random pairs.

Let us be more precise. Recall that for uncorrelated x, y we have |〈x, y〉| ≤ v, and
hence |p(x, y)| ≤ vr. Similarly, we have |p(x′, y′)| ≥ (kv)r ≥ τn1/3vr. For x, y ∈ S, define
a(x,y) := ax · ay. Notice that, for i 6= j, Ci,j =

∑
x∈Si,y∈Sj

a(x,y)p(〈x, y〉), where the a(x,y)

are pairwise independent random {−1, 1} values.
We will now analyze the random variable Ci,j where we think of the vectors in S as fixed,

and only the values ax as random.
Consider first when the correlated pair are not in Si and Sj . Then, Ci,j has mean 0,

and (since variance is additive for pairwise independent variables) Ci,j has variance at most
|Si| · |Sj | · maxx∈Si,y∈Sj |p(〈x, y〉)|2 ≤ n2/3 · v2r. For sufficiently large constant τ , by the
Chebyshev inequality, we have that |Ci,j | ≤ τn1/3vr/3 with probability at least 3/4. Let
θ = τn1/3vr/3, so |Ci,j | ≤ θ with probability at least 3/4.

Meanwhile, if x′ ∈ Si and y′ ∈ Sj , then Ci,j is the sum of a(x′,y′)p(〈x′, y′〉) and a variable
C ′ distributed as Ci,j was in the previous paragraph. Hence, since |p(〈x′, y′〉)| ≥ τn1/3vr = 3θ,
and |C ′| ≤ θ with probability at least 3/4, we get by the triangle inequality that |Ci,j | ≥ 2θ
with probability at least 3/4.

J. Alman 2:7

Hence, if we repeat the process of selecting the ax values for each x ∈ S independently at
random O(logn) times, whichever pair Si, Sj has |Ci,j | ≥ 2θ most frequently will be the pair
containing the correlated pair with polynomially low error, and then a brute force within
this set of O(n1/3) vectors can find the correlated pair in Õ(n2/3) time. In all, by a union
bound over all possible errors, this will succeed with polynomially low error.

Computing Ci,j

It remains to give the algorithm to compute Ci,j . Before doing this, we will rearrange the
expression for Ci,j into one which is easier to compute. Since we are only interested in the
values of p when its inputs are all in {−1, 1}, we can replace p with its multilinearization p̂.
Let M1, . . . ,Mt be an enumeration of all subsets of [d] of size at most r, so t =

∑r
i=0
(
d
i

)
.

Then, there are coefficients c1, . . . , ct ∈ Z such that p̂(x) =
∑t
s=1 csxMs

. Rearranging the
order of summation, we see that we are trying to compute

Ci,j =
t∑

s=1

∑
x∈Si

∑
y∈Sj

ax · ay · cs · xMs
· yMs

=
t∑

s=1

cs ·(∑
x∈Si

ax · xMs

)
·

∑
y∈Sj

ay · yMs

 . (3)

In order to compute Ci,j , we first need to compute the coefficients cs. Notice that cs depends
only on |Ms| and r. We can thus derive a simple combinatorial expression for cs, and hence
compute all of the cs coefficients in poly(r) = polylog(n) time. Alternatively, by starting
with the polynomial (z1 + · · ·+ zd) and then repeatedly squaring then multilinearizing, we
can easily compute all the coefficients in O(t2 polylog(n)) time; this slower approach is still
fast enough for our purposes.

Define the matrices A,B ∈ Zm×t by Ai,s =
∑
x∈Si

ax · xMs
and Bi,s = cs · Ai,s. Notice

from (3) that the matrix product C := ABT is exactly the matrix of the values Ci,j we
desire. A simple calculation (see Lemma 6 below) shows that for any ε > 0, we can pick a
sufficiently big constant k > 0 such that t = O(n2/3+ε). Since m = O(n2/3), if we have the
matrices A,B, then we can compute this matrix product in M(n2/3, n2/3+ε) = O(n2ω/3+ε)
time, completing the algorithm.

Unfortunately, computing the entries of A and B naively would take Ω(m · t · g) = Ω(n5/3)
time, which is slower than we would like. We will instead use a clever trick due to Lovett [12],
which was first applied in this context by Karppa et al. [9]: we will compute those entries
using another matrix multiplication. Let N1, . . . , Nu be an enumeration of all subsets of [d]
of size at most dr/2e. For each i ∈ [m], define the matrices Li, L̃i ∈ Zu×g (whose columns
are indexed by elements x ∈ Si) by Lis,x = xNs and L̃is,x = ax · xNs . Then, compute the
product P i := LiL̃i

T
. We can see that P is,s′ =

∑
x∈Si

ax · xNs⊕Ns′ , where Ns ⊕Ns′ is the
symmetric difference of Ns and Ns′ . Since any set of size at most r can be written as the
symmetric difference of two sets of size at most dr/2e, each desired entry Ai,s can be found
as an entry of the computed matrix P i. Similar to our bound on t from before (see Lemma 6
below), we see that for big enough constant k, we have u = O(n1/3+ε). Computing the
entries of the Li matrices naively takes only O(m · u · g · r) = Õ(n · u) = Õ(n4/3+ε) time,
and then computing the products P i takes O(m ·max(u, g)ω) = O(n(2+ω)/3+ε) time; both of
these are dominated by O(n2ω/3+ε). This completes the algorithm! Finally, we perform the
computations mentioned above:

SOSA 2019

2:8 An Illuminating Algorithm for the Light Bulb Problem

I Lemma 6. For every ε > 0, there is a k > 0 such that (with the same notation as in the
proof of Theorem 2 above) we can bound t = O(n2/3+ε), and u = O(n1/3+ε).

Proof. Recall that d = O(k2 log(n)), and r = logk(O(n1/3)). Hence, by the bound (1),

t ≤ (r + 1) ·
(
d

r

)
≤ (r + 1) · (ed/r)r ≤ O(k2 log(k))logk(O(n1/3)) = n2/3+O(log log(k)/ log(k)).

For any ε > 0 we can thus pick a sufficiently large k so that t ≤ O(n2/3+ε). We can similarly
bound

(
d
r/2
)
≤ O(n1/3+ε) which implies our desired bound on u. J

4 Deterministic Algorithms

We now present our two deterministic algorithms for the Light Bulb Problem. Each is a
slight variation on the algorithm from the previous section.

I Theorem 3 (Restated). For every ε, ρ > 0, there is a κ > 0 such that the Light Bulb
Problem for correlation ρ can be solved in deterministic time O(n2ω/3+ε) on almost all
instances whenever d = κ logn.

Proof. The only randomness used by our algorithm for Theorem 2 was our choice of an
independently and uniformly random ax ∈ {−1, 1} for each x ∈ S. Since this requires Θ(n)
random bits, and we repeat the entire algorithm Θ(logn) times to get our desired correctness
guarantee, the total number of random bits used is Θ(n logn).

However, the only property of the ax variables which we use in the proof of correctness is
that they are pairwise-independent. By standard constructions3, only O(logn) independent
random bits are needed to generate n pairwise-independent random bits. Thus, our entire
algorithm actually only needs O(log2 n) independent random bits.

Our entirely deterministic algorithm then proceeds as follows. Pick the same κ as in
Theorem 2. Let S ⊆ {−1, 1}d be the input vectors. Arbitrarily pick a subset S′ ⊆ S of
|S′| = Θ(logn) of the input vectors, and let R = S \ S′ be the remaining vectors.

We begin by testing via brute-force whether either vector of the correlated pair is in S′.
This can be done in O(|S′| · |S| · d) = O(n log2(n)) time. If we find the correlated pair (a
pair with inner product at least ρ · d), then we output it, and otherwise, we can assume that
the vectors in S′ are all uniformly random vectors from {−1, 1}d. In other words, we can
use them as d · |S′| = Θ(log2 n) independent uniformly random bits. We thus use them as
the required randomness to run the algorithm from Theorem 2 on input vectors R. That
algorithm has polynomially low error, which implies the desired correctness guarantee. J

I Theorem 5 (Restated). There is a constant w > 0 such that, for every ε, ρ > 0, there is a
κ > 0 such that the Promise Light Bulb Problem with parameter w for correlation ρ can be
solved in deterministic time O(n4ω/5+ε) whenever d = κ logn.

Proof. The guarantee of the Promise Light Bulb Problem is that, when we pick a sufficiently
large w, the uncorrelated vectors have as small inner product as we assumed they did in the
first paragraph in the proof of Theorem 2. In other words, there is a quantity v such that
|〈x, y〉| ≤ v for all x, y ∈ S other than the correlated pair, and moreover, 〈x′, y′〉 ≥ kv for a
constant k > 0 with k →∞ as w →∞.

3 For one example, to generate 2` − 1 pairwise-independent bits, pick only ` bits b1, . . . , b` ∈ {−1, 1}
independently and uniformly at random, and then output, for each I ⊆ [`], the product

∏
i∈I

bi.

J. Alman 2:9

The algorithm is then almost identical to Theorem 2, except we need to remove the only
use of randomness: the randomness used to pick the ax values. To do this, we will simply
pick ax = 1 for all x.

In order to guarantee the correctness of our algorithm, we must now change the parameters
slightly. Instead of partitioning the input into m = n2/3 groups of size g = n1/3, we will
instead partition into m = n4/5 groups of size g = n1/5. Similarly, instead of picking r (the
exponent in the polynomial p) to be logk(O(n1/3)), we will pick r = logk(3n2/5), so that
p(x′, y′) ≥ (kv)r = 3n2/5vr.

With these choices, for any i and j such that the correlated pair are not in Si and Sj ,
we have |Ci,j | ≤ |Si| · |Sj | · n2/5 = n2/5v, whereas if x′ ∈ Si and y′ ∈ Sj then by the triangle
inequality, |Ci,j | ≥ p(x′, y′)− |Si| · |Sj | · n2/5 ≥ 2n2/5vr. Hence, the correlated pair must be
in whichever Si and Sj with i 6= j has the largest |Ci,j |.

The algorithm to compute the Ci,j values is identical to that of Theorem 2. We now get
that t =

∑r
i=0
(
d
i

)
≤ O(n4/5+ε) and similarly, u ≤ O(n2/5+ε), which leads to a final runtime

of O(n4ω/5+ε), as desired. J

5 Conclusion

Faster Algorithms?

In this paper, we give an algorithm for the Light Bulb Problem and some variants. A natural
question remains: can one improve the O(n2ω/3) runtime? It seems like substantially new
techniques might be necessary. We currently reduce the problem to a n2/3 × n2/3 × n2/3

matrix multiplication; with a further reduction in the dimensions, even using the cubic matrix
multiplication algorithm would give a subquadratic algorithm for the Light Bulb Problem.
This would be surprising, since recent progress on the problem has relied heavily on fast
matrix multiplication.

It should nonetheless be noted that, despite using fast matrix multiplication, the al-
gorithms in this paper can be quite practical. For instance, using Strassen’s original algorithm
[16], which is frequently used in practice, gives ω ≈ 2.81, and hence a subquadratic runtime
for the Light Bulb Problem of about O(n2ω/3) ≤ O(n1.874).

Finding General Correlations

Past work on the Light Bulb Problem has also approached a more general problem of finding
correlations:

I Problem 7 (Finding Correlations). We are given as input two sets X,Y ⊆ {−1, 1}d of n
vectors each, with the promise that for at most q pairs of x, y ∈ X × Y , we have |〈x, y〉| ≥ ρd
(x and y are correlated), and for all other pairs of x, y ∈ X × Y , we have |〈x, y〉| ≤ τd (x
and y are uncorrelated) for some constants 0 < τ < ρ ≤ 1. Our goal is to find all q of the
correlated pairs of vectors.

Again, as ρ→ 0, hashing techniques give runtimes which approach quadratic. However,
if τ is also comparatively small (say, there is a constant σ > 1 such that ρ/τ ≥ σ), we might
hope to achieve a truly subquadratic runtime, no matter how small ρ becomes. With only a
slight modification of our algorithm for Theorem 5, we can achieve this:

SOSA 2019

2:10 An Illuminating Algorithm for the Light Bulb Problem

I Proposition 8. For all constants η, c > 0, and σ > 1, there exists a constant ε > 0
such that Finding Correlations can be solved in O(n2−ε) deterministic time when ρ/τ ≥ σ,
q ≤ n2−η and d = c log(n).

Proposition 8 is somewhat weaker than the results from past work [17, 10, 9], which only
require that log(1/τ)/ log(1/ρ) be bounded below by a constant. However, our algorithm
benefits from the same simplicity as our Light Bulb Problem algorithms, and it is also
deterministic (in the usual sense – there is no distribution on inputs the Finding Correlations
problem). Like before, only [10] gives a deterministic algorithm, and it involves the same
aforementioned heavy-duty techniques which we avoid. We omit the details of this algorithm
here for clarity of exposition, as the algorithm is almost identical to that of Theorem 5. We
also note that Chen [4, Lemma 3.2] recently gave an algorithm similar to Proposition 8 for
the very related ‘approximate maximum inner product’ problem, which also made use of the
polynomial p(z1, . . . , zd) = (z1 + · · ·+ zd)r.

References
1 Josh Alman, Timothy M Chan, and RyanWilliams. Polynomial representations of threshold

functions and algorithmic applications. In FOCS, 2016.
2 Josh Alman and Ryan Williams. Probabilistic polynomials and hamming nearest neighbors.

In FOCS, 2015.
3 Moses S Charikar. Similarity estimation techniques from rounding algorithms. In STOC,

2002.
4 Lijie Chen. On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner

Product. In CCC, 2018.
5 Moshe Dubiner. Bucketing coding and information theory for the statistical high-

dimensional nearest-neighbor problem. IEEE Transactions on Information Theory,
56(8):4166–4179, 2010.

6 Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Ponnuswami. On
agnostic learning of parities, monomials, and halfspaces. SIAM Journal on Computing,
39(2):606–645, 2009.

7 Oded Goldreich and Avi Wigderson. Derandomization that is rarely wrong from short
advice that is typically good. Lecture notes in computer science, 2483:209–223, 2002.

8 Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the
curse of dimensionality. In STOC, 1998.

9 Matti Karppa, Petteri Kaski, and Jukka Kohonen. A faster subquadratic algorithm for
finding outlier correlations. In SODA, 2016.

10 Matti Karppa, Petteri Kaski, Jukka Kohonen, and Padraig Ó Catháin. Explicit Correlation
Amplifiers for Finding Outlier Correlations in Deterministic Subquadratic Time. In ESA,
2016.

11 François Le Gall. Powers of tensors and fast matrix multiplication. In ISSAC, 2014.
12 Shachar Lovett. Computing Polynomials with Few Multiplications. Theory of Computing,

7(1):185–188, 2011.
13 Jonathan Marchini, Peter Donnelly, and Lon R Cardon. Genome-wide strategies for de-

tecting multiple loci that influence complex diseases. Nature genetics, 37(4):413, 2005.
14 Ramamohan Paturi, Sanguthevar Rajasekaran, and John Reif. The light bulb problem.

Information and Computation, 117(2):187–192, 1995.
15 Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph

product, and new constant-degree expanders. Annals of mathematics, pages 157–187, 2002.
16 Volker Strassen. Gaussian elimination is not optimal. Numerische mathematik, 13(4):354–

356, 1969.

J. Alman 2:11

17 Gregory Valiant. Finding correlations in subquadratic time, with applications to learning
parities and the closest pair problem. Journal of the ACM, 62(2):13, 2015.

18 Leslie G Valiant. Functionality in Neural Nets. In AAAI, 1988.
19 Xiang Wan, Can Yang, Qiang Yang, Hong Xue, Nelson LS Tang, and Weichuan Yu. De-

tecting two-locus associations allowing for interactions in genome-wide association studies.
Bioinformatics, 26(20):2517–2525, 2010.

20 R Ryan Williams. Natural proofs versus derandomization. SIAM Journal on Computing,
45(2):497–529, 2016.

21 Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd.
In STOC, 2012.

SOSA 2019

Simple Concurrent Labeling Algorithms for
Connected Components
Sixue Liu
Princeton University
sixuel@cs.princeton.edu

Robert E. Tarjan
Princeton University and Intertrust Technologies
ret@cs.princeton.edu

Abstract
We present new concurrent labeling algorithms for finding connected components, and we study
their theoretical efficiency. Even though many such algorithms have been proposed and many
experiments with them have been done, our algorithms are simpler. We obtain an O(lgn) step
bound for two of our algorithms using a novel multi-round analysis. We conjecture that our other
algorithms also take O(lgn) steps but are only able to prove an O(lg2 n) bound. We also point
out some gaps in previous analyses of similar algorithms. Our results show that even a basic
problem like connected components still has secrets to reveal.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases Connected Components, Concurrent Algorithms

Digital Object Identifier 10.4230/OASIcs.SOSA.2019.3

Funding Research at Princeton University partially supported by an innovation research grant
from Princeton and a gift from Microsoft.

Acknowledgements We thank Dipen Rughwani, Kostas Tsioutsiouliklis, and Yunhong Zhou for
telling us about [18], for extensive discussions about the problem and our algorithms, and for
insightful comments on our results.

1 Introduction

The problem of finding the connected components of an undirected graph with n vertices
and m edges is fundamental in algorithmic graph theory. Any kind of graph search, such
as depth-first or breadth-first search, solves it in linear time sequentially, which is best
possible. The problem becomes more interesting in a concurrent model of computation. In
the heyday of the theoretical study of PRAM algorithms, many more-and-more efficient
algorithms for the problem were discovered, culminating in 2001 with the O(lgn)-time,
O((m+ n)/ lgn)-processor randomized EREW PRAM algorithm of Halperin and Zwick [8],
where lg is the base-two logarithm. Most of this work was motivated by obtaining the best
bounds, not the simplest algorithms.

With the growth of the internet, the world-wide web, and cloud computing, computing
connected components on huge graphs has become commercially important, and practitioners
have put versions of the PRAM algorithms into use. Many of these algorithms are quite
complicated, and even some of the simple ones have been further simplified when implemented.
There is evidence that such simple algorithms perform well in practice, but claims about
their theoretical performance are unsound.

© Sixue Liu and Robert E. Tarjan;
licensed under Creative Commons License CC-BY

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy Fineman and Michael Mitzenmacher; Article No. 3; pp. 3:1–3:20

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sixuel@cs.princeton.edu
mailto:ret@cs.princeton.edu
https://doi.org/10.4230/OASIcs.SOSA.2019.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

3:2 Simple Concurrent Labeling Algorithms for Connected Components

Given this situation, our goal here is to develop and analyze the simplest possible
efficient algorithms for the problem and to rigorously analyze their efficiency. In exchange
for algorithmic simplicity, we are willing to allow analytic complexity. Our computational
framework is based on the MPC (Massive Parallel Computing) model [3], which is a variant
of the BSP (Bulk Synchronous Parallel) model [20]. The MPC model is more powerful than
PRAM models in that it allows programmable resolution of write conflicts, but it is a realistic
model of cloud computing platforms. Our algorithms also work on a CRCW (concurrent
read, concurrent write) PRAM in which write conflicts are resolved in favor of the smallest
value written. This model is stronger than the more standard ARBITRARY CRCW PRAM,
in which write conflicts are resolved arbitrarily (one of the writes succeeds, but the algorithm
has no control over which), but is weaker than the MPC model.

We develop several algorithms that are all simpler than existing algorithms. We conjecture
that all of them take O(lgn) concurrent steps and O(m lgn) messages. We prove this bound
for two of them using a novel multi-round analysis. For the others we obtain an O(lg2 n)
step bound and O(m lg2 n) message bound.

Our paper contains five sections, in addition to this introduction, §2 presents our al-
gorithmic framework, §3 presents our algorithms, §4 discusses related work, §5 completely
analyzes one of our algorithms and partially analyzes the others, and §6 closes with some
remarks and open problems.

2 Algorithmic Framework

Given an undirected graph with vertex set [n] = {1, 2, . . . , n} and m edges, we wish to
compute its connected components via a concurrent algorithm. More precisely, for each
component we want to label all its vertices with a unique vertex in the component, so that
two vertices are in the same component if and only if they have the same label. To state
bounds simply, we assume n > 1 and m > 0. We denote the ends of an edge e by e.v and
e.w.

We use the MPC (Massive Parallel Computing) model [3], specialized to our problem. (We
discuss the MPC model further in §4.) We consider algorithms that operate in synchronous
concurrent steps, each of which can send messages between the edges and vertices. Each
edge and each vertex has a local memory. In a concurrent step, each edge and vertex can
update its local memory based on the messages sent to it in the previous step, and then
send a message to each vertex and edge that it knows about. Initially a vertex knows only
about itself, and an edge knows only about its two ends. Thus in the first concurrent step
only edges can send messages, and only to their ends. A vertex or edge knows about another
vertex or edge once it has received a message containing the vertex or edge. We ignore
contention resulting from many messages being sent to the same vertex or edge during a
step, and the need for a vertex or edge to send many messages during a step. We measure
the efficiency of an algorithm primarily by the number of concurrent steps and secondarily
by the number of messages sent.

Even in this unrealistically strong model, there is a non-constant lower bound on the
number of steps needed to compute connected components:

I Theorem 1. Computing connected components takes Ω(lg d) steps, where d is the maximum
of the diameters of the components.

Proof. Let u be the vertex that eventually becomes the label of all vertices in the component.
Some vertex v is at distance at least d/2 from u; otherwise, the diameter of the component
is less than d, a contradiction. An induction on the number of steps shows that after k steps

S. Liu and R. E. Tarjan 3:3

a vertex has only received messages containing vertices within distance 2k. Since v must
receive a message containing u, the computation takes at least lg d− 1 steps. If d = 1, the
computation takes at least one step. J

If messages can be arbitrarily large, it is easy to solve the problem in O(lg d) steps, by first
sending each edge end to the other end, and then repeatedly sending from each vertex the
entire set of vertices it knows about to all these vertices [15]. If there is a large component,
however, such an algorithm is not practical, for at least two reasons: it requires huge memory
at each vertex, and the last step can send a number of messages quadratic in n. Hence we
restrict the local memory of a vertex or edge to hold only a small constant number of vertices
and edges. We also restrict messages to hold only a small constant number of vertices and
edges, along with an indication of the message type, such as a label request or a label update.

All our algorithms maintain a label for each vertex u, initially u itself. Labels are updated
step-by-step until none changes, after which all vertices in a component have the same label,
which is one of the vertices in the component. At any given time the current labels define a
univalent digraph (directed graph) whose arcs lead from vertices to their labels. We call this
the label digraph. If these arcs form no cycles other than loops (arcs of the form (u, u)), then
this graph is a forest of trees rooted at the self-labeled vertices: the parent of u is its label
unless the label of u is u, in which case u is a root. We call this the label forest. Each tree in
the forest is a label tree.

All our algorithms maintain the label digraph as a forest; that is, they maintain acyclicity
except for self-labels. (We know of one previous algorithm that does not maintain the label
digraph as a forest: see §4.) Henceforth we call the label of a vertex u its parent and denote
it by u.p, and we call a label tree just a tree. If v is a vertex such that v.p 6= v, v is a child of
v.p. A tree is flat if the parent of every child is the root. (Some authors call such a tree a
star.) A vertex is a leaf if it is not a root and it has no children. We call a one-vertex tree a
singleton.

During the computation, all the vertices in a tree are in a single connected component,
but there may be more than one tree per component. At the end of the computation, there
is one flat tree per component, whose root is the component label.

3 Algorithms

A simple way to guarantee acyclicity is to maintain the parent of a vertex to be the minimum
of the vertices it knows about. We call this minimum labeling. (An equivalent alternative is
to maintain the label of a vertex to be the maximum of the vertices it knows about.) All
our algorithms use minimum labeling. Each algorithm proceeds in rounds, each of which
updates parents using vertices received from edges, reduces tree depths using shortcutting,
and possibly alters edges.

The most obvious way to use edges to update parents is for each edge to send its minimum
end to its maximum end:

connect: for each edge e, send min{e.v, e.w} to max{e.v, e.w}.
This method does not give a correct algorithm unless we combine it with some form of

edge alteration or edge addition. In the absence of changes to the edge set, we use one of the
following methods instead of connect:

parent-connect: for each edge e, request e.v.p from e.v and e.w.p from e.w; send the
minimum of the received vertices to the maximum of the received vertices.

extended-connect: for each edge e, request e.v.p from e.v and e.w.p from e.w; let the
received values be x and y, respectively; if y < x then send y to v and to x else
send x to w and to y.

SOSA 2019

3:4 Simple Concurrent Labeling Algorithms for Connected Components

The straightforward way to update labels using messages sent from edges is to replace
each parent by the minimum of the received vertices:

update: for each vertex v, replace v.p by the minimum of v.p and vertices received from
edges.

Such updating can move subtrees between trees in the forest, producing behavior that is
hard to analyze. A more conservative alternative is to update only the parents of roots:

root-update: for each root v, replace v.p by the minimum of v.p and vertices received
from edges.

Shortcutting is the key to obtaining a logarithmic step bound. Shortcutting replaces the
parent of each vertex by its grandparent:

shortcut: for each vertex v request v.p.p from v.p; replace v.p by the received vertex.
Edge alteration replaces each edge end by its parent:
alter: for each edge e, request e.v.p from e.v and e.w.p from e.w; let the returned vertices

be x and y, respectively; if x = y then delete e else replace e.v and e.w by x and y.
Choosing one of the three connection methods, one of the two update methods, and

whether or not to alter edges produces one of twelve algorithms. Not all these algorithms
are correct: if we use connect, we must choose alter to alter edges; if we do not, the
partition of vertices defined by the trees does not change after the first connect. Furthermore
not all the correct algorithms are as simple as possible: if we use alter, using connect
gives a correct algorithm, and we see no advantage in using parent-connect or extended-
connect, which are more complicated. (We have no theoretical or practical evidence to
justify this intuition, however.) Finally, if we use root-update, parent-connect and
extended-connect are equivalent. This leaves us with five algorithms:

Algorithm P: repeat {parent-connect; update; shortcut} until no parent changes.
Algorithm E: repeat {extended-connect; update; shortcut} until no parent changes.
Algorithm A: repeat {connect; update; shortcut; alter} until no parent changes.
Algorithm R: repeat {parent-connect; root-update; shortcut} until no parent
changes.
Algorithm RA: repeat {connect; root-update; shortcut; alter} until no parent
changes.

We call an iteration of the repeat loop in each of these algorithms a round. Two of these
algorithms, R and RA, are equivalent:

I Theorem 2. Algorithms R and RA do the same parent updates in each step.

Proof. Consider running algorithms R and RA concurrently. We prove by induction on
the number of steps that (i) parents are the same in both algorithms and (ii) if edge e has
original ends e.v = v and e.w = w and has ends e.v = x and e.w = y in RA, then v.p = x

and w.p = y in both R and RA. Both (i) and (ii) hold initially. Suppose they hold at the
beginning of a round. Then the connect and root-update in RA do the same parent
changes as the parent-connect and root-update in R, so (i) holds after these steps. The
shortcut steps in R and RA also do the same parent changes, so (i) holds after this step.
The alter at the end of RA re-establishes (ii). J

Henceforth we treat R and RA as different implementations of the same algorithm.
Algorithms A and P are not equivalent in the same sense, as the example in Figure 1 shows.

To prove correctness, we need the following key result:

I Lemma 3. All our algorithms maintain the invariant that any two tree roots in the same
component are connected by a path of current edges.

S. Liu and R. E. Tarjan 3:5

Input
graph:

1

4

13
10

7

2

15 14

6

1
3
4

2
5
7
89
1013
12

15

6
11
14

Round 1 after
(PARENT-)CONNECT,

UPDATE, and
SHORTCUT in A and P:

arc of tree

(current) edge
between trees

Round 1 after
ALTER in A:

Round 2 after
CONNECT

and UPDATE
in A:

Round 2 after
SHORTCUT

in A:

Round 2 after
PARENT-CONNECT

and UPDATE
in P:

Round 2 after
SHORTCUT

in P:

1

13 10

4

13

8

5

10

6

6
8

2

1

5
8

2

12

1

4

10

7

2

6

5

8

1

4

10

7

2

6

5

8

1

4 107

2 6

8

Figure 1 A graph on which A and P do different parent updates. Only necessary vertices, edges,
and tree arcs are shown. In round 1 before the alter, all arcs and edges are the same in both
algorithms. In round 2, the parent of 10 becomes 6 in both algorithms. In round 3 (not shown),
P changes the parent of 6 to 1 using the original edge (10, 13), but A changes the parent of 6 to 2
using the new edge (2, 6) altered from (8, 10).

Proof. This is a tautology for P, E, and R. We prove it for A by induction on the number of
steps. (The same proof works for RA.) A shortcut changes no edges nor roots; a connect
followed by an update changes no edges and only converts roots to non-roots. Thus both
preserve the invariant, since both preserve every path of current edges, and vertices that are
roots after an update are roots before the preceding connect. Given a path between two
roots, an alter preserves each root it contains, including the ends of the path, and replaces
each edge end that is a child by its parent. Thus an alter also preserves the invariant. J

I Theorem 4. All our algorithms are correct.

Proof. For each algorithm, an induction on the number of steps proves that the vertex sets
of the trees are subsets of the vertex sets of the connected components. We prove that each
algorithm cannot stop until there is one flat tree per component, which implies correctness.
Consider a component whose vertices are in two or more trees just before a round. By
Lemma 3, some current edge connects a vertex in one of these trees with a vertex in another
tree. If one of these trees is not flat, the shortcut during the round will change some parent
if no parents change before the shortcut. If both are flat, some parent will change before
the shortcut. J

In §5 we prove the following step bounds: O(d) for A and E; O(lg2 n) for A, P, and E; and
O(lgn) for R and RA. We conjecture that P, A, and E in fact have an O(lgn) step bound. We
leave a tighter analysis of these algorithms as an open problem. We have included algorithm
E because it is similar to an existing algorithm (see §4), and we can prove a step bound that
depends only on the diameter.

We conclude this section with five observations.
First, our algorithms need very little memory: one cell per vertex to hold its parent, and

two cells per edge to hold its current ends.
Second, although we have used a message-passing framework, it is straightforward to

implement our algorithms on a CRCW PRAM in which write conflicts are resolved in favor

SOSA 2019

3:6 Simple Concurrent Labeling Algorithms for Connected Components

of the smallest value written. We say more about the effect of write conflict resolution on
connected components algorithms in §4.

Third, in algorithm RA, the condition for edge deletion can be strengthened, since when an
edge causes a parental root update it connects a child with its parent, and it can never again
cause a parent update. Thus the condition for deletion in the alter can be strengthened
to “if x = y or e.v = y or e.w = x then delete e”. This optimization does not work in
algorithm A.

Fourth, algorithms like R that use root updating are monotone in that the vertex set of
each new tree in the label forest is a union of vertex sets of old trees. This is not true of
algorithms such as A, P, and E, which can and in general do move subtrees between trees.
Monotonicity seems to make analysis simpler. Many but not all previous algorithms are
monotone.

Fifth, each of our algorithms does one shortcut per round, but we could increase this to
two or indeed to any number. Our O(lg2 n) bound for P, E, and A extends to the variants of
these algorithms that do any fixed positive number of shortcut steps each round. Similarly,
our O(lgn) bound for R and RA extends to the variants of these algorithms that do any fixed
positive number of shortcut steps each round. On the other hand, if we modify R (or RA)
to do enough shortcut steps each round to flatten all the trees, the worst-case number of
steps becomes Θ(lg2 n), as we now show.

Algorithm S: repeat {parent-connect; root-update;
repeat shortcut until no parent changes} until no parent changes.

Algorithm SA: repeat {connect; root-update;
repeat shortcut until no parent changes; alter} until no parent changes.

In both of these algorithms, all trees are flat just before a connect, which implies that
connect only changes the parents of roots. A proof like that of Theorem 2 shows that S
and SA are equivalent in that they make the same parent changes. We thus treat them as
alternative implementations of the same algorithm.

I Theorem 5. Algorithm S (and SA) takes O(lg2 n) steps.

Proof. The inner repeat loop stops after at most dlgne steps with all trees flat. We claim
that if there are two or more trees, two rounds of the outer loop at least halve their number,
from which the theorem follows. Call a root minimal if its tree has edges connecting it only
with trees having greater roots. A connect makes every non-minimal root into a non-root.
Suppose there are k roots just before a connect, of which j are minimal. If j < k/2, the
connect reduces the number of roots to at most j < k/2. Divide the minima into the i
that get a new child as a result of the connect and the j − i that do not. If x is a minimal
that does not get a new child, there must be a root y > x such that the trees rooted at x
and y are connected by an edge, and y has parent less than x after the connect. The next
connect will make x a child. That is, the current connect makes at least i roots into
non-roots, and the next connect makes at least j − i into non-roots, for a total of at least
j ≥ k/2, giving the claim in this case as well. J

We show by example that the bound in Theorem 5 is tight. For convenience we consider
algorithm SA. During the execution, at the beginning of each round it suffices to consider
only the induced subgraph of vertices that are roots. This is because in each round before
the alter, every tree is flat, so the alter makes all edge ends roots.

Observe that if there is a tree path of 2k + 1 vertices just before the shortcut steps in
round j, there will be Ω(k + 1) shortcut steps in round j. If in every round there is a new
path of 2k + 1 vertices, and the algorithm requires many rounds, the input graph will be a

S. Liu and R. E. Tarjan 3:7

bad example. Our example is a disjoint union of certain graphs based on this observation. To
produce a given graph G with m′ edges and vertex set [n′] at the end of round j, it suffices
to start with a graph g(G) (for the generator of G) at the beginning of round j constructed
as follows: For each vertex i in G, add two vertices, i and i+ n′ to g(G); for each vertex i in
G, add an edge (i, i+ n′) to g(G); for each edge (i, i′) in G, add an edge (i+ n′, i′ + n′) to
g(G). g(G) contains all the vertices of G but none of its edges; g(G) contains 2n′ vertices
and n′ +m edges.

Consider the effect of a round of SA on g(G). The connect step makes i the parent
of i + n′ for i ∈ [n′]. The shortcut steps do nothing. The alter converts each edge
(i+ n′, i′ + n′) for i ∈ [n′] into (i, i′) and deletes each edge (i, i+ n′) for i ∈ [n′]. Thus after
the round, G is the induced subgraph on the vertices that are roots. By induction, gr(G) is
converted by r rounds of SA into G. gr(G) contains n′2r vertices and n′(2r − 1) +m′ edges.

For any positive integer k > 1, consider the disjoint union of the graphs P , g(P), g2(P),
. . . , gk−1(P), where P is a path of 2k + 1 vertices from 1 to 2k + 1, with the vertices
renumbered so that all vertices are distinct and the order within each connected component
is preserved. If SA is run on this graph, round i for each i does Ω(k + 1) shortcut steps on
the path produced by i− 1 rounds on gi−1(P), so the total number of steps is Ω(k2). The
total number of vertices in this graph is n = (2k + 1)(2k − 1) = 22k − 1. (The number of
edges is 22k − k + 1: the input graph is a set of k − 1 trees.) Thus the number of steps is
Ω(lg2 n), making the bound in Theorem 5 tight.

4 Related Work

Previous work on concurrent algorithms for connected components was done by two different
communities in two overlapping eras. First, theoretical computer scientists developed provably
efficient algorithms for various versions of the PRAM (parallel random-access machine). This
work began in the late 1970’s and reached a natural conclusion in the work of Halperin
and Zwick [8, 9], who gave O(lgn)-time, O((m+ n)/ lgn)-processor randomized algorithms
for the EREW (exclusive read, exclusive write) PRAM. The EREW PRAM is the weakest
PRAM model, and computing connected components in this model requires Ω(lgn) time [5].
To solve the problem sequentially takes O(n+m) time, so the Halperin-Zwick algorithms
minimize both the time and the total work (number of processors times time). One of their
algorithms not only finds the connected components but also a spanning tree of each. The
main theoretical question remaining open is whether a deterministic algorithm can achieve
the same bounds.

Halperin and Zwick’s paper contains a table listing results preceding theirs, and we refer
the reader to their paper for these results. Our interest is in simple algorithms for a more
powerful computational model, so we content ourselves here with discussing simple labeling
algorithms related to ours. (The Halperin-Zwick algorithms and many of the preceding ones
are not simple.) First we review variants of the PRAM model and how they relate to our
algorithmic framework.

The three main variants of the PRAM model, in increasing order of strength, are EREW,
CREW (concurrent read, exclusive write), and CRCW (concurrent read, concurrent write).
The CRCW PRAM has four standard versions that differ in how they handle write conflicts:
(i) COMMON: all writes to the same location at the same time must be the of the same
value; (ii) ARBITRARY: among concurrent writes to the same location, an arbitrary one
succeeds; (iii) PRIORITY: among concurrent writes to the same location, the one done by

SOSA 2019

3:8 Simple Concurrent Labeling Algorithms for Connected Components

the highest-priority processor succeeds; (iv) COMBINING: values written concurrently to
a given location are combined using some symmetric function. As mentioned in §3, our
algorithms can be implemented on a COMBINING CRCW PRAM, with minimization as
the combining function.

The first O(lgn)-time PRAM algorithm was that of Shiloach and Vishkin [17]. It runs
on an ARBITRARY CRCW PRAM, as do the other algorithms we discuss, except as noted.
The following is a version of their algorithm in our framework:

Algorithm SV: repeat {shortcut; parent-connect; arbitrary-root-update;
max-parent-connect; passive-root-update; shortcut} until no parent changes.

This algorithm uses the notion of a passive tree. (Shiloach and Vishkin used the term
“stagnant”.) A tree is passive if it did not change in the previous round. A passive tree is
necessarily flat, but a flat tree need not be passive. Our description of their algorithm omits
the extra computation needed to keep track of which trees are passive.

The algorithm uses variants of some of the methods in §3. Method arbitrary-root-
update replaces each parent of a root by any of the most-recently received vertices other
than itself, if there are any, instead of the minimum; max-parent-connect sends for each
edge the maximum of the parents of the edge ends to the minimum instead of vice-versa;
passive-root-update replaces each root of a passive tree by any just-received vertex other
than itself, if there are any:

arbitrary-root-update: for each root v replace v.p by any just-received vertex other
than v, if there is one.

max-parent-connect: for each edge e, request e.v.p from e.v and e.w.p from e.w; send
the maximum of the received vertices to the minimum of the received vertices.

passive-root-update: for each root v of a passive tree, replace v.p by any just-
received vertex other than v, if there is one.

Algorithm SV does neither minimum nor maximum labeling: the first update in a round
connects roots to smaller vertices, the second connects roots to larger vertices. The proof that
the algorithm creates no cycles is non-trivial, as is the efficiency analysis. Most interesting for
us, the first three steps of the algorithm are algorithm R, but with arbitrary parent updates
rather than minimum ones. Shiloach and Vishkin claimed that the second shortcut can
be omitted, but they showed by example that omission of passive-root-update results
in an algorithm that can take Ω(n) rounds. Their example also shows that the efficiency
of algorithm R depends on resolving concurrent parent updates by minimum value rather
than arbitrarily. That is, our stronger model of computation is critical in obtaining a simpler
algorithm.

Awerbuch and Shiloach presented a simpler O(lgn)-time algorithm and gave a simpler
efficiency analysis [2]. Our analysis of algorithm RA in §5 uses a variant of their potential
function. Their algorithm does only one shortcut per round and in updates only changes
the parents of roots of flat trees, using the following method:

flat-root-update: for each root v of a flat tree, replace v.p by any just-received
vertex other than v, if there is one.

Algorithm AS: repeat {parent-connect; flat-root-update; max-parent-connect;
flat-root-update; shortcut} until no parent changes.

The algorithm needs to do additional computation to keep track of flat trees. Although
Awerbuch and Shiloach do not mention it, their analysis shows that replacing the first
update in their algorithm with arbitrary-root-update produces a correct O(lgn)-time
algorithm. The resulting algorithm is algorithm SV with the first shortcut deleted and
passive-tree-connect replaced by flat-tree-connect.

S. Liu and R. E. Tarjan 3:9

An even simpler but randomized O(lgn)-time algorithm was proposed by Reif [16]:
Algorithm Reif: repeat {for each vertex flip a coin; random-connect;

arbitrary-root-update; shortcut} until no parent changes.
random-connect: for each edge (v, w) if v.p flipped heads and w.p flipped tails then

send v.p to w.p; if w.p flipped heads and v.p flipped tails then send w.p to v.p.
Reif’s algorithm keeps the label trees flat. As a result, random-connect only sends

vertices to roots. This allows replacement of arbitrary-root-update by a method that for
each vertex sets its parent equal to any just-received vertex if there is one. Reif’s algorithm is
simpler than both SV and AS, but our algorithm RA is even simpler, and it is deterministic.

We know of only one algorithm, that of Johnson and Metaxis [12], that does not maintain
acyclicity. Their algorithm runs in O((lgn)3/2) time on an EREW PRAM. It does a form of
shortcut to eliminate any non-trivial cycles that it creates.

Algorithms that run on a more restricted form of PRAM, or use fewer processors (and
thereby do less work) use various kinds of edge alteration, along with simulation and other
techniques to resolve read and write conflicts. Such algorithms are much more complicated
than those above. Again we refer the reader to [8] for results and references.

The second era of concurrent connected components algorithms was that of the exper-
imentalists. It began in the 1990’s and continues to the present. Experimentation has
expanded greatly with the growing importance of huge graphs (the internet, the world-wide
web, relationship graphs, and others) and the development of cloud computing frameworks.
These trends make concurrent algorithms for connected components both practical and useful.
The general approach of experimentalists has been to take one or more algorithms in the
literature, possibly simplify or modify them, implement the resulting suite of algorithms
on one or more computing platforms, and report the results of experiments done on some
collection of graphs. Examples of such studies include [6, 7, 10, 21, 14, 18].

Our interest is in the theoretical efficiency of such simple algorithms, and in the theoretical
power of the new concurrent computing platforms as compared to the classical PRAM
model. One theoretical model used to study algorithms on such platforms is the MPC
(Massive Parallel Computing) model. A large number of virtual processes run concurrently
in supersteps. In each superstep, a process can do arbitrary computation based on messages
it received during the previous step, and then send messages to any or all other processes.
The next superstep begins once all messages are received. Our framework for connected
components algorithms is the MPC model, specialized for the kind of algorithms we consider.

Our work started with a study of the following algorithm of Stergio, Rughwani, and
Tsioutsiouliklis [18]:

Algorithm SRT: repeat {
for each edge (v, w) if v.p < w.p then send v.p to w else send w.p to v;
for each vertex v let new(v) be the minimum of u.p and the vertices received by v;
for each vertex v if new(v) < v.p then send new(v) to v.p;
for each vertex v send new(v).p to v;
for each vertex v let v.p be the minimum of v.p and the vertices received by v}
until no parent changes.

They implemented this algorithm on the Hronos computing platform and solved problems
with trillions of edges. They claimed a bound of O(lgn) steps for their algorithm. But
we are unable to make sense of their proof. This algorithm moves subtrees between trees,
which makes it hard to analyze. We conjecture, however, that our proof of O(lg2 n) steps for
algorithms P, E, and A extends to their algorithm.

Our algorithm E is a variant of algorithm SRT that is bit simpler. Algorithm P is a
further simplification. Algorithm R is algorithm P with updates restricted to roots. We are
able to obtain an O(lgn) step bound for algorithms R and RA, but not for E, P, nor A. Our

SOSA 2019

3:10 Simple Concurrent Labeling Algorithms for Connected Components

diameter-based analysis of algorithm E is also valid for algorithm SRT and gives a bound of
O(d) steps. We think that algorithms SRT, E, P, and A all take O(lgn) steps but have no
proof.

A second paper with an analysis gap is that of Yan et al. [21]. They consider algorithms
in the PREGEL framework [13], which is a graph-processing platform designed on top of
the MPC model. All the algorithms they consider can be expressed in our framework. They
give a version of algorithm SV with the first shortcut deleted, and modify it further
by replacing “max-parent-connect; passive-root-update” with code equivalent to
“parent-connect; flat-root-update”. These two steps do nothing, since any connections
they might make are done by the previous steps “parent-connect; arbitrary-root-
update”. Their termination condition, that all trees are flat, is also incorrect. They claim
an O(lgn) step bound for their algorithm, but since they use arbitrary updating of roots,
their algorithm, once the termination condition is corrected, takes Ω(n) steps on the example
of Siloach and Vishkin.

A third, more recent paper with an analysis gap is that of Burkhardt [4]. He proposes
an algorithm that does a novel form of edge alteration: it converts each original edge into
two oppositely directed arcs and alters these arcs independently. The algorithm does not
do shortcut explicitly, but it does do a variant of shortcut implicitly. The algorithm
maintains both old and new vertex labels, which increases its complexity. Burkhardt claims
a step bound of O(lg d), but a counterexample in [1] disproves this claim. He also claims
a linear space bound, but we are unable to verify his proof of this. We conjecture that
Burkhardt’s algorithm and simpler variants take O(lgn) steps but have no proof. We think
that our O(lg2 n) analysis should apply to his algorithm but have not verified this.

Very recently, Andoni et al. have used the power of the MPC model to obtain a
randomized algorithm running in O(log d log logm/n n) steps [1]. Their algorithm uses the
distance-doubling technique of [15] (discussed in §2) but controlled to keep message sizes
sufficiently small. The algorithm relies heavily on the ability to sort in O(1) steps on the
MPC model. We think an appropriate version of their algorithm can be implemented on a
CRCW PRAM, possibly with the same asymptotic bound as theirs, and we are working to
achieve this. Any such algorithm will be much more complicated than those we present here,
however.

5 Analysis

In this section we prove an O(d) step bound for algorithms E and A, an O(lg2 n) bound for
algorithms P, E, and A, and an O(lgn) bound for algorithm R (and RA). We begin with some
assumptions and preliminary results. We assume the graph is connected and contains at least
two vertices, which is without loss of generality since each algorithm operates concurrently
and independently on each component. For brevity, we use connect to denote the steps
preceding shortcut in a round, no matter which algorithm we are considering. We denote
an edge e with e.v = v and e.w = w by (v, w). For the analysis only, we assume that alter
does not delete an edge (v, w) when v.p = w.p but instead converts it into a loop (an edge
having both ends the same) (v.p, w.p). Once an edge becomes a loop, it remains a loop.
Loops do not affect the parent changes done by A (or RA); they merely allow us to treat a
vertex that is both ends of a loop as having an incident edge.

We partition the vertices into two colors, as follows: in algorithm A, a vertex is green if it
is a root or has an incident edge, and red otherwise; in all other algorithms a vertex is red if
it is a leaf (a non-root with no children) and green otherwise.

S. Liu and R. E. Tarjan 3:11

I Lemma 6. If a connect changes the parent of a vertex v to w, then both v and w are
green.

Proof. In algorithm A, v and w must be the ends of the edge causing the edge, so both are
green. In the other algorithms, there must be an edge (x, y) such that x.p = v and y.p = w.
Hence both v and w are green. J

I Lemma 7. A shortcut in an algorithm other than A changes all green non-roots with
no green children to red, and changes no other vertex colors.

Proof. Let v be any vertex just before a shortcut. If v is red, it is a non-root with no
child. The shortcut cannot give it a child, so it stays red. If v is a green root, it stays a
root, so it stays green. If v is a green non-root, v is a non-root after the shortcut, and
it has a child after the shortcut if and only if it has a grandchild before the shortcut,
which is true if and only if it has a green child before the shortcut. J

I Lemma 8. In algorithm A, (i) each green vertex is a root or has a green parent; (ii) each
red vertex has a green grandparent, and has a green parent just after a shortcut; and (iii)
a shortcut followed by an alter changes all green non-roots with no green children to red,
and changes no other vertex colors.

Proof. By induction of the number of steps. The lemma is true initially since all vertices
are roots and hence green. By Lemma 6, a connect preserves the lemma, since it does
not change any vertex colors nor the parent of any red vertex. A shortcut preserves (i)
and (ii), since before the shortcut any vertex has a green grandparent or parent or is itself
green, so after the shortcut it has either a green parent or is green. Given that all vertices
have green parents after a shortcut, the subsequent alter changes each edge end that is
a green non-root to its parent, and does not affect ends that are roots. (Here we use the
non-deletion of loops.) This makes no red vertex green by (i), makes a green vertex red if
and only if it is a non-root with no green children, giving (iii), and leaves each red vertex
with a green parent or grandparent by (i) and (ii). J

I Lemma 9. The parent of a vertex never increases. Once a vertex is a non-root, it stays a
non-root.

Proof. The first part of the lemma follows by induction on the number of parent changes:
each such change decreases the parent. By the first part, once v.p < v this inequality
continues to hold, which gives the second part of the lemma. J

5.1 A Diameter Bound
I Theorem 10. Algorithm E takes O(d) steps.

Proof. Let u be the minimum vertex. We prove by induction on i that after i rounds all
vertices at distance i or less from u have parent u. This is true for i = 0. Let w be a vertex
at distance i > 0 from u. Then there is an edge (w, v) with v at distance i− 1 from u. By
the induction hypothesis, v has parent u after round i− 1, which it will send to w in round i,
as a result of which w will have parent u after round i. After at most d rounds, all vertices
will have parent u, so the algorithm stops after at most d+ 1 rounds. J

Theorem 10 also holds for algorithm A, but the proof is more elaborate. We need a
strengthening of the result of Lemma 3, as well as Lemma 8.

SOSA 2019

3:12 Simple Concurrent Labeling Algorithms for Connected Components

I Lemma 11. Let u be the minimum vertex. After d− i rounds of algorithm A, each green
vertex has a path of at most d− i current edges connecting it with u.

Proof. By induction on i. The lemma is true initially, since very vertex has a path to u
containing at most d edges. Suppose it is true just before round i. Let v be a green vertex at
the end of round i. If v is a root at the end of round i, then it was a root at the start of round
i, and by the induction hypothesis there was a path P of at most d− i edges connecting v
with u at the start of round i. If v is not a root at the end of round i, then it was not a
root at the beginning of the shortcut in round i, and by Lemma 8 it had a green child,
say w, at this time. By the induction hypothesis, there was a path P of at most d− i edges
connecting w with u at the start of round i. In either case we can assume P is loop-free,
since deleting loops leaves it a path with the same ends. The alter in round i converts P
into a path P ′ connecting v with u containing at most d − i edges. Delete all loops from
P ′. Let (x, u) be the last edge on P . After the connect in round i, x must be a child of u.
Hence the alter in round i converts this edge to a loop. Deleting this loop from P ′ gives a
path satisfying the lemma for v after round i. J

I Theorem 12. Algorithm A takes O(d) steps.

Proof. Consider the state after d steps. By Lemma 11, the only green vertex is the minimum
vertex, and by Lemma 8 all red vertices are children or grandchildren of this minimum vertex.
The algorithm stops after at most two more rounds. J

5.2 A Log-Squared Bound
We conjecture that all our algorithms take O(lgn) steps, but for P, E, and A we are only
able to prove something weaker:

I Theorem 13. Algorithms P, E, and A take O(lg2 n) steps.

To prove Theorem 13, we shall show that O(lgn) rounds reduce the number of green
vertices by at least a factor of two. Given Lemma 6, it is convenient to consider the situation
just before a shortcut. By Lemma 7 or 8 depending on the algorithm, a shortcut converts
all green non-roots with no green children to red. We shall prove that a connect converts
all green roots with no green children into non-roots. This allows us to bound the number of
rounds in which there are many green vertices with no green children. To bound the number
of rounds in which there are many green vertices but few that have no green children, we
prove that in such a situation the green vertices form many long vertex-disjoint tree paths,
on which we can quantify the effect of a shortcut. We proceed with the details. We assume
throughout this section that the algorithm is P, E, or A.

I Lemma 14. Let v be a root with no green children just before the shortcut in round i.
Either v is the only root, or the connect in round i+ 1 makes v a non-root.

Proof. Suppose v is not the only root just before the shortcut in round i. In algorithm A,
just before this shortcut there must be an edge (v, w) with w not in the tree rooted at v.
If w < v, then the edge formed from (v, w) by the alter in round i will cause the connect
in round i+ 1 to make v a non-root. If w > v, then w.p < v after the connect in round i;
otherwise, this connect would have made w, a green vertex, a child of v. The alter in
round i converts (v, w) into an edge (v, x) with x < v, which causes the connect in round
i+ 1 to make v a non-root in this as well.

A similar argument applies to algorithms P and E. Just before the shortcut in round
i, there must be an edge (x, y) with x.p = v and with y.p not in the tree rooted at v. If

S. Liu and R. E. Tarjan 3:13

y.p < v, (x, y) will cause the connect in round i+ 1 to make v a non-root. If y.p > v, then
y.p.p < v after the connect in round i; otherwise, this connect would have made y.p, a
green vertex, a child of v. After the shortcut in round i, y.p < v, so in this case also (v, w)
causes the connect in round i+ 1 to make v a non-root. J

I Remark. Lemma 14 does not hold for algorithm R: a root with no green children can
remain a root for many rounds.
The depth of a vertex v is the number of proper ancestors in its tree; that is, the number of
tree arcs on the path from v to the root.

I Lemma 15. If there are at least n′ green vertices, with less than n′/k having no green
child, then there is a green vertex of depth at least k.

Proof. Every green vertex has a green descendant with no green children (possibly itself).
Any two green vertices of the same depth are unrelated and hence must have distinct green
descendants with no green children. Hence the number of green vertices of any given depth
is less than n′/k. Since there are at least n′ green vertices, and less than n′/k of each depth
from 0 to k − 1, there must be at least one of depth k. J

I Lemma 16. If there are n′ green vertices, with less than n′/(2k) having no green child,
then there is a set of vertex-disjoint tree paths of green vertices, each containing at least k+ 1
vertices, that together contain at least n′/2 green vertices.

Proof. Find a green vertex of maximum depth and delete the tree path from it to the root
of its tree. This deletion creates no new green vertex with no green child. Repeat this step
until there are fewer than n′/2 vertices. By Lemma 15, each path deleted contains at least
k + 1 vertices. J

To quantify the effect of a shortcut on long paths, we borrow an idea from the analysis
of compressed-tree algorithms for disjoint set union [19]. Suppose there are n′ green vertices.
For the purpose of the analysis only, we renumber the green vertices from 1 to n′ in the order
of their original numbers and identify each green vertex by its new number. We define the
level v.l of a green child v to be v.l = blg(v − v.p)c. The level of a green child is between 0
and lgn′. By Lemma 9, which holds for the new vertex numbers as well as the original ones,
the level of a child never decreases. We show that if k is big enough a shortcut increases
by Ω(k) the sum of the levels of the green vertices on a tree path of k green vertices.

I Lemma 17. Let n′ be the number of green vertices. Consider a tree path of at least k + 2
green vertices, where k ≥ 2 lgn′. A shortcut increases the sum of the levels of the children
on the path by at least k/4.

Proof. Let u be a green vertex on the path other than the last two. Let v be the parent and
w the grandparent of u, and let i and j be the levels of u and v, respectively. A shortcut
increases the level of u from i = blg(u−v)c to blg(u−w)c = blg(u−v+v−w)c ≥ blg(2i +2j)c.
If i < j, this increases the level of u to at least j; if i = j, it increases the level of u to i+ 1.

Let x1, x2, . . . , xk+1 be the vertices on the path, excluding the last one. For each i from 1
to k, let ∆i = xi+1.l − xi.l. The sum of ∆i’s is Σ = xk+1.l − x1.l > 0− lgn′ since they form
a telescoping series. Let k+, k0, and k−, respectively be the number of positive, zero, and
negative ∆i’s, and let Σ+ and Σ− be the sum of the positive ∆i’s and the sum of the negative
∆i’s, respectively. Then Σ = Σ+ + Σ−, which implies Σ+ > −Σ− − lgn′. Since the ∆i’s are
integers, Σ+ ≥ k+ and −Σ− ≥ k−. Combining inequalities, we obtain 2Σ+ > k+ + k−− lgn′.
Adding k0 to both sides gives 2Σ+ +k0 > k− lgn′ ≥ k/2. Hence Σ+ +k0 ≥ Σ+ +k0/2 > k/4.
The lemma follows from the argument in the previous paragraph. J

SOSA 2019

3:14 Simple Concurrent Labeling Algorithms for Connected Components

Now we have all the pieces. It remains to put them together.

I Lemma 18. Suppose there are n′ ≥ 16 green vertices just before a round. After O(lgn′)
rounds, there are at most n′/2 green vertices.

Proof. At the beginning of the round, renumber the green vertices from 1 to n′ in the order
of their original numbers and identify each green vertex by its new number. Consider a
round in which there are still at least n′/2 green vertices just before the shortcut. We
consider three cases:
(i) There are at least n′/(16 lgn′ + 8) green roots with no green children. By Lemma 14,

all such roots become non-roots during the next connect. This can happen at most
16 lgn′ + 7 times, since there is always a green root.

(ii) There are at least n′/(16 lgn′+ 8) green non-roots with no green children. By Lemma 7
or 8 depending on the algorithm, the shortcut makes all such vertices red. This can
happen at most 16 lgn′ + 8 times.

(iii) There are fewer than n′/(8 lgn′+4) green vertices with no green children. By Lemma 16,
there is a set of vertex-disjoint green paths, each containing at least 2 lgn′ + 2 vertices,
that together contain at least n′/4 vertices. By Lemma 17, for any such path containing
k + 2 vertices, the shortcut increases the levels of the vertices on the path by at least
k/4 ≥ k/5 + 2/5, since k ≥ 2 lgn′ ≥ 8. Summing over all the paths, the shortcut
increases the sum of levels by at least n′/20. This can happen at most 20 lgn′ times.

We conclude that after O(lgn′) rounds, the number of green vertices is at most n′/2. J

Theorem 13 is immediate from Lemma 18.

5.3 A Logarithmic Bound
The proof of Theorem 13 fails for algorithm R, because Lemma 14 is false for this algorithm.
But we can get an even better bound by using a different technique, that of Awerbuch and
Shiloach [2] extended to cover a constant number of rounds rather than just one.

I Theorem 19. Algorithms R (and hence RA) takes O(lgn) steps.

To prove Theorem 19, we begin with some preliminary results and some terminology.

I Lemma 20. After two rounds of algorithm R, each tree contains at least two vertices.

Proof. Let v be a vertex and (v, w) an incident edge. If w < v, then v becomes a non-root
in the first connect. If w > v, then the first connect either makes w a child of v or gives
w a parent less than v. In the latter case, if v is still a root before the second connect then
this connect will make v a non-root. We conclude that after the first two connect steps v
is in a tree with at least two vertices. J

By Lemma 20, after round two, all trees have height at least one. When we speak of a tree
in round k, we mean a tree existing at the end of the round. We say a connect link trees
T1 and T2 if it makes the root of one of the trees a child of a vertex in the other. If the
connect makes the root of T1 (respectively T2) a child of a vertex in T2 (respectively T1),
we say the connect links T1 to T2 (respectively T2 to T1).

I Definition 21. A tree in round k > 2 is passive in round k if the tree existed at the
beginning of the round (round k does not change it), and active otherwise. All trees in round
2 are active in round 2.

S. Liu and R. E. Tarjan 3:15

I Lemma 22. For any integer k > 2, if trees T1 and T2 are passive in round k − 1, the
connect in round k does not link T1 and T2, and there is no edge with one end in T1 and
the other in T2.

Proof. If T1 and T2 were linked in round k, there would be an edge connecting them that
caused the link. Since T1 and T2 did not change in round k − 1, such an edge would have
caused them to link in round k − 1, and hence they would not be passive. J

We measure progress in the algorithm using a potential function. It is like that of
Awerbuch and Shiloach, but modified to guarantee that the total potential never increases,
and to give passive trees, which can linger indefinitely, a potential of zero.

I Definition 23. The potential φk(T) of a tree T in round k ≥ 2 is

φk(T) =


0 if T is passive in round k
3 if T is active and flat in round k
h+ 1 if T has height h ≥ 2 in round k

The total potential in round k ≥ 2 is the sum of the potentials of all the trees in the round.

We shall obtain a bound on the total potential that decreases by a constant factor each
round (other than the first two). Theorem 19 is immediate from such a bound. It suffices to
consider each active tree individually, since algorithm R is monotone and the total potential
in a round is the sum of the potentials of the trees in the round. We shall track an active tree
T backward through the rounds in order to see what earlier trees were combined to form it.
We show that these earlier trees had enough potential to give the desired potential decrease.

I Definition 24. Let T be a tree that is active in round k > 2. For i such that 2 ≤ i < k, the
constituent trees of T in round i are those in round i whose vertices are in T . The potential
Φi(T) of T in round i is the sum of the potentials of the constituent trees of T in round i. In
particular, Φk(T) = φk(T).

I Lemma 25. Let T be active in round k > 2. For i such that 2 ≤ i < k, the constituent
trees of T in round i include at least one active tree.

Proof. By induction on i for decreasing i. The lemma holds for i = k by assumption and for
i = 2 since all trees in round 2 are active. Suppose it holds for i > 3. If the constituent trees
of T in round i− 1 are all passive, the connect in round i changes none of these trees by
Lemma 22. Since all these trees are flat, the shortcut in round i also changes none of them.
Thus all these trees are passive in round i, contradicting the induction hypothesis. J

I Lemma 26. Let T be active in round k > 2. Then Φk−1(T) ≥ Φk(T), and if Φk(T) ≥ 5
then Φk−1(T) ≥ (6/5)Φk(T).

Proof. Let h be the sum of the heights of the constituent trees of T in round k − 1, let t
be the number of these constituent trees that are active in round k − 1, and let f be the
number of these trees that are active and flat. Then Φk−1(T) = h + t + f . Consider the
tree T ′ formed from the constituent trees of T by the connect in round k. The shortcut
in round k transforms T ′ into T . By Lemma 22, along any path in T ′, there cannot be
consecutive vertices from two different passive trees. By Lemma 6, all leaves of constituent
trees are leaves of T ′. It follows that T ′ has height at most h+ t+ 1: the active constituent
trees contribute at most h vertices to a longest path, at most t + 1 roots of passive trees

SOSA 2019

3:16 Simple Concurrent Labeling Algorithms for Connected Components

are on the path, at most one leaf of some constituent tree is on the path, and the path has
length one less than its number of vertices. Thus Φk(T) ≤ d(h+ t+ 1)/2e+ 1 if h+ t > 2,
Φk(T) = 3 if h+ t = 2.

We prove the lemma by induction on h+ t, which is at least 2, since at least one of the
constituent trees must be active by Lemma 25. If h+ t = 2, there is one active constituent
tree, and it is flat, so f = 1. If h+ t = 3, there is one active constituent tree, and it is not flat.
In both these cases, Φk−1(T) = 3 and Φk(T) = 3, so the lemma holds. Suppose h+ t > 3.
Then Φk(T) ≤ d(h+ t+ 1)/2e+ 1. If h+ t = 4, Φk−1(T) ≥ 4 and Φk(T) ≤ 4; if h+ t = 5,
Φk−1(T) ≥ 5 and Φk(T) ≤ 4; if h + t = 6, Φk−1(T) ≥ 6 and Φk(T) ≤ 5. Thus the lemma
holds in these cases. Each increase of h+ t by two increases the lower bound on Φk−1(T)
by two and increases the upper bound on Φk(T) by one, which preserves the inequality
Φk−1(T) ≥ (6/5)Φk(T), so the lemma holds for all h+ t by induction: if Φk(T) ≥ 5, it must
be the case that h+ t ≥ 6. J

I Corollary 27. Let T be an active tree of height at least four in round k ≥ 3. Then
Φk−1(T) ≥ (6/5)Φk(T).

Corollary 27 gives us the desired potential drop for any active tree of height at least four. It
remains to consider active trees of heights one, two, and three. Since active trees of height
one and two have the same potential, namely three, we shall handle these cases together.
This gives us two cases: height at most two, and height three. In order to obtain the desired
potential drop, we need to look backward up to two rounds in the case of height three, up to
five in the case of height at most two.

I Lemma 28. Let T be an active tree of height 3 in round k ≥ 3. Let j = max{2, k − 2}.
Then Φj(T) ≥ (5/4)Φk(T).

Proof. If the constituent trees of T in round k − 1, or in round k − 2 if k > 3, include at
least two active trees (of total potential at least six) or one active tree of height at least
four (of potential at least five), then the lemma holds by Lemma 26, since Φk(T) = 4. If
not, by Lemma 25 the constituent trees of T in round k − 1, and in round k − 2 if k > 3,
include exactly one active tree, of height exactly three. In this case there must be at least
two constituent trees of T in round k − 1, and in round k − 2 if k > 3, since the tree formed
from these constituent trees by the connect in the next round must have height at least
five, in order for the shortcut in this round to produce a tree of height three. But this
implies k > 4, since all trees in round 2 are active.

We conclude that the lemma holds except in the following case: k > 4 and the constituent
trees of T in rounds k − 2 and k − 1 each include exactly one active tree, of height exactly
three. Let T2 and T1, respectively, be the active constituent trees of T in rounds k − 2 and
k − 1. Let T ′1 and T ′, respectively, be the trees formed from the constituent trees of T by
the connect steps in rounds k− 1 and k. The shortcut in round k− 1 transforms T ′1 into
T1, and the shortcut in round k transforms T ′ into T . Both T ′1 and T ′ have height exactly
five. The passive constituent trees of T in round k − 1 are a proper subset of those in round
k − 2; specifically, those that are not combined with T2 to form T ′1 in the connect of round
k − 1. By Lemma 22, no edge connects two passive constituent trees of T in round k − 2.

Call a passive constituent tree of T in round k − 2 primary if it has an edge connecting
it to the root of T2 or to a child of the root of T2. Since T ′1 has height five, its root must
be different from that of T2: if not, T ′1 would have height at most four by the argument in
the proof of Lemma 26. If the root of T ′1 is different from that of T2, its root must be the
minimum of the roots of the primary trees of T in round k − 2. The root of T ′ must also be

S. Liu and R. E. Tarjan 3:17

different from the root of T1 (which is the same as the root of T ′1). But the root of T ′ cannot
be the root of one of the primary passive constituent trees of T in round k − 2, since none of
these roots are smaller than the root of T ′1. Nor can it be the root of one of the non-primary
passive constituent trees of T in round k − 2, since such a tree has no edge connecting it to
the root or a child of the root of T2, implying that it has no edge connecting it to the root,
a child of the root, or a grandchild of the root of T ′1, further implying that it has no edge
connecting it to the root or a child of the root of T1, making it impossible for the connect
in round k to link T1 to it. Thus this case is impossible. J

The analysis of an active tree of height at most two is like that in Lemma 28 but more
complicated: we must consider all the passive constituent trees in the first relevant round,
not just the primary ones. At a high level the argument is the same: if in one of the four
rounds preceding round k there are two active constituent trees, or one of height at least
three, we obtain the desired potential drop; if not, the algorithm eventually runs out of
passive trees to link to the one active tree, which is impossible. We proceed with the details.

I Lemma 29. Let T be an active tree of height at most two in round k ≥ 4. Let j =
max{2, k − 5}. Then Φj(T) ≥ (4/3)Φk(T).

Proof. If for some i such that j ≤ i < k the constituent trees of T in round i include at least
two active trees (of total potential at least six) or one active tree of height at least three
(of potential at least four), then the lemma holds by Lemma 26, since Φk(T) = 3. If not,
by Lemma 25 the constituent trees of T in each round from j to k − 1 include exactly one
active tree, of height at most two. In this case the passive constituent trees of T in round i
are a (not necessarily proper) subset of those in round i′, for j ≤ i < i′ < k. Furthermore
there must be at least two constituent trees of T in round k − 2, and hence in round j,
since otherwise the active constituent tree of T in round k − 1 would be flat (because the
connect in round k− 1 does nothing), and this tree would be equal to T , making T passive,
a contradiction. Since all trees in round 2 are active, this makes the lemma true if k ≤ 7.

We conclude that the lemma holds except in the following case: k > 7 and the constituent
trees of T in each round from j to k − 1 inclusive each include exactly one active tree, of
height at most two. For each round i from j to k inclusive, let Ti be the active constituent
tree of T in round i (so Tk = T), and for each round i from j + 1 to k inclusive, let T ′i be the
tree formed from the constituent trees of T by the connect in round i. For j < i ≤ k, the
shortcut in round i transforms T ′i into Ti.

By Lemma 22, no edge connects two passive constituent trees of T in round j, nor in
any later round. Call a passive constituent tree of T in round j primary if it has an edge
connecting it to the root of Tj or to a child of the root of Tj , secondary otherwise. Every
passive constituent tree of T in round j must have an edge connecting it to Tj , since it does
not have an edge connecting it to another passive constituent tree, and some connect must
link it with an active tree by the end of round k. Since Tj has height at most two, each
secondary constituent tree of T in round j has an edge connecting it with a grandchild of
the root of Tj .

We consider two cases: the roots of Tj and T ′j+1 are the same, or they are different. (See
Figure 2.) In the former case, the roots of all primary constituent trees of T in round j are
greater than the root of Tj , and the connect in round j + 1 makes all of them children of
the root of Tj . In the latter case, the root of T ′j+1 is the minimum of the roots of the primary
constituent trees of T in round j, and each such tree other than the one of minimum root is
linked to Tj in round j + 1 or to Tj+1 in round j + 2.

SOSA 2019

3:18 Simple Concurrent Labeling Algorithms for Connected Components

𝑗𝑗 + 1: C S

secondary
tree arc
primary
tree arc
edge between
trees

𝑥𝑥

𝑦𝑦 𝑧𝑧 𝑞𝑞

𝑝𝑝

𝑇𝑇𝑇𝑗𝑗+1

𝑥𝑥

𝑧𝑧

𝑝𝑝

𝑦𝑦

𝑇𝑇𝑗𝑗+1

𝑥𝑥

𝑦𝑦

𝑝𝑝

𝑗𝑗 + 2: C S
𝑥𝑥 𝑦𝑦 𝑝𝑝

𝑇𝑇𝑗𝑗

𝑇𝑇𝑗𝑗+2

𝑗𝑗 + 3: C S

𝑥𝑥

𝑝𝑝

𝑇𝑇𝑇𝑗𝑗+3

𝑞𝑞
𝑞𝑞

𝑇𝑇𝑇𝑗𝑗+2

𝑥𝑥

𝑦𝑦

𝑝𝑝
𝑥𝑥

𝑇𝑇𝑗𝑗+3

𝑝𝑝
𝑗𝑗 + 4: C

𝑥𝑥

𝑝𝑝

𝑇𝑇𝑇𝑗𝑗+4

S
𝑥𝑥

𝑇𝑇𝑗𝑗+4

𝑦𝑦

Figure 2 Worst-case illustration for the case of height at most two from round j +1 to round j +4.
Only necessary vertices, arcs, and edges are shown. Vacant before C (connect) or S (shortcut)
denotes the same forest as in the previous step. The vertices (roots) satisfy x < p < y < q < z.

Now consider the secondary constituent trees of T in round j. If the roots of Tj and T ′j+1
are the same, then after the shortcut in round j + 1 each secondary constituent tree whose
vertices are not in Tj+1 has an edge connecting it with a child of the root of Tj+1. By the
argument in the preceding paragraph, each such tree will be linked with Tj+1 in round j + 2
or with Tj+2 in round j + 3. If the roots of Tj and T ′j+1 are different, none of the secondary
constituent trees of T in round j has an edge connecting it with the root or a child of the
root of Tj+1 at the end of round j + 1. In this case, the roots of Tj+1 and Tj+2 must be the
same, so after the shortcut in round j + 2 each secondary constituent tree whose vertices
are not in Tj+2 has an edge connecting it with a child of the root of Tj+2. Each such tree
will be linked with Tj+2 in round j + 3 or with Tj+3 in round j + 4. Furthermore the roots
of Tj+3 and Tj+4 must be the same.

It follows that there is only one constituent tree of T in round j + 4, and this tree is flat.
But this tree must be T , making T passive in round j + 5 = k, a contradiction. Thus this
case is impossible. J

Having covered all cases, we are ready to put them together into a proof of Theorem 19.
Let a = (4/3)1/5 ' 1.06. We denote the number of vertices in a tree T by |T |.

I Lemma 30. Let T be an active tree in round k ≥ 2. Then Φk(T) ≤ 2|T |/ak−2.

Proof. By induction on k. The lemma holds for k = 2 and k = 3 since each active tree T
after round two has at least two vertices and potential at most |T |+ 1, which is at most 2|T |
in round two and at most 2|T |/a in round three since a < 4/3.

To prove the the lemma for k ≥ 4, suppose the lemma holds for all k′ such that 2 ≤ k′ < k.
We consider three cases. If the height of T exceeds three, then Φk(T) ≤ (5/6)Φk−1(T) ≤
(5/6)2|T |/ak−3 by Corollary 27, the induction hypothesis, and the linearity of the potential
function. The lemma holds for T since a < 6/5. If the height of T equals three, then
Φk(T) ≤ (4/5)Φk−2(T) ≤ (4/5)2|T |/ak−4 by Lemma 28, the induction hypothesis, and
the linearity of the potential function. The lemma holds for T since a2 < 5/4. If the
height of T is at most two, then Φk(T) ≤ (3/4)Φj(T) by Lemma 26 and Lemma 29, where
j = max{2, k − 5}. By the induction hypothesis and the linearity of the potential function,
Φk(T) ≤ (3/4)2|T |/aj−2. The lemma holds for T since k − j ≤ 5 and a = (4/3)1/5. J

Proof of Theorem 19. By Lemma 30, if k is such that 2n/ak−2 ≤ 2, then no tree can be
active. This inequality is equivalent to k ≥ lgn/ lg a+ 2. Every round except the last one
has at least one active tree. Thus the number of rounds is at most dlgn/ lg ae+ 2. J

S. Liu and R. E. Tarjan 3:19

6 Remarks

We have presented several very simple label-update algorithms to compute connected com-
ponents concurrently. We have shown that two of our algorithms, algorithms R and RA,
take O(lgn) steps and O(m lgn) total messages, and the others take O(lg2 n) steps and
O(m lg2 n) total messages. Crucial to our algorithms is the use of minimum-value resolution
of write conflicts. We do not have tight efficiency analyses for our algorithms other than R
and RA, and we leave obtaining such analyses as an open problem. We think our algorithms
are simple enough to merit experimental study, but we leave this for future work.

Our analysis of algorithm R is novel in that it studies what happens over several rounds.
Previous algorithms were designed so that they could be analyzed one round at a time. We
have sacrificed simplicity in the analysis for simplicity in the algorithm.

We have ignored message contention. We think it is most fruitful to handle such contention
separately from the underlying algorithm. Dealing with contention is a topic for future
work, as is reducing the amount of synchronization required and developing incremental and
batch-update algorithms. We think that concurrent algorithms for disjoint set union [11],
the incremental version of the connected components problem, may be adaptable to give
good asynchronous concurrent algorithms for the connected components problem with batch
edge additions.

Another interesting extension of the connected components problem is to construct a
forest of spanning trees of the components. It is easy to modify algorithm R to do this: when
an edge causes a root to become a child, add the corresponding original edge to the spanning
forest. It is not so obvious how to extend algorithms such as A, P, and E that move subtrees.
This is perhaps another reason to favor algorithm R in practice.

References
1 Alexandr Andoni, Zhao Song, Clifford Stein, Zhengyu Wang, and Peilin Zhong. Parallel

Graph Connectivity in Log Diameter Rounds. In 59th IEEE Annual Symposium on Found-
ations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 674–685,
2018.

2 Baruch Awerbuch and Yossi Shiloach. New Connectivity and MSF Algorithms for Shuffle-
Exchange Network and PRAM. IEEE Trans. Computers, 36(10):1258–1263, 1987.

3 Paul Beame, Paraschos Koutris, and Dan Suciu. Communication Steps for Parallel Query
Processing. J. ACM, 64(6):40:1–40:58, 2017.

4 Paul Burkhardt. Graph connectivity in log-diameter steps using label propagation. CoRR,
2018. arXiv:1808.06705.

5 Stephen A. Cook, Cynthia Dwork, and Rüdiger Reischuk. Upper and Lower Time Bounds
for Parallel Random Access Machines without Simultaneous Writes. SIAM J. Comput.,
15(1):87–97, 1986.

6 Steve Goddard, Subodh Kumar, and Jan F. Prins. Connected components algorithms
for mesh-connected parallel computers. In Parallel Algorithms, Proceedings of a DIMACS
Workshop, Brunswick, New Jersey, USA, October 17-18, 1994, pages 43–58, 1994.

7 John Greiner. A Comparison of Parallel Algorithms for Connected Components. In SPAA,
pages 16–25, 1994.

8 Shay Halperin and Uri Zwick. An Optimal Randomised Logarithmic Time Connectivity
Algorithm for the EREW PRAM. J. Comput. Syst. Sci., 53(3):395–416, 1996.

9 Shay Halperin and Uri Zwick. Optimal randomized EREW PRAM algorithms for finding
spanning forests. Journal of Algorithms, 39(1):1–46, 2001.

SOSA 2019

http://arxiv.org/abs/1808.06705

3:20 Simple Concurrent Labeling Algorithms for Connected Components

10 Tsan-Sheng Hsu, Vijaya Ramachandran, and Nathaniel Dean. Parallel implementation
of algorithms for finding connected components in graphs. Parallel Algorithms: Third
DIMACS Implementation Challenge, October 17-19, 1994, 30:20, 1997.

11 Siddhartha V. Jayanti and Robert E. Tarjan. A Randomized Concurrent Algorithm for
Disjoint Set Union. In Proceedings of the 2016 ACM Symposium on Principles of Distributed
Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016, pages 75–82, 2016.

12 Donald B. Johnson and Panagiotis Takis Metaxas. A Parallel Algorithm for Computing
Minimum Spanning Trees. J. Algorithms, 19(3):383–401, 1995.

13 Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph processing.
In Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010, pages 135–146, 2010.

14 Frank McSherry, Michael Isard, and Derek Gordon Murray. Scalability! But at what
COST? In 15th Workshop on Hot Topics in Operating Systems, HotOS XV, Kartause
Ittingen, Switzerland, May 18-20, 2015, 2015.

15 Vibhor Rastogi, Ashwin Machanavajjhala, Laukik Chitnis, and Anish Das Sarma. Finding
connected components in map-reduce in logarithmic rounds. In 29th IEEE International
Conference on Data Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013, pages
50–61, 2013.

16 John H Reif. Optimal Parallel Algorithms for Graph Connectivity. Technical report,
Harvard University Cambridge, MA, Aiken Computation Lab, 1984.

17 Yossi Shiloach and Uzi Vishkin. An O(log n) Parallel Connectivity Algorithm. J. Al-
gorithms, 3(1):57–67, 1982.

18 Stergios Stergiou, Dipen Rughwani, and Kostas Tsioutsiouliklis. Shortcutting Label
Propagation for Distributed Connected Components. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining, WSDM 2018, Marina Del Rey,
CA, USA, February 5-9, 2018, pages 540–546, 2018.

19 Robert Endre Tarjan and Jan van Leeuwen. Worst-case Analysis of Set Union Algorithms.
J. ACM, 31(2):245–281, 1984.

20 Leslie G. Valiant. A Bridging Model for Parallel Computation. Commun. ACM, 33(8):103–
111, 1990.

21 Da Yan, James Cheng, Kai Xing, Yi Lu, Wilfred Ng, and Yingyi Bu. Pregel Algorithms for
Graph Connectivity Problems with Performance Guarantees. PVLDB, 7(14):1821–1832,
2014.

A Framework for Searching in Graphs in the
Presence of Errors
Dariusz Dereniowski1

Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology
Narutowicza 11/12, 80-233 Gdańsk, Poland
deren@eti.pg.edu.pl

https://orcid.org/0000-0003-4000-4818

Stefan Tiegel
Department of Computer Science, ETH Zürich, Universitätstrasse 6, 8092 Zürich, Switzerland
tiegels@student.ethz.ch

Przemysław Uznański
Department of Computer Science, ETH Zürich, Universitätstrasse 6, 8092 Zürich, Switzerland
przemyslaw.uznanski@inf.ethz.ch

https://orcid.org/0000-0002-8652-0490

Daniel Wolleb-Graf
Department of Computer Science, ETH Zürich, Universitätstrasse 6, 8092 Zürich, Switzerland
daniel.graf@inf.ethz.ch

https://orcid.org/0000-0002-6137-5725

Abstract
We consider a problem of searching for an unknown target vertex t in a (possibly edge-weighted)
graph. Each vertex-query points to a vertex v and the response either admits that v is the target
or provides any neighbor s of v that lies on a shortest path from v to t. This model has been
introduced for trees by Onak and Parys [FOCS 2006] and for general graphs by Emamjomeh-
Zadeh et al. [STOC 2016]. In the latter, the authors provide algorithms for the error-less case and
for the independent noise model (where each query independently receives an erroneous answer
with known probability p < 1/2 and a correct one with probability 1− p).

We study this problem both with adversarial errors and independent noise models. First,
we show an algorithm that needs at most log2 n

1−H(r) queries in case of adversarial errors, where
the adversary is bounded with its rate of errors by a known constant r < 1/2. Our algorithm
is in fact a simplification of previous work, and our refinement lies in invoking an amortization
argument. We then show that our algorithm coupled with a Chernoff bound argument leads to
a simpler algorithm for the independent noise model and has a query complexity that is both
simpler and asymptotically better than the one of Emamjomeh-Zadeh et al. [STOC 2016].

Our approach has a wide range of applications. First, it improves and simplifies the Ro-
bust Interactive Learning framework proposed by Emamjomeh-Zadeh and Kempe [NIPS 2017].
Secondly, performing analogous analysis for edge-queries (where a query to an edge e returns
its endpoint that is closer to the target) we actually recover (as a special case) a noisy binary
search algorithm that is asymptotically optimal, matching the complexity of Feige et al. [SIAM J.
Comput. 1994]. Thirdly, we improve and simplify upon an algorithm for searching of unbounded
domains due to Aslam and Dhagat [STOC 1991].

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases graph algorithms, noisy binary search, query complexity, reliability

1 Partially supported by National Science Centre (Poland) grant number 2015/17/B/ST6/01887.

© Dariusz Dereniowski, Stefan Tiegel, Przemysław Uznański, and Daniel Wolleb-Graf;
licensed under Creative Commons License CC-BY

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy Fineman and Michael Mitzenmacher; Article No. 4; pp. 4:1–4:17

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:deren@eti.pg.edu.pl
https://orcid.org/0000-0003-4000-4818
mailto:tiegels@student.ethz.ch
mailto:przemyslaw.uznanski@inf.ethz.ch
https://orcid.org/0000-0002-8652-0490
mailto:daniel.graf@inf.ethz.ch
https://orcid.org/0000-0002-6137-5725
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

4:2 A Framework for Searching in Graphs in the Presence of Errors

Digital Object Identifier 10.4230/OASIcs.SOSA.2019.4

Related Version https://arxiv.org/abs/1804.02075

1 Introduction

Consider the following game played on a simple connected graph G = (V,E):

Initially, the Responder selects a target v∗ ∈ V . In each round, the Questioner asks a
vertex-query by pointing to a vertex v of G, and the Responder provides a reply. The
reply either states that v is the target, i.e., v = v∗, or provides an edge incident to v
that lies on a shortest path to the target, breaking ties arbitrarily. A specific number
of replies can be erroneous (we call them lies). The goal is to design a strategy for
the Questioner that identifies v∗ using as few queries as possible.

We remark that this problem is known, among several other names, as Rényi-Ulam games [38,
41], noisy binary search or noisy decision trees [20, 24, 5]. One needs to put some restriction
as how often the Responder is allowed to lie. Following earlier works, we focus on the most
natural probabilistic model, in which each reply is independently correct with a certain fixed
probability.

This problem has interesting applications in noisy interactive learning [1, 18, 25, 29, 40].
In general terms, the learning process occurs as a version of the following scheme. A user is
presented with some information – this information reflects the current state of knowledge of
the system and should take into account earlier interactions with the user (thus, the process
is interactive). Then, the user responds, which provides a new piece of data to the system.
In order to model such dynamics as our problem, one needs to place some rules: what the
information should look like and what is allowed as a valid user’s response. A crucial element
in those applications is the fact that the learning process (reflected by queries and responses)
does not require an explicit construction of the underlying graph on which the process takes
place. Instead, it is enough to argue that there exists a graph whose vertices reflect possible
states. Moreover, this graph needs to have the property that a valid user’s response reveals
an edge lying on a shortest path to the state that needs to be determined by the system.
Specific applications pointed out in [18] are the following. In learning a ranking the system
aims at learning user’s preference list [36, 30]. An information presented to the user is some
list, and as a response the user swaps two consecutive elements on this list which are in the
wrong order with respect to the user’s target preference list. Or, the response may reveal
which element on a presented list has the highest rank. Both versions of the response turn out
to be consistent with our graph-theoretic game over a properly defined graph, whose vertex
set is the set of all possible preference lists. Another application is learning a clustering,
where the user’s reply tells the system that in the current clustering some cluster needs to
be split (the reply does not need to reveal how) or two clusters should be merged [3, 4]. Yet
another application includes learning a binary classifier. The strength that comes from a
graph-theoretic modeling of those applications as our game is that, although the underlying
graph structure has usually exponential number of vertices (for learning a ranking it is l!,
where l is the maximum length of the preference list), the number of required queries is
asymptotically logarithmic in this size [19, 18]. Thus, the learning strategies derived from
the algorithms in [19] and [18] turn out to be quite efficient. We stress out that the lies in
the query game reflect the fact that the user may sometimes provide incorrect replies. We

https://doi.org/10.4230/OASIcs.SOSA.2019.4
https://arxiv.org/abs/1804.02075

D. Dereniowski, S. Tiegel, P. Uznański, and D. Wolleb-Graf 4:3

also note that any improvement of those algorithms, at which we aim in this work, leads to
immediate improvements in the above-mentioned applications.

In [19], the authors provide an algorithm with the following query complexity, i.e., the
worst-case number of vertex-queries:

1
1−H(p)

(
log2 n+O(1

C
logn+ C2 log δ−1)

)
,where C = max

(
(1
2 − p)

√
log logn, 1

)
(1)

that identifies the target with probability at least 1− δ, where n is the number of vertices of
an input graph and H(p) = −p log p− (1− p) log(1− p) is the entropy and p is the success
probability of a query. It is further observed that when p < 1/2 is constant (w.r.t. to n),
then (1) reduces to log2 n

1−H(p) + o(logn) +O(log2 δ−1). However, this complexity deteriorates
when 1/2− p = O(1/

√
log logn), and then (1) becomes O(1

1−H(p) (logn+ log δ−1)).

1.1 Our Contribution – Improved Query Complexity
In our analysis, we first focus on an adversarial model called linearly bounded, in which a
rate of lies r < 1/2 is given at the beginning of the game and the Responder is restricted
so that at most rt lies occur in a game of length t. It turns out that this model is easier to
analyze and leads to the following theorem whose proof is postponed to Section 3.3.

I Theorem 1. In the linearly bounded error model, with known error rate r < 1/2, the target
can be found in at most log2 n

1−H(r) vertex queries.

This bound is strong enough to make an improvement in the probabilistic model. By a
simple application of Chernoff bound, we get the following query complexity.

I Theorem 2. In the probabilistic error model with error probability p < 1/2, the target can
be found using at most

1
1−H(p)

(
log2 n+O(

√
logn log δ−1) +O(log δ−1)

)
vertex queries, correctly with probability at least 1− δ.

By an application of Young’s inequality2 and assuming that p < 1/2 is constant, we
derive a query complexity of

log2 n

1−H(p) + o(logn) +O(log δ−1 log log δ−1).

Query complexity comparison

We compare, in the independent noise model, the precise query complexities of [19], i.e. (1)
with Theorem 2. Observe that logn· 1

C +log δ−1 ·C2 ≥ 2
√

logn log δ−1 ·
√
C ≥ 2

√
logn log δ−1

and that log δ−1 ·C2 ≥ log δ−1, both holding since C ≥ 1. Thus, our bound from Theorem 2
for all ranges of parameters asymptotically improves the one in (1).

Note that the compared bounds are with respect to worst-case strategy lengths. Our
bounds can be made in expectation smaller by a factor of roughly (1 − δ) using the same
techniques as in [5] and [19].

2 ab ≤ ap

p + bq

q for 1/p + 1/q = 1 and a, b ≥ 0, from which follows that for 0 < A ≤ B it holds
√
AB = O(A/ logA) +O(B logB). Thus, if logn ≤ log δ−1, then we bound the term O(

√
logn log δ−1)

by O(logn/ log logn) +O(log δ−1 log log δ−1), and otherwise by the term O(log δ−1).

SOSA 2019

4:4 A Framework for Searching in Graphs in the Presence of Errors

1.2 Our Contribution – Simplified Algorithmic Techniques
The crucial underlying idea behind the algorithm from [19] that reaches the query complexity
in (1) is as follows. The algorithm maintains a weight function µ for the vertex set of the
input graph G = (V,E) so that, at any given time, µ(v) represents the likelihood that v is
the target. Initially, all vertices have the same weight. For a given µ, define a potential of a
vertex v to be Φµ(v) =

∑
u∈V µ(u)d(v, u), where d(u, v) is the distance between the vertices

u and v in G. A vertex q that minimizes this potential function is called a weighted median,
or a median for short, q = arg minv∈V Φµ(v). The vertex to be queried in each iteration of
the algorithm is a median (ties are broken arbitrarily). After each query, the weights are
updated: the weight of each vertex that is compatible with the reply is multiplied by p, and
the weights of the remaining vertices are multiplied by 1− p.

The above scheme for querying subsequent vertices is the main building block of the
algorithm that reaches the query complexity in (1). However, the analysis of the algorithm
reveals a problematic case, namely the vertices that account for at least half of the total
weight, call them heavy. On one side, such vertices are good candidates to include the
target, so they are ‘removed’ from the graph to be investigated later. However, the need to
investigate them in this separate way leads to an algorithm that has three phases, where
the first two end by trimming the graph by leaving only the heavy vertices for the next
phase. The first two phases are sequences of vertex queries performed on a median. The last
phase uses yet a different majority technique. The duration of each of the first two phases
are dictated by complicated formulas, which makes the algorithm difficult to analyze and
understand.

We propose a simpler algorithm than the one in [19]. In each step, we simply query a
median until just one candidate target vertex remains. Our improvement lies in a refined
analysis in how such a query technique updates the weights, which has several advantages. It
not only leads to a better query complexity but also provides a much simpler proof. Moreover,
it results in a better understanding as how querying a median works in general graphs. We
point out that this technique is quite general: it can be successfully applied to other query
models – the details can be found in the appendix.

1.3 Related Work
Regarding the problem of searching in graphs without errors, many papers have been devoted
to trees, mainly because it is a structure that naturally generalizes paths, which represents
the classical binary search (see e.g. [27] for search in a path with non-uniform query times).
This query model in case of trees is equivalent to several other problems, including vertex
ranking [15] or tree-depth [33]. There exist linear-time algorithms for finding optimal query
strategies [34, 39]. A lot of effort has been done to understand the complexity for trees with
non-uniform query times. It turns out that the problem becomes hard for trees [17, 16]. Also
refer the reader to works on a closely related query game with edge queries [10, 11, 14, 28, 31].
For general graphs, a strategy that always queries a 1-median (the minimizer of the sum of
distances over all vertices) has length at most log2 n [19].

To shift our attention to searching in graphs with errors, two works have been recently
published on probabilistic models [19, 18]. These models are further generalized in [12] by
considering the case of identifying two targets t1 and t2, where each answer to a query gives
an edge on a shortest path to t1 with probability p1 or to t2 with probability p2 = 1− p1,
respectively. Furthermore, there exists a closely related model in which the search is restricted
in such a way, that each query performed to a vertex v must be followed by a vertex query
to one of its neighbors – see [7, 21, 23, 22, 26] – in this context errors are usually referred to
as unreliable advice.

D. Dereniowski, S. Tiegel, P. Uznański, and D. Wolleb-Graf 4:5

An extensive amount of work has been devoted to searching problems in the presence of lies
in a non-graph-theoretic context. The main tool of analysis is the concept of volume introduced
by Berlekamp [6] – see also [9, 13] for a more detailed descriptions. We skip references to very
numerous works that deal with fixed number of lies, pointing to surveys in [9, 13, 35]. For
general queries, it is known [37] that a strategy of length logn+ L log2 log2 n+O(L logL)
exists, where n is the size of the search space and L is an upper bound on the number
of lies. An almost optimal approximation strategy can be found in [32], which is actually
given for a more general model of q-ary queries. For the most relevant model in our context,
the probabilistic model, we remark on the early works, which bound strategy lengths to
O(1

poly(ε) logn log δ−1), where p < 1
2 and ε = 1

2 − p, with confidence probability 1− δ [2, 8].
A strategy of length O(ε−2(logn+ log δ−1)) is given in [20]. Finally, [5] gives the best known
bound of 1

1−H(p) (log2 n+O(log logn) +O(log δ−1)). We note that we arrive at a strategy
matching asymptotically the complexity of [20] as a by-product from our graph-theoretic
analysis (presented in the appendix).

2 Preliminaries

We now introduce the notation regarding the dynamics of the game. We assume an input
graph with non-uniform edge lengths, and we denote said lengths by ω(e). We denote by
d(u, v) the distance between two vertices u and v, which is the length of a shortest path
in G between u and v. We first focus on a simplified error model where the Responder is
allowed a fixed number of lies, with the upper bound denoted as L. During the game, the
Questioner keeps track of a lie counter `v for each vertex v of G. The value of `v equals the
number of lies that must have already occurred assuming that v is actually the target v∗.
The Questioner will utilize a constant Γ > 1 that will be fixed later. The goal of having this
parameter is that we can tune it in order to obtain the right asymptotics. We define a weight
µt(v) of a vertex v at the end of a round t > 0:

µt(v) = µ0(v) · Γ−`v ,

where µ0(v) is the initial weight of v. For subsets U ⊆ V , let µ(U) =
∑
v∈U µ(v). For

brevity we write µt in place of µt(V). For a queried vertex q and an answer v, a vertex u is
compatible with the answer if u = v when q = v, or v lies on a shortest path from q to u.

As soon as there is only one vertex v left with `v ≤ L, the Questioner can successfully
detect the target, v∗ = v. We will set the initial weight of each vertex v to be µ0(v) = 1.
Thus, µ0 = n and µT ≥ Γ−L if the strategy length is T .

Based on the weight function µ, we define a potential of a vertex v:

Φ(v) =
∑
u∈V

µ(u) · d(v, u).

We write Φt(v) to refer to the value of a potential at the end of round t. Any vertex x ∈ V
minimizing Φ(x) is called 1-median.

Denote for an edge {v, u}, N(v, u) = {x | d(u, x) + ω({v, u}) = d(v, x)} to be the set of
all vertices to which some shortest path from v leads through u. Thus, N(v, u) consists of
the compatible vertices for the answer u when v has been queried. For any S ⊆ V , we write
for brevity S = V \ S, and for singletons {v} we further shorten to v. We say that a vertex
v is α-heavy, for some 0 ≤ α ≤ 1, if µ(v) > α · µ(V). For a queried vertex q, if the answer is
q, then such a reply is called a yes-answer ; otherwise it is called a no-answer.

SOSA 2019

4:6 A Framework for Searching in Graphs in the Presence of Errors

Algorithm VERTEX: Vertex queries for a fixed number of L lies.
1 for v ∈ V do
2 µ(v) = 1
3 `v = 0
4 while more than one vertex x ∈ V has `x ≤ L do
5 q = arg minx∈V Φ(x)
6 query the vertex q
7 for all nodes u not compatible with the answer do
8 `u = `u + 1
9 µ(u) = µ(u)/Γ

10 return the only x such that `x ≤ L

3 Vertex Searching

We now formally state the search strategy for a fixed number of lies – see Algorithm VERTEX.
We combine our weight together with the idea of querying a 1-median [19]. As announced
earlier, it turns out that our bound together with an appropriately selected weight function
are strong enough so that we do not need the additional stages enhanced with a majority
selection used in [19] in order to gain asymptotic improvements. We also note that we can
easily introduce technical modifications to this strategy by changing the initial weight, the
value of Γ or the stopping condition. We will do this to conclude several results for various
error models (see the appendix).

3.1 Analysis of the Strategy
In this subsection we prove the following main technical contribution.

I Theorem 3. Algorithm VERTEX finds the target in at most

1
log2(2Γ/(Γ + 1)) log2 n+ log2 Γ

log2(2Γ/(Γ + 1)) · L

vertex queries.

Note that, due to the values of the initial and the final weight, it is enough to argue
that the weight decreases on average, i.e., in an amortized way, by a factor of (Γ + 1)/(2Γ)
per round. We first handle two cases (see Lemmas 4 and 5) when the weight decreases
appropriately after a single query. These cases are a no-answer, and a yes-answer but only
when the queried vertex is not 1/2-heavy. In the remaining case, i.e., when the queried vertex
q is 1/2 heavy, it is not necessarily true that the weight decreases by the desired factor – this
particularly happens in case of a yes-answer to such a query. This case is handled by the
amortized analysis: we pair such yes-answers with no-answers to the query on q and show
that in each such pair the weight decreases appropriately.

I Lemma 4. If Algorithm VERTEX receives a no-answer in a round t+1, then µt+1 ≤ Γ+1
2Γ µt.

Proof. Let q be the vertex queried in round t+ 1. Assume that the reply is some neighbor v
of q. By [19], Lemma 4, we get that µt(N(q, v)) ≤ µt/2. Moreover, because the lie counter
increases by one for all vertices in N(q, v) and does not change for all vertices in N(q, v) in
round t+ 1, it follows that µt+1 = µt(N(q, v)) + 1

Γµt(N(q, v)) ≤ Γ+1
2Γ µt. J

D. Dereniowski, S. Tiegel, P. Uznański, and D. Wolleb-Graf 4:7

I Lemma 5. Suppose that Algorithm VERTEX queries in round t+ 1 a vertex q that is not
1/2-heavy. If a yes-answer is received, then µt+1 ≤ Γ+1

2Γ µt.

Proof. The lie counter increments for each vertex of G except for q and remains the same
for q in round t+ 1: µt+1(q) = µt(q) and µt+1(q) = 1

Γµt(q). Since q is not 1/2-heavy at the
beginning of round t+ 1, µt(q) ≤ µt/2. Thus, we get µt+1 = µt(q) + 1

Γµt(q) ≤
Γ+1
2Γ µt. J

Now we turn to the proof of Theorem 3. Consider a maximal interval [t1, t2], where t1 ≤ t2
are integers, such that there exists a vertex q that is 1/2-heavy in each round t1, . . . , t2, and q
is not 1/2-heavy in round t2 + 1. Call it a q-interval. Note that t1 > 0 and q is not 1/2-heavy
in round t1 − 1. We permute the replies given by the Responder in the q-interval to obtain a
new sequence of replies as follows. The replies in rounds 1, . . . , t1 − 1 and t2 + 1 onwards
are the same in both sequences. Note that in the interval [t1, t2] the number of yes-answers,
denote it by p, is smaller than or equal to the number of no-answers. Reorder the replies in
the q-interval so that the yes-answers occur in rounds t1 + 2i for each i ∈ {0, . . . , p− 1}. In
other words, we pair the yes-answers with no-answers so that a yes-answer in round t1 + 2i
is paired with a no-answer in round t1 + 2i+ 1; we call such two rounds a pair. Following
the pairs, some remaining, if any, no-answers follow in rounds t1 + 2p, . . . , t2. Perform this
transformation as long as a q-interval exists for some q ∈ V . Denote by µ′ the weight of the
new sequence.

Denote by t′, if it exists, the minimum integer such that for some vertex v and for each
t > t′, v is 1/2-heavy at the end of the round t. If no such t′ exists, then let t′ be defined to
be the number of rounds of the strategy.

We first analyze what happens, in the new sequence, in rounds i and i + 1 that are a
pair in an arbitrary q-interval for some vertex q. After such two rounds the lie counter for q
increases by one, and the lie counter of any other vertex increases by at least one. This in
particular implies that q is a 1-median throughout the entire q-interval in the new sequence.
Moreover, the two replies in these rounds result in weight decrease by a factor of at least Γ,
µ′i+1 ≤ µ′i−1/Γ. Since 1

Γ < (1+Γ
2Γ)2, the overall progress after the pair is as required.

We now prove that for each t ∈ {0, . . . , t′ − 1} that does not belong to any pair it holds

µ′t+1 ≤
Γ + 1

2Γ µ′t. (2)

Recall that for each t ≤ t′ that does not belong to any q-interval, µ′t(v) = µt(v) for each
v ∈ V . If the answer to this query is a no-answer, then (2) follows from Lemma 4. Lemma 4
also applies to no-answers of a q-interval that do not belong to any pair since, as argued
above, q is a 1-median throughout the q-interval. If the answer is a yes-answer, then since
the queried vertex q is not 1/2-heavy due to the choice of q-intervals, Inequality (2) follows
from Lemma 5.

If t′ is the last round in the original search strategy, then the proof is completed. Otherwise,
consider the suffix of the original sequence of replies, consisting of rounds t for t > t′. In all
these rounds, by definition, some vertex q is 1/2-heavy. Also by definition, both sequences
µ and µ′ are identical in this suffix. One can check that if a vertex is heavy at the end
of some round, then in the subsequent round Algorithm VERTEX does query this vertex.
Thus, the vertex q is queried in all rounds of the suffix, and hence q is the target. Thus, it is
enough to observe how the weight decreases on q in case of a yes-answer in a round t > t′:
µ′t(q) = µ′t−1(q)/Γ ≤ Γ+1

2Γ µ′t−1(q). This completes the proof of Theorem 3.

SOSA 2019

4:8 A Framework for Searching in Graphs in the Presence of Errors

3.2 Proof of Theorem 1

Proof. We turn our attention to the model with a rate of lies bounded by a fraction
r < 1/2 (linearly bounded error model). Our result, Theorem 1, is obtained on the basis
of Algorithm VERTEX and the precise bound from Theorem 3. In particular, we run
Algorithm VERTEX with Γ = 1−r

r and with a fixed bound on number of lies L = log2 n
1−H(r)r.

By Theorem 3, Algorithm VERTEX asks then at most log2 n
log2(2·(1−r)) + log2

1−r
r

log2(2·(1−r)) · L =
log2 n

1−H(r) ·
1−H(r)+r log2

1−r
r

1+log2(1−r) = log2 n
1−H(r) = L/r queries. This bound concludes the proof, since

the number of lies is within r fraction of strategy length. J

3.3 Proof of Theorem 2

Proof. Let ε > 0 be such that p = 1
2 (1− ε). We run the strategy from Theorem 1 with an

error rate r = 1
2 (1− ε0), where ε0 = ε/

(
1 +

√
8 ln δ−1/ lnn

)
. By Theorem 1 the strategy

length is Q = log2 n
1−H(r) which is (up to lower-order terms) 2ε−2

0 lnn, thus at least ε−2
0 lnn for

n large enough. The expected number of lies is E[L] = p ·Q and by the Chernoff bound,

Pr[Q− L ≤ (1− r) ·Q] ≤ exp
(
−1

2

(
1− 1− r

1− p

)2
· (1− p) · lnn

ε2
0

)

≤ exp
(
−1

8

(
ε− ε0

ε0

)2
lnn

)
= δ.

The bound Q = log2 n
1−H(p) (1 + O(

√
ln δ−1/ lnn) + O(ln δ−1/ lnn)) follows then from 1 −

H(x) ∼ (1/2− x)2. J

4 Conclusions

We note that also other query models have been studied in the graph-theoretic context,
including edge queries. In an edge query, the Questioner points to an edge and the Responder
tells which endpoint of that edge is closer to the target, breaking ties arbitrarily. It turns out
that edge queries are more challenging to analyze, i.e., our technique for vertex queries does
not transfer without changes. This is mostly due to a possible lack of edges that subdivide
the search space equally enough. This issue can be patched by treating heavy vertices in
a separate way. We provide a strategy of query complexity O(1

ε2 ∆ log ∆(logn+ log δ−1)).
This generalizes the noisy binary search of [20] to general graphs, and has the advantage of
being a weight-based strategy.

We additionally show the generalizations of our strategies to searching in unbounded
domains, where one is concerned in searching e.g., the space of all positive integers with
comparison queries. The goal is to minimize the number of queries as a function of N , the
(unknown) position of the target. By adjusting the initial distribution of the weight to decay
at polynomial rate with respect to the distance from the point 0, we almost automatically get
desired solutions, e.g., a strategy of query complexity O(1

ε2 (logN + log δ−1)) for searching
in the probabilistic error model, improving upon O(poly(ε−1) logN log δ−1) of [2].

D. Dereniowski, S. Tiegel, P. Uznański, and D. Wolleb-Graf 4:9

References

1 Dana Angluin. Queries and Concept Learning. Machine Learning, 2(4):319–342, 1987.
doi:10.1007/BF00116828.

2 Javed A Aslam. Noise tolerant algorithms for learning and searching. PhD thesis, Mas-
sachusetts Institute of Technology, 1995.

3 Pranjal Awasthi, Maria-Florina Balcan, and Konstantin Voevodski. Local algorithms for
interactive clustering. Journal of Machine Learning Research, 18:3:1–3:35, 2017. URL:
http://jmlr.org/papers/v18/15-085.html.

4 Maria-Florina Balcan and Avrim Blum. Clustering with Interactive Feedback. In Algorith-
mic Learning Theory, 19th International Conference, ALT 2008, Budapest, Hungary, Octo-
ber 13-16, 2008. Proceedings, pages 316–328, 2008. doi:10.1007/978-3-540-87987-9_27.

5 Michael Ben-Or and Avinatan Hassidim. The Bayesian Learner is Optimal for Noisy Binary
Search (and Pretty Good for Quantum as Well). In FOCS, pages 221–230, 2008. doi:
10.1109/FOCS.2008.58.

6 Elvyn R. Berlekamp. Block Coding For The Binary Symmetric Channel With Noiseless,
Delayless Feedback, pages 61–88. Wiley & Sons, New York, 1968.

7 Lucas Boczkowski, Amos Korman, and Yoav Rodeh. Searching a Tree with Permanently
Noisy Advice. CoRR, abs/1611.01403, 2016. arXiv:1611.01403.

8 Ryan S. Borgstrom and S. Rao Kosaraju. Comparison-based search in the presence of
errors. In STOC, pages 130–136, 1993. doi:10.1145/167088.167129.

9 Ferdinando Cicalese. Fault-Tolerant Search Algorithms: Reliable Computation with Unreli-
able Information. Springer Publishing Company, Incorporated, 2013.

10 Ferdinando Cicalese, Tobias Jacobs, Eduardo Sany Laber, and Caio Dias Valentim. The
binary identification problem for weighted trees. Theor. Comput. Sci., 459:100–112, 2012.
doi:10.1016/j.tcs.2012.06.023.

11 Ferdinando Cicalese, Balázs Keszegh, Bernard Lidický, Dömötör Pálvölgyi, and Tomás
Valla. On the tree search problem with non-uniform costs. Theor. Comput. Sci., 647:22–32,
2016. doi:10.1016/j.tcs.2016.07.019.

12 Argyrios Deligkas, George B. Mertzios, and Paul G. Spirakis. Binary Search in Graphs
Revisited. In MFCS, pages 20:1–20:14, 2017. doi:10.4230/LIPIcs.MFCS.2017.20.

13 Christian Deppe. Coding with Feedback and Searching with Lies, pages 27–70. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007. doi:10.1007/978-3-540-32777-6_2.

14 Dariusz Dereniowski. Edge ranking of weighted trees. Discrete Applied Mathematics,
154(8):1198–1209, 2006. doi:10.1016/j.dam.2005.11.005.

15 Dariusz Dereniowski. Edge ranking and searching in partial orders. Discrete Applied Math-
ematics, 156(13):2493–2500, 2008. doi:10.1016/j.dam.2008.03.007.

16 Dariusz Dereniowski, Adrian Kosowski, Przemyslaw Uznański, and Mengchuan Zou. Ap-
proximation Strategies for Generalized Binary Search in Weighted Trees. In ICALP, pages
84:1–84:14, 2017. doi:10.4230/LIPIcs.ICALP.2017.84.

17 Dariusz Dereniowski and Adam Nadolski. Vertex rankings of chordal graphs and weighted
trees. Inf. Process. Lett., 98(3):96–100, 2006. doi:10.1016/j.ipl.2005.12.006.

18 Ehsan Emamjomeh-Zadeh and David Kempe. A General Framework for Robust In-
teractive Learning. In Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems 2017, 4-9 December 2017,
Long Beach, CA, USA, pages 7085–7094, 2017. URL: http://papers.nips.cc/paper/
7283-a-general-framework-for-robust-interactive-learning.

19 Ehsan Emamjomeh-Zadeh, David Kempe, and Vikrant Singhal. Deterministic and proba-
bilistic binary search in graphs. In STOC, pages 519–532, 2016. doi:10.1145/2897518.
2897656.

SOSA 2019

http://dx.doi.org/10.1007/BF00116828
http://jmlr.org/papers/v18/15-085.html
http://dx.doi.org/10.1007/978-3-540-87987-9_27
http://dx.doi.org/10.1109/FOCS.2008.58
http://dx.doi.org/10.1109/FOCS.2008.58
http://arxiv.org/abs/1611.01403
http://dx.doi.org/10.1145/167088.167129
http://dx.doi.org/10.1016/j.tcs.2012.06.023
http://dx.doi.org/10.1016/j.tcs.2016.07.019
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.20
http://dx.doi.org/10.1007/978-3-540-32777-6_2
http://dx.doi.org/10.1016/j.dam.2005.11.005
http://dx.doi.org/10.1016/j.dam.2008.03.007
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.84
http://dx.doi.org/10.1016/j.ipl.2005.12.006
http://papers.nips.cc/paper/7283-a-general-framework-for-robust-interactive-learning
http://papers.nips.cc/paper/7283-a-general-framework-for-robust-interactive-learning
http://dx.doi.org/10.1145/2897518.2897656
http://dx.doi.org/10.1145/2897518.2897656

4:10 A Framework for Searching in Graphs in the Presence of Errors

20 Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with Noisy In-
formation. SIAM J. Comput., 23(5):1001–1018, 1994. doi:10.1137/S0097539791195877.

21 Nicolas Hanusse, David Ilcinkas, Adrian Kosowski, and Nicolas Nisse. Locating a target
with an agent guided by unreliable local advice: how to beat the random walk when you
have a clock? In PODC, pages 355–364, 2010. doi:10.1145/1835698.1835781.

22 Nicolas Hanusse, Dimitris J. Kavvadias, Evangelos Kranakis, and Danny Krizanc. Memory-
less search algorithms in a network with faulty advice. Theor. Comput. Sci., 402(2-3):190–
198, 2008. doi:10.1016/j.tcs.2008.04.034.

23 Nicolas Hanusse, Evangelos Kranakis, and Danny Krizanc. Searching with mobile agents
in networks with liars. Discrete Applied Mathematics, 137(1):69–85, 2004. doi:10.1016/
S0166-218X(03)00189-6.

24 Richard M. Karp and Robert Kleinberg. Noisy binary search and its applications. In SODA,
pages 881–890, 2007. URL: http://dl.acm.org/citation.cfm?id=1283383.1283478.

25 Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational
Learning Theory. MIT Press, 1994. URL: https://mitpress.mit.edu/books/
introduction-computational-learning-theory.

26 Evangelos Kranakis and Danny Krizanc. Searching with Uncertainty. In SIROCCO’99,
6th International Colloquium on Structural Information & Communication Complexity,
Lacanau-Ocean, France, 1-3 July, 1999, pages 194–203, 1999.

27 Eduardo Sany Laber, Ruy Luiz Milidiú, and Artur Alves Pessoa. On binary searching with
non-uniform costs. In SODA, pages 855–864, 2001. URL: http://dl.acm.org/citation.
cfm?id=365411.365796.

28 Tak Wah Lam and Fung Ling Yue. Optimal Edge Ranking of Trees in Linear Time. Algo-
rithmica, 30(1):12–33, 2001. doi:10.1007/s004530010076.

29 Nick Littlestone. Learning Quickly When Irrelevant Attributes Abound: A New Linear-
threshold Algorithm. Machine Learning, 2(4):285–318, 1987. doi:10.1007/BF00116827.

30 Tie-Yan Liu. Learning to Rank for Information Retrieval. Springer, 2011. doi:10.1007/
978-3-642-14267-3.

31 Shay Mozes, Krzysztof Onak, and Oren Weimann. Finding an optimal tree searching
strategy in linear time. In SODA, pages 1096–1105, 2008. URL: http://dl.acm.org/
citation.cfm?id=1347082.1347202.

32 S. Muthukrishnan. On Optimal Strategies for Searching in Presence of Errors. In SODA,
pages 680–689, 1994. URL: http://dl.acm.org/citation.cfm?id=314464.314672.

33 Jaroslav Nesetril and Patrice Ossona de Mendez. Tree-depth, subgraph coloring and homo-
morphism bounds. Eur. J. Comb., 27(6):1022–1041, 2006. doi:10.1016/j.ejc.2005.01.
010.

34 Krzysztof Onak and Pawel Parys. Generalization of Binary Search: Searching in Trees and
Forest-Like Partial Orders. In FOCS, pages 379–388, 2006. doi:10.1109/FOCS.2006.32.

35 Andrzej Pelc. Searching games with errors—fifty years of coping with liars. Theoretical
Computer Science, 270(1):71–109, 2002. doi:10.1016/S0304-3975(01)00303-6.

36 Filip Radlinski and Thorsten Joachims. Query chains: learning to rank from implicit feed-
back. In Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Chicago, Illinois, USA, August 21-24, 2005, pages 239–248,
2005. doi:10.1145/1081870.1081899.

37 Ronald L. Rivest, Albert R. Meyer, Daniel J. Kleitman, Karl Winklmann, and Joel Spencer.
Coping with errors in binary search procedures. Journal of Computer and System Sciences,
20(3):396–404, 1980.

38 Alfréd Rényi. On a problem of information theory. MTA Mat. Kut. Int. Kozl., 6B:505–516,
1961.

http://dx.doi.org/10.1137/S0097539791195877
http://dx.doi.org/10.1145/1835698.1835781
http://dx.doi.org/10.1016/j.tcs.2008.04.034
http://dx.doi.org/10.1016/S0166-218X(03)00189-6
http://dx.doi.org/10.1016/S0166-218X(03)00189-6
http://dl.acm.org/citation.cfm?id=1283383.1283478
https://mitpress.mit.edu/books/introduction-computational-learning-theory
https://mitpress.mit.edu/books/introduction-computational-learning-theory
http://dl.acm.org/citation.cfm?id=365411.365796
http://dl.acm.org/citation.cfm?id=365411.365796
http://dx.doi.org/10.1007/s004530010076
http://dx.doi.org/10.1007/BF00116827
http://dx.doi.org/10.1007/978-3-642-14267-3
http://dx.doi.org/10.1007/978-3-642-14267-3
http://dl.acm.org/citation.cfm?id=1347082.1347202
http://dl.acm.org/citation.cfm?id=1347082.1347202
http://dl.acm.org/citation.cfm?id=314464.314672
http://dx.doi.org/10.1016/j.ejc.2005.01.010
http://dx.doi.org/10.1016/j.ejc.2005.01.010
http://dx.doi.org/10.1109/FOCS.2006.32
http://dx.doi.org/10.1016/S0304-3975(01)00303-6
http://dx.doi.org/10.1145/1081870.1081899

D. Dereniowski, S. Tiegel, P. Uznański, and D. Wolleb-Graf 4:11

39 Alejandro A. Schäffer. Optimal Node Ranking of Trees in Linear Time. Inf. Process. Lett.,
33(2):91–96, 1989. doi:10.1016/0020-0190(89)90161-0.

40 Burr Settles. Active Learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan & Claypool Publishers, 2012. doi:10.2200/
S00429ED1V01Y201207AIM018.

41 Stanislaw M. Ulam. Adventures of a Mathematician. Scribner, New York, 1976.

A Analysis of the Generic Strategies for Edge Queries

We recall a different format of queries called edge queries, where in each round the Questioner
selects an edge {u, v} of an input graph and the Responder replies with the endpoint of
{u, v} that is closer to the target. Again, ties are broken arbitrarily. The edge-query model
naturally generalizes comparison queries in linearly or partially ordered data. In case of
edge-queries we consider graphs with unit edge lengths.

We start by giving the notation regarding edge queries. The degree of a vertex v, denoted
by deg(v), is the number of its neighbors in G. We denote by ∆ = maxv∈V deg(v) the
maximum degree of G. We define an edge-vertex distance d(e, v) = min(d(x, v), d(y, v)) for
an edge e = {x, y}. Similarly as for vertex queries, based on a weight function µ and distance
d, we define a potential of an edge e:

Φ(e) =
∑
u∈V

µ(u) · d(e, u).

Again, we write Φt(e) to refer to this value at the end of round t. Any edge e minimizing
Φ(e) is called 1-edge-median. For an edge e = {u, v} and one of its endpoints,

N(e, v) = {w | d(v, w) ≤ d(u,w)}, N<(e, v) = {w | d(v, w) < d(u,w)}.

For edge-queries we give a strategy that is a bit more complicated – see Algorithm EDGE.
Intuitively, as opposed to the vertex-query case, there may be no edges in the graph that
‘subdivide’ the search space evenly enough. This already happens as soon as one of the
vertices is 1

∆+1 -heavy. If this is the case, and say vertex v is 1
∆+1 -heavy, we cyclically query

edges incident to v in an appropriate greedy order. We continue to do so until all other
vertices have been eliminated, and hence v must be the target, or v is no longer 1

∆+1 -heavy.
If none of the vertices is 1

∆+1 -heavy, we simply query a 1-edge-median. The absence of such
heavy vertices essentially ensures, that this decreases the weight sufficiently.

This results in a more involved proof given in Section 3.1. Similarly as for vertex queries,
we also first provide an analysis for a fixed number of lies (see Theorem 6) and then from
this bound we derive appropriate bounds for other models (Theorems 7 and 8).

I Theorem 6. Let Γ > 1. Algorithm EDGE finds the target in at most logn+L log Γ
log(1+ Γ−1

Γ∆+1) edge
queries.

I Theorem 7. In the linearly bounded error model with error rate r = 1
∆+1 (1− ε) for some

0 < ε ≤ 1, the target can be found in at most 2ε−2∆ lnn edge queries.

I Theorem 8. In the probabilistic error model with error rate p = 1
2 (1−ε) for some 0 < ε ≤ 1

there exists a strategy that finds the target using at most O(ε−2∆ log ∆ · (logn + log δ−1))
edge queries, correctly with probability at least 1− δ.

SOSA 2019

http://dx.doi.org/10.1016/0020-0190(89)90161-0
http://dx.doi.org/10.2200/S00429ED1V01Y201207AIM018
http://dx.doi.org/10.2200/S00429ED1V01Y201207AIM018

4:12 A Framework for Searching in Graphs in the Presence of Errors

Algorithm EDGE: Edge queries for fixed number of L lies.
1 for v ∈ V do
2 µ(v) = 1
3 `v = 0
4 while more than one vertex x satisfies `x ≤ L do
5 if there exists v such that µ(v) > µ/(∆ + 1) then . v is 1

∆+1-heavy
6 for i = 1 to deg(v) do . greedy ordering of neighbors
7 select an edge ei incident to v to maximize µ(

⋃
j≤iN<(ej , v))

8 i = 1
9 do . cyclically query edges incident to v

10 query ei
11 for all nodes u not compatible with the answer do
12 `u = `u + 1
13 µ(u) = µ(u)/Γ
14 if the answer to the last query is v then
15 i = (i+ 1) mod deg(v)
16 while µ(v) > µ/(∆ + 1) and there exists more than one x with `x ≤ L
17 else
18 e = arg minx∈E Φ(x)
19 query e
20 for all nodes u not compatible with the answer do
21 `u = `u + 1
22 µ(u) = µ(u)/Γ
23 return v such that `v ≤ L

Proof of Theorem 6
We first prove two technical lemmas and then we give the proof of the theorem.

I Lemma 9. Let Γ > 1. Suppose that Algorithm EDGE queries in round t+ 1 an edge eq
incident to a vertex q such that eq = arg minx∈E Φt(x). If deg(q) > 1, then

µt(N(eq, q)) ≥
1

deg(q) (µt − µt(q)). (3)

Proof. Denote eq = {q, v}. For each neighbor w of q define

N∩w = N(eq, q) ∩N<({q, w}, w).

Consider an edge e′ = {q, w} that maximizes µt(N∩w). If X is the set of neighbors of q,
then by definition and by the fact that eq lies on no shortest path from q to any vertex in
N<(eq, v), i.e., N∩v = ∅, it holds

N(eq, q) \ {q} ⊆
⋃
w′∈X

N∩w′ =
⋃

w′∈X\{v}

N∩w′ .

Hence (since e′ maximizes µt(N∩w)) we obtain that

µt(N∩w) ≥ 1
deg(q)− 1(µt(N(eq, q))− µt(q)). (4)

D. Dereniowski, S. Tiegel, P. Uznański, and D. Wolleb-Graf 4:13

For brevity, we extend our notation in the following way: for an edge e and a subset
S of vertices, Φt(e, S) =

∑
z∈S µt(z) · d(e, z). Note that for any S ⊆ V and any edge e,

Φt(e) = Φt(e, S) + Φt(e, S). We obtain

Φt(e′, N(eq, q)) = Φt(e′, N∩w) + Φt(e′, N(eq, q) \N∩w)

=
∑
u∈N∩w

µt(u) · (d(q, u)− 1) +
∑

u∈N(eq,q)\N∩w

µt(u) · d(q, u)

=
∑

u∈N(eq,q)

µt(u) · d(q, u)− µt(N∩w)

≤ Φt(eq, N(eq, q))−
1

deg(q)− 1(µt(N(eq, q))− µt(q)), (5)

where the last inequality is due to (4). For any vertex u, d(e′, u) ≤ d(eq, u) + 1 because eq
and e′ are adjacent. Using this fact we obtain:

Φt(e′, N(eq, q)) =
∑

u/∈N(eq,q)

µt(u) · d(e′, u)

≤
∑

u/∈N(eq,q)

µt(u) · d(eq, u) +
∑

u/∈N(eq,q)

µt(u)

= Φt(eq, N(eq, q)) + µt(N(eq, q)). (6)

Finally, by (5) and (6) we get:

Φt(e′) = Φt(e′, N(eq, q)) + Φt(e′, N(eq, q))

≤ Φt(eq, N(eq, q))−
µt(N(eq, q))− µt(q)

deg(q)− 1 + Φt(eq, N(eq, q)) + µt(N(eq, q))

= Φt(eq) + µt(N(eq, q))−
1

deg(q)− 1(µt(N(eq, q))− µt(q)).

By assumption, Φt(eq) ≤ Φt(e′). Therefore,

1
deg(q)− 1(µt(N(eq, q))− µt(q)) ≤ µt(N(eq, q)),

which can be rewritten as in (3). J

I Lemma 10. Let Γ > 1. Suppose that Algorithm EDGE queries in round t + 1 an edge
incident to a vertex q that is not 1

∆+1 -heavy in this round, and the answer is q. Then,
µt+1 ≤ (1− Γ−1

Γ(∆+1))µt.

Proof. Let eq = {q, v} be the edge queried in round t+ 1. Suppose first that deg(q) > 1. By
Lemma 9,

µt(N(eq, q)) ≥
1

deg(q) (µt − µt(q)) ≥
1
∆(µt − µt(q)). (7)

Because eq is the queried edge in round t + 1 and the reply is q, the lie counter remains
unchanged for the vertices in N(eq, q) and decreases by one in the complement N(eq, q).
Hence,

µt+1 = µt(N(eq, q)) + 1
Γµt(N(eq, q)) = µt −

Γ− 1
Γ µt(N(eq, q)).

SOSA 2019

4:14 A Framework for Searching in Graphs in the Presence of Errors

Thus, by (7) and by the fact that µt(q) ≤ 1
∆+1µt for q that is not 1

∆+1 -heavy in round t,

µt+1 ≤
(

1− Γ− 1
Γ∆ · ∆

∆ + 1

)
µt,

which completes the proof in the case when deg(q) > 1.
If deg(q) = 1, then in round t the lie counter increases by one for each vertex in q. Thus,

again by the fact that q is not 1
∆+1 -heavy,

µt+1 = µt(q) + 1
Γµt(q) ≤

(
1

∆ + 1 + 1
Γ

)
µt ≤

(
1− Γ− 1

Γ(∆ + 1)

)
µt. J

Proof of Theorem 6. Having proved the technical lemmas, we now turn to the proof of
Theorem 6. It is enough to argue that every query, amortized, multiplies the weight by a
factor of 1 − Γ−1

Γ(∆+1) = 1/(1 + Γ−1
Γ∆+1). If there is no 1

∆+1 -heavy vertex, then the theorem
follows from Lemma 10. Hence suppose in the rest of the proof that there exists a 1

∆+1 -heavy
vertex and denote this vertex by q.

For the amortized analysis, consider a sequence of t consecutive queries to edges e1, . . . , et,
t ≤ deg(q), performed while q is 1

∆+1 -heavy; call such a sequence a segment. Suppose this
sequence starts in round t′. Denote ei = {q, vi}, i ∈ {1, . . . , t}, and let

Q1 =
t⋃
i=1

N<(ei, vi), Q2 = V \ (Q1 ∪ {q}).

First we assume that the query in round t′ + t (i.e., the query that follows the sequence)
does not return v as a reply, or v stops being 1

∆+1 -heavy. We argue, informally speaking,
that this query in round t′ + t amortizes the t queries prior to it thanks to the assumption
t ≤ deg(q). Because the lie counter of q increments in round t′ + t,

µt′+t(q) ≤
1
Γµt

′(q). (8)

We have µt′+t(Q1) ≤ 1
Γµt′(Q1) by the formulation of Algorithm EDGE, and µt′+t(Q2) ≤

µt′(Q2). Then, Q1 ∪Q2 = q and Q1 ∩Q2 = ∅ imply µt′(Q1) ≤ µt′(q)− µt′(Q2) and hence

µt′+t(Q1) + µt′+t(Q2) ≤ 1
Γµt

′(q) + Γ− 1
Γ µt′(Q2). (9)

Due to the order according to which the edges {q, vi} are queried, we have

µt′(Q2) ≤
(

1− t

deg(q)

)
µt′(q) ≤

(
1− t

∆

)
µt′(q). (10)

Note that µt′(q) ≤ ∆
∆+1µt′ since by assumption q is 1

∆+1 -heavy in round t′. Since µt′+t =
µt′+t(q) + µt′+t(Q1) + µt′+t(Q2), we get by (8), (9) and (10):

µt′+t ≤
(

1
Γ + Γ− 1

Γ
∆− t
∆ + 1

)
µt′ =

(
1− Γ− 1

Γ
t+ 1

(∆ + 1)

)
µt′ ≤

(
1− Γ− 1

Γ(∆ + 1)

)t+1
µt′ ,

where the last inequality comes from (1− x)k ≥ 1− xk, for k ≥ 1 and x < 1.
Consider now a maximal sequence S of rounds in which q is 1

∆+1 -heavy and is not
1

∆+1 -heavy in the round that follows the sequence. Note that Algorithm EDGE cyclically
queries the edges incident to q in S. Let r′1 ≤ · · · ≤ r′b′ be all rounds in S having q as an

D. Dereniowski, S. Tiegel, P. Uznański, and D. Wolleb-Graf 4:15

answer. Denote X = S \ {r′1, . . . , r′b′}, the set of rounds in S in which q is not an answer.
Let a = db′/ deg(q)e. The lie counter of each vertex in q increases by at least a− 1 and by at
most a times by executing S – we point out that this crucial property follows from the fact
that the queries in the segment are applied to the edges incident to q consecutively modulo
deg(v). Since q is 1

∆+1 -heavy at the beginning of S and is not 1
∆+1 -heavy right after S, the

lie counter of q increases by at least a as a result of S. Hence, |X| ≥ a. Partition r′1, . . . , r′b′
into a minimum number of segments of length at most deg(q) each, which leads to at most
a segments. Thus, we can pair these segments with rounds in X. For each such pair of at
most deg(q) + 1 rounds we apply the amortized analysis performed above. Note that this
approach is valid since the amortized analysis is insensitive of the order of appearance of the
queries in X and the queries in S \X.

Finally, suppose that there is a series of queries at the end of the strategy (a suffix)
performed to edges incident to a 1

∆+1 -heavy vertex q such that all replies point to q and q
remains 1

∆+1 -heavy till the end of the strategy. Note that in such a case q is the target. The
vertex q had the uniquely smallest lie counter just before those queries. This in particular
implies that the lie counter is strictly smaller than L. We artificially add a sequence of
pseudo-queries, each of which increments the lie counter of q until it reaches L. This implies
that the suffix of the search strategy now consists of a reply (which comes from a regular
query or a pseudo-query) which does not point to q. Thus, we use again the arguments from
our amortized analysis: we can find a segment and pair with it the above mentioned query
pointing away from q. J

Proof of Theorem 7
Proof. Similarly as in the case of vertex queries, the generic strategy in Algorithm EDGE for
edge queries and its corresponding bound for a fixed number of lies can be used to provide
strong bounds for linearly bounded and probabilistic error models.

Let Γ = 1 + ∆+1
∆

ε
1−ε = 1−r

r ·
1
∆ . Denote Qmin = lnn

ln(1+ Γ−1
Γ∆+1)−r ln Γ . We run Algo-

rithm EDGE with bound L = Qminr and parameter Γ set as just mentioned above. Then,
by Theorem 6, the length of the strategy is at most 1

ln(1+ Γ−1
Γ∆+1) · lnn+ ln Γ

ln(1+ Γ−1
Γ∆+1) ·Qminr =

Qmin = L/r. To conclude the proof, we bound

Qmin = lnn
F (ε)/(∆ + 1) + F (−ε/∆) ·∆/(∆ + 1) =

(where F (x) def= x+ (1− x) ln(1− x) =
∑∞
i=2

xi

i(i−1))

= lnn∑∞
i=2

εi

i(i−1)
∆i−1+(−1)i
(∆+1)∆i−1

≤ lnn
ε2/(2∆) = 2ε−2∆ lnn. J

Proof of Theorem 8
Proof. For edge queries, we use a two step approach: first, we repeatedly ask queries to
boost their error rate from ∼ 1/2 to below 1/(∆ + 1), and then use the linearly bounded
error strategy.

As a first step, we show that for p0 = 1
∆+1 (1− ε0), there exists a strategy that locates the

target with high probability using O(∆ logn/ε2
0) edge queries. Indeed, assume without loss

of generality that ε0 < 1/2. We fix ε1 = ε0/(1 +
√

3
2

∆+1
∆ ln δ−1/ lnn) , and use Theorem 7

SOSA 2019

4:16 A Framework for Searching in Graphs in the Presence of Errors

with error rate r0 = 1
∆+1 (1 − ε1). By Theorem 7, we obtain that the strategy length is

Q = 2ε−2
1 ∆ lnn = O(∆ε−2

0 (logn+ log δ−1)). The expected number of lies is E[L] = p0 ·Q
and by the Chernoff bound,

Pr[L ≥ r0 ·Q] ≤ exp
(
−1

3

(
r0

p0
− 1
)2
· p0 ·Q

)
≤ exp

(
−2

3

(
ε0 − ε1

ε1

)2
· ∆

∆ + 1 lnn
)

= δ.

We now observe that to achieve the error rate of 1
2 (1− ε), we can boost the query error

rate to be smaller by repeating the same query multiple times and taking the majority answer.
By repeating each query P = O(log(2∆ + 2) · ε−2) times, we get the correct answer with
probability 1− p′ = 1− 1

2 ·
1

∆+1 , and as shown already, we only need O(∆(logn+ log δ−1))
queries with the error rate p′ to locate the target with probability at least 1− δ. Thus the
claimed bound follows. J

As an immediate corollary we obtain a very simple strategy for noisy binary search in an
integer range of complexity O(ε−2(logn+ log δ−1)) matching [20].

B Application: Searching Unbounded Integer Ranges

Building on our generic strategies, we now obtain a general technique for searching an
unbounded domain N = {1, 2, . . .} with comparison queries. Here the measure of complexity
is the dependency on the error rate (number of lies) and on N , the (initially unknown)
position of the target. The main idea is to use Algorithms VERTEX and EDGE, tweaking
the initial weight distribution. We fix the initial weight of an integer n to be µ0(n) = n−2.
The total initial weight then equals π2/6 = Θ(1). We provide the following bounds.3

I Corollary 11. There exists a strategy that finds an integer in an unbounded integer range
(N) using at most

log π2
6 +2 logN+L log Γ

log 2Γ
Γ+1

ternary queries, or
log π2

6 +2 logN+L log Γ
log 3Γ

2Γ+1
binary (comparison) queries,

where N is the target, L is an upper bound on the number of (adversarial) lies and Γ > 1 is
an arbitrarily selected coefficient.

Proof. We use Algorithm VERTEX for ternary queries; let the strategy length be Q. By the
proof of Theorem 3, µQ ≤ (2Γ

Γ+1)Q · π
2

6 . The final weight is at least µQ ≥ N−2 · Γ−L, and the
bound for ternary queries follows since the number of queries is at most log(π2/6

N−2Γ−L)/ log 2Γ
Γ+1 .

The bound for binary queries is obtained analogously from Theorem 6 (note that ∆ = 2)
since we apply Algorithm EDGE for binary queries. J

Simply setting Γ = 2 yields an O(logN + L) length strategy with comparison queries on
unbounded integer domains with a fixed number of L lies.

We need to restate the linearly bounded error model in the case of unbounded domains
since the Responder does not know a priori the length of the strategy. We define this error
model as follows: whenever the Questioner finds the target and thus declares the search to
be completed after t rounds, it is guaranteed that at most rt lies have occurred throughout
the search.

3 We note that the term ternary refers to a model in which each query selects an integer i and as a
response receives information whether the target is smaller than i, equals i, or is greater than i.

D. Dereniowski, S. Tiegel, P. Uznański, and D. Wolleb-Graf 4:17

I Corollary 12. For the linearly bounded error model with an error rate r and an unbounded
integer domain, there exists a strategy that finds the target integer N in:
O(ε−2 logN) ternary queries when r = 1

2 (1− ε), or
O(ε−2 logN) binary queries when r = 1

3 (1− ε).

Proof. Consider ternary queries. We proceed analogously as in the proof of Theorem 1. We
have that the initial weight is π2/6. Run Algorithm VERTEX until there is a single n such
that `n ≤ r ·Q. Any Q such that Q ≥ ln(π2/6)/ ln 2Γ

Γ+1 + 2 lnN/ ln 2Γ
Γ+1 + L ln Γ/ ln 2Γ

Γ+1 is
an upper bound on the length of the strategy. We thus get an upper bound

Q ≤ 2ε−2(2 lnN +O(1)).

The binary case follows in an analogous manner. J

I Corollary 13. In the probabilistic error model, the target integer N can be found in an
unbounded integer range using O(ε−2(logN + log δ−1)) binary queries for p = 1

2 (1 − ε),
correctly with probability at least 1− δ.

Proof. Same proof strategy as for Theorem 8, with ∆ = 2, applies. J

SOSA 2019

Selection from Heaps, Row-Sorted Matrices, and
X + Y Using Soft Heaps
Haim Kaplan1

Blavatnik School of Computer Science, Tel Aviv University, Israel
haimk@post.tau.ac.il

László Kozma2

Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
lkozma@gmail.com

Or Zamir3

Blavatnik School of Computer Science, Tel Aviv University, Israel
orzamir@mail.tau.ac.il

Uri Zwick4

Blavatnik School of Computer Science, Tel Aviv University, Israel
zwick@tau.ac.il

Abstract
We use soft heaps to obtain simpler optimal algorithms for selecting the k-th smallest item,
and the set of k smallest items, from a heap-ordered tree, from a collection of sorted lists,
and from X + Y , where X and Y are two unsorted sets. Our results match, and in some
ways extend and improve, classical results of Frederickson (1993) and Frederickson and Johnson
(1982). In particular, for selecting the k-th smallest item, or the set of k smallest items, from a
collection of m sorted lists we obtain a new optimal “output-sensitive” algorithm that performs
only O(m+

∑m
i=1 log(ki + 1)) comparisons, where ki is the number of items of the i-th list that

belong to the overall set of k smallest items.

2012 ACM Subject Classification Theory of computation → Sorting and searching

Keywords and phrases selection, soft heap

Digital Object Identifier 10.4230/OASIcs.SOSA.2019.5

1 Introduction

The input to the standard selection problem is a set of n items, drawn from a totally ordered
domain, and an integer 1 ≤ k ≤ n. The goal is to return the k-th smallest item in the
set. A classical result of Blum et al. [1] says that the selection problem can be solved
deterministically in O(n) time, i.e., faster than sorting the set. The number of comparisons
required for selection was reduced by Schönhage et al. [26] to 3n, and by Dor and Zwick
[8, 9] to about 2.95n.

1 Research supported by the Israel Science Foundation grant no. 1841-14 and by a grant from the Len
Blavatnik and the Blavatnik Family foundation.

2 Research supported by The Israeli Centers of Research Excellence (I-CORE) program (Center No. 4/11)
and ERC grant no. 617951.

3 Research supported by a grant from the Len Blavatnik and the Blavatnik Family foundation. Work
partly done during a research visit to Copenhagen supported by Thorup’s Investigator Grant 16582,
Basic Algorithms Research Copenhagen (BARC), from the VILLUM Foundation.

4 Work partly done during a research visit to Copenhagen supported by Thorup’s Investigator Grant
16582, Basic Algorithms Research Copenhagen (BARC), from the VILLUM Foundation.

© Haim Kaplan, László Kozma, Or Zamir, and Uri Zwick;
licensed under Creative Commons License CC-BY

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy Fineman and Michael Mitzenmacher; Article No. 5; pp. 5:1–5:21

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:haimk@post.tau.ac.il
mailto:lkozma@gmail.com
mailto:orzamir@mail.tau.ac.il
mailto:zwick@tau.ac.il
https://doi.org/10.4230/OASIcs.SOSA.2019.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

5:2 Selection from Heaps, Row-Sorted Matrices, and X + Y Using Soft Heaps

In the generalized selection problem, we are also given a partial order P known to hold
for the set of n input items. The goal is again to return the k-th smallest item. The
corresponding generalized sorting problem was extensively studied. It was shown by Kahn
and Saks [20] that the problem can be solved using only O(log e(P)) comparisons, where e(P)
is the number of linear extensions of P . Thus, the information-theoretic lower bound is
tight for generalized sorting. The algorithm of Kahn and Saks [20] performs only O(log e(P))
comparisons, but may spend much more time on deciding which comparisons to perform.
Kahn and Kim [19] and Cardinal et al. [4] gave algorithms that perform only O(log e(P))
comparisons and run in polynomial time.

A moment’s reflection shows that an algorithm that finds the k-th smallest item of a set,
must also identify the set of k smallest items of the set.5 Given a partial order P , let sk(P)
be the number of subsets of size k that may possibly be the set of k smallest items in P .
Then, log2 sk(P) is clearly a lower bound on the number of comparisons required to select the
k-th smallest item, or the set of k smallest items. Unlike sorting, this information-theoretic
lower bound for selection may be extremely weak. For example, the information-theoretic
lower bound for selecting the minimum is only log2 n, while n− 1 comparisons are clearly
needed (and are sufficient). To date, there is no characterization of pairs (P, k) for which the
information-theoretic lower bound for selection is tight, nor an alternative general technique
to obtain a tight lower bound.

Frederickson and Johnson [12, 13, 14] and Frederickson [11] studied the generalized
selection problem for some interesting specific partial orders. Frederickson [11] considered
the case in which the input items are items of a binary min-heap, i.e., they are arranged
in a binary tree, with each item smaller than its two children. Frederickson [11] gave
a complicated algorithm that finds the k-th smallest item using only O(k) comparisons,
matching the information-theoretic lower bound for this case. (Each subtree of size k of
the heap, containing the root, can correspond to the set of k smallest items, and there are

1
k+1
(2k

k

)
, the k-th Catalan number, such subtrees.)

Frederickson and Johnson [12, 13, 14] considered three other interesting special cases. (i)
The input items are in a collection of sorted lists, or equivalently they reside in a row-sorted
matrix; (ii) The input items reside in a collection of matrices, where each matrix is both
row- and column-sorted; (iii) The input items are X + Y , where X and Y are unsorted
sets of items.6 For each of these cases, they present a selection algorithm that matches the
information-theoretic lower bound.

We note in passing that sorting X + Y is a well studied problem. Fredman [15] showed
that X + Y , where |X| = |Y | = n, can be sorted using only O(n2) comparisons, but it is
not known how to do it in O(n2) time. (An intriguing situation!) Fredman [15] also showed
that Ω(n2) comparisons are required, if only comparisons between items in X + Y , i.e.,
comparisons of the form xi + yj ≤ xk + y`, are allowed. Lambert [24] and Steiger and Streinu
[27] gave algorithms that sort X+Y in O(n2 logn) time using only O(n2) comparisons. Kane
et al. [21], in a breakthrough result, have shown recently that X + Y can be sorted using
only O(n log2 n) comparisons of the form (xi + yj)− (xi′ + yj′) ≤ (xk + y`)− (xk′ + y`′), but
it is again not known how to implement their algorithm efficiently.

5 The information gathered by a comparison-based algorithm corresponds to a partial order which can
be represented by a DAG (Directed Acyclic Graph). Every topological sort of the DAG corresponds
to a total order of the items consistent with the partial order. Suppose that e is claimed to be the
k-th smallest item and suppose, for the sake of contradiction, that the set I of the items that are
incomparable with e is non-empty. Then, there is a topological sort in which e is before all the items
of I, and another topological sort in which e is after all the items of I, contradicting the fact that e is
the k-th smallest item in all total orders consistent with the partial order.

6 By X + Y we mean the set of pairwise sums {x + y | x ∈ X, y ∈ Y }.

H. Kaplan, L. Kozma, O. Zamir, and U. Zwick 5:3

The median of X +Y , on the other hand, can be found in O(n logn) time, and O(n logn)
comparisons of items in X + Y , as was already shown by Johnson and Mizoguchi [18] and
Johnson and Kashdan [17]. The selection problem from X + Y becomes more challenging
when k = o(n2).

Frederickson [11] gives two applications for selection from a binary min-heap. The first
is in an algorithm for listing the k smallest spanning trees of an input graph. The second
is a certain resource allocation problem. Eppstein [10] uses the heap selection algorithm
in his O(m + n logn + k) algorithm for generating the k shortest paths between a pair of
vertices in a digraph. As pointed out by Frederickson and Johnson [13], selection from X +Y

can be used to compute the Hodges-Lehmann [16] estimator in statistics. Selection from
a matrix with sorted rows solves the problem of “optimum discrete distribution of effort"
with concave functions, i.e., the problem of maximizing

∑m
i=1 fi(ki) subject to

∑m
i=1 ki = k,

where the fi’s are concave and the ki’s are non-negative integers. (See Koopman [23] and
other references in [13].) Selection from a matrix with sorted rows is also used by Brodal et
al. [3] and Bremner et al. [2].

The O(k) heap selection algorithm of Frederickson [11] is fairly complicated. The naïve
algorithm for the problem runs in O(k log k) time. Frederickson first improves this to
O(k log log k), then to O(k3log∗ k), then to O(k2log∗ k), and finally to O(k).

Our first result is a very simple O(k) heap selection algorithm obtained by running the
naïve O(k log k) algorithm using an auxiliary soft heap instead of a standard heap. Soft
heaps, discussed below, are fairly simple data structures whose implementation is not much
more complicated than the implementation of standard heaps. Our overall O(k) algorithm is
thus simple and easy to implement and comprehend.

Relying on our simple O(k) heap selection algorithm, we obtain simplified algorithms
for selection from row-sorted matrices and from X + Y . Selecting the k-th item from a
row-sorted matrix with m rows using our algorithms requires O(m+ k) time, if k ≤ 2m, and
O(m log k

m) time, if k ≥ 2m, matching the optimal results of Frederickson and Johnson [12].
Furthermore, we obtain a new optimal “output-sensitive” algorithm whose running time is
O(m+

∑m
i=1 log(ki + 1)), where ki is the number of items of the i-th row that belong to the

set of k smallest items in the matrix. We also use our simple O(k) heap selection algorithm
to obtain simple optimal algorithms for selection from X + Y .

Soft heaps are “approximate” priority queues introduced by Chazelle [6]. They form a
major building block in his deterministic O(mα(m,n))-time algorithm for finding minimum
spanning trees [5], which is currently the fastest known deterministic algorithm for the
problem. Chazelle [6] also shows that soft heaps can be used to obtain a simple linear time
(standard) selection algorithm. (See the next section.) Pettie and Ramachandran [25] use
soft heaps to obtain an optimal deterministic minimum spanning tree algorithm with a yet
unknown running time. A simplified implementation of soft heaps is given in Kaplan et
al. [22].

All algorithms considered in the paper are comparison-based, i.e., the only operations
they perform on the input items are pairwise comparisons. In the selection from X + Y

problem, the algorithms make pairwise comparisons in X, in Y and in X + Y . The number
of comparisons performed by the algorithms presented in this paper dominates the total
running time of the algorithms.

The rest of the paper is organized as follows. In Section 2 we review the definition of soft
heaps. In Section 3 we describe our heap selection algorithms. In Section 3.1 we describe our
basic algorithm for selection from binary min-heaps. In Sections 3.2 and 3.3 we extend the
algorithm to d-ary heaps and then to general heap-ordered trees and forests. In Section 4 we

SOSA 2019

5:4 Selection from Heaps, Row-Sorted Matrices, and X + Y Using Soft Heaps

describe our algorithms for selection from row-sorted matrices. In Section 4.1 we describe a
simple O(m + k) algorithm which is optimal if k = O(m). In Section 4.2 we build on the
O(m+ k) algorithm to obtain an optimal O(m log k

m) algorithm, for k ≥ 2m. In Sections 4.3
and 4.4 we obtain new results that were not obtained by Frederickson and Johnson [12]. In
Section 4.3 we obtain an O(m+

∑m
i=1 logni) algorithm, where ni ≥ 1 is the length of the

i-th row of the matrix. In Section 4.4 we obtain the new O(m+
∑m

i=1 log(ki + 1)) optimal
output-sensitive algorithm. In Section 5 we present our algorithms for selection from X + Y .
In Section 5.1 we give a simple O(m + n + k) algorithm, where |X| = m, |Y | = n. In
Section 5.2 we give a simple O(m log k

m) algorithm, for m ≥ n and k ≥ 6m. We conclude in
Section 6 with some remarks and open problems.

2 Soft heaps

Soft heaps, invented by Chazelle [6], support the following operations:
soft-heap(ε): Create and return a new, empty soft heap with error parameter ε.
insert(Q, e): Insert item e into soft heap Q.
meld(Q1, Q2): Return a soft heap containing all items in heaps Q1 and Q2, destroying Q1

and Q2.
extract-min(Q): Delete from the soft heap and return an item of minimum key in

heap Q.
In Chazelle [6], extract-min operations are broken into find-min and delete operations.

We only need combined extract-min operations. We also do not need meld operations in
this paper.

The main difference between soft heaps and regular heaps is that soft heaps are allowed
to increase the keys of some of the items in the heap by an arbitrary amount. Such items are
said to become corrupt. The soft heap implementation chooses which items to corrupt, and
by how much to increase their keys. The only constraint is that for a certain error parameter
0 ≤ ε < 1, the number of corrupt items in the heap is at most εI, where I is the number
of insertions performed so far. The ability to corrupt items allows the implementation of
soft heaps to use what Chazelle [6] calls the “data structures equivalent of car pooling” to
reduce the amortized time per operation to O(log 1

ε), which is the best possible dependency
on ε. In the implementation of Kaplan et al. [22], extract-min operations take O(log 1

ε)
amortized time, while all other operations take O(1) amortized time. (In the implementation
of Chazelle [6], insert operations take O(log 1

ε) amortized time while the other operations
take O(1) time.)

An extract-min operation returns an item whose current, possibly corrupt, key is the
smallest in the heap. Ties are broken arbitrarily. (Soft heaps usually give many items the
same corrupt key, even if initially all keys are distinct.) Each item e thus has two keys
associated with it: its original key e.key, and its current key in the soft heap e.key ′, where
e.key ≤ e.key ′. If e.key < e.key ′, then e is corrupt. The current key of an item may increase
several times.

At first sight, it may seem that the guarantees provided by soft heaps are extremely
weak. The only bound available is on the number of corrupt items currently in the heap. In
particular, all items extracted from the heap may be corrupt. Nonetheless, soft heaps prove
to be an extremely useful data structure. In particular, they play a key role in the fastest
known deterministic algorithm of Chazelle [5] for finding minimum spanning trees.

H. Kaplan, L. Kozma, O. Zamir, and U. Zwick 5:5

Soft heaps can also be used, as shown by Chazelle [6], to select an approximate median of
n items. Initialize a soft heap with some error parameter ε < 1

2 . Insert the n items into the
soft heap and then perform (1− ε) n

2 extract-min operations. Find the maximum item e,
with respect to the original keys, among the extracted items. The rank of e is between
(1− ε) n

2 and (1 + ε) n
2 . The rank is at least (1− ε) n

2 as e is the largest among (1− ε) n
2 items.

The rank is at most (1 + ε) n
2 as the items remaining in the soft heap that are smaller than e

must be corrupt, so there are at most εn such items. For, say, ε = 1
4 , the running time of

the algorithm is O(n).
Using a linear time approximate median algorithm, we can easily obtain a linear time

algorithm for selecting the k-th smallest item. We first compute the true rank r of the
approximate median e. If r = k we are done. If r > k, we throw away all items larger than e.
Otherwise, we throw away all items smaller than e and replace k by k− r. We then continue
recursively. In O(n) time, we reduced n to at most (1

2 + ε)n, so the total running time is
O(n).

In this paper, we show the usefulness of soft heaps in solving generalized selection problems.
We obtain simpler algorithms than those known before, and some results that were not
known before.

In Chazelle [6] and Kaplan et al. [22], soft heaps may corrupt items while performing any
type of operation. It is easy, however, to slightly change the implementation of [22] such that
corruptions only occur following extract-min operations. In particular, insert operations
do not cause corruption, and an extract-min operation returns an item with a smallest
current key at the beginning of the operation. These assumptions simplify algorithms that
use soft heaps, and further simplify their analysis. The changes needed in the implementation
of soft heaps to meet these assumptions are minimal. The operations insert (and meld)
are simply implemented in a lazy way. The implementation of [22] already has the property
that extract-min operations cause corruptions only after extracting an item with minimum
current key.

We assume that an extract-min operation returns a pair (e, C), where e is the extracted
item, and C is a list of items that became corrupt after the extraction of e, i.e., items that
were not corrupt before the operation, but are corrupt after it. We also assume that e.corrupt
is a bit that says whether e is corrupt. (Note that e.corrupt is simply a shorthand for
e.key < e.key ′.) It is again easy to change the implementation of [22] so that extract-min
operations return a list C of newly corrupt items, without affecting the amortized running
times of the various operations. (In particular, the amortized running time of an extract-min
operation is still O(log 1

ε), independent of the length of C. As each item becomes corrupt
only once, it is easy to charge the cost of adding an item to C to its insertion into the heap.)

We stress that the assumptions we make on soft heaps in this paper can be met by minor
and straightforward modifications of the implementation of Kaplan et al. [22], as sketched
above. No complexities are hidden here. We further believe that due to their usefulness,
these assumptions will become the standard assumptions regarding soft heaps.

3 Selection from heap-ordered trees

In Section 3.1 we present our simple, soft heap-based, O(k) algorithm for selecting the k-th
smallest item, and the set of k smallest items from a binary min-heap. This algorithm is
the cornerstone of this paper. For simplicity, we assume throughout this section that the
input heap is infinite. In particular, each item e in the input heap has two children e.left and
e.right. (A non-existent child is represented by a dummy item with key +∞.) In Section 3.2

SOSA 2019

5:6 Selection from Heaps, Row-Sorted Matrices, and X + Y Using Soft Heaps

Heap-Select(r):
S ← ∅
Q← heap()
insert(Q, r)
for i← 1 to k do

e← extract-min(Q)
append(S, e)
insert(Q, e.left)
insert(Q, e.right)

return S

Figure 1 Extracting the k smallest
items from a binary min-heap with
root r using a standard heap.

Soft-Select(r):

S ← ∅
Q← soft-heap(1/4)
insert(Q, r)
append(S, r)

for i← 1 to k − 1 do
(e, C)← extract-min(Q)
if not e.corrupt then
C ← C ∪ {e}

for e ∈ C do
insert(Q, e.left)
insert(Q, e.right)
append(S, e.left)
append(S, e.right)

return select(S, k)

Figure 2 Extracting the k smallest items from
a binary min-heap with root r using a soft heap.

we adapt the algorithm to work for d-ary heaps, for d ≥ 3, using “on-the-fly ternarization
via heapification”. In Section 3.3 we extend the algorithm to work on any heap-ordered tree
or forest. The results of Section 3.3 are new.

3.1 Selection from binary heaps
The naïve algorithm for selection from a binary min-heap is given in Figure 1. The root r of
the input heap is inserted into an auxiliary heap (priority queue), denoted Q. The minimal
item e is extracted from Q and appended to a list S. The two children of e (in the input
heap), if they exist, are inserted into Q. This operation is repeated k times. After k iterations,
the items in S are the k smallest items in the input heap, in sorted order. Overall, 2k + 1
items are inserted into Q and k items are extracted, so the total running time is O(k log k),
which is optimal if the k smallest items are to be reported in sorted order.

Frederickson [11] devised a very complicated algorithm that outputs the k smallest items,
not necessarily in sorted order, in only O(k) time, matching the information-theoretic lower
bound. In Figure 2 we give our very simple algorithm Soft-Select(r) for the same task,
which also performs only O(k) comparisons and runs in optimal O(k) time. Our algorithm is
a simple modification of the naïve algorithm of Figure 1 with the auxiliary heap replaced by
a soft heap. The resulting algorithm is much simpler than the algorithm of Frederickson [11].

Algorithm Soft-Select(r) begins by initializing a soft heap Q with error parameter
ε = 1/4 and by inserting the root r of the input heap into it. Items inserted into the soft
heap Q are also inserted into a list S. The algorithm then performs k − 1 iterations. In each
iteration, the operation (e, C)← extract-min extracts an item e with the smallest (possibly
corrupt) key currently in Q, and also returns the set of items C that become corrupt as a
result of the removal of e from Q. If e is not corrupt, then it is added to C. Now, for each
item e ∈ C, we insert its two children e.left and e.right into the soft heap Q and the list S.

H. Kaplan, L. Kozma, O. Zamir, and U. Zwick 5:7

Figure 3 Types of items in the input heap. White nodes belong to A, i.e., were not inserted yet
into the soft heap Q; black nodes belong to the barrier B; gray nodes belong to C, i.e., are corrupt;
striped nodes belong to D, i.e., were already deleted.

Lemma 1 below claims that Soft-Select(r) inserts the k smallest items of the input heap
into the soft heap Q. Lemma 2 claims that, overall, only O(k) items are inserted into Q, and
hence into S. Thus, the k smallest items in the input heap can be found by selecting the k
smallest items in the list S using a standard selection algorithm.

I Lemma 1. Algorithm Soft-Select(r) inserts the k smallest items from the input binary
min-heap into the soft heap Q. (Some of them may subsequently be extracted from the heap.)

Proof. At the beginning of an iteration of algorithm Soft-Select, let A be the set of items
of the input binary heap that were not yet inserted into the soft heap Q; let B be the set of
items that were inserted, not yet removed and are not corrupt; let C be the set of items that
were inserted, not yet removed, and are corrupt; let D be the set of items that were inserted
and already deleted from Q. We prove below, by easy induction, the following two invariants:
(a) All strict ancestors of items in B are in C ∪D.
(b) Each item in A has an ancestor in B.

Thus, the items in B form a barrier that separates the items of A, i.e., items that were
not inserted yet into the heap, from the items of C ∪D, i.e., items that were inserted and are
either corrupt or were already removed from the soft heap Q. For an example, see Figure 3.

Invariants (a) and (b) clearly hold at the beginning of the first iteration, when B = {r}
and C ∪D is empty. Assume that (a) and (b) hold at the beginning of some iteration. Each
iteration removes an item from the soft heap. The item removed is either a corrupt item
from C, or an item (in fact the smallest item) on the barrier B. Following the extraction,
some items on the barrier B become corrupt and move to C. The barrier is ‘mended’ by
inserting to Q the children of items on B that were extracted or became corrupt. By our
simplifying assumption, insertions do not corrupt items, so the newly inserted items belong
to B and are thus part of the new barrier, reestablishing (a) and (b).

We now make the following two additional claims:
(c) The item extracted at each iteration is smaller than or equal to the smallest item on the

barrier. (With respect to the original keys.)
(d) The smallest item on the barrier cannot decrease.

Claim (c) follows immediately from the definition of an extract-min operation and our
assumption that corruption occurs only after an extraction. All the items on the barrier,
and in particular the smallest item e on the barrier, are in the soft heap and are not corrupt.

SOSA 2019

5:8 Selection from Heaps, Row-Sorted Matrices, and X + Y Using Soft Heaps

Thus, the extracted item is either e, or a corrupt item f whose corrupt key is still smaller
than e. As corruption can only increase keys, we have f < e.

Claim (d) clearly holds as items on the barrier at the end of an iteration were either on
the barrier at the beginning of the iteration, or are children of items that were on the barrier
at the beginning of the iteration.

Consider now the smallest item e on the barrier after k − 1 iterations. As all extracted
items are smaller than it, the rank of e is at least k. Furthermore, all items smaller than e
must be in C∪D, i.e., inserted at some stage into the heap. Indeed, let f be an item of A, i.e.,
an item not inserted into Q. By invariant (b), f has an ancestor f ′ on the barrier. By heap
order and the assumption that e is the smallest item on the barrier we indeed get e ≤ f ′ < f .
Thus, the smallest k items were indeed inserted into the soft heap as claimed. J

The proof of Lemma 1 relies on our assumption that corruptions in the soft heap occur
only after extract-min operations. A slight change in the algorithm is needed if insert
operations may cause corruptions; we need to repeatedly add children of newly corrupt items
until no new items become corrupt. (Lemma 2 below shows that this process must end if
ε < 1

2 . The process may not end if ε ≥ 1
2 .) The algorithm, without any change, remains

correct, and in particular Lemma 1 holds, if extract-min operations are allowed to corrupt
items before extracting an item of minimum (corrupt) key. The proof, however, becomes
more complicated. (Claim (c), for example, does not hold in that case.)

I Lemma 2. Algorithm Soft-Select(r) inserts only O(k) items into the soft heap Q.

Proof. Let I be the number of insertions made by Soft-Select(r), and let C be the number
of items that become corrupt during the running of the algorithm. (Note that Soft-Select(r)
clearly terminates.) Let ε(= 1

4) be the error parameter of the soft heap. We have I < 2k+2C,
as each inserted item is either the root r, or a child of an item extracted during one of the
k − 1 iterations of the algorithm, and there are at most 2k − 1 such insertions, or a child
of a corrupt item, and there are exactly 2C such insertions. We also have C < k + εI, as
by the definition of soft heaps, at the end of the process at most εI items in the soft heap
may be corrupt, and as only k − 1 (possibly corrupt) items were removed from the soft heap.
Combining these two inequalities we get C < k+ε(2k+2C), and hence (1−2ε)C < (1+2ε)k.
Thus, if ε < 1

2 we get

C <
1 + 2ε
1− 2ε k , I < 2

(
1 + 1 + 2ε

1− 2ε

)
k .

The number of insertions I is therefore O(k), as claimed. (For ε = 1
4 , I < 8k.) J

Combining the two lemmas we easily get:

I Theorem 3. Algorithm Soft-Select(r) selects the k smallest items of a binary min-heap
in O(k) time.

Proof. The correctness of the algorithm follows from Lemmas 1 and 2. Lemma 2 also implies
that only O(k) operations are performed on the soft heap. As ε = 1/4, each operation takes
O(1) amortized time. The total running time, and the number of comparisons, performed
by the loop of Soft-Select(r) is thus O(k). As the size of S is O(k), the selection of the
smallest k items from S also takes only O(k) time. J

H. Kaplan, L. Kozma, O. Zamir, and U. Zwick 5:9

3.2 Selection from d-ary heaps

Frederickson [11] claims, in the last sentence of his paper, that his algorithm for binary
min-heaps can be modified to yield an optimal O(dk) algorithm for d-ary min-heaps, for any
d ≥ 2, but no details are given. (In a d-ary heap, each node has (at most) d children.)

We present two simple O(dk) algorithms for selecting the k smallest items from a d-ary
min-heap. The first is a simple modification of the algorithm for the binary case. The second
in a simple reduction from the d-ary case to the binary case.

Algorithm Soft-Select(r) of Figure 2 can be easily adapted to work on d-ary heaps. We
simply insert the d children of an extracted item, or an item that becomes corrupt, into the
soft heap. If we again let I be the number of items inserted into the sort heap, and C be the
number of items that become corrupt, we get I < d(k + C) and C < k + εI, and hence

C <
1 + dε

1− dε k , I < d

(
1 + 1 + dε

1− dε

)
k ,

provided that ε < 1
d , e.g., ε = 1

2d . The algorithm then performs O(dk) insert operations,
each with an amortized cost of O(1), and k − 1 extract-min operations, each with an
amortized cost of O(log 1

ε) = O(log d). The total running time is therefore O(dk). (Note
that it is important here to use the soft heap implementation of [22], with an O(1) amortized
cost of insert.)

An alternative O(dk) algorithm for d-ary heaps, for any d ≥ 2, can be obtained by a
simple reduction from d-ary heaps to 3-ary (or binary) heaps using a process that we call
“on-the-fly ternarization via heapification”. We use the well-known fact that an array of d
items can be heapified, i.e., converted into a binary heap, in O(d) time. (See Williams [28] or
Cormen et al. [7].) We describe this alternative approach because we think it is interesting,
and because we use it in the next section to obtain an algorithm for general heap-ordered
trees, i.e., trees in which different nodes may have different degrees, and the degrees of the
nodes are not necessarily bounded by a constant.

In a d-ary heap, each item e has (up to) d children e.child[1], . . . , e.child[d]. We construct
a ternary heap on the same set of items in the following way. We heapify the d children of e,
i.e., construct a binary heap whose items are these d children. This gives each child f of e
two new children f.left and f.right. (Some of these new children are null.) We let e.middle
be the root of the heap composed of the children of e. Overall, this gives each item e in
the original heap three new children e.left, e.middle and e.right, some of which may be null.
Note that e gets its new children e.left and e.right when it and its siblings are heapified.
(The names left, middle and right are, of course, arbitrary.) For an example, see Figure 4.

This heapification process can be carried out on-the-fly while running Soft-Select(r)
on the resulting ternary heap. The algorithm starts by inserting the root of the d-ary heap,
which is also the root of its ternarized version, into the soft heap. When an item e is extracted
from the soft heap, or becomes corrupt, we do not immediately insert its d original children
into the soft heap. Instead, we heapify its d children, in O(d) time. This assigns e its middle
child e.middle. Item e already has its left and right children e.left and e.right defined. The
three new children e.left, e.middle and e.right are now inserted into the soft heap. We call
the resulting algorithm Soft-Select-Heapify(r).

I Theorem 4. Algorithm Soft-Select-Heapify(r) selects the k smallest items from a d-ary
heap with root r in O(dk) time.

SOSA 2019

5:10 Selection from Heaps, Row-Sorted Matrices, and X + Y Using Soft Heaps

Figure 4 On-the-fly ternarization of a 7-ary heap. Thin lines represent the original 7-ary heap.
Bold arrows represent new left and right children. Dashed arrows represent new middle children.

Proof. Algorithm Soft-Select-Heapify(r) essentially works on a ternary version of the
input d-ary heap constructed on the fly. Simple adaptations of Lemmas 1 and 2 show that the
total running time, excluding the heapifications’ cost, is O(k). As only O(k) heapifications
are performed, the cost of all heapifications is O(dk), giving the total running time of the
algorithm. J

It is also possible to binarize the input heap on the fly. We first ternarize the heap as
above. We now convert the resulting ternary tree into a binary tree using the standard first
child, next sibling representation. This converts the ternary heap into a binary heap, if
the three children of each item are sorted. During the ternarization process, we can easily
make sure that the three children of each item appear in sorted order, swapping children if
necessary, so we can apply this final binarization step.

3.3 Selection from general heap-ordered trees
Algorithm Soft-Select-Heapify(r) works, of course, on arbitrary heap-ordered trees in
which different nodes have different degrees. Algorithm Soft-Select(r), on the other hand,
is not easily adapted to work on general heap-ordered trees, as it is unclear how to set
the error parameter ε to obtain an optimal running time. To bound the running time
of Soft-Select-Heapify(r) on an arbitrary heap-ordered tree, we introduce the following
definition.

I Definition 5 (D(T, k)). Let T be a (possibly infinite) rooted tree and let k ≥ 1. Let
D(T, k) be the maximum sum of degrees over all subtrees of T of size k rooted at the root
of T . (The degrees summed are in T , not in the subtree.)

For example, if Td is an infinite d-ary tree, then D(Td, k) = dk, as the sum of degrees in
each subtree of Td containing k vertices is dk. For a more complicated example, let T be the
infinite tree in which each node at level i has degree i+ 2, i.e., the root has two children, each
of which has three children, etc. Then, D(T, k) =

∑k+1
i=2 i = k(k + 3)/2, where the subtrees

achieving the maximum are paths from the root. A simple adaptation of Theorem 4 gives:

H. Kaplan, L. Kozma, O. Zamir, and U. Zwick 5:11

I Theorem 6. Let T be a heap-ordered tree with root r. Algorithm Soft-Select-Heapify(r)
selects the k-th smallest item in T , and the set of k smallest items in T , in O(D(T, 3k))
time.

Proof. We use the on-the-fly binarization and a soft heap with ε = 1
6 . The number of corrupt

items is less than 2k. The number of extracted items is less than k. Thus, the algorithm
needs to heapify the children of less than 3k items that form a subtree T ′ of the original
tree T . The sum of the degrees of these items is at most D(T, 3k), thus the total time spent
on the heapifications, which dominates the running time of the algorithm, is O(D(T, 3k)).
We note that D(T, 3k) can be replaced by D(T, (2 + δ)k), for any δ > 0, by choosing ε small
enough. J

I Theorem 7. Let T be a heap-ordered tree and let k ≥ 1. Any comparison-based algorithm
for selecting the k-th smallest item in T must perform at least D(T, k−1)−(k−1) comparisons
on some inputs.

Proof. Let T ′ be the subtree of T of size k − 1 that achieves the value D(T, k − 1), i.e., the
sum of the degrees of the nodes of T ′ is D(T, k − 1). Suppose the k − 1 items of T ′ are
the k − 1 smallest items in T . The nodes of T ′ have at least D(T, k − 1)− (k − 2) children
that are not in T ′. The k-th smallest item is the minimum item among these items, and no
information on the order of these items is implied by the heap order of the tree. Thus, finding
the k-th smallest item in this case requires at least D(T, k − 1)− (k − 1) comparisons. J

4 Selection from row-sorted matrices

In this section we present algorithms for selecting the k smallest items from a row-sorted
matrix, or equivalently from a collection of sorted lists. Our results simplify and extend
results of Frederickson and Johnson [12]. The algorithms presented in this section use
our Soft-Select algorithm for selection from a binary min-heap presented in Section 3.1.
(Frederickson’s [11] algorithm could also be used, but the resulting algorithms would become
much more complicated, in particular more complicated than the algorithms of Frederickson
and Johnson [12].) In Section 4.1 we give an O(m+ k) algorithm, where m is the number
of rows, which is optimal for k = O(m). In Section 4.2 we give an O(m log k+m

m) algorithm
which is optimal for k = Ω(m). These results match results given by Frederickson and
Johnson [12]. In Sections 4.3 and 4.4 we give two new algorithms that improve in some cases
over the previous algorithms.

4.1 An O(m + k) algorithm
A sorted list may be viewed as a heap-sorted path, i.e., a 1-ary heap. We can convert a
collection of m sorted lists into a (degenerate) binary heap by building a binary tree whose
leaves are the first items in the lists. The values of the m − 1 internal nodes in this tree
are set to −∞. Each item in a list will have one real child, its successor in the list, and a
dummy child with value +∞. To find the k smallest items in the lists, we simply find the
m + k − 1 smallest items in the binary heap. This can be done in O(m + k) time using
algorithm Soft-Select of Section 3.1. More directly, we can use the following straightforward
modification of algorithm Soft-Select. Insert the m first items in the lists into a soft heap.
Perform k − 1 iterations in which an item with minimum (corrupt) key is extracted. Insert
into the soft heap the child of the item extracted as well as the children of all the items that
became corrupt following the extract-min operation.

SOSA 2019

5:12 Selection from Heaps, Row-Sorted Matrices, and X + Y Using Soft Heaps

Figure 5 Partitioning the items in each row to blocks of size b. Block representatives are shown
as small filled circles. The shaded regions contains the k smallest items. The darkly shaded region
depicts blocks all of whose items are among the k smallest.

Alternatively, we can convert the m sorted lists into a heap-ordered tree Tm,1 by adding
a root with value −∞ that will have the m first items as its children. All other nodes in
the tree will have degree 1. It is easy to see that D(Tm,1, k) = m + k − 1. By Theorem 6
we again get an O(m+ k) algorithm. We have thus presented three different proofs of the
following theorem.

I Theorem 8. Let A be a row-sorted matrix containing m rows. Then, the k-th smallest
item in A, and the set of k smallest items in A, can be found in O(m+ k) time.

We refer to the algorithm of Theorem 8 as Mat-Select1(A, k). The O(m+ k) running
time of Mat-Select1(A, k) is asymptotically optimal if k = O(m), as Ω(m) is clearly a lower
bound; each selection algorithm must examine at least one item in each row of the input
matrix.

4.2 An O(m log k
m

) algorithm, for k ≥ 2m

We begin with a verbal description of the algorithm. Let A be the input matrix and let
k ≥ 2m. Partition each row of the matrix A into blocks of size b =

⌊
k

2m

⌋
. The last item in

each block is the representative of the block. Consider the (yet unknown) distribution of
the k smallest items among the m rows of the matrix. Let ki be the number of items in the
i-th row that are among the k smallest items in the whole matrix. These ki items are clearly
the first ki items of the i-th row. They are partitioned into a number of full blocks, followed
possibly by one partially filled block. (For an example, see Figure 5.) The number of items
in partially filled blocks is at most m

⌊
k

2m

⌋
. Thus, the number of filled blocks is at least

k −m
⌊

k
2m

⌋⌊
k

2m

⌋ ≥ m .

Apply algorithm Mat-Select1 to select the smallestm block representatives. This clearly takes
only O(m) time. (Algorithm Mat-Select1 is applied on the implicitly represented matrix A′
of block representatives.) All items in the m blocks whose representatives were selected are
among the k smallest items of the matrix. The number of such items is mb = m

⌊
k

2m

⌋
≥ k

4 ,
as k ≥ 2m. These items can be removed from the matrix. All that remains is to select the
k −mb smallest remaining items using a recursive call to the algorithm. In each recursive

H. Kaplan, L. Kozma, O. Zamir, and U. Zwick 5:13

Mat-Select2(A, k):
m← num-rows(A)
if k ≤ 2m then

return Mat-Select1(A, k)
else

b← bk/(2m)c
A′ ← jump(A, b)
K ← Mat-Select1(A′,m)
A′′ ← shift(A, bK)
return bK + Mat-Select2(A′′, k − bm)

Figure 6 Selecting the k smallest items from a row-sorted matrix A. (Implicit handling of
submatrices passed to recursive calls.)

Mat-Select2(〈A, c,D〉, k):
m← num-rows(A)
if k ≤ 2m then

return Mat-Select1(〈A, c,D〉, k)
else

b← bk/(2m)c
K ← Mat-Select1(〈A, bc,D〉,m)
return bK + Mat-Select2(〈A, c,D + bcK〉, k − bm)

Figure 7 Selecting the k smallest items from a row-sorted matrix A. (Explicit handling of
submatrices passed to recursive calls.)

call (or iteration), the total work is O(m). The number of items to be selected drops by a
factor of at least 3/4. Thus after at most log4/3

k
2m = O(log k

m) iterations, k drops below
2m and then Mat-Select1 is called to finish the job in O(m) time.

Pseudo-code of the algorithm described above, which we call Mat-Select2(A, k) is given
in Figure 6. The algorithm returns an array K = (k1, k2, . . . , km), where ki is the number
of items in the i-th row that are among the k smallest items of the matrix. The algorithm
uses a function num-rows(A) that returns the number of rows of a given matrix, a function
jump(A, b) that returns an (implicit) representation of a matrix A′ such that A′i,j = Ai,bj , for
i, j ≥ 1, and a function shift(A,K) that returns an (implicit) representation of a matrix A′′
such that A′′i,j = Ai,j+ki

, for i, j ≥ 1.
In Figure 7 we eliminate the use of jump and shift and make everything explicit.

The input matrix is now represented by a triplet 〈A, c,D〉, where A is a matrix, c ≥ 1
is an integer, and D = (d1, d2, . . . , dm) is an array of non-negative integral displace-
ments. Mat-Select2(〈A, c,D〉, k) selects the k smallest items in the matrix A′ such that
A′i,j = Ai,cj+di

, for i, j ≥ 1. To select the k smallest items in A itself, we simply call
Mat-Select2(〈A, 1,0〉, k), where 0 represents an array of m zeros. The implementation of
Mat-Select2(〈A, c,D〉, k) in Figure 7 is recursive. It is easy to convert it into an equivalent
iterative implementation.

I Theorem 9. Let A be a row-sorted matrix containing m rows and let k ≥ 2m. Algorithm
Mat-Select2(A, k) selects the k smallest items in A in O(m log k

m) time.

SOSA 2019

5:14 Selection from Heaps, Row-Sorted Matrices, and X + Y Using Soft Heaps

Frederickson and Johnson [12] showed that the O(m log k
m) running time of algorithm

Mat-Select2(A, k) is optimal, when k ≥ 2m. A simple proof of this claim can also be found
in Section 4.5.

4.3 An O(m + ∑m
i=1 log ni) algorithm

Assume now that the i-th row of A contains only ni items. We assume that ni ≥ 1, as
otherwise, we can simply remove the i-th row. We can run algorithms Mat-Select1 and
Mat-Select2 of the previous sections by adding dummy +∞ items at the end of each row,
but this may be wasteful. We now show that a simple modification of Mat-Select2, which
we call Mat-Select3, can solve the selection problem in O(m+

∑m
i=1 logni) time. We focus

first on the number of comparisons performed by the new algorithm.
At the beginning of each iteration, Mat-Select2 sets the block size to b =

⌊
k

2m

⌋
. If ni < b,

then the last item in the first block of the i-th row is +∞. Assuming that k ≤
∑m

i=1 ni, no
representatives from the i-th row will be selected in the current iteration. There is therefore
no point in considering the i-th row in the current iteration. Let m′ be the number of long
rows, i.e., rows for which ni ≥

⌊
k

2m

⌋
. We want to reduce the running time of the iteration to

O(m′) and still reduce k by some constant factor.
The total number of items in the short rows is less than m

⌊
k

2m

⌋
≤ k

2 . The long rows
thus contain at least k

2 of the k smallest items of the matrix. We can thus run an iteration
of Mat-Select2 on the long rows with k′ = k

2 . In other words, we adjust the block size to
b′ =

⌊
k′

2m′

⌋
=
⌊

k
4m′

⌋
and use Mat-Select1 to select the m′ smallest representatives. This

identifies b′m′ ≥ k′

4 ≥
k
8 items as belonging to the k smallest items in A. Thus, each iteration

takes O(m′) time and reduces k by a factor of at least 7
8 .

In how many iterations did each row of the matrix participate? Let kj be the number of
items still to be selected at the beginning of iteration j. Let bj =

⌊
kj

2m

⌋
be the threshold for

long rows used in iteration j. As kj drops exponentially, so does bj . Thus, row i participates
in at most O(logni) of the last iterations of the algorithm. The total number of comparisons
performed is thus at most O(m+

∑m
i=1 logni), as claimed.

To show that the algorithm can also be implemented to run in O(m+
∑m

i=1 logni) time, we
need to show that we can quickly identify the rows that are long enough to participate in each
iteration. To do that, we sort dlognie using bucket sort. This takes only O(m+maxidlognie)
time. When a row loses some of its items, it is easy to move it to the appropriate bucket in
O(1) time. In each iteration we may need to examine rows in one bucket that turn out not
to be long enough, but this does not affect the total O(m+

∑m
i=1 logni) running time of the

algorithm.

I Theorem 10. Let A be a row-sorted matrix containing m rows, and let N= (n1, n2, . . . , nm),
where ni ≥ 1 be the number of items in the i-th row of the matrix, for 1 ≤ i ≤ m.
Let k ≤

∑m
i=1 ni. Algorithm Mat-Select3(A,N, k) selects the k smallest items in A in

O(m+
∑m

i=1 logni) time.

In Section 4.5 below we show that the running time of Mat-Select3(A,N, k) is optimal
for some values of N = (n1, n2, . . . , nm) and k, e.g., if k = 1

2
∑m

i=1 ni, i.e., for median
selection. The O(m log k

m) running time of Mat-Select2(A, k) is sometimes better than the
O(m+

∑m
i=1 logni) running time of Mat-Select3(A,N, k). We next describe an algorithm,

Mat-Select4(A, k), which is always at least as fast as the three algorithms already presented,
and sometimes faster.

H. Kaplan, L. Kozma, O. Zamir, and U. Zwick 5:15

4.4 An O(m + ∑m
i=1 log(ki + 1)) algorithm

As before, let ki be the (yet unknown) number of items in the i-th row that belong to the
smallest k items of the matrix. In this section we describe an algorithm for finding these ki’s
that runs in O(m+

∑m
i=1 log(ki + 1)) time.

We partition each row this time into blocks of size 1, 2, 4, The representative of a
block is again the last item in the block. Note that the first ki items in row i reside in
blog(ki + 1)c complete blocks, plus one incomplete block, if log(ki + 1) is not an integer.
Thus L =

∑m
i=1blog(ki + 1)c is exactly the number of block representatives that belong to

the k smallest items of the matrix.
Suppose that ` ≥ L is an upper bound on the true value of L. We can run Mat-Select1

to select the ` smallest block representatives in O(m + `) time. If `i representatives were
selected from row i, we let ni = 2`i+1 − 1. We now run Mat-Select3 which runs in
O(m+

∑m
i=1 logni) = O(m+

∑m
i=1(`i +1)) = O(m+`). Thus, if ` = O(L), the total running

time is O(m+
∑m

i=1 log(ki + 1)), as promised.
How do we find a tight upper bound on L =

∑m
i=1blog(ki + 1)c? We simply try

` = m, 2m, 4m, . . ., until we obtain a value of ` that is high enough. If ` < L, i.e., ` is not large
enough, we can discover it in one of two ways. Either

∑m
i=1 ni < k, in which case ` is clearly

too small. Otherwise, the algorithm returns an array of ki values. We can check whether these
values are the correct ones in O(m) time. First compute M = maxm

i=1 Ai,ki
. Next check that

Ai,ki+1 > M , for 1 ≤ i ≤ m. As ` is doubled in each iteration, the cost of the last iteration
dominates the total running time which is thus O(m+ 2L) = O(m+

∑m
i=1 log(ki + 1)). We

call the resulting algorithm Mat-Select4.

I Theorem 11. Let A be a row-sorted matrix containing m rows and let k ≥ 2m. Al-
gorithm Mat-Select4(A, k) selects the k smallest items in A in O (m+

∑m
i=1 log(ki + 1))

time, where ki is the number of items selected from row i.

4.5 Lower bounds for selection from row-sorted matrices
We begin with a simple proof that the O(m log k

m) algorithm is optimal for k ≥ 2m.

I Theorem 12. Any algorithm for selecting the k smallest items from a matrix with m

sorted rows must perform at least (m− 1) log m+k
m comparisons on some inputs.

Proof. We use the information-theoretic lower bound. We need to lower bound sk(m), which
is the number of m-tuples (k1, k2, . . . , km), where 0 ≤ ki, for 1 ≤ i ≤ m, and

∑m
i=1 ki = k. It

is easily seen that sk(m) =
(

m+k−1
m−1

)
, as this is the number of ways to arrange k identical

balls and m− 1 identical dividers in a row. We thus get a lower bound of

log
(
m+ k − 1
m− 1

)
≥ log

(
m+ k − 1
m− 1

)m−1
= (m−1) log m+ k − 1

m− 1 ≥ (m−1) log m+ k

m
,

where we used the well-known relation
(

n
k

)
>
(

n
k

)k. J

We next show that our new O(m+
∑m

i=1 logni) algorithm is optimal, at least in some
cases, e.g., when k = 1

2
∑m

i=1 ni which corresponds to median selection.

I Theorem 13. Any algorithm for selecting the k = 1
2
∑m

i=1 ni smallest items from a row-
sorted matrix with m rows of lengths n1, n2, . . . , nm ≥ 1 must perform at least

∑m
i=1 log(ni +

1)− log (1 +
∑m

i=1 ni) comparisons on some inputs.

SOSA 2019

5:16 Selection from Heaps, Row-Sorted Matrices, and X + Y Using Soft Heaps

Proof. The number of possible solutions to the selection problem for all values of 0 ≤ k ≤∑m
i=1 ni is

∏m
i=1(ni + 1). (Each solution corresponds to a choice 0 ≤ ki ≤ ni, for i =

1, 2, . . . ,m.) We prove below that the number of solutions is maximized for k =
⌊ 1

2
∑m

i=1 ni

⌋
(and k =

⌈ 1
2
∑m

i=1 ni

⌉
). The number of possible solutions for this value of k is thus at least

(
∏m

i=1(ni + 1))/(1 +
∑m

i=1 ni). Taking logarithm, we get the promised lower bound.
We next prove that the number of solutions is maximized when k =

⌊ 1
2
∑m

i=1 ni

⌋
. Let Xi

be a uniform random variable on {0, 1, . . . , ni}, and let Y =
∑m

i=1 Xi. The number of
solutions for a given value k is proportional to the probability that Y attains the value k.
Let Yj =

∑j
i=1 Xi. We prove by induction on j that the distribution of Yj is maximized at

µj = 1
2
∑j

i=1 ni, is symmetric around µj , and is increasing up to µj and decreasing after µj .
The base case is obvious as Y1 = X1 is a uniform distribution. The induction step follows
from an easy calculation. Indeed, Yj = Yj−1 +Xj , where Xj is uniform and Yj−1 has the
required properties. The distribution of Yj is the convolution of the distributions of Yj−1
and Xj , which corresponds to taking the average of nj + 1 values of the distribution of Yj−1.
It follows easily that Yj also has the required properties. J

We next compare the lower bound obtained,
∑m

i=1 log(ni + 1)− log (1 +
∑m

i=1 ni), with
the upper bound O(m+

∑m
i=1 logni). The subtracted term in the lower bound is dominated

by the first term, i.e., log (1 +
∑m

i=1 ni) ≤ log(m+1)
m

∑m
i=1 log(ni + 1), where equality holds

only if ni = 1, for every i. When the ni’s are large, the subtracted term becomes negligible.
Also, as ni ≥ 1, we have

∑m
i=1 log(ni + 1) ≥ m. Thus, the lower and upper bound are always

within a constant multiplicative factor of each other.
The optimality of the O(m+

∑m
i=1 logni) algorithm also implies the optimality of our

new “output-sensitive” O(m+
∑m

i=1 log(ki + 1)) algorithm. As ki ≤ ni, an algorithm that
performs less than c(m+

∑m
i=1 log(ki +1)) comparisons on all inputs, for some small enough c,

would contradict the lower bounds for the O(m +
∑m

i=1 logni) algorithm. We also note
that an argument very similar to the one used in the proof of Theorem 13 shows that
Ω(
∑m

i=1 log(ki + 1)) comparisons are required even if the algorithm is given a multiplicative
approximation of the ki’s.

5 Selection from X + Y

We are given two unsorted sets X and Y and would like to find the k-th smallest item, and
the set of k smallest items, in the set X + Y . We assume that |X| = m, |Y | = n, where
m ≥ n.

5.1 An O(m + n + k) algorithm
Heapify X and heapify Y , which takes O(m+n) time. Let x1, . . . , xm be the heapified order
of X, i.e., xi ≤ x2i, x2i+1, whenever the respective items exists. Similarly, let y1, . . . , yn be the
heapified order of Y . Construct a heap of maximum degree 4 representing X + Y as follows.
The root is x1 +y1. Item xi +y1, for i ≥ 1 has four children x2i +y1, x2i+1 +y1, xi +y2, xi +y3.
Item xi + yj , for i ≥ 1, j > 1, has two children xi + y2j , xi + y2j+1, again when the respective
items exist. (Basically, this is a heapified version of X + y1, where each xi + y1 is the root
of a heapified version of xi + Y .) We can now apply algorithm Soft-Select on this heap,
which takes only O(k) time. We call the resulting algorithm X+Y-Select1(X,Y).

I Theorem 14. Let X and Y be unordered sets of m and n items respectively. Then,
algorithm X+Y-Select1(X,Y) finds the k-th smallest item, and the set of k smallest items in
X + Y , in O(m+ n+ k) time.

H. Kaplan, L. Kozma, O. Zamir, and U. Zwick 5:17

We note that if X and Y are given to us as heaps, and in particular, if they are sorted,
then the running time of algorithm X+Y-Select1(X,Y) becomes O(k), as there is no need to
heapify X and Y .

5.2 An O(m log k
m

) algorithm, for k ≥ 6m, m ≥ n

If Y is sorted, then X + Y is a row-sorted matrix, and we can use algorithm Mat-Select2 of
Theorem 9. We can sort Y in O(n logn) time and get an O(m log k

m + n logn) algorithm.
The running time of this algorithm is O(m log k

m) when k ≥ mnε, for any fixed ε > 0. But,
for certain values of m,n and k, e.g., m = n and k = mno(1), the cost of sorting is dominant.
We show below that the sorting can always be avoided.

We first regress and describe an alternative O(m log k
m) algorithm for selection from row-

sorted matrices. The algorithm is somewhat more complicated than algorithm Mat-Select2
given in Section 4.2. The advantage of the new algorithm is that much less assumptions are
made about the order of the items in each row. A similar approach was used by Frederickson
and Johnson [12] but we believe that our approach is simpler. In particular we rely on a
simple partitioning lemma (Lemma 16 below) which is not used, explicitly or implicitly,
in [12].

Instead of partitioning each row into blocks of equal size, as done by algorithm Mat-Select2
of Section 4.2, we partition each row into exponentially increasing blocks, similar, but not
identical, to the partition made by algorithm Mat-Select3 of Section 4.3.

Let b =
⌊

k
3m

⌋
. Partition each row into blocks of size b, b, 2b, 4b, . . . , 2jb, The represent-

ative of a block is again the last item in the block. We use algorithm Mat-Select1 to select
the m smallest representatives. This takes O(m) time. Let e1 < e2 < . . . < em denote the m
selected representatives in (the unknown) sorted order, and let s1, s2, . . . , sm be the sizes of
their blocks. We next use an O(m) weighted selection algorithm (see, e.g., Cormen et al. [7],
Problem 9.2, p. 225) to find the smallest ` such that k

6 ≤
∑`

j=1 sj and the items e1, e2, . . . , e`,
in some order. Such an ` ≤ m must exist, as m

⌊
k

3m

⌋
≥ m(k

3m − 1) = 1
3 (k − 3m) ≥ k

6 , as
k ≥ 6m. Also note that k

6 ≤
∑`

j=1 sj <
k
3 , as the addition of each block at most doubles the

total size, i.e.,
∑`

j=1 sj < 2
∑`−1

j=1 sj , for ` > 1.

I Lemma 15. All items of the blocks whose representatives are e1, e2, . . . , e` are among the k
smallest items in the matrix.

Proof. Let Sk be the set of k smallest items of the matrix. Consider again the partition
of Sk among the m rows of the matrix. Less than mb = m

⌊
k

3m

⌋
≤ k

3 of the items of Sk

belong to rows that do not contain a full block of Sk items. Thus, at least 2k
3 of the items

of Sk are contained in rows that contain at least one full block of Sk items. The exponential
increase in the size of the blocks ensures that in each such row, at least half of the items of Sk

are contained in full blocks. Thus, at least k
3 of the items of Sk are contained in full blocks.

In particular, if e1, e2, . . . , e` are the smallest block representatives, and
∑`

j=1 sj ≤ k
3 , then

all the items in the blocks of e1, e2, . . . , e` belong to Sk. J

We can thus remove all the items in the blocks of e1, e2, . . . , e` from the matrix and proceed
to find the k−

∑`
j=1 sj ≤ 5k

6 smallest items of the remaining matrix. When k drops below 6m,
we use the algorithm of Mat-Select1 of Section 4.1. The resulting algorithm performs
O(log k

m) iterations, each taking O(m) time, so the total running time is O(m log k
m). (This

matches the running time of Mat-Select2, using a somewhat more complicated algorithm.)
We make another small adaptation to the new O(m log k

m) algorithm before returning
to the selection from X + Y problem. Instead of letting b =

⌊
k

3m

⌋
and using blocks of size

SOSA 2019

5:18 Selection from Heaps, Row-Sorted Matrices, and X + Y Using Soft Heaps

Figure 8 Partitions of Y for n = 32.

b, b, 2b, 4b, . . ., we let b′ = 2blog2 bc, i.e., b′ is the largest power of 2 which is at most b, and
use blocks of size b′, b′, 2b′, 4b′, All block sizes are now powers of 2. As the sizes of the
blocks may be halved, we select the 2m smallest block representatives. The number of items
removed from each row in each iteration is now also a power of 2.

Back to the X + Y problem. The main advantage of the new algorithm is that we do
not really need the items in each row to be sorted. All we need are the items of ranks
b, b, 2b, 4b, . . ., where b = 2` for some ` > 0, in each row. In the X + Y problem the rows,
or what remains of them after a certain number of iterations, are related, so we can easily
achieve this task.

At the beginning of the first iteration, we use repeated median selection to find the items
of Y whose ranks are 1, 2, 4, This also partitions Y into blocks of size 1, 2, 4, . . . such that
items of each block are smaller than the items of the succeeding block. We also place the
items of ranks 1, 2, 4, . . . in their corresponding places in Y . This gives us enough information
to run the first iteration of the matrix selection algorithm.

In each iteration, we refine the partition of Y . We apply repeated median selection on
each block of size 2` in Y , breaking it into blocks of size 1, 1, 2, 4, . . . , 2`−1. The total time
needed is O(n) per iteration, which we can easily afford. We assume for simplicity that
n = |Y | is a power of 2 and that all items in Y are distinct. We now have the following fun
lemma:

I Lemma 16. After i iterations of the above process, if 1 ≤ r ≤ n has at most i 1’s in its
binary representation, then Y [r] is the item of rank r in Y , i.e., Y [1 : r−1] < Y [r] < Y [r+1 :
n]. Additionally, if r1 < r2 both have at most i 1’s in their binary representation, and r2 is the
smallest number larger than r1 with this property, then Y [1 : r1] < Y [r1+1 : r2] < Y [r2+1 : n],
i.e., the items in Y [r1 + 1 : r2] are all larger than the items in Y [1 : r1] and smaller than the
items in Y [r2 + 1 : n].

For example, if n = 32, then after the first iteration we have the partition

Y [1], Y [2], Y [3 : 4], Y [5 : 8], Y [9 : 16], Y [17 : 32] .

H. Kaplan, L. Kozma, O. Zamir, and U. Zwick 5:19

After the second iteration, we have the partition

Y [1], Y [2], Y [3], Y [4], Y [5], Y [6], Y [7 : 8], Y [9], Y [10], Y [11:12], Y [13 : 16],
Y [17], Y [18], Y [19 : 20], Y [21 : 24], Y [25 : 32] .

(Actually, blocks of size 2 are also sorted.) The partitions obtained for n = 32 in the first
five iterations are also shown in Figure 8.

Proof. The claim clearly holds after the first iteration, as numbers with a single 1 in their
binary representation are exactly powers of 2. Let Y [r1 + 1 : r2] be a block of Y generated
after i iterations. If r1 has less than i 1’s, then r2 = r1 + 1, so the block is trivial. Suppose,
therefore, that r1 has exactly i 1’s in its representation and that r2 = r1 +2`. (` is actually the
index of the rightmost 1 in the representation of r1, counting from 0.) In the (i+1)-st iteration,
this block is broken into the blocks Y [r1 + 1], Y [r1 + 2], Y [r1 + 3 : r1 + 4], . . . , Y [r1 + 2`−1 + 1 :
r1 + 2`]. As the numbers r1 + 2j , for 1 ≤ j < ` are exactly the number between r1 and r2
with at most i+ 1 1’s in their binary representation, this establishes the induction step. J

After i iterations of the modified matrix selection algorithm applied to an X+Y instance,
we have removed a certain number of items di from each row. The number of items removed
from each row in each iteration is a power of 2. By induction, di has at most i 1’s in its
representation. In the (i+ 1)-st iteration we set b = 2`, for some ` ≥ 1 and need the items
of rank b, 2b, 4b, . . . from what remains of each row. The items needed from the i-th row
are exactly X[i] + Y [di + 2jb], for j = 0, 1, The required items from Y are available, as
di + 2jb has at most i+ 1 1s in its binary representation! We call the resulting algorithm
X+Y-Select2(X,Y).

I Theorem 17. Let X and Y be unordered sets of m and n items respectively, where m ≥ n,
and let k ≥ 6m. Algorithm X+Y-Select2(X,Y) finds the k-th smallest item, and the set of k
smallest items in X + Y , in O(m log k

m) time.

6 Concluding remarks

We used soft heaps to obtain a very simple O(k) algorithm for selecting the k-th smallest item
from a binary min-heap, greatly simplifying the previous O(k) algorithm of Frederickson [11].
We used this simple heap selection algorithm to obtain simpler algorithms for selection from
row-sorted matrices and from X + Y , simplifying results of Frederickson and Johnson [12].
The simplicity of our algorithms allowed us to go one step further and obtain some improved
algorithms for these problems, in particular an O(m+

∑m
i=1 log(ki + 1)) “output-sensitive”

algorithm for selection from row-sorted matrices.
Our results also demonstrate the usefulness of soft heaps outside the realm of minimum

spanning tree algorithms. It would be nice to find further applications of soft heaps.

References
1 Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and Robert Endre

Tarjan. Time Bounds for Selection. J. Comput. Syst. Sci., 7(4):448–461, 1973. doi:
10.1016/S0022-0000(73)80033-9.

2 David Bremner, Timothy M. Chan, Erik D. Demaine, Jeff Erickson, Ferran Hurtado, John
Iacono, Stefan Langerman, Mihai Patrascu, and Perouz Taslakian. Necklaces, Convolutions,
and X + Y . Algorithmica, 69(2):294–314, 2014. doi:10.1007/s00453-012-9734-3.

SOSA 2019

http://dx.doi.org/10.1016/S0022-0000(73)80033-9
http://dx.doi.org/10.1016/S0022-0000(73)80033-9
http://dx.doi.org/10.1007/s00453-012-9734-3

5:20 Selection from Heaps, Row-Sorted Matrices, and X + Y Using Soft Heaps

3 Gerth Stølting Brodal, Rolf Fagerberg, Mark Greve, and Alejandro López-Ortiz. Online
Sorted Range Reporting. In Proc. of 20th ISAAC, pages 173–182, 2009. doi:10.1007/
978-3-642-10631-6_19.

4 Jean Cardinal, Samuel Fiorini, Gwenaël Joret, Raphaël M. Jungers, and J. Ian Munro. Sort-
ing under partial information (without the ellipsoid algorithm). Combinatorica, 33(6):655–
697, 2013. doi:10.1007/s00493-013-2821-5.

5 Bernard Chazelle. A minimum spanning tree algorithm with Inverse-Ackermann type com-
plexity. J. ACM, 47(6):1028–1047, 2000. doi:10.1145/355541.355562.

6 Bernard Chazelle. The soft heap: an approximate priority queue with optimal error rate.
J. ACM, 47(6):1012–1027, 2000. doi:10.1145/355541.355554.

7 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, 3rd Edition. MIT Press, 2009. URL: http://mitpress.mit.edu/books/
introduction-algorithms.

8 Dorit Dor and Uri Zwick. Selecting the Median. SIAM Journal on Computing, 28(5):1722–
1758, 1999. doi:10.1137/S0097539795288611.

9 Dorit Dor and Uri Zwick. Median Selection Requires (2 + ε)n Comparisons. SIAM Journal
on Discrete Mathematics, 14(3):312–325, 2001. doi:10.1137/S0895480199353895.

10 David Eppstein. Finding the k Shortest Paths. SIAM J. Comput., 28(2):652–673, 1998.
doi:10.1137/S0097539795290477.

11 Greg N. Frederickson. An Optimal Algorithm for Selection in a Min-Heap. Information
and Computation, 104(2):197–214, 1993. doi:10.1006/inco.1993.1030.

12 Greg N. Frederickson and Donald B. Johnson. The Complexity of Selection and Ranking
in X + Y and Matrices with Sorted Columns. J. Comput. Syst. Sci., 24(2):197–208, 1982.
doi:10.1016/0022-0000(82)90048-4.

13 Greg N. Frederickson and Donald B. Johnson. Generalized Selection and Ranking: Sorted
Matrices. SIAM Journal on Computing, 13(1):14–30, 1984. doi:10.1137/0213002.

14 Greg N. Frederickson and Donald B. Johnson. Erratum: Generalized Selection and
Ranking: Sorted Matrices. SIAM Journal on Computing, 19(1):205–206, 1990. doi:
10.1137/0219013.

15 Michael L. Fredman. How Good is the Information Theory Bound in Sorting? Theor.
Comput. Sci., 1(4):355–361, 1976. doi:10.1016/0304-3975(76)90078-5.

16 Joseph L. Hodges Jr and Erich L. Lehmann. Estimates of location based on rank tests.
The Annals of Mathematical Statistics, pages 598–611, 1963.

17 Donald B. Johnson and Samuel D. Kashdan. Lower Bounds for Selection in X + Y and
Other Multisets. J. ACM, 25(4):556–570, 1978. doi:10.1145/322092.322097.

18 Donald B. Johnson and Tetsuo Mizoguchi. Selecting the K-th element in X + Y and
X1 +X2 + . . .+Xm. SIAM J. Comput., 7(2):147–153, 1978. doi:10.1137/0207013.

19 Jeff Kahn and Jeong Han Kim. Entropy and Sorting. J. Comput. Syst. Sci., 51(3):390–399,
1995. doi:10.1006/jcss.1995.1077.

20 Jeff Kahn and Michael Saks. Balancing poset extensions. Order, 1(2):113–126, 1984. doi:
10.1007/BF00565647.

21 Daniel M. Kane, Shachar Lovett, and Shay Moran. Near-optimal linear decision trees
for k-SUM and related problems. In Proc. of 50th STOC, pages 554–563, 2018. doi:
10.1145/3188745.3188770.

22 Haim Kaplan, Robert Endre Tarjan, and Uri Zwick. Soft Heaps Simplified. SIAM Journal
on Computing, 42(4):1660–1673, 2013. doi:10.1137/120880185.

23 Bernard O. Koopman. The optimum distribution of effort. Journal of the Operations
Research Society of America, 1(2):52–63, 1953. doi:10.1287/opre.1.2.52.

24 Jean-Luc Lambert. Sorting the sums (xi +yj) in O(n2) comparisons. Theoretical Computer
Science, 103(1):137–141, 1992.

http://dx.doi.org/10.1007/978-3-642-10631-6_19
http://dx.doi.org/10.1007/978-3-642-10631-6_19
http://dx.doi.org/10.1007/s00493-013-2821-5
http://dx.doi.org/10.1145/355541.355562
http://dx.doi.org/10.1145/355541.355554
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
http://dx.doi.org/10.1137/S0097539795288611
http://dx.doi.org/10.1137/S0895480199353895
http://dx.doi.org/10.1137/S0097539795290477
http://dx.doi.org/10.1006/inco.1993.1030
http://dx.doi.org/10.1016/0022-0000(82)90048-4
http://dx.doi.org/10.1137/0213002
http://dx.doi.org/10.1137/0219013
http://dx.doi.org/10.1137/0219013
http://dx.doi.org/10.1016/0304-3975(76)90078-5
http://dx.doi.org/10.1145/322092.322097
http://dx.doi.org/10.1137/0207013
http://dx.doi.org/10.1006/jcss.1995.1077
http://dx.doi.org/10.1007/BF00565647
http://dx.doi.org/10.1007/BF00565647
http://dx.doi.org/10.1145/3188745.3188770
http://dx.doi.org/10.1145/3188745.3188770
http://dx.doi.org/10.1137/120880185
http://dx.doi.org/10.1287/opre.1.2.52

H. Kaplan, L. Kozma, O. Zamir, and U. Zwick 5:21

25 Seth Pettie and Vijaya Ramachandran. An optimal minimum spanning tree algorithm. J.
ACM, 49(1):16–34, 2002. doi:10.1145/505241.505243.

26 Arnold Schönhage, Mike Paterson, and Nicholas Pippenger. Finding the Median. J. Com-
put. Syst. Sci., 13(2):184–199, 1976. doi:10.1016/S0022-0000(76)80029-3.

27 William L. Steiger and Ileana Streinu. A Pseudo-Algorithmic Separation of Lines from
Pseudo-Lines. Inf. Process. Lett., 53(5):295–299, 1995. doi:10.1016/0020-0190(94)
00201-9.

28 J.W.J. Williams. Algorithm 232: Heapsort. cacm, 7:347–348, 1964.

SOSA 2019

http://dx.doi.org/10.1145/505241.505243
http://dx.doi.org/10.1016/S0022-0000(76)80029-3
http://dx.doi.org/10.1016/0020-0190(94)00201-9
http://dx.doi.org/10.1016/0020-0190(94)00201-9

Approximating Optimal Transport
With Linear Programs
Kent Quanrud1

University of Illinois, Urbana-Champaign, Illinois, USA
http://web.engr.illinois.edu/~quanrud2
quanrud2@illinois.edu

Abstract
In the regime of bounded transportation costs, additive approximations for the optimal transport
problem are reduced (rather simply) to relative approximations for positive linear programs,
resulting in faster additive approximation algorithms for optimal transport.

2012 ACM Subject Classification Theory of computation → Linear programming, Theory of
computation → Packing and covering problems, Theory of computation → Parallel algorithms

Keywords and phrases optimal transport, fast approximations, linear programming

Digital Object Identifier 10.4230/OASIcs.SOSA.2019.6

Acknowledgements We thank Jason Altschuler and Chandra Chekuri for insightful discussions
and helpful feedback.

1 Introduction

For ` ∈ N, let ∆` =
{
p ∈ R`

≥0 : ‖p‖1 = 1
}
denote the convex set of probability distributions

over [`]. In the (discrete) optimal transport problem, one is given two distributions
p ∈ ∆` and q ∈ ∆k and a nonnegative matrix of transportation costs C ∈ Rk×`

≥0 . The goal
is to

minimize
k∑

i=1

∑̀
j=1

CijXijpj over X ∈ Rk×`
≥0 s.t. Xp = q and Xt1 = 1. (T)

We let (T) denote both the above optimization problem and its optimal value. (T) can
be interpreted as the minimum cost of “transporting” a discrete distribution p to a target
distribution q, where the cost of moving probability mass from one coordinate to another is
given by C. (T) is sometimes called the earth mover distance between p and q, where one
imagines p and q as each dividing the same amount of sand into various piles, and the goal
is to rearrange the piles of sand of p into the piles of sand of q with minimum total effort.

Optimal transport (in much greater generality) is fundamental to applied mathematics
[15, 16]. Computing (or approximating) the optimal transport matrix and its cost has many
applications: we refer to recent work by Cuturi [8], Altschuler, Weed, and Rigollet [2] and
Dvurechensky, Gasnikov, and Kroshnin [9] for further (and up-to-date) references.

Optimal transport is a linear program (abbr. LP) and can be solved exactly by linear
program solvers. (T) can also be cast as a minimum cost flow problem, thereby solved
combinatorially. The fastest exact algorithm runs in Õ

(
k`
√
k + `

)
time via minimum cost

flow [11]. Here and throughout Õ(·) hides polylogarithmic terms in k, `.

1 Supported in part by NSF grant CCF-1526799.

© Kent Quanrud;
licensed under Creative Commons License CC-BY

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy Fineman and Michael Mitzenmacher; Article No. 6; pp. 6:1–6:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://web.engr.illinois.edu/~quanrud2
mailto:quanrud2@illinois.edu
https://doi.org/10.4230/OASIcs.SOSA.2019.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

6:2 Approximating Optimal Transport With Linear Programs

There is recent interest, sparked by Cuturi [8], in obtaining additive approximations to
(T) with running times that are nearly linear in the size of the cost matrix C. For δ > 0,
a matrix X is a δ-additive approximation if it is a feasible solution to (T) with cost at
most a δ additive factor more than the optimal transport cost (T). A “nearly linear” running
time is one whose dependence on k and ` is of the form O(k`polylog(k, `)); i.e., linear in the
input size up to polylogarithmic factors. Cuturi highlights applications in machine learning
with large, high-dimensional datasets, for which a faster approximation algorithm may be
preferable to a slower exact algorithm.

The first nearly linear time additive approximation was obtained recently by Altschuler
et al. [2]. Their result combines a reduction to matrix scaling observed by Cuturi and an
improved analysis for a classical matrix scaling algorithm due to Sinkhorn and Knopp [14] as
applied to this setting (see also [4]). The bound has a cubic dependency on ‖C‖∞/δ, where
‖C‖∞ = max

i,j
Cij is the maximum value of any coordinate in C and is considered a lower

order term. One factor of 1/δ can be removed by recent advances in matrix scaling [7] (per
Altschuler et al. [2]). A tighter analysis by Dvurechensky et al. [9] of the Sinkhorn-Knopp
approach decreases the dependency on ‖C‖∞/δ to the following.

I Theorem 1 ([9]). A δ-additive approximation to (T) can be computed in Õ
(
k`

(
‖C‖∞
δ

)2
)

time.

1.1 Results
The optimal transport cost can be approximated more efficiently as follows. Some of the
results are parametrized by the quantity 〈p, Cq〉 instead of ‖C‖∞. The quantity 〈p, Cq〉 is
the average cost coefficient as sampled from the product distribution p× q. Needless to say,
the average cost 〈p, Cq〉 is at most the maximum cost ‖C‖∞, and the relative difference may
be arbitrarily large.

I Theorem 2. One can compute a δ-additive approximate transportation matrix X from p

to q sequentially in either

1. Õ
(
k`

(
〈q, Cp〉
δ

)2
)

deterministic time or

2. Õ
(
k`
‖C‖∞
δ

)
randomized time;

or deterministically in parallel with

3. Õ
((
〈q, Cp〉
δ

)3
)

depth and Õ
(
k`

(
〈p, Cq〉
δ

)2
)

total work, or

4. Õ
((
‖C‖∞
δ

)2
)

depth and Õ
(
k`

(
‖C‖∞
δ

)2
)

total work.

The bounds are obtained rather simply by reducing to a variety of relative approximation
algorithms for certain types of LPs. The reductions can be summarized briefly as follows.

A simple but important observation is that the transportation cost from p to q is bounded
above by 〈q, Cp〉 (Lemma 3 below). Consequently, (1± ε)-multiplicative approximations to
the value of (T), for ε = δ/〈q, Cp〉, are δ-additive approximations as well.

K. Quanrud 6:3

The approximate LP solvers produce matrices X that certify the approximate value, but
do not meet the constraints of (T) exactly. In particular, the approximations X transport
(1− ε)-fraction of the mass, leaving ε-fraction behind. The remaining ε-fraction of probability
mass is then transported by a simple oblivious transportation scheme.

Here the algorithms diverge into two types, depending on how to model (T) as an LP.
The first approach takes (T) as is, which is a “positive LP”. Positive LPs are a subclass of
LPs where all coefficients and variables are nonnegative. Positive LPs can be approximated
faster than general LPs can be solved. Applied to (T), the approximation algorithms for
positive LPs produce what we call “(1− ε)-uniform transportation matrices”, which not
only transport all but an ε-fraction of the total mass, but transport all but an ε-fraction of
each coordinate of p, and fill all but an ε-fraction of each coordinate of q. It is shown that
(1− ε)-uniformly approximate transportation matrix can be altered into exact transportation
matrices with an additional cost of about ε〈q, Cp〉.

The second approach reformulates (T) as a “packing LP”. Packing LPs are a subclass of
positive LPs characterized by having only packing constraints. The advantage of packing
LPs is that they can be approximated slightly faster than the broader class of positive LPs.
However, the approximate transportation matrices X produced by the packing LP are not
uniformly approximate in the sense discussed above. Consequently, there is a larger cost of
about ε‖C‖∞ to extend X to an exact transportation matrix.

1.2 Additional background
There is a burgeoning literature on parametrized regimes of optimal transport. The many
parametrized settings are beyond the scope of this note, and we refer again to [2, 9] for
further discussion.

An important special case of the optimal transport problem (T) is where C is a metric
or, more generally, the shortest path metric of an undirected weighted graph. This setting
is equivalent to uncapacitated minimum cost flow. Let m denote the number of edges and
n the number of vertices of the underlying graph. Recently, Sherman [13] proved that a
(1 + ε)-multiplicative approximation to (T) can be obtained in Õ

(
m1+o(1)/ε2

)
time. This

translates to a δ-additive approximation in Õ
(
m1+o(1)(〈q, Cp〉/δ)2

)
time. Remarkably, if

the graph is sparse, then Õ
(
m1+o(1)

)
is much smaller than the explicit size of the shortest

path metric, n2 – let alone the time required to compute all pairs of shortest paths.
There are many applications where the cost matrix C is induced by some combinatorial

or geometric context and may be specified more sparsely than as O(k`) explicit coordinates.
It is well known that some of the LP solvers used below as a black box, as well as other
similar algorithms, can often be extended to handle such implicit matrices so long as one can
provide certain simple oracles (e.g., [10, 17, 12, 5, 6]).

The running time (2) of Theorem 2 was obtained independently by Blanchet, Jambulapati,
Kent, and Sidford [3], by a similar reduction to packing LPs. Blanchet et al. [3] also get the
running time (2) via matrix scaling, more in the spirit of the preceding works [8, 2, 9].

1.3 Organization
The rest of this note is organized as follows. Section 2 outlines a simple and crude approxi-
mation algorithm for (T), which is used to repair approximate transportation matrices, and
to upper bound (T). Section 3 applies positive LP solvers to approximate (T), and leads to

SOSA 2019

6:4 Approximating Optimal Transport With Linear Programs

the running times in Theorem 2 that depend on 〈q, Cp〉 and not ‖C‖∞. Section 4 applies
packing LP solvers to a reformulation of (T). This approach leads to the remaining running
times in Theorem 2 that all depend on ‖C‖∞.

2 Oblivious transport

The high-level idea is to use approximate LP solvers to transport most of p to q, and then
transport the remaining probability mass with a cruder approximation algorithm. The second
step always uses the following oblivious transportation scheme. The upper bound obtained
below also provides a frame of reference for comparing additive and relative approximation
factors, and is useful for bounding a binary search for the optimal value.

I Lemma 3. For a distribution q ∈ ∆k, consider the matrix X ∈ Rk×`
≥0 with each column set

to q; i.e., Xij = qi for all i, j. For any p ∈ ∆`, X is a transportation matrix from p to q,
with total cost 〈q, Cp〉.

Proof. Fix p ∈ ∆`. For any i ∈ [m],

〈ei, Xp〉 =
∑̀
j=1

Xijpj = qi

∑̀
j=1

pj
(1)= qi

since (1) p is a distribution. For any j ∈ [n], we have

〈1, Xej〉 =
k∑

i=1
Xij =

k∑
i=1

qi
(2)= 1.

since (2) q is a distribution. ThusX is a transportation matrix from q to p. The transportation
cost of X is

k∑
i=1

∑̀
j=1

CijXijpj =
k∑

i=1

∑̀
j=1

Cijqipj = 〈q, Cp〉,

as desired. J

3 Reduction to mixed packing and covering

Our first family of approximation algorithms, which obtain the bounds in Theorem 2 that
are relative to 〈q, Cp〉, observe that optimal transport lies in the following class of LPs. A
mixed packing and covering program is a problem of any of the forms

{find x, max 〈v, p〉, or min 〈v, p〉} over x ∈ Rn
≥0 s.t. Ax ≤ b and Cx ≥ d, (PC)

where A ∈ Rm1×n
≥0 , b ∈ Rm1

≥0 , C ∈ Rm2×n
≥0 , and d ∈ Rm2

≥0 , and v ∈ Rn
≥0 all have nonnegative

coefficients. We let N denote the total number of nonzeroes in the input. For ε > 0, an
ε-relative approximation to (PC) is either (a) a certificate that (PC) is either infeasible,
or (b) a nonnegative vector x ∈ Rn

≥0 such that Ax ≤ (1 + ε)b and Cx ≥ (1− ε)d and, when
there is a linear objective and the linear program is feasible, within a (1± ε)-multiplicative
factor of the optimal value. Relative approximations to positive LPs can be obtained with
nearly-linear dependence on N , and polynomial dependency on 1

ε
, as follows.

K. Quanrud 6:5

I Lemma 4 ([17]). Given an instance of (PC) and ε > 0, one can compute a ε-relative
approximation to (PC) in Õ

(
N/ε2

)
deterministic time.

I Lemma 5 ([12]). Given an instance of a mixed packing and covering problem (PC) and
ε > 0, one can compute a ε-relative approximation to (PC) deterministically in parallel in
Õ
(
1/ε3

)
depth and Õ

(
N/ε2

)
total work.

(T) is a minimization instance of mixed packing and covering that is always feasible.
The role of nonnegative variables is played by the coordinates of the transportation matrix
X ∈ Rn×n

≥0 , with costs pjCij for each Xij . The two equations Xp = q and Xt1 = 1 each
give rise to two sets of packing constraints, Xp ≤ q and Xt1 ≤ 1, and two sets of covering
constraints, Xp ≥ q and Xt1 ≥ 1. We have N = O(k`) nonzeroes, m = 2(k + `) packing
and convering constraints, and n = k` variables.

An ε-relative approximation to (PC) is not necessarily a feasible solution to (T). To help
characterize the difference, we define the following. For fixed ε > 0 and two distributions
p ∈ ∆` and q ∈ ∆k, a (1 − ε)-uniform transportation matrix from p to q is a nonnegative
matrix X ∈ Rk×`

≥0 with (1− ε)q ≤ Xp ≤ q and (1− ε)1 ≤ Xt1 ≤ 1.

I Lemma 6. Given an instance of the optimal transport problem (T) and ε > 0, a (1− ε)-
uniform transport matrix with cost at most (T) can be computed

1. sequentially in Õ
(
kl

ε2

)
time, and

2. in parallel in Õ
(

1
ε3

)
depth and Õ

(
kl

ε2

)
total work.

Proof. By either Lemma 4 or Lemma 5, one can compute an ε-approximation X to (T)
with the claimed efficiency. Then (1− ε)X is a (1− ε)2-uniform approximate transportation
matrix. J

I Lemma 7. Given a (1− ε)-uniform approximate transportation matrix X, one can compute
a transportation matrix U with cost at most an additive factor of 4ε〈q, Cp〉 more than the
cost of X, in linear time and work and with constant depth.

Proof. We first scale down X slightly to a (1− 2ε)-uniform transportation matrix, and then
augment the shrunken transportation matrix with the oblivious transportation scheme from
Lemma 3. Clearly this can be implemented in linear time and work and in constant depth.

Let Y =
(

1− ε

1− ε

)
X. Then Y is a (1−2ε)-uniform approximate transportation matrix

from p to q. Let p′ =
(
I − diag

(
St1
))
p and q′ = q − Sp. Since Y is (1 − 2ε)-uniform, we

have p′ ≤ 2εp and q′ ≤ 2εq. p′ represents the probability mass not yet transported by Y , and
q′ represents the probability mass not yet filled by Y , and we have

〈1, p′〉 = 〈1, q′〉.

Let α denote this common value. Then

α = 〈1, q′〉 = 1− 〈1, Y x〉 ≥ 1− 〈1, Xp〉+ ε

1− ε 〈1, Xp〉
(3)
≥ ε

because (3) X being (1− ε)-uniform implies 1− ε ≤ 〈Xp, 1〉 ≤ 1. Let Z be the matrix where
each column is q′/α; by Lemma 3, Z is a transportation matrix from p′/α to q′/α. Let
Z ′ = Z(I − diag

(
Y t1

)
). Then

(Y + Z ′)p = Y p+ Zp′ = Y x+ q′ = q,

SOSA 2019

6:6 Approximating Optimal Transport With Linear Programs

and

(Y + Z ′)t1 = Y t1 + (I − diag
(
Y t1

)
)Zt1 = Y t1 + (I − diag

(
Y t1

)
)1

= Y t1 + 1− Y t1 = 1,

so Y + Z ′ is a transportation matrix from p to q. The cost of Y is less than the cost of X,
and the cost of Z ′ is at most∑

i,j

CijZ
′
ijpj

(4)=
∑
i,j

CijZijp
′
j

(5)= 1
α

∑
i,j

Cijq
′
ip
′
j

= 1
α
〈q′, Cp′〉

(6)
≤ 4ε2

α
〈q, Cp〉

≤ 4ε〈q, Cp〉

by (4) definition of Z ′, (5) definition of Z, (6) p′ ≤ 2εp and q′ ≤ 2εq, and (7) α ≥ ε. J

I Theorem 8. One can deterministically compute a δ-additive approximation to (T)

1. sequentially in Õ
(
kl

(
〈x,Cy〉

δ

)2
)

time, and

2. in parallel in Õ
((
〈x,Cy〉

δ

)3
)

depth and Õ
(
kl

(
〈x,Cy〉

δ

)2
)

total work.

Proof. Given δ > 0, let ε = δ

4〈q, Cp〉 . We apply Lemma 6 to generate a (1− ε)-uniform

transportation matrix X of cost at most (T) within the desired time/depth bounds. We
then apply Lemma 7 to X to construct a transportation matrix U with cost at most
(T) + 4ε〈q, Cp〉 = (T) + δ, as desired. J

4 Reduction to packing

A (pure) packing LP is a linear program of the form

maximize 〈c, p〉 over x ∈ Rn
≥0 over Ax ≤ b, (P)

where A ∈ Rm×n
≥0 , b ∈ Rm

≥0, and c ∈ Rn
≥0. For a fixed instance of (P), we let N denote

the number of nonzeroes in A. For ε > 0, a (1 − ε)-relative approximation to (P) is a
point x ∈ Rn

≥0 such that Ax ≤ b and 〈c, x〉 is at least (1− ε) times the optimal value of (P).
(1− ε)-relative approximations packing LPs can be obtained slightly faster than ε-relative
approximations to more general positive linear programs, as follows.

I Lemma 9 ([1]). Given an instance of the pure packing problem (P), and ε > 0, a (1− ε)-
multiplicative approximation to (P) can be computed in Õ(N/ε) randomized time.

I Lemma 10 ([12]). Given an instance of the pure packing problem (P), and ε > 0, a
(1− ε)-multiplicative approximation to (P) can be computed deterministically in parallel in
Õ
(
1/ε2

)
depth and Õ

(
N/ε2

)
total work.

K. Quanrud 6:7

Consider the following LP reformulation of (T), that is parametrized by a value λ that
specifies a desired transportation cost.

max 〈1, Xp〉 over X ∈ Rk×`
≥0

s.t.
k∑

i=1
Xij ≤ 1 for all j,

∑̀
j=1

Xijpj ≤ qi for all i ∈ [m],

k∑
i=1

∑̀
j=1

CijXijpj ≤ λ.

(TP(λ))

The advantage of (TP(λ)) compared to (T) is that (TP(λ)) is a packing LP, which as observed
above can be solved slightly faster than a mixed packing and covering LP. The packing
problem (TP(λ)) has m = O(k + `) packing constraints, n = k` variables, and N = O(k`)
nonzeroes.

(1− ε)-approximations to (TP(λ)) are not feasible solutions to (T) even for λ = (T). To
help characterize the difference, we define the following. For fixed ε > 0 and two distributions
p ∈ ∆` and q ∈ ∆k, a (1 − ε)-transportation matrix from p to q is a nonnegative
matrix X ∈ Rk×`

≥0 with Xp ≤ q, Xt1 ≤ 1, and 〈1, Xp〉 ≥ 1− ε.

I Lemma 11. Consider an instance of the optimal transport problem (T), and let ε, δ > 0 be
fixed parameters with ε ≤ δ

〈p, Cq〉
. One can compute an (1− ε)-transportation matrix from p

to q with cost at most (T) + δ

1. sequentially in Õ
(
kl

ε

)
randomized time, and

2. in parallel in Õ
(

1
ε2

)
depth and Õ

(
kl

ε2

)
total work.

Proof. For fixed λ, either λ ≤ (T), or either (1− ε)-approximation algorithm from Lemma
9 or Lemma 10 returns (1− ε)-transportation matrices X from p to q with cost at most λ.
We wrap the (1− ε)-relative approximation algorithms in a binary search for the smallest
value, up to an additive factor of δ, that produces a (1− ε)-transportation matrix from p

to q. Since λ = (T) is sufficient, such a search returns a value of λ ≤ (T) + δ. By Lemma 3,
the search can be bounded to the range [0, 〈q, Cp〉]. Thus the binary search needs at most

O

(
log
(
〈q, Cp〉
δ

))
iterations to identify such a value λ, for which we obtain the desired

(1− ε)-transportation matrix. We can assume that 〈p, Cq〉
δ

is at most poly(k, `), since

otherwise (T) can be solved exactly in poly(k, `) ≤ 〈p, Cq〉
δ

≤ 1
ε
time. J

I Lemma 12. Let X be a (1− ε)-transportation matrix from p to q. In O(k`) time, one can
extend X to a transportation matrix U with an additional cost of ε‖C‖∞.

Proof. We use the oblivious transportation scheme of Lemma 3 to transport the remaining
ε-fraction of mass. It is straightforward to verify the additional transportation costs at most
ε‖C‖∞, as follows.

SOSA 2019

6:8 Approximating Optimal Transport With Linear Programs

Let p′ = (I − diag
(
Xt1

)
)p and q′ = q −Xp. p′ represents the probability mass not yet

transported by X, and q′ represents the probability mass not yet transported by Y . Let
α = 〈1, p′〉 = 〈1, q′〉 denote the residual probability mass. Since X is a (1− ε)-transportation
matrix, we have

α = 〈1, q′〉 = 1− 〈1, Xp〉 ≤ ε. (1)

Let Y be the matrix2 where each column is set to q′/α; by Lemma 3, Y is a transportation
matrix from p′/α to q′/α. Let Y ′ = Y (I − diag

(
Xt1

)
)p. By the same calculations as in the

proof of Lemma 7, X + Y ′ is a transportation matrix from q to p. The cost of Y ′ is∑
ij

CijY
′

ijpj
(7)= 1

α
〈q′, C ′p′〉

(8)
≤
‖q′‖1‖p′‖1

α
‖C ′‖∞ = α‖C ′‖∞

(9)
≤ ε‖C ′‖∞

by (8) the proof of Lemma 7, (9) Cauchy-Schwartz, and (10) the above inequality (1). J

I Theorem 13. One can compute a δ-additive approximation to (T)

1. sequentially in Õ
(
k`
‖C‖∞
δ

)
randomized time, and

2. in parallel with Õ
((
‖C‖∞
δ

)2
)

depth and Õ
(
k`

(
‖C‖∞
δ

)2
)

total work.

Proof. Let δ > 0 be fixed. Let ε = δ

2‖C‖∞
. By Lemma 11, we can compute a (1− ε)-

transportation matrix X with cost at most (T) + δ

2 . By Lemma 12, we can extend X to a

transportation matrix U with additional cost of at most ε‖C‖∞ = δ

2 , for a total cost at most
(T) + δ. J

References
1 Zeyuan Allen Zhu and Lorenzo Orecchia. Nearly-Linear Time Positive LP Solver with

Faster Convergence Rate. In Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 229–
236, 2015.

2 Jason Altschuler, Jonathan Weed, and Philippe Rigollet. Near-linear time approximation
algorithms for optimal transport via Sinkhorn iteration. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
4-9 December 2017, Long Beach, CA, USA, pages 1961–1971, 2017.

3 Jose Blanchet, Arun Jambulapati, Carson Kent, and Aaron Sidford. Towards Optimal
Running Times for Optimal Transport. CoRR, abs/1810.07717, 2018. arXiv:1810.07717.

4 Deeparnab Chakrabarty and Sanjeev Khanna. Better and Simpler Error Analysis of the
Sinkhorn-Knopp Algorithm for Matrix Scaling. In 1st Symposium on Simplicity in Algo-
rithms, SOSA 2018, January 7-10, 2018, New Orleans, LA, USA, pages 4:1–4:11, 2018.

5 Chandra Chekuri and Kent Quanrud. Near-Linear Time Approximation Schemes for some
Implicit Fractional Packing Problems. In Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira,
January 16-19, pages 801–820, 2017.

2 In fact, any transportation matrix from p′ to q′ will do.

http://arxiv.org/abs/1810.07717

K. Quanrud 6:9

6 Chandra Chekuri and Kent Quanrud. Randomized MWU for Positive LPs. In Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018,
New Orleans, LA, USA, January 7-10, 2018, pages 358–377, 2018.

7 Michael B. Cohen, Aleksander Madry, Dimitris Tsipras, and Adrian Vladu. Matrix Scaling
and Balancing via Box Constrained Newton’s Method and Interior Point Methods. In 58th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA,
USA, October 15-17, 2017, pages 902–913, 2017.

8 Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In
Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural
Information Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013,
Lake Tahoe, Nevada, United States., pages 2292–2300, 2013.

9 Pavel Dvurechensky, Alexander Gasnikov, and Alexey Kroshnin. Computational Optimal
Transport: Complexity by Accelerated Gradient Descent Is Better Than by Sinkhorn’s
Algorithm. In Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pages 1366–1375,
2018.

10 Christos Koufogiannakis and Neal E. Young. A Nearly Linear-Time PTAS for Explicit
Fractional Packing and Covering Linear Programs. Algorithmica, 70(4):648–674, 2014. Pre-
liminary version in FOCS 2007.

11 Yin Tat Lee and Aaron Sidford. Path Finding Methods for Linear Programming: Solving
Linear Programs in Õ(

√
rank) Iterations and Faster Algorithms for Maximum Flow. In 55th

IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia,
PA, USA, October 18-21, 2014, pages 424–433, 2014.

12 Michael W. Mahoney, Satish Rao, Di Wang, and Peng Zhang. Approximating the Solution
to Mixed Packing and Covering LPs in Parallel Õ(ε−3) time. In 43rd International Collo-
quium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome,
Italy, pages 52:1–52:14, 2016.

13 Jonah Sherman. Generalized Preconditioning and Undirected Minimum-Cost Flow. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 772–780, 2017.

14 Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly stochastic
matrices. Pacific Journal of Mathematics, 21(2):343–348, 1967.

15 Cédric Villani. Topics in Optimal Transportation, volume 58 of Graduate Studies in Math-
ematics. American Mathematical Society, 2003.

16 Cédric Villani. Optimal transport: old and new, volume 338 of Grundlehren der mathema-
tischen Wissenschaften. Springer, Berlin, Heidelberg, 2009.

17 Neal E. Young. Nearly Linear-Time Approximation Schemes for Mixed Packing/Covering
and Facility-Location Linear Programs. CoRR, abs/1407.3015, 2014. arXiv:1407.3015.

SOSA 2019

http://arxiv.org/abs/1407.3015

LP Relaxation and Tree Packing for
Minimum k-cuts
Chandra Chekuri
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL
11786, USA
chekuri@illinois.edu

Kent Quanrud
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL
11786, USA
quanrud2@illinois.edu

Chao Xu1

Yahoo! Research, New York, NY 10003, USA
chao.xu@oath.com

https://orcid.org/0000-0003-4417-3299

Abstract
Karger used spanning tree packings [14] to derive a near linear-time randomized algorithm for the
global minimum cut problem as well as a bound on the number of approximate minimum cuts.
This is a different approach from his well-known random contraction algorithm [13, 15]. Thorup
developed a fast deterministic algorithm for the minimum k-cut problem via greedy recursive
tree packings [29].

In this paper we revisit properties of an LP relaxation for k-cut proposed by Naor and
Rabani [21], and analyzed in [3]. We show that the dual of the LP yields a tree packing, that
when combined with an upper bound on the integrality gap for the LP, easily and transparently
extends Karger’s analysis for mincut to the k-cut problem. In addition to the simplicity of the
algorithm and its analysis, this allows us to improve the running time of Thorup’s algorithm by a
factor of n. We also improve the bound on the number of α-approximate k-cuts. Second, we give
a simple proof that the integrality gap of the LP is 2(1− 1/n). Third, we show that an optimum
solution to the LP relaxation, for all values of k, is fully determined by the principal sequence
of partitions of the input graph. This allows us to relate the LP relaxation to the Lagrangean
relaxation approach of Barahona [2] and Ravi and Sinha [24]; it also shows that the idealized
recursive tree packing considered by Thorup gives an optimum dual solution to the LP. This
work arose from an effort to understand and simplify the results of Thorup [29].

2012 ACM Subject Classification Theory of computation → Discrete optimization

Keywords and phrases k-cut, LP relaxation, tree packing

Digital Object Identifier 10.4230/OASIcs.SOSA.2019.7

Funding Work on this paper supported in part by NSF grant CCF-1526799.

1 This work was done while the author was at University of Illinois at Urbana-Champaign.

© Chandra Chekuri, Kent Quanrud, and Chao Xu;
licensed under Creative Commons License CC-BY

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy Fineman and Michael Mitzenmacher; Article No. 7; pp. 7:1–7:18

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chekuri@illinois.edu
mailto:quanrud2@illinois.edu
mailto:chao.xu@oath.com
https://orcid.org/0000-0003-4417-3299
https://doi.org/10.4230/OASIcs.SOSA.2019.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

7:2 LP Relaxation and Tree Packing for Minimum k-cuts

1 Introduction

The global minimum cut problem in graphs (MinCut) is well-known and extensively studied.
Given an undirected graph G = (V,E) with non-negative edge capacities c : E → R+, the
goal is to remove a minimum capacity set of edges such that the residual graph has at
least two connected components. When all capacities are one, the mincut of a graph is its
global edge-connectivity. The k-Cut problem is a natural generalization. Given a graph
G = (V,E) and an integer k ≥ 2, the goal is to remove a minimum capacity set of edges such
that the residual graph has at least k connected components. MinCut and k-Cut have
been extensively studied in the literature. Initial algorithms for MinCut were based on a
reduction to the s-t-mincut problem. However, it was realized later on that it can be solved
more efficiently and directly. Currently the best deterministic algorithm for MinCut runs in
O(mn+ n2 logn) time [27] and is based on the maximum adjacency ordering approach of
Nagamochi and Ibaraki [19]. On the other hand, there is a near-linear time Monte Carlo
randomized algorithm due to Karger [14]. Bridging the gap between the running times
for the deterministic and randomized algorithms is a major open problem. In recent work
[16, 12] obtained near-linear time deterministic algorithms for simple unweighted graphs.

The k-Cut problem is NP-Hard if k is part of the input [10], however, there is a polynomial-
time algorithm for any fixed k. Such an algorithm was first devised by Goldschmidt and
Hochbaum [10], and subsequently there have been several different algorithms improving
the run-time. The randomized algorithm of Karger and Stein [15] runs in Õ(n2(k−1)) time
and outputs the optimum cut with high probability. The fastest deterministic algorithm,
due to Thorup [29], runs in Õ(mn2k−2) time [29]. Recent work of Gupta, Lee and Li [11]
obtains a faster run-time of Õ(kO(k)n(2ω/3+o(1))k) if the graph has small integer weights,
where ω is the exponent in the run-time of matrix multiplication. It is also known that
k-Cut is W [1]-hard when parameterized by k [6]; that is, we do not expect an algorithm
with a run-time of f(k)nO(1). Several algorithms that yield a 2-approximation are known
for k-Cut; Saran and Vazirani’s algorithm based on repeated minimum-cut computations
gives (2− 2/k)-approximation [25]; the same bound can be achieved by removing the (k − 1)
smallest weight edges in a Gomory-Hu tree of the graph [25]. Nagamochi and Kamidoi
showed that using the concept of extreme sets, a (2− 2/k)-approximation can be found even
faster [20]. Naor and Rabani developed an LP relaxation for k-Cut [21] and this yields a
2(1−1/n)-approximation [3]. Ravi and Sinha [24] obtained another 2(1−1/n)-approximation
via a Lagrangean relaxation approach which was also considered independently by Barahona
[2]. A factor of 2, for large k, is the best possible approximation under the Small Set
Expansion hypothesis [18]. Recent work has obtained a 1.81 approximation in 2O(k2)nO(1)

time [11]; whether a PTAS can be obtained in f(k)poly(n) time is an interesting open
problem.

Motivation and contributions: The main motivation for this work was to simplify and
understand Thorup’s tree packing based algorithm for k-Cut. Karger’s near-linear time
algorithm and analysis for the MinCut problem [14] is based on the well-known theorem
of Tutte and Nash-Williams (on the minmax relation for edge-disjoint trees in a graph).
It is simple and elegant; the main complexity is in the improved running time which is
achieved via a complex dynamic program. Karger also tightened the bound on the number
of α-approximate minimum cuts in a graph (originally shown via his random contraction
algorithm) via tree packings. In contrast to the case of mincut, the main structural result in
Thorup’s work on k-Cut is much less easy to understand and motivate. His proof consists

C. Chekuri, K. Quanrud, and C. Xu 7:3

of two parts. He shows that an ideal tree packing obtained via a recursive decomposition of
the graph, first outlined in [28], has the property that any optimum k-cut crosses some tree
in the packing at most 2k− 2 times. The second part argues that a greedy tree packing with
sufficiently many trees approximates the ideal tree packing arbitrarily well. The greedy tree
packing is closely related to a multiplicative weight update method for solving a basic tree
packing linear program, however, no explicit LP is used in Thorup’s analysis. Thus, although
Thorup’s algorithm is very simple to describe (and implement), the analysis is somewhat
opaque.

In this paper we make several contributions which connect Thorup’s tree packing to the
LP relaxation for k-Cut [21]. We outline the specific contributions below.

We show that the dual of the LP for k-Cut gives a tree packing and one can use a simple
analysis, very similar to that of Karger, to show that any optimum k-cut crosses some
tree in the packing at most (2k − 3) times. Thorup proved a bound of (2k − 2) for his
tree packing. This leads to a slightly faster algorithm than that of Thorup and also to an
improved bound on the number of approximate k-cuts.
We give a new and simple proof that the integrality gap of the LP for k-cut is upper
bounded by 2(1 − 1/n). We note that the proof claimed in [21] was incorrect and the
proof in [3] is indirect and technical.
We show that the optimum solution of the k-cut LP, for all values of k, can be completely
characterized by the principal sequence of partitions of the cut function of the given
graph. This establishes the connection between the dual of the LP relaxation and the
ideal recursive tree packing considered by Thorup. It also shows that the lower bound
provided by the LP relaxation is equivalent to the Lagrangean relaxation lower bound
considered by Barahona [2] and Ravi and Sinha [24].

Our results help unify and simplify the different approaches to k-cut via the LP relaxation
and its dual. A key motivation for this paper is to simplify and improve the understanding
of the tree packing approach. For this reason we take a leisurely path and reprove some of
Karger’s results for the sake of completeness, and to point out the similarity of our argument
for k-Cut to the case of MinCut. Readers familiar with [14] may wish to skip Section 3.

Organization: Section 2 sets up some basic notation and definitions. Section 3 discusses
Karger’s approach for MinCut via tree packings with some connections to recent develop-
ments on approximately solving tree packings. Section 4 describes the tree packing obtained
from the dual of the LP relaxation for k-Cut and how it can be used to extend Karger’s
approach to k-Cut. Section 5 gives a new proof that the LP integrality gap for k-Cut is
2(1− 1/n). In Section 6 we show that the optimum LP solution for all values of k can be
characterized by a recursive decomposition of the input graph.

2 Preliminaries

We use n and m to denote the number of nodes and edges in a given graph. For a graph
G = (V,E), let T (G) denote the set of spanning trees of G. For a graph G = (V,E) with
edge capacities c : E → R+ the fractional spanning tree packing number, denoted by τ(G),
is the optimum value of a simple linear program shown in Figure 1 whose variables are
yT , T ∈ T (G). The LP has an exponential number of variables but is still polynomial time
solvable. There are several ways to see this and efficient strongly combinatorial algorithms
are also known [8]. We also observe that there is an optimum solution to the LP whose
support has at most m trees since the number of non-trivial constraints in the LP is at most
m (one per each edge).

SOSA 2019

7:4 LP Relaxation and Tree Packing for Minimum k-cuts

max
∑

T∈T (G)

yT

∑
T3e

yT ≤ c(e) e ∈ E

yT ≥ 0 T ∈ T (G)

Figure 1 LP relaxation defining τ(G).

There is a min-max formula for τ(G) which is a special case of the min-max formula for
matroid base packing due to Tutte and Nash-Williams. To state this theorem we introduce
some notation. For a partition P of the vertex set V let E(P) denote the set of edges that
cross the partition (that is, have end points in two different parts) and let |P| denote the
number of parts of P. A k-cut is E(P) for some partition P such that |P| ≥ k. A cut is a
2-cut. The value of the minimum cut of G is denoted as λ(G). It is not hard to see that for
any partition P of the vertex set V , τ(G) ≤ c(E(P))

|P|−1 since every spanning tree of G contains
at least |P| − 1 edges from E(P). The minimum over all partitions of the quantity, c(E(P))

|P|−1 ,
is also referred to as the strength of G (denoted by σ(G)), and turns out to be equal to τ(G).

I Theorem 1 (Tutte and Nash-Williams). For any undirected edge capacitated graph G,

τ(G) = min
P

c(E(P))
|P| − 1 .

Tutte and Nash-Williams proved the integer packing version of the preceding theorem
which is harder; they showed that the maximum number of edge-disjoint spanning trees in a
graph G with integer capacities c is give by minPb c(E(P))

|P|−1 c. The theorem is in fact a special
case of matroid base packing theorem and can also be derived via the matroid union theorem
of Edmonds; we refer the reader to [26].

A useful and well-known corollary of the preceding theorem is given below.

I Corollary 2. For any graph G, τ(G) ≥ n
2(n−1) · λ(G). If G is an unweighted graph then

τ(G) ≥ λ(G)+1
2 .

Proof. Consider the partition P∗ that achieves the minimum in the minmax formula. We
have c(E(P)) ≥ |P∗|λ(G)/2 since the capacity of edges leaving each part of P∗ is at least
λ(G) and an edge in E(P∗) crosses exactly two parts. Thus,

τ(G) = c(E(P∗))
|P∗| − 1 ≥

|P∗|λ(G)
2(|P∗| − 1) ≥

n

2(n− 1)λ(G)

since |P∗| ≤ n. If G is unweighted graph then |P| ≤ λ(G) + 1 and hence τ(G) ≥ λ(G)+1
2 as

desired. J

We say that a tree packing y : T (G) → R+ is (1 − ε)-approximate if
∑
T∈T (G) yT ≥

(1− ε)τ(G). Note that we typically want a compact tree packing that can either be explicitly
specified via a small number of trees or even implicitly via a data structure representing
a collection of trees. Approximate spanning tree packings have been obtained via greedy
spanning tree packings which can be viewed as applying the multiplicative weight update
method. Recently [4] obtained the following result.

C. Chekuri, K. Quanrud, and C. Xu 7:5

I Theorem 3 ([4]). There is a deterministic algorithm that, given an edge-capacitated
undirected graph on m edges and an ε ∈ (0, 1/2), runs in O(m log3 n/ε2) time and outputs
an implicit representation of a (1− ε)-approximate tree packing.

3 Tree packings and minimum cuts

We review some of Karger’s observations and results connecting tree packings and minimum
cuts [14] which follow relatively easily via Corollary 2. In this section, we restrict the
definition of a cut to an edge set E(P) for a partition P = {S, V \ S} with exactly two parts.
Hence, we use δ(S) to uniquely identify a cut. However, as one can see later in section 4,
the results will also hold for the more general definition of a cut, where P have at least two
parts. We rephrase his results and arguments with a slightly different notation. Given a
spanning tree T and a cut A ⊆ E, following Karger, we say that T h-respects A for some
integer h ≥ 1 if |E(T) ∩A| ≤ h.

Karger proved that a constant fraction of trees (in the weighted sense) of an optimum
packing 2-respect any fixed mincut. In fact this holds for a (1− ε)-approximate tree packing
for sufficiently small ε. The proof, as follows, is an easy consequence of Corollary 2 and an
averaging argument. It is convenient to view a tree packing as a probability distribution. Let
pT = yT /τ(G). We then have

∑
T pT = 1 for an exact tree packing and for a (1− ε)-packing

we have
∑
T pT ∈ (1− ε, 1]. Let δ(S) be a fixed minimum cut whose capacity is λ(G). Let

`T = |E(T) ∩ δ(S)| be the number of edges of T that cross S. Let q =
∑
T :`T≤2 pT be the

fraction of trees that 2-respect δ(S). Since each tree crosses S at least once we have,∑
T

pT `T =
∑

T :`T≤2
pT `T +

∑
T :`T≥3

pT `T ≥ q + 3(1− ε− q).

Because y is a valid packing,

τ(G)
∑
T

pT `T =
∑
T

yT `T ≤ c(δ(S)) = λ(G).

Putting the two inequalities together and using Corollary 2,

3(1− ε)− 2q ≤ λ(G)/τ(G) ≤ 2(n− 1)/n

which implies that

q ≥ 3
2(1− ε)− (1− 1/n) = 1

2 + 1
n
− 3ε

2 .

If ε = 0 this implies that at least half the fraction of trees 2-respect any minimum cut.
Let q′ be the fraction of trees that 1-respect a minimum cut. One can do similar calculations
as above to conclude that

q′ ≥ 2(1− ε)− 2(1− 1/n) ≥ 2(1
n
− ε).

Thus, q′ > 0 as long as ε < 1/n. In an optimum packing there is always a tree in the support
that 1-respects a mincut. The preceding argument can be generalized in a direct fashion to
yield the following useful lemma on α-approximate cuts.

I Lemma 4. Let y be a (1 − ε)-approximate tree packing. Let δ(S) be an α-approximate
minimum cut (i.e., c(δ(S)) ≤ αλ(G)) for some fixed α ≥ 1. For a fixed integer h ≥ 1, let qh
denote the fraction of trees in the packing y that h-respect δ(S). Then

qh ≥ (1− ε)
(

1 + 1
h

)
− 2α

h

(
1− 1

n
.

)

SOSA 2019

7:6 LP Relaxation and Tree Packing for Minimum k-cuts

3.1 Number of approximate minimum cuts
Karger showed that the number of α-approximate minimum cuts is at most O(n2α) via his
random contraction algorithm [13]. He improved the bound to O(nb2αc) (for any fixed α)
via tree packings in [14]. We review the latter argument.

For any cut δ(S), we associate the subset of edges of T that cross S, E(T) ∩ δ(S). In
the other direction, removing a set of edges A ⊆ E(T) induces several components in T −A,
which induces a unique cut in G where any two components of T −A adjacent in T lie on
opposite sides of the cut. This gives a bijection between cuts induced by edge removals in T ,
and cuts in the graph.

Fix α > 1, and let h = b2αc. Let y be a fixed optimum tree packing supported by some
m′ ≤ m trees. For any α-approximate mincut δ(S), by Lemma 4 and some simplification,
the fraction of trees in the packing y that h-respects δ(S) is at least

qh,α ≡
1
b2αc (1− (2α− b2αc)(1− 1/n)) .

Observing that qh,α > 0, an easy counting argument for approximate mincuts is the
following. For each α-approximate mincut, there is at least one tree in the (support of the)
packing y which crosses it at most h times. Hence each α-approximate cut can be mapped
to a distinct combination of a tree in the packing and at most h edges from that tree. The
total number of these combinations is m′

(
n−1
h

)
= O(mnh).

We can avoid the factor of m by leveraging the fact that qh,α is a constant for every
fixed α. We give an informal argument here. A tree can h-respect at most hh

(
n−1
h

)
distinct

cuts, while each α-approximate minimum cut is h-respected by a (constant) qh,α-fraction of
the tree packing. It follows by a packing argument that the total number of α-approximate
mincuts is at most

hh
(
n−1
h

)
qh,α

= O
(
nh
)
.

3.2 Algorithm for minimum cut via tree packings
Karger used tree packings to obtain a randomized near linear time algorithm for the global
minimum cut. The algorithm is based on combining the following two steps.

Given a graph G there is a randomized algorithm that outputs O(logn) trees in Õ(m)
time such that with high probability there is a global minimum cut that 2-respects one
of the trees in the packing.
There is a deterministic algorithm that given a graph G and a spanning tree T , in Õ(m)
time finds the cut of minimum capacity in G that 2-respects T . This is based on a clever
dynamic programming algorithm that utilizes dynamic tree data structures.

Only the first step of the algorithm is randomized. Karger solves the first step as
follows. Given a capacitated graph G and an ε > 0, he sparsifies the graph G to obtain an
unweighted skeleton graph H via random sampling such that (i) H has O(n logn/ε2) edges
(ii) λ(H) = Θ(logn/ε2) and (iii) a minimum cut of G corresponds to a (1 + ε)-approximate
minimum cut of H in that the cuts induce the same vertex partition. Karger then uses
greedy tree packing in H to obtain a (1− ε′)-tree packing in H with O(logn/ε′2) trees, and
via Corollary 2 argues that one of the trees in the packing 2-respects a mincut of G; here ε
and ε′ are chosen to be sufficiently small but fixed constants.

C. Chekuri, K. Quanrud, and C. Xu 7:7

We observe that Theorem 3 can be used in place of the sparsification step of Karger.
The deterministic algorithm implied by the theorem can be used to find an implicit (1− ε)-
approximate tree packing in near linear time for any fixed ε > 0. For sufficiently small but
fixed ε, a constant fraction of the trees in the tree packing 2-respect any fixed minimum cut.
Thus, if we sample a tree T from the tree packing, and then apply Karger’s deterministic
algorithm for finding the smallest cut that 2-respects T , we can find a minimum cut with
constant probability. We can repeat the sampling Θ(logn) times to obtain a high probability
bound.

Karger raised the following question in his paper. Can the dynamic programming
algorithm for finding the minimum cut that 2-respects a tree be made dynamic? That is,
suppose T is altered via edge swaps to yield a tree T ′ = T −e+e′ where e ∈ E(T) is removed
and replaced by a new edge e′. Can the solution for T be updated quickly to obtain a solution
for T ′? Note that G is static, only the tree is changing. The tree packing from Theorem 3
finds an implicit packing via Õ(m) edge swap operations from a starting tree T0. Suppose
there is a dynamic version of Karger’s dynamic program that handles updates to the tree in
amortized g(n) time per update. This would yield a deterministic algorithm for the global
mincut with a total time of Õ(mg(n)). We note that the best deterministic algorithm for
capacitated graphs is O(mn+ n2 logn) [27]. This would be improved be any g(n) = o(n).

4 Tree packings for k-cut via the LP relaxation

In this section we consider the k-Cut problem. Thorup [28] constructed a probability
distribution over spanning trees which were obtained via a recursive greedy tree packing
and showed that there is a tree T in the support of the distribution such that a minimum
weight k-cut contains at most 2(k − 1) edges of T . He then showed that greedy tree packing
with O(mk3 logn) trees closely approximates the ideal distribution. With this approach, he
derived the currently fastest known deterministic algorithm to find the minimum k-Cut in
Õ(mn2k−2) time. This is only slightly slower than the randomized Monte Carlo algorithm of
Karger and Stein [15] whose algorithm runs in Õ(n2k−2) time. Thorup’s algorithm is fairly
simple. However, the proofs are somewhat complex since they rely on the recursive tree
packing and its subtle properties. Arguing that the greedy tree packing approximates the
recursive tree packing is also technical.

Here we consider a different tree packing for k-Cut that arises from the LP relaxation
for k-Cut considered by Naor and Rabani [21]. This LP relaxation is shown in Figure 2.
The variables are xe ∈ [0, 1], e ∈ E which indicate whether an edge e is cut or not. There is
a constraint for each spanning tree T ∈ T (G); at least k − 1 edges from T need to be chosen
in a valid k-cut. We note that for k > 2 the upper bound constraint xe ≤ 1 is necessary.

The dual of the LP is given in Figure 3. Naor and Rabani claimed an integrality gap of 2
for the k-Cut LP. Their proof was incomplete and a correct proof was given in [3] in the
context of a more general problem called the Steiner k-Cut problem. Let λk(G) denote the
minimum k-cut capacity in G.

I Theorem 5 ([3]). The worst case integrality gap of the LP for k-Cut in Figure 2 is
2(1− 1/n).

I Corollary 6. Let (y, z) be an optimum solution for the dual LP for k-Cut shown in
Figure 3. Then

(k − 1)
∑
T

yT ≥
nλk(G)
2(n− 1) + z(E).

SOSA 2019

7:8 LP Relaxation and Tree Packing for Minimum k-cuts

min
∑
e∈E)

cexe

s.t.
∑
e∈T

xe ≥ k − 1 for all T ∈ T (G)

xe ≤ 1 for all e ∈ E
xe ≥ 0 for all e ∈ E

Figure 2 An LP relaxation for the k-Cut problem from [21].

max (k − 1)
∑

T∈T (G)

yT −
∑
e∈E

ze

s.t.
∑
T3e

yT ≤ ce + ze for all e ∈ E

yT ≥ 0 for all T ∈ T (G)

Figure 3 Dual of the LP relaxation from Figure 2.

Note that Corollary 2 is a special case of the preceding corollary.
I Remark. We note that the LP relaxation in Figure 2 assumes that G is connected. This
is easy to ensure by adding dummy edges of zero cost to make G connected. However, it
is useful to consider the general case when the number of connected components in G is h
where we assume for simplicity that h < k (if h ≥ k the problem is trivial). In this case
we need to consider the maximal forests in G, each of which has exactly n − h edges; to
avoid notational overload we use T (G) to denote the set of maximal forests of G. The LP
constraint now changes to∑

e∈T
xe ≥ k − h T ∈ T (G).

Tree packing interpretation of the dual LP: The dual LP has two types of variables.
For each edge e there is a variable ze and for each spanning tree T there is a variable yT .
The dual seeks to add capacity z : E → R+ to the original capacities c, and then find a
maximum tree packing y : T (G)→ R+ within the augmented capacities c+ z. The objective
is (k − 1)

∑
T yT −

∑
e∈E ze. Note that for k = 2, there is an optimum solution with z = 0;

this can be seen by the fact that for k = 2 the primal LP can omit the constraints xe ≤ 1
for e ∈ E. For k > 2 it may be advantageous to add capacity to some bottleneck edges (say
from a minimum cut) to increase the tree packing value, which is multiplied by (k − 1).

Our goal is to show that one can transparently carry over the arguments for global
minimum cut via tree packings to the k-Cut setting via (optimum) solutions y, z to the dual
LP. Theorem 5 plays the role of Corollary 2. The key lemma below is analogous to Lemma 4.

I Lemma 7. Let y, z be an optimum solution to the dual LP for k-Cut shown in Figure 3.
Let E′ ⊆ E be any subset of edges such that c(E′) ≤ αλk(G) for some α ≥ 1. For each

C. Chekuri, K. Quanrud, and C. Xu 7:9

tree T , let `T = |E′ ∩ E(T)| denote the number of edges in both T and E′. For an integer
h ≥ (k − 1), let qh =

∑
T :`T≤h pT denote the fraction of the trees in the packing induced by

y, z that contain at most h edges from E′. Then

qh ≥ 1−
2α(k − 1)(1− 1

n)
h+ 1 .

Proof. Let τk(G) denote
∑
T yT and let pT = yT /τk(G). Thus,∑

T

pT `T =
∑

T :`T≤h

pT `T +
∑

T :`T≥(h+1)

pT `T ≥ (h+ 1)(1− qh).

Because y is a valid tree packing in capacities c+ z,

τk(G)
∑
T

pT `T =
∑
T

yT `T ≤ c(E′) + z(E′) ≤ αλk(G) + z(E′) ≤ α(λk(G) + z(E)).

In the second to last inequality uses the fact that α ≥ 1 and z ≥ 0. Putting the preceding
inequalities together, we have

(h+ 1)(1− qh) ≤ 1
τk(G)α(λk(G) + z(E)).

We rearrange and simplify the inequality in Corollary 6 as

2
(

1− 1
n

)
(k − 1)

∑
T

yT ≥ λk(G) + 2(1− 1/n)z(E) ≥ λk(G) + z(E).

Plugging this inequality into the preceding one yields

(h+ 1)(1− qh) ≤ 2α(k − 1)(1− 1/n),

which implies that

qh ≥ 1−
2α(k − 1)(1− 1

n)
h+ 1 . J

I Remark. Lemma 7 does not require A to be a k-cut. Ultimately we will only apply Lemma 7
to k-cuts.
I Corollary 8. Let (y, z) be an optimum solution to the dual LP. For every optimum k-cut
A ⊆ E there is a tree T in the support of y such that |E(T) ∩A| ≤ 2k − 3.
Proof. We apply Lemma 7 with h = 2k − 3 and α = 1 and observe that qh > 0, which
implies the desired statement. J

I Corollary 9. Let (y, z) be a (1−ε)-approximate solution to the dual LP where ε < 1
2k−1 . For

every optimum k-cut A ⊆ E there is a tree T in the support of y such that |E(T)∩A| ≤ 2k−2.
Proof. Let qh be defined as in Lemma 7. If (y, z) is a (1− ε)-approximate solution to the
dual LP, we would have

(k − 1)
∑
T

yT ≥ (1− ε) nλk(G)
2(n− 1) + z(E) ≥ (1− ε)λk(G)

2 + z(E) (1)

in place of Corollary 6.
Examining the proof of Lemma 7, we see that optimality of (y, z) is not used in the proof

except when invoking Corollary 6. Repeating the proof of Lemma 7, except using (1) instead
of Corollary 6 and setting α = 1, we obtain the bound

qh ≥ 1− 2(k − 1)
(h+ 1)(1− ε) .

We observe that qh > 0 for h = 2k − 2 and ε < 1
2k−1 . J

SOSA 2019

7:10 LP Relaxation and Tree Packing for Minimum k-cuts

4.1 Number of approximate k-cuts
We now prove the following theorem.

I Theorem 10. Let G = (V,E) be an undirected edge-weighted graph and let k be a fixed
integer. For α ≥ 1, the number of cuts with weight ≤ αλk(G) is O

(
nb2α(k−1)c).

Proof. Let h = b2α(k − 1)c. By Lemma 7, there is a fixed value

qh = 1−
2α(k − 1)

(
1− 1

n

)
h+ 1 > 0

such that for any cut A with total weight ≤ αλk(G), then at least a qh-weighted fraction of
trees in the tree packing y contains at most h edges of A.

For a given tree T , consider the number of distinct cuts that contain h or fewer edges in T .
There are at most nh subsets of the tree’s edges of size at most h, and each selection induces
f(h) partitions of the components ≤ h+ 1 into at least 2 parts for some f(h) < hh. Thus
there are at most f(h)nh cuts containing h or fewer edges from T for some fixed function f .

If there are (strictly) more than f(h)nh/qh distinct cuts with weight at most αλk(G),
then by the pigeonhole principle there exists a tree T in the packing that induces strictly
more than f(h)nh different cuts with h or fewer edges – a contradiction. J

Like Lemma 7, Theorem 10 is not restricted to k-cuts. The primary application of
Theorem 10 is to count the number of approximate minimum k-cuts, as follows.

I Corollary 11. Let G = (V,E) be an undirected edge-weighted graph and let k be a fixed
integer. For α ≥ 1, the number of α-approximate minimum k-cuts is O(nb2α(k−1)c).

4.2 Enumerating all minimum k-cuts
We briefly describe how to enumerate all k-cuts via Lemma 7. The argument is basically
the same as that of Karger and Thorup. First, we compute an optimum solution (y∗, z∗)
to the dual LP. We can do this via the Ellipsoid method or other ways. Let β(n,m) be
the running time to find (y∗, z∗). Moreover, we find a basic feasible solution to the dual
LP we are guarantees that the support of y has at most m distinct trees. Now Lemma 7
guarantees that for every minimum k-cut A ⊆ E there is a tree T such that y(T) > 0 and T
(2k − 3)-respects A. Thus, to enumerate all minimum k-cuts the following procedure suffices.
For each of the trees T in the optimum packing we enumerate all k-cuts induced by removing
h = 2k − 3 edges from T . With appropriate care and data structures (see [14] and [28]) this
can be done for a single tree T in Õ(n2k−3 +m) time. The total time over all m trees in the
support of y is Õ(mn2k−3) for k > 2. This gives the following theorem.

I Theorem 12. For k > 2 all the minimum k-cuts of a graph with n nodes and m edges
can be computed in time Õ(mn2k−3 + β(m,n)) time where β(m,n) is the time to find an
optimum solution to the LP for k-cut.

We observe that Thorup’s algorithm [28] runs in time Õ(mn2k−2). Thorup uses greedy
tree packing in place of solving the LP. The optimality of the LP solution was crucial in
using the bound of 2k − 3 instead of 2k − 2. Thus, even though we obtain a slightly faster
algorithm than Thorup, we need to find an optimum solution to the LP which can be done
via the Ellipsoid method. The Ellipsoid method is not quite practical. Below we discuss a
different approach.

In recent work Quanrud showed that a (1− ε)-approximate solution to the dual LP can
be computed in near-linear time. We state his theorem below.

C. Chekuri, K. Quanrud, and C. Xu 7:11

I Theorem 13 ([23]). There is an algorithm that computes a (1− ε)-approximate solution
(y, z) the dual LP in O(m log3 n/ε2) time.

We observe that the preceding theorem guarantees O(m log3 n/ε2) trees in the support
of y and also implicity stores them in O(m log3 n/ε2) space. If we choose ε < 1/(2k − 1)
then, via Corollary 9, for every minimum k-cut A ⊆ E there is a tree T in the support of y
that (2k − 2)-respects A. This leads to an algorithm that in Õ(mn2k−2) time enumerates
all minimum k-cuts and recovers Thorup’s running time. However, we note that the trees
generated by the algorithm in the preceding theorem are implicit, and can be stored in small
space. It may be possible to use this additional structure to match or improve the run-time
achieved by Theorem 12.

I Remark. For unweighted graphs with Õ(m
n−k

1
ε2) trees [23] guarantees a (1−ε)-approximation.

This improves the running time to Õ(mn2k−3) for unweighted graphs.

We briefly discuss a potential approach to speed up the computation futher. Recall that
Karger describes an algorithm that given a spanning tree T of a graph G finds the minimum
cut that 2-respects T in Õ(m) time, speeding up the easier Õ(n2) time algorithm. We can
leverage this as follows. In the case of k > 2 we are given T and G and wish to find the
minimum k-cut induced by the removal of at most t edges where t is either 2k − 3 or 2k − 2
depending on the tree packing we use. Suppose A is a set of t − 2 edges of T . Removing
them from T yields a forest with t− 1 components. We can then apply Kargers algorithm
in each of these components with an appropriate graph. This results in a running time of
Õ(mnt−2) per tree rather than Õ(nt). We can try to build on Karger’s ideas to improve the
running time to find the best 3-cut induced by removing at most 4 edges from T . We can
then leverage this for larger values of k.

5 A new proof of the LP integrality gap for k-Cut

The proof of Theorem 5 in [3] is based on the primal-dual algorithm and analysis of Agarwal,
Klein and Ravi [1], and Goemans and Williamson [9] for the Steiner tree problem. For
this reason the proof is technical and indirect. Further, the proof from [3] is described
for the Steiner k-cut problem which has additional complexity. Here we give a different
and intuitive proof for k-Cut. Unlike the proof in [3], the proof here relies on optimality
properties of the LP solution and hence is less useful algorithmically. We note that [23] uses
Theorem 13 and a fast implementation of the algorithmic proof in [3] to obtain a near-linear
time (2 + ε)-approximation for k-Cut.

Let G = (V,E) be a graph with non-negative edge capacities ce, e ∈ E. We let deg(v) =∑
e∈δ(v) ce denote the capacitated degree of node v. We will assume without loss of generality

that V = {v1, v2, . . . , vn} and that the nodes are sorted in increasing order of degrees, that
is, deg(v1) ≤ deg(v2) ≤ . . . ≤ deg(vn). We observe that deg(v1) + deg(v2) + . . .+ deg(vk−1)
is an upper bound on the value of an optimum k-Cut; removing all the edges incident
to v1, v2, . . . , vk−1 gives a feasible solution in which the components are the k − 1 isolated
vertices {v1}, {v2}, . . . , {vk−1}, and a component consisting of the remaining nodes of the
graph.

The key lemma is the following which proves the integrality gap in a special case.

I Lemma 14. Let G be a connected graph and let x∗ be an optimum solution to the k-Cut
LP such that x∗(e) ∈ (0, 1) for each e ∈ E (in other words x∗ is fully fractional). Then∑k−1

i=1 deg(vi) ≤ 2(1− 1/n)
∑
e cex

∗
e.

SOSA 2019

7:12 LP Relaxation and Tree Packing for Minimum k-cuts

Proof. Let (y∗, z∗) be any fixed optimum solution to the dual LP. Complementary slackness
gives the following two properties:

z∗(e) = 0 for each e ∈ E, for if z∗(e) > 0 we would have x∗(e) = 1.
for each e ∈ E,

∑
T3e y

∗
T = ce since x∗(e) > 0.

From the second property above, and the fact that each spanning tree has exactly (n− 1)
edges, we conclude that

(n− 1)
∑
T

y∗T =
∑
e∈E

ce. (2)

Since the degrees are sorted,
k−1∑
i=1

deg(vi) ≤
k − 1
n

n∑
i=1

deg(vi) = 2k − 1
n

∑
e

ce. (3)

Putting the two preceding inequalities together,
k−1∑
i=1

deg(vi) ≤ 2(1− 1
n

)(k − 1)
∑
T

y∗T = 2(1− 1
n

)
∑
e

cex
∗
e,

where, the last equality is based on strong duality and the fact that z∗ = 0. J

The preceding lemma can be easily generalized to the case when G has h connected
components following the remark in the preceding section on the k-Cut LP. This gives us
the following.

I Corollary 15. Let G be a graph with h connected components and let x∗ be an optimum
solution to the k-Cut LP such that x∗(e) ∈ (0, 1) for each e ∈ E. Then

∑k−h
i=1 deg(vi) ≤

2(1− 1/n)
∑
e cex

∗
e.

Now we consider the general case when the optimum solution x∗ to the k-Cut LP is not
necessarily fully fractional as needed in Lemma 14. The following claim is easy.
I Claim 5.1. Let x∗(e) = 0 where e = uv. Let G′ be the graph obtained from G by contracting
u and v into a single node. Then there is a feasible solution x′ to the k-Cut LP in G′ of the
same cost as that of x∗. Moreover a feasible k-cut in G′ is a feasible k-cut in G of the same
cost.

Using the preceding claim we can assume without loss of generality that x∗(e) > 0 for
each e ∈ E. Let F = {e ∈ E | x∗(e) = 1}. Since the LP solution x∗ paid for the full cost of
the edges in F , we can recurse on G′ = G − F and the fractional solution x′ obtained by
restricting x∗ to E \ F . If G′ is connected then x′ is an optimum solution the k-Cut LP on
G′, and is fully fractional, and we can apply Lemma 14. However, G′ can be disconnected.
Let h be the number of connected components in G′. If h ≥ k we are done since A is a
feasible k-cut and c(A) ≤

∑
e cex

∗
e. The interesting case is when 2 ≤ h < k. In this case we

apply Corollary 15 based on the following claim which is intuitive and whose formal proof
we omit.
I Claim 5.2. Let x′ be the restriction of x∗ to E \ F . Then for any maximal forest T in G′
we have

∑
e∈T x

′(e) ≥ k − h. Moreover, x′ is an optimum solution to the k-Cut LP in G′.
From Corollary 15 we can find E′ ⊂ E \ F such that G′ − E′ induces a k-cut in G′ such

that

c(E′) ≤ 2
(

1− 1
n

) ∑
e∈E\F

cex
′
e = 2

(
1− 1

n

) ∑
e∈E\F

cex
∗
e.

C. Chekuri, K. Quanrud, and C. Xu 7:13

Therefore F ∪ E′ is a k-cut in G and we have that

c(F ∪ E′) = c(F) + c(E′) ≤
∑
e∈F

cex
∗
e + 2(1− 1

n
)
∑

e∈E\F

cex
∗
e ≤ 2(1− 1

n
)
∑
e∈E

cex
∗
e.

This finishes the proof. Note that the proof also gives a very simple rounding algorithm
assuming we have an optimum solution x∗ for the LP. Contract all edges with x∗(e) = 0,
remove all edges e with x∗(e) = 1, and use Corollary 14 in the residual graph to find the
(k − h) smallest degrees vertices.

An LP-based proof of Theorem 1: The preceding proof idea also yields a proof of Theo-
rem 1, which we sketch here. We are not sure whether this argument has been considered
previously. Recall that τ(G) is the optimum solution value to the tree packing LP, which
corresponds to the dual of the k-Cut LP when k = 2. When k = 2, as we remarked, the
LP does not require the upper bound constraints x(e) ≤ 1 which implies that the dual tree
packing LP does not have the z variables. Following Lemma 14 we consider a fully fractional
optimum solution x∗ to the k-Cut LP with k = 2 and an optimum dual solution y∗ to the
dual tree packing LP. We have

(n− 1)
∑
T

y∗T = (n− 1)τ(G) =
∑
e∈E

ce.

Consider the partition P consisting of all the singleton vertices; all edges cross this partition,
hence c(P) =

∑
e ce and |P| = n. Since τ(G) =

∑
e
ce

n−1 = c(P)
|P|−1 it must be the case that∑

e
ce

n−1 is the network strength which equals the tree packing value. When x∗ is not fully
fractional we can contract edges with x∗e = 0 and apply the preceding argument. A similar
argument can be used to prove the corresponding min-max relation for the fractional packing
of bases of a matroid.

6 Characterizing the optimum LP solution

We have seen that the dual of the LP relaxation for k-Cut yields a tree packing that can be
used in place of Thorup’s recursive tree packing. In this section we show that the two are
the same by characterizing the optimum LP solution for a given graph through a recursive
partitioning procedure. This yields a nested sequence of partitions of the vertex set of the
graph. This sequence is called the principal sequence of partitions of a graph and is better
understood in the more general context of submodular functions [22]. We refer the reader
to Fujishige’s article for more on this topic [7], and to [5, 17] for algorithmic aspects in
the setting of graphs. We also connect the LP relaxation with the Lagrangean relaxation
approach for k-Cut considered by Barahona [2] and Ravi and Sinha [24]. Their approach is
also built upon the principal sequence of partitions. In order to keep the discussion simple
we mainly follow the notation and approach of [24].

Given G = (V,E) and an edge set A ⊆ E let κ(A) denote the number of connected
components in G−A. Recall that the strength of a capacitated graph G, denoted by σ(G)
is defined as minA⊆E c(A)

κ(A)−1 . The k-Cut problem can be phrased as minA:κ(A)≥k c(A).
However, the constraint that κ(A) ≥ k is not straightforward. It is, however, not hard
to show that κ(A) is a supermodular set function over the ground set E. A Lagrangean
relaxation approach was considered in [2, 24]. To set this up we define, for any fixed edge
set A, a function gA : R+ → R as gA(b) = c(A)− b(κ(A)− 1). We then obtain the function

SOSA 2019

7:14 LP Relaxation and Tree Packing for Minimum k-cuts

g : R+ → R where g(b) = minA⊆E c(A)− b(κ(A)− 1). The quantity g(b) is the attack value
of the graph for parameter b and was considered by Cunningham [5] in his algorithm to
compute the strength of the graph.

Then, as noted in [2, 24],

min
A:κ(A)≥k

c(A) ≥ max
b≥0

min
A⊆E

c(A) + b(k − κ(A)) = max
b≥0

g(b) + b(k − 1).

Thus g′(b) = g(b) + b(k − 1) provides a lower bound on the optimum solution value. [24]
describes structural properties of the function g, several of which are explicit or implicit in
[5]. We state them below.

The functions g and g′ are continuous, concave and piecewise linear and have no more
than n− 1 breakpoints. The function g is non-increasing in b.
Under a non-degeneracy assumption on the graph, which is easy to ensure, the following
holds. If b is not a breakpoint then there is a unique edge set A such that gA(b) = g(b).
If b is a breakpoint then there are exactly two edge sets A,B such that gA(b) = gB(b).
If b0 is a breakpoint of g′ induced by edge sets A and B with κ(A) > κ(B) then B ⊂ A.
In particular A \B is contained in some connected component of G′ = (V,E \B).
Let b0 be a breakpoint of g′ induced by edge set A. Then the next breakpoint is induced
by the edge set which is the solution to the strength problem on the smallest strength
component of G′ = (V,E \A).

The above properties show that the breakpoints induce a sequence of partitions of V
which are refinements. Alternatively we consider the sequence of edge sets A1, A2, . . . ,

obtained by the following algorithm. We will assume that G is connected. Let A0 = ∅. Given
Ai we obtain Ai+1 ⊇ Ai as follows. Let Gi = (V,E \ Ai−1). If Gi has no edges we stop.
Otherwise let Ci+1 be the minimum strength connected component of Gi and Bi+1 be a
maximal minimum strength edge set of Ci+1. We define Ai+1 = Ai ∪ Bi+1, and τi to be
the strength of the component Ci+1. That is, τi = c(Ai)−c(Ai−1)

κ(Ai)−κ(Ai−1) . The process stops when
Ah = E. Let Pi denote the partition of V induced by Ai. Note that Pi+1 is obtained from
Pi by replacing Ci+1 by a minimum strength partition of Ci+1, thus Pi+1 is a refinement of
Pi and Ph consists of singleton nodes. Note that Thorup’s ideal tree packing is also based
on the same recursive decomposition. Let the ith breakpoint of g′ to be bi. It was shown
that bi = τi is precisely the ith breakpoint of the function g′ [24].

Ravi and Sinha obtained a 2-approximation for k-Cut as follows. Given the preceding
decomposition of G they consider the smallest j such that |Pj | ≥ k. If |Pj | = k they output
it and can argue that it is an optimum solution. Otherwise they do the following. Recall Pj
is obtained from Pj−1 by replacing the component Cj in G−Aj−1 by a minimum strength
decomposition of Cj . Let k′ = k − |Pj−1|. Consider the minimum strength partition of
Cj and let H1, H2, . . . ,Hk′ be the connected components of the partition with the smallest
shores. Output the cut Aj−1 ∪ (∪k′`=1δ(H`)).

6.1 An optimum LP solution from the decomposition
Given k, as before let j be the smallest index such that κ(Aj) ≥ k. We consider the following
solution to the LP:

x(e) = 1 for each e ∈ Aj−1.
x(e) = α for each e ∈ Aj \Aj−1, where α = k−κ(Aj−1)

κ(Aj)−κ(Aj−1) .

x(e) = 0 for each e ∈ E \Aj .

C. Chekuri, K. Quanrud, and C. Xu 7:15

I Lemma 16. The solution x is feasible and has objective value

c(Aj−1) + αc(Bj) = c(Aj−1) + (k − κ(Aj−1)) bj .

Proof. Let T be any spanning tree. We want to show that
∑
e∈T x(e) ≥ k − 1. For each j,

let κj = κ(Aj), and let `j = |T ∩Aj |. Then T has `j−1 edges of value x(e) = 1, and `j − `j−1
edges of value α. We have∑

e∈T
x(e) = `j−1 + (`j − `j−1)α

≥ κj−1 − 1 + (κj − κj−1)α = k − 1,

where we observe that the RHS of the first line is decreasing in both `j and `j−1, `j ≥ κj − 1,
and `j−1 ≥ κj−1 − 1. To calculate the objective value, we have∑

e∈E
x(e) =

∑
e∈Aj−1

c(e) +
∑

e∈Aj\Aj−1

αc(e) = c(Aj−1) + αc(Bj) J

The harder part is:

I Lemma 17. The solution x attains the optimum value to the LP relaxation.

Proof. We prove the claim by constructing a dual solution of equal value. See Figure 3 for
the dual LP.

Recall the definitions of Pi, Ai, Bi, and Ci from above. For each i, let κi = κ(Ai) = |Pi|
be the number of components in the ith partition. The sequence b1 < b2 < · · · < bj is the
breakpoints for g′, which is also the strengths of the components C1, C2, . . . , Cj . Let Qi be
the partition of Ci corresponding to Bi. An ideal tree packing, following [29], is a convex
combination of trees p : T (G)→ [0, 1] s.t.

∑
T pT = 1 with the following properties.

1. For each i, every tree T supported by p induces a tree in the graph G/Pi obtained by
contracting each component of Pi.

2. For each i and each edge e ∈ Bi, p induces
∑
T3e pT = c(e)/bi on e.

Every graph has an ideal tree packing, and (for example) can be constructed recursively as
follows. For each Ci, we write each Bi as a sum of bi (units of fractional) trees in Ci/Qi
(which holds because Bi is a minimum strength cut), and scale it down to a distribution p′
of trees in Ci/Qi with

∑
T3e p

′
T = c(e)/bi on each edge in Bi. An ideal tree packing now

corresponds to the distribution where we take the union of one sampled spanning tree from
(the distribution of) each Ci/Qi.

Let p : T (G)→ [0, 1] be an ideal tree packing. To construct our dual solution, we define
nonnegative edge potentials z(e) ≥ 0 and a tree packing y(t) ≥ 0 (packing into c+ z) s.t.

yT = bjp(T) for all T ∈ T (G),

c(e) + z(e) =
{
bj

bi
c(e) for all e ∈ Bi for i < j

c(e) otherwise.

We first claim that (y, z) is feasible in the dual LP; that is, y is a feasible tree packing w/r/t
the augmented capacities c+ z. Observe that for any edge e, y uses capacity bj times the
capacity by p. We need to show the capacity used by y along any edge e is at most c(e)+z(e).
We have two cases.
1. If e ∈ Bi for some i < j, then p uses capacity c(e)

bi
. In turn, y uses capacity bj

bi
c(e). By

choice of z(e), we have c(e) + z(e) = bj

bi
c(e), as desired.

SOSA 2019

7:16 LP Relaxation and Tree Packing for Minimum k-cuts

2. If e ∈ E \Aj−1, then p uses capacity at most c(e)
bj

. In turn, y uses capacity at most bj

bi
c(e).

But bi ≤ bj , so the capacity used by y is ≤ c(e).
We now analyze the objective value of our dual solution. We first observe that since each
tree supported by y is a tree in G/Pj , we have

(k − 1)
∑
T

yT = k − 1
κj − 1

∑
T

yT |T ∩Aj | =
k − 1
κj − 1

∑
e∈Aj

∑
T3e

yT

= k − 1
κj − 1bj

∑
i≤j

1
bi

∑
e∈Bi

c(e) = k − 1
κj − 1bj

∑
i≤j

κi − κi−1

= k − 1
κj − 1bj(κj − 1) = (k − 1)bj .

On the other hand, when subtracting out the augmented capacities, we have

∑
e∈E

z(e) =
∑
i<j

∑
e∈Bi

(
bj
bi
− 1
)
c(e) = bj

∑
i<j

1
bi

∑
e∈Bi

c(e)

− ∑
e∈Aj−1

c(e)

= bj
∑
i<j

(κi − κi−1)−
∑

e∈Aj−1

c(e) = bj (κj−1 − 1)−
∑

e∈Aj−1

c(e)

Thus the total objective value of our solution, as a function of bj , is

(k − 1)
∑
T

yT −
∑
e∈E

z(e) = (k − κj−1) bj +
∑

e∈Aj−1

c(e),

as desired. J

I Remark. One can also verify the optimality of (x, y, z) in the proof above by complimentary
slackness conditions. Recall that x and (y, z) satisfy the complimentary slackness conditions
if
1. ze > 0 only if xe = 1.
2. yT > 0 only if

∑
e∈T xe = k − 1.

3. xe > 0 only if
∑
T3e ye = ce + ze.

We address these individually.
1. ze > 0 only if e ∈ Bi for some i < j. In this case, e ∈ Aj−1 so xe = 1.
2. If yT > 0 then T is in the support of the ideal tree packing. In particular, T contains

exactly κj − 1 edges from Aj and κj − 1 edges from Aj−1, so we have∑
e∈T

xe =
∑

e∈T∩Aj−1

1 +
∑

e∈T∩(Aj\Aj−1)

k − κj−1

κj − κj−1
= κj−1 − 1 + k − κj−1 = k − 1,

as desired.
3. If xe > 0, then e ∈ Bi for some i ≤ j, so y uses bj

bi
c(e) = c(e) + z(e) units of capacity of

e, as desired.

6.2 Implications of the characterization
We now outline some implications of the preceding characterization of the optimum LP
solution.

Ravi and Sinha showed that Lagrangian relaxation lower bound is no weaker than the
one provided by LP relaxation. Here we show that they are equivalent.

C. Chekuri, K. Quanrud, and C. Xu 7:17

I Theorem 18. The Lagrangian relaxation value is the same as the LP value.

Proof. Let κi = κ(Ai) = |Pi| be the number of components after removing Ai. If κj = k for
some j, then the Lagrangian relaxation value is the min k-cut value. Hence it matches the
LP value. Otherwise, assume κj−1 < k < κj . Since g′ is concave, continuous and piecewise
linear, one can see that the function g′ maximizes at one of the breakpoint, and it is precisely
bj . Indeed, κj > k, so bj+1(k − κj) < 0 is a negative slope. We have

g′(bj) = c(Aj−1)− bj(κj−1 − 1) + bj(k − 1) = c(Aj−1) + (k − κj−1)bj .

This is precisely the value of the LP in Lemma 16. J

The preceding also gives yet another proof that the integrality gap of the LP is 2(1− 1/n).

Second, as we saw, for any value of k, an optimum dual solution to the k-Cut LP can be
derived from the ideal tree packing [28, 29]. The last issue is the connection between greedy
tree packing and the dual LP. At the high-level it is tempting to conjecture that greedy tree
packing is essentially approximating the dual LP via the standard MWU approach. Proving
the conjecture formally may require a fair amount of technical work and we leave it for future
work. We believe that some insights obtained in [23] could be useful in this context; [23]
recasts the LP relaxation for k-Cut into a pure covering LP, and the dual as a pure packing
LP that packs forests instead of trees.

References
1 Ajit Agrawal, Philip Klein, and R Ravi. When trees collide: An approximation algorithm

for the generalized Steiner problem on networks. SIAM Journal on Computing, 24(3):440–
456, 1995.

2 Francisco Barahona. On the k-cut problem. Operations Research Letters, 26(3):99–105,
2000.

3 Chandra Chekuri, Sudipto Guha, and Joseph Naor. The Steiner k-cut problem. SIAM
Journal on Discrete Mathematics, 20(1):261–271, 2006.

4 Chandra Chekuri and Kent Quanrud. Near-linear time approximation schemes for some
implicit fractional packing problems. In Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 801–820. SIAM, 2017.

5 William H Cunningham. Optimal attack and reinforcement of a network. Journal of the
ACM (JACM), 32(3):549–561, 1985.

6 Rodney G. Downey, Vladimir Estivill-Castro, Michael R. Fellows, Elena Prieto-Rodriguez,
and Frances A. Rosamond. Cutting Up is Hard to Do: the Parameterized Complexity of
k-Cut and Related Problems. Electr. Notes Theor. Comput. Sci., 78:209–222, 2003.

7 Satoru Fujishige. Theory of principal partitions revisited. In Research Trends in Combina-
torial Optimization, pages 127–162. Springer, 2009.

8 Harold N. Gabow and K. S. Manu. Packing algorithms for arborescences (and spanning
trees) in capacitated graphs. Mathematical Programming, 82(1):83–109, June 1998.

9 Michel X Goemans and David P Williamson. A general approximation technique for con-
strained forest problems. SIAM Journal on Computing, 24(2):296–317, 1995.

10 O. Goldschmidt and D.S. Hochbaum. A polynomial algorithm for the k-cut problem for
fixed k. Mathematics of Operations Research, pages 24–37, 1994.

11 Anupam Gupta, Euiwoong Lee, and Jason Li. Faster Exact and Approximate Algorithms
for k-Cut. In Proceedings of IEEE FOCS, 2018.

SOSA 2019

7:18 LP Relaxation and Tree Packing for Minimum k-cuts

12 Monika Henzinger, Satish Rao, and Di Wang. Local Flow Partitioning for Faster Edge
Connectivity. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA, pages 1919–1938. SIAM, 2017.

13 David R Karger. Random Sampling in Graph Optimization Problems. PhD thesis, Stanford
University, February 1995.

14 David R. Karger. Minimum Cuts in Near-linear Time. J. ACM, 47(1):46–76, January 2000.
doi:10.1145/331605.331608.

15 David R Karger and Clifford Stein. A new approach to the minimum cut problem. Journal
of the ACM (JACM), 43(4):601–640, 1996.

16 Ken-ichi Kawarabayashi and Mikkel Thorup. Deterministic Global Minimum Cut of a
Simple Graph in Near-Linear Time. In Rocco A. Servedio and Ronitt Rubinfeld, editors,
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing,
STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 665–674. ACM, 2015.

17 Vladimir Kolmogorov. A faster algorithm for computing the principal sequence of partitions
of a graph. Algorithmica, 56(4):394–412, 2010.

18 Pasin Manurangsi. Inapproximability of Maximum Edge Biclique, Maximum Balanced
Biclique and Minimum k-Cut from the Small Set Expansion Hypothesis. In Proc. of ICALP,
volume 80 of LIPIcs, pages 79:1–79:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2017.

19 Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding a sparse k-
connected spanning subgraph of a k-connected graph. Algorithmica, 7(1-6):583–596, 1992.
doi:10.1007/BF01758778.

20 Hiroshi Nagamochi and Yoko Kamidoi. Minimum cost subpartitions in graphs. Information
Processing Letters, 102(2):79–84, 2007. doi:10.1016/j.ipl.2006.11.011.

21 J Naor and Yuval Rabani. Tree Packing and Approximating k-Cuts. In Proceedings of the
twelfth annual ACM-SIAM symposium on Discrete algorithms, volume 103, page 26. SIAM,
2001.

22 H. Narayanan. The principal lattice of partitions of a submodular function. Linear Algebra
and its Applications, 144:179–216, 1991.

23 Kent Quanrud. Fast and Deterministic Approximations for k-Cut. CoRR, abs/1807.07143,
2018. arXiv:1807.07143.

24 R Ravi and Amitabh Sinha. Approximating k-cuts using network strength as a lagrangean
relaxation. European Journal of Operational Research, 186(1):77–90, 2008.

25 Huzur Saran and Vijay V. Vazirani. Finding k-Cuts Within Twice the Optimal. SIAM J.
Comput., 24(1):101–108, February 1995.

26 Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24.
Springer Science & Business Media, 2003.

27 Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. Journal of the ACM,
44(4):585–591, July 1997. doi:10.1145/263867.263872.

28 Mikkel Thorup. Fully-dynamic min-cut. Combinatorica, 27(1):91–127, 2007.
29 Mikkel Thorup. Minimum k-way cuts via deterministic greedy tree packing. In Proceedings

of the Fortieth Annual ACM Symposium on Theory of Computing, pages 159–166. ACM,
2008.

http://dx.doi.org/10.1145/331605.331608
http://dx.doi.org/10.1007/BF01758778
http://dx.doi.org/10.1016/j.ipl.2006.11.011
http://arxiv.org/abs/1807.07143
http://dx.doi.org/10.1145/263867.263872

On Primal-Dual Circle Representations
Stefan Felsner
Institut für Mathematik, Technische Universität Berlin, Germany
felsner@math.tu-berlin.de

https://orcid.org/0000-0002-6150-1998

Günter Rote
Institut für Informatik, Freie Universität Berlin, Takustraße 9, 14195 Berlin, Germany
rote@inf.fu-berlin.de

https://orcid.org/0000-0002-0351-5945

Abstract
The Koebe-Andreev-Thurston Circle Packing Theorem states that every triangulated planar
graph has a contact representation by circles. The theorem has been generalized in various ways.
The most prominent generalization assures the existence of a primal-dual circle representation
for every 3-connected planar graph. We present a simple and elegant elementary proof of this
result.

2012 ACM Subject Classification Human-centered computing→ Graph drawings, Mathematics
of computing → Graph algorithms

Keywords and phrases Disk packing, planar graphs, contact representation

Digital Object Identifier 10.4230/OASIcs.SOSA.2019.8

Acknowledgements We thank Manfred Scheucher for implementing the algorithm and helping
with the figures.

1 Introduction

For a 3-connected plane graph G = (V,E) with face set F , a spherical primal-dual disk
representation of G consists of two families of disks (Cx : x ∈ V) and (Dy : y ∈ F) on the
sphere S2 with the following properties (see Figure 1).
(i) The vertex-disks Cx have pairwise disjoint interiors.
(ii) The face-disks Dy have pairwise disjoint interiors.

Moreover, for every edge xx′ ∈ E with dual edge yy′ (i. e., y and y′ are the two faces separated
by xx′), the following holds:
(iii) Circles Cx and Cx′ touch at a point p.
(iv) Circles Dy and Dy′ touch at the same point p.
(v) The common tangent of Cx and Cx′ in the point p is perpendicular to the common

tangent of Dy and Dy′ in p.

I Theorem 1. Every 3-connected plane graph G admits a primal-dual disk representation
on the sphere. This representation is unique up to Möbius transformations.

Given a primal-dual disk representation of a graph G, we can use stereographic projection
to obtain a primal-dual circle representation in the plane. (In the plane, we stick to the
more common terminology of circle packings, because a circle defines a unique disk; on the
sphere, we have to specify which of the two parts bounded by a circle we mean, and therefore
we speak of disk packings.) Changing the center of the stereographic projection leads to

© Stefan Felsner and Günter Rote;
licensed under Creative Commons License CC-BY

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy Fineman and Michael Mitzenmacher; Article No. 8; pp. 8:1–8:18

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:felsner@math.tu-berlin.de
https://orcid.org/0000-0002-6150-1998
mailto:rote@inf.fu-berlin.de
https://orcid.org/0000-0002-0351-5945
https://doi.org/10.4230/OASIcs.SOSA.2019.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

8:2 On Primal-Dual Circle Representations

Figure 1 On the left, a primal-dual disk representation on the sphere, and its stereographic
projection to the plane. The intersections of red primal disks with blue dual disks appear in purple.
On the right, planes through the boundaries of the red disks define a polytope whose edges “cage”
the sphere. The edge skeleton of this polytope is the dual graph (the touching graph of the blue
disks).

different primal-dual circle representation in the plane. Figure 2 shows three primal-dual
circle representations of K4 in the plane where the projection center has been chosen as the
center of one of the disks, the center of a digon formed by a primal-dual pair of intersecting
disks, and the common point of four circles.

As a special case of the previous theorem we obtain the classical circle packing theorem:

I Theorem 2. Every plane graph G admits a circle packing representation, i.e., it is the
contact graph of a set of nonoverlapping disks in the plane.

Our proof of Theorem 1 is constructive, in a sense: It computes a primal-dual circle
representation in the plane by a limiting process. For the simplicity of the proof we choose
the version where four of the circles are lines and all the other centers of circles are in the
rectangle formed by these lines, see the right picture of Figure 2 and the larger example in
Figure 3. The theorem then follows using an inverse stereographic projection.

Our proof combines ideas from an unpublished manuscript of Pulleyblank and Rote,
from Brightwell and Scheinerman [6] and from Mohar [25]. All these proofs are based on
an algorithm for iteratively improving estimates of the circle radii, whose idea goes back
to Thurston [37, Section 13.7]. A distinguishing feature of our approach is the symmetric
treatment of the primal and the dual family of circles. Four of the radii are already fixed
at ∞, and this helps to reduce the graph-theoretic argument in the proof of convergence to
a simple statement about the number of edges of a plane bipartite graph (Lemma 4) and
a connectivity argument. The core of the proof requires only 1.5 pages and four chains of
equations and inequalities. The layout of the “kites” obtained from the limits of the radii is
based on an auxiliary result of independent interest (Lemma 5): when polygonal shapes are

Stefan Felsner and Günter Rote 8:3

Figure 2 If we project the symmetric primal-dual disk representation of K4 on S2 to the plane
by stereographic projection, we get different primal-dual circle representations, depending on the
center of projection. In the right picture we see that circles may degenerate to lines.

Figure 3 A larger example. Figure 1 includes a spacial image of this circle representation from a
viewpoint on the left side and above the plane of Figure 3.

glued together along edges, local consistency conditions are sufficient to guarantee that these
shapes form an overlap-free tiling.

Our simple and elementary proof of Koebe’s Theorem, respectively its primal-dual version,
is suited for a presentation in a class on Graph Theory, Discrete Geometry, Computational
Geometry, or Graph Drawing.

In the next section we give a rather comprehensive account of the history of the theorem
and mention some of its applications. The proof of the theorem is given in Section 3. Section 4
is devoted to the proof of Lemma 5.

2 History and Applications of the Theorem

In graph theory the study of circle contact representations can be traced back to the 1970’s
and 1980’s; the term “coin representation” was used there. Wegner [39] and Jackson and
Ringel [20] conjectured that every plane graph has a circle representation. The problem was
popularized by Ringel [28], who also included it in a textbook from 1990 [19]. In a note
written in 1991 [31], Sachs mentions that he found a proof of the circle packing theorem

SOSA 2019

8:4 On Primal-Dual Circle Representations

which was based on conformal mappings. This eventually lead him to the discovery that the
theorem had been proved by Koebe as early as 1936 [21].

Thurston, in the context of the study of 3-manifolds, proved that any triangulation of the
sphere has an associated “circle packing” which is unique up to Möbius transformations [37,
Sections 13.6–7]. Thurston noted that this result was already present in earlier work of
Andreev [2]. Nowadays the result is commonly referred to as the Koebe-Andreev-Thurston
Circle Packing Theorem. At a conference talk in 1985, Thurston suggested connections
between circle packings and the Riemann Mapping Theorem. A precise version was obtained
by Rudin and Sullivan [29]. This line lead to the study of discrete analytic functions and
other aspects of discrete differential geometry, see to [35, 36, 5] for more on the topic.

In the early 1990’s new proofs of the circle packing theorem where found. Colin de
Verdière [7] gave an existential proof based on ‘invariance of domain’; this proof can also be
found in [27, Chapter 8] and in the primal-dual setting in an early draft of a book manuscript
by Lovász’s [22]. Colin de Verdière [8] gave another proof, which is based on the minimization
of a convex function, and he extended circle packings to more general surfaces. Pulleyblank
and Rote (unpublished) and Brightwell and Scheinerman [6] gave proofs of the primal-dual
version (Theorem 1) based on an iterative algorithm, similar to the proof given in this note.
Mohar [24] strengthened the result and proposed an iterative approach that obtains an
ε-approximation for the radii and centers in time polynomial in the size of the graph and
log(1/ε).

Primal-dual circle representations yield simultaneous orthogonal drawings of G and its
dual G∗, i. e., straight-line drawings of G and G∗ such that the outer vertex of G∗ is at
infinity and each pair of dual edges is orthogonal. The existence of such drawings was
conjectured by Tutte [38]. In fact, it follows from Tuttes “spider-web” embedding method
via the Maxwell-Cremona correspondence, which produces a convex piecewise linear surface
in R3 that vertically projects onto the drawing of G. Polarity will then yield a straight-line
embedding of G∗ with edges orthogonal to edges of G, see [26] or [30, Section 5]. However,
unlike the embeddings implied by the circle theorem, primal-dual edge pairs in this embedding
may not intersect.

Another consequence of primal-dual circle representations is known as the Cage Theorem.
It says that every 3-connected planar graph is the skeleton of a convex 3-polytope such that
every edge of the polytope is tangent to a given sphere. This strengthening of the Steinitz
Theorem is easily derived from Theorem 1, see Figure 1. The Cage Theorem was generalized
by Schramm [32], who showed that the sphere that is caged can be replaced by any smooth
strictly convex body.

A stunning generalization of the Circle Packing Theorem is the Monster Packing Theorem
of Schramm [34]. The statement (slightly simplified) is as follows: if each vertex v of a planar
triangulation G has a prescribed convex prototype Pv, then there is a contact representation
of G where each vertex is represented by a nonnegative homothet of its prototype. Some
of these homothets may degenerate to points, but when the prototypes have a smooth
boundary, such degeneracies are excluded. Contact representations of planar graphs with
other shapes than circles have received quite some attention over the years, for example with
triangles [9, 17, 1], rectangles and squares [13, 33], and pentagons and k-gons [16, 15].

The Circle Packing Theorem has been used to prove separator theorems. In particular,
every planar graph with n vertices can be partitioned into components with at most n/2
vertices by removing O(

√
n) vertices. The approach was pioneered by Miller and Thurston and

generalized to arbitrary dimensions by Miller, Teng, Thurston, and Vavasis [23]. The planar
case is reviewed in [27, Chapter 8]. A slightly simpler proof was given by Har-Peled [18].

Stefan Felsner and Günter Rote 8:5

η′

η

ξ′ξ

Dη′

Dη

Cξ′Cξ

(a) (b) (c)

Figure 4 (a) A graph and its dual. (b) A cross-centered primal-dual circle packing for this graph.
The areas of the primal disks are shaded. The two vertices ξ and ξ′ are represented by “degenerate
disks”: disjoint halfplanes bounded by Cξ and Cξ′ , which “touch at infinity”. (c) The straight-line
drawing of the two graphs induced by the circle packing; the centers ξ and ξ′ of the degenerate disks
lie infinitely far away to the left and to the right. The edge ξξ′ is not represented at all. The same
holds for η and η′ and the dual edge between them.

Bern and Eppstein [4, 11] relate circle packings to mesh generation techniques.
Not surprisingly, the theorem also has applications in Graph Drawing. Eppstein [12]

used circle representations to prove that every planar graph with maximum degree 3 has
a Lombardi drawing: a drawing in which the edges are drawn as circular arcs, meeting at
equal angles at each vertex. Felsner, Igamberdiev, Kindermann, Klemz, Mchedlidze, and
Scheucher [14] used circle representations to show that 3-connected planar graphs have planar
strongly monotone drawings, i. e., straight-line drawings such that for any two vertices u, v
there is a path which is monotone with respect to the connecting line of u and v.

3 Primal-Dual Circle Representation: The Proof

Let G = (V,E) be a 3-connected plane graph with face set F and let ξξ′ be an edge in E with
dual edge ηη′, i. e., η and η′ are the two faces on the sides of ξξ′. A cross-centered primal-dual
circle representation of G with central cross ξξ′, ηη′ consists of two vertical lines Cξ and
Cξ′ , two horizontal lines Dη and Dη′ , and two families of circles (Cx : x ∈ V \ {ξ, ξ′}) and
(Dy : y ∈ F \ {η, η′}) with the following five properties, sees Figures 3 and 4b for examples:
(i) The vertex-circles Cx have pairwise disjoint interiors and are contained in the vertical

strip between Cξ and Cξ′ .
(ii) The face-circles Dy have pairwise disjoint interiors and are contained in the horizontal

strip between Dη and Dη′ .
Moreover, for every edge xx′ ∈ E with xx′ 6= ξξ′ and with dual edge yy′ (i. e., y and y′ are
the two faces separated by xx′), the following holds:
(iii) Cx and Cx′ are tangent at a point p with common tangent line txx′ .
(iv) Dy and Dy′ are tangent at the same point p with common tangent line tyy′ .
(v) The lines txx′ and tyy′ are orthogonal.

SOSA 2019

8:6 On Primal-Dual Circle Representations

Figure 5 Three primal-dual straight-line drawings of K4. They correspond to the primal-dual
circle representations of Figure 2.

I Theorem 3. Every 3-connected plane graph G admits a cross-centered primal-dual circle
representation. Moreover, for a given central cross ξξ′, ηη′, this representation is unique up
to scaling, translation, and horizontal or vertical reflections.

Theorem 1 follows from Theorem 3 via inverse stereographic projection.
We give first an outline of the proof. A primal-dual circle representation of G induces

a straight-line drawing of G and a straight-line drawing of the dual. Superimposing the
two drawings yields a plane drawing whose faces are special quadrangles called kites, see
Figures 6 and 7. After guessing radii for the circles, the shapes of the kites are determined.
It is then checked whether the angles of kites meeting at a vertex sum up to 2π. If at some
vertex the angle sum differs from 2π, the radii are changed to correct the situation. The
process is designed to make the radii converge and to make the sum of angles meet the
intended value at each vertex. The second part of the proof consists of showing that the
kites corresponding to the final radii can be laid out to form a tessellation, thus giving the
centers of a primal-dual circle representation of G.

Proof of Theorem 3. Given a cross-centered primal-dual circle representation of G we can
use the centers of the circles Cx to obtain a planar straight-line drawing of G, see Figure 4c.
Edges containing ξ or ξ′ are represented by horizontal rays to the left and right respectively.
The edge ξξ′ is missing. Similarly, the centers of the circles Dy yield a planar straight-line
drawing of G∗ with edges containing one of η and η′ being represented by vertical rays.

For example, from the primal-dual circle representations of K4 of Figure 2, we obtain
plane straight-line drawings of K4 and its dual that are displayed in Figure 5. The rightmost
of these drawings corresponds to a cross-centered primal-dual circle representation of K4.

3.1 Kites
If we overlay the drawings ofG andG∗, we get a partition of the plane into kites: quadrilaterals
with right angles at two opposite vertices and a line of symmetry through the other two
vertices. Figure 6 shows an example, and Figure 7 shows a generic kite. In the cross-centered
case, there are degenerate kites: rectangular strips that are unbounded in one direction. They
have a vertex with a 180◦-angle in the midpoint of the only bounded edge. In addition, we
have four quadrants, which can be regarded as exceptional kites. The bounded kites fill a
rectangle between Cξ, Cξ′ , Dη, and Dη′ .

The kites are in bijection with the incident pairs (x, y), where x is a primal vertex and y
is a dual vertex. Since the involved circles or lines intersect orthogonally, the kite of x and y
is completely determined by the radii rx of Cx and ry of Dy. (In the case of a line the radius

Stefan Felsner and Günter Rote 8:7

Figure 6 The tessellation of the plane
into kites obtained from the example
in Figure 4c. Four kites are shaded,
among them a degenerate kite (semi-
infinite strip) and an exceptional kite
(quadrant).

αyx

αxy
x′x

y

y′

rx

ry

rx

ry

Figure 7 The kite corresponding to the incident
vertex-face pair x,y.

is ∞.) For bounded kites, the angles at x and y are given by

αxy = 2 arctan ry
rx

and αyx = 2 arctan rx
ry
. (1)

We extend these formulas to degenerate kites by taking the limits:

αuw =
{

0, if rw 6=∞ and ru =∞
π, if rw =∞ and ru 6=∞

(2)

Then we have

αuw + αwu = π

for all pairs (u,w) forming a bounded or degenerate kite. We don’t define the angles for the
four exceptional kites because this would involve the undetermined expression ∞∞ .

3.2 The Angle Graph
The number and combinatorial structure of the kites is captured by the angle graph. The angle
graph, or vertex-face incidence graph, of a plane graph G = (V,E) is the graph G� = (U,K)
whose node set U = V ∪ F represents both the vertices and faces of G, see Figure 8b. Its
edges xy are the pairs with x ∈ V and y ∈ F that are incident in G, i. e., x is a vertex on the
boundary of the face y. These edges are in bijection with the kites. The graph G� is plane
and bipartite. Its faces corresponds to the edges of G, and they are 4-gons, i. e., G� is a
quadrangulation. We choose the face fo = ξηξ′η′ containing the four elements of the central
cross as the outer face of G�. We denote its nodes by Uo = {ξ, ξ′, η, η′} and the remaining
nodes by Uin = U \Uo. We denote the four edges of the outer face by Ko = {ξη, ηξ′, ξ′η′, η′ξ}.

An important property of the angle graph is that it cannot have a separating 4-cycle:
If the nodes xyx′y′ with x, x′ ∈ V and y, y′ ∈ F would form some separating 4-cycle in
G�, then x, x′ would be a separating vertex pair in G, contradicting the 3-connectedness
assumption for G.

SOSA 2019

8:8 On Primal-Dual Circle Representations

η′

η

ξ′ξ

η′

η

ξ′ξ

η′

η

ξ′ξ

(a) (b) (c)

Figure 8 (a) The plane graph G from Figure 4a, (b) its angle graph G�, (c) the primal-dual
completion (G�)�. The faces of this graph represent the kites, including the unbounded and
exceptional kites.

We will need the following well-known basic fact about bipartite plane graphs, which
is a consequence of Euler’s formula. For completeness, we include the detailed proof in
Appendix A.

I Lemma 4. A simple bipartite plane graph with |S| ≥ 4 nodes has at most |E| ≤ 2|S| − 4
edges, with equality if and only if the graph is connected and every face is a quadrilateral with
four distinct vertices.

In particular, G� contains |K| = 2|U | − 4 edges.

3.3 Angle Sums

We now come to the core of the argument. A hypothetical primal-dual circle representation
of G contains a point for each u ∈ Uin. This point is fully surrounded by its incident kites.
Hence, for every u ∈ Uin we have:∑

w : uw∈K
αuw = 2π (3)

We now look at an arbitrary assignment r : Uin → R>0 of radii. Additionally, we define
ru =∞ for each u ∈ Uo. We can then form the corresponding kites and compute the angles
according to (1) and (2). In particular, by (2), the degenerate kites have the correct angles:

αuw = π and αwu = 0 whenever u ∈ Uin and w ∈ Uo. (4)

Denote the angle sum at u ∈ Uin by αu = αu(r) =
∑
w : uw∈K αuw. We want to find radii r

such that αu(r) becomes equal to the target angle 2π for all u ∈ Uin in order to fulfill (3).
Later we will show that a collection of radii with this property induces a primal-dual circle
representation.

We first show that any choice of radii attains the correct target angles on average:∑
u∈Uin

(
αu(r)− 2π

)
= 0 (5)

Stefan Felsner and Günter Rote 8:9

This follows from the following computation:∑
u∈Uin

αu(r) =
∑
uw∈K
u,w∈Uin

(αuw + αwu) +
∑
uw∈K

u∈Uin,w∈Uo

αuw =
∑
uw∈K
u,w∈Uin

π +
∑
uw∈K

u∈Uin,w∈Uo

π = π|K \Ko|

= π(|K| − 4) = π(2|U | − 8) = 2π(|U | − 4) = 2π|Uin|

As a consequence, whenever αu(r) 6= 2π for some u, the following two sets are both nonempty:

U− = {u ∈ Uin : αu(r) < 2π} and U+ = {u ∈ Uin : αu(r) > 2π}

If we increase the radius ru of a node u ∈ U+, leaving all remaining radii fixed, we observe
from (1) that for every incident edge uw ∈ K, the angle αuw decreases strictly to 0 as
ru →∞, with the possible exception of a single neighbor w ∈ Uo with fixed angle αuw = π

according to (4). Hence, we can increase ru to the unique value where αu(r) = 2π.

3.4 Iteration and Convergence
The workhorse of the proof is the following infinite iteration.

repeat forever:
for each u ∈ Uin:

if u ∈ U+ then increase ru to reduce αu(r) to 2π

 (6)

We will show that, for an arbitrary positive starting assignment, the radii converge to some
limiting assignment r̂, and this will imply that αu(r̂) = 2π for all u ∈ Uin.

Since radii can never decrease and every bounded monotone sequence is convergent, it
is enough to show that the set of “divergent” nodes D = {u ∈ U : lim ru = ∞} contains
no other nodes than the four nodes of Uo. (The nodes u ∈ Uo have ru = ∞ fixed and are
included in D by definition.)

The increase of ru decreases the angle sum αu, but not below 2π. It increases the angles
at adjacent nodes, and it may hence cause some w ∈ U− to move to U+. A transition
from U+ to U−, however, is impossible. It follows that some node u0 must belong to U−
indefinitely unless the iteration comes to a halt with U− = U+ = ∅. Thus, as a consequence
of the built-in behavior of the iteration, (a) U− is disjoint from D from some time on, and
(b) D is a proper subset of U .

Let us look at the subgraph G�[D] of G� induced by the divergent nodes. In order to
apply Lemma 4, we will show that G�[D] has at least 2|D| − 4 edges.

First, we wait for U− to become disjoint from D. From that point onwards,∑
u∈D\Uo

αu(r) ≥
∑

u∈D\Uo

2π = 2π|D \ Uo| = (2|D| − 8)π. (7)

On the other hand, if u ∈ D and w ∈ U \ D, then αuw converges to 0 according to (1).
Thus, in addition to (7), the inequality αuw ≤ 1/|U |2 will eventually hold for each such edge.
Bounding these edges separately from the others, we get the following inequality at this point
of the iteration:∑

u∈D\Uo

αu(r) ≤ |U |2 · 1
|U |2

+
∑

kite with x, y ∈ D
x/∈Uo or y/∈Uo

(αxy + αyx) = 1 +
∑

xy edge of G�[D]
xy/∈Ko

π

= 1 + (|E(G�[D])| − 4)π, (8)

SOSA 2019

8:10 On Primal-Dual Circle Representations

where E(G�[D]) is the edge set of G�[D]. Comparing (7) and (8) gives |E(G�[D])| ≥
2|D| − 4− 1/π and therefore |E(G�[D])| ≥ 2|D| − 4.

Since Uo ⊆ D by definition and thus |D| ≥ 4, we can apply Lemma 4. We conclude that
G�[D] is connected and its faces are simple 4-cycles.

The outer face of G�[D] is the quadrilateral fo formed by Uo. Our goal is to show that
D = Uo and G�[D] consists just of the single 4-cycle fo. Since G�[D] is a proper subgraph of
G�, G�[D] has some face f that is not a face of G�. This face f is an inner face of G�[D]
because the outer face of G�[D] agrees with fo. Suppose for contradiction that f does not
coincide with the interior face bounded by fo. Then it would form a separating 4-cycle in
G�: it would contain nodes of U both in its interior (because it is not a face of G�) and in
its exterior (because some nodes of fo lie there). Since separating 4-cycles are excluded, we
have shown that D = Uo.

This means that all radii ru for u ∈ Uin converge to some limits, which we denote
by r̂u. It follows that all angles αuw and all angle sums αu(r) converge as well, and by
the working of the iteration (6), their limits αu(r̂) are bounded by αu(r̂) ≤ 2π. Since∑
u∈Uin

(αu(r̂)− 2π) = 0 by (5), we must have αu(r̂) = 2π for all u ∈ Uin.

3.5 Uniqueness
We show that the radii are unique up to scaling. Let r and r′ be two vectors of radii such
that αr(u) = αr′(u) = 2π for all u ∈ Uin. Scaling allows to assume that ru0 = r′u0

for some
u0 ∈ Uin. Consider the set S = {u ∈ Uin : ru > r′u} and observe that u0 ∈ S̄ = Uin \ S.

|S| · 2π =
∑
u∈S

αu(r) =
∑
uw∈K
u,w∈S

(
αuw(r) + αuw(r)

)
+

∑
uw∈K

u∈S,w∈Uo

αuw(r) +
∑
uw∈K

u∈S,w∈S̄

αuw(r)

=
∑
uw∈K
u,w∈S

2π +
∑
uw∈K

u∈S,w∈Uo

π +
∑
uw∈K

u∈S,w∈S̄

αuw(r)

Thus, the last sum has a constant value, independent of the radii r. However, if we change
the radii from r to r′, then, by (1), every term αuw(r) in the last sum increases, because
ru > r′u and rw ≤ r′w. This means that the set of edges over which the sum is taken must be
empty. In other words, if w ∈ S̄, then every neighbor u ∈ Uin of w must also belong to S̄.
Since u0 ∈ S̄ and G�[Uin] is connected, S must be empty. By a symmetric argument, the set
S′ = {u ∈ Uin : r′u > ru} is empty as well, and this proves uniqueness of the radii r up to
scaling.

The radii determine shape and size of the kites. Below we show that the kites can be
laid out to form a tessellation of the plane. The line Cξ is vertical, hence, the tessellation is
unique up to scaling, translation, and horizontal or vertical reflection. Since the tessellation
determines the circles, uniqueness carries over to the cross-centered primal-dual circle
representation with fixed central cross.

3.6 Laying out the Kites
We now show that the kites defined by the limiting radii r̂ can be laid out in the plane with
the intended side-to-side contacts. Figure 9 illustrates this task. We will use Lemma 5 below,
which warrants the existence of such a layout if certain local matching conditions are fulfilled.
We invite the reader to skip forward and read the statement of Lemma 5 in Section 4. We
apply this lemma to the graph H of the vertices and edges of the bounded kites, see Figures 6
and 9. This graph is a subgraph of the primal-dual completion of G = (V,E) (which, by the

Stefan Felsner and Günter Rote 8:11

Figure 9 Laying out the kites.

way, is nothing but the angle graph (G�)� of the angle graph of G, see Figure 8c). The nodes of
H are vertices, faces and edges of G. Specifically, VH = (V \{ξ, ξ′})∪(F \{η, η′})∪(E\{ξξ′}),
and the edges of H are the pairs (z, e) ∈ ((V \ {ξ, ξ′}) ∪ (F \ {η, η′}))× (E \ {ξξ′}) with z
incident to the edge e ∈ E in G. Each bounded face of H is a quadrilateral representing a
bounded kite. It contains one node from V , one node from F , and two nodes from E.

The 3-connectivity of G and of G∗ easily implies that H is 2-connected, as required for
Lemma 5. (In fact, the first proof of Lemma 5 shows that connectedness of H is sufficient,
provided that the outer face is a simple cycle.) We know that two adjacent kites fit together
locally because they have the same edge lengths by construction: these lengths are defined
by the same radius ru. This is condition (iii) of Lemma 5.

Moreover, as we have shown, the kites around a vertex u ∈ Uin form a complete angle of
αu(r̂) = 2π. Every right angle of a kite, if it is an interior node of H, is complemented by the
right angles of three other kites to again form a complete angle of 2π. This is condition (i)
of Lemma 5.

The vertices of H incident to the outer face of H are either points where one or two right
angles of kites meet, forming an angle of 90◦ or 180◦, or they are nodes u ∈ Uin which are
adjacent in G� to some node w ∈ Uo, forming an angle αuw = π by (4). Since this angle is
not part of H, the incident angles in H around u sum up to αu(r̂)− αuw = 2π − π = π. In
summary, the angle sums of nodes incident to the outer face of H are either 90◦ or 180◦,
and thus condition (ii) for Lemma 5 is fulfilled, and moreover, the layout of the bounded
kites must form a rectangle R. The unbounded kites can be attached edge by edge along the
boundary of R. This yields the claimed cover of the whole plane.

3.7 Constructing the Circle Representation
Finally, we derive a cross-centered primal-dual circle representation from the layout of the
kites. The kites induce a straight-line drawing of G and a straight-line drawing of the dual
G∗ with the edges incident to one node of Uo being rays and edges induced by Uo omitted.
For every primal-dual pair xx′, yy′ of edges the point p where xx′ and yy′ meet is a right
angle in each of the four involved kites. This implies (v).

For a node u ∈ Uin, consider the set of kites containing u. These kites can be put together
in the cyclic order given by the rotation of u in G� to form a polygon Pu surrounding u,

SOSA 2019

8:12 On Primal-Dual Circle Representations

because αu(r̂) = 2π. By the geometry of the kites, all edges incident to u ∈ V ∩Uin have the
same length r̂u, and the circle Cu of radius r̂u centered at u is inscribed in Pu and touches
Pu at the common corners of neighboring kites. For u ∈ {ξ, ξ′}, the polygon Pu obtained
by gluing the corresponding unbounded kites is a halfplane and the vertical line Cu goes
through the right-angle corners of the involved kites. From the incidences of the kites, and
since the polygons Pu for u ∈ V are pairwise disjoint, we obtain that the family (Cx : x ∈ V)
satisfies (i) and (iii).

Dually, the polygons Pu corresponding to u ∈ F also tile the plane, and the family
(Dy : y ∈ F) satisfies Properties (ii) and (iv). This concludes the proof of Theorem 3. J

4 Tiling a Convex Polygon

The following lemma says that certain local consistency conditions around each vertex and
along each edge are sufficient to guarantee a global nonoverlapping layout of faces with
prescribed shapes.

I Lemma 5. Let H be a 2-connected plane graph (possibly drawn with curved edges). For
each bounded face f of H, a simple polygon Pf is given whose corners are labeled with the
vertices from the boundary of f in the same cyclic order. Denote the corner of Pf labeled
with v by pfv and the angle of Pf at this corner by βfv. For each vertex v, let Fv denote the
set of incident bounded faces. We assume the following conditions:
(i)

∑
f∈Fv

βfv = 2π for every inner vertex v.
(ii)

∑
f∈Fv

βfv ≤ π for every vertex v on the outer face.
(iii) ‖pfv − pfw‖ = ‖pgv − pgw‖ for every inner edge vw of H with incident faces f and g.
Then there is a crossing-free straight-line drawing of H in which every bounded face f can be
obtained from Pf by a rigid motion, i. e., translation and rotation.

Lemma 5 or similar statements have been used explicitly or implicitly in other situations,
beyond the context of circle packings. For example in [16, 15] it is used in the context of
contact representations with pentagons and k-gons. In fact, our second proof of Lemma 5
slightly generalizes a proof from [16].

We give two proofs of Lemma 5, a more geometric one and a more combinatorial one.

Proof 1. We proceed by induction on the number of interior vertices. The tool that we
need is that every simple polygon can be subdivided into convex pieces, or if we want, into
triangles, by inserting diagonals between its vertices.

To make the induction go through, we have to strengthen the assumption of the lemma
and require that each polygon Pf is convex. This can be achieved by inserting diagonals and
subdividing it into convex pieces. On the other hand, we don’t require H to be 2-connected,
and we even allow H to have multiple edges. (Showing beforehand that separating vertices
or multiple edges cannot actually occur would be more tedious.) We do however maintain
the requirement that H is connected and that the outer face is a simple cycle.

The inductive step proceeds as follows: If there is an interior vertex w, we take the k
faces f1, . . . , fk incident to w and place the corresponding polygons Pf1 , . . . , Pfk

successively
around the origin, see Figure 10. By condition i, they completely surround the origin.
By convexity of the faces, each face is confined within its own sector, disjoint from the
other sectors. Thus the faces don’t overlap, and their union forms a simple polygon P that
contains w in its interior. (It is star-shaped around w.) We triangulate P geometrically. We
remove w from the graph H, and we insert the appropriate new edges into H, replacing the
faces f1, . . . , fk by the new triangular faces, with the triangles as the corresponding polygons.

Stefan Felsner and Günter Rote 8:13

w
Pf1

Pf2

P
Pf3

Pf4

Pf5

Figure 10 Triangulating the union of the faces surrounding a vertex w.

(Here is the point where multiple edges could conceivably be created.) When performing
this replacement, by construction, the angle sum

∑
f∈Fv

βfv remains the same around every
vertex v 6= w (conditions i and ii), and the new polygons have matching edge lengths, both
among themselves and with the previously existing faces (condition iii). The resulting graph
H ′ has one interior vertex less, and it is still connected, because the boundary vertices of
P , which include all neighbors of w, are connected through the boundary edges of P . By
induction, its faces can be laid out in the plane without overlap and with adjacent faces
touching along their common edges. The triangular faces that were added form a polygon
that is congruent to P . Cutting the polygon P into the faces Pf1 , . . . , Pfk

from which it was
originally formed, we obtain the position for w and a drawing of the original graph H.

In the base case of the induction, there are no interior vertices. We simply merge adjacent
polygons pairwise along their common interior edge. By condition ii, the two new resulting
interior angles are ≤ π. Hence the polygon resulting from each merge is again a convex
polygon. In the end, we have a single convex polygonal face, and there is nothing left to
prove. J

Proof 2. The proof proceeds in four steps. (A) In the first step, we define positions for every
face Let H∗ be the dual graph of H without the vertex corresponding to the outer face of H.
Let S be a spanning tree of H∗. Then by (iii) we can glue the polygons Pf of all bounded
faces f of H together along the edges of S. This determines a unique position for every
polygon, up to a global motion.

(B) Since a vertex belongs to several faces, this layout might prescribe several inconsistent
positions for the same vertex. In the second step, we that such contradictory constraints do
not arise, and each vertex has a unique position. For the edges of S we already know that
the polygons of the two incident faces touch in such a way that corners corresponding to the
same vertex coincide. For the edges of the complement S̄ of S we still need to show this.
The set S̄, considered as a subset of the edges of H, forms a forest. Let v be a leaf of this
forest that is an inner vertex of H, and let e be the edge of S̄ incident to v. Then for all
incident edges e′ 6= e of v we already know that the polygons of the two incident faces of e
touch in the right way. But then also the two polygons of the two incident faces of e touch
in the right way because v fulfills property (i). Since the set of edges we still have to check
remains a forest, we can iterate this process until all inner edges of H are checked. After
gluing all the polygons Pf , every vertex v has an unambiguous position.

(C) Let Po be the cycle formed by the boundary edges of H in this drawing. As the third
step, we will show that Po forms a convex polygon. We know from property (ii) that when
we traverse P0 with the interior on its left, we make only left turns, but it is conceivable

SOSA 2019

8:14 On Primal-Dual Circle Representations

that P0 makes several loops and intersects itself. We show that this is not the case. Let
H = (V,E) with face set F , and let Vo be the set of outer vertices of H. Denoting do = |Vo|,
we claim that∑

v∈Vo

∑
f∈Fv

βfv = (do − 2)π. (9)

To see this, we express the angle sum B over all polygons Pf in two different ways. Property (i)
gives

B =
∑

v∈V \Vo

∑
f∈Fv

βfv +
∑
v∈Vo

∑
f∈Fv

βfv = (|V | − do)2π +
∑
v∈Vo

∑
f∈Fv

βfv. (10)

On the other hand, let us denote the degree of each bounded face f by df . Then the angle
sum of Pf is (df − 2)π. Summing this over all bounded faces gives

B =
∑
f

(df − 2)π =
[
(2|E| − do)− 2(|F | − 1)

]
π = (|E| − |F |+ 2− do)2π+ (do− 2)π. (11)

Comparing the right-hand sides of (10) and (11), Euler’s Formula gives the claim (9).
Thus, the sum of angles at the outer vertices has just the right value for a do-gon. Hence,

the image Po of the boundary edges is a convex polygon and therefore nonintersecting.
(D) We finally prove that the glued polygons Pf tile the interior of Po without holes or

overlap. Since we will refer to this argument later, we formulate it as a separate lemma:

I Lemma 6. Let H be a 2-connected plane graph (possibly drawn with curved edges). Let H ′
be a straight-line drawing of H in the plane (possibly with crossings), with the following
properties:
(a) For each bounded or unbounded face f of H, the edges of the face cycle in H ′ form a

simple polygon Pf .
(b) For each inner edge e with incident faces f and f ′, the interior regions of Pf and Pf ′ lie

on different sides of e.
Then H ′ contains no crossings.

In our case, the assumptions of this lemma are fulfilled: For the bounded faces, Property (a)
holds by assumption, and for the unbounded face, it has just been established in Step (C).
Property (b) has been established in Step (B). Thus, our second proof of Lemma 5 is complete
once we prove Lemma 6:

Proof of Lemma 6. Let Po denote the outer boundary, which is a simple polygon by as-
sumption (a). We prove that the polygons Pf tile the interior of Po without holes or overlap,
using a covering number argument. Consider a point p on the plane which does not lie on
an edge of one of the polygons. We can move this point to infinity along a straight ray
which avoids all polygon vertices. We keep track of the number X(p) of polygons in which
p is contained. Whenever we cross an edge e of some polygon, we leave one polygon and
enter another polygon, keeping X(p) constant, unless e is an edge of Po. In the last case,
X(p) changes by ±1 in the correct way. This argument remains valid if we cross several
edges simultanously (but we are about to show that this situation never occurs). Since
X(p) = 0 when p is far away outside all polygons, it follows that all points p, except those on
polygon boundaries, have X(p) = 1 if they lie inside Po, and X(p) = 0 if they lie outside Po.
Consequently, the union of the polygons Pf is the polygon bounded by Po, and the polygons
cover it without overlap. J

J

Stefan Felsner and Günter Rote 8:15

P

Figure 11 After placing a few faces, the outer cycle P might cross itself.

Our second proof of Lemma 5 generalizes to shapes Pf with curved edges: The matching
condition (iii) of the lemma must then be strengthened in an appropriate way. The angle
conditions corresponding to (i) and (ii) are not so straightforward to formulate, depending
on the generality of the allowed boundaries, and an additional constraint is required to
guarantee an overall convex shape (or at least a shape without self-overlap).

4.1 Comparison with Other Proofs
4.1.1 Lemma 5
We are aware of only one other proof of a statement like Lemma 5 in the literature: Brightwell
and Scheinerman [6] (who did not formulate it as a separate lemma) gave a proof that is
similar in spirit to our second proof. They successively place the polygons in some appropriate
order, such that the boundary P of the placed polygons is always a simple cycle in the graph.
In this way, what done in two separate Steps (A) and (B) in our proof, the placement of the
faces and ensuring the consistency of the vertex positions, is achieved together. Step (C) is not
necessary in their case, because the outer face is a triangle, and therefore it is automatically
non-intersecting. The same statement actually applies to the application of Lemma 5 in the
proof of our main theorem in Section 3.6, because the outer face is a rectangle in this case.

Step (D) is omitted in [6]. However, some argument like Lemma 6 is necessary, as
illustrated by a hypothetical situation in Figure 11: The shaded faces have already been
drawn, in a locally consistent way. While the outer boundary P forms a simple cycle in the
graph, it self-intersects in the plane. It is conceivable that such a boundary can be completed
with the remaining polygons to a locally consistent where the outer boundary becomes, say,
the rectangular outline. It requires a proof that this cannot occur.

The existence of an appropriate face order for the face placement is assumed without
justification in [6]. It is not hard to show that such an order can be chosen greedily: A
proper subset of bounded faces enclosed by a simple cycle P can always be extended by an
additional face f , so that f ∪ P is a connected curve, and the boundary remains a simple
cycle.

(Alternatively, one can choose an edge st on the outer face and use a “bipolar orientation”
(or an “s-t-numbering”), which is known to exist for any 2-connected graph. This results in
an acyclic orientation of the dual graph, and any linear extension of this acyclic orientation
is a suitable face order. We are grateful to Therese Biedl (private communication) for this
observation.)

SOSA 2019

8:16 On Primal-Dual Circle Representations

4.1.2 Lemma 6
Instead of Condition (b) of Lemma 6, we can stipulate that all faces are oriented consistently:

(b′) Every bounded face cycle of H is oriented in the same way in H and H ′.

Up to reflecting the drawing and reversing the orientation of every face, this is equivalent to
Condition (b): Condition (b′) clearly implies Condition (b). On the other hand, Condition (b)
implies that adjacent bounded faces must be oriented consistently. (When the interior of the
face is on the left, they must both be ordered clockwise or both counterclockwise.) Since
the graph is 2-connected, the dual graph of the bounded faces is connected, and hence all
bounded faces have to be ordered consistently.

A slightly different condition has been used by Devillers, Liotta, Preparata and Tamassia
[10, Lemma 16]. Their lemma states that the following condition, in conjunction with
Property (a), is sufficient to guarantee a non-crossing drawing:

(b′′) The cyclic order of the edges around every vertex is the same in H and H ′.

In contrast to Lemma 6, where the outer face of the initial drawing H is fixed and has to
remain unchanged in H ′, this variation gives up the a-priori distinction between inner faces
and the outer face. From the cyclic order in (b′′), one can infer the face structure by walking
around each face boundary, keeping the area of the face always to the left. The area of the
face might turn out to be the inner (bounded) or the outer (unbounded) region bounded by
the face cycle, depending on the orientation (counterclockwise or clockwise).

Our proof of Lemma 6 can be adapted to this situation: The regions Pf denote the
(bounded or unbounded) face areas, and the goal is to show that these regions tile the whole
plane, i. e., X(p) = 1 everywhere. To prove this, one has to establish that there is exactly
one unbounded face. This can be shown by an account of the angle sums, like in Step (C) of
our second proof of Lemma 5.

Lemma 16 of Devillers et al. [10] is stated for connected graphs and not just 2-connected
graphs. In this case, face cycles are no longer simple polygons. The proof in [10] is sketchy,
as acknowledged by one of the authors (private communication), and we could not fill all
gaps. It is fortunate that Lemma 6 offers an alternate approach.

Di Battista and Vismara [3, Lemma 4.5] have previously proved another variation of the
lemma where all interior faces are triangles. In this special case, condition (a) becomes trivial
for the interior faces. Instead of condition (a), the only requirement in addition to (b′′) is that
and the boundary of the outer face turns only in one direction (cf. condition (ii) of Lemma 5
and the discussion in Step (C) of our second proof of Lemma 5). Their proof is by induction
on the number of interior vertices, and the main argument proceeds by retriangulating the
hole that is left after removing an interior vertex, like our first proof of Lemma 5.

References
1 Nieke Aerts and Stefan Felsner. Straight Line Triangle Representations. Discr. and Comput.

Geom., 57:257–280, 2017. doi:10.1007/s00454-016-9850-y.
2 E. M. Andreev. Convex polyhedra in Lobačevskĭı spaces. Mat. Sb. (N.S.), 81 (123):445–478,

1970. English: Math. USSR, Sb. 10, 413–440 (1971).
3 Giuseppe Di Battista and Luca Vismara. Angles of planar triangular graphs. SIAM J.

Discrete Math., 9(3):349–359, August 1996.
4 Marshall W. Bern and David Eppstein. Quadrilateral Meshing by Circle Packing. Int. J.

Comput. Geometry Appl., 10:347–360, 2000.

http://dx.doi.org/10.1007/s00454-016-9850-y

Stefan Felsner and Günter Rote 8:17

5 Alexander I. Bobenko and Boris A. Springborn. Variational principles for circle patterns
and Koebe’s theorem. Trans. Amer. Math. Soc., 356:659–689, 2004.

6 G. R. Brightwell and E. R. Scheinerman. Representations of Planar Graphs. SIAM J.
Discr. Math., 6(2):214–229, 1993.

7 Yves Colin de Verdière. Empilements de cercles: convergence d’une méthode de point fixe.
Forum Math., 1:395–402, 1989.

8 Yves Colin de Verdière. Un principe variationnel pour les empilements de cercles. Invent.
Math., 104:655–669, 1991.

9 Hubert de Fraysseix, Patrice Ossona de Mendez, and Pierre Rosenstiehl. On Triangle
Contact Graphs. Comb., Probab. and Comput., 3(02):233–246, 1994.

10 Olivier Devillers, Giuseppe Liotta, Franco P. Preparata, and Roberto Tamassia. Checking
the convexity of polytopes and the planarity of subdivisions. Comput. Geom., 11(3-4):187–
208, 1998. doi:10.1016/S0925-7721(98)00039-X.

11 David Eppstein. Diamond-Kite Meshes: Adaptive Quadrilateral Meshing and Orthogonal
Circle Packing. In Proc. Mesh. Roundtable, pages 261–277. Springer, 2012.

12 David Eppstein. A Möbius-invariant power diagram and its applications to soap bubbles
and planar Lombardi drawing. Discrete Comput. Geom., 52:515–550, 2014.

13 Stefan Felsner. Rectangle and Square Representations of Planar Graphs. In J. Pach,
editor, Thirty Essays in Geometric Graph Theory, pages 213–248. Springer, 2013. doi:
10.1007/978-1-4614-0110-0_12.

14 Stefan Felsner, Alexander Igamberdiev, Philipp Kindermann, Boris Klemz, Tamara Mched-
lidze, and Manfred Scheucher. Strongly Monotone Drawings of Planar Graphs. In Proc.
32nd Intern. Symp. Comput. Geom. (SoCG 2016), volume 51 of LIPIcs, pages 37:1–15,
2016.

15 Stefan Felsner, Hendrik Schrezenmaier, and Raphael Steiner. Equiangular polygon contact
representations, 2017. page.math.tu-berlin.de/~felsner/Paper/kgons.pdf.

16 Stefan Felsner, Hendrik Schrezenmaier, and Raphael Steiner. Pentagon Contact Represen-
tations. Electronic J. Combin., 25(3):article #P3.39, 38 pp., 2018.

17 Daniel Gonçalves, Benjamin Lévêque, and Alexandre Pinlou. Triangle Contact Represen-
tations and Duality. Discr. and Comput. Geom., 48(1):239–254, 2012.

18 S. Har-Peled. A Simple Proof of the Existence of a Planar Separator. arXiv:1105.0103,
2011.

19 Nora Hartsfield and Gerhard Ringel. Pearls in Graph Theory: A Comprehensive Introduc-
tion. Academic Press, 1990.

20 Brad Jackson and Gerhard Ringel. Colorings of circles. Amer. Math. Monthly, 91:42–49,
1984.

21 Paul Koebe. Kontaktprobleme der konformen Abbildung. Ber. Verh. Sächs. Akad. Leipzig,
Math.-Phys. Klasse, 88:141–164, 1936.

22 László Lovász. Geometric Representations of Graphs. web.cs.elte.hu/~lovasz/geomrep.
pdf, December 2009. Draft version.

23 Gary L. Miller, Shang-Hua Teng, William Thurston, and Stephen A. Vavasis. Separators
for sphere-packings and nearest neighbor graphs. J. ACM, 44(1):1–29, 1997.

24 B. Mohar. Circle packings of maps in polynomial time. Europ. J. Comb., 18:785–805, 1997.
25 Bojan Mohar. Circle packings of maps—the Euclidean case. Rend. Sem. Mat. Fis. Milano,

67:191–206, 2000.
26 David Orden, Günter Rote, Francisco Santos, Brigitte Servatius, Herman Servatius, and

Walter Whiteley. Non-crossing frameworks with non-crossing reciprocals. Discrete and
Computational Geometry, 32:567–600, 2004. doi:10.1007/s00454-004-1139-x.

27 János Pach and Pankaj K. Agarwal. Combinatorial Geometry. John Wiley & Sons, 1995.

SOSA 2019

http://dx.doi.org/10.1016/S0925-7721(98)00039-X
http://dx.doi.org/10.1007/978-1-4614-0110-0_12
http://dx.doi.org/10.1007/978-1-4614-0110-0_12
http://page.math.tu-berlin.de/~felsner/Paper/kgons.pdf
http://arxiv.org/abs/1105.0103
http://web.cs.elte.hu/~lovasz/geomrep.pdf
http://web.cs.elte.hu/~lovasz/geomrep.pdf
http://dx.doi.org/10.1007/s00454-004-1139-x

8:18 On Primal-Dual Circle Representations

28 Gerhard Ringel. 250 Jahre Graphentheorie. In Graphs in research and teaching, pages
136–152. Franzbecker, 1985.

29 Burt Rodin and Dennis Sullivan. The convergence of circle packings to the Riemann
mapping. J. Differential Geom., 26:349–360, 1987.

30 Günter Rote, Francisco Santos, and Ileana Streinu. Pseudo-triangulations — a survey. In
Jacob E. Goodman, János Pach, and Richard Pollack, editors, Surveys on Discrete and
Computational Geometry—Twenty Years Later, volume 453 of Contemporary Mathematics,
pages 343–410. American Mathematical Society, 2008. arXiv:math/0612672.

31 H. Sachs. Coin Graphs, Polyhedra, and Conformal Mapping. Discr. Math., 134:133–138,
1994.

32 Oded Schramm. How to Cage an Egg. Invent. Math., 107:534–560, 1992.
33 Oded Schramm. Square tilings with prescribed combinatorics. Isr. J. Math., 84:97–118,

1993.
34 Oded Schramm. Combinatorically Prescribed Packings and Applications to Conformal and

Quasiconformal Maps. arXiv:0709.0710, 2007. Modified version of PhD thesis from 1990.
35 Kenneth Stephenson. Circle packing: a mathematical tale. Notices Amer. Math. Soc.,

50:1376–1388, 2003.
36 Kenneth Stephenson. Introduction to Circle Packing: The Theory of Discrete Analytic

Functions. Cambridge Univ. Press, 2005.
37 William Thurston. Geometry and Topology of Three-Manifolds. Princeton Univ., 1980.

Lecture Notes. Electronic edition: library.msri.org/books/gt3m/.
38 W. T. Tutte. How to draw a graph. Proc. London Math. Soc. (Ser. 3), 13:743–767, 1963.
39 G. Wegner. Problems in geometric convexity: Problem 86. In J. Tölke and J. M. Wills,

editors, Contributions to Geometry. Proceedings of the Geometry Symposium in Siegen
1978, page 274. Birkhäuser, 1979.

A Proof of Lemma 4

I Lemma 4. A simple bipartite plane graph with |S| ≥ 4 nodes has at most |E| ≤ 2|S| − 4
edges, with equality if and only if the graph is connected and every face is a quadrilateral with
four distinct vertices.

Proof. If the graph is not connected, we add a minimal set of edges to make it connected
while keeping it plane and bipartite, resulting in a larger edge set E′.

Since the graph is bipartite, every face cycle has even length. Moreover, every face cycle
contains at least 4 edges (possibly visiting both sides of a single edge). To see this, note that
the only possible exception, a “digonal” face cycle, would have to be the two sides of a single
isolated edge, or two parallel edges. Since |S| ≥ 3 and the graph is connected and has no
multiple edges this cannot happen.

Denoting the set of faces by F , standard double-counting gives the relation 4|F | ≤ 2|E′|,
because every edge has 2 sides, and every face cycle goes through at least 4 sides of edges.
Euler’s formula gives then |E′|+2 = |S|+|F | ≤ |S|+|E′|/2 and therefore |E′| ≤ 2|S|−4, with
equality if and only all face cycles have length 4. Together, in the chain |E| ≤ |E′| ≤ 2|S|− 4,
equality cannot hold if the original graph with edge set E was disconnected (|E| < |E′|).

We still have to exclude face cycles of length 4 that are not quadrilaterals (i. e., with 4
distinct vertices). Such a cycle could only be the face surrounding a path with two edges.
This is excluded because |S| ≥ 4 and the graph is connected. J

http://arxiv.org/abs/math/0612672
http://arxiv.org/abs/0709.0710
http://library.msri.org/books/gt3m/

Asymmetric Convex Intersection Testing
Luis Barba
Department of Computer Science, ETH Zürich, 8092 Zürich, Switzerland
luis.barba@inf.ethz.ch

Wolfgang Mulzer1

Institut für Informatik, Freie Universität Berlin, 14195 Berlin, Germany
mulzer@inf.fu-berlin.de

https://orcid.org/0000-0002-1948-5840

Abstract
We consider asymmetric convex intersection testing (ACIT).

Let P ⊂ Rd be a set of n points and H a set of n halfspaces in d dimensions. We denote
by ch(P) the polytope obtained by taking the convex hull of P , and by fh(H) the polytope
obtained by taking the intersection of the halfspaces in H. Our goal is to decide whether the
intersection of H and the convex hull of P are disjoint. Even though ACIT is a natural variant
of classic LP-type problems that have been studied at length in the literature, and despite its
applications in the analysis of high-dimensional data sets, it appears that the problem has not
been studied before.

We discuss how known approaches can be used to attack the ACIT problem, and we provide
a very simple strategy that leads to a deterministic algorithm, linear on n and m, whose running
time depends reasonably on the dimension d.

2012 ACM Subject Classification Mathematics of computing → Combinatorics

Keywords and phrases polytope intersection, LP-type problem, randomized algorithm

Digital Object Identifier 10.4230/OASIcs.SOSA.2019.9

Related Version Also available on the arXiv as https://arxiv.org/abs/1808.06460.

Acknowledgements This work was initiated at the Sixth Annual Workshop on Geometry and
Graphs, that took place March 11–16, 2018, at the Bellairs Research Institute. We would like
to thank the organizers and all participants of the workshop for stimulating discussions and for
creating a conducive research environment. We would also like Timothy M. Chan for answering
our questions about LP-type problems and for pointing us to several helpful references.

1 Introduction

Let d ∈ N be a fixed constant. Convex polytopes in dimension d can be implicitly represented
in two ways, either by its set of vertices, or by the set of halfspaces whose intersection defines
the polytope. A polytope represented by its vertices is usually called a V-polytope, while a
polytope represented by a set of halfspaces is known as an H-polytope. Note that the actual
complexity of the polytopes can be much larger than the size of their representations [20,
Theorem 5.4.5]. In this paper, we study the problem of testing the intersection of convex
polytopes with different implicit representations. When both polytopes have the same
representation, testing for their intersection reduces to linear programming. However, when

1 Partially supported by DFG grant MU/3501/3 and ERC STG 757609.

© Luis Barba and Wolfgang Mulzer;
licensed under Creative Commons License CC-BY

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy Fineman and Michael Mitzenmacher; Article No. 9; pp. 9:1–9:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luis.barba@inf.ethz.ch
mailto:mulzer@inf.fu-berlin.de
https://orcid.org/0000-0002-1948-5840
https://doi.org/10.4230/OASIcs.SOSA.2019.9
https://arxiv.org/abs/1808.06460
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

9:2 Asymmetric Convex Intersection Testing

there is a mismatch in the representation, the problem changes in nature and becomes more
challenging.

To formalize our problem, let P ⊂ Rd be a set of n points in Rd, and let H be a set of n
halfspaces in Rd.2 Just as P implicitly defines the polytope ch(P) obtained by taking the
convex hull of P , the set H implicitly defines the polytope fh(H) obtained by taking the
intersection of the halfspaces in H. In the asymmetric convex intersection problem (ACIT),
our goal is to decide whether the intersection of H and the convex hull of P are disjoint.

We may assume that fh(H) is nonempty. Otherwise, ACIT becomes trivial. If ch(P)
and fh(H) intersect, we would like to find a witness point in both ch(P) and fh(H); if
not, we would like to determine the closest pair between ch(P) and fh(H) and a separating
hyperplane.

Even though ACIT seems to be a natural problem that fits well into the existing work on
algorithmic aspects of high-dimensional polytopes [1], we are not aware of any prior work on
it. While intersection detection of convex polytopes has been a central topic in computational
geometry [14, 21, 13, 6, 5, 9], when we deal with an intersection test between a V-polytope
and an H-polytope, the problem seems to remain unstudied. Even the seemingly easy case of
this problem in dimension d = 2 has no trivial solution running in linear time.

The lack of a solution for ACIT may be even more surprising considering that ACIT
can be used in the analysis of high-dimensional data: given a high-dimensional data set,
represented as a point cloud P , it is natural to represent the interpolation of the data as the
convex hull ch(P). Then, we would like to know whether the interpolated data set contains
an item that satisfies certain properties. These properties are usually represented as linear
constraints that must be satisfied, i.e., the data point must belong to the intersection of a
set of halfspaces. Then, a witness point corresponds to an interpolated data point with the
desired properties, and a separating hyperplane may indicate which properties cannot be
fulfilled by the data at hand.

Even though ACIT has not been addressed before, several approaches for related problems3
may be used to attack the problem. The range of techniques goes from simple brute-force,
over classic linear programming [10], the theory of LP-type problems [8, 24] (also in implicit
form [2]), to parametric search [19]. In Section 2, we will examine these in more detail and
discuss their merits and drawbacks. Briefly, several of these approaches can be applied to
ACIT. However, as we will see, it seems hard to get an algorithm that is genuinely simple
and at the same time achieves linear (or almost linear) running time in the number of points
and halfspaces, with a reasonable dependency on the dimension d.

Thus, in Section 4, we present a simple recursive primal-dual pruning strategy that
leads to a deterministic linear time algorithm with a dependence on d that is comparable
to the best bounds for linear programming. Even though the algorithm itself is simple
and can be presented in a few lines, the analysis requires us to take a close look at the
polarity transformation and how it interacts with two disjoint polytopes (Section 3). Its
analysis is also non-trivial and its correctness spans over the entire Section 4.3. We believe
in the development of simple and efficient methods. The analysis can be complicated, but
the algorithm must remain simple. The simpler the algorithm, the more likely it is to be
eventually implemented.

2 We will assume that both P and H are in general position (the exact meaning of this will be made clear
later)

3 In particular, checking for the intersection of the convex hulls of to d-dimensional point sets

L. Barba and W. Mulzer 9:3

2 How to solve ACIT with existing tools

The first thing that might come to mind to solve ACIT is to cast it as a linear program.
This is indeed possible, however the resulting linear program consists of n variables and Θ(n)
constraints. We want to find a point x subject to being inside all halfspaces in H, and being a
convex combination of all points in P . That is, we want x =

∑
p∈P αp p, where

∑
p∈P αp = 1,

and αp ≥ 0, for all p ∈ P . Moreover, we want that x ∈ H, for all H ∈ H, which can be
expressed as n linear inequalities by looking at the scalar product of x and the normal vectors
of the bounding hyperplanes of the halfspaces. Because the best combinatorial algorithms
for linear programming provide poor running times when both the number of variables and
constraints are large, this approach is far from efficient unless n is really small.4

Another trivial way to solve ACIT, the brute force algorithm, is to compute all facets
of ch(P). That is, we can compute ch(P) explicitly to obtain a set HP of the O(nbd/2c)
halfspaces with ch(P) = fh(HP) [12, 7]. With this representation, we can test if fh(HP)
and fh(H) intersect using a general linear program with d variables, or compute the distance
between fh(HP) and fh(H) using either an LP-type algorithm (see below), or algorithms
for convex quadratic programming [16, 17]. The running time is again quite bad for larger
values of n, since the size of HP might be as high as Θ(nbd/2c) [20, Theorem 5.4.5].

A more clever approach is to use the LP-type framework directly, as described below.

The LP-type Framework. The classic LP-type framework that was introduced by Sharir
and Welzl [24] in order to extend the notion of low-dimensional linear programming to a
wider range of problems. An LP-type problem (C, w) consists of a set C of k constraints and
a weight function w : 2C → R that assigns a real-valued weight w(C) to each set C ⊆ C of
constraints.5 The weight function must satisfy the following three axioms:

Monotonicity: For any set C ⊆ C of constraints and any c ∈ C, we have w
(
C ∪ {c}

)
≤

w(C).
Existence of a Basis: There is a constant d̃ ∈ N such that for any C ⊆ C, there is a
subset B ⊆ C with |B| ≤ d̃ and w(B) = w(C).
Locality: For any B ⊆ C ⊆ C with w(B) = w(C) and for any c ∈ C, we have that if
w
(
C ∪ {c}

)
< w(C), then also w

(
B ∪ {c}

)
< w(B).

For C ⊆ C, an inclusion-minimal subset B ⊆ C with w(B) = w(C) is called a basis for C.
Solving an LP-type problem (C, w) amounts to computing a basis for C. Many algorithms
have been developed for this extension of linear programming, provided that base cases
with a constant number of constraints can be solved in O(1) time. Seidel proposed a simple
randomized algorithm with expected O(d̃!k) running time [23]. From there, several algorithms
have been introduced improving the dependency on d̃ in the running time [3, 11, 23, 24]. The
best known randomized algorithm solves LP-type problems in O(d̃2k + 2O(

√
d̃ log d̃)) time,

while the best deterministic algorithms have still a running time of the form O(d̃O(d̃)k). We
would like to obtain an algorithm with a similar running time for ACIT.

4 In fact, in the traditional computational model of computational geometry, the Real RAM [22], we
cannot solve general linear programs in polynomial time, since the best known algorithms (e.g., ellipsoid,
interior point methods) are only weakly polynomial with a running time that depends on the bit
complexity of the input.

5 Actually, we can allow weights from an arbitrary totally ordered set, but for our purposes, real weights
will suffice.

SOSA 2019

9:4 Asymmetric Convex Intersection Testing

ACIT as an LP-type problem. To use these existing machinery, one can try to cast ACIT
as an LP-type problem. To this end, we fix H, and define an LP-type problem (P,w) as
follows. The constraints are modeled by the points in P . The weight function w : 2P → R is
defined as w(Q) = d

(
ch(Q), fh(H)

)
, for any Q ⊆ P , where d(·, ·) is the smallest Euclidean

distance between any pair of points from the two polytopes. It is a pleasant exercise to show
that this indeed defines an LP-type problem of combinatorial dimension d.

Thus, the elegant methods to solve LP-type problems mentioned above become applicable.
Unfortunately, this does not give an efficient algorithm. This is because the set H remains
fixed throughout, making unfeasible to solve the base cases consisting of O(1) constraints of
P in constant time.

A randomized algorithm for ACIT. As an extension of the LP-type framework, Chan [2]
introduced a new technique that allows us to deal with certain LP-type problems where the
constraints are too numerous to write explicitly, and are instead specified “implicitly”. More
precisely, as mentioned above, ACIT can be seen as a linear program, with m constraints
coming from H, and O(nbd/2c) constraints coming from all the facets of ch(P). The latter are
implicitly defined by P using only n points. Thus an algorithm capable of solving implicitly
defined linear programs would provide a solution for ACIT. The technique developed by
Chan achieves this by using two main ingredients: a decision algorithm, and a partition
of the problem into subproblems of smaller size whose recursive solution can be combined
to produce the global solution of the problem. Using the power of randomization and
geometric cuttings, this technique leads to a complicated algorithm to solve this implicit
linear program, and hence ACIT, in expected O(dO(d)n) time [4]. Besides the complexity of
this algorithm, the constant hidden by the big O notation resulting from using this technique
seems prohibitive [18].

In hope of obtaining a deterministic algorithm for ACIT, one can turn to multidimensional
parametric search [19] to try de-randomizing the above algorithm. However, even if all the
requirements of this technique can be sorted out, it would lead to a highly complicated
algorithm and polylogarithmic overhead.

In the following sections, we present the first deterministic solution for ACIT using a
simple algorithm that overcomes the difficulties mentioned above. We achieve this solution
by diving into the intrinsic duality of the problem provided by the polar transformation,
while exploiting the LP-type-like structure of our problem. The resulting algorithm is quite
simple, and a randomized version of it could be written with a few lines of code, provided
that one has some LP solver at hand.

3 Geometric Preliminaries

Let o denote the origin of Rd. A hyperplane h is a (d− 1)-dimensional affine space in Rd of
the form

h = {x ∈ Rd | 〈z, x〉 = 1},

for some z ∈ Rd\{o}, where 〈·, ·〉 represents the scalar product in Rd. We exclude hyperplanes
that pass through the origin. A (closed) halfspace is the closure of the point set on either
side of a given hyperplane, i.e., a halfspace contains the hyperplane defining its boundary.

L. Barba and W. Mulzer 9:5

o

x

h

h∗

x∗

o

o

x

x∗

x

x∗

a) b)

c)

fh(P ∗)

P

fh(P ∗)

P

Figure 1 (a) The situation described in Lemma 3.1. (b) A valid set P of points that is embracing
and its polar P ∗ that is also embracing. (c) A set P that is avoiding and its polar P ∗ that is also
avoiding.

3.1 The Polar Transformation
Given a point p ∈ Rd, we define the polar of p to be the hyperplane

p∗ = {x ∈ Rd | 〈p, x〉 = 1}.

Given a hyperplane h in Rd, we define its polar h∗ ∈ Rd as the point with

h = {x ∈ Rd | 〈x, h∗〉 = 1}.

Let ρo(p) = {x ∈ Rd | 〈p, x〉 ≤ 1} and ρ∞(p) = {x ∈ Rd | 〈p, x〉 ≥ 1} be the two halfspaces
supported by p∗ such that o ∈ ρo(p) and o /∈ ρ∞(p). Similarly, ho and h∞ denote the
halfspaces supported by h such that o ∈ ho and o /∈ h∞ .

Note that the polar of a point p ∈ Rd is a hyperplane whose polar is equal to p, i.e., the
polar operation is involutory (for more details, see Section 2.3 in Ziegler’s book [25]). The
following result is illustrated in Figure 1(a), for d = 2.

I Lemma 3.1 (Lemma 2.1 of [1]). Let p and h be a point and a hyperplane in Rd, respectively.
Then, p ∈ ho if and only if h∗ ∈ ρo(p). Also, p ∈ h∞ if and only if h∗ ∈ ρ∞(p). Finally,
p ∈ h if and only if h∗ ∈ p∗.

Let P be a set of points in Rd. We say that P is embracing if o lies in the interior of
ch(P). We say that P is avoiding if o lies in the complement of ch(P). Note that we do
not consider point sets whose convex hull has o on its boundary. We say that P is valid if it
is either embracing or avoiding.

Let H be a set of halfspaces in Rd such that fh(H) 6= ∅, and the boundary of no halfspace
in H contains o. We say that H is embracing if o ∈ H for all H ∈ H (i.e., o ∈ fh(H)). We
say that H is avoiding if none of its halfspaces contains o, i.e., o /∈

⋃
H∈HH. We say that H

is valid if it is either embracing or avoiding.

SOSA 2019

9:6 Asymmetric Convex Intersection Testing

We now describe how to polarize convex polytopes defined as convex hulls of valid sets of
points or as intersections of valid sets of halfspaces. Let H be a valid set of halfspaces in Rd.
To polarize H, consider the set of hyperplanes bounding the halfspaces in H, and let H∗ be
the set consisting of all the points being the polars of these hyperplanes.

I Lemma 3.2. Let H be a valid set of halfspaces in Rd. Then, H∗ is embracing if and only
if H is embracing.

Proof. Recall that H is embracing if and only if fh(H) is bounded and contains o.
⇒). Assume that H∗ is embracing. Thus, o ∈ ch(H∗). In this case, there is a subset

Q of d + 1 points of H∗ whose convex hull contains o, by Carathéodory’s theorem [20,
Theorem 1.2.3]. Consider all halfspaces of H whose boundary polarizes to a point in Q. If
none of these halfspaces contains the origin, then their intersection has to be empty. This is
not allowed by the validity of H. Thus, as H is valid, and as H cannot avoid the origin, we
conclude that H is embracing.
⇐). For the other direction, assume that o /∈ ch(H∗). We want to prove that H is

not embracing. For this, let h be a hyperplane that separates o from ch(H∗). That is,
H∗ ⊂ h∞ . Lemma 3.1 implies that the segment oh∗ intersects the boundary of each plane in
H. Therefore, since the ray shooting from o in the direction of the vector −h∗ intersects no
plane bounding a halfspace in H, the polytope fh(H) either does not contain the origin or is
not bounded. Consequently, H is not embracing. J

Let P be a valid set of points in Rd. To polarize P , let Π(P) be the set of hyperplanes
polar to the points of P . We have two natural ways of polarizing P , depending on whether o
lies in the interior of ch(P), or in its complement (recall that o cannot lie on the boundary
of ch(P)). If o ∈ ch(P), then

P ∗ =
{
ho | h ∈ Π(P)

}
is the polarization of P . Otherwise, if o /∈ ch(P), then

P ∗ =
{
h∞ | h ∈ Π(P)

}
.

I Lemma 3.3. Let P be a valid set of points in Rd. Then P ∗ is valid, i.e., fh(P ∗) 6= ∅ and
P ∗ is either embracing or avoiding.

Proof. If o /∈ ch(P), then there is a hyperplane h such that P ⊂ h∞ . Thus, h∗ belongs to
p∗ for every p ∈ P , i.e., h∗ ∈ fh(P ∗). Thus, fh(P ∗) is nonempty, and none of its halfspaces
contains the origin by definition. That is, P ∗ is avoiding. If o ∈ ch(P), then o ∈ fh(P ∗) by
definition. Thus, to show that P ∗ is embracing, it remains only to show that it is bounded.
To this end, assume for a contradiction that fh(P ∗) is unbounded. Then, we can take a
point x ∈ fh(P ∗) at arbitrarily large distance from o. Thus, x∗ is a plane arbitrarily close to
o such that P ⊂ x∗. Therefore, all points of P must lie on a single halfspace that contains o
on its boundary. Because P is valid, we know that o cannot lie on the boundary of ch(P)
and hence, o /∈ ch(P)—a contradiction with our assumption that o ∈ ch(P). Therefore,
fh(P ∗) is bounded and hence P ∗ is embracing. J

I Lemma 3.4. Let P ⊂ Rd be a valid finite point set in d dimensions, and let H be a valid
finite set of halfspaces in d dimensions. Then the polar operator is involutory: P = (P ∗)∗

and H = (H∗)∗.

L. Barba and W. Mulzer 9:7

x

fh(H)

ch(H∗)

o

x∗

fh(P ∗)

ch(P)

Figure 2 An example of Theorem 3.6 in dimension 2, where a point x lies in the intersection of
ch(P) and fh(H) if and only if x∗ separates ch(H∗) from fh(P ∗).

Proof. The equality P = (P ∗)∗ follows directly from the definition, because the polar
operator for points and hyperplanes is involutory. For equality H = (H∗)∗, we must check
that the orientation of the halfspaces is preserved. First, if H is embracing, i..e, o ∈ fh(H),
then every H ∈ H is of the form H = ho , for some (d − 1)-dimensional hyperplane h.
Moreover, Lemma 3.2 implies that o ∈ ch(H∗). Thus, we have H = (H∗)∗ in this case.
Similarly, if H is avoiding, i.e., o 6∈

⋃
H∈HH, then every H ∈ H is of the form H = h∞ for

some (d− 1)-dimensional hyperplane h, and by Lemma 3.2, we have o 6∈ ch(H∗). Thus, we
have again H = (H∗)∗. J

I Corollary 3.5. Let P be a valid set of points in Rd. Then, P ∗ is embracing if and only if
P is embracing. Moreover, P ∗ is avoiding if and only if P is avoiding.

Proof. Because P is valid, P ∗ is valid by Lemma 3.3. Therefore, Lemma 3.2 implies that
P ∗ is embracing if and only if (P ∗)∗ is embracing. Because P = (P ∗)∗ by Lemma 3.4, we
conclude that P ∗ is embracing if and only if P is embracing. Note that if a valid set P is not
embracing, then it is avoiding, yielding the second part of the result. J

The following result is illustrated in Figure 2, for d = 2.

I Theorem 3.6 (Consequence of Theorem 3.1 of [1]). Let P be a finite set of points and
let H be a valid finite set of halfspaces in Rd such that either (1) P is avoiding while H is
embracing, or (2) P is embracing while H is avoiding. Then, a point x lies in the intersection
of ch(P) and fh(H) if and only if the hyperplane x∗ separates fh(P ∗) from ch(H∗). Also a
hyperplane h separates ch(P) from fh(H) if and only if the point h∗ lies in the intersection
of fh(P ∗) and ch(H∗).

Conditions (1) and (2) will be crucial in our algorithm. Note that by Corollary 3.5, we
have that if P and H satisfy condition (1), then the point set H∗ and the set P ∗ of halfspaces
satisfy condition (2), and vice versa.

3.2 Conflict Sets, Epsilon-nets, and Closest Pairs
Let P ⊆ Rd be a finite point set in d dimensions, and let H be a halfspace in Rd. We say
that a point p ∈ P conflicts with H if p ∈ H. The conflict set of P and H, denoted VH(P),
consists of all points p ∈ P that are in conflict with H, i.e., VH(P) = P ∩H. Let ε ∈ (0, 1)

SOSA 2019

9:8 Asymmetric Convex Intersection Testing

be a parameter. A set N ⊆ P is called an ε-net for P if for every halfspace H in Rd, we have

VH(N) = ∅ ⇒
∣∣VH(P)

∣∣ < ε|P |. (1)

By the classic ε-net theorem of Haussler and Welzl [15, Theorem 5.28], a random subset
N ⊂ P of size Θ

(
ε−1 log

(
ε−1 + α−1)) is an ε-net for P with probability at least 1 − α.

For a deterministic algorithm running in linear time, we can compute such a net using
the complicated algorithm of Chazelle and Matoušek [8, Chapter 4.3] or the much simpler
algorithm introduced by Chan [3]. See the textbooks of Matoušek [20], Chazelle [8], or
Har-Peled [15] for more details on ε-nets and their uses in computational geometry. The
following observation shows the usefulness of conflict sets for our problem.

I Lemma 3.7. Let P ⊆ Rd be a finite point set and H a finite set of halfspaces in d dimensions.
Let N ⊆ P such that fh(H) and ch(N) are disjoint, and let x, y be the closest pair between
them, such that x ∈ fh(H) and y ∈ ch(N). Let Hy be the halfspace through y perpendicular
to the segment xy, containing fh(H). Then, we have d

(
fh(H), P

)
< d

(
fh(H), N

)
if and

only if VHy (P) 6= ∅.

Proof. Since all points in Rd \Hy have distance larger than d
(
fh(H), N

)
from fh(H), the

implication VHy
(P) = ∅ ⇒ d

(
fh(H), P

)
< d
(
fh(H), N

)
is immediate.

Now assume that VHy (P) 6= ∅, say, p ∈ VHy (P). Then, the line segment py is contained
in ch(P), and since p ∈ VHy

(P) and since p does not lie on the boundary of Hy be our
general position assumption, it follows that the angle between the segments py and xy is
strictly smaller than π/2. Hence, we have

d
(
fh(H), P

)
≤ d(x, py) <

(
fh(H), N

)
,

as claimed. J

Similarly, let H be a finite set of halfspaces in d dimensions, and let p ∈ Rd be a point.
The conflict set Vp(H) of H and p consists of all halfspaces that do not contain p, i.e.
Vp(H) = {H ∈ H | p 6∈ H}. We have the following polar version of Lemma 3.7:

I Lemma 3.8. Let P ⊆ Rd be a finite point set and H a finite set of halfspaces in d dimensions.
Let H′ ⊆ H such that fh(H′) and ch(P) are disjoint, and let x, y be the closest pair between
them, such that x ∈ fh(H′) and y ∈ ch(P). Then, we have d

(
fh(H), P

)
> d
(
fh(H′), P

)
if

and only if Vx(H) 6= ∅.

Proof. First, if Vx(H) = ∅, then x ∈ fh(H), and since fh(H) ⊆ fh(H′), it follows that
d
(
fh(H), P

)
= d
(
fh(H′), P

)
.

Second, suppose that Vx(H) 6= ∅, say, H ∈ Vx(H). Then, x 6∈ H, and since, by gneral
position, x is the unique point in fh(H′) with d(x,ch(P)) = d(fh(H′),ch(P)), we have

d
(
fh(H), P

)
≥ d
(
fh(H′ ∪ {H}), P

)
> d
(
fh(H′), P

)
,

as claimed. J

The following lemma gives a polar meaning to the notion of ε-nets.

I Lemma 3.9. Let N ⊆ P be an ε-net for P such that if o ∈ ch(P), then also o ∈ ch(N).
For any point x ∈ Rd, it holds that if x ∈ fh(N∗), then

∣∣Vx

(
P ∗
)∣∣ ≤ ε|P |.

L. Barba and W. Mulzer 9:9

Proof. First, suppose that o ∈ ch(P), then, we have o ∈ ch(N), and hence o ∈ fh(N∗).
Since x ∈ fh(N∗), we have x ∈ ρo(p), for all p ∈ N . By Lemma 3.1, we get p ∈ ρo(x), for all
p ∈ N , so N ∩ ρ∞(x) = ∅. Since N is an ε-net for P , we conclude |P ∩ ρ∞(x)| ≤ ε|P |. The
claim now follows, because by Lemma 3.1, we have |P ∩ ρ∞(x)| = |Vx

(
P ∗)|.

Second, suppose that o 6∈ ch(P), then, we also get o 6∈ ch(N), and hence o 6∈
⋃

H∈N∗ H.
Since x ∈ fh(N∗), we have x ∈ ρ∞(p), for all p ∈ N . By Lemma 3.1, we get p ∈ ρ∞(x), for
all p ∈ N , so N ∩ ρo(x) = ∅. Since N is an ε-net for P , we conclude |P ∩ ρo(x)| ≤ ε|P |. The
claim now follows, because by Lemma 3.1, we have |P ∩ ρo(x)| = |Vx

(
P ∗)|. J

4 A Simple Algorithm

Let P be a valid set of n points and let H be a valid set of m halfspaces in Rd such that
either (1) P is avoiding while H is embracing, or (2) P is embracing while H is avoiding.
We first present a slightly more restrictive algorithm that requires conditions (1) or (2) to
hold. We spend the next few sections proving its correctness and running time, and then we
extend it to a general algorithm for the ACIT problem.

4.1 Description of the Algorithm
Our algorithm Test(P,H) takes P and H as input, such that either (1) or (2) is satisfied,
and it computes either the closest pair between ch(P) and fh(H), if ch(P) and fh(H) are
disjoint, or the closest pair between ch(H∗) and fh(P ∗), if ch(P) and fh(H) intersect. By
Theorem 3.6, this is always possible.

The algorithm is recursive. Let α = c d4 log d, for some appropriate constant c > 0. For
the base case, if both |P |, |H| ≤ α, we apply the brute force algorithm: we explicitly compute
the polytope ch(P) to obtain the set HP of hyperplanes with ch(P) = fh(HP), and we use
a classic LP-type algorithm to find the closest pair between ch(P) and fh(H) or between
fh(P ∗) and ch(H∗). Otherwise, we compute a (1/d4)-net N ⊆ P , and if necessary, we add
d+ 1 points to N such that if o ∈ ch(P), then o ∈ ch(N). These d+ 1 points can be found
in O(n) time using basic linear algebra. Then, we execute the following loop.
Repeat 2d + 1 times: Recursively call Test(H∗, N∗); there are two possibilities.
Case 1: ch(H∗) and fh(N∗) are disjoint. Then, Test(H∗, N∗) returns the closest pair x,

y, with x ∈ ch(H∗) and y ∈ fh(N∗) (unique by our general position assumption). Let
Vy ⊂ P ∗ be conflict set of P ∗ and y. If Vy = ∅, then report that ch(P) and fh(H)
intersect, and output x, y as the polar witness. Otherwise, add to N all elements of Vy

∗,
and continue with the next iteration.

Case 2: ch(H∗) and fh(N∗) intersect. Then, Test(H∗, N∗) returns the closest pair x, y
between fh((H∗)∗) = fh(H) and ch((N∗)∗) = ch(N), with x ∈ fh(H) and y ∈ ch(N).
Let H be the halfspace that contains fh(H) supported by the normal hyperplane of xy
through y. Let VH be the conflict set of P and H. If VH = ∅, then report that ch(P)
and fh(H) are disjoint, and output x, y as the witness. Otherwise, add to N all elements
of VH and continue with the next iteration.

If the loop terminates without a result, the algorithm finishes and returns an Error.

4.2 Running Time
While at this point we have no idea why Test(P,H) works, we can start by analyzing
its running time. In the base case, when both P and H have of at most α elements, we
can compute ch(P) explicitly to obtain the O

(
αbd/2c

)
halfspaces of HP . We can do this

SOSA 2019

9:10 Asymmetric Convex Intersection Testing

in a brute force manner by trying all d-tuples of P d and checking whether all of P is on
the same side of the hyperplane spanned by a given tuple, or we can run a convex-hull
algorithm [12, 7]. The former approach has a running time O

(
αd+1), while the latter

needs O
(
αbd/2c) time [12, 7]. Once we have HP at hand, we can run standard LP-type

algorithms with O(αbd/2c) constraints to determine the closest pair either between ch(P)
and fh(H), or between ch(H∗) and fh(P ∗). The running time of such algorithms is
O(dO(d)αbd/2c) = O(dO(d)) [3].

To see what happens in the main loop of the algorithm, we apply the theory of ε-nets, as
described in the Section 3. As mentioned there, the initial set N is a (1/d4)-net for P . Thus,
the size of each VH added to N in Case 2 of the main loop of our algorithm is at most n/d4.
Using Lemma 3.9, the same holds for any set Vy added in Case 1. Thus, regardless of the
case, the size of N at the beginning of the i-th loop iteration is at most max{in/d4, α}.

The main loop runs for at most 2d + 1 iterations. Thus, the size of N never exceeds
(2d + 1)n/d4 ≤ βn/d3, for some constant β > 0. Since the algorithm to compute the
(1/d4)-net N for P runs in time O(dO(d)n) [3, 8], we obtain the following recurrence for the
running time:

T (n,m) ≤

LP
(
α+ αbd/2c, d

)
+O

(
αbd/2c), if n,m ≤ α,

(2d+ 1) · T
(
m,max

{
βn/d3, α

})
+O(dO(d)n), otherwise.

We look further into T
(
m,max

{
βn/d3, α}

)
and notice that if we do not reach the base case,

then unfolding the recursion by one more step yields

T
(
m,max{βn/d3, α}

)
≤ (2d+ 1) · T

(
max{βn/d3, α},max{βm/d3, α}

)
+O(dO(d)m).

Thus, by contracting two steps into one, we get the following more symmetric relation:

T (n,m) ≤ (2d+ 1)2 · T
(

max{βn/d3, α},max{βm/d3, α}
)

+O
(
dO(d)(n+m)

)
,

for sufficiently large n and m. Together with the base case, one can show by induction that
this yields a running time of O(dO(d)(n+m)).

Remark. Because the best deterministic algorithm know for LP-type problems with n

constraints runs also in time O(dO(d)n) [3], substantial improvements on the running time of
our problem seem out of reach. If we allow randomization however, then we can improve
in two places. First of all, by randomly sampling O(α logn) elements of P , we obtain a
(1/d4)-net of P with high probability. Secondly, the base case could be solved with faster
algorithms. The best known randomized algorithms for LP-type problems with n constraints
have a running time of O(d2n+ 2O(

√
d log d)), which substantially improves the dependency

on d. Alternatively, we could use methods to solve convex quadratic programs in the base
case to find the closest pair between two H-polytopes.

4.3 Correctness
We show that Test(P,H) indeed tests whether ch(P) and fh(H) intersect. First, we verify
that the input to each recursive call Test(·, ·) satisfies either condition (1) or (2).

I Lemma 4.1. Let P ⊂ Rd be a finite point set and H a finite set of halfspaces in d

dimensions, such that either (1) P is avoiding while H is embracing, or (2) P is embracing
while H is avoiding. Consider a call of Test(P,H). Then, the input to each recursive call
satisfies either condition (1) or condition (2).

L. Barba and W. Mulzer 9:11

Proof. We do induction on the recursion depth. The base case holds by assumption. For
the inductive step, we note that if the input (P,H) satisfies condition (1), then (N,H)
also satisfies condition (1), for any subset N ⊆ P . For condition (2), first note that our
algorithm ensures that if o ∈ ch(P), then also o ∈ ch(N). This implies that if (P,H)
satisfies condition (2), then (N,H) also satisfies condition (2). Finally, if (P,H) satisfies
condition (1), then by Corollary 3.5

(
H∗, P ∗

)
satisfies condition (2), and vice-versa. The

claim follows. J

We are now ready for the correctness proof. We show that Test(P,H), with P and H
satisfying either (1) or (2), computes either the closest pair between ch(P) and fh(H), if
they are disjoint, or the closest pair between ch(H∗) and fh(P ∗), if the polytopes intersect.

We use induction on max{|P |, |H|}. For the base case, when the maximum is at most α,
our algorithm uses the brute-force method. This certainly provides a correct answer, by our
assumptions on P and H and by Theorem 3.6.

For the inductive set, we may assume that each recursive call to Test(·, ·) provides a
correct answer. It remains to show (i) that the main loop succeeds in at most 2d+1 iterations;
and (ii) if the main loop succeeds, the algorithm returns a valid closest pair.

Number of Iterations. We show that the algorithm will never return an Error, i.e., that
the loop will succeed in at most 2d+ 1 iterations. To start, we observe that the cases in the
algorithm cannot alternate: first, we encounter only Case 2, then, we encounter only Case 1.

I Lemma 4.2. It the main loop in algorithm Test(P,H) encounters Case 1, it will never
again encounter Case 2.

Proof. In each unsuccessful iteration, the set N grows by at least one element, so the convex
polytope fh(N∗) becomes smaller. Once fh(N∗) and ch(H∗) are disjoint, they will remain
disjoint for the rest of the algorithm, and by our inductive hypothesis, this will be reported
correctly by the recursive calls to Test(·, ·). J

We now bound the number of iterations in Case 2.

I Lemma 4.3. The algorithm can have at most d+ 1 iterations in Case 2. If there are d+ 1
iterations in Case 2, then the last iteration is successful and the algorithm terminates.

Proof. Suppose there are at least d+ 2 iterations in Case 2. By Lemma 4.2, each iteration
until this point encounters Case 2. Let N1 ⊂ N2 ⊂ · · · ⊂ Nd+2 be the set N at the
beginning of the first d+ 2 iterations in Case 2. By Lemma 3.7 and the inductive hypothesis,
each time we run into Case 2 unsuccessfully, the distance between ch(N) and fh(H)
decreases strictly. Since the first d + 1 iterations in Case 2 are not successful, this means
d(ch(Ni), fh(H)) > d(ch(Ni+1), fh(H)), for i = 1, . . . , d+ 1.

Because the (d+2)-th iteration runs into Case 2, it follows that ch(Nd+2) does not intersect
fh(H). Let x, y be the closest pair between fh(H) and ch(Nd+2), with y ∈ ch(Nd+2). Then,
y must lie on a face of ch(Nd+2), and by Carathéodory’s theorem [20, Theorem 1.2.3], there
is a set B ⊆ Nd+2 with at most d elements such that y ∈ ch(Bd+2). We claim that in each
prior iteration i = 1, . . . , d+ 1, the conflict set VH must contain at least one new element
of B. Otherwise, if all the elements of B were already in some Ni, with i ≤ d + 1, then
ch(Ni) would contain y and hence have a distance to fh(H) smaller or equal than ch(Nd+2),
leading to a contradiction. Similarly, if in an iteration i ≤ d + 1, all elements of B were
contained in H, then the distance between ch(Ni) and fh(H) could not strictly decrease,
by Lemma 3.7. However, B contains only d elements, and we have d+ 1 iterations, so we

SOSA 2019

9:12 Asymmetric Convex Intersection Testing

cannot add a new element of B at the end of each iteration Thus, the main loop can have at
most d unsuccessful iterations in Case 2 before either encountering Case 2 successfully or
reaching Case 1. J

I Lemma 4.4. The algorithm can have at most d+ 1 iterations in Case 1.

Proof. Similar to the proof of Lemma 4.3, assume that we have at least d + 2 iterations
in Case 1. Let N1 ⊂ N2 ⊂ · · · ⊂ Nd+2 be the set N at the beginning of each such
iteration. By Lemma 3.8 and the inductive hypothesis, each time we encounter Case 1
unsuccessfully, we strictly increase the distance between ch(H∗) and fh(N∗). That is,
d(ch(H∗), fh(Ni

∗)) > d(ch(H∗), fh(Ni+1
∗)), for i = 1, . . . , d+ 1.

Because we run into Case 1 in the (d + 2)-th iteration, it follows that ch(H∗) and
fh(Nd+2

∗) do not intersect. Let x, y be the closest pair between ch(H∗) and fh(Nd+2
∗),

with y ∈ fh(Nd+2
∗). Let B be the at most d elements in Nd+2 such that x, y is the closest

pair of ch(H∗) and fh(B∗). Note that y could either be a vertex of fh(B∗), or lie in the
relative interior of one of its faces. Observe that in each unsuccessful iteration in Case 1,
Vy must include a new member of B. Otherwise, if all the elements of B were already in
some Ni with i ≤ d+ 1, then fh(Ni

∗) would have a distance to ch(H∗) larger or equal than
fh(Nd+2

∗), leading to a contradiction. Similarly, if in an iteration i ≤ d+ 1, all elements of
B∗ were not in conflict with y, then the distance between fh(Ni

∗) and ch(H∗) could not
strictly decrease, by Lemma 3.8. However, this is impossible, because B has d elements and
we have at least d+ 1 unsuccessful iterations. Thus, in the (d+ 1)-th iteration at the latest,
we would observe that Vy is empty and the algorithm would finish. That is, the main loop
can run for at most d unsuccessful iterations in Case 1. J

Lemmas 4.2, 4.3, and 4.4 guarantee that the algorithm will finish successfully within
2d + 1 iterations and that it will never return an Error. It remains to argue that the
algorithm reports a correct closest pair if one of the two cases is encountered successfully.

Correctness of the Closest Pair. We first analyze the success condition of Case 1, i.e.,
when ch(H∗) and fh(N∗) are disjoint. This condition is triggered when we have a set N ⊆ P
and a point y ∈ fh(N∗) such that Vy = ∅. By Lemma 3.8, the closest pair x, y between
ch(H∗) and fh(N∗) then coincides with the closest pair between ch(H∗) and fh(P ∗). In
particular, this implies that ch(H∗) and fh(P ∗) are disjoint. Because the recursive call
returns correctly the closest pair x, y between ch(H∗) and fh(N∗) by induction, it follows
that the algorithm correctly returns the closest pair between ch(H∗) and fh(P ∗).

Next, we analyze the success condition of Case 2, i.e., when ch(H∗) and fh(N∗) intersect.
This implies by Theorem 3.6 that ch(N) and fh(H) are disjoint. Let x, y be the closest pair
between ch(N) and fh(H), with y ∈ ch(N). The success condition of Case 2 is triggered
when VH = ∅. By Lemma 3.7, this means that x, y coincides with the closest pair between
ch(P) and fh(H). In particular, ch(P) and fh(H) are disjoint. Because the recursive
call returns correctly the closest pair x, y between ch(N) and fh(H) by induction, the
algorithm correctly returns the closest pair between ch(P) and fh(H). This now shows that
Test(P,H) is indeed correct.

4.4 The Final Algorithm
Finally, we show how to remove the initial assumption that (P,H) satisfies either condition
(1) or condition (2).

L. Barba and W. Mulzer 9:13

I Theorem 4.5. Let P be a set of n points in Rd and let H be a set of m halfspaces in Rd.
We can test if ch(P) and fh(H) intersect in O(dO(d)(n + m)) time. If they do, then we
compute a point in their intersection; otherwise, we compute a separating plane.

Proof. Recall that our algorithm requires that either (1) o /∈ ch(P) and o ∈ fh(H), or (2)
o ∈ ch(P) and o /∈

⋃
H∈HH to work, which might not hold for the given P and H.

Thus, before running Test(P,H), we first compute a point in the interior of fh(H)
using standard linear programming in d+ 1 dimensions. More precisely, consider the linear
program max e, subject to Ax + e · 1 ≤ 1, e ≤ 1, where x ∈ Rd, e ∈ R are variables, 1 is
the m-dimensional all-ones-vector, and A ∈ Rm×d is the matrix whose rows are the normal
vectors of the hyperplanes that bound the halfspaces in H. Let (x∗, e∗) be an optimal solution.
Then, if e∗ < 0, the intersection fh(H) is empty, and if e∗ = 0, the intersection fh(H) is not
fully dimensional. Otherwise, if e∗ > 0, the point x∗ lies in the interior of fh(H). We change
the coordinate system so that x∗ coincides with o. Next, we use standard linear programming
to test if o ∈ ch(P). These two linear programs have a running time of O(dO(d)(n+m)) [3]
Notice that if o ∈ ch(P), then we are done. Otherwise, we guarantee that condition (1) is
satisfied, and we can run Test(P,H) in O(dO(d)(n+m)) time. J

References
1 Luis Barba and Stefan Langerman. Optimal detection of intersections between convex

polyhedra. In Proc. 26th Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA), pages
1641–1654, 2015.

2 Timothy M. Chan. An optimal randomized algorithm for maximum Tukey depth. In Proc.
15th Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA), pages 430–436, 2004.

3 Timothy M Chan. Improved deterministic algorithms for linear programming in low di-
mensions. ACM Trans. Algorithms, 14(3):30, 2018.

4 Timothy M Chan. Personal communication, 2018.
5 B. Chazelle and D. Dobkin. Intersection of Convex Objects in Two and Three Dimensions.

J. ACM, 34(1):1–27, January 1987.
6 Bernard Chazelle. An optimal algorithm for intersecting three-dimensional convex polyhe-

dra. SIAM J. Comput., 21:586–591, 1992.
7 Bernard Chazelle. An Optimal Convex Hull Algorithm in Any Fixed Dimension. Discrete

Comput. Geom., 10:377–409, 1993.
8 Bernard Chazelle. The Discrepancy Method - Randomness and Complexity. Cambridge

University Press, 2001.
9 Bernard Chazelle and David Dobkin. Detection is Easier than Computation (Extended

Abstract). In Proc. 12th Annu. ACM Sympos. Theory Comput. (STOC), pages 146–153,
1980.

10 Vašek Chvátal. Linear programming. A Series of Books in the Mathematical Sciences. W.
H. Freeman, 1983.

11 Kenneth L. Clarkson. A Las Vegas Algorithm for Linear ProgrammingWhen the Dimension
Is Small. In Proc. 29th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pages 452–456,
1988.

12 Kenneth L. Clarkson and Peter W. Shor. Application of Random Sampling in Computa-
tional Geometry, II. Discrete Comput. Geom., 4:387–421, 1989.

13 David Dobkin and David Kirkpatrick. A linear algorithm for determining the separation
of convex polyhedra. J. Algorithms, 6(3):381–392, 1985.

14 Herbert Edelsbrunner. Computing the extreme distances between two convex polygons. J.
Algorithms, 6(2):213–224, 1985.

SOSA 2019

9:14 Asymmetric Convex Intersection Testing

15 Sariel Har-Peled. Geometric approximation algorithms. American Mathematical Society,
2011.

16 Sanjiv Kapoor and Pravin M. Vaidya. Fast Algorithms for Convex Quadratic Programming
and Multicommodity Flows. In Proc. 18th Annu. ACM Sympos. Theory Comput. (STOC),
pages 147–159, 1986.

17 M. K. Kozlov, S. P. Tarasov, and L. G. Hačijan. The polynomial solvability of convex
quadratic programming. Zh. Vychisl. Mat. i Mat. Fiz., 20(5):1319–1323, 1359, 1980.

18 Guy Louchard, Stefan Langerman, and Jean Cardinal. Randomized Optimization: a Prob-
abilistic Analysis. Discrete Mathematics & Theoretical Computer Science, 2007.

19 Jiří Matoušek. Linear Optimization Queries. J. Algorithms, 14(3):432–448, 1993.
20 Jiří Matoušek. Lectures on Discrete Geometry. Springer-Verlag, 2002.
21 David E. Muller and Franco P. Preparata. Finding the intersection of two convex polyhedra.

Theoret. Comput. Sci., 7(2):217–236, 1978.
22 Franco P. Preparata and Michael Ian Shamos. Computational Geometry–An Introduction.

Springer-Verlag, 1985.
23 Raimund Seidel. Small-Dimensional Linear Programming and Convex Hulls Made Easy.

Discrete Comput. Geom., 6:423–434, 1991.
24 Micha Sharir and Emo Welzl. A combinatorial bound for linear programming and related

problems. Proc. 9th Sympos. Theoret. Aspects Comput. Sci. (STACS), pages 567–579, 1992.
25 Günter M. Ziegler. Lectures on Polytopes. Springer-Verlag, 1995.

Relaxed Voronoi: A Simple Framework for
Terminal-Clustering Problems∗

Arnold Filtser1

Ben-Gurion University of the Negev, Be’er Sheva, Israel
arnoldf@cs.bgu.ac.il

Robert Krauthgamer2

Weizmann Institute of Science, Rehovot, Israel
robert.krauthgamer@weizmann.ac.il

Ohad Trabelsi3

Weizmann Institute of Science, Rehovot, Israel
ohad.trabelsi@weizmann.ac.il

Abstract
We reprove three known algorithmic bounds for terminal-clustering problems, using a single
framework that leads to simpler proofs. In this genre of problems, the input is a metric space
(X, d) (possibly arising from a graph) and a subset of terminalsK ⊂ X, and the goal is to partition
the points X such that each part, called a cluster, contains exactly one terminal (possibly with
connectivity requirements) so as to minimize some objective. The three bounds we reprove are
for Steiner Point Removal on trees [Gupta, SODA 2001], for Metric 0-Extension in bounded
doubling dimension [Lee and Naor, unpublished 2003], and for Connected Metric 0-Extension
[Englert et al., SICOMP 2014].

A natural approach is to cluster each point with its closest terminal, which would partition
X into so-called Voronoi cells, but this approach can fail miserably due to its stringent cluster
boundaries. A now-standard fix, which we call the Relaxed-Voronoi framework, is to use en-
larged Voronoi cells, but to obtain disjoint clusters, the cells are computed greedily according
to some order. This method, first proposed by Calinescu, Karloff and Rabani [SICOMP 2004],
was employed successfully to provide state-of-the-art results for terminal-clustering problems on
general metrics. However, for restricted families of metrics, e.g., trees and doubling metrics,
only more complicated, ad-hoc algorithms are known. Our main contribution is to demonstrate
that the Relaxed-Voronoi algorithm is applicable to restricted metrics, and actually leads to
relatively simple algorithms and analyses.

2012 ACM Subject Classification Theory of computation → Random projections and metric
embeddings, Theory of computation → Graph algorithms analysis

Keywords and phrases Clustering, Steiner point removal, Zero extension, Doubling dimension,
Relaxed voronoi

Digital Object Identifier 10.4230/OASIcs.SOSA.2019.10

Related Version Full version at arXiv:1809.00942

∗ In earlier versions this algorithm was called “Noisy Voronoi”.
1 Work partially supported by the Lynn and William Frankel Center for Computer Sciences, ISF grant
1817/17, and by BSF Grant 2015813.

2 Work partially supported by ONR Award N00014-18-1-2364, the Israel Science Foundation grant
#1086/18, a Minerva Foundation grant, and a Google Faculty Research Award.

3 Work partly done at IBM Almaden.

© Arnold Filtser, Robert Krauthgamer, and Ohad Trabelsi;
licensed under Creative Commons License CC-BY

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy Fineman and Michael Mitzenmacher; Article No. 10; pp. 10:1–10:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arnoldf@cs.bgu.ac.il
mailto:robert.krauthgamer@weizmann.ac.il
mailto:ohad.trabelsi@weizmann.ac.il
https://doi.org/10.4230/OASIcs.SOSA.2019.10
https://arxiv.org/abs/1809.00942
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

10:2 Relaxed Voronoi: A Simple Framework for Terminal-Clustering Problems

1 Introduction

We consider terminal clustering problems, where the input is a metric space (X, d) with
k terminals K ⊆ X, and the goal is to partition the points (vertices) into k clusters, each
containing exactly one terminal, so as to minimize some objective. In the graphical version
of this problem, the input is a weighted graph G = (V,E,w) with terminals K ⊂ V and the
metric d is derived as the shortest-path metric on X = V with respect to the non-negative
edge weights w, and every output cluster should be connected (as an induced subgraph of
G).

We present for these problems a simple algorithmic framework that generalizes two
different known algorithms, from [3, 10]. Using this framework, we obtain simple algorithms
for two specific metric/graph classes, and recover their known bounds from [13, 19, 7] in a
unified manner that is arguably simpler and more insightful than previous work. In our case,
even the analysis is short and simple. Thus, our main contribution is to identify and present
the framework, and to (non-trivially) apply it to specific metric/graph classes, and we hope
it will lead to new results in the future. We proceed to define the two specific problems that
we investigate, and briefly survey their known bounds.

Metric 0-Extension (M0E). In this problem, the input is a metric space (X, d) and a set of
k terminals K ⊂ X, and the goal is to find a distribution D over retractions f (i.e., functions
f : X → K that satisfy f(x) = x for all x ∈ K), such that

∀x, y ∈ X, E
f∼D

[d(f(x), f(y))] ≤ α · d(x, y),

where α ≥ 1, called the expected distortion, is as small as possible. Throughout, we seek the
smallest α that holds for a class of metric spaces, for example all metrics with k terminals,
and then α = α(k).

The above is closely related to the well-known 0-Extension problem, in which the input
is a set X, a terminal set K ⊆ X, a metric dK over the terminals and a cost function c :(
X
2
)
→ R+, and the goal is to find a retraction f : X → K that minimizes

∑
{x,y}∈(X2) c(x, y) ·

dK(f(x), f(y)). The 0-Extension problem, first proposed by Karzanov [17], generalizes the
Multiway Cut problem [6] by allowing dK to be any discrete metric (instead of a uniform
metric) and it is also a special case of the Metric Labeling problem [18], whose objective
function has additional terms that represent assignment costs. Karzanov introduced a linear
programming (LP) relaxation for 0-Extension, which can be described as finding a (semi-
)metric dX over X that agrees with dK on K, and minimizes

∑
{x,y}∈(X2) c(x, y) · dX(x, y).

Rounding this LP relaxation is equivalent to the M0E problem (by the minimax theorem).
Consequently, most previous work on 0-Extension has actually focused on solving M0E, and
so does our work.

A well-known open problem is to determine the smallest distortion α(k) that suffices for
all metric spaces with k terminals. The currently known bounds are O (log k/ log log k) due
to Fakcharoenphol, Harrelson, Rao, and Talwar [8] (improving over [3]), and Ω(

√
log k) due

to Calinescu, Karloff and Rabani [3]. Improved upper bounds are known for special classes
of metric spaces X, for example O(1) for the case where X is the shortest-paths metric of a
graph excluding a fixed minor [3]. Another example is when the submetric on the terminals
(i.e., the restriction of d to K) is β-decomposable, which admits an O(β) upper bound [19]
(a somewhat similar bound was obtained in [1]). This implies an O(ddim(K)) upper bound,
where ddim(K) denotes the doubling dimension of the terminals’ submetric (see Section 2
for definition), and our results reproduce the latter bound.

A. Filtser, R. Krauthgamer, and O. Trabelsi 10:3

t1

t1

t2
t2

t3

t3

t4

t4

t5t5

V1

V2

V3

V4

V5

33

2
4

2

2

Figure 1 Example how a terminal partition of graph G (on left) induces a minor M (on right).
The graph shown has unit weight edges and 5 terminals, and the terminal partition is shown using
dashed curves. The distortion is dM (t2,t5)

dG(t2,t5) = 6
2 = 3.

Steiner Point Removal (SPR). In this problem, given a weighted graph G = (V,E,w) and
a set of terminals K ⊆ V , the goal is to find a minor M = (K,E′) of G (note its vertex set is
exactly the set of terminals), that approximately preserves the distances between terminals,
which means (using dH to denote the shortest-path metric in H) that

∀t, t′ ∈ K, dG(t, t′) ≤ dM (t, t′) ≤ α · dG(t, t′),

where α ≥ 1, called the distortion, is as small as possible. Again, we seek the best α that
holds for a class of graphs, say all graphs with k = |K| terminals.

Let us denoteK = {t1, . . . , tk}. A partition {V1, . . . , Vk} of V is called a terminal partition
(with respect to K) if for all i = 1, . . . , k, the induced subgraph G[Vi] is connected and
contains ti. The induced minor M of such a terminal partition is the minor obtained by
contracting each Vi into a single vertex called (abusing notation) ti. Thus, M has an edge
between ti and tj iff G has an edge between Vi and Vj . The weight of this edge (if exists) is
simply dG(ti, tj), which represents the shortest-path in G; see Figure 1 for an example. Most
of the work on SPR so far used terminal partitions to obtain a minor, and so does our work.

For the case where the graph G is a tree, the smallest distortion possible for SPR is known
to be 8. Gupta [13] constructed a tree achieving distortion 8; in fact, he was only interested
in constructing a tree with vertex set K, and later Chan, Xia, Konjevod, and Richa [4]
observed that Gupta’s tree is actually a minor of the given tree G. Surprisingly, they further
showed that 8 is the best possible distortion for the family of trees, as (unweighted) complete
binary trees require distortion 8− ε. Our results reproduce this upper bound of 8.

For SPR in general graphs there is currently a huge gap. The best lower bound known is
just 8, known for trees, and recently Filtser [9] showed an O(log k) upper bound (improving
over [16, 5]). No better upper bound is known even for seemingly much simpler cases such
as planar graphs, and the only other bound known is α = O(1) for outerplanar graphs [2].

1.1 Algorithmic Framework
A natural and straightforward algorithm for terminal clustering is to simply partition the
metric (or graph) into Voronoi cells, i.e., map each point (or vertex) to its closest terminal,
to obtain a partition of X (or V) with one cluster for each terminal. However, there are easy
examples where this algorithm fails miserably, because of the stringent cluster boundaries. A
now-standard fix is to build around each terminal (iteratively) a cluster that is an enlarged
Voronoi cell in the remaining metric (or graph).

SOSA 2019

10:4 Relaxed Voronoi: A Simple Framework for Terminal-Clustering Problems

Algorithm 1 Metric-Relaxed-Voronoi.
input :metric M = (X, d), terminals K, ordering π = (t1, . . . , tk),

magnitudes R1, . . . , Rk ≥ 1
output : retraction f : X → K (i.e., ∀x ∈ K, f(x) = x)

1 for j = 1, . . . , k do
2 for all unmapped points x such that d(tj , x) ≤ Rj ·D(x) do
3 set f(x) = tj

4 return f

This approach was first used by Calinescu, Karloff and Rabani [3]. We generalize their
method, so that all previous uses of this approach can be seen as instantiations of our
algorithm with specific parameters. Our algorithm, called Relaxed-Voronoi, is formally
described in Algorithm 1 where throughout we define

D(x) = d(x,K) = min
t∈K

d(x, t)

to be the distance from x ∈ X to its closest terminal. The algorithm’s parameters, formally
presented as part of the input, are an ordering π = (t1, . . . , tk) of the terminals and corre-
sponding magnitudes R1, . . . , Rk ≥ 1 (one for each terminal). The algorithm is rather simple;
each terminal tj , in turn according to the ordering, creates a cluster Vj = f−1(tj) containing
all yet-unclustered points x at distance d(x, tj) ≤ Rj ·D(v). That is, the cluster of tj is a
Voronoi cell “enlarged” by factor Rj in the remaining metric. Setting R1 = · · · = Rk = 1
recovers the partition into Voronoi cells.

The above algorithm cannot be used as is for the SPR problem, because a terminal
partition has an additional connectivity requirement. Therefore, in the graphical case,
instead of taking all remaining vertices x that satisfy dG(x, tj) ≤ Rj ·D(v), we create Vj in
a Dijkstra-like iterative fashion, as follows. Initially Vj = {tj}, and we repeatedly add to Vj
any unclustered vertex that has a neighbor in Vj and is at distance dG(v, tj) ≤ Rj ·D(v).
See Algorithms 2 and 3 for a formal description. This version of the Relaxed-Voronoi
algorithm was first proposed by Filtser [10] for the SPR problem in general graphs. It
is simpler to describe and to analyze than the Ball-Growing algorithm of previous work
[16, 5, 9].4 Filtser also showed that the Relaxed-Voronoi algorithm can be implemented in
time O(|E| log |V |).5

1.2 Our Contribution
All previous uses of the Relaxed-Voronoi algorithm were on general metrics or graphs.
Specifically, Calinescu et al. [3] and Fakcharoenphol et al. [8], used a uniformly random
ordering π and a single random magnitude R (same for all terminals), and Filtser [10] used an
arbitrary ordering π and magnitudes that are independently and identically distributed (i.i.d.)
drawn from an exponential-like distribution. However, for special families of metrics or graphs,

4 The Ball-Growing algorithm creates clusters in rounds, where each round iteratively enlarges every
cluster, by increasing its radius around each terminal (in the remaining graph) by a value sampled from
an exponential distribution.

5 The O(|E| log |V |)-time in [10] actually implements a slightly different algorithm, where the test
dG(v, tj) ≤ Rj ·D(v) (line 4) is replaced by dG[Vj∪{v}](v, tj) ≤ Rj ·D(v). The distortion bound holds
for this algorithm too.

A. Filtser, R. Krauthgamer, and O. Trabelsi 10:5

Algorithm 2 Graphic-Relaxed-Voronoi.
input :weighted graph G = (V,E,w), terminals K, ordering π = (t1, . . . , tk),

magnitudes R1, . . . , Rk ≥ 1
output :Minor M

1 V⊥ ← V \K // V⊥ is the currently unclustered vertices.
2 for j = 1, . . . , k do
3 Vj ← Create-Cluster(G,V⊥, tj , Rj)
4 V⊥ ← V⊥ \ Vj
5 return the terminal-centered minor M of G induced by V1, . . . , Vk

Algorithm 3 Create-Cluster.
input :weighted graph G = (V,E,w), unclustered vertices V⊥, terminal tj , magnitude Rj
output : cluster Vj

1 Vj ← {tj}, U ← ∅, N ← {all neighbors of tj in V⊥}
2 while N 6= ∅ do
3 pick an arbitrary vertex v ∈ N and remove it from N

4 if dG(v, tj) ≤ Rj ·D(v) then
5 add v to Vj
6 add all the neighbors of v in V⊥ \ (U ∪ Vj) to N
7 else
8 add v to U

9 return Vj

this type of algorithm was never used; instead, ad-hoc algorithms were developed, leading to
more involved algorithms and analyses. Our contribution is to tailor the Relaxed-Voronoi
algorithm to special input families by choosing the ordering π deterministically but depending
on the input at hand (rather than a random or arbitrary ordering). As a result, we reprove
three known results using simpler algorithms and analyses. We believe that this approach
will lead to additional and new results.

SPR on Trees. Gupta’s algorithm [13], which achieves distortion 8, is designed specifically
for trees and it is unclear how to generalize it. Its recursive definition makes it arguably
difficult to understand intuitively how its output on a given tree would look like. For example,
the fact that the algorithm is tight and produces a minor [4] was non-trivial and even
surprising. This result has proved useful in the past, yet it is a bit mysterious why 8 is the
optimal bound, i.e., what tradeoff does it optimize.

We use the Relaxed-Voronoi algorithm to construct a tree with optimal distortion 8. The
choice of parameters in the algorithm is very simple – the magnitudes are all set to Rj = 3,
and the ordering π is defined by listing the terminals in order of increasing distance from an
arbitrary “root” vertex v (breaking ties arbitrarily). Our algorithm’s description is simple
and intuitive, its distortion bound 8 is explained by the analysis, and it is straightforward
that the output tree is a minor of the input tree. Perhaps surprisingly, our algorithm outputs
the same tree as Gupta’s algorithm. Overall, our algorithm provides a better understanding
of Gupta’s celebrated result. We believe that this approach can be generalized to additional
graph families, and hopefully achieve a constant distortion for SPR on (say) planar graphs
(where the current bound is only O(log k), which holds for general graphs).

SOSA 2019

10:6 Relaxed Voronoi: A Simple Framework for Terminal-Clustering Problems

M0E on Doubling Metrics. Lee and Naor’s [19] algorithm achieves O(ddim) when the
submetric on the terminals (i.e., the metric’s restriction to points in K) has doubling
dimension at most ddim. Their algorithm is based on stochastic decompositions, specifically
converting padded decompositions into separating decompositions, then defining (new) partial
decompositions, and finally using these decompositions in all the possible distance scales.

We use the Relaxed-Voronoi algorithm to achieve the same O(ddim) upper bound, by
setting the parameters as follows. The magnitudes Rj are i.i.d., each distributed like 2 · eZ
where Z is drawn from an exponential distribution with parameter Θ(ddim). We set π to
be the Gonzalez order [12], where t1 is an arbitrary terminal, and each successive ti is the
terminal farthest from {t1, . . . , ti−1}, breaking ties arbitrarily. Our algorithm is much simpler,
more elegant, and its straightforward implementation takes only O(nk) time (assuming the
input is given as a matrix of pairwise distances). We hope that our ideas could lead to
a better upper bound for the SPR problem in the case where the metric restricted to the
terminals has a bounded doubling dimension.

Connected M0E. This is a graphic version of the M0E problem. The input metric is the
shortest-path metric of an edge-weighted graph G = (V,E,w), and similarly to the M0E
problem, the goal is to find a distribution over retractions f : V → K, but with an additional
requirement: each cluster f−1(tj) must be connected (as a subgraph of G). Englert et
al. [7] achieved for this problem expected distortion α = O(log k) using an algorithm that
partitions the graph vertices into clusters using stochastic decompositions in all possible
distance scales, and then merging some clusters to enforce connectivity. We use a graphic
version of the Relaxed-Voronoi algorithm (which guarantees connectivity) to achieve the
same expected distortion O(log k). When describing this algorithm, we abuse notation and
identify f(v) = tj with v ∈ Vj , i.e., when the algorithm adds a vertex v to cluster Vj , it
should be understood as also assigning f(v) = tj . The graphic Relaxed-Voronoi algorithm
is much simpler than the previous algorithm of [7], and we set its parameters as follows. The
ordering π is arbitrary, and the magnitudes Rj are i.i.d., each distributed like eZ where Z is
drawn from an exponential distribution with parameter Θ(log k). Even though this problem
is concerned with general graphs and there is nothing clever about the ordering, we still chose
to present this result, as it gives further evidence to the strength and broad applicability
of the Relaxed-Voronoi algorithm. Another advantage is that it can be implemented in
O(|E| log |V |) time, while the algorithm of [7] requires more time (an unspecified polynomial).
See Footnote 5 for additional details.

1.3 Related Work
The Voronoi-like approach was used also in other recent algorithms. Gupta and Talwar [15]
introduced the Random-Rates algorithm, in which each terminal tj samples a rate ρj ≥ 1,
and then every point x is clustered with the terminal tj that minimizes the ratio d(x,tj)

ρj
. The

main difference from the Relaxed-Voronoi algorithm is that in their algorithm, the terminals
create their clusters simultaneously (rather than sequentially), which does not guarantee that
the clusters are connected. Gupta and Talwar [15] proved an O(log k) expected distortion
for this algorithm on the M0E problem. It seems unlikely that their algorithm can provide
O(ddim(K)) upper bound, which usually follows by bounding the number of clusters relevant
to any “separation event” by 2O(ddim(K)). We achieve this using the sequential ordering, but
in their algorithm too many clusters can be relevant.

Miller, Peng and Xu [20] introduced the Parallel-Partition algorithm to partition
a graph into low-diameter clusters (without a given set of terminals). In this algorithm,

A. Filtser, R. Krauthgamer, and O. Trabelsi 10:7

each vertex u samples a random shift su ≥ 0, and then every vertex x joins the cluster of u
with minimum d(x, u)− su. This algorithm produces connected clusters, however, it gets as
an input a target diameter ∆ > 0, and its guarantees are proportional to this parameter.
In contrast, the Relaxed-Voronoi algorithm is scale-free and handles all distances scales
simultaneously (similar to the above Random-Rates algorithm), and therefore it is more
natural for terminal-partitioning problems.

2 Preliminaries

Consider an undirected graph G = (V,E) with non-negative edge weights w : E → R≥0 and
let dG denote the shortest-path metric in G. For a subset of vertices A ⊆ V , let G[A] denote
the induced graph on A. Fix K = {t1, . . . , tk} ⊆ V to be a set of the given terminals. As
mentioned earlier, for a vertex v ∈ V we define D(v) = mint∈K dG(v, t) to be the distance
from v to its closest terminal.

A graph H is a minor of a graph G if it can be obtained from G by edge deletions, edge
contractions, and vertex deletions. As defined earlier, a partition {V1, . . . , Vk} of V is called
a terminal partition (with respect to K) if for all i = 1, . . . , k, the induced subgraph G[Vi] is
connected and contains ti. The minor induced by a terminal partition {V1, . . . , Vk} is the
minor M obtained by contracting each set Vi into a single vertex called (abusing notation) ti.
Notice that M has an edge between ti and tj iff there are vertices vi ∈ Vi and vj ∈ Vj such
that {vi, vj} ∈ E. The weight of this edge (if exists) is simply dG(ti, tj), which represents
the shortest-path in G. It is easily verified that by the triangle inequality, for every pair
of (not necessarily adjacent) terminals ti, tj , we have dM (ti, tj) ≥ dG(ti, tj). The distortion
of the induced minor is maxi6=j dM (ti,tj)

dG(ti,tj) . It was proved in [10] that the Relaxed-Voronoi
algorithm always returns a terminal partition.

I Lemma 2.1 (Lemma 2 in [10]). The sets V1, . . . , Vk constructed by Algorithm 2 constitute
a terminal partition.

We say that a metric (X, d) has doubling dimension ddim if every ball of radius r > 0 can
be covered by at most 2ddim balls of radius r/2. We will use the following packing property
of doubling spaces [14]: Consider a set N such that for every x 6= y ∈ N it holds that
d(x, y) ≥ δ. Then every ball of radius ∆ ≥ δ contains at most

(4∆
δ

)O(ddim) = 2O(ddim · log ∆
δ)

points from N .
We denote by EXP(λ) the exponential distribution with mean λ > 0, which has density

function f(x) = 1
λe
− xλ for x ≥ 0. This distribution is memoryless: if X ∼ EXP(λ), then for

all a, b ≥ 0 we have Pr[X ≥ a + b | X ≥ a] = Pr[X ≥ b]. In other words, conditioned on
X ≥ a, it holds that X ∼ a+ EXP(λ).

3 SPR on trees

In this section we analyze the Relaxed-Voronoi algorithm (Algorithm 2) on trees.

I Theorem 3.1. Let T be a tree and r be an arbitrary vertex. Let π be an ordering of
the terminals according to an increasing distance from r. Then the tree TK returned by
the Relaxed-Voronoi algorithm on input (T,K, π, {3, 3, . . . , 3}) has distortion at most 8.
Moreover, the algorithm can be implemented in linear time.

In Section 3.1 we bound the distortion produced by our algorithm, and in Section 6
we describe its linear time implementation. See Figure 2 for an example execution of the
algorithm on a complete unweighted binary tree (the lower bound example used by [4]).

SOSA 2019

10:8 Relaxed Voronoi: A Simple Framework for Terminal-Clustering Problems

2 2 2 2 2 2 24 4

6 6 8 8 8 88

10 10 10 10 12 12 12 12 12 12 12 12

2 44 2 44 2 44 2 44 2 44 2 44 2 44 2 44 2 44 2 44 2 44 2 44

t1 t3 t5 t17 t33 t60 t64

t1

t3t2 t6

t5

t17

t18 t20

V1

V6 V11 V21

t11

t21 t33
t61

r

t60 t64

Figure 2 An example execution of the Relaxed-Voronoi algorithm. The top graph is the input,
a complete binary tree of height 6 with all the leaves as terminals. Choosing r to be the root of the
tree, the terminal ordering π can be arbitrary, and we choose a left-to-right ordering. The resulting
clusters are shown using colored curves. The bottom graph shows the minor induced by the terminal
partition above, representing every cluster by its top-most vertex (rather than the terminal). The
distortion is dTk

(t64,t60)
dT (t64,t60) = 32

6 = 5 2
3 .

3.1 Distortion Analysis
To better understand the final distortion bound 8, we analyze the Relaxed-Voronoi algorithm
for a general R > 1, and we optimize it only at the very end, setting R = 3 to obtain
distortion 8.

Denote by TK the tree minor returned by the algorithm, and call the vertex r (used
to determine π) the root. Let t1 be the first terminal w.r.t π, and let V1 be the cluster
that the Relaxed-Voronoi algorithm constructs for t1. This terminal t1 is the closest
terminal to the root r, and actually also to every vertex on the shortest path from t1 to
r. Therefore r joins the cluster V1. Let C1, . . . , Cs be the connected components of the
remaining graph G \ V1 = G[V \ V1], and let Ki = Ci ∩ K be the subset of terminals in
component Ci. We claim that for every vertex v ∈ Ci (for every i), its closest terminal tv
satisfies tv ∈ Ki. Indeed, assume towards contradiction that some vertex u on the path
between v to tv ∈ Ki joined V1. Consider then an arbitrary vertex u′ on the path from v

to u, and note that tv is also the closest terminal to both u, u′. By the triangle inequality,
dT (t1, u′) ≤ dT (t1, u) + dT (u, u′) ≤ R ·

(
dT (tv, u) + dT (u, u′)

)
= R · dT (tv, u′). This implies

that every vertex on the path from u to v will join V1 (recall we assumed u joins V1, and the
algorithm iteratively adds neighbor of vertices already in V1), in contradiction with v ∈ Ci.
See Figure 3 for illustration.

By construction, there is only a single edge ei that connects Ci and V1, and denote its
two endpoints by ri ∈ Ci and si ∈ V1. Let t̃i ∈ K be the closest terminal to ri, thus t̃i ∈ Ci.
Observe that ri is the closest vertex to r among all vertices in Ci, and in particular every
path from a terminal t ∈ Ci to r goes through ri. Let πi be an ordering of the terminals in
Ki according to increasing distance from ri. Note that πi is just the order π restricted to Ki.

A. Filtser, R. Krauthgamer, and O. Trabelsi 10:9

t1

tvv uu′

V1

Figure 3 Illustrating the argument that for every v ∈ Ci, also its closest terminal tv ∈ Ci.
Assuming some u on the path between them joined V1, we conclude the entire path from u to v
joins V1.

Since all the clusters created by the Relaxed-Voronoi algorithm are connected, no vertex in
Ci can join a cluster associated with a terminal outside Ki. In particular, for every v ∈ Ci
the distance D(v) to the closest terminal in the restricted tree G[Ci] remains the same (as
tv ∈ Ci). Therefore, if we execute the Relaxed-Voronoi algorithm on Ci with terminal set
Ki and order πi, the partition of Ci to clusters will be identical to the partition of Ci induced
by the original algorithm (on T with the order π). Accordingly, if we combine all the clusters
created by such executions with V1, we get the same terminal partition as produced by the
Relaxed-Voronoi algorithm on the original graph.

Next, we argue by induction on the number of terminals that for every terminal t,
dTK (t1, t) ≤ R+1

R−1 · dT (t1, t). In a tree with a single or two terminals this claim is trivial.
We now prove the induction step. Let ti be some terminal which belongs to the connected
component Ci (in T \ V1). By applying the induction hypothesis to the tree Ci with order
πi, it holds that dTk(ti, t̃i) ≤ R+1

R−1 · dT (ti, t̃i) as t̃i is the first terminal in the order πi. Note
that ri will necessarily join the cluster of t̃i, therefore the edge (ei = {si, ri}) crosses the
clusters of t1 and t̃i, which implies that there is an edge between t1 to t̃i in TK . See Figure 4
for illustration.

As ri has a neighbor in V1 but did not join V1, necessarily dT (t1, ri) > R · D(ri) =
R · dT (ri, t̃i). We conclude,

dTK (t1, ti) ≤ dTK
(
t1, t̃i

)
+ dTK

(
t̃i, ti

)
≤ dT

(
t1, t̃i

)
+ R+ 1
R− 1 · dT

(
t̃i, ti

)
≤ dT (t1, ri) +D(ri) + R+ 1

R− 1 ·
(
D(ri) + dT (ri, ti)

)
< dT (t1, ri) +

(
1 + R+ 1

R− 1
)
· dT (t1, ri)

R
+ R+ 1
R− 1 · dT (ri, ti)

= R+ 1
R− 1 ·

(
dT (t1, ri) + dT (ri, ti)

)
= R+ 1
R− 1 · dT (t1, ti) .

Finally, we show by induction that for every pair of terminals ti, tj ∈ K\{t1}, dTk(ti, tj) <
(R+1)2

R−1 · dT (ti, tj). If ti, tj belong to the same connected component of T \ V1 then the
argument follows by the induction hypothesis. Otherwise, ti ∈ Ci and tj ∈ Cj for i 6= j.
Recall that there is a single edge ei = {si, ri} from Ci to V1. Clearly, the unique path
in T from ti to tj goes through V1 and in particular through si and sj (note that it is
possible that si = sj). Therefore, dT (ti, tj) ≥ dT (ti, si) + dT (sj , tj). As si ∈ V1, it holds that
dT (t1, si) ≤ R ·D(si) ≤ R · dT (ti, si). Therefore,

dT (t1, ti) ≤ dT (t1, si) + dT (si, ti) ≤ (R+ 1) · dT (si, ti) . (1)

SOSA 2019

10:10 Relaxed Voronoi: A Simple Framework for Terminal-Clustering Problems

t1

t̃j

tj

t̃i

ti
ri

rj

si

sj

r

ej

ei

V1

Cj

Ci
Vt̃i

Vt̃j

Figure 4 Illustrating the bound on dTk(ti, tj). Initially dTk(t1, ti) is bounded. Notice that t̃i is
the closest terminal to ri. Using the induction hypothesis we have that dTk (t̃i, ti) ≤ R+1

R−1 · dT (t̃i, ti).
As {t1, t̃i} is an edge in Tk, the bound follows.
Next, the bound on dTk(ti, tj). Notice that dT (ti, tj) ≥ dT (ti, si) + dT (tj , sj). dTk(ti, tj) is upper
bounded by going through t1, using the assertion above.

Similarly dT (t1, tj) ≤ (R+ 1) · dT (sj , tj). Using our claim above about t1, we conclude (see
Figure 4 for illustration)

dTk (ti, tj) ≤ dTk (ti, t1) + dTk (t1, tj)

≤ R+ 1
R− 1 · (dT (ti, t1) + dT (t1, tj))

(1)
≤ (R+ 1)2

R− 1 · (dT (ti, si) + dT (sj , tj))

≤ (R+ 1)2

R− 1 · dT (ti, tj) .

The expression (R+1)2

R−1 is minimized by choosing R = 3, which proves the upper bound 8.

4 M0E for Doubling Metrics

In this section we analyze the Relaxed-Voronoi algorithm (Algorithm 1) for the M0E
problem, in the case where the metric spaces restricted on the terminals has doubling
dimension ddim. Given a metric space (X, d), Gonzalez’s order [12] is defined as follows. x1
is an arbitrary point, x2 is the farthest point from x1, and in general xi is the farthest point
from {x1, . . . , xi−1}. In other words, xi is the point maximizing d(xi, {x1, . . . , xi−1}).

I Theorem 4.1. Let (X, d) be a metric space with a set of terminals K ⊆ X such that the
metric space restricted to the terminals has doubling dimension ddim. Let π be Gonzalez’s
order. Let Rj = 2 · eZj , where Z1, . . . , Zk are i.i.d. variables sampled according to the
distribution EXP(c · ddim) for large enough constant c. Then the expected distortion returned
by the Relaxed-Voronoi algorithm for the M0E problem is O(ddim).

Proof. Consider a point x ∈ X, and let ix be the minimal index such that d(tx, tix) ≤ D(x).
Set Kx = {t1, . . . , tix}. As Rix ≥ 2, if x is unassigned until the ix round, then f(x) = tix .

A. Filtser, R. Krauthgamer, and O. Trabelsi 10:11

Therefore, f(x) ∈ Kx. For every t, t′ ∈ Kx \{tx}, d(t, t′) ≥ D(x). Using the packing property,
for i ≥ 1,

∣∣B (v, 2i ·D(v)
)
∩Kx

∣∣ ≤ ∣∣B (tx, (2i + 1
)
·D(v)

)
∩Kx

∣∣ = 2O(i·ddim).

I Lemma 4.2. For every x ∈ X, E [d(x, f(x))] = O (1) ·D(x).

Proof. For i ≥ 3, let Ki ⊆ Kx be the set of terminals at distance [2i−1, 2i) ·D(v) from x.
In order for the terminal tj ∈ Ki to cover x, it must be that Rj ≥ 2i−1, where a terminal t
covers a point z if f(z) = t. This happens with probability at most

Pr
[
Rj ≥ 2i−1] = Pr [Zj ≥ (i− 2) · ln 2] = e−c·ddim ·(i−2)·ln 2 ≤ e− c5 ·ddim ·i .

By the union bound, the probability that some terminal from Ki covers x is bounded by
|Ki| · e−

c
5 ·ddim ·i. We conclude that for large enough constant c,

E [d(x, f(x))] ≤ 22 ·D(x) +
∞∑
i=3

Pr [f(x) ∈ Ki] · 2i ·D(x)

= 4 ·D(x) +D(x) ·
∞∑
i=3

2O(i·ddim) · e− c5 ·ddim ·i · 2i = O(D(x)) . J

Consider a pair of points x, y ∈ X such that d(x, y) = ε ·min{D(x), D(y)}. If ε = Ω(1),
assume w.l.o.g that D(x) ≤ D(y), then D(y) ≤ D(x) + d(x, y) = O(1) · d(x, y). Using
Theorem 4.2 we conclude

E [d(f(x), f(y))] ≤ E [d(f(x), x)] + d(x, y) + E [d(y, f(y))]
= O (D(x) +D(y)) + d(x, y) = O (1) · d(x, y) . (2)

Thus from now on we can assume that ε is upper bounded by small enough constant, and we
also drop the assumption that D(x) ≤ D(y). We say that a terminal tj settles the pair {x, y}
if it is the first terminal to cover at least one point among {x, y}, and denote this event by
Sj . We say that tj cuts {x, y} if tj settles {x, y} but covers only one of x, y, and denote this
event by Cj . Set Rx = d(x,tj)

D(x) , Ry = d(y,tj)
D(y) . Assuming w.l.o.g that Rx ≤ Ry, we get

Ry = d(tj , y)
D(y) ≤

d(tj , x) + d(v, u)
D(x)− d(v, u) ≤

Rx ·D(x) + ε ·D(x)
D(x)− ε ·D(x) ≤ 1 + ε

1− ε ·Rx < (1 + 3ε) ·Rx . (3)

Assuming that tj settles {x, y}, using the memoryless property we can bound the probability
that tj cuts {x, y}.

Pr [Cj | Sj] = Pr [Rj < Ry | Rj ≥ Rx]
(3)
< Pr

[
2 · eZj < Rx · (1 + 3ε) | 2 · eZj < Rx

]
= Pr [Zj < ln(1 + 3ε)] < Pr [Zj < 3ε)] = 1− e−3ε·c·ddim ≤ 6ε · c · ddim . (4)

Suppose that tj indeed cuts {x, y}. Following the same arguments as Theorem 4.2, the
expected distance between y to f(y) still will be O(D(y)) = O(1

ε) · d(x, y). Thus,

E [d(f(x), f(y)) | Cj] ≤ d(tj , x) + d(x, y) + E [d(y, f(y)) | Cj]
= d(tj , {x, y}) +O

(1
ε

)
· d(x, y) . (5)

For i ≥ 1, denote by K̃i ⊆ Kx∪Ky the set of terminals at distance [2i−1, 2i)·min{D(x), D(y)}
from {x, y}. By packing arguments, |K̃i| = 2O(i·ddim). By similar arguments to Theorem 4.2,

SOSA 2019

10:12 Relaxed Voronoi: A Simple Framework for Terminal-Clustering Problems

for i ≥ 3, the probability that {x, y} is settled by a terminal from K̃i is bounded by 2−Ω(i·ddim).
We conclude,

E [d(f(x), f(y))] =

=
∑
j

Pr [Sj] · Pr [Cj | Sj] · E [d(f(x), f(y)) | Cj]

(4,5)
≤ 6ε · c · ddim ·

∑
j

Pr [Sj] ·
(
d(tj , {x, y}) +O

(1
ε

)
· d(x, y)

)

= O (ddim) · d(x, y) +O (ε · ddim) ·

4 +
∑
i≥3

2−Ω(i·ddim) · 2i
 ·min{D(x), D(y)}

= O (ddim) · d(x, y). J

5 Connected M0E

In this section we apply the (Graphic) Relaxed-Voronoi algorithm (Algorithm 2) to the
connected-M0E problem.

I Theorem 5.1. Let G = (V,E,w) be a weighted graph and K ⊆ X a set of terminals of
size k. Let π be arbitrary, and let Rj = eZj , where Z1, . . . , Zk are i.i.d. variables sampled
according to distribution EXP(c·ln k) for large enough constant c. Then the expected distortion
returned by the Relaxed-Voronoi algorithm for the connected M0E problem is O(log k).

By the triangle inequality, it is enough to prove that for every edge {u, v} ∈ E (where
dG(v, u) = w(v, u)) it holds that Ef∼D [d(f(u), f(v)] ≤ α · dG(v, u). The proof itself follows
almost the same lines as the proof of Theorem 4.1. With high probability, Rj ≤ 2 for every
terminal tj . Therefore, for every vertex v, d(v, f(v)) ≤ 2 ·D(v). Once a vertex v joins the
cluster Vj , the probability that its unclustered neighbor vertex u, at distance ε ·D(v), does
not join Vj is bounded by O(ε · log k) (similarly to Equation (4)). Using these two facts we
can bound the expected distortion by O(log k). We skip the exact details.

6 Linear-Time Implementation

Our algorithm often uses D(v). The next lemma state that this values can be computed
efficiently.

I Lemma 6.1. There is a linear-time algorithm, that given as an input a weighted graph
G = (V,E,w) and K ⊆ V a set of terminals, outputs for every vertex v ∈ V its distance
from K.

Proof. We describe the algorithm. We root the tree in some arbitrary vertex r ∈ V . Thus
each vertex (other then r) has a parent vertex. Our algorithm has two phases. In the first
phase we sweep the tree upwards from the leafs to the root. For a vertex v, denote by d(v)
the distance from v to it’s closest terminal among its descendants (∞ if it has no descendant
terminal). The goal of the first phase is for each vertex to learn d(v), and this is done in a
dynamic programing fashion according to the order induced by the tree. At the beginning
each leaf v know d(v) (0 if terminal and ∞ otherwise). Then, iteratively each internal vertex
v with children {v1, . . . , vs} computes d(v) = mini {d(vi) + d(vi, v)} or d(v) = 0 if v itself is
a terminal. It is straightforward by induction that by the end of the first phase each vertex

A. Filtser, R. Krauthgamer, and O. Trabelsi 10:13

has the right value of d(v). Moreover, for the root vertex r, D(r) = d(r) (as all the terminals
are the descendants of r).

In the second phase we sweep the tree downwards from the root to the leaves. In the first
step, r informs all its children the value D(r). Then, iteratively, each vertex v with parent v′
computes D(v) = min {d(v), D(v′) + d(v′, v)}. Again, by induction this is indeed the right
value (as every path ending in v which starts at a non-descendant of v must go through v′).
By the end of the second phase each vertex knows the correct value of D(v). The linear time
implementation follows as we traversed each edge exactly twice. J

The execution of the Relaxed-Voronoi algorithm starts by computing the D(v) values
in linear time according to Theorem 6.1. Next, in order to determine the permutation π,
we choose an arbitrary vertex r and run Dijkstra from it. In a tree, one can run the classic
Dijkstra algorithm (as in [11]) using a queue instead of a heap. As there is a unique path
from r to any other vertex, the algorithm still works properly. Next, we cluster the vertices
according to the permutation π. The set N from the Create-Cluster procedure can be
implemented as a simple queue. As there is a unique path between every pair of vertices,
once a vertex v joins N , we can update d(v, tj) to its correct value. Moreover, there is no
reason to maintain U . As in all the executions of the Create-Cluster procedure for all
terminals, each edge is traversed exactly once, the total linear time follows.

References
1 Aaron Archer, Jittat Fakcharoenphol, Chris Harrelson, Robert Krauthgamer, Kunal Tal-

war, and Éva Tardos. Approximate classification via earthmover metrics. In Proceedings of
the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’04, pages 1079–
1087, 2004. URL: http://dl.acm.org/citation.cfm?id=982792.982952.

2 A. Basu and A. Gupta. Steiner Point Removal in Graph Metrics. Unpublished Manuscript,
available from http://www.math.ucdavis.edu/~abasu/papers/SPR.pdf, 2008.

3 Gruia Călinescu, Howard J. Karloff, and Yuval Rabani. Approximation Algorithms
for the 0-Extension Problem. SIAM J. Comput., 34(2):358–372, 2004. doi:10.1137/
S0097539701395978.

4 T.-H. Chan, Donglin Xia, Goran Konjevod, and Andrea Richa. A Tight Lower Bound for
the Steiner Point Removal Problem on Trees. In Proceedings of the 9th International Con-
ference on Approximation Algorithms for Combinatorial Optimization Problems, and 10th
International Conference on Randomization and Computation, APPROX’06/RANDOM’06,
pages 70–81, 2006. doi:10.1007/11830924_9.

5 Yun Kuen Cheung. Steiner Point Removal - Distant Terminals Don’t (Really) Bother. In
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, pages 1353–1360, 2018. doi:10.1137/1.9781611975031.89.

6 Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour, and Mi-
halis Yannakakis. The Complexity of Multiway Cuts (Extended Abstract). In Proceedings
of the 24th Annual ACM Symposium on Theory of Computing, STOC 1992, pages 241–251,
1992. doi:10.1145/129712.129736.

7 Matthias Englert, Anupam Gupta, Robert Krauthgamer, Harald Räcke, Inbal Talgam-
Cohen, and Kunal Talwar. Vertex Sparsifiers: New Results from Old Techniques. SIAM J.
Comput., 43(4):1239–1262, 2014. doi:10.1137/130908440.

8 Jittat Fakcharoenphol, Chris Harrelson, Satish Rao, and Kunal Talwar. An improved
approximation algorithm for the 0-extension problem. In Proceedings of the 14th Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’03, pages 257–265, 2003. URL:
http://dl.acm.org/citation.cfm?id=644108.644153.

SOSA 2019

http://dl.acm.org/citation.cfm?id=982792.982952
http://www.math.ucdavis.edu/~abasu/papers/SPR.pdf
http://dx.doi.org/10.1137/S0097539701395978
http://dx.doi.org/10.1137/S0097539701395978
http://dx.doi.org/10.1007/11830924_9
http://dx.doi.org/10.1137/1.9781611975031.89
http://dx.doi.org/10.1145/129712.129736
http://dx.doi.org/10.1137/130908440
http://dl.acm.org/citation.cfm?id=644108.644153

10:14 Relaxed Voronoi: A Simple Framework for Terminal-Clustering Problems

9 Arnold Filtser. Steiner Point Removal with Distortion O(log k). In Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, pages
1361–1373, 2018. doi:10.1137/1.9781611975031.90.

10 Arnold Filtser. Steiner Point Removal with distortion O(log k), using the Noisy-Voronoi
algorithm. CoRR, abs/1808.02800, 2018. arXiv:1808.02800.

11 Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM, 34(3):596–615, 1987. doi:10.1145/28869.
28874.

12 Teofilo F. Gonzalez. Clustering to Minimize the Maximum Intercluster Distance. Theor.
Comput. Sci., 38:293–306, 1985. doi:10.1016/0304-3975(85)90224-5.

13 Anupam Gupta. Steiner Points in Tree Metrics Don’T (Really) Help. In Proceedings of the
Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’01, pages 220–227,
2001. URL: http://dl.acm.org/citation.cfm?id=365411.365448.

14 Anupam Gupta, Robert Krauthgamer, and James R. Lee. Bounded Geometries, Fractals,
and Low-Distortion Embeddings. In 44th Symposium on Foundations of Computer Science
(FOCS 2003), pages 534–543, 2003. doi:10.1109/SFCS.2003.1238226.

15 Anupam Gupta and Kunal Talwar. Random Rates for 0-Extension and Low-Diameter
Decompositions. CoRR, abs/1307.5582, 2013. arXiv:1307.5582.

16 Lior Kamma, Robert Krauthgamer, and Huy L. Nguyen. Cutting Corners Cheaply, or
How to Remove Steiner Points. SIAM J. Comput., 44(4):975–995, 2015. doi:10.1137/
140951382.

17 Alexander V. Karzanov. Minimum 0-Extensions of Graph Metrics. Eur. J. Comb., 19(1):71–
101, 1998. doi:10.1006/eujc.1997.0154.

18 Jon M. Kleinberg and Éva Tardos. Approximation algorithms for classification problems
with pairwise relationships: metric labeling and Markov random fields. J. ACM, 49(5):616–
639, 2002. doi:10.1145/585265.585268.

19 James R. Lee and Assaf Naor. Metric decomposition, smooth measures, and clustering.
Unpublished Manuscript, available from https://www.math.nyu.edu/~naor/homepage%
20files/cluster.pdf, 2003.

20 Gary L. Miller, Richard Peng, and Shen Chen Xu. Parallel graph decompositions using
random shifts. In 25th ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA ’13, pages 196–203, 2013. doi:10.1145/2486159.2486180.

http://dx.doi.org/10.1137/1.9781611975031.90
http://arxiv.org/abs/1808.02800
http://dx.doi.org/10.1145/28869.28874
http://dx.doi.org/10.1145/28869.28874
http://dx.doi.org/10.1016/0304-3975(85)90224-5
http://dl.acm.org/citation.cfm?id=365411.365448
http://dx.doi.org/10.1109/SFCS.2003.1238226
http://arxiv.org/abs/1307.5582
http://dx.doi.org/10.1137/140951382
http://dx.doi.org/10.1137/140951382
http://dx.doi.org/10.1006/eujc.1997.0154
http://dx.doi.org/10.1145/585265.585268
https://www.math.nyu.edu/~naor/homepage%20files/cluster.pdf
https://www.math.nyu.edu/~naor/homepage%20files/cluster.pdf
http://dx.doi.org/10.1145/2486159.2486180

Towards a Unified Theory of Sparsification for
Matching Problems

Sepehr Assadi1

Department of Computer and Information Science, University of Pennsylvania
Philadelphia, PA, US
sassadi@cis.upenn.edu

Aaron Bernstein
Department of Computer Science, Rutgers University
Piscataway, NJ, US
bernstei@gmail.com

Abstract
In this paper, we present a construction of a “matching sparsifier”, that is, a sparse subgraph
of the given graph that preserves large matchings approximately and is robust to modifications
of the graph. We use this matching sparsifier to obtain several new algorithmic results for the
maximum matching problem:

An almost (3/2)-approximation one-way communication protocol for the maximum matching
problem, significantly simplifying the (3/2)-approximation protocol of Goel, Kapralov, and
Khanna (SODA 2012) and extending it from bipartite graphs to general graphs.
An almost (3/2)-approximation algorithm for the stochastic matching problem, improving
upon and significantly simplifying the previous 1.999-approximation algorithm of Assadi,
Khanna, and Li (EC 2017).
An almost (3/2)-approximation algorithm for the fault-tolerant matching problem, which, to
our knowledge, is the first non-trivial algorithm for this problem.

Our matching sparsifier is obtained by proving new properties of the edge-degree constrained
subgraph (EDCS) of Bernstein and Stein (ICALP 2015; SODA 2016) – designed in the context
of maintaining matchings in dynamic graphs – that identifies EDCS as an excellent choice for
a matching sparsifier. This leads to surprisingly simple and non-technical proofs of the above
results in a unified way. Along the way, we also provide a much simpler proof of the fact that an
EDCS is guaranteed to contain a large matching, which may be of independent interest.

2012 ACM Subject Classification Theory of computation → Sparsification and spanners, The-
ory of computation → Graph algorithms analysis

Keywords and phrases Maximum matching, matching sparsifiers, one-way communication com-
plexity, stochastic matching, fault-tolerant matching

Digital Object Identifier 10.4230/OASIcs.SOSA.2019.11

Acknowledgements Sepehr Assadi is grateful to his advisor Sanjeev Khanna for many helpful
discussions, and to Soheil Behnezhad for sharing a write-up of [9].

1 Supported in part by the National Science Foundation grant CCF-1617851.

© Sepehr Assadi and Aaron Bernstein;
licensed under Creative Commons License CC-BY

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy Fineman and Michael Mitzenmacher; Article No. 11; pp. 11:1–11:20

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sassadi@cis.upenn.edu
mailto:bernstei@gmail.com
https://doi.org/10.4230/OASIcs.SOSA.2019.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

11:2 Towards a Unified Theory of Sparsification for Matching Problems

1 Introduction

A common tool for dealing with massive graphs is sparsification. Roughly speaking, a
sparsifier of a graph G is a subgraph H that (approximately) preserves certain properties of
G while having a smaller number of edges. Such sparsifiers have been studied in great detail
for various properties: for example, a spanner [6, 29] or a distance preserver [18, 20] preserves
pairwise distances, a cut sparsifier [26, 11, 22] preserves cut information, and a spectral
sparsifier [32, 8] preserves spectral properties of the graph. An additional property that we
often require of a graph sparsifier is robustness: it should continue to be a good sparsifier
even as the graph changes. Some sparsifiers are robust by nature (e.g cut sparsifiers), but
others (e.g spanners) are not, and for this reason there is an extensive literature on designing
sparsifiers that can provide additional robustness guarantees.

In this paper, we study the problem of designing robust sparsifiers for the prominent
problem of maximum matching. Multiple notions of sparsification for the matching problem
have already been identified in the literature. One example is a subgraph that preserves the
largest matching inside any given subset of vertices in G approximately. This notion is also
known as a matching cover or a matching skeleton [23, 27] in the literature and is closely
related to the communication and streaming complexity of the matching problem. Another
example of a sparsifier is a subgraph that can preserve the largest matching on random
subsets of edges of G, a notion closely related to the stochastic matching problem [15, 5]. An
example of a robust sparsifier for matching is a fault-tolerant subgraph, namely a subgraph
G that continue to preserve large matchings in G even after a fraction of the edges is deleted
by an adversary. As far as we know, the fault-tolerant matching problem has not previously
been studied, but it is a natural model to consider as it has received lots of attention in the
context of spanners and distance preservers (see e.g. [19, 28, 7, 17, 16]).

Our first contribution is a subgraph H that we show is a robust matching sparsifier in
all of the senses above. Our result is thus the first to unify these notions of sparsification for
the maximum matching problem. In addition to unifying, our construction yields improved
results for each individual notion of sparsification and the corresponding problems, namely,
the one-way communication complexity of matching, stochastic matching, and fault-tolerant
matching problems. Interestingly, our unified approach allows us to also provide much simpler
proofs than all previously existing work for these problems. The subgraph we use as our
sparsifier comes from a pair of papers by Bernstein and Stein on dynamic matching [13, 14] –
they refer to this subgraph as an edge-degree constrained subgraph (EDCS for short). The
EDCS was also very recently used in [2] to design sublinear algorithms for matching across
several different models for massive graphs. Our applications of the EDCS in the current
paper, as well as the new properties we prove for the EDCS, are quite different from those in
[13, 14, 2]. Our first contribution thus takes an existing subgraph, and then provides the
first proofs that it satisfies the three notions of sparsification described above.

Our second contribution is a much simpler (and even slightly improved) proof of the main
property of an EDCS in previous work proved in [13, 14], namely that an EDCS contains a
large matching of the original graph. Our new proof significantly simplifies the analysis of
[14] and allows for simple and self-contained proofs of the results in this paper.

Definition of the EDCS. Before stating our results, we give a definition of the EDCS
from [13, 14], as this is the subgraph we use for all of our results (see Section 2 for more
details).

S. Assadi and A. Bernstein 11:3

I Definition 1 ([13]). For any graph G(V,E) and integers β ≥ β− ≥ 0, an edge-degree
constrained subgraph (EDCS) (G, β, β−) is a subgraph H := (V,EH) of G with the following
two properties:
(P1) For any edge (u, v) ∈ EH : degH(u) + degH(v) ≤ β.
(P2) For any edge (u, v) ∈ E \ EH : degH(u) + degH(v) ≥ β−.

It is not hard to show that an EDCS of a graph G always exists for any parameters
β > β− and that it is sparse, i.e., only has O(nβ) edges. A key property of EDCS proven
previously [13, 14] (and simplified in our paper) is that for any reasonable setting of the
parameters (e.g. β− being sufficiently close to β), any EDCS H of G contains an (almost)
3/2 approximate matching of G.

1.1 Our Results and Techniques
We now give detailed definitions of the notions of sparsification and the corresponding
problems addressed in this paper, as well as our results for each one. Our second contribution
– a significantly simpler proof that an EDCS contains an almost (3/2)-approximate matching
– is left for Section 3.

One-Way Communication Complexity of Matching. Consider the following two-player
communication problem: Alice is given a graph GA(V,EA) and Bob holds a graph GB(V,EB).
The goal for Alice is to send a single message to Bob such that Bob outputs an approximate
maximum matching in EA ∪ EB. What is the minimum length of the message, i.e., the
one-way communication complexity, for achieving a certain fixed approximation ratio on all
graphs? One can show that the message communicated by Alice to Bob is indeed a matching
skeleton, namely a data structure (but not necessarily a subgraph), that allows Bob to find a
large matching in a given subset of vertices in Alice’s input (see [23] for more details).

This problem was first studied by Goel, Kapralov, and Khanna [23] (see also the subsequent
paper of Kapralov [25]), owing to its close connection to one-pass streaming algorithms for
matching. Goel et al. [23] designed an algorithm that achieves a (3/2)-approximation in
bipartite graphs using only O(n) communication and proved that any better than (3/2)-
approximation protocol requires n1+Ω(1

log log n) communication even on bipartite graphs (see,
e.g. [23, 4] for further details on this lower bound). A follow-up work by Lee and Singla [27]
further generalized the algorithm of [23] to general graphs, albeit with a slightly worse
approximation ratio of 5/3 (compared to 3/2 of [23]).

We extends the results in [23] to general graphs with almost no loss in approximation.

I Result 1. For any constant ε > 0, the protocol where Alice computes an EDCS of her
graph with β = O(1) and β− = β − 1 and sends it to Bob is a (3/2 + ε)-approximation
one-way communication protocol for the maximum matching problem with uses O(n)
communication.

We remark that both the previous algorithm of [23] as well as its extension in [27] are
quite involved and rely on a fairly complicated graph decomposition as well as an intricate
primal-dual analysis. As such, we believe that the main contribution in Result 1 is in fact in
providing a simple and self-contained proof of this result.

Stochastic Matching. In the stochastic matching problem, we are given a graph G(V,E)
and a probability parameter p ∈ (0, 1). A realization of G is a subgraph Gp(V,Ep) obtained
by picking each edge in G independently with probability p to include in Ep. The goal in

SOSA 2019

11:4 Towards a Unified Theory of Sparsification for Matching Problems

this problem is to find a subgraph H of G with max-degree bounded by a function of p
(independent of number of vertices), such that the size of maximum matching in realizations
of H is close to size of maximum matching in realizations of G. It is immediate to see that
H in this problem is simply a sparsifier of G which preserves large matchings on random
subsets of edges.

This problem was first introduced by Blum et al. [15] primarily to model the kidney
exchange setting and has since been studied extensively in the literature [3, 5, 10, 34]. Early
algorithms for this problem in [15, 3] (and the later ones for the weighted variant of the
problem [10, 34]) all had approximation ratio at least 2, naturally raising the question that
whether 2 is the best approximation ratio achievable for this problem. Assadi, Khanna, and
Li [5] ruled out this perplexing possibility by obtaining a slightly better than 2-approximation
algorithm for this problem, namely an algorithm with approximation ratio close to 1.999
(which improves to 1.923 for small p).

We prove that an EDCS results in a significantly improved algorithm for this problem.

I Result 2. For any constant ε > 0, an EDCS of G with β = O(log (1/p)
p) and β− = β−1

achieves a (3/2 + ε)-approximation algorithm for the stochastic matching problem with
a subgraph of maximum degree O(log (1/p)

p).

We remark that our bound on the maximum degree in Result 2 is optimal (up to an
O(log (1/p)) factor) for any constant-factor approximation algorithm (see [5]). In addition to
significantly improving upon the previous best algorithm of [5], our Result 2 is much simpler
than that of [5], in terms of the both the algorithm and (especially) the analysis.

Remark. Independently and concurrently, Behnezhad et al. [9] also presented an al-
gorithm for stochastic matching with a subgraph of max-degree O(log (1/p)

p) that achieves
an approximation of almost (4

√
2 − 5) (≈ 0.6568 compared to 0.6666 in Result 2). They

also provided an algorithm with approximation ratio strictly better than half for weighted
stochastic matching (our result does not work for weighted graphs). In terms of techniques,
our paper and [9] are entirely disjoint.

Fault-Tolerant Matching. Let f ≥ 0 be an integer, G(V,E) be a graph, and H be any
subgraph of G. We say that H is an α-approximation f -tolerant subgraph of G iff for
any subset F ⊆ E of size ≤ f , the maximum matching in H \ F is an α-approximation
to maximum matching in G \ F – that is, H is a robust sparsifier of G. This definition
is a natural analogy of other fault-tolerant subgraphs, such as fault-tolerant spanners and
fault-tolerant distance preservers (see, e.g. [19, 28, 7, 17, 16]), to the maximum matching
problem. Despite being such fundamental objects, quite surprisingly fault-tolerant subgraphs
have not previously been studied for the matching problem.

We complete our discussion of applications of EDCS as a robust sparsifier by showing
that it achieves an optimal size fault-tolerant subgraph for the matching problem.

I Result 3. For any constant ε > 0 and any f ≥ 0, there exists a (3/2+ε)-approximation
f -tolerant subgraph H of any given graph G with O(f + n) edges in total.

The number of edges used in our fault-tolerant subgraph in Result 3 is clearly optimal (up
to constant factors). In Appendix A.2, we show that by modifying the lower bound of [23] in
the communication model, we can also prove that the approximation ratio of (3/2) is optimal
for any f -tolerant subgraph with O(f) edges, hence proving that Result 3 is optimal in a
strong sense. We also show that several natural strategies for this problem cannot achieve

S. Assadi and A. Bernstein 11:5

better than 2-approximation, hence motivating our more sophisticated approach toward this
problem (see Appendix A.3).

The qualitative message of our work is clear: An EDCS is a robust matching sparsifier
under all three notions of sparsification described earlier, which leads to simpler and improved
algorithms for a wide range of problems involving sparsification for matching problems in a
unified way.

Overall Proof Strategy
Recall that our algorithm in all of the results above is simply to compute an EDCS H of the
input graph G (or GA in the communication problem). The analysis then depends on the
specific notion of sparsification at hand, but the same high- level idea applies to all three
cases. In each case, we have an original graph G, and then a modified graph G∗ produced
by changes to G: G∗ is GA ∪GB in the communication model, the realized subgraph Gp in
the stochastic matching, and the graph G \ F after adversarially removing edges F in the
fault-tolerant matching problem. Let H be the EDCS that our algorithm computes in G,
and let H∗ be the graph that results from H due to the modifications made to G. If we
could show that H∗ is an EDCS of G∗ then the proof would be complete, since we know that
an EDCS is guaranteed to contain an almost (3/2)-approximate matching. Unfortunately, in
all the three problems that we study it might not be the case that H∗ is an EDCS of G∗.
Instead in each case we are able to exhibit subgraphs H̃ ⊆ H∗ and G̃ ⊆ G∗ such that H̃
is an EDCS of G̃, and size of maximum matching of G̃ and G∗ differ by at most a (1 + ε)
factor. This guarantees an approximation ratio of almost (3/2)(1 + ε) (precisely what we
achieve in all three results above), since the EDCS H̃ preserves the maximum matching in G̃
to within an almost (3/2)-approximation and H̃ is a subgraph of H.

Organization. The rest of the paper is organized as follows. Section 2 includes notation,
simple preliminaries, and existing work on the EDCS. In Section 3, we present a significantly
simpler proof of the fact that an EDCS contains an almost (3/2)-approximation matching
(originally proved in [14]). Sections 4, 5, and 6 prove the sparsification properties of the
EDCS in, respectively, the one-way communication complexity of matching (Result 1), the
stochastic matching problem (Result 2), and the fault-tolerant matching problem (Result 3).
These three sections are designed to be self-contained (beside assuming the background in
Section 2) to allow the reader to directly consider the part of most interest. The appendix
contains some secondary observations.

2 Preliminaries and Notation

Notation. For any integer t ≥ 1, [t] := {1, . . . , t}. For a graph G(V,E) and a set of vertices
U ⊆ V , NG(U) denotes the neighbors of vertices in U in G and EG(U) denotes the set of
edges incident on U . Similarly, for a set of edges F ⊆ E, V (F) denotes the set of vertices
incident on these edges. For any vertex v ∈ V , we use degG(v) to denote the degree of v ∈ V
in G (we may drop the subscript G in these definitions if it is clear from the context). We
use µ(G) to denote the size of the maximum matching in the graph G.

Throughout the paper, we use the following two standard variants of the Chernoff bound.

I Proposition 2 (Chernoff Bound). Suppose X1, . . . , Xt are t independent random variables
that take values in [0, 1]. Let X :=

∑t
i=1Xi and assume E [X] ≤ λ. For any δ > 0 and

SOSA 2019

11:6 Towards a Unified Theory of Sparsification for Matching Problems

integer k ≥ 1,

Pr
(
|X − E [X]| ≥ δ · λ

)
≤ 2 · exp

(
− δ2 · λ

3

)
,

Pr
(
|X − E [X]| ≥ k

)
≤ 2 · exp

(
− 2k2

t

)
.

We also need the following basic variant of Lovasz Local Lemma (LLL).

I Proposition 3 (Lovasz Local Lemma; cf. [21, 1]). Let p ∈ (0, 1) and d ≥ 1. Suppose
E1, . . . , Et are t events such that Pr (Ei) ≤ p for all i ∈ [t] and each Ei is mutually independent
of all but (at most) d other events Ej. If p · (d+ 1) < 1/e then Pr

(
∩ni=1Ei

)
> 0.

Hall’s Theorem. We use the following standard extension of the Hall’s marriage theorem
for characterizing maximum matching size in bipartite graphs.

I Proposition 4 (Extended Hall’s marriage theorem; cf. [24]). Let G(L,R,E) be any bipartite
graph with |L| = |R| = n. Then, max

(
|A| − |N(A)|

)
= n− µ(G), where A ranges over L

or R. We refer to such set A as a witness set.

Proposition 4 follows from Tutte-Berge formula for matching size in general graphs [33, 12]
or a simple extension of the proof of Hall’s marriage theorem itself

Previously Known Properties of the EDCS

Recall the definition of an EDCS in Definition 1. It is not hard to show that an EDCS
always exists as long as β > β− (see, e.g. [2]). For completeness, we repeat the proof in the
Appendix A.1.

I Proposition 5 (cf. [13, 14, 2]). Any graph G contains an EDCS(G, β, β−) for any param-
eters β > β−, which can be found in polynomial time.

The key property of an EDCS, originally proved in [13, 14], is that it contains an almost
(3/2)-approximate matching.

I Lemma 6 ([13, 14]). Let G(V,E) be any graph and ε < 1/2 be a parameter. For parameters
λ ≤ ε

100 , β ≥ 32λ−3, and β− ≥ (1 − λ) · β, in any subgraph H := EDCS(G, β, β−),
µ(G) ≤

(3
2 + ε

)
· µ(H).

Another particularly useful (technical) property of an EDCS is that it “balances” the
degree of vertices and their neighbors in the EDCS; this property is implicit in [13] but we
explicitly state and prove it here as it shows a main distinction in the properties of EDCS
compared to more standard (and less robust) subgraphs in this context such as b-matchings.

I Proposition 7. Let H := EDCS(G, β, β−) and U be any subset of vertices. If average
degree of U in H is d̄ then average degree of NH(U) from edges incident on U is ≤ β − d̄.

Proof. Let H ′ be a subgraph of H containing the edges incident on U . Let W := NH′(U) =
NH(U) and E′ = EH(U,W) = EH′(U,W). We are interested in upper bounding the quantity
|E′| / |W |. Firstly, by Property (P1) of EDCS, we have that

∑
(u,v)∈E′ degH′(u)+degH′(v) ≤

S. Assadi and A. Bernstein 11:7

β · |E′| . We write the LHS in this equation as:∑
(u,v)∈E′

degH′(u) + degH′(v) =
∑
u∈U

(degH′(u))2 +
∑
w∈W

(degH′(w))2

≥
∑
u∈U

(|E
′|
|U |

)2 +
∑
w∈W

(|E
′|

|W |
)2

(as
∑

u
degH′(u) =

∑
w

degH′(w) =
∣∣E′∣∣ and each is minimized when the summands are equal.)

= |E′| ·
(
d̄+ |E′| / |W |

)
.

By plugging in this bound in LHS above, we obtain |E′| / |W | ≤ β−d̄, finalizing the proof. J

3 A Simpler Proof of the Key Property of an EDCS

In this section we provide a much simpler proof of the key property that an EDCS contains
an almost (3/2)-approximate matching. This lemma was previously used in [13, 14, 2]. Our
proof is self-contained to this section, and for general graphs, our new proof even improves
the dependence of β on parameter λ from 1/λ3 to (roughly) 1/λ2, thus allowing for an even
sparser EDCS.

The proof contains two steps. We first give a simple and streamlined proof that an EDCS
contains a (3/2)-approximate matching in bipartite graphs. Our proof in this part is similar
to [13] but instead of modeling matchings as flows and using cut-flow duality, we directly
work with matchings by using Hall’s theorem. The main part of the proof however is to
extend this result to general graphs. For this, we give a simple reduction that extends the
result on bipartite graphs to general graphs by taking advantage of the “robust” nature of
EDCS. This allows us to bypass the complicated arguments in [14] specific to non-bipartite
graphs and to obtain the result directly from the one for bipartite graphs (the paper of [14]
explicitly acknowledges the complexity of the proof and asks for a more “natural" approach).

A Slightly Simpler Proof for Bipartite Graphs
Our new proof should be compared to Lemma 2 in Section 4.1 of the Arxiv version of [13].

I Lemma 8. Let G(L,R,E) be any bipartite graph and ε < 1/2 be a parameter. For λ ≤ ε
4 ,

β ≥ 2λ−1, and β− ≥ (1−λ)·β, in any subgraph H := EDCS(G, β, β−), µ(G) ≤
(3

2 + ε
)
·µ(H).

Proof. Fix any H := EDCS(G, β, β−) and let A be any of its witness sets in extended Hall’s
marriage theorem of Proposition 4 and B := NH(A). Without loss of generality, let us
assume A is a subset of L. Define A := L \A, B := R \B (see Figure 1). By Proposition 4,∣∣A∣∣+ |B| = n− (|A| − |B|) ≤ n− (n− µ(H)) = µ(H). (1)

On the other hand, since G has a matching of size µ(G), we need to have a matching M of
size (µ(G)− µ(H)) between A and B as otherwise by Proposition 4, A would be a witness
set in G that implies the maximum matching of G is smaller than µ(G) (to see why the
set of edges between A and B is a matching simply apply Proposition 4 to a subgraph of
G containing only a maximum matching of G). Let S ⊆ A ∪ B be the end points of this
matching (see Figure 1). As edges in M are all missing from H, by Property (P2) of EDCS
H, we have that,∑

v∈S
degH(v) =

∑
(u,v)∈M

(degH(u) + degH(v)) ≥ (µ(G)− µ(H)) · β−. (2)

SOSA 2019

11:8 Towards a Unified Theory of Sparsification for Matching Problems

A

A

B

B

A

A

B

B

(a) A and B := NH(A) form a Hall’s theorem
witness set in EDCS H and

∣∣A ∪B∣∣ ≤ µ(H).

A

A

B

B

A

A

B

B

S

S

S

S

(b) There is a matching of size µ(G) − µ(H)
between A and B (i.e., the set S) in G \H.

Figure 1 The partitioning of vertices used in the proof of Lemma 8.

Consequently, as |S| = 2(µ(G) − µ(H)), the average degree of S is ≥ β−/2. As such, by
Proposition 7, the average degree of of NH(S) (from S) is at most β − β−/2 ≤ (1 + λ)β/2.
Finally, note that NH(S) ⊆ A ∪B as there are no edges between A and B in H, and hence
by Eq (1), |NH(S)| ≤ µ(H). By double counting the number of edges between S and NH(S),
i.e., EH(S):

|EH(S)| ≥ |S| · β−/2 ≥ 2(µ(G)− µ(H)) · β−/2,
|EH(S)| ≤ |NH(S)| (1 + λ)β/2 ≤ µ(H) · (1 + λ)β/2.

This implies that,

2µ(G) ≤ 2µ(H) + µ(H) · (1 + λ)(β/2) · (2/β−) ≤ 3µ(H) · 1 + λ

1− λ ≤ 3µ(H)(1 + ε).

Reorganizing the terms above finalizes the proof. J

A Much Simpler Proof for Non-bipartite Graphs
Our new proof in this part should be compared to Lemma 5.1 on page 699 in [14]: see
Appendix B of their paper for the full proof, as well Section 4 for an additional auxiliary
claim needed.

I Lemma 9. Let G(V,E) be any graph and ε < 1/2 be a parameter. For λ ≤ ε
32 , β ≥

8λ−2 log (1/λ), and β− ≥ (1 − λ) · β, in any subgraph H := EDCS(G, β, β−), µ(G) ≤(3
2 + ε

)
· µ(H).

Proof. The proof is based on the probabilistic method and Lovasz Local Lemma. Let M? be
a maximum matching of size µ(G) in G. Consider the following randomly chosen bipartite
subgraph G̃(L,R, Ẽ) of G with respect to M?, where L ∪R = V :

For any edge (u, v) ∈ M?, with probability 1/2, u belongs to L and v belongs to R,
and with probability 1/2, the opposite (the choices between different edges of M? are
independent).

S. Assadi and A. Bernstein 11:9

For any vertex v ∈ V not matched by M?, we assign v to L or R uniformly at random
(again, the choices are independent across vertices).
The set of edges in Ẽ are all edges in E with one end point in L and the other one in R.

Define H̃ := H ∩ G̃. We argue that as H is an EDCS for G, H̃ also remains an EDCS for
G̃ with non-zero probability. Formally,

I Claim 10. H̃ is an EDCS(G̃, β̃, β̃−) for β̃ = (1 + 4λ)β/2 and β̃− = (1 − 5λ)β−/2 with
probability strictly larger than zero (over the randomness of G̃).

Before we prove Claim 10, we argue why it implies Lemma 9. Let G̃ be chosen such that
H̃ is an EDCS(G̃, β̃, β̃−) for parameters in Claim 10 (by Claim 10, such a choice of G̃ always
exist). By construction of G̃, M? ⊆ Ẽ and hence µ(G̃) = µ(G). On the other hand, G̃ is
now a bipartite graph and H̃ is its EDCS with appropriate parameters. We can hence apply
Lemma 8 and obtain that µ(G̃) ≤ (3/2 + ε)µ(H̃). As H̃ ⊆ H, µ(H̃) ≤ µ(H), and hence
(µ(G̃) =)µ(G) ≤ (3/2 + ε)µ(H), proving the assertion in the lemma statement. It thus only
remains to prove Claim 10.

Proof of Claim 10. Fix any vertex v ∈ V , let dv := degH(v) and NH(v) := {u1, . . . , udv} be
the neighbors of v in H. Let us assume v is chosen in L in G̃ (the other case is symmetric).
Hence, degree of v in H̃ is exactly equal to the number of vertices in NH(v) that are chosen
in R. As such, by construction of G̃, E

[
deg

H̃
(v)
]

= dv/2 (+1 iff v is incident on M? ∩H).
Moreover, if two vertices ui, uj in NH(v) are matched by M?, then exactly one of them
appears as a neighbor to v in H̃ and otherwise the choices are independent. Hence, by
Chernoff bound (Proposition 2),

Pr
(∣∣∣deg

H̃
(v)− dv/2

∣∣∣ ≥ λ · β) ≤ exp
(
−2λ2 · β2

β

)
≤ exp (−4 log β) ≤ 1

β4 .

(as β ≥ 8λ−2 log (1/λ) and hence β ≥ 2λ−2 · log β)

Define Ev as the event that
∣∣∣deg

H̃
(v)− dv/2

∣∣∣ ≥ λ · β. Note that Ev depends only on
the choice of vertices in NH(v) and hence can depend on at most β2 other events Eu for
vertices u which are neighbors to NH(v) (recall that for all u ∈ V , degH(u) ≤ β in H by
Property (P1) of EDCS). As such, we can apply Lovasz Local Lemma (Proposition 3) to
argue that with probability strictly more than zero, ∩v∈V Ev happens. In the following, we
condition on this event and argue that in this case, H̃ is an EDCS of G̃ with appropriate
parameters. To do this, we only need to prove that both Property (P1) and Property (P2)
hold for the EDCS H̃ (with the choice of β̃ and β̃−).

We first prove Property (P1) of EDCS H̃. Let (u, v) be any edge in H̃. By events Ev and
Eu,

deg
H̃

(u) + deg
H̃

(v) ≤ 1
2 · (degH(u) + degH(v)) + 2λβ ≤ β/2 + 2λβ = (1 + 4λ) · β/2,

where the second inequality is by Property (P1) of EDCS H as (u, v) belongs to H as well.
We now prove Property (P2) of EDCS H̃. Let (u, v) be any edge in G̃ \ H̃. Again, by Ev
and Eu,

deg
H̃

(u) + deg
H̃

(v) ≥ 1
2 · (degH(u) + degH(v))− 2λβ

≥ β−/2− 2λ(1− λ)β−

≥ (1− 5λ) · β/2,

SOSA 2019

11:10 Towards a Unified Theory of Sparsification for Matching Problems

where the second inequality is by Property (P2) of EDCS H as (u, v) ∈ G \H. J Claim 10
J

Lemma 9 now follows immediately from Claim 10 as argued above. J Lemma 9 J

4 One-Way Communication Complexity of Matching

In the one-way communication model, Alice and Bob are given graphs GA(V,EA) and
GB(V,EB), respectively, and the goal is for Alice to send a small message to Bob such that
Bob can output a large approximate matching in EA ∪ EB. In this section, we show that
if Alice communicates an appropriate EDCS of GA, then Bob is able to output an almost
(3/2)-approximate matching.

I Theorem 11 (Formalizing Result 1). There exists a deterministic poly-time one-way
communication protocol that given any ε > 0, computes a (3/2 + ε)-approximation to
maximum matching using O(n·log (1/ε)

ε2) communication from Alice to Bob.

Theorem 11 is based on the following protocol:

A one-way communication protocol for maximum matching.

1. Alice sends H := EDCS(GA, β, β − 1) for β := 32 · ε−2 · log (1/ε) to Bob.
2. Bob computes a maximum matching in H ∪GB and outputs it as the solution.

By Proposition 5, the EDCS H computed by Alice always exists and can be found in
polynomial time. Moreover, by Property (P1) of EDCS H, the total number of edges (and
hence the message size) sent by Alice is O(nβ). We now prove the correctness of the protocol
which concludes the proof of Theorem 11.

I Lemma 12. µ(GA ∪GB) ≤ (3/2 + ε) · µ(H ∪GB).

Proof. Let M? be a maximum matching in GA ∪GB and M?
A and M?

B be its edges in GA
and GB, respectively. Let G̃ := GA ∪M?

B and note that µ(G̃) = µ(G) simply because M?

belongs to G̃. Define the following subgraph H̃ ⊆ H ∪M?
B (and hence ⊆ H ∪ GB): H̃

contains all edges in H and any edge (u, v) ∈ M?
B such that degH(u) + degH(v) ≤ β. In

the following, we prove that (µ(G) =)µ(G̃) ≤ (3/2 + ε) · µ(H̃), which finalizes the proof as
µ(H̃) ≤ µ(H ∪GB).

We show that H̃ is an EDCS(G̃, β + 2, β − 1) and apply Lemma 9 to argue that H̃
contains a (3/2)-approximate matching of G̃. We prove the EDCS properties of H̃ using
the fact that for v ∈ V , deg

H̃
(v) ∈ {degH(v), degH(v) + 1} as H̃ is obtained by adding a

matching (⊆M?
B) to H.

Property (P1) of EDCS H̃: For an edge (u, v) ∈ H̃,

if (u, v) ∈ H then: deg
H̃

(u) + deg
H̃

(v) ≤ degH(u) + degH(v) + 2 ≤ β + 2,
(by Property (P1) of EDCS H of GA)

if (u, v) ∈M?
B then: deg

H̃
(u) + deg

H̃
(v) ≤ degH(u) + degH(v) + 2 ≤ β + 2.

(as (u, v) ∈M?
B is inserted to H̃ iff degH(u) + degH(v) ≤ β)

S. Assadi and A. Bernstein 11:11

Property (P2) of EDCS H̃: For an edge (u, v) ∈ G̃ \ H̃,

if (u, v) ∈ GA \H then: deg
H̃

(u) + deg
H̃

(v) ≥ degH(u) + degH(v) ≥ β − 1,
(by Property (P2) of EDCS H of GA)

if (u, v) ∈M?
B \ H̃ then: deg

H̃
(u) + deg

H̃
(v) ≥ degH(u) + degH(v) > β.

(as (u, v) ∈M?
B is not inserted to H̃ iff degH(u) + degH(v) > β)

As such, H̃ is an EDCS(G̃, β + 2, β − 1). By Lemma 9 and the choice of parameter β,
we obtain that µ(G̃) ≤ (3/2 + ε) · µ(H̃), finalizing the proof. J

5 The Stochastic Matching Problem

Recall that in the stochastic matching problem, the goal is to compute a bounded-degree
subgraph H of a given graph G, such that E [µ(Hp)] is a good approximation of E [µ(Gp)],
where Gp is a realization of G (i.e a subgraph where every edge is sampled with probability p),
and Hp = H ∩Gp. In this section, we formalize Result 2 by proving the following theorem.

I Theorem 13 (Formalizing Result 2). There exists a deterministic poly-time algorithm
that given a graph G(V,E) and parameters ε, p > 0 with ε < 1/4, computes a subgraph
H(V,EH) of G with maximum degree O(log (1/εp)

ε2·p) such that the ratio of the expected size
of a maximum matching in realizations of G to realizations of H is at most (3/2 + ε), i.e.,
E [µ(Gp)] ≤ (3/2 + ε) · E [µ(Hp)].

We note that while in Theorem 13, we state the bound in expectation, the same result
also holds with high probability as long as µ(G) = ω(1/p) (i.e., just barely more than a
constant), by concentration of maximum matching size in edge-sampled subgraphs (see,
e.g. [2], Lemma 3.1). The algorithm in Theorem 13 simply computes an EDCS of the input
graph as follows:

An algorithm for the stochastic matching problem.

Output the subgraph H := EDCS(G, β, β − 1) for β := C log (1/εp)
ε2p , for large enough

constant C.

By Proposition 5, the EDCS H in the above algorithm always exists and can be found in
polynomial time. Moreover, by Property (P1) of EDCS H, the total number of edges in this
subgraph is O(nβ). We now prove the bound on the approximation ratio which concludes
the proof of Theorem 13 (by re-parametrizing ε to be a constant factor smaller).

I Lemma 14. Let Hp := H ∩Gp denote a realization of H; then E [µ(Gp)] ≤ (3/2 +O(ε)) ·
E [µ(Hp)] where the randomness is taken over the realization Gp of G.

Suppose first that Hp were an EDCS of Gp; we would be immediately done in this case
as we could have applied Lemma 9 directly and prove Lemma 14. Unfortunately, however,
this might not be the case. Instead, we exhibit subgraphs H̃p ⊆ Hp and G̃p ⊆ Gp with the
following properties:
1. E [µ(Gp)] ≤ (1 + ε)E

[
µ(G̃p)

]
, where the expectation is taken over realizations Gp.

2. H̃p is an EDCS(G, (1 + ε)p · β, (1− 2ε)p · β) for G̃p.

SOSA 2019

11:12 Towards a Unified Theory of Sparsification for Matching Problems

V +

V −

V +

V −

V +

V −

V +

V −

(a) Realized Graph Gp.

V +

V −

V +

V −

V +

V −

V +

V −

(b) Subgraph G̃p ⊆ Gp.

V +

V −

V +

V −

V +

V −

V +

V −

(c) Subgraph H̃p ⊆ Hp.

Figure 2 Illustration of the sets V +, V − and the subgraphs G̃p and H̃p in the proof of Lemma 14
on a bipartite graph G. Here, (green) solid lines denote the edges of Gp that appear in each subgraph
and (red) dashed lines denote the edges of Hp.

Showing these properties concludes the proof of Lemma 14, as for the EDCS in item (2)
above, we have (1+ε)p·β

(1−2ε)·pβ = 1+O(ε), so by Lemma 9 we get that µ(G̃p) ≤ (3/2+O(ε)) ·µ(H̃p).
Combining this with item (1) then concludes E [µ(Gp)] ≤ (1 + ε) · (3/2 + ε)E [µ(Hp)].

It now remains to exhibit H̃p and G̃p that satisfy the main properties stated above. Note
that for any vertex v ∈ V , we have E

[
degHp

(v)
]

= p · degH(v) by definition of a realization
Gp (and hence Hp). We now want to separate out vertices that deviate significantly from
this expectation.

I Definition 15. Let V + ⊆ V contain all vertices v for which degHp
(v) > p ·degH(v)+εpβ/2.

Similarly, let V − contain all vertices v such that degHp
(v) < p · degH(v)− εpβ/2 OR there

exists an edge (v, w) ∈ H such that w ∈ V +, i.e., if v is neighbor to V +.

I Claim 16. E [|V +|] ≤ ε7p7µ(G) and E [|V −|] ≤ ε4p4µ(G), where the expectation is over
the realization Gp of G. As we a result we also have E [|V +|+ |V −|] ≤ ε3p3µ(G).

Before proving this claim, let us consider why it completes the larger proof.

Proof of Lemma 14 (assuming Claim 16). To prove Lemma 14 it is enough to show the
existence of subgraphs G̃p and H̃p that satisfy the properties above. We define G̃p as follows:
the vertex set is V and the edge-set is the same as Gp, except we remove all edges incident
to V + and all edges (u, v) /∈ H that are incident to V −. We define H̃p to be the subgraph
of Hp induced by the vertex set V \ V +, that is, H̃p contains all edges of Hp except those
incident to V +; see Figure 2.

For item (1), note that G̃p differs from Gp by vertices in V + ∪ V −, so µ(G̃p) ≥ µ(Gp)−
|V +| − |V −|. It is also clear that E [µ(Gp)] ≥ p · µ(G) (as each edge in G is sampled w.p. p
in Gp). By Claim 16,

E
[
µ(G̃p)

]
≥ E [µ(Gp)]− E

[
|V +| − |V −|

]
≥ E [µ(Gp)]− p3ε3µ(G) ≥ (1− ε3)E [µ(Gp)] .

The above equation then implies the desired E [µ(Gp)] ≤ (1 + ε)E
[
µ(G̃p)

]
.

For item (2), let us verify Property (P1) and Property (P2) for EDCS H̃p of G̃p. Neither
H̃p nor G̃p have any edge incident on V + and hence we can ignore these vertices entirely.
Thus, for all vertices v we have deg

H̃p
(v) ≤ p · degH(v) + εpβ/2, and for all v /∈ V − we have

S. Assadi and A. Bernstein 11:13

deg
H̃p

(v) ≥ p · degH(v)− εpβ/2. Moreover, recall that G̃p \ H̃p contains no edges incident to
V −. As such,

Property (P1) of EDCS H̃p: For an edge (u, v) ∈ H̃p,

deg
H̃p

(u) + deg
H̃p

(v) ≤ p · degH(u) + p · degH(v) + εpβ ≤ (1 + ε)pβ.

(by Property (P1) of EDCS H of G)

Property (P2) of EDCS H̃p: For any edge (u, v) ∈ G̃p \ H̃p, we have u, v /∈ V − so:

deg
H̃p

(u) + deg
H̃p

(v) ≥ p · degH(u) + p · degH(v)− εpβ ≥ (1− 2ε)pβ.

(by Property (P2) of EDCS H of G)

This concludes the proof of Lemma 14 (assuming Claim 16). J Lemma 14 J

All that remains is to prove Claim 16.

Proof of Claim 16. Let us start by bounding the size of V +. Consider any vertex v ∈ V .
We know that degH(v) ≤ β. Each edge then has probability p of appearing in Hp, so
E
[
degHp

(v)
]

= p · degH(v) ≤ pβ. By the multiplicative Chernoff bound in Proposition 2
with λ = pβ:

Pr[v ∈ V +] = Pr[degHp
(v) ≥ p · degH(v) + εpβ/2] ≤ e−O(ε2pβ) ≤ e−O(log(ε−1p−1)) ≤ K−2ε10p10,

where K is a large constant and the last two inequalities follow from the fact that we set
β := C log (1/εp)

ε2p , for large enough constant C. (Note that since constant C is in the exponent,
we can easily set C large enough to achieve the final probability with a constant K > C.)
This probability bound shows that E [|V +|] ≤ nK−2ε10p10, but that is not quite good enough
since we want a dependence on µ(G) instead of on n. To achieve this, we observe that the
total number of edges in H is at most βµ(G): the reason is that G has a vertex cover of size
at most 2µ(G), and all vertices in H have degree at most β (by Property (P1) of EDCS H).
There are thus at most 2βµ(G) vertices that have non-zero degree in H, each of which has at
most a ε10p10 probability of being in V +; all vertices with zero degree in H are clearly not
in V + by definition. We thus have E [|V +|] ≤ 2βµ(G) ·K−2ε10p10 ≤ K−1ε7p7µ(G), where
in the last inequality we use that K > C.

Let us now consider V −. First let us bound the number of vertices v ∈ V − for which
degHp

(v) < p · degH(v)− εpβ/2. By an analogous argument to the one above, we have that
the expected number of such vertices is at most ε7p7µ(G). A vertex can also end up in V −
because it has a neighbor in V + in H. But each vertex in H has degree at most β so we have

E
[
|V −|

]
≤ ε7p7µ(G) + β E

[
|V +|

]
≤ ε4p4µ(G),

where the last inequality again uses that K > C. J

I Remark. Interestingly, our result in Theorem 13 continues to hold as it is even when the
edges sampled in realizations of Gp are only Θ(1/p)-wise independent, by simply using a
Chernoff bound for bounded-independence random variables (see, e.g. [31]) in the proof of
Claim 16. Allowing correlation in the process of edge sampling is highly relevant to the main
application of this problem to the kidney exchange setting (see [15]). To our knowledge, our
algorithm is the first to work with such a little amount of independence between the edges.

SOSA 2019

11:14 Towards a Unified Theory of Sparsification for Matching Problems

6 A Fault-Tolerant Subgraph for Matching

In the fault-tolerant matching problem, we are given a graph G(V,E) and an integer f ≥ 1,
and our goal is to compute a subgraph H of G, named an f -tolerant subgraph, such that for
any subset F ⊆ E of size f , H \ F contains an approximate maximum matching of G \ F .
We show that,

I Theorem 17 (Formalizing Result 3). There exists a deterministic poly-time algorithm that
given any ε > 0 and integer f ≥ 1, computes a (3/2 + ε)-approximate f -tolerant subgraph H
of any given graph G with O(ε−2 · (n log (1/ε) + f)) edges.

The algorithm in Theorem 17 simply computes an EDCS of the input graph as follows:

An algorithm for the fault-tolerant matching problem.

1. Define µmin := minF
(
µ(G \ F)

)
, where F is taken over all subsets of E with size f .

2. Output H := EDCS(G, β, β − 1) for β := C·f
ε2·µmin

+ C·log (1/ε)
ε2 for a constant C > 0.

By Proposition 5, the EDCS H in the above algorithm always exists and can be found in
polynomial time. The above algorithm as stated however is not a polynomial time algorithm
because it is not clear how to compute the quantity µmin. Nevertheless, for simplicity, we
work with the above algorithm throughout this section, and at the end show how to fix this
problem and obtain a poly-time algorithm. We start by proving that the subgraph H only
has O(f + n) edges.

I Lemma 18. The total number of edges in H is O(fε2 + n · log (1/ε)
ε2).

Proof. Let F ? be a subset of E with size f such that µmin = µ(G \ F ?). Let M? be a
maximum matching of size µmin in G \ F ?. Note that V (M?) is a vertex cover for G \ F ?.
This means that all edges in G except for f of them are incident on V (M?). As no vertex in
the EDCS H can have degree more than β by Property (P1) of EDCS, the degree of vertices
in V (M?) in E \ F ? is at most β. This implies that:

|EH | ≤ |V (M?)| · β + |F ?| ≤ 2µmin ·
(

C · f
ε2 · µmin

+ C · log (1/ε)
ε2

)
+ f

= O(f
ε2 + n · log (1/ε)

ε2),

finalizing the proof. J

We now prove the correctness of the algorithm in the following lemma.

I Lemma 19. Fix any subset F ⊆ E of size f and define GF := G \ F and HF := H \ F .
Then, µ(GF) ≤ (3/2 +O(ε)) · µ(HF).

We first need some definitions. We say that a vertex v ∈ V is bad iff degHF
(v) <

degH(v)− εβ, i.e., at least εβ edges incident on v (in H) are deleted by F . We use BF to
denote the set of bad vertices with respect to F , and bound |BF | in the following claim.

I Claim 20. Number of bad vertices in HF is at most |BF | ≤ ε · µ(GF).

S. Assadi and A. Bernstein 11:15

Proof. Any deleted edge can decrease the degrees of exactly two vertices. Any vertex
becomes bad iff at least εβ edges incident on it from HF are removed. As such, |BF | ≤ 2f

ε·β ≤
2f ·ε2·µmin
ε·C·f ≤ ε · µ(GF), for sufficiently large C > 0, and since µ(GF) ≥ µmin by definition.

J Claim 20 J

Proof of Lemma 19. Define a subgraph G̃F ⊆ GF as follows: V (G̃F) = V (GF) (= V (G))
and edges in G̃F are all edges in GF except that we remove any edge (u, v) ∈ GF such that
(u, v) /∈ HF and either of u or v is a bad vertex. We prove that µ(G̃F) is at least (1 − ε)
fraction of µ(GF), and moreover, HF is an EDCS of G̃F with appropriate parameters. We
can then apply Lemma 9 to obtain that µ(GF) ≤ (1+2ε)µ(G̃F) ≤ (1+ε) ·(3/2+O(ε))µ(HF),
finalizing the proof.

We first prove the bound on µ(G̃F). Fix any maximum matching M in GF . It can
have at most |BF | edges incident on vertices of BF . Hence, even if we remove all edges
incident on BF , the size of this matching would be at least µ(GF)− ε · µ(GF), by the bound
of |BF | ≤ ε · µ(GF) in Claim 20. However, this matching belongs to G̃F entirely by the
definition of this subgraph, and hence we have, µ(GF) ≤ (1 + 2ε)µ(G̃F).

We now prove that HF is an EDCS(G̃F , β, (1− 2ε)β − 1) of G̃F . It suffices to prove the
two properties of EDCS for HF using the fact that degHF

(v) ∈ [degH(v)− εβ,degH(v)] for
vertices in V \BF , and that all edges incident on BF in G̃F also belong to HF .

Property (P1) of EDCS HF of G̃F : For any edge (u, v) ∈ HF :

degHF
(u) + degHF

(v) ≤ degH(u) + degH(v) ≤ β.
(by Property (P1) of EDCS H of G)

Property (P2) of EDCS HF of G̃F : For any edge (u, v) ∈ G̃F \HF both u, v ∈ V \BF
and so:

degHF
(u) + degHF

(v) ≥ degH(u) + degH(v)− 2εβ ≥ (1− 2ε)β − 1.
(by Property (P2) of EDCS H of G as (u, v) is missing from H)

As such, HF is an EDCS(G̃F , β, (1− 2ε)β − 1) of G̃F and by the lower bound on value of β
in the algorithm (the second term in definition of β), we can apply Lemma 9, and obtain
that µ(G̃F) ≤ (3/2 +O(ε)) · µ(HF), finalizing the proof. J

Theorem 17 now follows from Lemmas 18 and 19 by re-parametrizing ε to a sufficiently
smaller constant factor of ε (by picking the integer C large enough) modulo the fact that
the algorithm designed in this section is not a polynomial time algorithm. To make the
algorithm polynomial time, we only need to make a simple modification: instead of finding
µmin explicitly, we find the smallest value of β (by searching over all n possible choices of β,
or by doing a binary search) such that the EDCS H has at least 2·C·f

ε2 + n·C·log (1/ε)
ε2 many

edges. By the proof of Lemma 18, any EDCS of G can have at most 2µmin ·β+ f edges. This
implies that the chosen β ≥ C·f

ε2·µmin
+ C·log (1/ε)

ε2 as needed in the algorithm. This concludes
the proof, as by definition of β, H has O(C·fε2 + n·C·log (1/ε)

ε2) many edges, and hence satisfies
the sparsity requirements of Theorem 17.

References
1 Noga Alon and Joel H Spencer. The probabilistic method. John Wiley & Sons, 2004.
2 Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab S. Mirrokni, and Cliff

Stein. Coresets Meet EDCS: Algorithms for Matching and Vertex Cover on Massive Graphs.
CoRR, abs/1711.03076. To appear in SODA 2019, 2017.

SOSA 2019

11:16 Towards a Unified Theory of Sparsification for Matching Problems

3 Sepehr Assadi, Sanjeev Khanna, and Yang Li. The Stochastic Matching Problem with
(Very) Few Queries. In Proceedings of the 2016 ACM Conference on Economics and Com-
putation, EC ’16, Maastricht, The Netherlands, July 24-28, 2016, pages 43–60, 2016.

4 Sepehr Assadi, Sanjeev Khanna, and Yang Li. On Estimating Maximum Matching Size
in Graph Streams. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19,
pages 1723–1742, 2017.

5 Sepehr Assadi, Sanjeev Khanna, and Yang Li. The Stochastic Matching Problem: Beating
Half with a Non-Adaptive Algorithm. In Proceedings of the 2017 ACM Conference on
Economics and Computation, EC ’17, Cambridge, MA, USA, June 26-30, 2017, pages
99–116, 2017.

6 Baruch Awerbuch. Complexity of Network Synchronization. J. ACM, 32(4):804–823, 1985.
7 Surender Baswana, Keerti Choudhary, and Liam Roditty. Fault tolerant subgraph for

single source reachability: generic and optimal. In Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June
18-21, 2016, pages 509–518, 2016.

8 Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-ramanujan sparsifiers.
In Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,
Bethesda, MD, USA, May 31 - June 2, 2009, pages 255–262, 2009.

9 Soheil Behnezhad, Alireza Farhadi, MohammadTaghi Hajiaghayi, and Nima Reyhani.
Stochastic Matching with Few Queries: New Algorithms and Tools. In Manuscript. To
appear in SODA 2019., 2018.

10 Soheil Behnezhad and Nima Reyhani. Almost Optimal Stochastic Weighted Matching with
Few Queries. In Proceedings of the 2018 ACM Conference on Economics and Computation,
Ithaca, NY, USA, June 18-22, 2018, pages 235–249, 2018.

11 András A. Benczúr and David R. Karger. Approximating s-t Minimum Cuts in Õ(n2)
Time. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 47–55, 1996.

12 Claude Berge. The theory of graphs. Courier Corporation, 1962.
13 Aaron Bernstein and Cliff Stein. Fully Dynamic Matching in Bipartite Graphs. In Automata,

Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan,
July 6-10, 2015, Proceedings, Part I, pages 167–179, 2015.

14 Aaron Bernstein and Cliff Stein. Faster Fully Dynamic Matchings with Small Approxi-
mation Ratios. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 692–
711, 2016.

15 Avrim Blum, John P. Dickerson, Nika Haghtalab, Ariel D. Procaccia, Tuomas Sandholm,
and Ankit Sharma. Ignorance is Almost Bliss: Near-Optimal Stochastic Matching With Few
Queries. In Proceedings of the Sixteenth ACM Conference on Economics and Computation,
EC ’15, Portland, OR, USA, June 15-19, 2015, pages 325–342, 2015.

16 Greg Bodwin, Michael Dinitz, Merav Parter, and Virginia Vassilevska Williams. Optimal
Vertex Fault Tolerant Spanners (for fixed stretch). In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA,
USA, January 7-10, 2018, pages 1884–1900, 2018.

17 Greg Bodwin, Fabrizio Grandoni, Merav Parter, and Virginia Vassilevska Williams. Pre-
serving Distances in Very Faulty Graphs. In 44th International Colloquium on Automata,
Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, pages
73:1–73:14, 2017.

S. Assadi and A. Bernstein 11:17

18 Béla Bollobás, Don Coppersmith, and Michael Elkin. Sparse distance preservers and addi-
tive spanners. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, January 12-14, 2003, Baltimore, Maryland, USA., pages 414–423, 2003.

19 Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. Fault-tolerant spanners
for general graphs. In Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 435–444,
2009.

20 Don Coppersmith and Michael Elkin. Sparse Sourcewise and Pairwise Distance Preservers.
SIAM J. Discrete Math., 20(2):463–501, 2006.

21 Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs and some
related questions. In COLLOQUIA MATHEMATICA SOCIETATIS JANOS BOLYAI 10.
INFINITE AND FINITE SETS, KESZTHELY (HUNGARY). Citeseer, 1973.

22 Wai Shing Fung, Ramesh Hariharan, Nicholas J. A. Harvey, and Debmalya Panigrahi. A
general framework for graph sparsification. In Proceedings of the 43rd ACM Symposium
on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 71–80,
2011.

23 Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the Communication and Stream-
ing Complexity of Maximum Bipartite Matching. In Proceedings of the Twenty-third Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’12, pages 468–485. SIAM, 2012.
URL: http://dl.acm.org/citation.cfm?id=2095116.2095157.

24 Philip Hall. On representatives of subsets. Journal of the London Mathematical Society,
1(1):26–30, 1935.

25 Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings of
the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013,
New Orleans, Louisiana, USA, January 6-8, 2013, pages 1679–1697, 2013. doi:10.1137/
1.9781611973105.121.

26 David R. Karger. Random sampling in cut, flow, and network design problems. In Proceed-
ings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23-25 May
1994, Montréal, Québec, Canada, pages 648–657, 1994.

27 Euiwoong Lee and Sahil Singla. Maximum Matching in the Online Batch-Arrival Model.
In Integer Programming and Combinatorial Optimization - 19th International Conference,
IPCO 2017, Waterloo, ON, Canada, June 26-28, 2017, Proceedings, pages 355–367, 2017.

28 David Peleg. As Good as It Gets: Competitive Fault Tolerance in Network Structures. In
Stabilization, Safety, and Security of Distributed Systems, 11th International Symposium,
SSS 2009, Lyon, France, November 3-6, 2009. Proceedings, pages 35–46, 2009.

29 David Peleg and Alejandro A. Schäffer. Graph spanners. Journal of Graph Theory, 13(1):99–
116, 1989.

30 Imre Z Ruzsa and Endre Szemerédi. Triple systems with no six points carrying three
triangles. Combinatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai, 18:939–945, 1978.

31 Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-Hoeffding Bounds for
Applications with Limited Independence. SIAM J. Discrete Math., 8(2):223–250, 1995.

32 Daniel A. Spielman and Shang-Hua Teng. Spectral Sparsification of Graphs. SIAM J.
Comput., 40(4):981–1025, 2011.

33 William T Tutte. The factorization of linear graphs. Journal of the London Mathematical
Society, 1(2):107–111, 1947.

34 Yutaro Yamaguchi and Takanori Maehara. Stochastic Packing Integer Programs with Few
Queries. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 293–310, 2018.

SOSA 2019

http://dl.acm.org/citation.cfm?id=2095116.2095157
http://dx.doi.org/10.1137/1.9781611973105.121
http://dx.doi.org/10.1137/1.9781611973105.121

11:18 Towards a Unified Theory of Sparsification for Matching Problems

A Missing Details and Proofs

A.1 Proof of Proposition 5
We give the proof of this proposition following the argument of [2], which itself was based
on [14].

Proof. We give a polynomial local search algorithm for constructing an EDCS H of the
graph G which also implies the existence of H. The algorithm is as follows. Start with
empty graph H. While there exists an edge in H or G \H that violates Property (P1) or
Property (P2) of EDCS, respectively, fix this edge by removing it from H for the former or
inserting it to H for the latter.

We prove that this algorithm terminates after polynomial number of steps which implies
both the existence of the EDCS as well as give a polynomial time algorithm for computing
it. We define the following potential function Φ for this task:

Φ1(H) := (β − 1/2) ·
∑

u∈V (H)

degH(u), Φ2(H) :=
∑

(u,v)∈E(H)

(degH(u) + degH(v)) ,

Φ(H) := Φ1(H)− Φ2(H).

We claim that after fixing each edge in H in the algorithm, Φ increases by at least 1. Since
max-value of Φ is O(n · β2), this implies that this procedure terminates in O(n · β2) steps.

Let (u, v) be the fixed edge at this step, H1 be the subgraph before fixing the edge
(u, v), and H2 be the resulting subgraph. Suppose first that the edge (u, v) was violating
Property (P1) of EDCS. As the only change is in the degrees of vertices u and v, Φ1 decreases
by (2β − 1). On the other hand, degH1(u) + degH1(v) ≥ β + 1 originally (as (u, v) was
violating Property (P1) of EDCS) and hence after removing (u, v), Φ2 also decreases by β+ 1.
Additionally, for each neighbor w of u and v in H2, after removing the edge (u, v), degH2(w)
decreases by one. As there are at least degH2(u)+degH2(v) = degH1(u)+degH1(v)−2 ≥ β−1
choices for w, this means that in total, Φ2 decreases by at least (β + 1) + (β − 1) = 2β. As a
result, in this case Φ = Φ1 − Φ2 increases by at least 1 after fixing the edge (u, v).

Now suppose that the edge (u, v) was violating Property (P2) of EDCS instead. In this
case, degree of vertices u and v both increase by one, hence Φ1 increases by 2β−1. Additionally,
since edge (u, v) was violating Property (P2) we have degH1(u) + degH1(v) ≤ β− − 1, so the
addition of edge (u, v) decreases Φ2 by at most degH2(u)+degH2(v) = degH1(u)+degH1(v)+
2 ≤ β−+ 1. Moreover, for each neighbor w of u and v, after adding the edge (u, v), degH2(w)
increases by one and since there are at most degH1(u) + degH1(v) ≤ β−− 1 choices for w, Φ2
decreases in total by at most (β− + 1) + (β− − 1) = 2β−. Since β− ≤ β − 1, we have that Φ
increases by at least (2β− 1)− (2β−) ≥ 1 after fixing the edge (u, v), finalizing the proof. J

A.2 Optimality of the (3/2)-Approximation Ratio in Result 3
Our argument is a simple modification of the one in [23] for proving a lower bound on the
one-way communication complexity of approximating matching and is provided for the sake
of completeness.

Let G1(V1, E1) be a graph on N vertices such that its edges can be partitioned into
t := NΩ(1/ log logN) induced matchings M1, . . . ,Mt of size (1 − δ)N/4 for arbitrarily small
constant δ > 0. These graphs are referred to as (r, t)-Ruzsa-Szemerédi graphs [30] ((r, t)-RS
graphs for short) and have been studied extensively in the literature (see [4, 23] for more
details). In particular, the existence of such graphs with parameters mentioned above is
proven in [23].

S. Assadi and A. Bernstein 11:19

Let G(V,E) be a graph with n = 2N vertices consisting of G1(V1, E1) plus N additional
vertices U that are connected via a perfect matching MU to V1. In the following, we prove
that any f -fault tolerant subgraph H of G that achieves a (3/2− ε)-approximation for some
constant ε > 0 when f = Θ(n) requires n1+Ω(1/ log logn) = ω(f) edges.

Suppose towards a contradiction that H contains o(m) edges where m is the number of
edges in the graph G. As edges in G1 are partitioned into induced matchings M1, . . . ,Mt,
it means that there exists some induced matching Mi such that only o(1) fraction of its
edges belong to H. Let the set of deleted edge F be only the set of edges in the perfect
matching between U and V1, namely, MU , which are incident to V (Mi). The number of
deleted edges is O(n) and after deletion, MU has size N − (1− δ)N/2 = (1 + δ)N/2. As such,
µ(G \ F) ≥ (1 + δ)N/2 + (1− δ)N/4 ≥ 3N/4, by picking the remainder of the matching MU

and the induced matching Mi (which is not incident on remainder of MU by construction).
However, we argue that µ(H \ F) ≤ (1 + δ)N/2 + o(N), simply because only o(N) edges of
Mi belong H and all other matchings are incident to the remaining edges of MU (we can
assume remaining edges of MU belong to any maximum matching of H \ F because they
are incident on degree one vertices). As such, µ(H \ F) < (2/3 + 2δ)µ(G \ F). By picking
δ < ε/4, we obtain that H is not a (3/2− ε)-approximate f -fault tolerant subgraph of G.

A.3 Other Standard Algorithms for Fault-Tolerant Matching
Since the goal in fault-tolerant matching is to prepare for adversarial deletions, the most
natural approach seem to be adding many different matchings by a finding maximum
matching in G, adding it to the subgraph H, deleting it from G, and repeating until we have
O(f + n) edges. A similar approach would be to let H be a maximum b-matching, with
b set appropriately to end up with O(f + n) edges. We show a lower bound of 2 on the
approximation ratio of these approaches.

Consider the following approach first: find a maximum matching M in G, add all the
edges of M to the fault-tolerant subgraph H, remove all the edges of M from G, and repeat
until the graph contains C(f +n) edges for some large constant C. For f = n/5, we present a
graph G where this approach yields a graph H where µ(H) = µ(G)/2. The graph is bipartite
and the vertex set is partitioned into 5 sets X,Y, Y ′, Z, Z ′, each of size n/5. There is an
edge in G from every vertex in X to every vertex in Y or Z, and there are also exactly n/5
vertex-disjoint edges from Y to Y ′, and similarly from Z to Z ′; those are all the edge of G.
The fault tolerant algorithm might choose the following subgraph H: H contains a perfect
matching from Y to Y ′ and from Z to Z ′, as well as many edges from X to Y , but no edges
from X to Z. (The algorithm can end up with such an H by first choosing the maximum
matching in G that consists of the edges from Y to Y ′ and from Z to Z ′; then for all future
iterations the maximum matching size is only |X| = n/5, so the algorithm might always pick
a maximum matching that only contains edges between X and Y .) Now consider the set of
failures F which consists of the n/5 edges from Z to Z ′. It is clear that µ(G \ F) = 2n/5,
while µ(H \F) = n/5. Note also that allowing H to contain more than O(n+ f) edges would
still not allow this approach to break through the 2-approximation: in this lower-bound
instance, even if H was allowed to have up to n2/100 edges, H might still not contain any
edges from X to Z, and so we would still have µ(H \ F) = n/5 = µ(G \ F)/2.

The other natural approach is to let H contain the edges of a maximum b-matching in G,
where b is set to a value for which the resulting b-matching still contains Θ(f +n) edges. The
lower-bound graph G is exactly the same as above, though in this case we use f = 2n/5. The
maximum b-matching H might then contain the edges from Y to Y ′ and Z to Z ′, a single
matching of size n/5 from X to Z, and then many edges from X to Y . It is easy to see that

SOSA 2019

11:20 Towards a Unified Theory of Sparsification for Matching Problems

this is a maximum b-matching. Now consider the following set F of deletions: F contains all
edges from Z to Z ′, as well as the n/5 edges in H from X to Z. It is easy to see that we
once again have µ(H) = n/5 and µ(G) = 2n/5. Also as above, setting B to be very large
and allowing H to have n2/100 edges would still not break through the 2-approximation.

A New Application of Orthogonal Range
Searching for Computing Giant Graph Diameters
Guillaume Ducoffe
National Institute for Research and Development in Informatics,
The Research Institute of the University of Bucharest ICUB,
University of Bucharest, Faculty of Mathematics and Computer Science, Romania
guillaume.ducoffe@ici.ro

Abstract
A well-known problem for which it is difficult to improve the textbook algorithm is computing
the graph diameter. We present two versions of a simple algorithm (one being Monte Carlo
and the other deterministic) that for every fixed h and unweighted undirected graph G with n

vertices and m edges, either correctly concludes that diam(G) < hn or outputs diam(G), in
time O(m + n1+o(1)). The algorithm combines a simple randomized strategy for this problem
(Damaschke, IWOCA’16) with a popular framework for computing graph distances that is based
on range trees (Cabello and Knauer, Computational Geometry’09). We also prove that under
the Strong Exponential Time Hypothesis (SETH), we cannot compute the diameter of a given
n-vertex graph in truly subquadratic time, even if the diameter is an Θ(n/ log n).

2012 ACM Subject Classification Theory of computation → Shortest paths, Theory of compu-
tation → Problems, reductions and completeness

Keywords and phrases Graph diameter, Orthogonal Range Queries, Hardness in P, FPT in P

Digital Object Identifier 10.4230/OASIcs.SOSA.2019.12

Funding This work was supported by the Institutional research programme PN 1819 "Advanced
IT resources to support digital transformation processes in the economy and society - RESINFO-
TD" (2018), project PN 1819-01-01"Modeling, simulation, optimization of complex systems and
decision support in new areas of IT&C research", funded by the Ministry of Research and Innov-
ation, Romania. This work was also supported by a grant of Romanian Ministry of Research and
Innovation CCCDI-UEFISCDI. project no. 17PCCDI/2018.

Acknowledgements We wish to thank the referees for their careful reading of the first version
of this manuscript, and their useful comments.

1 Introduction

We refer to [5] for any undefined terminology. Graphs in this study are finite, simple,
connected and unweighted. For every graph G = (V, E), let n := |V | and m := |E|. The
distance distG(u, v) between any two vertices u, v ∈ V is defined as the minimum number
of edges on a uv-path in G. A layer is any set Li(v) := {u ∈ V | distG(u, v) = i} for some
v ∈ V and integer i ≥ 0. Finally, the eccentricity of vertex v, denoted eccG(v), is equal to
maxu∈V distG(u, v), and the diameter of G, denoted diam(G), is equal to maxv∈V eccG(v).

Computing the diameter of a graph is a fundamental problem with countless applications
in computer science and other domains. As every undergraduate student (should) know, this
problem can be solved in roughly quadratic time by running a single-source shortest-path
algorithm from every vertex of the graph. It has been asked repeatedly whether one could
improve on this textbook algorithm, in order to achieve truly subquadratic-time computation

© Guillaume Ducoffe;
licensed under Creative Commons License CC-BY

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy Fineman and Michael Mitzenmacher; Article No. 12; pp. 12:1–12:7

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guillaume.ducoffe@ici.ro
https://doi.org/10.4230/OASIcs.SOSA.2019.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

12:2 Computing Giant Diameters with Breadth-First Search and Range Queries

of the diameter. Unfortunately, the answer to that question seems to be ‘No’ [15]. Specifically,
under SETH it is already hard to recognize split graphs with diameter 2, and this holds even
if their clique-number is an Θ(log n) [6]1. Small diameter graphs are usually said to be the
hardest case for the problem, in the sense that as the diameter gets polynomial in n we
can obtain an almost optimal (1− n−O(1))-approximation in truly subquadratic time [3, 10].
However, the exact computation of such “giant” graph diameters has been less studied.

In [11], Damaschke asked whether one can compute the graph diameter in nearly linear
time assuming it is a large fraction of the number of vertices. His question seems relevant to
the study of chain-like structures, e.g.,, in road networks or chain molecules. Specifically, we
consider the following problem in this note:

I Problem 1 (h-Diameter).
Input: A graph G = (V, E); a constant h ∈ (0; 1).
Output: The exact diameter of G if it is at least hn (otherwise, any value < hn).

As a partial answer to Problem 1, Damaschke presented a deterministic linear-time
algorithm for the special case h > 1/2. The latter is based on the decomposition of a graph
by its biconnected components and a delicate removal procedure of irrelevant subgraphs. As
noted by Damaschke himself, qualitatively different methods are needed to solve the general
case. In [11], he also presented a Monte Carlo O(m + n log n)-time algorithm for the case
h > 1/3. The probability of a correct result depends on the simultaneity of several random
events. Recently in a master’s thesis [4] some of Damaschke’s students generalized his ideas
to any h, thereby obtaining a (not so simple) O(n2)-time algorithm for the general case. The
“big-oh” notation hides a large constant-factor in h.

1.1 Our results
We answer positively to the open question of [11]. Specifically, we first present a Monte Carlo
algorithm that runs in time O(1

h · (m + 2O(1
h)n1+o(1))) and that, given as entry a graph G

such that diam(G) ≥ hn, outputs with constant probability its diameter (Theorem 5).
For that, we follow the same general (and quite intuitive) strategy as in [11, 4]: finding a
separator of size O(1/h) that disconnects the two ends of some arbitrary diametral path.
Such a separator can be easily computed, with constant probability, by performing a BFS
from a random vertex v and choosing a smallest layer Li(v) := {u ∈ V | distG(u, v) = i}
in the range i ∈ {hn/3, . . . , 2hn/3}. Although a similar approach was used in [11, 4] our
proofs are, in our opinion, cleaner and more direct than the ones given in these previous
works. In particular, the correctness of our algorithm only depends on the random choice
of the starting vertex v.
Then, once we computed a separator as described above, we are left with computing the
maximum distance between two vertices it disconnects. Previous works [11, 4] reduce this
computation to a new problem called Largest Mixed Sum. Instead, we can directly
apply a popular framework for computing graph distances that is based on a range tree [8].
Doing so, we give a new simple application of this textbook data-structure.
Finally, we remark that in order to make our algorithm deterministic, it suffices to run
a BFS from every vertex v into some (hn/c)-distance dominating set, for some small
constant c (instead of picking this vertex randomly). We end up observing that such a
distance dominating set of size

(1
h

)O(1) can be computed by using a few BFS (Theorem 7).

1 The logarithmic bounds on the clique-number are not explicitly stated in [6]. Nevertheless, they can
be deduced from an easy application of the Sparsification Lemma, as noted e.g., in [1] for similar
constructions.

G. Ducoffe 12:3

For nonconstant h, our algorithm still outperforms the textbook algorithm for Diameter
provided h = ω(1/ log n). Perhaps surprisingly, we prove this is (conditionally) optimal: any
truly subquadratic algorithm for computing the diameter of a given n-vertex graph would
falsify SETH, even if the diameter is an Θ(n/ log n) (Theorem 8).

2 Preliminaries

In what follows is a simple observation that is the cornerstone of our algorithms: in any
consecutive subsequence of Θ(n) layers in a BFS-tree, there must be one of size O(1).

I Lemma 1. Let G = (V, E) be a graph of order n, let 0 < p < q < r < 1, and let v ∈ V

have eccG(v) ≥ rn. There exists i ∈ {dpne , . . . , bqnc} such that the layer Li(v) := {u ∈ V |
distG(u, v) = i} contains < 1−r

q−p + 1 vertices.

Proof. The number of layers Li(v) to be considered is:

bqnc − dpne+ 1 = b(q − p)nc+ 1 > (q − p)n.

We also know that there are ≥ (rn − bqnc) + dpne ≥ (r − q + p)n vertices that are not
contained into any of these layers. Therefore, the maximum number of vertices a smallest
such layer can contain is:

<
(1− r + q − p)n

(q − p)n = 1− r

q − p
+ 1. J

Then, assume one such layer disconnects the two ends of an arbitrary diametral path
of the graph. In order to compute the diameter of the graph, we only need to compute
the maximum distance between two vertices this layer disconnects. This is a routine that
naturally appears in the computation of the diameter and the Wiener index of bounded
treewidth graphs [1, 7, 8], and as such there already exists a standard method for solving this
problem:

I Proposition 2 (implicit in [7]). Let G = (V, E) be a graph and S ⊆ V be a separator,
where |S| ≤ k. We can compute DS := max{distG(x, y) | S is an xy-separator} in time
O(k · (m +

(
k+1+dlog ne

k+1
)
2kn)), that is in O(k · (m + 2O(k)n1+o(1))).

For the sake of completeness, let us give some intuition of how this above problem relates
to range trees. Let S = {s1, s2, . . . , sk} and C1, C2, . . . , C` be the connected components
of G \ S. For every i ∈ {1, . . . , k} we search for the furthest pair x, y such that: (a) S is
an xy-separator, and (b) distG(x, si) + distG(si, y) = distG(x, y), as follows. We first map
every v ∈ Cj to the (k + 1)-dimensional point P i

v = (pi
v,0, pi

v,1, . . . , pi
v,k), where pi

v,0 = j,
pi

v,t = distG(v, st) − distG(v, si) for every t ≥ 1, and we associate to this point the value
fi(v) = distG(v, si). To understand why, note that if x ∈ Cj , y ∈ Cj′ are such that j < j′

and distG(x, si) + distG(si, y) = distG(x, y), then we have distG(x, si) + distG(si, y) ≤
distG(x, st) + distG(st, y)⇐⇒ −pi

x,t ≤ pi
y,t for any t ≥ 1. Therefore, given x ∈ Cj , in order

to find a furthest vertex y ∈
⋃

j′>j Cj′ from x, it suffices to compute a point P i
y such that:

pi
x,0 < pi

y,0; −pi
x,t ≤ pi

y,t for every t ∈ {1, . . . , k}; and fi(y) is maximized.

The (k + 1)-dimensional range tree is a classical data-structure that can be used in order
to solve this above computation. Specifically, given that there are |V \ S| = O(n) points
P i

v to store, we can construct such a range tree in time O(k
(

k+1+dlog ne
k+1

)
n) in such a way

that for every x /∈ S, the corresponding query (computation of P i
y) can be answered in time

O(2k
(

k+1+dlog ne
k+1

)
) [14]. We stress that the analysis of this construction is involved, but its

implementation is quite straightforward (e.g.,, see [7] for details).

SOSA 2019

12:4 Computing Giant Diameters with Breadth-First Search and Range Queries

ALGORITHM 1: GiantDiameter.
Input: graph G = (V, E), h.
Output: a lower-bound on diam(G).
1: Let v ∈ V picked u.a.r.
2: if eccG(v) < 2hn/3 then
3: return eccG(v). // this occurs with proba. ≤ 1− 2h/3 if diam(G) ≥ hn.
4: Find a layer i ∈ {dhn/3e , . . . , b2hn/3c} s.t. |Li(v)| ≤ 3/h.
5: Compute Di := max{distG(x, y) | Li(v) is an xy-separator}.
6: return max{Di} ∪ {eccG(u) | u ∈ Li(v)}.

Comparison with previous work. Damaschke’s students solved a variant of the above
problem in O(kn2)-time by reducing it to a new problem they called Largest Mixed
Sum [4]. Roughly, their solution consists in a brute force range searching. We use range
trees in order to improve their running time, although in doing so we sacrifice analytical
simplicity. A potential drawback of our algorithms compared to [4] is that the range tree
data-structure has relatively high preprocessing and storage costs, that make it less practical
for moderate values of k [2]. Some way to address this issue could be the use of alternative
data-structures for range searching [2, 9].

3 Monte Carlo algorithm

We present in this section a simple algorithm for the computation of graph diameters
that are at least a fixed fraction of the number of vertices. Unlike previous works [11,
4], we use randomization only to choose the starting vertex of our BFS run (Algorithm
GiantDiameter). Our algorithm is correct assuming this starting vertex is sufficiently
close to an end of some (arbitrary) diametral path. We prove next that it happens with
constant probability.

I Lemma 3. Let G = (V, E) be a graph and assume diam(G) ≥ hn. For every vertex v ∈ V

that is drawn u.a.r., the following holds with probability ≥ 2h/3: There exists a diametral
pair x, y ∈ V such that distG(x, v) ≤ hn/3 (and so, distG(y, v) ≥ 2hn/3).

Proof. Fix an arbitrary diametral path P with ends x, y ∈ V . Every vertex v ∈ V (P) such
that either distG(v, x) ≤ hn/3 or distG(v, y) ≤ hn/3 satisfies the desired property, and there
are exactly 2hn/3 such vertices. J

I Proposition 4. Let G = (V, E) be a graph and assume diam(G) ≥ hn. Algorithm
GiantDiameter correctly computes diam(G) with probability ≥ 2h/3.

Proof. By Lemma 1 (applied with p = h/3 and q = r = 2h/3), a small-size layer Li(v)
as requested by the algorithm always exists if eccG(v) ≥ 2hn/3. Then, the algorithm is
correct if there exists a diametral pair x, y ∈ V such that there is no connected component of
G \Li(v) that both contains x, y (possibly, x ∈ Li(v) or y ∈ Li(v)). This is always the case if
min{distG(v, x), distG(v, y)} ≤ hn/3 (and so, max{distG(v, x), distG(v, y)} ≥ 2hn/3), and
by Lemma 3 the latter happens with probability ≥ 2h/3. J

The bottleneck of Algorithm GiantDiameter is the computation of Di. Using Proposi-
tion 2, we can conclude as follows:

G. Ducoffe 12:5

I Theorem 5. Let h be a fixed constant. In time O(1
h · (m + 2O(1

h)n1+o(1))), we can either
conclude a given graph G has diameter < hn, or compute its diameter, with probability of
correctness ≥ 2h/3.

Proof. We run Algorithm GiantDiameter, whose output is correct with probability ≥ 2h/3
by Proposition 4. The dominant step for the algorithm is the computation of Di, that can
be done in time O(1

h · (m + 2O(1
h)n1+o(1))) by Proposition 2. J

As usual, the probability of correctness can be increased to 1 − n−O(1) by running
Algorithm GiantDiameter O(log n/h) times and outputting the maximum distance we
obtained.

4 Deterministic algorithm

Next, we show how to derandomize our algorithm from the previous section. We recall that
we use randomization only to choose the starting vertex v of some BFS run. Furthermore,
the latter vertex v is correctly chosen if it is at a distance ≤ hn/3 from an end of some
arbitrary diametral path. Hence, instead of choosing v at random, we can try all the vertices
contained into some (hopefully small) (hn/3)-distance dominating set. We prove next that
there always exists such a set of size polynomial in 1/h.

I Lemma 6. Let G = (V, E) be a graph. In O(m + n)-time, we can output a set S where
|S| = O(1/h) and such that distG(v, S) ≤ hn/3 for every vertex v ∈ V .

Proof. We use the constructive proof of Meir and Moon on k-distance dominating sets in
trees [13]. Specifically, let T be an arbitrary spanning tree of G. Such a tree can be computed
in O(n + m)-time by using, say, a breadth-first search. For any integer k ≥ 0, we will explain
next how to construct a k-distance dominating set of size

⌈
n

k+1

⌉
for T (and so, also for G)

in time O(n). By setting k = bhn/3c, this will prove the lemma.
For that, we first compute the two ends of a diametral path in T , that can be easily

done in time O(n) using two BFS [12]. Let x be any one of these two ends. If n ≤ k + 1 or
more generally, diam(T) ≤ k then, we can output S = {x}. Otherwise, we compute in time
O(n) a breadth-first search from x in T . For every i ∈ {0, 1, 2, . . . , k}, let Si := {v ∈ V |
distT (x, v) ≡ i (mod k + 1)}. Note that Si 6= ∅ for every i since we assume diam(T) > k.
Furthermore as proved in [13, Theorem 5], Si is a k-distance dominating set of T for any fixed
i. Since there are exactly k + 1 possibilities for i, there exists a i0 such that |Si0 | ≤

⌊
n

k+1

⌋
.

We output S = Si0 . J

I Theorem 7. Let h be a fixed constant. In time O(1
h2 · (m + 2O(1

h)n1+o(1))), we can either
conclude a given graph G has diameter < hn, or compute its diameter.

Proof. We apply Lemma 6 in order to compute an (hn/3)-distance dominating set S of size
O(1/h). Then, we apply Algorithm GiantDiameter for every v ∈ S, and we output the
maximum distance we obtain after these |S| runs. J

5 Conditional Lower-bound

Our GiantDiameter algorithm still runs in truly subquadratic time if h = ω(1/ log n). It
would be interesting to compute in truly subquadratic time the exact diameter of a graph
when it is an Θ(n/ log n). We prove that it cannot be done under standard complexity
assumptions.

SOSA 2019

12:6 Computing Giant Diameters with Breadth-First Search and Range Queries

I Theorem 8. Under SETH, there exists a function h(n) = Θ(1/ log n) such that the
following problem cannot be solved in time O(n2−ε), for any ε > 0: Given an n-vertex graph
G, either correctly decide diam(G) < h(n)n, or compute diam(G).

Proof. Let G = (K ∪ S, E) be a n-vertex split graph such that K induces a clique of size
|K| = O(log n) and S induces a stable set. We construct a graph G′ = (V ′, E′) as follows.
The vertex-set of G′ is partitioned into two disjoint copies S0, S1 of the stable set S and n

disjoint copies K1, K2, . . . , Kn of the clique K. For every s ∈ S we denote by s0 and s1 the
respective copies of s in S0 and S1; in the same way, for every v ∈ K and i ∈ {1, 2, . . . , n}
we denote by vi the copy of vertex v in Ki. Furthermore, every copy Ki induces a clique, we
add an edge {vi, vi+1} for every v ∈ K, 1 ≤ i < n, and the two edges {s0, v1}, {s1, vn} for
every s ∈ S, v ∈ K such that {s, v} ∈ E. By construction, G′ has order O(n log n) and size
O(n log2 n). We also have:

For u, v ∈ K, distG′(ui, vj) = |j − i| if u = v, and |j − i|+ 1 otherwise.
For s ∈ S, v ∈ K, distG′(s0, vi) = distG′(s1, vk−1+i) = i if {s, v} ∈ E, and i+1 otherwise.
For s, s′ ∈ S, distG′(s0, s′0) = distG′(s1, s′1) = distG(s, s′) ≤ 3.

For s, s′ ∈ S, distG′(s0, s′1) = n− 1 + max{2, distG(s, s′)}.
As a result, n + 1 ≤ diam(G′) ≤ n − 1 + diam(G) ≤ n + 2. In particular, diam(G′) =
n−1+diam(G). This implies that computing diam(G′) is Õ(n)-time equivalent to computing
diam(G), that cannot be done in truly subquadratic time under SETH [6, 15]. J

References
1 A. Abboud, V. Vassilevska Williams, and J. Wang. Approximation and fixed parameter

subquadratic algorithms for radius and diameter in sparse graphs. In SODA, pages 377–391.
SIAM, 2016. URL: https://arxiv.org/abs/1506.01799.

2 J. Bentley and J. Friedman. Data structures for range searching. ACM Computing Surveys
(CSUR), 11(4):397–409, 1979.

3 P. Berman and S. Kasiviswanathan. Faster approximation of distances in graphs. In WADS,
pages 541–552. Springer, 2007.

4 B. Block and M. Milakovic. Computing Diameters in Slim Graphs. Master’s thesis,
Chalmers University of Technology, University of Gothenburg, Sweden, 2018. URL:
http://publications.lib.chalmers.se/records/fulltext/255208/255208.pdf.

5 J. A. Bondy and U. S. R. Murty. Graph theory. Grad. Texts in Math., 2008.
6 M. Borassi, P. Crescenzi, and M. Habib. Into the square: On the complexity of some

quadratic-time solvable problems. Electronic Notes in Theoretical Computer Science,
322:51–67, 2016. URL: https://arxiv.org/abs/1407.4972.

7 K. Bringmann, T. Husfeldt, and M. Magnusson. Multivariate Analysis of Orthogonal Range
Searching and Graph Distances Parameterized by Treewidth. In IPEC. LIPIcs, 2018. to
appear. URL: https://arxiv.org/abs/1805.07135.

8 S. Cabello and C. Knauer. Algorithms for graphs of bounded treewidth via orthogonal
range searching. Computational Geometry, 42(9):815–824, 2009.

9 T. Chan. Orthogonal Range Searching in Moderate Dimensions: k-d Trees and Range Trees
Strike Back. In 33rd International Symposium on Computational Geometry (SoCG 2017),
volume 77 of Leibniz International Proceedings in Informatics (LIPIcs), pages 27:1–27:15.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017. URL: http://drops.dagstuhl.
de/opus/volltexte/2017/7226.

10 S. Chechik, D. Larkin, L. Roditty, G. Schoenebeck, R. Tarjan, and V. Vassilevska Williams.
Better approximation algorithms for the graph diameter. In SODA, pages 1041–1052. SIAM,
2014.

https://arxiv.org/abs/1506.01799
http://publications.lib.chalmers.se/records/fulltext/255208/255208.pdf
https://arxiv.org/abs/1407.4972
https://arxiv.org/abs/1805.07135
http://drops.dagstuhl.de/opus/volltexte/2017/7226
http://drops.dagstuhl.de/opus/volltexte/2017/7226

G. Ducoffe 12:7

11 P. Damaschke. Computing Giant Graph Diameters. In IWOCA, pages 373–384. Springer,
2016.

12 C. Jordan. Sur les assemblages de lignes. J. Reine Angew. Math, 70(185):81, 1869.
13 A. Meir and J. Moon. Relations between packing and covering numbers of a tree. Pacific

Journal of Mathematics, 61(1):225–233, 1975.
14 L. Monier. Combinatorial solutions of multidimensional divide-and-conquer recurrences.

Journal of Algorithms, 1(1):60–74, 1980.
15 L. Roditty and V. Vassilevska Williams. Fast approximation algorithms for the diameter

and radius of sparse graphs. In STOC, pages 515–524. ACM, 2013.

SOSA 2019

Simplified and Space-Optimal Semi-Streaming
(2 + ε)-Approximate Matching
Mohsen Ghaffari
ETH Zurich, Zurich, Switzerland

David Wajc
Carnegie Mellon University, Pittsburgh, USA

Abstract
In a recent breakthrough, Paz and Schwartzman (SODA’17) presented a single-pass (2 + ε)-
approximation algorithm for the maximum weight matching problem in the semi-streaming model.
Their algorithm uses O(n log2 n) bits of space, for any constant ε > 0.

We present a simplified and more intuitive primal-dual analysis, for essentially the same
algorithm, which also improves the space complexity to the optimal bound of O(n logn) bits –
this is optimal as the output matching requires Ω(n logn) bits.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Streaming, Semi-Streaming, Space-Optimal, Matching

Digital Object Identifier 10.4230/OASIcs.SOSA.2019.13

Related Version A full version of the apper is available at [7], https://arxiv.org/abs/1701.
03730.

Acknowledgements Mohsen Ghaffari is grateful to Gregory Schwartzman for sharing a write-up
of [9], and to Ami Paz and Gregory Schwartzman for feedback on an earlier draft of this article.
The work of David Wajc is supported in part by NSF grants CCF-1618280, CCF-1814603, CCF-
1527110 and NSF CAREER award CCF-1750808.

1 Introduction and Related Work

The maximum weight matching (MWM) problem is a classical optimization problem, with
diverse applications, which has been studied extensively since the 1965 work of Edmonds
[4]. Naturally, this problem has received significant attention also in the semi-streaming
model. This is a modern model of computation, introduced by Feigenbaum et al.[6], which
is motivated by the need for processing massive graphs whose edge set cannot be stored in
memory. In this model, roughly speaking, the edges of the graph arrive in a stream, and the
algorithm should process this stream and eventually output its solution – a matching in our
case – while using a small memory at all times. Ideally, this memory size should be close to
what is needed for storing just the output. More formally, the setting of the MWM problem
in the semi-streaming matching is as follows.

MWM in the Semi-Streaming Model. Let G = (V,E,w) be a simple graph with non-
negative edge weights w : E → R>0 (for notational simplicity, we let we = w(e)). Let
n = |V |, m = |E|. We assume that the edge weights are normalized so that the minimum
edge weight is 1 and we use W = maxe we to denote the maximum edge weight. In the
semi-streaming model, the input graph G is provided as a stream of edges. In each iteration,
the algorithm receives an edge from the stream and processes it. The algorithm has a memory

© Mohsen Ghaffari and David Wajc;
licensed under Creative Commons License CC-BY

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy Fineman and Michael Mitzenmacher; Article No. 13; pp. 13:1–13:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/OASIcs.SOSA.2019.13
https://arxiv.org/abs/1701.03730
https://arxiv.org/abs/1701.03730
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

13:2 Simplified and Space-Optimal Semi-Streaming (2 + ε)-Approximate Matching

much smaller than m and thus it cannot store the whole graph. The amount of memory that
the algorithm uses is called its space complexity and we wish to keep it as small as possible.
The objective in the semi-streaming maximum weight matching (MWM) problem is that,
at the end of the stream, the algorithm outputs a matching whose weight is close to the
weight of the maximum weight matching, denoted by M∗ = arg maxmatching M w(M), where
w(M) =

∑
e∈M we is the weight of matching M .

State of the Art. There has been a sequence of successively improved approximation al-
gorithms for MWM in the semi-streaming model. Feigenbaum et al. gave a 6 approximation[6],
McGregor gave a 5.828 approximation[8] (and a 2 + ε approximation, but using O(1/ε3)
passes on the input), Epstein et al. gave a 4.911 + ε approximation[5] and Crouch and Stubbs
gave a 4 + ε approximation[3]. However, these approximations remained far from the more
natural and familiar 2 approximation which the sequential greedy method provides.

In a recent breakthrough, Paz and Schwartzman[9] presented a truly simple algorithm
that achieves an approximation of 2 + ε for any constant ε > 0, using O(n log2 n) bits of
space. More concretely, the algorithm maintains O(n logn) edges, while working through
the stream, and at the end, it computes a matching using these maintained edges.

Our Contribution. We present an alternative analysis of (a slight variant of) the algorithm
of Paz and Schwartzman, which has two advantages: (1) it implies that keeping merely O(n)
edges suffices, and thus improves the space complexity to O(n logn) bits, which is optimal,
(2) it provides a more intuitive and also more flexible accounting of the approximation.

Concretely, Paz and Schwartzman[9] used an extension of the Local Ratio theorem[1, 2]
to analyze their algorithm. We instead present an alternative simpler primal-dual argument,
which is more flexible and allows us to improve the space-complexity to obtain the optimal
space bound. The main appeal of the primal-dual method is in the simple explanation it
provides for the extension of the local ratio technique in [9] using little more than LP duality.

Roadmap. In Section 2, as a warm up, we review (a simple version of) the algorithm of Paz
and Schwartzman. In Section 3, we present our primal-dual analysis for this algorithm. In
Section 4, we present the improved algorithm that achieves a space complexity of O(n logn),
the analysis of which relies crucially on the flexibility of the analysis presented in Section 3.

2 Reviewing the Algorithm of Paz and Schwartzman

2.1 The Basic Algorithm

The starting point in the approach of Paz and Schwartzman[9] is the following basic yet
elegant algorithm, implicit in [1, Section 3]. For the sake of explanation, consider a sequential
model of computation. We later discuss the adaptation to the streaming model.

Basic Algorithm. Repeatedly select an edge e with positive weight; reduce its
weight from itself and its neighboring edges; push e into a stack and continue to
the next edge, so long as edges with positive weight remain. At the end; unwind
the stack and add the edges greedily to the matching.

In Section 3 we will see that this simple algorithm is 2-approximate.

M. Ghaffari and D. Wajc 13:3

Implementing the Basic Algorithm in the Semi-Streaming Model. To implement this
while streaming, we just need to remember a parameter φv for each node v. This parameter
is the total sum of the weight already reduced from the edges incident on vertex v, due to
edges incident on v that were processed and put in the stack before. We assume for now
that the space requirement of storing these n numbers is only O(n logn) bits (say, due to the
edge weights having magnitude at most some poly(n)) and discuss the space requirement of
these φv values at the end of the paper.

2.2 The Algorithm with Exponentially Increasing Weights
The space complexity of the basic algorithm can become Θ(n2), as it may end up pushing
Θ(n2) edges into the stack. This brings us to the clever idea of Paz and Schwartzman [9],
which reduces the space complexity to the equivalent of keeping O(n logW/ε) edges, where
W is the normalized maximum edge weight, while still providing a (2 + ε)-approximation.

The idea is to ensure that the edges incident on each node v that get pushed into
the stack have exponentially increasing weights, by factors of (1 + ε). Thus, at most
O(log1+εW) = O((logW)/ε) edges per node are added to the stack, and the overall number
of edges in the stack is at most O((n logW)/ε).

To attain this exponential growth, the method is as follows: When reducing the weight
of an edge e from each neighboring edge e′, we will decide between deducting either we or
(1 + ε)we from the weight we′ . In general, this can be any arbitrary decision. This arbitrary
choice may seem mysterious, but as we shall see in Section 3, the particular choice is rather
natural when considered in terms of LP duality. In the streaming model, this decision is
done when we first see e′ = {u, v} in the stream, as follows.

If we′ < (1 + ε) · (φu + φv) – i.e., if e′ has less than (1 + ε) times of the total weight of
the stacked up edges incident on u or v – then we deduct (1 + ε)we from we′ for each
stacked up edge e incident on u or v. Hence, we effectively reduce the weight of we′ by
(1 + ε) · (φu + φv). This implies that we get left with an edge e′ of negative weight, which
can be ignored without putting it in the stack.
Otherwise, if we′ ≥ (1 + ε) · (φu + φv), we deduct only we from we′ , for each edge e
incident on u or v that is already in the stack. Thus, in total, we deduct only (φu + φv)
weight from we′ for the previously stacked edges. Thus, now we have an edge e′ whose
leftover weight is w′e′ ≥ (1 + ε) · (φu + φv)− (φu + φv) = ε · (φu + φv). Then, we add e′
to the stack, and thus φu and φv increase by w′e′ . Therefore, both φu and φv increase by
at least a (1 + ε) multiplicative factor.

The concrete algorithm that formalizes the above scheme is presented in Algorithm 1.

I Observation 2.1. When an edge e = {u, v} is added to the stack, the value of φu increases
by a 1 + ε factor.

The above observation also implies that the edges incident on each node that are added
to the stack have an exponential growth in weight, which directly implies that the total
number of edges pushed to the stack cannot exceed O(n log1+εW) = O((n logW)/ε). In
Section 3, we prove that this algorithm is 2(1 + ε)-approximate.

3 Simplified Analysis

In this section we present our primal-dual analysis of Algorithm 1, proving it yields a 2(1 + ε)
approximation of the MWM. Note that the basic algorithm above can be seen as Algorithm 1
run with ε = 0, and so we obtain that the basic algorithm is a 2-approximate algorithm.

SOSA 2019

13:4 Simplified and Space-Optimal Semi-Streaming (2 + ε)-Approximate Matching

Algorithm 1 The Paz-Schwartzman Algorithm [9] with Exponentially Increasing Weights.

1: S ← emptystack
2: ∀v ∈ V : φv = 0
3: for e = {u, v} ∈ E do
4: if we < (1 + ε) · (φu + φv) then
5: continue . skip to the next edge
6: w′e ← we − (φu + φv)
7: φu ← φu + w′e
8: φv ← φv + w′e
9: S.push(e)

10: M ← ∅
11: while S 6= ∅ do
12: e← S.pop()
13: if M ∩N(e) = ∅ then M ←M ∪ {e}
14: return M

Primal Dual
maximize

∑
e∈E

we · xe minimize
∑

v∈V
yv

subject to: subject to:
∀v ∈ V :

∑
e3v

xe ≤ 1 ∀{u, v} ∈ E: yu + yv ≥ w{u,v}

∀e ∈ E: xe ≥ 0 ∀v ∈ V : yv ≥ 0

Figure 1 The LP relaxation of MWM and its dual.

I Lemma 3.1. The matching M returned by Algorithm 1 is a 2(1 + ε) approximation of the
maximum weight matching.

To prove Lemma 3.1 we will rely on a few observations. The first observation our
duality-based proofs rely on is that ~φv forms a (nearly) feasible solution to the dual of the
LP relaxation of the MWM problem, in Figure 1. Indeed, this fact is not accidental, and it
is the underlying reason for the choice of when to decrease weights of an edge neighboring a
processed edge e by (1 + ε)we or by we.

I Observation 3.2. The variables {φv}v∈V scaled up by 1 + ε form a feasible dual solution.

Proof. Each edge e = {u, v} ∈ E has its dual constraint satisfied by (1+ε) ·~φ after inspection;
i.e., we ≤ (1 + ε) · (φu + φv). This constraint is either satisfied before e is inspected, or
after performing lines 7 and 8, following which the new and old values of φu and φv satisfy
we ≤ we +w′e = (φoldu + φoldv +w′e) +w′e = φnewu + φnewv ≤ (1 + ε) · (φnewu + φnewv). As the φv
variables never decrease, each dual constraint is satisfied by (1 + ε) · ~φ in the end. J

By LP duality, the above implies the following upper bound on the optimal matching.

I Corollary 3.3. The weight of any matching M∗ satisfies

w(M∗) ≤ OPT (LP) ≤ (1 + ε) ·
∑
v

φv.

Let ∆φe be the change to
∑
v∈V φv in Lines 7 and 8 of the algorithm during the inspection

of edge e. Note that if the algorithm does not reach these lines when inspecting edge e (due

M. Ghaffari and D. Wajc 13:5

to the test in Line 4), then we have ∆φe = 0. By definition, at the time that the algorithm
terminates,

∑
v φv =

∑
e ∆φe. The following lemma relates the weight of an edge e to ∆φe′

of edges e′ incident on a common vertex with e (including e) inspected no later than e.

I Lemma 3.4. For each edge e = {u, v} ∈ E added to the stack S, if we denote its preceding
neighboring edges by P(e) = {e′ | e′ ∩ e 6= ∅, e′ inspected no later than e}, then

we ≥
1
2 ·

∑
e′∈P(e)

∆φe
′

=
∑

e′∈P(e)

w′e′ .

Proof. First, we note that ∆φe = 2w′e, due to Lines 7 and 8, or put otherwise w′e = 1
2 ·∆φ

e.
On the other hand, if we denote the values of φu and φv before the inspection of e by φeu
and φev, respectively, we have that φeu + φev ≥ 1

2 ·
∑
e′∈P(e)\{e}∆φe′ . Consequently, we have

that indeed

we = w′e + (φeu + φev) ≥
1
2 ·

∑
e′∈P(e)

∆φe
′

=
∑

e′∈P(e)

w′e′ . J

Proof of Lemma 3.1. By the algorithm’s definition, every edge ever added to S and not
taken into M has a previously-inspected neighboring edge taken into M . So, by Lemma 3.4
and Corollary 3.3 we have that w(M) =

∑
e∈M we ≥ 1

2
∑
e ∆φe = 1

2
∑
v φv ≥

1
2(1+ε) ·w(M∗).

In other words, the matching M output by Algorithm 1 is a 2(1 + ε)-approximate MWM. J

4 Improved Algorithm

The (2 + ε)-approximate algorithm of the previous section stores O(n logW) edges for any
constant ε > 0. To improve the space complexity, we would like to keep only O(n) edges,
which is asymptotically the bare minimum necessary for keeping just a matching. For that
purpose, we will limit the number of edges incident on each vertex v that are in the stack to
a constant β = 3 log 1/ε

ε + 1. When there are more edges, we will take out the earliest one
and remove it from the stack. This will be easy to implement using a queue Q(v) for each
of vertex v, where we keep the length of the Q(v) capped at β, resulting in O

(
n · log(1/ε)

ε

)
edges stored overall; i.e., O(n) edges, for any constant ε > 0. The pseudo-code is presented in
Algorithm 2. We will prove in the following that this cannot hurt the approximation factor
more than just increasing the parameter ε by a constant factor.

Remark. Paz and Schwartzman[9] used a similar algorithmic idea to keep only O(n logn)
edges in total, instead of O(n logW) edges.1 To be precise, they keep γ = Θ(logn/ε) edges
per node. Unfortunately, this also leads to quite a bit of complications in their analysis,
as they need to adapt the local ratio theorem[1, 2] to handle the loss. In a rough sense,

1 We note that keeping O(n logn) edges can be done in a much simpler way, by remembering the
maximum edge weight Wmax observed so far in the stream and discarding all edges of weight below
δ = εWmax/(2(1 + ε)n2). This effectively narrows the range of weights that Algorithm 1 sees to
W ′ = O(n2/ε), making its related space complexity O(n logn). On the other hand, ignoring all edges
of weight below δ ≤ εWmax/n

2 can decrease the MWM, w(M∗), by at most n2δ ≤ εWmax ≤ εw(M∗);
that is, a (1− ε) multiplicative term. Moreover, for each vertex v the edges of weight at most δ can
increase φv by at most nδ = εWmax/(2(1 + ε)n), thus decreasing the effective weight of edges of weight
at least δ by no more than (1 + ε)(φu + φv) ≤ εWmax/n ≤ εw(M∗)/n. The weight of the maximum
weight matching M∗ under this new weight function is therefore at most (1− ε) smaller than under w,
so running Algorithm 1 on these weights yields a 2(1 +O(ε))-approximate solution to the MWM under
w.

SOSA 2019

13:6 Simplified and Space-Optimal Semi-Streaming (2 + ε)-Approximate Matching

Algorithm 2 The Space-Optimal Algorithm.

1: S ← empty stack
2: ∀v ∈ V : Q(v)← empty queue
3: ∀v ∈ V : φv = 0
4: for e = {u, v} ∈ E do
5: if we < (1 + ε) · (φu + φv) then
6: continue . skip to the next edge
7: w′e ← we − (φu + φv)
8: φu ← φu + w′e
9: φv ← φv + w′e
10: S.push(e)
11: for x ∈ {u, v} do
12: Q(x).enqueue(e)
13: if |Q(x)| > β = 3 log(1/ε)

ε + 1 then
14: e′ ← Q(x).dequeue()
15: remove e′ from the stack S

16: M ← ∅
17: while S 6= ∅ do
18: e← S.pop()
19: if M ∩N(e) = ∅ then M ←M ∪ {e}
20: return M

their argument was that, per step, the process of limiting the queue size to γ creates a loss
of (1− exp(−γ)) factor in the approximation in the accountings of the local ratio theorem.
Thus, over all the O(n2) edges in the stream, the loss is (1− exp(−γ))O(n2). The fact that
m could be Ω(n2) is why they had to set γ = Θ(logn) to make this loss negligible.

Handling the loss caused by this queue-limitation is much simpler with the simple primal-
dual argument that we used in Section 3. Furthermore, our analysis will allow us to curtail
the per-node queue size to β = O(1), while keeping the loss negligible. We now address the
loss due to queue size limitation in Lines 11-15, starting with the following observation.

I Observation 4.1. Suppose that an edge e = {u, v} in the stack gets removed from the
stack because another edge e′ = {u, v′} was pushed to the stack later and made the size of the
queue Q(v) exceed β. Then, we say e′ evicted e. In that case, w′e′ ≥ w′e/ε if ε ≤ 1.

Proof. Since e was evicted by e′, there must have been β−1 edges incident on u that arrived
after e (following which φu ≥ w′e) but before e′ which were pushed into the stack. Hence,
because of Observation 2.1, we have that before the arrival of e′, φu ≥ (1 + ε)β−1w′e ≥ w′e/ε2

(the last inequality holds because β − 1 = 3 log(1/ε)
ε ≥ 2 log(1/ε)

log(1+ε) for all ε ∈ (0, 1]). But since e′
was added to the stack, we know that w′e′ ≥ ε(φu + φ′v) ≥ εφu ≥ w′e/ε. J

The following recursive definition will prove useful when bounding the loss due to eviction
of edges from the queue.

I Definition 4.2. We say an edge e′ which was inserted into S was discarded if it was later
removed from S, and say the edge was kept otherwise. We say a discarded edge e′ was
discarded by a kept edge e if e′ was evicted by e or if e′ was evicted by an edge e′′ which was
itself later discarded by e. That is, there is a sequence of evictions which starts with e′ and

M. Ghaffari and D. Wajc 13:7

ends in edge e where in this sequence, each edge is evicted by the next edge in the chain. We
denote the set of edges discarded by e by D(e).

We now bound the leftover weights of edges discarded by a given edge e.

I Lemma 4.3. For all ε ≤ 1/4, for each edge e ∈ E, we have w′e ≥ 1
4ε ·

∑
e′∈D(e) w

′
e′ .

Proof. The set D(e) contains at most two edges evicted by e – one for each endpoint of
e. By Observation 4.1, we know that every such edge e′ evicted by e satisfies w′e ≥ w′e′/ε.
Similarly, any edge e′ evicted by e can evict at most two edges in D(e), where each such edge
e′′ satisfies w′e′′ ≤ ε ·w′e′ ≤ ε2 ·w′e, and so on, by induction. Generally, the edges of D(e) can
be partitioned into sets of at most 2i edges each for all i ∈ N, where edges e′ in the i-th set
have w′e′ ≤ εi · w′e. Summing over all these sets, we find that indeed, as ε ≤ 1/4,

∑
e′∈D(e)

w′e′ ≤
∞∑
i=1

(2ε)i · w′e ≤ 2ε ·
∞∑
i=0

2−i · w′e ≤ 4ε · w′e. J

Combining the simple arguments of Section 3 and Lemma 4.3 we obtain the following.

I Theorem 4.4. For all ε ≤ 1
4 , Algorithm 2 is 2(1 + 6ε)-approximate.

Proof. We note that Observation 3.2 (and consequently Corollary 3.3) as well as Lemma 3.4
hold for Algorithm 2, just as they did for Algorithm 1, as their proofs are unaffected
by limiting of the queue sizes in Lines 11-15, which is the only difference between these
algorithms.

Now, by Lemma 3.4, for each edge e ∈ M , we have we ≥
∑
e′∈P(e) w

′
e′ . On the other

hand, by Lemma 4.3, we have that 4ε · we ≥ 4ε · w′e ≥
∑
e′∈D(e) w

′
e′ . Therefore,

we · (1 + 4ε) ≥
∑

e′∈P(e)

w′e′ +
∑

e′′∈D(e′)

w′e′′

 .

But each kept edge e′ not added to M is due to a kept edge e which was added to M ;
that is, some e such that e′ ∈ P(e). Likewise, each discarded edge is discarded due to some
kept edge. Consequently, the right hand side of the above expression summed over all edges
of the output matching M is precisely

∑
e′∈E w

′
e′ = 1

2 ·
∑
e′∈E ∆φe′ = 1

2 ·
∑
v∈V φv, which

by Corollary 3.3 yields∑
e∈M

we ≥
1

2(1 + 4ε) ·
∑
v∈V

φv ≥
1

2(1 + 4ε)(1 + ε) · w(M∗) ≥ 1
2(1 + 6ε) · w(M∗). J

As the processing time per edge of Algorithm 2 is clearly O(1), we obtain the following.

I Theorem 4.5. For any ε > 0, there exists a semi-streaming algorithm computing a
(2 + ε)-approximation for MWM, using O(n logn · log(1/ε)

ε) space and O(1) processing time.

Storing φv values. In the paper we implicitly assumed the maximum edge weight W
is poly(n), implying the n dual variables φv can be stored using O(n logn) bits. For
general W , this space requirement is Ω(n logW). We briefly outline how to improve this
space usage to O(log logW + n logn) bits by only keeping the ratio of these φv and the
maximum weight observed so far, Wmax. First, by rounding all edge weights down to the
nearest integer power of (1 + ε) (increasing the approximation ratio by at most a (1 + ε)
multiplicative factor in the process), we can store Wmax by simply storing log1+εW , using

SOSA 2019

13:8 Simplified and Space-Optimal Semi-Streaming (2 + ε)-Approximate Matching

O(log log1+εW) = O
(

log logW + log(1/ε)) bits. Next, upper bounding the contribution
of edge weights below εWmax/n

2 to φv by εWmax/n, we can store φv using a bit array
representing the O(log1+ε(n2/ε)) = O

(logn+log(1/ε)
ε

)
possible values summed this way by

φv. (Note that the values summed by φv are all distinct by Observation 2.1 and rounding
of weights to powers of (1 + ε).) Arguments similar to those of Footnote 1 show that this
approach keeps the (2 +O(ε)) approximation guarantee, while by the above it only requires
O(log logW +n logn) bits of memory for any constant ε > 0. That is, for anyW = 22O(n log n) ,
this is still O(n logn) bits.

References
1 Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph Naor, and Baruch Schieber. A

unified approach to approximating resource allocation and scheduling. Journal of the ACM
(JACM), 48(5):1069–1090, 2001.

2 Reuven Bar-Yehuda, Keren Bendel, Ari Freund, and Dror Rawitz. Local ratio: A unified
framework for approximation algorithms. in memoriam: Shimon Even 1935-2004. ACM
Computing Surveys (CSUR), 36(4):422–463, 2004.

3 Michael Crouch and Daniel M Stubbs. Improved Streaming Algorithms for Weighted Match-
ing, via Unweighted Matching. Approximation, Randomization, and Combinatorial Optim-
ization. Algorithms and Techniques, pages 96–104, 2014.

4 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17(3):449–467,
1965.

5 Leah Epstein, Asaf Levin, Julián Mestre, and Danny Segev. Improved approximation
guarantees for weighted matching in the semi-streaming model. SIAM Journal on Discrete
Mathematics, 25(3):1251–1265, 2011.

6 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. Theoretical Computer Science, 348(2):207–
216, 2005.

7 Mohsen Ghaffari and David Wajc. Simplified and Space-Optimal Semi-Streaming for (2+ε)-
Approximate Matching. arXiv preprint, 2018. arXiv:1701.03730.

8 Andrew McGregor. Finding graph matchings in data streams. In Approximation, Ran-
domization and Combinatorial Optimization. Algorithms and Techniques, pages 170–181.
Springer, 2005.

9 Ami Paz and Gregory Schwartzman. A (2+ε)-Approximation for Maximum Weight Match-
ing in the Semi-Streaming Model. In Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2153–2161, 2017.

http://arxiv.org/abs/1701.03730

Simple Greedy 2-Approximation Algorithm for the
Maximum Genus of a Graph
Michal Kotrbčík
Department of Computer Science, Comenius University, 842 48 Bratislava, Slovakia
kotrbcik@dcs.fmph.uniba.sk

Martin Škoviera1

Department of Computer Science, Comenius University, 842 48 Bratislava, Slovakia
skoviera@dcs.fmph.uniba.sk

Abstract
The maximum genus γM (G) of a graph G is the largest genus of an orientable surface into which
G has a cellular embedding. Combinatorially, it coincides with the maximum number of disjoint
pairs of adjacent edges of G whose removal results in a connected spanning subgraph of G. In
this paper we describe a greedy 2-approximation algorithm for maximum genus by proving that
removing pairs of adjacent edges from G arbitrarily while retaining connectedness leads to at
least γM (G)/2 pairs of edges removed. As a consequence of our approach we also obtain a
2-approximate counterpart of Xuong’s combinatorial characterisation of maximum genus.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms
→ Graph algorithms analysis, Mathematics of computing → Graph algorithms, Mathematics of
computing → Graphs and surfaces

Keywords and phrases maximum genus, embedding, graph, greedy algorithm

Digital Object Identifier 10.4230/OASIcs.SOSA.2019.14

Acknowledgements The authors would like to thank Rastislav Královič and Jana Višňovská for
reading preliminary versions of this paper and making useful suggestions.

1 Introduction

One of the paradigms in topological graph theory is the study of all surface embeddings of
a given graph. The maximum genus γM (G) parameter of a graph G is then the maximum
integer g such that G has a cellular embedding in the orientable surface of genus g. A
result of Duke [12] implies that a graph G has a cellular embedding in the orientable surface
of genus g if and only if γ(G) ≤ g ≤ γM (G) where γ(G) denotes the (minimum) genus
of G. The basic problem of the area, namely the determination of the set of genera of
orientable surfaces upon which G can be embedded, thus reduces to calculation of γ(G) and
γM (G). Minimum genus, similarly to virtually all nonplanar topological graph invariants,
is notoriously difficult. Its complexity remained open for more than 10 years after being
included as one of the most prominent 12 open problems in the first edition of Garey and
Johnson’s book [15]. Eventually, Thomassen proved that it is NP-hard [48], even in the
class of cubic graphs [50], but the problem is very difficult in practice [4]. For a related
problem of Euler genus, a recent breakthrough by Kawarabayashi and Sidiropoulos [27]
provided a O(g256 log189 n) approximation. Many other algorithms for topological invariants

1 This work was supported in part by VEGA 1/0813/18 and by the Slovak Research and Development
Agency under the contract No. APVV-15-0220.

© Michal Kotrbčík and Martin Škoviera;
licensed under Creative Commons License CC-BY

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy Fineman and Michael Mitzenmacher; Article No. 14; pp. 14:1–14:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kotrbcik@dcs.fmph.uniba.sk
mailto:skoviera@dcs.fmph.uniba.sk
https://doi.org/10.4230/OASIcs.SOSA.2019.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

14:2 Greedy 2-Approximation of Maximum Genus

are complex, error-prone, and very difficult to implement, see the discussion in [36] and
[37]. On the other hand, maximum genus is considered rather well-understood mainly due
to min-max characterisations [29, 52, 28, 38] the existence of polynomial-time algorithms
[17, 13], and the fact that the problem is easy for 4-edge-connected graphs. However, the
algorithm in [13] for the general case is essentially a reduction to optimum matching forest
[16], another one of Garey and Johnson’s 12 open problems. Optimum matching forest
problem itself is a special case of linear matroid parity, the problem used in the original
reduction in [13] and a common generalisation of matroid intersection and matching in general
graphs. While linear matroid parity is polynomial [32], similarly to existing algorithms in
topological graph theory, the algorithms for matroid parity are quite involved, not providing
the desired intuition, insight, and ease of implementation. Consequently, there is a gap
between the actual situation and the perceived status of maximum genus.

In this paper we show that classical edge-addition techniques – ideas dating back to
Norhaus et al. [39] and Ringeisen [42] – can be used to efficiently approximate maximum
genus, essentially reducing the problem to repeated connectivity testing. The resulting
algorithm differs from most other algorithms for nonplanar topological invariants by combining
favourable approximation ratio, conceptual simplicity, ease of implementation, and running
time guarantees.

Related work
Maximum genus is a well-established [49, 45, 6, 7, 9, 5, 43, 24] and generalised problem
[19, 21, 46, 47, 44, 1, 18, 20]. It is known that every 4-edge-connected graph has two edge-
disjoint spanning trees [30] and Xuong’s theorem ([52], Theorem 3 below) implies that it
has an embedding with one or two faces, depending on the parity of the cycle rank. This
determines the maximum genus exactly, rendering the problem trivial for 4-edge-connected
graphs. However, this fact does not make the determination of maximum genus much easier
for graphs that are not 4-edge-connected and even bounding the maximum genus remains
relatively complicated, see for example [45, 6, 24, 2].

Building on characterisations of maximum genus, Furst et al. [13] and Glukhov [17]
independently devised polynomial-time algorithms for determining the maximum genus of an
arbitrary graph. The algorithm of [13] uses Xuong’s characterisation of maximum genus and
exploits a reduction to the cographic matroid parity on an auxiliary graph; its running time
is bounded by O(mn∆ log6 m), where n,m, and ∆ are the number of vertices, edges, and the
maximum degree of the graph, respectively. As observed by Mohar and Thomassen [35], a
reduction to a slightly less general problem of optimum matching forest is sufficient. However,
optimum matching forest is a common generalisation of branching in directed graphs and
matching in general graphs. While polynomial, the primal-dual algorithm solving optimum
matching forest uses both the algorithms for optimum branchings and matchings in general
graphs as subroutines [16]. For the linear matroid parity problem, itself rather difficult,
Lovász [32, 34, 33] proved a min-max formula and derived a polynomial-time algorithm.
To-date, the two fastest deterministic algorithms for the cographic [14], respectively linear
[41], case of matroid parity are both (different) generalisations of the Edmonds’ graph
matching algorithm, and no significantly simpler algorithm is known. While the area is still
active [31, 10, 25], it seems unlikely that the present level of sophistication can be avoided.

A matroidal structure is also in the background of the second algorithm for maximum
genus derived in [17], albeit in a different way. Starting with any spanning tree T of G,
the algorithm greedily finds a sequence of graphs Fi such that T = F0 ⊆ · · · ⊆ Fn ⊆ G,
|E(Fi+1) − E(Fi)| = 2, and γM (Fi) = i for all i, and γM (Fn) = γM (G). However, the

M. Kotrbčík and M. Škoviera 14:3

extension from Fi to Fi+1 is nontrivial; the underlying ideas of frame decompositions and
recombinations can be seen in a slightly more general context of signed graphs in [44].
Consequently, it seems fair to say that the result is quite involved and inaccessible. The
running time of this algorithm is bounded by O(m6).

A clever greedy approximation algorithm for the maximum genus of a graph was developed
by Chen [5]. The algorithm has two main phases. First, it modifies a given graph G into a
3-regular graph H by vertex splitting, chooses an arbitrary spanning tree T of H, and finds
a set P of disjoint pairs of adjacent edges in H − E(T) with the maximum possible size.
Second, it constructs a single-face embedding of T ∪ P and then inserts the remaining edges
into the embedding while trying to raise the genus as much as possible. A doubly-linked face
list data structure is maintained to support attempted edge insertions and to keep track of
the embedding constructed. After all the edges had been inserted, a high-genus embedding
of G in the same surface is constructed by contracting the edges created by vertex splitting.
The algorithm constructs an embedding of G with genus at least γM (G)/4 and its running
time O(m logn) is dominated by the second phase, that is, by operations on an embedded
spanning subgraph of H. The disadvantages of the algorithm as presented in [5] are the need
to actually work with the embedding, and the limited insight it provides into the relationship
between the combinatorial structure of the decomposition and the genus of the resulting
embedding. The first of these problems can be rectified and the whole process somewhat
simplified by focusing on the value of the approximate maximum genus, as opposed to an
embedding with such genus. The resulting algorithm then still requires vertex splitting into
a 3-regular graph, constructing an optimal adjacency matching in a cotree, and examining
the remaining components, and again yields only partial information about which edges of
the graph eventually lead to an increase in the genus.

Several recent works deal with practical aspects of computations in topological graph
theory [36, 4, 23, 37]. The common theme seems to be that from the practical perspective
non-planar topological graph invariants are difficult to compute – for many problems there is
either no suitable algorithm or the algorithms are hard to implement [36, 37]. For example,
the project of determining all forbidden minors for torus is progressing very slowly due to the
existing tools being insufficient, see [37]. In particular, the algorithm presented and used to
find forbidden minors in [37] is conceptually simpler and faster in practice than the previous
approaches, but has exponential running time. Even in the cases where there is a feasible
approach, the inherent difficulty of the problem [4], or the size of the problem space [23]
present significant obstacles. For example, it is not uncommon for a single graph on 10–20
vertices to require computation with length in days, although sparse graphs can be usually
tackled reasonably well [23, 37].

Our terminology in the rest of the paper is standard and consistent with [35], in particular,
E(G) denotes the set of edges of a graph G, and the cycle rank β(G) of a connected graph
with n vertices and m edges is β(G) = m− n+ 1. Additionaly, we use ∪ for set union and
G+ e for the addition of an edge e to a graph G. For more details on embeddings we refer
the reader to [22] or [35]; a recent survey of maximum genus can be found in [3, Chapter 2].

2 Edge-addition techniques and maximum genus

One of the earliest results on embeddings of graphs is the following observation, which is
sometimes called Ringeisen’s edge-addition lemma. Although it is implicit in [40], Ringeisen
[42] was perhaps the first to draw an explicit attention to it.

SOSA 2019

14:4 Greedy 2-Approximation of Maximum Genus

I Lemma 1. Let Π be an embedding of a connected graph G and let e be an edge not
contained in G, but incident with vertices in G.
(i) If both ends of e are inserted into the same face of Π, then this face splits into two

faces of the extended embedding of G+ e and the genus does not change.
(ii) If the ends of e are inserted into two distinct faces of Π, then in the extended embedding

of G+ e these faces are merged into one and the genus raises by one.

The next lemma, independently obtained in [29], [26], and [52], constitutes the cornerstone
of proofs of Xuong’s theorem. It follows easily from Lemma 1.

I Lemma 2. Let G be a connected graph and {e, f} a pair of adjacent edges not contained
in G, but incident with vertices in G. If G has an embedding with a single face, then so does
G ∪ {e, f}.

For a spanning tree T of G, let ξ(G,T) denote the number of components of G− E(T)
with an odd number of edges.

I Theorem 3 (Xuong’s Theorem). Let G be a connected graph. Then

γM (G) = (β(G)−min
T
ξ(G,T))/2

where the minimum is taken over all spanning trees of G.

It is not difficult to see that every cotree component with an even number of edges can
be partitioned into pairs of adjacent edges, and that every cotree component with an odd
number of edges can be partitioned into pairs of adjacent edges and one unpaired edge.
Therefore, any spanning tree S minimising ξ(G,S) maximises the number of pairs in the
above partition of the cotree. The proof strategy of Xuong’s theorem can now be summarised
as follows. First, embed S in the 2-sphere arbitrarily. Then repeatedly apply Lemma 2 to
pairs obtained from the partition of the components of G−E(S), each time raising the genus
by one. Finally, add the remaining edges. Lemma 1 guarantees that the addition of the
remaining edges cannot lower the genus. The result of this process is an embedding of G
with genus at least (β(G)−minT ξ(G,T))/2.

The fact that a spanning tree minimising ξ(G,T) maximises the number of pairs of adjacent
edges in the cotree suggests a slightly different, yet essentially equivalent combinatorial
characterisation of maximum genus. It is due to Khomenko et al. [29] and in fact is older
than Xuong’s theorem itself.

I Theorem 4. The maximum genus of a connected graph equals the maximum number of
disjoint pairs of adjacent edges whose removal leaves a connected graph.

The following useful lemma, found for example in [8], is an extension of Lemma 2 to
embeddings with more than one face. It can either be proved directly by using Ringeisen’s
edge-adding technique or can be derived from Xuongs’s theorem. The lemma was used in [8]
to devise an algorithm that constructs an embedding of genus γM (G)− 1 whenever such an
embedding exists (cf. Lemma 4.3 of [5]).

I Lemma 5. Let G be a connected graph and {e, f} a pair of adjacent edges not contained
in G, but incident with vertices in G. Then γM (G ∪ {e, f}) ≥ γM (G) + 1.

Our algorithm is based on the rather obvious, but never fully exploited fact that Lemma 5
can be applied to sets of pairs of adjacent edges which do not necessarily have the maximum
possible size. Indeed, if we find any k pairs of adjacent edges (ei, fi)k

i=1 in a graph G such

M. Kotrbčík and M. Škoviera 14:5

that G−
⋃k

i=1{ei, fi} is connected, then by Lemma 5 we can assert that the maximum genus
of G is at least k. This suggests that identifying a large number of pairs of adjacent edges
whose removal leaves a connected subgraph can be utilised to obtain a simple approximation
algorithm for the maximum genus. Indeed, in the following section we show that choosing
the pairs of adjacent edges arbitrarily yields a 2-approximation of maximum genus.

3 The Algorithm

In this section we present a greedy algorithm for finding at least γM (G)/2 pairs of adjacent
edges while the rest of the graph remains connected. The idea is simple: if the removal of a
pair of adjacent edges does not disconnect the graph, then we remove it.

Algorithm 1: Greedy-Max-Genus
Input :Connected graph G
Output : Set P of paiwise disjoint pairs of adjacent edges of G such that G− P is a

connected spanning subgraph of G

1 H ← G

2 P ← ∅
3 foreach pair of adjacent edges e, f from H do
4 if H − {e, f} is connected then
5 H ← H − {e, f}
6 P ← P ∪ (e, f)
7 return P

To prove that the set output by Greedy-Max-Genus Algorithm always contains at least
γM (G)/2 pairs of adjacent edges we employ the following lemma, which can be easily proved
either using Xuong’s theorem or directly from Lemma 1.

I Lemma 6. Let G be a connected graph and let e be an arbitrary edge of G such that G− e
is connected. Then

γM (G)− 1 ≤ γM (G− e) ≤ γM (G).

The final ingredient is the following characterisation of graphs with maximum genus 0.

I Theorem 7. The following statements are equivalent for every connected graph G.
(i) γM (G) = 0
(ii) No two cycles of G have a vertex in common.
(iii) G contains no pair of adjacent edges whose removal leaves a connected graph.

The equivalence (i) ⇔ (ii) in Theorem 7 was first proved by Nordhaus et al. in [39]. The
equivalence (ii) ⇔ (iii) is easy to see, nevertheless it is its appropriate combination with
Lemma 6 which yields the desired performance guarantee for Greedy-Max-Genus algorithm,
as shown in the following theorem.

I Theorem 8. For every connected graph G, the set of pairs output by Greedy-Max-Genus
Algorithm run on G contains at least γM (G)/2 pairs of adjacent edges.

Proof. Assume that the algorithm stops after the removal of k disjoint pairs of adjacent
edges from G. For i ∈ {0, 1, . . . , k} let Hi denote the graph obtained from G by the removal
of the the first i pairs of edges. By Lemma 6, the removal of a single edge from a graph can

SOSA 2019

14:6 Greedy 2-Approximation of Maximum Genus

lower its maximum genus by at most one. Therefore, the removal of two edges can lower
the maximum genus by at most two. It follows that γM (Hi) ≥ γM (G) − 2i for each i; in
particular, γM (Hk) ≥ γM (G)− 2k. From Theorem 7 we get that γM (Hk) = 0. By combining
these expressions we get 2k ≥ γM (G), which yields k ≥ γM (G)/2, as desired. J

Clearly, any maximal set of pairs of adjacent edges of G whose removal from G yields
a connected graph can possibly be the output of Greedy-Max-Genus Algorithm run on G.
Hence, as a corollary of Theorem 8 we obtain the following 2-approximate counterpart of
Theorem 4.

I Theorem 9. Let G be a connected graph and let P be any inclusion-wise maximal set
of disjoint pairs of adjacent edges of G whose removal leaves a connected subgraph. Then
|P | ≥ γM (G)/2.

4 Notes

Considering a star K1,2n with every edge doubled and a loop attached to every pendant
vertex shows that the bound in Theorems 8 and 9 is best possible. At the same time, the last
example shows that processing vertices in the decreasing order with respect to their degrees
does not lead to an algorithm with better approximation ratio.

The simplest realisation of the algorithm considers all pairs of edges {e, f} with a common
end-vertex and test whether removing the pair does not disconnect the graph. The running
time is O((τ + ρ)

∑n
i=1 d

2
i), where τ is the time required to test the connectivity, ρ is the

time required to update the underlying data structure, and di is the degree of the i-th vertex.
If the input graph is simple, then

∑n
i=1 d

2
i = O(m2/n) by [11]. If the input graph is not

simple, it can be preprocessed by including in the solution a pair of adjacent parallel edges
and/or loops and keeping at least one edge from each set of parallel edges until there are no
sets of more than two parallel edges and no adjacent loops. It is easy to see that the resulting
graph again satisfies

∑n
i=1 d

2
i = O(m2/n). Therefore, using a linear-time connectivity test

the running time is O(m3/n). Trading simplicity for running time and using algorithms for
dynamic graph connectivity [51] it is possible to support updates in ρ = O(log2 n/ log logn)
amortized time and queries in τ = O(logn/ log logn) worst-case time. This would yield
running time O(m2 log2 n/(n log logn)).

In our opinion, obtaining a simple algorithm (i. e. one notably simpler than the tools
used in the exact algorithms) with approximation ratio better than 2 would be a significant
achievement.

References

1 D. Archdeacon, C. P. Bonnington, and J. Širáň. A Nebeský-Type Characterization for
Relative Maximum Genus. J. Combin. Theory Ser. B, 73(1):77–98, 1998.

2 D. Archdeacon, M. Kotrbčík, R. Nedela, and M. Škoviera. Maximum genus, connectivity,
and Nebeský’s Theorem. Ars Math. Contemp., 9:51–61, 2015.

3 L. W. Beineke, R. J. Wilson, J. L. Gross, and T. W. Tucker, editors. Topics in Topological
Graph Theory. Encyclopedia of Mathematics and its Applications. Cambridge University
Press, 2009.

4 S. Beyer, M. Chimani, I. Hedtke, and M. Kotrbčík. A Practical Method for the Minimum
Genus of a Graph: Models and Experiments. In A. V. Goldberg and A. S. Kulikov, editors,
Proceedings of 15th International Symposium on Experimental Algorithms SEA’16, pages
75–88. Springer International Publishing, 2016.

M. Kotrbčík and M. Škoviera 14:7

5 J. Chen. Algorithmic graph embeddings. Theoret. Comput. Sci., 181:247–266, 1997.
6 J. Chen, D. Archdeacon, and J. L. Gross. Maximum genus and connectivity. Discrete

Math., 149:19–29, 1996.
7 J. Chen, S. P. Kanchi, and A. Kanevsky. On the Complexity of Graph Embeddings (ex-

tended abstract). In F. Dehme et. al., editor, Algorithms and Data Structures WADS’93,
volume 709 of Lecture Notes in Comp. Sci., pages 234–245. Springer-Verlag, Berlin, 1993.

8 J. Chen, S. P. Kanchi, and A. Kanevsky. On the Complexity of Graph Embeddings (exten-
ded abstract). In F. Dehme et al., editor, Algorithms and Data Structures, volume 709 of
Lecture Notes in Comp. Sci., pages 234–245. Springer-Verlag, Berlin, 1993.

9 J. Chen, S. P. Kanchi, and A. Kanevsky. A note on approximating graph genus. Inform.
Process. Lett., 6(61):317–322, 1997.

10 H. Y. Cheung, L. C. Lau, and K. M. Leung. Algebraic Algorithms for Linear Matroid
Parity Problems. ACM Trans. Algorithms, 10(3):10:1–10:26, 2014.

11 D. de Caen. An upper bound on the sum of squares of degrees in a graph. Discrete Math.,
185(1–3):245–248, 1998.

12 R. A. Duke. The genus, regional number, and the Betti number of a graph. Canad. J.
Math., 18:817–822, 1966.

13 M. L. Furst, J. L. Gross, and L. A. McGeoch. Finding a maximum-genus embedding. J.
ACM, 35:523–534, 1988.

14 H. M. Gabow and M. Stallmann. Effecient Algorithms for Graphic Matroid Intersection
and Parity (extended abstract). In Automata, Languages and Programming ICALP’85,
volume 194 of LNCS, pages 210–220. Springer-Verlag, Berlin, 1985.

15 M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the theory of
NP-completeness. Bell Telephone Laboratories, 1979.

16 R. Giles. Optimum Matching Forests I: Special Weights. Math. Programming, 22:1–12,
1982.

17 A. D. Glukhov. A contribution to the theory of maximum genus of a graph. In Structure
and Topological Properties of Graphs, pages 15–29. Inst. Mat. Akad. Nauk Ukrain. SSR,
Kiev, 1981. In Russian.

18 J. L. Gross. Embeddings of graphs of fixed treewidth and bounded degree. Ars Math.
Contemp., 7(2):379–403, 2014.

19 J. L. Gross and M. L. Furst. Hierarchy for imbedding-distribution invariants of a graph. J.
Graph Theory, 11(2):205–220, 1987.

20 J. L. Gross, T. Mansour, T. W. Tucker, and D. Wang. Log-Concavity of Combinations of
Sequences and Applications to Genus Distributions. SIAM J. Discrete Math., 29(2):1002–
1029, 2015.

21 J. L. Gross and R. G. Rieper. Local extrema in genus-stratified graphs. J. Graph Theory,
15:159–171, 1991.

22 J. L. Gross and T. W. Tucker. Topological Graph Theory. Wiley, 1987.
23 M. Hellmuth, A. S. Knudsen, M. Kotrbčík, D. Merkle, and N. Nøjgaard. Linear Time

Canonicalization and Enumeration of Non-Isomorphic 1-Face Embeddings. In R. Pagh and
S. Venkatasubramanian, editors, Proceedings of the Twentieth Workshop on Algorithm En-
gineering and Experiments ALENEX’18, pages 154–168. Society for Industrial and Applied
Mathematics, 2018.

24 Y. Huang. Maximum genus and chromatic number of graphs. Discrete Math., 271(1):117–
127, 2003.

25 S. Iwata and Y. Kobayashi. A Weighted Linear Matroid Parity Algorithm. In Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing STOC’17, pages
264–276. ACM, 2017.

SOSA 2019

14:8 Greedy 2-Approximation of Maximum Genus

26 M. Jungerman. A charactrerization of upper embeddable graphs. Trans. Amer. Math. Soc.,
241:401–406, 1978.

27 K. Kawarabayashi and A. Sidiropoulos. Beyond the Euler characteristic: Approximating
the genus of general graphs. In Proceedings of the Forty-seventh Annual ACM Symposium
on Theory of Computing STOC’15, pages 675–682. ACM, 2015.

28 N. P. Khomenko and A. D. Glukhov. Single-component 2-cell embeddings and maximum
genus of a graph. In Some topological and combinatorial properties of graphs, pages 5–23.
Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1980. In Russian.

29 N. P. Khomenko, N. A. Ostroverkhy, and V. A. Kuzmenko. The maximum genus of a graph.
In φ-Transformations of Graphs, pages 180–207. Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev,
1973. In Ukrainian with English summary.

30 S. Kundu. Bounds on Number of Disjoint Spanning Trees. J. Combinatorial Theory Ser.
B, 17:199–203, 1974.

31 J. Lee, M. Sviridenko, and J. Vondrák. Matroid Matching: The Power of Local Search.
SIAM J. Computing, 42(1):357–379, 2013.

32 L. Lovász. The matroid matching problem. In Algebraic methods in Graph Theory,
volume 25 of Colloquia Mathematica Soc. János Bolyai, pages 495–517. North-Holland,
Amsterdam, 1978.

33 L. Lovász. Matroid matching and some applications. J. Combin. Theory Ser. B, 28(2):208–
236, 1980.

34 L. Lovász. Selecting independent lines from a family of lines in a space. Acta Sci. Math.,
42:121–131, 1980.

35 B. Mohar and C. Thomassen. Graphs on Surfaces. The Johns Hopkins University Press,
2001.

36 W. Myrvold and W. Kocay. Errors in graph embedding algorithms. J. Comp. System Sci.,
77(2):430–438, 2011.

37 W. Myrvold and J. Woodcock. A Large Set of Torus Obstructions and How They Were
Discovered. Electronic J. Combin., 25(1):]P1.16, 2018.

38 L. Nebeský. A new characterization of the maximum genus of a graph. Czechoslovak Math.
J., 31(106):604–613, 1981.

39 E. A. Nordhaus, R. D. Ringeisen, B. M. Stewart, and A. T. White. A Kuratowski-type
theorem for the maximum genus of a graph. J. Combin. Theory Ser. B, 12:260–267, 1972.

40 E. A. Nordhaus, B. M. Stewart, and A. T. White. On the maximum genus of a graph. J.
Combin. Theory Ser. B, 11(3):258–267, 1971.

41 J. Orlin. A Fast, Simpler Algorithm for the Matroid Parity Problem. In A. Lodi, A. Pancon-
esi, and G. Rinaldi, editors, Integer Programming and Combinatorial Optimization, volume
5035 of Lecture notes in comp. sci., pages 240–258. Springer-Verlag, 2008.

42 R. D. Ringeisen. Determining all compact orientable 2-manifolds upon which Km,n has
2-cell imbeddings. J. Combin. Theory Ser. B, 12(2):101–104, 1972.

43 R. D. Ringeisen. Survey of results on the maximum genus of a graph. J. Graph Theory,
3:1–13, 1979.

44 J. Širáň and M. Škoviera. Characterization of the maximum genus of a signed graph. J.
Combinatorial Theory ser. B, 52:124–146, 1991.

45 M. Škoviera. The maximum genus of graphs of diameter two. Discrete Math., 52:124–146,
1991.

46 S. Stahl. On the Number of Maximum Genus Embeddings of Almost all Graphs. European
J. Combin., 13:119–126, 1992.

47 S. Stahl. On the average genus of the random graph. J. Graph Theory, 20(1):1–18, 1995.
48 C. Thomassen. The Graph Genus Problem is NP-Complete. J. Algorithms, 10:568–576,

1989.

M. Kotrbčík and M. Škoviera 14:9

49 C. Thomassen. Bidirectional retracting-free double tracings and upper embeddability of
graphs. J. Combinatorial Theory ser. B, 50(2):198–207, 1990.

50 C. Thomassen. The Genus Problem for Cubic Graphs. J. Combin. Theory Ser. B, 69(1):52–
58, 1997.

51 C. Wulff-Nilsen. Faster Deterministic Fully-dynamic Graph Connectivity. In Sanjeev
Khanna, editor, Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Dis-
crete Algorithms SODA’13, pages 1757–1769. Society for Industrial and Applied Mathem-
atics, 2013.

52 N. H. Xuong. How to determine the maximum genus of a graph. J. Combin. Theory Ser.
B, 26:217–225, 1979.

SOSA 2019

A Note on Max k-Vertex Cover: Faster FPT-AS,
Smaller Approximate Kernel and Improved
Approximation
Pasin Manurangsi1

University of California, Berkeley, CA, USA
pasin@berkeley.edu

Abstract
In Maximum k-Vertex Cover (Max k-VC), the input is an edge-weighted graph G and an integer
k, and the goal is to find a subset S of k vertices that maximizes the total weight of edges covered
by S. Here we say that an edge is covered by S iff at least one of its endpoints lies in S.

We present an FPT approximation scheme (FPT-AS) that runs in (1/ε)O(k)poly(n) time for
the problem, which improves upon Gupta, Lee and Li’s (k/ε)O(k)poly(n)-time FPT-AS [30, 29].
Our algorithm is simple: just use brute force to find the best k-vertex subset among the O(k/ε)
vertices with maximum weighted degrees.

Our algorithm naturally yields an (efficient) approximate kernelization scheme of O(k/ε)
vertices; previously, an O(k5/ε2)-vertex approximate kernel is only known for the unweighted
version of Max k-VC [43]. Interestingly, this also has an application outside of parameterized
complexity: using our approximate kernelization as a preprocessing step, we can directly apply
Raghavendra and Tan’s SDP-based algorithm for 2SAT with cardinality constraint [52] to give
an 0.92-approximation algorithm for Max k-VC in polynomial time. This improves upon the
best known polynomial time approximation algorithm of Feige and Langberg [23] which yields
(0.75 + δ)-approximation for some (small and unspecified) constant δ > 0.

We also consider the minimization version of the problem (called Min k-VC), where the goal
is to find a set S of k vertices that minimizes the total weight of edges covered by S. We provide a
FPT-AS for Min k-VC with similar running time of (1/ε)O(k)poly(n). Once again, this improves
on a (k/ε)O(k)poly(n)-time FPT-AS of Gupta et al. On the other hand, we show, assuming
a variant of the Small Set Expansion Hypothesis [50] and NP * coNP/poly, that there is no
polynomial size approximate kernelization for Min k-VC for any factor less than two.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and
exact algorithms, Mathematics of computing → Approximation algorithms

Keywords and phrases Maximum k-Vertex Cover, Minimum k-Vertex Cover, Approximation
Algorithms, Fixed Parameter Algorithms, Approximate Kernelization

Digital Object Identifier 10.4230/OASIcs.SOSA.2019.15

Related Version A full version of the paper is available at [44], https://arxiv.org/abs/1810.
03792.

1 Introduction

In the Vertex Cover problem, we are given a graph G and an integer k, and the goal is to
determine whether there is a set S of k vertices that covers all the edges, where the edge is
said to be covered by S if at least one of its endpoints lies in S. Vertex Cover is a classic

1 Supported by NSF under Grants No. CCF 1655215 and CCF 1815434.

© Pasin Manurangsi;
licensed under Creative Commons License CC-BY

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy Fineman and Michael Mitzenmacher; Article No. 15; pp. 15:1–15:21

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pasin@berkeley.edu
https://doi.org/10.4230/OASIcs.SOSA.2019.15
https://arxiv.org/abs/1810.03792
https://arxiv.org/abs/1810.03792
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

15:2 On Max k-Vertex Cover

graph problem and is among Karp’s original list of 21 NP-complete problems [37]. This
NP-hardness has led to studies of variants of the problems. One such direction is to consider
the optimization versions of the problem. Arguably, the two most natural optimization
formulations of Vertex Cover are the Minimum Vertex Cover (Min VC) problem, where
the constraint that every edge is covered is treated as a hard constraint and the goal is to
find S with smallest size that satisfies this, and the Maximum k-Vertex Cover (Max k-VC)
problem2, where the cardinality constraint |S| = k is treated as a hard constraint and the
goal is to find such S that covers as many edges as possible.

Both problems have been thoroughly studied in the approximation algorithms and
hardness of approximation literature. Min VC admits a simple greedy 2-approximation
algorithm3, which has been known since the seventies (see e.g. [26]). The approximation ratio
has subsequently been slightly improved [9, 47] and, currently, the best known approximation
ratio in polynomial time is (2− 1/O(

√
logn)) [36]. There has also been a number of works

on hardness of approximation of Vertex Cover [11, 34, 22, 41, 8, 39, 40]. The best known
NP-hardness of approximation for Min VC, established in the recent works that resolve the
(imperfect) 2-to-1 conjecture [39, 20, 21, 40], has a factor of (

√
2−ε) for any ε > 0. Assuming

the Unique Games Conjecture (UGC) [38], the inapproximability ratio can be improved to
(2− ε) for any ε > 0 [41, 8], which is tight up to lower order terms.

Unlike Min VC, tight approximability results for Max k-VC are not known (even assuming
UGC). In particular, on the algorithmic front, the best known efficient approximation
algorithm due to Feige and Langberg [23] yields a (0.75 + δ)-approximation for the problem,
where δ > 0 is a (small) constant. This was an improvement over an earlier 0.75-approximation
algorithm of Ageev and Sviridenko [2], which in turn improved upon the simple greedy
algorithm that yields (1 − 1/e)-approximation for the problem [35]. (See also [33, 32, 31]
where improvements have been made for certain ranges of k and n.) On the hardness of
approximation front, it is known that the problem is NP-hard to approximate to within
(1 + δ) factor for some (small) δ > 0 [49]. Moreover, it follows from a result of Austrin, Khot
and Safra [7] that it is UG-hard to approximate the problem to within a factor of 0.944. (See
Appendix A of the full version [44].) This leaves quite a large gap between the upper and
lower bounds, even assuming the UGC.

Approximability is not the only aspect of Vertex Cover and its variants that has been
thoroughly explored: its parameterized complexity is also a well-studied subject. Recall
that an algorithm is said to be fixed-parameter (FPT) with respect to parameter k if it
runs in time f(k) · poly(n) for some function f , where n is the size of the input. An FPT
algorithm (with running time kO(k) · poly(n)) was first devised for Vertex Cover by Buss and
Goldsmith [14]. Since then, many different FPT algorithms have been discovered for Vertex
Cover; to the best of our knowledge, the fastest known algorithm is that of Chen, Kanj and
Xia [17], which runs in 1.2738k · poly(n) time.

Notice that an FPT algorithm for Vertex Cover can also be adapted to solve Min VC in
FPT time parameterized by the optimal solution size, by running the Vertex Cover algorithm
for k = 1, 2, . . . until it finds the size of the optimal solution. On the other hand, Max k-VC

2 Max k-VC and Min k-VC (which will be introduced below) are sometimes referred to as the Max Partial
Vertex Cover and Min Partial Vertex Cover respectively. However, we decide against calling them as
such to avoid ambiguity since Partial Vertex Cover has also used to refer to a different variant of Vertex
Cover (see e.g. [10]).

3 Throughout this note, we use the convention that the approximation ratio is the worst case ratio
between the cost of the output solution and the optimum. In other words, the approximation ratios
for maximization problems will be at most one, whereas the approximation ratios for minimization
problems will be at least one.

P. Manurangsi 15:3

is unlikely to admit an FPT algorithm, as it is W[1]-hard [28]. Circumventing this hardness,
Marx [46] designed an FPT approximation scheme (FPT-AS), which is an FPT algorithm
that can achieve approximation ratio (1− ε) (or (1 + ε) for minimization problems) for any
ε > 0, for Max k-VC. In particular, his algorithm runs in time (k/ε)O(k3/ε) · poly(n). This
should be contrasted with the aforementioned fact that Max k-VC does not admit a PTAS
unless P = NP. Recently, the FPT-AS has been sped up by Gupta, Lee and Li [30, 29]4 to
run in time (k/ε)O(k) · poly(n).

FPT algorithms are intimately connected to the notion of kernel. A kernelization algorithm
(or kernel) of a parameterized problem is a polynomial time algorithm that, given an instance
(I, k), produces another instance (I ′, k′) such that the size of the new instance |I ′| and the
new parameter k′ are both bounded by g(k) for some function g. It is well known that a
parameterized problem admits a kernel if and only if it admits FPT algorithms [15]. Once
again, many kernels are known for Vertex Cover (see e.g. [1] and references therein). On the
other hand, the W[1]-hardness of Max k-VC means that it does not admit a kernel unless
W[1] = FPT.

Recently, there have been attempts to make the concept of kernelization compatible
with approximation algorithms [24, 43]. In this note, we follow the notations defined by
Lokshtanov et al. [43]. For our purpose, it suffices to define an α-approximate kernel for an
parameterized optimization problem as a pair of polynomial time algorithms A, the reduction
algorithm, and B, the solution lifting algorithm, such that (i) given an instance (I, k), A
produces another instance (I ′, k′) such that |I ′|, k′ are bounded by g(k) for some g and (ii)
given an β-approximate solution s′ for (I ′, k′), B produces a solution s of (I, k) such that s is
an (αβ)-approximate solution5 for (I, k). Akin to (exact) kernelization, Lokshtanov et al. [43]
shows that a decidable parameterized optimization problem admits α-approximate kernel
if and only if it admits an FPT α-approximation algorithm. (We refer interested readers
to Section 2.1 of [43] for more details.) In light of Marx’s algorithm for Max k-VC [46],
this immediately implies that Max k-VC admits (1− ε)-approximate kernel for any ε > 0.
Lokshtanov et al. [43] made this bound more specific, by showing that the insights from
Marx’s work can be turned into an (1− ε)-approximate kernel where the number of vertices
in the new instance is at most O(k5/ε2).

Minimum k-Vertex Cover. We will also consider the minimization variant of the Min
k-VC, which we call Minimum k-Vertex Cover (Min k-VC). The goal of this problem is to
find a subset of k vertices that minimizes the number of edges covered. Note that this is not
a natural relaxation of Vertex Cover and is in fact more closely related to edge expansion
problems. (See [25] and discussion therein for more information.) The greedy algorithm that
picks k vertices with minimum degrees yields a 2-approximation. Gandhi and Kortsarz [25]
showed that this is likely tight: assuming the Small Set Expansion Conjecture [50], it is hard
to approximate Min k-VC to within (2− ε) factor for any ε > 0. As for its parameterized
complexity, similar to Max k-VC, Min k-VC is W[1]-hard [28] and admits an FPT-AS with
running time (k/ε)O(k) [30, 29].

4 In fact, Gupta et al.gives an FPT-AS for Min k-VC; it is trivial to see that their algorithm works for
Max k-VC as well.

5 We use a similar convention here as our convention for approximation ratios. That is, α 6 1 for
maximization problems and α > 1 for minimization problems. Note that this is not the same as in [43]
where α > 1 in both cases; nevertheless, it is simple to see that these different conventions do not effect
any of the results.

SOSA 2019

15:4 On Max k-Vertex Cover

Weight vs Unweighted. All results stated above are for unweighted graphs. The natural
extensions of Max k-VC (resp. Min k-VC) to edge-weighted graphs ask to find subsets of
vertices of size k that maximizes (resp. minimizes) the total weight of the edges covered.
To avoid confusion, we refer to these weighted variants explicitly as Weighed Max k-VC
and Weight Min k-VC. Clearly, since these problems are more general than the unweighted
ones, the lower bounds above (including inapproximability results and W[1]-hardness) applies
immediately. It is also quite simple to check that all aforementioned polynomial time
approximation algorithms for the unweighted case extends naturally to the weighted setting
too. The FPT-ASes are slightly trickier, but Gupta et al. [30] provide an argument discretizing
the weights and extend their FPT-ASes to the weighted case with similar time complexity. It
is also possible to apply this argument to Lokshtanov et al.’s [43] approximate kernel, although
it would result in a graph of O(k7/ε4) vertices instead of O(k5/ε2) for the unweighted case.

1.1 Our Results
For convenience, all our results stated below are for the weighted version of the problems,
and moreover we allow self-loops in the input graph. This is the most general version of the
problem and, hence, the algorithmic results below apply directly to the unweighted case (nd
the weighted simple graph case. We also note that this choice is partly motivated by the
fact that in some applications, such Gupta et al.’s [30, 29] algorithms for Minimum k-Cut,
this full generality is needed. (Unfortunately, our result does not imply faster algorithms for
Minimum k-Cut, as the bottlenecks of Gupta et al.’s approach is elsewhere6.)

We remark that, while the algorithmic results apply directly to the more restricted
version, the approximate kernel does not. This is because, in a more restricted version (e.g.
unweighted) of the problems, the instance output by the reduction algorithm is also more
restrictive (e.g. unweighted), meaning that one cannot simply use the approximate kernel
for the more general version. Nevertheless, as we will point out below, our approximate
kernel also extends to the unweighted setting (and simple graph setting), with a small loss in
parameter.

Maximum k-Vertex Cover
Our first result is a faster FPT-AS for Max k-VC that runs in time O(1/ε)k · poly(n), which
improves upon a (k/ε)k · poly(n)-time FPT-AS due to Gupta, Lee and Li [29].

I Theorem 1. For every ε > 0, there exists an (1− ε)-approximation algorithm for Weighted
Max k-VC that runs in time O(1/ε)k · poly(n).

Perhaps more importantly, our FPT-AS is simple and yields a new insight compared to
the previous FPT-ASes [46, 30, 29]. In particular, our algorithm is just the following: restrict
ourselves only to the O(k/ε) vertices with maximum weighted degrees and use brute force to
find a k-vertex subset among these vertices that cover edges with maximum total weight.

To demonstrate the differences to the previous algorithms, let us briefly sketch how they
work here. The known FPT-ASes [46, 30, 29] all rely on a degree-based argument for the
unweighted case due to Marx [46] who consider the following two cases:

6 For their FPT approximation algorithm [30], the bottleneck is in the reduction from Min k-Cut to
Laminar k-Cut which runs in time 2O(k2) · poly(n). For their (1 + ε)-approximation algorithm [29], the
bottleneck is in the dynamic programming step which takes (k/ε)O(k) · poly(n) time.

P. Manurangsi 15:5

1. The vertex with maximum degree have degree at least k2/ε. In this case, one can simply
take the k vertices with largest degree because the number of edges with both endpoints
in the set is at most

(
k
2
)
, meaning that it only affects the number of edges covered by at

most an ε factor and thus this is already an (1− ε)-approximation for the problem.
2. The vertex with maximum degree have degree at most k2/ε. The key property in this

case is that the number of edges covered by the optimal solution is at most k3/ε, which
is bounded by a function of k. Marx’s algorithm then proceeds as follows: (i) guess the
number of edges ` 6 k3/ε in the optimal solution, (ii) guess (among the k` possibilities)
which vertex (in the solution) that each edge is covered by, (iii) randomly color each edge
in the input graph with one of ` colors and randomly color each vertex with one of k
colors and (iv) finally, determine whether there are k vertices each of different color that
covers edges with colors as guessed in Step (ii). Note that Step (iv) can be easily done in
polynomial time. Since ` is bounded by k3/ε, the algorithm succeeds with probability
at least k−O(k3/ε), which can be turned into a randomized algorithm with running time
k−O(k3/ε) · poly(n) that succeeds with high probability. Finally, it can be derandomized
using standard techniques (see [3]).

The speed-up of Gupta et al. [30, 29] comes from the change in the second case. Roughly
speaking, they show that more elaborated coloring techniques can be used, in conjunction
with dynamic programming, to speed the second case up to (k/ε)O(k) · poly(n).

Intuitively, our result shows that this case-based analysis is in fact not needed, as it
suffices to consider the O(k/ε) vertices with highest weighted degrees. Moreover, a nice
feature about our algorithm is that it works naturally for the weighted case, whereas Gupta
et al. needs to employ a discretization argument to deal with this case. (See Section 5.2 in
the full version of [30].)

Another feature of our algorithm is that it immediately gives an approximate kernelization
for the problem, by restricting to the subgraph induced by the O(k/ε) vertices and adding
self-loops with appropriate weights to compensate the edges from these vertices to the
remaining vertices. This results in an (1− ε)-approximate kernelization of O(k/ε) vertices
for Max k-VC:

I Lemma 2. For every ε > 0, Weighted Max k-VC admits an (1−ε)-approximate kernelization
with O(k/ε) vertices.

As stated earlier, the above result is not directly comparable to Lokshtanov et al.’s [43]
approximate kernel of O(k5/ε2) vertices for the unweighted version of Max k-VC. Fortunately,
our technique also gives an O(k/ε2)-vertex approximate kernel for the unweighted case, which
indeed improves upon Lokshtanov et al.’s result. (See the end of Section 3.2.)

Interestingly, the above approximate kernelization also has an application outside of
parameterized complexity: using our approximate kernelization as a preprocessing step, we
can directly apply Raghavendra and Tan’s SDP-based algorithm for 2SAT with cardinality
constraint [52] to give an 0.92-approximation algorithm for Max k-VC in polynomial time.
This improves upon the aforementioned polynomial time approximation algorithm of Feige
and Langberg [23] which yields (0.75 + δ)-approximation for some (small and unspecified)
constant δ > 0.

I Corollary 3. There exists a polynomial time 0.92-approximation algorithm for Weighted
Max k-VC.

We note here that the approximation guarantee above is even better than the previous
best known ratios for some special cases, such as in bipartite graph [4, 13] where the previous
best known approximation ratio is 0.821 [13].

SOSA 2019

15:6 On Max k-Vertex Cover

Minimum k-Vertex Cover
For the Weighted Min k-VC problem, we give a FPT-AS with similar running time of
O(1/ε)O(k) · poly(n) for the problem. Once again, this improves upon the (k/ε)O(k) · poly(n)-
time algorithm of Gupta et al. [30, 29].

I Theorem 4. For every ε > 0, there exists an (1 + ε)-approximation algorithm for Weighted
Min k-VC that runs in time O(1/ε)O(k) · poly(n).

We remark that this algorithm is different from the algorithm for Max k-VC and is
instead based on a careful branch-and-bound approach. A natural question here is perhaps
whether this difference is inherent. While it is unclear how to make this question precise, we
provide an evidence that the two problems are indeed of different natures by showing that,
in contrast to Max k-VC, a polynomial size approximate kernelization for Min k-VC for any
factor less than two is unlikely to exist:

I Lemma 5. Assuming the Strong Small Set Expansion Hypothesis (Conjecture 16) and
NP * coNP/poly, Weighted Min k-VC does not admit a polynomial size (2− ε)-approximate
kernelization for any ε ∈ (0, 1].

The above result is under a variant of the Small Set Expansion Hypothesis [50]; please
refer to Section 4.2 for the precise definition of the variant. We also note that the above
lower bound also applies to the unweighted version; again please see Section 4.2 for more
details.

2 Notations

Throughout this note, we think of an edge-weighted graph as a complete graph (self-loops
included) where each edge is endowed with a non-negative weight. More specifically, an
edge-weighted graph G consists of a vertex set VG and a weight function wG :

(
VG

62
)
→ R>0.

(Note that, for a set U and a non-negative integer `, we use
(
U
6`

)
and

(
U
`

)
to denote the

collections of subsets of U of sizes at most ` and exactly ` respectively.) When the graph
is clear from the context, we may drop the subscript G, and we sometimes use we to
denote w(e) for brevity. For each vertex v ∈ V , we use w-deg(v) to denote its weighted
degree, i.e., w-deg(v) =

∑
e∈(VG

62),v∈e we. For a subset S ⊆ VG, we write w-deg(S) to denote∑
v∈S w-deg(v). For subsets S, T ⊆ VG, we use EG(S, T) to denote the total weight of

edges with at least one endpoint in S and at least one endpoint in T ; more specifically,
EG(S, T) =

∑
e∈(VG

62),e∩S 6=∅,e∩T 6=∅ wG(e). Note that EG(S, S) is the total weight of the
edges covered by S; for brevity, we use EG(S) as a shorthand for EG(S, S). Finally,
we use OPTMin k-VC(G, k) and OPTMax k-VC(G, k) to denote the optimums of Min k-VC
and Max k-VC respectively on the instance (G, k). More formally, OPTMin k-VC(G, k) =
min

S∈(VG
k)EG(S) and OPTMax k-VC(G, k) = max

S∈(VG
k)EG(S).

3 Maximum k-Vertex Cover

We will now prove our results for Max k-VC. To do so, it will be convenient to order the
vertices of the input graph VG based on their weighted degree (ties broken arbitrarily), i.e.,
let v1, . . . , vn be the ordering of vertices in VG such that w-degG(v1) > · · · > ·w-degG(vn).
Moreover, we use Vi to denote the set of i vertices with highest weighted degree, i.e.,
Vi = {v1, . . . , vi}.

P. Manurangsi 15:7

3.1 A Simple Observation and A Faster FPT-AS

Our main insight to the Weighted Max k-VC problem is that there is always an (1 − ε)-
approximate solution which is entirely contained in VO(k/ε), as stated more formally below.

I Observation 6. For any ε > 0, let n′ = min{k + dk/εe, n}. Then, there exists S∗ ⊆ Vn′

of size k such that EG(S∗) > (1− ε) ·OPTMax k-VC(G, k).

Note that this implies Theorem 1: we can enumerate all k-vertex subsets of Vn′ and find an
(1− ε)-approximation for Max k-VC in

(|Vn′ |
k

)
poly(n) = O(n′/k)kpoly(n) = O(1/ε)kpoly(n)

time.
Before we present a formal proof of the observation, let us briefly give an (informal)

intuition behind the proof. Let SOPT be the optimal solution for (G, k). Our goal is to
construct another set S∗ ⊆ Vn′ such that EG(S∗) is roughly the same as EG(SOPT). To do
so, we will just replace each vertex in SOPT \ Vn′ by a vertex in Vn′ \ SOPT. Intuitively, this
should be good for the solution, as we are replacing one vertex with another vertex that
has higher weighted degree. However, this argument does not yet work: we might “double
count” edges with both endpoints coming from the new vertices. The key point here is
that, while we will not be able to avoid this double counting completely, we will be able to
pick new vertices such that the total weight of such doubled counted edges is small. This
is just because the set Vn′ is so large that even if we pick a random k vertices from it, the
probability that a given added edge is double counted is only O(ε).

Proof of Observation 6. Note that, if n′ = n, the statement is obviously true. Hence, we
may assume that n′ = k + dk/εe. Let SOPT ⊆ VG denote any optimal solution, i.e., any
subset of VG of size k with EG(SOPT) = OPTMax k-VC(G, k). Let Sin

OPT = SOPT ∩ Vn′ ,
Sout

OPT = SOPT \ Vn′ and U = Vn′ \ SOPT.
We construct S ⊆ Vn′ in randomly as follows. We randomly select a subset U∗ ⊆ U of

|Sout
OPT| vertices uniformly at random, and let S = Sin

OPT ∪U∗. Clearly, S is a subset of Vn′ of
size k. We will show that the expected value of EG(S) is at least (1− ε) ·OPTMax k-VC(G, k).
This would imply that there exists S∗ ⊆ Vn′ of size k such that EG(S∗) > (1 − ε) ·
OPTMax k-VC(G, k) as desired.

To bound E[EG(S)], let us first rearrange EG(S) as follows.

EG(S) = EG(Sin
OPT) + EG(U∗)− EG(U∗, Sin

OPT). (1)

Let ρ = |Sout
OPT|/|U |; note here that ρ 6 k/(n′−k) 6 ε. We can now bound E[EG(U∗, Sin

OPT)]
by

E[EG(U∗, Sin
OPT)] =

∑
u∈U

∑
v∈Sin

OPT

w{u,v} · Pr[u ∈ U∗]

= ρ ·
∑
u∈U

∑
v∈Sin

OPT

w{u,v} 6 ε · EG(Sin
OPT) (2)

SOSA 2019

15:8 On Max k-Vertex Cover

Moreover, E[EG(U∗)] can be rearranged as

E[EG(U∗)] = E

∑
u∈U∗

w-deg(u)− 1
2

∑
v∈U∗\{u}

w{u,v}


= E

∑
u∈U

w-deg(u) · 1[u ∈ U∗]− 1
2

∑
v∈U\{u}

w{u,v} · 1[u ∈ U∗ ∧ v ∈ U∗]


=
∑
u∈U

w-deg(u) · Pr[u ∈ U∗]− 1
2

∑
v∈U\{u}

w{u,v} · Pr[u ∈ U∗ ∧ v ∈ U∗]


>
∑
u∈U

w-deg(u) · ρ− 1
2

∑
v∈U\{u}

w{u,v} · ρ2


> ρ(1− ρ/2) ·

(∑
u∈U

w-deg(u)
)

> ρ(1− ε) ·
(∑
u∈U

w-deg(u)
)

(3)

where in the first inequality we use the fact that Pr[u ∈ U∗ ∧ v ∈ U∗] 6 Pr[u ∈ U∗] Pr[v ∈
U∗] = ρ2.

Recall that the vertices are sorted in decreasing order of degrees; thus, for all u ∈ U , we
have w-deg(u) >

(∑
v∈Sout

OPT
w-deg(v)

)
/|Sout

OPT| > EG(Sout
OPT)/|Sout

OPT|. From this and (3), we
arrive at

E[EG(U∗)] > ρ(1− ε) · |U | ·
(
EG(Sout

OPT)/|Sout
OPT|

)
= (1− ε) · EG(Sout

OPT) (4)

Plugging (2) and (4) back into (1), we indeed have

E[EG(S)] > (1− ε)(EG(Sin
OPT) + EG(Sout

OPT)) > (1− ε) · EG(SOPT),

which concludes the proof. J

3.2 An Approximate Kernel
Observation 6 also naturally gives an (1− ε)-approximate kernel for Weighted Max k-VC
where the new instance has O(k/ε) vertices, as stated below.

Proof of Lemma 2. The reduction algorithm A works by taking the graph induced on Vn′
(where n′ = min{k+ dk/εe, n} as in Observation 6) and add appropriate weights to self-loops
to compensate for edges going out of Vn′ . More precisely, A outputs (G′, k) where VG′ = Vn′

and w′G({u, v}) = w′G({u, v}) for all u 6= v ∈ VG′ and wG′(u) = wG(u) + EG({u}, VG \ Vn′)
for all u ∈ VG′ .

The solution lifting algorithm B simply outputs the same solution as its get. It is obvious
to see that EG′(S) = EG(S). Hence, if EG′(S) > α ·OPTMax k-VC(G′, k), then Observation 6
implies that EG(S) = EG′(S) > α(1 − ε) · OPTMax k-VC(G, k). This means that (A,B) is
an (1− ε)-approximate kernel; moreover, it is obvious that the graph output by A has size
O(k/ε) as desired. J

P. Manurangsi 15:9

As mentioned earlier, the above kernel does not directly work for the unweighted case.
Let us sketch below how we can modify the above proof to work in this case, albeit with a
slightly worse O(k/ε2) vertices in the reduced instance. We omit the full proof, which is a
simple undergraduate-level exercise, and only describe the main ideas. We do this in two
steps; we first modify the proof for weighted graphs without self-loops and then we proceed
to unweighted graphs.

Suppose that the graphs G and G′ must not contain any self-loops. Then, instead of
adding self-loops as above, A will add npadded = dkn′/εe = O(k/ε2) padded vertices
and let the weight between each padded vertex and u ∈ Vn′ be EG({u},VG\Vn′)

npadded
. Once

again, if we take a look at any set S ⊆ Vn′ , we immediately have EG(S) = EG′(S). The
only additional argument needed is that these padded vertices has little effect on any
solution. Indeed, it is simple to see that the weighted degree of each padded vertex is at
most (ε/k) ·OPTMax k-VC(G, k). Thus, throwing these vertices away from any subset of
size k affect the total weights of edges covered by at most ε ·OPTMax k-VC(G, k), which
implies that this is an (1− 2ε)-approximate kernel. Adjusting ε appropriately gives the
(1− ε)-approximate kernel with O(k/ε2) vertices.
The above idea naturally adapts to the unweighted case. Instead of adding an edge from
every u ∈ Vn′ to all the padded vertices, we just add EG({u}, VG \ Vn′) edges from each
u ∈ Vn′ to different padded vertices. These edges are added in a way that each padded
vertices has roughly the same degree. It is simple to check that, if the degree of all
vertices u ∈ Vn′ is at most say k/ε2, then this works immediately (with the same proof
as above). The only issue is when there are vertices with degree larger than k/ε2. (In
this case, the number of edges required to be added may even be larger than npadded!)
Nevertheless, this issue can also be easily resolved, by observing that, if any vertex in Vk
has degree at least k/ε, then we can always take it in our solution while guaranteeing
that the solution still remains within ε · OPTMax k-VC(G, k) of the optimum. Hence,
the reduction algorithm can first greedily pick these vertices and then use the padded
argument as above; since no large degree vertex remains, the proof of the second step
now works and we have the desired approximate kernel.

3.3 Raghavendra-Tan Algorithm and An Improved Approximation
We next describe how our approximate kernel can be used a preprocessing step for the
aforementioned algorithm of Raghavendra and Tan [52] for Max 2SAT with cardinality
constraint to obtain improved approximation for Weighted Max k-VC.

Recall that the (weighted) Max 2SAT with cardinality constraint is the following problem.
Given a collection C of conjunctions of at most two literals (of variables {x1, . . . , xn}) and
their associated weights, find an assignment to {x1, . . . , xn} satisfying x1 + · · ·+ xn = k that
maximizes the total weights of satisfied clauses in C. Raghavendra and Tan [52] device an
algorithm with approximation ratio strictly greater than 0.92 for the problem, as stated
below.

I Theorem 7 ([52]). For some α > 0.92, there exists an α-approximation algorithm for Max
2SAT with cardinality constraint that runs in time7 npoly(n/k).

7 The running time of the algorithm is not stated in this form in [52] as they are only concerned about
the case where k = Ω(n), for which the running time is polynomial. To see that the running time is of
the form npoly(n/k), we note that their algorithm needs the variance guaranteed in their Theorem 5.1 to
be at most poly(k/n). This means that they need the SDP solution to be poly(k/n)-independence; to

SOSA 2019

15:10 On Max k-Vertex Cover

It is not hard to see that the Weighted Max k-VC can be formulated as Max 2SAT with
cardinality constraint: we create a variable xi for each vertex vi, and, for each {vi, vj} ∈

(
VG

62
)
,

we create a clause (vi ∨ vj) with weight w{vi,vj}. Obviously, any solution to Max 2SAT
satisfying x1 + · · · + xn = k is also a solution of Max k-VC with the same cost. Of
course, the only issue in applying Raghavendra and Tan’s algorithm here is that its running
time npoly(n/k) is not polynomial when k = o(n). Fortunately, our approximate kernel above
precisely circumvents this issue, as the reduction algorithm produces an instance (G′, k) where
|VG′ | 6 O(k/ε). Thus, we can now apply the algorithm and arrives at 0.92 approximation
for Weight Max k-VC in polynomial time.

Proof of Corollary 3. Let α be the approximation ratio from Theorem 7 and let ε > 0 be a
sufficiently small constant such that α(1− ε) > 0.92. Let A be the reduction algorithm for
the (1− ε)-approximate kernel as defined in the proof of Lemma 2.

For any instance (G, k) of Weight Max k-VC, we apply A to arrive at a reduced instance
(G′, k) where |VG′ | 6 O(k/ε). We then formulate the instance (G′, k) as an instance of
Max 2SAT with cardinality constraint and apply the Raghavendra-Tan algorithm, which
gives an α-approximate solution, i.e., a set S ⊆ VG′ of size k such that EG′(S) > α ·
OPTMax k-VC(G′, k) > α(1− ε) ·OPTMax k-VC(G, k) > 0.92 ·OPTMax k-VC(G, k). Note that
the Raghavendra-Tan algorithm runs in kpoly(|VG′ |/k) = kpoly(1/ε) time. Hence, we have found
a 0.92-approximate solution for (G, k) in polynomial time. J

4 Minimum k-Vertex Cover

4.1 A Faster FPT-AS
We now present our result on Weighted Min k-VC, starting with the faster FPT-AS (The-
orem 4). It will be more convenient for us to work with a multicolored version of the problem,
which we call Multicolored Min k-VC. In Multicolored Min k-VC, we are given G, k as
before and also a coloring χ : VG → [k]. A set S ⊆ VG is said to be colorful if every vertex
in S is assigned a different color, i.e., |χ(S)| = |S|. The goal of Multicolored Min k-VC
is to find a colorful S ⊆ VG of size k that maximizes EG(S). We overload the notation
OPTMin k-VC and also use it to denote the optimum of Multicolored Min k-VC; that is, we
let OPTMin k-VC(G, k, χ) = min

S∈(VG
k),|χ(S)|=k EG(S).

The main theorem of this section is the following FPT-AS for Multicolored Min k-VC.

I Theorem 8. For any ε > 0, there exists an (1+ε)-approximation algorithm for Multicolored
Min k-VC that runs in time O(1/ε)O(k) · poly(n).

We note here that the above lemma immediately gives an FPT-AS for (uncolored)
Weight Min k-VC with similar running time (i.e. Theorem 4) via standard color-coding
technique [3]. Specifically, they show how to construct a family F of k-perfect hash functions
from VG → {1, . . . , k} in 2O(k) · poly(n) time. By running the FPT-AS from Theorem 8
on (G, k, χ) for all χ ∈ F and take the best solution among the outputs, we arrive at the
FPT-AS for (uncolored) Weight Min k-VC.

We now proceed to discuss the intuition behind Theorem 8. The algorithm consists of
two parts: subgraph generation and dynamic programming. Roughly speaking, the subgraph
generation part will, for each set of colors C ⊆ [k], generate connected colorful subsets

find such a solution, the running time required is npoly(n/k) (see Theorem 4.1 in that paper).

P. Manurangsi 15:11

T ⊆ VG whose color is C and record the minimum EG(T) in the table cell DP[C]. The
second part of the algorithm then uses a standard dynamic programming to find a colorful
k-vertex S with minimum EG(S).

For the purpose of exposition, let us assume for the moment that our graph is unweighted.
The subgraph generation part is the heart of the algorithm, and, if not implemented in
a careful manner, will be too slow. For instance, the trivial implementation of this is as
a recursive function that maintains a set of included vertices Sincluded and a set of active
vertices Sactive. This function then picks any vertex u ∈ Sactive and tries to select at most
k neighbors of u to add into Sincluded and Sactive; the function then remove u from Sactive
and recursively call itself on this new sets. (Note that in this step it also makes sure that
the set Sincluded remains colorful; otherwise, the recursive call is not made.) The function
stops when Sactive is empty and update DP[C] to be the minimum between the current value
and EG(Sincluded). As the reader may have already noticed, while this algorithm records
(exactly) the correct answer into the table, it is very slow. In particular, if say we run this
on a complete graph, then it will generates nΘ(k) subgraphs.

The algorithm of Gupta, Lee and Li [30, 29], while not stated in this exact form, can
be viewed as a more careful implementation of this approach. In particular, they use the
observation of Marx [46] (that was also outlined outline in Section 1.1): for unweighted graphs,
if the optimal solution has any vertex with degree at least

(
k
2
)
/ε, simply picking the k vertices

with minimum degrees would already be an (1 + ε)-approximate solution. In other words,
one may assume that the graph has degree bounded by

(
k
2
)
/ε = O(k2/ε). When this is the

case, the algorithm from the previous paragraph in fact runs in O(k/ε)O(k) ·poly(n) time; the
reason is that the number of choices to be made when adding a vertex is only O(k2/ε) instead
of n as before. Hence, the running time becomes O(k2/ε)k · poly(n) = (k/ε)O(k) · poly(n).

To obtain further speed up, we observe that, if at most ε/2 fraction of neighbors of a
vertex u lies in the optimal solution, then ignoring all of them completely while branching
would change the number of covered edges by factor of no more than ε. (This is shown
formally in the proof below.) In other words, instead of trying all subsets of at most k
neighbors of u. We may only try subsets with at least dε/2 (and at most k) neighbors of u
where d is the degree of u. The point here is that, while there are still exp(d) branches, we
are adding at least dε/2 vertices. Hence, the “branching factor per vertex added” is small:
namely, for j > dε/2, the “branching factor per vertex added” is only

(
d
j

)1/j
6 ed/j 6 O(1/ε).

This indeed gives the running time of O(1/ε)O(k) · poly(n). (Note that such branching may
result in a connected component being separated; however, when this is the case, the number
of edges between the generated parts must be small anyway.)

Let us now shift our discussion to the edge-weighted graph case. Once again, as we will
show formally in the proof, throwing away the edges adjacent to u with total weight at
most (ε/2) · w-deg(u) only affects the solution value by no more than ε factor. However,
this observation alone is not enough; specifically, unlike the unweighted case, this does not
guarantee that many vertices must be selected. As an example, if there is a vertex v where
w{u,v} = 0.5·w-deg(u), then even the set {v} should be consider when we branch. Nevertheless,
it is once again possible to show that, we can select a collection T of representative subsets
such that, for any set S ⊆ VG (the true optimal set), we can arrive in a subset in T by
throwing away vertices whose edges to u are of total weight at most (ε/2) ·w-deg(u). In other
words, it is “safe” to just consider branching with subsets in T instead of all subsets. Again,
the collection T will satisfy the property that the “branching factor per vertex added” is
small; that is, for any j, the number of j-element subsets that belong to T is at most O(1/ε)j .
The existence and efficient construction of such T is stated below in a more general form.

SOSA 2019

15:12 On Max k-Vertex Cover

Note that, in the context of subgraph generation algorithm, one should think of δ = ε/2,
` = n− 1 (all vertices except u itself) and P = w-deg(u)− w{u}.

I Lemma 9. Let a1, . . . , a` > 0 be any non-negative real numbers, let δ > 0 be any positive
real number, and let P =

∑
i∈[`] ai. Then, there exists a collection T of subsets of [`] such

that
(i) For all j ∈ [`], we have

∣∣∣T ∩ ([`]j)∣∣∣ 6 O(1/δ)j, and,
(ii) For any S ⊆ [`], there exists T ∈ T such that T ⊆ S and

∑
i∈(S\T) ai 6 δ · P .

Moreover, for any j ∈ [`], T ∩
([`]
6j

)
can be computed in O(1/δ)O(j)`O(1) time.

Proof. Let π : [`]→ [`] be any permutation such that aπ(1) > · · · > aπ(`). For each j ∈ [`],
we construct T ∩

([`]
j

)
by taking all j-element subsets of {π(1), . . . , π(min{j · d1/δe, `})}. We

have∣∣∣∣T ∩ ([`]
j

)∣∣∣∣ 6 (j · d1/δej

)
6

(
ej · d1/δe

j

)j
6 O(1/δ)j .

Moreover, it is clear that the set T ∩
([`]
j

)
can be generated in time polynomial in the size of

the set and `, which is O(1/δ)O(j)`O(1) as desired.
Finally, we will prove ii. Consider any subset S ⊆ [`] and suppose that its elements

are π(i1), . . . , π(im). We pick the set T as follows: let t be the largest index such that
it 6 t · d1/δe and let T = {π(i1), . . . , π(it)}. Since it 6 t · d1/δe, T is a t-element subset
from {π(1), . . . , π(min{t · d1/δe, `}) and hence T belongs to T . To prove ii, observe that, by
definition of t, we have ig > g · d1/δe for all g > t. This means that

∑
i∈(S\T)

ai =
m∑

g=t+1
aπ(g) 6

m∑
g=t+1

 1
d1/δe

g·d1/δe∑
i=(g−1)·d1/δe+1

ai

 6
1
d1/δe

∑
i∈[`]

ai 6 δ · P,

which concludes the proof. J

With the above lemma ready, we proceed to the proof of Theorem 8.

Proof of Theorem 8. The proof is based on the ideas outlined above. For simplicity, we
will describe the algorithm that computes an approximation for OPTMin k-VC(G, k, χ) rather
than a subset S ⊆ VG, i.e., it will output a number between OPTMin k-VC(G, k, χ) and
(1 + ε) · OPTMin k-VC(G, k, χ). It is not hard to see that the algorithm can be turned to
provide a desired set as well.

As stated above, the algorithm consists of two parts: the subgraph generation part, and
the dynamic programming part. The subgraph generation algorithm, which is shown below
as Algorithm 1, is very much the same as stated earlier: it takes as an input the sets Sactive
and Sincluded (in addition to (G, k, χ)). If there is no more active vertex in Sactive, then it
just updates the table DP to reflect EG(Sincluded). Otherwise, it pick a vertex u and try
to branch on every representative T from T from Lemma 9 where the {ai}’s are defined as
av = w{u,v} for all v 6= {u} and δ = ε/2.

The dynamic programming (main algorithm) proceeds in a rather straightforward manner:
after initializing the table, the main algorithm calls the subgraph generation subroutine
starting with each vertex. Then, it uses dynamic programming to updates the table DP
to reflect the fact that the answer may consist of many connected components. Finally, it
outputs DP[{1, . . . , k}]. The pseudo-code for this is given below as Algorithm 2.

P. Manurangsi 15:13

Algorithm 1
1: procedure SubgraphGen(G, k, χ, Sactive, Sincluded)
2: if Sactive = ∅ then
3: DP[χ(Sincluded)]← min{DP[χ(Sincluded)], EG(Sincluded)}
4: else
5: u← Any element of Sactive
6: Sactive ← Sactive \ {u}
7: T ← Subsets generated by Lemma 9 for av = w{u,v} for all v 6= u and δ = ε/2.
8: for T ⊆ T ∩

(
VG\{u}

6k

)
do

9: if T ∩ Sincluded = ∅ and Sincluded ∪ T is colorful then
10: SubgraphGen(G, k, χ, Sactive ∪ T, Sincluded ∪ T)
11: end procedure

Algorithm 2
1: procedure Min_k-VC(G, k, χ)
2: for C ⊆ [k] do
3: DP[C]←∞
4: for u ∈ VG do
5: SubgraphGen(G, k, χ, {u}, {u})
6: for C ⊆ [k] in increasing order of |C| do
7: for C ′ ⊆ C do
8: DP[C]← min{DP[C],DP[C ′] + DP[C \ C ′]}
9: return DP[[k]]
10: end procedure

Running Time Analysis. We will show that the running time of the algorithm is indeed
O(1/ε)O(k). It is obvious that the dynamic programming step takes only 2O(k) · poly(n) time,
and it is not hard to see that each call to SubgraphGen, without taking into account the
time spent in the recursed calls (Step 10), takes only O(1/ε)O(k) · poly(n) time (because
the bottleneck is the generation of T ∩

(
VG\{u}

6k

)
and this takes only O(1/ε)O(k) · poly(n)

time as guaranteed by Lemma 9). Thus, it suffices for us to show that, for each u ∈ V ,
SubgraphGen(G, k, χ, {u}, {u}) only generates O(1/ε)O(k) · poly(n) leaves in the recursion
tree. (By leaves, we refer to calls SubgraphGen(G, k, χ, Sactive, Sincluded) where Sactive = ∅.
Note that, if SubgraphGen(G, k, χ, ∅, Sincluded) is called multiple times for the same
Sincluded, we count each call separately.) The proof is a formalization of the “branching
factor per vertex added” idea outlined before the proof.

In fact, we will prove a more general statement: for all colorful subsets Sactive ⊆ Sincluded,
SubgraphGen(G, k, χ, Sactive, Sincluded) results in at most (C/ε)2k−|Sincluded|−|Sincluded\Sactive|

leaves for some C > 0. In particular, let C ′ > 0 be a constant such that Lemma 9 gives the
bound |T ∩

([`]
j

)
| 6 (C ′/δ)j ; we will prove the statement for C = 2C ′ + 2.

We prove by induction on decreasing order of |Sincluded| and |Sincluded \ Sactive| respect-
ively. In the base case where |Sincluded| = k, the statement is obviously true, since the
condition in Line 9 ensures that no more subroutine is executed. In another base case where
|Sincluded \ Sactive| = |Sincluded|, the statement is also obviously true since, in this case, we
simply have Sactive = ∅.

SOSA 2019

15:14 On Max k-Vertex Cover

For the inductive step, suppose that, for some 0 6 i < k and 1 6 j 6 i, the statement holds
for all colorful subsets Sactive ⊆ Sincludedsuch that |Sincluded| > i, or, |Sincluded| = i and
|Sactive| < j. Now, consider any colorful subsets Sactive ⊆ Sincluded such that |Sincluded| = i

and |Sactive| = j. We will argue below that SubgraphGen(G, k, χ, Sactive, Sincluded) results
in at most (C ′/ε)2k−i−(i−j) leaves.

To do so, first observe that (1) in every recursive call, |Sincluded \Sactive| increases by one
(namely u becomes inactive) and (2) for every 0 6 t 6 k− i, the number of recursive calls for
which |Sincluded| increases by t is at most |T ∩

(
VG\{u}

t

)
| 6 (C ′/ε)t. As a result, by the induct-

ive hypothesis, the number of leaves generated by SubgraphGen(G, k, χ, Sactive, Sincluded)
is at most

k−i∑
t=0

(C ′/ε)t · (C/ε)2k−(i+t)−(i−j+1) = (C/ε)2k−i−(i−j+1) ·

(
k−i∑
t=0

(C ′/C)t
)

(Since C > 2C ′) 6 (C/ε)2k−i−(i−j+1) · 2

(Since C > 2) 6 (C/ε)2k−i−(i−j)

as desired.
In conclusion, for all colorful Sactive ⊆ Sincluded, SubgraphGen(G, k, χ, Sactive,

Sincluded) generates at most (C/ε)2k−|Sincluded|−|Sincluded\Sactive| leaves. As argued above, this
implies that the running time of the algorithm is at most O(1/ε)O(k) · poly(n).

Approximation Guarantee Analysis. We will now show that the output lies between
OPTMin k-VC(G, k, χ) and (1 + ε) · OPTMin k-VC(G, k, χ). For convenience, let us define
DP∗ to be the value of table DP filled by SubgraphGen calls; that is, this is the table
before Line 6 in Algorithm 2. Observe the following relationship between DP and DP∗:

DP[C] = min
Partition P of C

∑
C′∈P

DP∗[C ′]. (5)

It is now rather simple to see that the output is at least OPTMin k-VC(G, k, χ). To do so,
observe that, for any C ⊆ [k], DP∗[C] is equal EG(SC) for some colorful SC ⊆ VG with
χ(SC) = C. This, together with (5), implies that the output must be equal to

∑
C′∈P EG(SC′)

for some partition P of [k] and colorful SC′ ’s such that χ(SC′) = C ′. Observe that this
value is at least EG

(⋃
C′∈P SC′

)
, which is at least OPTMin k-VC(G, k, χ) since

⋃
C′∈P SC′ is

a colorful set of size k.
Next, we will show that the output (i.e. DP[[k]]) is at most (1 + ε) ·OPTMin k-VC(G, k, χ).

The following proposition is at the heart of this proof:

I Proposition 10. For any non-empty colorful subset S ⊆ VG, there exists a non-empty
Srep ⊆ S such that

DP∗[χ(Srep)] 6 EG(Srep) and EG(Srep, S \ Srep) 6 δ · w-deg(Srep).

Proof of Proposition 10. Let v be any vertex in S. Let us consider the call Subgraph-
Gen(G, χ, k, {v}, {v}). Consider traversing the following single branch in every execu-
tion of Step 10: pick T ∈ T such that T ⊆ (S \ Sincluded) and

∑
i∈(S\Sincluded)\T w{u,i} 6

δ ·
∑
i∈VG

w{u,i} = δ ·w-degG(u). (We remark that such T is guaranteed to exist by Lemma 9;
if there are more than one such T ’s, just choose an arbitrary one.) Suppose that always
choosing such branch ends in a call SubgraphGen(G, k, χ, ∅, Srep). We will show that Srep

satisfies the desired properties.

P. Manurangsi 15:15

First of all, observe that the fact we always choose T ⊆ S ensures that Srep ⊆ S

and that, since SubgraphGen(G, k, χ, ∅, Srep) is executed, we indeed have DP[χ(Srep)] 6
EG(Srep). Hence, we are only left to argue that EG(Srep, S \ Srep) 6 δ · w-deg(Srep). To
see that this is the case, observe that the second property of the T ’s chosen implies that∑
i∈S\Srep w{u,i} 6 δ · w-deg(u). Summing this inequality over all u ∈ Srep immediately

yields EG(Srep, S \ Srep) 6 δ · w-deg(Srep). J

With Proposition 10 ready, we can now prove that DP[[k]] 6 (1+ε)·OPTMin k-VC(G, k, χ).
Let SOPT ⊆ VG denote an optimal solution to the problem, i.e., SOPT is a colorful k-vertex
subset such that EG(SOPT) = OPTMin k-VC(G, k, χ). Let S1 = SOPT. For i = 1, . . . , if
Si 6= ∅, we apply Proposition 10 to find a non-empty subset Srep

i ⊆ Si such that

DP∗[χ(Srep
i)] 6 EG(Srep

i) and EG(Srep
i , Si+1) 6 δ · w-deg(Srep

i). (6)

where Si+1 = Si \ Srep
i .

Observe here that {Srep
i }i>1 is a partition of SOPT. Thus, from (5) and (6), we have

DP[[k]]
(5)
6
∑
i>1

DP∗[χ(Srep
i)]

(6)
6
∑
i>1

EG(Srep
i). (7)

On the other hand, observe that EG(Si) = EG(Srep
i) +EG(Si+1)−EG(Srep

i , Si+1). Thus,
we have

EG(SOPT) =
∑
i>1

(EG(Si)− EG(Si+1))

=
∑
i>1

EG(Srep
i)−

∑
i>1

EG(Srep
i , Si+1)

(6)
>
∑
i>1

EG(Srep
i)− δ ·

∑
i>1

w-deg(Srep
i)

=
∑
i>1

EG(Srep
i)− δ · w-deg(SOPT). (8)

Finally, from (7), (8) and w-deg(SOPT) 6 2 · EG(SOPT), we have DP[[k]] 6 (1 + 2δ) ·
EG(SOPT) = (1 + ε) ·OPTMin k-VC(G, k, χ) which concludes the proof. J

4.2 Non-Existence of Polynomial Size Approximate Kernel
The above FPT-AS and the equivalence between existence of FPT approximation algorithm
and approximate kernel [43] immediately implies that there exists an (1− ε)-approximate
kernel for Weighted Min k-VC. However, this naive approach results in an approximate kernel
of size O(1/ε)O(k). A natural question is whether there exists a polynomial-size approximate
kernel for Weighted Min k-VC (similar to Weighted Max k-VC). In this section, we show
that the answer to this question is likely a negative, assuming a variant of the Small Set
Expansion Conjecture.

Our proof follows the framework of Lokshtanov et al. [43]. Let us recall that an equivalence
relation R over strings on a finite alphabet Σ is said to be polynomial if (i) whether x ∼ y can
be checked in poly(|x|+ |y|) time and (ii) for every n ∈ N, Σn has at most poly(n) equivalence
classes. The framework of Lokshtanov et al. uses the notion of α-gap cross composition, as
defined below. (This is based on the cross composition in the exact settings from [12].)

SOSA 2019

15:16 On Max k-Vertex Cover

I Definition 11 (α-gap cross composition [43]). Let L be a language and Π be a parameterized
minimization problem. We say that L α-gap cross composes into Π (for α 6 1), if there
is a polynomial equivalence relation R and an algorithm which, given strings x1, · · · , xt
from the same equivalence class of R, computes an instance (y, k) of Π and r ∈ R, in time
poly(

∑t
i=1 |xi|) such that the following holds:

(i) (Completeness) OPTΠ(y, k) 6 r if xi ∈ L for some 1 6 i 6 t,
(ii) (Soundness) OPTΠ(y, k) > rα if xi /∈ L for all i ∈ [t], and,
(iii) k is bounded by a polynomial in log t+ max16i6t |xi|.

A parameterized optimization problem is said to be nice if, given a solution to the
problem, its cost can be computed in polynomial time. (Clearly, Weighted Min k-VC is
nice.) The main tool from [43] is that any problem that α-gap cross composes to a nice
parameterized optimization problem Π must be in coNP/poly if Π has α-approximate kernel8.
In other words, if an NP-hard language α-gap cross composes to Π, then Π does not have
α-approximate kernel unless NP ⊆ coNP/poly.

I Lemma 12 ([43]). Let L be a language and Π be a nice parameterized optimization problem.
If L α-gap cross composes to Π, and Π has a polynomial size α-approximate kernel, then
L ∈ coNP/poly.

As stated earlier, our lower bound will be based on the Small Set Expansion Hypothesis
(SSEH) [50]. To state the hypothesis, let us first recall the definition of edge expansion; for a
graph G, the edge expansion of a subset of vertices S ⊆ VG is defined as Φ(S) := EG(S,VG\S)

w-deg(S) .
Roughly speaking, SSEH, which was proposed in [50], states that it is NP-hard to determine
whether (completeness) there is a subset of a specified size with very small edge expansion or
(soundness) every subset of a specified size has edge expansion close to one. This is formalized
below.

I Definition 13 (SSE(δ, η)). Given an unweighted regular graph G, distinguish between:
(Completeness) There exists S ⊆ VG of size δ|VG| such that Φ(S) 6 η.
(Soundness) For every S ⊆ VG of size δ|VG|, Φ(S) > 1− η.

I Conjecture 14 (Small Set Expansion Hypothesis [50]). For every η > 0, there exists
δ = δ(η) > 0 such that SSE(δ, η) is NP-hard.

Before we state the variant of SSEH that we will use, let us demonstrate why we need
to strengthen the hypothesis. To do so, let us consider the (2 − ε)-factor hardness of
approximation of Min k-VC as proved in [25], which our construction will be based on. The
reduction takes in an input G to SSE(δ, η) and simply just outputs (G, k) where k = δ|VG|.
The point is that, in a d-regular graph, a set S covers exactly d(1 + Φ(S))|S|/2 edges. This
means that, in the completeness case, there is a set S of size k that covers only d(1 + η)k/2
edges, whereas, in the soundness case, any set S of size k covers at least d(2− η)k/2 edges.
By selecting η sufficiently small, the ratio between the two cases is at least (2 − ε), and
hence [25] arrives at their (2− ε)-factor inapproximability result.

Now, our cross composition is similar to this, except that we need to be to handle
multiple instances at once. More specifically, given instance G1, . . . , Gt of SSE(δ, η) where
all G1, . . . , Gt are d-regular for some d and |VG1 | = · · · = |VGt

|, we want to produce an
instance (G∗, k) where G∗ is the disjoint union of G1, . . . , Gt and k = δ|V |. Once again, the

8 We note that the result of [43] works even with a weaker notion than α-approximate kernel called
α-approximate compression; see Definition 5.5 and Theorem 5.9 of [43] for more details.

P. Manurangsi 15:17

completeness case works exactly as before. The issue lies in the soundness case: even though
we know that every Si ⊆ VGi

of size k has expansion close to one, it is possible that there
exists Si ⊆ VGi

of size much smaller than k that has small expansion. For instance, it might
even be that G1, . . . , Gt each contains a connected component of size k/t. In this case, we
can take the union of these components and arrive at a set of size k that covers dk/2 edges,
which is even smaller than the completeness case! In other words, for the composition to
work, we want the soundness of SSEH to consider not only S’s of size k, but also S’s of size
at most k. With this in mind, we can formalize our strengthened hypothesis as follows.

I Definition 15 (Strong-SSE(δ, η)). Given an unweighted regular graph G, distinguish
between:

(Completeness) There exists S ⊆ VG of size δ|VG| such that Φ(S) 6 η.
(Soundness) For every S ⊆ VG of size at most δ|VG|, Φ(S) > 1− η.

I Conjecture 16 (Strong Small Set Expansion Hypothesis). For every η > 0, there exists
δ = δ(η) > 0 such that Strong-SSE(δ, η) is NP-hard.

We remark that it is known that a strengthening of SSEH where the soundness case
is required for all S of size in [βδ|V |, δ|V |] for any β > 0 is known to be equivalent to the
original SSEH. (See Appendix A.2 of the full version of [51] for a simple proof.) This is closely
related to what we want above, except that we need this to holds even for |S| = o(|V |). To
the best of our knowledge, the Strong SSEH as stated above is not known to be equivalent
to the original SSEH.

Proof of Lemma 5. Let ε be any number that lies in (0, 1]. Let η be ε/2, and let δ = δ(η) > 0
be as guaranteed by Conjecture 14. We will show that Strong-SSE(δ, η) (2− ε)-gap cross
composes9 into Min k-VC, which together with Lemma 12 immediately implies the statement
in the lemma.

We define an equivalence relation R on instances of Strong-SSE(δ, η) by G ∼ G′ iff
|VG| = |VG′ | and w-deg(G) = w-deg(G′). It is obvious that R is polynomial. Given t

instances G1, . . . , Gt from the same equivalence class of R where n = |VG1 | = · · · = |VGt
|

and d = w-deg(G1) = · · · = w-deg(Gt), we create an instance (G∗, k) of Min k-VC by letting
G∗ be the (disjoint) union of G1, . . . , Gt, k = δn, and r = dδn(1 + η)/2. We next argue the
completeness and soundness of the composition.

Completeness. Suppose that, for some i ∈ [t], there exists S ⊆ VGi of size δn such
that ΦGi

(S) 6 η. Then, the number of edges covered by S (in both Gi and G∗) is
dδn(1 + Φ(S))/2 6 dδn(1 + η)/2. In other words, OPTMax k-VC(G∗, k) 6 r as desired.

Soundness. Suppose that, for all i ∈ [t] and S ⊆ VGi
of size at most δn, we have ΦGi

(S) >
(1 − η). Consider any set S∗ ⊆ VG∗ of size δn. Let Si denote S∗ ∩ VGi

. Observe that the
number of edges covered by S∗ is∑

i∈[t]

d|Si|(1 + ΦGi
(Si))/2 >

∑
i∈[t]

d|Si|(2− η)/2 = dδn(2− η)/2 > (2− ε)r,

9 Note that strictly speaking Strong-SSE(δ, η) is not a language, but rather a promise problem (cf. [27]).
Nevertheless, the notion of gap cross composes extends naturally to promise problems; the only changes
are that in the yes case xi ∈ L should be changed to xi ∈ LYES and in the no case xi /∈ L should
be changed to xi ∈ LNO. The result in Lemma 12 also holds for this case; for instance, see Lemma
5.11 and Theorem 5.12 of [43], where the gap cross composition also starts from a promise problem
(Gap-Longest-Path).

SOSA 2019

15:18 On Max k-Vertex Cover

where the first inequality comes from our assumption and the second comes from our choice
of η. Thus, we have OPTMax k-VC(G∗, k) > (2− ε)r as desired. J

We note here that the above proof produces G∗ that is unweighted. As a result, the lower
bound also applies for Unweighted Min k-VC.

5 Concluding Remarks

Let us make a few brief remarks regarding the tightness of running times of our algorithms.
The W[1]-hardness proofs of Max k-VC and Min k-VC in [28] also implies that, even in the
unweighted case, if we can approximate the problems to within (1− 1/n2) and (1 + 1/n2)
factors respectively, then we can solve the k-Clique problem with only polynomial overhead
in running time. This implies the following lower bounds:
1. Unless W[1] = FPT, there is no FPT-AS for Max k-VC and Min k-VC with running

time exp(f(k) · o(log(1/ε))) · poly(n) for any function f (because this would give an
FPT time algorithm for k-Clique when plugging in ε = 1/n2).

2. Unless k-Clique can be solved in g(k) · no(k) time for some function g, there is no
FPT-AS for Max k-VC and Min k-VC with running time O(1/ε)o(k) · poly(n).

For Max k-VC, the reduction that proves (1+δ)-factor NP-hardness of approximation [49]
is in fact a linear size reduction from the gap version of 3SAT. As a result, assuming
the Gap Exponential Time Hypothesis (Gap-ETH)10, there is no FPT-AS that runs in
time f(1/ε)o(k) · poly(n) for any function f . Under the weaker ETH, a lower bound of the
form f(1/ε)o(k/poly log k) · poly(n) for any f can be achieved via nearly linear size PCP [18].
(Note that we do not know any lower bound of this form for Min k-VC; in particular, it
is not known whether Min k-VC is NP-hard to approximate even for a factor of 1.0001.)

An interesting remaining open question is to close the gap between the (polynomial
time) approximation algorithms and hardness of approximation for Max k-VC. On the
algorithmic front, we note that Austrin et al. [6] further exploited the techniques developed by
Raghavendra and Tan [52] to achieve several improvements. Most importantly, they show that,
for Max 2SAT with cardinality constraint, if the cardinality constraint is x1 + · · ·+ xn = n/2
(i.e. k = n/2), then an 0.94-approximation can be achieved in polynomial time. (In particular,
the ratio here is the same as the ratio of the Lewin-Livnat-Zwick algorithm for Max 2SAT
without cardinality constraint [42]; see also [5, 53]. Note that this ratio is still different
from the hardness from [7].) This specific case is often referred to as Max Bisection 2SAT.
Unfortunately, the algorithm does not naturally11 extend to the case where k 6= n/2 and
hence it is unclear how to employ this algorithm for Max k-VC.

On the hardness of approximation front, we remark that the hardness that follows from [7]
holds even for the perfect completeness case. That is, even when there is a vertex cover of
size k, it is still hard to find k vertices that cover 0.944 fraction of the edges. (See Appendix
A of the full version [44].) Interestingly, there is an evidence that this perfect completeness
case is easier: Feige and Langberg [23] shows that their algorithm achieves 0.8-approximation
in this case, which is better than (0.75 + δ)-approximation that their algorithm yields in the

10Gap-ETH states that there is no 2o(n)-time algorithm that can distinguish between a fully satisfiable
3CNF formula and one which is not even 0.999-satisfiable [19, 45].

11 In particular, the rounding algorithm involves scaling the bias of the variables (see Section 6 of [6]). For
Max Bisection 2SAT, the sum of the bias is zero and hence scaling retains the sum. However, when the
sum is non-zero, scaling changes the sum and hence the rounding algorithm produces a subset of size
not equal to k.

P. Manurangsi 15:19

general case. In fact, we can even get 0.94-approximation in this case as follows. First, we
follow the kernelization for Vertex Cover [16] based on the Nemhauser-Trotter theorem [48]:
on input graph (G, k), this gives a partition V0, V1/2, V1 such that there exists a vertex cover
S of size k such that V1 ⊆ S ⊆ V1/2 ∪ V1. Moreover, the Nemhauser-Trotter theorem also
ensures that |V1/2| = 2 · (k − |V1|). This means that we can restrict ourselves to the graph
induced by V1/2 and applies the aforementioned Max Bisection 2SAT from [6]. This indeed
gives us a 0.94-approximation as desired. These suggest that it might be that the perfect
completeness case is easier to approximate; thus, it would be interesting to see whether there
is any way to construct harder instances with imperfect completeness.

References
1 Faisal N. Abu-Khzam, Rebecca L. Collins, Michael R. Fellows, Michael A. Langston,

W. Henry Suters, and Christopher T. Symons. Kernelization algorithms for the vertex
cover problem: Theory and experiments. In ALENEX, pages 62–69, 2004.

2 Alexander A. Ageev and Maxim Sviridenko. Pipage rounding: A new method of con-
structing algorithms with proven performance guarantee. J. Comb. Optim., 8(3):307–328,
2004.

3 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
4 Nicola Apollonio and Bruno Simeone. The maximum vertex coverage problem on bipartite

graphs. Discrete Applied Mathematics, 165:37–48, 2014.
5 Per Austrin. Balanced Max 2-Sat might not be the hardest. In STOC, pages 189–197,

2007.
6 Per Austrin, Siavosh Benabbas, and Konstantinos Georgiou. Better balance by being biased:

A 0.8776-approximation for max bisection. In SODA, pages 277–294, 2013.
7 Per Austrin, Subhash Khot, and Muli Safra. Inapproximability of vertex cover and inde-

pendent set in bounded degree graphs. Theory of Computing, 7(1):27–43, 2011.
8 Nikhil Bansal and Subhash Khot. Optimal long code test with one free bit. In FOCS, pages

453–462, 2009.
9 R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the weighted vertex

cover problem. In G. Ausiello and M. Lucertini, editors, Analysis and Design of Algorithms
for Combinatorial Problems, volume 109 of North-Holland Mathematics Studies, pages 27
– 45. North-Holland, 1985.

10 Reuven Bar-Yehuda. Using homogeneous weights for approximating the partial cover prob-
lem. J. Algorithms, 39(2):137–144, 2001.

11 Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, pcps, and nonapproximability-
towards tight results. SIAM J. Comput., 27(3):804–915, 1998.

12 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds
by cross-composition. SIAM J. Discrete Math., 28(1):277–305, 2014.

13 Édouard Bonnet, Bruno Escoffier, Vangelis Th. Paschos, and Georgios Stamoulis. Purely
combinatorial approximation algorithms for maximum k-vertex cover in bipartite graphs.
Discrete Optimization, 27:26–56, 2018.

14 Jonathan F. Buss and Judy Goldsmith. Nondeterminism within P. SIAM J. Comput.,
22(3):560–572, 1993.

15 Liming Cai, Jianer Chen, Rodney G. Downey, and Michael R. Fellows. Advice classes of
parameterized tractability. Ann. Pure Appl. Logic, 84(1):119–138, 1997.

16 Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex cover: Further observations and further
improvements. J. Algorithms, 41(2):280–301, 2001.

17 Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theor.
Comput. Sci., 411(40-42):3736–3756, 2010.

SOSA 2019

15:20 On Max k-Vertex Cover

18 Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007.
19 Irit Dinur. Mildly exponential reduction from gap 3sat to polynomial-gap label-cover. Elec-

tronic Colloquium on Computational Complexity (ECCC), 23:128, 2016.
20 Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. Towards a proof of

the 2-to-1 games conjecture? ECCC, 23:198, 2016.
21 Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. On non-optimally

expanding sets in grassmann graphs. ECCC, 24:94, 2017.
22 Irit Dinur and Shmuel Safra. On the hardness of approximating minimum vertex cover.

Annals of Mathematics, 162(1):439–485, 2005.
23 Uriel Feige and Michael Langberg. Approximation algorithms for maximization problems

arising in graph partitioning. J. Algorithms, 41(2):174–211, 2001.
24 Michael R. Fellows, Ariel Kulik, Frances A. Rosamond, and Hadas Shachnai. Parameterized

approximation via fidelity preserving transformations. J. Comput. Syst. Sci., 93:30–40,
2018.

25 Rajiv Gandhi and Guy Kortsarz. On set expansion problems and the small set expansion
conjecture. Discrete Applied Mathematics, 194:93–101, 2015.

26 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

27 Oded Goldreich. On promise problems: A survey. In Theoretical Computer Science, Essays
in Memory of Shimon Even, pages 254–290, 2006.

28 Jiong Guo, Rolf Niedermeier, and Sebastian Wernicke. Parameterized complexity of vertex
cover variants. Theory Comput. Syst., 41(3):501–520, 2007.

29 Anupam Gupta, Euiwoong Lee, and Jason Li. Faster exact and approximate algorithms
for k-cut. In FOCS, 2018. To appear.

30 Anupam Gupta, Euiwoong Lee, and Jason Li. An FPT algorithm beating 2-approximation
for k-cut. In SODA, pages 2821–2837, 2018.

31 Eran Halperin and Uri Zwick. A unified framework for obtaining improved approximation
algorithms for maximum graph bisection problems. Random Struct. Algorithms, 20(3):382–
402, 2002.

32 Qiaoming Han, Yinyu Ye, Hantao Zhang, and Jiawei Zhang. On approximation of max-
vertex-cover. European Journal of Operational Research, 143(2):342–355, 2002.

33 Qiaoming Han, Yinyu Ye, and Jiawei Zhang. An improved rounding method and semidef-
inite programming relaxation for graph partition. Math. Program., 92(3):509–535, 2002.

34 Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.
35 Dorit S. Hochbaum. Approximation Algorithms for NP-hard Problems. PWS Publishing

Co., Boston, MA, USA, 1997.
36 George Karakostas. A better approximation ratio for the vertex cover problem. ACM

Trans. Algorithms, 5(4):41:1–41:8, 2009.
37 Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of a sym-

posium on the Complexity of Computer Computations, pages 85–103, 1972.
38 Subhash Khot. On the power of unique 2-prover 1-round games. In CCC, page 25, 2002.
39 Subhash Khot, Dor Minzer, and Muli Safra. On independent sets, 2-to-2 games, and

grassmann graphs. In STOC, pages 576–589, 2017.
40 Subhash Khot, Dor Minzer, and Muli Safra. Pseudorandom sets in grassmann graph have

near-perfect expansion. ECCC, 25:6, 2018.
41 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within

2-epsilon. J. Comput. Syst. Sci., 74(3):335–349, 2008.
42 Michael Lewin, Dror Livnat, and Uri Zwick. Improved rounding techniques for the MAX 2-

sat and MAX DI-CUT problems. In Integer Programming and Combinatorial Optimization,

P. Manurangsi 15:21

9th International IPCO Conference, Cambridge, MA, USA, May 27-29, 2002, Proceedings,
pages 67–82, 2002.

43 Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. Lossy kerneliz-
ation. In STOC, pages 224–237, 2017.

44 Pasin Manurangsi. A note on max k-vertex cover: Faster fpt-as, smaller approximate kernel
and improved approximation. arXiv preprint arXiv:1810.03792, 2018.

45 Pasin Manurangsi and Prasad Raghavendra. A birthday repetition theorem and complexity
of approximating dense csps. In ICALP, pages 78:1–78:15, 2017.

46 Dániel Marx. Parameterized complexity and approximation algorithms. Comput. J.,
51(1):60–78, 2008.

47 Burkhard Monien and Ewald Speckenmeyer. Ramsey numbers and an approximation al-
gorithm for the vertex cover problem. Acta Inf., 22(1):115–123, 1985.

48 George L. Nemhauser and Leslie E. Trotter Jr. Properties of vertex packing and independ-
ence system polyhedra. Math. Program., 6(1):48–61, 1974.

49 Erez Petrank. The hardness of approximation: Gap location. Computational Complexity,
4:133–157, 1994.

50 Prasad Raghavendra and David Steurer. Graph expansion and the unique games conjecture.
In STOC, pages 755–764, 2010.

51 Prasad Raghavendra, David Steurer, and Madhur Tulsiani. Reductions between expansion
problems. In CCC, pages 64–73, 2012.

52 Prasad Raghavendra and Ning Tan. Approximating CSPs with global cardinality con-
straints using SDP hierarchies. In SODA, pages 373–387, 2012.

53 Henrik Sjögren. Rigorous analysis of approximation algorithms for MAX 2-CSP. Master’s
thesis, KTH Royal Institute of Technology, 2009.

SOSA 2019

Simple Contention Resolution via Multiplicative
Weight Updates
Yi-Jun Chang
University of Michigan
cyijun@umich.edu

Wenyu Jin
University of Michigan
wyjin@umich.edu

Seth Pettie1

University of Michigan
pettie@umich.edu

Abstract
We consider the classic contention resolution problem, in which devices conspire to share some
common resource, for which they each need temporary and exclusive access. To ground the
discussion, suppose (identical) devices wake up at various times, and must send a single packet
over a shared multiple-access channel. In each time step they may attempt to send their packet;
they receive ternary feedback {0, 1, 2+} from the channel, 0 indicating silence (no one attempted
transmission), 1 indicating success (one device successfully transmitted), and 2+ indicating noise.
We prove that a simple strategy suffices to achieve a channel utilization rate of 1/e − O(ε), for
any ε > 0. In each step, device i attempts to send its packet with probability pi, then applies a
rudimentary multiplicative weight-type update to pi.

pi ←


pi · eε upon hearing silence (0)
pi upon hearing success (1)
pi · e−ε/(e−2) upon hearing noise (2+)

This scheme works well even if the introduction of devices/packets is adversarial, and even if
the adversary can jam time slots (make noise) at will. We prove that if the adversary jams J
time slots, then this scheme will achieve channel utilization 1/e− ε, excluding O(J) wasted slots.
Results similar to these (Bender, Fineman, Gilbert, Young, SODA 2016) were already achieved,
but with a lower constant efficiency (less than 0.05) and a more complex algorithm.

2012 ACM Subject Classification Networks → Network protocols, Mathematics of computing
→ Probabilistic algorithms

Keywords and phrases Contention resolution, multiplicative weight update method

Digital Object Identifier 10.4230/OASIcs.SOSA.2019.16

1 Introduction

Suppose n identical devices have packets that they wish to transmit over a shared multiple
access channel. For simplicity we assume that time is divided into discrete time slots and
that the devices are synchronized. In each time slot they decide whether to attempt to
transmit their packet or remain idle. In order to succeed the devices must monopolize the

1 Supported by NSF grants CCF-1514383, CCF-1637546, and CCF-1815316.

© Yi-Jun Chang, Wenyu Jin, and Seth Pettie;
licensed under Creative Commons License CC-BY

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy Fineman and Michael Mitzenmacher; Article No. 16; pp. 16:1–16:16

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cyijun@umich.edu
mailto:wyjin@umich.edu
mailto:pettie@umich.edu
https://doi.org/10.4230/OASIcs.SOSA.2019.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

16:2 Simple Contention Resolution via Multiplicative Weight Updates

channel for one time slot: if two or more devices transmit there is noise and if zero devices
transmit there is silence. We assume that after each time step, all devices receive ternary
feedback {0, 1, 2+} from the channel indicating how many devices attempted to transmit
their packets. The reader should remember that the problem we are considering here is
abstract contention resolution. The terms packet, channel, noise, etc. are merely meant to
keep an easily visualized instance of the problem in mind.

The traditional way to solve this contention resolution problem is via exponential back-
off [22]. Each device i holds a parameter pi, initialized to some constant, say 1/2. In each
time step it executes the following protocol.2

Binary Exponential Backoff:

Device i
{

remains silent with probability 1− pi
transmits with probability pi; if unsuccessful, set pi ← pi/2.

Although binary exponential backoff is empirically useful in many applications [22, 20,
18, 27, 19, 24], it has numerous shortcomings. Even if packets are injected into the system
according to a Poisson distribution with some low expectation λ > 0 (i.e., a plausible
and non-adversarial input distribution), binary exponential backoff will eventually become
deadlocked and no more packets will ever be successfully sent [1, 4]. When all n packets are
injected simultaneously, binary exponential backoff requires n logn steps to transmit all of
them, and each device attempts to transmit its packet Θ(logn) times [4], whereas O(n) and
O(1) are optimal in this situation.

Recent research has tried to fix all the deficiencies of exponential backoff, and along
many metrics this research has been quite successful. Bender et al. [4] studied the behav-
ior of backoff-type protocols when all n packets arrive simultaneously, and proved that
O(n log logn/ log log logn) time is necessary and sufficient for monotone protocols (pi de-
creases over time) whereas O(n) time is possible with a non-monotone protocol. In the case
that a jammer can jam slots at will, it is possible to achieve a (small) constant throughput
on the unjammed slots [6, 3], even when the adversary controls the injection rate of new
packets. In the [6] protocol each device makes O(log2(n + J)) transmissions, on average,
where J is the number of jammed slots.

Bender, Kopelowitz, Pettie, and Young [7] considered a model motivated by battery-
powered devices in which both transmitting and listening to the channel cost one unit of
energy. They proved that constant channel utilization could be achieved with O(log(log∗ n))
energy per device when an adversary controls the packet insertions (but cannot jam). The
bound O(log(log∗ n)) was later proved to be optimal [10].

Unfortunately, these recent advances come nowhere close to the minimalism and elegance
of binary exponential backoff. In this work we design a contention resolution protocol that
matches and substantially improves the main result of [6], while at the same time achieving
something close to the simplicity of binary exponential backoff. Like backoff, our algorithm
keeps a single numerical parameter (pi) and is otherwise stateless: it keeps no information
on its previous actions or the history of the channel.

2 Exponential backoff comes in several more-or-less equivalent varieties. In the windowed version each
device partitions its time in the system into consecutive windows W1,W2,W3, . . ., |Wj | = 2j , and
attempts to transmit at a uniformly chosen time slot in each window, until successful. In the homogeneous
version, any device i in the system for t steps transmits with probability pi = 1/t. The version of
exponential backoff presented here requires the devices to keep track of less information.

Y.-J. Chang, W. Jin, and S. Pettie 16:3

Organization

In Section 2 we introduce our contention resolution protocol and analyze some parts of it.
In Section 3 we design an unusual (continuous, real valued) potential function, and use it
to to argue that the channel utilization of our protocol can get arbitrarily close to 1/e. In
Section 4 we give a more thorough literature survey on contention resolution and multiple
access channels. We conclude in Section 5 with some observations and open problems.

2 Contention Resolution

If the devices have no distinguishing features to break symmetry, but they know what ‘n’ is,
then a reasonable strategy is for everyone to transmit with probability p = 1/n, decrementing
‘n’ every time a packet is transmitted successfully. Observe that they succeed with probability
psuc =

(
n
1
)
p(1− p)n−1 > e−1, and that limn→∞ psuc = 1/e. More generally, the number of

devices that transmit is, in the limit, a Poisson-distributed random variable:

lim
n→∞

Pr(t devices transmit) =
(
n

t

)
pt(1− p)n−t = e−1/t!

Of course, for any finite n the distribution is merely almost-Poisson. In order to simplify
things, we begin by considering an algorithm that creates channel feedback consistent with a
number of transmitters that is Poisson-distributed. Each device i holds a variable pi which
it uses to determine its behavior according to the Transmission Rule.

Transmission Rule:

Device i


remains silent with probability e−pi
transmits its packet with probability pie−pi
makes noise with probability 1− (1 + pi)e−pi

If device i successfully transmits its packet, it halts.

We will later argue that “making noise” (even if the devices were capable of this) is
unnecessary, and that the algorithm is improved if we simply transmit with probability
1− e−pi .

If the number of devices in the system is n, the probability of the three channel feedbacks
(silence, success, and noise) is exactly:

psil =
∏
i∈[n]

e−pi = e−c

psuc =
∑
i∈[n]

pie
−pi ·

∏
j∈[n]\{i}

e−pj = ce−c

pnoi = 1− (1 + c)e−c

where c measures the aggregate contention in the system

c =
∑
i∈[n]

pi

The probability of success is maximized when c = 1. We would like to design an update
rule such that c tends to move toward 1 whenever it is too small or too large. Observe that

SOSA 2019

16:4 Simple Contention Resolution via Multiplicative Weight Updates

when c = 1, the probability of hearing silence and noise are 1/e and (e− 2)/e, respectively.
In order for the update rule to be unbiased at c = 1, we must respond to noise and silence
proportionately. Assuming device i has not successfully transmitted its packet, it applies the
Update Rule to change pi.

Update Rule:

pi ←


pi · eε upon hearing silence
pi upon hearing success
pi · e−ε/(e−2) upon hearing noise

Here the step size ε > 0 is the only parameter of the algorithm. Since probabilities are
updated multiplicatively, it is natural to measure the contention c on a logarithmic scale, so
we define

γ = ln(c)

In the absence of packet arrivals/departures, γ evolves according to a random walk on the
reals that has a certain positive attraction towards the origin.3 Observe that if γ and γ′ are
the values before and after an update, γ′ ∈ {γ − ε

e−2 , γ, γ + ε}.4 We define the attraction at
γ to be the expectation of γ′ − γ, expressed in units of the step size ε.

attr(γ) = psil(γ)− 1
e−2 · pnoi(γ) = e−e

γ

− 1
e−2 · (1− (1 + eγ)e−e

γ

).

In other words, E[γ′] = γ+ ε ·attr(γ). Observe that because of the different step sizes, attr(γ)
is asymptotic to 1 as γ → −∞ and asymptotic to −1/(e−2) as γ →∞. We do not deal with
the actual expression for attr(γ), but with a piecewise-linear approximation. See Figure 1.

I Approximation 1. Define ãttr(γ) as follows.

ãttr(γ) =


3/5 γ < −1
−(3/5)γ γ ∈ [−1, 1]
−3/5 γ > 1

Then attr(0) = ãttr(0) = 0 and attr(γ)/ãttr(γ) ≥ 1 when γ 6= 0.

2.1 Interlude: Homesick Random Walks
In order to build some intuition for how γ evolves, it is useful to think about what the
stationary distribution of a simplified random walk looks like when the walk exhibits an
attraction towards the origin. Consider a random walk on the integers [−δ−1, . . . , δ−1], δ > 0,
with the following transition probabilities. If the token is at ±i at step t, at step t+1 it moves
toward 0 (i.e., to ±(i− 1)) with probability (1 + iδ)/2 and away from 0 (i.e., to ±(i+ 1))
with probability (1− iδ)/2. When it is at 0 it moves to −1 and 1 with equal probability. Let

3 Interestingly, this attraction is qualitatively different in the positive and negative halves of the γ-axis,
though it is numerically similar. Observe that when γ > 0 is large, the probability of hearing silence
psil = e−c is exponentially small in c, but when γ < 0 is small, the probability of hearing noise
pnoi = 1− (1 + c)e−c ≈ c2 is quadratic in c.

4 Actually, in the event of a successful transmission, γ will be reduced by some amount after one device
withdraws from the system; we do not take that effect into account when calculating attraction.

Y.-J. Chang, W. Jin, and S. Pettie 16:5

-4 -2 2 4

-1.5

-1.0

-0.5

0.5

1.0

(A)

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

(B)

Figure 1 (A) The attraction function attr(γ) is monotone decreasing in γ. (B) In the interval
[−1, 1], ãttr(γ) = − 3

5γ is a conservative approximation in the sense that attr(γ)/ãttr(γ) > 1.

SOSA 2019

16:6 Simple Contention Resolution via Multiplicative Weight Updates

π(i) be the probability of being at either i or −i under the stationary distribution. Then π
satisfies the following equations.

π(0) = π(1) · 1 + δ

2

π(i− 1) · 1− (i− 1)δ
2 = π(i) · 1 + iδ

2
and hence

π(i) = 2π(0) ·
i∏

j=1

1− (j − 1)δ
1 + jδ

= 2π(0) ·
i−1∏
j=0

1− jδ
1 + (i− j)δ > 2π(0)(1− iδ)i ≈ 2π(0)e−i

2δ.

In other words, a constant fraction of the mass of π is in the interval [−
√
δ−1,

√
δ−1].

2.2 The Efficiency Curve
The back-of-the-envelope calculations above suggest that in its stationary distribution, the
random walk generated by our contention resolution protocol puts a constant fraction of the
probability mass in the real interval [−

√
ε,
√
ε]. Given that the efficiency of the algorithm is

1/e at γ = 0, it is natural to ask how the efficiency degrades as γ deviates from optimum.
The overall efficiency of the algorithm will be determined by its behavior at the extremes of
γ ∈ [−

√
ε,
√
ε].

Recall that psuc(γ) = eγe−e
γ is the probability of success as a function of γ = ln(c). By

taking the first few terms of the Taylor expansion of psuc at γ = 0, we have the following
approximation. See Figure 2.

I Approximation 2.

psuc(γ) = 1
e
− γ2

2e −
γ3

6e +O(γ4) > 1
e
− γ2

(
1
2e + 1

6e

)
> 1/e− γ2/4.

To recap, we expect that γ will spend a constant fraction of its time in [−
√
ε,
√
ε], and in

this interval the expected channel utilization of the algorithm is at least 1/e− ε/4.

3 Amortized Analysis

Our goal is to show that the channel utilization of the algorithm is 1/e−O(ε) by analyzing
the expected change in a certain potential function Φ. Let Φt be the potential after time slot
t and nt ≥ 0 be the number of packets inserted into the system just before time slot t begins.
We intend to show that

E[Φt − Φt−1] ≤ −(1−O(ε)) + (e+O(ε)) · nt.

In other words, each new packet carries with it e+O(ε) units of potential, and the combined
effect of the Transmission & Update Rules reduces the potential by 1−O(ε) in expectation,
thereby “paying for” this slot in a probabilistic sense. As a consequence, the channel
utilization is (1−O(ε))/(e+O(ε)) = 1/e−O(ε); the formal definition of channel utilization
and its analysis will be presented in Section 3.4. For this analysis to work, it is important
that newly injected devices initialize pi properly.

Initialization Rule:

Upon activation, device i sets pi ← ε2.

Y.-J. Chang, W. Jin, and S. Pettie 16:7

-1.0 -0.5 0.5 1.0

0.15

0.20

0.25

0.30

0.35

Figure 2 Top curve: the probability of successful transmission, as a function of γ, is eγe−eγ .
Bottom curve: it is lower bounded by 1/e− γ2/4.

3.1 The Potential Function
The potential function Φ has three components.

Φ = A(n) +B(γ) + C.

A depends only on n, the number of active devices still in the system, B depends on the
contention γ, and C depends on the relative magnitude of the variables (pi). The main term
is

A(n) = en.

If γ is in the “efficient” range [−
√
ε,
√
ε], then by Approximation 2 the expected change

in A is psuc(γ) · (−e) = −(1−O(ε)), which pays for the time slot.
When γ ∈ (−∞,−

√
ε) ∪ (

√
ε,∞) we make up for the loss in efficiency by showing the

expected contention becomes closer to optimum in the next time step; this is where the B(γ)
term comes into play. We define B to be the unique continuous function with B(0) = 0 and
derivative

B′(γ) =



− 5
3ε when γ < −1

5
3εγ when γ ∈ [−1, 1]

5
3ε when γ > 1

In other words, when γ ∈ [−1, 1], B(γ) = 5
6εγ

2; see Figure 3.
Recall that E[γ′] = γ + ε · attr(γ), and by Approximation 1, attr(γ)/ãttr(γ) ≥ 1 when

γ 6= 0. Therefore, whenever γ, γ′ are in the “far off” range (−∞,−1] ∪ [1,∞), the expected
change in B is smaller than B′(γ) · ε · ãttr(γ) ≤ −1. When γ ∈ [−1, 1] is close to the origin,
it is also possible to show that the combined change in A+ B is less than −(1− O(ε)) in
expectation. The formal analysis is in Section 3.2.

SOSA 2019

16:8 Simple Contention Resolution via Multiplicative Weight Updates

-1 0 1

Figure 3 A schematic depiction of B. It is linear in the ranges (−∞, 1] and [1,∞), and quadratic
in [−1, 1].

In view of the above, under most of the circumstances, the expected change in A and B
suffices to pay for each time slot. Occasionally, one packet pi contributes the lion’s share
of the aggregate contention c, and when packet i is transmitted, γ = ln(c) drops sharply,
increasing B(γ). The third component C of Φ compensates for this effect:

C = 5
3ε (γ − ln pmin), where pmin = mini pi

Observe that C remains unchanged by the Update Rule since γ and ln pmin are increased/de-
creased by the same amount; but the value of C might change when the packet of the smallest
transmission probability is successfully transmitted.

3.2 Analysis

We analyze the effect of one time slot on Φ by considering three actions sequentially (i)
the increase in Φ = A + B + C caused by the insertion of new packets, (ii) the expected
increase in A+ B caused by executing the Transmission & Update Rules, and (iii) in the
event of a successful transmission from device i, the increase in B +C caused by subtracting
pi from the aggregate contention. Part (i) is considered in Lemma 1; parts (ii) and (iii) are
considered in Lemma 2.

In the analysis below, we work under the following assumption (*).

pmin ≤ ε2 (*)

Assumption (*) often fails to hold when the number of active devices in the system is less
than ε−2. Section 3.4 justifies Assumption (*) by showing that it suffices to bound the long
term channel utilization of our contention resolution protocol.

I Lemma 1. Suppose all new packets follow the Initialization Rule and that Assumption (*)
holds. Inserting m packets increases Φ by (e+O(ε))m.

Y.-J. Chang, W. Jin, and S. Pettie 16:9

Proof. We consider the contribution of each packet insertion individually. A(n) = en clearly
increases by e. If γ ∈ [−1,∞), C increases by 5

3ε ln(e
γ+ε2

eγ) < 5
3ε (ε

2/eγ) = O(ε) and B

also increases by O(ε). (If γ ∈ [−1, 0] then B is actually reduced; this only helps us.) If
γ ∈ (−∞,−1], B is reduced by 5

3ε (ln(e
γ+ε2

eγ)) and C is increased by precisely the same
amount. (Note that when γ � −1, the positive and negative changes to C and B can be
very large.) J

I Lemma 2. In each time step, the expected change in A+B is −1 +O(ε). In the event of
a successful transmission, the worst case change to B + C is at most zero.

Proof. Let γ and γ′ be the values before and after applying the Update Rule in this time
step. We consider three cases. Case 1 is when B(γ) and B(γ′) are both on the linear parts,
when γ, γ′ ∈ (−∞,−1] ∪ [1,∞). Case 2 is when B(γ) is on the quadratic part of B. Case 3
is when B(γ) is on the linear parts of B but B(γ′) has a chance to be on the quadratic part
of B.

Case 1: γ ∈ (−∞,−(1 + ε)] ∪ [(1 + ε
e−2 ,∞). B(γ) and B(γ′) are both guaranteed to

be on the linear parts of B. The expected change5 in B is therefore at most

B′(γ) · (E[γ′]− γ) = B′(γ) · (ε · attr(γ))

≤
(

sign(γ) 5
3ε

)
·
(
ε · ãttr(γ)

)
≤ sign(γ) · 5

3 ·
(
− sign(γ)3

5

)
≤ −1.

In this range we do not count on successful transmissions; if they do occur, this reduces
A even further.

Case 2: γ ∈ [−1, 1]. Here B(γ) = 5
6εγ

2 behaves as a quadratic function. The expected
change in A+B is at most

psuc(γ)(−e) + 5
6ε

[
psil(γ)

(
−γ2 + (γ + ε)2)+ pnoi(γ)

(
−γ2 +

(
γ − ε

e− 2

)2
)]

Cancelling the γ2 terms, we have

= psuc(γ)(−e)+ 5
6ε

[
2γε

(
psil(γ)− 1

e− 2 · pnoi(γ)
)

+ ε2
(
psil(γ) + 1

(e− 2)2 · pnoi(γ)
)]

Observe that the term following 2γε is exactly the definition of the attraction at γ, i.e.,
attr(γ). Because e − 2 < 1, the term following ε2 is maximized over γ ∈ [−1, 1] when
pnoi(γ) is maximized. At γ = 1, psil(γ) + (e− 2)−2pnoi(γ) < 1.53 < 8/5. Simplifying, we
have

< psuc(γ)(−e) + 5
6ε

[
2γε · attr(γ) + 8

5ε
2
]

5 Here we are only considering the effect of the Update Rule on γ; decreases in γ due to successful
transmission are considered when we analyze the effect on B + C.

SOSA 2019

16:10 Simple Contention Resolution via Multiplicative Weight Updates

Applying Approximations 1 and 2 (which state psuc(γ) > 1
e −

γ2

4 and γ · attr(γ) ≤ − 3
5γ

2)
and cancelling an ε factor, we have

<

(
1
e
− γ2

4

)
(−e) + 5

6

[
−2 · 3

5γ
2 + 8

5ε
]

= −1 + γ2
[e

4 − 1
]

+ 4
3ε

≤ −1 + 4
3ε

In other words, in each time step we lose at least 1−O(ε) units of potential in expectation,
independent of γ.

Case 3: The remaining case covers the transition between the linear and quadratic parts,
when γ ∈ (−(1 + ε),−1) ∪ (1, 1 + ε

e−2). The case 1 analysis applies here, up to a
(1−O(ε))-factor since the slope of B between γ and γ′ is either in the narrow interval
[− 5

3ε ,−
5
3ε (1− ε)) or (5

3ε (1−
ε

e−2), 5
3ε]. This O(ε) loss is more than compensated for by

the expected change in A, which is at most

psuc(γ)(−e) ≤
(

1− (1 + ε/(e− 2))2

4

)
(−e) = −e4 +O(ε)� −Θ(ε).

This concludes our analysis of the change in A+B caused by the Update Rule.

If device i successfully transmits its packet, the new γ is γ′′ = ln(eγ − pi). The term
C decreases by at least 5

3ε (γ − γ′′). Note that C decreases even more if the successful
transmission causes pmin to increase. Because the derivative of B is always at least − 5

3ε , B
increases by at most 5

3ε (γ − γ
′′). Thus, the change in B + C due to successful transmission

is always at most zero. J

3.3 Variants and Extensions

Jamming

Our analysis easily extends to handle an adversarial jammer. In any time step, the jammer
can make noise during the time slot; no packets are sent successfully and all active devices
receive channel feedback 2+ (noise). If they are following the Update Rule, then γ is reduced
by ε/(e − 2), and the increase in B(γ) is at most 5

3ε ·
ε

e−2 < 2.33. We charge the jammer
3.33 · J for jamming a total of J slots: 1 · J pays for the jammed slots and 2.33 · J pays for
the increase in potential. In other words, we expect the efficiency of our algorithm to be
completely unchanged, if we ignore 3.33 · J wasted time slots.

A Simpler Transmission Rule

Recall that in order to effect channel feedback consistent with a precisely Poisson distribution,
the Transmission Rule allowed device i to “make noise” in a time slot (as if ≥ 2 devices were
transmitting) with small probability 1 − (1 + pi)e−pi . Intuitively this is unwise. From a
device’s perspective, it is always better to attempt to transmit its packet rather than make
noise. We show that from a system-wide perspective, the efficiency of Transmission Rule? is
better than Transmission Rule.

Y.-J. Chang, W. Jin, and S. Pettie 16:11

Transmission Rule?:

Device i
{

remains silent with probability e−pi ≈ 1− pi
transmits its packet with probability 1− e−pi ≈ pi

If device i successfully transmits its packet, it halts.

I Lemma 3. Let Φ be the current potential at the beginning of a time step. Let Φ′ (resp.,
Φ?) be the potential after applying Update Rule and Transmission Rule (resp., Transmission
Rule?) in this time step. Then Φ′ ≥ Φ?.

Proof. The only situation the two protocols differ in their behavior is when all devices
remain silent, except for one, which chooses to make noise (Transmission Rule) or transmit
its packet (Transmission Rule?). Observe that in this situation, following Transmission Rule?
decreases Φ by at least e.6 On the other hand, following Transmission Rule reduces Φ by at
most 5

3(e−2) (when γ > 1), which is smaller than e. Thus, we must have Φ′ ≥ Φ?. J

3.4 Channel Utilization
One unfortunate aspect of our potential function is that it does not perform very well when
the number of packets in the system is very small. For example, if there are a constant
number of packets and γ is close to 0, then inserting a new packet with pi = ε2 will likely
increase C by Ω(ε−1 ln ε−1), not O(ε) like we would hope. It turns out that in order to
guarantee channel utilization of 1/e−O(ε) over the long term, it is not necessary that the
system be this efficient when number of active packets drops below a certain threshold,
e.g., O(poly(ε−1)). Indeed, if the number of active packets is small, this is proof that the
protocol is already functioning at the maximum possible efficiency (successful transmission
rate = packet injection rate). Theorem 5 captures this intuition more formally. We first
define a class of adversaries that strikes a nice balance between allowing essentially arbitrary
adversarial behavior and adhering to some long-term average injection rate. This definition
is more permissive than (λ, T)-adversaries [4].

I Definition 4. A λ-adversary injects packets and jams time slots indefinitely, under the
constraint that Nt < λ(t−αJt), for infinitely many values of t, where Nt and Jt are the total
number of packets inserted and slots jammed by time t. Note that in our case, α = 3.33.

In other words, if we delete αJt wasted slots from consideration, the adversary inserts λ
packets per slot, on average, over the time period [1, t]. This condition is only required to
hold infinitely often, which means the adversary is nearly always unconstrained.

Let us normalize the constants implicit in Lemmas 1, 2, and 3 so that whenever Assumption
(*) holds, every packet insertion increases Φ by at most e, and every time step reduces Φ by
at least 1− ε̂ in expectation, where ε̂ = Θ(ε) depends on ε.

I Theorem 5. Suppose the packet-injection and channel jamming is controlled by a λ-
adversary, with λ+ ε < 1−ε̂

e . If the devices adhere to the Initialization, Transmission?, and
Update Rules, then for infinitely many time slots, the number of active devices in the system
will be less than ε−3.

6 A decreases by e; B is unchanged by Update Rule, and the effect on B + C caused by reducing γ is
non-positive.

SOSA 2019

16:12 Simple Contention Resolution via Multiplicative Weight Updates

In other words, for infinitely many time slots, the channel utilization is optimal (up to an
additive ε−3).

Proof. We partition time into consecutive epochs, alternating between periods when there
are at most ε−3 active devices and periods when there are greater than ε−3 active devices.
We are not concerned with epochs of the first type. Suppose an epoch of the second type
begins at time slot t0. At this moment we evaluate the potential Φ of the system, with one
minor change. In the definition of C, let

pmin = min{ε2, min
i
pi}.

We argue that our previous analysis also applies when pmin is redefined in this way. We
only need to consider the situation where we hear silence, which would ordinarily make
pmin greater than ε2, but it is forced to remain at ε2. Since the epoch has not ended, the
contention is c ≥ nε2 ≥ ε−1. The probability of hearing silence is e−c ≤ e−1/ε and this
causes an extra increase in C-potential of 5/3. On the other hand, the probability of seeing a
successful transmission is ce−c, and if this occurs, we see a reduction in potential of e > 5/3.
The net expected effect of these two phenomena is negative. (Recall that our previous
analysis did not take successful transmission into account when c was this large, so we are
not double-counting this effect.)

Let Φ0 be the initial potential endowment at time t0.7 Let t1 be a time sufficiently far in
the future when the adversary hits average insertion rate at most λ = 1−ε̂

e − ε. The number
of packets inserted during the interval [t0, t1] is at most the number of packets inserted by
t1, which is at most λt1, and so the increase in potential due to packet insertion during the
interval [t0, t1] is always at most eλt1 (Lemma 1). In the interval [t0, t1], the expected drop
in potential is (1− ε̂)(t1 − t0 + 1) (Lemma 2).

We choose t1 to be sufficiently large so that the expected net change in potential is
eλt1 − (1 − ε̂)(t1 − t0) < −εt1, and −εt1 + Φ0 < −εt1/2. Of course, if Φ ever reaches zero
the epoch surely has ended. Seeing such a large deviation from the expectation is unlikely.

Let Xi be the potential drop at time step ti (without taking into account the potential
increase due to packet insertion), and let X =

∑t1
i=t0 Xi. The probability that the epoch has

not ended by time t1 is at most Pr[X ≥ −(Φ0 +eλt1)]. Note that −(Φ0 +eλt1) ≥ E[X]+εt1/2
by our choice of t1. By Azuma’s inequality, this occurs with probability exp

(
−Ω((εt1/2)2

t1−t0+1)
)

=
exp(−Ω(ε2t1)).8

In the unlikely event that the epoch has not ended by time t1, we can do the analysis
with a sufficiently distant point t2 > t1 in the future. Thus, with probability 1 every epoch
with n > ε−3 eventually ends. J

Theorem 5 establishes the main result of [6] but in a stronger form. In their protocol
the efficiency is some constant much smaller than 1/e. If there are n device injections, the
protocol of [6] guarantees that the devices make O(log2(n+ J)) transmission attempts each,
on average. Our protocol also improves this aspect of [6], by showing that the number of
transmission attempts is independent of n and J .

7 Typically Φ0 will be Θ(ε−3) but we do not require this.
8 Note that |Xi| can be upper bounded by a universal Lipchitz constant. In each time step, the term A
can only be decreased by at most e; the absolute change of B is at most 5

3(e−2) ; the extra increase in
the component C in the modified potential is at most 5

3 .

Y.-J. Chang, W. Jin, and S. Pettie 16:13

I Theorem 6. If the devices adhere to the Initialization, Transmission?, and Update Rules,
the average number of transmission attempts per device is e+O(ε), under any adversarial
strategy.

Proof. The analysis is similar, except that the expected cost of a slot is now less than c = eγ

rather than 1.9 We redefine the potential Φ to be

Φ = en+ 5
3ε ·max{c, 1}

An insertion increases n by 1 and c by ε2, so the cost per insertion is at most e+O(ε). When
γ ∈ [0,∞), the expected change in Φ caused by applying the Update Rule is

psuc(γ)(−e) + 5
3ε

[
psil(γ)(−c+ ceε) + pnoi(γ)(−c+ ce−ε/(e−2))

]
= psuc(γ)(−e) + 5c

3ε

[
psil(γ)(eε − 1) + pnoi(γ)(e−ε/(e−2) − 1)

]
We apply the approximation eε ≤ 1 + ε + ε2 obtained from the Taylor expansion of ex,
yielding:

≤ psuc(γ)(−e) + 5c
3ε

[
ε · psil(γ)− ε

e− 2pnoi(γ) + 2ε2
]

= psuc(γ)(−e) + 5c
3

[
attr(γ) + 2ε

]
(∗∗)

We bound (**) depending on γ. When γ ∈ [1,∞), attr(γ) + 2ε < −3/5, in which case (**) is

<
5c
3

(
−3

5

)
= −c

and the slot is paid for, in a probabilistic sense. If γ ∈ [0, 1], we bound (**) as

< cec(−e) + 5c
3 (−(3/5) ln c+ 2ε)

= −c
(
e1−c + 5

3 ln c
)

+O(ε)

≤ −c+O(ε)

When γ ∈ (−∞, 0], the Update Rule (alone) has no effect on Φ; only a successful packet
transmission can decrease Φ. Let s be the number of transmitters in a given time slot. When
s = 0 the cost is zero, so we can consider what the distribution on s looks like, normalized
by the event that s ≥ 1. The event s = 1 is good (it costs 1 and decreases Φ by e) and the
events when s ≥ 2 are bad (they cost s and leave Φ unchanged). Within the range (−∞, 0],
the worst distribution on s occurs when γ = 0, simultaneously minimizing Pr(s = 1|s ≥ 1)
and maximizing Pr(s = r|s ≥ 1) for all r ≥ 2. The efficiency at γ = 0 was already handled
in the case γ ∈ [0, 1] above. J

9 c = eγ is an upper bound on the expected number of packets that transmit in this time step.

SOSA 2019

16:14 Simple Contention Resolution via Multiplicative Weight Updates

4 Related Work

The “new” idea in this work is to create a protocol that is optimal, in a sense, in its
lowest energy configuration, by taking inspiration from the multiplicative weight update
meta-algorithm [2]. Of course, there is nothing new under the sun, and even in the area of
backoff-type protocols, updating parameters in response to channel feedback is quite common.
Coming from a systems perspective, researches have evaluated variants of exponential
backoff that use exponential increase/exponential decrease heuristics [28], multiplicative-
increase/linear-decrease [8, 16], additive-increase/multiplicative-decrease [21], and a mixture
of linear or multiplicative increase/linear decrease [11].10 In the theoretical literature,
Awerbuch et al. [3] used a multiplicative-weight-type update rule to achieve a (very small)
constant rate of efficiency, in a model in which a jammer can jam up to a (1− ε)-fraction of
the slots. To our knowledge, no prior work has analyzed MWU-type contention resolution
protocols in both a rigorous and numerically precise fashion.

We have shown that our protocol is stable for long-term injection rates approaching 1/e.
The stability of binary exponential backoff (BEB) and its variants has been studied extensively.
Aldous [1] showed that for any constant Poisson injection rate λ > 0, BEB is unstable.
Improving this, Bender et al. [4] proved that BEB is unstable at rate Ω(log logn/ logn)11 and
stable at rate O(1/ logn). See [15, 17] for other results on the stability of BEB. The failure
of BEB to achieve stability even under constant injection rates motivated the development
of more complex stable protocols [6, 3, 7]. Unlike BEB, these protocols (like ours) require
that the channel feedback differentiate silence and noise.

Although the “1/e” threshold of our algorithm is optimal for stateless algorithms,12, it is
known that 1/e can be beaten, assuming the arrival times of packets are Poisson-distributed.
The most efficient algorithms of Mosely and Humblet [25] and Tsybakov and Mikhailov [29]
(slightly improving [9, 12]) are stable under arrival rates up to ≈ 0.48776. The best known
upper bound on contention resolution (in Poisson-distributed injections, which also applies to
adversarial injections) is 0.5874 [23]. The assumption of ternary feedback is essential here for
both the upper and lower bounds. Goldberg et al. [13] have shown that if only transmitters
receive feedback from the channel, then no protocol is stable at injections rates above 0.42.
Pippenger [26] showed that if the channel reports the exact number of transmitters, that a
batch of n synchronized devices can solve contention resolution in n+ o(n) time slots, i.e.,
achieving efficiency 1− o(1).

Bender et al. [5] considered variants of BEB that are efficient with heterogeneous packet
sizes (as opposed to unit-size packets). Goldberg et al. [14] designed a protocol in which the
expected delay per packet is O(1), assuming Poisson-injection at rates less than 1/e.

5 Conclusions

In this work we proved that a simple and natural contention resolution protocol achieves
channel utilization arbitrarily close to 1/e, which is also resilient to a jammer that can jam
a constant fraction of the slots. The “1/e” threshold of our algorithm cannot be improved
by a stateless algorithm, and so in this sense its efficiency cannot be improved without a
measurable increase in algorithmic complexity. We are confident that the protocols [25, 29]

10 In these works, ‘multiplicative’ and ‘exponential’ are used interchangeably; ‘additive’ and ‘linear’ are
used interchangeably.

11 I.e., the number of packets that arrive at slot n is Poisson-distributed with expectation Ω(log logn/ logn).
12 (meaning every device executes the same algorithm in each time step)

Y.-J. Chang, W. Jin, and S. Pettie 16:15

with efficiency 0.48776 for Poisson injections can be successfully adapted to adversarial
injections using the same multiplicative weight update machinery developed here.

Although our protocol is very efficient in terms of transmission attempts (e+ O(ε) vs.
the O(log2(n + J)) of [6]) it does require that the devices listen for channel feedback in
every step. In [7], “energy” is defined to be the number of slots spent accessing/listening
to the channel. Is it possible to simultaeneously achieve energy cost poly(ε−1, log T)13 and
1/e−O(ε) channel utilization?

References

1 D. J. Aldous. Ultimate instability of exponential back-off protocol for acknowledgment-
based transmission control of random access communication channels. IEEE Trans. Infor-
mation Theory, 33(2):219–223, 1987. doi:10.1109/TIT.1987.1057295.

2 S. Arora, E. Hazan, and S. Kale. The Multiplicative Weights Update Method: a Meta-
Algorithm and Applications. Theory of Computing, 8(1):121–164, 2012. doi:10.4086/toc.
2012.v008a006.

3 B. Awerbuch, A. W. Richa, and C. Scheideler. A jamming-resistant MAC protocol for single-
hop wireless networks. In Proceedings of the Twenty-Seventh Annual ACM Symposium on
Principles of Distributed Computing (PODC), pages 45–54, 2008. doi:10.1145/1400751.
1400759.

4 M. A. Bender, M. Farach-Colton, S. He, B. C. Kuszmaul, and C. E. Leiserson. Adver-
sarial contention resolution for simple channels. In Proceedings of the 17th Annual ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 325–332, 2005.
doi:10.1145/1073970.1074023.

5 M. A. Bender, J. T. Fineman, and S. Gilbert. Contention Resolution with Heterogeneous
Job Sizes. In Proceedings 14th Annual European Symposium on Algorithms (ESA), pages
112–123, 2006. doi:10.1007/11841036_13.

6 M. A. Bender, J. T. Fineman, S. Gilbert, and M. Young. How to Scale Exponential
Backoff: Constant Throughput, Polylog Access Attempts, and Robustness. In Proceedings
27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 636–654, 2016.
doi:10.1137/1.9781611974331.ch47.

7 M. A. Bender, T. Kopelowitz, S. Pettie, and M. Young. Contention resolution with log-
logstar channel accesses. In Proceedings of the 48th Annual ACM Symposium on Theory
of Computing (STOC), pages 499–508, 2016. doi:10.1145/2897518.2897655.

8 V. Bharghavan, A. J. Demers, S. Shenker, and L. Zhang. MACAW: A media access
protocol for wireless LAN’s. In Proceedings of the ACM SIGCOMM Conference on
Communications Architectures, Protocols and Applications, pages 212–225, 1994. doi:
10.1145/190314.190334.

9 J. Capetanakis. Tree algorithms for packet broadcast channels. IEEE Trans. Information
Theory, 25(5):505–515, 1979. doi:10.1109/TIT.1979.1056093.

10 Y.-J. Chang, T. Kopelowitz, S. Pettie, R. Wang, and W. Zhan. Exponential separations in
the energy complexity of leader election. In Proceedings 49th Annual ACM Symposium on
Theory of Computing (STOC), pages 771–783, 2017. doi:10.1145/3055399.3055481.

11 J. Deng, P. K. Varshney, and Z. Haas. A New Backoff Algorithm for the IEEE 802.11 Dis-
tributed Coordination Function. In In Communication Networks and Distributed Systems
Modeling and Simulation, pages 215–225, 2004.

13 I.e., if a packet is transmitted at time slot T , it listens in at most poly(ε−1, log T) slots.

SOSA 2019

http://dx.doi.org/10.1109/TIT.1987.1057295
http://dx.doi.org/10.4086/toc.2012.v008a006
http://dx.doi.org/10.4086/toc.2012.v008a006
http://dx.doi.org/10.1145/1400751.1400759
http://dx.doi.org/10.1145/1400751.1400759
http://dx.doi.org/10.1145/1073970.1074023
http://dx.doi.org/10.1007/11841036_13
http://dx.doi.org/10.1137/1.9781611974331.ch47
http://dx.doi.org/10.1145/2897518.2897655
http://dx.doi.org/10.1145/190314.190334
http://dx.doi.org/10.1145/190314.190334
http://dx.doi.org/10.1109/TIT.1979.1056093
http://dx.doi.org/10.1145/3055399.3055481

16:16 Simple Contention Resolution via Multiplicative Weight Updates

12 R. G. Gallager. Conflict resolution in random access broadcast networks. In Proceedings
AFOSR Workshop on Communications Theory Applications, Provincetown, MA, Sept 17–
20, pages 74–76, 1978.

13 L. A. Goldberg, M. Jerrum, S. Kannan, and M. Paterson. A bound on the capacity
of backoff and acknowledgment-based protocols. SIAM J. Comput., 33(2):313–331, 2004.
doi:10.1137/S0097539700381851.

14 L. A. Goldberg, P. D. MacKenzie, M. Paterson, and A. Srinivasan. Contention resolution
with constant expected delay. J. ACM, 47(6):1048–1096, 2000. doi:10.1145/355541.
355567.

15 J. Goodman, A. G. Greenberg, N. Madras, and P. March. Stability of binary exponential
backoff. J. ACM, 35(3):579–602, 1988. doi:10.1145/44483.44488.

16 Z. J. Haas and J. Deng. On optimizing the backoff interval for random access schemes. IEEE
Trans. Communications, 51(12):2081–2090, 2003. doi:10.1109/TCOMM.2003.820754.

17 J. Håstad, F. Thomson Leighton, and B. Rogoff. Analysis of Backoff Protocols for
Multiple Access Channels. SIAM J. Comput., 25(4):740–774, 1996. doi:10.1137/
S0097539792233828.

18 M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural Support for Lock-Free
Data Structures. In Proceedings of the 20th Annual International Symposium on Computer
Architecture (ISCA), pages 289–300, 1993. doi:10.1145/165123.165164.

19 V. Jacobson. Congestion avoidance and control. In Proceedings of the ACM Symposium
on Communications Architectures and Protocols (SIGCOMM), pages 314–329, 1988. doi:
10.1145/52324.52356.

20 J. F. Kurose and K. W. Ross. Computer networking: a top-down approach, volume 4.
Addison-Wesley, Boston, 2009.

21 K. Li, I. Nikolaidis, and J. J. Harms. The analysis of the additive-increase multiplicative-
decrease MAC protocol. In Proceedings 10th Annual Conference on Wireless On-demand
Network Systems and Services (WONS), pages 122–124, 2013. doi:10.1109/WONS.2013.
6578335.

22 R. M. Metcalfe and D. R. Boggs. Ethernet: Distributed packet switching for local computer
networks. Communications of the ACM, 19(7):395–404, 1976.

23 V. A. Mikhailov and B. S. Tsybakov. Upper bound for the capacity of a random multiple
access system. Problemy Peredachi Informatsii, 17(1):90–95, 1981.

24 A. Mondal and A. Kuzmanovic. Removing exponential backoff from TCP. Computer
Communication Review, 38(5):17–28, 2008. doi:10.1145/1452335.1452338.

25 J. Mosely and P. A. Humblet. A Class of Efficient Contention Resolution Algorithms
for Multiple Access Channels. IEEE Trans. Communications, 33(2):145–151, 1985. doi:
10.1109/TCOM.1985.1096261.

26 N. Pippenger. Bounds on the performance of protocols for a multiple-access broadcast
channel. IEEE Trans. Information Theory, 27(2):145–151, 1981. doi:10.1109/TIT.1981.
1056332.

27 R. Rajwar and J. R. Goodman. Speculative lock elision: enabling highly concurrent mul-
tithreaded execution. In Proceedings of the 34th Annual International Symposium on Mi-
croarchitecture (MICRO), pages 294–305, 2001. doi:10.1109/MICRO.2001.991127.

28 N.-O. Song, B.-J. Kwak, and L. E. Miller. Analysis of EIED backoff algorithm for the
IEEE 802.11 DCF. In Proceedings 62nd IEEE Vehicular Technology Conference (VTC),
volume 4, pages 2182–2186, 2005.

29 B. S. Tsybakov and V. A. Mikhailov. Slotted multiaccess packet broadcasting feedback
channel. Problemy Peredachi Informatsii, 14(4):32–59, 1978.

http://dx.doi.org/10.1137/S0097539700381851
http://dx.doi.org/10.1145/355541.355567
http://dx.doi.org/10.1145/355541.355567
http://dx.doi.org/10.1145/44483.44488
http://dx.doi.org/10.1109/TCOMM.2003.820754
http://dx.doi.org/10.1137/S0097539792233828
http://dx.doi.org/10.1137/S0097539792233828
http://dx.doi.org/10.1145/165123.165164
http://dx.doi.org/10.1145/52324.52356
http://dx.doi.org/10.1145/52324.52356
http://dx.doi.org/10.1109/WONS.2013.6578335
http://dx.doi.org/10.1109/WONS.2013.6578335
http://dx.doi.org/10.1145/1452335.1452338
http://dx.doi.org/10.1109/TCOM.1985.1096261
http://dx.doi.org/10.1109/TCOM.1985.1096261
http://dx.doi.org/10.1109/TIT.1981.1056332
http://dx.doi.org/10.1109/TIT.1981.1056332
http://dx.doi.org/10.1109/MICRO.2001.991127

A Simple Near-Linear Pseudopolynomial Time
Randomized Algorithm for Subset Sum

Ce Jin
Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
jinc16@mails.tsinghua.edu.cn

Hongxun Wu
Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
wuhx18@mails.tsinghua.edu.cn

Abstract
Given a multiset S of n positive integers and a target integer t, the Subset Sum problem asks to
determine whether there exists a subset of S that sums up to t. The current best deterministic
algorithm, by Koiliaris and Xu [SODA’17], runs in Õ(

√
nt) time, where Õ hides poly-logarithm

factors. Bringmann [SODA’17] later gave a randomized Õ(n+ t) time algorithm using two-stage
color-coding. The Õ(n+ t) running time is believed to be near-optimal.

In this paper, we present a simple and elegant randomized algorithm for Subset Sum in
Õ(n + t) time. Our new algorithm actually solves its counting version modulo prime p > t, by
manipulating generating functions using FFT.

2012 ACM Subject Classification Theory of computation → Algorithm design techniques

Keywords and phrases subset sum, formal power series, FFT

Digital Object Identifier 10.4230/OASIcs.SOSA.2019.17

Acknowledgements The authors would like to thank the anonymous reviewers for their helpful
comments.

1 Introduction

Given a multiset S of n positive integers and a target integer t, the Subset Sum problem
asks to determine whether there exists a subset of S that sums up to t. It is one of Karp’s
original NP-complete problems [9], and is widely taught in undergraduate algorithm classes.
In 1957, Bellman gave the well-known dynamic programming algorithm [2] in time O(nt).
Pisinger [12] first improved it to O(nt/ log t) on word-RAM models. Recently, Koiliaris and
Xu gave a deterministic algorithm [10, 11] in time Õ(

√
nt), which is the best deterministic

algorithm so far. Bringmann [4] later improved the running time to randomized Õ(n+ t)
using color-coding and layer splitting techniques. Abboud et al. [1] recently showed that
Subset Sum has no O(t1−εnO(1)) algorithm for any ε > 0, unless the Strong Exponential
Time Hypothesis (SETH) is false, so the Õ(n+ t) time bound is likely to be near-optimal.

In this paper, we present a new randomized algorithm matching the Õ(n+ t) running time
by Bringmann [4]. The basic idea of our approach is quite straightforward. For prime p > t,
we give an Õ(n + t) algorithm for #pSubset Sum, the counting version of Subset Sum
problem modulo p. Then the decision version can be solved with high probability by randomly
picking a sufficiently large prime p.

© Ce Jin and Hongxun Wu;
licensed under Creative Commons License CC-BY

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy Fineman and Michael Mitzenmacher; Article No. 17; pp. 17:1–17:6

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jinc16@mails.tsinghua.edu.cn
mailto:wuhx18@mails.tsinghua.edu.cn
https://doi.org/10.4230/OASIcs.SOSA.2019.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

17:2 Simple Near-Linear Pseudopolynomial Time Randomized Algorithm for Subset Sum

A closely related problem is #Knapsack, which asks for the number of subsets S such that∑
s∈S s ≤ t. There are extensive studies on approximation algorithms for the #Knapsack

problem [6, 8, 13, 7]. Our algorithm can solve the modulo p version #pKnapsack in
near-linear pseudopolynomial time for prime p > t.

Compared to the previous near-linear time algorithm for Subset Sum by Bringmann [4],
our algorithm is simpler and more practical. The precise running time of our algorithm is
O(n+ t log2 t) with error probability O((n+ t)−1). If a faster algorithm for manipulating
formal power series by Brent [3] is applied, it can be improved to O(n + t log t) time (see
Remark on Lemma 2), which is faster than Bringmann’s algorithm by a factor of log4 n.

1.1 Main ideas of our algorithm

The Subset Sum instance can be encoded as a generating function A(x) =
∏n
i=1(1 + xsi),

where s1, . . . , sn are the input integers, and our goal is to compute the t-th coefficient of
A(x) and see whether it is zero or not.

Instead of directly expanding A(x), we consider its logarithm B(x) = ln(A(x)). Using
basic properties of the logarithm function and its power series, it’s possible to compute the
first t+ 1 coefficients of B(x) in Õ(t) time. Then we can recover the first t+ 1 coefficients of
A(x) = exp(B(x)) in Õ(t) time using a simple divide and conquer algorithm with FFT (or a
slightly faster algorithm by Brent [3]).

The coefficients involved in the algorithm could be exponentially large. To avoid dealing
with high-precision numbers, we pick a prime p and perform arithmetic operations efficiently
in the finite field Fp, and in the end check whether the result is zero modulo p. By picking
random p from a large interval, the algorithm succeeds with high probability.

2 Preliminaries

2.1 Subset sum problem

Given n (not necessarily distinct) positive integers s1, s2, . . . , sn and a target sum t, the
Subset Sum problem is to decide whether there exists a subset of indices I ⊆ {1, 2, . . . , n}
such that

∑
i∈I si = t. We also consider the #pSubset Sum problem, which asks for

the number of such subsets I modulo p. We use the word RAM model with word length
w = Θ(log t) throughout this paper.

2.2 Polynomials and formal power series

Formal power series

Let R[x] denote the ring of polynomials over a ring R, and R[[x]] denote the ring of
formal power series over R. A formal power series f(x) =

∑∞
i=0 fix

i is a generalization of a
polynomial with possibly an infinite number of terms. Polynomial addition and multiplication
naturally generalize to R[[x]]. Composition (f ◦ g)(x) = f(g(x)) =

∑∞
i=0 fi

(∑∞
j=1 gjx

j
)i

is
well-defined for f(x) =

∑∞
i=0 fix

i ∈ R[[x]] and g(x) =
∑∞
j=1 gjx

j ∈ xR[[x]]. Here xR[[x]] (or
xR[x]) denotes the set of series in R[[x]] (or polynomials in R[x]) with zero constant term.

C. Jin and H.Wu 17:3

Exponential and logarithm

We are familiar with the following two series in Q[[x]],

ln(1 + x) =
∞∑
k=1

(−1)k−1xk

k
, (1)

exp(x) =
∞∑
k=0

xk

k! , (2)

satisfying

exp
(

ln(1 + f(x))
)

= 1 + f(x), (3)

and

ln
(
(1 + f(x))(1 + g(x))

)
= ln(1 + f(x)) + ln(1 + g(x)) (4)

for any f(x), g(x) ∈ xQ[x].

Modulo xt+1

Our algorithm only deals with the first t+1 terms of any formal power series. For f(x), g(x) ∈
R[[x]], we write f(x) ≡ g(x) (mod xt+1) if [xi]f(x) = [xi]g(x) for all 0 ≤ i ≤ t, where [xi]f(x)
denotes the i-th coefficient of f(x).

As an example, define

expt(x) =
t∑
i=0

xi

i! (5)

as a t-th degree polynomial in Q[x]. Then exp(f(x)) ≡ expt(f(x)) (mod xt+1) clearly holds
for any f(x) ∈ xQ[[x]].

2.3 Modulo prime p

To avoid dealing with large fractions or floating-point numbers, we will work in the finite
field Fp = {0,1, . . . ,p− 1} of prime order p = 2Θ(log t). Addition and multiplication in Fp
take O(1) time in the word RAM model. Finding the multiplicative inverse of a nonzero
element in Fp takes O(log p) time using extended Euclidean algorithm [5, Section 31.2].

Our algorithm will regard polynomial coefficients as elements from Fp. The coefficients
can be rational numbers, but their denominators should not have prime factor p. Formally,
let

ZpZ = {r/s ∈ Q : r, s are coprime integers, p does not divide s} (6)

and apply the canonical homomorphism from ZpZ[x] to Fp[x], determined by

r/s 7→ s̄−1r̄, x 7→ x. (7)

We use Ā or A mod p to denote A’s image in Fp[x].
From now on we assume p > t, so that expt(x) ∈ ZpZ[x] (see equation (5)), and let

expt(x) denote its image in Fp[x].

SOSA 2019

17:4 Simple Near-Linear Pseudopolynomial Time Randomized Algorithm for Subset Sum

procedure Compute(l, r) . after Compute(l, r) returns, all values g1, . . . , gr are ready
if l < r then

m← b(l + r)/2c
Compute(l,m)
for i← m+ 1,m+ 2, . . . , r do

gi ← gi + i−1∑m
j=l(i− j)fi−jgj

end for
Compute(m+ 1, r)

end if
end procedure

procedure Main
Initialize g0 ← 1, gi ← 0(1 ≤ i ≤ t)
Compute(0, t)

end procedure
Figure 1 Algorithm for computing g1, . . . , gt.

2.4 Computing exponential using FFT
I Lemma 1 (FFT). Given two polynomials f(x), g(x) ∈ Fp[x] of degree at most t, one can
compute their product f(x)g(x) in O(t log t) time.

Proof. The classic FFT algorithm [5, Chapter 30] can multiply f(x) and g(x), regarded as
polynomials in Z[x], in O(t log t) time. Then take the remainder of each coefficient modulo
p. J

Lemma 2 is a classical result on manipulating formal power series, and is the main building
block of our algorithm.

I Lemma 2 (Brent [3]). Given a polynomial f(x) ∈ xFp[x] of degree at most t (t < p), one
can compute a polynomial g(x) ∈ Fp[x] in Õ(t) time such that g(x) ≡ expt(f(x)) (mod xt+1).

I Remark. Brent’s algorithm [3] uses Newton’s iterative method and runs in time O(t log t).
Here we describe a simpler O(t log2 t) algorithm by standard divide and conquer. We present
the algorithm as over Q for notational simplicity.

Proof. Let f(x) =
∑t
i=1 fix

i and g(x) = exp(f(x)) =
∑∞
i=0 gix

i. Then g′(x) = g(x)f ′(x).
Comparing the (i− 1)-th coefficients on both sides gives a recurrence relation

gi = i−1
i−1∑
j=0

(i− j)fi−jgj (8)

with initial value g0 = 1. The desired coefficients g1, . . . , gt can be computed using the
algorithm in Figure 1, which simply reorganizes the computation of recurrence formula (8)
as a recursion.

To speed up this algorithm, define polynomial F (x) =
∑r−l
k=0 kfkx

k, G(x) =
∑m−l
j=0 gj+lx

j

and use FFT to compute H(x) = F (x)G(x) in O((r− l) log(r− l)) time after Compute(l,m)
returns. Then

∑m
j=l(i − j)fi−jgj = [xi−l]H(x), and hence the for loop runs in O(r −m)

time. The total running time is T (t) = 2T (t/2) +O(t log t) = O(t log2 t). J

C. Jin and H.Wu 17:5

3 Main algorithm

Recall that we are given n positive integers s1, . . . , sn and a target sum t. Consider the
generating function A(x) defined by

A(x) =
n∏
i=1

(1 + xsi). (9)

The number of subsets that sum up to t is [xt]A(x). The Subset Sum instance has a solution
if and only if [xt]A(x) 6= 0.

I Lemma 3. Suppose [xt]A(x) 6= 0. Let p be a uniform random prime from [t+ 1, (n+ t)3].
With probability 1−O((n+ t)−1), p does not divide [xt]A(x).

Proof. Notice that [xt]A(x) ≤ 2n, so it has at most n prime factors. Since there are
Ω((n+ t)2) primes in the interval, the probability that p divides [xt]A(x) is O((n+ t)−1). J

I Lemma 4. Let B(x) = ln(A(x)) ∈ Q[[x]]. For prime p > t, in Õ(t) time one can compute
([xr]B(x)) mod p for all 0 ≤ r ≤ t.

Proof. By definition of B(x),

B(x) = ln
(n∏
i=1

(1 + xsi)
)

=
n∑
i=1

ln(1 + xsi) =
n∑
i=1

∞∑
j=1

(−1)j−1

j
xsij . (10)

Let ak be the size of the set {j : sj = k}, and define polynomial

Bt(x) =
n∑
i=1

bt/sic∑
j=1

(−1)j−1

j
xsij =

t∑
k=1

bt/kc∑
j=1

ak(−1)j−1

j
xjk. (11)

Then [xr]Bt(x) = [xr]B(x) for all 0 ≤ r ≤ t.
Note that the denominators j in (11) do not have prime factor p. After preparing the

multiplicative inverses j̄−1 for each 1 ≤ j ≤ t, we can compute all ([xr]Bt(x)) mod p by
simply iterating over k, j in equation (11), which only takes

∑t
k=1bt/kc = O(t log t) time. J

I Lemma 5. For prime p > t, one can compute ([xr]A(x)) mod p for all 0 ≤ r ≤ t in Õ(t)
time.

Proof. Let B(x) = ln(A(x)). Then A(x) = exp(B(x)) ≡ expt(Bt(x)) (mod xt+1), where
Bt(x) =

∑t
i=0([xi]B(x))xi. We use Lemma 4 to compute Bt(x)’s image Bt(x) ∈ Fp[x], and

then use Lemma 2 to compute the first t+ 1 terms of expt(Bt(x)), which give the values of
([xr]A(x)) mod p for all 0 ≤ r ≤ t. J

I Theorem 6. The Subset Sum problem can be solved in time Õ(n+ t) by a randomized
algorithm with one-sided error probability O((n+ t)−1).

Proof. By sampling and using Miller-Rabin primality test [5, Section 31.8], we can pick a
uniform random prime p from interval [t+1, (n+t)3] in (log(n+t))O(1) time with O((n+t)−1)
failure probability. Then the theorem immediately follows from Lemma 3 and Lemma 5. J

SOSA 2019

17:6 Simple Near-Linear Pseudopolynomial Time Randomized Algorithm for Subset Sum

References
1 Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. SETH-based lower

bounds for subset sum and bicriteria path. In Proceedings of the 30th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2019. To appear. URL: http://arxiv.org/
abs/1704.04546.

2 Richard E. Bellman. Dynamic programming. Princeton University Press, 1957.
3 Richard P. Brent. Multiple-precision zero-finding methods and the complexity of elementary

function evaluation. In Analytic Computational Complexity, pages 151–176. Elsevier, 1976.
doi:10.1016/B978-0-12-697560-4.50014-9.

4 Karl Bringmann. A near-linear pseudopolynomial time algorithm for subset sum. In Pro-
ceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1073–1084, 2017. doi:10.1137/1.9781611974782.69.

5 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to algorithms. MIT press, 3rd edition, 2009.

6 Martin Dyer. Approximate counting by dynamic programming. In Proceedings of the
35th Annual ACM Symposium on Theory of Computing (STOC), pages 693–699, 2003.
doi:10.1145/780542.780643.

7 Paweł Gawrychowski, Liran Markin, and Oren Weimann. A Faster FPTAS for #Knap-
sack. In Proceedings of the 45th International Colloquium on Automata, Languages, and
Programming (ICALP), pages 64:1–64:13, 2018. doi:10.4230/LIPIcs.ICALP.2018.64.

8 Parikshit Gopalan, Adam Klivans, Raghu Meka, Daniel Štefankovic, Santosh Vempala, and
Eric Vigoda. An FPTAS for #knapsack and related counting problems. In Proceedings of
the 52nd IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages
817–826, 2011. doi:10.1109/FOCS.2011.32.

9 Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85–103. Springer US, 1972. doi:10.1007/978-1-4684-2001-2_9.

10 Konstantinos Koiliaris and Chao Xu. A faster pseudopolynomial time algorithm for subset
sum. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1062–1072, 2017. doi:10.1137/1.9781611974782.68.

11 Konstantinos Koiliaris and Chao Xu. Subset Sum Made Simple. CoRR, abs/1807.08248,
2018. URL: http://arxiv.org/abs/1807.08248.

12 David Pisinger. Linear time algorithms for knapsack problems with bounded weights.
Journal of Algorithms, 33(1):1–14, 1999. doi:10.1006/jagm.1999.1034.

13 Romeo Rizzi and Alexandru I. Tomescu. Faster FPTASes for counting and random gener-
ation of knapsack solutions. In European Symposium on Algorithms (ESA), pages 762–773,
2014. doi:10.1007/978-3-662-44777-2_63.

http://arxiv.org/abs/1704.04546
http://arxiv.org/abs/1704.04546
http://dx.doi.org/10.1016/B978-0-12-697560-4.50014-9
http://dx.doi.org/10.1137/1.9781611974782.69
http://dx.doi.org/10.1145/780542.780643
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.64
http://dx.doi.org/10.1109/FOCS.2011.32
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1137/1.9781611974782.68
http://arxiv.org/abs/1807.08248
http://dx.doi.org/10.1006/jagm.1999.1034
http://dx.doi.org/10.1007/978-3-662-44777-2_63

Submodular Optimization in the MapReduce
Model
Paul Liu
Stanford University, USA
paulliu@stanford.edu

Jan Vondrak
Stanford University, USA
jvondrak@stanford.edu

Abstract
Submodular optimization has received significant attention in both practice and theory, as a
wide array of problems in machine learning, auction theory, and combinatorial optimization have
submodular structure. In practice, these problems often involve large amounts of data, and must
be solved in a distributed way. One popular framework for running such distributed algorithms
is MapReduce. In this paper, we present two simple algorithms for cardinality constrained
submodular optimization in the MapReduce model: the first is a (1/2− o(1))-approximation in
2 MapReduce rounds, and the second is a (1 − 1/e − ε)-approximation in 1+o(1)

ε MapReduce
rounds.

2012 ACM Subject Classification Theory of computation → MapReduce algorithms, Theory
of computation → Distributed computing models, Theory of computation → Algorithm design
techniques, Theory of computation → Submodular optimization and polymatroids

Keywords and phrases mapreduce, submodular, optimization, approximation algorithms

Digital Object Identifier 10.4230/OASIcs.SOSA.2019.18

1 Introduction

Let f : 2V → R+ be a function satisfying f(A ∪ {e}) − f(A) ≥ f(B ∪ {e}) − f(B) for all
A ⊆ B and e /∈ B. Such a function is called submodular. When f satisfies the additional
property f(A ∪ {e})− f(A) ≥ 0 for all A and e /∈ A, we say f is monotone.

Many combinatorial optimization problems can be cast as submodular optimization
problems. Such problems include classics such as max cut, min cut, maximum coverage,
and minimum spanning tree [6]. Although submodular optimization encompasses several
NP-Hard problems, well-known greedy approximation algorithms are known [11]. We focus
on the special case of monotone submodular maximization under a cardinality constraint k,
i.e.

OPT := max
S⊆V,|S|≤k

f(S), f is monotone.

In particular, it is known that one can approximate a cardinality constrained monotone
submodular maximization problem to a factor of 1− 1/e of optimal.

Due to rapidly growing datasets, recent focus has been on submodular optimization in
distributed models [1, 3, 4, 5, 8, 10]. In this work, we focus on the MapReduce model, where
complexity is measured as the number of synchronous communication rounds between the
machines involved. The current state of the art for cardinality constrained submodular
maximization is the algorithm of Barbosa et al. [5], which achieves a 1/2− ε approximation

© Paul Liu and Jan Vondrak;
licensed under Creative Commons License CC-BY

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy Fineman and Michael Mitzenmacher; Article No. 18; pp. 18:1–18:10

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:paulliu@stanford.edu
mailto:jvondrak@stanford.edu
https://doi.org/10.4230/OASIcs.SOSA.2019.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

18:2 Submodular Optimization in the MapReduce Model

in 2 rounds and was the first to achieve a 1− 1/e− ε approximation in O
(1
ε

)
rounds. Both

algorithms actually require significant duplication of the ground set (each element being
sent to Ω(1

ε) machines). Since this might be an issue in practice, [5] mentions that without
duplication, the two algorithms could be implemented in O(1

ε log 1
ε) and O(1

ε2) rounds,
respectively. Earlier, Mirrokni and Zadimoghaddam [10] gave a 0.27-approximation in 2
rounds without duplication and a 0.545-approximation with Θ(1

ε log 1
ε) duplication.

Our contribution. We focus on the most practical regime of MapReduce algorithms for
cardinality constrained submodular maximization, which is a small constant number of
rounds and no duplication of the dataset. To our knowledge, the 0.27-approximation of [10]
has been the best result in this regime so far.

We describe a simple thresholding algorithm which achieves the following: In 2 rounds
of MapReduce, with one random partitioning of the dataset (no duplication), we obtain a
(1/2− ε)-approximation. In 4 rounds, we obtain a 5/9-approximation. More generally, in 2t
rounds, we obtain a (1− (1− 1

t+1)t − ε)-approximation, which we show to be optimal for
this type of algorithm. Crucially, the parameter ε does not affect the number of rounds, and
only mildly affects the memory (in that ε can be taken to Õ(

√
k/n) without asymptotically

increasing the memory).
Our algorithm is inspired by the work of Kumar et al. [8] and McGregor-Vu [9] in the

streaming setting. It is also similar to a recent algorithm of Assadi-Khanna [2], who study
the communication complexity of the maximum coverage problem. As such, our algorithm is
not particularly novel, but we believe that our analysis of its performance in the MapReduce
model is, thus simplifying and improving the previous work of [5] and [10].

Open question. The most intriguing remaining question in our opinion (for the cardinality
constrained submodular problem) is whether Θ(1/ε) rounds are necessary to achieve a
(1− 1/e− ε)-approximation. So far there is no evidence that a (1− 1/e)-approximation in a
constant number of rounds is impossible.

1.1 The MapReduce Model

There are many variants of MapReduce models, and algorithms between the different models
are largely transferable. We use a variant of theMRC model of Karloff et al. [7]. In this
model, an input of size N is distributed across O(Nδ) machines, each with O(N1−δ) memory.
We relax the model slightly, and allow one central machine to have memory slightly expanded
to Õ(N1−δ).

Computation then proceeds in a sequence of synchronous communication rounds. In
each round, each machine receives an input of size O(N1−δ). Each machine then performs
computations on that input, and produces output messages which are delivered to other
machines (specified in the message) as input at the start of the next round. The total size of
these output messages must also be O(N1−δ) per machine. We refer the reader to the work
of Karloff et al. [7] for additional details.

In our applications, we assume the input is a set of elements V and a cardinality parameter
k. Each machine has an oracle that allows it to evaluate f . Under these constraints, we
assume that each machine has memory O(

√
nk) (except for a single ‘central’ machine with

O(
√
nk log k) memory) and that there are

√
n/k machines in total.

P. Liu and J. Vondrak 18:3

Algorithm 1: ThresholdGreedy(S,G, τ).
Input: An input set S, a partial greedy solution G with |G| ≤ k, and a threshold τ .
Output: A set G′ ⊇ G such that fG′(e) < τ for all e ∈ S if |G| < k or f(G) ≥ τk.
G′ ← G

for e ∈ S do
if fG′(e) ≥ τ and |G′| < k then G′ ← G′ ∪ {e}

return G′

Algorithm 2: ThresholdFilter(S,G, τ).
Input: An input set S, a partial greedy solution G, and a threshold τ .
Output: A set S′ ⊆ S such that fG(e) ≥ τ for all e ∈ S′.
S′ ← S

for e ∈ S do
if fG(e) < τ then S′ ← S′ \ {e}

return S′

2 A thresholding algorithm for submodular maximization

In the following algorithms, let f : 2V → R+ be a monotone submodular function, n = |V |,
and fS(e) = f(S ∪{e})− f(S). We refer to fS(e) as the marginal of e with respect to S. Let
k be the maximum cardinality of the solution, and m =

√
n/k be the number of machines.

2.1 A 1/2 − o(1) approximation in 2 rounds
First, we present a simple 1/2-approximation in 2 rounds, assuming we know the exact value
of OPT . We will relax this assumption later. The algorithm requires two helper functions
ThresholdGreedy and ThresholdFilter, which forms the basis of all of our algorithms.
Roughly speaking, ThresholdGreedy greedily adds to a set of elements while there exists
an element of high marginal in the input set. ThresholdFilter filters elements of low
marginal out of the input set.

We define an additional function PartitionAndSample which simply initializes all of
our algorithms by partitioning the input set randomly and drawing a random sample from it.

Using these three helper algorithms, our approximation algorithm is quite easy to
implement, and can be found in Algorithm 4.

I Lemma 1. The approximation ratio of Algorithm 4 is at least 1/2.

Proof. The following lemma is folklore, but we present it for completeness.
First, we note that G0 is the same on each machine so long as the loop iterating through

S is done in a fixed order. We assume that this is the case. From this, it is clear that
Algorithm 4 returns a set G for which fG(e) < OPT

2k for any e ∈ V .
Let G be the set returned at the end of the algorithm. Either |G| = k, or there is no

e ∈ V for which the marginal with respect to G is greater than OPT/2. In the former case,

1 Note that S and the Vi are not stored on one machine by PartitionAndSample. We simply use the
assignment to denote that the variables have been initialized and sent to their respective machines.

SOSA 2019

18:4 Submodular Optimization in the MapReduce Model

Algorithm 3: PartitionAndSample(V).
S ← sample each e ∈ V with probability p = 4

√
k/n

partition V randomly into sets V1, V2, . . . Vm to the m machines (one set per machine)
send S to each machine and a central machine C

Algorithm 4: A simple 2-round 1/2 approximation, assuming OPT is known.
round 1:
S, V1, . . . , Vm ← PartitionAndSample(V)1
on each machine Mi (in parallel) do

τ ← OPT
2k

G0 ← ThresholdGreedy (S, ∅, τ)
if |G0| < k then Ri ← ThresholdFilter (Vi, G0, τ)
else Ri ← ∅
send Ri to a central machine C

round 2 (only on C):
compute G0 from S as in first round
G← ThresholdGreedy (∪iRi, G0, τ)
return G

we have k elements of value at least OPT
2k so we are done. In the latter case, let O be the

optimal solution. By monotonicity and submodularity,

OPT = f(O) ≤ f(O ∪G) ≤ f(G) +
∑

e∈O\G

fG(e) ≤ f(G) + k · OPT2k . J

Lemma 1 shows that the algorithm is correct. Each machine in round 1 clearly uses
O(
√
nk) memory. It remains to bound the memory of the central machine in round 2.

I Lemma 2. With probability 1− e−Ω(k), the number of elements sent to the central machine
C has cardinality at most

√
nk.

Proof. The expected number of elements in S is 4
√
nk. By a Chernoff bound (Theorem 9)

the probability that |S| < 3
√
nk is at most e−Ω(

√
nk) ≤ e−Ω(k). So we can assume that

|S| ≥ 3
√
nk. Let NS denote the number of elements of marginal at least OPT/(2k) with

respect to G0. The number of elements sent to C in round two is exactly NS + |S|.
Consider breaking the sample set S into 3k blocks of size

√
n/k and processing each block

sequentially. If before each block, there are at least
√
nk remaining elements of marginal

value at least OPT/(2k), we have probability at least 1−
(

1−
√

k
n

)√n
k

> 1/2 of adding an

additional element to G0. This happens conditioned on any prior history of the algorithm,
since we can imagine that the blocks are sampled independently one at a time. Therefore, we
can use a martingale argument to bound the number of elements selected in S. If Xi is the
indicator random variable for the event that at least one element is selected from the i-th
block, then we have E[Xi | X1, . . . , Xi−1] ≥ 1/2. Hence we can define Yi =

∑i
j=1(Xi − 1/2)

and the sequence Y1, Y2, . . . is a submartingale, which means E[Yi | Y1, . . . , Yi−1] ≥ Yi−1.
Moreover, |Yi − Yi−1| ≤ 1. By Azuma’s inequality (Theorem 10), Pr[Y3k < − 1

2k] < e−Ω(k).
This means that with probability 1− e−Ω(k),

∑3k
j=1Xj = Y3k + 3

2k ≥ k, and we include at
least k elements overall. In that case, we are done and do not send anything to the central
machine. Otherwise, the number of remaining elements of marginal value at least OPT/(2k)
drops below

√
nk. J

P. Liu and J. Vondrak 18:5

Remaining issues. Since we do not know the exact value of OPT , we will need to guess
the value within a factor of ε without increasing the number of rounds. This will increase
memory usage on the central machine by a factor of 1

ε log k. To do this, we classify the inputs
into two classes: when the input contains more than

√
nk elements of value at least OPT

2k ,
and when there are less than

√
nk such elements. We call the former class of inputs “dense”

and the latter class “sparse”. For each input class, we design a 1/2-approximation in 2 rounds.
Given the input, we can run both in parallel and return the better of the two solutions: each
machine simply runs both algorithms at the same time, keeping the number of machines the
same. The full analysis is given in the Appendix, but we outline the algorithms below.

A 2-round algorithm for “dense” inputs

Let v be the maximum value of a single element of the random sample S in Algorithm 4.
When the input is dense, v is likely to be at least OPT

2k and at most OPT . A straightforward
analysis shows that τj := v(1 + ε)j is within a (1 + ε) multiplicative factor of OPT/2 for
some j ∈ {1, . . . , 1

ε log k}. Running Algorithm 4 with τj instead of OPT/2 produces an
approximation of value at least OPT

2(1+ε) >
OPT

2 (1 − ε). Thus if each machine runs 1
ε log k

copies of Algorithm 4, the best solution must have value at least OPT
2 (1− ε).

A 2-round algorithm for “sparse” inputs

Call an element e “large” if f(e) ≥ OPT
2k . The algorithm simply sends all the large elements

of the input onto one machine and then runs a sequential algorithm in the second round. To
get all the large elements onto one machine, we randomly partition the input set onto the m
machines, and then send the O(k) largest elements on each machine to the central machine.
On the central machine, we can run the same thresholding procedure as in the “dense” case
to find a threshold close to OPT/(2k). We then run a sequential version of Algorithm 4.

In both the algorithms, ε can be taken to Õ(
√
k/n) without asymptotically increasing

the memory, so we have a (1/2− o(1)-approximation.

2.2 A 1 −
(
1 − 1

t+1

)t
approximation in 2t rounds

Here we show how our algorithm extends to t thresholds. The number of MapReduce rounds
becomes 2t+2. This can be reduced to 2t using tricks similar to Section 2.1, but we omit this
here. The approximation factor with t thresholds is 1− (1− 1

t+1)t, which converges to 1−1/e.
We note that we need Θ(1/ε) rounds to obtain a (1 − 1/e − ε)-approximation, similar to
Barbosa et al. [5], but in contrast we do not need any duplication of the ground set. Barbosa
et al. does not specify the constant factor in Θ(1/ε) but it seems that our dependence is better;
a calculation yields that we need (1 + o(1))/ε rounds to get a (1− 1/e− ε)-approximation.

For now, we assume (as in Algorithm 4) that we know the exact value of OPT . We deal
with this assumption later. In a nutshell our algorithm works just like Algorithm 1 but with
multiple thresholds used in a sequence. We set the threshold values as follows:

α` =
(

1− 1
t+ 1

)`
OPT

k

for 1 ≤ ` ≤ t. (Note that for t = 1, we get α1 = OPT
2k as in Algorithm 1.) For each threshold,

we first select elements above the threshold from a random sample set, and then use this
partial solution to prune the remaining elements. Finally, the solution at this threshold is
completed on a central machine, and we proceed to the next threshold. The full description
of the algorithm is presented in Algorithm 5. The analysis is as follows.

SOSA 2019

18:6 Submodular Optimization in the MapReduce Model

I Lemma 3. The approximation ratio of Algorithm 5 is at least 1−
(

1− 1
t+1

)t
.

Proof. By induction, we prove the following statement: The value of the first `
tk elements

selected by the algorithm is at least (1− (1− 1
t+1)`)OPT . (If `tk is not an integer, we count

the marginal value of the d `kke-th selected element weighted by its respective fraction.)
Clearly this is true for ` = 0. Assume that the claim is true for `− 1. We consider two

cases.
Either all the elements among the first d `tke are selected above the α` threshold. This

means that since the value of the first `−1
t k elements was at least (1− (1− 1

t+1)`−1)OPT ,
and the marginal value of each additional element is at least α`, the total value of the first
`
kOPT (with fractional elements counted appropriately) is at least(

1−
(

1− 1
t+ 1

)`−1
)
OPT + 1

t
·
(

1− 1
t+ 1

)`
OPT =

(
1−

(
1− 1

t+ 1

)`)
OPT.

The other case is that not all these elements are selected above the α` threshold, which
means that if we denote by S` the set of the first b `tkc selected elements, then there are no
elements with marginal value more than α` with respect to S`. But then for the optimal
solution O, we get

OPT − f(S`) ≤ fS`
(O) ≤ kα` =

(
1− 1

t+ 1

)`
OPT

which means that f(S`) ≥ (1− (1− 1
t+1)`)OPT.

For ` = t, we obtain the statement of the lemma. J

The probabilistic analysis of the number of pruned elements that need to be sent to the
central machine is exactly the same as in Section 2.1. The requirement of knowing OPT
can be also handled in the same way — we can use an extra initial round to determine the
maximum-value element on the input, which gives us an estimate of the optimum within
a factor of k. Then we can try O(1

ε log k) different estimates of OPT to ensure that one
of them is within a relative error of 1 + ε of the correct value. Finally, we use an extra
final round to choose the best of the solutions that we found for different estimates of OPT .
Alternatively, we can use additional tricks as in Section 2.1 to eliminate these 2 extra rounds,
but we omit the details here.

3 Optimality of our choice of thresholds

Here we present a proof that there is no way to modify the thresholding algorithm and
achieve a better approximation factor with a different choice of thresholds.

I Theorem 4. The thresholding algorithm with t thresholds cannot achieve a factor better
than 1−

(
1− 1

t+1

)t
.

Proof. Assume that the optimum O consists of k elements of total value kv∗. Since we
are proving a hardness result, we can assume that the algorithm has this information and
we can even let it choose v∗; in the following, we denote this choice v∗ = α0. In addition,
the algorithm chooses thresholds α1 ≥ α2 ≥ . . . ≥ αt. It might be the case that α0 < α1,
but then we can ignore all the thresholds above α0 and design our hard instance based on
the thresholds below α0, which would reduce to a case with fewer thresholds. Thus we can
assume α0 ≥ α1 ≥ . . . ≥ αt.

P. Liu and J. Vondrak 18:7

Algorithm 5: A 2t-round 1−
(

t
t+1

)t
approximation, assuming OPT is known.

G← ∅
for ` = 1, . . . t do

round 2` − 1:
S, V1, . . . , Vm ← PartitionAndSample(V)
on each machine Mi (in parallel) do

G0 ← ThresholdGreedy (S,G, α`)
if |G0| < k then Ri ← ThresholdFilter (Vi, G0, α`)
else Ri ← ∅
send Ri to a central machine C

round 2` (only on C):
compute G0 from S as in first round
G← ThresholdGreedy (∪iRi, G0, α`)

return G

We design an adversarial instance as follows. In addition to the k elements of value v∗,
we have a set S of other elements where element i has value vi, such that

∑
i∈S vi ≤ kv∗.

The objective function is defined as follows: for O′ ⊆ O and S′ ⊆ S,

f(S′ ∪O′) =
∑
i∈S′

vi +
(

1−
∑
i∈S′ vi

kv∗

)
|O′|v∗.

It is easy to verify that this is a monotone submodular function. (It can be realized as a
coverage function, which we leave as an exercise.)

Now we specify more precisely the values of elements in S. We will have n` elements
of value α`, for each 1 ≤ ` ≤ t. The idea is that the algorithm will pick these n` elements
at threshold value α`, at which point the marginal value of the optimal elements drops
below α`, so we have to move on to the next threshold. A computation yields that we
should have n` = (α`−1

α`
− 1)k.2 The total value of these elements is

∑
i∈S vi =

∑t
`=1 n`α` =∑t

`=1(α` − α`−1)k = (α0 − αt)k ≤ v∗k as required above.
Then, assuming that the marginal value of the optimum after processing `− 1 thresholds

was α`−1k, the marginal value after processing the `-th threshold will be α`−1k−n`α` = α`k.
By induction, the algorithm selects exactly n` elements of value α`, unless the constraint of k
selected elements is reached. Let us denote by n′` the actual number of elements selected by
the algorithm at threshold level α`. We have n′` ≤ n`, and

∑t
`=1 n

′
` ≤ k, as discussed above.

The total value collected by the algorithm is
∑t
`=1 n

′
`α`. Since we have n′` ≤ n` =

(α`−1
α`
− 1)k, and α` ≤ α`−1, we can define inductively α′0 = α0 and α′` ≥ α` such that

n′` = (α
′
`−1
α′

`
− 1)k. Then the total value collected by the algorithm is

t∑
`=1

n′`α` ≤
t∑
`=1

n′`α
′
` =

t∑
`=1

(α′`−1 − α′`)k = (α′0 − α′t)k.

Let us denote β′` = α′`−1
α′

`
. We have

∑t
`=1(β′` − 1) = 1

k

∑t
`=1 n

′
` ≤ 1, hence

∑t
`=1 β

′
` ≤

2 We ignore the issue that n` might not be an integer. For large k, it is easy to see that the rounding
errors are negligible.

SOSA 2019

18:8 Submodular Optimization in the MapReduce Model

t + 1. Recall that the value achieved by the algorithm is
∑t
`=1 n

′
`α` ≤ (α′0 − α′t)k =

(1− 1/
∏t
`=1 β

′
`)v∗k. By the AMGM inequality,

∏t
`=1 β

′
` is maximized subject to

∑t
`=1 β

′
` ≤

t + 1 when all the β′` are equal, β′` = t+1
t . Then, the value achieved by the algorithm is

(1− 1/
∏t
`=1 β

′
`)v∗k = (1− (t

t+1)t)OPT . J

References

1 Sepehr Assadi and Sanjeev Khanna. Randomized Composable Coresets for Matching and
Vertex Cover. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
2017.

2 Sepehr Assadi and Sanjeev Khanna. Tight Bounds on the Round Complexity of the Distrib-
uted Maximum Coverage Problem. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10,
2018, pages 2412–2431, 2018. doi:10.1137/1.9781611975031.155.

3 Eric Balkanski, Adam Breuer, and Yaron Singer. Non-monotone Submodular Maximization
in Exponentially Fewer Iterations. CoRR, abs/1807.11462, 2018. arXiv:1807.11462.

4 Eric Balkanski, Aviad Rubinstein, and Yaron Singer. An Exponential Speedup in Paral-
lel Running Time for Submodular Maximization without Loss in Approximation. CoRR,
abs/1804.06355, 2018. arXiv:1804.06355.

5 Rafael da Ponte Barbosa, Alina Ene, Huy L. Nguyen, and Justin Ward. A New Frame-
work for Distributed Submodular Maximization. In Proceedings of the IEEE 57th Annual
Symposium on Foundations of Computer Science, 2016.

6 Satoru Fujishige. Submodular functions and optimization, volume 58. Elsevier, 2005.

7 Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A Model of Computation
for MapReduce. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 938–948, 2010. doi:10.1137/1.9781611973075.76.

8 Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani. Fast Greedy
Algorithms in MapReduce and Streaming. TOPC, 2(3):14:1–14:22, 2015. doi:10.1145/
2809814.

9 Andrew McGregor and Hoa T. Vu. Better Streaming Algorithms for the Maximum Cov-
erage Problem. In 20th International Conference on Database Theory, ICDT 2017, March
21-24, 2017, Venice, Italy, pages 22:1–22:18, 2017. doi:10.4230/LIPIcs.ICDT.2017.22.

10 Vahab S. Mirrokni and Morteza Zadimoghaddam. Randomized Composable Core-sets for
Distributed Submodular Maximization. In ACM Symposium on Theory of Computing
(STOC), pages 153–162, 2015.

11 George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of ap-
proximations for maximizing submodular set functions - I. Math. Program., 14(1):265–294,
1978. doi:10.1007/BF01588971.

12 Martin Raab and Angelika Steger. “Balls into Bins” — A Simple and Tight Analysis. In
Michael Luby, José D. P. Rolim, and Maria Serna, editors, Randomization and Approxim-
ation Techniques in Computer Science, pages 159–170, Berlin, Heidelberg, 1998. Springer
Berlin Heidelberg.

http://dx.doi.org/10.1137/1.9781611975031.155
http://arxiv.org/abs/1807.11462
http://arxiv.org/abs/1804.06355
http://dx.doi.org/10.1137/1.9781611973075.76
http://dx.doi.org/10.1145/2809814
http://dx.doi.org/10.1145/2809814
http://dx.doi.org/10.4230/LIPIcs.ICDT.2017.22
http://dx.doi.org/10.1007/BF01588971

P. Liu and J. Vondrak 18:9

Algorithm 6: A 1/2− ε approximation in 2 rounds for “dense” inputs.
round 1:
S, V1, . . . , Vm ← PartitionAndSample(V)
on each machine Mi (in parallel) do

v ← maxe on Mi
f({e})

for j = 1, . . . , 1
ε log k do

τj ← v(1 + ε)j/k
G0,j ← ThresholdGreedy (S, ∅, τj)
if |G0,j | < k then Ri,j ← ThresholdFilter (Vi, G0,j , τj)
else Ri,j ← ∅

send all Ri,j to a central machine C
round 2 (only on C):
compute v, τj , and G0,j from S as in first round
for j = 1, . . . , 1

ε log k do
Gj ← ThresholdGreedy (∪iRi,j , G0,j , τj)

G? = argmaxGj
f(Gj)

return G?

A Appendix

In Algorithm 6, we design a 2-round 1/2− ε approximation for “dense” inputs.

I Lemma 5. Algorithm 6 returns a 1/2− ε approximation.

Proof. Note that Algorithm 6 essentially runs Algorithm 4 with O(1
ε log k) guesses for OPT/2.

To get a 1/2− ε approximation, one of these guesses needs to be within a multiplicative factor
of 1+ε from OPT

2k . By the denseness assumption on the input, we know OPT
2k ≤ v ≤ OPT with

high probability. Suppose we try j = 1, . . . , ` for some number of thresholds `. For one of the
τj ’s to be within a multiplicative factor of 1+ ε from OPT

2k , we require v(1+ ε)`/k < OPT
2k < v.

The upper bound is already satisfied by the denseness assumption, and the lower bound is
achieved by taking ` for which ` ≥ log

(
OPT

2kv log(1+ε)

)
≥ 1

ε . J

I Lemma 6. The number of elements sent to the central machine is O
(

1
ε

√
nk log k

)
.

Proof. This follows from Lemma 2 and the fact that there are only log k
ε thresholds. J

Next, we design a 2-round 1/2− ε approximation for “sparse” inputs (Algorithm 7).

I Lemma 7. Algorithm 7 gives a 1/2− ε approximation.

Proof. There are two things to check: that one of the τj ’s is close to OPT/2, and that the
machine C is not missing any of the elements that it needs.

For the former, its clear that by similar reasoning to Lemma 5, one of the τj ’s will be
within a 1 + ε multiplicative factor to OPT/2.

For the latter, note that the “sparseness” assumption implies that with high probability,
the
√
nk large elements will be equally distributed among the machines, and each machine

will get k elements in expectation. Since we send O(k) elements to the central machine, C
will have all the large elements in V with high probability. This can be shown by a standard
balls-and-bins analysis [12]. J

SOSA 2019

18:10 Submodular Optimization in the MapReduce Model

Algorithm 7: A 1/2− ε approximation in 2 rounds for “sparse” inputs.
round 1:
partition V uniformly at random to the m machines
on each machine Mi do

send its O(k) largest elements to a central machine C
round 2 (only on C):
S ← all elements sent to C
v ← maxe∈S f({e})
for j = 1, . . . , 1

ε log k do
τj ← v(1 + ε)j/k
Gj ← ThresholdGreedy (S, ∅, τj)

G? = argmaxGj
f(Gj)

return G?

Finally, we note that the total memory use on C is O(
√
nk) since each machine sends

O(k) elements and there are O(
√

n
k) machines in total.

I Theorem 8. By running Algorithms 6 and 7 in parallel, we have a 2-round 1/2 − ε

approximation.

B Auxiliary Results

I Theorem 9 (Chernoff bound). Let X1, . . . , Xn be independent random variables such that
Xi ∈ [0, 1] with probability 1. Define X =

∑n
i=1Xi and let µ = EX. Then, for any ε > 0,

we have

Pr[X ≥ (1 + ε)µ] ≤ exp
(
−min{ε, ε2}µ

3

)
.

I Theorem 10 (Azuma’s inequality). Suppose X1, . . . , Xn is a submartingale and |Xi −
Xi+1| ≤ ci. Then, we have

Pr[Xn −X0 ≤ −t] ≤ exp
(
−t2

2
∑
i c

2
i

)
.

Compressed Sensing with Adversarial Sparse
Noise via L1 Regression
Sushrut Karmalkar
Department of Computer Science, The University of Texas at Austin, 2317 Speedway, Austin,
TX 78712, USA
sushrutk@cs.utexas.edu

Eric Price1

Department of Computer Science, The University of Texas at Austin, 2317 Speedway, Austin,
TX 78712, USA
ecprice@cs.utexas.edu

Abstract
We present a simple and effective algorithm for the problem of sparse robust linear regression. In
this problem, one would like to estimate a sparse vector w∗ ∈ Rn from linear measurements cor-
rupted by sparse noise that can arbitrarily change an adversarially chosen η fraction of measured
responses y, as well as introduce bounded norm noise to the responses.

For Gaussian measurements, we show that a simple algorithm based on L1 regression can
successfully estimate w∗ for any η < η0 ≈ 0.239, and that this threshold is tight for the algorithm.
The number of measurements required by the algorithm is O(k log n

k) for k-sparse estimation,
which is within constant factors of the number needed without any sparse noise.

Of the three properties we show – the ability to estimate sparse, as well as dense, w∗; the
tolerance of a large constant fraction of outliers; and tolerance of adversarial rather than distri-
butional (e.g., Gaussian) dense noise – to the best of our knowledge, no previous polynomial time
algorithm was known to achieve more than two.

2012 ACM Subject Classification Theory of computation → Mathematical optimization

Keywords and phrases Robust Regression, Compressed Sensing

Digital Object Identifier 10.4230/OASIcs.SOSA.2019.19

Acknowledgements The authors would like to thank the anonymous reviewers and Aravind
Gollakota for helpful suggestions and comments about the writeup.

1 Introduction

Linear regression is the problem of estimating a signal vector from noisy linear measurements.
It is a classic problem with applications in almost every field of science. In recent decades, it
has also become popular to impose a sparsity constraint on the signal vector. This is known
as “sparse recovery” or “compressed sensing”, and (when the assumption holds) can lead to
significant savings in the number of measurements required for accurate estimation.

A well-known problem with the most standard approaches to linear regression and
compressed sensing is that they are not robust to outliers in the data. If even a single data
point (xi, yi) is perturbed arbitrarily, the estimates given by the algorithms can also be
perturbed arbitrarily far. Addressing this for linear regression is one of the primary focuses

1 This work was done in part while the author was visiting the Simons Institute for the Theory of
Computing.

© Sushrut Karmalkar and Eric Price;
licensed under Creative Commons License CC-BY

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy Fineman and Michael Mitzenmacher; Article No. 19; pp. 19:1–19:19

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sushrutk@cs.utexas.edu
mailto:ecprice@cs.utexas.edu
https://doi.org/10.4230/OASIcs.SOSA.2019.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

19:2 Compressed Sensing with Adversarial Sparse Noise via L1 Regression

of the field of robust statistics [9]. Unfortunately, while the problem is clear, the solution is
not – no fully satisfactory robust algorithms exist, particularly for high-dimensional data.

In this paper, we consider the model of robustness in which only the responses yi, not
the features xi, are corrupted by outliers. In this model, if the features xi are i.i.d. normal,
we show that the classic algorithm of L1 minimization performs well and has fairly high
robustness, for both dense and sparse linear regression. In particular, we consider the
observation model

y = Xw∗ + ζ + d (1)

where X ∈ Rm×n is the observation matrix, w∗ ∈ Rn is the k-sparse signal, ζ ∈ Rm is an
ηm-sparse noise vector, and d ∈ Rm is a (possibly dense) noise vector. We will focus on
the case of X having i.i.d. N(0, 1) entries, but the core lemmas and techniques can apply
somewhat more generally.

Without adversarial corruptions – i.e., if η = 0 so ζ = 0 – this would be the compressed
sensing problem. The most standard solution for compressed sensing [4] is L1 minimization:
if m > Θ(k log n

k) then with high probability

ŵ := arg min
‖y−Xw‖2≤σ

‖w‖1

for any σ > ‖d‖2 will satisfy ‖ŵ − w∗‖2 ≤ O(σ/
√
m). Unfortunately, this algorithm is not

robust to sparse noise of large magnitude: a single faulty measurement yi can make the
(‖y −Xw‖2 ≤ σ) ball infeasible.

To make the algorithm robust to sparse measurement noise, a natural approach is to
replace the (non-robust) `2 norm with the (robust) `1 norm, as well as to swap the objective
and the constraint. This ensures that the constrained parameter does not involve outliers.
In this paper we show that this approach works, i.e., we show that

ŵ := arg min
‖w‖1≤λ

‖y −Xw‖1 (2)

is a robust estimator for w∗. In the following theorem, we show that (2) is robust to any
fraction of corruptions η less than η0 := 2

(
1− Φ(

√
2 log 2)

)
≈ 0.239, where Φ : R→ [0, 1] is

the standard normal CDF. If λ = ‖w∗‖1, the reconstruction error is O(‖d‖1/m); for larger λ,
it additionally grows with λ− ‖w∗‖1:

I Theorem 1 (Sparse Case). Let η < η0 − ε where ε > 0, and let X ∈ Rm×n have i.i.d.
N(0, 1) entries with m > C α2

ε2 k log(en
α2εk) for some large enough constant C and parameter

α ≥ 2
ε . Then with probability 1 − e−Ω(ε2m) the matrix X will have the following property:

for any y = Xw∗ + d+ ζ with ‖w∗‖0 ≤ k and ‖ζ‖0 ≤ ηm,

ŵ := arg min
‖w‖1≤λ

‖y −Xw‖1

for λ ≥ ‖w∗‖1 satisfies

‖w∗ − ŵ‖2 ≤ O
(

1
ε− 1

α

(
1
m
‖d‖1

)
+ λ− ‖w∗‖1

α
√
k

)
.

In the case where w∗ is not sparse, the reconstruction error is shown to be O(‖d‖1/m) in
O(n) samples using essentially the same proof.

S. Karmalkar and E. Price 19:3

I Theorem 2 (Dense Case). Let η < η0 − ε where ε > 0, and let X ∈ Rm×n have i.i.d.
N(0, 1) entries with m > C n

ε2 for some large enough constant C. Then with probability
1− e−Ω(ε2m) the matrix X will have the following property: for any y = Xw∗ + d+ ζ with
‖ζ‖0 ≤ ηm,

ŵ := arg min
w

‖y −Xw‖1

satisfies

‖ŵ − w∗‖2 ≤ O
(
‖d‖1
εm

)
Robustness threshold η0.

We show in Section 6 that the threshold η0 in Theorem 1 is tight for the algorithm: for
any η > η0, there exist problem instances where the algorithm given by (2) is not robust.
It remains an open question whether any polynomial time algorithm can be robust for all
η < 0.5.

1.1 Proof outline
Our main result follows from a simple analysis of the fact that for well-behaved matrices X,
`1 regression recovers from adversarial corruptions. In this section we consider the illustrative
case where there is no dense noise, in the limit of infinitely many samples. Let (Xg, yg) and
(Xb, yb) denote the submatrices of (X, y) corresponding to the uncorrupted and corrupted
samples respectively and let ŵ denote the solution of `1 regression. By definition ŵ satisfies

‖Xŵ − y‖1 ≤ ‖Xw∗ − y‖1.

Partitioning these 1-norms into terms corresponding to good and bad samples, we get

0 ≥ ‖Xŵ − y‖1 − ‖Xw∗ − y‖1
= (‖Xgŵ − yg‖1 − ‖Xgw

∗ − yg‖1) + (‖Xbŵ − yb‖1 − ‖Xbw
∗ − yb‖1)

Observe that since we have no dense noise, Xgw
∗ = yg. An application of the triangle

inequality then results in

0 ≥ ‖Xg(ŵ − w∗)‖1 + (‖Xbŵ − yb‖1 − ‖Xbw
∗ − yb‖1)

≥ ‖Xg(ŵ − w∗)‖1 − ‖Xb(ŵ − w∗)‖1

i.e.,

0 ≥ ‖Xg(ŵ − w∗)‖1 − ‖Xb(ŵ − w∗)‖1 (3)

We now show that as long as η < η0 − ε for constant ε > 0, the right hand side above is
≥ C(ε)‖ŵ − w∗‖2 for some C(ε) > 0 whenever X is a Gaussian matrix. This will force
ŵ = w∗.

Equation (3) is minimized when the adversary corrupts the entries with the largest value
for |〈xi, w∗ − ŵ〉|. For any vector v, observe that in the limit of infinitely many samples, the
histogram of the entries of Xv is the same as that of N(0, ‖v‖22). Let t be chosen such that

1√
2π

∫∞
t
e−

x2
2 dx = η

2 . This makes (3) proportional to

‖w∗ − ŵ‖2
(∫ t

0
xe−

x2
2 dx−

∫ ∞
t

xe−
x2
2 dx

)
. (4)

SOSA 2019

19:4 Compressed Sensing with Adversarial Sparse Noise via L1 Regression

At η = η0 the `1 norms of the largest η and 1 − η fraction of samples drawn from a
Gaussian distribution are equal, and hence (4) is 0. If η < η0−ε for constant ε, this difference
is proportional to the standard deviation, i.e., ‖ŵ − w∗‖2. Our proof proceeds by showing
that a minor variant of this argument works even in the presence of dense noise, and in
O(k log n

k) samples the empirical `1 norms involved in the proof are close to the `1 norms of
the Gaussian distribution.

1.2 Related Work
Classical robust statistics

The classical robust statistics literature on regression (see [9]) has developed a number of
estimators with breakdown point 0.5 (i.e., that are robust for any η < 0.5). However, all such
known estimators need time exponential in the data dimension n; the results also typically
do not deal with sparsity in w∗ and have distributional assumptions on the dense noise d.
On the other hand, the results in this literature usually also protect against corruption in
Xi, not just yi; the L1 estimator is not robust to such corruptions.

Recent progress in robust statistics

There has been a lot of progress in the last year in the field of robust statistics, leading to
polynomial time algorithms with positive breakdown points that are robust to corruptions in
both X and y [5, 6, 13, 10]. However, these results all focus on the performance for small η
(often required to be less than a non-explicit constant), do not consider sparse w∗, and have
additional restrictions on the dense noise (typically that it be i.i.d. Gaussian, although [10] is
somewhat more general). In Section 7 we empirically compare L1 regression to the algorithm
of [5] for the dimension 1 case, and find that the algorithm seems to have the same breakdown
point η0 as L1 minimization under corruptions to y.

L1 minimization in statistics

Known as L1 minimization or Least Absolute Deviation, the idea of minimizing ‖y −Xw‖1
actually predates minimizing ‖y−Xw‖2, originating in the 18th century with Boscovich and
Laplace [3]. It is widely known to be more robust to outliers in the yi. However the extent
to which this holds depends on the distribution of X. Surprisingly, we have not been able to
find a rigorous analysis of L1 minimization for Gaussian X that simultaneously achieves these
three features of our analysis: (1) an estimate of the breakdown point η0 under corruptions
to the yi; (2) an extension of the algorithm to sparse w∗; or (3) a tolerance for adversarial d,
rather than with a distributional assumption.

L1 minimization is typically dismissed in the statistics literature as being “inefficient” in
the sense that, if the noise d is i.i.d. Gaussian, L1 minimization requires about 56% more
samples than least squares [18] to achieve the same accuracy. However from the typical
perspective of theoretical computer science, in which constant factors are less important
than the avoidance of distributional assumptions, we find that L1 minimization is a very
competitive algorithm.

L1 minimization in compressed sensing

Our error bound of ‖d‖1/m is always better than the traditional ‖d‖2/
√
m bound for

compressed sensing. The two bounds match up to constant factors if the noise has a
consistent magnitude, but our bound is significantly better if the noise is heavy tailed. The
fact that our bound can drop the top η fraction of noise elements makes the distinction even
more pronounced.

S. Karmalkar and E. Price 19:5

Robust regression in the presence of label corruptions

The past few years have featured a number of polynomial time algorithms for the problem
considered in this paper, of sparse regression in the presence of sparse corruptions to the labels.
As is typical in compressed sensing, there are approaches based on convex programming and
on iterative methods.

One natural algorithm for the problem is to try to learn both the (sparse) signal and
(sparse) noise, treating this as a single compressed sensing problem with the bigger “meas-
urement matrix” of X atop a (scaled) identity matrix. With scaling 1/λ, the standard
L1 minimization approach to compressed sensing is equivalent to the following algorithm:
minimize ‖w‖1 + λ‖ζ‖1 subject to ‖Xw + ζ − y‖2 ≤ ε. If the adjoined measurement matrix
satisfies an RIP-like property, then w (and ζ) will both be recovered.

Such an approach was first introduced in [11] with λ = 1, giving an algorithm that could
tolerate up to about η ≈ 1/(logn) fraction sparse corruptions. This was then improved by
[12] by setting λ = 1√

log(en/m)
, improving the breakdown point η to an unspecified constant;

naively following the proof would give a value below 1%. We suspect that this approach –
which recovers ζ as well as w – does not have a breakdown point close to η0.

The second class of algorithms for the problem are based off iterative hard thresholding,
where in each iteration one ignores the samples that make a large error with the `2 minimizer.
In [2] it was shown that without any dense noise, this yields exact recovery with a breakdown
point of η < 0.015. [1] provided an algorithm that can handle dense Gaussian noise, but
the perturbations are required to be oblivious to the matrix X and the breakdown point is
0.0001.

Another line of work, including [14, 8, 15], considers non-adversarial corruption. For
example, if the corruptions are in random locations, and the signs of the signal vector are
random, then one can tolerate corruption of nearly 100% of the yi [14]. Finally, [16] considers
the (essentially equivalent) LASSO version of our proposed algorithm (2), and shows that it
is robust to i.i.d. heavy-tailed median-zero noise.

Thus, for sparse regression with both adversarial corruption of the labels and dense noise,
no previous polynomial-time algorithm had a breakdown point above 0.015. We improve
that to 0.239 with a simple algorithm.

LP Decoding and Privacy

Very closely related to our work is that of [7], which gets very similar results to our dense-case
results (Theorem 2) in the service of a privacy application. This work observes the same
threshold η0 as we do for the same L1-regression algorithm, but with a somewhat weaker
error guarantee (requiring a bound on ‖d‖∞ not ‖d‖1). [7] also proves that if X is i.i.d. ±1
rather than Gaussian, the breakdown point would be positive but strictly below η0. The
subsequent work [17] also observes that `p regression for p < 1 would yield greater breakdown
points than η0 for Gaussian X, similar to our Section 5.

2 Definitions and notation

We start by defining a notion of robustness that we will use later. A matrix X is said to
be (η, q)-robust if for any submatrix consisting of an η fraction of the rows, the `q norm of
the submatrix times a unit vector is upper bounded by a constant times m1/q. Also, for any
submatrix consisting of a 1− η fraction of the rows, the `q norm of the submatrix times a
unit vector is lower bounded by a constant times m1/q.

SOSA 2019

19:6 Compressed Sensing with Adversarial Sparse Noise via L1 Regression

I Definition 3. A matrix X ∈ Rm×n is said to be (η, q)-robust with respect to U ⊂ Rn if
there exist constants Smax

U,η and Smin
U,η satisfying the following conditions for all v ∈ U .

max
S⊂[m]
|S|≤ηm

‖(Xv)S‖qq ≤ m · Smax
U,η · ‖v‖2

min
S⊂[m]

|S|≥(1−η)m

‖(Xv)S‖qq ≥ m · Smin
U,η · ‖v‖2.

We now define some notation. S∗k,∗ and S∗η will be used to refer to the robustness constants
with respect to k-sparse vectors and Rn respectively. vT will denote the vector v with all
entries whose indices are outside T set to 0.

We use Φ to denote the CDF of N(0, 1). B(γ) and G(γ) will be used to refer to the `1
norm of the largest (in absolute value) γ fraction and the smallest 1− γ fraction with respect
to the Gaussian distribution respectively, i.e.,

B(γ) = 2√
2π

∫ ∞
Φ−1(1− γ2)

ze−
z2
2 dz =

√
2
π

(
e−(erf−1(1−γ))2

)
and

G(γ) = 2√
2π

∫ Φ−1(1− γ2)

0
ze−

z2
2 dz =

√
2
π

(
1− e−(erf−1(1−γ))2

)
.

Define η0 to be the largest η such that G(η) ≥ B(η). Using the expressions above, one
can solve for η to get η0 = 2(1− Φ(

√
2 log 2)) ≈ 0.239.

Also, we will use f(x) . g(x) to mean there are constants X and C such that ∀x >
X.|f(x)| ≤ C|g(x)|.

3 Robustness of Gaussian matrices

In the following lemma, we show that Gaussian matrices are (η, 1)-robust with constants in
terms of B(·), G(·) defined earlier.

I Lemma 4. Let X be an m × n Gaussian matrix, where m ≥ C
ε2 ·

(
k log en

kε + log 1
δ

)
for

a large enough constant C and ε < 1. Then with probability 1 − δ, X is (η, 1) robust with
constants

Smin
k,η = G(η − ε)− ε

Smax
k,η = B(η + ε) + ε.

Proof. Rearranging terms in the definition we see that we would like to show

1
m

max
S⊂[m]
|S|≤ηm

∥∥∥∥(X · v

‖v‖

)
S

∥∥∥∥
1
≤ B(η + ε) + ε

1
m

min
S⊂[m]

|S|≥(1−η)m

∥∥∥∥(X · v

‖v‖

)
S

∥∥∥∥
1
≥ G(η − ε)− ε.

Without loss of generality it is sufficient to prove the above for all (k-sparse) unit vectors.
Let xi denote the ith row of X and let Sv = {〈xi, v〉 | i ∈ m}. Note that Sv look like samples

S. Karmalkar and E. Price 19:7

from N(0, 1) for any fixed unit vector v. Before we continue, we define some notation. Let
Ĝv(η) denote the smallest possible `1 norm of a subset of Sv of size (1− η)m and let B̂v(η)
be defined similarly to denote the largest possible `1 norm of any subset of size ηm. What
we want to prove is

B̂v(η) < B(η + ε) + ε

and

Ĝv(η) > G(η − ε)− ε

for all k-sparse unit vectors v. To do this, we will first prove that the relationship holds with
high probability for all k-sparse unit vectors in a fine enough net on the sphere, and then say
that the deviation cannot be very large for points outside the net.

We will need the following fact proven in Appendix A. Here Ĝ(η) refers to the `1 norm of
the smallest (1− η) fraction of S with respect to the uniform distribution and B̂(η) refers to
the `1 norm of the largest η fraction of S with respect to the uniform distribution.

I Fact 5. Let S = {z1, . . . , zm} be i.i.d. samples from N(0, 1).Then with probability 1 −
O
(
e
mε2

2

)
,

Ĝ(η) > G(η − ε)− ε

and

B̂(η) < B(η + ε) + ε

For now, let v be a fixed vector and let τ > 0 be a parameter. Define the following bad
events

Gv =
{
Ĝv(η) < G(η − ε)− ε

}
Bv =

{
B̂v(1− η) > B(1− η + ε) + ε

}
N =

{
∀i ∈ [m], ‖xi‖2 >

√
n+ τ

}
.

These events correspond to either the `1 norms of the smallest 1− η fraction or the largest η
fraction not being close enough to the expectation, or the 2-norm of the Gaussian vectors not
being close enough to texpectation. Applications of Fact 5 for η and 1− η, and concentration
for χ2 random variables then implies

Pr (Gv ∨ Bv) . e
mε2

2

and

Pr (N) . me−
nτ2

8 .

For a unit `2 ball in a k-dimensional subspace of Rn, there exists a γ-net of size (1+ 2
γ)k < (3

γ)k.
Let C be the union of these nets over all subspaces corresponding to k-sparse vectors. A
union bound now gives us

Pr (∃v ∈ C : Gv ∨ Bv) .
(
n

k

)(
3
γ

)k (
e
mε2

2

)

SOSA 2019

19:8 Compressed Sensing with Adversarial Sparse Noise via L1 Regression

We will now move from the net to the union of all k-sparse unit balls. Let u ∈ Rn be a
k-sparse unit vector. Then for any t, there exist v0, . . . , vt ∈ C having the same support as u
and a unit vector d also having the same support as u, such that

u =
t∑
i=0

γivi + γt+1d.

This follows from choosing v0 to be the closest point in the net to u, choosing v1 to be the
closest point in the net to (u− v0)/γ and so on.

Let U ⊂ [m] be the set of indices of X corresponding to the smallest (in absolute value)
(1− η) fraction of elements of Su. Conditioning on the bad events not happening (i.e., on
the event (∃v ∈ C.Gv ∨ Bv) ∨N) we see

Ĝu(η) = 1
m

∑
i∈U

∣∣∣∣∣∣
〈
xi,

t∑
j=0

γjvj + γt+1d

〉∣∣∣∣∣∣
≥ 1
m

∑
i∈U
|〈xi, v0〉| −

1
m

∑
i∈U

∣∣∣∣∣∣
〈
xi,

t∑
j=1

γjvj + γt+1d

〉∣∣∣∣∣∣
≥ 1
m

∑
i∈U
|〈xi, v0〉| −

t∑
j=1

(
γj

m

∑
i∈U
|〈xi, vj〉|

)
− γt+1

m

∑
i∈U
|〈xi, d〉|

≥ Ĝv0(η)−
t∑

j=1
B̂vj (1− η)γj − γt+1

m

∑
i∈U
‖xi‖‖d‖

≥ (G(η − ε)− ε)− (B(1− η + ε) + ε)
t∑

j=1
γj − γt+1√n+ τ

≥ G(η − ε)− ε− 2γ(B(1− η + ε) + ε)− γt+1√n+ τ

≥ G(η − ε)− ε− 4γ − γt+1√n+ τ

≥ G(η − ε)− 2ε

The first few inequalities are a consequence of the definitions of Gv and Bv and the third
inequality follows from an application of Cauchy-Schwartz. The second to last inequality
follows by noting that ε < 1 and B(1− η + ε) < 1, and the final inequality follows by setting
t > log n+τ

ε and γ = ε
10 . This means

Pr
(
There exists a k-sparse unit v such that G(η − ε)− Ĝv(η) > 2ε

)
.

(
n

k

)(
30
ε

)k (
e−

mε2
2

)
+me−

nτ2
8

. ek log en
k +k log(30

ε)−mε2
2 +me−

nτ2
8

Setting τ = 10mn log 1
δ and m & 1

ε2 ·
(
k log en

kε + log 1
δ

)
makes the bound on the probability

above . δ. The result now follows by rescaling ε and δ appropriately. J

The previous lemma showed that the Gaussian matrix is robust with respect to truly
k-sparse vectors. However, we will need to show that it is robust with respect to (w∗ − ŵ),
i.e., the difference between the true vector and the solution of `1 regression. To do this,
we will use a standard shelling argument to transfer upper and lower bounds for the

S. Karmalkar and E. Price 19:9

restricted eigenvalues over (1 + α2)k-sparse vectors to the restricted eigenvalues over the
cone VS = {v ∈ Rn | ∆ + ‖vS‖1 ≥ ‖vS‖1} for some S satisfying |S| = k, which is the cone in
which this difference lies. This is the content of the following lemma from Appendix B.

I Lemma 6 (Shelling Argument). Let A ∈ Rm×n satisfy

L‖v‖2 ≤ ‖Av‖1 ≤ U‖v‖2

for all (1 + α2)k-sparse vectors v. If S ⊂ [m] is fixed and of cardinality k, then A satisfies

L

1 + α

(
α− U

L

)
‖v‖2 −

2U∆
α
√
k
≤ ‖Av‖1 ≤ U

(
1 + 1

α

)
‖v‖2 + U∆

α
√
k

for all

v ∈ VS = {v ∈ Rn | ∆ + ‖vS‖1 ≥ ‖vS‖1}.

We can now prove the main lemma which will be used to say that Gaussian matrices are
robust with respect to the vector w∗ − ŵ.

I Lemma 7 (Main Lemma). Let η < η0, ε ∈ (0, 1), α > 1 and ∆ > 0 be free parameters, and
let S ⊂ [n] be a fixed subset of size k. Let X ∈ Rm×n be a matrix with entries drawn from
N(0, 1) and suppose m > C

ε2 ·
(
kα2 log en

kα2ε + log 1
δ

)
for some large enough constant C. Then

with probability 1− δ, for all

v ∈ VS = {v ∈ Rn | ∆ + ‖vS‖1 ≥ ‖vS‖1}

and for all T ⊂ [m] such that |T | ≤ ηm,

‖(Xv)T ‖1 − ‖(Xv)T ‖1 & m‖v‖2
(

(G(η − ε)−B(η + ε)− 2ε)− 1
α

)
− m∆
α
√
k
.

Proof. The matrix X is both (η, 1) and (1− η, 1) robust for all k(1 +α2)-sparse vectors. An
application of Lemma 3.3 for any submatrix A of X consisting of an η fraction of it’s rows
gives us

‖Av‖1 ≤ mSmax
k(1+α2),η

(
1 + 1

α

)
‖v‖2 +

mSmax
k(1+α2),η∆
α
√
k

.

This proves

max
S⊂[m]
|S|≤ηm

‖(Xv)S‖1 ≤ mSmax
k(1+α2),η

(
1 + 1

α

)
‖v‖2 +

mSmax
k(1+α2),η∆
α
√
k

A similar application proves that for any matrix A consisting of a (1− η) fraction of the rows
of X, we get

‖Av‖1 ≥
mSmin

k(1+α2),η

1 + α

(
α−

Smax
k(1+α2),1−η

Smin
k(1+α2),η

)
‖v‖2 −

2mSmax
k(1+α2),η∆
α
√
k

i.e.,

min
S⊂[m]

|S|≥(1−η)m

‖(Xv)S‖1 ≥
mSmin

k(1+α2),η

1 + α

(
α−

Smax
k(1+α2),1−η

Smin
k(1+α2),η

)
‖v‖2 −

2mSmax
k(1+α2),η∆
α
√
k

SOSA 2019

19:10 Compressed Sensing with Adversarial Sparse Noise via L1 Regression

To complete the proof, we now estimate the parameters involved. If η < η0 and ε < 1 and
the underlying matrix is an m× n Gaussian matrix where m ≥ C

ε2 ·
(
kα2 log en

kα2ε + log 1
δ

)
,

Lemma 4 yields

Smax
k(1+α2),1−η < B(1− η + ε) + ε < 1 + 1 = 2.

Similar applications of Lemma 4 give us that Smax
k(1+α2),η and

Smax
k(1+α2),1−η
Smin
k(1+α2),η

are also upper
bounded by constants. This results in the following bounds

max
S⊂[m]
|S|≤ηm

‖(Xv)S‖1 ≤ mSmax
k(1+α2),η‖v‖2

(
1 + 1

α

)
+ 2m∆√

kα
,

min
S⊂[m]

|S|≥(1−η)m

‖(Xv)S‖1 ≥ mSmin
k(1+α2),η‖v‖2

(
α− C
α+ 1

)
− 4m∆√

kα
.

By taking the difference of the above inequalities and simplyfing, we get the following for
any T ⊂ [m] such that |T | ≤ ηm

‖(Xv)T ‖1 − ‖(Xv)T ‖1

≥ m‖v‖2
(
Smin
k(1+α2),η

(
α− C
α+ 1

)
− Smax

k(1+α2),η

(
1 + 1

α

))
− 6m∆
α
√
k

≥ m‖v‖2
(
Smin
k(1+α2),η − S

max
k(1+α2),η −

(
Smin
k(1+α2),η + Smax

k(1+α2),η

) C + 1
α

)
− 6m∆
α
√
k

≥ m‖v‖2
(

(G(η − ε)−B(η + ε)− 2ε)− 4(C + 1)
α

)
− 6m∆
α
√
k

≥ m‖v‖2
(

(G(η − ε)−B(η + ε)− 2ε)− 1
α

)
− m∆
α
√
k

J

4 Proof of main theorem

I Theorem 1 (Sparse Case). Let η < η0 − ε where ε > 0, and let X ∈ Rm×n have i.i.d.
N(0, 1) entries with m > C α2

ε2 k log(en
α2εk) for some large enough constant C and parameter

α ≥ 2
ε . Then with probability 1 − e−Ω(ε2m) the matrix X will have the following property:

for any y = Xw∗ + d+ ζ with ‖w∗‖0 ≤ k and ‖ζ‖0 ≤ ηm,

ŵ := arg min
‖w‖1≤λ

‖y −Xw‖1

for λ ≥ ‖w∗‖1 satisfies

‖w∗ − ŵ‖2 ≤ O
(

1
ε− 1

α

(
1
m
‖d‖1

)
+ λ− ‖w∗‖1

α
√
k

)
.

Proof. Let Xg and Xb denote X restricted to the rows that are not corrupted, and to the
rows that are corrupted respectively. Let yg and yb denote the corresponding y terms. By
the definition of ŵ and noting that w∗ is feasible for the program,

0 ≥ ‖Xŵ − y‖1 − ‖Xw∗ − y‖1
= (‖Xgŵ − yg‖1 − ‖Xgw

∗ − yg‖1) + (‖Xbŵ − yb‖1 − ‖Xbw
∗ − yb‖1)

≥ ‖Xg(ŵ − w∗)‖1 − 2‖Xgw
∗ − yg‖1 + (‖Xbŵ − yb‖1 − ‖Xbw

∗ − yb‖1)
≥ ‖Xg(ŵ − w∗)‖1 − 2‖Xgw

∗ − yg‖1 − ‖Xb(ŵ − w∗)‖1

S. Karmalkar and E. Price 19:11

Where the second equality follows from ‖Xv − y‖1 = ‖Xgv − yg‖1 + ‖Xbv − yb‖1, and the
inequalities are just applications of the triangle inequality. Rearranging terms now gives us

2‖Xgw
∗ − yg‖1 ≥ ‖Xg(ŵ − w∗)‖1 − ‖Xb(ŵ − w∗)‖1 (5)

Let ŵ = w∗ + h and let S be the support of w∗. Then

λ ≥ ‖ŵ‖1
= ‖h+ w∗‖1
≥ ‖w∗‖1 + ‖hS‖1 − ‖hS‖1

=⇒ (λ− ‖w∗‖1) + ‖hS‖1 ≥ ‖hS‖1

Setting ∆ = (λ−‖w∗‖1) and T to be the set of corrupted indices in Lemma 7 implies that if
m & 1

ε2 ·
(
kα2 log en

kα2ε + log 1
δ

)
, then with probability 1− δ

‖Xg(ŵ − w∗)‖1 − ‖Xb(ŵ − w∗)‖1
= ‖(Xh)T ‖1 − ‖(Xh)T ‖1

& m‖h‖2
(
G
(
η − ε

2

)
−B

(
η + ε

2

)
− ε− 1

α

)
− m(λ− ‖w∗‖1)

α
√
k

Combining this with (5), as long as the coefficient of ‖h‖2 is positive, we get

‖ŵ − w∗‖2 .
1(

G
(
η − ε

2
)
−B

(
η + ε

2
)
− ε− 1

α

) (‖d‖1
m

+ (λ− ‖w∗‖1)
α
√
k

)
(6)

It turns out(
G
(
η − ε

2

)
−B

(
η + ε

2

)
− ε
)
& ε.

This follows by a simple lower bound via the Taylor expansion of 1 − 2e−(erf−1((1−η0)+x))

around x = 0.

G
(
η − ε

2

)
−B

(
η + ε

2

)
− ε ≥

√
2
π

(
1− 2e−(erf−1(1−η+ ε

2))2
)
− ε

=
√

2
π

(
1− 2e−(erf−1(1−η0+(ε+ ε

2)))2
)
− ε

≥ 3
√

2 log 2 · ε− ε
& ε

i.e.,

G
(
η − ε

2

)
−B

(
η + ε

2

)
− ε− 1

α
& ε− 1

α
(7)

Substituting our terms back into (6) gives us,

O

(
1

ε− 1
α

· ‖d‖1
m

+ λ− ‖w∗‖1
α
√
k

)
≥ ‖ŵ − w∗‖2. J

We also note that in the case that w∗ is not sparse, one can directly use Lemma 4 once we
get to (5) and continue the proof from there. This results in the following theorem.

SOSA 2019

19:12 Compressed Sensing with Adversarial Sparse Noise via L1 Regression

I Theorem 2 (Dense Case). Let η < η0 − ε where ε > 0, and let X ∈ Rm×n have i.i.d.
N(0, 1) entries with m > C n

ε2 for some large enough constant C. Then with probability
1− e−Ω(ε2m) the matrix X will have the following property: for any y = Xw∗ + d+ ζ with
‖ζ‖0 ≤ ηm,

ŵ := arg min
w

‖y −Xw‖1

satisfies

‖ŵ − w∗‖2 ≤ O
(
‖d‖1
εm

)
Note that if there is no dense noise (i.e., d = 0), the above theorem immediately gives exact
recovery when the fraction of corruptions is η < η0 − ε.

5 `p regression for 0 < p < 1

Define `p regression to be the problem of recovering a signal by minimizing the pth power of
the `p norm, i.e.,

ŵ = arg min
v

m∑
i=1
|〈xi, v〉 − yi|p.

Observe that 0 < p < 1 implies(∑
i

ai

)p
≤
∑
i

api .

This allows a proof similar to that of Theorem 1 to go through. We make the following claim.

I Claim 8. Let X be an (η, p)-robust matrix where p ∈ (0, 1]. Then for any η < α the
solution of `p regression, ŵ satisfies

1
(Smin
η − Smax

η) ·
‖d‖p
m

& ‖ŵ − w∗‖p2,

where ‖d‖p =
∑m
i=1 |di|p and α is the threshold below which (Smin

α −Smax
α) > 0 begins to hold.

If X is a Gaussian matrix, then as p → 0, in the limit of a large number of samples, the
value of η at which the condition

(Smin
η − Smax

η) > 0

begins to hold goes from η0 to 0.5. We plot the breakdown point against the norm in Figure
1. Unfortunately, `p regression in general seems to be NP-hard as well as approximation
resistant.

6 Lower bounds

In this section, we show that for the case of adversarial dense noise our results are tight for
the `1 regression algorithm. Recall our notation: X is the matrix of xi, y = Xw∗ + ζ + d

where ‖ζ‖0 ≤ ηm and d is the dense noise and vT denotes the vector v with all entries with
indices outside T set to 0.

S. Karmalkar and E. Price 19:13

Figure 1 As the norm goes to 0, in the limit of having infinite samples, `p regression can tolerate
almost half the samples being corrupted.

I Theorem 9. Let m & n
ε2 and 0 < ε < 0.2,

1. If η > η0 + ε and d = 0 (i.e., there is no dense noise), then there exists a choice for ζ
such that `1 regression does not exactly recover the original signal vector.

2. Even if ζ = 0 (i.e., there are no sparse corruptions), there exists a choice for d such that
the solution of `1 regression, ŵ, satisfies

‖ŵ − w∗‖2 &
‖d‖1
m

Proof. Let T be the support of the largest ηm entries of (Xw∗). For the first part, let
ζ = −(Xw∗)T and observe that since d = 0, the loss of the 0 vector with respect to y is
‖XTw

∗‖1 and the loss of w∗ is ‖XTw
∗‖1. Since m & n

ε2 we know that with probability
1− e−Cn for some constant C,

‖XTw
∗‖1 >

(
B
(
η − ε

2

)
− ε

2

)
·m

and

‖XTw
∗‖1 <

(
G
(
η + ε

2

)
+ ε

2

)
·m.

Hence,

‖XTw
∗‖1 − ‖XTw

∗‖1 >
(
B
(
η − ε

2

)
−G

(
η + ε

2

)
− ε
)
·m & mε.

The final inequality follows from a calculation similar to the one used to show (7), by
looking at the Taylor expansion of B(η0 + x

2)−G(η0 + 3x
2)− x around x = 0. This implies

‖XTw
∗‖1 > ‖XTw

∗‖1 and so `1 regression cannot return w∗ as the answer.
Let T ′ be the support of the smallest (1− (η0 + ε

2))m entries of (Xw∗). For the second
part, set d = −(Xw∗)T ′ . Now, more than (1− η0)m entries of y are 0, and so `1 regression
will recover 0. The resulting error in 2-norm is ‖ŵ − w∗‖2 = ‖w∗‖2. Since d = −(Xw∗)T ′ ,
‖d‖1 is the `1 norm of Xw∗ over the smallest 1−η0− ε

2 fraction of the indices. By arguments
similar to earlier

‖d‖1 = ‖(Xw∗)T ′‖1 > m
(
G
(
η0 −

ε

2

)
− ε
)
· ‖w∗‖2.

It can be checked whenever ε < 0.2, G
(
η0 − ε

2
)
− ε > 0.4. Hence,

‖ŵ − w∗‖2 = ‖w∗‖2 ≥
1

G
(
η0 − ε

2
)
− ε

(
‖d‖1
m

)
&
‖d‖1
m

. J

SOSA 2019

19:14 Compressed Sensing with Adversarial Sparse Noise via L1 Regression

Figure 2 Empirically in the one-dimensional case, the recovery threshold for `1 regression and
the robust mean estimation-based algorithm of [5] match at η0.

7 Empirical comparisons to prior work

We compare the tolerance of `1 regression to algorithms from two recent papers [5] and [2].
We study the fraction of corruptions these algorithms can tolerate in the limit of a large
number of samples. Our experiment is the following - we study the one-dimensional case
where w∗ = 100 and the adversarial noise is selected by setting the largest η fraction of
observed y’s to 0. We run the three algorithms on a dataset of 1000 samples for η ranging
from 0 to 0.5 and consider the point when the algorithm stops providing exact recovery. In
Figure 2 we plot the the error of the recovered ŵ from w∗ against the fraction of corruptions.

While the fraction of corruptions tolerated by the algorithm from [2] for our example
is more than what they prove in general (which is 1

65), the fraction of corruptions it can
tolerate is still less than that of `1 regression on this example. For `1 regression we observe
what we have already proven earlier, that this example achieves our upper bound - i.e., it
tolerates no more than an η0 ≈ 0.239 fraction of corruptions.

Curiously, the robust mean estimation based algorithm by [5] on this example tolerates
exactly the same fraction of corruptions as `1 regression.

References

1 Kush Bhatia, Prateek Jain, Parameswaran Kamalaruban, and Purushottam Kar. Consist-
ent Robust Regression. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems 30, pages 2110–2119. Curran Associates, Inc., 2017. URL: http://papers.nips.cc/
paper/6806-consistent-robust-regression.pdf.

2 Kush Bhatia, Prateek Jain, and Purushottam Kar. Robust regression via hard thresholding.
In Advances in Neural Information Processing Systems, pages 721–729, 2015.

3 P. Bloomfield and W. Steiger. Least Absolute Deviations Curve-Fitting. SIAM Journal on
Scientific and Statistical Computing, 1(2):290–301, 1980. doi:10.1137/0901019.

4 E. J. Candès, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inac-
curate measurements. Comm. Pure Appl. Math., 59(8):1208–1223, 2006.

5 I. Diakonikolas, W. Kong, and A. Stewart. Efficient Algorithms and Lower Bounds for
Robust Linear Regression. ArXiv e-prints, May 2018. arXiv:1806.00040.

6 Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Jacob Steinhardt, and
Alistair Stewart. Sever: A Robust Meta-Algorithm for Stochastic Optimization. CoRR,
abs/1803.02815, 2018. arXiv:1803.02815.

http://papers.nips.cc/paper/6806-consistent-robust-regression.pdf
http://papers.nips.cc/paper/6806-consistent-robust-regression.pdf
http://dx.doi.org/10.1137/0901019
http://arxiv.org/abs/1806.00040
http://arxiv.org/abs/1803.02815

S. Karmalkar and E. Price 19:15

7 Cynthia Dwork, Frank McSherry, and Kunal Talwar. The price of privacy and the limits
of LP decoding. In Proceedings of the thirty-ninth annual ACM symposium on Theory of
computing, pages 85–94. ACM, 2007.

8 Rina Foygel and Lester Mackey. Corrupted sensing: Novel guarantees for separating struc-
tured signals. IEEE Transactions on Information Theory, 60(2):1223–1247, 2014.

9 Peter J Huber. Robust statistics. In International Encyclopedia of Statistical Science, pages
1248–1251. Springer, 2011.

10 Adam R. Klivans, Pravesh K. Kothari, and Raghu Meka. Efficient Algorithms for Outlier-
Robust Regression. In Conference On Learning Theory, COLT 2018, Stockholm, Sweden,
6-9 July 2018., pages 1420–1430, 2018. URL: http://proceedings.mlr.press/v75/
klivans18a.html.

11 Jason N Laska, Mark A Davenport, and Richard G Baraniuk. Exact signal recovery from
sparsely corrupted measurements through the pursuit of justice. In Signals, Systems and
Computers, 2009 Conference Record of the Forty-Third Asilomar Conference on, pages
1556–1560. IEEE, 2009.

12 Xiaodong Li. Compressed sensing and matrix completion with constant proportion of
corruptions. Constructive Approximation, 37(1):73–99, 2013.

13 Liu Liu, Yanyao Shen, Tianyang Li, and Constantine Caramanis. High Dimensional Robust
Sparse Regression. arXiv preprint arXiv:1805.11643, 2018.

14 Nasser M Nasrabadi, Trac D Tran, and Nam Nguyen. Robust lasso with missing and
grossly corrupted observations. In Advances in Neural Information Processing Systems,
pages 1881–1889, 2011.

15 Nam HNguyen and Trac D Tran. Exact Recoverability From Dense Corrupted Observations
via L1-Minimization. IEEE transactions on information theory, 59(4):2017–2035, 2013.

16 Hansheng Wang, Guodong Li, and Guohua Jiang. Robust Regression Shrinkage and Con-
sistent Variable Selection through the LAD-Lasso. Journal of Business & Economic Stat-
istics, 25(3):347–355, 2007. URL: http://www.jstor.org/stable/27638939.

17 Meng Wang, Weiyu Xu, and Ao Tang. The Limits of Error Correction with lp Decoding.
CoRR, abs/1006.0277, 2010.

18 Chun Yu and Weixin Yao. Robust linear regression: A review and comparison. Commu-
nications in Statistics-Simulation and Computation, 46(8):6261–6282, 2017.

Appendix

A Facts about N(0,1)

In this section, let Φ and Φ̂ denote the CDF ofN(0, 1) and the CDF of the uniform distribution
over a set of samples drawn from N(0, 1) respectively – the set will be clear from context.
B(γ) and G(γ) refer to the `1 norm of the largest (in absolute value) γ fraction of the entries
and the smallest 1− γ fraction of the entries with respect to the Gaussian distribution, and
Ĝ(γ) and B̂(γ) are defined similarly but for the uniform distribution over samples from
N(0, 1).

I Fact 10. Let S = {z1, . . . , zm} be i.i.d. samples from N(0, 1). Then for any τ, γ ∈ [0, 1]
the following holds with probability 1− 4e−2mτ2 .

Φ−1(γ − τ) < Φ̂−1(γ) < Φ−1(γ + τ).

Proof. The Dvoretzky-Kiefer-Wolfowitz inequality states

Pr
(

sup
x∈R

(
|Φ̂(x)− Φ(x)|

)
> ε
)
≤ 2e−2mε2

for every ε ≥
√

1
2m ln 2. (8)

SOSA 2019

http://proceedings.mlr.press/v75/klivans18a.html
http://proceedings.mlr.press/v75/klivans18a.html
http://www.jstor.org/stable/27638939

19:16 Compressed Sensing with Adversarial Sparse Noise via L1 Regression

If t = Φ−1(η), Equation 8 then tells us that for any ε independent of m (i.e., constant ε),

Pr
(
|Φ̂(t)− η| > ε

)
≤ 2e−2mε2

i.e.,

Pr
(

Φ̂(t) ≤ η + ε
)
≤ 2e−2mε2

.

Setting η = γ − τ and ε = τ we see

Pr
(

Φ̂(t) ≤ γ
)
≤ 2e−2mτ2

.

Monotonicity of Φ̂ then proves the first inequality. The second inequality follows similarly. J

I Fact 11. Let S = {z1, . . . , zm} be i.i.d. samples from N(0, 1) and let η < η0. Then with
probability 1−O

(
e
mε2

2

)
,

Ĝ(η) > G(η − ε)− ε

and

B̂(η) < B(η + ε) + ε.

Proof. Consider the random variable Y where Y is N(0, 1) conditional from being drawn
from [−t, t] (i.e., Y has the PDF of a truncated Gaussian distribution). If γ < 1

2 , for
t = Φ−1(1− γ

2)

E[|Y |] = 1
1− γ

∫ t

−t
|x|e−x

2/2dx = 1
1− γG(γ).

Observe that one can sample from Y by sampling from Z which is distributed as N(0, 1) and
discarding samples outside [−t, t]. Since the PDF is scaled, we have to scale the empirical
distribution as well

Ê[|Y |] = 1
m(1− γ)

m∑
i=1
|zi| · 1[−t,t](zi)

Let γ be such that E|Y | ≤ 1
2(1−γ) , then |Y | has subgaussian tails with some constant

parameter. To see this, observe that

E
[
eλ(|Y |−E[|Y |])

]
= 2

1− γ

∫ t

0
e−x

2/2+λx−λE[|Y |]dx

. e
λ2
2 −(2·(1−γ))−1λ

. eO(λ2/2−λ)

This implies concentration for the expectation

Pr
(∣∣∣Ê[|Y |]− E[|Y |]

∣∣∣ > ε
)
< O

(
e−

mε2
2

)
.

Multiplying both sides inside the probability by (1− γ) and noting that since γ < 1
2 this is

bounded by 1
2 we see

Pr
(∣∣∣∣∣ 1
m

m∑
i=1
|zi| · 1[−t,t](zi)−G(γ)

∣∣∣∣∣ > ε

2

)
< O

(
e−

mε2
2

)

S. Karmalkar and E. Price 19:17

We now set γ = η − ε. Since η < η0 ≈ 0.239 and ε > 0, γ < 1
2 . Fact 10 now implies that

with probability 1− 2e−2mε2 , at most an 1− η fraction of the samples lie in [−t, t]. These
have to be smaller in absolute value than the remaining samples. Since Ĝ(η) is defined to be
the `1 norm of the 1− η fraction of points smallest in absolute value, we see

Ĝ(η) > 1
m

m∑
i=1
|zi| · 1[−t,t](zi).

This implies

Pr
(
Ĝ(η) > G(η − ε)− ε

)
< O

(
e−2mε2

+ e−
mε2

2

)
.

The other direction is done similarly, however in this case Y is the random variable gotten
by conditioning samples from N(0, 1) to be outside [−t, t]. J

B Shelling argument

I Lemma 6 (Shelling Argument). Let A ∈ Rm×n satisfy

L‖v‖2 ≤ ‖Av‖1 ≤ U‖v‖2

for all (1 + α2)k-sparse vectors v. If S ⊂ [m] is fixed and of cardinality k, then A satisfies

L

1 + α

(
α− U

L

)
‖v‖2 −

2U∆
α
√
k
≤ ‖Av‖1 ≤ U

(
1 + 1

α

)
‖v‖2 + U∆

α
√
k

for all

v ∈ VS = {v ∈ Rn | ∆ + ‖vS‖1 ≥ ‖vS‖1}.

Proof. The goal is to transfer bounds from the eigenvalues of A restricted over the sparse
vectors, to the eigenvalues of A restricted over VS . To this end we will select an element of
VS and express it as a sum of sparse vectors. Applications of standard inequalities will then
let us transfer bounds.

For any v ∈ VS partition [n] into S, T1, . . . , Tn−k
α2k

where Ti is the set of indices corres-
ponding to the ith largest α2k-sized set of elements from vS .

We will now prove the upper and lower bounds on the eigenvalues for vectors restricted
to the set VS . The triangle inequality implies

‖AvS∪T1‖1 −
∑
i>1
‖AvTi‖1 ≤ ‖Av‖1 ≤ ‖AvS∪T1‖1 +

∑
i>1
‖AvTi‖1

Since vS∪T1 and vTi are all at most (1 + α2)k-sparse,

L‖vS∪T1‖2 −
∑
i>1
‖AvTi‖1 ≤ ‖Av‖1 ≤ U‖vS∪T1‖2 +

∑
i>1
‖AvTi‖1

We now prove an upper bound on the quantity
∑
i>1 ‖AvTi‖1. This will give us both

the upper and lower bounds we need. To this end, observe that all coordinates of vTi−1 are
greater than or equal to all coordinates of vTi . This implies

‖vTi‖∞ ≤
‖vTi−1‖1
α2k

SOSA 2019

19:18 Compressed Sensing with Adversarial Sparse Noise via L1 Regression

which, in turn, implies

‖vTi‖2 ≤
1

α
√
k
‖vTi−1‖1.

Using the bounds on the restricted sparse eigenvalues from the statement, we get∑
i>1
‖AvTi‖1 ≤ U ·

∑
i>1
‖vTi‖2

≤ U

α
√
k
‖vS‖1

≤ U

α
√
k

(‖vS‖1 + ∆)

≤ U

α
· ‖vS‖2 + U

α
√
k
·∆

≤ U

α
· ‖vS∪T1‖2 + U

α
√
k
·∆

Using the inequality above in addition to the bounds on ‖Av‖1, we get after some
rearrangement(

L− U

α

)
‖vS∪T1‖2 −

U

α
√
k
·∆ ≤ ‖Av‖1 ≤ U

(
1 + 1

α

)
‖vS∪T1‖2 + U

α
√
k
·∆

The bounds above are in terms of ‖vS∪T1‖2, however we need bounds in terms of ‖v‖2.
For the upper bound, it is sufficient to note that ‖vS∪T1‖2 < ‖v‖2. For the lower bound, we
need the inequalities below.

The definition of Ti and applications of the Cauchy-Schwartz inequality gives us

‖vS∪T1
‖2 ≤

∑
i≥2
‖vTi‖2 ≤

1
α
√
k

∑
i≥1
‖vTi−1‖1 ≤

‖vS‖1
α
√
k
≤ ‖vS‖1 + ∆

α
√
k

≤ ‖vS‖2
α

+ ∆
α
√
k
.

This, in turn, results in an upper bound on ‖v‖2 in terms of ‖vS∪T1‖2,

‖v‖2 ≤ ‖vS∪T1‖2 + ‖vS∪T1
‖2

≤ ‖vS∪T1‖2 +
∑
i≥2
‖vTi‖2

≤ ‖vS∪T1‖2 + ‖vS‖2
α

+ ∆
α
√
k

≤
(

1 + 1
α

)
‖vS∪T1‖2 + ∆

α
√
k

=⇒ ‖vS∪T1‖2 ≥
α

1 + α

(
‖v‖2 −

∆
α
√
k

)
and so

L

1 + α

(
α− U

L

)(
‖v‖2 −

∆
α
√
k

)
− U∆
α
√
k
≤ ‖Av‖1 ≤ U

(
1 + 1

α

)
‖vS∪T1‖2 + U∆

α
√
k

At this point, we have the upper bound, to complete the proof of the lower bound, observe

S. Karmalkar and E. Price 19:19

that standard manipulations give us

L

1 + α

(
α− U

L

)(
‖v‖2 −

∆
α
√
k

)
= L

1 + α

(
α− U

L

)
‖v‖2 −

L

1 + α

(
α− U

L

)
∆
α
√
k

= L

1 + α

(
α− U

L

)
‖v‖2 −

αL− U
1 + α

∆
α
√
k

≥ L

1 + α

(
α− U

L

)
‖v‖2 −

U∆
α
√
k

This gives us the Lemma,

L

1 + α

(
α− U

L

)
‖v‖2 −

2U∆
α
√
k
≤ ‖Av‖1 ≤ U

(
1 + 1

α

)
‖vS∪T1‖2 + U∆

α
√
k
. J

SOSA 2019

Approximating Maximin Share Allocations
Jugal Garg
University of Illinois at Urbana-Champaign
jugal@illionis.edu

Peter McGlaughlin
University of Illinois at Urbana-Champaign
mcglghl2@illionis.edu

Setareh Taki
University of Illinois at Urbana-Champaign
staki2@illionis.edu

Abstract
We study the problem of fair allocation ofM indivisible items among N agents using the popular
notion of maximin share as our measure of fairness. The maximin share of an agent is the largest
value she can guarantee herself if she is allowed to choose a partition of the items into N bundles
(one for each agent), on the condition that she receives her least preferred bundle. A maximin
share allocation provides each agent a bundle worth at least their maximin share. While it is
known that such an allocation need not exist [9, 7], a series of work [9, 8, 1, 2] provided 2/3
approximation algorithms in which each agent receives a bundle worth at least 2/3 times their
maximin share. Recently, [6] improved the approximation guarantee to 3/4. Prior works utilize
intricate algorithms, with an exception of [2] which is a simple greedy solution but relies on
sophisticated analysis techniques. In this paper, we propose an alternative 2/3 maximin share
approximation which offers both a simple algorithm and straightforward analysis. In contrast to
other algorithms, our approach allows for a simple and intuitive understanding of why it works.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory

Keywords and phrases Fair division, Maximin share, Approximation algorithm

Digital Object Identifier 10.4230/OASIcs.SOSA.2019.20

Funding Work on this paper partly supported by NSF CRII Award 1755619.

1 Introduction

We study the problem of allocating M indivisible items among N agents with additive
valuations in a fair way, using the popular notion of maximin share [5] as our measure for
fairness. There is an extensive literature for fair allocation of divisible items, starting with
the cake cutting problem [10]. Standard notions of fairness include: envy-freeness where
every agent prefers their allocation over any other agents’ allocation, and proportionality
where every agent receives at least a 1/N share of all the items.

In the case of indivisible items, a simple counter example shows that no algorithm can
provide either envy-freeness or proportionality. Consider allocating a single item between
N > 1 agents. Clearly, N − 1 agents envy the one lucky agent that received the item and
there is no way to ensure all agents receive a bundle of items with value at least 1/N . This
motivates the need for an alternate concept of fairness. Recently, Budish [5] introduced an
intriguing option, a maximin share. The idea is a natural generalization of the well known
cut and choose protocol in the cake cutting problem. Suppose we allow agent i to choose a
partition of the items into N bundles (one for each agent), with the caveat that the other

© Jugal Garg, Peter McGlaughlin, and Setareh Taki;
licensed under Creative Commons License CC-BY

2nd Symposium on Simplicity in Algorithms (SOSA 2019).
Editors: Jeremy Fineman and Michael Mitzenmacher; Article No. 20; pp. 20:1–20:11

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jugal@illionis.edu
mailto:mcglghl2@illionis.edu
mailto:staki2@illionis.edu
https://doi.org/10.4230/OASIcs.SOSA.2019.20
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

20:2 Approximating Maximin Share Allocations

N − 1 agents get to choose a bundle before her. In the worst case, she receives her least
preferred bundle. Clearly, in this situation i will choose a partition that maximizes the value
of her least preferred bundle. We call the value of this bundle i’s maximin share (MMS). Since
all other agents may have the same valuations as her, i’s MMS is the most she can guarantee
for herself in this scenario. In this paper, we focus on the case of additive valuations. Let us
note that, computing any agent’s MMS is NP-hard, but a PTAS exists [11].

A maximin share gives an intuitive local measure of fairness of an allocation, that is a
specific objective for each agent. This raises the natural question: Is there an allocation
where each agent receives a bundle worth at least their MMS? An allocation satisfying
this property is said to be maximin share allocation (MMS allocation), and if it exists, an
MMS allocation provides strong fairness guarantees to each individual agent. Bouveret and
Lemaître [3] show that an MMS allocation always exist in some special settings, e.g., when
there are only two agents or if agents’ valuations for items are 0 or 1, but leave the general
case as an open problem.

Procaccia and Wang [9] obtain the surprising result that MMS allocations might not
exist, by means of a clever counter example. However, they show that a 2/3 MMS allocation
always exists, that is an allocation where each agent receives a bundle worth at least 2/3
of their maximin share, and they provide a polynomial time algorithm to find a 2/3 MMS
allocation when the number of agents N is constant. In the special case where N ≤ 4, their
algorithm finds a 3/4 MMS allocation. Amanatidis et al. [1] improve this result by addressing
the requirement for a constant number of agents, obtaining a PTAS which finds a (2/3− ε)
MMS allocation for an arbitrary number of agents; see [8] for an alternate proof. [1] also
shows that a 7/8 MMS allocation always exists when there are three agents.

Barman and Murthy [2] take an alternate approach from [9, 1], utilizing key insights
from [3] to obtain a greedy algorithm to find a 2/3 MMS allocation. While the algorithm
itself is fairly simple, the proof is not.

The recent results of Ghodsi et al. [6] breaks new ground, establishing existence of 3/4
MMS allocation, and, building on the work of [9, 1], provides a PTAS to find a (3/4 − ε)
MMS allocation. They also show that when N = 4, an 4/5 MMS allocation exists and
proposed a algorithm to find it.

Our Contribution. We present an algorithm to find a 2/3 MMS allocation for agents with
additive valuations. Our approach combines the insights of [3, 2] with the concepts developed
in [6] to obtain an algorithm that is both simple to implement and analyze. Like [6], our
algorithm consists of two phases: matching and bag filling. However, unlike [6], our phases
are much simpler, and we do not need to compute agents’ MMS values. Bag filling is a
simple, greedy method to allocate ‘low’ valued items. We add one item at a time to a bag. If
the value of the bag is worth at least 2/3 of any agent’s MMS, then we assign the bag to that
agent, picking an arbitrary agent when there are more than one satisfying this condition.
It is easily shown, in Section 2.2, that bag filling provides a 2/3 MMS allocation as long
as no agent values any item more than 1/3. Thus, the real difficultly lies in distributing
‘high’ value items, i.e., items worth more than 1/3 to some agent. Drawing on the insights
of [3, 2], we show a combination of maximum matching and greedy assignment suffices for
this purpose. This gives our algorithm the basic structure: repeated maximum matching
and greedy assignment to remove high valued items, followed by bag filling to allocate low
valued items. Our approach allows for far simpler and more intuitive analysis than [1, 2, 6].

J. Garg, P. McGlaughlin, and S. Taki 20:3

2 Preliminaries

We consider the fair allocation of M = {1, . . . ,m} indivisible items among N = {1, . . . , n}
agents with additive valuations. That is, vij is agent i’s value for item j, and i’s valuation of
any bundle of items S ⊆M is: vi(S) =

∑
j∈S vij . For simplicity, we also use vi(j) instead

of vi({j}). Denote the set of valuation functions, vi : 2M → R+, as: V = {v1, . . . , vn}. An
allocation A = {A1, . . . , An} is a partition of the items into n bundles (one for each agent).
We define fair allocations in terms of maximin shares. Agent i’s maximin share (µi) is the
maximum value she can guarantee herself if she is allowed to choose the allocation A, on
the condition that she receives her least preferred bundle. Formally, let A be an allocation
and A =

{
A = {A1, . . . , An} : Ai ∩ Aj = ∅,∀i, j; ∪kAk = M

}
be the set of all feasible

allocations. Agent i’s maximin share is:

µi = max
A∈A

min
Ak∈A

vi(Ak). (1)

We say an allocation A is MMS if each agent i receives a bundle Ai worth at least her
maximin share: vi(Ai) ≥ µi. An allocation is α approximate MMS (or simplify α-MMS) if
each agent i receives a bundle Ai worth at least: vi(Ai) ≥ αµi, for some α ∈ (0, 1).

2.1 Properties of Maximin Share
Our approximation algorithm exploits a few key properties of maximin shares. We note that
these are standard results which appear in [1, 6]. We include proofs for sake of completeness.

I Proposition 1 (Scale Invariance). Let A = {A1, . . . , An} be an α-MMS allocation for the
problem instance I = (N,M, V) with additive valuations. For any agent i ∈ N and any
c ∈ R+, if we create an alternate instance I ′ = (N,M, V ′) where i’s valuations are scaled by
c, i.e., v′ij := cvij ,∀j ∈M , then A is still an α-MMS allocation for (N,M, V ′).

Proof. Let µi and µ′i be agent i’s MMS in instance I and I ′ respectively. For any bundle
S ⊆ M , we have v′i(S) = cvi(S). Therefore, µ′i = cµi. Let A = {A1, . . . , An} be the
allocation i selects to create her µi. Then, v′i(Ak) = cvi(Ak) ≥ cαµi = αµ′i,∀k. J

I Proposition 2 (Normalized Valuation). For problem instance I = (N,M, V), if agent i’s
valuation function satisfies:

vi(M) =
∑
j∈M

vij = |N |, (2)

then µi ≤ 1.

Proof. For contradiction, suppose vi(M) = |N | but µi > 1. Let A = {A1, . . . , An} be the
allocation i selects to create her µi. From the definition of µi (1), vi(Ak) ≥ µi ∀Ak ∈ A, so
|N | = vi(M) =

∑
k vi(Ak) ≥ |N |µi > |N |, a contradiction. J

We say agent i’s valuation is normalized for I = (N,M, V) when (2) holds, or simply nor-
malized when the underlying problem instance is clear. In view of Proposition 1, normalizing
agents’ valuations provides a convenient upper bound on µi’s without affecting performance
guarantees. In addition, this removes the problem of comparing the relative value of a bundle
of items between agents whose scale of valuations differs in orders of magnitude.

SOSA 2019

20:4 Approximating Maximin Share Allocations

2.2 What Makes Finding Approximate MMS Allocations Hard?
In this section, we build intuition for what exactly makes finding α approximate MMS
allocations difficult. We begin with a definition. Let I = (N,M, V) be a problem instance,
and L ⊂ N be subset of agents and S ⊂M be subset of items. We say

I ′ = (N ′,M ′, V ′) = (N \ L,M \ S, V), (3)

is a reduced instance of I. In words, we create a reduced instance by removing some subset
of agents, and some subset of items. We call the agents N ′ = N \ L the remaining agents of
the reduced instance I ′. The following simple observation plays an important role in finding
approximate MMS allocations.

I Proposition 3. Let I = (N,M, V) be a problem instance, and let µi be the MMS for agent
i ∈ N . If we remove one agent k ∈ N and one item j ∈M , then the MMS of all remaining
agents in the reduced instance I ′ = (N \ {k},M \ {j}, V), is at least as large as their MMS
in I, i.e., µ′i ≥ µi. In words, removing one agent and one item from a problem instance does
not reduce the MMS guarantees for any remaining agent in the reduced instance.

Proof. Suppose agent k ∈ N and item j ∈ M are removed from the instance, and let i
be any remaining agent. Consider the allocation A = {A1, . . . , An} she makes to calculate
her MMS in the original instance I, and note that Al ≥ µi for all Al ∈ A by the definition
of MMS. In the reduced instance I ′ = (N \ {k},M \ {j}, V), agent i needs to make one
less bundle but has one less item. Let Al ∈ A be the bundle containing the removed item
j. Suppose she simply takes the items of Al \ {j} and distributes them arbitrarily to the
other bundles of A to create a new allocation Â = {Â1, . . . , Ân−1}. Clearly, Â is a feasible
allocation, and Âl ≥ µi for all Âl ∈ Â. Therefore, µ′i ≥ µi. J

Proposition 3 shows that removing one agent and one item does not reduce MMS
guarantees for remaining agents in the reduced instance. It is straightforward to generalize
the above argument to show that removing k agents and k items does not decrease MMS
guarantees in the reduced instance.

I Corollary 4. Let L ⊂ N and S ⊂M , and µi be the MMS for each agent i in an instance
I = (N,M, V). If |L| = |S|, then the MMS µ′i of any remaining agent in the reduced instance
I ′ = (N \ L,M \ S, V) is at least as large as in the original instance, i.e., µ′i ≥ µi.

Combining Proposition 3 with the simple greedy allocation method bag filling, yields an
almost trivial 1/2-MMS allocation algorithm. Suppose we seek an α-MMS allocation. The
bag filling algorithm is as follows: We add one, arbitrary item at a time to a bag S until an
agent k values the bag at least αµk, i.e., vk(S) ≥ αµk. If another agent k′ values the bag at
least αµ′k, then pick one arbitrarily. We assign k the bag S, and remove agent k and the
items of S from the instance. We show that bag filling provides an efficient way to allocate
low value items. We note that a similar result also appears in [6].

I Proposition 5. Assume agents’ valuations are normalized as defined in (2), and that no
agent values any item more than 0 < δ < 1/2: vij ≤ δ for all j ∈ M , for all i ∈ N . Then,
the bag filling algorithm gives a (1− δ) MMS allocation.

Proof. By the definition of normalized valuations and Proposition 2, we have vi(M) = |N |
and µi ≤ 1 for all i ∈ N . Therefore, it is enough to show each agent receives a bag worth
at least 1− δ. Clearly, the agent that receives the bag in each iteration gets at least 1− δ,
so the claim amounts to showing remaining agents do not lose too much value when the

J. Garg, P. McGlaughlin, and S. Taki 20:5

bag is assigned. Let j be the last item added to the bag S. Note that before adding j, all
agents valued S less than 1− δ, i.e., vi(S \ j) < 1− δ for all i ∈ N . Now, since valuations
are additive and vij < δ for all agents i ∈ N , we have vi(S) ≤ 1. That is, no agent values
the bag S more than 1. This means after removing agent k and the items of S, all remaining
agents satisfy vi(M \ S) = vi(M)− vi(S) ≥ |N | − 1. Since this condition is an invariant of
bag filling algorithm, all agents get at least (1− δ) of their maximin share. J

Combining Propositions 2, 3, and 5 yields a simple greedy algorithm to compute a 1/2
MMS allocation. We start by normalizing valuations as defined in (2). By Proposition 2,
this ensures µi ≤ 1 for all agents i ∈ N . If some agent, say k, has valuation vkj ≥ 1/2 for
some item j, then we assign item j to agent k. If more than one agent satisfies this condition,
then pick one arbitrarily. By Proposition 3, the MMS µ′i of agents in the reduced instance
I ′ = (N \ k,M \ j, V) is at least as large as their MMS µi in the original instance. Next we
normalize valuations for the reduced instance I ′, and repeat the process, greedily assigning
one item at a time to any agent who values the item at least 1/2 and then normalizing
valuations, until either all agents are removed or vij < 1/2, ∀j ∈ M , ∀i ∈ N . In the later
case, Proposition 5 shows that the bag filling algorithm provides all remaining agents a
bundle worth at least 1/2 of their maximin share.

A natural approach to extending the above algorithm to give a 2/3 MMS allocation
requires splitting the items M into three sets based on their value: high valued items for
which vij ≥ 2/3 for some agent i ∈ N , low valued items for which vij < 1/3 for all agents
i ∈ N , and medium valued items for which vij ≥ 1/3 for at least one agent i ∈ N but
vij < 2/3 for all i ∈ N . Notice that, similar to the 1/2 MMS algorithm above, we may
greedily assign high valued items to give at least 2/3 MMS to the agent receiving the item
without decreasing the MMS of any remaining agent in the reduced instance. Also, if all
items are low valued vij < 1/3 ∀i ∈ N , then the bag filling algorithm easily yields a 2/3
MMS allocation. The real challenge lies in managing the medium valued items. These items
are not valuable enough individually to satisfy 2/3µi for an agent i, yet they are too valuable,
to some agent, to distribute haphazardly through bag filling. Thus, we seek a simple, efficient
means to allocate medium valued items.

2.3 Results of Bouveret and Lemaître, and Barman and Murthy

Our algorithm relies on some results of [4, 2] to obtain the means to properly manage ‘medium
valued’ items as defined at the end of the last section. We start with a definition. A problem
instance I = (N,M, V) is ordered if:

vi1 ≥ vi2 ≥ · · · ≥ vim, ∀i ∈ N. (4)

In words, in an ordered instance all agents have the same order of preference over items.
Roughly speaking, this maximizes the competition between agents, and, intuitively, should
make it more difficult to provide an MMS allocation. Indeed, Bouveret and Lemaître [4]
show ordered instances are worst case. Further, they provide a reduction from any arbitrary
instance I = (N,M, V) to an ordered instance I ′ = (N,M, V ′), and show that if A′ is an
MMS allocation for I ′, then one can find an MMS allocation A for I in polynomial time.
Barman and Murthy [2] generalize these results for α approximate MMS allocations.

I Proposition 6 (Section 2.1 of Barman and Murthy [2]). Given any instance I = (N,M, V),
one can find an ordered instance I ′ = (N,M, V ′) in polynomial time.

SOSA 2019

20:6 Approximating Maximin Share Allocations

Algorithm 1: Converting to an Ordered Instance.
Input :Original Instance (N,M, V)
Output :V ′: Valuations for Ordered Instance

1 for j = 1 to m do
2 for i = 1 to n do
3 j∗ = agent i’s jth most valuable item ;
4 v′ij ← vi(j∗) ;

Algorithm 2: α-MMS Allocation for Unordered Instance.
Input :Allocation A′ = (A′1, . . . , A′n) for Ordered Normalized Instance

I ′ = (N,M, V ′) such that v′i(A′i) ≥ α for all i ∈ N .
Output : Allocation A = (A1, . . . , An) for Original Normalized Instance

I = (N,M, V) such that vi(Ai) ≥ α for all i ∈ N .

1 A = (∅, . . . , ∅) and R←M ;
2 for j = 1 to m do
3 a← i : j ∈ A′i (pick the agent assigned item j in A′) ;
4 g ← arg maxk∈R vak;
5 Ai ← Ai ∪ {g} and R←M \ {g};

Algorithm 1 gives explicit details for the process of converting any instance I into an
ordered instance I ′. We call I ′ constructed this way the ordered instance of I.

I Theorem 7 (Theorem 2 and Corollary 1 of Barman and Murthy [2]). For any instance I, let
I ′ be its ordered instance. If A′ is an α approximate MMS allocation for I ′, then using A′ we
can find allocation A which is an α approximate MMS allocation for I in polynomial time.

Algorithm 2 shows how to obtain an α approximate MMS allocation A for the original
instance I given an α approximate MMS allocation for the ordered instance I ′. For the sake
of completeness, we provide a brief proof of Theorem 7.

Proof. (Theorem 7) Clearly, both Algorithms 1 and 2 run in polynomial time. Notice that
Algorithm 2 allocates each item j ∈ M to at most one agent i ∈ N and that one item is
allocated in each iteration. Let kj be the item allocated in the jth iteration of Algorithm
2, lines 2 through 5. Consider the agent i assigned j ∈ A′i, meaning that kj ∈ Ai. At the
beginning of the jth iteration, exactly j − 1 items have been allocated. Therefore, kj is
among the top j most valuable items for agent i. From the construction of the ordered
instance I ′, it follows that for all j ∈ A′i, vi(kj) ≥ v′i(j). Therefore, vi(Ai) =

∑
j∈A′

i
vi(kj) ≥∑

j∈A′
i
v′i(j) = v′i(A′i) ≥ α. J

Proposition 6 and Theorem 7 show that it suffices to consider ordered instances. A total
ordering over the set of items M provides precious information to us as algorithm designers
since we know precisely which items are best (favored by all agents). In other words, the
ordering over M essentially means all items fall into three categories: low, medium, and high
valued, corresponding to low, medium, and high in the ordering respectively. In Section 3,
we show that a total ordering over the items M allows for a simple generalization of the 1/2
MMS allocation algorithm described in Section 2.2 to give 2/3 MMS allocations.

J. Garg, P. McGlaughlin, and S. Taki 20:7

3 A 2/3 MMS Approximation

In this section we present an algorithm to find 2/3 approximate MMS allocations. Our
method involves a preprocessing step with Proposition 6 to ensure the instance is ordered.
We show how to obtain a 2/3 MMS allocation for the ordered instance, then use a post
processing step with Theorem 7 to obtain a 2/3 MMS allocation for the original instance.
From this point on, we assume the instance is ordered as defined in (4).

The algorithm builds one bundle of items at a time, assigns it to some agent i who values
it at least 2/3µi, and then removes that agent and the bundle from the instance. The basic
structure of the algorithm closely resembles the simple 1/2 MMS algorithm discussed in
Section 2.2. In fact, the same simple strategies guide the algorithm’s design.

Assuming valuations are normalized as defined in (2), our algorithm handles allocation of
items based on their value: low, medium or high. For this we use the clustering approach of
[6], and define the following sets of items:

SH = {j ∈M : ∃i ∈ N s.t. vij ≥ 2/3}
SM = {j ∈M : ∃i ∈ N s.t. 1/3 ≤ vij , vij < 2/3, ∀i ∈ N}
SL = {j ∈M : vij < 1/3, ∀i ∈ N},

(5)

which correspond to high, medium, and low valued items respectively. Second, for any bundle
S ⊆M , we define the set N(S) as the agent’s with value at least 2/3 for S:

N(S) = {i : i ∈ N, vi(S) ≥ 2/3}. (6)

By using the preprocessing step of Proposition 6, we ensure a total ordering on the items
(4). Thus, for any agent i if vik > 1/3 for some item k, then vij > 1/3 for all j ≤ k. Similarly,
if vik < 2/3, then vij < 2/3 for all j ≥ k.

3.1 2/3 MMS Algorithm
At a high level, our algorithm mirrors the simple 1/2 MMS algorithm, consisting of two
phases: matching and bag filling. Like the 1/2 MMS algorithm, we allocate high value items
SH through a maximum matching, and assign all low value items SL through bag filling.
For medium valued items SM , the total ordering on the items simplifies allocation decisions
based on |SM |. If |SM | is sufficiently large, we greedily assign a bundle containing the two
’least valuable’ items of |SM | to any agent that values it at least 2/3, using a generalization
of Proposition 3. Otherwise, we use a modified version of the bag filling algorithm. We make
the treatment of medium valued items more precise shortly, but note that, the total ordering
of items allows for small adjustments to the matching and bag filling stages of the 1/2 MMS
algorithm to improve the approximation guarantees to 2/3 MMS. Further, our approach
makes the analysis of each stage nearly as simple as in the 1/2 MMS algorithm. We now
explain the algorithm in more detail, see Algorithm 3 for a formal description.

Matching Procedure. The initial phase of the algorithm allocates high value items SH

through a maximum matching we call the Matching Procedure. First, we normalize valuations
which ensures µi ≤ 1 for all agents by Proposition 2. Next, we form a bipartite graph with
agents of on the left hand side and items of SH on the right. We create an edge between
agent i and item j, if vij ≥ 2/3. In words, the graph’s edges connect agents with items they
value at least 2/3. Next, we solve a maximum matching T , and assign i bundle Ai = j, if
(i, j) ∈ T . All matched items and agents are removed from the instance and we normalize
valuations for the remaining agents. This process repeats until |SH | = 0, i.e., there are no
more high valued items.

SOSA 2019

20:8 Approximating Maximin Share Allocations

Greedy Assignment from SM . After completing the first phase, all high value items
are allocated. Next, we determine how to distribute medium and low value items among
the remaining agents. Our preprocessing step with Proposition 6 ensures the instance
is ordered (4), meaning there is a least preferred item in any set of items (5). More
precisely, j∗ = arg maxj∈SM

j is the least preferred item of SM (medium value items). When
|SM | > |N |, each agent must create at least one bundle containing two or more items of SM

when calculating their µi, by pigeon hole principle. Similar to the matching stage of the 1/2
MMS algorithm, we greedily assign the two least preferred items of SM , S = {j∗ − 1, j∗}, to
an arbitrary agent i with valuation vi(S) ≥ 2/3. This ensures the i receiving S gets at least
2/3µi, and the MMS of all remaining agents k in the reduced instance I ′ = (N \ i,M \ S, V)
satisfy: µ′k ≥ µk. Agent’s valuations are then normalized, and process repeats.

Modified Bag Filling. After allocating the bulk of medium value items |SM | ≤ |N |, we
create bundles for the remaining agents through a slightly modified version of bag filling.
Here, we simply initialize the bag S using one, arbitrary item from SM , and then fill the
bag with items from SL (low valued items) until some agent i values S at least vi(S) ≥ 2/3 .
Once |SM | = 0, we use the standard bag filling algorithm.

Recall that the challenge of improving the approximation guarantees of the 1/2 MMS
algorithm requires proper management of the medium valued items SM . Our approach,
using Proposition 6 and Theorem 7 to ensure the instance is ordered, enables a simple and
natural extension of the straight-forward 1/2 MMS algorithm to provide improved 2/3 MMS
guarantees.

The algorithm consists of two phases, matching and bag filling. The phases use different
allocation procedures based on |SH | and |SM | respectively. We consider these procedures
separately, starting with the matching procedure.

I Lemma 8. Let I = (N,M, V) be a problem instance where agents’ valuations are normalized
as defined in (2), and let µi be agent i’s MMS. Suppose |SH | > 0, as defined in (5), and that
the Matching Procedure is used to create a maximum matching T . Let L be the agents of T
and S be the items of T . Then,
(i) |L| = |S| > 0.
(ii) All removed agents i receive at least 2/3µi.
(iii) Let µ′i be the MMS of remaining agent i in the reduced instance I ′ = (N \L,M \ S, V).

Then, µ′i ≥ µi.

Proof. Recall the Matching Procedure creates a bipartite graph G = (V,E) where the
vertices V consist of agents on the left side and items on the right. An edge e ∈ E is created
between agent i and item j if vij ≥ 2/3. Finally, a maximum matching T is determined. By
definition of SH and the fact |SH | > 0, the set of edges E of G is non-empty. Since T is a
maximum matching, part i) is obvious. Next, recall that Proposition 2 shows that µi ≤ 1
for all i ∈ N since valuations are normalized. Part ii) then follows by the construction of G.
Finally, since |L| = |S|, Corollary 4 guarantees µ′i ≥ µi for all remaining agents i. J

We now consider the second procedure of the algorithm’s matching phase.

I Lemma 9. Let I = (N,M, V) be an ordered problem instance with normalized valu-
ations, and let µi be agent i’s MMS. Suppose that |SH | = 0 and |SM | > |N |. Define
j∗ = arg maxj∈SM

j, and let S = {j∗, j∗− 1} be the two least preferred items of SM . Suppose
bundle S is assigned an arbitrary agent k satisfying vk(S) ≥ 2/3. Then,
(i) vk(S) ≥ 2/3µk.
(ii) Let µ′i be the MMS of any remaining agent i in the reduced instance I ′ = (N\k,M\S, V).

Then, µ′i ≥ µi.

J. Garg, P. McGlaughlin, and S. Taki 20:9

Algorithm 3: 2/3-MMS Allocation.
Input :Ordered Instance 〈N,M, V 〉
Output : 2/3 Approximate Maximin Share Allocation

1 while |N | > 0 do
2 Normalize Valuations ;
3 if |SH | > 0 then
4 Matching Procedure ;
5 else if |SM | > |N | then
6 j∗ ← maxj∈SM

j; // lowest value item of SM

7 N(j∗)← {i : i ∈ N, vi(j∗, j∗ − 1) ≥ 2/3} ;
8 i ∈ N(j∗); Ai ← {j∗, j∗ − 1}; // assign i the bundle {j∗, j∗ − 1}
9 N ← N \ i; M ←M \ {j∗, j∗ − 1} ;

10 else
11 while |N | ≥ |SM | do
12 if |SM | > 0 then
13 S ← j ∈ SM ; // create a bag with arbitrary item of SM

14 else
15 S ← j ∈ SL; // create a bag with arbitrary item of SL

16 N(S) = {i : i ∈ N, vi(S) ≥ 2/3}; // N(S) changes with S

17 while |N(S)| = 0 do
18 j ∈ SL; S ← S ∪ j; // add arbitrary low value item to the bag

19 i ∈ N(S); Ai ← S ; // assign i the bundle S

20 N ← N \ i; M ←M \ S ;

Proof. The argument is a simple generalization of Proposition 3. From normalized valuations
and Proposition 2, µi ≤ 1 for all i ∈ N . By definition of the set SM , for all items j ∈ SM

there exists an agent k ∈ N so that vkj ≥ 1/3. Since the instance is ordered, if vkj ≥ 1/3,
then vkj′ ≥ 1/3 for all j′ ≤ j. Since |SM | > |N | > 0 and j∗ ∈ SM , there exists at least one
agent k ∈ N so that vk(S) ≥ 2/3µk, showing part i).

We now show part ii). For any remaining agent i in the reduced instance I ′, consider
the bundles A = {A1, . . . , An} she makes while computing her µi in the original instance I.
Note that vi(Aj) ≥ µi for all Aj ∈ A. In the reduced instance I ′, agent i must create one
less bundle, but has two fewer items, specifically j∗ and j∗ − 1. We show how to construct
a feasible allocation A′ = {A′1, . . . , A′n−1} so that vi(A′j) ≥ µi for all A′j ∈ A′. Notice that
the condition |SM | > |N | guarantees that at least one bundle, say Ak, must contain at least
two items, say u, v ∈ SM , by the pigeon hole principle. Wlog we may assume vi(u) ≤ vi(v).
Since we take the two lowest valued items of SM , S = {j∗, j∗ − 1}, then vi(j∗) ≤ vi(u) and
vi(j∗ − 1) ≤ vi(v). Let Aj∗ and Aj∗−1 be the bundles of A containing items j∗ and j∗ − 1
respectively. Suppose agent i swaps item u ∈ Ak with item j∗ ∈ Aj∗ and swaps item v ∈ Ak

with item j∗ − 1 ∈ Aj∗−1 to create A′k, A′j∗ , and A′j∗−1. Finally, i distributes the items of
A′k \ S to other bundles arbitrarily to create a new set of bundles A′ = {A′1, . . . , A′n−1}. It is
clear that A′ is a feasible allocation and that vi(A′j) ≥ µi. Therefore, agent i’s MMS µ′i in
the reduced instance I ′ satisfies µ′i ≥ µi. J

We now consider the algorithm’s second phase, bag filling.

SOSA 2019

20:10 Approximating Maximin Share Allocations

I Lemma 10. Let I = (N,M, V) be an ordered problem instance with normalized valuations.
Suppose that |SH | = 0 and 0 < |SM | ≤ |N |. Then, the modified bag filling algorithm ensures
all agents receive a bundle worth at least 2/3 of their maximin share.

Proof. This argument is a simple generalization of Proposition 5. In modified bag filling,
we simply initialize the bag S to an arbitrary item j ∈ SM . Notice that, this initialization
ensures the condition |SM | ≤ |N | holds in each iteration since we always remove one agent
and one item of SM . As valuations are normalized, it is enough to show all agents receive a
bundle worth at least 2/3.

First, note that |SL| > 0, since from normalized valuations and the fact that vij < 2/3
∀j ∈ SM , we see that ∀i ∈ N : vi(SL) = vi(M)− vi(SM) ≥ |N | − 2/3|SM | ≥ |N |/3 > 0. We
now show that some agent i eventually values the bag vi(S) ≥ 2/3. Let j ∈ SM be the initial
item of the bag. If there exists an agent i ∈ N such that vik < 1/3 for all k ∈ M , then,
clearly there exists some S′ ⊂ SL so that vi(j ∪S′) ≥ 2/3. Suppose that no such agent exists.
Note that from the definition of SM , there exists some agent i such that vij ≥ 1/3. Given
that vi(SL) ≥ |N |/3, we see that vi(j ∪ SL) ≥ 1/3 + |N |/3 ≥ 2/3 for |N | ≥ 1. Therefore,
there exists S′ ⊂ SL so that vi(j ∪ S′) ≥ 2/3. This establishes the bag is eventually assigned
to an agent who values it at least 2/3.

Let k be the agent assigned the bag S. Now, we show that vi(S) ≤ 1 for all other agents
i ∈ N \ k. Before adding the final item of the bag j′ ∈ S, vi(S \ j′) < 2/3 for all i ∈ N .
The final item added to the bag comes from SL so vi(j′) < 1/3 for all i ∈ N . Therefore,
vi(S) < 1 for all i ∈ N . This means that for each agent i, vi(M) ≥ |N | and vi(SL) ≥ |N |/3
are invariants of the algorithm. Then, it is easy to see all agents receive a bundle worth 2/3.
Finally, when |SM | = 0, all agents receive a bundle worth at least 2/3 by Proposition 5. J

From Lemmas 8, 9, and 10, we get the following theorem.

I Theorem 11. Algorithm 3 provides a 2/3 approximate MMS allocation.

I Remark. Lemmas 9 and 10 are really just simple generalizations of Propositions 3 and 5
(respectively) designed to manage medium valued items SM . In this sense, our algorithm
is natural generalization of the simple 1/2 MMS algorithm of Section 2.2 which improves
performance guarantees to 2/3 MMS.

4 Discussion

In this paper we investigate fair division of indivisible items using maximin share as our
measure of fairness of an allocation. We propose a simple greedy approximation algorithm to
obtain a 2/3 MMS allocation. Further, we show that our algorithm can be seen as a natural
extension of the 1/2 MMS algorithm discussed in Section 2.2. This allows for a far simpler,
and more intuitive analysis as compared to other existing 2/3 MMS approximations.

Our approach does not seem to generalize to provide better performance guarantees.
Consider designing an algorithm to give a 3/4 MMS allocation. Suppose we naively create
three clusters of items: high vij ≥ 3/4 for at least one agent i, medium vij ≥ 1/4 for at
least one agent but vij < 3/4 for all agents, and low vij < 1/4 for all agents. Similar to the
2/3 case, we allocate high valued items through maximum matching, and if all items are
low valued, then bag filling suffices to distribute all remaining items. Notice that, we must
assign two or three medium valued items to ensure an agent receives at bundle worth at
least 3/4. If |SM | > 2|N |, then we can guarantee each agent must create at least one bundle
containing three items from SM when computing their MMS, and therefore, may justify

J. Garg, P. McGlaughlin, and S. Taki 20:11

greedily assigning a bundle containing the three lowest valued items of SM to any agent who
values it at least 3/4. When 2|N | ≥ |SM | > |N |, the situation is less clear. We know each
agent creates at least one bundle containing two items from SM when computing their MMS,
but we can’t guarantee that some agent will value a bundle containing only the two lowest
valued items of SM at least 3/4. Further, we can’t guarantee that we may start bag filling
where we initialize the bag to the two least valuable items of SM since some agent might
value some set of two ‘better’ (more valuable) items of SM more than 1. If we initialize
the bag to only the lowest valued item of SM , then we might ‘run’ out of low valued items,
leaving only medium valued items and no way to ensure each remaining agent receives at
least 3/4.

Attempting a finer partitioning of SM significantly complicates analysis as it creates
numerous special cases based on the number of items within each sub-cluster of medium
valued items. Further, it is not clear that a simple allocation decision exists for all possible
special cases. For these reasons, it seems the approach presented in this paper is only capable
of producing a 2/3 MMS allocation. However, as our algorithm is closely related to the
simple 1/2 MMS approximation, we find our approach more intuitive than other existing 2/3
MMS algorithms.

References
1 Georgios Amanatidis, Evangelos Markakis, Afshin Nikzad, and Amin Saberi. Approxima-

tion algorithms for computing maximin share allocations. ACM Transactions on Algorithms
(TALG), 13(4):52, 2017.

2 Siddharth Barman and Sanath Kumar Krishna Murthy. Approximation algorithms for
maximin fair division. In Proceedings of the 2017 ACM Conference on Economics and
Computation, pages 647–664. ACM, 2017.

3 Sylvain Bouveret and Michel Lemaître. Characterizing conflicts in fair division of indivisible
goods using a scale of criteria. Autonomous Agents and Multi-Agent Systems, 30(2):259–290,
2016.

4 Sylvain Bouveret and Michel Lemaître. Efficiency and sequenceability in fair division of
indivisible goods with additive preferences. arXiv preprint arXiv:1604.01734, 2016.

5 Eric Budish. The combinatorial assignment problem: Approximate competitive equilibrium
from equal incomes. Journal of Political Economy, 119(6):1061–1103, 2011.

6 Mohammad Ghodsi, MohammadTaghi HajiAghayi, Masoud Seddighin, Saeed Seddighin,
and Hadi Yami. Fair allocation of indivisible goods: Improvement and generalization. In
EC, 2018.

7 David Kurokawa, Ariel D Procaccia, and Junxing Wang. When can the maximin share
guarantee be guaranteed? In AAAI, volume 16, pages 523–529, 2016.

8 David Kurokawa, Ariel D. Procaccia, and Junxing Wang. Fair Enough: Guaranteeing
Approximate Maximin Shares. J. ACM, 65(2):8:1–8:27, 2018.

9 Ariel D Procaccia and Junxing Wang. Fair enough: Guaranteeing approximate maximin
shares. In Proceedings of the fifteenth ACM conference on Economics and computation,
pages 675–692. ACM, 2014.

10 Hugo Steinhaus. The problem of fair division. Econometrica, 16:101–104, 1948.
11 Gerhard J Woeginger. A polynomial-time approximation scheme for maximizing the min-

imum machine completion time. Operations Research Letters, 20(4):149–154, 1997.

SOSA 2019

	p000-Frontmatter
	Preface
	Organisation

	p001-Rote
	Problem Statement: Weighted Isotonic L_1 Regression
	Our Algorithm
	The Dynamic Programming Setup
	The Functions f_k
	Representing Piecewise Linear Functions
	Carrying out the Recursion (4)
	The Weighted Regression Algorithm
	Runtime Analysis
	Unweighted Regression
	Other Error Measures: Weighted Isotonic L_2 Regression
	Other Algorithms
	Comparison
	Simplicity
	Incremental Computation (Prefix Regression)
	Numerical Precision
	Data Sensitivity

	Convexity Dynamic Programming
	Weighted Isotonic L_2 Regression
	Geometric Interpretation: Lower Envelope and Lower Convex Hull

	Direct Proof of Theorem 5
	The proof of Barlow, Bartholomew, Bremner, and Brunk (1972)

	p002-Alman
	Introduction
	Algorithm Overview
	Deterministic Light Bulb Problem
	Generality of the Light Bulb Problem

	Preliminaries
	Algorithm for the Light Bulb Problem
	Deterministic Algorithms
	Conclusion

	p003-Liu
	Introduction
	Algorithmic Framework
	Algorithms
	Related Work
	Analysis
	A Diameter Bound
	A Log-Squared Bound
	A Logarithmic Bound

	Remarks

	p004-Dereniowski
	Introduction
	Our Contribution – Improved Query Complexity
	Our Contribution – Simplified Algorithmic Techniques
	Related Work

	Preliminaries
	Vertex Searching
	Analysis of the Strategy
	Proof of Theorem 1
	Proof of Theorem 2

	Conclusions
	Analysis of the Generic Strategies for Edge Queries
	Application: Searching Unbounded Integer Ranges

	p005-Kaplan
	Introduction
	Soft heaps
	Selection from heap-ordered trees
	Selection from binary heaps
	Selection from d-ary heaps
	Selection from general heap-ordered trees

	Selection from row-sorted matrices
	An O(m+k) algorithm
	An O(m log k/m) algorithm, for k >= 2m
	An O(m+sum_{i=1}^m log n_i) algorithm
	An O(m+sum_{i=1}^m log (k_i+1)) algorithm
	Lower bounds for selection from row-sorted matrices

	Selection from X+Y
	An O(m+n+k) algorithm
	An O(m log k/m) algorithm, for k >= 6m, m >= n

	Concluding remarks

	p006-Quanrud
	Introduction
	Results
	Additional background
	Organization

	Oblivious transport
	Reduction to mixed packing and covering
	Reduction to packing

	p007-Chekuri
	Introduction
	Preliminaries
	Tree packings and minimum cuts
	Number of approximate minimum cuts
	Algorithm for minimum cut via tree packings

	Tree packings for k-cut via the LP relaxation
	Number of approximate k-cuts
	Enumerating all minimum k-cuts

	A new proof of the LP integrality gap for k-Cut
	Characterizing the optimum LP solution
	An optimum LP solution from the decomposition
	Implications of the characterization

	p008-Felsner
	Introduction
	History and Applications of the Theorem
	Primal-Dual Circle Representation: The Proof
	Kites
	The Angle Graph
	Angle Sums
	Iteration and Convergence
	Uniqueness
	Laying out the Kites
	Constructing the Circle Representation

	Tiling a Convex Polygon
	Comparison with Other Proofs
	Lemma 5
	Lemma 6

	Proof of Lemma 4

	p009-Barba
	Introduction
	How to solve ACIT with existing tools
	Geometric Preliminaries
	The Polar Transformation
	Conflict Sets, Epsilon-nets, and Closest Pairs

	A Simple Algorithm
	Description of the Algorithm
	Running Time
	Correctness
	The Final Algorithm

	p010-Filtser
	Introduction
	Algorithmic Framework
	Our Contribution
	Related Work

	Preliminaries
	SPR on trees
	Distortion Analysis

	M0E for Doubling Metrics
	Connected M0E
	Linear-Time Implementation

	p011-Assadi
	Introduction
	Our Results and Techniques

	Preliminaries and Notation
	A Simpler Proof of the Key Property of an EDCS
	One-Way Communication Complexity of Matching
	The Stochastic Matching Problem
	A Fault-Tolerant Subgraph for Matching
	Missing Details and Proofs
	Proof of Proposition 5
	Optimality of the (3/2)-Approximation Ratio in Result 3
	Other Standard Algorithms for Fault-Tolerant Matching

	p012-Ducoffe
	Introduction
	Our results

	Preliminaries
	Monte Carlo algorithm
	Deterministic algorithm
	Conditional Lower-bound

	p013-Ghaffari
	Introduction and Related Work
	Reviewing the Algorithm of Paz and Schwartzman
	The Basic Algorithm
	The Algorithm with Exponentially Increasing Weights

	Simplified Analysis
	Improved Algorithm

	p014-Kotrbcik
	Introduction
	Edge-addition techniques and maximum genus
	The Algorithm
	Notes

	p015-Manurangsi
	Introduction
	Our Results

	Notations
	Maximum k-Vertex Cover
	A Simple Observation and A Faster FPT-AS
	An Approximate Kernel
	Raghavendra-Tan Algorithm and An Improved Approximation

	Minimum k-Vertex Cover
	A Faster FPT-AS
	Non-Existence of Polynomial Size Approximate Kernel

	Concluding Remarks

	p016-Chang
	Introduction
	Contention Resolution
	Interlude: Homesick Random Walks
	The Efficiency Curve

	Amortized Analysis
	The Potential Function
	Analysis
	Variants and Extensions
	Channel Utilization

	Related Work
	Conclusions

	p017-Jin
	Introduction
	Main ideas of our algorithm

	Preliminaries
	Subset sum problem
	Polynomials and formal power series
	Modulo prime p
	Computing exponential using FFT

	Main algorithm

	p018-Liu
	Introduction
	The MapReduce Model

	A thresholding algorithm for submodular maximization
	A 1/2-o(1) approximation in 2 rounds
	A 1-(1-frac1t+1)^t approximation in 2t rounds

	Optimality of our choice of thresholds
	Appendix
	Auxiliary Results

	p019-Karmalkar
	Introduction
	Proof outline
	Related Work

	Definitions and notation
	Robustness of Gaussian matrices
	Proof of main theorem
	l_p regression for 0 < p < 1
	Lower bounds
	Empirical comparisons to prior work
	Facts about N(0,1)
	Shelling argument

	p020-Garg
	Introduction
	Preliminaries
	Properties of Maximin Share
	What Makes Finding Approximate MMS Allocations Hard?
	Results of Bouveret and Lemaître, and Barman and Murthy

	A 2/3 MMS Approximation
	2/3 MMS Algorithm

	Discussion

