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ATMOS 2008 Preface:

Algorithmic Approaches for Transportation

Modeling, Optimization, and Systems

Matteo Fischetti1 and Peter Widmayer2

DEI, Dipartimento di Ingegneria dell’Informazione, University of Padova, Italy

matteo.fischetti@unipd.it
Institute of Theoretical Computer Science, ETH Zürich, Switzerland

widmayer@inf.ethz.ch

The 8th ATMOS workshop was held in Karlsruhe, September 18,
2008, within ALGO, a set of meetings related to algorithms. The se-
ries of ATMOS workshops, starting in Heraklion in 2001, continuing in
Malaga in 2002, Budapest in 2003, Bergen in 2004, Palma de Mallorca in
2005, Zürich in 2006, and Sevilla in 2007 is by now an established series
of meetings between algorithms researchers dealing with transportation
problems, and practitioners, mainly from railways. The focus of ATMOS
is on complex and large-scale network optimization problems that require
new solution techniques and ideas from mathematical optimization and
theoretical computer science. Tools and concepts are rooted in graph and
network algorithms, combinatorial optimization, approximation and on-
line algorithms, stochastic and robust optimization. Of particular interest
are

– Infrastructure Planning
– Line Planning
– Timetable Generation
– Routing and Platform Assignment
– Vehicle Scheduling
– Crew and Duty Scheduling
– Rostering
– Demand Forecasting
– Design of Tariff Systems
– Maintenance and Shunting of Rolling Stock
– Delay Management
– Rolling Stock Rescheduling
– Simulation Tools for Railway Operations
– Timetable Information

More generally, ATMOS aims at the successful integration of sev-
eral of these subproblems or planning stages, algorithms operating in an
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2 Matteo Fischetti and Peter Widmayer

online/realtime or stochastic setting and heuristic or approximate algo-
rithms for real-world instances.

We received 15 submissions, out of which 12 were selected for pre-
sentation and inclusion in this volume, in a thorough reviewing process
guided by the program committee consisting of

– Cynthia Barnhart, MIT
– Ralf Borndörfer, Zuse Institute Berlin
– Alberto Caprara, University of Bologna
– Jens Clausen, Technical University of Denmark
– Guy Desaulniers, GERAD, Ecole Polytechnique Montréal
– Matteo Fischetti, University of Padova (Co-Chair)
– Leo Kroon RSM Erasmus University and Netherlands Railways
– Marc Nunkesser, ETH Zürich
– Anita Schöbel, University of Göttingen
– Dorothea Wagner, University of Karlsruhe
– Peter Widmayer, ETH Zürich (Co-Chair)

In addition, Rolf Möhring gave an invited talk on “Timetabling and
Robustness: Computing Good and Delay-Resistant Timetables”.

We sincerely thank the program committee for the competent work
in selecting the best papers and the external referees for their help, the
organizer Marc Nunkesser for taking care of all arrangements, the ALGO
organizing committee for embedding ATMOS so smoothly into the ALGO
programme, the editors of the Dagstuhl Seminar Proceedings for accept-
ing the publication of this volume within DROPS, and, last but not least,
the participants for the lively interaction that is the ultimate goal of the
meeting.

Padova and Zürich, October 2008

Matteo Fischetti and Peter Widmayer
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Selected Papers from the 8th Workshop on

Algorithmic Approaches for Transportation

Modeling, Optimization, and Systems

Matteo Fischetti1 and Peter Widmayer2

University of Padova, IT

and ETH Zürich, CH

Abstract. Proceedings of the 8thWorkshop on Algorithmic Approaches

for Transportation Modeling, Optimization, and Systems, held on Sept-

meber 18 in Karlsruhe, Germany.

ATMOS 2008 Preface � 8th Workshop on Algorithmic

Approaches for Transportation Modeling, Optimization,

and Systems

The 8th ATMOS workshop was held in Karlsruhe, September 18, 2008, within
ALGO, a set of meetings related to algorithms. The series of ATMOS workshops,
starting in Heraklion in 2001, continuing in Malaga in 2002, Budapest in 2003,
Bergen in 2004, Palma de Mallorca in 2005, Zürich in 2006, and Sevilla in 2007 is
by now an established series of meetings between algorithms researchers dealing
with transportation problems, and practitioners, mainly from railways.

Joint work of: Fischetti, Matteo; Widmayer, Peter

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2008/1593

Dynamic Algorithms for Recoverable Robustness Problems

Recently, the recoverable robustness model has been introduced in the optimiza-
tion area. This model allows to consider disruptions (input data changes) in a
uni�ed way, that is, during both the strategic planning phase and the operational
phase. Although the model represents a signi�cant improvement, it has the fol-
lowing drawback: we are typically not facing only one disruption, but many of
them might appear one after another. In this case, the solutions provided in the
context of the recoverable robustness are not satisfying. In this paper we extend
the concept of recoverable robustness to deal not only with one single recovery
step, but with arbitrarily many recovery steps. To this aim, we introduce the
notion of dynamic recoverable robustness problems. We apply the new model in
the context of timetabling and delay management problems. We are interested in
�nding e�cient dynamic robust algorithms for solving the timetabling problem
and in evaluating the price of robustness of the proposed solutions.

ATMOS 2008
8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2008/1592
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Keywords: Robustness, optimization problems, dynamic algorithms, timetabling,
delay management

Joint work of: Cicerone, Sera�no; Di Stefano, Gabriele; Schachtebeck, Michael;
Schöbel, Anita

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008/1587

E�cient On-Trip Timetable Information in the Presence

of Delays

The search for train connections in state-of-the-art commercial timetable infor-
mation systems is based on a static schedule. Unfortunately, public transporta-
tion systems su�er from delays for various reasons. Thus, dynamic changes of
the planned schedule have to be taken into account. A system that has access to
delay information of trains (and uses this information within search queries) can
provide valid alternatives in case a train change breaks. Additionally, it can be
used to actively guide passengers as these alternatives may be presented before
the passenger is already stranded at a station due to a broken transfer. In this
work we present an approach which takes a stream of delay information and
schedule changes on short notice (partial train cancellations, extra trains) into
account. Primary delays of trains may cause a cascade of so-called secondary
delays of other trains which have to wait according to certain waiting policies
between connecting trains. We introduce the concept of a dependency graph to
e�ciently calculate and update all primary and secondary delays. This delay in-
formation is then incorporated into a time-expanded search graph which has to
be updated dynamically. These update operations are quite complex, but turn
out to be not time-critical in a fully realistic scenario. We �nally present a case
study with data provided by Deutsche Bahn AG showing that this approach has
been successfully integrated into our multi-criteria timetable information system
MOTIS and can handle massive delay data streams instantly.

Keywords: Timetable information system, primary and secondary delays de-
pendency graph, dynamic graph update

Joint work of: Frede, Lennart; Müller-Hannemann, Matthias; Schnee, Mathias

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008/1584

Engineering Time-Expanded Graphs for Faster Timetable

Information

We present an extension of the well-known time-expanded approach for timetable
information. By remodeling unimportant stations, we are able to obtain faster
query times with less space consumption than the original model. Moreover,
we show that our extensions harmonize well with speed-up techniques whose
adaption to timetable networks is more challenging than one might expect.

http://drops.dagstuhl.de/opus/volltexte/2008/1587
http://drops.dagstuhl.de/opus/volltexte/2008/1584
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Keywords: Timetable information, shortest path, modeling

Joint work of: Delling, Daniel; Pajor, Thomas; Wagner, Dorothea

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008/1582

Integrated Gate and Bus Assignment at Amsterdam

Airport Schiphol

At an airport a series of assignment problems need to be solved before aircraft
can arrive and depart and passengers can embark and disembark. A lot of dif-
ferent parties are involved with this, each of which having to plan their own
schedule. Two of the assignment problems that the 'Regie' at Amsterdam Air-
port Schiphol (AAS) is responsible for, are the gate assignment problem (i.e.
where to place which aircraft) and the bus assignment problem (i.e. which bus
will transport which passengers to or from the aircraft). Currently these two
problems are solved in a sequential fashion, the output of the gate assignment
problem is used as input for the bus assignment problem. We look at integrat-
ing these two sequential problems into one larger problem that considers both
problems at the same time. This creates the possibility of using information re-
garding the bus assignment problem while solving the gate assignment problem.
We developed a column generation algorithm for this problem and have imple-
mented a prototype. To make the algorithm e�cient we used a special technique
called stabilized column generation and also column deletion. Computational
experiments with real-life data from AAS indicate that our algorithm is able to
compute a planning for one day at Schiphol in a reasonable time.

Keywords: Gate assignment, airports, integrated planning, column generation,
integer linear programming

Joint work of: Diepen, Guido; van den Akker, Marjan; Hoogeveen, Han

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008/1591

IP-based Techniques for Delay Management with Priority

Decisions

Delay management is an important issue in the daily operations of any railway
company. The task is to update the planned timetable to a disposition timetable
in such a way that the inconvenience for the passengers is as small as possible.
The two main decisions that have to be made in this respect are the wait-depart
decisions to decide which connections should be maintained in case of delays
and the priority decisions that determine the order in which trains are allowed
to pass a speci�c piece of track. They later are necessary in the capacitated case
due to the limited capacity of the track system and are crucial to ensure that the
headways between di�erent trains are respected and that single-track tra�c is

http://drops.dagstuhl.de/opus/volltexte/2008/1582
http://drops.dagstuhl.de/opus/volltexte/2008/1591
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routed correctly. While the wait-depart decisions have been intensively studied in
literature (e.g. [Sch06,Gat07]), the priority decisions in the capacitated case have
been neglected so far in delay management optimization models. In the current
paper, we add the priority decisions to the integer programming formulation of
the delay management problem and are hence able to deal with the capacitated
case. Unfortunately, these constraints are disjunctive constraints that make the
resulting event activity network more dense and destroy the property that it
does not contain any directed cycle. Nevertheless, we are able to derive reduc-
tion techniques for the network which enable us to extend the formulation of the
never-meet property from the uncapacitated delay management problem to the
capacitated case. We then use our results to derive exact and heuristic solution
procedures for solving the delay management problem. The results of the algo-
rithms are evaluated both from a theoretical and a numerical point of view. The
latter has been done within a case study using the railway network in the region
of Harz, Germany.

Joint work of: Schachtebeck, Michael; Schöbel, Anita

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008/1586

Line Planning on Paths and Tree Networks with

Applications to the Quito Trolebús System

Line planning is an important step in the strategic planning process of a public
transportation system. In this paper, we discuss an optimization model for this
problem in order to minimize operation costs while guaranteeing a certain level
of quality of service, in terms of available transport capacity. We analyze the
problem for path and tree network topologies as well as several categories of line
operation that are important for the Quito Trolebús system. It turns out that,
from a computational complexity worst case point of view, the problem is hard
in all but the most simple variants. In practice, however, instances based on real
data from the Trolebús System in Quito can be solved quite well, and signi�cant
optimization potentials can be demonstrated.

Keywords: Line planning, computational complexity, optimization in trans-
portation

Joint work of: Torres, Luis M.; Torres, Ramiro; Borndörfer, Ralf; Pfetsch,
Marc E.

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008/1583

Recoverable Robustness for Railway Rolling Stock

Planning

In this paper we explore the possibility of applying the notions of Recoverable

http://drops.dagstuhl.de/opus/volltexte/2008/1586
http://drops.dagstuhl.de/opus/volltexte/2008/1583
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Robustness and Price of Recoverability (introduced by [5]) to railway rolling
stock planning, being interested in recoverability measures that can be computed
in practice, thereby evaluating the robustness of rolling stock schedules. In order
to lower bound the Price of Recoverability for any set of recovery algorithms, we
consider an "optimal" recovery algorithm and propose a Benders decomposition
approach to assess the Price of Recoverability for this "optimal" algorithm. We
evaluate the approach on real-life rolling stock planning problems of NS, the
main operator of passenger trains in the Netherlands. The preliminary results
show that, thanks to Benders decomposition, our lower bound can be computed
within relatively short time for our case study.

Joint work of: Cacchiani, Valentina; Caprara, Alberto; Galli, Laura; Kroon,
Leo; Maróti, Gábor

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008/1590

Robust Line Planning under Unknown Incentives and

Elasticity of Frequencies

The problem of robust line planning requests for a set of origin-destination paths
(lines) along with their tra�c rates (frequencies) in an underlying railway net-
work infrastructure, which are robust to �uctuations of real-time parameters
of the solution. In this work, we investigate a variant of robust line planning
stemming from recent regulations in the railway sector that introduce compe-
tition and free railway markets, and set up a new application scenario: there
is a (potentially large) number of line operators that have their lines �xed and
operate as competing entities struggling to exploit the underlying network in-
frastructure via frequency requests, while the management of the infrastructure
itself remains the responsibility of a single (typically governmental) entity, the
network operator. The line operators are typically unwilling to reveal their true
incentives. Nevertheless, the network operator would like to ensure a fair (or, so-
cially optimal) usage of the infrastructure, e.g., by maximizing the (unknown to
him) aggregate incentives of the line operators. We show that this can be accom-
plished in certain situations via a (possibly anonymous) incentive- compatible
pricing scheme for the usage of the shared resources, that is robust against the
unknown incentives and the changes in the demands of the entities. This brings
up a new notion of robustness, which we call incentive-compatible robustness,
that considers as robustness of the system its tolerance to the entities' unknown
incentives and elasticity of demands, aiming at an eventual stabilization to an
equilibrium point that is as close as possible to the social optimum.

Joint work of: Kontogiannis, Spyros; Zaroliagis, Christos

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008/1581

http://drops.dagstuhl.de/opus/volltexte/2008/1590
http://drops.dagstuhl.de/opus/volltexte/2008/1581
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Simultaneous Network Line Planning and Tra�c

Assignment

One of the basic problems in strategic planning of public and rail transport is the
line planning problem to �nd a system of lines and its associated frequencies. The
objectives of this planning process are usually manifold and often contradicting.
The transport operator wants to minimize cost, whereas passengers want to have
travel time shortest routes without any or only few changings between di�erent
lines. The travel quality of a passenger route depends on the travel time and
on the number of necessary changings between lines and is usually measured by
a disutility or impedance function. In practice the disutility strongly depends
on the line plan, which is not known, but should be calculated. The presented
model combines line planning models and tra�c assignment model to overcome
this dilemma. Results with data of Berlin�s city public transportion network are
reported.

Keywords: Line planning problem, integer programming

Joint work of: Nachtigall, Karl; Jerosch, Karl

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008/1175

Solving Periodic Timetable Optimisation Problems by

Modulo Simplex Calculations

In the last 15 years periodic timetable problems have found much interest in the
combinatorial optimization community. We will focus on the optimisation task
to minimise a weighted sum of undesirable slack times. This problem can be
formulated as a mixed integer linear problem, which for real world instances is
hard to solve. This is mainly caused by the integer variables, the so-called modulo
parameter. At �rst we will discuss some results on the polyhedral structure of the
periodic timetable problem. These ideas allow to de�ne a modulo simplex basic
solution by calculating the basic variables from modulo equations. This leads to
a modulo network simplex method, which iteratively improves the solution by
changing the simplex basis.

Keywords: Periodic event scheduling problem, integer programming, modulo
network simplex

Joint work of: Nachtigall, Karl ; Opitz, Jens

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008/1588

http://drops.dagstuhl.de/opus/volltexte/2008/1175
http://drops.dagstuhl.de/opus/volltexte/2008/1588
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The Second Chvatal Closure Can Yield Better Railway

Timetables

We investigate the polyhedral structure of the Periodic Event Scheduling Prob-
lem (PESP), which is commonly used in periodic railway timetable optimiza-
tion. This is the �rst investigation of Chvátal closures and of the Chvatal rank
of PESP instances. In most detail, we �rst provide a PESP instance on only
two events, whose Chvatal rank is very large. Second, we identify an instance
for which we prove that it is feasible over the �rst Chvatal closure, and also
feasible for another prominent class of known valid inequalities, which we reveal
to live in much larger Chvatal closures. In contrast, this instance turns out to be
infeasible already over the second Chvátal closure. We obtain the latter result
by introducing new valid inequalities for the PESP, the multi-circuit cuts. In the
past, for other classes of valid inequalities for the PESP, it had been observed
that these do not have any e�ect in practical computations. In contrast, the new
multi-circuit cuts that we are introducing here indeed show some e�ect in the
computations that we perform on several real-world instances - a positive e�ect,
in most of the cases.

Joint work of: Liebchen, Christian; Swarat, Elmar

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008/1580

Towards Solving Very Large Scale Train Timetabling

Problems by Lagrangian Relaxation

The train timetabling problem considered is to �nd con�ict free routes for a set
of trains in a given railway network so that cer- tain time window conditions
are satis�ed. We deal with the very large scale problem of constructing such
timetables for the German railway network. A number of restrictions on di�er-
ent train types like freight trains or passenger trains have to be observed, e.g.,
sequence dependent headway times, station capacities, and stopping times. In
order to handle the enormous number of variables and constraints we employ
Lagrangian relaxation of the con�ict constraints combined with a cutting plane
approach. The model is solved by a bundle method; its primal aggregate is used
for separation and as starting point for rounding heuristics. We present some
promising results towards handling a test instance com- prising ten percent of
the entire network.

Joint work of: Fischer, Frank; Helmberg, Christoph; Janÿen, Jürgen; Krostitz,
Boris

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008/1585

http://drops.dagstuhl.de/opus/volltexte/2008/1580
http://drops.dagstuhl.de/opus/volltexte/2008/1585


Dynamic Algorithms for Recoverable

Robustness Problems⋆

S. Cicerone1, G. Di Stefano1, M. Schachtebeck2, and A. Schöbel2

1 Department of Electrical and Information Engineering, University of L’Aquila,
Italy. {cicerone,gabriele}@ing.univaq.it

2 Institute for Numerical and Applied Mathematics, Georg-August-University
Göttingen, Germany. {schachte,schoebel}@math.uni-goettingen.de

Abstract. Recently, the recoverable robustness model has been intro-
duced in the optimization area. This model allows to consider disruptions
(input data changes) in a unified way, that is, during both the strategic
planning phase and the operational phase. Although the model repre-
sents a significant improvement, it has the following drawback: we are
typically not facing only one disruption, but many of them might appear
one after another. In this case, the solutions provided in the context of
the recoverable robustness are not satisfying.
In this paper we extend the concept of recoverable robustness to deal not
only with one single recovery step, but with arbitrarily many recovery
steps. To this aim, we introduce the notion of dynamic recoverable ro-
bustness problems. We apply the new model in the context of timetabling
and delay management problems. We are interested in finding efficient
dynamic robust algorithms for solving the timetabling problem and in
evaluating the price of robustness of the proposed solutions.

Key words: Robustness, optimization problems, dynamic algorithms,
timetabling, delay management.

1 Introduction

In many applications of optimization, the input data is subject to uncertainties
and disruptions (input data changes). Thus, in most cases, it is desirable not
to have a solution that is optimal for the undisturbed input data, but that is
feasible even for disturbed input – at the cost of optimality.

Disruptions have to be considered both in the strategic planning phase and
in the operational phase. The latter phase aims to have immediate reaction to
disruptions that can occur when the system is running, while the former one
aims to plan how to optimize the use of the available resources according to
some objective function before the system starts operating.

To face disruptions in the operational phase, the approaches used are mainly
based on the concept of online algorithms [5]. An online recovery strategy has

⋆ Work partially supported by the Future and Emerging Technologies Unit of EC (IST
priority - 6th FP), under contract no. FP6-021235-2 (project ARRIVAL).

ATMOS 2008 
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to be developed when unpredictable disruptions in daily operations occur, and
before the entire sequence of disruptions is known. The goal is to react fast,
while retaining as much as possible of the quality of an optimal solution, that
is, a solution that would have been achieved if the entire sequence of disruptions
was known in advance.

To face disruptions in the strategic planning phase, the approaches used are
mainly based on stochastic programming and robust optimization.

Within stochastic programming (e.g., see [4, 14, 16]), there are two different
approaches: chance constrained programming aims to find a solution that sat-
isfies the constraints in most scenarios (i.e. with a high probability) instead of
satisfying them for all possible realizations of the random variables, while in
multi-stage stochastic programming, an initial solution is computed in the first
step, and each time when some new random data is revealed, a recourse action
is taken. However, stochastic programming requires detailed knowledge on the
probability distributions of the random variables.

In robust optimization (e.g., see [1–3, 7]), the objective – in contrast to
stochastic programming – is purely deterministic. In the concept of strict ro-
bustness, the solution has to be feasible for all admissible scenarios from a set
of input scenarios. The solution gained by this approach can then be fixed since
by construction it needs not to be changed when disturbances occur. However,
as the solution is fixed independently of the actual scenario, robust optimiza-
tion leads to solutions that are too conservative and thus too expensive in many
applications. One approach to compensate this disadvantage is the idea of light
robustness introduced in [8]. This approach adds slacks to the constraints. A
solution is considered as robust if it satisfies these relaxed constraints.

All the approaches above do not allow to consider disruptions in a unified
way, that is, for both the strategic planning and the operational phases. Re-
cently, a first contribution in this direction has been proposed in [15], where
the recoverable robustness model has been presented. It starts from the practical
point of view that a solution is robust if it can be recovered easily in case of a
disturbance. This means the solution no longer has to be feasible for all possible
scenarios, but a recovery phase is allowed to turn an infeasible solution into a
feasible one. However, some limitations on the recovery phase have to be taken
into account. For example, the recovery should be quick enough and the quality
of the recovered solution should not be too bad.

The initial model of [15] has been extended and applied to shunting problems
in [6]. There, the price of robustness is defined as the maximum ratio between
the cost of the provided robust solution and the optimal solution. According to
their price, robust algorithms may also be exact or optimal.

Although the recoverable robustness model represents a significant improve-
ment in the optimization area, it has the following drawback: We are typically
not facing only one disruption, but many of them might appear one after another.
In this case, the solutions provided in the context of the recoverable robustness
are not satisfying. In this paper we extend the concept of recoverable robust-
ness presented in [6] to deal not only with one single recovery step, but with
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arbitrarily many recovery steps. To this aim, we introduce the class DRRP(σ),
σ ∈ N, containing all the dynamic recoverable robustness problems which have
to be solved against σ possible disruptions, appearing one by one. The model
in [6] captures exactly the problems in DRRP(1), that is, the static recoverable
robustness problems.

A concrete example of real world systems, where our model plays an impor-
tant role, is the timetable planning. It arises in the strategic planning phase for
transportation systems, and it requires to compute a timetable with e.g. minimal
passenger waiting times. However, many disturbing events (caused by delays)
might occur during the operational phase, and they might completely change
the schedule. The problem of deciding which connections from a delayed train
to a connecting train should be guaranteed is known in the literature as delay
management problem [13, 17, 18]. This problem has been shown to be NP-hard
in the general case, while it is polynomial solvable in particular cases (see [9–12,
17, 18]).

In this paper, we apply the recoverable robustness model in the context
of timetabling and delay management problems. We are interested in finding
efficient dynamic robust algorithms for solving the timetabling problem and in
evaluating the price of robustness of the proposed solutions. In detail, we take two
particular timetabling problems and turn them into problems in DRRP(σ) by
defining specific modifications and recovery strategies. For one of such problems
we show that finding a solution which minimizes the objective function of the
corresponding timetable problem is NP-hard. In general, we propose dynamic
robust algorithms and evaluate their prices of robustness. We also prove that
such algorithms are optimal with respect to some specific instances.

The remainder of this paper is structured as follows: In Section 2, we show
how the concept of recoverable robustness from [15] can be extended to the
dynamic framework. Section 3 shows how this framework can be applied to
the delay-resistant timetables. In Sections 4 and 5, we propose dynamic robust
algorithms, evaluate their prices of robustness and prove optimality in specific
instances.

Due to space limitations, some proofs have been omitted.

2 The model

In this section, we extend the model concerning robustness for optimization prob-
lems introduced in [6, 15]. We consider minimization problems P characterized
by the following parameters:

– I, the set of instances of P ;
– F (i), the set of all (potential) feasible solutions for i ∈ I;
– f : S → R>0, the objective function of P that has to be minimized, where

S =
⋃

i∈I F (i).

In the dynamic robust optimization problem, we want to find a robust plan
for some given initial instance i ∈ I of P . Additional concepts to describe the
robustness for the minimization problem P are needed:
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– M : I → 2I – a modification function for instances of P . This function
models disturbances of the current scenario due to the following case. If
i ∈ I is the considered input (or scenario) of problem P , a disturbance is
meant as a modification of i leading to another input scenario i′ ∈ I. Such a
modification i′ depends on the current input i. In order to model this fact,
we define the set M(i) as the set of all instances which are modifications of
the instance i, i.e. instances that can occur if i is disturbed. Note that the
set of modifications may also depend on other information, e.g. on the data
of the initial instance.
Let s be the planned solution for the input i. When a disturbance i′ ∈ M(i)
occurs, a new solution s′ ∈ F (i′) has to be recomputed for P .

– σ – maximum number of expected modifications. In a practical scenario,
several disruptions i1, i2, . . . , iσ may occur. In this case, a task is to devise
recovery algorithms that can recompute the solution for P after each dis-
ruption.

– Arec – a class of recovery algorithms for P . Each element Arec : S × I → S
works as follows: given a solution s0 ∈ S of P (for the current instance i0)
and a modification i1 ∈ M(i0), then Arec(s

0, i1) = s1, where s1 ∈ F (i1) ⊆ S
represents the recovered solution for P . We remark that s0 and i1 define the
minimal amount of information necessary to recompute the solution. How-
ever, for specific cases, Arec could require additional information. In general,
when Arec is used at the k-th step, it can use everything that has been
processed in the previous steps (in particular, i0, ..., ik−1, and s0, ..., sk−1).

In general, a class of recovery algorithms Arec is defined in terms of some
kind of limitation. In what follows we provide two examples for the class
Arec.
A1

rec: this class is based on a constraint on the solutions provided by the re-
covery algorithm. In particular, the new (recovered) solutions computed
by an algorithm must not deviate too much from the original solution s,
according to a distance measure d. Formally: given a real number ∆ ∈ R
and a distance function d : S × S → R, we define A1

rec as the class of
algorithms Arec that satisfy the following constraint:
• ∀i ∈ I, ∀s ∈ F (i), ∀i′ ∈ M(i), d(s, Arec(s, i

′)) ≤ ∆.
A2

rec: this class is formulated by bounding the computational power of re-
covery algorithms. Formally: given a function f : I×S×I → N, we define
A2

rec as the class of algorithms Arec that satisfy the following constraint:
• ∀i ∈ I, ∀s ∈ F (i), ∀i′ ∈ M(i), Arec(s, i

′) can be computed in
O(f(i, s, i′)) time.

2.1 Static model

We first recall the basic definitions concerning robustness for optimization prob-
lems introduced in [6, 15].

Definition 1. [6] A recoverable robustness problem is defined by the triple
(P, M, Arec). All the recoverable robustness problems form the class RRP.
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Definition 2. [6] Let P = (P, M, Arec) be an element of RRP. Given an in-
stance i ∈ I for P , an element s ∈ F (i) is a feasible solution for i with respect
to P if and only if the following relationship holds:

∃Arec ∈ Arec : ∀i′ ∈ M(i), Arec(s, i
′) ∈ F (i′).

In other words, s ∈ F (i) is feasible for i with respect to P if it can be recovered
by applying some algorithm Arec ∈ Arec for each possible disruption i′ ∈ M(i).
Hence, s is called robust solution. We define FP(i) as the set of robust solutions
for i with respect to P .

Definition 3. [6] Given P = (P, M, Arec) ∈ RRP, a robust algorithm for P is
any algorithm Arob : I → S such that, for each i ∈ I, Arob(i) is robust for i with
respect to P.

2.2 Dynamic model

Here we extend the static model in order to deal with a sequence of σ ≥ 1
modifications.

Definition 4. A dynamic recoverable robustness problem is defined by
(P, M, Arec, σ), σ ∈ N. The class DRRP(σ) contains all the problems that have
to be solved against σ possible disruptions.

Definition 5. Let σ ∈ N and P = (P, M, Arec, σ) be an element of DRRP(σ).
A pair of algorithms (Arob, Arec) is called dynamic robust recovery pair for σ
and P if for each instance i0 ∈ I, Arec ∈ Arec and the following relationships
hold:

s0 := Arob(i
0) ∈ F (i0) (1)

sk := Arec(s
k−1, ik) ∈ F (ik), ∀ik ∈ M(ik−1), ∀k ∈ [1..σ], (2)

i.e. in the k-th step, for any possible modification ik ∈ M(ik−1) and for any
feasible solution sk−1 computed in the previous step, the output sk of algorithm
Arec is a feasible solution for ik with respect to P.

Note DRRP(1) = RRP. As a consequence, we refer to a static problem as a
problem in DRRP(1). We use the notation FP(i) to represent all robust solutions
for i with respect to P ∈ DRRP(σ) If Arec is the class of algorithms that never
change the solution s for the input i, i.e., if each algorithm Arec ∈ Arec satisfies

∀i ∈ I, ∀s ∈ S, ∀i′ ∈ M(i), Arec(s, i
′) = s,

then dynamic recovery robustness reduces to strict robustness. In this case, a
robust algorithm Arob for P must provide a solution s0 for i0 such that, for each
possible modification ik ∈ M(ik−1), we have s0 ∈ FP(ik) for all k ∈ [1..σ]. The
meaning is the following: If Arec has no recovery capability, then Arob has to
find solutions that “absorb” any possible sequence of disruptions.
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2.3 Price of robustness

For every instance i ∈ I, the price of robustness of Arob is given by the maximum
ratio between the cost of the solution provided by Arob and the optimal solution.

Definition 6. The price of robustness of a robust algorithm Arob for a problem
P ∈ DRRP(σ) is

Prob(P , Arob) = max
i∈I

{
f(Arob(i))

min{f(x) : x ∈ F (i)}

}

.

The price of robustness of a problem P ∈ DRRP(σ) is given by the minimum
price of robustness among all possible robust algorithms. Formally,

Definition 7. The price of robustness of a problem P ∈ DRRP(σ) is given by

Prob(P) = min{Prob(P , Arob) : Arob is a robust algorithm for P}.

If there are many robust algorithms possible for P , we want to identify the “best”
one:

Definition 8. Let P ∈ DRRP(σ) and let Arob be a robust algorithm for P.
Then,

– Arob is exact if Prob(P , Arob) = 1;
– Arob is P-optimal if Prob(P , Arob) = Prob(P). The solution computed by a

P-optimal algorithm is called P-optimal.

Note that the definition of an exact robust algorithm refers to the problem P .
We state a simple observation concerning the price of robustness.

Lemma 1. For fixed P , M , and Arec, consider a family of problems Pσ =
(P, M, Arec) for different values of σ, i.e. these problems vary in the expected
number of recoveries only. For σ1 < σ2, we have

– FPσ2
(i) ⊆ FPσ1

(i) for all instances i ∈ I,
– Prob(Pσ1

) ≤ Prob(Pσ2
), i.e. the price of robustness grows in the number of

expected recoveries.

Proof. Let s ∈ FPσ2
, i.e. there exist (Arob, Arec) such that (2) holds for all

k = 1, . . . , σ2, hence also for all k = 1, . . . , σ1. This yields s ∈ FPσ1
. Moreover, it

shows that Arob is robust for Pσ1
if Arob is robust for Pσ2

, hence also the second
statement holds. ⊓⊔

3 Application to Delay Management

In this section we apply the concept of dynamic robustness to a (simplified
variant) of the timetabling problem in public transportation. Timetabling is a
real-world problem which suffers a lot from disturbances or delays. Whenever an
unexpected source delay occurs, the timetable has to be recovered to a disposition
timetable. Recovering a given timetable in case of delays is known as the delay
management problem. Usually, there is not only one (source) delay but many
such delays during a day which occur one after another. Our concept of dynamic
recoverable robustness is hence important for this application.
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3.1 Notation and Definition

We first introduce the specific timetabling problem which we will consider, and
describe the delay scenarios and the restrictions for the recovery we are looking
at. We then investigate the recovery restrictions in detail.

The Initial Planning Problem. Let G = (V, A) be a directed acyclic graph (DAG)
with one specified node v1 such that there exists a directed path from v1 to each
other node.

Referring to the notation common in timetabling in public transportation,
let us call the nodes in V events and the edges A activities. The nodes refer to
arrival and departure events and the activities to driving, waiting and changing
activities. Moreover, we say a DAG G = (V, A) is a tree, if it is an out-tree to
some source node v1 (i.e. the path from v1 to each other node is unique), and a
linear graph if V = {v1, v2, . . . , vn} and A = {(v1, v2), (v2, v3), . . . , (vn−1, vn)}.

In order to define the timetabling problem, let us assume that we have given
weights wu ∈ R for each u ∈ V representing the importance of the corresponding
event and lower bounds L0

a ∈ R>0 indicating the minimal duration that is needed
for activity a ∈ A.

We are looking for a timetable π : V → R≥0 assigning a point of time to each
event u ∈ V . π is feasible if it respects the minimal duration of each activity (see
(3)), i.e. our initial planning problem P can be stated as

(P ) min f(π) =
∑

u∈V

wuπu s.t.

πv − πu ≥ L0
a ∀a = (u, v) ∈ A (3)

πu ∈ R≥0 ∀u ∈ V. (4)

An instance i of P is specified by i = (G, w, L0). Given a = (u, v) ∈ A, the
amount πv −πu −La is called slack time for the activity a. (P ) can be solved in
polynomial time by linear programming. We will consider two special cases of
(P), both having the same constraints (3) and (4), but differ in their objective
functions.

P1 Here we consider the objective which is usually used in timetabling, namely
to minimize the sum of all activity lengths (or equivalently to minimize the
slack times). The objective of this problem is

(P1) min f(π) =
∑

a=(u,v)∈A

wa(πv − πu),

with wa ∈ R≥0 for all a ∈ A. It is a special case of (P), namely if wu =
∑

a=(v,u)∈A wa −
∑

a=(u,v)∈A wa for each u ∈ V .

P2 Here we consider the problem (P) but require wu ≥ 0 for all u ∈ V .
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Note that (P2) can be efficiently solved by the forward phase of the critical path
method of project planning (CPM): given an instance i = (G, w, L0) of (P2),
the solution π = CPM(i) for i can be computed as follows:

CPM(i) =

{
πv = 0 if v = v1

πv = max {πu + La : a = (u, v) ∈ A} otherwise

The following lemmata can be proven by induction.

Lemma 2. Given an instance i = (G, w, L0) of (P1), CPM(i) is optimal if G
is a tree.

Note that this needs not to be true if G is not a tree: It often makes sense to
schedule events that do not belong to the critical path later than necessary to
avoid slack on activities with high weights wa.

Lemma 3. Given an instance i = (G, w, L0) of (P2), CPM(i) is optimal.

In the next sections we will use these lemmata to give a general solution
approach for some robustness versions of both (P1) and (P2).

The Static Problem. We first describe the problem Pσ=1 = (P, M, Arec, 1) ∈
DRRP(1), where P corresponds to one of the timetabling problems (P1) or (P2)
defined above, while M and Arec are defined as follows:

- The modification function M for an instance i0 = (G, w, L0) and a constant
α ∈ R>0 is defined as:

M(i0) =
{
(G, w, L1) : ∃a ∈ A : L0

a < L1
a ≤ L0

a + α and L1
a = L0

a∀a 6= a
}

.

Using this function, we represent the delay of an activity a by increasing the
initial value L0

a to some value L1
a > L0

a. The definition ensures that only one
delay is allowed (and bounded by α) and that nothing changes on all other
activities.

- The feasible set of recovery algorithms Arec. We are going to investigate the
following two limitations:

– limited-events: here we assume that there are resources to change the time
for a limited number of events only. In particular, if π is a solution for P and
x1 is a disposition timetable computed by any recovery algorithm in Arec,
then x1 must satisfy

d(x1, π) :=
∣
∣{u ∈ V : x1

u 6= πu}
∣
∣ ≤ ∆ (5)

for some given ∆ ∈ N.
– limited-delay: as second limitation of the recovery algorithm, we again

require that x1 must not deviate “too much” from the initial timetable π,
but this time we consider the sum of all deviations of all events. I.e. x1 must
satisfy

d(x1, π) :=
∥
∥x1 − π

∥
∥

1
≤ ∆ (6)

for some given ∆ ∈ N.
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In both cases, ∆ = 0 means strict robustness.

We are looking for a feasible pair (Arob, Arec) for Pσ=1 (according to Defi-
nition 5). The result of Arob is a robust solution π = Arob(i

0) ∈ FPσ=1
for each

instance i0 = (G, w, L0) of P . It has to satisfy the following constraints:

πv − πu ≥ L0
a, ∀a = (u, v) ∈ A

∀ (G, w, L1) ∈ M(i0), ∀u ∈ V, ∃ x1
u ∈ R≥0 : (7)

x1
v − x1

u ≥ L1
a, ∀a = (u, v) ∈ A (8)

x1
u ≥ πu, ∀u ∈ V (9)

d(x1, π) ≤ ∆. (10)

In Section 4.1 we show that it is NP-hard to compute the Pσ=1-optimal solution
for (P2) and the limited-delay case.

Concerning Arec, let us assume that π is a solution computed by any robust
algorithm Arob with respect to the instance i0. Let i1 = (G, w, L1) ∈ M(i0).
We know that (7)–(10) hold, i.e. a disposition timetable x1 exists. It can be
computed by an updating version of CPM:

CPM(i0, π, i1) =

{
x1

v = 0 if v = v1

x1
v = max

{
πv, max

{
x1

u + L1
a : a = (u, v) ∈ A

}}
otherwise.

This recovery algorithm computes the disposition timetable x1 with the mini-
mum value of d(x1, π) for both limitations, i.e. it minimizes

∣
∣{u ∈ V : x1

u 6= πu}
∣
∣

and
∥
∥x1 − π

∥
∥

1
at the same time. Hence it is able to recover (if a recovery solution

exists) or to find out that such a solution does not exist. Additionally, among all
timetables satisfying constraints (8)–(10), the recovery algorithm provides the
disposition timetable with the optimal value for (P2) and, if G is a tree, also for
(P1).

The Dynamic Problem. We already remarked that in real-world operation, we
have to expect more than one delay. We hence consider Pσ≥1 = (P, M, Arec, σ) ∈
DRRP(σ), σ ∈ N. We formalize M and Arec as follows:

- The modification function for an instance ik−1 = (G, w, Lk−1) and a constant
α ∈ R>0 is:

M(ik−1) =
{
(G, w, Lk) : ∃a ∈ A : Lk

a = Lk−1
a ∀a 6= a and L0

a ≤ Lk
a ≤ L0

a + α
}

.

- Arec is based on the same two limitations as in the static case. In particular, we
require that a solution xk computed by an algorithm in Arec satisfies d(xk, π) ≤
∆, where d is defined according to (5) or according to (6).

Let i0 = (G, w, L0) be an instance of Pσ≥1. Again, each robust solution sat-
isfies the (generalized) constraints (7)-(10). Analogously to the static case, the
updating version of CPM can be used as recovery algorithm.

In Section 4 we address the problem of designing robust algorithms for
Pσ≥1 = (P, M, Arec, σ) where P ≡ P2 and Arec is based on limited events



10 S. Cicerone, G. Di Stefano, M. Schachtebeck, and A. Schöbel

(see Eq. (5)). Similarly, in Section 5 we investigate the case in which P ≡ P1
and Arec is based on the overall delay according to Eq. (6). In both sections we
provide robust algorithms by using the following general approach: first, add an
additional slack time sa to the lower bounds L0

a of each activity a ∈ A; then,
compute an optimal solution of the resulting instance and take it as a robust
solution. Formally, we obtain an algorithm Alg+

s for each value of s:

Algorithm Alg+
s

input: An instance i0 = (G, w, L0) of (P)
algorithm: 1. Define L̄a := L0

a + s
2. Solve ī = (G, w, L̄) optimally.

The variant Alg∗s differs from Alg+
s at Step 1: L̄a := s · L0

a, that is, instead of
adding the slack time, all lower bounds are multiplied by some value.

According to Lemma 2, in the case of (P1), Step 2 can be done efficiently by
the critical path method CPM when G is a tree. Otherwise, linear programming
can be used. According to Lemma 3, in the case of (P2), Step 2 can be done
efficiently by the critical path method CPM when G is a DAG.

For the recoverable robustness problems addressed in Sections 4 and 5, al-
gorithms Alg+

s and Alg∗s are robust if s is large enough. Moreover, the price of
robustness increases in s. In particular:

– Alg+
s is strictly robust if s ≥ α. Alg∗s is strictly robust if s ≥

L0
a+α

L0
a

for all

a ∈ A.
– Let Alg+

s (Alg∗s) be robust. Then Alg+
s′ (Alg∗s′) is robust for all s′ ≥ s.

– Let Alg+
s1

and Alg+
s2

(Alg∗s1
and Alg∗s2

), s2 ≥ s1, be robust. Then

Prob(Pσ≥1, Alg+
s1

) ≤ Prob(Pσ≥1, Alg+
s2

), and

Prob(Pσ≥1, Alg∗s1
) ≤ Prob(Pσ≥1, Alg∗s2

).

According to the above algorithmic approach, in order to minimize the price of
robustness, the goal is to find the smallest value for s such that the respective
algorithms are robust. However, in Section 4 we also provide robust algorithms
based on a different approach (adding slack times only to specific activities).

4 Dynamic recovery with number of events as limitation

In this section we consider the first case of limitation: we have to find a timetable
π such that in each recovered solution xk, the times of up to ∆ nodes may deviate
from the original timetable, i.e. xk must satisfy (5) for some given ∆ ∈ N and
for all k = 1, 2, . . . , σ. Moreover, we consider the problem Pσ≥1 based on the
initial planning problem (P2).

It is clear that each timetable is robust if ∆ ≥ |V | − 1, so in the following,
we will always assume ∆ ≤ |V | − 2. If σ > ∆, we need strict robustness to get a
robust solution:
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Lemma 4. If σ > ∆, then a timetable is robust if and only if the slack s satisfies
sa ≥ α for each a ∈ A. In this case, we have strict robustness.

From Lemma 1 we know that FPσ≥1
(i0) ⊆ FPσ=1

(i0) ⊆ F (i0). Since the
set of robust solutions in the dynamic case is smaller than the same set in the
static case, the price of robustness for Pσ≥1 is smaller than or equal to the
price of robustness for Pσ=1. Now, we present an example showing that even
FPσ≥1

(i0) $ FPσ=1
(i0) $ F (i0) holds.

Example 1. Consider a simple instance i0 = (G, w, L0) of (P2), where: G =
(V, A) is a linear graph with four events and three activities, wu = 1 for each
u ∈ V , and L0

a = 1 for each a ∈ A. Concerning Pσ≥1, we fix α = 1 and ∆ = 1.
Figure 1 shows different solutions (timetables) for the instance i0. It is easy

to see that timetable πCPM (computed by CPM) is feasible for (P2). Conversely,
any delay on the first activity implies that all the subsequent three events must
be delayed. Hence, since ∆ = 1, then πCPM is not in FPσ=1

(i0).
A solution belonging to FPσ=1

(i0) is π. In fact, each possible delay on the
three activities, in order, is recovered by the three disposition timetables x, x′,
and x′′, respectively. Note that these timetables differ from π by at most ∆ = 1
events. On the other hand, π is not in FPσ≥1

(i0). This fact can be observed by
assuming that two delays, both of α time, occur on the first two activities. The
best disposition timetable that recovers these delays starting from π is x′′′, but
d(π, x′′′) = 3 > ∆.

0

1

2

3

4

5

πCPM π x′′′x′′x′x

d(π, x) = 1

d(π, x′′) = 1
d(π, x′′′) = 3

d(π, x′) = 0

Fig. 1. A graphical representation of different timetables described in Example 1. Bul-
lets represent events and arrows represent activities. Time assigned to each event cor-
responds to the integer associated to the horizontal line on which the event lies to. The
dotted part of arrows represents slack times.
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The following lemma implies that FPσ≥1
(i0) = FPσ=1

(i0) for ∆ = 0.

Lemma 5. Let Pσ=1 and Pσ≥1 defined with ∆ = 0. If Arob is a robust algorithm
for Pσ=1, then Arob is robust for Pσ≥1.

Proof. Let Arob be a robust algorithm for Pσ=1, and let π = Arob(i
0). We first

show that π assigns a slack time of at least α time to each activity. By con-
tradiction, let us assume that there exists an activity a = (u, v) ∈ A such that
πv − πu − La < α. Now, if a modification i1 ∈ M(i0) is such that L1

a = La + α,
namely a delay of α time occurs on a, then πv − πu < L1

a. This means that π is
not feasible for i1, a contradiction for ∆ = 0.

Since π assigns a slack of at least α time to each activity, it follows that Arob

is a robust algorithm for Pσ≥1. ⊓⊔

4.1 The complexity of computing the price of robustness

We show that the problem of computing the FPσ=1
-optimal solution is NP-hard

for (P2) (and hence also for (P)). This implies that computing the FPσ≥1
-optimal

solution is NP-hard.
To capture the concept of events affected by a delay, that is, those events

that must be postponed as a consequence of a given delay, we give the following
definition.

Definition 9. Given a DAG G = (V, A), a function s : A → R≥0, and a
number α ∈ R≥0, a vertex y is α-influenced by (u, v) ∈ A (equivalently (u, v)
α-influences y) if there exists a path p = (u ≡ u0, v ≡ u1, . . . , uk ≡ y) in G such

that
∑k

i=1 s(ui−1,ui) < α.

Remark 1. If x is α-influenced by a according to a path p, then all the vertices
belonging to p but the source are α-influenced by a.

In the above definition, function s represents slack times associated to activ-
ities able to (partially) absorb a delay. Note that every robust algorithm Arob

must provide a timetable π such that each arc cannot influence more than ∆ ver-
tices, otherwise there exists no Arec algorithm. In order to show the NP-hardness
of computing the FPσ=1

-optimal solution, we introduce a corresponding decision
problem called MRS (Minimum Robust Solution) that uses the concept of α-
influence.

MRS Problem

given: DAG G = (A, V ), a function L : A → R>0, a function w : V → R≥0,
and three numbers α ∈ R>0, ∆ ∈ N, K ∈ N

problem: Find a timetable π : V → R≥0 such that each arc α-influences at
most ∆ vertices, according to the function s : A → R defined as
sa=(i,j) = πj − πi − La, and such that

∑

u∈V wuπu ≤ K.

Theorem 1. MRS is NP-complete for any fixed ∆ ≥ 3.
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Proof. Omitted. ⊓⊔

Corollary 1. The problem of computing Prob(Pσ≥1) with number of events as
limitation is NP-hard.

4.2 Robust algorithms for σ = 1 on an arbitrary DAG.

We use the idea described in Section 3.1 (page 10) and add a slack to the minimal
durations of all activities or multiply them with some number >1. To this end,
let i = (G, L, w), α ∈ R≥0 and γ ∈ R>0, we denote iα = (G, L + α, w) and
iγ = (G, γL, w). We use the critical path method to define robust solutions for
Pσ=1 and Pσ≥1. In particular, we use the algorithms Alg+

α and Alg∗γ defined as

– Alg+
α (i) = CPM(iα);

– Alg
∗
γ(i) = CPM(iγ).

Let Lmin be the minimum value assigned by the function L with respect to all
the possible instances of Pσ≥1. In the following, let α be as in the definition of
the modification function M of Pσ≥1 and γ = (1 + α

Lmin
). We use α and γ to

get concrete instances of Alg+
α and Alg∗γ . According to the proof of Lemma 5, if

Pσ=1 is defined with ∆ = 0, then every robust algorithm for Pσ=1 must provide
solutions that assign a slack time of at least α to each activity. Then, it follows
that Alg+

α is a robust algorithm for Pσ=1. To show that also Alg∗γ is a robust
algorithm for Pσ=1, it is sufficient to observe that for each activity a ∈ A,

γLa = (1 +
α

Lmin

)La = La + α
La

Lmin

≥ La + α.

The following lemma shows the price of robustness of Alg∗γ .

Lemma 6. Let Pσ=1 be defined with ∆ = 0. Then, Prob(Pσ=1, Alg∗γ) = 1 +
α/Lmin.

Proof. By definition,

Prob(Pσ=1, Alg∗γ) = max
i∈I

{
f(Alg∗γ(i))

min{f(x) : x ∈ F (i)}

}

.

Let i = (G, L, w) be an instance of Pσ=1. Denoting by πγ the solution provided
by Alg∗γ(i), and by π the solution provided by CPM(i), then

Prob(Pσ=1, Alg∗γ) = max
i=(G,L,w)∈I

∑

u∈V wuπγ
u

∑

u∈V wuπu

.

Now we show that for each v ∈ V , πγ
v = γπv. By contradiction, let v ∈ V be an

event such that πγ
v 6= γπv and πγ

v is minimum. Clearly, v must be different from
v1 and hence there exists an activity a = (u, v) ∈ A such that πγ

v = πγ
u +γLa. As
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πγ
v is minimum and πγ

u < πγ
v , then πγ

u = γπu. It follows πγ
v = γπu + γLa = γπv,

a contradiction. Hence,

Prob(Pσ=1, Alg∗γ) = max
i=(G,L,w)∈I

∑

u∈V wuπγ
u

∑

u∈V wuπu

= max
i=(G,L,w)∈I

∑

u∈V wuγπu
∑

u∈V wuπu

= γ.

⊓⊔

Lemma 7. For each instance i ∈ I, f(Alg+
α (i)) ≤ f(Alg∗γ(i)).

Proof. Let i = (G, L, w) ∈ I. Let us denote by πγ the solution provided by
Alg∗γ(i), by πα the solution provided by Alg+

α (i), and by π the solution provided
by CPM(i). To prove the statement, it is sufficient to show that

πα
u ≤ πγ

u, ∀ u ∈ V.

By contradiction, let us assume that there exists an event u such that πα
u >

πγ
u. In the proof of Lemma 6, it is shown that πγ

u = γπu. Then,

πα
u > πγ

u = γπu = (1 +
α

Lmin

)πu.

Since, by contradiction hypothesis πα
u > πγ

u, then u 6= v1. It follows that there
exists a path (v1, . . . , u) in G such that its length ℓ is greater than 0. By definition
of Alg+

α , then
πα

u = πu + αℓ.

In conclusion,

πα
u = πu + αℓ > (1 +

α

Lmin

)πu = πu + α
πu

Lmin

.

It follows that ℓLmin > πu, a contradiction. ⊓⊔

Lemmata 6 and 7 imply the following results.

Corollary 2. Let Pσ=1 be defined with ∆ = 0. Then, Prob(Pσ=1, Alg+
α ) ≤ 1 +

α/Lmin.

4.3 Robust algorithms for σ = 1 on a linear graph.

In this section, we present an algorithm that computes an optimal robust
timetable for the problem (P2) for the case σ = 1 on a linear graph. The idea of
the algorithm is to add each slack “as late as possible”. Let V = {v1, . . . , v|V |}
be ordered such that A = {a1 = (v1, v2), . . . , a|A| = (v|V |−1, v|V |)}. Define sα by

sα
aj

:=

{

α if (∆ + 1)|j

0 else
(11)

for all arcs aj ∈ A. We then add sα
a to L0

a for each a ∈ A and calculate a solution
of (P2) by applying CPM. We denote this algorithm by Alg+

sα . The following
lemma states that a timetable π is robust if and only if the slack time of each
∆ + 1 consecutive arcs is large enough to let vanish the delay.



Dynamic Algorithms for Recoverable Robustness Problems 15

Lemma 8. If σ = 1 and ∆ ≤ |V | − 2, a timetable π for a linear graph G is
robust if and only if

∆∑

k=0

saj+k
≥ α for each j = 1, . . . , |A| − ∆. (12)

Theorem 2. Alg+
sα is an optimal robust algorithm for Pσ=1 based on the initial

problem (P2).

Proof. Omitted. ⊓⊔

Corollary 3. If G is a linear graph, there exists a linear time algorithm that
computes Pσ=1-optimal solutions.

Proof. Running algorithm Alg+
sα on a linear graph needs time O(|A|), checking

whether the output satisfies
∑

u∈V wuπu ≤ K needs time O(|V |). As Alg+
sα is

an optimal robust algorithm, it finds a feasible timetable if and only if (MRS)
is feasible. ⊓⊔

4.4 Robust algorithms for arbitrary σ on a linear graph.

We now present an algorithm for an arbitrary σ if G is a linear graph. It assigns
the same slack

s∗ = min

{

α,
σα

∆ + 1

}

(13)

to each arc. In the following, we will show that Alg+
s∗ is robust and that it is

optimal compared to all robust algorithms that add an equal slack s to all arcs.
We need the following two lemmata for the proof:

Lemma 9. If sa < α for all arcs a ∈ A, then the number of nodes affected
by a single delay of σα on arc aj = (vj , vj+1) is equal to the number of nodes
affected by σ single delays of α on the σ consecutive arcs aj+k = (vj+k, vj+k+1),
k = 0, . . . , σ − 1.

Proof. Let sa < α for all arcs a ∈ A. If, on the one hand, aj is delayed by
σα, then vj+1 has a delay of σα − saj

, vj+2 has a delay of σα − saj
− saj+1

and so on, and vj+σ has a delay of σα −
∑σ−1

k=0 saj+k
. If, on the other hand,

aj , . . . , aj+σ−1 are delayed by α, then vj+1 has a delay of α − saj
, vj+2 has a

delay of 2α − saj
− saj+1

and so on, and vj+σ has a delay of σα −
∑σ−1

k=0 saj+k
.

As sa < α for all arcs a ∈ A, all these delays are positive.

So in both cases, the nodes vj+1, . . . , vj+σ are affected, and as the delay of
vj+σ is the same in both cases, the total number of subsequent affected nodes is
the same, too. ⊓⊔

Lemma 10. If all arcs a ∈ A have the same slack sa = s, then the number of
nodes affected by σ delays of α on σ consecutive arcs is always greater than or
equal to the number of nodes affected by σ delays of α on σ non-consecutive arcs.
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Proof. Omitted. ⊓⊔

Now, we can prove that Alg+
s∗ is robust and that it is optimal for (P2):

Theorem 3. Let G be a linear graph. Assume that we add the same slack time
s to all arcs. Then Alg+

s is a robust algorithm for Pσ≥1 if and only if s ≥ s∗. If
s > s∗ and |V | > 1, then f(Alg+

s (i)) > f(Alg+
s∗(i)) if wu ≥ 0 for all nodes u ∈ V

and wu > 0 for at least one node u ∈ V .

Proof. Omitted. ⊓⊔

Theorem 4. Let s∗ be defined as in Eq. (13), and let G be a linear graph. If,
for each (G, w, L0) ∈ I, wa > 0 for at least one a ∈ A, then Prob(Pσ≥1, Alg+

s∗) ≤
1 + s∗/Lmin.

Proof. Omitted. ⊓⊔

5 Dynamic recovery with sum of delays as limitation

In this section we consider the second case of limitation: We have to find a
timetable π such that each recovered solution xk must not deviate too much
from the initial timetable π, i.e. xk must satisfy

d(xk, π) :=
∥
∥xk − π

∥
∥

1
≤ ∆ (14)

for some given ∆ ∈ N and for all k = 1, 2, . . . , σ. Throughout this section, we
consider the problem Pσ≥1 based on the initial planning problem (P1) which
implies that all weights wa are nonnegative.

Again, our strategy to make a timetable robust against delays is to add an
amount s of slack time to all the arcs, i.e. to use the algorithm Alg+

s .
We first investigate how much we loose in the optimal solution if we use Alg+

s

instead of an algorithm that computes the optimal (but not robust) solution of
(P1), i.e. without the additional slack s. Again, let Lmin be the minimum value
assigned by the function L with respect to all the possible instances of Pσ≥1.

Lemma 11. Let G be a tree and let wa > 0 for at least one a ∈ A. If Alg+
s is

robust, its price of robustness is Prob(Pσ≥1, Alg+
s ) ≤ 1 + s/Lmin.

Proof.

Prob(Pσ≥1, Alg+
s ) = max

i=(G,w,L0)∈I

∑

a=(u,v)∈A wa(L0
a + s)

∑

a=(u,v)∈A waL0
a

= 1 + s · max
i=(G,w,L0)∈I

∑

a=(u,v)∈A wa
∑

a=(u,v)∈A waL0
a

≤ 1 + s · max
i=(G,w,L0)∈I

∑

a=(u,v)∈A wa
∑

a=(u,v)∈A waLmin

≤ 1 + s/Lmin.

⊓⊔
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Now we discuss how much slack time s is needed to guarantee robustness
of Alg+

s . Our first result deals with strict robustness, i.e. if ∆ = 0. In this case
we have to make sure that any delay can be compensated by the slack time on
the corresponding edge. Since Lk

a never differs from L0
a by more than α in any

scenario, it suffices to add an additional slack of α to each L0
a for all a ∈ A. Then

the resulting disposition timetable in each step equals the original timetable π,
i.e. a recovery step is in fact not necessary.

Lemma 12. The algorithm Alg+
α is strictly robust (i.e. it is robust for the case

∆ = 0) for any graph G. Furthermore, if G is a tree, its price of robustness is
Prob(Pσ≥1, Alg+

α ) ≤ 1 + α/Lmin.

Proof. The robustness of Alg
+
α is clear. The price of robustness follows from

Lemma 11. ⊓⊔

Now we turn our attention to the case ∆ > 0, but first only look at one
recovery step (i.e. σ = 1). If ∆ ≤ α

2 , a robust solution can be found as follows:

Lemma 13. Let σ = 1 and ∆ ≤ α
2 . Then Alg

+
α−∆ is robust. Furthermore, if G

is a tree, its price of robustness is Prob(Pσ≥1, Alg+
α−∆) ≤ 1 + (α − ∆)/Lmin.

Proof. Let π be a solution computed by Alg+
α−∆ and let x be the solution after the

recovery phase. Assume that arc (u, v) ∈ A is delayed by α. Let wj , j = 1, . . . , l,
be the set of nodes directly connected to v by an arc (v, wj) ∈ A, see Figure 2.
We calculate the delays as

...u v

w1

wl

Fig. 2. The DAG for the proof of Lemma 13.

xv − πv = α − (α − ∆) = ∆

xwj
− πwj

≤ [∆ − (α − ∆)]+ = 0 for all j = 1, . . . , l,

the latter using ∆ ≤ α
2 . Hence,

∑

u∈V

(xu − πu) = ∆.

The price of robustness follows from Lemma 11. ⊓⊔
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Next, we simplify the network and look at a linear graph. However, this
simplification allows to drop the restrictions on ∆ and σ from the previous
lemmata.

Theorem 5. Let G be a linear graph. Then Alg+
s is robust for Pσ≥1 if and only

if

s ≥ s∗ :=
2σα

(⌈
2∆
σα

⌉
+ σ

)
− σα(σ + 1) − 2∆

(⌈
2∆
σα

⌉
+ σ

) (⌈
2∆
σα

⌉
+ σ − 1

) .

Proof. Omitted. ⊓⊔

Corollary 4. It holds that s∗ ≥ σ2α2

2∆+σ2α
where equality holds if s∆

σα
is integer.

Proof. One can compute that s∗ ≥ σ2α2

2∆+σ2α
if and only if

⌈
2∆

σα

⌉

σα

︸ ︷︷ ︸

:=A

(

4∆ + σα − σα

⌈
2∆

σα

⌉)

︸ ︷︷ ︸

:=B

≥ 2∆
︸︷︷︸

:=C

(2∆ + σα)
︸ ︷︷ ︸

:=D

.

For the latter expression note that A, B, C, D ≥ 0 and that A + B = C + D and
that A − B ≤ D − C. Hence AB ≥ CD and the lower bound is established.

Plugging in s∗ in the case that s∆
σα

is integer shows (after some calculations)
that equality holds. ⊓⊔

The price of robustness of algorithm Alg+
s∗ can finally be written down.

Corollary 5. Let G be a linear graph. Then Prob(Pσ≥1, Alg+
s∗) = 1 + s∗ where

s∗ is the minimal slack time of Theorem 5.

Note that for a concrete scenario, a slack smaller than s∗ might also give a
robust timetable. This might happen for example if no two source-delayed arcs
follow each other or if the size of the network is limited such that at least one
node u ∈ V with a delay of (xu − πu) > s∗ has no outgoing arc. However, we
are not interested in one special scenario, but in all possible scenarios from the
set of admissible scenarios.

We also remark that this is a discussion of Prob(P , Alg+
s ) only. The question

if there exists an approach which does better in the worst case is still open. But
note that it need not be optimal to add the same slack s to all arcs when the
weights wa are different from each other. This can be seen in the following

Example 2. Consider G = (V, A) with V = {v1, v2, v3, v4}, A =
{(v1, v2), (v2, v3), (v3, v4)}, weights w = (1, 100, 1) and lower bounds L0 =
(1, 1, 1), see Fig. 3. Let α = 4, ∆ = 5 and σ = 1. If we add the same slack
to all arcs, we need at least a slack of 2. With s = (2, 2, 2), we have

∑

a=(u,v)∈A

wa(πv − πu) =
∑

a=(u,v)∈A

wa(L0
a + s) = 306
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(if we schedule each node as early as possible, i.e. πj := πj−1 + Lj−1 + sj−1,
j = 2, . . . , 4). If we allow different slacks on the arcs and set s = (2, 0, 3), we get
a robust timetable with

∑

a=(u,v)∈A

wa(πv − πu) = 107.

v1
wa = 1

La = 1
v2

wa = 100

La = 1
v3

wa = 1

La = 1
v4

Fig. 3. The DAG for example 2.

0 10 20 30 40 50 60
0

5

10

15

20

 

 

upper bound on PoR (Section 5)
upper bound on PoR (Section 4.4)

Fig. 4. The price of robustness, depending on the actual restrictions on the recovery
algorithm, for α = 20 and ∆ = 1000 as a function of σ.

6 Conclusions

In this paper, we showed how the concept of recoverable robustness from [15] can
be extended to the concept of dynamic recoverable robustness. We showed how
this concept can be applied to the delay management problem and suggested
different concrete restrictions of the recovery algorithm.

Depending on the concrete restrictions on the recovery algorithms, the price
of robustness is very different. In Figure 4, we give the price of robustness for a
linear graph if we either restrict the number of nodes being affected by a delay
or if we restrict the allowed deviation from the original timetable.
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Abstract. The search for train connections in state-of-the-art commer-
cial timetable information systems is based on a static schedule. Unfortu-
nately, public transportation systems suffer from delays for various rea-
sons. Thus, dynamic changes of the planned schedule have to be taken
into account. A system that has access to delay information of trains
(and uses this information within search queries) can provide valid al-
ternatives in case a train change breaks. Additionally, it can be used to
actively guide passengers as these alternatives may be presented before
the passenger is already stranded at a station due to a broken transfer.
In this work we present an approach which takes a stream of delay infor-
mation and schedule changes on short notice (partial train cancellations,
extra trains) into account. Primary delays of trains may cause a cascade
of so-called secondary delays of other trains which have to wait according
to certain waiting policies between connecting trains. We introduce the
concept of a dependency graph to efficiently calculate and update all pri-
mary and secondary delays. This delay information is then incorporated
into a time-expanded search graph which has to be updated dynami-
cally. These update operations are quite complex, but turn out to be
not time-critical in a fully realistic scenario. We finally present a case
study with data provided by Deutsche Bahn AG showing that this ap-
proach has been successfully integrated into our multi-criteria timetable
information system MOTIS and can handle massive delay data streams
instantly.

Keywords: timetable information system, primary and secondary de-
lays, dependency graph, dynamic graph update

1 Introduction and Motivation

In recent years the performance and quality of service of electronic timetable
information systems has increased significantly. Unfortunately, not everything
runs smoothly in scheduled traffic and the presence of delays is the norm rather
than the exception.

ATMOS 2008 
8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems 
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Delays can have various causes: Disruptions in the operations flow, accidents,
malfunctioning or damaged equipment, construction work, repair work, and ex-
treme weather conditions like snow and ice, floodings, and landslides to name
just a few. A system that incorporates up-to-date train status information (most
importantly information about future delays based on the current situation) can
provide a user with valid timetable information in the presence of disturbances.

Such an on-line system can additionally be utilized to verify the current
status of a journey:

– Journeys can either be still valid (i.e., they can be followed as planned),
– can be affected such that the arrival at the destination is delayed,
– or may no longer be possible.

In the latter case a connecting train will be missed, either because the connecting
train cannot wait for a delayed train, or the connecting train may have been
canceled. In a delay situation, such a status information is very helpful. In the
positive case that all planned train changes are still possible, passengers can
be reassured that they do not have to worry about potential train misses. To
learn that one arrives x minutes late with the planned sequence of trains may
allow a customer to make arrangements, e.g. inform someone to pick one up
later accordingly. In the unfortunate case that a connecting train will be missed,
this information can now be obtained well before the connection breaks and
the passenger is stranded at some station. Therefore, valid alternatives may be
presented while there are still more possibilities to act. This situation is clearly
preferable over missing a connecting train and than going to a service point to
request an alternative.

As up to now the commercial systems do not take the current situation into
account (although estimated arrival times may be accessible for a given connec-
tion, these times are not used actively during the search), their recommendations
may be impossible to use, as the proposed alternatives already suffer from delays
and may even already be infeasible at the time they are delivered by the system.

Static timetable information systems. The standard approach to model
static timetable information is as a shortest path problem in either a time-
expanded or time-dependent graph. The recent survey [1] describes the models
and suitable algorithms in detail. We developed our timetable information sys-
tem MOTIS which performs a multi-criteria search for train connections in a
realistic environment using a suitably constructed time-expanded graph. Our
underlying model ensures that each proposed connection is indeed feasible, i.e.
can be used in reality. The criteria considered are travel time, number of in-
terchanges, ticket cost, and reliability of all interchanges of a connection. The
system is able to present many attractive alternatives to customers [2].

Our contribution and overview. Previous research on timetable information
systems has focused on the static case where the timetable is considered as fixed.
Here we start out a new thread of research on dynamically changing timetable
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data due to disruptions. We extended our timetable information system MOTIS
to use current train status information. Modeling issues have been discussed on a
theoretical level but no true to life system with real delay data has been studied
in the literature and to our knowledge no such system that guarantees optimal
results (with respect to even a single optimization criterion) exists.

We give first results of implementing such a system for a real world scenario
with no simplifying assumptions at all. The architecture we propose is intended
for a multi-server environment where the availability of search engines has to be
guaranteed at all times. Our system consists of two main components, the depen-
dency graph and the search graph. The dependency graph is used to efficiently
propagate primary delay information according to waiting policies. The overall
new status information is then incorporated into the search graph which is used
for customer search queries. Our dependency graph is similar to a simple time-
expanded graph model with distinct nodes for each departure and arrival event
of the whole schedule for the current and following days. This is a natural and
efficient model since every event has to store its own update information. For the
search graph, however, we are free to use either the time-expanded or the time-
dependent model. In this paper, we have chosen to use the time-expanded model
for the search graph since MOTIS is based on this. Although update operations
are quite complex in this model, it will turn out that they can be performed
very efficiently, in less than a millisecond per update message on average.

We will also discuss the difference between searches in an on-trip scenario,
where a passenger is either stranded at a station or in a train whose connecting
train will be missed, to classical pre-trip searches.

The rest of this paper is organized as follows: In Section 2, we will discuss
primary and secondary delays. We introduce our architecture in Section 3 and
its two components, the update of the search graph (in Section 4) and the prop-
agation algorithm on our dependency graph model (in Section 5). In Section 6,
we present our approach to perform on-trip as opposed to pre-trip searches. Af-
terwards, we provide our experimental results in Section 7. Finally, we conclude
and give an outlook.

Related work. Delling et al. [3] independently of us came up with ideas on
how to regard delays in timetabling systems. In contrast to their work we do
not primarily work on edge weights, but consider nodes with time stamps. The
edge weight for time follows, whereas edge weights for transfers and cost do not
change during the update procedures. This is important for the ability to do
multi-criteria search.

A related field of current research is disposition and delay management. Gatto
et al. [4,5] have studied the complexity of delay management for different sce-
narios and have developed efficient algorithms for certain special cases using
dynamic programming and minimum cut computations. Various waiting poli-
cies have been discussed, for example by Ginkel and Schöbel [6]. Schöbel [7] also
proposed integer programming models for delay management. Stochastic models
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for the propagation of delays are studied, for example, by Meester and Muns [8].
Waiting policies in a stochastic context are treated in [9].

2 Up-To-Date Status Information

2.1 Primary Delay Information

First of all, the input stream of status messages consists of reports that a certain
train departed or arrived at some station at time τ either on time or delayed
by x minutes. In case of a delay, such a message is followed by further messages
about predicted arrival and departure times for all upcoming stations on the
train route.

Besides, there can be information about additional special trains (a list of
departure and arrival times at stations plus category, attribute and name infor-
mation). Furthermore, we have (partial) train cancellations, which include a list
of departure and arrival times of the canceled stops (either all stops of the train
or from some intermediate station to the last station).

Moreover, we have manual decisions by the transport management of the
form: “Change from train t to t′ will be possible” or “will not be possible”.
In the first case it is guaranteed that train t′ will wait as long as necessary to
receive passengers from train t. In the latter case the connection is definitively
going to break although the current prediction might still indicate otherwise.
This information may depend on local knowledge, e.g. that not enough tracks
are available to wait or that additional delays are likely to occur, or may be
based on global considerations about the overall traffic flow. We call messages
of this type connection status decisions.

2.2 Secondary Delays

Secondary delays occur when trains have to wait for other delayed trains. Two
simple, but extreme examples for waiting policies are:

– never wait
In this policy, no secondary delays occur at all. This causes many broken
connections and in the late evening it may imply that customers do not
arrive at their destination on the same travel day. However, nobody will be
delayed who is not in a delayed train.

– always wait as long as necessary
In this strategy, there are no broken connections at all, but massive delays
are caused for many people, especially for those whose trains wait and have
no delay on their own.

Both of these policies seem to be unacceptable in practice. Therefore, train
companies usually apply a more sophisticated rule system specifying which trains
have to wait for others and for how long. For example, the German railways
Deutsche Bahn employ a complex set of rules, dependent on train type and local
specifics.
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In essence, this works as follows: There is a set of rules describing the max-
imum amount of time a train t may be delayed to wait for passengers from a
feeding train f . Basically, these rules depend on train categories and stations.
But there are also more involved rules, like if t is the last train of the day in
that direction, the maximum delay time is increased, or during peak hours, when
trains operate more frequently, the maximum delay time may be decreased.

The waiting time wt(t, s, f) is the maximum delay acceptable for train t at
station s waiting for a feeding train f . Let depsched(s, t) and dep(s, t) be the
departure time according to the schedule resp. the new departure time of train t
at station s, arr(s, t) the arrival time of a train and minct(s, f, t) the minimum
change time needed from train f to train t at station s. Note that in a delayed
scenario the change time can be reduced, as guides may be available that show
changing passengers the way to their connecting train. If the following equation
holds

arr(s, f) + minct(s, f, t) − depsched(s, t) < wt(t, s, f)

train t will incur a secondary delay because it waits for f at station s. Its new
departure time is determined by the following equation

dep(s, t) =

{
arr(s, f) + minct(s, f, t) if t waits
depsched(s, t) otherwise .

In case of several delayed feeding trains, the new departure time will be deter-
mined as the maximum over these settings.

During day-to-day operations these rules are always applied automatically.
If the required waiting time of a train lies within the bounds defined by the rule
set, trains will wait. Otherwise they will not. All exceptions from these rules
have to be given as connection status decisions.

3 System Architecture

Our system consists of two main components. One part is responsible for the
propagation of delays from the status information and for the calculation of
secondary delays, while the other component handles connection queries. The
core of the first part is a dependency graph which models all the dependencies
between different trains and between the stops of the same train (in Section 5 we
give more details on that). The obtained information is then sent to the search
graph which is updated accordingly. This decoupling of dependency and search
graph allows us to use any graph model for the search graph.

In a distributed scenario this architecture can be realized with one server
for the dependency graph that continuously receives new status information and
broadcasts the update information to a number of servers on which the query
algorithms run. Load balancing can schedule the update phases for each server.
If this is done in a round robin fashion, the availability of service is guaranteed.

Our design decision to work with two separate components also gives us ad-
ditional flexibility when to broadcast the update information. In this paper, we
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Fig. 1. The change level at a station (left) and changes if train t∗ arrives earlier
(middle picture) or train t arrives later (right).

broadcast the update information immediately when it becomes available. How-
ever, a reasonable alternative is to broadcast a consistent update state only every
∆ minutes, for some small ∆. This option may save many update operations in
the search graph which, in particular, result from small oscillations in forecasts
of trains with frequent comparisons of actual and scheduled times.

4 Updating the Search Graph

Time-Expanded graph model. Let us briefly recall the time-expanded graph
model. The basic idea is to introduce a directed search graph where every node
corresponds to a specific event (departure, arrival, change of a train) at a station.

A connection served by a train from station A to station B is called elemen-
tary, if the train does not stop between A and B. Edges between nodes represent
either elementary connections, waiting within a station, or changing between two
trains. For each optimization criterion, a certain length is associated with each
edge.

Traffic days, possible attribute requirements and train class restrictions with
respect to a given query can be handled quite easily. We simply mark train edges
as invisible for the search if they do not meet all requirements of the given query.
With respect to this visibility of edges, there is a one-to-one correspondence
between feasible connections and paths in the graph.

More details of the graph model can be found in [2].

Modeling interchanges in a time-expanded graph. To model non-constant
change times between pairs of trains, additional nodes and edges are required
besides the ones for arrival and departure events. In forward search (when the
desired departure is specified), for every departure time at a station there is a
change node connected via entering edges to all departure nodes at that time.
The change nodes are interconnected with waiting edges. Leaving edges link to
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the first change node which is reachable in the time needed for a transfer from
this train to any other. All possible shorter change times (e.g. for trains at the
same platform) are realized using special transfer edges. Additionally, we have
stay-in-train edges. Only entering edges carry the cost of a train change.

In Figure 1 (left) it is possible to change from train t to all trains departing
not earlier than t′′ using leaving edge g, any number of waiting edges and an
entering edge (e.g. h to enter t′′). A change to train t′ on the same platform is
also feasible using special interchange edge f and, of course, to stay in train t
via stay-in-train edge e. However, it is impossible to change to train t∗ although
it departs later than t′, because it requires more time to reach it.

Updates The update in the search graph does not simply consist of setting
new time stamps for nodes (primary and secondary delays), insertions (addi-
tional trains) and deletions (cancellations) of nodes and resorting lists of nodes
afterwards. Furthermore, all the edges present to model the changing of trains at
the affected stations have to be recomputed respecting the changed time stamps,
additional and deleted nodes, and connection status information. The following
adjustments are required on the change level (see Figure 1):

– Inserting change nodes or unhooking them from the waiting edges chain at
times where a new event is the only one or the only event is moved away or
canceled.

– Updating the leaving edges pointing to the first node reachable after a train
change.

– Updating the nodes reachable from a change node via entering edges.
– Recalculating special interchange edges from resp. to arrival resp. departure

nodes with a changed time stamp (either remove, adjust or insert special
interchange edges).

The result of the update phase is a graph that looks and behaves exactly as if
it was constructed from a schedule describing the current situation. Additionally
it contains information about the original schedule and reasons for the delays.

Next we give two examples for updating the search graph1: Suppose train t∗

manages to get rid of some previous delay and now arrives and departs earlier
than previously predicted (see Figure 1, middle part). In the new situation it is
now possible, to change to train t′′ using the new leaving edge n and the existing
entering edge h.

In our second example let train t arrive delayed as depicted in Figure 1
(right). As it now departs after t′, it is not only impossible to change to t′

(special interchange edge f is deleted), but also the change departure nodes for
the departures of t’ and t are in reverse order. Therefore, the waiting edges have
to be relinked. Furthermore, a change to t′′ is no longer possible, so the leaving
edge h points to a node later than the departure of t′′.

1 Note that we increased the station dependent interchange time from the middle to
the right extract to make this example work.
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5 Dependency Graph

5.1 Graph Model

Our dependency graph (see Fig. 2) models the dependencies between different
trains and between the stops of the same train. Its node set consists of four types
of nodes:

– departure nodes,
– arrival nodes,
– forecast nodes, and
– schedule nodes.

Each node has a time stamp which can dynamically change. Departure and
arrival nodes are in one-to-one correspondence with departure and arrival events.
Their time-stamps reflect the current situation, i.e. the expected departure or
arrival time subject to all delay information known up to this point.

Schedule nodes are marked with the planned time of an arrival or depar-
ture event, whereas the time stamps of forecast nodes is the current external
prediction for their departure or arrival time.

The nodes are connected by five different types of edges. The purpose of
an edge is to model a constraint on the time stamp of its head node. Each
edge e = (v, w) has two attributes. One attribute is a Boolean value, signifying
whether this edge is currently active or not. The other attribute τ(e) denotes a
point in time which basically can be interpreted as a lower bound on the time
stamp of its head node w, provided that the edge is currently active.

– Schedule edges connect schedule nodes to departure or arrival nodes. They
carry the planned time for the corresponding event of the head node (accord-
ing to the published schedule). Edges leading to departure nodes are always
active, since a train will never depart prior to the published schedule.

– Forecast edges connect forecast nodes to departure or arrival nodes. They
represent the time stored in the associated forecast node. If no forecast for
the node exists, the edge is inactive.

– Standing edges connect arrival events at a certain station to the following
departure event of the same train.
They model the condition that the arrival time of train t at station s plus
its minimum standing time stand(s, t) must be respected before the train
can depart (to allow for boarding and deboarding of passengers). Thus, for
a standing edge e, we set τ(e) = arr(s, t) + stand(s, t). Standing edges are
always active.

– Traveling edges connect a departure node of some train t at a certain station
s to the very next arrival node of this train at station s′. Let dep(s, t) denote
the departure time of train t at station s and tt(s, s′, t) the travel time
for train t between these two stations. Then, for edge e = (s, s′), we set
τ(e) = dep(s, t)+tt(s, s′, t). These edges are only active if the train currently
has a secondary delay (otherwise the schedule or forecast edges provide the
necessary conditions for its head node).
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Fig. 2. Illustration of the dependency graph model.

Due to various, mostly unknown factors determining the speed of trains in
a delayed scenario, e.g. speed of train, condition of the track, track usage
(by other trains and freight trains that are not in the available schedule),
used engines with acceleration/deceleration profiles, signals along the track
etc. we assume for simplicity that tt(s, s′, t) is the time given in the planned
schedule.

– Transfer edges connect arrival nodes to departure nodes of other trains at
the same station, if there is a planned transfer between these trains. Thus, if
f is a potential feeder train for train t at station s, we set τ(e) = wait(t, s, f),
where

wait(t, s, f) =

{
arr(s, f) + minct(s, f, t) if t waits for f
0 otherwise

(cf. Section 2.2) if we respect the waiting rules. Recall that t waits for f only
if the following equation holds

arr(s, f) + minct(s, f, t) − depsched(s, t) < wt(t, s, f)

or we have an explicit connection status decision that t will wait.
By default these edges are active. In case of an explicit connection status
decision “will not wait” we mark the edge in the dependency graph as not
active and ignore it in the computation.
For an “always wait” or “never wait” scenario we may simply always return
the resulting delayed departure time or zero, respectively.
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5.2 Computation on the Dependency Graph

The current time stamp for each departure or arrival node can now be defined
recursively as the maximum over all deciding factors: For a departure of train t
at station s with feeders f1, . . . fn we have dep(s, t) =

max{depsched(s, t), depfor(s, t), arr(s, t) + stand(s, t), maxn
i=1{wait(t, s, fi)}}.

For an arrival we have

arr(s, t) = max {arrsched(s, t), arrfor(s, t), dep(s′, t) + tt(s′, s, t)}

with the previous stop of train t at station s′. Inactive edges do not contribute
to the maximum in the preceeding two equations.

If we have a status message that a train has finally departed or arrived at
some given time depfin resp. arrfin, we do not longer compute the maximum
as described above. Instead we use this value for future computations involving
this node.

We maintain a priority queue (ordered by increasing time stamps) of all
nodes whose time stamps have changed since the last computation was finished.
Whenever we have new forecast messages, we update the time stamps of the
forecast nodes and, if they have changed, insert them into the queue. As long as
the queue is not empty we extract a node from the queue and update the time
stamps of the dependent nodes (which have an incoming edge from this node).
If the time stamp of a node has changed in this process, we add it to the queue
as well.

For each node we keep track of the edge emax which currently determines the
maximum so that we do not need to recompute our maxima over all incoming
edges every time a time stamp changes. Only if τ(emax) was decreased or τ(e)
for some e 6= emax increases above τ(emax) the maximum has to be recomputed.

– If τ(e) decreases and e 6= emax nothing needs to be done.
– If τ(e) increases and e 6= emax but τ(e) < τ(emax) nothing needs to be done.
– If τ(e) increases and e = emax the new maximum is again determined by

emax and the new value is given by the new τ(emax).

When the queue is empty, all new time stamps have been computed and the
nodes with changed time stamps can be sent to the search graph update routine.

6 Search Types

Most timetable information systems consider a pre-trip scenario: The user is
at home and requests a connection from station s1 to s2 departing or arriving
around some time τ or inside an interval [τ1, τ2]. In such a scenario, it is important
that the search delivers all attractive connections with respect to several criteria
which suit the query. Even if you use information systems at a station or click
“Right-now” in an online system you will usually be offered several alternatives.

In an on-trip scenario one is much closer to an earliest arrival problem. We
differentiate two cases of the on-trip search:
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1. A customer is at a certain station and wants to travel right now. Either he
comes without a travel plan (for example, he was unable to plan the end of
some meeting) or he may have just missed a connecting train.

2. The customer sits already in a train and wants to search for alternatives,
for example, because he has been informed that a connecting train will be
missed.

In both cases travelers want to reach their destination as fast and conve-
nient as possible. In case of delays many railways even remove restrictions on
train-bound tickets, so it might be possible to completely forget about ticket
costs, since the ticket is already paid and the passenger may use any means of
transportation available. If there is a restriction like “no high speed train” (like
the German ICE or French TGV) which is not revoked, an on-trip search with
train category restrictions should be supported.

On-trip search at a station. In the example above one would not want to
spend too much time at a station to shorten the traveling time measured from the
departure with the first used train to the arrival at the destination (as calculated
in the pre-trip scenario), instead the total travel time counting from “now” is
one of the optimization goals. However, in the presence of delays it may become
more important to search for reliable connections.

On-trip search in a train. In case the user currently travels in a train the
on-trip search is different from the scenario at a station. Instead of leaving the
train and standing at a station with the connecting train long gone (or can-
celed), we can do much better if we know of this problem in advance. Interesting
alternatives may either leave the train before arriving at the station where the
connection breaks, or stay longer in the train to change trains at a subsequent
station.

Realization. Both on-trip searches can be realized in our timetable information
system using different starting events. Instead of creating start labels for all
departures in the departure interval (for forward search), we either

– create only a single start label at the change level of the source station
and count time including the waiting time before taking any train (on-trip
station), or

– create only a single start label at the arrival station of the train edge the
traveler uses when receiving the information about a connecting train that
will be missed (on-trip train).

Note that in the on-trip train case, using the arrival node of the train instead
of any of the departure nodes, the modeling of interchanges in the time expanded
graph guarantees that only valid train changes at the first stop after receiving the
information are used. It would not be feasible to solve the on-trip train case with
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a single departure at that station, because we need to ensure that the departure
of the train with which one arrives, all departures below the station dependent
change time (through special interchange rules) and all later departures are
considered and all but the first case are counted as an additional interchange.
Thus quite a lot of different departures with differing values for elapsed time at
start and number of interchanges used so far would have to be considered.

7 Evaluation of the Prototype

We implemented the dependency graph and the update algorithm described in
Section 5 and extended our time table information system MOTIS to support
updating the search graph (cf. Section 4). Although these update operations are
quite costly, we give a proof of concept and show that they can be performed
sufficiently fast for a system with real-time capabilities.

Our computational study uses the German train schedule of 2008. During
each operating day all trains that pass various trigger points (stations and im-
portant points on tracks) generate status messages. There are roughly 5000 sta-
tions and 1500 additional trigger points. Whenever a train generates a status
message on its way, new predictions for the departure and arrival times of all its
future stops are computed and fed into a data base. German railways Deutsche
Bahn AG provided delay and forecast data from this data base for a number of
operation days. The simulation results for these days look rather similar with-
out too much fluctuation neither in the properties of the messages nor in the
resulting computational effort. In the following, we present results for a standard
operating day with an average delay profile.

To test our system, we used five sets of waiting profiles. Basically, the train
categories were divided into five classes: high speed trains, night trains, regional
trains, urban trains, and class “all others.” Waiting times are then defined be-
tween the different classes as follows:

– standard High speed trains wait for each other 3 minutes,
other trains wait for high speed trains, night trains, and trains of class “all
others” 5 minutes,
night trains wait for high speed and other night trains 10 minutes, and 5
minutes for class “all others.”

– small All times of scenario standard are halved, but night trains do not wait
for train class “all others.”

– double All times of scenario standard are doubled.
– all5 All times of scenario standard are set to five minutes, in addition regional

trains wait 5 minutes for all but urban trains.
– extreme All times of the previous scenario are doubled.

It is important to keep in mind that the last two policies are far from reality
and are intended to strain the system beyond the limits it was designed to
handle. For each of these different waiting profiles we tested different maximum
distances of feeding and connecting trains δ ∈ {5, 15, 30, 45, 60}, with one hour
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search graph

event nodes 1.0 mil
change nodes 0.8 mil

edges 2.2 mil

dependency graph

events 977,324
standing edges 449,575
driving edges 488,662

Table 1. Properties of our search graph (left) and dependency graph (right).

being the periodicity for most types of trains, and compare them to a variant
without waiting for different trains (policy no wait). In this reference scenario
it is still necessary to propagate delays in the dependency graph to correctly
update the train runs. Thus the same computations as with waiting policies is
carried out, only the terms for feeding trains are always zero.

We constructed a search and dependency graphs from the real schedule con-
sisting of 37,000 trains operating on the selected day. The number of nodes and
edges in both graphs are given in Table 1. There is one event node, one schedule
node and one forecast node per train event in the dependency graph, the number
of forecast and schedule edges equals the number of events, too. The number of
standing and traveling edges are in one to one correspondence to the stay-in-
train and train edges of the search graph. The number of feeding edges depends
on the waiting policy and δ and can be found in the eighth column of Table 2.
There is a monotonous growth in the number of transfer edges depending on
the parameter δ. Additionally, the number of these edges increase as more trains
wait for other trains because of the additional rules for scenarios with more rules.

For the chosen simulation day we have a large stream of real forecast mes-
sages. Whenever a complete sequence of messages for a train has arrived, we send
them to the dependency graph for processing. 340,495 sequences containing a
total of 6,211,207 forecast messages are handled. Of all messages 2,471,582 fore-
casts are identical to the last forecasts already processed for their nodes. The
remaining 3,739,625 messages either trigger computations in the dependency
graph or match the current time stamp of the node. The latter require nei-
ther shifting of nodes nor a propagation in the dependency graph. The resulting
number of node shifts is given in the seventh column of Table 2.

At the end of the day 596,496 nodes have received at least one forecast. For
265,544 nodes the forecast differs from the scheduled time although there are
3,287,834 forecasts differing from the scheduled time for the event. Note that
the last number is much higher as trains whose prediction changes produce new
messages each time. A train with a large number of stops and a long travel time
thus can generate a large number of messages.

In Table 2 we give the results for our test runs for the different policies and
values of δ. All experiments were run on a standard PC (AMD Athlon 64 X2
4600+ 2.4 GHz with 4GB of RAM). The key figures for required computations,
stations with a delayed event and node shifts increase when changing to policies
for which trains wait longer or more trains have to wait. Increasing δ yields a
higher effect the more trains wait. The overall small impact of changing δ is due
to the majority of delays being rather small. Only for the less realistic scenarios
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we notice a significant growth in all key criteria when increasing δ from 5 to 15,
whereas all policies behave rather similarly for δ = 5.

Amongst the plausible policies there is only a 11% difference in the number
of moved nodes. It nearly doubles going to policy all5 and even increases by
a factor of 3.4 towards policy extreme. The increase in running time spent in
the search graph is equivalent. Of our simulation time roughly 3 minutes are
spent extracting and preprocessing the messages from the forecast stream. This
time is obviously independent of the test scenario. Interestingly, the time spent
in the dependency graph seems to be only minimally affected by exchanging
the profiles against those that incur more computations and node shifts. As the

Instance computation time for Number of Delayed at
policy δ SG DG IO total shifts feeding end of day

in min in s in s in s in s executed edges nodes stations

no wait - 807 133 177 1118 3,165,614 0 357,972 5,467

5 819 136 162 1118 3,253,980 8,792 359,105 5,511
15 860 137 167 1164 3,416,718 55,218 364,961 5,664

small 30 871 137 163 1171 3,430,189 124,141 365,179 5,664
45 875 139 157 1171 3,432,189 207,855 365,206 5,664
60 869 137 161 1167 3,434,041 267,638 365,231 5,664

5 817 135 170 1122 3,254,013 8,792 359,105 5,511
15 876 136 169 1180 3,426,272 55,284 365,110 5,711

standard 30 880 139 170 1189 3,445,019 124,305 365,353 5,723
45 878 138 158 1175 3,454,623 208,127 365,395 5,733
60 917 148 169 1234 3,460,210 268,002 365,452 5,738

5 813 133 164 1110 3,265,175 8,792 359,254 5,511
15 917 137 162 1216 3,557,572 55,284 367,171 5,731

double 30 931 136 171 1238 3,617,603 124,305 367,590 5,770
45 959 136 160 1255 3,646,080 208,127 367,863 5,782
60 979 137 161 1277 3,661,137 268,002 367,995 5,787

5 830 137 178 1,145 3,419,161 16,261 366,372 5,815
15 1,761 141 174 2,076 6,994,379 168,849 404,336 6,541

all5 30 1,776 146 157 2,078 7,095,897 400,114 405,827 6,557
45 1,796 148 166 2,110 7,112,681 665,811 406,214 6,561
60 1,793 150 170 2,113 7,121,351 874,649 406,433 6,561

5 815 137 173 1,124 3,446,965 16,261 367,303 5,818
15 3,090 159 175 3,424 12,090,373 168,849 422,119 6,648

extreme 30 3,111 164 178 3,453 12,155,547 400,114 434,040 6,676
45 3,134 170 177 3,480 12,257,936 665,811 438,645 6,684
60 3,306 178 179 3,663 12,285,623 874,649 440,233 6,684

Table 2. Computation time (propagation in the dependency graph (DG) and
update of the search graph (SG), IO and total) and key figures for the number
of feeding edges, node shifts in the search graph and the number of nodes and
stations with delay at the end of the day with respect to different waiting policies.
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overall running time is by far dominated by the reconstruction work in the search
graph we would rather try to improve the performance there, if necessary.

Even for the most extreme scenario a whole day can be simulated in one
hour. The overall simulation time for realistic policies lies around 20 minutes.
For the policy standard with δ = 45 we are below 1/5ms (189µs) per message,
at a rate of less than 75 messages arriving per second. This clearly qualifies for
live performance.

8 Conclusions and Future Work

We have built a first prototypal system which can be used for efficient off-line
simulation with massive streams of delay and forecast messages for typical days
of operation within Germany.

It remains an interesting task to implement a live feed of delay messages for
our timetable information system and actually test real-time performance of the
resulting system. Since update operations in the time-dependent graph model
are somewhat easier than in the time-expanded graph model, we also plan to
integrate the update information from our dependency graph into a multi-criteria
time-dependent search approach developed in our group (Disser et al. [10]).

Additionally, we would be interested in looking into speed-up techniques for
dynamic scenarios in the multi-criteria case. Since most of the existing speed-up
techniques focus on single criterion search, time-less edges, and usually require
bidirectional search, this is not at all easy in the multi-criteria static scenario
without delays. The recent SHARC algorithm [11,12] is a powerful speed-up
technique for uni-directional search which seems to be a promising candidate to
generalize to a dynamic scenario and multiple search criteria.
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Abstract. We present an extension of the well-known time-expanded approach
for timetable information. By remodeling unimportant stations, we are able to
obtain faster query times with less space consumption than the original model.
Moreover, we show that our extensions harmonize well with speed-up techniques
whose adaption to timetable networks is more challenging than one might expect.

1 Introduction

During the last years, many speed-up techniques for computing a shortest path between
a given source s and target t have been developed. The main motivation is that comput-
ing shortest paths in graphs is used in many real-world applications like route planning
in road networks or timetable information for railways. Although DIJKSTRA’s algo-
rithm [5] can solve this problem, it is far too slow to be used on huge datasets. Thus,
several speed-up techniques have been developed (see [4] for an overview) yielding
faster query times for typical instances. However, recent research focused on developing
speed-up techniques for road networks, while only few work has been done on adapt-
ing techniques to graphs deriving from timetable information systems. In general, two
approaches exist for modeling timetable information: The time-dependent and time-
expanded approach. While the former yields smaller inputs (and hence, smaller query
times), the latter allows a more flexible modeling of additional constraints. It turns out
that adaption of speed-up techniques to each of these models is more challenging than
one might expect.

In this work, we use a different approach for obtaining faster query times. Instead
of applying a routing algorithm, e.g., plain DIJKSTRA, on the original model, we im-
prove the time-expanded model itself in such a way that a routing algorithm does not
exploit parts of the graph not necessary for solving the earliest arrival problem (EAP).
Interestingly, it turns out that those optimizations are included in the time-dependent
approach implicitely. By introducing those techniques to the time-expanded approach,
query times for the time-expanded approach are comparable to the time-dependent ap-
proach.
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1.1 Related Work

The simple, i.e., without realistic transfers, time-expanded model has been introduced
in [21]. The model has been generalized in [18] in order to deal with realistic transfers.
Since then, this realistic model has been used for many experimental studies, e.g., [14,
19, 2]; most of them focusing on faster speed-up techniques or multi-criteria optimiza-
tion for timetable information. However, [21] enriched the simple time-expanded graph
by shortcuts and [19] introduced minor changes to the time-expanded model itself by
removing unnecessary nodes with outgoing degree 1.

1.2 Our Contributions

This paper is organized as follows. Section 2 includes formal definitions and a review of
the time-expanded model for timetable information. Our main contribution is Section 3.
We show how the main ingredient for high-performance speed-up techniques in road
networks, i.e., contraction, can be adapted to time-expanded graphs. Unfortunately, it
turned out that this contraction yields a tremendous growth in number of edges (unlike
in road networks). However, by changing the modeling of unimportant stations, a DI-
JKSTRA does not exploit unnecessary parts of the network. The key observation is the
following. Assume T is a station with only one line stopping. A passenger traveling via
T only leaves the train if T is her target station, otherwise it never pays off to leave
the train. Moreover, we are able to generalize this approach to stations with more lines
stopping at that station. In Section 4 we introduce a new speed-up technique tailored
to time-expanded graphs based on blocking certain connections. Furthermore, we show
how existing techniques have to be adapted to timetable graphs. It turns out that certain
pitfalls exist that one might not expect. However, those adapted techniques harmonize
well with our new approaches, which we confirm by an experimental evaluation in Sec-
tion 5. We conclude our work in Section 6 with a summary and future work.

2 Preliminaries

Throughout the whole work, we restrict ourselves to the earliest arrival problem (EAP),
i.e., find a connection in a timetable network with lowest travel time. In the follow-
ing we often call this single-criteria search in contrast to multi-criteria search that also
minimizes number of transfers and further criteria [14, 19].

Moreover, we restrict ourselves to simple, directed graphs G = (V,E, length) with
positive length function length : E → R

+. The reverse graph G = (V,E) is the graph
obtained from G by substituting each (u,v) ∈ E by (v,u). A partition of V is a family
P = {P0,P1, . . . ,Pk} of sets Pi ⊆ V such that each node v ∈ V is contained in exactly
one set Pi. An element of a partition is called a cell. The boundary nodes BP of a cell P
are all nodes u ∈ P for which at least one node v ∈ V \P exists such that (v,u) ∈ E or
(u,v) ∈ E.

The Condensed Model is the easiest approach for modeling timetable information.
Here, a node is introduced for each station and an edge is inserted iff a direct connection
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between two stations exists. The edge weight is set to be the minimum travel time over
all possible connections between these two stations. Unfortunately, several drawbacks
exist. First of all, this model does not incorporate the actual departure time from a
given station. Even worse, travel times highly depend on the time of the day and the
time needed for changing trains is also not covered by this approach. As a result, the
calculated travel time between two arbitrary stations in such a graph is only a lower
bound of the real travel time. However, in Section 4 we show that the condensed model
is helpful for certain speed-up techniques.

The (Realistic) Time-Expanded Model. Throughout this work, we use the realistic
time-expanded model allowing realistic queries. Therefore, three types of nodes are
used to represent certain events in the timetable. Departure and arrival nodes are used
to model elementary connections in the timetable. Thus, for each elementary connec-
tion c ∈ C one arrival and departure node is created and an edge is inserted between
them. To model transfers, transfer nodes are introduced. For each departure event one
transfer node is created which connects to the respective departure node having weight
0. To ensure a minimum transfer time TRANSFER(S) at a specific station S, an edge
from each arrival node u is inserted to the smallest (considering time) transfer node v
where ∆(TIME(u), TIME(v))≥ TRANSFER(S). Here ∆(·, ·) denotes the time difference
between two points in time and TIME : V → T maps each node to its timestamp with
respect to the timetable. Due to the periodic nature of our timetables ∆ is defined by

∆(t1, t2) :=
{

t2− t1 if t2 ≥ t1,
t2 +1440− t1 otherwise.

To ensure the possibility to stay in the same train when passing through a station, an
additional edge is created which connects the arrival node with the appropriate depar-
ture node belonging to this same train. Further to allow transfers to an arbitrary train,
transfer nodes are ordered non-decreasing. Two adjacent nodes (w.r.t. the order) are
connected by an edge from the smaller to the bigger node. Furthermore, to allow trans-
fers over midnight, an overnight-edge from the biggest to the smallest node is created.
For further details, see [19].

For each edge e = (u,v) in the expanded graph the weight w(e) is defined as the
time difference ∆(TIME(u), TIME(v)) of the nodes the edge connects. Hence, we call
the graph consistent in time, meaning for each path from u to v in the graph, the sum of
the edge weights along the paths is equal to the time difference ∆(TIME(u), TIME(v)).

For future considerations the following notation will be helpful. Let ≺ ⊆ V ×V
be a relation which compares two events in time. Since in the expanded model nodes
correspond to events with a certain timestamp, our relation is defined on the set of nodes
of the graph. We say for two nodes u,v ∈ V that u ≺ v if the event of u is happening
before the event of v. Please note that it cannot be determined for u and v if u≺ v just by
comparing TIME(u) and TIME(v) due to the periodic nature of the timetable and the fact
that times are always expressed in minutes after midnight. If for example TIME(u) =
400 and TIME(v) = 600 there are two possibilities. Either u ≺ v with ∆(u,v) = 200 or
v≺ u with ∆(v,u) = 1640. As a consequence, the ∆ function applied to a tuple (u,v) is
only valid if u≺ v.
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3 Engineering the Time-Expanded Model

In this section, we present approaches how to enhance the classical time-expanded
model. Our first attempt applies a technique deriving from road networks, i.e., con-
traction, to railway graphs. However, it turns out that this approach yields a too high
number of edges. Hence, we also introduce the Route-Model which changes the mod-
eling of “unimportant” stations.

3.1 Basic Contraction

All speed-up techniques developed during the last years have one thing in common.
During preprocessing they apply a contraction routine, i.e., a process that removes
unimportant nodes from the graph and adds shortcuts to the graph to keep the distances
between the remaining nodes correct. Interestingly, the fastest hierarchical technique
for routing in road networks, Contraction Hierarchies [6], relies only on such a routine.
The key observation is that in road networks, the average degree of remaining nodes
does not explode.

At a glance, one could be optimistic that contraction also works well in railway
networks. Like in road networks, some nodes in time-expanded graphs are more im-
portant than others. However, contraction does not exploit the special structure of time-
expanded timetable graphs. For example, departure nodes have an outgoing degree of
1. Thus, we can safely remove such nodes and add a shortcut between the correspond-
ing transfer and arrival node. More precisely, we propose a new contraction routine
consisting of three steps. In the following we explain each step separately.

Omitting Departure Nodes The first step of our contraction routing bypasses all de-
parture nodes. In [19], the authors state that departure nodes can be omitted in
time-expanded graphs which can be interpreted as bypassing those nodes.

Omitting Arrival Nodes In a second step, we bypass all arrival nodes within the net-
work. As a consequence, the degree of transfer nodes highly increases. By these
two steps we reduce the number of nodes by approximately a factor of 3. However,
the graph still contains all original transfer nodes of which some are more important
than others.

Bypass Transfer Nodes The final step of our contraction bypasses nodes according to
their degree. We bypass nodes with low degree first yielding changes in the degree
of its neighbors. Our contraction ends if all transfer nodes have a total degree at
least of δ , which is a tuning parameter. We suggest to use a min-heap to determine
the next node to be bypassed. The key of a node x shall be degin(x)+degout(x).

Note that we need not apply all three steps. While the first step reduces both number
of nodes and edges, the following two steps yield higher edge counts. In the following,
we call a time-expanded model with shortcut departure nodes, the phase 1 model. The
phase 2 model has neither arrival nor departure nodes. If we also remove (some) transfer
nodes, we call the resulting graph a phase 3 graph. For an experimental evaluation of
this contraction routine, see Section 5.
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3.2 Route-Model

In our experimental studies, it turned out that our contraction routine from the last
section suffers from a dramatic growth in number of edges. Already our phase 2 model
has up to 3.6 times more edges than the original graph (cf. Section 5). Hence, we here
introduce a different approach, called the route model. In contrast to contraction, we
exploit certain semantic properties of the time expanded graph regarding transferring
which eventually leads to a reduction of the number of shortest paths. The classic time-
expanded model allows transfers at a station from each arriving train to all subsequent
departing trains. However, when planning an itinerary by hand, we would probably do
the following intuitive pruning: During the way from the source to the target station
assume we find a route which leads to some station S on the way, arriving there at time
tS. Then, we would not need to examine paths toward station S with an arrival time
t ′S > tS, since computing these paths is redundant as we already arrived at S earlier, and
we could achieve the same result by taking the earlier computed path arriving at S at tS
and then waiting at S until t ′S. This observation is the basic idea behind the route model.

Remodeling of Stations. The modifications to the (original realistic) time-expanded
graph are done locally and independently for each station S, and involve the following
three steps:

1. Remove all outgoing edges from all arrival nodes. This includes edges to transfer
nodes as well as edges to the departure node of the same train.

2. Insert a minimal number of new transfer-edges directly from the arrival nodes to
departure nodes. This allows us to model transfers more specific without losing any
optimal shortest paths in comparison to the original time expanded model.

3. Keep the transfer nodes and their interconnecting edges as well as departure-edges
from transfer to departure nodes. Although, there are no more edges in the graph
to get from an arrival node to a transfer node, the transfer nodes are still used as
source nodes for the actual DIJKSTRA query.

The only non-trivial modification is the second one, where for each arrival node we
need to find a minimal set of departure nodes which shall become reachable from the
particular arrival node. For that reason let S be the currently considered station and NS
all neighbors of S. A station T ∈ NS is called a neighbor of S if at least one elemen-
tary connection from S to T exists. Thus, we can speak of routes between S and each
neighbor from NS. We now use the following notation. u denotes an arbitrary but fixed
arrival node of S from which outgoing edges are inserted. v denotes the departure node
toward which the edges (u,v) are inserted. Furthermore, w denotes the arrival node cor-
responding to the elementary connection to which the departure node v belongs. The
basic idea is to insert (at least) one edge per route toward a departure node belonging to
the the particular route. So, let us consider some fixed station T ∈NS with T 6= R where
R is the station where we just came from through u. Of all departure nodes v belonging
to an elementary connection (v,w) from S to T we insert an edge (u,v) in S according
to the following criteria.

1. The node w is the smallest (regarding time) possible (meaning it is not in violation
with the second criterion) arrival node at T that is after u, i.e. w� u.
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2. The node v respects the transfer time criterion at S. For that reason it has to hold
that v � u + TRANSFER(S) if u and v belong to different trains, or v � u if they
share the same train.

Obviously, by this strategy we select the edge (u,v) according to the earliest possible
arrival event at the target station T . This yields a transfer to a train which arrives at T
by the earliest possible time. Note that if we instead would have chosen v according
to the earliest possible departure node at S, we could have missed a different train that
departs at S later, but arrives at T earlier. Such a scenario is called overtaking of trains.
Also note, that if the train belonging to u utilizes the route toward station T , it does not
necessarily have to be the case, that the inserted edge (u,v) corresponds to the departure
event of that specific train. It simply corresponds to the train arriving at T first, which
may well be a different train.

Transfer Times at Neighboring Stations. While we did respect the transfer time criterion
of S, we also have to respect the transfer time criterion at T . Figure 1 shows why this is
important.

v

w

Z1

Z2

wrong path

right path

u

S T

(a)

v
w

wrong path

right path

u

Z1

Z2

S T

(b)

Fig. 1: Two problems concerning the transfer time criterion at station T .

On the left side the train Z2 arriving at T just slightly after Z1 is the optimal path,
but it can not be transferred to, because at S we only chose Z1 and at T the transfer time
is too big to reach it from Z1. On the right picture the scenario is even worse. While
the train Z1 is the earliest train regarding the arrival time at T , the optimal route again
contains Z2 which departs at S earlier than Z2, but it is not reachable because it arrives at
T slightly after Z1. Again the transfer time at T is too big to enter Z2 at T . In both cases
we have to ensure that Z2 can be entered somewhere. Since our modifications should
remain local in the sense that modifications at S should not involve modifications at
some other stations, we ensure that Z2 can be reached at S.

By adding some more edges to the graph, we are able to allow those connections as
well. Let wearl denote the earliest arrival node at T as computed before. Then, we insert
edges (u,v) (belonging to connections (v,w)) satisfying the following properties.

1. Consider all trains arriving after wearl but no later than the transfer time at T , mean-
ing w� wearl and w≺ wearl + TRANSFER(T ).
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2. Still respect the transfer time criterion at S, i.e. v � u + TRANSFER(S) if u and v
belong to different trains and v� u otherwise.

This routine ensures that (a) it is possible to arrive at T as early as possible and (b) all
trains that go through T within the margin between the earliest arrival time and the
transfer time at T can be reached by entering them at S.

Uncommon Routes. Despite these modifications, we additionally have to deal with
another phenomenom in railway networks. In very few cases, it might pay off to use
an itinerary with a sequence of stations R → S → T → S → R′ instead of R → T → R′.
This odd situation may arise if T and S are close to each other, a train runs from R to
T , another from T to R′, and TRANSFER(S) < TRANSFER(T ) holds. Figure 2 gives an
example.

Station R Station S
Z1

Z1

Z2

Z2

transfer(R)
too big

transfer(S)
small enough

Fig. 2: Situation where it is necessary to go forth and back along the same route in order to
transfer to train Z2.

Our Route-Model does not allow such connections. However, we may overcome
this problem by introducing edges at arrival nodes u of S toward departure nodes leading
back to R if and only if the following inequation holds:

κR,S +κS,R + TRANSFER(S) < TRANSFER(R).

Here κR,S denotes the best lower bound regarding travel time from R to S. By this we
ensure that no shortest paths get lost while in most cases we still get the advantage of
prohibiting cycles along the same route. Please note, that we can not rule out cycles
such as · · · → R → S → T → R → ·· · , however cycles of this type occur less often in
general timetable networks.

Leaving Big Stations Untouched. It turns out that remodeling of stations with many
neighbors, e.g., major train hubs, lead to a disproportionately high increase in addi-
tional edges, since for each neighbor (route) at least one edge must be inserted for each
arriving train. In the original time expanded model, however, at most two edges existed
for each arrival node (arrival-transfer and arrival-departure). Since our modifications

7



are only local we can choose for each station individually whether we want to convert it
to the Route-Model or not. For that reason we introduce a tuning parameter γ indicating
that stations with more neighbors than γ should be left untouched. Hence, changing γ

yields a trade-off between a speed-up regarding the number of touched nodes against
an increasing size of the edge set of the graph.

A problem that arises when mixing Route-Model stations with classic stations is that
the main advantage of the Route-Model—subsequent connections on the same route are
not visited during the DIJKSTRA search—may fade. Analyzing the example in Figure 3,
we observe a big station which has not been converted followed by a route containing a
few small stations. While at the small stations no connections exist between connections
of the same route, they are nevertheless visited, because they are all accessible through
the big station. Hence, we developed Node-Blocking which adopts the idea behind the
Route-Model as a speed-up technique, and blocks redundant connections of the same
route, so they are not visited. This technique is explained in Section 4.

Theorem 1. Applying DIJKSTRA on the Route-Model yields correct solutions to the
earliest arrival problem.

The proof of Theorem 1 can be found in the full paper.

4 Speedup Techniques

In principle, we could use DIJKSTRA’s algorithm for solving EAP. However, plain
DIJKSTRA visits unnecessary parts of the graph, even if we use our Route-Model.
Hence, we introduce two approaches for obtaining faster query times. We adapt ex-
isting techniques—developed for road networks—to timetable graphs and introduce a
new speed-up technique following the ideas from our Route-Model.

Big Station Small Station Small Station

Fig. 3: When a big station which is not converted is visited during a DIJKSTRA query, all sub-
sequent connections are visited as well, while only the red path should be relevant. Unimportant
nodes are omitted in the figure.
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4.1 Tailored Speed-Up Techniques

Node-Blocking is a speed-up technique tailored to time-expanded networks. It basi-
cally incorporates the ideas behind the Route-Model as described in Section 3.2: if we
can reach a station S at some time tS we try to prune paths reaching S at a later time
t ′S > tS. Recall that the Route-Model prunes the search by removing certain edges from
the graph. Node-Blocking, on the contrary, achieves a similar result by dynamically
blocking departure nodes during the DIJKSTRA query. The idea is as follows. If we
visit a departure node v belonging to an elementary connection targeting some station
T , we can prune all future departure nodes b targeting T .

Preprocessing. Formally, each departure node v of an elementary connection between
two stations S and T induces a set Bv of blocked nodes. A node b is contained in Bv if
and only if the following conditions hold.

1. b is a departure node at S belonging to an elementary connection targeting the same
station T as v.

2. b� v holds.
3. If w and c are the arrival nodes at T of the connections associated with v and b,

respectively, then w + TRANSFER(T ) ≺ c must hold, i.e., we respect the transfer
time criterion at T .

Although the “blocked state” of each node is dynamic in the sense that it depends
on the shortest path query, and therefore must be computed during the query, the set Bv
of inducing blocked nodes can be precomputed for each node v by iterating through all
departure nodes of the station and checking whether the above criteria apply to them.

Note that in contrast to the Route-Model, we do not have to deal with the transfer
time criterion at S, since we only block nodes, and hence never allow a path to be
taken which was forbidden by the transfer time criterion at S. In worst case, we block
departure nodes which cannot be reached anyway due to the transfer time criterion of
S. Moreover, all special cases are covered by our third condition.

Query. The modifications to standard DIJKSTRA algorithm are simple. We introduce an
additional flag blocked(v) to all nodes of the graph, which is initialized to false. Then,
whenever we try to insert a node v into the queue, we mark all nodes Bv as blocked. If
v is marked as blocked, we prune the search.

Combination with Route Model. Although our Route-Model and Node-Blocking follow
the same ideas, the advantage of the Route-Model is the lower computation-overhead
during the query. However, as discussed in Section 3.2, it does not pay off to remodel
major hubs. Hence, Node-Blocking harmonizes well with the Route-Model as we use
Node-Blocking for pruning paths at such hubs.

Combination with Phase 1+ Models. Since from the Phase 1 model onwards departure
nodes are removed, Node-Blocking has to be altered slightly to conform with these
models. Instead of departure nodes blocking future departure nodes, we simply let the
corresponding arrival nodes (belonging to the respective departure nodes) block each
other. In this case, the arrival nodes assume the role of the previous departure nodes
regarding blocking, which allows us to continue using the same query algorithm.
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Theorem 2. Applying Node-Blocking to DIJKSTRA’s algorithm yields correct solu-
tions to the earliest arrival problem.

The proof of Theorem 2 can be found in the full paper.

4.2 Adapting Speed-Up Techniques

Although the adaption of many techniques may be promising, we choose basic goal-
directed techniques for adaption. It turned out that adaption of more sophisticated tech-
niques, e.g., Highway Hierarchies [20], Contration Hierarchies [6], REAL [8], SHARC
[1], is much more challenging than expected. The main reason are either the need of a
bidirectional query algorithm or the bad performance of the contraction routine.

Arc-Flags. The classic Arc-Flag approach, introduced in [13, 12], first computes a par-
tition P of the graph and then attaches a label to each edge e. A label contains, for
each cell Pi ∈P , a flag AFPi(e) which is true if a shortest path to at least one node in Pi
starts with e. A modified DIJKSTRA—from now on called Arc-Flags DIJKSTRA—then
only considers those edges for which the flag of the target node’s cell is true. The big
advantage of this approach is its easy query algorithm. However, preprocessing is very
extensive. The original approach grows a full shortest path tree from each boundary
node yielding preprocessing times of several weeks for instances like the Western Eu-
ropean road network. Recently, a new centralized approach has been introduced [11].
However, it turns out that this centralized cannot be used in time-expanded transporta-
tion networks due to memory consumption. Hence, we use the original approach of
growing full shortest path trees from each node.

Adaption. The query algorithm can be adapted to time expanded railway graphs very
easily. We only have to consider that the exact target node is unknown (just the target
station is known). For that reason we simply abort the DIJKSTRA algorithm as soon
as a node belonging to the target station is settled. The preprocessing of Arc-Flags,
however, needs some extra attention. Since we do not know the exact target node in
advance, we have to ensure that all nodes belonging to the same station also get the
same cell-id of the partition assigned. For that reason, we simply compute the partition
on the condensed graph and map it to the expanded graph by assigning for each node
v ∈V the cell-id due to cell(v) := cell(STATION(v)).

Computing the backwards-shortest path trees from each boundary node of each cell
can then be done as described in [13]. However, this approach yields a problem specific
on time expanded graphs. Since the length of any path in the graph always corresponds
to the time needed to travel between the beginning and ending event (node) of that
particular path, any two different paths between the same nodes always have the same
length. Therefore, the number of shortest paths (in fact, there are only shortest paths in
time expanded graphs) is tremendous. Unfortunately, if we set flags to true for every
path, we do not observe any speed-up (cf. Section 5). In order to achieve a speed-up
we have to prefer some paths over others. We examine the following four reasonable
strategies for prefering paths:

10



Hop Minimization. For two paths of equal length, choose the one that has less hops
(nodes) on it. This approach is often used in road networks [1].

Transfer Minimization. Choose the path that has less transfers between trains. While
this is a good strategy for querying, it sets too many arc-flags to true, since for dif-
ferent boundary nodes too many different paths lead a transfer-minimal connection.

Distance Minimization. Choose the path that is shorter (geographically).
Direct Geographical Distance. Choose the path whose direct geographical distance is

closer to the source node of the shortest path tree, formally for some node v that is
reached from u we choose the new predecessor according to

pre(v)new := argmin
w∈{u,pre(v)}

{
√(

coordx(w)− coordx(s)
)2 +

(
coordy(w)− coordy(s)

)2},

where s is the source node of the shortest path tree. This optimization is very ag-
gressive, as it leads to the same result for different boundary nodes of the same cell
as often as possible.

Section 5 shows the huge difference in the query performance when the arc-flags are
computed with different strategies. Note that we can optimize query times by setting as
many flags as possible to false. However, we also loose the ability to choose the “best”
path during the query (e.g. due to a minimal number of transfers, costs, etc.). This yields
a trade-off between query time and the quality of the computed itineraries.

Arc-Flags and Node-Blocking. Unfortunately, Node-Blocking does not harmonize with
Arc-Flags. This is due to the fact of Node-Blocking being a very aggressive technique,
leaving only very few connection arcs per station and route accessible. The optimiza-
tion criterion hereby, namely arriving as early as possible at the next station does not
necessarily match with our path selection during Arc-Flags preprocessing. As a result,
both techniques prune different shortest paths. A possible solution would be to adapt
the path selection for Arc-Flags according to Node-Blocking. However, this turns out
to be complicated as we have to grow shortest path trees on the reverse graph. Hence,
this path selection strategy is not implemented yet.

ALT. Goal directed search, also called A∗ [10], pushes the search towards a tar-
get by adding a potential to the priority of each node. The ALT algorithm, intro-
duced in [7], uses a small number of nodes—so called landmarks—and the triangle
inequality to compute such feasible potentials. Given a set L ⊆ V of landmarks and
distances d(`,v),d(v, `) for all nodes v ∈V and landmarks ` ∈ L, the following triangle
inequations hold: d(u,v) + d(v, `) ≥ d(u, `) and d(`,u) + d(u,v) ≥ d(`,v). Therefore,
π(u, t) := max`∈L max{d(u, `)− d(t, `),d(`, t)− d(`,u)} provides a lower bound for
the distance d(u, t) and, thus, can be used as a potential for u.

Adaption. The query algorithm is, again, straight forward to adapt to time-expanded
railway graphs. Since the only difference to the standard DIJKSTRA algorithm is the key
which is inserted into the priority queue, we can still simply abort the search as soon
as a node of the target station gets settled. However, we cannot compute the landmarks
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on the expanded graph directly since then we would have to know the target node t
in advance. Hence, we compute the landmarks on the much smaller condensed graph
which still yields feasible potentials because the edge weights in the condensed graph
are defined as the lower bounds regarding travel time. The potential function π during
the query is then computed as follows:

π(v) = max
`∈L

max{dist(STATION(v), `)−dist(T, `),dist(`,T )−dist(`, STATION(v))},

where T is the target station of the query. We can think of this as using a “lower bound
of a lower bound” of the shortest path.

Former studies revealed that the selection of landmark nodes is crucial to the per-
formance of ALT. The quality of the lower bounds highly depends on the quality of the
selected landmarks. Thus, several selection strategies exist. To this point, no technique
is known how to pick landmarks yielding the smallest search space for random queries.
Thus, several heuristics exist. The best are avoid and maxCover. The first tries to iden-
tify regions that are not well covered by landmarks while the latter is basically the avoid
routine followed by a local optimization. For details, we refer to [9].

Due to the small size of the condensed networks, another strategy for obtaining po-
tentials seems promising. For each query, we use the target station T as landmark and
compute the distances of all stations to T on-the-fly. The advantage of this dynamic-
landmark-selection is a tighter lower bound. However, we have to run a complete DI-
JKSTRA in the condensed graph for each query which can take more time than using
worse lower bounds from landmarks during the query. Note that this approach for ob-
taining lower bounds for A∗ was already proposed in [14].

Combining Arc-Flags and ALT. In [16], we observed that Arc-Flags (with the di-
rect geographical distance strategy) and ALT optimize in two different ways. While
Arc-Flags prunes paths that lead to the wrong direction geographically, ALT optimizes
in time in the sense that fast trains are preferred over slow trains. Fast trains (having
less stops in between) tend to get near the target station faster, yielding a lower key
in the priority queue regarding the lower bound function. For that reason, it is sugges-
tive to examine the combination of the two speed-up techniques. The implementation
is straight-forward, since Arc-Flags does not interfere with ALT—Arc-Flags simply ig-
nores edges that do not have their appropriate flag set, and ALT just alters the key in the
priority queue.

5 Experiments

In this section, we present our experimental evaluation. Our implementation is written
in C++ using solely the STL. As priority queue we use a binary heap. Our tests were
executed on one core of an AMD Opteron 2218 running SUSE Linux 10.3. The machine
is clocked at 2.6 GHz, has 16 GB of RAM and 2 x 1 MB of L2 cache. The program was
compiled with GCC 4.2, using optimization level 4.
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Inputs. We use two inputs for our evaluation. The railway network of Central Eu-
rope and a local bus network of greater Berlin. Both networks have been provided by
HAFAS for scientific use; the former network consists of 30,517 stations and 1,775,552
elementary connections. The corresponding figures for the latter are 2,874 and 744,005,
respectively. While the network of Europe provides a good average structure for a rail-
way network mixed of long-distance trains supported by short-distance trains, the bus
network of Berlin consists of a very homogeneous structure, since there are almost no
“long-distance” buses. Because of this and the very dense operations of buses with their
short travel times between stations, it has already been shown [16] that this network
seems to be a very hard instance for timetable information queries.

It should be noted that, while our timetable data is realistic, the transfer times at
the stations were not available to us. Hence, we generated them at random and chose
between 5 and 10 minutes for the railway and between 3 and 5 minutes for the bus
network.

Default Settings. In the following, we report preprocessing times and the overhead of
the preprocessed data in terms of additional bytes per node. We evaluate query per-
formance by running 1000 random s–t queries with source and target station picked
uniformly at random. We fix the departure time to 7:00 am. We report the average num-
ber of settled nodes during the query as well as the average query time. The speed-up
refers to the query time and is computed in reference to the classic time expanded model
without any speed-up technique applied.

5.1 Models

Parameters. We start our experimental evaluation with parameter tests for our Route-
Model. Recall that in the Route-Model we may affect the conversion process by the
selection of γ which controls the maximum number of neighbors a station may have
in order to become a Route-Model station. In the following we use values between 2
and 10 for γ . Table 1 reports for both our inputs: the resulting size (in terms of number
of edges) and query performance. Note that we do not report number of nodes, as the
remodeling routine does not add or remove any nodes. We also enabled Node-Blocking
(see Section 4.1).

We observe that for both instances the Route-Model yields a speed-up. Increasing
γ up to 5 increases performance, while values > 5 do not pay off. This is mostly due to
the fact that for both graphs the majority of stations has less or equal than 5 neighbors
(91% for the Europe and even 99% for the Berlin network).

Concerning Europe with γ < 5, we observe that the resulting graph has less edges
than originally. Recall in the original graph the number of outgoing edges per arrival
node is at most 2 (one toward the nearest transfer node and one toward the departure
node of the same train). Hence, a decrease in number of the edges can only result
from merely one edge being inserted for many arrival nodes at stations of degree 2.
Interestingly, this observation of decreasing edges does not hold for our bus network
which is due to the high density of the network: Because the stations are very close to
each other, it often holds that the travel time to go forth and back between some stations
S1 and S2 is less than TRANSFER(S1), which results in back-edges being inserted for
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Table 1: The effect of γ on the performance of the Route-Model with Node-Blocking enabled.

europe bvb
SIZE QUERY SIZE QUERY

γ-value #edges #settled [ms] speed-up #edges #settled [ms] speed-up
reference 8,505,951 1,161,696 534.7 1.00 3,694,253 151,379 37.6 1.00
2 7,912,584 411,836 202.4 2.64 3,785,680 91,591 27.4 1.37
3 8,035,324 359,294 171.7 3.11 4,292,849 74,963 25.2 1.49
4 8,332,816 329,413 158.3 3.38 5,059,228 63,438 25.1 1.50
5 8,729,619 313,046 154.1 3.47 5,437,647 59,670 25.4 1.48
6 9,071,974 303,460 153.9 3.47 5,625,277 57,990 25.6 1.47
7 9,396,276 297,831 155.1 3.45 5,768,926 56,994 25.8 1.46
8 9,712,940 292,482 156.4 3.42 5,782,375 56,921 25.7 1.46
9 9,936,119 289,036 158.7 3.37 5,782,375 56,921 25.8 1.46
10 10,195,050 285,103 159.3 3.36 5,782,375 56,921 25.8 1.46

arrival nodes at S2 (coming from S1). Second, the operation frequency of the buses is
very high, such that it may occur that edges toward more than the first bus of the route
are inserted, when they arrive at the next station within the margin of its transfer time.

Summarizing, a value of γ = 5 yields the best results for railway input. The corre-
sponding figure for the bus networks is 4.

Comparison to the Classic Time-Expanded Model. Next, we compare different con-
traction steps (Section 3) and our route model with the classic time expanded model.
Table 2 shows the differences in graph size and query performance. While the overall
graph size decreases when switching from the classic expanded to the phase 1 model,
the number of edges significantely increases if applying our phase 2 model. Although
the number of nodes decreases about 50%, this increase in number of edges leads to
an worse query performance, since more edges are relaxed during the query. We hence
conclude that the phase 2 model—and therefore the phase 3 model as well—is not the
preferred choice for fast timetable queries.

Regarding the Route-Model, the increase in graph size is still reasonable while the
query time decreases. However, we see, that the query performance benefits from Node-
Blocking as the speed-up more than doubles in the Europe network with Node-Blocking
enabled. The reason for the weak performance without Node-Blocking is that paths
through the graph, that should be pruned by the Route-Model approach, are still re-
laxed when they are not blocked in non-converted big traffic hubs. In the bus network
the general performance gain is not as big as with the railway network. Even Node-
Blocking does not have such a great impact, which is mostly due to the dense structure
of this network.

Because the Route-Model can be combined well with the phase 1 model (departure
nodes are simply removed after the conversion to the Route-Model), this gives us a
gain in graph size while still keeping the advantages of the Route-Model. The query
performance behaves as expected and increases by approximately one third compared
to the Route-Model alone. If we then additionally apply Node-Blocking on the route
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Table 2: Comparison of the different models. The Route-Model is computed with γ = 5 for
europe and γ = 4 for bvb.

SIZE QUERY

input Model #nodes #edges #settled [ms] spd-up
Classic expanded 5,207,980 8,505,951 1,161,696 534.7 1.00
Phase 1 3,472,022 6,769,991 768,181 426.5 1.25
Phase 2 1,736,064 15,571,190 431,274 631.1 0.85

europe Route 5,207,980 8,729,619 793,462 360.6 1.48
Route w/ blocking 5,207,980 8,729,619 313,046 154.1 3.47
Route + Phase 1 3,472,018 6,821,337 439,024 256.3 2.09
Route + Phase 1 w/ blocking 3,472,018 6,821,337 200,213 122.8 4.35
Classic expanded 2,232,016 3,694,253 151,379 37.6 1.00
Phase 1 1,488,011 2,950,248 99,253 29.1 1.29
Phase 2 744,006 13,229,482 60,218 56.8 0.66

bvb Route 2,232,016 5,059,228 97,978 32.6 1.15
Route w/ blocking 2,232,016 5,059,228 63,438 25.1 1.50
Route + Phase 1 1,488,011 3,918,788 51,210 22.7 1.66
Route + Phase 1 w/ blocking 1,488,011 3,918,788 34,032 18.6 2.02

+ phase1 model, we get the best query performance of all the models which yields a
speed-up of 4.35 in the railway network of Europe and 2.02 in the Berlin bus network.

5.2 Speedup Techniques

Up to now, we showed that by remodeling stations and using additional pruning tech-
niques, we already achieve a speed-up of 4.35 over plain DIJKSTRA. Here, we now
show that this approach harmonizes well with other speed-up techniques deriving from
road networks.

Path-Selection during Arc-Flags Preprocessing. We already mentioned in Section 4.2
that in expanded timetable networks the number of shortest paths between two nodes
is enormously high. It turns out that setting arc-flags for all paths yields a bad query
performance. Hence, we have to favor some paths over the others. We proposed four
different reasonable strategies: Minimize hops, minimize transfers, minimize accumu-
lated geographic distance along the path and finally minimize the direct geographic dis-
tance from the preceding node to the source of the shortest path tree (see Section 4.2).
Table 3 shows the impact of each strategy on the performance of Arc-Flags. Note that
due to the long preprocessing times of Arc-Flags, we use a subnetwork of our European
instance, namely the German railway network called de fern (6822 stations and 554996
connections).

While minimizing hops is useful in road networks [1] (which can be interpreted
there as preferring a route that has less road crossings) this results in a poor perfor-
mance in railway network. Almost all flags are opened during preprocessing, thus the
overhead of the Arc-Flags query algorithm outweighs the benefit from the few remain-
ing pruned arcs. Interestingly, using minimal transfer or minimal distance strategies as
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Table 3: Arc-Flags. Evaluation of different path-sepection strategies. For each strategy we apply
a partition with 64 cells.

PREPRO QUERY

Strategy [h:m] [B/n] #settled [ms] speed-up
reference — 0 152,998 58.1 1.00
hops 17:00 26.2 149,931 70.3 0.83
transfers 16:26 26.2 152,307 71.7 0.81
distance 20:53 26.2 134,462 61.8 0.94
geo. dist. to target 16:08 26.2 38,511 15.0 3.87

path selection yields a poor query performance as well. This is mostly due to too many
different paths of boundary nodes of the same cell being optimal, thus too many flags
are set to true. Recall that the partition is computed on the condensed graph, hence for
one station that is at the border of a cell, nodes belonging to all times of day are bound-
ary nodes which may lead to very different transfer or distance minimal routes in the
graph.

The minimal direct geographic distance strategy overcomes this issue by always
choosing the same preceding node for all times of the day. For that reason, as many
arc-flags as possible are kept f alse, which eventually yields a speed-up of 3.87 on
the German railway network. Since all other strategies actually worsen the query per-
formance, we choose the direct geographic distance strategy for further experiments
involving Arc-Flags on time expanded railway networks.

Speed-Up Techniques on our Models. In the next experiment we compare the per-
formance of the adapted speed-up techniques on the different models from Section 3.
Because of the bad performance of the phase 2 model, we only compare the classic
expanded model, the phase 1 model, the Route-Model and the combination of the route
and phase 1 models.

Furthermore, we tested the effect of dynamic-landmark-selection against a precom-
puted set of landmarks. Table 4 shows our results. We show the query performance as
well as preprocessing-costs by preprocessing time and additionally bytes per node re-
quired to store the preprocessed data. For each model we tested the following speed-up
techniques:

– BA: Node-Blocking with ALT.
– BdA: Node-Blocking with ALT and dynamic-landmark-selection.
– uFA: Unidirectional Arc-Flags with ALT.
– uFdA: Unidirectional Arc-Flags with ALT and dynamic-landmark-selection.

Regarding classic ALT we always used a set of 8 precomputed landmarks by the max-
Cover [9] method. Arc-Flags were computed using a partition of 128 cells obtained
from SCOTCH [17]. The strategy for path-selection was geographic distance to target.
Note that for Arc-Flags, we turn off Node-Blocking (cf. Section 4.2).

We observe, that for all speed-up technique our modifications to the classic ex-
panded model yield improvements regarding both query performance and preprocessing
time. While the transition from the classic to the phase 1 model is more beneficial for
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Arc-Flags than ALT with Node-Blocking, the latter performs better on the Route-Model
where Node-Blocking fits the model considerably better. The combination “Route +
Phase 1” unifies the advantages of each model yielding the best speed-ups.

In general, Arc-Flags has a higher impact on query time than ALT together with
Node-Blocking (about 5.5 times faster on both networks) which is being paid for with
very high preprocessing time and roughly 30 times more required space per node. Note,
that the dynamic ALT comes for free, as it does not require any preprocessing at all.
With our modified models we can, however, still achieve a speed-up of 10.13 in Europe
and 2.54 in Berlin with dynamic ALT and Node-Blocking, which is useful in a scenario
where preprocessing is limited or not allowed.

Table 4: Comparing different models in conjunction with the classic speed-up techniques. The
parameter set used throughout: 128 cells, geographic distance to target path-selection-strategy
for Arc-Flags and 8 landmarks using maxCover for the classic ALT.

europe bvb
PREPRO QUERY PREPRO QUERY

Model/Algorithm [h:m] [B/n] #settled [ms] spd [h:m] [B/n] #settled [ms] spd
Reference — 0 1,161,696 534.7 1.00 — 0 151,379 37.6 1.00
Classic Exp. (BA) ≈ 4 s 4.0 261,151 162.7 3.29 ≈ 2 s 4.1 96,533 33.6 1.12
Classic Exp. (BdA) ≈ 1 s 4.0 233,280 130.8 4.09 ≈ 1 s 4.0 94,345 29.1 1.29
Classic Exp. (uFA) 106:11 106.5 71,937 32.7 16.35 45:30 108.0 49,921 17.0 2.21
Classic Exp. (uFdA) 106:11 106.5 65,143 33.9 15.77 45:30 107.9 49,014 15.2 2.47
Phase 1 (BA) ≈ 5 s 4.5 208,579 145.5 3.67 ≈ 2 s 4.1 67,019 26.1 1.44
Phase 1 (BdA) ≈ 1 s 4.0 185,996 116.4 4.59 ≈ 1 s 4.0 65,488 22.8 1.65
Phase 1 (uFA) 77:52 127.2 30,583 14.0 38.19 31:59 129.0 15,004 5.4 6.96
Phase 1 (uFdA) 77:52 126.7 27,310 18.5 29.06 31:59 128.9 14,713 5.1 7.37
Route (BA) < 4 s 4.4 140,826 73.2 7.30 ≈ 2 s 4.1 49,591 22.3 1.69
Route (BdA) ≈ 1 s 4.0 127,444 65.4 8.18 ≈ 1 s 4.0 48,390 19.8 1.90
Route (uFA) 85:49 109.7 50,050 22.1 24.19 50:58 147.1 25,289 10.2 3.69
Route (uFdA) 85:49 109.3 45,180 25.3 21.13 50:58 147.0 24,785 9.3 4.04
Route + Ph. 1 (BA) ≈ 4 s 4.5 89,524 58.7 9.11 < 2 s 4.1 26,653 16.0 2.35
Route + Ph. 1 (BdA) ≈ 1 s 4.0 80,665 52.8 10.13 ≈ 1 s 4.0 26,007 14.8 2.54
Route + Ph. 1 (uFA) 83:58 128.2 20,044 9.5 56.28 34:56 170.6 6,195 2.6 14.46
Route + Ph. 1 (uFdA) 83:58 127.7 17,805 15.2 35.18 34:56 170.5 6,053 2.8 13.43

Comparing the standard ALT against ALT with dynamic landmarks, we observe,
that regarding query time dynamic ALT only pays off as long as the general speed-
up (achieved through some other speed-up technique or model) does not exceed the
cost we pay for computing the distance table on-the-fly. Since the condensed graph of
Europe has about 11 times more stations than the Berlin graph, the cost for computing
the dynamic distance table carries much more weight there—A one-to-all DIJKSTRA
takes about 7 ms on the condensed graph of Europe. Hence, it never pays off using
dynamic landmarks together with Arc-Flags here. The same effect can be observed in
the Berlin network, however, only with the combination of the route and phase 1 models
due to the much smaller condensed graph.
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Summarizing, our modifications yield a speed-up of 3.5 if we apply ALT and Arc-
Flags to both time-expanded graphs. The corresponding figure for our bus network is
5.5. This yields an overall speed-up of 56.28 for Europe and 14.46 for Berlin when
compared to the classic model without any speed-up technique applied.

5.3 Comparison to the Time-Dependent Model

Table 5 compares the performance of DIJKSTRA’s algorithm and ALT applied to our
route+phase 1 time-expanded model and the time-dependent model. We observe that
by the introduction of our Route-Model (and Node-Blocking) query performance of
time-expanded queries are faster than for the time-dependent approach. Hence, we are
able to close the performance-gap between both models. Analyzing the time-dependent
approach, we notice that Node-Blocking is included implicitly: During a query we do
not relax an edge more than once although it represents several connections running
from one station to another. Hence, early connections block later ones. Our remodel-
ing and Node-Blocking technique introduces these optimizations to the time-expanded
approach. As a result the performance advantage of the time-dependent approach fades.

Table 5: Performance of DIJKSTRAand uni-directional ALT using a time-dependent variant of
our European input. For comparison, the corresponding figure for the time-expanded approach
(route-model with phase 1) are given as well.

time-dependent time-expanded
PREPRO QUERIES PREPRO QUERIES

time #settled speed time speed time #settled speed time speed
technique [h:m] nodes up [ms] up [h:m] nodes up [ms] up
Dijkstra 0:00 260 095 1.0 125.2 1.0 0:00 200 213 1.0 122.8 1.0
uni-ALT 0:02 127 103 2.0 75.3 1.7 0:01 89 524 2.2 58.7 2.1

6 Conclusion

In this work, we introduced a local remodeling routine for the time-expanded approach
based on the intuition that at many stations in a network, the number of reasonable
choices is little. It turns out that this approach leads to a closely related speed-up tech-
nique harmonizing well with our remodeling. Moreover, we adapted speed-up tech-
niques to the time-expanded model and show that they harmonize well with our new
approach. Altogether, our approach yields query times up to 56.28 times faster than
pure DIJKSTRA.

Regarding future work, we are optimistic that our approach would also work well
for multi-criteria optimization. Although our pruning techniques may not work as strict
as for single-criteria search, the number of reasonable choices is little in this scenario
as well. Another very important problem is dynamization. It seems as if updating a
time-expanded graph is rather expensive, though possible [3, 15].
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Extended abstract

Abstract. At an airport a series of assignment problems need to be
solved before aircraft can arrive and depart and passengers can embark
and disembark. A lot of different parties are involved with this, each of
which having to plan their own schedule. Two of the assignment problems
that the ’Regie’ at Amsterdam Airport Schiphol (AAS) is responsible for,
are the gate assignment problem (i.e. where to place which aircraft) and
the bus assignment problem (i.e. which bus will transport which passen-
gers to or from the aircraft). Currently these two problems are solved in a
sequential fashion, the output of the gate assignment problem is used as
input for the bus assignment problem. We look at integrating these two
sequential problems into one larger problem that considers both prob-
lems at the same time. This creates the possibility of using information
regarding the bus assignment problem while solving the gate assignment
problem. We developed a column generation algorithm for this problem
and have implemented a prototype. To make the algorithm efficient we
used a special technique called stabilized column generation and also col-
umn deletion. Computational experiments with real-life data from AAS
indicate that our algorithm is able to compute a planning for one day at
Schiphol in a reasonable time.
Keywords: gate assigment, integrated planning, airports, column gen-
eration, integer linear programming

1 Introduction

Between the time an aircraft lands at an airport and the time it departs again
many things must happen. One of the most obvious things is that passengers
needs to disembark the aircraft. Moreover, the aircraft needs to be refueled, new
passengers need to board, new supplies have to be put on board, the aircraft has
to get cleaned. All of the actions take place while the aircraft is standing at a
gate. We will consider the arrival of an aircraft until the following departure of
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2 G. Diepen et al.

the same aircraft as one flight. The gate assignment problem deals with assigning
a given set of flights to a set of gates such that certain criteria are met.

In this paper, we consider the gate assignment at Amsterdam Airport Schiphol
(AAS). We investigate the daily planning, i.e. the creation of a planning for the
upcomimg day on the basis of the available information about the flights of that
day. In Diepen et al. [4], we have presented a column generation algorithm to
create an assignment for aircraft to gates that is as robust as possible, meaning
that any small deviation from the scheduled arrival and departure times should
not result in lots of rescheduling.

Some flights are not assigned to a gate with an airbridge but to a so-called
remote stand. This implies that passengers have to be transported to and from
the aircraft by buses. We have shown how we can create a robust schedule
for these platform buses by a similar type of column generation algorithm (see
Diepen [3]) in case the gate assignment is given.

This approach resembles the way AAS is actually solving these two problems
currently. First the gate assignment problem is solved, the solution of which is
then used as input for the bus planning problem. Although the bus planner have
the possibility to influence the gate planning by providing preferences, in general
the two problems are solved in a sequential way.

Observe that this could imply that a schedule for the gate assignment results
in a very bad schedule for the bus planning. In many cases minor changes to the
original solution for the gate assignment problem would allow better assignments
for the buses. So although this would mean a sub-optimal solution for the gate
assignment problem to be used, the solution for both the gate and bus planning
as a whole would improve.

In this paper, we focus on the integration of gate assignment and bus planning.
Our goal is to achieve better overall robustness and a more efficient bus planning
without too much negative effects on the gate assignment. The airport authorities
at AAS have indicated that robustness is very important for them, in order to
limit the amount of gate changes during the day of operations.

During the last years, a signficant amount of research has been performed on
the integration of real-life scheduling problems. For example Freling, Huisman,
and Wagelmans [6] look into the integration of solving the combination of the
vehicle and crew scheduling problems that arise in the public transport schedul-
ing. They present two different models and algorithms for solving the integrated
version of the two problems, and compare the results to the results obtained by
using the standard sequential approach.

One of the areas where the integration of real-life scheduling problems is
investigated a lot, is in the airline industry. Cordeau et al. [2] investigate the
integration of the aircraft routing problem with the crew scheduling problem.
They propose a solution approach based on Benders decomposition and show
that solving these two problems as one integrated problem yields significant cost
savings. Other integrations that have been considered are schedule assignment
and the fleet assignment problems (see Rexing et al. [9] and Lohatepanont and
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Barnhart [8]) and the integration of the fleet assignment and the crew scheduling
problems (see Gao [7], Clarke et al. [1], and Sandhu and Klabjan [10]).

At Amsterdam Airport Schiphol, the software package currently in use for
solving the gate assignment problem, uses a rule based approach for optimizing
the assignment. It includes many aspect, however, it does not support the main
thing we aim for, robustness. Furthermore, it is also capable of scheduling ad-
ditional processes besides the assignment of aircraft to gates. For instance, in
Vancouver the same program is used and there the scheduling of the push back
trucks is also handled by the program.

The purpose of the research described in this paper is to enable the use infor-
mation of regarding the bus planning problem while solving the gate assignment
problem. Instead of an iterative method in which the separate problems are
solved in turns and are allowed to send constraints or preferences to each other,
our approach is to combine the two assignment problems into one big problem
and solving this one big problem as a whole, where the objective is to maximize
overal robustness.

The outline for the remainder of the paper is as follows: In Section 2 we
will give the problem formulation and our model and in Section 3 we present
solution method. Furthermore, in Section 4 we will report on the results of the
experiments that we performed and finally, in Section 5 we give our conclusions.

2 Problem formulation

In this section, we describe the problem and present an integer linear program-
ming formulation. For the upcoming day we want to create a gate assignment
for a given set of flights and a planning for the platform buses transporting
passengers to and from flights at a remote stand.

For the gate asssignment several properties of the flights are important:

– Arrival and departure time
– Region of origin and destination (Shengen/EU/Non-EU)
– Size category
– Ground handler

At AAS the ground handlers are divided into two groups: KLM Ground Services
and other companies. Clearly, two flights cannot be assigned to the same gate
at the same time. At AAS the minimum amount of idle time between two con-
secutive flights at a gate is 20 minute. For each gate it is known which regions
(because of safety regulation), size categories, and grounds handlers it can serve.
This results in constraints to ensure that at a gate there are only flights maching
the properties of the gate with respect to region, size of the aircraft and ground
handler.

Moreover, certain preferences might be taken into account. For example, some
airlines such as KLM have their own gates or want their flights to be grouped
as much as possibe on certain gates, for example we could require that at least
5 out of 7 Swiss flights are on a specific gate.



4 G. Diepen et al.

Flights that stay on the ground for a longer period, eg. 3 hours, may have
to be sprit. This means that after some time the flight is removed from the gate
and later is moved back to some (possibly other) gate. We included this in our
model, but omit the description for reasons of brevity.

Our objective is to create an assignment schedule that is as robust as possible,
meaning that the resulting schedule is able to cope with minor disturbances
during the actual day as well as possible. The following picture shows an example
of a schedule that is typically non-robust and can be improved by interchanging
flights 3 and 4.

Flight 1 Flight 4

Flight 2 Flight 3

Gate 2

Gate 1

Fig. 1. Example of a non-robust schedule.

Observe that a schedule is best able to cope with disturbances if all idle times
between each pair of consecutive flights on a gate are as large as possible. We
model this with a cost function that greatly penalizes short idle times, while
giving very low cost to large, and thus favorable idle times.

For the cost of the idle time t between two consecutive flights v and w on a
gate we use the same cost function presented in [4]

cG(t) = conv(v, w)1000(arctan(0.21(−t)) +
π

2
),

where conv(v, w) denotes the convenience multiplier expressing the preference
of flight w directly succeeding flight v on a gate. For example, this multiplier is
large is v and w belong to the same airline since in this case the airline has a
clear incentive to make v depart on time.

If a flight is handled at a remote stand, the passengers are moved to and
from the terminal by bus. The number of buses needed depends on the number
of passengers. In this way, each flight assigned to a remote stand, results in a
number of bus trips. At arrival all trips takes place at the same time, and for
the departure there by rule have to be at least two trips and the first trip starts
already some time before the departure of the flight. When ordering buses and
drivers, AAS can specify the amount buses required per 15 minutes. As a results
the bus drivers (about 60) on a day work in about 20 types of shifts, where shifts
longer than 4.5 hours contain a mandatory break.
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To maximize robustness, we make use of a similar cost function of the idle
times t between consecutive trips of the same bus. The exception is that at each
given time we have significantly lowered the total cost, this to resemble the fact
that the gate assignment is still the more important problems of the two:

cB(t) = 50(arctan(0.21(−t)) +
π

2
),

By taking the sum of the total cost of both sub problems, we now have a
representation for the quality of the robustness of a solution as a whole.

The ILP formulation. The model is obtained by combination and extension
of the separate models presented in [4] and [3] to solve the gate assignment and
the bus planning problems respectively.

Our model is based on so-called gate plans, which consist of a set of flights
assigned to one gate. We aggregate gates with the same properties into groups of
gates and each such group we refer to as a gate type. These properties contain at
least the origin/destination, size and ground handler. However, a trivial aggre-
gation in which each separate gate (except for the platform stands) is considered
a single type is also possible.

We define the decision variable

xi =
{

1 if gate plan i is selected
0 otherwise,

Since it might be non-trivial to assign all flights to a gate, allow a flight to be
unassigned at high cost. This is modelled by the binary variable UAFv. Let V
denote the number of flights, A the number of gate types, Sa the number of
gates of type a, and K the number of preferences. Now the robustness cost of
the gate assignment are given by:

Min
N∑

i=1

cGi xi +
V∑

v=1

QvUAFv

and the gate plan have to satisfy the following constraints:

UAFv +
N∑

i=1

gvixi = 1 v = 1 . . . V (1)

N∑
i=1

eiaxi ≤ Sa a = 1 . . . A (2)

N∑
i=1

V∑
v=1

A∑
a=1

pvakeiagvixi ≥ Pk k = 1, . . . ,K (3)

where

gvi =
{

1 if flight v is in gate plan i
0 otherwise,
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eia =
{

1 if gate plan i is for gate type a
0 otherwise,

pvak =
{

1 if flight v has preference for gate of type a in preference k
0 otherwise,

Constraint (1) ensures that all flights are either present in one of the selected
gate plans, or the unassignment variable for the flight will have the value 1,
resulting in a penalty in the objective function.

Constraint (2) ensures that we select as many gate plans of a certain type
as there are gates of the type and Constraint (3) ensures that we fullfill all of
the preferences that are given with regards to the gate assignment. Here Pk is
the minimum required number of flights with a preference for gate type a that
we have to assign to a gate of type a to meet the preference constraints, e.g. the
constraint can be that at least 7 out of the 10 flights of a certain airline are at
a given gate.

In case we only need to solve the bus planning problem, we are given a
set of flights of which it is known where exactly they are standing. With this
information we can create the trips needed to transport all the passengers and
in the model we must ensure that each of these trips is either driven by a bus,
or it is left unassigned with a penalty cost.

For the combination of the two problems, we do not yet know which flights
will be placed on the platform (and also, on which platform) and therefore we
have to find a way to determine which trips we actually need to assign to buses.

To handle this problem, we generate all possible trips for flights that could
be assigned to the remote stands. This means that for each of these flights we
create the trips for each of the platforms that it can be assigned to. For example,
if an arriving flight requires two trips because of the number of passengers and
it can be assigned to the D/E platform, as well as the B platform it means
that we will create two trips from the D/E platform and two trips from the B
platform to the terminal building. Similarly, not only different platforms, but
also different destinations in the terminal building must be considered. For each
possible combination we would have to create the trips also. To allow for this
coupling we will work with all possible trips and determine which of these are
needed in a solution and which are not. For this purpose we will use the variables
NNTt for each trip t to denote whether the trip t needs to be assigned to a bus
or that the trip is irrelevant for the assignment problem.

Similar to the gate assignment, we define bus plans as the set of trips per-
formed by one bus. We define

yj =
{

1 if bus plan j is selected
0 otherwise,

and the binary variable UATt to signal if trip t is unassigned. Let T be the
number of trips, B be the number of shift types and Tb be the number of buses
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with drivers available is shift b. We now obtain the following model:

Min
N∑

i=1

cGi xi +
V∑

v=1

QvUAFv +
M∑

j=1

cBj yj +
T∑

t=1

RtUATt

subject to

(1)− (3)
M∑

j=1

fjbyj ≤ Tb b = 1 . . . B (4)

NNTt + UATt +
M∑

j=1

htjyj = 1 t = 1 . . . T (5)

NNTt +
N∑

i=1

V∑
v=1

ttvigvirixi = 1 t = 1 . . . T (6)

xi ∈ {0, 1} i = 1 . . . N (7)
yj ∈ {0, 1} j = 1 . . .M (8)

where

fjb =
{

1 if bus plan j for a shift of type b
0 otherwise,

htj =
{

1 if trip t is in bus plan j
0 otherwise,

ttvi =
{

1 if assigning flight v to gate plan i implies trip t must be driven
0 otherwise,

ri =
{

1 if gate plan i is for a remote stand
0 otherwise,

Constraint (4) ensures that for each bus shift, we select at most the number
of buses present in that shift.

Constraint (5) states that either not needed, or, in case it is needed, must
either be assigned to a bus plan or it must be explicitly become unassigned at
high cost.

Without any further constraints on the NNTt variables, the easiest solution
would be to set the value of all of these variables to 1 and all of the trip constraints
would be satisfied right away. Constraint (6) ensures that this cannot happen
for trips that are defined for flights assigned to the remote stands. It is also this
constraint that actually links the gate and bus model into one large model.

3 Solving the problem

3.1 Assigning flights to gate plans and trips to bus plans

Observe that the above model determines for each group of gates and each
group of shifts an equal sized set of gate plans and bus plans respectively. To
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approximate the optimal solution of the above ILP-formulation, we will first relax
the integrality constraints (7) and (8). After that we will solve the resulting LP
relaxation to optimality by making use of column generation.

The pricing problem. After each iteration of the column generation process,
we need to determine whether other columns exist that might improve the value
of the objective function, the so-called pricing problem. In our case we have to
solve two types of pricing problems, one for finding gate plans and one for finding
bus plans.

The pricing problem for the gate assignment part boils down to a set of
shortest path problems. For each gate type a we define a graph Ga, the nodes of
which are the flights that are allowed to be assigned to gate type a and there is
an arc between each pair of flights (v, w) such that w can directly succeed v on
that gate, i.e., the difference between the arrival time T arr

w of flight w and the
departure time T dep

v is at least 20 minutes. Furthermore we add a source vertex
s with an arc to every node v and a sink t and an arc from every node to t. Now
every path in Ga corresponds to a feasible gate plan and vice versa. To be able
to solve the pricing problem as a shortest path problem, we set the cost of arc
(v, w) equal to the contribution of flight v to the reduced cost as follows:

cG(T arr
w − T dep

v )− πv −
K∑

k=1

pvakψk −
T∑

t=1

ttvρt.

where the dual multipliers πv for flight v and ψk for preference k follow from
Constraint (1) and Constraint (3) respectively. Moreover, ρt is the dual multiplier
of Constraint (6), which only applies to gate plans that are for remote stands
(because only then ri = 1). The last term which incorporates the ‘coupling’
constraint is the only difference with the pricing problem for the gate assignment
problem. We may assume that the flights are sorted by their arrival times, which
implies a topological order on the vertices of the graph. Because we now have a
DAG with a topological order it is possible to find the shortest path in O(|V |+
|E|) time.

The pricing problem with regards to the bus problem boils down to a similar
type of shortest path problem and is the same as the pricing problem for solving
only the bus planning problem separately. The only difference is that the size of
the individual graphs is larger due to the increased number of trips.

Because solving all of the pricing problems in each iteration may be rather
time consuming, we have tried out different strategies with regards to which of
the pricing problems we solve during each iteration. One possible approach is to
interleave the solving of the pricing problems; one iteration we solve the pricing
problems for the buses and the other iteration we solve the pricing problems for
the gates.

Although, after some initial tests we found that searching for both gate and
bus plans with negative reduced cost from the beginning on turned out to work
better than the other possibilities.
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In [4] and [3], we generated a pool of additional columns that can be added
to the ILP and enable us to solve the ILP in a reasonable amount of time.
For gate assignment these column are obtained by after the pricing problem
has been solved, forbidding one flight in the gate plan and resolve the shortest
path problem. We perform this step for every flight in the optimal solution
of the pricing problem. For bus planning we generate additional columns in
the same way. When solving the problems separately, the columns are added
when we start solving the ILP. However, when solving the integrated problem
all additional columns with negative reduced cost are already added during the
column generation process.

Improvements in solving the LP. During our first experiments, it turned
out that the LP problem tends to require a long solution time and be a very
degenerate. This degeneracy appears in two ways during the column generation
process. First, resolving the restricted master problem after new columns have
been added takes quite many iterations and second, new columns that are gen-
erated with negative reduced cost do not improve the objective function after
they have been added to the restricted master problem.

We have applied two different approaches to improve the solving of the LP.
The first approach we used is column deletion and consists of the removal of
columns with too large positive reduced cost after every given number of itera-
tions. The effect of this removal is not only that the model is simplified and some
degeneracy is removed, but also that the resulting model is smaller and therefore
it can be solved more quickly. For solving the problems separately, this approach
showed promising results for decreasing the computation required time when .

The second approach we implemented is so-called stabilized column gen-
eration. This technique was introduced in du Merle et al. [5] and consists of a
combination of two techniques. One technique is the addition of bounded sur-
plus and slack variables to the original primal problem to overcome degeneracy.
The second technique consists of adding surplus and slack variables that have
a positive coefficient in the objective function. Combining these two techniques
both stabilizes and accelerates the column generation procedure. It decreases
the amount of degeneracy a.o. because the slack and surplus variables give more
possibilities for assigning a positive value to a newly added column. Moreover,
it has a positive effect on the tailing-off effect, i.e. slow convergence. A more
elaborate explanation is omitted for reasons of brevity.

Solving the ILP. After the LP is solved to optimality by means of column
generation, we are not finished yet because this solution might be fractional.
In case it is integral, we are finished since we have an integral solution that is
optimal. If we do not have an integral solution, we proceed as follows:

1. first we add all unique extra gate and bus plans that were generated as extra
columns while solving the pricing problems.

2. we then add all the unique variables that were taken out during the column
generation
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3. we reinstate the integrality constraints (7) and (8)

Solving the resulting ILP turned out to be still quite difficult. In order to
speed up this solving, we added additional constraints to the problem. These
constraints act as a rounding-heuristic. For each flight and for each bus these
additional constraints were created in the following way:

1. Determine if a flight or trip that is only present in selected gate plans and
bus plans respectively that are all of the same type, meaning that in the
fractional solution a flight or a bus trip is always assigned to one particular
gate type or one particular bus shift.

2. Create a constraint that ensures the flight or the trip has to be assigned to
that particular gate type or bus shift in an integral solution.

Although the above constraints might cause the optimal solution of our initial
ILP to be cut off, our experiments did not show any noticeable negative side
effects with regards to the cost of the integral solution compared to the optimal
fractional solution.

3.2 Assigning gate and bus plans to the actual gates and buses

After solving the ILP from the previous section, we have determined the set of
gate and bus plans that provide a (near) optimal solution. For each group of
gates and each group of shifts we have an equal size set of gate plans and bus
plans respectively. The one thing still left to do is to assign each gate plan and
each bus plan to each unique gate and bus respectively.

In case of the bus planning problem, this part is trivial since the buses within
one shift do not have any differences at all; it really does not matter to which of
these buses a particular bus plan is assigned to.

However, for the gate assignment problem it depends on the definition of the
gate types. If each single gate is a separate type, we already have an assignment
of flights to physical gates and this step is also trivial.

If we have grouped the gates with certain equal properties into types, the
individual gates within such a type still might be different on some other, less
important properties. These additional properties can be used for determining
to which physical gate a particular gate plan needs to be assigned.

Since the size of these problems is relatively small (in the order of 5 to 10
gates within one group) it is probably most effective to leave this up to the gate
planner to do this manually.

4 Experimental results

For testing our model, we wrote a prototype in C++ and ran numerous experi-
ments. All experiments were ran on on Pentium 4 2.8 GHz computer equipped
with 1GB of RAM. The solver we used for solving all (I)LP problems is Cplex 9.1.3
via the Concert Technology interface.
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AAS provided us with both data regarding the gate assignment problem,
which consisted of all flight information for three high-season (HS) days and
three low-season (LS) days and data regarding the bus planning problem with
all information regarding buses for one complete month.

From the supplied gate data we created two types of instances. In one type
of instances we aggregate all gates with identical properties (e.g. size, region,
ground handler, pier) into groups of gates. We refer to this type of instances as
Grouped Gates (GG). Furthermore, we constructed instances where every gate
is considered as a group with size one except for the platform gates. Recall that
for these instances our algorithm directly assigns flights to physical gates. We
refer to this type of instances as Single Gates (SG). This deaggregation results
in over twice the number of gate types, as can be seen in Table 1. This way
we created 12 instances with regards to the gate and flight information. The
high-season instances contain about 600 flights and about 1000 arival/departure
events for the bus planning. For the low-season instances these numbers are 500
and 900 respectively.

To create a sufficiently large number of experiments, we combined each of
the 12 gate assignment instances with the buses and shifts of all 30 of the bus
planning problem instances. These instances contain about 60 buses and about
20 type of shifts (of which about 70 percent is long enough to contain a manda-
tory break). We may expect the set of buses available at each given time of the
day should roughly be enough for driving all trips.

Instance Gates Gate types Remote stands

Grouped 128 40 34
Single 128 94 34

Table 1. Sizes of the provided instances with regard to gates

In Table 2 we present the general results with regards to solving the LP
part of the problem. We combined each instance of the gate assignment problem
with the 30 available instances of the bus planning problem and we present the
average time over these 30 instances needed for solving each combination, the
minimum time, and the maximum time. We also present the average number
of iterations needed to solve the LP relaxation and finally, we also present the
average time needed in each iteration of the column generation process to solve
the pricing problem and the time needed for resolving the Restricted Master
Problem (RMP) after we have added the columns found when solving the pricing
problem.

Our experiments indicate that the LP can be solved within a reasonable
amount of time. From Table 2 we can see that a significant amount of the time
needed for solving the LP-relaxation is spent in solving all the separate pricing
problems. Since all parts of the pricing problem that need to be solved can
be solved completely independent from each other, we could easily bring down
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Total time LP (s) Avg time (s)/iter
Instance Average Min Max Avg iter RMP Pricing

02-08-GG 1129.6 967.8 1472.0 161.67 2.8 3.9
02-08-SG 2070.1 1752.1 2657.7 171.90 4.8 6.8
03-08-GG 973.9 864.7 1213.2 148.27 2.6 3.7
03-08-SG 1847.4 1627.4 2337.8 163.07 4.4 6.5
04-08-GG 1142.6 1010.4 1641.3 157.50 3.2 4.0
04-08-SG 2575.2 2189.9 3970.3 212.77 4.6 7.2
15-03-GG 658.5 560.3 769.3 165.17 1.1 2.7
15-03-SG 1235.8 1094.6 1472.0 175.17 1.9 4.8
16-03-GG 710.0 623.8 850.4 161.90 1.3 2.8
16-03-SG 1383.4 1144.0 1661.5 175.87 2.5 5.0
17-03-GG 595.0 474.6 775.1 141.37 1.2 2.8
17-03-SG 1125.1 991.3 1422.4 151.70 2.2 4.9

Table 2. General LP results

the influence of the pricing problems on the total time needed for solving the
LP-relaxation by making use of parallel programming.

To investigate the effect of the column deletion and the stabilized column
generation, we also ran part of the instances without these enhancements. It
could be clearly seen that the time needed to solve the LP relaxation to opti-
mality explodes without the use of column deletion and stabilization. One part
responsible for this huge increase in time needed is the large increase in the aver-
age time needed for solving one iteration of the RMP. This can be explained by
the fact that after a couple of iterations, the model quickly becomes very large
due to the fact that all columns stay in the model.

It turns out that without column deletion and stabilized column generation,
the average number of iterations needed to solve the LP-relaxation to optimality
is higher than when both are enabled, while the average time needed for solving
the pricing problems is lower. The increase in number of iterations needed is
an example of the so-called tailing-off effect. In the beginning there are big
improvements in each iteration, while more and more iterations are needed when
closer by the optimum. Using the stabilized column generation has a positive
effect on this tailing-off effect, as can be seen by the number of iterations needed.

It turns out that the combination of column deletion and stabilized column
generation are responsible for a huge improvement, in our experiments by a factor
2.5 up 19, in the time needed for solving the LP-relaxation to optimality with
column generation. Interesting is the fact that the improvement seems larger
when the instances are larger (see HS versus LS)

The results for solving the ILP are given in Table 3. The table shows that we
were able to solve the very large ILP within a few minutes. In our experiments
the integrality gap turned out to be very small.

As mentioned in Section 3 we added additional constraints to the model
before solving the actual ILP. These additional constraints can be considered as
a kind of rounding-heuristic in the way that if in the optimal solution for the
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LP-relaxation a flight is always assigned to a certain type of gate in all selected
gate plans, we add a constraint that enforces the flight to be assigned to a gate
plan of that type.

The average number of constraints that were added for flights as well as for
buses is shown in Table 3. These constraints result in ILP models that are a lot
smaller and hence in a much smaller solution time. From our experiments we
found that the additional constraints did not have a significant impact on the
value of the final ILP solution and did not result in infeasibility of the ILP.

Average additional constraints Average solving
Instance Flight constraints Trip constraints time ILP (s)

02-08-GG 121.4 57.6 43.5
02-08-SG 103.4 57.9 54.1
03-08-GG 117.8 57.1 42.0
03-08-SG 105.4 57.7 103.3
04-08-GG 119.3 57.2 82.7
04-08-SG 108.7 57.5 95.2
15-03-GG 108.9 58.4 86.5
15-03-SG 91.0 59.0 271.0
16-03-GG 107.0 59.1 45.8
16-03-SG 84.2 59.3 170.6
17-03-GG 118.5 59.9 20.6
17-03-SG 105.6 59.6 29.5

Table 3. General results ILP

One other way to speed up the process of solving the ILP we used is to
first only solve the root node relaxation. We then add a so called cut up limit
to the model that is 0.5% above the value of the root node. This cut up limit
acts for the ILP solver as if an integral solution with that particular value has
already been found, meaning that any node with a relaxation value greater than
this cut up value is automatically pruned. Strictly speaking this might result in
infeasibility of the ILP (when the optimal ILP solution exceeds the thhreshold),
but this never occured in our experiments.

Furthermore, when looking at the time needed for solving the various final
ILP models, we can see that these times are still within very acceptable ranges,
also for the Single Gate Problems. This indicates that it is feasible to assign
flights and trip directly to physical gates and buses respectively.

5 Conclusion and further research

We have investigated the combination of two assignment problems that in prac-
tice are solved in a sequential fashion. We formulated the combined problem in
one large model for which we approximate the optimal solution by means of an
approach based on column generation.
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We implemented our algorithm and tested it with real-life data provided by
AAS. The results show that our approach is capable of solving these real-life
instances within acceptable time, especially given the fact that this approach
solves two problems within about the same time that currently is available at
AAS for the computer to present a solution for only the gate assignment problem.

We also showed that our approach is still capable of solving the instances
within acceptable running times if we create a single gate type for each separate
gate, except for the remote stands. This different model lead to over twice the
number of gate types which significantly increased the size of the instances.

We are currently performing a simulation study of the platform buses, to
evaluate the robustness of the column generation planning compared to a kind
of first-come-first-served method as used at AAS. We can clearly see that the
column generation schedule is more smooth, in the sense that the idle time
is spread more evenly. Currently, the gate assignment at AAS needs a lot of
replanning during the day of operation. However, comparing the quality of our
resulting schedules to the actual schedules in use at AAS is difficult for a variety
of reasons, the main one being the fact it is not possible to retrieve the schedule
we would like to compare to, namely the initial schedule as produced by the
computer for the upcoming day.

An interesting possibility of further investigation is to start looking at a more
operational type of planning. It would be interesting to see how our suggested
approach performs if we do not let it create a schedule from scratch but we
supply it with a schedule and some disturbances and let the program try to
resolve this updated problem.

One of the main things that would have to be considered for this approach is
the fact that any new solution should not deviate too much from the currently
existing solution. So when solving the problems after some parts are fixed (since
they already happened) and other events have changed properties (e.g. earlier or
later Estimated Time of Arrivals and Departures) the cost function would not
only have to consider the robustness of the schedule, but also the similarity to
the original-day-ahead schedule, since too many changes in a schedule will result
in a lot of confusion for the different parties dependent on the schedule.
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Abstract. Delay management is an important issue in the daily operations of any railway
company. The task is to update the planned timetable to a disposition timetable in such a
way that the inconvenience for the passengers is as small as possible. The two main decisions
that have to be made in this respect are the wait-depart decisions to decide which connections
should be maintained in case of delays and the priority decisions that determine the order
in which trains are allowed to pass a specific piece of track. They later are necessary in the
capacitated case due to the limited capacity of the track system and are crucial to ensure
that the headways between different trains are respected and that single-track traffic is
routed correctly. While the wait-depart decisions have been intensively studied in literature
(e.g. [Sch06,Gat07]), the priority decisions in the capacitated case have been neglected so
far in delay management optimization models.

In the current paper, we add the priority decisions to the integer programming formulation
of the delay management problem and are hence able to deal with the capacitated case.
Unfortunately, these constraints are disjunctive constraints that make the resulting event-
activity network more dense and destroy the property that it does not contain any directed
cycle. Nevertheless, we are able to derive reduction techniques for the network which en-
able us to extend the formulation of the never-meet property from the uncapacitated delay
management problem to the capacitated case. We then use our results to derive exact and
heuristic solution procedures for solving the delay management problem.

The results of the algorithms are evaluated both from a theoretical and a numerical point of
view. The latter has been done within a case study using the railway network in the region
of Harz, Germany.

1 Introduction

The delay management problem deals with (small) source delays of a railway system as they occur
in the daily operational business of any public transportation company. In case of such delays, the
scheduled timetable is not feasible any more and has to be updated to a disposition timetable. The
main question which has been treated in the literature so far is to decide which trains should wait
for delayed feeder trains and which trains better depart on time (wait-depart decisions).

A first integer programming formulation for the uncapacitated delay management problem has
been given in [Sch01] and has been further developed in [GHL08,Sch07b], see also [Sch06] for
an overview about various models. The complexity of the problem has been investigated in
[GJPS05,GGJ+04] where it turns out that the problem is NP-hard even in very special cases.
The online version of the problem has been studied in [GJPW07,Gat07]. In [BHLS07], it was
shown that the online version of the uncapacitated delay management problem is PSPACE-hard.
Further publications about delay management include a model in the context of max-plus-algebra
([RdVM98,Gov98]), a formulation as discrete time-cost tradeoff problem ([GS07]) and simulation
approaches ([SM99,SMBG01])
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However, these studies neglect the limited capacity of the track system while dealing with delay
management. Adding these constraints, the problem becomes significantly harder to solve. Some
first ideas on how to model these constraints in the context of delay management have been
presented in [Sch07a]. Capacity constraints are also taken into account in a real-world application
studied within the project DisKon supported by Deutsche Bahn (see [BGJ+05]). Here, the following
setting to apply delay management in practice is suggested: In a first step, a macroscopic approach
deals with the wait-depart decisions, while a second step ensures feasibility within a microscopic
model. This is done by postponing departures until the track to be used is available. It may however
yield rather bad solutions.

In the following, we will for the first time analyze the integer programming formulation of the
delay management problem for the capacitated case.

The remainder of the paper is structured as follows. In Section 2 we present an integrated integer
programming model including the priority decisions and hence respecting the limited capacity of
the track system. We analyze the formulation, present reduction techniques and extend the never-
meet property in Section 3. We then discuss in which cases the problem can be solved exactly
using the software Xpress. Four heuristic approaches are described and analyzed in Section 4. A
numerical evaluation of these approaches also is presented in Section 4. We finally conclude the
paper mentioning ideas for further research.

2 Integer Programming Formulation

The uncapacitated delay management problem is defined as follows: Given the public transporta-
tion network PTN = (V,E) (consisting of the set V of stations and the set E of direct links
between stations), the set F of trains, a set of connections and some source delays, decide which
connections should be maintained and which connections should be dropped such that the aver-
age delay of a passenger at his final destination is minimal. This problem was first introduced in
[Sch01].

In this paper, we take the limited capacity of the tracks into account to obtain the delay man-
agement problem with capacity constraints. This means we also have to decide which train should
drive first if two or more trains use the same piece of infrastructure (for example on single-track
lines or when two consecutive trains use the same track in the same direction). Note that it can
be better to change the originally scheduled order of the trains to reduce the delay. A first model
of this problem has been introduced in [Sch07a]. Here we present and analyze its formulation as
integer program.

To this end, we first introduce the corresponding event-activity network which is a directed graph
N = (E ,A) (see [Nac98,Sch07b]). E consists of arrival and departure events Earr and Edep, respec-
tively. A timetable π ∈ N|E| assigns a time πi to each event i ∈ E . If a delay occurs, we need to
update the given timetable π to a so called disposition timetable x ∈ N|E|. To present the con-
straints that have to be satisfied by a (disposition) timetable, we need the following four different
types of activities, A = Adrive ∪ Await ∪ Achange ∪ Ahead:

– driving activities Adrive ⊂ Edep×Earr modeling the driving of a train between two consecutive
stations (including turn-around edges),

– waiting activities Await ⊂ Earr × Edep,
– changing activities Achange ⊂ Earr × Edep which are used to model transfers from one train to

another one, and
– headway activities Ahead ⊂ Edep × Edep which model the limited capacity of the track system.

If two events i, j ∈ E are connected by an activity (i, j) ∈ A, then event i has to be performed
before event j can take place. In particular, each activity a = (i, j) ∈ A has assigned a duration. If
a is a driving, waiting, or changing activity, this duration is denoted by La = Lij , and we require

xj − xi ≥ Lij .
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The headway activities, on the other hand, appear in pairs: if (i, j) ∈ Ahead, then (j, i) ∈ Ahead,
too. This is used to model the disjunctive constraints xj−xi ≥ Lij or xi−xj ≥ Lji. The goal is to
choose exactly one activity of each such pair and to respect the resulting constraint. This means
that a priority decision has to be made.

In order to present the integer programming formulation, we need some more parameters:

First, we allow two types of source delays: The first is a delay di at an event i ∈ E (e.g. a driver
coming too late to his duty), which refers to a fixed point of time, such that xi ≥ πi+di is required.
The second is a delay da = dij which increases the duration of an activity a = (i, j) ∈ A, e.g. an
increase of traveling time between two stations due to construction work. Such a delay da has to
be added to the duration La of activity a. If an activity has no source delay (this is, for example,
the case for all headway activities as we do not allow activity delays on headway activities), we
assume da = 0 to simplify the notation.

Moreover, let wi be the number of passengers getting off at event i ∈ E and wa be the number of
passengers who want to use a connection a ∈ Achange. Throughout this paper, we assume wa > 0
for all a ∈ Achange (otherwise, nobody uses the connection, so it can be removed from the network).
We further assume that all lines have a common period T (this assumption can easily be relaxed
by introducing periods Ta for all changing activities a ∈ Achange).

To model the wait-depart decisions, we introduce binary variables

za =

{
0 if changing activity a is maintained
1 otherwise

gij =

{
0 if event i takes place before event j

1 otherwise

for all changing activities a ∈ Achange and for all headway activities (i, j) ∈ Ahead. The integer
programming formulation reads as follows:

(DM) min f(x, z, g) =
∑

i∈Earr

wi(xi − πi) +
∑

a∈Achange

zawaT (1)

such that

xi ≥ πi + di ∀i ∈ E (2)
xj − xi ≥ La + da ∀a = (i, j) ∈ Anice := Await ∪ Adrive (3)

Mza + xj − xi ≥ La ∀a = (i, j) ∈ Achange (4)
Mgij + xj − xi ≥ Lij ∀(i, j) ∈ Ahead (5)

xi ∈ N ∀i ∈ E (6)
za ∈ {0, 1} ∀a ∈ Achange (7)
gij ∈ {0, 1} ∀(i, j) ∈ Ahead (8)

gij + gji = 1 ∀(i, j) ∈ Ahead (9)

where M is a constant which is “large enough”. We will show in Corollary 2 that M can indeed
be chosen finitely beforehand. But let us first explain the meaning of the objective function and
of the constraints:

In the objective function, we minimize the sum of all delays passengers have when starting their
trips or at their final destinations plus the sum of all missed connections. It approximates the sum
of all delays over all customers. Furthermore, note that any optimal solution of this program is
a Pareto solution with respect to the two objective functions minimize the delay over all vehicles
and minimize the number of missed connections.

Constraints (3) make sure that the delay is passed on correctly along waiting and driving activities.
(4) and (5) do the same for changing activities that are maintained and for the headway activi-
ties which should be respected. Constraint (9) ensures that exactly one of each pair of headway
constraints is respected.
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Relaxing all constraints modeling the limited capacity of the tracks yields the uncapacitated delay
management problem:

(UDM) min f(x, z) =
∑

i∈Earr

wi(xi − πi) +
∑

a∈Achange

zawaT

such that (2), (3), (4), (6), (7) are satisfied.

Let us denote the objective value of the optimal solution of (DM) by FDM and let FUDM be the
objective value of the corresponding instance of (UDM). Since (UDM) is a relaxation of (DM), we
obtain FUDM ≤ FDM.

Later on, we will fix the priority variables heuristically and treat the resulting headway constraints
as the constraints in (3). We hence define for some set Afix ⊆ Ahead the problem

(UDM(Afix)) min f(x, z) =
∑

i∈Earr

wi(xi − πi) +
∑

a∈Achange

zawaT

such that
xj − xi ≥ La + da ∀a = (i, j) ∈ Afix (10)

and such that (2), (3), (4), (6), (7) are satisfied.

Note that UDM(Afix) yields a feasible solution of (DM) if Afix = {(i, j) ∈ Ahead : gij = 0} for
some g ∈ {0, 1}|Ahead| which satisfies (9) (and provided that UDM(Afix) is feasible). In this case
we obtain FUDM ≤ FDM ≤ fUDM(Afix).

We may also fix the variables za and gij and obtain Afix := {a ∈ Achange : za = 0 } ∪ {(i, j) ∈
Ahead : gij = 0 }. Determining the remaining variables xi in (DM) then reduces to a simple project
planning problem:

(PP(Afix)) min f(x) =
∑

i∈Earr

wi(xi − πi)

such that (2), (3), (10), and (6) are satisfied.

The version of (DM) in which Achange = ∅ has been shown to be NP-complete in [CS07]. This
yields NP-completeness of (DM). However, (PP(Afix)) can be solved in polynomial time, e.g. by
applying the forward phase of the critical path method (CPM) of project planning (see [Elm77])
as follows: We first sort E =

{
i1, . . . , i|E|

}
topologically and obtain an order ≺. Then we set

x̃i1 := πi1 + di1 (11)

for all k ∈ {i2, . . . , i|E|} : x̃k := max
{

πk + dk,

max
a=(i,k)∈Afix∪Anice

x̃i + La + da

}
. (12)

We now come back to the integer programming formulation of (DM) and show that M is finite
and can be chosen beforehand for any instance of (DM). To this end, we first give an upper bound
on the maximum time of each single event in an optimal disposition timetable. We denote the
slack time of an activity a = (i, j) as

sa = πj − πi − La,

i.e. sa gives the buffer time included in the scheduled duration of the activity.

Theorem 1. Let an instance of (DM) be given and let

D := max
i∈E

di +
∑

a∈Anice

(da − sa)+ +
∑

(i,j)∈Ahead:πi>πj

πi − πj + Lij . (13)

Then there exists an optimal solution (x, z, g) of (DM) such that xk ≤ πk + D for all k ∈ E.
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Proof. We show the following stronger statement: For any feasible solution (x̄, z, g) of (DM),
there exists a feasible solution (x̃, z, g) with x̃k ≤ x̄k (hence f(x̃, z, g) ≤ f(x̄, z, g)) that fulfills
x̃k ≤ πk + D for each k ∈ E .

Given (x̄, z, g), letAfix := {a ∈ Achange : za = 0}∪{(i, j) ∈ Ahead : gij = 0} . As (x̄, z, g) is a feasible
solution, N ′ := (E ,Anice ∪Afix) does not contain any directed circle, so we sort E =

{
i1, . . . , i|E|

}
topologically. We now solve TT(Afix) optimally and denote the solution obtained by x̃ (see (11)
and (12)). Then (x̃, z, g) is a feasible timetable satisfying x̃k ≤ x̄k.

Claim: For each k ∈ E we have x̃k ≤ πk + Uk where

Uk = max
i∈E:
i�k

di +
∑

a=(i,j)∈Anice:
j�k

(da − sa)+ +
∑

(i,j)∈Ahead:
gij=0,πi>πj,j�k

πi − πj + Lij . (14)

We prove the claim by induction. For the first event, we have x̃1 = π1+d1 ≤ π1+U1. Now consider
x̃k. We distinguish the following three cases depending on which term in the definition (12) of x̃
is maximal:

– x̃k = πk + dk. Since dk ≤ Uk, the claim is true.
– x̃k = x̃i + La + da for (i, k) ∈ Anice ∪ Afix. We assume that (i, k) ∈ Anice ∪ Achange or that

(i, k) ∈ Ahead with πi < πk. Then

x̃k = x̃i + La + da ≤ πi + Ui + La + da

≤ πi + La︸ ︷︷ ︸
≤πk

+ max
i′∈E:
i′�i

di′ + da +
∑

a′=(i′,j)∈Anice:
j�i

(da′ − sa′)+ +
∑

(i′,j)∈Ahead
g

i′j=0,π
i′>πj,j�i

πi′ − πj + Li′j

≤ πk + Uk, hence the claim is true.

– x̃k = x̃i +La + da for (i, k) ∈ Anice ∪Afix where (i, k) ∈ Ahead with πi > πk and gik = 0. Then

x̃k = x̃i + Lik ≤ πi + Ui + Lik

≤ max
i′∈E:
i′�i

di′ +
∑

a′=(i′,j)∈Anice:
j�i

(da′ − sa′)+

+πk + (πi − πk + Lik) +
∑

(i′,j)∈Ahead
g

i′j=0,π
i′>πj,j�i

πi′ − πj + Li′jd ≤ πk + Uk,

and again the claim follows.
ut

Using this result, we can give an upper bound on the minimal size needed for M :

Corollary 2. M ≥ D is “large enough”.

Proof. We show that each timetable that satisfies (2)-(3), (6)-(9), (4) for all a ∈ Achange with
za = 0 and (5) for all (i, j) ∈ Ahead with gij = 0 also satisfies (4) for all a ∈ Achange with za = 1
and (5) for all (i, j) ∈ Ahead with gij = 1 if M ≥ D.

For each changing activity a = (i, j) ∈ Achange, πj − πi ≥ La, hence (using Theorem 1)

M ≥ D ≥ xi − πi ≥ xi − πj + La

(2)

≥ xi − xj + La,

so (4) indeed is satisfied for all a ∈ Achange.

Now, let (i, j) ∈ Ahead with gij = 0. We have to show that M + xi − xj ≥ Lji
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Case 1: πi < πj. We use the proof of Theorem 1: For each j, each term that is added to Uj

also is added to D. As πi < πj and gij = 0, the term πj − πi + Lji is added to D, but not to Uj ,
hence D − Uj ≥ πj − πi + Lji and we obtain

xj ≤ πj + Uj ≤ πj + D − (πj − πi + Lji) = D + πi − Lji

(2)

≤ D + xi − Lji.

Case 2: πi > πj. As π is a feasible timetable, πi > πj implies πi − πj ≥ Lji . Using Theorem 1,

M ≥ D ≥ xj − πj ≥ xj − πi + Lji

(2)

≥ xj − xi + Lji.

Both cases show that (5) is indeed satisfied for all (i, j) ∈ Ahead. ut

3 Reducing the Complexity of the Integer Program

Headway constraints make the delay management problem hard to solve; due to headway con-
straints, a delay from a subsequent train might be carried over even to a train which has been
scheduled earlier if the order of both trains is switched. At a first glance, it seems that all of the
headway activities can carry over a delay to a previous train in an optimal solution. However,
there indeed are some headway activities that can be neglected beforehand as we will show in this
section. This reduction helps to solve (DM) more efficiently. We will introduce an algorithm to
reduce the network in time O(|A|) before solving the remaining NP-hard problem.

Definition 3. Let A′ ⊆ A. For i ∈ E, we define the successors of i in (E ,A′) and the predecessors
of i in (E ,A) as

suc(i,A′) := {j ∈ E \ {i} : there exists a directed path from i to j in (E ,A′)} ,

pre(i) := {j ∈ E \ {i} : there exists a directed path from j to i in (E ,A)} .

Using this notation, we introduce the following algorithm:

Algorithm mark:
Input: The event-activity network N = (E ,A) and source delays dj > 0 (da > 0) for some
events j ∈ E (and for some activities a = (i, j) ∈ Anice, respectively).
Step 1: Set Aπ := Anice ∪ Achange ∪ {(i, j) ∈ Ahead : πi < πj}.
Step 2: For each source delay dj > 0, j ∈ E (da > 0, a = (i, j) ∈ Anice): mark j and all
k ∈ suc(j,Aπ).

Note that we do not use all headway activities in the algorithm. The next theorem shows that
this is in fact correct. In its proof and throughout this paper, we use Aπ as defined in Step 1 of
algorithm mark.

Theorem 4. Let La > 0 ∀a ∈ Anice ∪ Achange, Lij > 0 ∀(i, j) ∈ Ahead and wi > 0 ∀i ∈ E. Let
(x, z, g) be an optimal solution of (DM). Then, the following holds:

i ∈ E is not marked by algorithm mark ⇒ xi = πi.

Proof. By contradiction. Assume ∃i ∈ E such that i does not get marked by algorithm mark and
xi > πi. Assume that i is an event with minimal x among all such events.

First, by the construction of algorithm mark, we have di = 0, and for each a = (k, i) ∈ Aπ, da = 0
and k isn’t marked as well (if i is not marked, also pre(i) is not marked). As k is not marked
and we assumed i to be the event with minimal x among all events j with xj > πj that are not
marked, we have xk = πk.

Now, we show that reducing xi to x̃i := πi < xi also yields a feasible solution for (DM):
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– As di = 0, x̃i = πi satisfies (2).
– For all incoming activities a = (k, i) ∈ Aπ we use xk = πk and da = 0 to derive x̃i − xk =

πi − πk ≥ La = La + da, hence (3)-(5) hold for each a = (k, i) ∈ Aπ.
– For all outgoing activities (i, k) ∈ A we obtain xk − x̃i > xk − xi ≥ La + da where the last

step holds since x is a feasible timetable. Consequently (3)-(5) hold for all a = (i, k) ∈ A.
– Now let (k, i) ∈ Ahead \ Aπ. If gki = 1, (5) is satisfied due to Corollary 2, so assume gki = 0.

We define g̃ki := 1 and g̃ik := 0; then

xk − x̃i = xk − πi ≥ πk − πi ≥ Lki

since (k, i) /∈ Aπ, i.e. πk > πi, so (5) holds for (i, k). Due to Corollary 2, (5) also holds for
(k, i).

So (x̃, z, g̃) is a feasible solution with strictly better objective value than (x, z, g) (as wi > 0), a
contradiction to the optimality of (x, z, g). ut

If we allow wi = 0, then the following modification of Theorem 4 holds:

Theorem 5. Let La > 0 ∀a ∈ Anice ∪ Achange, Lij > 0 ∀(i, j) ∈ Ahead and wi ≥ 0 ∀i ∈ E. Then
there exists an optimal solution (x, z, g) of (DM) with:

i ∈ E is not marked by algorithm mark ⇒ xi = πi.

Due to these results, we can use algorithm mark to reduce the size of the MIP formulation:

– Run algorithm mark on an instance of (DM).
– Delete events that are not marked (unless they have a source-delayed outgoing activity) and

activities whose start or end event is not marked (unless they are source-delayed).
– Solve (DM) for this reduced instance.
– Set xi = πi for all events i ∈ E that have been deleted in the second step.

Our numerical results show that reducing the network by algorithm mark as a preprocessing step
significantly decreases the time needed to solve the IP, see page 8.

The results from Theorem 4 and Theorem 5 also can be used to tighten the upper bound on the
minimal size needed for M from Corollary 2: It is sufficient to use the reduced network from above
to calculate M .

There is another advantage of our results: Using algorithm mark, we can extend the never-meet
property (see [Sch06,Sch07b]) to capacitated delay management problems, and show that – if this
property holds for a given instance of (DM) – our objective (1) coincides with the sum of all delays
that each passenger has at his or her final destination. The definition of this property is given next.

Definition 6. An instance of (DM) has the never-meet property if

– for each source delay dj > 0 with j ∈ E (or da > 0 with a = (i, j) ∈ A), suc(j,Aπ) is an
out-tree, and if

– for each pair of different source delays dj > 0 (da > 0, a = (i, j)) and dj̃ > 0 (dã > 0,
ã = (̃i, j̃)), we have suc(j,Aπ) ∩ suc(j̃,Aπ) = ∅.

This means that the never-meet property is satisfied if no event can be influenced (directly or
indirectly) by more than one source delay. Note that one could define the never-meet property in
any network (e.g. also in N ) but due to the circles of the headway constraints it would never be
satisfied. Hence it is crucial to use the results of Theorem 4.

Lemma 7. Given an instance of (DM) that satisfies the never-meet property and an optimal
solution (x, z, g), assume that za = 1 for some a = (i, j) ∈ Achange. Then, for each k ∈ suc(j,Aπ)∪
{j}, k is not marked by algorithm mark, applied to (E ,A \ {a}).
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Proof. By contradiction. Let a = (i, j) ∈ Achange and za = 1 in an optimal solution (x, z, g).
Assume that there exists k ∈ suc(j,Aπ) ∪ {j} that is marked by algorithm mark, applied to
(E ,A \ {a}). Then, by construction of algorithm mark, there exists a directed path p1 from j̃1 to
k in (E ,Aπ \ {a}) with either dj̃1

> 0 or dã1 > 0 for some ã1 = (̃i1, j̃1).

As za = 1 and wa > 0, there has to be a reason why a is not maintained, namely because of a delay
of i. Hence, according to Theorem 4, i is marked by algorithm mark, so there exists a directed
path p2 from j̃2 to i in (E ,Aπ \ {a}) with either dj̃2

> 0 or dã2 > 0 for some ã2 = (̃i2, j̃2). As
k ∈ suc(j,Aπ) ∪ {j}, p2 can be extended to a path p3 from j̃2 to k in (E ,Aπ) that contains a.

This is a contradiction to the never-meet property: either j̃1 = j̃2, then suc(j̃1,Aπ) is not an
out-tree as we have two different paths p1 (not containing a) and p3 (containing a) from j̃1 to k,
or j̃1 6= j̃2, then suc(j̃1,Aπ) ∩ suc(j̃2,Aπ) ⊇ {k} 6= ∅. ut

Corollary 8. Given an instance of (DM) that satisfies the never-meet property and an optimal
solution (x, z, g), assume that za = 1 for some a = (i, j) ∈ Achange. Then, for each k ∈ suc(j,Aπ)∪
{j}, xk = πk.

Proof. If, in an optimal solution, za = 1 for some a ∈ Achange, this solution is also an optimal
solution for the same instance with event-activity network (E ,A \ {a}). From Lemma 7 we know
that k is not marked for all k ∈ suc(j,Aπ). Theorem 4 hence completes the proof. ut

Theorem 9. If the never-meet property holds, (DM) is equivalent to minimizing the sum of all
delays of all passengers at their final destinations.

Proof. The proof can be done analogously to the result in [Sch07b] since the ingredient needed is
provided in Corollary 8. ut

Numerical Results

To test the efficiency of our reduction, we used railway data from the Harz region in the center of
Germany (in form of a periodic timetable, including headway and turnover activities), originally
used in [LSS+07]. We consider all passenger railway lines within this region as well as 9 long-
distance lines. The dataset contains 598 stations, 92 trains (vehicles) and 30 lines, each line with
two directions. We take into account all events and all activities that take place in an 8-hours time
window. Details on how the periodic timetable is expanded to an aperiodic event-activity network
are described in [LSS+07]. See Figure 1 for a sketch of the part of the German railway network
which we consider.

The resulting event-activity network contains 21 269 events and 39 985 activities. We generated
1 000 different delay scenarios. In each delay scenario, 25 randomly chosen driving or waiting
activities have been delayed by a random delay between 60 and 1 200 seconds. In both cases,
(DM) was solved using Xpress-MP 2007B on an AMD Opteron 275 system with 4 GB RAM.

The results clearly show the benefit of a preprocessing step based on algorithm mark: In 13 of
1 000 test cases, the original problem could not be solved due to an “out of memory” error – in
all those cases, we got an optimal solution for the reduced problem. In average, the time needed
to solve the reduced problems was only 19.1% of the time needed to solve the original problems.
Especially, in 929 cases, the computation time was reduced to less than 50%, and in 332 cases
(nearly one third of all cases), it was even reduced to less than 10%.

4 Heuristics

Although the results from Theorem 4 and Theorem 5 can be used for introducing a preprocessing
step that speeds up the computation of an optimal solution, very large instances of (DM) cannot
be solved exactly in a reasonable amount of time. To be able to provide at least some solution
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Fig. 1. The part of the German railway network which is considered for our numerical results. (The Figure
is taken from [LSS+07].)

for these cases, we introduce heuristics that can solve even large instances by approximation. The
idea of our heuristics is to fix the order of trains (i.e. the variables gij) in advance and solve the
remaining uncapacitated delay management problem (UDM). Such a fixing can be done in many
ways; four of them will be discussed next. In the first approach we fix the order of the trains
according to the original timetable.

Algorithm First scheduled, first served (FSFS):

1. Set Afix := {(i, j) ∈ Ahead : πi ≤ πj}.
2. Compute the exact solution of (UDM(Afix)).

In the next heuristic, we first neglect all capacity constraints and solve the uncapacitated de-
lay management problem (UDM). We then fix the order of the trains according to the optimal
disposition timetable x of (UDM).

Algorithm First rescheduled, first served (FRFS):

1. Solve the corresponding problem (UDM) and obtain disposition timetable x.
2. Set Afix := {(i, j) ∈ Ahead : xi ≤ xj}.
3. Compute the exact solution of the corresponding instance of (UDM(Afix)).

Solving an additional instance of (UDM) in the first step increases the running time of FRFS
compared to FSFS. In the third heuristic, we again start by solving the corresponding instance
of (UDM) and fix the order of trains according to an optimal disposition timetable, but here
we additionally fix the wait-depart decisions obtained from the solution of (UDM) such that we
can compute a feasible disposition timetable for (DM) by applying the critical path method. In
contrast to FRFS, Step 3 can now be solved very efficiently.

9



Algorithm FRFS with early connection fixing (EARLYFIX):

1. Solve the corresponding problem (UDM) and obtain a disposition timetable x and values
for z.

2. Set Afix := {a ∈ Achange : za = 0} ∪ {(i, j) ∈ Ahead : xi ≤ xj}.
3. Compute the solution of (PP(Afix)).

Since the first step in both FRFS and in EARLYFIX is to solve (UDM), we obtain from these
heuristics not only an approximation of the optimal solution, but also a lower bound on its objective
value, and hence their absolute errors can be bounded a posteriori by

FFRFS − FUDM and FEARLYFIX − FUDM,

respectively, where FFRFS and FEARLYFIX are the objective values of FRFS and EARLYFIX.
Comparing these heuristics we obtain the following result.

Lemma 10. FDM ≤ FFRFS ≤ FEARLYFIX.

The last heuristic we tested is the only one with polynomial runtime. It is a modification of the
FSFS heuristic we presented first. As we do in FSFS, we fix the order of trains according to
the original timetable π, but instead of solving the remaining problem exactly, we use a heuristic
approach to fix the wait-depart decisions. The idea is to maintain the“most important”connections
and do not care about the less important ones.

Algorithm FSFS with priority-based fixing (PRIORITY):

1. Maintain the “most important” connections:
– Sort the changing edges in descending order according to their weights wa.
– Set za = 0 for the first k% of the connections.

2. Set Afix := {a ∈ Achange : za = 0} ∪ {(i, j) ∈ Ahead : πi ≤ πj}.
3. Compute the exact solution of (PP(Afix)).

Comparing PRIORITY to FSFS, we obtain the following relation.

Lemma 11. Let FFSFS and FPRIORITY denote the objective values of the solutions computed by
FSFS and PRIORITY, respectively. Then FDM ≤ FFSFS ≤ FPRIORITY

Finding bounds on the relative error of these heuristics is in general not possible: the results of all
heuristics might get arbitrarily bad compared to the optimal solution. In our first result we prove
that fixing the priority decisions according to the original timetable might become arbitrarily bad,
while Lemma 13 shows that fixing the priority decisions according to the optimal solution of the
corresponding (UDM) might also become arbitrarily bad. Hence, both groups of heuristics FSFS
and PRIORITY as well as FRFS and EARLYFIX can become arbitrarily bad. However, we are
able to bound the relative error of EARLYFIX using the input data of the special instance in
Theorem 15.

Lemma 12. Let HEU be a heuristic that solves (DM), fixing the gij variables as they are set
in the original timetable, and let FHEU its objective value. Then for each k ∈ N, there exists an
instance of (DM) such that

FHEU − FDM

FDM
> k.

10



(h(0),A,dep) h(1),A,dep) (h(2),A,dep)

(h(0),B,arr) (h(1),B,arr) (h(2),B,arr) (h(k+1),B,arr)

...

...

L_a=1 L_a=1 L_a=1 L_a=1

h_ji=1Π=0 Π=1 Π=2

Π=1 Π=2 Π=3

Π=k+1

Π=k+2

(h(k+1),A,dep)

h_ji=1

h_ij=1 h_ij=1delay d

Fig. 2. Event-activity network for the proof of Lemma 12.

Proof. Let k ∈ N. Assume that we have two stations A and B and k + 2 trains h0, h1, . . . , hk+1.
All trains drive from station A to station B. By (t, s, arr) and (t, s, dep), we denote the arrival of
train t at station s and its departure from that station. π(t, s, arr) denotes the time of such an
event in the original timetable. In the original timetable, the trains in our instance leave station
A in the order h0, h1, . . . , hk+1 at the times π(hi, A, dep) = i and arrive at station B at the times
π(hi, B, arr) = i + 1, i ∈ {0, . . . , k + 1}. For each i ∈ {0, . . . , k}, the departure of train hi and
the departure of train hi+1 are connected by a pair of headway edges. All weights and all lower
bounds are set to 1. The resulting event-activity network is shown in Figure 2.

Now, assume that (h0, A, dep) is delayed by d ≥ k + 2. In the optimal solution, the trains
h1, . . . , hk+1 leave and arrive on time, while train h0 has a delay of d, so FDM = d. If we solve the
problem by a heuristic that sets the gij variables as they are set in the original timetable without
delays, all trains get a delay of at least d, so FHEU ≥ (k + 2) · d, hence

FHEU − FDM

FDM
≥ (k + 2) · d− d

d
= k + 1 > k.

ut

Similarly, one can show the following result concerning FSFS and PRIORITY.

Lemma 13. Let HEU be a heuristic that solves (DM), fixing the gij variables as they are set in
the optimal solution of the corresponding problem (UDM). Then for each k ∈ N, there exists an
instance of (DM) such that

FHEU − FDM

FDM
> k.

However – as we will show at then end of this Section – the heuristics do not behave as bad as one
might think regarding the results above. Moreover, using the input data of the specific instance
we might be able to derive upper bounds. This is exemplarily done to bound the relative error of
EARLYFIX.

Lemma 14. Let xrelax be an optimal solution of (PP(Afix)) with events E and activities Afix =
Anice ∪ Afix

change and xcap an optimal solution of (PP(Afix)) with events E and activities Afix =
Anice ∪ Afix

change ∪ Afix
head. Let A1 := Afix

head ∩ Aπ and A2 := Afix
head \ Aπ. Then, we have

xcap
i ≤ xrelax

i +
∑

(k,l)∈A1:
k∈pre(i)

(xrelax
k − πk) +

∑
(k,l)∈A2
k∈pre(i)

(xrelax
k + Lkl) ∀i ∈ E . (15)
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Proof. An optimal solution of (PP(Afix)) can be computed by applying the critical path method
that has been introduced in Section 2. We prove (15) by induction and distinguish two cases
depending which term in (12) gets maximal. For k = 1 and for xcap

k = πk + dk, (15) is true. We
therefore assume xcap

k > πk + dk and that (15) is true for all j < k. Let

ã = (j, k) := argmax
a=(j,k)∈Afix

xcap
j + La + da.

Case 1: Assume that ã ∈ Anice ∪Afix
change. Then, xcap

k = xcap
j +Lã +dã, and using xrelax

k −xrelax
j ≥

Lã + dã, (15) to estimate xcap
j and pre(j) ⊂ pre(k), we see that (15) is satisfied.

Case 2: Assume that ã ∈ A1. Then, dã = 0 and xcap
k = xcap

j + Ljk. Using (15), we get

xcap
k ≤ xrelax

k +
∑

(l,m)∈A1:
l∈pre(j)

(xrelax
l − πl) +

∑
(l,m)∈A2:
l∈pre(j)

(xrelax
l + Llm) + xrelax

j − xrelax
k + Ljk. (16)

Using πk − πj ≥ Ljk, xrelax
k ≥ πk and pre(j) ⊂ pre(k), we see that (15) holds.

Case 3: Assume that ã ∈ A2. Then, dã = 0 and xcap
k = xcap

j + Ljk. As in the second case, we get
inequality (16). We use xrelax

k ≥ 0, move xrelax
j + Ljk to the second sum and use pre(j) ⊂ pre(k)

to prove the lemma for the third case. ut

We can use Lemma 14 to get an upper bound on the relative error of EARLYFIX: We replace
xrelax by xDM and xcap by xEARLYFIX, and define Afix

head =
{
(i, j) ∈ Ahead : xDM

i ≤ xDM
j

}
. Using

the delay yi = xi − πi of event i instead of its time xi in the disposition timetable, we have

yEARLYFIX
i − yDM

i ≤
∑

(k,l)∈A1:
k∈pre(i)

yDM
k +

∑
(k,l)∈A2:
k∈pre(i)

(yDM
k + πk + Lkl) ≤ FUDM +

∑
(k,l)∈Afix

head

(Lkl + πk),

where the second inequality holds if we assume wi ≥ 1∀ i ∈ E . With this assumption, we hence
obtain

FEARLYFIX − FDM ≤

FUDM +
∑

(k,l)∈Afix
head

(Lkl + πk)

 ∑
i∈E

wi.

If, in addition, A2 = ∅, we have FEARLYFIX − FDM ≤ FUDM
∑

i∈E wi. This yields the following
result.

Theorem 15. Consider an instance of (DM) with weights wi ≥ 1 for all i ∈ E.

a) If the solution xDM of (UDM) satisfies πi ≤ πj ⇒ xDM
i ≤ xDM

j ∀ (i, j) ∈ Ahead, then

FEARLYFIX − FDM

FDM
≤

∑
i∈E

wi.

b) If FDM ≥ 1, we have

FEARLYFIX − FDM

FDM
≤

1 +
∑

(k,l)∈A1

(Lkl + πk)

 ∑
i∈E

wi.

The theorem gives rise to the assumption that the quality of the solution depends on the size of∑
(k,l)∈A1 Lkl.
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Fig. 3. The relative error of FSFS, EARLYFIX, FRFS and of the combination of FSFS and FRFS (ob-
servation period of 3 hours, 7 104 events, 9 570 activities).

Numerical Results

The dataset on which our numerical results for the heuristics are based is the same dataset as in
Section 3. The sizes of the event-activity network for different observation periods are stated in
Table 2. The IP formulation was solved using Xpress-MP 2006 on a Pentium IV 3 GHz processor
with 2 GB RAM. We generated about 600 different delay scenarios; in each of them, we assigned
25 randomly generated source delays of 1-20 minutes to 25 randomly chosen driving and waiting
activities. We also know the weights w̃a of the changing activities a ∈ Achange. We hence set wi = 1
for all events i ∈ E and wa = w̃a

w̄ for all a ∈ Achange. w̄ is the arithmetic mean of the weights w̃a

which is used in order to prevent an overestimation of the missed connections.

In Figure 3, we present four histograms of the relative errors for the heuristics FSFS, EARLYFIX
and FRFS and for the approach running both FSFS and FRFS and taking the better solution. We
took into account all events and all activities that take place during a fixed observation period of
3 hours. On the x-axis we graphed intervals of 0.1 length describing the relative error. The first
interval corresponds to a relative error between 0 and 0.1, the second interval to a relative error
between 0.1 and 0.2, and so on. We show in how many of the about 600 different delay scenarios
the relative error of the respective heuristic takes a value in an interval of length 0.1 – for example,
in about 55 scenarios out of 600, the relative error of FSFS is in the interval [0, 0.1].

FRFS is slightly better than EARLYFIX concerning the quality of their solutions. For both of
them, the number of scenarios with a small relative error is significantly higher than for FSFS.
On the other hand, there are some scenarios in which EARLYFIX and FRFS have a very high
relative error – FSFS does not have these outliers. If we combine FSFS and FRFS – this means
that for each scenario, we take the solution with the smaller objective value – we benefit from the
large number of scenarios with a small relative error in FRFS and from the fact that FSFS does
not have outliers as FRFS does have.
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observation period of
heuristic 3 hours 6 hours 10 hours

FSFS 141 (23.58%) 239 (39.97%) 263 (43.98%)

EARLYFIX 219 (36.62%) 83 (13.88%) 75 (12.54%)

FRFS 457 (76.42%) 361 (60.37%) 336 (56.19%)

Table 1. How often (out of 598 different scenarios) is FSFS, EARLYFIX and FRFS at least as good as
the two other heuristics, w.r.t different observation periods?

Table 1 shows the quality of FSFS, EARLYFIX and FRFS compared to each other. We specify
for each heuristic in how many cases it computes a solution at least as good as the solutions of
the other heuristics. We take into account different observation periods. For larger event-activity
networks, EARLYFIX performs quite bad, while the number of scenarios in which FSFS computes
the best solution grows significantly.
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Fig. 4. Average relative error of FSFS, EARLYFIX and FRFS for different observation periods between
two and five hours.

In Figure 4, we show how the relative errors of FSFS, EARLYFIX and FRFS grow with the length
of the observation period, i.e. with the size of the relevant event-activity network. The larger the
event-activity network, the larger the relative error of all heuristics.

In Table 2, we finally specify the runtime of the exact solution and of the heuristics FSFS, FRFS
and EARLYFIX for different observation periods (i.e. for different sizes of the event-activity net-
work). An observation period of k hours means that we considered events and activities during
a fixed k-hours time slot. It turns out that all heuristics are significantly faster than the optimal
solution (calculated via the ILP formulation by Xpress). EARLYFIX clearly outperforms FSFS
and FRFS by a factor of 3. FSFS and FRFS are nearly equal considering the computation time.
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size of the event-activity network runtime (in seconds) of algorithm

hours |E| |A| |Ahead| |Achange| exact FSFS EARLYFIX FRFS

2 4 726 5 865 1 110 125 19.45 0.24 0.11 0.26

3 7 104 9 570 2 378 187 185.33 0.46 0.17 0.49

4 9 446 14 079 4 428 307 584.66 0.69 0.25 0.74

5 11 824 18 605 6 514 369 1 075.52 0.91 0.31 1.00

6 14 166 23 396 8 846 489 - 1.16 0.39 1.26

8 18 888 32 673 13 260 632 - 1.65 0.53 1.83

10 23 596 41 992 17 656 852 - 2.04 0.68 2.34

15 33 718 61 944 27 138 1 209 - 3.01 1.01 3.63

Table 2. Average runtime for different sizes of the event-activity network.

5 Conclusion and Further Research

In this paper, we presented and analyzed an integer programming formulation for the capacitated
delay management problem. We suggest a reduction technique and four different heuristics. In
our analysis it turns out that the headway activities which are not in the same direction as in
the original timetable play a basic role. We were also able to give a reasonable definition of the
never-meet property and to extend properties known from the uncapacitated delay management
problem.

There are more properties of the never-meet property that are currently exploited, e.g. to extend
the linear-time algorithm of the uncapacitated problem to the capacitated case. We also work on a
deeper analysis of the heuristics and on new approaches such as machine-based learning techniques.
Moreover, other issues should be considered to make the approach applicable in practice. Some-
times a change of the vehicle routes is appropriate to reduce delays, and often it is necessary to
include the microscopic routes of the trains, in particular at large stations.

Acknowledgment. We want to thank Jens Dupont of Deutsche Bahn and Christian Liebchen of
TU Berlin for providing the data for the case study.
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[GGJ+04] M. Gatto, B. Glaus, R. Jacob, L. Peeters, and P. Widmayer. Railway delay management:

Exploring its algorithmic complexity. In Proc. 9th Scand. Workshop on Algorithm Theory
(SWAT), volume 3111 of LNCS, pages 199–211, 2004.

[GHL08] L. Giovanni, G. Heilporn, and M. Labbé. Optimization models for the delay management
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Line Planning on Paths and Tree Networks withAppli
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2 Zuse Institute Berlin, 14195 Berlin, Germany,{borndoerfer,pfets
h}�zib.deAbstra
t. Line planning is an important step in the strategi
 plan-ning pro
ess of a publi
 transportation system. In this paper, we dis
ussan optimization model for this problem in order to minimize operation
osts while guaranteeing a 
ertain level of quality of servi
e, in terms ofavailable transport 
apa
ity. We analyze the problem for path and treenetwork topologies as well as several 
ategories of line operation thatare important for the Quito Trolebús system. It turns out that, from a
omputational 
omplexity worst 
ase point of view, the problem is hardin all but the most simple variants. In pra
ti
e, however, instan
es basedon real data from the Trolebús System in Quito 
an be solved quite well,and signi�
ant optimization potentials 
an be demonstrated.1 Introdu
tionThe major 
ities of South Ameri
a are fa
ing an enormous and 
onstantly in-
reasing demand for transportation and, unfortunately, also in
rease vehi
ular
ongestion, with all its negative e�e
ts. In Quito, the elongated topography ofthe 
ity with 1.8 millions inhabitants (the urban area being 60 km long and 8 kmwide) aggravates vehi
ular 
ongestion even more, su
h that tra�
 almost 
om-pletely breaks down during rush hours. As a 
onsequen
e, the lo
al governmentfa
es the ne
essity of improving the publi
 mass transit system.A low-
ost option that has produ
ed satisfa
tory results in re
ent years hasbeen the implementation of major 
orridors of transportation. These 
orridors
onsist of street tra
ks that are reserved ex
lusively for high-
apa
ity bus units,whi
h, in this way, 
an operate independently of the rest of the tra�
. Eventhough the topology of a 
orridor is extremely simple (just a path), bus oper-ation on it is non-trivial. In fa
t, it is usually organized in a 
omplex systemof several dozen lines, whi
h 
over, in an overlapping way, di�erent parts of the
orridor, and whi
h 
an operate in di�erent ways, e.g., as �normal lines� or as�express lines� (stopping only at distinguished express stations), as �open lines�(unidire
tional) or �
losed lines� (bidire
tional lines), and in any 
ombination ofthese 
ategories. The 
orridor lines are often 
omplemented by feeding lines thattransport passengers between spe
ial transshipment terminals of the 
orridorand the nearby neighborhoods.

ATMOS 2008 
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Fig. 1: Trolebús system and feeder line system in Quito.In Quito, the most important of su
h 
orridors is the so-
alled Trolebús Sys-tem (TS), see Figure 1. TS is 
urrently the largest publi
 transportation systemin Quito, 
arrying around 250, 000 passengers daily. However, the dramati
 in-
rease in transportation demand has had a negative impa
t on the quality ofservi
e, with over
rowded buses and long waiting times being 
ommonly experi-en
ed by passengers. At the same time, operation 
osts have been 
ontinuouslyin
reasing. With the aim of 
ontributing to the improvement of this situation,we have been working on optimization models that 
an be applied to improvethe operation of the TS and similar 
orridor transportation systems. The ques-tion that we investigate is whether the design of the 
orridor line system 
an beoptimized using mathemati
al methods in order to improve the quality of servi
eand/or lower operation 
osts by a better vehi
le utilization.Mathemati
al optimization approa
hes to line planning have re
eived grow-ing attention in the operations resear
h and the mathemati
al programming
ommunity in the last two de
ades, see Odoni, Rousseau, and Wilson [1℄ andBussie
k, Winter, and Zimmermann [2℄ for an overview. In parti
ular, integerprogramming approa
hes to line planning have been 
onsidered sin
e the latenineties. Bussie
k, Kreuzer, and Zimmermann [3℄ (see also Bussie
k [4℄) andClaessens, van Dijk, and Zwaneveld [5℄ both propose 
ut-and-bran
h approa
hesto sele
t lines from a previously generated pool of potential lines. Both arti
lesare based on a �system-split� of the demand, i.e., an a priori distribution of thepassenger �ow on the ar
s of the transportation network; these �aggregated de-mands� are then 
overed by lines of su�
ient 
apa
ity. Bussie
k, Lindner, andLübbe
ke [6℄ extend this work by in
orporating nonlinear 
omponents. Goossens,van Hoesel, and Kroon [7,8℄ improve the models and algorithms and show thatreal-world railway problems 
an be solved within reasonable time and quality.Approa
hes that integrate line planning and passenger routing have re
ently
2



been proposed by Borndörfer, Gröts
hel, and Pfets
h [9,10℄, and by S
höbel andS
holl [11,12℄. The latter authors 
onsider an expanded line-network that allowsto minimize the number of transfers or the transfer time.All of these arti
les 
onsider general network topologies, but do not analyzeline operation 
ategories su
h as express lines, or open lines, probably be
ausethe line planning problem on general graphs is already hard without them. The
orridor topology, however, opens up a 
han
e to investigate 
omplex line oper-ation 
ategories in a pra
ti
ally relevant setting. It also brings up the questionwhether perhaps some 
ases asso
iated with di�erent line operation 
ategories
an be solved in polynomial time. It will turn out in Se
tion 3 that this is in-deed the 
ase if only 
losed lines and a homogeneous vehi
le �eet are used; in allother 
ases, however, the problem is hard (there is one open 
ase left). From apra
ti
al point of view, however, TS instan
es 
an be solved quite well. Indeed,our results show signi�
ant optimization potentials with respe
t to the 
urrentlyoperated solution, see Se
tion 4.2 A Flow-Based Model for Line PlanningWe 
onsider a bus transportation network as a digraph D = (V, A), where ea
hbus station is represented by a node v ∈ V and ar
s represent dire
t links betweenstations, i.e., (i, j) ∈ A if and only if some bus may visit station j dire
tly afterstation i. The �eet of buses is often heterogeneous; for instan
e, in Quito it
ontains trolley-buses and several other types of buses used for the feeding lines.We 
all a spe
i�
 type of bus a transportation mode and de�ne M to be theset of all transportation modes in the system, where ea
h transportation mode
m ∈ M has a spe
i�
 
apa
ity κm ∈ Z+. For ea
h m ∈ M, 
ertain stationsreferred to as terminals are identi�ed, where buses of mode m may start or enda servi
e route. An open line for a mode m is a dire
ted path whose �rst and lastnodes are di�erent terminals. Similarly, a 
losed line for m is a 
ir
uit 
ontainingat least one terminal. We 
onsider for ea
h m ∈ M a line pool Lm, i.e., a setof a priori sele
ted (open or 
losed) lines that 
an potentially be established.We denote by L := ∪m∈MLm the set of all possible lines and by Lm

a the set oflines of mode m using ar
 a. For a line ℓ ∈ L, cℓ ∈ R+ is the 
ost of a singletrip via ℓ. Transportation demand is usually expressed in terms of an origin-destination matrix (duv) ∈ ZV ×V
+ , where ea
h entry duv indi
ates the number ofpassengers traveling from station u to station v within a 
ertain time horizon T .In the following we assume that ea
h passenger has been routed along somespe
i�
 dire
ted (u, v)-path in a prepro
essing step, su
h that an aggregatedtransportation demand ga on ea
h ar
 a of the network has been 
omputed.We will 
onsider three network topologies that are related to the TS stru
-ture. On the main 
orridor, trolley-buses move on a single path and are usuallynot allowed to overtake. This suggests to de�ne a transportation network 
on-sisting of two dire
ted paths (one for ea
h transportation dire
tion). Any linemoving from a station u to a station v must stop at all intermediate stations.We 
all su
h a network topology a Quito-Graph (QG). However, transport au-
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thorities are 
onsidering the possibility of allowing trolley-buses to overtake at
ertain segments of the main 
orridor in the future. This would make it possibleto introdu
e express lines that stop only at 
ertain stations. The trips betweentwo express stations 
an be modeled using respe
tively longer ar
s. We 
all anetwork of this type a Quito-Hopping-Graph (QHG). Finally, when 
onsideringboth feeding lines and the main 
orridor together, we observe that the TS net-work 
an be modeled as a tree, sin
e feeding lines are simple paths that start attransshipment stations along the main 
orridor.The line planning problem is to 
hoose a set of lines L ⊆ L and frequen
iesfor the lines in L in su
h a way that there is enough transportation 
apa
ity to
over the aggregated demand on ea
h ar
 of the network. It 
an be formulatedas an integer programming problem, that we denote by Demand Covering Modelwith Fixed Costs (DCM-FC):
min

∑

m∈M

∑

ℓ∈Lm

(cℓ fℓ + Kℓ yℓ) (1)subje
t to
∑

m∈M

∑

ℓ∈Lm
a

κm fℓ ≥ ga, ∀ a ∈ A (2)
0 ≤ fℓ ≤ fmax

ℓ yℓ ∀ ℓ ∈ L (3)
fℓ ∈ Z+ ∀ ℓ ∈ L (4)
yℓ ∈ {0, 1} ∀ ℓ ∈ L. (5)Here, fℓ is an integer variable representing the frequen
y assigned to line ℓ ∈ L,and yℓ is a 0/1-variable that indi
ates whether a line is 
hosen in the solution(yℓ = 1) or not (yℓ = 0). The 
ost of line ℓ ∈ L involves a �xed 
omponent Kℓas well as an operating 
ost cℓ fℓ that depends on the frequen
y. The obje
tivefun
tion (1) aims at minimizing the total operation 
osts. Constraints (2) ensurethat the aggregated transportation demand is 
overed. Constraints (3) 
ouplethe line sele
tion variables yℓ and the frequen
y variables fℓ and they imposeupper bounds fmax

ℓ , for all ℓ ∈ L on line frequen
ies. Finally, (4) and (5) areintegrality 
onstraints for the frequen
ies.When �xed 
osts are zero (Kℓ = 0, ∀ℓ ∈ L), the model simpli�es to thefollowing form, that we denote by Demand Covering Model (DCM):
min

∑

m∈M

∑

ℓ∈Lm

cℓ fℓ (6)subje
t to
∑

m∈M

∑

ℓ∈Lm
a

κm fℓ ≥ ga, ∀ a ∈ A (7)
0 ≤ fℓ ≤ fmax

ℓ ∀ ℓ ∈ L (8)
fℓ ∈ Z+ ∀ ℓ ∈ L. (9)DCM is a simpli�ed version of the models appearing in Claessens, van Dijk, andZwaneveld [5℄ and Bussie
k, Kreuzer, and Zimmermann [3℄.
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3 Computational ComplexitySolving DCM is NP-hard for general graphs, as the problem in
ludes the SetCovering Problem as a spe
ial 
ase (κ ≡ 1, g ≡ 1, fmax ≡ 1), see also S
höbeland S
holl [11℄. We now investigate how the network topology and several otherfa
tors a�e
t the 
omputational 
omplexity of the model.3.1 Fixed Costs are HardWe �rst observe that �xed 
osts make the problem di�
ult. A redu
tion fromthe 0/1 Knapsa
k Problem 
an be used to prove:Proposition 1 DCM-FC is NP-hard, even if the underlying transportation net-work is a Quito graph 
onsisting of two nodes joined by an ar
, only 
losed linesare allowed, and there is only one transportation mode.3.2 Multiple Modes are HardIt will turn out in Se
tion 3.5 that the homogenous �eet 
ase (|M| = 1) allows afurther simpli�
ation of the model DCM that leads to spe
ial 
omplexity results.We therefore �rst dis
uss the 
ase of multiple modes (|M| ≥ 2). Before doingthis, however, let us 
onsider an undire
ted version of the problem for Quitographs.Observe that if the line pool 
ontains only 
losed lines, then ea
h line usingan ar
 a = (u, v) must also use the ar
 a = (v, u), on whi
h the bus is travelingin the opposite dire
tion. Hen
e, both the ar
 set of the network and the ar
 setof ea
h line 
an be partitioned into pairs of antiparallel ar
s. Substituting thesepairs by undire
ted edges, any instan
e of DCM with 
losed lines 
an be redu
edto an equivalent undire
ted instan
e on an undire
ted graph G = (V, E), wherenew aggregated demands on the edges are 
omputed as follows:
g′uv := max{g(u,v), g(v,u)}, for all (u, v) ∈ A.In this version of the problem, the lines 
orrespond to simple undire
ted pathsin G, having the same 
osts. The task is to assign frequen
ies to these pathsto 
over the edge demands at minimum 
ost. Figure 2 gives an example of thisproblem transformation.Using a redu
tion from the 3-Dimensional Mat
hing Problem, one 
an prove:Proposition 2 If |M| ≥ 2, then DCM is NP-Hard even for undire
ted Quitographs and if �xed 
osts are zero.3.3 Trees are HardFeeding line systems transport passengers from the main 
orridor to the neigh-borhoods. Ea
h feeding line starts at a transshipment terminal, visits a set of
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v1 v2 v3 v4

g(v1v2)

g
(v2v1)

D

v1 v2 v3 v4

g′
v1v2

GFig. 2: Constru
ting the undire
ted version of DCM on a Quito graph. The 
losedlines (v1, v2, v3, v2, v1) and (v2, v3, v4, v3, v2) in D are substituted by simple undire
tedpaths in G.
onse
utive stations up to 
ertain turn-over station, and returns ba
k to thetransshipment terminal stopping at the same stations on the way. Sin
e only
losed lines are admissible, there is again an undire
ted version of the DCMinvolving feeder lines. The underlying graph for this problem is a tree, with sev-eral terminals as initial nodes, and simple paths starting from it. Thus, ea
hline is represented by an undire
ted path linking one terminal with a 
ertainnode where the turn-over takes pla
e. The following result 
an be proved usinga redu
tion from the 3-Dimensional Mat
hing Problem.Proposition 3 DCM on trees is NP-hard, even if only 
losed lines and a ho-mogeneous transportation �eet (|M| = 1) is used and �xed 
osts are zero.3.4 Hopping is HardIn this se
tion we 
onsider the Quito Hopping Graph topology. To this end let
D = (V, A) be de�ned by the set V = {v1, v2, . . . , vn} of nodes representing allbus stations in the sequen
e along the path, and let VX ⊆ V be a subset ofexpress stations. Similarly, there are express terminals, where express buses areallowed to start or end their routes.Express lines are allowed to stop only at nodes from VX , while normal (i.e.,non-express) lines visit any node. Two nodes are joined by an ar
 if the 
orre-sponding stations 
an be visited 
onse
utively by some line. Hen
e, the set ofar
s is partitioned into three 
lasses: a subset AN 
ontaining ar
s that may onlybe used by normal lines, a set AX of ar
s that may only be used by express lines,and a set AS of �shared ar
s�. We assume that a transportation demand has beenpreviously assigned to ea
h ar
 of the network using some system split method.Using a redu
tion from 3-Dimensional Mat
hing similar as for Proposition 2, one
an prove:Proposition 4 DCM on Quito Hopping Graphs is NP-hard, even if only 
losedlines are 
onsidered and �xed 
osts are zero.3.5 Easy and Open CasesWe investigate now the Demand Covering Model on Quito graphs for a homo-geneous transportation �eet (|M| = 1) and �xed 
osts of zero. This model, that
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we denote by Demand Covering Model with Homogeneous Fleet (DCM-HF), 
anbe further simpli�ed and formulated in the following matrix form:
min cT f (10)subje
t to

AHf ≥ g̃ (11)
f ≤ fmax (12)
f ∈ Z|L|

+ . (13)Here, g̃a := ⌈ ga

κ
⌉ for all a ∈ A, are the transformed aggregated demands,

c ∈ R|L| is the ve
tor of line (operating) 
osts, fmax ∈ Z|L|
+ denotes the ve
tor ofupper bounds on the frequen
ies, and AH ∈ {0, 1}|A|×|L| is the ar
-line in
iden
ematrix.

v1 v2 v3 v4

c1

c2

B B g̃e < B

(∞, 0) (∞, 0) (∞, 0)
v1 v2 v3 v4

(fmax
ℓ1

, cℓ1
)

(fmax
ℓ2

, cℓ2
)

−B B

(B − g̃e, 0)

(u, c)

Fig. 3: Transforming undire
ted DCM-HF on Quito graphs to a minimum 
ost �owproblem.Closed Lines The undire
ted version of DCM-HF on Quito Graphs 
an beredu
ed to a minimum 
ost �ow problem as follows. Let G = (V, E) be anundire
ted Quito Graph with n nodes v1, . . . , vn. We de�ne B := maxe∈E{g̃e}and de�ne D̂ = (V, Â) to be a dire
ted network on the node set of G, whose ar
set is the disjoint union of three subsets: a set Â1 
ontaining all �ba
kward ar
s�of the form (vi, vi−1), for all i ∈ {2, 3, . . . , n}; a set Â2 that 
ontains one �linear
� (vi, vj), with i < j for every line having its ends points at vi and vj ; anda set Â3 
ontaining one �sla
k ar
� (vi, vi+1) for ea
h edge {vi, vi+1} in G with
B − g̃e > 0. Flow demands are de�ned as follows (negative demands meaningthat the node is a sour
e of �ow):

bvi
=







−B, if i = 1,

B, if i = n,

0, otherwise.Ar
 
osts are equal to zero and 
apa
ities are set to in�nity on the ar
s belongingto Â1. For ea
h ar
 in Â2 representing a line ℓ ∈ L, the 
ost is equal to cℓand the 
apa
ity is set to fmax
ℓ . Finally, ea
h sla
k ar
 in Â3 asso
iated to an
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edge e from G has 
apa
ity equal to B − g̃e and 
ost equal to zero. Figure 3shows an example. Interpreting the values of a feasible �ow on the line ar
s astransportation 
apa
ities of the respe
tive lines is the key to proving:Proposition 5 DCM-HF 
an be solved in polynomial time on undire
ted QuitoGraphs.Open and Closed lines If both open and 
losed lines are present in the linepool, the symmetry of the problem is broken and the redu
tion of the last se
tiondoes no longer work. We have not yet been able to determine the 
omplexity ofthis 
ase, but we show next that this problem is at least as di�
ult as the Exa
tPerfe
t Mat
hing Problem, whose 
omplexity is open.The Exa
t Perfe
t Mat
hing Problem (EPMP, see e.g. [13℄) is a perfe
t mat
h-ing problem de�ned on a bipartite graph with red and blue edges; there is also aninteger k given. The task is to determine whether there exists a perfe
t mat
hing
ontaining exa
tly k blue edges. The 
omplexity of this problem is unknown. Wehave proven the following proposition.Proposition 6 Every instan
e of EPMP 
an be transformed to an instan
e ofDCM-HF in polynomial time.4 Optimizing the Trolebús SystemWe have 
arried out a 
omputational study with various DCM models for thethree network topologies 
onsidered in the previous se
tion, based on data pro-vided by the Trolebús System operator. The models were solved using the IP-solver SCIP [14℄ in its standard 
on�guration, whi
h was su�
ient to obtainoptimal solutions within a few se
onds. All experiments were performed on a 3.0GHz Pentium 4 PC with 512 MB RAM running Suse Linux 10.0.The total �eet of the TS 
onsists of 113 trolley-buses for the 
orridor and 89normal buses for two di�erent types of the feeding lines. The transportationnetwork has 528 nodes, 52 of them lo
ated along the main 
orridor.Table 1 reports some operational parameters for the line plan 
urrently im-plemented by the TS operator in the main 
orridor (QG) and in the feeder linesystem (FLS): 
ost, average number of transfers per passenger, average traveltimes, and the a

umulated frequen
y. We refer to this line plan as the referen
eplan. The statisti
s are given for time sli
es of one hour during the day. For thetime interval 06:00�07:00, the referen
e plan does not provide enough 
apa
ityto 
over the transportation demand with the nominal maximum 
apa
ity of atrolley bus (κ = 180); in fa
t, the solution requires 210 passengers to be trans-ported by ea
h bus unit on average, i.e., the buses are over
rowded. Passengertransfers were 
omputed using the method des
ribed in Bouma and Oltrogge [15℄(the frequen
y variables were �xed to the values given by the referen
e plan).Traveling times between stations were taken from histori
al data for QG and
8



Table 1: The 
urrent operation of the Quito Trolebús System (main 
orridor and feeding lines).Quito Graph Feeding LinesT Cost # Tr. Travel Time P

ℓ∈L
fℓ Cost # Tr. Travel Time P

ℓ∈L
fℓ06:00-07:00∗ 5379 � � 57 3806.8 0.478 49.66 5907:00-08:00 7271 0 30.7 79 4144.6 0.457 46.32 6508:00-09:00 7246 0 28.1 83 3330.4 0.456 44.94 5309:00-10:00 5991 0 24.3 75 3251.0 0.506 44.74 5212:00-13:00 4858 0.0140 21.1 62 2873.6 0.452 41.16 4613:00-14:00 4941 0.0322 21.8 63 3323.6 0.504 45.18 5216:00-17:00 4945 0.0150 28.3 62 3473.6 0.500 46.77 5417:00-18:00 7188 0 30.9 81 3455.8 0.415 42.89 5318:00-19:00 7457 0 30.1 85 3050.0 0.394 43.29 4819:00-20:00 6044 0 28.3 79 3050.2 0.548 52.47 4920:00-21:00 5343 0 30.6 72 2597.6 0.661 56.09 41Table 2: Optimizing the Quito Trolebús System using model DCM-HF on QG.Closed Lines Closed+Open LinesT Cost # Tr. Travel Time P

ℓ∈L
fℓ |L| Cost # Tr Travel Time P

ℓ∈L
fℓ |L|06:00-07:00 6275 0 30.02 79 19 4560.3 0 29.30 79 2507:00-08:00 6911 0.00226 31.19 88 20 5232.7 0.00226 30.09 88 2808:00-09:00 4792 0.00023 25.68 65 18 3785.8 0.00023 25.99 65 2809:00-10:00 2992 0.00119 24.39 38 16 2522.2 0.00113 23.14 38 2012:00-13:00 2230 0 20.05 26 10 2195.7 0 20.51 26 1113:00-14:00 2342 0 21.54 28 11 2289.1 0 21.44 30 1416:00-17:00 3234 0 26.33 39 13 2942.8 0 26.24 39 1917:00-18:00 4847 0 29.02 58 16 4108.6 0 28.64 58 1818:00-19:00 4625 0 27.08 58 17 3922.7 0.0116 26.79 60 2019:00-20:00 3062 0 26.46 40 16 2667.2 0 26.50 41 1720:00-21:00 1843 0 25.70 23 9 1711.4 0 26.10 24 10
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FLS and estimated for express ar
s in QHG. The transfer time for a 
hangefrom line ℓ1 to line ℓ2 was estimated as T
2fℓ2

.As a �rst experiment, we 
arried out line planning for the main 
orridor basedon the DCM-HF model on QG. We 
onsidered ea
h one-hour time sli
e as anindependent instan
e and ran two tests on it. In the �rst the line pool L 
onsistsof 66 
losed lines and in the se
ond one L 
ontains 66 
losed lines and 132 openlines. Table 2 reports the results obtained for this setting. Signi�
ant 
ost savingswere obtained even in the 
ase when only 
losed lines are allowed. The 
ost ofour solution is smaller than that of the referen
e plan, with an average de
reaseof $ 2,119.31 per hour and a global de
rease of $ 40,267. The total number oftransfers in
reased in the morning time intervals, but de
reased dramati
allyduring midday and in the afternoon. The total number of transfers is 125, theaverage travel time is 25.56 minutes, 
ompared to 26.4 minutes in the referen
eplan. If both open and 
losed lines are 
onsidered, solution 
osts are redu
edeven more. This 
an be explained by an asymmetry in the demand data. In fa
t,most passengers move in the S-N dire
tion in the morning and return to theirhomes traveling in the N-S dire
tion in the afternoon. The number of transfers isabout the same as for the 
losed line s
enario, ex
ept for time sli
es 15:00�16:00and 18:00-19:00, where substantial in
reases are registered; the total number oftransfers is 453. Nevertheless, average travel time is only 25.38 minutes.Table 3 shows the results for the QHG instan
es, i.e., if express lines are
onsidered. To this purpose, we identi�ed 17 express stations along the main
orridor. We 
onsidered a line pool with 84 
losed lines and 168 open lines, ofwhi
h 18 
losed and 36 open lines were express lines.In both s
enarios (
losed lines and 
losed+open lines) the 
ost in
reased 
om-pared with the results obtained for QG. The global 
ost for the transportationplan with only 
losed lines was $ 60,825, whi
h still represents savings of 36%,when 
ompared to the 
urrent plan. The total number of transfers in
reased in
omparison to QG, mainly for time sli
es 11:00-12:00 (from 7 to 458 transfers)and 21:00-22:00 (from 0 to 288 transfers) in the s
enario with open+
losed lines.The in
reases in 
ost and number of transfers are, however, 
ompensated bybetter servi
e for passengers, in terms that average travel time was redu
ed to
23.66 minutes if only 
losed lines are 
onsidered and 23.35 if 
losed and openlines are in
luded in L.Our last experiment 
onsisted in 
omputing a line plan for the feeder linesystem. The TS has three independent systems of feeder lines that interse
tthe main 
orridor at three di�erent transshipment terminals and 
ontain 12,17, and 13 turn-over stations, respe
tively. Currently, the vehi
le �eet used forserving the feeder lines is heterogeneous and 
ontains two types of buses withtransportation 
apa
ities κ1 = 90 and κ2 = 110. Two planning s
enarios were
onsidered, depending on the number of �bran
hes� that a feeder line is permittedto visit. In the �rst s
enario, feeder lines are required to visit only one bran
h,i.e., they are paths having the transshipment terminal as one end node. In these
ond s
enario, up to two bran
hes may be visited by the same line, i.e., feederlines are paths that 
ontain the terminal in any position. In the �rst s
enario,
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Table 3: Optimizing the Quito Trolebús System using express lines.Closed Lines Closed+Open LinesT Cost # Tr. Travel T. P

l∈L
fl |L| Cost # Tr. Travel T P

l∈L
fl |L|06:00-07:00 6284 0 27.42 79 24 4892.2 0.0028 25.09 80 3007:00-08:00 7092 0 27.66 87 21 5924.0 0 26.07 94 2708:00-09:00 5167 0.00176 22.91 65 18 4556.6 0 22.91 74 2509:00-10:00 3207 0.00251 21.82 39 19 2898.5 0.0102 21.58 42 2112:00-13:00 2431 0 18.75 29 12 2407.6 0 18.60 29 1313:00-14:00 2462 0.00365 20.10 28 12 2433.2 0 20.16 29 1516:00-17:00 3772 0 23.48 44 16 3297.9 0.0017 23.44 44 2317:00-18:00 5255 0.00214 25.75 61 16 4429.5 0.0067 25.70 61 2218:00-19:00 5125 0 24.25 62 20 4257.9 0.0187 24.18 62 2619:00-20:00 3446 0 24.22 43 18 2939.5 0.0092 24.49 44 2420:00-21:00 2083 0.00702 24.45 26 14 1899.7 0.0136 24.29 26 15Table 4: Optimizing the Quito Trolebús System in
luding the feeder line systems.One Bran
h One+Two Bran
hesT Cost # Tr. P

l∈L
fl |L| T. Time CPU Cost # Tr. P

l∈L
fl |L| T. Time CPU Gap06:00-07:00 3142.4 0.501 59 44 53.08 0.01 2562.4 0.496 30 28 56.03 10000 6.9607:00-08:00 3434.0 0.454 65 43 49.23 0.04 2794.0 0.454 33 32 54.31 10000 7.0308:00-09:00 2740.8 0.481 53 42 48.60 0.02 2220.8 0.449 27 26 51.24 10000 6.2109:00-10:00 2698.8 0.501 52 39 49.04 0.01 2198.8 0.499 27 24 51.76 0.23 3.2512:00-13:00 2341.2 0.444 46 37 44.78 0.03 1881.2 0.425 23 22 47.80 0.66 4.6813:00-14:00 2707.6 0.496 52 35 46.81 0.01 2207.6 0.494 27 24 49.80 10000 8.2916:00-17:00 2804.6 0.496 53 37 48.88 0.01 2289.0 0.473 27 24 51.40 1.54 4.7517:00-18:00 2837.8 0.409 54 41 46.20 0.01 2309.0 0.405 28 28 49.29 10000 7.4218:00-19:00 2464.6 0.386 47 39 45.83 0.01 2002.4 0.383 24 24 48.37 1.38 4.3319:00-20:00 2579.4 0.531 49 38 55.79 0.02 2110.6 0.521 26 24 58.02 1.38 4.3320:00-21:00 2279.0 0.631 43 35 63.84 0.04 1872.2 0.622 22 22 68.34 0.23 3.01Average 2443.6 0.549 46.2 36.1 55.42 0.020 1997.5 0.532 23.8 22.8 58.43 3692.0 4.99
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a total of 84 lines were 
onsidered in the line pool (
ontaining all three feedersystems), while in the se
ond s
enario 470 new lines were added. In our runs, weallowed an optimality gap of 5% and set a time limit of 10000 for ea
h instan
e.Table 4 reports the results (aggregated for all three feeder systems). As ex-pe
ted, the average number of transfers is mu
h larger than in the previousexperiments, sin
e trips of the form �feeding line-main 
orridor-feeding line�,whi
h involve at least two transfers, are 
ommon in the solution. In both the�one bran
h� and �two bran
hes� s
enarios, the 
ost was redu
ed in 
omparisonto the 
urrently implemented solution by about 18% (one bran
h) and 32% (twobran
hes). On the other hand, these savings are related to larger travel times forthe passengers, whi
h are slightly in
reased in all instan
es.Closed Lines
Open+Closed Lines

Fig. 4: Tradeo� 
ost vs. maximum number of lines.The dramati
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rease in our solutions over the referen
e solution 
anbe explained by two fa
tors. First, our DCM model does not impose a limit onthe number of lines in a solution. In pra
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e, however, it is not desirable to havetoo many lines, as the whole system be
omes too 
ompli
ated for the user andthe operator. Adding new binary variables to DCM that indi
ate whether a lineis 
hosen in the solution or not, we 
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summarizes the results for the whole day. As expe
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Abstract. In this paper we explore the possibility of applying the no-
tions of Recoverable Robustness and Price of Recoverability (introduced
by [5]) to railway rolling stock planning, being interested in recover-
ability measures that can be computed in practice, thereby evaluating
the robustness of rolling stock schedules. In order to lower bound the
Price of Recoverability for any set of recovery algorithms, we consider an
“optimal” recovery algorithm and propose a Benders decomposition ap-
proach to assess the Price of Recoverability for this “optimal” algorithm.
We evaluate the approach on real-life rolling stock planning problems of
NS, the main operator of passenger trains in the Netherlands. The pre-
liminary results show that, thanks to Benders decomposition, our lower
bound can be computed within relatively short time for our case study.

1 Introduction

Recently [5] introduced the concept of Recoverable Robustness as a generic
framework for modelling robustness issues in railway scheduling problems. Also,
the Price of Recoverability (PoR) was defined as a measure of recoverability.
However, this notion is mainly of theoretical nature, and cannot be used in a
straightforward way for concrete problems. In particular, computing PoR re-
quires, according to [5], minimisation over a set of recovery algorithms, and it is
not clear how this can be carried out.

Reference [3] considers the robustness of shunting problems. It overcomes
these difficulties by analysing PoR for a few concrete recovery algorithms and
by proving lower and upper bounds.

The purpose of this paper is to investigate another way of bringing the theo-
retical notion of PoR closer to practice. In particular, we consider what happens
if recovery is done in the best possible way: the resulting value of PoR for this
unique “optimal” recovery algorithm is then a lower bound on the value of PoR
for any set of recovery algorithms. Under mild assumptions, this lower bound
can be computed by solving a single mathematical program.
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We address the practical evaluation of the lower bound above for a specific
case study, concerning the medium-term rolling stock planning problem of NS,
the main operator of passenger trains in the Netherlands. It arises 2–6 months
before the actual train operations, and amounts to assigning the available rolling
stock to the trips in a given timetable. The objectives of the problem that is tra-
ditionally solved, call nominal problem, are related to service quality, efficiency,
and – to a limited extent – to robustness. Reference [4] describes a Mixed Integer
Linear Programming (MILP) model for this nominal problem. Using commer-
cial MILP software, the solution times on real-life problems of NS are quite low,
ranging from a few minutes (on most instances) to a couple of hours (on some
particularly complex instances). A software tool based on this model has been
in operation within NS since 2004.

The solutions of the nominal problem are optimal under undisrupted circum-
stances only. However, infrastructure failures, bad weather, and engine break-
downs often lead to disruptions where the nominal solution cannot be carried
out any more. In such cases, disruption management must take place to come up
with an adjusted rolling stock schedule. In this re-scheduling process, the origi-
nal objective criteria are of marginal importance, the goal being to quickly find
a feasible solution that is “close” to the nominal one and can be implemented in
practice.

The computation of the lower bound on PoR mentioned above for our case
study requires the solution of a very-large Linear Programming (LP) model, in
which several possible disruption scenarios are considered. We propose a Benders
decomposition approach for the solution of this LP, leading to a subproblem for
each scenario. Our preliminary computational results on a real-life rolling stock
planning instance of NS indicate that the method takes relatively short time,
and widely outperforms the straightforward solution of the whole LP by a state-
of-the-art solver.

This paper is structured as follows. In Section 2 we quote the definition of
the Recoverable Robustness and Price of Recoverability from [5]. In Section 3 we
describe the lower bound that we consider, based on a “best possible recovery”
policy, and the associated mathematical programming problem. Section 4 de-
scribes the railway rolling stock scheduling problem of NS. Section 5 is devoted
to our preliminary computational results. Finally, Section 6 outlines our plans
for further research.

2 The Price of Recoverability

In this section we give a short summary of the definition of the Price of Recover-
ability by [5]. The main idea is to compute a solution to an optimisation problem
and at the same time to analyse the recovery costs in case of disturbed input
data. More concretely, one considers a (limited) set of scenarios with their own
feasible regions, as well as a set of admissible recovery algorithms. The objective
is to find a solution of the original (nominal) problem and a recovery algorithm in
the given set. The requirement is that, using the recovery algorithm, the solution
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of the original optimisation problem can be transformed to a feasible solution
of each scenario at “low cost”. The Price of Recoverability measures both the
objective function of the original problem and the recovery costs.

The set of admissible recovery algorithms can be chosen in several ways. One
may consider algorithms with limited (e.g. linear) running time, or algorithms
that are obtained from a particular heuristic framework (e.g. a crew re-scheduling
algorithm based on iterated crew duty swaps).

The notions of Recoverable Robustness and Price of Recoverability are de-
fined formally as follows. First of all, we are given a Nominal Problem of the
form:

NP = min{c(x) | x ∈ K}, (1)

where x ∈ R
n is the variable vector, K ⊆ R

n is the feasible region and c : K →
R+ is the cost function.

Moreover, we are given a set S of scenarios; each scenario s ∈ S having
its own feasible region Ks. (For example, a scenario may refer to the case of
cancelling some trains due to infrastructure failure, thereby requiring some kind
of recovery action.) Furthermore, we are given a set A of recovery algorithms:
a recovery algorithm A ∈ A takes on input a nominal solution x ∈ K and a
scenario s ∈ S and produces a solution A(x, s) ∈ Ks which is feasible in scenario
s. Finally, we are given, for s ∈ S, a function ds : K × Ks → R+ measuring the
deviation ds(x, xs) of a solution xs for scenario s from a nominal solution x, and
a monotone non-decreasing function f : R

S
+ → R+ penalising the deviation over

all scenarios.

The Recovery-Robust Optimisation Problem defined in [5] is then:

RPOPA = min{c(x) + f(z) | x ∈ K, A ∈ A, zs = ds(x, A(x, s)) (s ∈ S)}, (2)

where z = (zs1
, zs2

, . . .) ∈ R
S
+ is a vector of auxiliary variables representing the

deviations.

Reference [5] chooses f(z) = maxs∈S zs, i.e. penalises the maximum deviation
in the objective function. A stochastic-programming approach would be to define
a probability ps for each scenario s ∈ S, and to consider f(z) =

∑

s∈S pszs,
penalising the expected (average) deviation.

The Price of Recoverability (PoR) is then defined as the ratio between the
optimal values of the Recovery-Robust and the Nominal Problem:

PoRA =
RPOPA

NP
. (3)

Reference [5] also compares Recoverable Robustness to well-known concepts
such as stochastic programming (see e.g. [2]) or robust optimisation ([1]), and
discusses the similarities and differences of the approaches to capture robustness.
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2.1 Reformulation of PoR

Define the function

ΦA(x) = c(x) + f (ds1
(x, A(x, s1)) , ds2

(x, A(x, s2)) , . . . ) .

Then RPOPA corresponds to the minimisation of the function Φ:

RPOPA = min
A∈A

min
x∈K

ΦA(x). (4)

In later sections of this paper we shall consider a simplified version for the case
in which A contains a single algorithm A only:

RPOP{A} = min
x∈K

ΦA(x). (5)

2.2 How to Compute PoR?

The definition (3) (via the definition (2)) requires minimisation over the set A
of recovery algorithms. How (and if) this can be done clearly depends on how
the set A is specified. In any case, one can follow (at least) two approaches to
compute (or approximate) PoR.

In the first approach, one considers a class of small and well-behaved problems
together with a small set of recovery algorithms. Then one proves worst-case
bounds on PoR by an appropriate theoretical analysis. Reference [3] reports
such results for the shunting problem. With our notation, such an approach
essentially amounts to deriving bounds on the minimum of the function ΦA for
each A ∈ A. Note that this approach is likely to succeed on fairly simplified test
problems; real-life (railway) scheduling problems often have features that cannot
be handled easily in theoretical worst-case proofs.

In this paper we follow a second approach, namely we restrict attention to the
best possible recovery algorithm, observe that the computation of PoR for this
single algorithm leads to a lower bound on PoR for each set A, and numerically
solve a mathematical programming problem to compute the value of this lower
bound for a particular real-life railway resource scheduling problem. Therefore
the results that we obtain are of empirical nature.

3 PoR with an Optimal Recovery Algorithm

Let Aall be the set of all recovery algorithms and define

Aopt(x, s) = argmin{ds(x, xs) | xs ∈ Ks}. (6)

In words, for each scenario s and for each x ∈ K, Aopt determines the solution
in Ks with the smallest possible deviation from x. That is, Aopt represents the
best possible recovery action. This is formalised in the following proposition.

Proposition 1 RPOPAall
= RPOP{Aopt}.
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Proof. Clearly, RPOPAall
≤ RPOP{Aopt}. On the other hand, for each x ∈ K,

A ∈ A and s ∈ S we have

ds(x, A(x, s)) ≥ ds(x, Aopt(x, s)) .

Therefore
min

A∈Aall

ΦA(x) ≥ ΦAopt
(x)

and (4) yields
RPOPAall

≥ RPOP{Aopt}.

In other words, the minimum of (2) if A = Aall is attained at Aopt. This of
course implies that the minimum of (2) for a generic A cannot be better than
RPOP{Aopt}, as stated in the following corollary.

Corollary 2 RPOPA ≥ RPOP{Aopt} for every set A of algorithms.

This implies that the computation of RPOP{Aopt} yields a lower bound on
RPOPA, and therefore PoRAopt

a lower bound on PoRA, for a generic set of
recovery algorithms A. Moreover,

RPOP{Aopt} = min{c(x) + f(z) | x ∈ K, xs ∈ Ks (s ∈ S), zs = ds(x, xs) (s ∈ S)}.

(7)

That is, RPOP{Aopt} is the optimum value of a mathematical program, which
is not the case for RPOPA for a generic A. This is the reason why in this paper
we focus our attention on the practical computation of the former.

3.1 Solution Methodology

For the sake of concreteness, we will restrict our attention to the case of RPOP{Aopt}

in which the following hold:

– f(z) = maxs∈S zs, i.e. only the largest deviation is penalised in the objective
function;

– c(x) = cTx for a given c ∈ R
n, i.e. the objective function is linear;

– x ∈ K can be expressed as Ax ≥ b for given A ∈ R
m×n and b ∈ R

m, i.e.
feasibility of a nominal solution can be expressed by linear constraints (and
possibly by the integrality of some components of x, see below);

– for each S ∈ S, xs ∈ Ks can be expressed as Asxs ≥ bs for given As ∈ R
ms×n

and bs ∈ R
ms ;

– for each S ∈ S, zs = ds(x, xs) can be expressed as zs = dT

s x + eT

s xs + gs for
given ds, es ∈ R

n and gs ∈ R, i.e. the deviation is a linear function of the
nominal and the recovered solution.

If we include the possible integrality restriction on some of the x and xs com-
ponents, the above assumptions are not really restrictive, since they amount to
require that the nominal problem, the feasibility of a recovered solution, and
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the value of the deviation can be expressed as a MILP. In the computational
experiments carried over in this paper, we will restrict attention to the case in
which such integrality restriction is not imposed. Depending on the specific ap-
plication, this may be the case, or it may lead to solution of the LP relaxation
of the actual MILP, which yields a lower bound on RPOP{Aopt} and therefore
on RPOPA for each A. In any case, the Benders decomposition approach that
we illustrate can easily be modified to have integrality restrictions on the x vari-
ables. Since the purpose of this paper is to study the possibility to practically
compute lower bounds on PoR for real-world instances, it is natural to restrict
attention to LP relaxations.

Given the above assumptions, (7) can be formulated as follows, where λ is
an auxiliary variable expressing the deviation penalty:

min cTx + λ (8)

s.t. Ax ≥ b, (9)

Asxs ≥ bs, ∀s ∈ S, (10)

− dT

s x− eT

s xs + λ ≥ gs, ∀s ∈ S. (11)

For solving (8) – (11) one can apply various mathematical programming
techniques. In this paper we focus on Benders decomposition (also known as
L-shaped method) (see e.g. [7]), a cutting plane method that exploits the block-
diagonal structure of the problem. This is an approach widely used for such
problems (such as for stochastic programming).

Briefly, the Benders decomposition approach keeps solving the (gradually
extended) nominal problem (8) – (9). Based on the current optimal solution, the
feasibility of the subproblem (10) – (11) is checked. The procedure terminates if
the subproblem is feasible, in which case the current optimal solution is optimal
also for (8) – (11). In case of infeasibility, inequalities in terms of x and λ are
derived and added to the nominal problem, and the updated nominal problem
is re-optimised.

Benders decomposition is applicable if the subproblems are LPs, i.e. if the
xs variables are continuous, whereas integrality on the x variables can be han-
dled, although (as already mentioned) it will be relaxed in our computational
experiments.

4 The Test Problem: Rolling Stock Re-scheduling

This section is devoted to the description of the specific real-world case study
on which we focused our attention.

4.1 The Nominal Problem

We consider the medium-term railway rolling stock scheduling problem of NS.
It arises 2–6 months before the actual railway operations, and has the task of
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assigning the available rolling stock to the trips in a given timetable. In this
section we give a brief problem description. Further details about the problem
can be found in [4] and in [6].

The rolling stock consists of units. Each unit has driver’s seats at both ends
and an own engine. It is composed of a number of carriages, and cannot be split
up in every-day operations. Units are available in different types and can be
combined with each other to form compositions. This allows a fine adjustment
of the seat capacity to the passenger demand.

The timetable of NS is quite dense, and the turning time of the trains is
short, often less then 20 minutes. The rolling stock connections are explicitly
given in the input timetable by the successor trips: The units that serve in a
trip go over to the successor trip, even though certain composition changes can
take place. Due to the short turning times, the composition change possibilities
are limited to coupling or uncoupling of one or two units at the appropriate side
of the train.

The objective is three-fold. Service quality is measured by seat shortage kilo-
metres. It is computed by comparing the assigned seat capacity to the a priori
given expected number of passengers; by multiplying the number of unseated
passengers by the length of the trip; and finally by summing these values over
all trips. Efficiency is expressed by the carriage-kilometres which is roughly pro-
portional both to the electricity or fuel consumption and to the maintenance
costs. Robustness is taken into account by counting the number of composition
changes. Indeed, coupling or uncoupling of units causes additional traffic through
the railway nodes, and thereby may lead to delay propagation if some passing
trains are late.

We note again that the the nominal problem is solved several months before
the operations. This leaves enough time to plan the low-level train operations
at the railway nodes. In particular, shunting drivers are scheduled to carry out
the coupling and uncoupling operations. Moreover, the end-of-day rolling stock
balances are such that the units are at the right place for the next day’s opera-
tions.

In order to define a MILP for the problem, the set of rolling stock types is
denoted by M , the set of trips by T , the set of compositions by P , and the set
of stations by S. For any m ∈ M , am denotes the number of available rolling
stock units of type m.

The main binary decision variables are xt,p, expressing whether composition
p is assigned to trip t. Moreover, we have the binary variables zt,p,p′ whose value
is 1 if trip t has composition p and if the successor of t has composition p′.
The z variables are only defined for those triples (t, p, p′) where the composition
change from p to p′ is allowed after trip t, i.e. the constraints on the composition
changes are implicitly represented by these variables.

The stations are modelled by the inventories. The inventory of a station at
a certain time instant consist of all units that are located there. The basic rule
is that units to be coupled to a train are pulled from the inventory immediately
upon departure, while uncoupled units are added to the inventory a certain time
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(say 30 minutes) after arrival. This ensures enough time for necessary shunting
operations.

The integer variables yt,m count the inventories of the units of type m at
the departure station of trip t right after the departure of trip t. The beginning-
of-day and end-of-day inventories of station s of type m are represented by the
variables y0

s,m and y∞
s,m.

Letting the successor of trip t be denoted by σ(t), the departure station of t

be denoted by d(t), c, d be appropriate objective function coefficients, and α, β, γ

be appropriate inventory coefficients, a MILP formulation is the following.

min
∑

t∈T

∑

p∈P

ct,pxt,p +
∑

t∈T

∑

p∈P

∑

p′∈P

dt,p,p′zt,p,p′ (12)

s.t.
∑

p∈P

xt,p = 1, ∀t ∈ T, (13)

xt,p =
∑

p′∈P

zt,p,p′ , ∀t ∈ T, p ∈ P, (14)

xσ(t),p′ =
∑

p∈P

zt,p,p′ , ∀t ∈ T, p′ ∈ P, (15)

yt,m = y0
d(t),m +

∑

t′∈T

∑

p∈P

∑

p′∈P

αt,t′,p,p′,mzt′,p,p′

+
∑

t′∈T

∑

p∈P

βt,t′,p,mxt′,p, ∀t ∈ T, m ∈ M,
(16)

y∞
t,m = y0

d(t),m +
∑

t′∈T

∑

p∈P

∑

p′∈P

γt,t′,p,mxt′,p, ∀t ∈ T, m ∈ M, (17)

∑

s∈S

y0
s,m = am, ∀m ∈ M, (18)

xt,p, zt,p,p′ binary, ∀t ∈ T, p ∈ P, p′ ∈ P, (19)

yt,m, y0
s,m, y∞

s,m ≥ 0, integer, ∀t ∈ T, s ∈ S, m ∈ M. (20)

The objective (12) takes into account the trip assignments and the composi-
tions of consecutive trips. Constraints (13) state that each trip gets exactly one
composition. Constraints (14) and (15) link the z variables to the x variables.
Constraints (16) and (17) compute the inventories with appropriate coefficients
α, β and γ. Constraints (18) specify the available rolling stock.

The objective function can incorporate a wide variety of objective criteria
related to service quality, efficiency and robustness. Experience shows that, for
the practically meaningful objective coefficients, the LP relaxation of the model
above is very tight, the associated lower bound being always within a few per-
cents of the MILP optimum. The MILP model can be solved for medium-sized
instances of NS within a few seconds to optimality. Simple LP rounding heuris-
tics turned out to be powerful for the most challenging problem instances.
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4.2 The Scenarios and the Associated Deviations

In our robustness framework, the solutions of the nominal problem are to be
operated subject to disruption scenarios. Each scenario is obtained by assuming
that a certain part of the network is blocked for a certain time interval of several
hours. All the trips that interfere with the infrastructure blockage are removed.
Such disruptions are quite common in practice. These are the ones that require
significant resource re-scheduling.

It is worthwhile to note that the timetabling and resource scheduling deci-
sions are strictly separated. In the Netherlands, for example, an independent
infrastructure managing authority is responsible for the timetable adjustments,
while the railway operators themselves are responsible for resource re-scheduling.
Therefore from the resource planning’s point of view, the adjusted timetable that
takes care of the disruption is to be considered as input.

We assume that a disruption becomes known at the beginning of the blockage.
The task is then to re-schedule the rolling stock from that point on till the end of
the day. The solution has to fulfil the same requirements as the nominal problem,
the only additional option being to cancel a trip.

In this research we also assume that the exact duration of the disruption
is known at its beginning. Admittedly, this assumption is very optimistic for
practical purposes. On the other hand, it simplifies the mathematical model,
and still enables one to gain insight of the recovery capacity of rolling stock
schedules.

The three main criteria in re-scheduling are as follows (in decreasing order of
importance): (i) minimise the number of cancelled trips; (ii) minimise the num-
ber of newly introduced couplings and uncouplings; (iii) minimise the deviation
of the planned end-of-day rolling stock balance. The first criterion limits the
passenger inconvenience. The second criterion aims at keeping the schedule of
the shunting drivers intact. The third criterion tries to restrict the consequences
of the disruption on a single day.

Although the model (12) – (20) was originally developed for the nominal
problem, it can be adjusted for rescheduling as well. That is, the feasibility of
a recovered solution and the associated recovery costs can be computed as a
variant of the model above. We express the model for a single scenario, omitting
the index s that represents the scenario and noting that here s stands for the
index of a station.

First of all, constraints (13) – (20) with variables x̃, z̃, ỹ0 and ỹ∞ are to be
stated for the trips of each scenario. In this case, as anticipated, we also allow
the empty composition ∅, where x̃t,∅ = 1 means that trip t is cancelled. Then,
one has to impose constraints that the rolling stock schedule is not changed until
the beginning of the disruption, adding the constraints x̃t,p = xt,p for each p ∈ P

and trip t ∈ T ending before the disruption. Finally, the model is extended to

9



express the recovery costs:

λ ≥ c1

∑

t

x̃t,∅ + c2

∑

t∈T

ẽt +
∑

s∈S

∑

m∈M

d̃s,m, (21)

d̃s,m ≥ y∞
s,m − ỹ∞

s,m, ∀s ∈ S, m ∈ M, (22)

d̃s,m ≥ ỹ∞
s,m − y∞

s,m, ∀s ∈ S, m ∈ M, (23)

wt =
∑

(zt,p,p′ | p → p′ is coupling or uncoupling) , ∀t ∈ T, (24)

w̃t =
∑

(z̃t,p,p′ | p → p′ is coupling or uncoupling) , ∀t ∈ T, (25)

ẽt ≥ w̃t − wt, ∀t ∈ T, (26)

d̃s,m ≥ 0, ∀s ∈ S, m ∈ M, (27)

ẽt ≥ 0, ∀t ∈ T. (28)

The auxiliary variables d̃ measure the deviation of the planned end-of-day
rolling stock inventories (i.e. that of the nominal solution) from the realised
end-of-day rolling stock inventories (i.e. those in the scenario). The value of the
auxiliary variable wt is 0 or 1 depending on whether the nominal solution has
a composition change (i.e. coupling or uncoupling of units) after trip t. Similar
role is played by w̃t in the scenario. The auxiliary variable ẽt has a value at least
1 if a new shunting is introduced after trip t, i.e. if there was no composition
change after trip t in the nominal solution whereas there is one in the recovered
solution. The objective penalises the variables d̃ and ẽ as well as all variables x̃

that assign an empty composition to a trip.

5 Computational Results

We implemented the robust scheduling problem (8) – (11) with the rolling stock
(re-)scheduling model described in Section 4 for the so called 3000 line of NS.
This is an Inter-City line with a closed rolling stock circulation. The instance
contains about 400 trips connecting 8 stations, and is served by two rolling stock
types with 11 and 24 units, respectively. The 3000 line is one of the medium-sized
rolling stock instances of NS.

The nominal problem is based on the actual timetable of NS. The scenar-
ios have been generated artificially using a program of [8], which simulates the
decisions of the infrastructure manager about train cancellations, including the
successors of the trips after disruption. In that respect, the input data of the
scenarios follow the same rules and assumptions as the nominal problem.

As already discussed, the goal of our preliminary computational tests is to
investigate whether the suggested optimisation framework can be used at all
to assess PoR for our rolling stock scheduling problem. Therefore we restricted
ourselves to the solution of LP relaxations.

We implemented two solution methods: (i) solving (8) – (11) directly as
a single LP; (ii) applying a canonical Benders decomposition Approach. Our
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computer codes are written in C and run on a personal computer, solving the
LPs by ILOG CPLEX 10.0. The master problem has about 14,500 variables,
8,600 constraints and 310,000 non-zeros in the matrix.

The solution approaches have been tested with 2–20 scenarios, implying that
the LPs solved by method (i) feature 43,000–305,000 variables, 25,000–180,000
constraints and 950,000–6,500,000 non-zeros.

For each number of scenarios, we solved two variants of the problem: Test-I

and Test-II. They share the same constraint matrix but differ in the objective
function. The cost coefficients are given in Table 1. Test-I focuses on service qual-
ity (by penalising seat shortages more heavily) while Test-II emphasises efficiency
(by penalising carriage kilometres more heavily).

Table 1. Coefficients for the nominal objective function as well as for the recovery
costs.

Criterion in nominal problem Test-I Test-II

seat shortage km 100 50
carriage km 9 100
composition change 5 10

Criterion for recovery Test-I Test-II

cancellation 1,000,000 1,000,000
inventory deviation 20,000 20,000
new shunting 10,000 10,000

The computational results with the two solution approaches are summarised
in Table 2. It turns out that the huge LPs in method (i) are barely solvable.
For more than 6 or 7 scenarios, the solution time exceeds our time limit of 1800
seconds. The cases with 10 or more scenarios appear to be far from being solved
after several hours of CPU time. The Benders decomposition approach, on the
other hand, is able to cope with the problems. After applying 24–640 and 30–360
Benders cuts for Test-I and Test-II, respectively, optimality was reached within
the time limit.

The above results prove that, at least for our case study, the general lower
bound on PoR that we propose can be computed within reasonable time.

6 Summary and Future Research

In this paper we summarised our understanding of the Price of Recoverability.
In addition, we proposed a mathematical programming approach to compute
a lower bound on the Price of Recoverability for real-life railway scheduling
problems.

A Benders decomposition approach has been implemented for a medium-sized
rolling stock scheduling problem of NS. The preliminary computational results
indicate the problem is widely tractable with up to 20 disruption scenarios. Note
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Table 2. The number of applied Benders cuts as well as the running times in seconds
for the Benders decomposition approach and for the direct solution of the whole LP
(referred to as ‘CPLEX’) on Test-I and Test-II. A dash indicates the running time of
CPLEX exceeding 1800 seconds.

Test-I Test-II

Benders CPLEX Benders CPLEX
# scens. # cuts CPU time CPU time # cuts CPU time CPU time

2 24 22 122 32 30 75
3 27 27 366 24 25 372
4 140 224 795 100 141 880
5 175 264 1,055 125 175 1,078
6 168 277 1,962 150 209 —
7 210 319 — 140 205 —
8 248 454 — 152 223 —
9 288 603 — 171 278 —

10 320 688 — 190 332 —
11 352 734 — 209 364 —
12 384 798 — 228 400 —
13 325 662 — 234 439 —
14 420 1,014 — 252 499 —
15 450 1,090 — 300 653 —
16 480 1,163 — 320 698 —
17 595 1,710 — 306 642 —
18 540 1,380 — 324 701 —
19 570 1,459 — 342 730 —
20 640 1,840 — 360 816 —

that the whole problem (a single LP) cannot be solved within several hours even
with just 10 scenarios.

In order to improve the proposed method, we will go on with more thor-
ough computational tests. First, the preliminary computations concern the LP
relaxation of the rolling stock scheduling problem; we are going to study the
original MILP models as well. Second, the current way of selecting the Benders
cuts is very simple; we are going to evaluate the effect of more sophisticated
cut selection methods. Third, Benders decomposition is not the only possible
approach for solving (8) – (11). In our future research we are going to explore
other mathematical programming techniques, such as convex optimisation (e.g.
through the subgradient algorithm). Last but not least, we are going to investi-
gate implications of the Price of Recoverability to railway practice.
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Abstract. The problem of robust line planning requests for a set of
origin-destination paths (lines) along with their traffic rates (frequencies)
in an underlying railway network infrastructure, which are robust to
fluctuations of real-time parameters of the solution.
In this work, we investigate a variant of robust line planning stemming
from recent regulations in the railway sector that introduce competition
and free railway markets, and set up a new application scenario: there is
a (potentially large) number of line operators that have their lines fixed
and operate as competing entities struggling to exploit the underlying
network infrastructure via frequency requests, while the management of
the infrastructure itself remains the responsibility of a single (typically
governmental) entity, the network operator.
The line operators are typically unwilling to reveal their true incentives.
Nevertheless, the network operator would like to ensure a fair (or, socially
optimal) usage of the infrastructure, e.g., by maximizing the (unknown to
him) aggregate incentives of the line operators. We show that this can be
accomplished in certain situations via a (possibly anonymous) incentive-
compatible pricing scheme for the usage of the shared resources, that is
robust against the unknown incentives and the changes in the demands
of the entities. This brings up a new notion of robustness, which we
call incentive-compatible robustness, that considers as robustness of the
system its tolerance to the entities’ unknown incentives and elasticity
of demands, aiming at an eventual stabilization to an equilibrium point
that is as close as possible to the social optimum.

1 Introduction

An important phase in the strategic planning process of a railway (or any public
transportation) company is to establish a suitable line plan, i.e., to determine
the routes of trains that serve the customers. In the line planning problem, we
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are given a network G = (V,L) (usually referred to as the public transporta-
tion network), where the node set V represents the set of stations (including
important junctions of railway tracks) and the edge set L represents the direct
connections or links (of railway tracks) between elements of V . A line is a path
in G. Typically, a line pool is also provided, i.e., a set of potential lines among
which the final set of lines will be decided. The frequency of a line l is a rational
number indicating how often service to customers is provided along l within the
planning period considered. For an edge ` ∈ L, the edge frequency f` is the sum
of the frequencies of the lines containing ` and is upper bounded by the capacity
c` of `, i.e., a maximum edge frequency established for safety reasons. The goal
of the line planning problem is to provide the final set of lines offered by the
public transportation company along with their frequencies (also known as the
line concept).

The line planning problem has mainly been studied under two main ap-
proaches (see e.g., [6, 7]). In the cost-oriented approach, the goal is to minimize
the costs of the public transportation company, under the constraint that all
customers can be transported. In the customer-oriented approach, the goal is
to maximize the number of customers with direct connections (under a similar
constraint), or at least minimize the traveling time of the customers. A recent ap-
proach aims at minimizing the travel times over all customers including penalties
for the transfers needed [9, 11].

The aforementioned approaches do not take into account certain fluctuations
of input parameters; for instance, due to disruptions to daily operations (e.g.,
delays), or due to fluctuating customer demands. This aspect introduces the
so-called robust line planning problem: provide a set of lines along with their
frequencies, which are robust to fluctuations of input parameters. Very recently,
a game theoretic approach for robust line planning was presented in [10]. In that
model, the lines act as players and the strategies of the players correspond to
line frequencies. Each player aims to minimize the expected delay of her own
lines. The delay depends on the traffic load and hence on the frequencies of all
lines in the network. The objective is to provide lines that are robust against
delays. This is pursued by distributing the traffic load evenly over the network
(respecting edge capacities) such that the probability of delays in the system is
as small as possible.

In this work, we investigate a different perspective of robust line planning
stemming from recent regulations in the railway sector (at least within Europe)
that introduce competition and free railway markets, and set up a new appli-
cation scenario: there is a (possibly large) number of line operators that should
operate as commercial organizations, while the management of the network re-
mains the responsibility of a single (typically governmental) entity; we shall refer
to the latter as the network operator. Under this framework, line operators act as
competing entities for the exploitation of shared goods and are (possibly) unwill-
ing to reveal their actual level-of-satisfaction functions that determine their true
incentives. Nevertheless, the network operator would like to ensure the maximum
possible level of satisfaction of these competing entities, e.g., by maximizing the
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(unknown due to privacy) aggregate levels of satisfaction. This would establish
a notion of a socially optimal solution, which could also be seen as a fair solution
in the sense that the average level of satisfaction is maximized. Additionally, the
network operator should ensure that the operational costs of the whole system
are covered by a fair cost sharing scheme announced to the competing entities.
This implies that a (possibly anonymous) pricing scheme for the usage of the
shared resources should be adopted that is robust against changes in the de-
mands of the entities (line operators). That is, we consider as robustness of the
system its tolerance to the entities’ unknown incentives and elasticity of demand
requests, and the eventual stabilization at an equilibrium point that is as close
as possible to the social optimum.

In this paper, we explore this rationale by considering the case where the
(selfishly motivated) line operators request frequencies (traffic demands) over a
pool of already fixed line routes (one per line operator). Rather than requesting
end-to-end frequencies, the line operators offer bids, which they (dynamically)
update, for buying frequencies. Each line operator has a utility function deter-
mining her level of satisfaction that is private; i.e., she is not willing to reveal it
to the network operator or her competitors, due to her competitive nature. The
network operator announces an (anonymous) resource pricing scheme, which in-
directly implies an allocation of frequencies to the line operators, given their own
bids. By applying techniques from the network congestion control literature, we
show that for the case of a single pool of routes, there exists a distributed, dy-
namic, (user) bidding and (resource) price updating protocol, whose equilibrium
point is the unknown social optimum. We first study the single pool case, as-
suming strict concavity and monotonicity of the private utility functions. All
dynamic updates of bids or prices may be done at the line operator or resource
level, based only on local information, that concerns the particular line opera-
tor or resource. The key assumption is that the line operators can control only
a negligible amount of frequency along a single line compared to its total fre-
quency. We extend our technique to the case of multiple line pools, whose mix is
determined by the network operator for the sake of social optimality, and prove
similar results.

Our solution is robust against the imperfect knowledge imposed by the pri-
vate (unknown) utility functions and the arbitrary (dynamically updated) bids,
since the proposed protocol enforces convergence to an equilibrium which is the
social optimum. Our approach introduces a new notion of robustness, which we
call incentive-compatible robustness, that is complementary to the notion of re-
coverable robustness introduced in [2]. The latter appears to be more suitable in
the context of railway optimization, as opposed to the classical notion of robust-
ness within robust optimization; see [2] for a detailed discussion on the subject
as well as for the limitations of the classical approach as suggested in [4].

Recoverable robustness is about computing solutions that are robust against
a limited set of scenarios (that determine the imperfection of information) and
which can be made feasible (recovered) by a limited effort. One starts from a
feasible solution x of an optimization problem which a particular scenario s, that
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introduces imperfect knowledge (i.e., by adding more constraints), may turn to
infeasible. The goal is to have handy a recovery algorithm A that takes x and
turns it to a feasible solution under s (i.e., under the new set of constraints).
In other words, in recoverable robustness there is uncertainty about the fea-
sibility space: imperfect information generates infeasibility and one strives to
(re-)achieve feasibility.

Incentive-compatible robustness is about computing an incentive-compatible
recovery scheme for achieving robustness (interpreted as convergence to opti-
mality). By an incentive-compatible scheme, we mean that the players act (up-
date their bids, in our application) in a selfish manner during the convergence
sequence. In this context, the feasibility space is known and incomplete informa-
tion refers to complete lack of information about the optimization problem, due
to the unknown utility functions. The goal is to define an incentive-compatible
(pricing) scheme so that the players converge (recover) to the system’s optimum.
In other words, in incentive-compatible robustness there is uncertainty about the
objectives: feasibility is guaranteed, since imperfect knowledge does not intro-
duce new constraints, and one strives to achieve optimality, exploiting the selfish
nature of the players.

Note that incentive-compatible robustness is different from the concept of
game-theoretic robustness as developed in [1]. The approach in [1] is a central-
ized, deterministic paradigm to uncertainty in strategic games, mainly in the
flavor of the Bertsimas and Sim approach [4] to robust LP optimization. Our
approach differs from that in the following: (i) It is decentralized to a large
extent, based only on local information that the participating entities (line oper-
ators and resources) have at any time; (ii) we impose no restriction on the kind
of the utility functions of the players, other than their strict concavity, whereas
the approach in [1] has to somehow quantify the “magnitude” of uncertainty of
the constraints and/or the payoffs, in order to keep the solvability of the problem
comparable to that of the nominal counterpart; (iii) the solvability of the robust
counterpart in [1] is largely based on the solvability of the nominal counterpart
(which is strongly questionable for the general game-theoretic framework).

Related to our work is that of Borndörfer et al [5] that considers the allocation
of slots in railway networks. That work considers the improvement of existing
schedules of lines and frequencies, by reconsidering the allocation of (scarce)
bundles of slots (i.e., lines with given frequencies in our own terminology) that
have positive synergies with each other. The remaining schedule is assumed to
remain intact, so that the resulting optimization problem is solvable. Initially, the
involved users (line operators) make some bids and consequently a centralized
optimization problem is solved to determine the changes in the allocation of these
slots so as to maximize the welfare of the whole system. This approach is different
from ours in the following points: (i) It assumes no incentive-compatibility for
the involved users and the eventual allocation is determined by a centralized
scheduler. In our case, there is a simple pricing policy per resource (track), which
is a priori known to all the players, and the winner is determined by the players’
bids. The selfish behavior of the line operators (in our case) is, not only taken
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into account, but also exploited by the system in order to assure convergence
to the social optimum of the whole network. (ii) The approach in [5] makes
some local improvements in hope of improving the whole system, but does not
exclude being trapped at some local optimum, which may be far away from the
social optimum of the system. Our proposed scheme provably converges towards
the social optimum, even if changes in the parameters of the game (e.g., in the
players’ secret utilities) change in the future. (iii) In [5], it is required that a
centralized optimization problem is solved (considering the data regarding the
whole network) and its solution is enforced in the current schedule. In our work
(at least for the single-pool case) there is no need for global knowledge of the
whole network. Each player dynamically adapts her bids according to her own
(secret) utility and the aggregate cost she faces along her own path.

The rest of this paper is organized as follows. Section 2 provides the set up
of our modeling. The decentralized pricing mechanism both for the single and
the multiple line pool case is given in Section 3. We conclude in Section 4.

2 The Model

Suppose that a set P of line operators behave as competing service providers,
willing to offer regular train routes to the end users of a railway public trans-
portation system. The railway network operator provides the (aforementioned)
public transportation network G = (V, L), with the set L of edges (railway tracks
connecting directly two nodes of G) being the resources of the network. These
resources are assumed to be subject to (fixed) capacity constraints, described by
the capacity vector c = (c`)`∈L > 0. The capacity of each edge is considered as
a shared resource provided by the network operator.

There is a fixed pool of routes (i.e., origin–destination paths), one per line
operator, that the line operators are willing to use. This pool is represented
by a routing matrix R ∈ {0, 1}|L|×|P |, in which each row R`,? corresponds
to a different edge ` ∈ L, and each column R?,p corresponds (actually, is the
characteristic vector of) the route of a distinct line operator p ∈ P . Each line
operator p ∈ P has complete control over the frequency or traffic rate (of trains)
she decides to route over her path, R?,p, given that no edge capacity constraint
is violated in the network. A utility function Up : R 7→ R determines the level
of satisfaction of the line operator p ∈ P for committing an end-to-end traffic
rate xp > 0 along her route R?,p, for the purposes of her clients. These utility
functions are assumed to be strictly increasing, strictly concave, nonnegative
real functions of the end–to–end traffic rate xp allocated to the line operator
p ∈ P . It is also assumed that these functions are private: Each line operator is
not willing to reveal it to the network operator or her competitors, due to her
competitive nature.

The railway network operator is only interested in having a socially optimal
(fair) solution. This is usually interpreted as maximizing the aggregate satisfac-
tion of the line operators. Therefore, the social welfare objective is considered
to be the maximization of the aggregate utilities of the line operators, subject
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to the capacity constraints. That is, the network operator is interested in the
solution of the following convex optimization1 problem:

SOCIAL max





∑

p∈P

Up(xp) : Rx ≤ c; x ≥ 0





Since all utility functions are strictly concave, then SOCIAL has a unique op-
timal solution, which is the social optimum. To solve SOCIAL directly, the
network operator, apart from the inherent difficulty in centrally solving (even
convex) optimization programs of the size of a railway network, faces the addi-
tional obstacle of not knowing the exact shape of the objective function. More-
over, there exist some operational costs that have to be split among the line
operators who use the infrastructure, and this has to be done also in a fair way:
Each line operator should only be charged for the usage of the resources stand-
ing on her own route. In addition, the per–unit cost for using a line should be
independent of the line operator’s identity (i.e., we would like to have an anony-
mous pricing scheme for using the resources). But of course, this cost depends
on the aggregate congestion induced by all the line operators in these edges, due
to the congestion effect. Indeed, it would be desirable for the network operator
to be able to exploit the announcement of a pricing scheme not only for covering
these operational costs, but also in such a way that a fair solution for all the line
operators is induced, despite the fact that there is no global knowledge of the
exact utility functions of the line operators.

In this work, we explore the possibilities of having such a pricing and traffic
rate allocation mechanism. We would like this mechanism to depend only on the
information affecting either a specific line operator (e.g., the amount of money
she is willing to spend) or a specific resource (e.g., the aggregate congestion
induced by the line operators’ demands on this resource), but as we shall see
this is not always possible.

As for the line operators (the players), each of them is interested in selfishly
utilizing her own payoff, which is determined by the difference of the private
utility value minus the operational cost that the network operator charges her
for claiming an amount of traffic rate along her own route. The strategy space
of a line operator is to claim (via bidding) the value of the traffic rate she is
willing to buy, subject to the global capacity constraints (for all the players).
It is mentioned here that this linear combination of the private utility and the
cost share is not a real restriction, as there is no restriction for the shape of the
utility function, other than the strict concavity and the monotonicity, which are
quite natural assumptions.

1 We make the tacit assumption that convex optimization refers to minimizing a con-
vex function f , which is equivalent to maximizing the concave function −f .
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3 A Decentralized Pricing Scheme

The selfish perspective of the competing line operators (the players) implies
a strategic game among them, in which the network operator intervenes only
implicitly (as the game designer), by setting the resource usage (per–unit) costs.
In order to study the effect of the selfish behavior in this setting, we consider
the following Frequency Game in Line Planning:

– Each player p ∈ P is a line operator, whose strategy is to choose a line
frequency (traffic rate) over her (already fixed) route R?,p connecting her
own origin–destination pair (sp, tp) of stations/stops.

– The strategy space for all the players is the set of feasible flows from origin to
destination nodes, so that the edge capacity constraints are preserved. That
is, the strategy space of the game is the set of vectors

{
x ∈ R|P |≥0 : Rx ≤ c

}
.

– Each player’s payoff is determined both by the value of the private utility
function Up(xp) (for having a traffic rate of xp over her route) and the oper-
ational cost Cp(x) she has to pay along her own route, due to the required
traffic rate vector x induced by all the players in the network. Hence, player
p’s individual payoff is defined as: IPp(xp,x−p) = Up(xp) − Cp(xp,x−p),
where x−p is the traffic rate vector for all the players but for player p.
Therefore, the sole goal of player p ∈ P is to choose her traffic rate so as to
maximize her individual payoff:

USER max {IP (xp,x−p) = Up(xp)− Cp(xp,x−p) : xp ≥ 0}

– We consider as shared resources the capacities of the available network edges,
for which the line operators compete with each other.

As we shall see shortly, we will allow the players to affect their own choices
(traffic rates) only indirectly, via bidding. That is, each player is not assumed to
freely choose her own traffic rate along her route, but rather offer a larger bid
for (hopefully) getting higher traffic rate.

3.1 Describing the Social Optimum

Due to our assumption on the convexity of SOCIAL , we know that a traffic rate
vector x̂ is optimal for it (we call it the social optimum) if there exists a vector of
Lagrange Multipliers λ̂ = (λ̂`)`∈L satisfying the following Karush-Kuhn-Tucker
(KKT) conditions (see e.g., [3, Chap. 3]):

KKT-SOCIAL
U ′

p(x̂p) = λ̂T ·R?,p, ∀p ∈ P, (1)

λ̂` (c` −R`,? · x̂) = 0, ∀` ∈ L, (2)
R`,? · x̂ ≤ c`, ∀` ∈ L, (3)

λ̂, x̂ ≥ 0 (4)
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Of course, the problem with the KKT-SOCIAL system is that the utility
functions (and hence their derivatives) are unknown to the system. The question
is whether there exists a way for the network designer to enforce the optimal so-
lution of SOCIAL , also described in KKT-SOCIAL , without demanding this
knowledge. The answer to this is partially affirmative, and this is by exploiting
the selfish nature of the players (line operators) as we shall see shortly.

3.2 Setting the Right Pricing Scheme for the Players

In order to allow usage of his resources (the capacities of the edges in the net-
work), the network operator has to define a pricing scheme that will (at least)
pay back the operational costs of the edges. This scheme should be anonymous,
in the sense that all the line operators willing to use a given edge, will have
to pay the same per–unit–of–frequency price for using it. But these prices may
vary for different edges, depending on the popularity and the availability of each
edge.

For the moment let’s assume that we already know the optimal Lagrange
Multipliers, (λ̂`)`∈L of KKT-SOCIAL . Interpreting these values as the per–
unit–of–frequency prices of the resources, we have a pricing scheme for the traffic
induced by the line operators to their own routes: Each line operator pays exactly
for the marginal cost of her own traffic rate at the resources she uses in her route.
That is,

∀p ∈ P,Cp(xp,x−p) = µ̂p · xp

where µ̂p ≡
∑

`∈L:R`,p=1 λ̂` = λ̂T R?,p is the per–unit price for committing a unit
of traffic along the route R?,p of player p ∈ P .

One should mention here that indeed there is an indirect effect of the other
players’ congestion in the marginal cost of each player, despite the fact that this
seems to be only linear in her own traffic rate. This is because the scalar µ̂p

actually depends on the optimal primal–dual pair (x̂, λ̂).
We next assume that the players are actually controlling only negligible

amounts of traffic rates compared to the aggregate ones2. Then, their effect
in the total congestion (and therefore in the values of the marginal prices) is
also negligible. This implies that the players consider the per-unit-prices they
face to be constant, even if this is actually affected by the traffic rate vector as
well. In such a case we say that the players are price takers, i.e., they accept
the prices without anticipating to have an effect on them by their own strategy.
In such a case each player solves the following optimization problem:

USER-I max {Up(xp)− µ̂pxp : xp ≥ 0}

Due to the convexity of USER-I , x̃p ≥ 0 is an optimal solution if U ′
p(x̃p) = µ̂p.

That is, each player (selfishly) tries to satisfy her own part of the first set of
equalities in KKT-SOCIAL . Of course, we still have to deal with the crucial

2 For the considered application scenario, this is not unrealistic.
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problem that the optimal Lagrange Multipliers (that define the marginal prices
for the users) cannot be directly computed, due to both the size of SOCIAL
and the lack of knowledge of the private utility functions, in the framework of
railway optimization.

In order to handle this situation, we consider the following two-level scenario
for dynamically setting per–unit prices of the edges and frequencies of the selfish
players: Initially each player p ∈ P announces a bid wp ≥ 0 concerning the total
amount of money she is willing to pay for buying traffic rate along her own
route. The exact amount of traffic rate that she will eventually buy, depends on
the per-unit price that will be announced by the network operator, and is not
yet known to her. Consequently, the network designer considers the following
optimization problem, whose Lagrange Multipliers define the per–unit prices of
the edges:

NETWORK max





∑

p∈P

wp · log(xp) : Rx ≤ c; x ≥ 0





That is, the network operator considers that the private utility Up(xp) is sub-
stituted by the (also strictly concave and increasing) function wp log(xp). The
choice of this function along with the selfishness of the players allows us to ob-
tain a convex program with linear inequalities, whose KKT system is very similar
(except for the first line) to KKT-SOCIAL :

KKT-NETWORK
wp

x̄p
= λ̄T ·R?,p, ∀p ∈ P, (5)

λ̄` (c` −R`,? · x̄) = 0, ∀` ∈ L, (6)
R`,? · x̄ ≤ c`, ∀` ∈ L, (7)

λ̄, x̄ ≥ 0 (8)

At this point, one could argue that the convex program NETWORK could
be directly solved, and compute (along with KKT-NETWORK ) the requested
Lagrange Multipliers. The huge scale of a railway network optimization instance
makes this approach rather unappealing. Therefore, we shall compute an optimal
solution of NETWORK in a distributed fashion, as follows:

– Each edge is equipped with a dynamically updated charging mechanism,
which is the same (per–unit) price for all the line operators using it. This
charging mechanism is updated according to the following system of differ-
ential equations:

∀` ∈ L, λ̇`(t) = max{y`(t)− c`, 0} · I{λ`(t)=0} + (y`(t)− c`) · I{λ`(t)>0} (9)

where y`(t) ≡
∑

p∈R:R`,p=1 xp(t) = R`,? · x(t) is the cumulative traffic rate
committed at edge ` ∈ L at time t ≥ 0, and I{E} is the indicator variable of
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the truth of a logical expression E . The system of differential equations (9)
is obtained from the well-known approach (see e.g., [12]) that considers the
Lagrange multipliers of an optimization problem as the (per unit) prices of
the resources corresponding to the constraints represented by each Lagrange
multiplier. Therefore, the above system has the following intuitive interpre-
tation. For each resource ` that currently has a zero price, the tendency is to
increase the price only if this resource is over-used (i.e., the aggregate traf-
fic rate exceeds the capacity of the resource). When a resource has positive
price, then the tendency is either to increase or reduce this price, depend-
ing on whether its current traffic rate is below or exceeds the capacity of
the resource, respectively. Thus, the only stable situation is only when a
resource is either under-used and has zero price (since there is no interest
in using the residual capacity), or its traffic has already reached its capac-
ity. Observe that the equilibrium of this system of differential equations has
∀` ∈ L, ȳ` ≡ R`,? · x̄ = c` ∨ λ̄` = 0. That is, the complementarity con-
ditions of both KKT-SOCIAL and KKT-NETWORK (equations (2) and
(6)) are satisfied.

– Each line operator p ∈ P is charged an instantaneous per-unit price µp(t) ≡∑
`∈L:R`,p=1 λ`(t) = λ(t)T · R?,p, at any time t ≥ 0. Therefore, given their

commitment on spending wp for buying traffic rate, at equilibrium player p
is allocated a traffic rate x̄p = wp

µ̄p
. From this we deduce that at equilibrium

also the equations (5) of KKT-NETWORK are satisfied.

The above distributed scheme is a congestion control algorithm, in which each
player (line operator) reacts to signals she gets about the congestion along her
route. These signals are the per-unit prices µp(t) that the line operator gets from
the network operator at any time.

The question is whether the above system converges at all. This is indeed
true, if we assume that the routing matrix R has full rank. This assures that given
a set λ(t) = (λ`(t))`∈L of instantaneous per-unit prices at the resources, the set
µ(t) = (µp(t))p∈P of per-unit prices for the line operators, that is computed as
the solution of the system µ(t) = RT · λ(t), is unique. Using a proper Lyapunov
function argument, it can be shown (cf. [8, Chapter 22]) that this dynamic
(and distributedly implemented) pricing scheme, for fixed player bids (wp)p∈P ,
is stable and converges to the optimal solution (x̄, λ̄) of NETWORK .

In particular, consider the Lyapunov function V (λ(t)) = 1
2 (λ(t)− λ̄)T (λ(t)−

λ̄). To show stability of our scheme, it suffices to show that dV (λ(t))/dt ≤ 0.
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Then we have:

dV (λ(t))
dt

=
∑

`∈L

(λ`(t)− λ̄`) · λ̇(t)

=
∑

`∈L

(λ`(t)− λ̄`) · [max{y`(t)− c`, 0} · I{λ`(t)=0} + (y`(t)− c`) · I{λ`(t)>0}]

≤
∑

`∈L

(λ`(t)− λ̄`) · (y`(t)− c`)

=
∑

`∈L

(λ`(t)− λ̄`) · [(y`(t)− ȳ`) + (ȳ` − c`)]

≤
∑

`∈L

(λ`(t)− λ̄`) · (y`(t)− ȳ`)

=
∑

`∈L

(λ`(t)− λ̄`) ·R`,? · (x(t)− x̄)

=
∑

p∈P

(µp(t)− µ̄p) · (xp(t)− x̄p)

=
∑

p∈P

(
wp

xp(t)
− wp

x̄p

)
· (xp(t)− x̄p) =

∑

p∈P

wp ·
(

2− xp(t)
x̄

− x̄p

xp(t)

)

≤ 0

The first inequality holds because: ∀` ∈ L, (i) if λ`(t) > 0 then λ̇`(t) = y` − c`;
(ii) if λ`(t) = 0 then max{y`−c`, 0} ≥ 0 and λ`(t)−λ̄` = −λ̄` ≤ 0. Therefore, for
λ`(t) = 0 it holds that (λ`(t)−λ̄`)max{y`(t)−c`, 0} = −λ̄` max{y`(t)−c`, 0} ≤ 0.
But so long as λ(t) = 0, it holds that the total flow y`(t) is at most as large as the
capacity c` (otherwise the price for this resource would have raised earlier). That
is, 0 ≤ −λ̄`(y`(t) − c`). The second inequality holds because at equilibrium no
aggregate flow ȳ` can exceed the capacity c` of the resource, and λ̄`(ȳ`− c`) = 0.
The third inequality holds because ∀z > 0, z + 1

z ≥ 2 ⇒ 2− z − 1
z ≤ 0. We have

also exploited the facts that ∀t ≥ 0, y(t) = R · x(t) and µ(t) = λ(t)T ·R.
Let’s now return to the line operators. We have assumed that these players

announce some fixed bids, but the truth is that since the pricing scheme changes
over time, it is in the interest of each of them to vary her own bid. Indeed,
if the players are assumed to be price takers and act myopically (i.e., without
anticipating to affect the prices via their own pricing policy), then they will try
to solve the following system, which is parameterized by the instantaneous set of
per–unit prices µ(t) = (µp(t))p∈P (seen as constants) they are charged at time
t ≥ 0:

USER-II max
{

Up

(
wp

µp(t)

)
− wp : wp ≥ 0

}

Due to convexity, the optimal solution w̃p(t) of this unconstrained optimization
program, will be the bid chosen by player p ∈ P at time t ≥ 0, and is be given
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by:

1
µp(t)

· U ′
p

(
w̃p(t)
µp(t)

)
= 1 ⇔

U ′
p (x̃p(t)) = U ′

p

(
w̃p(t)
µp(t)

)
= µp(t) ⇔

x̃p(t)U ′
p (x̃p(t)) = µp(t) · x̃p(t) = w̃p(t)

That is, the price taking, myopic players have an incentive to set their bids
properly so that ∀t ≥ 0, ∀p ∈ P, wp(t) = xp(t)U ′

p(xp(t)). This will also hold at
equilibrium, i.e., ∀p ∈ P, w̄p = x̄pU

′
p(x̄p). But when this is true, it also holds that

KKT-NETWORK and KKT-SOCIAL coincide. Therefore, the selfish behav-
ior of the myopic, price taking players, under the dynamic price setting mecha-
nism and bidding scheme, converges to the optimal solution (x̂, λ̂) of SOCIAL .

3.3 Extension to Multiple Pools of Routes

In this subsection we extend the freedom of the railway network operator, as-
suming that he can periodically use different pools of routes for the players,
from a set K of pools. The set of different pools is motivated by the fact that
usually there are dependencies between lines; for instance, the choice of a high-
speed line affects the choice of lines for other trains. These dependencies split
naturally the set of all lines into a small number of subsets determined by the
network operator, resulting in different line pools.

Each pool k ∈ K is represented by its routing matrix R(k) ∈ {0, 1}|L|×|P |, as
before. The line operators still try to have (indirect) control only over the end-
to-end traffic rates they get by the network operator. We assume that player
p ∈ P gets a unique traffic rate xp for the whole period of time considered. It
is up to the network operator to decide how to multiplex the distinct pools of
routes, in order to achieve the optimal social welfare value. That is, the network
operator now directly participates in the optimization problem, via the variables
fk : k ∈ K indicating the portion of time each pool consumes over the whole
time period we study. This social welfare optimization problem is the following:

MULTI-SOCIAL

max





∑

p∈P

Up(xp) : ∀` ∈ L, ∀k ∈ K, (R(k))`,? · x ≤ c` · fk;
∑

k∈K

fk ≤ 1; x, f ≥ 0





The Lagrangian function is the following:
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L(x, f , Λ, ζ)

=
∑

p∈P

Up(xp)−
∑

`∈L

∑

k∈K

Λ`,k · [(R(k))`,? · x− c` · fk]− ζ

[∑

k∈K

fk − 1

]

=
∑

p∈P

[
Up(xp)−

∑

`∈L

∑

k∈K

Λ`,k · (R(k))`,p · xp

]
+

∑

k∈K

fk ·
[
cT Λ?,k − ζ

]
+ ζ

If we set µp(Λ) =
∑

`∈L

∑
k∈K Λ`,k · (R(k))`,p =

∑
k∈K Λ?,k

T (R(k))?,p, the
system of KKT conditions of MULTI-SOCIAL is written as follows:

KKT-MULTI-SOCIAL
U ′(x̂p) = µ̂p ≡ µp(Λ̂), ∀p ∈ P, (10)

cT · Λ̂k =
∑

`∈L

Λ̂`,k · c` = ζ̂, ∀k ∈ K, (11)

Λ̂`,k ·
[
(R(k))`,? · x̂− c` · f̂k

]
= 0, ∀` ∈ L, ∀k ∈ K, (12)

ζ̂ ·
(∑

k∈K

f̂k − 1

)
= 0 (13)

(R(k))`,? · x̂ ≤ c` · f̂k, ∀` ∈ L, (14)∑

k∈K

f̂k ≤ 1, (15)

x̂ ≥ 0, f̂ ≥ 0, Λ̂ ≥ 0, ζ̂ ≥ 0 (16)

Observe that, by equation (11), in the optimal solution all the pools have the
same weighted aggregate price, equal to ζ̂, if we use the edge capacities as
weights. Moreover (due to equation (13)), unless this optimal aggregate price
is zero, it holds that the edge capacities are totally distributed among the dis-
tinct pools: if ζ̂ > 0 then

∑
k∈K f̂k = 1.

We can once more set the instantaneous per-unit prices for the players as a
(linear) function of the Lagrange Multipliers, as follows:

∀t ≥ 0, ∀p ∈ P, µp(t) =
∑

`∈L

∑

k∈K

Λ`,k(t) · (R(k))`,p =
∑

k∈K

(Λk(t))T · (R(k))p

The congestion at edge ` ∈ L due to route R(k) at time t ≥ 0, is given by
y`,k(t) = (R(k))`,? · x(t). A dynamic (by the edges) pricing scheme, is described
by the following system of differential equations:

∀` ∈ L, ∀k ∈ K,

Λ̇`,k(t) = max{y`,k(t)− c`fk, 0} · I{Λ`,k(t)=0} + (y`,k(t)− c`fk) · I{Λ`,k(t)>0}(17)
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This differential system would then assure the validity of equations (12), at
equilibrium, if the pool frequencies provided by the network operator were fixed.
Assuming again that the players announce (instantaneous) bids, and providing
them with a traffic rate xp(t) = wp(t)/µp(t) at any time, along with their price
taking and myopic behavior, would also assure (at equilibrium) the validity of
equations (10).

But we also have to assure the validity of equations (11) and (13). In order
to achieve this, we study the dual of MULTI-SOCIAL : The dual problem of
MULTI-SOCIAL is the following:

DUAL-MULTI-SOCIAL max {D(Λ, ζ) : ∀` ∈ L, ∀k ∈ K,Λ`,k ≥ 0; ζ ≥ 0}
where:

D(Λ, ζ) = max {L(x, f , Λ, ζ) : x, f ≥ 0}

= max
x≥0





∑

p∈P

[
Up(xp)−

∑

`∈L

∑

k∈K

Λ`,k · (R(k))`,p · xp

]



+ max
f≥0

{∑

k∈K

fk ·
[∑

`∈L

Λ`,k · c` − ζ

]}
+ ζ

Observe that the dual objective D(Λ, ζ) is split in two parts. The first part

F (Λ) = max
x≥0





∑

p∈P

[
Up(xp)−

∑

`∈L

∑

k∈K

Λ`,k · (R(k))`,p · xp

]



is a maximization problem similar to the one already dealt with in the single
pool case of the previous section. The second part

G(Λ, ζ) = max
f≥0

{∑

k∈K

fk ·
[∑

`∈L

Λ`,k · c` − ζ

]}
+ ζ

= max
f≥0

{∑

k∈K

fk ·
(
cT Λ?,k

)
+ ζ ·

(
1−

∑

k∈K

fk

)}

It is now clear that so long as there exists a pool with weighted aggregate price
(using the capacities as weights) strictly larger than the value of ζ, the optimal
choice of f is to be a probability distribution that assigns positive mass only to
pools of maximum aggregate price (according to Λ). Therefore:

G(Λ, ζ) = max
1T f=1; f≥0

{∑

k∈K

fk ·
(
cT Λ?,k

)
}

= max
k∈K

{
cT Λ?,k

}

= min
{
z : z · 1T ≥ cT Λ

}

We augment our price updating scheme described in the system (17) as follows:
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– After the players having announced the current bids (wp(t))p∈P and (conse-
quently) the edges having updated their current prices in each pool (Λ`,k(t))`∈L,k∈K ,
ζ(t) is set to the average price of a pool:

ζ(t) =
1
|K|

∑

k∈K

cT (Λ(t))?,k (18)

– The network operator then updates the portions of time granted to each of
the pools, so that pools exceeding the current average price tend to increase
their portion of time (in hope of decreasing their weighted cost), while pools
that are cheaper than the average price slightly decrease their portion of
time. That is:

∀k ∈ K, ḟk(t) = φ ·max
{
0, cT · (Λ(t))?,k − ζ(t)

}
(19)

where, φ > 0 is a scaling factor ensuring that the resulting vector f is again
a probability distribution over the pools.

Observe that, at equilibrium (x̂, f̂ , Λ̂, ζ̂), our augmented pricing scheme has all
pools with the same aggregate price: ∀k ∈ K, ĉT · Λ̂?,k = ζ̂. It is only then
that the time portions of the pools stabilize (cf. equation (19)). This assures
the validity of equations (11). Moreover, by brute force we assure the validity of
equation (13).

It is mentioned at this point that the two updating schemes concerning the
average pool price and the vector of time portions of the pools, have to be
centrally computed by the network operator, since it is his decision how to
change them and these changes take into account the state of the whole network.
Unfortunately we cannot (at least in this approach) avoid this bottleneck, since
we involve the network operator in the competing environment.

4 Conclusions and Open Issues

We presented a distributed protocol for a new application scenario in line plan-
ning that achieves incentive-compatible robust solutions. Our protocol allows line
operators to negotiate line frequencies over fixed lines in a dynamic fashion. In
a broader context, our approach comprises a generic technique to set up a dy-
namic market for (re-)negotiating usage of resources over subsets of resources.
Consequently, it could be applied to set up a dynamic frequency market over
other transportation settings (e.g., in the airline domain).

A crucial question would be to devise protocols that demonstrate fast con-
vergence to the equilibrium point, even approximately. Additionally, it would be
interesting to find ways to tackle the assumption on price taking and myopic
behavior of the users. It would be nice to do this even at the cost of suboptimal
equilibrium points. It is noted that when the players are not price takers and
myopic (they are called then price anticipators in the congestion control jargon),
then the above scheme does not lead to socially optimal solutions, even for the
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case where there is only a single resource to share. Nevertheless, it would be quite
interesting to know how far one can be from the social optimum, given that a
distributed (and localized) updating scheme is adopted for the user requests and
the prices of the resources.

Acknowledgements. We are indebted to Rolf Möhring, Christian Liebchen,
and Sebastian Stiller for their comments on an earlier draft of this work, and to
Kostas Tsihlas for many fruitful discussions.
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Abstract. One of the basic problems in strategic planning of public and
rail transport is the line planning problem to find a system of lines and
its associated frequencies. The objectives of this planning process are
usually manifold and often contradicting. The transport operator wants
to minimize cost, whereas passengers want to have travel time shortest
routes without any or only few changings between different lines. The
travel quality of a passenger route depends on the travel time and on the
number of necessary changings between lines and is usually measured
by a disutility or impedance function. In practice the disutility strongly
depends on the line plan, which is not known, but should be calculated.
The presented model combines line planning models and traffic assign-
ment model to overcome this dilemma. Results with data of Berlin’s city
public transportion network are reported.

Key words: line planning problem, integer programming

1 Related literature

In the last years a lot of mathematical integer programming models have been
proposed (see e.g. [1–3, 6, 10]). The line plan model presented by Borndörfer,
Grötschel and Pfetsch [1, 2] minimizes the combination of line costs and system
travel time disregarding transfers between lines and waiting times. To make
the model feasible for real instances of local traffic systems, the line frequency
variables are not forced to be integer, however knowing that the fractual solution
can be quite far from the integer optimum. Because in general the minimum
system travel time (called Beckmann-User-Equality) do not really reflect the
passenger’s ”selfish” behavior, the use of the system travel time seems to be
disadvantageous.

Both facts are respected in the model of Schöbel and Scholl [11]. This line plan
model minimizes the passengers inconvenience under the restriction of a fixed
budget for all line costs, whereas the passengers inconvenience is the sum of the
travel time and the time needed for transfers concerning one origin-destination
relation. The model in [11] assumes that the given passenger travel demand must
be satisfied by the line plan. For all origin-destination pairs the passengers will
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travel on a time shortest path. In the model presented here not all passenger
demand must be covered. This is controlled by a limited budget for the opera-
tional cost of the line plan. For larger networks the model of Schöbel and Scholl
suffers from large memory requirements for solving the shortest path problem in
the change& go network, which contains for each line and each pair of consec-
utive served stations a special travel edge. Large number of lines and stations
requires a big amount of memory. We try to overcome this problem by the use of
a column generation scheme. The resulting pricing problem for those passenger
flow variables is a shortest path problem.

2 The Basic Combined Model

2.1 General notations

The proposed model is restricted to the case to find a line plan for one homoge-
neous transport carrier. Each of the edges e ∈ E of the underlying network (V, E)
is assigned with a homogeneous travel time te. The nodes or vertices n ∈ V of
the network represent stations. Terminal stations are nodes, at which a line is
allowed to start or to terminate. By a potential line L we will understand a path
between two terminal nodes, which running time is in maximum the product of
the detour factor ρ and the shortest travel time between the two terminal nodes.
For simplicity we use the notation e ∈ L to indicate, that the line L uses edge e.
By L|(A,B) we denote the set of all edges, which are used by line L running from
station A to station B. This set might be empty, if A and B are not served by
L.

2.2 Traffic Assignment

The traffic assignment problem is modelled by some kind of multi-commodity
flow problem, where we consider for each travel demand pair (O, D) and lines

L ∈ L partial passenger routes pO,D

(A,B),L. The variables

ϕO,D

(A,B),L

define the traffic flow of all OD-passengers using line L between station A and
station B.

A total passenger route p from the origin node O to the destination node
D is simply the concatenation of partial routes (see figure 1). The disutility of
impedance of a passenger route is a measure for the inconvenience for the trip by
this route. In traffic assignment theory this impedance is modelled in dependence
of the travel time, the number of changings and the frequency of the service. In
practice, there are used rather complex and nonlinear models for this function
(see e.g. [4, 7]). Here, we simplify the model by using a linear approximation: For
a path p denote the travel time by t(p) and define the number of line changings
by c(p), which are penalized by the parameter β. Then imp(p) := t(p) + βc(p)
is a reasonable measure for the disutility of using the trip route p.
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O

A B

D

ϕ
O,D

(O,A),L1

ϕ
O,D

(A,B),L2

ϕ
O,D

(B,D),L3

Fig. 1. Partial passenger route flow variables

In order to keep the resulting model linear, we do not use the common
approach ([4]) to measure quality or utility by a function f(p) ∼ 1

imp(p) , but

define the travel quality by

ω(p) = ρ · t∗OD − t(p) − βc(p) (1)

t∗OD denotes the minimum possible travel time from origin O to destination D.
The detour factor ρ ≥ 1 should be defined in such a way, that passengers will
accept all those routes for which the travel time added with the change penalty
is at most a ρ− multiple of the minimum travel time. The quality measure ω(p)
can be interpreted as that time, what a passenger can save by using a connection
p compared to the maximal accepted travel time for that OD-relation.

The best quality is given by t∗OD ·(ρ − 1). If the travel time or/and the number
of necessary changings becomes too large, the quality turns out to be negative.
If there exists no alternative, more favourable path with positive quality, we will
assume to ’loose’ those passengers. Figure 2 illustrates this approach.

In order to split the total travel time onto the line parts, we define tL;(A,B)

to be the travel time of line L from station A to station B. The quality weights

ωO,D

(A,B),L :=







−tL;(A,B), ifA = O and B 6= D

−tL;(A,B) − β, ifA 6= O and B 6= D

ρt∗OD − tL;(A,B) − β, ifA 6= O and B = D

ρt∗OD − tL;(A,B), ifA = O and B = D

obviously have the property, that its sum on each total path from origin node O
to destination node D equals with (1) (see Figure 3).

Combining flow conservation laws and travel demand leads to the traffic as-
signment model:
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ω(p)

t(p)
t∗OD

t
∗

OD
· (ρ − 1)

loss of passengers

Fig. 2. Quality measure for passenger routes.

Traffic Assignment Model

∑

O,D,A,B,L

ωO,D

(A,B),LϕO,D

(A,B),L → max

∑

L,A

ϕO,D

(A,D),L ≤ vOD

∑

L,A

ϕO,D

(A,X),L −
∑

L,B

ϕO,D

(X,B),L = 0 forall X 6∈ {O, D}

ϕO,D

(A,B),L ∈ R+

Note that this model maximizes travel quality.

2.3 Line planning model

For the line planning part of our model we use the basic linear programming
approach of M. Bussieck ([3]), who defines for each line L a frequency variable
xL ∈ Z+, which gives the service frequency of the line per time unit, say one hour.
xL = 0 implies, that L is not considered in the line plan. Values xL = 1, 2, ...
indicate, that this line is served once, twice,... per time period. Since we consider
a homogeneous line system, we may assume that the passenger capacity of all
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O

A B

D

−tL1;(O,A)

−tL2;(A,B) − β

ρ · t∗OD − tL3;(B,D) − β

ω(p) = ρ · t∗OD − t(p) − 2β

= −tL1;(O,A) − tL2;(A,B) − β + ρ · t∗OD − tL3;(B,D) − β

Fig. 3. Splitting route quality to the partial passenger route flows.

single trains is defined by a constant value C. Infrastructural capacity constraints
for edges and nodes can be simply modelled by the restrictions

∑

e∈L

xL ≤ f(e) (µe)

∑

L serves node n

xL ≤ f(n) (νn)

To model operational cost, we use a simple, linear approach and define the
costs for serving line L with frequency xL, by cLxL. Operational costs are dis-
cussed in more detail by K.-F. Jerosch (see [5]).

2.4 Combining traffic assignment and line planning

Traffic assignment and line planning are combined by the capacity constraints
∑

O,D,A,B:e∈L|(A,B)

ϕO,D

(A,B),L ≤ CxL

which guarantees for each edge e that the line plan provides enough capacity
for the passengers. The right side of this inequality is the amount of available
capacity provided by the line L with frequency xL. The left hand summarizes
the passengers from all origin-destination pairs (O, D) and all route parts (A, B),
which are using the line L on edge e. The modelling approach allows two different
possibilities to treat operational cost:

1. Operational cost may be placed into the objective

max
∑

O,D,A,B,L

ωO,D

(A,B),LϕO,D

(A,B),L − α

(
∑

L

cLxL

)
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2. Operational may be restricted by a given budget, which leads to the con-
straint

∑

L

cLxL ≤ cmax

In summary, we obtain the full model

Full model

∑

O,D,A,B,L

ωO,D

(A,B),LϕO,D

(A,B),L → max

∑

L,A

ϕO,D

(A,D),L ≤ vOD

∀X 6∈ {O, D} :
∑

L,A

ϕO,D

(A,X),L −
∑

L,B

ϕO,D

(X,B),L = 0

∀e ∈ E, L ∈ L :
∑

O,D,A,B:e∈L|(A,B)

ϕO,D

(A,B),L ≤ CxL

∑

L

cLxL ≤ cmax

∑

e∈L

xL ≤ f(e)

∑

L serves node n

xL ≤ f(n)

ϕO,D

(A,B),L ∈ R+

xL ∈ N

2.5 Model strengthening by cutting planes

Using standard techniques from integer programming (see e.g. [8]), it is easy to
see that

ϕ −

(

b − C

⌊
b

C

⌋)

x ≤

[

C −

(

b − C

⌊
b

C

⌋)]⌊
b

C

⌋

(2)

is a valid inequality of the polyhedron

P = {(ϕ, x) ∈ R × Z | ϕ − Kx ≤ 0; ϕ ≤ b}

Due to limited travel demand, the passenger flows

ϕmax
e :=

∑

O,D,A,B:e∈L|(A,B)

ϕO,D

(A,B),L
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are bounded from above. Reasonable bounds can be calculated from the origin-
destination matrix and the detour factor ρ. Such bounds are discussed by M.
Bussieck ([3]) and can be calculated in polynomial time. Define ’reduced’ capac-
ity by

C̃e :=

(

ϕmax
e − C

⌊
ϕmax

e

C

⌋)

and the residual capacity by

C∗
e :=

[

C −

(

ϕmax
e − C

⌊
ϕmax

e

C

⌋)]⌊
ϕmax

e

C

⌋

,

then by (2) the valid inequality

∑

e

∑

O,D,A,B:e∈L|(A,B)

ϕO,D

(A,B),L − C

(
∑

L:e∈L

xL

)

≤ 0 (3)

implies the cutting plane

∑

e

∑

O,D,A,B:e∈L|(A,B)

ϕO,D

(A,B),L − C̃e

(
∑

L:e∈L

xL

)

≤ C∗
e (4)

For the case, that ϕmax
e < C, we have C∗

e = 0 and C̃e ≤ C. Then we may replace
the inequality (3) by the more tighten inequality (4).

3 Solution Methods

3.1 Overview Solution Approach

In real world examples, there will arise a huge amount of possible passenger
flow parts. Hence, those variables can only be handled by the use of a column
generation scheme. For the potential lines (i.e. all frequency variables are con-
tained in the model) the resulting pricing problem is quite straightforward and
leads to a shortest path problem with non-negative arc weights. If the potential
line frequency variables are not known a priori, the approach becomes much
more complicated, since xL and passenger route variables must be generated
simultaneously.

The following algorithm summarizes the discussed method for the case that
we use a fixed line pool. A more detailed description of the algorithm steps is
given in the next sections.

Algorithm 1

1. Calculate the pool of potential lines.
2. Calculate an initial line plan, which is feasible with the budget constraint.
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3. Solve the relaxation of the initial linear model.

4. Pricing iteration:

(a) solve the pricing problem for the passenger flow variables and add those
with negative reduced cost to the formulation

(b) resolve relaxation. Otherwise stop, the optimal solution has been found.

(c) solve the knapsack problem (3.3) and the flow problem (3.3)1 to calculate
an upper bound of the problem.

(d) in case of fractional variables x̃L apply the primal heuristic to find a
possibly improved solution.

3.2 Column Generation

In the following we consider the normalized model with associated dual variables
given in brackets on the right side.

∑

O,D,A,B,L

ωO,D

(A,B),LϕO,D

(A,B),L → max

∑

L,A

ϕO,D

(A,D),L ≤ vOD

(
πOD

D

)

∀X 6∈ {O, D} :
∑

L,A

ϕO,D

(A,X),L −
∑

L,B

ϕO,D

(X,B),L = 0
(
πOD

X

)

∀e ∈ E, L ∈ L :
∑

O,D,A,B:e∈L|(A,B)

ϕO,D

(A,B),L − CxL ≤ 0 (ξe,L)

∑

L

cLxL ≤ cmax (γ)

∑

e∈L

xL ≤ f(e) (µe)

∑

L serves node n

xL ≤ f(n) (νn)

ϕO,D

(A,B),L ∈ R+

xL ∈ N

The dual potential variables πOD
X of the underlying passenger route flow problem

are only defined for X 6= O. For technical reasons we define πOD
O = 0 2

1 The solution requires no extra effort, because this problem is already solved during
the pricing problem for the passenger flow variables.

2 This allows to model the dual shortest path problem by regarding π
OD

Y
−π

OD

X
to be

a shortest path length from node X to node Y.
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Pricing of partial travel routes In dependence on the nodes A, B define

s(A,B) :=







0, ifA = O and B 6= D

−β, ifA 6= O and B 6= D

ρt∗OD − β, ifA 6= O and B = D

ρt∗OD, ifA = O and B = D

Then, the reduced cost of a partial travel route flow variable ϕO,D

(A,B),L are given

by

rωO,D

(A,B),L) = −ωO,D

(A,B),L +
∑

e∈L|(A,B)

ξe,L + πOD
B − πOD

A

= −s(A,B) +
∑

e∈L|(A,B)

te +
∑

e∈L|(A,B)

ξe,L + πOD
B − πOD

A

= −s(A,B) +
∑

e∈L|(A,B)

(ξe,L + te) + πOD
B − πOD

A

In order to find flow variables with negative reduced cost, we have to minimize
the generalized path length α∗ := minL

∑

e∈L|(A,B)
(ξe,L + te) and compare this

shortest path length by

r < 0 ⇐⇒ α∗ < s(A,B) + πOD
B − πOD

A

Note, that the right side s(A,B) + πOD
B − πOD

A is independently from line L.
In summary, pricing out partial passenger routes can be solved by a shortest

path problem from node A to node B with respect to non-negative edge cost
ξe,L + te ≥ 0.

Pricing of line variables The reduced cost of a frequency line variable xL is
given by

r(xL) = γcL − C
∑

e∈L

ξe,L +
∑

e∈L

µe +
∑

L serves node n

νn

Setting νe = νn for e = (n, x) and using a linear approximation

cL =
∑

e∈L

ce,L

for the operational costs, we receive reduced cost as path length

r(xL) = γcL − C
∑

e∈L

ξe,L +
∑

e∈L

µe +
∑

L serves node n

νn

=
∑

e∈L







γce,L + µe + νe
︸ ︷︷ ︸

shadow cost

− Cξe,L
︸ ︷︷ ︸

shadow profit






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The dual variables of the arc cost split into

– a cost part γce,L +µe + νe which are shadow cost with respect to infrastruc-
tural capacity limits (µ and ν) and budget restriction γce,L and

– a negative signed gain part Cξe,L which may be interpreted as some kind of
income in the context of the active line system. Large positive values of ξe,L

indicate mismatched supply and demand (large demand or small supply).

Hence, the negative value −r(xl) =
∑

e∈L(Cξe,L) −
∑

e∈L(γce,L + µe + νe) can
be interpreted to be some kind of profit = income - expenditures, which should
be maximized during the pricing step.

Theorem Line pricing

Line pricing is a longest path problem, i.e. to find an elementary (cycle free)
path with maximum ’profit’

δe := Cξe,L
︸ ︷︷ ︸

shadow profit

− γce,L + µe + νe
︸ ︷︷ ︸

shadow cost

3.3 Lagrange Relaxation

Lagrangian relaxation is a standard technique which moves hard constraints into
the objective. Traffic assignment and line planning model are only coupled by
the constraints

∑

O,D,A,B:e∈L|(A,B)

ϕO,D

(A,B),L ≤ CxL ⇐⇒
∑

O,D,A,B:e∈L|(A,B)

ϕO,D

(A,B),L − CxL ≤ 0

By using the associated dual variables ξe,L, the movement of those constraints
leads to the Lagrangian objective

∑

O,D,A,B,L

ωO,D

(A,B),LϕO,D

(A,B),L +
∑

e,L

ξe,L



CxL −
∑

O,D,A,B,L:e∈L

ϕQ,Z

(A,B),L





=
∑

Q,Z,A,B,L

(

ωO,D

(A,B),L −
∑

L:e∈L

ξe,L

)

ϕO,D

(A,B),L

︸ ︷︷ ︸

flow part

+ C
∑

e,L

ξe,LxL

︸ ︷︷ ︸

line plan part

,

which separates into the sum of two linear terms depending either on the pas-
senger flow variables or the line plan variables. Hence, solving the problems
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FlowProblem

ϕ∗ :=
∑

O,D,A,B,L



ωO,D

(A,B),L −
∑

O,D,A,B,L:e∈L

ξe,L



ϕO,D

(A,B),L → max

∑

L,A

ϕO,D

(A,D),L ≤ vOD

∀X 6∈ {O, D} :
∑

L,A

ϕO,D

(A,X),L −
∑

L,B

ϕO,D

(X,B),L = 0

ϕQ,Z

(A,B),L ∈ R+

Generalized Knapsack Problem

ξ∗ := C
∑

e,L

ξe,LxL → max

∑

L

cLxL ≤ cmax

∑

e∈L

xL ≤ f(e)

∑

L serves node n

xL ≤ f(n)

xL ∈ N

leads to the upper bound ϕ∗ + ξ∗.

Any integer solution (x̃L)L∈L of the generalized knapsack problem leads to
feasible line plan of the origin problem and can therefore be used to generate a
primal feasible solution by solving the traffic assignment problem.
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Primal Heuristic Traffic Assignment

∑

O,D,A,B,L

ωO,D

(A,B),LϕO,D

(A,B),L → max

∑

L,A

ϕO,D

(A,D),L ≤ vOD

∑

L,A

ϕO,D

(A,X),L −
∑

L,B

ϕO,D

(X,B),L = 0 forall X 6∈ {O, D}

∀e ∈ E, L ∈ L :
∑

O,D,A,B:e∈L|(A,B)

ϕO,D

(A,B),L ≤ Cx̃L

ϕO,D

(A,B),L ∈ R+

4 Computational Results

4.1 The Traffic Sample

The software tool LINOP, developed by the Technical University Dresden, Fac-
ulty of Traffic Sciences, Institute for Logistics and Aviation, includes the pre-
sented mathematical model. Linear programs are solved by using the COIN-
BCP-Solver.

We applied our method to the bus network of Berlin city. By kindly support
of the Berlin city authority of city development and transportation we used
origin destination data, which are not allowed to be published. For this reason
the computational results do not report the total passenger demand. Instead, the
results are given in percentage of optimal travel quality. 100% percent means,
that for each origin destination pair a direct connection could be provided by
the line plan.

Using an origin-destination matrix of passenger demands including all stops
of Berlin city, it was necessary to add tramway, subway and the local train
network to the existing bus infrastructure. A system split (see [9]) splits the
total origin destination matrix into separate matrices for the tramway, subway,
local train, express bus and bus.

4.2 Instance 1: Bus network of Berlin City

The modeled infrastructure consists of 2.590 nodes and 3.200 edges represents
the Berlin city public bus network of July 2005. Bus stops are defined as nodes
and edges describe possible connections beetween two bus stops. There are three
different kinds of bus services operating on the Berlin infrastructure network,
called express bus, metro bus and local bus. The bus services are different con-
sidering operation time, frequency or travel time. For instance the expressbus
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Fig. 4. Resulting bus line plan

stops not as often as a local bus and consequently the expressbus has a reduced
travel time. Due to large differences of the travel times we defined the expressbus
as independent transportation product in our model. However the metro bus and
the local bus are very similar and consequently these bus services are combined
in the model as one transport carrier.

Table 1. characteristics of one bus line plan

parameter value

minimum length of a line: 10 minutes travel time
budget: 7755 minutes operation time
changing penalty: 1 min/changing
detour factor: 1.1
number of lines: 119 lines
lines with frequency of 10 minutes: 33 lines
lines with frequency of 20 minutes: 86 lines
optimization objective value (travel quality): 914.354

For the most challenging instance, what is the expressbus and bus network,
we performed for different budget parameter up to 3 pricing iterations, (see table
1), each of which took approximately 40 minutes. The instance was computed
by an UNIX-PC with 2x3,2 Ghz and 8 gigabyte RAM. Due to the huge amount
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of memory needed (Out of memory!), for the bus network only a few number of
iterations could be performed.

A typical solution is reported by the Figure 4 and Table 1.

4.3 Instance 2: Tram network of Berlin city

Fig. 5. tramway infrastructure

The second instance is the tram network of Berlin city. Which is of much
smaller size compared to the bus network. The initial heuristic solution has an
objective of 66.20, which could be improved during the iterations up to a travel
quality of 71.00. By Langrange Relaxation we obtained the best upper bound
by 89.45.The characteristics are presented in table 2 and in figure 6.

Table 2. characteristics of one tramway line plan

parameter value

nodes 382
edges 435
minimum length of a line: 20 minutes travel time
budget: 1905 minutes operation time
changing penalty: 5 min/changing
detour factor: 1.2
number of lines: 18 lines
lines with frequency of 10 minutes: 18 lines
optimization objective value (travel quality): 71.000
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Figure 6 illustrates the performance of the algorithm. Please note that the
first line plan represents the start heuristic solution. Initialisation and pre-
processing took approximately 10 minutes. The best solution with our hardware-
performance for the tram network is found after 12 minutes. The tram line plan
was solved with the same hardware as the bus network. In contrast to the bus
network for this smaller instance the route node of the branch and bound tree
was priced out rather quickly. But after a branch and bound depth of 120 the
computer run out of memory again.
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Fig. 6. objective value (example tram line plan of Berlin city)
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Abstract. In the last 15 years periodic timetable problems have found
much interest in the combinatorial optimization community. We will fo-
cus on the optimisation task to minimise a weighted sum of undesirable
slack times. This problem can be formulated as a mixed integer linear
problem, which for real world instances is hard to solve. This is mainly
caused by the integer variables, the so-called modulo parameter. At first
we will discuss some results on the polyhedral structure of the periodic
timetable problem. These ideas allow to define a modulo simplex basic
solution by calculating the basic variables from modulo equations. This
leads to a modulo network simplex method, which iteratively improves
the solution by changing the simplex basis.

Key words: periodic event scheduling problem, integer programming,
modulo network simplex

1 Introduction

In the last 15 years periodic timetable problems have found much interest in the
combinatorial optimization community. Most results presented in [6, 10, 3, 4, 7,
8, 2] are based on a periodic event scheduling model published by Serafini and
Ukovich 1989 ([11]).

The associated periodic event activity networks allow a flexible modelling of
fixed interval timetables in public transport. A lot of practical requirements, like
sequencing of trains, safety headway distances and limits for rolling stock can
be incorporated into this network theoretical model. In this paper we will focus
on the optimisation task to minimise a weighted sum of undesirable slack times,
e.g., waiting time for passengers.

Define a railway system as a system of lines L and stations S. Each line L ∈ L
is understood to be a transportation chain, where the trains of L are serving a
certain sequence of stations (see e.g. [12]). If line L serves stations S, then define
(L, arr, S) and (L, dep, S) to be the arrival (departure) event of L at S.

A schedule assigns event times πi ∈ IR to all events i = (L, dep, S) or i =
(L, arr, S). An activity a : i → j is a time consuming process, which then will
consume the amount xa := πj − πi. of time. A line can be understood as an
alternating sequence of

ATMOS 2008 
8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems 
http://drops.dagstuhl.de/opus/volltexte/2008/1588
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– run activities : (L, dep, S) → (L, arr, S′) and
– stop activities : (L, arr, S) → (L, dep, S).

Run and stop activities are associated with time spans ∆a = [ℓa, ua], where
ℓa is the minimum running or stopping time and ua is an upper bound. 1 A
schedule π is said to be feasible, if xa = πj − πi ∈ ∆a for all a : i → j. Apart
from running and stopping activities, in real world problems there are many
other types of constraints arising from operational, safety- or marketing-related
restrictions. Almost all practical requirements can be formulated in terms of
span constraints ℓa ≤ πj − πi ≤ ua defined on a suitable arc a : i → j of the
event network. Some examples are:

– Headway constraints: Trains using the same parts of the infrastructure have
to keep a certain safety distance. This distance can be expressed as a time
difference between the arrival or departure times of the lines at the stations.

– Traveller connection constraints: In general, there are some stations where
travellers have to change from one train to another. In this case, these trav-
ellers would like to have a short waiting time at the station. Again, this con-
straint is a time difference constraint between arrival and departure times of
lines.

L1, dep, A

�

run arc

L1, arr, B

6
stop arc

L1, dep, B

-change arc

� change arc

I

run arc

L1, arr, C

q

headway arc

L2, dep, D

R

run arc

L2, dep, B

?
stop arc

L2, arr, B

	

run arc

L2, arr, E

Fig. 1. Event-activity network

1 If the running time is fixed, a running activity and the following stop activity can
be simply described by one combined constraint.
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Non-periodic timetable problems are very easy to solve by shortest path
calculations. For fixed interval timetables, where all departure and arrival events
will be repeated periodically, such a simple model is no more appropriate. The
reasons are manifold: A priori it is not clear between which trains passengers are
changing or in which sequence trains are leaving or entering stations. All this
can only be decided after the time ordering of all events is known. A periodic
schedule assigns periodic event times πi ∈ IR to all events, which will take place
at all time points πi + zT (z ∈ ZZ). The integer multiples z of the period are
called modulo parameter and code the periodic sequence of all events.

For reasons of simplicity we assume one common period T for the complete
system. Different periods for the lines can be handled by using the least common
multiple (compare for [5]).

A solution of the periodic timetable problem is defined by a vector π ∈ IRn,
which defines for each event i one point of time πi, such that i will be periodically
repeated at all times πi + ziT (zi ∈ ZZ).

Define ℓa and ua to be the minimum and maximum allowed process times of
a constraint a : i → j. Then a periodic timetable π is feasible, if

∀a : i → j ∈ A : ∃za ∈ ZZ : ℓa ≤ πj − πi − zaT ≤ ua. (1)

Lower and upper slack time measures that amount of time for which the tension
πj − πi on this arc may be increased or decreased and is defined by

ylow
a := [xa − ℓa]T = xa − ℓa − zaT for a suitable za ∈ ZZ

yupp
a := [ua − xa]T = ua − xa + zaT for a suitable za ∈ ZZ.

The modulo operator is defined by [t]T := min { t + zT | t + zT ≥ 0} and fulfills
0 ≤ [t]T <T.

Since lower and upper slack times may be exchanged by inverting the direc-
tion of the arc a, the problem to minimize the slack time in a periodic timetable
can be defined in terms of lower slack time ylow

a . In summary, the periodic

timetable slack problem can be formulated as the mixed integer program

min

{
∑

a:i→j

ωa(πj − πi − ℓa − zaT )

∣
∣
∣
∣
∣
∀a ∈ A : ℓa ≤ πj − πi − zaT ≤ ua; za ∈ ZZ

}

(2)

The resulting planning problems are known to be NP-hard.

2 The Periodic Timetable Polyhedron

At first we will briefly summarize the basic concepts and notations of network
flow models.
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The incidence matrix of a network is an n × m matrix Θ = (θia) which
contains one row for each arc a and one column i for each node:

θai =







1, if a : j → i

−1, if a : i → j

0, else

A potential π ∈ IRn associates with each node i = 1, .., n a real value πi ∈ IR.

Q := conv.hull

({(
π

z

) ∣
∣
∣
∣

ℓ ≤ Θt
π − Tz ≤ u; z ∈ ZZm;π ∈ IRn

})

is said to be the periodic timetable polyhedron.
The potential difference xa := πj−πi is said to be the tension on arc a : i → j

and can be expressed as Θt
π = x. Adding a co-tree arc a to the arcs of a spanning

tree T , defines a uniquely determined cycle c. Its incidence vector γc = (γca) is
defined by

γca :=







1 , if the cycle contains arc a in positive direction

−1 , if the cycle contains arc a in negative direction

0 , else.

The network matrix Γ = (γca) of a tree T contains for each co-tree arc the
incidence vector of the associated cycle as one row. x ∈ IRm is a tension (i.e.
there exists a potential π ∈ IRn with Θt

π = x), if and only if there holds
Γx = 0. A periodic tension x fulfils Γx ≡T 0.

A spanning tree structure T = T ℓ+T u is a spanning tree, whose tree arcs are
partitioned into those arcs T ℓ and T u, where the tension is restricted to be at its
lower or upper bound, respectively 2. Each spanning tree structure determines

a unique potential π
(T ), which fullfills π

(T )
j −π

(T )
i = ℓa for (a : i → j) ∈ T ℓ and

π
(T )
j − π

(T )
i = ua for (a : i → j) ∈ T u. The spanning tree structure is said to be

feasible, if the generated potential is feasible with respect to the span constraints
for all arcs (1).
By using b :≡T −Γℓ and δ := u − ℓ, the periodic slack space is defined by

Y := {y ∈ ZZm | Γy ≡T b;0 ≤ y ≤ δ}

and the optimisation task is to determine min {ω
t
y | y ∈ Y} .

If the modulo parameters za are fixed, optimisation problem (2) becomes

min

{
∑

a:i→j

ωa(πj − πi − ℓa − zaT )

∣
∣
∣
∣
∣
∀a ∈ A : ℓa ≤ πj − πi − zaT ≤ ua

}

2 This definition differs from that definition given in [1]. This is caused by the circum-
stances, that the dual timetable problem is a modified minimum cost flow problem
without capacity on the arc flow values.
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= min

{
∑

a:i→j

ωa(πj − πi − ℓ
′

a
)

∣
∣
∣
∣
∣
∀a ∈ A : ℓ

′

a
= ℓa + zaT ≤ πj − πi ≤ u

′

a
= ua + zaT

}

= min
{

ω
t
(
Θ

t

π − ℓ
′
) ∣
∣ ℓ

′ ≤ Θ
t

π ≤ u
′
}

(3)

the dual of a minimum cost flow problem (see [1]). The extreme points of
the feasible region of this problem are associated with spanning tree structures.
The network simplex method described in [1] interprets the core concept of the
simplex method appropriately as network operations. In particular, each optimal
basis can be characterized by the underlying spanning tree structure.

If z
T denotes the associated modulo parameter, then

(
π

(T )

z
T

)

is called a pe-

riodic basic solution with respect to the spanning tree structure T . The following
theorem is due to [6].

Theorem 21 (Extreme Points and Spanning Tree Structures)
(

π

z

)

∈ Q is an extremal point of Q, if and only, if it is a periodic basis solution

with respect to a spanning tree structure.

The orthogonal complement of the tension space is known to be the space
of all flows ([9]), i.e. it holds {x | Γx = 0}

⊥
= {ϕ | Θϕ = 0} . The space of all

periodic tensions is defined by

X := {x ∈ ZZm | Γx ≡T 0}

In the periodic case, we obtain

{x ∈ ZZm | Γx ≡T 0}
⊥T = {ϕ ∈ ZZm | Θϕ ≡T 0} (4)

The following structural characterization of valid inequalities is due to [4] and
are discussed in more detail in [3].
Lemma 2.1 Let Q 6= ∅. Then ϑ

t
π − f

t
z ≥ r can only be a valid inequality for

the polyhedron

Q := conv.hull

({(
π

z

) ∣
∣
∣
∣

ℓ ≤ Θt
π − Tz ≤ u; z ∈ ZZm;π ∈ IRn

})

with ϑ
t
π

(0) − f
t
z

(0) = r for at least one

(
π

(0)

z
(0)

)

∈ Q, if and only if f is a flow

with balance ϑ, i.e. it holds Tϑ = Θf and

Tr = min
{

f
t
x

∣
∣ x ∈ X

}

�

Theorem 22 There exists a matrix F, where each of its rows is a periodic ten-
sion (i. e. ΘF ≡T 0) and a right hand side r, such that

conv.hull ({x ∈ ZZm | ∃z ∈ ZZm : Γx − Tz = 0; ℓ ≤ x − Tz ≤ u})
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= {x | Fx ≥ r} ,

or equivalently

conv.hull ({y ∈ ZZm | ∃z ∈ ZZm : Γy − Tz = b;0 ≤ y − Tz ≤ δ})
= {y | Fy ≥ r̃ := r − Fℓ}

�

An example for the construction of such inequalities is as follows. Con-
sider a system of parallel arcs connecting two nodes i and j. The unbounded
periodic timetable slack problem (without upper bounds on the arcs) deals with
timetables from the set

[ℓ1, ...]

[ℓm, ...]

...
➤

➤
i j

P
∗
(ℓ) :=


















πi
πj
z1

.

.

.

zm












∈ ZZ
m+2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∀a = 1, ...m : ℓa ≤ πj − πi − zaT







Without loss of generality, a non degenerate3 lower bound vector ℓ can be
assumed to be normalized in the sense, that

0 ≤ ℓ1 = [ℓ1]T < ℓ2 = [ℓ2]T < ... < ℓm = [ℓm]T < T (5)

Lemma 2.2 For ℓ ∈ ZZm with

0 ≤ ℓ1 < ℓ2 < ... < ℓm < T (6)

define the vector f by

fa :=

{

ℓ1 − ℓm + T if a = 1

ℓa − ℓa−1 if a>1
(7)

Then there holds

1. ∀a = 1, ...,m : 0 ≤ fa < T
2.

∑m
a=1 fa = T

3. ∀a′ :
∑m

a=a′+1 fa = ℓm − ℓa′

3
ℓ is called non degenerate, if [ℓa]

T
6= [ℓa

′ ]
T

forall a 6= a
′
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Especially, f is a periodic flow with node mass balance ϑA = −T and ϑB = T.
The inequality

πB − πA − f
t
z = πB − πA −

m∑

a=1

faza ≥ f0 := ℓm (8)

is a valid for P ∗(ℓ). �

Each of the considered arcs may be replaced by a chain of arcs, resulting in
a system of paths between i and j. Consider a spanning tree. Then each tree arc
a : i → j generates a cut and for each arc within this cut we find a path from i
to j. Hence, there is a natural i, j path system, which can be used to generate
cutting planes or equivalently rows of the matrix F.

3 The Modulo Simplex Method

For reasons of simplicity, in the following we only describe the case that the
tension is restricted to be at its lower bound. This is no loss of generality, since
upper bounds can be modelled as lower bounds on inverse directed arcs. Within
the simplex method this means that the corresponding non-basic variable is set
to the upper bound. Feasibility check and calculation of the modified cost of
basis exchanges can be done straightforward.

We consider the periodic timetable slack problem

min
{

ω
,t
y

∣
∣ y ∈ Y := {y ∈ ZZm | ∃z ∈ ZZm : Γy − Tz = b;0 ≤ y − Tz ≤ δ}

}
.

The integrality of the modulo parameter z makes the problem hard. For this
reason we will eliminate those variables and keep them implicitly in the model
by using modulo calculations. The modulo simplex method explores the extreme
points of the polyhedron conv.hull (Y) .

The tree and co-tree arcs of the underlying spanning tree split the network
matrix Γ = [NT , Eco

T ] into its basic ( = co-tree) and non-basic (= tree) compo-

nents. Therefore a periodic basic solution is given by

(
yT

y
co
T

)

=

(
0

b

)

, which is

feasible if b ≤ δ. Any periodic tension x ( with Γx ≡T 0) leads to a new solution
y
′ := [y + x]T = y +x−z

′T of Γy
′ ≡T b and stays feasible, if y

′ ≤ δ := u− ℓ.
In the following we will describe the problem by the use of a simplex tableau like
structure. Consider the network matrix Γ = [N,E] with respect to a spanning
tree. The tree arcs are denoted by a1, ..., ar−1 and the co-tree arcs are given by
ar, ...., am. Then the slack space is given by the modulo equations

The resulting objective is given by

ω =

m∑

i=r

ωibi
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γr1y1 + ... + γr r−1yr−1 + yr ≡T br

...
...

. . .
...

γi1y1 + ... + γi r−1yr−1 + yi ≡T bi

...
...

. . .
...

γm1y1 + ... + γm r−1yr−1 + ym ≡T bm

a1 .... aj ... ar ... ai ... am rhs

ar γr1 ... γrj ... 1 ... 0 ... 0 br

...
... ...

... ....
. . .

...
ai γi1 ... γij ... 0 ... 1 ... 0 bi

...
... ...

... ....
. . .

...
am γm1 ... γmj .... 0 ... 0 ... 1 bm

obj.
∑

m

i=r
ωibi

A basis exchange can be described by exchanging a leaving co-tree arc ai

with an entering tree arc aj , which belongs to the uniquely determined co-tree
cycle of the actual tree. The resulting cut η

(ai,aj) is given by adjoining the
leaving tree component to the ai−associated column of N. Each α ∈ ZZ with
αη

(ai,aj) ≤ δ = u − ℓ defines by y
′ := y + αη

(ai,aj) a new solution.
Exchanging co-tree arc i with tree arc j leads to the new solution

a1 .... ai ... ar ... aj ... an rhs

ar γrl −
γi1γrj

γij
... 0 ... 1 ... −

γrj

γij
... 0

[

br −
γrj

γij
bi

]

T
...

... ...
... ....

. . .
...

aj
γi1

γij
... 1 ... 0 ... 1

γij
... 0

[
bi

γij

]

T
...

... ...
... ....

. . .
...

am γm1 −
γi1γmj

γij
... 0 .... 0 ... −

γmj

γij
... 1

[

bm −
γmj

γij
bi

]

T

obj. ω̃ij = ω + ∆ωij

.

The modified solution has cost

ω̃ij :=
i−1∑

k=1

ωk

[

bk −
γkj

γij

bi

]

T

+ ωj

[
bi

γij

]

T

+
r∑

k=i+1

ωk

[

bk −
γkj

γij

bi

]

T

The cost difference can therefore be calculated by

∆ωij = ω̃ij − ω



Periodic Timetable Optimisation Problems 9

=
∑

k 6=i

ωk

(

bk −

[

bk −
γkj

γij

bi

]

T

)

+ ωibi − ωj

[
bi

γij

]

T

(9)

The following example illustrates these considerations.

3.1 Example

Consider a problem with period T = 20 and underlying event network shown in
Figure 2.

➤a4, [1,20],ω4 = 9

➤

a2, [7,26],ω2 = 3

➤

a1, [9,28],ω1 = 8

➤

a5, [5,24],ω5 = 1

➤

a3, [2,21],ω3 = 5

➤

a6, [3,22],ω6 = 4 B

A

C

D

Fig. 2. Event Network

The initial spanning tree T = T ℓ + T u with T ℓ = {a2, a3, a5} and the resulting
potential is given by Figure 3. This initial spanning tree structure induces the
following modulo simplex tableau with total cost ω = 129.
The following table contains for each possible basis exchange the resulting cost
difference. This can be calculated by formula (9). The best gain will be received
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➤a4;[1,20];y4 = 1

➤

a2;[7,26];y2 = 0

➤

a1;[9,28];y1 = 15

➤

a5;[5,24];y5 = 0

➤

a3;[2,21];y3 = 0

➤

a6;[3,22];y6 = 0 B

πB = 0

A

πA = 4

C

πC = 7

D

πD = 2

Fig. 3. Spanning tree structure (= red arcs), associated potential and slack times
ya = [πj − πi − ℓa]

T
.

by exchanging tree arc a2 with co-tree arc a1. Table 3 shows the new modulo
simplex tableau after pivot step. The new objective is ω = 129 − 60 = 69.

Table 3. Modulo Simplex Tableau of Step 1.

a1 a3 a5 a4 a2 a6 b ω
a4 -1 1 0 1 0 0 6 9
a2 -1 1 -1 0 1 0 5 3
a6 0 1 -1 0 0 1 0 4

ω 69
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Table 1. Initial Modulo Simplex Tableau.

a2 a3 a5 a4 a1 a6 b ω

a4 -1 0 1 1 0 0 1 9
a1 -1 -1 1 0 1 0 15 8
a6 0 1 -1 0 0 1 0 4

ω 129

Table 2. Cost difference ∆ for all possible basis exchanges.

a2 a3 a5

a4 40 - -12

a1 −60 -35 0

a6 - 0 20

The algorithm performs such modulo simplex pivot steps as long as a basis
exchange will generate an improvement of the solution. Clearly, this only leads
to a local minimum. Each periodic tension η with Γη ≡T 0 and η ≤ δ defines
by y

′ := y + η a new solution of the problem. It improves the old solution,
if the new objective value gets better. In case of an improvement the modulo
simplex pivoting will be applied again. This requires a basic solution, which can
be simply received by solving the non-periodic minimum cost flow with fixed
modulo parameter by the classical network simplex method.

In order to improve the local optimum after modulo simplex pivoting we
apply a special class of cuts: For each node i the set of all leaving or entering
arcs is a cut η

(i). Modifying the potential value of node i by π′
i := πi + δ, equals

with the solution y + δη(i) after applying the δ−multiple of the cut. For the
class of those single node cuts it is obviously easy to check the improvement by
enumerating all possible values for δ.

The modulo network simplex method can be summarized by
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3.2 Modulo Network Simplex Algorithm

Initialisation: Determine an initial feasible tree structure T = T ℓ+T u

with feasible solution y
Single node improvement: WHILE (there exists an improving sin-

gle node cut η) DO

1. Apply this cut by transforming the solution y
′ := y + η.

2. Fix the modulo parameter of this solution y
′ and solve the non-

periodic minimum cost flow problem (see (3)) by the classical
network simplex method. Then, the optimal solution becomes a
tree solution.

3. Modulo-Simplex-Pivoting:
(a) For each basis exchange pair (i, j) with γij 6= 0 calculate the

cost difference ∆ωij .
(b) If ∆ωij < 0 and η

(ai,aj) ≤ δ = u − ℓ, then improve the so-
lution by exchanging co-tree arc ai with tree arc aj and con-
tinue with step (a). Otherwise terminate Modulo-Simplex-
Pivoting.

The non-periodic simplex algorithm terminates, if the well known comple-
mentary slackness conditions are fullfilled. For the periodic case such a strong
optimality condition cannot be given. However, sometimes it is possible to trans-
form the periodic basic solution of a modulo simplex step into a primal feasible
basic solution of a relaxation

ỹ ∈
{

y | F̃y ≥ r

}

⊇ conv.hull ({y ∈ ZZm | ∃z ∈ ZZm : Γy − Tz = b;0 ≤ y − Tz ≤ δ})

If ỹ is already optimal, i. e. ω
t
ỹ = min

{

ω
t
y | F̃y ≥ r

}

, then we found the

optimal solution of the overall problem. Otherwise, the basis representation of ỹ

has negative reduced costs. A basis transformation of F̃ will exchange a tree
and a co-tree arc, which then, also done for the modulo simplex, will possibly
improve the solution.

.

4 Computational Results For a Real World Scenario

4.1 The Traffic Sample

We applied the described algorithm to a real world traffic sample, which was
derived from the south-west area of the German Railway Network (see Figure
4).
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Nordheim (Württ)

Kirchheim (Neckar)

Neuenburg (Baden) Grenze

Bad Krozingen

Freiburg (Breisgau) Gbf

Kollmarsreute

Kenzingen

Orschweier

Friesenheim (Baden)

Offenburg

Renchen

Ottersweier

Baden-Baden

Rastatt

Ettlingen West

Karlsruhe-Hagsfeld

Friedrichstal (Baden)

Philippsburg Molzau

Neulußheim

Oftersheim

Mannheim-Friedrichsfeld

Lützelsachsen

Worms Hbf

Singen (Hohentwiel)

Reichenau (Baden)

Hausach

Niederwasser

Illingen (Württ)

Basel Grenze Muttenz

Eimeldingen

Rheinweiler

Bad Saulgau

Sigmaringen

Engen

Straßberg-Winterlingen

Frommern

Bisingen

Bodelshausen

Dußlingen

Donaueschingen

Trossingen Bahnhof

Loßburg-Rodt

Stuttgart-Feuerbach

Günzburg

Neu Ulm

Lonsee

Geislingen (Steige)

SalachPlochingen

Grünholz

Bondorf (b Herrenberg)

Herrenberg

Böblingen Hulb

Lambrecht (Pfalz)

Hochspeyer
Hauptstuhl

Homburg (Saar) Hbf

Saarbrücken Saardamm

Erbach (Württ)

Laupheim West

Warthausen (Hp)

Mochenwangen

Ravensburg

Kehlen

Langenargen

Osterburken

Roigheim

Züttlingen

Neckarsulm

Kornwestheim Karlshöhe

Crailsheim

Wilhelmsglück

Fichtenberg

Böbingen(Rems)

Goldshöfe

Ellwangen

Albbruck

Erzingen (Baden)

Salem

Rinnthal

Grünstadt

Aha

Buchen Ost

Rippberg

Bachheim

Binau

Saarhölzbach

Merzig (Saar) Stadtmitte

Dillingen (Saar)

Fig. 4. The Traffic Sample contains 92 lines from the south-west area of the
German railway network.

The timetabling problem contains 92 different railway lines with periods of
20, 30, 60 and 120 minutes, which results in an overall period of

T = lcm(20, 30, 60, 120) = 120minutes.

The resulting periodic event scheduling problem contains 669 event nodes and
in total 3831 (with 3287 headway) constraints.

To solve the feasibility problem without any passenger connection constraints,
we used a constraint programming approach, which finds a feasible solution
within approximately one minute computation time. Next, for an origin desti-
nation matrix we applied a traffic assignment, by routing passengers on best
paths. In this way we obtained for each possible connection between different
lines a weight for the number of passengers using this change activity. The origin
destination matrix contains only values given in percent of the total (unknown)
traffic volume. For this reason, the change activity weight is primary that per-
centage of total volume which uses this connection. Due to the huge amount
of approximately 1200 change activities with positive passenger weight, we only
pick out the most important ones.
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Table 4. Computational Results for the Modulo-Simplex-Algorithm

iteration objective description

620952.00 initial solution from constraint propagation

462111.00 min cost flow with fixed modulo parameter z

1 436881.00 modulo-network simplex
2 415182.00 modulo-network simplex
... ... ...
35 327113.00 modulo-network simplex
36 319874.00 single node cut improvement + min cost flow
37 312342.00 modulo-network simplex
... ... ...
56 294567.00 modulo-network simplex
57 286122.00 single node cut improvement + min cost flow
58 273789.00 modulo-network simplex
... ... ...
67 254988.00 modulo-network simplex
68 254711.00 single node cut improvement + min cost flow
69 254711.00 modulo-network simplex

68 254711.00 final solution

To do this and to get integer valued weights, the percentage was multiplied
by a factor 200, which results into 570 connection constrains with weights in the
range between 1 and 280. The results of the modulo network method are given
by table 4. In total, the method needs approximately 20 minutes computation
time.
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Abstract. We investigate the polyhedral structure of the Periodic Event Schedul-
ing Problem (PESP), which is commonly used in periodic railway timetable op-
timization. This is the first investigation of Chvátal closures and of the Chvátal
rank of PESP instances.
In most detail, we first provide a PESP instance on only two events, whose
Chvátal rank isvery large. Second, we identify an instance for which we prove
that it is feasible over the first Chvátal closure, and also feasible for another
prominent class of known valid inequalities, which we reveal to live in much
larger Chv́atal closures. In contrast, this instance turns out to be infeasible al-
ready over the second Chvátal closure. We obtain the latter result by introducing
new valid inequalities for the PESP, the multi-circuit cuts.
In the past, for other classes of valid inequalities for the PESP, it had been ob-
served that these do not have any effect in practical computations. In contrast,
the new multi-circuit cuts that we are introducing here indeed show some effect
in the computations that we perform on several real-world instances – a positive
effect, in most of the cases.

1 Introduction

It has been only recently that combinatorial optimization entered the practice of ser-
vice design in public transport. The 2005 timetable of Berlin Underground is the first
optimized timetable that was put into service [9]. It had been computed with integer
programming techniques, namely profiting from several different classes of valid in-
equalities. Today, also the Dutch railways are operating a timetable that was designed
with the help of techniques from combinatorial optimization and constraint program-
ming [7]. Both projects build upon the Periodic Event Scheduling Problem (PESP).

The PESP, in its pure formulation of a feasibility problem, had been introduced by
Serafini and Ukovich [18] and it generalizes the vertex coloring problem. In particular,
for the two most natural optimization problems that are investigated on top of the PESP,
MAXSNP-hardness has been established [8, 9]. In practice, this results in the follow-
ing typical behavior of MIP solvers on medium to large sized instances. Known valid
inequalities are able to close60–90% of the initial gap between the integer optimum
value and the optimum value of the LP relaxation. Still, solving this tightened IP risks
to take several hours, if it is solvable at all.
⋆ Supported by the DFG Research Center MATHEON in Berlin.
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There are of course much larger transportation networks in practice, which are be-
yond the computational limits of the methods that were used so far. As a consequence,
at present there are several other research groups trying to tackle the periodic railway
timetabling problem, and they are sharing the PESP as their model of choice [2, 17,
19]. For instance, Villumsen put the polyhedral approach that was suggested by Lind-
ner [14] into practical computations for the commuter train network of Copenhagen.
Unfortunately, he had to make the observation that

“the chain cuts [14] have no effect on the solution” [19].

This is one motivation for us to have a closer look at the polyhedral structure of the
feasible region of PESP instances. We do so by following the methodology that has
been suggested recently by Fischetti and Lodi [6] for optimizing over the first Chvátal
closure. Notice that one of the first instances to which they applied their method was
the “hard MIPLIB instancetimtab1”, which is in fact a PESP model [10].

As a motivation, we first generalize an infeasible PESP instance – which is due to
Lindner [14] – to a family of instances that are defined on wheel graphs. In Section 6
we will prove that these instances are feasible over the first Chvátal closure. Still worse,
even the change-cycle inequalities that have been introduced by Nachtigall [15], of
which in Section 4 we prove that, in general, they lie in much larger Chvátal closures,
are not suited to certify infeasibility. Nevertheless, the techniques of Fischetti and Lodi
suggested that these particular instances might be infeasible already over thesecond
Chvátal closure. Indeed, by exploiting problem-specific insight, in the second Chvátal
closure we identify general new valid inequalities for the PESP (Section 5) by which
we prove that these particular instances are infeasible. We call these new inequalities
themulti-circuit cuts.

In Section 7 we add multi-circuit cuts to the IP formulations of several timetabling
instances that we took from practice. Although we have to admit that the results are
not fully striking, on many instances we observe a perceptible speed-up in the solution
time. In turn, on more complex instances, for which up to now no optimal solution has
been found, our new cuts from the second Chvátal closure might indeed yield better
railway timetables.

2 An IP for PESP

Initially, the Periodic Event Scheduling Problem (PESP, [18]) has been stated as a pure
feasibility problem. We are given a directed graphD = (V, A), which may feature
(anti-) parallel arcs. For each arca, there are defined some lower boundℓa and some
upper boundua. The PESP then asks whether for the given fixed period timeT , the
instance admits a(periodically) feasible node potentialπ ∈ [0, T )V , i.e.,

(πj − πi − ℓa) mod T ≤ ua − ℓa, ∀a = (i, j) ∈ A. (1)

In a railway timetabling context, the valueT is the period time of the railway system,
e.g.,60 minutes. A nodei represents an arrival or departure of some specific directed
line in the network, and we must assign a time valueπi to this event. For instance,
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in the current timetable, the direct ICE trains from Berlin to Karlsruhe leave Berlin
main station33 minutes past the hour. Finally, in the constraint parametersℓ andu one
may encode lower and upper bounds on time durations to ensure safety requirements,
transfer quality requirements, as well as many other features [11].

In a mixed-integer linear programming formulation, the modulo-operator in (1) is
resolved by introducing integer variablespa for the arcs, which we denoteperiodical
offsets. Furthermore, we penalize any slack on the lower boundsℓa in a linear objective
function,

min
∑

a=(i,j)∈A wa(πj − πi + Tpa)

s.t. πj − πi + Tpa ≥ ℓa, ∀a = (i, j) ∈ A
πj − πi + Tpa ≤ ua, ∀a = (i, j) ∈ A
πi ∈ [0, T ), ∀i ∈ V
pa ∈ Z, ∀a ∈ A.

(2)

Other formulations for this problem had been stated in terms of so-called tension vari-
ablesya = πj −πi, or evenperiodic tension variablesxa = πj −πi +Tpa, see e.g. [4,
11]. Observe that we always haveℓa ≤ xa. In particular, the resulting MIPs, in which
we can make the node potential variablesπ redundant, already perform considerably
better [13]. Yet, their performance can even be enhanced—and it has to!—by adding
valid inequalities. In this spirit, in the remainder of the paper we illustrate the limits of
known valid inequalities, and introduce new classes of valid inequalities, which let us
go beyond.

In Section 4, when we provide a relatively large lower bound on the Chvátal rank of
PESP polyhedra, we will also find it most convenient to make use of the periodic ten-
sion variablesxa. Throughout the other parts of this article, however, we stay with (2).
This is because we consider this formulation being more accessible, in particular for the
newcomer, and it is a straightforward computation to adapt the classes of valid inequal-
ities that we identify there to other equivalent mixed-integer programming formulations
of the PESP.

The following lemma reveals that we are in fact dealing with pure integer programs.

Lemma 1 ([16]). If ℓ, u, andT are integers, then in(2) w.l.o.g. we may replaceπi ∈
[0, T ) with πi ∈ {0, . . . , T − 1}.

Proof. Consider an optimum solution(π∗, p∗) of (2). Now, fix the vectorp∗. The re-
sulting problem is a linear optimization problem with twice the node-arc incidence
matrix of the constraint graphD as constraint matrix, which is thus totally unimodular.
Since the right-hand side is integer, the LP has some integer optimum solutionπ◦, and
(π◦, p∗) is feasible for (2) and not worse than the optimum solution(π∗, p∗). ⊓⊔

Note that the periodical offset variablespa are either binary, or may in addition take
the value two, provided thatua >

⌈
ℓa+ε

T

⌉
T . Nevertheless, w.l.o.g. we forget about any

explicit bound on any of the variables in (2), and just keep their integrality requirements.

3 Chvátal Closures

Let M be anm × n matrix and consider the general rational polyhedron

P = {x |Mx ≤ b}.
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The(first) Chv́atal closureP ′ of P is characterized by

P ′ = {x |λTMx ≤ ⌊λTb⌋, for all λ ≥ 0 with λTM integer}.

Also, setP (0) := P and recursively defineP (i+1) = (P (i))′. In integer programming,
we are interested in theinteger hullPI of P ,

PI := conv({x ∈ Zn |Mx ≤ b}).

The following is a key theorem in integer programming.

Theorem 1 ([3]). For each rational polytopeP there exists some integert such that
P (t) = PI .

Note that in the sequel, we will switch back ton = |V | andm = |A|, of course.
Now, denote byB the node-arc incidence matrix of a PESP constraint graphD.

Then, consider the matrix

M :=

[
−BT −T · Im

BT T · Im

]

, (3)

whereIm refers to them-dimensional unit matrix. Together with the right-hand side
vector

b :=

[
−ℓ
u

]

, (4)

the convex hull of the feasible solutions of (2) is nothing butPI .
Also for the PESP, several specific studies of its polyhedral structure have been

conducted [14–16]. In the sequel, we summarize some of their results and relate them
to the general concept of Chvátal closures. To this end, define anoriented circuitC =
C+∪̇C− as a subset of the arcs ofD such that reorienting the elements ofC− would
result in a directed circuit. The arcs inC+ are called theforward arcs, and the arcs
in C− are thebackward arcs. In particular, we distinguish the two oriented circuits that
map onto the same circuit in the underlying undirected graph.

The following valid inequalities for PESP have been identified by Odijk [16].

Theorem 2 ([16]). Let D be the constraint graph of a PESP instance and consider
some oriented circuitC in D. Then thecycle inequality

∑

a∈C+

pa −
∑

a∈C−

pa ≤

⌊
∑

a∈C+

ua

T
−

∑

a∈C−

ℓa

T

⌋

(5)

is valid for (2). More precisely, the cycle inequalities show up as early as in the first
Chv́atal closureP (1) of the LP-relaxationP of a PESP-polytopePI .

Proof. We combine these inequalities from the ones in (2). To this end, for each forward
arc inC, multiply the less-than inequality of its upper boundua with 1

T
. Similarly, for

each backward arc inC, multiply the greater-than inequality of its lower boundℓa

with − 1
T

, which translates into a positive coefficient in the vectorλ. It is a simple
observation that the node variablesπ all cancel out in a telescope sum. Finally, we
round down the right-hand side and obtain (5). ⊓⊔
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Both the potential strength of the cycle inequalities and the key role of the periodical
offset variablesp are reflected by the following theorem.

Theorem 3 ([16]).An instance of PESP is feasible if and only if there exists aninteger
vectorp such thatp satisfiesall the cycle inequalities.

This is why we are seeking stronger valid inequalities in terms of the periodical
offset variablesp. In the next theorem we show that doing so we need to investigate the
second Chv́atal closure. This will be the main topic from Section 5 on. There, we start
by highlighting that there exist some oriented circuitsC in which the upper bound in (5)
can even be decreased, still being valid forPI , of course. In fact, Lindner [14] proved
that the coefficients ofany valid inequality for the PESP that only features periodical
offset variablesp, have to constitute a circulation in the constraint graph. Let us already
mention that in Section 4 we provide an explicit proof that the Chvátal rank of a PESP
instance may be at leastT

2 .
Denote byQ the polyhedron that is defined by taking all the inequalities fromP (1)

that do not feature any of the node variablesπ. Observe that formally the support of
these inequalities may differ from circuits, as they are required in (5).

Theorem 4. The cycle inequalities(5) constitute the complete description ofQ, i.e.,

Q = {p | p satisfies all cycle inequalities(5)}.

Proof (idea).Basically, the proof makes use of the decomposition of an integer circu-
lation into oriented circuits. However, due to space limitations we have to omit further
details here. ⊓⊔

Notice that we are aware of instances on whichQ doesnot equal the projection
of P (1) onto the periodical offset variablesp. In particular, there thep-part of some
reversed-arc cut, which is defined in the next section, is necessary to certify the empti-
ness ofP (1), while Q 6= ∅.

4 A Lower Bound on the Chvátal Rank of PESP

In this section we present the change-cycle inequalities, which were introduced by
Nachtigall [15]. We provide a PESP-instance on two vertices, on which the change-
cycle inequalities appear first in theT2 -th Chv́atal closure, whereT denotes the period
time. To the best of our knowledge, this is the strongest explicit lower bound on the
Chvátal rank of PESP. Unfortunately, due to space limitations we have to omit details
of the proof here.

Before formulating the change-cycle inequalities, we introduce a few notation. Let
C be some oriented circuit in the constraint graph of a PESP-instance. We sum the
periodic tension values of the forward arcs inx+ and the periodic tension values of the
backward arcs inx−, i.e.,

x+ :=
∑

a∈C+

xa and x− :=
∑

a∈C−

xa.
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[3, 8]6

[0, 5]6

Fig. 1.A feasible PESP instance on the2-circuit C2 with T = 6

Analogously, we define

ℓ+ :=
∑

a∈C+

ℓa, and ℓ− :=
∑

a∈C−

ℓa.

Last, we define the slopeµ and the ordinate interceptν of the line that induces the
change-cycle inequality as

µ := 1 −
T

ℓ− − ℓ+ + T z̃
and ν := (1 − µ)ℓ+ − T (z̃ − 1), (6)

wherez̃ :=
⌈

1
T

(ℓ+ − ℓ−)
⌉
.

Theorem 5 ([15]).The followingchange-cycle inequalities

x− ≥ µx+ + ν (7)

are valid for feasible instances of(2).

Notice that a similar inequality, which involves the upper boundsua of the arcs, is
valid, too. Moreover, it had been observed in [12, Fig. 5.1] that change-cycle inequali-
ties (7) are in a sense complementary to cycle inequalities (5).

In the remainder of this section we provide a two vertices instance of PESP, of which
we prove that its Chv́atal rank isT

2 . In particular, the change-cycle inequality (7) of this
instance does only appear in theT

2 -th Chv́atal closure. To this end, letT be a fixed
period time and consider the following PESP-instance on two vertices: Leta1 anda2

be two parallel arcs, whereℓa1
= T

2 , ua1
=

(
3
2T

)
− 1, ℓa2

= 0, andua2
= T − 1. See

Figure 1 for the example that corresponds to the period timeT = 6.
In particular, in terms of periodic tension variablesxa we are dealing with the fol-

lowing polytope

P = {(xa1
, xa2

, z)T |
T

2
≤ xa1

≤

(
3

2
T

)

− 1, 0 ≤ xa2
≤ T − 1, xa1

− xa2
= Tz},

(8)
where the variablez is in fact a shorthand forpa1

− pa2
. Observe thatPI corresponds

to the convex hull of this PESP instance’s solutions.

Proposition 1. Consider the pointQi = (T
2 + i · 1

2 , i · 1
2 , 1

2 ). ThenQi ∈ P (i) \P (i−1),
for all i ∈ {1, . . . , T

2 }. Moreover, fori < T
2 the pointsQi violate the change-cycle

inequality(7). In particular, the change-cycle inequality(7) cannot be generated prior
to the T

2 -th Chv́atal closure.
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z

1

3 6 xa1

change-cycle inequality

initial PESP constraints

CG1-cut CG2-cut

Projection of the polyhedronP :
3 ≤ xa1

z ≤ 1

T
xa1

Fig. 2.A visualization of a change-cycle inequality for PESP, and its relation to Chvátal closures,
hereT = 6

Proof (sketch).In this context, the situation can be inspected best by exploiting the
redundancy of the equationxa1

− xa2
= Tz to only consider the projection into the

xa1
z-plane. In this space, the relevant inequalities ofP are the initial inequalityxa1

≥
T
2 as well asz ≤ 1

T
xa1

, which is obtained by plugging0 ≤ xa2
into xa1

− xa2
= Tz.

Observe that the point(xa1
, z)T = (T

2 , 0)T makes the former inequality tight, while
(xa1

, z)T = (T, 1)T makes the latter inequality tight. In Figure 2, the corresponding
half-spaces are drawn in red, while our ultimate goal, the change-cycle inequality (7),
is drawn in green.

Then, here we can only summarize that by going from one Chvátal closureP (i−1) to
the subsequent oneP (i), both these inequalities are “rotated” around the points(T

2 , 0)T

and(T, 1)T, respectively, such that the pointQi become tight. ⊓⊔

Corollary 1. The Chv́atal rank of PESP is at leastT2 .

5 New Valid Inequalities for the PESP

The next section will reveal the need for new valid inequalities for the PESP: There, we
present an instance for which all cycle inequalities (5)andchange-cycle inequalities (7)
are valid, although the instance is infeasible. Also, in practical computations adding
these two types of valid inequalities we typically close no more than60-90% of the
initial gap between the IP optimum and its LP relaxation, and the resulting refined IPs
still risk to be hard to solve. This is why here, we identify two new types of valid
inequalities for the PESP polyhedron.

The first one is defined exclusively on the periodical offset variablesp. By Theo-
rem 4 we know that these cannot stem from the first Chvátal closure of the feasible
regionP of the LP relaxation of (2). In more detail, we specify situations in which we
may decrease the right-hand side of the cycle inequalities (5). And with these new in-
equalities, we can easily prove the infeasibility of the instance that we discuss in depth
in the next Section 6. In Section 7, we complement this analysis with promising empir-
ical computations.
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The second type of valid inequalities lives in the first Chvátal closure, and hence
may now contain both types of variables,π andp. Unfortunately, due to space limita-
tions we cannot illustrate in-depth their respective contribution here.

5.1 Multi-circuit Cuts

We start by presenting new PESP cuts from the second Chvátal closureP (2) of P .

Theorem 6. Let C0, . . . , Ck be oriented circuits with incidence vectorsγi. Let λi ∈
(0, 1) such thatγ0 = λ1γ1 + · · · + λkγk. Finally, let βi be the right-hand sides in the
cycle inequalities(5) of C1, . . . , Ck. Then

γT
0p ≤ ⌊λ1β1 + ... + λkβk⌋ (9)

is a valid inequality forP (2).

The proof follows immediately from Theorem 2 together with the definition of the
second Chv́atal closure. For some oriented circuits we may not be lucky at all, and (9)
is the same as (5). However, for other cycles, the right-hand side in (9) may be much
smaller than the one in (5), see Remark 1 on Page 14 for one such example. Since these
cuts are obtained by representing an oriented circuit as the fractional sum of multiple
other circuits, we refer to (9) asmulti-circuit cuts.

Despite the fact that these inequalities are somehow straightforward, they are in-
deed useful. We will illustrate this in a detailed example in the next section, where in
particular we find that

P (1) 6= ∅ but P (2) = ∅.

5.2 Reversed-Arc Cuts

Here, we introduce one further new class of valid inequalities for the PESP, which stems
from the first Chv́atal closure. These inequalities were inspired by the results that we
obtained by applying the methods of Fischetti and Lodi [6].

Theorem 7. Let C be an oriented circuit, and take some backward arca0 = (i, j) ∈
C−. The following inequality is valid forP (1)

πj − πi + (T − 1)pa0
+

∑

a∈C+

pa −
∑

a∈C−\a0

pa

≤






1

T



(T − 1)ua0
+

∑

a∈C+

ua −
∑

a∈C−\a0

ℓa








 . (10)

Proof. We provide the vectorλ that combines (10) for some circuitC out of the initial
matrixM . To this end, fork ∈ {0, . . . , m} consider the arcak = (v, w) ∈ C. Then, the
rowsk andm + k of the matrixM correspond to the following two PESP inequalities

−πw + πv − Tpak
≤ −ℓak

,

πw − πv + Tpak
≤ uak

.
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Finally, choosing the components of the coefficient vectorλ as

λk =







T−1
T

, k = m + c, whereac = a0,
1
T

, k = c, whereac ∈ C− \ {a0},
1
T

, k = m + c, whereac ∈ C+, and
0, otherwise

yields (10). ⊓⊔

In fact, these inequalities emerge from cycle inequalities by reversing one of their back-
ward arcs. Hence, we refer to (10) asreversed-arc cuts. Observe that in some spe-
cial cases, these inequalities can coincide with what Lindner [14] calledchain cutting
planes. However, for the latter Villumsen [19] had to observe in practical computations
that these have “no effect” on the solution of his PESP instances. In addition to Theo-
rem 3, this is another motivation for us to focus in our exposition on the multi-circuit
cuts.

6 PESP Instances on Wheel Graphs

We introduce a family of infeasible PESP instances, for which the first Chvátal closure
is still nonempty. Since the pioneering work of Edmonds [5], we are not aware of too
many explicit such results. Here, even adding the change-cycle inequalities (7) does
not change this status. Only adding two appropriate multi-circuit cuts (9) provides a
certificate for the infeasibility of these instances. Let us annotate that these instances
were inspired by an infeasible PESP instance which was studied by Lindner [14] and
whose constraint graph is the wheel graphW4 on four vertices.

We consider one fixed period timeT ≥ 6 for any of the instances that are defined
below. Letn ≥ 4 be some even number and consider the wheel graphWn, see Figure 3
for an example withn = 6. We set the feasible intervals of the spoke arcs to[0, 1]T ,
while we require[1, T − 1]T for the remaining outer arcs.

We start investigating this class of instances by first giving a simple proof for the
infeasibility of these instances. Hereafter, we establish thatP (1) 6= ∅, butP (2) = ∅.

Lemma 2. LetT ≥ 2 andn ≥ 4 be an even number. The PESP instance that is defined
on the wheel graphWn with feasible intervals[0, 1]T on the spokes and[1, T − 1]T on
the arcs of the outer circuit is infeasible.

Proof. We may assume w.l.o.g. thatπh = 0, whereh is the hub vertex inWn. The con-
straints on the spokes restrict theπ values of the other vertices to{0, 1}. The constraints
on the remaining arcs require these two values to be used alternatingly around the outer
circuit of Wn. Since we chosen to be even, the outer circuit has an odd number of ver-
tices. But this is not compatible with theπ values of all the vertices on the outer circuit
taking the values zero and one alternatingly. ⊓⊔

The next lemma slightly simplifies the argumentation in the proof of the main theorem
of this section, namely thatP (1) is not empty.
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[1, 5]6

[1, 5]6

[1, 5]6

[1, 5]6

[1, 5]6

[0, 1]6

[0, 1]6

[0, 1]6

[0, 1]6
[0, 1]6

Fig. 3. An infeasible PESP instance on the wheel graphW6 with T = 6

Lemma 3. Consider some coefficient vectorλ ≥ 0. Let λa and λa−1 correspond to
two components whose PESP inequalities refer to the very same arca and definec :=
min{λa, λa−1}. Derive λ′ from λ by subtractingc from the components of both,a

anda−1. Now, ifλ′TM ≤
⌊

λ′Tb
⌋

thenλTM ≤
⌊
λTb

⌋
.

Proof. First, observe that(λ− λ′)TM = 0. Second,(λ− λ′)Tb = c · (−ℓa + ua) ≥ 0.
Thus, rounding down cannot provide any negative value. Finally, because of⌊a⌋+⌊b⌋ ≤
⌊a + b⌋ we may add(λ − λ′) to λ′ while keeping any valid inequality valid. ⊓⊔

As a consequence, for investigatingP (1) we may assume w.l.o.g. that in any (relevant)
valid inequality forP (1) none of the arcs shows up with both its inequalities for its
respective lower and upper bounds.

Theorem 8. P (1) 6= ∅. In particular, all the cycle inequalities(5) and reversed-arc
cuts(10)are valid for the same particular vector, in the case ofT ≥ 6.

Proof. Before starting, in the vectorp we distinguish the components that correspond to
then− 1 spoke arcs from the components that correspond to then− 1 arcs of the outer
circuit, pT = (pT

s , p
T
c ). Moreover, with1 we denote the all-one vector of appropriate

dimension. Our goal is to establish that

y1 := (πT, pT
s , pT

c ) = (0T,
1

2T
· 1T,

1

2
· 1T) ∈ P (1). (11)

To this end, letλTMx ≤
⌊
λTb

⌋
be an arbitrary valid inequality ofP (1), whereM

andb are as defined in (3) and (4), respectively. We have to checky1 against this general
inequality.

For ease of notation we rewrite the coefficient vectorλ asλT = (λT
1, λ

T
2, λ

T
3, λ

T
4),

whereλ1 andλ3 refer to the rows that correspond to the spokes, whileλ2 andλ4 refer
to the rows that correspond to the outer circuit of the wheel graphWn. Moreover,λ3

andλ4 refer to the initial PESP-inequalities that define the upper boundsua, butλ1 and
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λ2 refer to the initial PESP-inequalities that define the lower boundsℓa, after having
multiplied these with minus one.

Using these definitions, we find that

λTMy1 = (λT
1, λ

T
2, λ

T
3, λ

T
4) · (−

1

2
· 1T,−

T

2
· 1T,

1

2
· 1T,

T

2
· 1T)T

= −
1

2
||λ1||1 −

T

2
||λ2||1 +

1

2
||λ3||1 +

T

2
||λ4||1

and
⌊

λTb
⌋

=
⌊

(λT
1, λ

T
2, λ

T
3, λ

T
4) · (0

T,−1 · 1T, 1 · 1T, (T − 1) · 1T)T
⌋

= ⌊−||λ2||1 + ||λ3||1 + (T − 1)||λ4||1⌋ .

In particular, for the pointy1 the initial inequalityλTMy1 ≤
⌊
λTb

⌋
is equivalent to

−||λ2||1 + ||λ3||1 + (T − 1)||λ4||1 − ⌊−||λ2||1 + ||λ3||1 + (T − 1)||λ4||1⌋ (12)

≤
1

2
||λ1||1 +

(
T

2
− 1

)

||λ2||1 +
1

2
||λ3||1 +

(
T

2
− 1

)

||λ4||1 (13)

=
1

2
(||λ1||1 + ||λ3||1) +

(
T

2
− 1

)

(||λ2||1 + ||λ4||1). (14)

In order to prove that (12-13) is valid, observe first that the left-hand side (12) has values
in the interval[0, 1). So, we first identify some coefficient vectorsλ for which (14) is at
least one. Hereafter, we investigate the remaining vectorsλ.

From Lemma 3,λ ≥ 0, λTM being integer, and the coefficients of the periodical
offsetsp having value|T |, we conclude that for each componenti of λ we haveλi = k

T
,

with k = 0, 1, 2, . . . .

Case “||λ2||1+||λ4||1 ≥ 3
T

” . We find immediately that (14) is at least as large as3
2−

3
T

.
Now, recall that we chose the period timeT ≥ 6, and in particular (14) is at least one,
establishing the theorem in this case.

Case “||λ2||1 + ||λ4||1 = 1
T

” . In other words, the Chv́atal-Gomory coefficient vectorλ
does only involve exactly one inequality of one arca = (i, j) of the outer circuit ofWn.
In this case we are not aiming at showing that (12-13) was indeed valid. Rather, we
enumerate all the eight relevant valid inequalities ofP (1) that involve the arca as the
only arc of the outer circuit.

For that the requirement ofλTM being integer is fulfilled, in particular for the node
variablesπ, some of the initial PESP constraints in whichπi or πj appear must have
non-zero components in the coefficient vectorλ. Because of||λ2||1+||λ4||1 = 1

T
, these

must correspond to the spokes(h, i) and(h, j), whereh denotes the hub of the wheel
graphWn, see Figure 4 for an illustration.

Depending on whether we use the lower bound or the upper bound inequalities of
the spokes, w.l.o.g. the CG-multipliers are either1

T
or T−1

T
.

First, if we choose twice the1
T

, we end with the two standard cycle inequalities (5)
for this triangle,

0 ≤ pa − p(h,j) + p(h,i) ≤ 1. (15)
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[1, 5]6

[0, 1]6
[0, 1]6

a

i

j

h

Fig. 4. A triangle inWn with T = 6

For the valuesps ≡ 1
2T

and pc ≡ 1
2 that we chose in our particular vectory1, these

inequalities are of course valid, because0 ≤ 1
2 ≤ 1.

Second, if for the spokes we chose once the value1
T

and once the valueT−1
T

, we
obtain the following four reversed-arc cuts,

1 ≤ πj − πh + pa + (T − 1)p(h,j) + p(h,i) ≤ 1 (16)

0 ≤ πi − πh − pa + p(h,j) + (T − 1)p(h,i) ≤ 0, (17)

which are valid for our choice ofy1, too.
Last, takingT−1

T
as the coefficient for both spokes yields

0 ≤ πj − πi + pa + (T − 1)p(h,j) − (T − 1)p(h,i) ≤ 1. (18)

Also these two inequalities are valid for the vectory1 as defined,0 ≤ 1
2 ≤ 1.

To summarize, in the case of||λ2||1 + ||λ4||1 = 1
T

we considered all the eight
relevant valid inequalities ofP (1) and verified that the vector(πT, pT

s , pT
c) = (0T, 1

2T
·

1T, 1
2 · 1T) is valid for any of them.

Case “||λ2||1 + ||λ4||1 = 2
T

” . We distinguish between several subcases. First, we may
have two non-incident arcsa1 anda2 of the outer circuit being involved in the cut that
is defined by the coefficient vectorλ. But then we are done, because we are in fact twice
in the case of||λ2||1 + ||λ4||1 = 1

T
.

Second, we may have just one arc of the outer circuit being involved. The two cycle
inequalities (5) that emerge from multiplying all its three initial constraints with2

T
are

in fact nothing but just scaled versions of (15). Hence, here we need to consider valid
inequalities in which some of the initial constraints are multiplied with2

T
, while others

are multiplied withT−2
T

. The counterparts of (16) and (17) read

1 ≤ πj − πh + 2pa + (T − 2)p(h,j) + 2p(h,i) ≤ 2

−1 ≤ πi − πh − 2pa + 2p(h,j) + (T − 2)p(h,i) ≤ 0.

For the particular pointy1 these terms evaluate to32 and−1
2 , respectively, and all the

four inequalities are thus feasible. The same holds for the counterpart of (18), wherey1

yields one, which is feasible in

0 ≤ πj − πi + 2pa + (T − 2)p(h,j) − (T − 2)p(h,i) ≤ 2.
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Last, what we still have to investigate is the case in that two consecutive arcsa1

anda2 of the outer circuit are activated by the coefficient vectorλ. Due to their ori-
entation inWn, in the valid inequality that is induced byλ, both arcs contribute either
with their PESP inequalities that define their lower bounds, or both contribute with their
PESP inequalities that define their upper bounds. In particular, theπ variable of their
common vertex has coefficient zero in the cut.

Hence, we are in a situation that is quite similar to the one that we already discussed
in the case of||λ2||1 + ||λ4||1 = 1

T
. The only difference is that for the outer arcs we

are now summingtwice their lower or upper bounds in the inequalities. We summarize
the relevant computations by providing the eight resulting valid inequalities – using the
same notation as in the previous case – in which the reader will have no difficulty to
verify thaty1 is indeed feasible,

1 ≤ pa1
+ pa2

− p(h,j) + p(h,i) ≤ 1,

1 ≤ πj − πh + pa1
+ pa2

+ (T − 1)p(h,j) + p(h,i) ≤ 2,

−1 ≤ πi − πh − pa1
− pa2

+ p(h,j) + (T − 1)p(h,i) ≤ 0, and

0 ≤ πj − πi + pa1
+ pa2

+ (T − 1)p(h,j) − (T − 1)p(h,i) ≤ 2.

This concludes the last case for the coefficient vectorλ and thus establishes (11). ⊓⊔

Proposition 2. The change-cycle inequalities(7) are valid for the infeasible PESP in-
stance that we consider on the wheel graphsWn.

Proof (sketch).We must omit the full proof due to space limitations. Nevertheless, let
us compute the relevant quantities of the particular fractional solution

y1 = (πT, pT
s , p

T
c ) = (0T,

1

2T
· 1T,

1

2
· 1T) :

For a spoke arca, here, the periodic tension variable isxa = 1
2 , and for any other arca,

its periodic tension variable isxa = T
2 . In the most interesting case, namely the case

of a triangle, cf. Figure 4 for an illustration in the case ofT = 6, the integer variablez
of this triangle evaluates to12 . And with these values, the reader might not have any
difficulties to compute the slopeµ = − 1

T−1 and ordinate intersectν = T
T−1 , and thus

verify that the corresponding change-cycle inequality (7) is tight. For longer circuits,
there is even some positive slack. ⊓⊔

Theorem 9. P (2) = ∅. In particular, two multi-circuit cuts(9) certify the emptiness
of P (2).

Proof. We apply Theorem 6 to the outer circuitC of the wheel graphWn. We combine
it linearly by summing over all the|C| oriented4-circuits that contain two consecutive
edges ofC.

Let Ci be one of these4-circuits. Consider the cycle inequalities (5) ofCi and of its
opposite counterpartC−1

i ,

p1 + p2 + p3 − p4 ≤

⌊
1

T
(1 + (T − 1) + (T − 1) − 0)

⌋

=
⌊

2T−1
T

⌋
= 1, (19)

−p1 − p2 − p3 + p4 ≤

⌊
1

T
(0 − 1 − 1 + 1)

⌋

=
⌊
−1
T

⌋
= −1, (20)
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wherep1 andp4 are the periodical offset variables that we introduced for the two spokes
of Ci. In other words,p1 + p2 + p3 − p4 = 1.

For that the oriented circuitsCi linearly combineC, we have to multiply each of
them with 1

2 . Recall that we selectedn to be even, thus|C| = n − 1 being odd. Doing
so for their initial orientation, using (19) we find that

∑

a∈C

pa ≤

⌊

|C| ·
1

2
· 1

⌋

=

⌊
n − 1

2

⌋

n odd
=

n

2
− 1, (21)

because the periodical offset variablesp of all the spokes cancel out. Similarly, sum-
ming (20) for all their opposite counterpartsC−1

i yields

∑

a∈C

−pa ≤

⌊

|C| ·
1

2
· (−1)

⌋

=

⌊
−n + 1

2

⌋

n odd
= −

n

2
. (22)

Finally, multiplying (22) with minus one and comparing it to (21) yieldsn
2 ≤ n

2 −1

and thus reveals that indeedP (2) = ∅. ⊓⊔

Remark 1.It is highly interesting to compare the resulting pair of inequalities (9) to
their initial counterparts (5) inP (1):

P (1) :
⌈
(n − 1) 1

T

⌉
≤

∑

a∈C

pa ≤
⌊
(n − 1)T−1

T

⌋
vs.

P (2) : n
2 ≤

∑

a∈C

pa ≤ n
2 − 1.

Hence, in a sense on the wheel graph instances the multi-circuit cuts propagate toP (2)

the rounding benefit that particular cycle inequalities achieved already inP (1). ⊓⊔

This is our main motivation for the separation heuristic that we apply in the next section.

7 Computational Results

For the PESP, we investigate the change in the solution behavior of CPLEX 11, when
adding multi-circuit cuts (9) to its IP models. To this end, we need to separate these
cuts. In Remark (1) we observed that if we combine valid inequalities (5) of the first
Chvátal closure in which the rounding was strong, i.e.,b − ⌊b⌋ ≈ 1 − ε, then, in the
second Chv́atal closure we can achieve much stronger multi-circuit cuts (9) than their
corresponding cycle inequalities (5) in the first Chvátal closure.

In most detail, we generate multi-circuit cuts (9) in the following way.

1. Build an initial IP model of an optimization instance of PESP.
Actually, instead of immediately using (2) we are using a purely tension-based formulation
here, because in [13] it was reported that these performed best.

2. Generate valid inequalities for this IP.
These are cycle inequalities (5) and change-cycle inequalities (7). For the separation heuris-
tic we made the same experience as Nachtigall, namely that considering the fundamental
circuits subject to a minimum spanning tree with the periodic tension values of the current
LP relaxation as weights, empirically is the most efficient deterministic solution heuristic.
Denote the resulting LP by LP1.
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Bremen

Hamburg

Hannover

North Sea

Fig. 5.The subregions of Lower Saxony and Westfalia (north-western part of Germany) of which
we distill our three test instances

3. Store “strong” cycle inequalities in a poolP.
While computing LP1, we record for each cycle inequality (5) that we generate its rounding
benefitβ := b − ⌊b⌋, no matter whether it is added to LP1 or not. If β is larger than some
threshold value – we usedβ ≥ 0.7 – then this cycle inequality is added to a poolP of
“strong” cycle inequalities.

4. Add multi-circuit cuts (9) to LP1.
After Steps 2 and 3 have been accomplished, denote byx

∗ the optimum fractional solution
of the final LP relaxation LP1. To cut this pointx∗ off with some multi-circuit cut (9),
we formulate the Chv́atal-Gomory IP, that Fischetti and Lodi proposed in [6], for the cycle
inequalities (5) inP. Since the cycle inequalities already live in the first Chvátal closure,
this way we are exploring parts of the second Chvátal closure. We iterate this CG-procedure
until for some subsequent linear program LP2 (LP1 plus some multi-circuit cuts) its optimal
solution can no more be separated by this procedure, or a time limit applies.

5. Solve the IP.
In LP2, switch on the integrality requirements on the periodical offset variablesp and let
CPLEX 11 solve this (mixed) integer linear program.

Data. We investigate the performance of the multi-circuit cuts (9) on several real-world
data sets. Unfortunately, there is still not available any public library of real-world peri-
odic railway timetabling instances. Hence, we need to resort to instances that have been
available at our institute, e.g., some that had already been used in [8, 10]. In particular,
all are subnetworks of the German passenger railway network.

More precisely, we consider three regions within Lower Saxony and Westfalia:
Harz (H), Ostfriesland (O), and Ostwestfalen-Lippe (L), see Figure 5. All these net-
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Table 1. Size of our test instances. Here,ν is the cyclomatic number|A| − |V | + 1, i.e., the
number of integer variables in the tension-based IP models that we apply [13].

Instance name service lines |V | |A| ν tight arcs width
Harz 1 (H1) 17 54 309 256 26 10120

Harz 2 (H2) 16 30 308 279 7 10149

Harz 3 (H3) 12 43 226 184 23 1093

Harz 4 (H4) 22 58 432 375 26 10183

Harz 5 (H5) 15 55 332 278 29 10153

Ostfriesland 1 (O1) 10 77 281 205 58 1099

Ostfriesland 2 (O2) 13 107 380 274 86 10128

Ostwestfalen-Lippe 1 (L1) 12 60 295 236 45 10108

Ostwestfalen-Lippe 2 (L2) 12 65 289 225 48 10112

Ostwestfalen-Lippe 3 (L3) 13 66 357 292 49 10145

works are operated at a period time of two hours. Together withthe standard time
precision that is used by Deutsche Bahn AG, and which is0.1 minutes, in our mod-
els this yieldsT = 1200. It is a general observation that cycle inequalities (5) tend
to be stronger if the spansua − ℓa of the PESP constraints are smaller. Obviously,
multi-circuit cuts (9) inherit this property. Hence, if these new valid inequalities bear
any computational benefit, we hope to reveal it on instances where railway capacity is
rather scarce. This is done by modeling the complete passenger traffic in the respec-
tive regions (regional and long-distance trains), and by considering single tracks. The
sizes of the resulting PESP instances, after eliminating redundancies such as contract-
ing fixed arcs with zero span, are reported in Table 1. There, in the column “tight arcs”
we counted the number of arcsa with relatively small span, i.e.,ua − ℓa ≤ T

10 . In
the column “width”, we provide a (rough) upper bound on the size of the Branch-and-
Bound tree that had already been considered in [13], which is the product of the possible
number of values over all the integer variablesz.

Results.We summarize our computational results in Table 2. There, we compare three
different policies for solving PESP instances. First, take the pure initial model as is, with
no problem-specific valid inequalities being added. Its LP relaxation admits a trivial
optimal solution: simply takeπ ≡ 0 andpa := ℓa

T
. When reporting on values of refined

LP relaxations, we scale the values such that this trivial solution has value zero, and the
optimum value is100.1 Second, we add the problem-specific cycle inequalities (5) plus
some change-cycle inequalities (7), as described above. Last, we also add multi-circuit
cuts (9).

We start by giving the optimum solutions of the respective (refined) LP relaxations
in the columns “LP bound”. Next to this, we put the solution time under standard set-
tings of CPLEX 11 on an Intel Core2 with 2.13 GHz and a 2GB RAM running Linux.
In the last but third column we report how many multi-circuit cuts (9) could be found
by the separation heuristic that we sketched above, and which was based on [6].

1 In the tension-based IP (see [13]) we add cycle inequalities (5) as bounds on the integer vari-
ables, which typically yields values slightly larger than zero, e.g,5–25%.
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Table 2.Computational Results of adding multi-circuit cuts (9) to PESP IP models. Aboldface
entry indicates that the shortest solution time is achieved by adding multi-circuit cuts (9) (LP
bounds indexed to “intoptb=100”, time in seconds)

pure IP model IP + (5) + (7) IP + (5) + (7) + (9)
Instance LP bound opt time LP bound opt time # cuts (9) LP bound opt time
H1 4.4 325 86.0 75 2 86.0 42
H2 35.6 850 83.0 263 15 83.0 349
H3 4.3 64 77.8 13 64 81.0 12
H4 40.8 3059 86.8 2255 1 86.8 2727
H5 4.1 2921 56.7 1221 17 58.9 1663
O1 12.3 216 84.8 197 18 85.3 79
O2 16.7 338 84.4 365 25 85.0 187
L1 27.2 141 89.0 94 25 89.2 69
L2 11.2 203 94.7 71 22 94.7 56
L3 19.0 2652 90.3 1010 20 90.7 1226

To summarize, in contrast to what Villumsen [19] had to observe for the chain-
cutting planes, which were due to Lindner [14], multi-circuit cuts (9) indeed have an
effect on the solution behavior of CPLEX 11 on PESP instances. First of all, on each
instance, CPLEX is (still, see below) better off when fed with the full machinery of
additional valid inequalities, compared to not adding any cuts at all. Unfortunately,
there are some instances, on which adding multi-circuit cuts (9) cause longer solution
times, compared to the (5)+(7) setting. Nevertheless, in the majority of the cases, multi-
circuit cuts (9) yield an improved solution behavior. In several cases, the solution time
drops by more than40%.

Additional Comments.Let us close by commenting on two interesting effects. First,
in Table 2, we voluntarily decided to consider the pure LP bounds instead of the dual
bound that CPLEX is able to achieve in its root node preprocessing. This is mainly
motivated by the fact that the LP bounds are conceptually better accessible, compared
to the result of a powerful “black box”. Yet, consider the instance O2. For this, Ta-
ble 2 contains entries of16.7% and85.0% for the LP bounds with and without cuts,
respectively. But after the root node preprocessing of CPLEX 11, the respective values
get together as close as82.0% and85.4%. Now, compare these values to the root node
preprocessing of CPLEX 8.1, which is the version that had been used in an extensive
computational study on other railway timetabling instances [13]:28.6% and85.3%.
Similar observations can be made for the respective solution times.

This illustrates the improvements that more recent versions of CPLEX are able to
achieve in the preprocessing of PESP IP models. Could this be a consequence of the fact
that pure PESP IP models have been included in the MIPLIB [1, 10], in combination
with new general IP insight, e.g., the one reported in [6]? Here, it might be interesting to
recall that Fischetti and Lodi called the PESP IP models in the MIPLIB “very hard”. . .

Nevertheless, although the preprocessed dual bounds get closer to each other, prob-
lem-specific insight, e.g., in form of the new multi-circuit cuts (9) that we just intro-
duced here, may still cut the solution time by roughly one half.
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Second, and last but not least, we point out the high sensitivity that the models show
with respect to certain specific multi-circuit cuts (9). As an example, on the instance H2
we had to make the following observation. With just inequalities (5) and (7) being
added, a solution time of 263s can be observed, cf. Table 2. Then, adding just the first
two multi-circuit cuts (9) that our separation heuristic found, the solution time is cut
by more than73% to less than 70s. But adding the next two such cuts, we end with a
solution time of even 392s. In other words, if we just added the first two cuts, instead of
all the 25 that we were able to separate, in Table 2 we could have replaced the value 349s
in the H2 row with only70s. . .

On the one hand, this underlines that multi-circuit cuts (9) indeed have some effect.
On the other hand, this asks for an understanding on which particular ones of these cuts
are the “right” ones.

8 Conclusions

We introduced multi-circuit cuts as new valid inequalities for the Periodic Event Sched-
uling Problem (PESP). These live in its second Chvátal closure. For a particular fam-
ily of infeasible PESP instances, we managed to prove that its first Chvátal closure is
nonempty. And even adding all change-cycle inequalities, of which we further proved
that in general they appear only in much larger closures, does not turn the status to
infeasible. Hence, it is a first theoretical merit of the multi-circuit cuts to certify infeasi-
bility of these particular instances. Complementary to this, in our computational study,
we observed that multi-circuit cuts are likely to reduce the solution time of CPLEX 11
on PESP IP models.

We admit that up to now, our separation has not really been tuned. More theoretical
insight is needed to distinguish between helpful multi-circuit cuts, and unproductive
ones. We are very much confident that with such an additional insight, adding just
the helpful multi-circuit cuts willalways improve on the two other settings that we
considered in Table 2. In addition, practically efficient separation heuristics for multi-
circuit cuts are required, in particular if we want to use these cuts in a branch-and-
cut context, too. But also any further new classes of valid inequalities from whichever
Chvátal closure will be equally welcome – given that they have some (positive) effect
on the solution behavior of CPLEX 11.

To summarize, of course multi-circuit cuts are not the end of the story in the solution
of PESP instances. However, we feel that these are one step forward into a promising
direction.

References

1. T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003.Oper. Res. Lett., 34(4):361–372,
2006.

2. G. C. Caimi, M. Fuchsberger, M. Laumanns, and K. Schüpbach. Periodic railway timetabling
with event flexibility. In C. Liebchen, R. K. Ahuja, and J. A. Mesa, editors,ATMOS 2007
- 7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and
Systems, Dagstuhl, Germany, 2007. Internationales Begegnungs- und Forschungszentrum für
Informatik (IBFI), Schloss Dagstuhl, Germany.



The Second Chv́atal Closure Can Yield Better Railway Timetables 19

3. V. Chv́atal. Edmond’s polytopes and a hierarchy of combinatorial problems.Discrete Math-
ematics, 4:205–337, 1973.

4. W. Dauscha, H. D. Modrow, and A. Neumann. On cyclic sequence types for constructing
cyclic schedules.Zeitschrift fur Operations Research, 29(1):1–30, 1985.

5. J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices.Journal of Research
National Bureau of Standards Section B, 69:125–130, 1965.

6. M. Fischetti and A. Lodi. Optimizing over the first Chvátal closure.Mathematical Program-
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Abstract. The train timetabling problem considered is to find conflict
free routes for a set of trains in a given railway network so that cer-
tain time window conditions are satisfied. We deal with the very large
scale problem of constructing such timetables for the German railway
network. A number of restrictions on different train types like freight
trains or passenger trains have to be observed, e.g., sequence dependent
headway times, station capacities, and stopping times. In order to handle
the enormous number of variables and constraints we employ Lagrangian
relaxation of the conflict constraints combined with a cutting plane ap-
proach. The model is solved by a bundle method; its primal aggregate
is used for separation and as starting point for rounding heuristics. We
present some promising results towards handling a test instance com-
prising ten percent of the entire network.

1 Introduction

One of the main tasks in strategic railway planning is timetable construction,
i.e., to find feasible arrival and departure times for a set of trains with predefined
routes. The generated timetables should satisfy a number of different constraints
like headway times and station capacities, passenger train stops should lie in
given time windows.

This problem is known in the literature as Train Timetabling Problem (TTP)
and has received considerable attention in the last decades. The TTP is related
to the so called Periodic Event Scheduling Problem introduced in [1], where
periodic timetables are considered, e.g., for subway or fast-train networks, see
[2] for a detailed survey on this topic.

Most approaches to the (non-periodic) TTP are based on formulations in
the form of Integer Linear Programs (ILP) representing train routes by time
discretised networks, see [3, 4, 5, 6]. This helps to deal with headway restrictions.
Some authors have shown how other types of constraints like station capacities or
prescribed timetables can be handled, see, e.g., [7]. The solution methods include
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under grant 03HEPAG4. Responsibility for the content rests with the authors.
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heuristic and exact branch-and-bound based approaches using LP relaxations
and Lagrangian relaxations of the ILP, see [4, 8].

In this paper we deal with very large scale real world instances of the German
railway company Deutsche Bahn AG (DB) as they arise in the strategic long term
planning process of DB. The largest test instance comprises roughly ten percent
of the entire German network with approximately 3000 trains to be scheduled
for a time period of six hours.

For instances of this size the (in general exponential) number of constraints
ensuring sufficient headway time between successive trains on each track necessi-
tates the use of a primal cutting plane approach. A column generation approach
for generating the single train schedules would therefore have to include dyna-
mically the effect of the constraints separated so far, e.g., by solving a shortest
path problem on a time discretised network showing the effect of the current
constraints on the new variables in each time period. In essence, this is exactly
what one obtains by classical Lagrangian relaxation of the conflict constraints,
which decomposes the problem into shortest path problems on time discretised
networks for each train. In this setting, optimizing the dual Lagrange multipliers
by simple subgradient methods is not an option, as we need good approxima-
tions to the primal solutions for separating the headway constraints in the primal
cutting plane approach. The less classical bundle cutting plane approach of [9]
offers exactly what we need: it is a bundle method for optimizing the Lagrange
multipliers of the dual and generates at the same time a primal approximate so-
lution, the primal aggregate, which we use for primal separation of the headway
constraints and station capacities. In our instances we deal with different train
types and predefined timetable conditions for some of the trains. The Lagrangian
relaxation of the model is solved using the ConicBundle package [10].

Our paper is structured as follows. In the next section we give a formal
description of the TTP and introduce our model. Section 3 describes the solution
methods and finally in section 4 we present preliminary computational results
of our approach on our real world test instances.

2 The Train Timetabling Problem

Our TTP can be formally described as follows. We are given an infrastructure
digraph D = (V, A) representing the railway network, where V is a finite set
of nodes (e.g. stations, track switches, ...) and A is the set of directed arcs
representing a direction in which the corresponding track can be used. If the
locations corresponding to two nodes u, v ∈ V are connected by two tracks,
one for each direction, both arcs uv and vu are in A. We also have two arcs
if they are connected by a single track that is used in both directions, i.e., if
these two arcs belong to the same physical track. All arcs of the latter kind
are collected in the set AS ⊆ A. Let T be the set of trains and m(j) ∈ M be
the train-type of j ∈ T where M = Mp∪̇Mf is the union of passenger train
types Mp and freight train types Mf . The train-type classifies the speed, length
and other properties of the train as needed for strategic planning. A train may
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stop and possibly wait at a node u ∈ V or may pass through the node without
stopping. Let BS = {wait, pass} denote the stopping behaviours of a train. For
each arc the train may stop or pass at the start or at the end node and we
collect these acceleration modes in the set BR = BS × BS . Then for each arc
uv ∈ A we are given a mapping tRuv : M ×BR → Z+, where tRuv(m, b) denotes the
running time of a train of type m over the arc uv with respect to its acceleration
mode b in minutes, and a mapping tHuv : M × BR × M × BR → Z+, where
tHuv(m1, b1, m2, b2) denotes the minimal headway time of a train of type m1 with
acceleration mode b1 followed by a train of type m2 with acceleration mode b2

in minutes. If uv ∈ AS , we have additional headway times for two trains passing
the arc in opposite directions tHS

uv : M × BR × M × BR → Z+ with the same
interpretation as above.

For each train j ∈ T the predefined route is given by the ordered sequence
of nodes U(j) = (uj

1, . . . , u
j
nj

) with nj ∈ N, no other nodes are visited. The

timetable for a train may be restricted in the following way. For each node uj
i we

have a stopping-interval Ij
i = [tS,j

i , tE,j
i ] ⊆ Z ∪ {±∞} and a minimal stopping

time dj
i ∈ Z+. The train j has to arrive at node uj

i before the end of its stopping

interval tE,j
i , is not allowed to leave the node before tS,j

i + dj
i and has to wait

at the node for at least dj
i minutes. A waiting time dj

i = 0 signals that train

j does not need to stop at node uj
i . For freight trains there are no stopping

restrictions on the nodes except for the first node uj
1. Here the interval has the

form Ij
1 = [tS,j

1 ,∞] specifying the train’s starting time.
Important constraints on the timetables arise from the capacity of stations.

We denote the absolute capacity of a node v ∈ V by cv ∈ N, it specifies the
maximal number of trains allowed to visit node v at the same time. In many
stations the capacity also depends on the direction from which the trains enter
the node. For an arc uv ∈ A the directional capacity of the node v is cuv ∈ N

and describes the maximal number of trains that may stop at or pass through
node v at the same time when arriving over arc uv. Clearly, cuv ≤ cv for all
uv ∈ A.

We model the problem in a classical way via time discretised networks for
the single train routes and by using coupling constraints for the capacity and
headway restrictions. Let S = {1, . . . , N} denote the discretised time steps cor-
responding to minutes. For each train j ∈ T we have a network Gj = (V j, Aj)
defined as follows. The node set V j is a subset of {σj , τ j}∪(BS×{1, . . . , nj}×S),
where σj is an artificial source node and τ j an artificial terminal node, while,
e.g., a node (wait, i, t)j has to be interpreted as train j stops in node uj

i at time
t.

The arc set Aj is built of the following subsets:

– a set of waiting arcs ((wait, i, t)j , (wait, i, t + 1)j), for each i ∈ {1, . . . , nj}
and t ∈ {1, . . . , N − 1} for nodes where the train may stop;

– a set of running arcs
(
(b1, i, t)

j, (b2, i + 1, t + tR)j)
)

connecting two succes-
sive nodes for i ∈ {1, . . . , nj − 1}, where tR = tR

u
j

i ,u
j

i+1

(m(j), (b1, b2)) gives

the running time with respect to the stopping behaviours b1 and b2;
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– a set of starting arcs of the form (σj , (wait, 1, t)j) corresponding to feasible
starting times at the first node;

– a set of ending arcs of the form ((wait, nj , t)
j , τ j) collecting all possible

arrivals at the last node;
– a set of infeasible arcs ((b, i, t)j , τ j) allowing the train to go from each inter-

mediate node directly to the terminal node.

Of course, the graph Gj contains only those arcs that are valid for the train j
with respect to the stopping intervals and minimal stopping times.

Now we introduce for each arc a ∈ A =
⋃

j∈T Aj a binary variable xa ∈ {0, 1}
equal to one if and only if the path associated with train j contains arc a. Let
δ+(v) and δ−(v) denote the (possibly empty) sets of arcs leaving and entering
node v ∈ V =

⋃

j∈T V j . Likewise we define for v ∈ V, t ∈ S

δ−(v, t) =
{

((b′, i′, t′)j , (b, i, t)j) ∈ A : uj
i = v

}

which is the set of all train arcs arriving at the infrastructure node v at time t,
and for uv ∈ A, t ∈ S

δ−(uv, t) =
{

((b′, i′, t′)j , (b, i, t)j) ∈ A : uj
i−1u

j
i = uv

}

which is the set of train arcs arriving at the infrastructure node v at time t
over the arc uv. With appropriate arc costs wa, a ∈ A (see Section 4), the ILP
formulation reads (later we prefer the dual to be a minimization problem, so we
use maximization here)

maximize
∑

a∈A

xawa (1)

subject to

∑

a∈δ+(σj)

xa = 1, j ∈ T, (2)

∑

a∈δ+(v)

xa =
∑

a∈δ−(v)

xa, j ∈ T, v ∈ V j \ {σj , τ j}, (3)

∑

a∈δ−(v,t)

xa ≤ cv, v ∈ V, t ∈ S, (4)

∑

a∈δ−(uv,t)

xa ≤ cuv, uv ∈ A, t ∈ S, (5)

∑

a∈C

xa ≤ 1, C ∈ C, (6)

xa ∈ {0, 1}, a ∈ A. (7)

The set C contains the (in general exponentially large) family of maximal sets
C ⊆ A that hold pairwise conflicting arcs. We say two arcs

((b1, i1, t1)
j , (b2, i2, t2)

j) ∈ Aj and ((b′1, i
′
1, t

′
1)

j′ , (b′2, i
′
2, t

′
2)

j′ ) ∈ Aj′
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with t1 ≤ t′1 conflict if either

– uj
i1

uj
i2

= uj′

i′
1

uj′

i′
2

= uv ∈ A and t1 + tHuv(m(j), (b1, b2), m(j′), (b′1, b
′
2)) > t′1, or

– uj
i1

uj
i2

= uj′

i′
2

uj′

i′
1

= uv ∈ AS and t1 + tHS
uv (m(j), (b1, b2), m(j′), (b′1, b

′
2)) > t′1,

i.e., they violate the headway times.
In the objective function (1) the infeasible arcs should have costs with a

sufficiently penalizing effect. Constraints (2) ensure that exactly one path per
train will be used. Constraints (3) are the flow conservation constraints. The
node capacities are imposed by (4) for the absolute capacities and by (5) for
the directional capacities. Finally the clique constraints (6) forbid the use of
conflicting arcs.

3 Solution Methods

Our solution method is based on the Lagrangian dual of the model (1)-(7) ob-
tained by relaxing the coupling constraints (4)-(6). In order to explain the de-
composition approach, we collect the coupling constraints (4)-(6) in the system
Dx ≤ d and denote by Dj , j ∈ T, the columns corresponding to the xa, a ∈ Aj .
Furthermore for j ∈ T

X
j :=

{

x ∈ R
Aj

: x fulfills (2), (3) and (7) for fixed j
}

represents the set of all feasible flows in Graph Gj . The Lagrangian dual problem
reads

min
y≥0

ϕ(y)

where

ϕ(y) := dT y +
∑

j∈T

ϕj(y),

with

ϕj(y) := max
x∈Xj

∑

a∈Aj

xawa − yT Djx. (8)

Obviously, the ϕj are convex functions because they are maxima over affine func-
tions. For each y the evaluation of ϕ(y) requires the solution of |T | independent
shortest path problems (8). Let x(y) be the optimal solution of the shortest path
problems for given y, then g(y) = d − Dx(y) is a subgradient of ϕ at y.

The ConicBundle library [10] implements a bundle method to solve problems
of type

min
y≥0

f(y)
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where f(y) is a convex function given by a first-order oracle, i.e., for given y the
oracle returns f(y) and a subgradient g(y) of f at the point y.

The method generates a sequence (xk)k∈N of primal aggregates that are con-
vex combinations of the primal optimizers giving rise to the subgradients of the
ϕj . For an appropriate subsequence L ⊆ N each cluster point of (xl)l∈L lies in
the set of optimal solutions of the LP relaxation (if such solutions exist), see
[9, 11] for technical aspects. Note, the xk are in general not feasible for our
primal problem because they violate the coupling constraints, but they yield
successively better approximations to primal optimal solutions.

Since the number of constraints (6) is exponential, we separate the constraints
based on the primal aggregates xk generated by the bundle method, i.e., we add
constraints to the model that we find violated by xk and that are not yet present
in the relaxation, see [9, 12] for more information on separation and convergence
aspects in bundle methods.

The capacity constraints (4)-(5) are separated by complete enumeration.
The separation of the maximal clique constraints (6) is not trivial. This is

because the headway times tHuv and tHS
uv may be different for each train-type

and for each stopping behaviour. [13] gives an extensive analysis of the structure
of clique constraints arising from headway times in TPP and proves that the
time window of interest is bounded by twice the maximum headway time. In our
case this may be quite large. Therefore, we use a greedy heuristic to find large
violated cliques as described in Algorithm 1. For any arc a ∈ A with positive
flow value we find all arcs in conflict with a and sort them non-increasingly with
respect to their flow value. Starting with the single clique {a} we successively
try to add the next arc in the sequence to all existing cliques. If the new arc
does not enlarge the clique, we add the largest subclique containing it. If an
upper limit NC on the number of cliques is exceeded, we eliminate the cliques
of minimal weight. The maximal cliques of each a are added as cutting planes if
their weight is greater than one and if they are not yet contained in the problem.
The routine is called after each descent step of the bundle method.

The last step is the computation of an integral solution. Let x be a primal
aggregate returned by the bundle method. In our current approach we create
an ordering of the incoming and outgoing trains for each node based on x as
follows. Let u ∈ V be an arbitrary node and let j ∈ T be a train with u = uj

i for
some i ∈ {2, . . . , nj}. The average arrival time of j at u is given by

tj,−u :=

∑

a=((b′,i−1,t′),(b,i,t))∈Aj

u=u
j

i

t · xa

∑

a=((b′,i−1,t′),(b,i,t))∈Aj

u=u
j

i

xa

.

These average arrival times define an arrival order on the arriving trains visiting
node u, i.e., we say for two trains j, j′ ∈ T visiting node u

j �−
u j′ ⇐⇒ tj,−u ≤ tj

′,−
u .
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Algorithm 1 Separation of clique constraints on primal aggregate x

Call ← ∅
for a ∈ A : xa > 0 do

AC ← {b ∈ A : a is in conflict with b}
C← {{a}} “C is the set of new cliques.”
while AC 6= ∅ do

Find c ∈ Argmax{xb : b ∈ AC} “Find conflicting arc c so that xc maximal.”
for C ∈ C do

“Try to add c to each clique C.”
if C ∪ {c} is a clique then

C← (C \ {C}) ∪ {C ∪ {c}}
else

“If not possible, find (weight-)maximal subclique of C containing c.”
C̄ ← {d ∈ C : d conflicts with c}
C← C ∪ {C̄}
if |C| > NC then

“Only keep a bounded number of cliques.”
C← C \ {argmin{

P

e∈C̄
xe : C̄ ∈ C}}

end if

end if

end for

end while

Call ← Call ∪ C

end for

return {C ∈ Call :
P

e∈C
xe > 1}

Similarly one can define average departure times and a departure order �+
u on

the departing trains. Then we run a simulation on the trains, letting the trains
arrive and leave as early as possible with respect to the orderings, headway times,
stopping intervals and stopping times. Furthermore the data of the running
times is a tight upper bound on the fastest possible traversal of the trains, so
in the simulation trains may go slower over an arc. In our first experiments
those constraints were never violated, but we observed some unexpected delays
of passenger trains, so the approach certainly needs further improvement.

The rounding heuristic is called several times to generate timetables for a
group of trains. In particular, first only long-distance trains are simulated and
the corresponding arcs in the train graphs are fixed to 1. Then a new relaxation is
computed for the non-fixed trains and the rounding heuristic is used to generate
a timetable for the short-distance trains. Finally in a third iteration the freight
trains are handled in the same way.

Since the rounding heuristic had yielded bad results for some test instance,
we tried another simple heuristic. We fix successively those arcs to 1, whose
values in the relaxation are above 0.8 or, if no such arc exists, the arc with
the largest value. When 95% of the arcs have been fixed, we call the rounding
heuristic above to generate an integral solution.
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4 Numerical Results

We implemented our model in C++ using Cplex 9.1 [14] and the ConicBundle
library [10]. All computations were done on an Intel Xeon Dual Core, 3 GHz,
16 GB RAM. The test data is the south-west subnet of the network of DB
(roughly Baden-Wuerttemberg). This subnet has about 10% of the size of the
whole German network. We considered three test cases of different size:

1. A small part of the network containing the five most frequently used arcs.
2. The main long-distance and freight traffic route along the river Rhine.
3. The whole subnet.

All tests searched for a timetable of six hours. Table 1 shows the instance sizes
(the columns Nodes and Arcs refer to the infrastructure network) as well as the
number of variables in the resulting model.

Table 1. Test instances.

Instance Nodes Arcs Passenger Freight Variables

1 104 193 242 9 317336
2 656 1210 50 67 2448842
3 2103 4681 2501 659 8990060

The cost coefficients wa, a ∈ A, have been chosen so that all trains profit from
travelling as early as possible, but our tests were focused on the construction of
feasible and not necessarily optimal timetables.

wa =







−(10000− i) a = ((b, i, t)j, τ j) ∈ A, i ∈ {1, . . . , nj − 1} (infeasible arc),

−(nj − i) a = ((b, i, t)j, (b′, i + 1, t′)j) ∈ Aj , i ∈ {1, . . . , nj − 1}

0 otherwise.

Because of the large amount of memory that the model requires, we were
only able to solve instances 1 and 2 with Cplex. All instances could be solved
by the bundle method mentioned above. Table 2 shows the time and the memory
required to solve the models.

Table 2. Solution times of the relaxation.

Instance Cplex ConicBundle Size

1 33s 12s 160 MB
2 1945s 341s 1 GB
3 – 2512s 6 GB

In order to illustrate the development and progress of the bundle cutting
plane approach we present the development of the objective function in Figure
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1, the development of the number of constraints and their violation in Figure 2
and Figure 3.
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Fig. 1. Development of the objective function for Cplex (∗) and ConicBundle (◦) of
instance 2.
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Fig. 2. Development of the number of newly separated (+) and active (∗) constraints
for Cplex and the number of newly separated (◦) and active (�) constraints for Conic-
Bundle of instance 2.
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Fig. 3. Development of the maximum (◦) and average (�) violation of capacity con-
straints and the maximum (∗) and average (+) violation of clique constraints for Co-
nicBundle of instance 2 and 3.

As expected, the objective value shows a strong tailing-off effect which re-
sults from the combination of the respective effects for bundle and cutting plane
methods. In contrast to the simplex method, the violation of active constraints
that are already present in the model stays relatively high over a long time but
finally tends to zero in accordance with theory.

Using the rounding heuristic described above, we generated integer solutions
for all instances. For instances 1 and 2 the resulting timetable seems to be
rather good with almost no delays for the passenger trains (compared with the
predefined timetables). Unfortunately, the results for instance 3 are quite bad.
In this case, many trains are infeasible (i.e. they use an infeasible arc) and
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many passenger trains have significant delays. Therefore we used the successive
fixing heuristic on that instance. This approach yielded better but not really
good results (see table 3). In view of the many further possibilities to exploit
structural properties and dual sensitivity information, we are confident that we
shall be able to improve in the near future.

Table 3. Results of the rounding heuristic (instances 1, 2, 3) and successive fixing
heuristic (instance 3b).

Instance Time Infeasible trains Late trains Average delays

1 39s 0 0 0
2 697s 0 0 0
3 3182s 40 906 865s
3b 10h 9 778 603s

Remark:

– Infeasible trains are those who use infeasible arcs.
– Late trains are passenger trains arriving more than 5 minutes later compared with

the predefined timetable at at least one station.
– Average delays shows the average number of seconds those trains arrive later at

their stations compared with the predefined timetable.

5 Conclusion

Relaxations of real world timetabling problems seem to lead to very large scale
instances that are not easily solvable by commercial state-of-the-art software,
but can be successfully attacked by Lagrangian relaxation combined with bundle
methods. For the whole network of DB, however, more work has to be done to
reduce the model size on the one hand and to separate the clique constraints
more efficiently on the other hand. The solutions of the relaxation show that
almost all trains use arcs only in a small time interval, so it should be possible
to omit large parts of the train networks at the beginning and generate new
arcs dynamically when they are required. More work needs to be invested into
developing better rounding heuristics.
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