License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/OASIcs.SOSA.2019.13
URN: urn:nbn:de:0030-drops-100396
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2018/10039/
Go to the corresponding OASIcs Volume Portal


Ghaffari, Mohsen ; Wajc, David

Simplified and Space-Optimal Semi-Streaming (2+epsilon)-Approximate Matching

pdf-format:
OASIcs-SOSA-2019-13.pdf (0.4 MB)


Abstract

In a recent breakthrough, Paz and Schwartzman (SODA'17) presented a single-pass (2+epsilon)-approximation algorithm for the maximum weight matching problem in the semi-streaming model. Their algorithm uses O(n log^2 n) bits of space, for any constant epsilon>0.
We present a simplified and more intuitive primal-dual analysis, for essentially the same algorithm, which also improves the space complexity to the optimal bound of O(n log n) bits - this is optimal as the output matching requires Omega(n log n) bits.

BibTeX - Entry

@InProceedings{ghaffari_et_al:OASIcs:2018:10039,
  author =	{Mohsen Ghaffari and David Wajc},
  title =	{{Simplified and Space-Optimal Semi-Streaming (2+epsilon)-Approximate Matching}},
  booktitle =	{2nd Symposium on Simplicity in Algorithms (SOSA 2019)},
  pages =	{13:1--13:8},
  series =	{OpenAccess Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-099-6},
  ISSN =	{2190-6807},
  year =	{2018},
  volume =	{69},
  editor =	{Jeremy T. Fineman and Michael Mitzenmacher},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2018/10039},
  URN =		{urn:nbn:de:0030-drops-100396},
  doi =		{10.4230/OASIcs.SOSA.2019.13},
  annote =	{Keywords: Streaming, Semi-Streaming, Space-Optimal, Matching}
}

Keywords: Streaming, Semi-Streaming, Space-Optimal, Matching
Collection: 2nd Symposium on Simplicity in Algorithms (SOSA 2019)
Issue Date: 2018
Date of publication: 08.01.2019


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI