Abstract
We prove that it is #P-complete to count the triangulations of a (non-simple) polygon.
BibTeX - Entry
@InProceedings{eppstein:LIPIcs:2019:10437,
author = {David Eppstein},
title = {{Counting Polygon Triangulations is Hard}},
booktitle = {35th International Symposium on Computational Geometry (SoCG 2019)},
pages = {33:1--33:17},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-104-7},
ISSN = {1868-8969},
year = {2019},
volume = {129},
editor = {Gill Barequet and Yusu Wang},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2019/10437},
URN = {urn:nbn:de:0030-drops-104371},
doi = {10.4230/LIPIcs.SoCG.2019.33},
annote = {Keywords: counting complexity, #P-completeness, triangulation, polygons}
}
Keywords: |
|
counting complexity, #P-completeness, triangulation, polygons |
Collection: |
|
35th International Symposium on Computational Geometry (SoCG 2019) |
Issue Date: |
|
2019 |
Date of publication: |
|
11.06.2019 |