License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.CCC.2019.7
URN: urn:nbn:de:0030-drops-108296
Go to the corresponding LIPIcs Volume Portal

Lee, Chin Ho

Fourier Bounds and Pseudorandom Generators for Product Tests

LIPIcs-CCC-2019-7.pdf (0.6 MB)


We study the Fourier spectrum of functions f : {0,1}^{mk} -> {-1,0,1} which can be written as a product of k Boolean functions f_i on disjoint m-bit inputs. We prove that for every positive integer d, sum_{S subseteq [mk]: |S|=d} |hat{f_S}| = O(min{m, sqrt{m log(2k)}})^d . Our upper bounds are tight up to a constant factor in the O(*). Our proof uses Schur-convexity, and builds on a new "level-d inequality" that bounds above sum_{|S|=d} hat{f_S}^2 for any [0,1]-valued function f in terms of its expectation, which may be of independent interest.
As a result, we construct pseudorandom generators for such functions with seed length O~(m + log(k/epsilon)), which is optimal up to polynomial factors in log m, log log k and log log(1/epsilon). Our generator in particular works for the well-studied class of combinatorial rectangles, where in addition we allow the bits to be read in any order. Even for this special case, previous generators have an extra O~(log(1/epsilon)) factor in their seed lengths.
We also extend our results to functions f_i whose range is [-1,1].

BibTeX - Entry

  author =	{Chin Ho Lee},
  title =	{{Fourier Bounds and Pseudorandom Generators for Product Tests}},
  booktitle =	{34th Computational Complexity Conference (CCC 2019)},
  pages =	{7:1--7:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-116-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{137},
  editor =	{Amir Shpilka},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-108296},
  doi =		{10.4230/LIPIcs.CCC.2019.7},
  annote =	{Keywords: bounded independence plus noise, Fourier spectrum, product test, pseudorandom generators}

Keywords: bounded independence plus noise, Fourier spectrum, product test, pseudorandom generators
Collection: 34th Computational Complexity Conference (CCC 2019)
Issue Date: 2019
Date of publication: 16.07.2019

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI