License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX-RANDOM.2019.2
URN: urn:nbn:de:0030-drops-112175
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2019/11217/
Go to the corresponding LIPIcs Volume Portal


Chou, Chi-Ning ; Lei, Zhixian ; Nakkiran, Preetum

Tracking the l_2 Norm with Constant Update Time

pdf-format:
LIPIcs-APPROX-RANDOM-2019-2.pdf (0.6 MB)


Abstract

The l_2 tracking problem is the task of obtaining a streaming algorithm that, given access to a stream of items a_1,a_2,a_3,... from a universe [n], outputs at each time t an estimate to the l_2 norm of the frequency vector f^{(t)}in R^n (where f^{(t)}_i is the number of occurrences of item i in the stream up to time t). The previous work [Braverman-Chestnut-Ivkin-Nelson-Wang-Woodruff, PODS 2017] gave a streaming algorithm with (the optimal) space using O(epsilon^{-2}log(1/delta)) words and O(epsilon^{-2}log(1/delta)) update time to obtain an epsilon-accurate estimate with probability at least 1-delta. We give the first algorithm that achieves update time of O(log 1/delta) which is independent of the accuracy parameter epsilon, together with the nearly optimal space using O(epsilon^{-2}log(1/delta)) words. Our algorithm is obtained using the Count Sketch of [Charilkar-Chen-Farach-Colton, ICALP 2002].

BibTeX - Entry

@InProceedings{chou_et_al:LIPIcs:2019:11217,
  author =	{Chi-Ning Chou and Zhixian Lei and Preetum Nakkiran},
  title =	{{Tracking the l_2 Norm with Constant Update Time}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{2:1--2:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Dimitris Achlioptas and L{\'a}szl{\'o} A. V{\'e}gh},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2019/11217},
  URN =		{urn:nbn:de:0030-drops-112175},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.2},
  annote =	{Keywords: Streaming algorithms, Sketching algorithms, Tracking, CountSketch}
}

Keywords: Streaming algorithms, Sketching algorithms, Tracking, CountSketch
Collection: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)
Issue Date: 2019
Date of publication: 17.09.2019


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI