License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX-RANDOM.2019.8
URN: urn:nbn:de:0030-drops-112236
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2019/11223/
Go to the corresponding LIPIcs Volume Portal


Miller, Gary L. ; Walkington, Noel J. ; Wang, Alex L.

Hardy-Muckenhoupt Bounds for Laplacian Eigenvalues

pdf-format:
LIPIcs-APPROX-RANDOM-2019-8.pdf (0.5 MB)


Abstract

We present two graph quantities Psi(G,S) and Psi_2(G) which give constant factor estimates to the Dirichlet and Neumann eigenvalues, lambda(G,S) and lambda_2(G), respectively. Our techniques make use of a discrete Hardy-type inequality due to Muckenhoupt.

BibTeX - Entry

@InProceedings{miller_et_al:LIPIcs:2019:11223,
  author =	{Gary L. Miller and Noel J. Walkington and Alex L. Wang},
  title =	{{Hardy-Muckenhoupt Bounds for Laplacian Eigenvalues}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{8:1--8:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Dimitris Achlioptas and L{\'a}szl{\'o} A. V{\'e}gh},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2019/11223},
  URN =		{urn:nbn:de:0030-drops-112236},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.8},
  annote =	{Keywords: Hardy, Muckenhoupt, Laplacian, eigenvalue, effective resistance}
}

Keywords: Hardy, Muckenhoupt, Laplacian, eigenvalue, effective resistance
Collection: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)
Issue Date: 2019
Date of publication: 17.09.2019


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI