License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX-RANDOM.2019.8
URN: urn:nbn:de:0030-drops-112236
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2019/11223/
Miller, Gary L. ;
Walkington, Noel J. ;
Wang, Alex L.
Hardy-Muckenhoupt Bounds for Laplacian Eigenvalues
Abstract
We present two graph quantities Psi(G,S) and Psi_2(G) which give constant factor estimates to the Dirichlet and Neumann eigenvalues, lambda(G,S) and lambda_2(G), respectively. Our techniques make use of a discrete Hardy-type inequality due to Muckenhoupt.
BibTeX - Entry
@InProceedings{miller_et_al:LIPIcs:2019:11223,
author = {Gary L. Miller and Noel J. Walkington and Alex L. Wang},
title = {{Hardy-Muckenhoupt Bounds for Laplacian Eigenvalues}},
booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
pages = {8:1--8:19},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-125-2},
ISSN = {1868-8969},
year = {2019},
volume = {145},
editor = {Dimitris Achlioptas and L{\'a}szl{\'o} A. V{\'e}gh},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2019/11223},
URN = {urn:nbn:de:0030-drops-112236},
doi = {10.4230/LIPIcs.APPROX-RANDOM.2019.8},
annote = {Keywords: Hardy, Muckenhoupt, Laplacian, eigenvalue, effective resistance}
}
Keywords: |
|
Hardy, Muckenhoupt, Laplacian, eigenvalue, effective resistance |
Collection: |
|
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019) |
Issue Date: |
|
2019 |
Date of publication: |
|
17.09.2019 |