License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX-RANDOM.2019.23
URN: urn:nbn:de:0030-drops-112388
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2019/11238/
Quanrud, Kent
Fast and Deterministic Approximations for k-Cut
Abstract
In an undirected graph, a k-cut is a set of edges whose removal breaks the graph into at least k connected components. The minimum weight k-cut can be computed in n^O(k) time, but when k is treated as part of the input, computing the minimum weight k-cut is NP-Hard [Goldschmidt and Hochbaum, 1994]. For poly(m,n,k)-time algorithms, the best possible approximation factor is essentially 2 under the small set expansion hypothesis [Manurangsi, 2017]. Saran and Vazirani [1995] showed that a (2 - 2/k)-approximately minimum weight k-cut can be computed via O(k) minimum cuts, which implies a O~(km) randomized running time via the nearly linear time randomized min-cut algorithm of Karger [2000]. Nagamochi and Kamidoi [2007] showed that a (2 - 2/k)-approximately minimum weight k-cut can be computed deterministically in O(mn + n^2 log n) time. These results prompt two basic questions. The first concerns the role of randomization. Is there a deterministic algorithm for 2-approximate k-cuts matching the randomized running time of O~(km)? The second question qualitatively compares minimum cut to 2-approximate minimum k-cut. Can 2-approximate k-cuts be computed as fast as the minimum cut - in O~(m) randomized time?
We give a deterministic approximation algorithm that computes (2 + eps)-minimum k-cuts in O(m log^3 n / eps^2) time, via a (1 + eps)-approximation for an LP relaxation of k-cut.
BibTeX - Entry
@InProceedings{quanrud:LIPIcs:2019:11238,
author = {Kent Quanrud},
title = {{Fast and Deterministic Approximations for k-Cut}},
booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
pages = {23:1--23:20},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-125-2},
ISSN = {1868-8969},
year = {2019},
volume = {145},
editor = {Dimitris Achlioptas and L{\'a}szl{\'o} A. V{\'e}gh},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2019/11238},
URN = {urn:nbn:de:0030-drops-112388},
doi = {10.4230/LIPIcs.APPROX-RANDOM.2019.23},
annote = {Keywords: k-cut, multiplicative weight updates}
}
Keywords: |
|
k-cut, multiplicative weight updates |
Collection: |
|
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019) |
Issue Date: |
|
2019 |
Date of publication: |
|
17.09.2019 |