License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX-RANDOM.2019.44
URN: urn:nbn:de:0030-drops-112592
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2019/11259/
Go to the corresponding LIPIcs Volume Portal


Ban, Frank ; Chen, Xi ; Servedio, Rocco A. ; Sinha, Sandip

Efficient Average-Case Population Recovery in the Presence of Insertions and Deletions

pdf-format:
LIPIcs-APPROX-RANDOM-2019-44.pdf (0.6 MB)


Abstract

A number of recent works have considered the trace reconstruction problem, in which an unknown source string x in {0,1}^n is transmitted through a probabilistic channel which may randomly delete coordinates or insert random bits, resulting in a trace of x. The goal is to reconstruct the original string x from independent traces of x. While the asymptotically best algorithms known for worst-case strings use exp(O(n^{1/3})) traces [De et al., 2017; Fedor Nazarov and Yuval Peres, 2017], several highly efficient algorithms are known [Yuval Peres and Alex Zhai, 2017; Nina Holden et al., 2018] for the average-case version of the problem, in which the source string x is chosen uniformly at random from {0,1}^n. In this paper we consider a generalization of the above-described average-case trace reconstruction problem, which we call average-case population recovery in the presence of insertions and deletions. In this problem, rather than a single unknown source string there is an unknown distribution over s unknown source strings x^1,...,x^s in {0,1}^n, and each sample given to the algorithm is independently generated by drawing some x^i from this distribution and returning an independent trace of x^i. Building on the results of [Yuval Peres and Alex Zhai, 2017] and [Nina Holden et al., 2018], we give an efficient algorithm for the average-case population recovery problem in the presence of insertions and deletions. For any support size 1 <= s <= exp(Theta(n^{1/3})), for a 1-o(1) fraction of all s-element support sets {x^1,...,x^s} subset {0,1}^n, for every distribution D supported on {x^1,...,x^s}, our algorithm can efficiently recover D up to total variation distance at most epsilon with high probability, given access to independent traces of independent draws from D. The running time of our algorithm is poly(n,s,1/epsilon) and its sample complexity is poly (s,1/epsilon,exp(log^{1/3} n)). This polynomial dependence on the support size s is in sharp contrast with the worst-case version of the problem (when x^1,...,x^s may be any strings in {0,1}^n), in which the sample complexity of the most efficient known algorithm [Frank Ban et al., 2019] is doubly exponential in s.

BibTeX - Entry

@InProceedings{ban_et_al:LIPIcs:2019:11259,
  author =	{Frank Ban and Xi Chen and Rocco A. Servedio and Sandip Sinha},
  title =	{{Efficient Average-Case Population Recovery in the Presence of Insertions and Deletions}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{44:1--44:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Dimitris Achlioptas and L{\'a}szl{\'o} A. V{\'e}gh},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2019/11259},
  URN =		{urn:nbn:de:0030-drops-112592},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.44},
  annote =	{Keywords: population recovery, deletion channel, trace reconstruction}
}

Keywords: population recovery, deletion channel, trace reconstruction
Collection: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)
Issue Date: 2019
Date of publication: 17.09.2019


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI