License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX-RANDOM.2019.62
URN: urn:nbn:de:0030-drops-112778
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2019/11277/
Braverman, Vladimir ;
Feldman, Dan ;
Lang, Harry ;
Rus, Daniela
Streaming Coreset Constructions for M-Estimators
Abstract
We introduce a new method of maintaining a (k,epsilon)-coreset for clustering M-estimators over insertion-only streams. Let (P,w) be a weighted set (where w : P - > [0,infty) is the weight function) of points in a rho-metric space (meaning a set X equipped with a positive-semidefinite symmetric function D such that D(x,z) <=rho(D(x,y) + D(y,z)) for all x,y,z in X). For any set of points C, we define COST(P,w,C) = sum_{p in P} w(p) min_{c in C} D(p,c). A (k,epsilon)-coreset for (P,w) is a weighted set (Q,v) such that for every set C of k points, (1-epsilon)COST(P,w,C) <= COST(Q,v,C) <= (1+epsilon)COST(P,w,C). Essentially, the coreset (Q,v) can be used in place of (P,w) for all operations concerning the COST function. Coresets, as a method of data reduction, are used to solve fundamental problems in machine learning of streaming and distributed data.
M-estimators are functions D(x,y) that can be written as psi(d(x,y)) where ({X}, d) is a true metric (i.e. 1-metric) space. Special cases of M-estimators include the well-known k-median (psi(x) =x) and k-means (psi(x) = x^2) functions. Our technique takes an existing offline construction for an M-estimator coreset and converts it into the streaming setting, where n data points arrive sequentially. To our knowledge, this is the first streaming construction for any M-estimator that does not rely on the merge-and-reduce tree. For example, our coreset for streaming metric k-means uses O(epsilon^{-2} k log k log n) points of storage. The previous state-of-the-art required storing at least O(epsilon^{-2} k log k log^{4} n) points.
BibTeX - Entry
@InProceedings{braverman_et_al:LIPIcs:2019:11277,
author = {Vladimir Braverman and Dan Feldman and Harry Lang and Daniela Rus},
title = {{Streaming Coreset Constructions for M-Estimators}},
booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
pages = {62:1--62:15},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-125-2},
ISSN = {1868-8969},
year = {2019},
volume = {145},
editor = {Dimitris Achlioptas and L{\'a}szl{\'o} A. V{\'e}gh},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2019/11277},
URN = {urn:nbn:de:0030-drops-112778},
doi = {10.4230/LIPIcs.APPROX-RANDOM.2019.62},
annote = {Keywords: Streaming, Clustering, Coresets}
}
Keywords: |
|
Streaming, Clustering, Coresets |
Collection: |
|
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019) |
Issue Date: |
|
2019 |
Date of publication: |
|
17.09.2019 |