License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX-RANDOM.2019.64
URN: urn:nbn:de:0030-drops-112790
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2019/11279/
Chen, Zongchen ;
Vempala, Santosh S.
Optimal Convergence Rate of Hamiltonian Monte Carlo for Strongly Logconcave Distributions
Abstract
We study Hamiltonian Monte Carlo (HMC) for sampling from a strongly logconcave density proportional to e^{-f} where f:R^d -> R is mu-strongly convex and L-smooth (the condition number is kappa = L/mu). We show that the relaxation time (inverse of the spectral gap) of ideal HMC is O(kappa), improving on the previous best bound of O(kappa^{1.5}); we complement this with an example where the relaxation time is Omega(kappa). When implemented using a nearly optimal ODE solver, HMC returns an epsilon-approximate point in 2-Wasserstein distance using O~((kappa d)^{0.5} epsilon^{-1}) gradient evaluations per step and O~((kappa d)^{1.5}epsilon^{-1}) total time.
BibTeX - Entry
@InProceedings{chen_et_al:LIPIcs:2019:11279,
author = {Zongchen Chen and Santosh S. Vempala},
title = {{Optimal Convergence Rate of Hamiltonian Monte Carlo for Strongly Logconcave Distributions}},
booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
pages = {64:1--64:12},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-125-2},
ISSN = {1868-8969},
year = {2019},
volume = {145},
editor = {Dimitris Achlioptas and L{\'a}szl{\'o} A. V{\'e}gh},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2019/11279},
URN = {urn:nbn:de:0030-drops-112790},
doi = {10.4230/LIPIcs.APPROX-RANDOM.2019.64},
annote = {Keywords: logconcave distribution, sampling, Hamiltonian Monte Carlo, spectral gap, strong convexity}
}
Keywords: |
|
logconcave distribution, sampling, Hamiltonian Monte Carlo, spectral gap, strong convexity |
Collection: |
|
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019) |
Issue Date: |
|
2019 |
Date of publication: |
|
17.09.2019 |