License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX-RANDOM.2019.72
URN: urn:nbn:de:0030-drops-112873
Go to the corresponding LIPIcs Volume Portal

Li, Fu ; Zuckerman, David

Improved Extractors for Recognizable and Algebraic Sources

LIPIcs-APPROX-RANDOM-2019-72.pdf (0.6 MB)


We study the task of seedless randomness extraction from recognizable sources, which are uniform distributions over sets of the form {x : f(x) = 1} for functions f in some specified class C. We give two simple methods for constructing seedless extractors for C-recognizable sources.
Our first method shows that if C admits XOR amplification, then we can construct a seedless extractor for C-recognizable sources by using a mildly hard function for C as a black box. By exploiting this reduction, we give polynomial-time, seedless randomness extractors for three natural recognizable sources: (1) constant-degree algebraic sources over any prime field, where constant-degree algebraic sources are uniform distributions over the set of zeros of a system of constant degree polynomials; (2) sources recognizable by randomized multiparty communication protocols of cn bits, where c>0 is a small enough constant; (3) halfspace sources, or sources recognizable by linear threshold functions. In particular, the new extractor for each of these three sources has linear output length and exponentially small error for min-entropy k >= (1-alpha)n, where alpha>0 is a small enough constant.
Our second method shows that a seed-extending pseudorandom generator with exponentially small error for C yields an extractor with exponentially small error for C-recognizable sources, improving a reduction by Kinne, Melkebeek, and Shaltiel [Kinne et al., 2012]. Using the hardness of the parity function against AC^0 [HÃ¥stad, 1987], we significantly improve Shaltiel's extractor [Shaltiel, 2011] for AC^0-recognizable sources. Finally, assuming sufficiently strong one-way permutations, we construct seedless extractors for sources recognizable by BPP algorithms, and these extractors run in quasi-polynomial time.

BibTeX - Entry

  author =	{Fu Li and David Zuckerman},
  title =	{{Improved Extractors for Recognizable and Algebraic Sources}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{72:1--72:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Dimitris Achlioptas and L{\'a}szl{\'o} A. V{\'e}gh},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-112873},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.72},
  annote =	{Keywords: Extractor, Pseudorandomness}

Keywords: Extractor, Pseudorandomness
Collection: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)
Issue Date: 2019
Date of publication: 17.09.2019

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI