License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/DagSemProc.04351.21
URN: urn:nbn:de:0030-drops-1208
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2005/120/
Go to the corresponding Portal


Kovar, Martin

The Hofmann-Mislove Theorem for general topological structures

pdf-format:
04351.KovarMartin4.Paper.120.pdf (0.2 MB)


Abstract

In this paper we prove a modification of Hofmann-Mislove theorem for a topological structure similar to the minusspaces of de Groot, in which the empty set "need not be open". This will extend, in a slightly relaxed form, the validity of the classical Hofmann-Mislove theorem also to some of those spaces, whose underlying topology need not be (quasi-) sober.

BibTeX - Entry

@InProceedings{kovar:DagSemProc.04351.21,
  author =	{Kovar, Martin},
  title =	{{The Hofmann-Mislove Theorem for general topological structures}},
  booktitle =	{Spatial Representation: Discrete vs. Continuous Computational Models},
  pages =	{1--9},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2005},
  volume =	{4351},
  editor =	{Ralph Kopperman and Michael B. Smyth and Dieter Spreen and Julian Webster},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2005/120},
  URN =		{urn:nbn:de:0030-drops-1208},
  doi =		{10.4230/DagSemProc.04351.21},
  annote =	{Keywords: Compact saturated set , Scott open filter , (quasi-) sober space}
}

Keywords: Compact saturated set , Scott open filter , (quasi-) sober space
Collection: 04351 - Spatial Representation: Discrete vs. Continuous Computational Models
Issue Date: 2005
Date of publication: 22.04.2005


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI