License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.AofA.2020.11
URN: urn:nbn:de:0030-drops-120419
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2020/12041/
Go to the corresponding LIPIcs Volume Portal


Elvey Price, Andrew ; Fang, Wenjie ; Wallner, Michael

Asymptotics of Minimal Deterministic Finite Automata Recognizing a Finite Binary Language

pdf-format:
LIPIcs-AofA-2020-11.pdf (0.6 MB)


Abstract

We show that the number of minimal deterministic finite automata with n+1 states recognizing a finite binary language grows asymptotically for n → ∞ like Θ(n! 8ⁿ e^{3 a₁ n^{1/3}} n^{7/8}), where a₁ ≈ -2.338 is the largest root of the Airy function. For this purpose, we use a new asymptotic enumeration method proposed by the same authors in a recent preprint (2019). We first derive a new two-parameter recurrence relation for the number of such automata up to a given size. Using this result, we prove by induction tight bounds that are sufficiently accurate for large n to determine the asymptotic form using adapted Netwon polygons.

BibTeX - Entry

@InProceedings{elveyprice_et_al:LIPIcs:2020:12041,
  author =	{Andrew Elvey Price and Wenjie Fang and Michael Wallner},
  title =	{{Asymptotics of Minimal Deterministic Finite Automata Recognizing a Finite Binary Language}},
  booktitle =	{31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)},
  pages =	{11:1--11:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-147-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{159},
  editor =	{Michael Drmota and Clemens Heuberger},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2020/12041},
  URN =		{urn:nbn:de:0030-drops-120419},
  doi =		{10.4230/LIPIcs.AofA.2020.11},
  annote =	{Keywords: Airy function, asymptotics, directed acyclic graphs, Dyck paths, bijection, stretched exponential, compacted trees, minimal automata, finite languages}
}

Keywords: Airy function, asymptotics, directed acyclic graphs, Dyck paths, bijection, stretched exponential, compacted trees, minimal automata, finite languages
Collection: 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)
Issue Date: 2020
Date of publication: 10.06.2020


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI