License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2020.2
URN: urn:nbn:de:0030-drops-121604
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2020/12160/
Go to the corresponding LIPIcs Volume Portal


Agarwal, Pankaj K. ; Chang, Hsien-Chih ; Suri, Subhash ; Xiao, Allen ; Xue, Jie

Dynamic Geometric Set Cover and Hitting Set

pdf-format:
LIPIcs-SoCG-2020-2.pdf (0.6 MB)


Abstract

We investigate dynamic versions of geometric set cover and hitting set where points and ranges may be inserted or deleted, and we want to efficiently maintain an (approximately) optimal solution for the current problem instance. While their static versions have been extensively studied in the past, surprisingly little is known about dynamic geometric set cover and hitting set. For instance, even for the most basic case of one-dimensional interval set cover and hitting set, no nontrivial results were known. The main contribution of our paper are two frameworks that lead to efficient data structures for dynamically maintaining set covers and hitting sets in ℝ¹ and ℝ². The first framework uses bootstrapping and gives a (1+ε)-approximate data structure for dynamic interval set cover in ℝ¹ with O(n^α/ε) amortized update time for any constant α > 0; in ℝ², this method gives O(1)-approximate data structures for unit-square (and quadrant) set cover and hitting set with O(n^(1/2+α)) amortized update time. The second framework uses local modification, and leads to a (1+ε)-approximate data structure for dynamic interval hitting set in ℝ¹ with Õ(1/ε) amortized update time; in ℝ², it gives O(1)-approximate data structures for unit-square (and quadrant) set cover and hitting set in the partially dynamic settings with Õ(1) amortized update time.

BibTeX - Entry

@InProceedings{agarwal_et_al:LIPIcs:2020:12160,
  author =	{Pankaj K. Agarwal and Hsien-Chih Chang and Subhash Suri and Allen Xiao and Jie Xue},
  title =	{{Dynamic Geometric Set Cover and Hitting Set}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{2:1--2:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Sergio Cabello and Danny Z. Chen},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2020/12160},
  URN =		{urn:nbn:de:0030-drops-121604},
  doi =		{10.4230/LIPIcs.SoCG.2020.2},
  annote =	{Keywords: Geometric set cover, Geometric hitting set, Dynamic data structures}
}

Keywords: Geometric set cover, Geometric hitting set, Dynamic data structures
Collection: 36th International Symposium on Computational Geometry (SoCG 2020)
Issue Date: 2020
Date of publication: 08.06.2020


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI