License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2020.5
URN: urn:nbn:de:0030-drops-121639
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2020/12163/
Go to the corresponding LIPIcs Volume Portal


Alon, Noga ; Jartoux, Bruno ; Keller, Chaya ; Smorodinsky, Shakhar ; Yuditsky, Yelena

The ε-t-Net Problem

pdf-format:
LIPIcs-SoCG-2020-5.pdf (0.5 MB)


Abstract

We study a natural generalization of the classical ε-net problem (Haussler - Welzl 1987), which we call the ε-t-net problem: Given a hypergraph on n vertices and parameters t and ε ≥ t/n, find a minimum-sized family S of t-element subsets of vertices such that each hyperedge of size at least ε n contains a set in S. When t=1, this corresponds to the ε-net problem.
We prove that any sufficiently large hypergraph with VC-dimension d admits an ε-t-net of size O((1+log t)d/ε log 1/ε). For some families of geometrically-defined hypergraphs (such as the dual hypergraph of regions with linear union complexity), we prove the existence of O(1/ε)-sized ε-t-nets.
We also present an explicit construction of ε-t-nets (including ε-nets) for hypergraphs with bounded VC-dimension. In comparison to previous constructions for the special case of ε-nets (i.e., for t=1), it does not rely on advanced derandomization techniques. To this end we introduce a variant of the notion of VC-dimension which is of independent interest.

BibTeX - Entry

@InProceedings{alon_et_al:LIPIcs:2020:12163,
  author =	{Noga Alon and Bruno Jartoux and Chaya Keller and Shakhar Smorodinsky and Yelena Yuditsky},
  title =	{{The ε-t-Net Problem}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{5:1--5:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Sergio Cabello and Danny Z. Chen},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2020/12163},
  URN =		{urn:nbn:de:0030-drops-121639},
  doi =		{10.4230/LIPIcs.SoCG.2020.5},
  annote =	{Keywords: epsilon-nets, geometric hypergraphs, VC-dimension, linear union complexity}
}

Keywords: epsilon-nets, geometric hypergraphs, VC-dimension, linear union complexity
Collection: 36th International Symposium on Computational Geometry (SoCG 2020)
Issue Date: 2020
Date of publication: 08.06.2020


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI