License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2020.9
URN: urn:nbn:de:0030-drops-121672
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2020/12167/
Go to the corresponding LIPIcs Volume Portal


Arroyo, Alan ; Bensmail, Julien ; Richter, R. Bruce

Extending Drawings of Graphs to Arrangements of Pseudolines

pdf-format:
LIPIcs-SoCG-2020-9.pdf (0.6 MB)


Abstract

In the recent study of crossing numbers, drawings of graphs that can be extended to an arrangement of pseudolines (pseudolinear drawings) have played an important role as they are a natural combinatorial extension of rectilinear (or straight-line) drawings. A characterization of the pseudolinear drawings of K_n was found recently. We extend this characterization to all graphs, by describing the set of minimal forbidden subdrawings for pseudolinear drawings. Our characterization also leads to a polynomial-time algorithm to recognize pseudolinear drawings and construct the pseudolines when it is possible.

BibTeX - Entry

@InProceedings{arroyo_et_al:LIPIcs:2020:12167,
  author =	{Alan Arroyo and Julien Bensmail and R. Bruce Richter},
  title =	{{Extending Drawings of Graphs to Arrangements of Pseudolines}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{9:1--9:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Sergio Cabello and Danny Z. Chen},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2020/12167},
  URN =		{urn:nbn:de:0030-drops-121672},
  doi =		{10.4230/LIPIcs.SoCG.2020.9},
  annote =	{Keywords: graphs, graph drawings, geometric graph drawings, arrangements of pseudolines, crossing numbers, stretchability}
}

Keywords: graphs, graph drawings, geometric graph drawings, arrangements of pseudolines, crossing numbers, stretchability
Collection: 36th International Symposium on Computational Geometry (SoCG 2020)
Issue Date: 2020
Date of publication: 08.06.2020


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI