License: Creative Commons Attribution 3.0 Unported license (CC BY 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.APPROX/RANDOM.2020.9
URN: urn:nbn:de:0030-drops-126126
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2020/12612/
Guruswami, Venkatesan ;
Li, Ray ;
Mosheiff, Jonathan ;
Resch, Nicolas ;
Silas, Shashwat ;
Wootters, Mary
Bounds for List-Decoding and List-Recovery of Random Linear Codes
Abstract
A family of error-correcting codes is list-decodable from error fraction p if, for every code in the family, the number of codewords in any Hamming ball of fractional radius p is less than some integer L that is independent of the code length. It is said to be list-recoverable for input list size ? if for every sufficiently large subset of codewords (of size L or more), there is a coordinate where the codewords take more than ? values. The parameter L is said to be the "list size" in either case. The capacity, i.e., the largest possible rate for these notions as the list size L → ∞, is known to be 1-h_q(p) for list-decoding, and 1-log_q ? for list-recovery, where q is the alphabet size of the code family.
In this work, we study the list size of random linear codes for both list-decoding and list-recovery as the rate approaches capacity. We show the following claims hold with high probability over the choice of the code (below q is the alphabet size, and ε > 0 is the gap to capacity).
- A random linear code of rate 1 - log_q(?) - ε requires list size L ≥ ?^{Ω(1/ε)} for list-recovery from input list size ?. This is surprisingly in contrast to completely random codes, where L = O(?/ε) suffices w.h.p.
- A random linear code of rate 1 - h_q(p) - ε requires list size L ≥ ⌊ {h_q(p)/ε+0.99}⌋ for list-decoding from error fraction p, when ε is sufficiently small.
- A random binary linear code of rate 1 - h₂(p) - ε is list-decodable from average error fraction p with list size with L ≤ ⌊ {h₂(p)/ε}⌋ + 2. (The average error version measures the average Hamming distance of the codewords from the center of the Hamming ball, instead of the maximum distance as in list-decoding.)
The second and third results together precisely pin down the list sizes for binary random linear codes for both list-decoding and average-radius list-decoding to three possible values.
Our lower bounds follow by exhibiting an explicit subset of codewords so that this subset - or some symbol-wise permutation of it - lies in a random linear code with high probability. This uses a recent characterization of (Mosheiff, Resch, Ron-Zewi, Silas, Wootters, 2019) of configurations of codewords that are contained in random linear codes. Our upper bound follows from a refinement of the techniques of (Guruswami, Håstad, Sudan, Zuckerman, 2002) and strengthens a previous result of (Li, Wootters, 2018), which applied to list-decoding rather than average-radius list-decoding.
BibTeX - Entry
@InProceedings{guruswami_et_al:LIPIcs:2020:12612,
author = {Venkatesan Guruswami and Ray Li and Jonathan Mosheiff and Nicolas Resch and Shashwat Silas and Mary Wootters},
title = {{Bounds for List-Decoding and List-Recovery of Random Linear Codes}},
booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)},
pages = {9:1--9:21},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-164-1},
ISSN = {1868-8969},
year = {2020},
volume = {176},
editor = {Jaros{\l}aw Byrka and Raghu Meka},
publisher = {Schloss Dagstuhl--Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2020/12612},
URN = {urn:nbn:de:0030-drops-126126},
doi = {10.4230/LIPIcs.APPROX/RANDOM.2020.9},
annote = {Keywords: list-decoding, list-recovery, random linear codes, coding theory}
}
Keywords: |
|
list-decoding, list-recovery, random linear codes, coding theory |
Collection: |
|
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020) |
Issue Date: |
|
2020 |
Date of publication: |
|
11.08.2020 |