License: Creative Commons Attribution-NoDerivs 3.0 Unported license (CC BY-ND 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.STACS.2008.1348
URN: urn:nbn:de:0030-drops-13486
Go to the corresponding LIPIcs Volume Portal

Dietzfelbinger, Martin ; Rowe, Jonathan E. ; Wegener, Ingo ; Woelfel, Philipp

Tight Bounds for Blind Search on the Integers

22011.DietzfelbingerMartin.Paper.1348.pdf (0.3 MB)


We analyze a simple random process in which a token is moved in the
interval $A={0,dots,n$: Fix a probability distribution $mu$
over ${1,dots,n$. Initially, the token is placed in a random
position in $A$. In round $t$, a random value $d$ is chosen
according to $mu$. If the token is in position $ageq d$, then it
is moved to position $a-d$. Otherwise it stays put. Let $T$ be
the number of rounds until the token reaches position 0. We show
tight bounds for the expectation of $T$ for the optimal
distribution $mu$. More precisely, we show that
$min_mu{E_mu(T)=Thetaleft((log n)^2
ight)$. For the
proof, a novel potential function argument is introduced. The
research is motivated by the problem of approximating the minimum
of a continuous function over $[0,1]$ with a ``blind'' optimization

BibTeX - Entry

  author =	{Martin Dietzfelbinger and Jonathan E. Rowe and Ingo Wegener and Philipp Woelfel},
  title =	{{Tight Bounds for Blind Search on the Integers}},
  booktitle =	{25th International Symposium on Theoretical Aspects of Computer Science},
  pages =	{241--252},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-06-4},
  ISSN =	{1868-8969},
  year =	{2008},
  volume =	{1},
  editor =	{Susanne Albers and Pascal Weil},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-13486},
  doi =		{10.4230/LIPIcs.STACS.2008.1348},
  annote =	{Keywords: }

Collection: 25th International Symposium on Theoretical Aspects of Computer Science
Issue Date: 2008
Date of publication: 06.02.2008

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI