License: Creative Commons Attribution-NoDerivs 3.0 Unported license (CC BY-ND 3.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.STACS.2008.1350
URN: urn:nbn:de:0030-drops-13509
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2008/1350/
Go to the corresponding LIPIcs Volume Portal


Erlebach, Thomas ; Hagerup, Torben ; Jansen, Klaus ; Minzlaff, Moritz ; Wolff, Alexander

Trimming of Graphs, with Application to Point Labeling

pdf-format:
22011.ErlebachThomas.Paper.1350.pdf (0.2 MB)


Abstract

For $t,g>0$, a vertex-weighted graph of total weight $W$ is
$(t,g)$-trimmable if it contains a vertex-induced subgraph of total
weight at least $(1-1/t)W$ and with no simple path of more than $g$
edges. A family of graphs is trimmable if for each constant $t>0$,
there is a constant $g=g(t)$ such that every vertex-weighted graph
in the family is $(t,g)$-trimmable. We show that every family of
graphs of bounded domino treewidth is trimmable. This implies that
every family of graphs of bounded degree is trimmable if the graphs
in the family have bounded treewidth or are planar. Based on this
result, we derive a polynomial-time approximation scheme for the
problem of labeling weighted points with nonoverlapping sliding
labels of unit height and given lengths so as to maximize the total
weight of the labeled points. This settles one of the last major
open questions in the theory of map labeling.


BibTeX - Entry

@InProceedings{erlebach_et_al:LIPIcs:2008:1350,
  author =	{Thomas Erlebach and Torben Hagerup and Klaus Jansen and Moritz Minzlaff and Alexander Wolff},
  title =	{{Trimming of Graphs, with Application to Point Labeling}},
  booktitle =	{25th International Symposium on Theoretical Aspects of Computer Science},
  pages =	{265--276},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-06-4},
  ISSN =	{1868-8969},
  year =	{2008},
  volume =	{1},
  editor =	{Susanne Albers and Pascal Weil},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2008/1350},
  URN =		{urn:nbn:de:0030-drops-13509},
  doi =		{10.4230/LIPIcs.STACS.2008.1350},
  annote =	{Keywords: Trimming weighted graphs, domino treewidth, planar graphs, point-feature label placement, map labeling, polynomial-time approximation schemes}
}

Keywords: Trimming weighted graphs, domino treewidth, planar graphs, point-feature label placement, map labeling, polynomial-time approximation schemes
Collection: 25th International Symposium on Theoretical Aspects of Computer Science
Issue Date: 2008
Date of publication: 06.02.2008


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI