License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.STACS.2021.23
URN: urn:nbn:de:0030-drops-136681
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/13668/
Cheraghchi, Mahdi ;
Hirahara, Shuichi ;
Myrisiotis, Dimitrios ;
Yoshida, Yuichi
One-Tape Turing Machine and Branching Program Lower Bounds for MCSP
Abstract
For a size parameter s: ℕ → ℕ, the Minimum Circuit Size Problem (denoted by MCSP[s(n)]) is the problem of deciding whether the minimum circuit size of a given function f : {0,1}ⁿ → {0,1} (represented by a string of length N : = 2ⁿ) is at most a threshold s(n). A recent line of work exhibited "hardness magnification" phenomena for MCSP: A very weak lower bound for MCSP implies a breakthrough result in complexity theory. For example, McKay, Murray, and Williams (STOC 2019) implicitly showed that, for some constant μ₁ > 0, if MCSP[2^{μ₁⋅ n}] cannot be computed by a one-tape Turing machine (with an additional one-way read-only input tape) running in time N^{1.01}, then P≠NP.
In this paper, we present the following new lower bounds against one-tape Turing machines and branching programs:
1) A randomized two-sided error one-tape Turing machine (with an additional one-way read-only input tape) cannot compute MCSP[2^{μ₂⋅n}] in time N^{1.99}, for some constant μ₂ > μ₁.
2) A non-deterministic (or parity) branching program of size o(N^{1.5}/log N) cannot compute MKTP, which is a time-bounded Kolmogorov complexity analogue of MCSP. This is shown by directly applying the Nečiporuk method to MKTP, which previously appeared to be difficult.
3) The size of any non-deterministic, co-non-deterministic, or parity branching program computing MCSP is at least N^{1.5-o(1)}. These results are the first non-trivial lower bounds for MCSP and MKTP against one-tape Turing machines and non-deterministic branching programs, and essentially match the best-known lower bounds for any explicit functions against these computational models.
The first result is based on recent constructions of pseudorandom generators for read-once oblivious branching programs (ROBPs) and combinatorial rectangles (Forbes and Kelley, FOCS 2018; Viola 2019). En route, we obtain several related results:
1) There exists a (local) hitting set generator with seed length Õ(√N) secure against read-once polynomial-size non-deterministic branching programs on N-bit inputs.
2) Any read-once co-non-deterministic branching program computing MCSP must have size at least 2^Ω̃(N).
BibTeX - Entry
@InProceedings{cheraghchi_et_al:LIPIcs.STACS.2021.23,
author = {Cheraghchi, Mahdi and Hirahara, Shuichi and Myrisiotis, Dimitrios and Yoshida, Yuichi},
title = {{One-Tape Turing Machine and Branching Program Lower Bounds for MCSP}},
booktitle = {38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)},
pages = {23:1--23:19},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-180-1},
ISSN = {1868-8969},
year = {2021},
volume = {187},
editor = {Bl\"{a}ser, Markus and Monmege, Benjamin},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2021/13668},
URN = {urn:nbn:de:0030-drops-136681},
doi = {10.4230/LIPIcs.STACS.2021.23},
annote = {Keywords: Minimum Circuit Size Problem, Kolmogorov Complexity, One-Tape Turing Machines, Branching Programs, Lower Bounds, Pseudorandom Generators, Hitting Set Generators}
}
Keywords: |
|
Minimum Circuit Size Problem, Kolmogorov Complexity, One-Tape Turing Machines, Branching Programs, Lower Bounds, Pseudorandom Generators, Hitting Set Generators |
Collection: |
|
38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021) |
Issue Date: |
|
2021 |
Date of publication: |
|
10.03.2021 |