License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2021.11
URN: urn:nbn:de:0030-drops-138107
Go to the corresponding LIPIcs Volume Portal

Arseneva, Elena ; Kleist, Linda ; Klemz, Boris ; Löffler, Maarten ; Schulz, André ; Vogtenhuber, Birgit ; Wolff, Alexander

Adjacency Graphs of Polyhedral Surfaces

LIPIcs-SoCG-2021-11.pdf (3 MB)


We study whether a given graph can be realized as an adjacency graph of the polygonal cells of a polyhedral surface in ℝ³. We show that every graph is realizable as a polyhedral surface with arbitrary polygonal cells, and that this is not true if we require the cells to be convex. In particular, if the given graph contains K_5, K_{5,81}, or any nonplanar 3-tree as a subgraph, no such realization exists. On the other hand, all planar graphs, K_{4,4}, and K_{3,5} can be realized with convex cells. The same holds for any subdivision of any graph where each edge is subdivided at least once, and, by a result from McMullen et al. (1983), for any hypercube.
Our results have implications on the maximum density of graphs describing polyhedral surfaces with convex cells: The realizability of hypercubes shows that the maximum number of edges over all realizable n-vertex graphs is in Ω(n log n). From the non-realizability of K_{5,81}, we obtain that any realizable n-vertex graph has ?(n^{9/5}) edges. As such, these graphs can be considerably denser than planar graphs, but not arbitrarily dense.

BibTeX - Entry

  author =	{Arseneva, Elena and Kleist, Linda and Klemz, Boris and L\"{o}ffler, Maarten and Schulz, Andr\'{e} and Vogtenhuber, Birgit and Wolff, Alexander},
  title =	{{Adjacency Graphs of Polyhedral Surfaces}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{11:1--11:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-138107},
  doi =		{10.4230/LIPIcs.SoCG.2021.11},
  annote =	{Keywords: polyhedral complexes, realizability, contact representation}

Keywords: polyhedral complexes, realizability, contact representation
Collection: 37th International Symposium on Computational Geometry (SoCG 2021)
Issue Date: 2021
Date of publication: 02.06.2021

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI