License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2021.40
URN: urn:nbn:de:0030-drops-141095
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/14109/
Go to the corresponding LIPIcs Volume Portal


Bringmann, Karl ; Slusallek, Jasper

Current Algorithms for Detecting Subgraphs of Bounded Treewidth Are Probably Optimal

pdf-format:
LIPIcs-ICALP-2021-40.pdf (0.8 MB)


Abstract

The Subgraph Isomorphism problem is of considerable importance in computer science. We examine the problem when the pattern graph H is of bounded treewidth, as occurs in a variety of applications. This problem has a well-known algorithm via color-coding that runs in time O(n^{tw(H)+1}) [Alon, Yuster, Zwick'95], where n is the number of vertices of the host graph G. While there are pattern graphs known for which Subgraph Isomorphism can be solved in an improved running time of O(n^{tw(H)+1-ε}) or even faster (e.g. for k-cliques), it is not known whether such improvements are possible for all patterns. The only known lower bound rules out time n^{o(tw(H) / log(tw(H)))} for any class of patterns of unbounded treewidth assuming the Exponential Time Hypothesis [Marx'07].
In this paper, we demonstrate the existence of maximally hard pattern graphs H that require time n^{tw(H)+1-o(1)}. Specifically, under the Strong Exponential Time Hypothesis (SETH), a standard assumption from fine-grained complexity theory, we prove the following asymptotic statement for large treewidth t:
For any ε > 0 there exists t ≥ 3 and a pattern graph H of treewidth t such that Subgraph Isomorphism on pattern H has no algorithm running in time O(n^{t+1-ε}).
Under the more recent 3-uniform Hyperclique hypothesis, we even obtain tight lower bounds for each specific treewidth t ≥ 3:
For any t ≥ 3 there exists a pattern graph H of treewidth t such that for any ε > 0 Subgraph Isomorphism on pattern H has no algorithm running in time O(n^{t+1-ε}).
In addition to these main results, we explore (1) colored and uncolored problem variants (and why they are equivalent for most cases), (2) Subgraph Isomorphism for tw < 3, (3) Subgraph Isomorphism parameterized by pathwidth instead of treewidth, and (4) a weighted variant that we call Exact Weight Subgraph Isomorphism, for which we examine pseudo-polynomial time algorithms. For many of these settings we obtain similarly tight upper and lower bounds.

BibTeX - Entry

@InProceedings{bringmann_et_al:LIPIcs.ICALP.2021.40,
  author =	{Bringmann, Karl and Slusallek, Jasper},
  title =	{{Current Algorithms for Detecting Subgraphs of Bounded Treewidth Are Probably Optimal}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{40:1--40:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/14109},
  URN =		{urn:nbn:de:0030-drops-141095},
  doi =		{10.4230/LIPIcs.ICALP.2021.40},
  annote =	{Keywords: subgraph isomorphism, treewidth, fine-grained complexity, hyperclique}
}

Keywords: subgraph isomorphism, treewidth, fine-grained complexity, hyperclique
Collection: 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)
Issue Date: 2021
Date of publication: 02.07.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI