License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ICALP.2021.85
URN: urn:nbn:de:0030-drops-141548
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/14154/
Go to the corresponding LIPIcs Volume Portal


Kavitha, Telikepalli

Maximum Matchings and Popularity

pdf-format:
LIPIcs-ICALP-2021-85.pdf (0.9 MB)


Abstract

Let G be a bipartite graph where every node has a strict ranking of its neighbors. For any node, its preferences over neighbors extend naturally to preferences over matchings. A maximum matching M in G is a popular max-matching if for any maximum matching N in G, the number of nodes that prefer M is at least the number that prefer N. Popular max-matchings always exist in G and they are relevant in applications where the size of the matching is of higher priority than node preferences. Here we assume there is also a cost function on the edge set. So what we seek is a min-cost popular max-matching. Our main result is that such a matching can be computed in polynomial time.
We show a compact extended formulation for the popular max-matching polytope and the algorithmic result follows from this. In contrast, it is known that the popular matching polytope has near-exponential extension complexity and finding a min-cost popular matching is NP-hard.

BibTeX - Entry

@InProceedings{kavitha:LIPIcs.ICALP.2021.85,
  author =	{Kavitha, Telikepalli},
  title =	{{Maximum Matchings and Popularity}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{85:1--85:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/14154},
  URN =		{urn:nbn:de:0030-drops-141548},
  doi =		{10.4230/LIPIcs.ICALP.2021.85},
  annote =	{Keywords: Bipartite graphs, Popular matchings, Stable matchings, Dual certificates}
}

Keywords: Bipartite graphs, Popular matchings, Stable matchings, Dual certificates
Collection: 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)
Issue Date: 2021
Date of publication: 02.07.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI