License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.WABI.2021.15
URN: urn:nbn:de:0030-drops-143681
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/14368/
Go to the corresponding LIPIcs Volume Portal


Išerić, Hamza ; Alkan, Can ; Hach, Faraz ; Numanagić, Ibrahim

BISER: Fast Characterization of Segmental Duplication Structure in Multiple Genome Assemblies

pdf-format:
LIPIcs-WABI-2021-15.pdf (0.9 MB)


Abstract

The increasing availability of high-quality genome assemblies raised interest in the characterization of genomic architecture. Major architectural parts, such as common repeats and segmental duplications (SDs), increase genome plasticity that stimulates further evolution by changing the genomic structure. However, optimal computation of SDs through standard local alignment algorithms is impractical due to the size of most genomes. A cross-genome evolutionary analysis of SDs is even harder, as one needs to characterize SDs in multiple genomes and find relations between those SDs and unique segments in other genomes. Thus there is a need for fast and accurate algorithms to characterize SD structure in multiple genome assemblies to better understand the evolutionary forces that shaped the genomes of today.
Here we introduce a new tool, BISER, to quickly detect SDs in multiple genomes and identify elementary SDs and core duplicons that drive the formation of such SDs. BISER improves earlier tools by (i) scaling the detection of SDs with low homology (75%) to multiple genomes while introducing further 8-24x speed-ups over the existing tools, and by (ii) characterizing elementary SDs and detecting core duplicons to help trace the evolutionary history of duplications to as far as 90 million years.

BibTeX - Entry

@InProceedings{iseric_et_al:LIPIcs.WABI.2021.15,
  author =	{I\v{s}eri\'{c}, Hamza and Alkan, Can and Hach, Faraz and Numanagi\'{c}, Ibrahim},
  title =	{{BISER: Fast Characterization of Segmental Duplication Structure in Multiple Genome Assemblies}},
  booktitle =	{21st International Workshop on Algorithms in Bioinformatics (WABI 2021)},
  pages =	{15:1--15:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-200-6},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{201},
  editor =	{Carbone, Alessandra and El-Kebir, Mohammed},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/14368},
  URN =		{urn:nbn:de:0030-drops-143681},
  doi =		{10.4230/LIPIcs.WABI.2021.15},
  annote =	{Keywords: genome analysis, fast alignment, segmental duplications, core duplicons, sequence decomposition}
}

Keywords: genome analysis, fast alignment, segmental duplications, core duplicons, sequence decomposition
Collection: 21st International Workshop on Algorithms in Bioinformatics (WABI 2021)
Issue Date: 2021
Date of publication: 22.07.2021
Supplementary Material: BISER is implemented in Seq and C++ programming languages:


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI