License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.MFCS.2021.32
URN: urn:nbn:de:0030-drops-144723
Go to the corresponding LIPIcs Volume Portal

Choudhary, Keerti ; Cohen, Avi ; Narayanaswamy, N. S. ; Peleg, David ; Vijayaragunathan, R.

Budgeted Dominating Sets in Uncertain Graphs

LIPIcs-MFCS-2021-32.pdf (0.9 MB)


We study the Budgeted Dominating Set (BDS) problem on uncertain graphs, namely, graphs with a probability distribution p associated with the edges, such that an edge e exists in the graph with probability p(e). The input to the problem consists of a vertex-weighted uncertain graph ? = (V, E, p, ω) and an integer budget (or solution size) k, and the objective is to compute a vertex set S of size k that maximizes the expected total domination (or total weight) of vertices in the closed neighborhood of S. We refer to the problem as the Probabilistic Budgeted Dominating Set (PBDS) problem. In this article, we present the following results on the complexity of the PBDS problem.
1) We show that the PBDS problem is NP-complete even when restricted to uncertain trees of diameter at most four. This is in sharp contrast with the well-known fact that the BDS problem is solvable in polynomial time in trees. We further show that PBDS is ?[1]-hard for the budget parameter k, and under the Exponential time hypothesis it cannot be solved in n^o(k) time.
2) We show that if one is willing to settle for (1-ε) approximation, then there exists a PTAS for PBDS on trees. Moreover, for the scenario of uniform edge-probabilities, the problem can be solved optimally in polynomial time.
3) We consider the parameterized complexity of the PBDS problem, and show that Uni-PBDS (where all edge probabilities are identical) is ?[1]-hard for the parameter pathwidth. On the other hand, we show that it is FPT in the combined parameters of the budget k and the treewidth.
4) Finally, we extend some of our parameterized results to planar and apex-minor-free graphs.
Our first hardness proof (Thm. 1) makes use of the new problem of k-Subset Σ-Π Maximization (k-SPM), which we believe is of independent interest. We prove its NP-hardness by a reduction from the well-known k-SUM problem, presenting a close relationship between the two problems.

BibTeX - Entry

  author =	{Choudhary, Keerti and Cohen, Avi and Narayanaswamy, N. S. and Peleg, David and Vijayaragunathan, R.},
  title =	{{Budgeted Dominating Sets in Uncertain Graphs}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{32:1--32:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-144723},
  doi =		{10.4230/LIPIcs.MFCS.2021.32},
  annote =	{Keywords: Uncertain graphs, Dominating set, NP-hard, PTAS, treewidth, planar graph}

Keywords: Uncertain graphs, Dominating set, NP-hard, PTAS, treewidth, planar graph
Collection: 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)
Issue Date: 2021
Date of publication: 18.08.2021

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI