License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ISAAC.2021.23
URN: urn:nbn:de:0030-drops-154566
Go to the corresponding LIPIcs Volume Portal

Evald, Jacob ; Fredslund-Hansen, Viktor ; Wulff-Nilsen, Christian

Near-Optimal Distance Oracles for Vertex-Labeled Planar Graphs

LIPIcs-ISAAC-2021-23.pdf (1 MB)


Given an undirected n-vertex planar graph G = (V,E,ω) with non-negative edge weight function ω:E → ℝ and given an assigned label to each vertex, a vertex-labeled distance oracle is a data structure which for any query consisting of a vertex u and a label λ reports the shortest path distance from u to the nearest vertex with label λ. We show that if there is a distance oracle for undirected n-vertex planar graphs with non-negative edge weights using s(n) space and with query time q(n), then there is a vertex-labeled distance oracle with Õ(s(n)) space and Õ(q(n)) query time. Using the state-of-the-art distance oracle of Long and Pettie [Long and Pettie, 2021], our construction produces a vertex-labeled distance oracle using n^{1+o(1)} space and query time Õ(1) at one extreme, Õ(n) space and n^o(1) query time at the other extreme, as well as such oracles for the full tradeoff between space and query time obtained in their paper. This is the first non-trivial exact vertex-labeled distance oracle for planar graphs and, to our knowledge, for any interesting graph class other than trees.

BibTeX - Entry

  author =	{Evald, Jacob and Fredslund-Hansen, Viktor and Wulff-Nilsen, Christian},
  title =	{{Near-Optimal Distance Oracles for Vertex-Labeled Planar Graphs}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{23:1--23:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-154566},
  doi =		{10.4230/LIPIcs.ISAAC.2021.23},
  annote =	{Keywords: distance oracle, vertex labels, color distance oracle, planar graph}

Keywords: distance oracle, vertex labels, color distance oracle, planar graph
Collection: 32nd International Symposium on Algorithms and Computation (ISAAC 2021)
Issue Date: 2021
Date of publication: 30.11.2021

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI