License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.FSTTCS.2021.36
URN: urn:nbn:de:0030-drops-155478
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2021/15547/
Go to the corresponding LIPIcs Volume Portal


Bednarczyk, Bartosz ; Orłowska, Maja ; Pacanowska, Anna ; Tan, Tony

On Classical Decidable Logics Extended with Percentage Quantifiers and Arithmetics

pdf-format:
LIPIcs-FSTTCS-2021-36.pdf (0.9 MB)


Abstract

During the last decades, a lot of effort was put into identifying decidable fragments of first-order logic. Such efforts gave birth, among the others, to the two-variable fragment and the guarded fragment, depending on the type of restriction imposed on formulae from the language. Despite the success of the mentioned logics in areas like formal verification and knowledge representation, such first-order fragments are too weak to express even the simplest statistical constraints, required for modelling of influence networks or in statistical reasoning.
In this work we investigate the extensions of these classical decidable logics with percentage quantifiers, specifying how frequently a formula is satisfied in the indented model. We show, surprisingly, that all the mentioned decidable fragments become undecidable under such extension, sharpening the existing results in the literature. Our negative results are supplemented by decidability of the two-variable guarded fragment with even more expressive counting, namely Presburger constraints. Our results can be applied to infer decidability of various modal and description logics, e.g. Presburger Modal Logics with Converse or ALCI, with expressive cardinality constraints.

BibTeX - Entry

@InProceedings{bednarczyk_et_al:LIPIcs.FSTTCS.2021.36,
  author =	{Bednarczyk, Bartosz and Or{\l}owska, Maja and Pacanowska, Anna and Tan, Tony},
  title =	{{On Classical Decidable Logics Extended with Percentage Quantifiers and Arithmetics}},
  booktitle =	{41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)},
  pages =	{36:1--36:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-215-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{213},
  editor =	{Boja\'{n}czy, Miko{\l}aj and Chekuri, Chandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/15547},
  URN =		{urn:nbn:de:0030-drops-155478},
  doi =		{10.4230/LIPIcs.FSTTCS.2021.36},
  annote =	{Keywords: statistical reasoning, knowledge representation, satisfiability, fragments of first-order logic, guarded fragment, two-variable fragment, (un)decidability}
}

Keywords: statistical reasoning, knowledge representation, satisfiability, fragments of first-order logic, guarded fragment, two-variable fragment, (un)decidability
Collection: 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)
Issue Date: 2021
Date of publication: 29.11.2021


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI