License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.ITCS.2022.43
URN: urn:nbn:de:0030-drops-156394
Go to the corresponding LIPIcs Volume Portal

Chen, Xue ; Cheng, Kuan ; Li, Xin ; Ouyang, Minghui

Improved Decoding of Expander Codes

LIPIcs-ITCS-2022-43.pdf (0.5 MB)


We study the classical expander codes, introduced by Sipser and Spielman [M. Sipser and D. A. Spielman, 1996]. Given any constants 0 < α, ε < 1/2, and an arbitrary bipartite graph with N vertices on the left, M < N vertices on the right, and left degree D such that any left subset S of size at most α N has at least (1-ε)|S|D neighbors, we show that the corresponding linear code given by parity checks on the right has distance at least roughly {α N}/{2 ε}. This is strictly better than the best known previous result of 2(1-ε) α N [Madhu Sudan, 2000; Viderman, 2013] whenever ε < 1/2, and improves the previous result significantly when ε is small. Furthermore, we show that this distance is tight in general, thus providing a complete characterization of the distance of general expander codes.
Next, we provide several efficient decoding algorithms, which vastly improve previous results in terms of the fraction of errors corrected, whenever ε < 1/4. Finally, we also give a bound on the list-decoding radius of general expander codes, which beats the classical Johnson bound in certain situations (e.g., when the graph is almost regular and the code has a high rate).
Our techniques exploit novel combinatorial properties of bipartite expander graphs. In particular, we establish a new size-expansion tradeoff, which may be of independent interests.

BibTeX - Entry

  author =	{Chen, Xue and Cheng, Kuan and Li, Xin and Ouyang, Minghui},
  title =	{{Improved Decoding of Expander Codes}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{43:1--43:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{},
  URN =		{urn:nbn:de:0030-drops-156394},
  doi =		{10.4230/LIPIcs.ITCS.2022.43},
  annote =	{Keywords: Expander Code, Decoding}

Keywords: Expander Code, Decoding
Collection: 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)
Issue Date: 2022
Date of publication: 25.01.2022

DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI