License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2022.1
URN: urn:nbn:de:0030-drops-160096
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/16009/
Go to the corresponding LIPIcs Volume Portal


Aamand, Anders ; Abrahamsen, Mikkel ; Ahle, Thomas ; Rasmussen, Peter M. R.

Tiling with Squares and Packing Dominos in Polynomial Time

pdf-format:
LIPIcs-SoCG-2022-1.pdf (1 MB)


Abstract

A polyomino is a polygonal region with axis-parallel edges and corners of integral coordinates, which may have holes. In this paper, we consider planar tiling and packing problems with polyomino pieces and a polyomino container P. We give polynomial-time algorithms for deciding if P can be tiled with k× k squares for any fixed k which can be part of the input (that is, deciding if P is the union of a set of non-overlapping k× k squares) and for packing P with a maximum number of non-overlapping and axis-parallel 2× 1 dominos, allowing rotations by 90^∘. As packing is more general than tiling, the latter algorithm can also be used to decide if P can be tiled by 2× 1 dominos.
These are classical problems with important applications in VLSI design, and the related problem of finding a maximum packing of 2× 2 squares is known to be NP-hard [J. Algorithms 1990]. For our three problems there are known pseudo-polynomial-time algorithms, that is, algorithms with running times polynomial in the area or perimeter of P. However, the standard, compact way to represent a polygon is by listing the coordinates of the corners in binary. We use this representation, and thus present the first polynomial-time algorithms for the problems. Concretely, we give a simple O(nlog n)-time algorithm for tiling with squares, where n is the number of corners of P. We then give a more involved algorithm that reduces the problems of packing and tiling with dominos to finding a maximum and perfect matching in a graph with O(n³) vertices. This leads to algorithms with running times O(n³(log³ n)/(log²log n)) and O(n³(log² n)/(log log n)), respectively.

BibTeX - Entry

@InProceedings{aamand_et_al:LIPIcs.SoCG.2022.1,
  author =	{Aamand, Anders and Abrahamsen, Mikkel and Ahle, Thomas and Rasmussen, Peter M. R.},
  title =	{{Tiling with Squares and Packing Dominos in Polynomial Time}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{1:1--1:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2022/16009},
  URN =		{urn:nbn:de:0030-drops-160096},
  doi =		{10.4230/LIPIcs.SoCG.2022.1},
  annote =	{Keywords: packing, tiling, polyominos}
}

Keywords: packing, tiling, polyominos
Collection: 38th International Symposium on Computational Geometry (SoCG 2022)
Issue Date: 2022
Date of publication: 01.06.2022


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI