License: Creative Commons Attribution 4.0 International license (CC BY 4.0)
When quoting this document, please refer to the following
DOI: 10.4230/LIPIcs.SoCG.2022.69
URN: urn:nbn:de:0030-drops-160773
URL: http://dagstuhl.sunsite.rwth-aachen.de/volltexte/2022/16077/
Mantas, Ioannis ;
Papadopoulou, Evanthia ;
Suderland, Martin ;
Yap, Chee
Subdivision Methods for Sum-Of-Distances Problems: Fermat-Weber Point, n-Ellipses and the Min-Sum Cluster Voronoi Diagram (Media Exposition)
Abstract
Given a set P of n points, the sum of distances function of a point x is d_{P}(x) : = ∑_{p ∈ P} ||x - p||. Using a subdivision approach with soft predicates we implement and visualize approximate solutions for three different problems involving the sum of distances function in ℝ². Namely, (1) finding the Fermat-Weber point, (2) constructing n-ellipses of a given set of points, and (3) constructing the nearest Voronoi diagram under the sum of distances function, given a set of point clusters as sites.
BibTeX - Entry
@InProceedings{mantas_et_al:LIPIcs.SoCG.2022.69,
author = {Mantas, Ioannis and Papadopoulou, Evanthia and Suderland, Martin and Yap, Chee},
title = {{Subdivision Methods for Sum-Of-Distances Problems: Fermat-Weber Point, n-Ellipses and the Min-Sum Cluster Voronoi Diagram}},
booktitle = {38th International Symposium on Computational Geometry (SoCG 2022)},
pages = {69:1--69:6},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-227-3},
ISSN = {1868-8969},
year = {2022},
volume = {224},
editor = {Goaoc, Xavier and Kerber, Michael},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/opus/volltexte/2022/16077},
URN = {urn:nbn:de:0030-drops-160773},
doi = {10.4230/LIPIcs.SoCG.2022.69},
annote = {Keywords: Fermat point, geometric median, Weber point, Fermat distance, sum of distances, n-ellipse, multifocal ellipse, min-sum Voronoi diagram, cluster Voronoi diagram}
}
Keywords: |
|
Fermat point, geometric median, Weber point, Fermat distance, sum of distances, n-ellipse, multifocal ellipse, min-sum Voronoi diagram, cluster Voronoi diagram |
Collection: |
|
38th International Symposium on Computational Geometry (SoCG 2022) |
Issue Date: |
|
2022 |
Date of publication: |
|
01.06.2022 |
Supplementary Material: |
|
Audiovisual (Video): https://youtu.be/wgG8uqLIizo |